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Abstract: Currently, the European Union (EU) is focusing on a large-scale campaign dedicated to 
developing a competitive circular economy and expanding the single digital market. One of the 
main goals of this campaign is the implementation of the sustainability principles in the 
development and deployment cycle of the new generation technologies. This paper focuses on the 
fast-growing field of autonomous mobile robots and the harsh environment exploration problem. 
Currently, most state-of-the-art navigation methods are utilising the idea of evaluating candidate 
observation locations by combining different task-related criteria. However, these map building 
solutions are often designed for operating in near-perfect environments, neglecting such factors as 
the danger to the robot. In this paper, a new strategy that aims to address the safety and re-usability 
of the autonomous mobile agent by implementing the economic sustainability principles is 
proposed. A novel multi-criteria decision-making method of Weighted Aggregated Sum Product 
Assessment—Single-Valued Neutrosophic Sets, namely WASPAS-SVNS, and the weight selection 
method of Step-Wise Weights Assessment Ratio Analysis (SWARA) are applied to model a dynamic 
decision-making system. The experimental evaluation of the proposed strategy shows that 
increased survivability of the autonomous agent can be observed. Compared to the greedy baseline 
strategy, the proposed method forms the movement path which orients the autonomous agent away 
from dangerous obstacles. 

Keywords: sustainability; autonomous robot; harsh environment; multi-criteria decision-making; 
SWARA; WASPAS-SVNS; neutrosophic sets 

 

1. Introduction 

Due to the constantly growing human population, the demand for clean food and water, energy, 
raw materials for habitats and basic goods has been increasing at an unprecedented rate. Naturally, 
trying to sustain such an economy by exhaustively using non-renewable resources is not effective 
and can result in the global economic collapse. To tackle this problem the paradigm of sustainable 
manufacturing was introduced and adopted by many businesses, countries and market groups [1]. 
For example, in 2015 European Union [2] announced the action plan for the development of the 
circular economy and by 2017 identified 27 heavy and light earth elements and platinum group 
metals as the critical raw materials that should be preserved to develop a competitive and 
technologically advanced economy [3]. A similar strategy was defined by the United States of 
America [1] in an attempt to conserve energy, minimise greenhouse gas emissions and other toxic 
waste products. 

The sustainability principles, in general, are supported by the environmental, social and 
economic factors. Therefore, when the paradigm is introduced to the manufacturing system, each 
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factor is addressed at every stage of the product life cycle-design phase, manufacture phase, usage 
phase and post-usage phase [1,2]. The production price essentially depends on the first two stages 
and typically includes raw material, energy and manual labour costs, environment taxes, packaging 
and transportation price. The third and fourth phase address the product maintenance and repair 
costs, upgradeability, recycling and disassembly price. In exceptionally effective systems the product 
should be highly adaptable to the customer needs and the maintenance costs should be minimised 
without impacting its quality.  

Nowadays, manufacturing optimisation is partially achieved by utilising industrial robots. 
According to Bugmann et al. [4], a high precision autonomous system can reduce the labour costs by 
about 50 times and significantly reduce the waste of critical raw materials. Smart devices are also 
used to monitor water, air and soil conditions, detect recyclable materials and improve agricultural 
production rates. While the industrial robots still occupy the undisputed majority of the field [5], the 
rapid research growth in the line of artificial intelligence has increased the capabilities of autonomous 
mobile robots, enabling them to solve more complex real-world problems.  

The main focus of this research is aimed at the fast-expanding field of autonomous mobile robot 
technologies and their relation to sustainability principles. The expected result is the creation of the 
sustainability-based autonomous decision-making module, mainly considering the economic factors 
of harsh environment exploration and robot survivability. This paper is structured as follows: 
Introduction is provided in Section 1, and the literature review is presented in Section 2. Robot 
architecture, harsh environment exploration sequence, problem formalisation, alternative selection 
methodology and proposed criteria set are presented in Section 3. Section 4 provides the core 
concepts of the applied MCDM (Multiple Criteria Decision Making) framework, namely Weighted 
Aggregated Sum Product Assessment—Single-Valued Neutrosophic Sets, (WASPAS-SVNS). The 
experimental evaluation of the proposed sustainable environment exploration strategy is presented 
in Section 5. Results and discussion are provided in Section 6. Finally, conclusions are formulated 
and presented in Section 7. 

2. Literature Review 

2.1. Autonomous Mobile Robots and Harsh Environments 

During the last decade, unmanned ground vehicles (UGVs) [6] have been utilised in many real-
world scenarios, such as search and rescue missions, patrol duty, labour automation, environment 
exploration and map building tasks. For example, Chen et al. [7] analysed autonomous robot 
capabilities in urban search and rescue missions, under the localisation and environment modelling 
with a single camera. Amigoni and Basilico [8,9] deployed UVGs for single and multi-robot 
environment exploration problems and search and rescue missions. In 2018, Zavadskas et al. [10] 
proposed a method to address the selection problem of automatically guided vehicles for material 
handling tasks. 

Although in the context of sustainability robot design is an important factor, the decision-
making module and navigation strategy is a fundamental component of any autonomous mobile 
agent. A great amount of research has been dedicated to improving the mobile robot ability to 
autonomously chose a near-optimal movement trajectory from the computed candidate list. 
However, environment exploration strategies have yet to be exhaustively studied. Recent research 
by Yang et al. [11] shows, that commonly applied map building solutions adopt simplified 
assumptions about the exploration environment, making these strategies insufficient for developing 
an autonomous system, that must operate with a high success rate. And although many decision-
making algorithms are modelled to address specific problems, a dynamic and easy-to-expand generic 
model, that takes into consideration the safety aspect of the autonomous robot, is yet to be created. 

Considering the EU action plan for a circular economy, throughout the product’s life, the 
product’s design phase has the greatest impact on its’ sustainability [2]. Although the mainstream 
approach of simplified problem modelling also simplifies the evaluation and comparison of different 
exploration strategies, the flaw of environment condition simplification in the product design phase 
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can also be considered as the core problem of the next generation autonomous mobile robots. In the 
real-world scenarios, UGVs are often required to perform in harsh environments, that are 
unreachable or too dangerous for humans, such as in Fukushima Daiichi event [12]. These 
environments can be irradiated, flooded, have spreading fire source, high explosion or structural 
collapse risk [13]. Commonly in these situations, no initial knowledge about the operating 
environment is given to the autonomous mobile agent. The mainstream approach of solving this 
problem is to apply an iterative map building approach, through which robot expands its’ knowledge 
about the environment by adding together small bits of obtained information. Losing or damaging 
the robot due to an unexpected change in the environment or poor decision-making process means 
that the affected components (or sometimes the whole system) need to be repaired or replaced. 
Therefore, in the real-world scenarios, autonomous robots should not only strive to complete the 
given task but also preserve themselves and avoid danger whenever it’s possible. Hence, this strategy 
is an essential requirement to maximise the reusability of the autonomous robot and minimise the 
potential economic damages. 

2.2. Multi-Criteria Decision-Making Methods for Sustainable Robot Design 

The process of creating a robust robot decision-making module, that integrates sustainability 
principles and also addresses the given task, involves multiple environmental, economic, social and 
functional requirements. The successful fulfilment of each requirement depends on a number of task-
related criteria that have to be evaluated during the route planning stage. Hence, autonomous 
trajectory selection problem can be modelled as a multi-criteria decision-making (MCDM) problem.  

In the context of sustainable system development, several papers propose different MCDM 
approaches to solve complex real-world selection problems. For example, Zavadskas et al. [14] 
proposed a new assessment methodology for waste incineration plant location selection. Stojić et al. 
[15] addressed the problem of supplier selection in the manufacturing chain by introducing a rough 
WASPAS framework. Stanujkić and Karabašević [16] extended the WASPAS method by integrating 
intuitionistic fuzzy numbers.  

The MCDM methods are extremely fast and easily adjustable tools, which enable the user to 
evaluate the alternatives not only by considering the data from various conflicting criteria and their 
relative weights, but also the format of presentation, for example, fuzzy or crisp [14]. Due to these 
characteristics, multi-criteria decision-making methods were successfully applied in several studies, 
such as single robot area exploration in [8] or multi-robot navigation in [9]. In both studies, Choquet 
fuzzy integral was applied to model redundancy and synergy between the elements of the standard 
criteria set. This extension was applied to develop a dynamic search and rescue strategy which was 
based on the observation location evaluation. According to the research authors, the proposed 
method produced topologically representative maps and showed a good overall performance of the 
proposed strategy. A more advanced MCDM framework, namely PROMETHEE II, was proposed by 
Taillandier and Stinckwich [17] to improve the decision-making efficiency in search and rescue 
scenarios. This outranking method provided better results in open and cluttered environments, 
compared to [9]. However, the experimental evaluation of all discussed area exploration strategies 
was conducted without taking into consideration the harsh environmental conditions, such as open 
fire sources, dynamic obstacles and faulty sensor readings.  

In recent years, an effort to extend the MCDM methods to solve such complex real-world 
problems took place. Various fuzzy set formulations for MCDM frameworks were taken into 
consideration while modelling the incomplete data sets for practical decision problems [18, 19, 20]. 
Recently, a new distinctive method to model the vagueness of the perceived data was formulated by 
Smarandache [21], called neutrosophic set logic. Neutrosophic sets can be viewed as the 
generalisation of Intuitionistic fuzzy sets [22], which, unlike other fuzzy-based methods, incorporate 
the estimation of three independent factors: truth-membership degree, indeterminacy-membership 
degree and falsity-membership degree and provide the tools to analyse each of them separately.  

The neutrosophic sets were used to extend several multi-criteria decision-making frameworks, 
such as WASPAS [14,23] or Decision-Making Trial and Evaluation Laboratory Method, namely 
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DAMATEL, proposed by Liu et al. [24]. In general, multi-criteria decision-making frameworks that 
incorporate such tools, show great potential in solving complex harsh environment analysis 
problems, that are given to the UGVs. 

3. Multi-Criteria Decision-Making in an Autonomous Robot Platform 

3.1. Autonomous Robot Platform 

In the context of this research, a virtual turtle-bot-like [25] autonomous robot, whose design is 
presented in Figure 1, is deployed. The robot has two driven wheels on the sides of its’ chassis and 
two supporting wheels that follow the movement of the robot. The driven wheel diameter is 0.1 m, 
and the robot length, width and height parameters are 0.15 m, 0.125 m and 0.135 m respectively. The 
robot can rotate in a 360° angle around its’ vertical axis. High accuracy virtual heat and laser sensors 
are utilised as the main environment perception devices and are mounted above the chassis, at the 
centre of the robot. The Hokuyo laser sensor has a measuring range 𝑟 from 0.01 m to 15 m with an 
accuracy of ± 0.01 m and can detect obstacles at a 180° angle in front of the robot. 

 
Figure 1. Virtual turtle-bot-like robot visualisation in Gazebo software. Left—front view; middle—
side view; right—three-quarter view. 

Robotic exploration process can be defined as a process through which the physical structure of 
the initially unknown environment is discovered by making incremental, information-based 
decisions. In the context of this research, authors consider a standard map building method when 
newly obtained geometrical data is added to the specified-scale grid, whose cells can have one of the 
three states: occupied, free or unreachable [26]. It is also assumed that the robot can localise itself 
within the reconstructed map. 

It is worth noting, that any mobile robot, that operates on the ground, in the air, above or below 
the water surface, can be utilised in the context of environment exploration problem. Naturally, for 
such a variety of robots, different engineering solutions can be applied, requiring different materials 
and investments. However, considering different class autonomous robots, commonly shared 
program components can be distinguished between them [27]: environment perception module; self-
localisation module; cognition and path planning module; motion control module. In the context of 
this research, the main focus is directed to the cognition and path planning module, and the 
expansion of robots’ decision-making capabilities. 

For the robot to efficiently explore the unknown environment, its’ decision-making strategy 
must achieve good long-term performance by making a series of short-term decisions. Assuming that 
the robot sensor range is limited, this problem can also be defined as the iterative next-best 
observation location selection problem [9]. Thus, robot decision at every iteration depends only on 
its’ current state and available candidate locations within the currently explored environment and 
not on the previous states. The value of an alternative location can be measured by evaluating 
multiple criteria, that depend on the system goal. The number of considered criteria can essentially 
be unlimited and can be changed to address the requirements of the specific task. In the context of 
this research, the utilised decision-making module analyses the sensor data, compares alternative 
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routes in relation to their respective criteria and chooses the highest ranked alternative. The complete 
navigation sequence, utilised by the deployed virtual robot system, is depicted in Figure 2. 

 
Figure 2. Navigation strategy utilised by the robot. 

The proposed environment exploration strategy encapsulates decision matrix preparation and 
criteria evaluation methods under the decision-making module. This module can be easily expanded 
or moved across different autonomous robots, making the system more dynamic. The exploration 
sequence is ended when the robot battery is depleted, the robot is severely damaged, or the main 
goal is achieved. In any scenario, the reconstructed map data and the robots’ current location 
coordinates are sent to the control center for analysis. This iterative strategy is the core of the 
autonomous exploration system that allows the robot to explore the environment about which no 
initial knowledge is given. 

3.2. MCDM Problem Formulation 

The main goal of this research is to expand the robots’ artificial intelligence capabilities. The 
proposed decision-making model is essentially responsible for two tasks: 

1) The processing of environment information and computation of candidate observation 
location list; 

2) The evaluation of observation locations and the selection of the highest ranked alternative. 

This alternative selection process can be further formalised from the multi-criteria decision-
making perspective. For each movement iteration robot computes a new list of 𝑖  candidate 
observation locations denoted by 𝐴 = ሼ𝑎ଵ, 𝑎ଶ, . . . , 𝑎௜ሽ. For each alternative, a set of 𝑛 criteria 𝐶 =൛𝑐ଵ,𝑐ଶ, … , 𝑐௡ൟ is assigned. The utility of candidate location can be denoted by 𝑢௡(𝑎)  and used to 
measure the candidate performance with respect to the criterion 𝑐௡. Assuming that 𝐶 has 𝑛 criteria, 
the candidate location 𝑎 can be denoted as a utility vector ൫𝑢ଵ(𝑎), 𝑢ଶ(𝑎), … , 𝑢௡(𝑎)൯. By applying 
MCDM methods, the overall value of such a utility vector can be measured and ranked. Therefore, 
candidate 𝑎 with the highest rank is considered to be a solution to the problem. In the following 
sections, the computation of alternative observation locations and the selection of the sustainability-
based criteria, that support safe environment exploration and resource preservation strategy, will be 
further defined. 

3.3. Alternative Computation Method for Local-Space Exploration 

To compute the candidate observation location list, the autonomous robot must first define the 
safe navigation area in its field of view [28]. In the context of this research, a safe area is defined as an 
object-free space, that is visible to the robot at its’ current state and through which the autonomous 
agent can move freely.  
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Considering the proposed turtle-bot robot design, the attached Hokuyo laser sensor uses 720 
light beams to detect obstacles in the environment. However, using the entire free area for candidate 
computation would not be effective—for each iteration, the decision matrix would be computed from 
720 alternatives with their respective criteria. So as to simplify the calculation process, the safe area 
is segmented into separate regions by grouping the laser beams into similar-length sets, applying the 
threshold of two meters. For each segment, a candidate observation location is computed, and around 
each of these locations, meaningful geometrical data is extracted based on the selected criteria.  

3.4. Criteria Set for Sustainable Environment Exploration 

To address the sustainability factors in the autonomous decision-making process, a new 
candidate observation location evaluation strategy is proposed. A new criteria set is constructed from 
two main components: three standard criteria, which are commonly applied for greedy map building 
methods; and three new criteria, constructed to specifically address the economic-related robot safety 
and re-usability factors for the autonomous harsh environment exploration.  

The standard greedy map building strategy relies on the evaluation of the estimated amount of 
information that would be visible from the new observation point, the length of the collision-free 
path and the battery consumption rate. Although these criteria are commonly applied in route 
planning tasks, they are not sufficient for navigation in harsh environments. The inability to identify 
hazardous obstacles and evaluate their impact on the robot system is a critical design flaw that 
directly contradicts the sustainability paradigm. Therefore, in the context of this research, UGVs 
decision-making module is expanded by introducing criteria of the ratio between the detected drive-
through region and standard door size, the distance to the detected hazardous obstacle, and the 
distance to the nearest vision-occluding object. It is worth to emphasise that the constructed criteria 
list is not exhaustive by any means and can be easily expanded or adjusted to address any new 
sustainability requirements. All criteria that were utilised in the context of this research were applied 
in autonomous systems separately, with their own success rate. However, our proposed criteria set 
addresses the crucial economical aspects of the sustainable environment exploration process. Authors 
argue, that such contributions in the autonomous agent design phase can have a significant impact 
on robots’ safety and as a result—overall maintenance and repair costs. The full criteria list, relative 
sustainability factors and used measurement units are presented in Table 1.  

Table 1. Proposed criteria list to evaluate candidate movement trajectories in harsh environments. 

Criteria Type Criterion Title Max/Min Units 

Standard Criteria 
The anticipated amount of new information. max mଶ 

The length of a visible collision-free path in the robots’ local-space. max m 
The battery consumption rate. min s 

Proposed Criteria 

The ratio between the detected drive-through region and standard 
door size. 

max - 

The distance to the detected hazardous object. max m 
The distance to the nearest vision-occluding object. max m 

First, the standard criteria list, which consists of the anticipated information gain, the length of 
the collision-free path and the battery consumption rate, will be described. 

In the context of this research, anticipated information gain is measured by applying the 
methodology proposed by Basilico and Amigoni [9]. Considering an integrated grid map building 
system and robots’ ability to track its’ current location 𝑝௖௨௥ and movement direction, the free cell 
count around the candidate location 𝑎 can be estimated. This calculation is achieved by subtracting 
the known map information from the total area that would be visible to the robot from the considered 
observation point. By knowing the map resolution, this cell count can be further converted to the 
metric system for easier processing. Similarly, the robot can estimate how much information it could 
acquire during the movement to the endpoint of the collision-free route. However, it is worth to 
notice that the estimate can greatly differ from the actual result, depending on how cluttered the 
environment is at the destination point. 
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The length of the collision-free path to the candidate observation location is a maximum possible 
distance that the robot can traverse in the safe area segment. In the robot local navigation space, this 
parameter is measured as Euclidean distance between the current robot location 𝑝௖௨௥ and candidate 
location 𝑎. In autonomous harsh environment exploration scenarios with a time limit, the robot 
should maximise the travel distance while also minimising the energy consumption rate. 

In a sustainable system, the battery consumption rate is a typical criterion, that helps to evaluate 
the cost of any mechanical or computational action. An effective system should preserve as much 
energy as possible while also ensuring the highest performance [2]. In other words, energy 
consumption should be minimised without affecting the overall system performance. In the context 
of this research, this criterion is measured by evaluating the amount of energy that is needed to reach 
the candidate location. To estimate the value of this parameter, the robot utilises a simple time-based 
methodology proposed in [9]. 

To exhaustively explore the unknown environment, the robot should visit all the regions in the 
vicinity, taking priority in finding the corridors. In structured human-made environments, rooms, 
corridors and other enclosed spaces are often separated by doors. Therefore, to further segment the 
exploration environment, and assist the robot in visiting or leaving these areas, one more criterion is 
added to support the base criteria list. Namely, the ratio between the constant 𝛿, representing the 
standard door size, and the detected wall cavity length 𝐿ௗ. For calculation purpose, the robot only 
uses 𝐿ௗ that are bigger than its’ width. Also, the most common internal door sizing in England and 
Wales—1981 × 762 × 35 mm [29] is chosen, setting 𝛿 = 0.762. The criterion value is measured by 
applying the following Equation (1): 𝑐ଶ = 𝛿𝐿ௗ (1) 

The base criteria set commonly address the greedy environment exploration methodology. 
However, to address the core problem of this research the designed autonomous robot decision-
making system must be capable to exhaustively evaluate the local navigation space. The short-term 
decisions need to be robust and minimise the probability to damage or lose the autonomous agent. 
Therefore, the flexibility of multi-criteria decision-making frameworks can be exploited by adding 
two criteria, that address the safety of autonomous robot and support the economic factors of a 
sustainable system. These criteria are the distance to the visible hazardous object and the distance to 
the nearest vision-occluding object. 

The probability of causing severe damage to the robot is the most crucial factor, that should be 
considered while developing a sustainable system. In harsh environments, there are numerous 
unpredictable events and dangerous objects that can destroy the autonomous robot. Naturally, the 
decision-making module should avoid any threat it can recognise and choose the safest path possible. 
In the context of this research, fire damage is proposed as a primary damage source, because of the 
fire-related event frequency in real-world harsh environment scenarios [30]. This criterion can also 
be measured by using simple geometry—calculating the Euclidean distance from the candidate 
observation location to the detected hazardous object. From this distance, a radius of hazardous 
obstacle effect zone should be subtracted to estimate the real safe navigation area and help the 
decision-making module to choose the safest alternative. 

The probability of colliding with the unseen dynamic object is also high in harsh environments. 
The constant tracking of the distance to the nearest vision-occluding objects is the main requirement 
to ensure that robot can fully stop before the sharp turn and avoid collision with the unseen dynamic 
object that may cross the movement trajectory. By keeping further away from the sharp corners, the 
robot can choose a safer route, leaving enough time for collision avoidance manoeuvres and 
emergency brake function [31, 32]. 

3.5. Criteria Weight Selection 

In general, criteria weights indicate the importance of one criterion in relation to other criteria. 
Deliberated criteria weight selection is essential to efficiently solve the multi-criteria decision-making 
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problems, and therefore only well-founded weighting factors should be used in the decision-making 
process [33]. To address this problem, the Step-Wise Weights Assessment Ratio Analysis method, 
namely SWARA, that was proposed by Kersuliene et al. [33], is utilised.  

Unlike commonly applied weight determination methods, SWARA method provides the means 
to estimate the expert and interest group (stakeholders) opinions about the significance of the criteria 
based on the accumulated experience, knowledge and available information [33]. This feature is 
especially important in harsh environment exploration scenarios when multiple contradicting criteria 
have to be addressed. Considering the Harbers et al. [34] research, different stakeholders can have 
different values and can prioritise different criteria. For example, firefighters working in the same 
harsh environment as an autonomous robot can value access to information provided by the robot 
more than its’ safety. However, authorities that are providing the robot may prioritise economic 
factors and re-usability of the system, creating a so-called value tension between the stakeholders 
[34]. In these scenarios, SWARA method can be applied to normalise the tensions between the interest 
groups and assist in developing a more dynamic system. 

The process of weight determination with SWARA method can be described in six following 
steps: 

1) First, the list of task-specific criteria is constructed; 
2) Then experts rank criteria by their significance in descending order, as shown in Table 2; 
3) At the third step, the comparative importance of average value 𝑠௝ is calculated; 
4) Characteristics of the comparative importance are determined by 𝑘௝ = 𝑠௝ + 1; 
5) Then, intermediate weights 𝑞௝ = ௤ೕషభ௞ೕ  are calculated for each criterion; 

6) Lastly, the final weights 𝑤௜ = ௤೔∑ ௤ೕ೙ೕసభ   of the criteria are determined. 

Considering the proposed environment exploration strategy, ten experts with a background in 
the field of robotics, artificial intelligence and decision-making systems, have unanimously agreed 
on the importance of criteria and their order. The ranking results are provided in Table 2. 

Table 2. Criteria ranking by their significance for autonomous harsh environment exploration task. 

Criterion Criterion Title Max/Min Measure Units 𝒄𝟏 The distance to the detected hazardous object. max m 𝒄𝟐 The ratio between the detected drive-through region and standard door size. max - 𝒄𝟑 The anticipated amount of new information. max mଶ 𝒄𝟒 The length of a visible collision-free path in the robots’ local-space. max m 𝒄𝟓 The battery consumption rate. min s 𝒄𝟔 The distance to the nearest vision-occluding object. max m 

Participants also provided their insights about criteria assessment problem. The pairwise 
comparison of criteria relative importance is shown in Table 3. Table 4 presents results obtained by 
SWARA method, and most importantly, final criteria weights.  

Table 3. Relative importance assessment in criteria pairs. 

Expert 
Pairwise Comparison of Criteria Relative Importance 𝒄𝟏↔𝟐 𝒄𝟐↔𝟑 𝒄𝟑↔𝟒 𝒄𝟒↔𝟓 𝒄𝟓↔𝟔 

1 0.50 0.25 0.25 0.10 0.30 
2 0.20 0.65 0.40 0.20 0.20 
3 0.00 0.45 0.15 0.60 0.25 
4 0.20 0.30 0.40 0.30 0.15 
5 0.20 0.25 0.85 0.60 0.20 
6 0.10 0.85 0.50 0.45 0.15 
7 0.35 0.90 0.50 0.50 0.00 
8 0.10 0.55 0.75 0.30 0.10 
9 0.20 0.30 0.25 0.50 0.20 
10 0.10 0.70 0.80 0.20 0.75 
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Table 4. Criteria weighting by Step-Wise Weights Assessment Ratio Analysis (SWARA) method. 

Criterion 
Average Value of Comparative 

Importance Indicators,  𝒔𝒋↔𝒋ା𝟏 

Coefficients of Comparative 
Importance Indicators,  𝒌𝒋 

Recalculated 
Indicator Weights,  𝒒𝒋 

Final 
Weights,  𝒘𝒋 𝒄𝟏 - 1.000 1.000 0.308 𝒄𝟐 0.195 1.195 0.837 0.258 𝒄𝟑 0.520 1.520 0.551 0.170 𝒄𝟒 0.485 1.485 0.371 0.114 𝒄𝟓 0.375 1.375 0.270 0.083 𝒄𝟔 0.230 1.230 0.220 0.068 

- 3.249 - 

4. WASPAS Framework by the Single-Valued Neutrosophic Set 

The history of the MCDM method, utilised to develop the exploration strategy, tracks back to 
2012, when the Weighted Aggregated Sum Product Assessment framework (WASPAS), was 
proposed by Zavadskas et al. [35] for the first time. The originally described method aggregates the 
Weighted Product Model—WPM—and the Weighted Sum Model—WSM, to construct a universal 
decision-making strategy. In 2014, the original WASPAS MCDM method was extended to tackle the 
uncertainty of the initial data. The extension is set under the interval-valued intuitionistic fuzzy 
numbers and is referred to as WASPAS-IVIF [36]. In 2015, Zavadskas et al. [37] proposed a novel 
technique to address the vague input data and improve the decision-making process accuracy—the 
Weighted Aggregated Sum Product Assessment method with grey attribute scores, namely 
WASPAS-G. In the same year, Turskis et al. [38] proposed a fuzzy multi-attribute performance 
measurement framework, that allows dealing with the qualitative parameters in a natural way under 
the uncertainty. Lastly, a new neutrosophic extension to the WASPAS MCDM method, namely 
WASPAS-SVNS, was introduced in 2015 by Zavadskas et al. [14]. The neutrosophic sets were 
proposed by Smarandache [21] in 1999 as a framework to model and solve the real-world problems 
with uncertainty. The framework is built under the environment of single-valued neutrosophic sets, 
which provides the tools for modelling and evaluating the sensor input data in the context of three 
membership functions: truth, falsity and indeterminacy. The general concept of neutrosophic sets 
used in WASPAS-SVNS can be defined as follows: 

Definition 1: Let 𝑋  be the space of the modelled problem-related objects and 𝑥 ∈ 𝑋 . The 
neutrosophic set 𝐴  in 𝑋  is defined by three functions: truth-membership function 𝑇஺(𝑥) , 
indeterminacy-membership function  𝐼஺(𝑥) and falsity-membership function 𝐹஺(𝑥). Each function is 
defined by real standard or real non-standard subsets of 𝑇஺(𝑥): 𝑋 →]0–, 1ା[, 𝐼஺(𝑥): 𝑋 →]0–, 1ା[ and 𝐹஺(𝑥): 𝑋 →]0–, 1ା[. Compared to the application of other fuzzy sets, no restrictions are imposed on the 
sum of neutrosophic sets truth, indeterminacy and falsity membership functions. Therefore, a sum 
value of 𝑇஺(𝑥), 𝐼஺(𝑥) and 𝐹஺(𝑥) can be expressed as: 0– ⩽ sup𝑇஺(𝑥) + sup𝐼஺(𝑥) + sup𝐹஺(𝑥) ⩽ 3ା  (2) 

Definition 2: SVNS is a simplified version of the neutrosophic set. Let 𝑋 be a universal space of 
objects and 𝑥 ∈ 𝑋 . The single-valued neutrosophic set 𝑁෩ ⊂ 𝑋  can be expressed by the following 
formula: N෩ = ሼ⟨𝑥, 𝑇ே෩(𝑥), 𝐼ே෩(𝑥), 𝐹ே෩(𝑥)⟩: 𝑥 ∈ 𝑋ሽ  (3) 

where 𝑇ே෩(𝑥): 𝑋 → [0,1] ,𝐼ே෩(𝑥): 𝑋 → [0,1] , 𝐹ே෩(𝑥): 𝑋 → [0,1]  with 0 ⩽ 𝑇ே෩(𝑥) + 𝐼ே෩(𝑥) + 𝐹ே෩(𝑥) ⩽ 3  for 
all 𝑥 ∈ 𝑋. The values of 𝑇ே෩(𝑥) correspond to the truth-membership degree, 𝐼ே෩(𝑥)—indeterminacy-
membership degree, and 𝐹ே෩(𝑥)  correspond to the falsity-membership degree of 𝑥  to 𝑁෩ , 
respectively. When 𝑋  consists of the single element, 𝑁෩  is called a single-valued neutrosophic 
number and can be expressed as: 𝑁෩஺ = (𝑡஺, 𝑖஺, 𝑓஺)  (4) 

where 𝑡஺, 𝑖஺, 𝑓஺ ∈ [0,1] and 0 ⩽ 𝑡஺ + 𝑖஺ + 𝑓஺ ⩽ 3. 
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Integration of the neutrosophication concepts into the decision-making method requires the 
neutrosophic set algebra, which is the fundamental part of the WASPAS-SVNS framework. This 
decision-making method is composed of seven stages which can be presented as follows: 

Stage 1. The decision matrix 𝑋 is constructed from the computed alternative set with respect to 
the considered criteria. These matrix elements can be expressed as 𝑥௜௝ , where 𝑖 = 1,2, … , 𝑚 ; 𝑗 =1,2, … , 𝑛. In this case, 𝑥௜௝ is the rating of alternative 𝑖 with respect to the criterion 𝑗. The constructed 
aggregated decision matrix can be defined as: 

𝑋 = ൦ 𝑥11 𝑥12 ⋯ 𝑥ଵ௡𝑥21 𝑥22 ⋯ 𝑥ଶ௡⋮ ⋮ ⋱ ⋮𝑥௠ଵ 𝑥௠ଶ ⋯ 𝑥mn

൪ 

Stage 2. This stage consists of the normalisation of the decision matrix 𝑋, which is achieved by 
implementing the vector normalisation method expressed by the following equation: x෤ij = ௫ijට∑ ቀ௫ijቁమ೘೔సభ   (5) 

Stage 3. In this stage, the neutrosophication of the obtained normalised aggregated decision 
matrix 𝑋෨ in the crisp form, and the weight vector 𝑤 is performed. As a result, the neutrosophic 
aggregated decision matrix 𝑋෨௡  is computed. For this conversion, the relationships are applied 
between the single-value neutrosophic numbers and crisp normalised terms of the alternatives. The 
linguistic definitions of these conversion grades are provided in Table 5. 

Table 5. Neutrosophication grades to rate the importance of the alternatives. 

Crisp Normalised Terms SVNNs 
Extremely good (EG)/1.0 (1.00, 0.00, 0.00) 

Very very good (VVG)/0.9 (0.90, 0.10, 0.10) 
Very good (VG)/0.8 (0.80, 0.15, 0.20) 

Good (G)/0.7 (0.70, 0.25, 0.30) 
Medium good (MG)/0.6 (0.60, 0.35, 0.40) 

Medium (M)/0.5 (0.50, 0.50, 0.50) 
Medium bad (MB)/0.4 (0.40, 0.65, 0.60) 

Bad (B)/0.3 (0.30, 0.75, 0.70) 
Very bad (VB)/0.2 (0.20, 0.85, 0.80) 

Very very bad (VVB)/0.1 (0.10, 0.90, 0.90) 
Extremely bad (EB)/0.0 (0.00, 1.00, 1.00) 

Stage 4. To apply the first WASPAS-SVNS decision-making strategy, the total relative 
importance of the alternative is calculated by using the following equation: 𝑄෨௜(ଵ) = ∑ 𝑥෤ାij

௡ ×  𝑤ା௝௅max௝ୀଵ + ൫∑ 𝑥෤ିij 
௡ ×  𝑤ି௝௅min௝ୀଵ ൯௖

  (6) 

where 𝑖 is the alternative, 𝑥෤ାij
௡  and 𝑤ା௝ correspond to maximised criteria and 𝑥෤ିij

௡  with 𝑤ି௝—to the 
minimised criteria. The summation of two SVNN 𝑁෩ଵ = ൫𝑡ଵ,𝑖ଵ,𝑓ଵ൯  and 𝑁෩ଶ = ൫𝑡ଶ,𝑖ଶ,𝑓ଶ൯  can be 
performed by the following neutrosophic set algebra equation: 𝑁෩ଵ ⊕ 𝑁෩ଶ = (𝑡ଵ + 𝑡ଶ − 𝑡ଵ𝑡ଶ, 𝑖ଵ𝑖ଶ, 𝑓ଵ𝑓ଶ)  (7) 

The second term of the summation consists of complementary neutrosophic number component, 
which can be defined by applying the following equation: 𝑁෩ଵ௖ = (𝑓ଵ, 1 − 𝑖ଵ, 𝑡ଵ)  (8) 

Stage 5. In this stage, the second WASPAS-SVNS decision-making strategy is applied and the 
product total relative importance of the alternative𝑖is calculated by using the following expression: 
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𝑄෨௜(ଶ) =    ෑ൫𝑥෤ାij
௡ ൯௪శೕ௅max

௝ୀଵ        × ቌෑ൫𝑥෤ିij
௡ ൯௪షభ௅min

௝ୀଵ ቍ௖
 (9) 

The identical component definition for this expression is used as in the previous equation (6). 
The multiplication of two SVNN 𝑁෩ଵ = ൫𝑡ଵ,𝑖ଵ,𝑓ଵ൯ and 𝑁෩ଶ = ൫𝑡ଶ,𝑖ଶ,𝑓ଶ൯ can be calculated by using the 
following neutrosophic algebra equation: 𝑁෩ଵ ⊗ 𝑁෩ଶ = (𝑡ଵ𝑡ଶ, 𝑖ଵ + 𝑖ଶ − 𝑖ଵ𝑖ଶ, 𝑓ଵ + 𝑓ଶ − 𝑓ଵ𝑓ଶ)  (10) 

If 𝑁෩ଵ = ൫𝑡ଵ,𝑖ଵ,𝑓ଵ൯  is the single-valued neutrosophic number and the 𝜆 ∈ ℜ  is the arbitrary 
positive real number, the multiplication between neutrosophic and real number can be expressed as: 𝜆𝑁෩ଵ = ൫1 − (1 − 𝑡ଵ)ఒ, 𝑖ଵఒ, 𝑓ଵఒ൯, 𝜆 > 0  (11) 

The power function of the single-valued neutrosophic number 𝑁෩ଵ = ൫𝑡ଵ,𝑖ଵ,𝑓ଵ൯ and the arbitrary 
positive real number 𝜆 ∈ ℜ can be calculated by the following equation: 𝑁෩ଵఒ = ൫𝑡ଵఒ, 1 − (1 − 𝑖ଵ)ఒ, 1 − (1 − 𝑓ଵ)ఒ൯, 𝜆 > 0  (12) 

Stage 6. The joint generalised criteria that incorporate the results obtained from the 4th and 5th 
stage are determined by applying the following expression: 𝑄෨௜ = 0.5𝑄෨௜(ଵ) + 0.5𝑄෨௜(ଶ) (13) 

Stage 7. In the last stage, the score function 𝑆൫𝑄෨௜൯  is applied to determine the alternative 
rankings. If 𝑁෩஺ = (𝑡஺, 𝑖஺, 𝑓஺) is a single-valued neutrosophic number, a score function can be defined 
by the following equation: 𝑆൫𝑁෩஺൯ = 3 + 𝑡஺ − 2𝑖஺ − 𝑓஺4  (14) 

The crisp outputs of 𝑆൫𝑁෩஺൯ ∈ [0,1] are ranked in descending order, and the alternative with the 
maximum value is considered to be the solution for the next observation position selection problem. 
The results of this score function are in the same range interval as all functions applied in the 
definition of the neutrosophic sets [14]. 

5. Experimental Evaluation 

5.1. Experiment Environment 

In the context of this research, the unknown harsh environment exploration scenario is 
considered. The robot is tasked to safely navigate through the disaster site and build the 
representative environment map in the given time limit of 20 minutes. The experiment is conducted 
in a virtual environment, created by using Gazebo software [39]. For the ease of recreating the 
experiment, the standard Willow Garage building model, provided by Gazebo, is used. This building 
has several small- and large-scale rooms, interconnecting corridors and narrow passages, typical for 
man-made structures. To simulate the harsh environment and test the efficiency of the proposed 
sustainable exploration strategy, several non-expanding fire sources were added at random locations 
within the building. The whole test environment is shown in Figure 3.  
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Figure 3. Willow Garage building structure. Red dots represent static fire sources. 

5.2. Example of the Next-Best Observation Location Selection by WASPAS-SVNS 

To highlight the proposed decision-making strategy and to provide the numerical example of 
next-best observation location selection, the solution of one decision-making iteration is considered. 
Assuming that an autonomous agent is located at the position shown in Figure 4, the safe navigation 
area segments, computed in the robots’ field of view, are coloured in blue. A total of six candidate 
observation locations denoted as 𝑎ଵ, 𝑎ଶ, … , 𝑎଺ were computed—one for each segment. 

 

Figure 4. Next observation location selection process. 

Each alternative is evaluated on the basis of the proposed criteria that address the sustainability 
factors of autonomous environment exploration. Criteria weights are obtained by using the SWARA 
method as shown in Table 4. The initial decision matrix computed at the sample location is provided 
in Table 6.  

Table 6. Decision matrix for sample iteration. 

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒒𝒋 0.308 
max 

0.258 
max 

0.170 
max 

0.114 
max 

0.083 
min 

0.068 
max 𝒂𝟏 2.3608 0.0100 26.8296 9.1394 21.5175 0.0100 𝒂𝟐 2.2629 0.8968 43.6107 12.5583 20.7496 8.7569 𝒂𝟑 1.9455 0.0995 17.9941 6.9450 17.3396 5.7627 𝒂𝟒 1.2639 0.0100 9.7133 4.4250 6.7615 0.0100 𝒂𝟓 2.7165 0.3886 39.6498 11.8150 2.5623 2.6942 𝒂𝟔 3.9915 0.4274 5.3125 2.7498 17.7558 1.3109 
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The aggregated decision matrix, obtained by neutrosophication conversion method, is presented 
in Table 7.  

Table 7. The aggregated decision matrix after the neutrosophication step. 

 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 𝒄𝟏max (0.3762, 0.6738, 
0.6238) 

(0.3606, 0.6894, 
0.6394) 

(0.3100, 0.7400, 
0.6900) 

(0.2014, 0.8486, 
0.7986) 

(0.4328, 0.6007, 
0.5672) 

(0.6360, 0.3140, 
0.3640) 𝒄𝟐max 

(0.0093, 0.9907, 
0.9907) 

(0.8370, 0.1315, 
0.1630) 

(0.0929, 0.9071, 
0.9071) 

(0.0093, 0.9907, 
0.9907) 

(0.3627, 0.6873, 
0.6373) 

(0.3989, 0.6511, 
0.6011) 𝒄𝟑max (0.4279, 0.6082, 

0.5721) 
(0.5880, 0.3681, 

0.4120) 
(0.3252, 0.7248, 

0.6748) 
(0.2072, 0.8428, 

0.7928) 
(0.5532, 0.4203, 

0.4468) 
(0.1287, 0.8856, 

0.8713) 𝒄𝟒max 
(0.5445, 0.4333, 

0.4555) 
(0.5251, 0.4624, 

0.4749) 
(0.4388, 0.5919, 

0.5612) 
(0.1711, 0.8645, 

0.8289) 
(0.0648, 0.9352, 

0.9352) 
(0.4493, 0.5761, 

0.5507) 𝒄𝟓min (0.3939, 0.6561, 
0.6061) 

(0.6402, 0.3098, 
0.3598) 

(0.2642, 0.7858, 
0.7358) 

(0.1426, 0.8787, 
0.8574) 

(0.5821, 0.3769, 
0.4179) 

(0.0780, 0.9220, 
0.9220) 𝒄𝟔max (0.0009, 0.9991, 

0.9991) 
(0.8032, 0.1484, 

0.1968) 
(0.5286, 0.4572, 

0.4714) 
(0.0009, 0.9991, 

0.9991) 
(0.2471, 0.8029, 

0.7529) 
(0.1202, 0.8899, 

0.8798) 

The numerical results of WASPAS-SVNS framework stages 4–7 are presented in Table 8. The 
ranking of the alternatives is calculated by applying the score function (Equation (14)). It can be 
observed that alternative location 𝑎ହ is superior to other alternatives, and therefore should be chosen 
as a next observation location for the robot to move to. Alternatives 𝑎ସ and 𝑎ଶ are second- and third-
best candidates. If the robot would follow these routes, then it would be directed further from vision 
occluding objects or would leave the room by selecting doors on the left side of the map. However, 
the proposed strategy ensures the prioritisation of safety factor and battery preservation. Also, the 
robot is directed to the nearest exit. This behaviour is expected to maximise the overall mapped area 
in the given time interval. 

Table 8. The numerical results provided by Weighted Aggregated Sum Product Assessment—
Single-Valued Neutrosophic Sets (WASPAS-SVNS) for the sample iteration. 

 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 𝑄෨(ଵ) (0.7195, 0.2986, 
0.2805) 

(0.8059, 0.1909, 
0.1941) 

(0.7526, 0.2435, 
0.2474) 

(0.8410, 0.1437, 
0.1590) 

(0.9268, 0.0745, 
0.0732) 

(0.7933, 0.1924, 
0.2067) 𝑄෨(ଶ) (0.0142, 0.9871, 

0.9858) 
(0.1042, 0.8944, 

0.8958) 
(0.0339, 0.9700, 

0.9661) 
(0.0085, 0.9927, 

0.9915) 
(0.0691, 0.9356, 

0.9309) 
(0.0431, 0.9581, 

0.9569) 𝑄෨  
(0.7235, 0.2948, 

0.2765) 
(0.8262, 0.1707, 

0.1738) 
(0.7610, 0.2362, 

0.2390) 
(0.8424, 0.1427, 

0.1576) 
(0.9318, 0.0697, 

0.0682) 
(0.8022, 0.1844, 

0.1978) 𝑆൫𝑄෨൯ 0.7144 0.8277 0.7624  0.8498 0.9311 0.8089 
Rank 6 3 5 2 1 4 

6. Results and Discussion 

To illustrate the efficiency of the proposed sustainable environment exploration strategy, the 
comparison between the proposed method and the standard greedy exploration strategy is provided. 
Two representative maps were built by the autonomous robot in 20-minute time interval. The first 
map, shown in Figure 5, was computed by a greedy autonomous agent, controlled only by the three 
base criteria: 𝑐ଷ, 𝑐ସ and 𝑐ହ. The criteria weights were adjusted to 0.5, 0.3, 0.2 accordingly to the 
relative research [9], in which similar MCDM-based candidate evaluation strategy is utilised. The 
second map, shown in Figure 6, was obtained by applying the proposed exploration strategy, that 
incorporates economic sustainability principles.  
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Figure 5. The total scanned area in a 20-minute time interval, using the greedy exploration strategy. 
The red dots represent static fire obstacles, that robot must avoid. Robot movement trajectory is 
coloured in white. 

 
Figure 6. Total scanned area in a 20-minute time interval, using the proposed sustainable exploration 
strategy. The red dots represent static fire obstacles, that robot must avoid. Robot movement trajectory 
is coloured in white. 

From the provided examples, it can be observed that the proposed environment exploration 
strategy enables the robot to successfully avoid dangerous obstacles, that can destroy or damage the 
autonomous agent. Considering Figure 5, it can be seen that by using only the base criteria to evaluate 
the observation location, autonomous agent drove directly through the dangerous obstacles two 
times. However, the movement trajectory provided by Figure 6, clearly shows the impact of the 𝑐ଵ 
criterion. The robot navigates around the dangerous obstacles ensuring its’ survival. Moreover, the 
autonomous agent is directed towards narrow and lengthy corridor spaces more than enclosed areas, 
such as rooms. This behaviour can be linked to the influence of 𝑐ଶ  and 𝑐ଷ  criteria combination. 
Because of 𝑐ଷ criterion robot prefers to choose distant locations, that can provide more information 
about the environment. By integrating the newly proposed 𝑐ଶ criterion, the agent can detect and 
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evaluate the door-like structures that connect corridors. In general, such iterative behaviour lead the 
autonomous robot to further located parts of the map in fewer steps, which in theory can help the 
agent to preserve more energy in long term missions. 

Improved damage awareness is also observed by comparing the proposed and greedy strategies. 
By integrating the 𝑐଺ criterion to the decision-making process, the autonomous agent is forced to 
keep the safe distance from the sharp turns. From the robot movement trajectory, it can be seen that 
at locations where doors are lined up in front of each other, robot stays at the middle of the corridor, 
keeping the same distance from both sides. However, in situations where only single doors were 
detected, the robot often took a semicircle movement trajectory, trying to keep a certain distance from 
the estimated damage source. This behaviour, achieved by WASPAS-SVNS multi-criteria decision-
making method, directly addresses the economic factors of sustainability, helping the robot to 
increase its’ survival time in a harsh environment. 

However, the proposed method also has some flaws. In the context of this research, the map 
building process is based only on local-space exploration. In some situations, this methodology can 
force the robot to choose a location that is not optimal in the current state. After making a decision, 
the robot can move away from other enclosed locations that are behind it or in the close vicinity. We 
can identify this behaviour from Figure 5 and Figure 6 when the robot drove through the entire length 
of the corridor without checking the nearby rooms. In theory, this problem could be solved by mixing 
local-space and global-space exploration models, however, further research is needed. 

Authors of this research believe that a solid foundation has been laid for future research in the 
field of autonomous robot environment exploration strategies, that utilise MCDM methods to 
address the sustainability principles. However, compared to real-world scenarios, it can be noticed 
that the test environment considered in this research is a bit too simplified. Future research could 
focus on expanding the autonomous robot decision-making module to address such problems as 
global and local space exploration, expanding hazardous obstacles and uneven navigation terrains. 
More exhaustive questionnaires for experts could also be made to identify common stakeholder 
needs related to environment exploration or search and rescue missions. 

7. Conclusions and Future Work 

In this research, sustainability principles were integrated into the fast-expanding field of 
autonomous mobile robot systems, by addressing the autonomous harsh environment exploration 
problem. A commonly used iterative map building strategy was applied and modelled as a multi-
criteria decision-making problem. To solve this problem, a new area exploration strategy, that takes 
into consideration the economic aspects of the autonomous environment exploration was proposed. 
The integration of sustainability principles was achieved by implementing the WASPAS-SVNS 
decision-making framework, which was developed under the single-valued neutrosophic set 
environment. WASPAS-SVNS is a fast and powerful framework that provides the means to assess 
and combine an essentially unlimited number of criteria to solve complex real-world decision-
making problems.  

Unlike other fuzzy MCDM methods, WASPAS-SVNS can deal with truth, falsity and 
indeterminacy membership functions separately, allowing a more accurate evaluation of alternatives, 
when dealing with partial environment information. Combining this framework with SWARA 
criteria weight determination method creates a highly dynamic decision-making system, that can be 
adjusted to address specific expert and stakeholder needs. 

Considering the experimental evaluation, it can be confirmed that the proposed exploration 
strategy was successfully utilised in a harsh environment. Compared to the greedy baseline strategy, 
the decision-making model forms the movement path, in which motion direction is oriented away 
from dangerous obstacles, keeping the robot safe throughout the given time limit. The considered 
numerical example and provided navigational segments show the efficiency and flexibility of the 
proposed decision-making strategy. 

However, the field of autonomous robot decision-making systems continues to grow and is yet 
to be exhaustively studied. In the context of this research, only the economic factor of the 
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sustainability principles was addressed, and the efficiency of the MCDM method utilisation was 
presented. To develop a fully sustainable mobile robot, social and environmental factors should also 
be considered. 

For possible future works, authors consider expanding the criteria list, used for harsh 
environment exploration. These criteria could be used not only to develop a robust decision-making 
system, but also to provide the foundation for designers developing similar systems. Authors also 
consider the development of adaptable local and global space exploration system, based on MCDM 
methodology. 
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