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in the environment of various cubic m-polar
fuzzy averaging aggregation operators
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Abstract. In multi-attribute group decision-making (MAGDM) problems, there exist some multi-polarity for the attributes
and criteria. Sometimes in real life situations, we deal with the both membership and non-membership grades for the attributes
in the presence of multi-polarity. For this purpose, we change verbally stated information into mathematical language with the
help of uncertain linguistic variables to deal with the ambiguities and uncertainties. In that case, we construct some extensions
from the existing hybrid structures of fuzzy set to handle these types of problems. That’s why from the prevailing concepts of
cubic set and m-polar fuzzy set, we innovate the concept of cubic m-polar fuzzy set (CMPFS). We investigate its numerous
operations with the help of examples. With the enthusiasm of CMPFS, we establish certain aggregation operators based on
cubic m-polar fuzzy numbers (CMPFNs) namely Cubic m-polar fuzzy weighted averaging (CMPFWA), Cubic m-polar fuzzy
ordered weighted averaging (CMPFOWA) and Cubic m-polar fuzzy hybrid averaging (CMPFHA) operators corresponding
toR-order and P-order, simultaneously. Using the score function and accuracy function a relation is proposed, through which
we can compare the CMPFNs. This manuscript presents a novel approach for treating ambiguities based on the application
of land selection using linguistic variables in CMPF decision theory. An algorithm based on MAGDM is intended for a given
agricultural project, which will produce results according to the proposed operators one by one. Furthermore, a comparative
analysis is listed to demonstrate the difference, advantages, validity, simplicity, flexibility and superiority to the proposed
operators.

Keywords: Cubic m-polar fuzzy set (CMPFS), membership degrees, Cubic m-polar fuzzy weighted averaging (CMPFWA)
operator, Cubic m-polar fuzzy ordered weighted averaging (CMPFOWA) operator and Cubic m-polar fuzzy hybrid averaging
(CMPFHA) operator, MAGDM for agricultural purpose

1. Introduction

Multi attribute group decision-making (MAGDM)
is widely employed in real world problems of differ-
ent areas such as technology, economics, psychology,
social sciences, management and medical diagnosis.
It is regarded as the intellectual process which results
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the selection of a belief or a class of activity among
various alternative possibilities according to diverse
standards. If we amass the data and deduce the result
without handling ambiguities, then given results will
be undefined and equivocal. Sometimes, we have to
change verbally stated information into mathematical
language with the help of uncertain linguistic vari-
ables to deal with these ambiguities and uncertainties.
For this purpose a fuzzy set (FS) was established by
Zadeh [49], which is an imperative precise erection
to epitomize an assembling of items whose bound-
ary is ambiguous. After that, more hybrid models
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of FS have been presented and investigated such as,
intuitionistic fuzzy set (IFS) [5], single valued neu-
trosophic set (SVNS) [38, 39], m-polar fuzzy set
(MPFS) [7], interval valued fuzzy set (IVFS) [50]
and cubic fuzzy set (CFS) [11].

Aggregation means the creation of a numeral of
things into a cluster or a bunch of things that have
come or been taken together. In the past few years,
aggregation operators based on FS and its various
hybrid structures have made very much attention
and become popular. We can use them in vari-
ous practical areas of different domains. Xu [44]
introduced the concept of intuitionistic fuzzy aggre-
gation operators. Xu and Cai, in their book [45],
presented the theory and applications of intuitionis-
tic fuzzy information aggregation. Xu, in his book
[46], presented hesitant fuzzy sets theory and vari-
ous types of hesitant fuzzy aggregation operators. Ye
[47] introduced interval-valued hesitant fuzzy prior-
itized weighted aggregation (IVHFPWA) operators
and their application in MADM. Ye [48] introduced
linguistic neutrosophic cubic numbers and their
application in multiple attribute decision-making.
Kaur and Garg [13] established aggregation operators
on CIFNs and use these operators in decision-making
approach for job selection. Jose and Kuriaskose [12]
investigated aggregation operators with the corre-
sponding score function for MCDM in the context
of IFNs. Mahmood et al. [16] established general-
ized aggregation operators for CHFNs and use it into
MCDM. Riaz and Hashmi [24–28] investigated cer-
tain applications of FPFS-sets, FPFS-topology and
FPFS-compact spaces. They developed fixed point
theorems of FNS-mapping with its decision-making.
Riaz et al. [29, 30] introduced soft rough topology
with multi-attribute group decision-making prob-
lems (MAGDM). Riaz et al. [31] introduced N-soft
topology with multi-criteria group decision-making
problems (MCGDM). Riaz and Tahrim [32–36]
established the idea of bipolar fuzzy soft topol-
ogy, TOPSIS method based on bipolar neutrosophic
topology and cubic bipolar fuzzy ordered weighted
geometric aggregation operators and their application
using internal and external cubic bipolar fuzzy data.
They presented various illustrations and decision-
making applications of these concepts by using
different algorithms. Akram et al. [1–3] presented
certain applications of m-polar fuzzy sets and neu-
trosophic incidence fuzzy graphs in decision-making
problems. Ali [4] write a note on soft, rough soft and
fuzzy soft sets. Qurashi and Shabir [23] presented
generalized approximations of (∈,∈ ∨q)-fuzzy ide-

als in quantales. Shabir and Ali [40] established some
properties of soft ideals and generalized fuzzy ide-
als in semigroups. Shabir and Naz [41] introduced
soft topological space. Xueling et al. [43] introduced
decision-making methods based on various hybrid
soft sets. Feng et al. [8–10] introduced properties of
soft sets combined with fuzzy and rough sets and
MADM models in the environment of generalized IF
soft set and fuzzy soft set. Boran et al. [6] use TOPSIS
decision-making method for the supplier selection in
the context of IFS. Liu et al. [14] worked on hesitant
IF linguistic operators and presented its MAGDM
problem. Wei et al. [42] established hesitant triangu-
lar fuzzy operators in MADGDM problems. Pamucar
et al. [18–22] established normalized weighted geo-
metric Bonferroni mean operator of interval rough
numbers and presented their application in inter-
val rough DEMATEL-COPRAS. They introduced
a novel approach for the selection of power gen-
eration technology using an linguistic neutrosophic
combinative distance-based assessment (CODAS)
method. They also worked on integration of inter-
val rough AHP and interval rough MABAC methods
for the evaluation of university web pages. They pre-
sented modification of the Best-Worst and MABAC
methods by using interval-valued fuzzy-rough num-
bers. They presented an application of multi-criteria
decision-making of sensitivity analysis. Mukhamet-
zyanov and Pamucar [17] established a sensitivity
analysis in multi-criteria decision-making problems
by using statistical methods. Liu et al. [15] worked on
multi-criteria model for the selection of the transport
service provider by constructing the single valued
neutrosophic DEMATEL multi-criteria model. Zhan
et al. [51, 52] presented the concepts of rough soft
hemirings, soft rough covering and its applications
to multi-criteria group decision-making (MCGDM)
problems.
Many mathematicians did not focus on important and
useful real life applications of their proposed research
methodologies. The concepts behind their proposed
algebra are valid and strong, but the application area
is not well defined. Fuzzy set theory is more use-
ful and applicable in many real life problems due
to its vast concept than classical algebra. We can
handle uncertainties and ambiguities by using fuzzy
set theory. Various mathematical concepts have been
redefined using fuzzy sets and its extensions such as
neutrosopic, bipolar, m-polar, soft, intuitionistic and
cubic set. These extensions are used when fuzzy the-
ory is not enough to elaborate the logics and ideas
of real life problems. To fill this gap, we propose this
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novel idea of CMPFS with its application in MAGDM
problem.
One important question arises here that, why we
introduce the CMPFS? As cubic set (CS) [11] is an
abstraction of IFS [5]. In IFS we deal with the mem-
bership and non-membership grades, while in CS we
have a fuzzy interval for membership grade, so we
have more options for choosing the grades for differ-
ent alternatives. If inf[A−,A+] = sup[A−,A+] for
every alternative in CS then it reduces to IFS. Some-
times in real life situations, we have to deal with the
both membership and non-membership grades for the
attributes in the presence of multi-polarity. The exist-
ing hybrid structures of fuzzy sets are not enough to
deal with these type of input data in real life situations.
In that case, we have to construct some extensions
from the existing hybrid structures of fuzzy set to
handle these types of problems. For this purpose, we
introduce a new idea of CMPFS with the combination
of CS [11] and MPFS [7]. The idea of Kaur and Garg
[13] with Xu [44] and Ye [47] helps us to get some
extended examples of aggregation operators based on
the new concept of cubic m-polar fuzzy set (CMPFS).
With the reference of previous theories, we construct
the interval valued MPFS (IVMPFS) which is based
on m intervals for every alternative of the universal
set, where every interval is the subset of [0, 1]. Next
combining CS and IVMPFS we establish CMPFS,
where m intervals and m degrees of memberships
exists for every single alternative of the reference set.
We explain our contributions to this research field
briefly in every section of this article. We elabo-
rate CMPFS with the R-order and P-order operations
corresponding to the examples. We define averaging
aggregation operators of R-order and P-order such as
CMPFWA, CMPFOWA, CMPFHA operator in the
context of CMPFNs. Lastly, we establish an inno-
vative application of land chosen for an agricultural
labor under the superintendence of an international
agricultural firm. The MAGDM method is utilized
to establish the decision by using the defined oper-
ators. A brief comparison analysis and discussion is
also given to elaborate the significance of proposed
approach.
The motivation of this extended and hybrid work is
given step by step in the whole manuscript. We show
that other hybrid structures of fuzzy sets become spe-
cial cases of CMPFS under some suitable conditions.
We discuss about the validity, flexibility, simplicity
and superiority of our proposed model. The con-
structed model is use to collect data at a large scale
and covers many hybrid fuzzy structures. In CMPFS,

we deal with “m” number of criteria or “m” proper-
ties of the attributes given in the sample space. For
each criteria, there exists both truth and falsity grades
to deal with both aspects of attributes. The novelty of
our proposed approach is given in Section 4. In this
section, we can see that by using CMPF input data,
we can handle MAGDM problems in diverse fields
of life. The purpose and significance of constructed
model is given in each part of this manuscript, spe-
cially in the application of selection of the land for
an agricultural project.
This manuscript has various objectives. The first
objective is to improve the methodology for treating
ambiguities in the field of the multi-attribute group
decision-making (MAGDM) , and the techniques for
selecting the best and suitable alternative through a
novel approach in the uncertainty treatment based
on cubic m-polar fuzzy numbers and cubic m-polar
fuzzy aggregation operators. The second goal of the
research is to arrange the criteria and form a new
model that would enable an objective, scientifically
based approach to the selection of optimal choice.
The third objective of this paper is to bridge the
gap that exists in the methodology for the decision-
making through a new approach to the treatment of
uncertainty that is based on proposed model.
The layout of this paper is systematized as follows:
Section 2 implies a novel idea of Cubic m-polar
fuzzy set (CMPFS). We establish some of its oper-
ations, score function and accuracy function with
the addition of related illustrations. In Section 3, we
use CMPFS to establish novel averaging aggrega-
tion operators for R-order and P-order, respectively.
To elaborate the mathematical notations and calcula-
tions of these operators various illustrations are listed
in this section. In Section 4, we establish a method
for the solution of MAGDM problem using defined
aggregated operators by the suggested algorithm.
This model demonstrates the feasibility and advan-
tages of the proposed approaches. In the sequence,
we make a brief comparison analysis of all the pro-
posed operators with the help of graphs and table.
Finally, the conclusion of this research is summarized
in Section 5.

2. Cubic m-polar fuzzy set (CMPFS)

2.1. Basic concepts

In this section, we discuss about some basic ideas
which will be used for the construction of CMPFS.
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Fig. 1. Relationship between CMPFS and other hybrid structures
of fuzzy set.

In the whole paper, we use Q as a fixed sample space
or as the universal circle.

Definition 2.1. [7] An abstraction of bipolar fuzzy
set was inaugurated by Chen named as m-polar fuzzy
set (MPFS). An MPFS C on a non-empty universal
set Q is a mathematical function C : Q → [0, 1]m,
symbolized by

C = {〈ς, Pio�(ς)〉 : ς ∈ Q; i = 1, 2, 3, ..., m}
where and Pi : [0, 1]m → [0, 1] is the i-th projection
mathematical function (i ∈ m).

Definition 2.2. [11] A cubic set or (CS) S on Q is
denoted as S = 〈AF, ηF〉 and can be scripted as

S = {〈ς,AF(ς), ηF(ς)〉 : ς ∈ Q}
where AF(ς) = [A−(ς),A+(ς)] and ηF(ς) are inter-
val valued fuzzy set (IVFS) and fuzzy set (FS),
respectively on Q.

Definition 2.3. [11] The complement of CS is defined
as

Sc = {〈ς,AcF(ς), 1 − ηF(ς)〉 : ς ∈ Q}
where AcF(ς) = [1 − A+(ς), 1 − A−(ς)] and ηF(ς)
are IVFS and FS on Q.

Definition 2.4. [11] Suppose that we have an assem-
bling of CFSs
S℘ = {〈ς,A℘(ς), η℘(ς)〉 : ς ∈ Q, ℘ ∈ �} where �
is an indexing set, then we can define the following:
(i) P-union: P

⋃
℘∈�

S℘ =
{〈ς, (

⋃
℘∈�

A℘)(ς), (
∨
℘∈�

η℘)(ς)〉 : ς ∈ Q, ℘ ∈ �},
(ii) P-intersection: P

⋂
℘∈�

S℘ =
{〈ς, (

⋂
℘∈�

A℘)(ς), (
∧
℘∈�

η℘)(ς)〉 : ς ∈ Q, ℘ ∈ �},

Fig. 2. Score values of C4PFNs.

(iii) R-union: R
⋃
℘∈�

S℘ =
{〈ς, (

⋃
℘∈�

A℘)(ς), (
∧
℘∈�

η℘)(ς)〉 : ς ∈ Q, ℘ ∈ �},
(iv) R-intersection: R

⋂
℘∈�

S℘ =
{〈ς, (

⋂
℘∈�

A℘)(ς), (
∨
℘∈�

η℘)(ς)〉 : ς ∈ Q, ℘ ∈ �}.

Definition 2.5. An IVMPFS can be represented as
VM = {ς, 〈[A−

1 (ς),A+
1 (ς)], [A−

2 (ς),A+
2 (ς)], ...,

[A−
M(ς),A+

M(ς)]〉 : ς ∈ Q}, where
[A−

N(ς),A+
N(ς)] ⊆ [0, 1],N = 1, 2, 3, ...,M,

i.e all are closed subintervals of [0, 1].

Definition 2.6. A neutrosophic set N is defined
by N = {〈ς,A(ς),S(ς),Y(ς)〉, ς ∈ Q}, where
A,S,Y : Q →]−0, 1+[ and −0 ≤ A(ς) + S(ς)+
Y(ς) ≤ 3+. The neutrosophic set yields the value
from real standard or non-standard subsets of
]−0, 1+[.

2.2. CMPFS

Cubic set deals with the membership and
non-membership grades of alternatives and for mem-
bership grade, we take a fuzzy interval which is a
subset of [0, 1]. In MPFS, we discuss about the multi-
criteria of alternative with its m-degrees. We establish
a hybrid structure of CMPFS with the combination of
CS and MPFS. This structure deals with the member-
ship grades as fuzzy intervals and non-membership
grade as a fuzzy set. For each grade we have m-criteria
to the corresponding alternative of the reference set
Q. This is an abstracted model and use to collet data
at a large scale.
A relationship between CMPFS and other hybrid
structures of fuzzy set is given in Fig. 1, which
shows that other structures becomes special cases of
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Table 1
Cubic m-polar fuzzy set

CM CMPFS

ς1

(
〈[A−

1 (ς1),A+
1 (ς1)], [A−

2 (ς1),A+
2 (ς1)], ..., [A−

M(ς1),A+
M(ς1)]〉, 〈A1(ς1),A2(ς1), ...,AM(ς1)〉

)
ς2

(
〈[A−

1 (ς2),A+
1 (ς2)], [A−

2 (ς2),A+
2 (ς2)], ..., [A−

M(ς2),A+
M(ς2)]〉, 〈A1(ς2),A2(ς2), ...,AM(ς2)〉

)
... ... ... ... ... ... ... ...

ςN

(
〈[A−

1 (ςN),A+
1 (ςN)], [A−

2 (ςN),A+
2 (ςN)], ..., [A−

M(ςN),A+
M(ςN)]〉, 〈A1(ςN),A2(ςN), ...,AM(ςN)〉

)

Table 2
Cubic 4-polar fuzzy numbers

Q C4PFNs
ψ1

(
〈[0.21, 0.51], [0.37, 0.48], [0.47, 0.83], [0.21, 0.38]〉, 〈0.61, 0.51, 0.21, 0.93〉

)
ψ2

(
〈[0.34, 0.57], [0.43, 0.78], [0.21, 0.61], [0.53, 0.78]〉, 〈0.25, 0.88, 0.99, 0.13〉

)

Fig. 3. Relationship between CMPFA operator and other opera-
tors.

CMPFS for M = 1,M = 3 and for inf[A−
M,A

+
M] =

sup[A−
M,A

+
M].

Definition 2.7. A CMPFS CM is defined on a fixed
sample space Q and defined as an ordered pair

CM = {〈ς,VM(ς),M(ς)〉 : ς ∈ Q}
where VM = {ς, 〈[A−

1 (ς),A+
1 (ς)], [A−

2 (ς),A+
2 (ς)],

..., [A−
M(ς),A+

M(ς)]〉 : ς ∈ Q} represents IVMPFS
and M = {ς, 〈A1(ς),A2(ς), ...,AM(ς)〉} represent
MPFS where A1(ς),A2(ς), ...,AM(ς) ∈ [0, 1]. This
set can be simply denoted as ψ = 〈VM,M〉
where VM = 〈[A−

1 ,A
+
1 ], [A−

2 ,A
+
2 ], ..., [A−

M,A
+
M]〉

and M = 〈A1,A2, ...,AM〉 and this is called cubic
m-polar fuzzy number (CMPFN).
Tabular representation of CMPFS is given in Table 1.

Definition 2.8. We define some operations for
CMPFNs ψ = (〈[A−

1 ,A
+
1 ], [A−

2 ,A
+
2 ], ..., [A−

M,

A+
M]〉, 〈A1,A2, ...,AM〉) and ψ℘ = (〈[℘A−

1 ,
℘A+

1 ],
[℘A−

2 ,
℘A+

2 ], ..., [℘A−
M,

℘A+
M]〉, 〈℘A1,

℘A2, ...,
℘AM〉 : ℘ ∈ �)

given as:

(i): ψc = (〈[1 − A+
1 , 1 − A−

1 ], [1 − A+
2 , 1 − A−

2 ],
..., [1 − A+

M, 1 − A−
M ]〉, 〈1 − A1, 1 − A2, ..., 1−

AM〉).

(ii): ψ1 = ψ2 ⇔ [1A
−
1 ,

1A
+
1 ] = [2A

−
1 ,

2A
+
1 ],

[1A
−
2 ,

1A
+
2 ] = [2A

−
2 ,

2A
+
2 ],..., [1A

−
M,

1A
+
M] =

[2A
−
M,

2A
+
M] and 1A1 = 2A1,

1A2 = 2A2, ...,
1AM

= 2AM.

(iii): (P-order)
ψ1 ⊆P ψ2 ⇔ [1A

−
1 ,

1A
+
1 ] ⊆ [2A

−
1 ,

2A
+
1 ], [1A

−
2 ,

1A
+
2 ] ⊆ [2A

−
2 ,

2A
+
2 ],..., [1A

−
M,

1A
+
M] ⊆ [2A

−
M,

2A
+
M] and 1A1 =≤ 2A1,

1A2 ≤ 2A2, ...,
1AM ≤

2AM.

(iv): (R-order)
ψ1 ⊆R ψ2 ⇔ [1A

−
1 ,

1A
+
1 ] ⊆ [2A

−
1 ,

2A
+
1 ], [1A

−
2 ,

1A
+
2 ] ⊆ [2A

−
2 ,

2A
+
2 ],..., [1A

−
M,

1A
+
M] ⊆ [2A

−
M,

2A
+
M] and 1A1 =≥ 2A1,

1A2 ≥ 2A2, ...,
1AM ≥

2AM.
(v): (P-union)⋃
P ψ℘ = (〈 sup

℘∈�
[℘A−

1 ,
℘A+

1 ], sup
℘∈�

[℘A−
2 ,

℘A+
2 ], ...,

sup
℘∈�

[℘A−
M,

℘A+
M]〉, 〈 sup

℘∈�
℘A1, sup

℘∈�
℘A2, ..., sup

℘∈�
℘

AM〉 : ℘ ∈ �)
.

(vi): (P-intersection)⋂
P ψ℘ = (〈 inf

℘∈�
[℘A−

1 ,
℘A+

1 ], inf
℘∈�

[℘A−
2 ,

℘A+
2 ], ...,

inf
℘∈�

[℘A−
M,

℘A+
M]〉, 〈 inf

℘∈�
℘A1, inf

℘∈�
℘A2, ..., inf

℘∈�
℘

AM〉 : ℘ ∈ �)
.

(vii): (R-union)⋃
R ψ℘ = (〈 sup

℘∈�
[℘A−

1 ,
℘A+

1 ], sup
℘∈�

[℘A−
2 ,

℘A+
2 ], ...,

sup
℘∈�

[℘A−
M,

℘A+
M]〉, 〈 inf

℘∈�
℘A1, inf

℘∈�
℘A2, ..., inf

℘∈�
℘

AM〉 : ℘ ∈ �)
.

(viii): (R-intersection)
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Table 3
Cubic 3-polar fuzzy numbers

Q C3PFNs

ψ1

(
〈[0.25, 0.57], [0.51, 0.78], [0.31, 0.45]〉, 〈0.33, 0.45, 0.38〉

)
ψ2

(
〈[0.51, 0.77], [0.61, 0.98], [0.11, 0.43]〉, 〈0.63, 0.88, 0.22〉

)
ψ3

(
〈[0.41, 0.77], [0.61, 0.83], [0.33, 0.45]〉, 〈0.66, 0.71, 0.41〉

)
ψ4

(
〈[0.11, 0.45], [0.81, 0.91], [0.28, 0.45]〉, 〈0.35, 0.89, 0.31〉

)

⋂
R ψ℘ = (〈 inf

℘∈�
[℘A−

1 ,
℘A+

1 ], inf
℘∈�

[℘A−
2 ,

℘A+
2 ], ...,

inf
℘∈�

[℘A−
M,

℘A+
M]〉, 〈 sup

℘∈�
℘A1, sup

℘∈�
℘A2, ..., sup

℘∈�
℘

AM〉 : ℘ ∈ �)
.

Definition 2.9. In the process of mathematical
modeling for multi-attribute group decision-
making problems via CMPFNs, it is necessary
to rank these numbers for the appropri-
ate decision. For this we have to define the
score function corresponding to CMPFN ψ =(〈[A−

1 ,A
+
1 ], [A−

2 ,A
+
2 ], ..., [A−

M,A
+
M]〉, 〈A1,A2, ...,

AM〉) will be defined as:

£(ψ) = 1

2M

( M∑
℘=1

(A−
℘ + A+

℘ + A℘) − M

)

where V℘ = [A−
℘,A

+
℘ ] ∈ VM and A℘ ∈ M.

If
M∑
℘=1

(A−
℘ + A+

℘ + A℘) = M then £(ψ) = 0,

If
M∑
℘=1

(A−
℘ + A+

℘ + A℘) = 3M then £(ψ) = 1.

Definition 2.10. Let ψ1 and ψ2 be two CMPFNs,
then we can define an order relation between these
numbers by using score function as follows:
(a): £(ψ1) < £(ψ2) ⇒ ψ1 ≺ ψ2,
(b): £(ψ1) > £(ψ2) ⇒ ψ1 � ψ2,
(c): If £(ψ1) = £(ψ2) then,
(i): H(ψ1) < H(ψ2) ⇒ ψ1 ≺ ψ2,
(ii): H(ψ1) > H(ψ2) ⇒ ψ1 � ψ2.
Where H(ψ) is the accuracy function given as;

H(ψ) =
[

1

M

M∑
℘=1

(A−
℘ + A+

℘ + A℘ − £(ψ))2
]1/2

Example 2.11. Consider two C4PFNs ψ1 and ψ2
given in tabular form as Table 2. £(ψ1) = 0.215 and
£(ψ2) = 0.3125. This shows that £(ψ1) < £(ψ2) so
ψ2 � ψ1, means thatψ2 is the best alternative and can
be seen graphically in Fig. 2.

Table 4
Cubic 2-polar fuzzy numbers

Q C2PFNs

ψ1

(
〈[0.51, 0.87], [0.63, 0.91]〉, 〈0.75, 0.85〉

)
ψ2

(
〈[0.37, 0.62], [0.71, 0.89]〉, 〈0.53, 0.79〉

)
ψ3

(
〈[0.89, 0.99], [0.79, 0.98]〉, 〈0.88, 0.97〉

)

Table 5
Ordered Cubic 2-polar fuzzy numbers

Q Ordered C2PFNs

ψ�(1)

(
〈[0.89, 0.99], [0.79, 0.98]〉, 〈0.88, 0.97〉

)
ψ�(2)

(
〈[0.51, 0.87], [0.63, 0.91]〉, 〈0.75, 0.85〉

)
ψ�(3)

(
〈[0.37, 0.62], [0.71, 0.89]〉, 〈0.53, 0.79〉

)

Table 6
Cubic 3-polar fuzzy numbers

Q C3PFNs

ψ1

(
〈[0.35, 0.56], [0.78, 0.93], [0.51, 0.97]〉, 〈0.48, 0.89, 0.87〉

)
ψ2

(
〈[0.21, 0.37], [0.41, 0.76], [0.68, 0.87]〉, 〈0.29, 0.67, 0.73〉

)
ψ3

(
〈[0.44, 0.78], [0.87, 0.99], [0.79, 0.89]〉, 〈0.69, 0.97, 0.87〉

)

Definition 2.12. Letψ = (〈[A−
1 ,A

+
1 ], [A−

2 ,A
+
2 ], ...,

[A−
M,A

+
M]〉, 〈A1,A2, ...,AM〉) be an arbitrary

CMPFN andψ℘ = (〈[℘A−
1 ,

℘A+
1 ], [℘A−

2 ,
℘A+

2 ], ...,
[℘A−

M,
℘A+

M]〉, 〈℘A1,
℘A2, ...,

℘AM〉 : ℘ ∈ �)
be

an assembling of CMPFNs then we can define some
operations laws on CMPFNs with an arbitrary real
number η > 0 given as follows:
(a) For R-order:
(i): ψ1 ⊕R ψ2 = (

[〈1A
−
1 + 2A

−
1 − 1A

−
1

2A
−
1 ,

1A
+
1

+2A
+
1 − 1A

+
1

2A
+
1 ], [1A

−
2 + 2A

−
2 − 1A

−
2

2A
−
2 ,

1A
+
2

+2A
+
2 − 1A

+
2

2A
+
2 ], ..., [1A

−
M + 2A

−
M − 1A

−
M

2A
−
M,

1A
+
M + 2A

+
M − 1A

+
M

2A
+
M]〉, 〈1A1

2A1,
1A2

2A2, ...,
1AM

2AM〉).

(ii): ψ1⊗Rψ2 =(〈[1A
−
1

2A
−
1 ,

1A
+
1

2A
+
1 ], [1A

−
2

2A
−
2 ,

1A
+
2

2A
+
2 ], ..., [1A

−
M

2A
−
M,

1A
+
M

2A
+
M]〉, 〈1A1 + 2A1

−1A1
2A1,

1A2 + 2A2 − 1A2
2A2, ...,

1AM+2AM−
1AM

2AM〉)
(iii): ηψ = (〈[1 − (1 − A−

1 )η, 1 − (1 − A+
1 )η], [1 −

(1 − A−
2 )η, 1 − (1 − A+

2 )η], ..., [1 − (1− A−
M)η, 1−

(1 − A+
M)η]〉, 〈Aη1,Aη2, ...,AηM〉) : η > 0.

(iv): ψη = (〈[(A−
1 )η, (A+

1 )η], [(A−
2 )η, (A+

2 )η], ...,
[(A−

M)η, (A+
M)η]〉, 〈1 − (1 − A1)η, 1 − (1 −

A2)η, ..., 1 − (1 − AM)η〉); η > 0
(b) For P-order:
(i): ψ1 ⊕P ψ2 = (

[〈1A
−
1 + 2A

−
1 − 1A

−
1

2A
−
1 ,

1A
+
1 +

2A
+
1 − 1A

+
1

2A
+
1 ], [1A

−
2 + 2A

−
2 − 1A

−
2

2A
−
2 ,

1A
+
2 +
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Table 7
Cubic 3-polar fuzzy numbers

Q ψ̇℘ = 3ζ℘ψ℘

ψ̇1

(
〈[0.5394, 0.7718], [0.9344, 0.9916], [0.7230, 0.9981]〉, 〈0.2668, 0.8107, 0.7782〉

)
ψ̇2

(
〈[0.1318, 0.2421], [0.2713, 0.5752], [0.4952, 0.7059]〉, 〈0.4758, 0.7864, 0.8279〉

)
ψ̇3

(
〈[0.2938, 0.5968], [0.7059, 0.9369], [0.6079, 0.7340]〉, 〈0.8004, 0.9818, 0.9198〉

)

Table 8
Ordered Cubic 3-polar fuzzy numbers

Q Ordered ψ̇�(℘)

ψ̇�(1)

(
〈[0.5394, 0.7718], [0.9344, 0.9916], [0.7230, 0.9981]〉, 〈0.2668, 0.8107, 0.7782〉

)
ψ̇�(2)

(
〈[0.2938, 0.5968], [0.7059, 0.9369], [0.6079, 0.7340]〉, 〈0.8004, 0.9818, 0.9198〉

)
ψ̇�(3)

(
〈[0.1318, 0.2421], [0.2713, 0.5752], [0.4952, 0.7059]〉, 〈0.4758, 0.7864, 0.8279〉

)

2A
+
2 − 1A

+
2

2A
+
2 ], ..., [1A

−
M + 2A

−
M − 1A

−
M

2A
−
M,

1A
+
M + 2A

+
M − 1A

+
M

2A
+
M]〉, 〈1A1 + 2A1 −

1A1
2A1,

1A2 + 2A2 − 1A2
2A2, ...,

1AM + 2AM −
1AM

2AM〉)
(ii): ψ1 ⊗P ψ2 = (〈[1A

−
1

2A
−
1 ,

1A
+
1

2A
+
1 ],

[1A
−
2

2A
−
2 ,

1A
+
2

2A
+
2 ], ..., [1A

−
M

2A
−
M,

1A
+
M

2A
+
M]〉,

〈1A1
2A1,

1A2
2A2, ...,

1AM
2AM〉)

(iii): ηψ = (〈[1 − (1 − A−
1 )η, 1 − (1 − A+

1 )η], [1 −
(1 − A−

2 )η, 1 − (1 − A+
2 )η], ..., [1 − (1− A−

M)η, 1−
(1 − A+

M)η]〉, 〈1 − (1 − A1)η, 1 − (1− A2)η, ..., 1−
(1 − AM)η〉) : η > 0.
(iv): ψη = (〈[(A−

1 )η, (A+
1 )η], [(A−

2 )η, (A+
2 )η], ...,

[(A−
M)η, (A+

M)η]〉, 〈Aη1,Aη2, ...,AηM〉); η > 0

Theorem 2.13. For two CPMFNs ψ1 and ψ2 we can
show that ψ1 ⊕R ψ2, ψ1 ⊗R ψ2, ψ1 ⊕P ψ2, ψ1 ⊗P

ψ2, ηψ(For P-order and R-order) and ψη (For P-
order and R-order) are also CMPFNs.

Theorem 2.14. Let ψ1, ψ2 and ψ be three CMPFNs
andη1, η2, η3 > 0 are real numbers then some results
holds:
(i): η(ψ1 ⊕R ψ2) = ηψ1 ⊕R ηψ2,
(ii): (ψη1 ⊗R ψ

η
2) = (ψ1 ⊗R ψ2)η,

(iiii): η(ψ1 ⊕P ψ2) = ηψ1 ⊕P ηψ2,
(iv): (ψη1 ⊗P ψ

η
2) = (ψ1 ⊗P ψ2)η,

(v): (η1η2)(ψ) = η1(η2ψ) (For P-order and R-order),
(vi): ψη1η2 = (ψη2 )η1 (For P-order and R-order).

3. Aggregation operators

Aggregation means the creation of a numeral of
things into a cluster or a bunch of things that have
come or been taken together. They are used to aggre-
gate different values for the given input data. We
utilize them in decision-making problems and for the

ranking of alternatives. In this section, we use CMPFS
to establish novel averaging aggregation operators
for R-order and P-order respectively. Figure 3 shows
that CMPFA operators are superior to other models,
because all the listed models become special cases of
CMPFA operators with some suitable conditions. All
the defined operators holds the properties of idempo-
tency, boundedness and commutativity.

3.1. CMPFA operators based on operations
of R-Order and P-Order

Definition 3.1. Let ψ℘(℘ = 1, 2, 3, ...,N) ba an
assembling of CMPFNs and CMPFWAR : f

N →
f, if CMPFWAR(ψ1, ψ2, ..., ψN) = ζ1ψ1 ⊕R ζ2ψ2
⊕R...⊕R ζNψN where ζ = (ζ1, ζ2, ..., ζN)T is the

weight vector of ψ℘ such that ζ℘ > 0 with
N∑
℘=1

ζ℘ =
1 and f is the collection of CMPFNs, then
CMPFWAR is said to be cubic m-polar fuzzy
weighted averaging operator.

Theorem 3.2. Let ψ℘(℘ = 1, 2, 3, ...,N) be an
assembling of CMPFNs, then CMPFWA operator
can also be represented as:
CMPFWAR(ψ1, ψ2, ..., ψN) =(〈

[1 −
N∏
℘=1

(1 − ℘A−
1 )ζ℘ , 1 −

N∏
℘=1

(1 −

℘A+
1 )ζ℘ ], [1 −

N∏
℘=1

(1 − ℘A−
2 )ζ℘ , 1 −

N∏
℘=1

(1 −
℘A+

2 )ζ℘ ], ...,

[1 −
N∏
℘=1

(1 − ℘A−
M)ζ℘ , 1 −

N∏
℘=1

(1 − ℘A+
M)ζ℘ ]

〉
,

〈
N∏
℘=1

(℘A1)ζ℘ ,
N∏
℘=1

(℘A2)ζ℘ , ...,
N∏
℘=1

(℘AM)ζ℘
〉)

(A)
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where ζ = (ζ1, ζ2, ..., ζN)T is the weight vector of

ψ℘ such that ζ℘ > 0 with
N∑
℘=1

ζ℘ = 1.

Proof. We have to show that the equation (A) holds
for CMPFWA operator. For this we will follow
mathematical induction. As we know that

ψ℘= (〈[℘A−
1 ,
℘A+

1 ], [℘A−
2 ,
℘A+

2 ],..., [℘A−
M,

℘A+
M]〉,

〈℘A1,
℘A2, ...,

℘AM〉), ℘ = 1, 2, 3, ...,N is an
assembling of CMPFNs then we can follow the
given steps of mathematical induction,

Step 1: For N = 2, ψ1 = (〈[1A
−
1 ,

1A
+
1 ],

[1A
−
2 ,

1A
+
2 ], ..., [1A

−
M,

1A
+
M]〉, 〈1A1,

1A2, ...,
1AM〉)

and
ψ2 = (〈[2A

−
1 ,

2A
+
1 ], [2A

−
2 ,

2A
+
2 ], ..., [2A

−
M,

2A
+
M]〉,

〈2A1,
2A2, ...,

2AM〉) and for ζ1 and ζ2 we can write
that

ζ1ψ1 =
(〈

[1 − (1 − 1A
−
1 )ζ1 , 1 − (1 − 1A

+
1 )ζ1 ],

[1 − (1 − 1A
−
2 )ζ1 , 1 − (1 − 1A

+
2 )ζ1 ], ..., [1 − (1 −

1A
−
M)ζ1 , 1 − (1 − 1A

+
M)ζ1 ]

〉
,

〈
(1A1)ζ1 , (1A2)ζ1 , ...,

(1AM)ζ1
〉)

and

ζ2ψ2 =
(〈

[1 − (1 − 2A
−
1 )ζ2 , 1 − (1 − 2A

+
1 )ζ2 ], [1

−(1 − 2A
−
2 )ζ2 , 1 − (1 − 2A

+
2 )ζ2 ], ..., [1 − (1 −

2A
−
M)ζ2 , 1 − (1 − 2A

+
M)ζ2 ]

〉
,

〈
(2A1)ζ2 , (2A2)ζ2 , ...,

(2AM)ζ2
〉)

Now CMPFWAR(ψ1, ψ2) = ζ1ψ1 ⊕R ζ2ψ2

CMPFWAR(ψ1, ψ2) =
(〈

[1 − (1 − 1A
−
1 )ζ1 , 1 −

(1 − 1A
+
1 )ζ1 ], [1 − (1 − 1A

−
2 )ζ1 , 1 − (1 − 1A

+
2 )ζ1 ],

..., [1 − (1 − 1A
−
M)ζ1 , 1− (1− 1A

+
M)ζ1 ]

〉
,
〈
(1A1)ζ1 ,

(1A2)ζ1 , ..., (1AM)ζ1
〉) ⊕R

(〈
[1 − (1 − 2A

−
1 )ζ2 ,

1 − (1 − 2A
+
1 )ζ2 ],

[1 − (1 − 2A
−
2 )ζ2 , 1 − (1 − 2A

+
2 )ζ2 ], ..., [1 − (1 −

2A
−
M)ζ2 ,

1 − (1 − 2A
+
M)ζ2 ]

〉
,
〈
(2A1)ζ2 ,(2A2)ζ2 ,...,(2AM)ζ2

〉)

CMPFWAR(ψ1, ψ2) =
(〈

[1 −
2∏

℘=1
(1 − ℘A−

1 )ζ℘ ,

1 −
2∏

℘=1
(1 − ℘A+

1 )ζ℘ ], [1 −
2∏

℘=1
(1 − ℘A−

2 )ζ℘ ,

1 −
2∏

℘=1
(1 − ℘A+

2 )ζ℘ ], ..., [1 −
2∏

℘=1
(1 − ℘A−

M)ζ℘ ,

1 −
2∏

℘=1
(1 − ℘A+

M)ζ℘ ]

〉
,

〈
2∏

℘=1
(℘A1)ζ℘ ,

2∏
℘=1

(℘A2)ζ℘ ,

...,
2∏

℘=1
(℘AM)ζ℘

〉)

This shows that result (A) holds for N = 2.

Step 2: Let (A) holds for N = Z.

Step 3: Now we will show that it holds for
N = Z + 1.
Consider CMPFWAR(ψ1, ψ2, ..., ψZ+1) =( Z⊕
℘=1

ζ℘ψ℘

)
⊕R

(
ζZ+1ψZ+1

)
CMPFWAR(ψ1, ψ2, ..., ψZ+1) =(〈

[1 −
Z∏
℘=1

(1 − ℘A−
1 )ζ℘ , 1 −

Z∏
℘=1

(1 − ℘A+
1 )ζ℘ ],

[1 −
Z∏
℘=1

(1 − ℘A−
2 )ζ℘ , 1 −

Z∏
℘=1

(1 − ℘A+
2 )ζ℘ ], ...,

[1 −
Z∏
℘=1

(1 − ℘A−
M)ζ℘ , 1 −

Z∏
℘=1

(1 − ℘A+
M)ζ℘ ]

〉
,

〈 Z∏
℘=1

(℘A1)ζ℘ ,
Z∏
℘=1

(℘A2)ζ℘ , ...,
Z∏
℘=1

(℘AM)ζ℘
〉)

⊕R(〈
[1 − (1 − Z+1A

−
1 )ζZ+1 , 1 − (1 − Z+1A

+
1 )ζZ+1 ],

[1 − (1 − Z+1A
−
2 )ζZ+1 , 1 − (1 − Z+1A

+
2 )ζZ+1 ], ...,

[1 − (1 − Z+1A
−
M)ζZ+1 , 1 − (1 − Z+1A

+
M)ζZ+1 ]

〉
,

〈
(Z+1A1)ζZ+1 , (Z+1A2)ζZ+1 , ..., (Z+1AM)ζZ+1

〉)

CMPFWAR(ψ1, ψ2, ..., ψZ+1) =(〈
[1 −

Z+1∏
℘=1

(1 − ℘A−
1 )ζ℘ , 1 −

Z+1∏
℘=1

(1 − ℘A+
1 )ζ℘ ],

[1 −
Z+1∏
℘=1

(1 − ℘A−
2 )ζ℘ , 1 −

Z+1∏
℘=1

(1 − ℘A+
2 )ζ℘ ], ...,

[1 −
Z+1∏
℘=1

(1 − ℘A−
M)ζ℘ , 1 −

Z+1∏
℘=1

(1 − ℘A+
M)ζ℘ ]

〉
,

〈 Z+1∏
℘=1

(℘A1)ζ℘ ,
Z+1∏
℘=1

(℘A2)ζ℘ , ...,
Z+1∏
℘=1

(℘AM)ζ℘
〉)

Thus equation (A) holds for N = Z + 1. Hence by
mathematical induction (A) is true for all values of
N.
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Remark. The aggregated value by using CMPFWA
operator is again CMPFN. �

Example 3.3. Consider C3PFNs ψ1, ψ2, ψ3 and

ψ4 with the ζ = (0.3, 0.4, 0.2, 0.1)T as
4∑

℘=1
ζ℘ = 1.

Table 3 represent the C3PFNs ψ1, ψ2, ψ3 and ψ4.
Then by using (A) for M = 3 we obtain
CMPFWAR(ψ1, ψ2, ψ3, ψ4) = (〈[0.3868, 0.6973],
[0.6115, 0.9268], [0.2375, 0.4422]〉, 〈0.4937,
0.6899, 0.3037〉).
Definition 3.4. Let ψ℘(℘ = 1, 2, 3, ...,N) ba
an assembling of CMPFNs and CMPFOWAR :
f

N → f, if CMPFOWAR(ψ1, ψ2, ..., ψN) =
ζ1ψ�(1) ⊕R ζ2ψ�(2) ⊕R ...⊕R ζNψ�(N) where ζ =
(ζ1, ζ2, ..., ζN)T is the weight vector of ψ℘ such

that ζ℘ > 0 with
N∑
℘=1

ζ℘ = 1 and f is the col-

lection of CMPFNs. Here (�(1), �(2), ..., �(N))
is a permutation of (1, 2, ...,N) such that
ψ�(℘−1) ≥ ψ�(℘),∀℘ = 2, 3, ...,N, then CMPFOWA
is called cubic m-polar fuzzy ordered weighted
averaging operator.

Theorem 3.5. Let ψ℘(℘ = 1, 2, 3, ...,N) be an
assembling of CMPFNs, then CMPFOWA operator
can also be represented as:
CMPFOWAR(ψ1, ψ2, ..., ψN) =(〈

[1 −
N∏
℘=1

(1 − ℘A−
�(1))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘A+
�(1))

ζ℘ ], [1 −
N∏
℘=1

(1 −

℘A−
�(2))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘A+
�(2))

ζ℘ ], ...,

[
1 −

N∏
℘=1

(1 − ℘A−
�(M))

ζ℘ , 1 −
N∏
℘=1

(1 −

℘A+
�(M))

ζ℘

]〉
,

〈
N∏
℘=1

(℘A�(1))ζ℘ ,
N∏
℘=1

(℘A�(2))ζ℘ ,

...,
N∏
℘=1

(℘A�(M))ζ℘
〉)

(B)

where ζ = (ζ1, ζ2, ..., ζN)T is the weight vector of

ψ℘ such that ζ℘ > 0 with
N∑
℘=1

ζ℘ = 1.

Example 3.6. Consider C2PFNs ψ1, ψ2 and

ψ3 with ζ = (0.3, 0.2, 0.5)T as
3∑

℘=1
ζ℘ = 1. In

tabular form ψ1, ψ2 and ψ3 can be written as

Table 4. The score functions of C2PFNs is cal-
culated by using Definition 2.9 and given as:
£(ψ1) = 0.63,£(ψ2) = 0.4775,£(ψ3) = 0.875
This shows that ψ3 � ψ1 � ψ2. So ordered C2PFNs
are given in Table 5.
Now using equation (B) we can write that
CMPFOWAR(ψ1, ψ2, ψ3) = (〈[0.6452, 0.8971],
[0.7237, 0.9367]〉, 〈0.6613, 0.8525〉).
Definition 3.7. Let ψ℘(℘ = 1, 2, 3, ...,N) be
an assembling of CMPFNs and CMPFHAR :
f

N → f, if CMPFHAR(ψ1, ψ2, ..., ψN) =
θ1ψ̇�(1) ⊕R θ2ψ̇�(2) ⊕R ...⊕R θNψ̇�(N) where
θ = (θ1, θ2, ..., θN)T is the weight vector of ψ℘

such that θ℘ > 0 with
N∑
℘=1

θ℘ = 1 and f is the col-

lection of CMPFNs. Here (�(1), �(2), ..., �(N))
is a permutation of (1, 2, ...,N) such that
ψ̇�(℘−1) ≥ ψ̇�(℘),∀℘ = 2, 3, ...,N and ψ̇�(℘) is
the ℘th weighted CMPFN given by ψ̇℘ = Nζ℘ψ℘,
where ζ = (ζ1, ζ2, ..., ζN)T is the associated weight

vector with ψ℘ such that ζ℘ > 0 with
N∑
℘=1

ζ℘ = 1,

then CMPFHA is called cubic m-polar fuzzy hybrid
averaging operator.

Theorem 3.8. Let ψ℘(℘ = 1, 2, 3, ...,N) be an
assembling of CMPFNs, then CMPFHA operator
can also be represented as:
CMPFHAR(ψ1, ψ2, ..., ψN) =(〈

[1 −
N∏
℘=1

(1 − ℘Ȧ
−
�(1))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘Ȧ
+
�(1))

ζ℘ ],

[1 −
N∏
℘=1

(1 − ℘Ȧ
−
�(2))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘Ȧ
+
�(2))

ζ℘ ], ...,

[1 −
N∏
℘=1

(1 − ℘Ȧ
−
�(M))

ζ℘ , 1 −
N∏
℘=1

(1 −

℘Ȧ
+
�(M))

ζ℘ ]

〉
,

〈
N∏
℘=1

(℘Ȧ�(1))ζ℘ ,
N∏
℘=1

(℘Ȧ�(2))ζ℘ ,

...,
N∏
℘=1

(℘Ȧ�(M))ζ℘
〉)

(C)

where ζ = (ζ1, ζ2, ..., ζN)T is the weight vector of

ψ℘ such that ζ℘ > 0 with
N∑
℘=1

ζ℘ = 1.

Example 3.9. Consider three C3PFNs ψ1, ψ2 and
ψ3 with ζ = (0.6, 0.2, 0.2)T is the weight vector then
Table 6 represent these C3PFNs.
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Now calculating ψ̇℘ = 3ζ℘ψ℘ we get C3PFNs
written in Table 7.

Next we calculate the score of ψ̇1, ψ̇2 and ψ̇3 by
using Definition 2.9 given as

£(ψ̇1) = 0.6356,£(ψ̇2) = 0.2519,£(ψ̇3) =
0.5062 Which clearly shows that ψ̇1 � ψ̇3 � ψ̇2. It
is easy to see the order of C3PFNs in Table 8.
The considered C3PFNs are attributes of the refer-
ence set and present some specific object. For the
decision, we set three experts of the related problem.
These experts choose the values of associated weight
vector according to the uncertain linguistic variables.
For example if we set “Low(L) → 0 ≤ L ≤ 0.3”,
“Medium(M) → 0.3 < M ≤ 0.6” and “High(H)
→ 0.6 < H ≤ 1”. Then according to these lin-
guistic terms we can see that the weight vector
θ = (0.5, 0.1, 0.4)T represents θ = (M,L,M)T .
Let θ = (0.5, 0.1, 0.4)T be the associated weight vec-
tor according to the experts choice. By using equation
(C) we can now find the aggregated value of C3PFNs
as CMPFHAR(ψ1, ψ2, ψ3) = (〈

[0.3807, 0.6096],
[0.8004, 0.9507], [0.6355, 0.9767]

〉
,〈

0.3752, 0.8162, 0.8110
〉)

Definition 3.10. By using the same input as above
for operators of R-order we can also define operators
for p-order given as
CMPFWAP (ψ1, ψ2, ..., ψN) =
ζ1ψ1 ⊕P ζ2ψ2 ⊕P ...⊕P ζNψN =(〈

[1 −
N∏
℘=1

(1 − ℘A−
1 )ζ℘ , 1 −

N∏
℘=1

(1 − ℘A+
1 )ζ℘ ],

[1 −
N∏
℘=1

(1 − ℘A−
2 )ζ℘ , 1 −

N∏
℘=1

(1 − ℘A+
2 )ζ℘ ], ...,

[1 −
N∏
℘=1

(1 − ℘A−
M)ζ℘ , 1 −

N∏
℘=1

(1 − ℘A+
M)ζ℘ ]

〉
,

〈
1 −

N∏
℘=1

(1 − ℘A1)ζ℘ , 1 −
N∏
℘=1

(1 − ℘A2)ζ℘ ,

..., 1 −
N∏
℘=1

(1 − ℘AM)ζ℘
〉)

(D)

CMPFOWAP (ψ1, ψ2, ..., ψN) =
ζ1ψ�(1) ⊕P ζ2ψ�(2) ⊕P ...⊕P ζNψ�(N) =(〈

[1 −
N∏
℘=1

(1 − ℘A−
�(1))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘A+
�(1))

ζ℘ ],

[1 −
N∏
℘=1

(1 − ℘A−
�(2))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘A+
�(2))

ζ℘ ], ...,

[1 −
N∏
℘=1

(1 − ℘A−
�(M))

ζ℘ , 1 −
N∏
℘=1

(1 −

℘A+
�(M))

ζ℘ ]

〉
,

〈
1 −

N∏
℘=1

(1 − ℘A�(1))ζ℘ , 1 −
N∏
℘=1

(1 − ℘A�(2))ζ℘ , ...,

1 −
N∏
℘=1

(1 − ℘A�(M))ζ℘
〉)

(E)

CMPFHAP (ψ1, ψ2, ..., ψN) =
θ1ψ̇�(1) ⊕P θ2ψ̇�(2) ⊕P ...⊕P θNψ̇�(N) =(〈

[1 −
N∏
℘=1

(1 − ℘Ȧ
−
�(1))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘Ȧ
+
�(1))

ζ℘ ],

[1 −
N∏
℘=1

(1 − ℘Ȧ
−
�(2))

ζ℘ , 1 −
N∏
℘=1

(1 − ℘Ȧ
+
�(2))

ζ℘ ], ...,

[1 −
N∏
℘=1

(1 − ℘Ȧ
−
�(M))

ζ℘ , 1 −
N∏
℘=1

(1 −

℘Ȧ
+
�(M))

ζ℘ ]

〉
,

〈
1 −

N∏
℘=1

(1 − ℘Ȧ�(1))ζ℘ , 1 −
N∏
℘=1

(1 − ℘Ȧ�(2))ζ℘ , ...,

1 −
N∏
℘=1

(1 − ℘Ȧ�(M))ζ℘
〉)

(F)

are the CMPFWA, CMPFOWA and CMPFHA
operators for p-order respectively.

4. MAGDM using proposed operators

The occupation of farming output is called
agribusiness. Goldberg and Davis brought out this
term in 1957. It contains agrichemicals, breeding,
crop production (agricultural and agreement farm-
ing), supply, farm technology, processing, and seed
supply, as well as advertising and marketing sales.
In that respect there are different elements that affect
crop yield. There are two types of these components:
(i): Internal factors, (ii): External factors.
We will see the categorization of these factors through
the following flow chart diagram given in Fig. 4.

The multi-attribute group decision-making is a
process in which a committee cooperatively take a
decision from an assembling of different attributes
of the reference set. The decision obtained by the
panel is strong and authentic as compared to the
decision of a single person. The MAGDM is useful
and strong when the problems involve uncertainties
and ambiguities. In short it has great importance
in real life decision-making problems. From the
presented algorithm and authorization of ranking
credibility, we can conclude that the proposed
approach exploits the hesitations that arise in the
multi-attribute group decision-making process. This
study helps an international firm for the selection of
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a land and suggest the following benefits: The first
benefit of this research is developing the case study
for MAGDM problem and the selection of suitable
criteria based on a comprehensive literature review.
The second benefit is not only in selecting the best
attribute, but also analysis of algorithm based on
proposed operators that give ranking results and
helpful in diverse fields of life.

Algorithm:
Input:

Step 1: Input CMPF-data for suitable number
of alternatives ψ℘′ ; (℘′ = 1, 2, 3, ..., m) under the
effect of different criteria Y℘; (℘ = 1, 2, 3, ..., n).
This input table represents verbally stated infor-
mation into mathematical language in the form of
CMPFNs. We discuss the behavior of each alterna-
tive under every individual criteria by using CMPF
linguistic variables.
Step 2: Normalize the input CMPF-data:

ψ℘′ =

⎧⎪⎪⎨
⎪⎪⎩

(〈[A+
M,A

−
M]〉, 〈AM〉); for same type(〈[1 − A+

M, 1 − A−
M]〉, 〈1 − AM〉);

for different type

It is necessary to normalize the input information
before further calculations to obtain the best and
precise solutions. If the type is same for all attributes,
then there is no need to normalize the information.
In our given application all the alternatives are of
same types and then we do not normalize our input
and instantly use it for our deliberations.
Step 3: According to the experts obtain associated
weight vector ζ = (ζ1, ζ2, ..., ζm) for further calcu-
lations.
Calculations:
Step 4: Compute the aggregated values of alterna-
tives ψ℘′ ; (℘′ = 1, 2, 3, ..., m) corresponding to the
different criteria Y℘; (℘ = 1, 2, 3, ..., n) by using
C3PFWAR,C3PFOWAR,C3PFHAR,C3PFWAP,
C3PFOWAP and C3PFHAP operators given in
equations (A), (B), (C), (D), (E) and (F) respectively,
and hence the evaluated aggregated values are given
by O℘′ ; (℘′ = 1, 2, 3, ..., m).
Output:
Step 5: Using O℘′ ; (℘′ = 1, 2, 3, ..., m) for every
operator separately calculate score values by using
Definition 2.9.
Step 6: We rank the alternatives on the basis of
score values according to the remark stated below
Definition 2.9.

Table 9
Uncertain Linguistic Variables for each criteria

Linguistic variable Numerical range

Low(L) 0 ≤ L < 0.20
Medium Low(ML) 0.20 ≤ ML < 0.35
Medium(M) 0.35 ≤ M < 0.55
Medium High(MH) 0.55 ≤ MH < 0.75
High(H) 0.75 ≤ H ≤ 1

Step 7: Choose the alternative with the maximum
score calculated through the purposed method.

Numerical Example:
Consider that an international agricultural firm wants
to buy a land for an agricultural project. They are pro-
ceeding to invest a large sum of money for this project
and it also holds shares of different societies. To get
to their country economically strong and to improve
the competitive capability of their company they are
interested to purchase a suitable state for this project
with which they can get maximum and healthy pro-
duction of the crop with the desirable investment. For
the scientific decision, some experts are selected by
the expert team of the company. These experts ana-
lyze only the external factors for this decision because
internal factors are less influenced for the selection of
land.
Let Q = {ψ1, ψ2, ψ3, ψ4} be the set of available
lands through which they want to select the suitable
land. There are five external factors Y1,Y2,Y3,Y3
and Y5 which are used by experts to input CMPF-
data for the given set Q. Where,
Y1 = Climate factors, Y2 = Edaphic factors,
Y3 = Biotic factors, Y4 = Phsiographic factors,
Y5 = Socio-economic factors.
There are three experts so for each ψ ∈ Q the input
data consists of C3PFNs corresponding to every
attribute Y℘; (℘ = 1, 2, 3, 4, 5). Since the problem
is a real decision-making and performed by the real
decision makers. We explain, how we assign these
values. The input values selected by experts are cho-
sen from the set of uncertain linguistic variables for
each criteria. The range of these variables is given in
Table 9.

In tabular form the C3PF-data is given as Table 10.
We have three experts so we use input data

for M = 3, which shows the opinion of three
experts. For each expert interval shows that how
much the given criteria Y℘ is present in the corre-
sponding alternative ψ℘′ . Non-membership grades
shows that how much the criteria Y℘ is not found
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Fig. 4. Factors affecting crop production.

Fig. 5. Flow chart diagram of proposed algorithm.
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Table 10
Cubic 3-polar fuzzy input data

Order Q C3PFNs

1 ψ1 Y1 :
(
〈[0.28, 0.57], [0.56, 0.78], [0.67, 0.89]〉, 〈0.48, 0.67, 0.79〉

)
2 ψ1 Y2 :

(
〈[0.37, 0.84], [0.78, 0.97], [0.21, 0.38]〉, 〈0.77, 0.88, 0.28〉

)
3 ψ1 Y3 :

(
〈[0.11, 0.41], [0.28, 0.91], [0.35, 0.91]〉, 〈0.34, 0.78, 0.67〉

)
4 ψ1 Y4 :

(
〈[0.31, 0.48], [0.27, 0.38], [0.44, 0.67]〉, 〈0.38, 0.35, 0.57〉

)
5 ψ1 Y5 :

(
〈[0.58, 0.77], [0.67, 0.89], [0.88, 0.91]〉, 〈0.66, 0.83, 0.89〉

)
1 ψ2 Y1 :

(
〈[0.88, 0.91], [0.71, 0.88], [0.87, 0.99]〉, 〈0.90, 0.78, 0.88〉

)
2 ψ2 Y2 :

(
〈[0.67, 0.77], [0.87, 0.98], [0.81, 0.97]〉, 〈0.68, 0.89, 0.95〉

)
3 ψ2 Y3 :

(
〈[0.51, 0.61], [0.11, 0.35], [0.43, 0.83]〉, 〈0.58, 0.27, 0.55〉

)
4 ψ2 Y4 :

(
〈[0.31, 0.58], [0.41, 0.61], [0.51, 0.61]〉, 〈0.47, 0.52, 0.58〉

)
5 ψ2 Y5 :

(
〈[0.31, 0.77], [0.23, 0.43], [0.17, 0.38]〉, 〈0.46, 0.26, 0.28〉

)
1 ψ3 Y1 :

(
〈[0.77, 0.89], [0.85, 0.95], [0.68, 0.89]〉, 〈0.83, 0.94, 0.75〉

)
2 ψ3 Y2 :

(
〈[0.78, 0.98], [0.68, 0.89], [0.56, 0.86]〉, 〈0.88, 0.85, 0.83〉

)
3 ψ3 Y3 :

(
〈[0.35, 0.58], [0.58, 0.68], [0.43, 0.61]〉, 〈0.44, 0.63, 0.57〉

)
4 ψ3 Y4 :

(
〈[0.51, 0.83], [0.12, 0.28], [0.34, 0.47]〉, 〈0.58, 0.18, 0.37〉

)
5 ψ3 Y5 :

(
〈[0.31, 0.47], [0.68, 0.71], [0.28, 0.42]〉, 〈0.42, 0.69, 0.33〉

)
1 ψ4 Y1 :

(
〈[0.68, 0.86], [0.77, 0.93], [0.81, 0.95]〉, 〈0.72, 0.91, 0.86〉

)
2 ψ4 Y2 :

(
〈[0.78, 0.87], [0.68, 0.97], [0.81, 0.98]〉, 〈0.81, 0.78, 0.94〉

)
3 ψ4 Y3 :

(
〈[0.37, 0.48], [0.52, 0.64], [0.74, 0.88]〉, 〈0.41, 0.60, 0.78〉

)
4 ψ4 Y4 :

(
〈[0.13, 0.34], [0.41, 0.58], [0.27, 0.34]〉, 〈0.26, 0.46, 0.31〉

)
5 ψ4 Y5 :

(
〈[0.21, 0.38], [0.81, 0.91], [0.67, 0.79]〉, 〈0.30, 0.80, 0.73〉

)

in the alternative ψ℘′ . In Table 10 the C3PFN(〈 [0.28, 0.57], [0.56, 0.78], [0.67, 0.89] 〉, 〈 0.48,
0.67, 0.79〉) shows that for alternativeψ1 and criteria
Y1, we have input data according to three experts
under the effect of linguistic terms given as(〈[ML,MH], [MH,H], [MH,H]〉, 〈M,MH,H〉).
For land ψ1 and for criteria Y1 = Climate factors
the first fuzzy interval [0.28, 0.57] and first fuzzy
value 0.48 shows the input according to the first
expert. On the same pattern, we can see the physical
sense of remaining alternatives and attributes.
Experts assign some weights according to the given
factors and associated weight vector is given as

ζ = (0.2, 0.4, 0.1, 0.2, 0.1) such that
5∑

℘=1
ζ℘ = 1.

This weigh vector is constructed according to the
requirement of company for each criteria.

• Calculations for C3PFWAR:
By using equation (A) on Table 10, we get the
C3PFN O1 given as
O1 = (〈[0.3451, 0.7084], [0.6234, 0.896],
[0.497, 0.7372]〉, 〈0.5519, 0.6806, 0.4865〉)
Similarly we can calculate O2,O3 and O4 forψ2, ψ3
and ψ4 given as
O2 = (〈[0.6502, 0.7733], [0.701, 0.8974],

[0.7247, 0.9353]〉, 〈0.6322, 0.6109, 0.7102〉)
O3 = (〈[0.6746, 0.9189], [0.6541, 0.8323],
[0.5174, 0.7777]〉, 〈0.6933, 0.6043, 0.6077〉)
O4 = (〈[0.606, 0.7548], [0.6654, 0.9138],
[0.7289, 0.9269]〉, 〈0.5331, 0.7068, 0.7078〉)
The score values of above aggregated C3PFNs are
calculated by using the Definition 2.9 given as,
£(O1) = 0.4210,£(O2) = 0.6058,
£(O3) = 0.5467,£(O4) = 0.5905.
This shows that ψ2 � ψ4 � ψ3 � ψ1. Hence ψ2 is
the best land for their agricultural project. Graphi-
cally it can be seen in Fig. (6)

• Calculations for C3PFOWAR:
First of all we will calculate the score values of our
C3PF-data form Table 10.

Now the ordered C3PF-data for every Y℘ and
ψ℘′ ; (℘′ = 1, 2, 3, 4), (℘ = 1, 2, 3, 4, 5) is given in
Table 11.

By using equation (B) for C3PFOWAR we get the
C3PFNs O1,O2,O3,O4. The score values of these
aggregated C3PFNs are calculated by using the Def-
inition 2.9 given as,
£(O1) = 0.4574,£(O2) = 0.6003,
£(O3) = 0.5597,£(O4) = 0.6214. This shows that
ψ4 � ψ2 � ψ3 � ψ1. Hence ψ4 is the best land for



A
U

TH
O

R
 C

O
P

Y

3684 M. Riaz and M.R. Hashmi / MAGDM for agribusiness

Table 11
Ordered cubic 3-polar fuzzy numbers

Order Q Ordered C3PFNs

1 ψ�(1) Y5 :
(
〈[0.58, 0.77], [0.67, 0.89], [0.88, 0.91]〉, 〈0.66, 0.83, 0.89〉

)
2 ψ�(1) Y1 :

(
〈[0.28, 0.57], [0.56, 0.78], [0.67, 0.89]〉, 〈0.48, 0.67, 0.79〉

)
3 ψ�(1) Y2 :

(
〈[0.37, 0.84], [0.78, 0.97], [0.21, 0.38]〉, 〈0.77, 0.88, 0.28〉

)
4 ψ�(1) Y3 :

(
〈[0.11, 0.41], [0.28, 0.91], [0.35, 0.91]〉, 〈0.34, 0.78, 0.67〉

)
5 ψ�(1) Y4 :

(
〈[0.31, 0.48], [0.27, 0.38], [0.44, 0.67]〉, 〈0.38, 0.35, 0.57〉

)
1 ψ�(2) Y1 :

(
〈[0.88, 0.91], [0.71, 0.88], [0.87, 0.99]〉, 〈0.90, 0.78, 0.88〉

)
2 ψ�(2) Y2 :

(
〈[0.67, 0.77], [0.87, 0.98], [0.81, 0.97]〉, 〈0.68, 0.89, 0.95〉

)
3 ψ�(2) Y4 :

(
〈[0.31, 0.58], [0.41, 0.61], [0.51, 0.61]〉, 〈0.47, 0.52, 0.58〉

)
4 ψ�(2) Y3 :

(
〈[0.51, 0.61], [0.11, 0.35], [0.43, 0.83]〉, 〈0.58, 0.27, 0.55〉

)
5 ψ�(2) Y5 :

(
〈[0.31, 0.77], [0.23, 0.43], [0.17, 0.38]〉, 〈0.46, 0.26, 0.28〉

)
1 ψ�(3) Y1 :

(
〈[0.77, 0.89], [0.85, 0.95], [0.68, 0.89]〉, 〈0.83, 0.94, 0.75〉

)
2 ψ�(3) Y2 :

(
〈[0.78, 0.98], [0.68, 0.89], [0.56, 0.86]〉, 〈0.88, 0.85, 0.83〉

)
3 ψ�(3) Y3 :

(
〈[0.35, 0.58], [0.58, 0.68], [0.43, 0.61]〉, 〈0.44, 0.63, 0.57〉

)
4 ψ�(3) Y5 :

(
〈[0.31, 0.47], [0.68, 0.71], [0.28, 0.42]〉, 〈0.42, 0.69, 0.33〉

)
5 ψ�(3) Y4 :

(
〈[0.51, 0.83], [0.12, 0.28], [0.34, 0.47]〉, 〈0.58, 0.18, 0.37〉

)
1 ψ�(4) Y2 :

(
〈[0.78, 0.87], [0.68, 0.97], [0.81, 0.98]〉, 〈0.81, 0.78, 0.94〉

)
2 ψ�(4) Y1 :

(
〈[0.68, 0.86], [0.77, 0.93], [0.81, 0.95]〉, 〈0.72, 0.91, 0.86〉

)
3 ψ�(4) Y5 :

(
〈[0.21, 0.38], [0.81, 0.91], [0.67, 0.79]〉, 〈0.30, 0.80, 0.73〉

)
4 ψ�(4) Y3 :

(
〈[0.37, 0.48], [0.52, 0.64], [0.74, 0.88]〉, 〈0.41, 0.60, 0.78〉

)
5 ψ�(4) Y4 :

(
〈[0.13, 0.34], [0.41, 0.58], [0.27, 0.34]〉, 〈0.26, 0.46, 0.31〉

)

Table 12
Hybrid cubic 3-polar fuzzy data

Order Q Y℘ Hybrid C3PFNs

1 ψ̇1 Y1

(
〈[0.28, 0.57], [0.56, 0.78], [0.67, 0.89]〉, 〈0.48, 0.67, 0.79〉

)
2 ψ̇1 Y2

(
〈[0.6031, 0.9744], [0.9516, 0.9991], [0.3759, 0.6156]〉, 〈0.5929, 0.7744, 0.0784〉

)
3 ψ̇1 Y3

(
〈[0.0566, 0.2318], [0.1514, 0.7], [0.1937, 0.7]〉, 〈0.5830, 0.8831, 0.8185〉

)
4 ψ̇1 Y4

(
〈[0.31, 0.48], [0.27, 0.38], [0.44, 0.67]〉, 〈0.38, 0.35, 0.57〉

)
5 ψ̇1 Y5

(
〈[0.3519, 0.5204], [0.4255, 0.6683], [0.6535, 0.7]〉, 〈0.8124, 0.9110, 0.9433〉

)
1 ψ̇2 Y1

(
〈[0.88, 0.91], [0.71, 0.88], [0.87, 0.99]〉, 〈0.90, 0.78, 0.88〉

)
2 ψ̇2 Y2

(
〈[0.8911, 0.9471], [0.9831, 0.9996], [0.9639, 0.9991]〉, 〈0.4624, 0.7921, 0.9025〉

)
3 ψ̇2 Y3

(
〈[0.3, 0.3755], [0.0566, 0.1937], [0.2450, 0.5876]〉, 〈0.7615, 0.5196, 0.7416〉

)
4 ψ̇2 Y4

(
〈[0.31, 0.58], [0.41, 0.61], [0.51, 0.61]〉, 〈0.47, 0.52, 0.58〉

)
5 ψ̇2 Y5

(
〈[0.1693, 0.5204], [0.1225, 0.2450], [0.0889, 0.2125]〉, 〈0.6782, 0.5099, 0.5291〉

)
1 ψ̇3 Y1

(
〈[0.77, 0.89], [0.85, 0.95], [0.68, 0.89]〉, 〈0.83, 0.94, 0.75〉

)
2 ψ̇3 Y2

(
〈[0.9516, 0.9996], [0.8976, 0.9879], [0.8064, 0.9804]〉, 〈0.7744, 0.7225, 0.6889〉

)
3 ψ̇3 Y3

(
〈[0.1937, 0.3519], [0.3519, 0.4343], [0.2450, 0.3755]〉, 〈0.6633, 0.7937, 0.7549〉

)
4 ψ̇3 Y4

(
〈[0.51, 0.83], [0.12, 0.28], [0.34, 0.47]〉, 〈0.58, 0.18, 0.37〉

)
5 ψ̇3 Y5

(
〈[0.1693, 0.2719], [0.4343, 0.4616], [0.1514, 0.2384]〉, 〈0.6480, 0.8306, 0.5744〉

)
1 ψ̇4 Y1

(
〈[0.68, 0.86], [0.77, 0.93], [0.81, 0.95]〉, 〈0.72, 0.91, 0.86〉

)
2 ψ̇4 Y2

(
〈[0.9516, 0.9831], [0.8976, 0.9991], [0.9639, 0.9996]〉, 〈0.6561, 0.6084, 0.8836〉

)
3 ψ̇4 Y3

(
〈[0.2062, 0.2788], [0.3071, 0.4], [0.4900, 0.6535]〉, 〈0.5099, 0.6782, 0.5567〉

)
4 ψ̇4 Y4

(
〈[0.13, 0.34], [0.41, 0.58], [0.27, 0.34]〉, 〈0.26, 0.46, 0.31〉

)
5 ψ̇4 Y5

(
〈[0.1111, 0.2125], [0.5641, 0.7], [0.4255, 0.5417]〉, 〈0.5477, 0.8944, 0.8544〉

)
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Fig. 6. Ranking of C3PFNs for C3PFWAR.

Fig. 7. Ranking of C3PFNs for C3PFOWAR.

Fig. 8. Ranking of C3PFNs for C3PFHAR.

their agricultural project. Graphically it can be seen
in Fig. (7)
• Calculations for C3PFHAR:
For C3PFHAR experts will define another weight
vector according to the some related parameters

for their choice to hybridize the given data. This
hybridization is another approach to select the best
alternative and can be used to find the more accurate
result for our decision. The weight vector is given

as θ = (0.2, 0.1, 0.3, 0.2, 0.2) with
5∑

℘=1
θ℘ = 1. For

aggregated C3PFNs we will first calculate ψ℘′ =
Nψ℘′ζ℘, where N = 5 given in Table 12.

The score values of these aggregated C3PFNs
from Table 12 are calculated by using the Defini-
tion 2.9, then we get ordered hybrid C3PF data given
in Table 13.

By using equation (C) for Table 13, we get the
C3PFNs O1,O2,O3 and O4. The score values of
these aggregated hybrid C3PFNs are calculated by
using the Definition 2.9 given as,
£(O1) = 0.3979,£(O2) = 0.5543,
£(O3) = 0.5015,£(O4) = 0.5404.
This shows that ψ2 � ψ4 � ψ3 � ψ1. Hence ψ2 is
the best land for their agricultural project. Graphi-
cally it can be seen in Fig. (8). Now we use aggregated
operators for P-order in the similar manner as for R-
order.

• Calculations for C3PFWAP :
By using equation (D) for C3PFWAP we get the
C3PFNs O1,O2,O3 and O4 and the score values
of above aggregated C3PFNs are calculated by using
the Definition 2.9 given as,
£(O1) = 0.4683, £(O2) = 0.6636,
£(O3) = 0.6070,£(O4) = 0.6444.
This shows that ψ2 � ψ4 � ψ3 � ψ1. Hence ψ2 is
the best land for their agricultural project.

• Calculations for C3PFOWAP :
By using equation (E) for C3PFOWAP we get the
C3PFNs O1,O2,O3 and O4 and the score values of
above aggregated C3PFNs are calculated by using the
Definition 2.9 given as,
£(O1) = 0.4842,£(O2) = 0.6621,
£(O3) = 0.6120,£(O4) = 0.6598.
This shows that ψ2 � ψ4 � ψ3 � ψ1. Hence ψ2 is
the best land for their agricultural project.

• Calculations for C3PFHAP :
By using equation (F) for C3PFHAP we get the
C3PFNs O1,O2,O3 and O4 and the score values
of above aggregated C3PFNs are calculated by using
the Definition 2.9 given as,
£(O1) = 0.4566,£(O2) = 0.6130,
£(O3) = 0.5438,£(O4) = 0.5463.
This shows that ψ2 � ψ4 � ψ3 � ψ1. Hence ψ2
is the best land for their agricultural project.
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Table 13
Ordered hybrid cubic 3-polar fuzzy data

Order Q Y℘ Ordered hybrid C3PFNs

1 ψ̇�(1) Y5

(
〈[0.3519, 0.5204], [0.4255, 0.6683], [0.6535, 0.7]〉, 〈0.8124, 0.9110, 0.9433〉

)
2 ψ̇�(1) Y2

(
〈[0.6031, 0.9744], [0.9516, 0.9991], [0.3759, 0.6156]〉, 〈0.5929, 0.7744, 0.0784〉

)
3 ψ̇�(1) Y1

(
〈[0.28, 0.57], [0.56, 0.78], [0.67, 0.89]〉, 〈0.48, 0.67, 0.79〉

)
4 ψ̇�(1) Y3

(
〈[0.0566, 0.2318], [0.1514, 0.7], [0.1937, 0.7]〉, 〈0.5830, 0.8831, 0.8185〉

)
5 ψ̇�(1) Y4

(
〈[0.31, 0.48], [0.27, 0.38], [0.44, 0.67]〉, 〈0.38, 0.35, 0.57〉

)
1 ψ̇�(2) Y2

(
〈[0.8911, 0.9471], [0.9831, 0.9996], [0.9639, 0.9991]〉, 〈0.4624, 0.7921, 0.9025〉

)
2 ψ̇�(2) Y1

(
〈[0.88, 0.91], [0.71, 0.88], [0.87, 0.99]〉, 〈0.90, 0.78, 0.88〉

)
3 ψ̇�(2) Y4

(
〈[0.31, 0.58], [0.41, 0.61], [0.51, 0.61]〉, 〈0.47, 0.52, 0.58〉

)
4 ψ̇�(2) Y3

(
〈[0.3, 0.3755], [0.0566, 0.1937], [0.2450, 0.5876]〉, 〈0.7615, 0.5196, 0.7416〉

)
5 ψ̇�(2) Y5

(
〈[0.1693, 0.5204], [0.1225, 0.2450], [0.0889, 0.2125]〉, 〈0.6782, 0.5099, 0.5291〉

)
1 ψ̇�(3) Y2

(
〈[0.9516, 0.9996], [0.8976, 0.9879], [0.8064, 0.9804]〉, 〈0.7744, 0.7225, 0.6889〉

)
2 ψ̇�(3) Y1

(
〈[0.77, 0.89], [0.85, 0.95], [0.68, 0.89]〉, 〈0.83, 0.94, 0.75〉

)
3 ψ̇�(3) Y3

(
〈[0.1937, 0.3519], [0.3519, 0.4343], [0.2450, 0.3755]〉, 〈0.6633, 0.7937, 0.7549〉

)
4 ψ̇�(3) Y5

(
〈[0.1693, 0.2719], [0.4343, 0.4616], [0.1514, 0.2384]〉, 〈0.6480, 0.8306, 0.5744〉

)
5 ψ̇�(3) Y4

(
〈[0.51, 0.83], [0.12, 0.28], [0.34, 0.47]〉, 〈0.58, 0.18, 0.37〉

)
1 ψ̇�(4) Y2

(
〈[0.9516, 0.9831], [0.8976, 0.9991], [0.9639, 0.9996]〉, 〈0.6561, 0.6084, 0.8836〉

)
2 ψ̇�(4) Y1

(
〈[0.68, 0.86], [0.77, 0.93], [0.81, 0.95]〉, 〈0.72, 0.91, 0.86〉

)
3 ψ̇�(4) Y5

(
〈[0.1111, 0.2125], [0.5641, 0.7], [0.4255, 0.5417]〉, 〈0.5477, 0.8944, 0.8544〉

)
4 ψ̇�(4) Y3

(
〈[0.2062, 0.2788], [0.3071, 0.4], [0.4900, 0.6535]〉, 〈0.5099, 0.6782, 0.5567〉

)
5 ψ̇�(4) Y4

(
〈[0.13, 0.34], [0.41, 0.58], [0.27, 0.34]〉, 〈0.26, 0.46, 0.31〉

)

Graphically ranking for P-order operators can be seen
in Fig. 9.

The flow chart diagram of above application with
the proposed algorithm and all the calculations for all
defined operators can be seen in Fig. 5.

• Discussion:
In this subsection, we discuss about the numeri-
cal example and its results obtained from different
aggregated operators. The proposed algorithm for
numerical example is simple and easy to understand.
Firstly, we collect the input data and convert verbally
stated information in the form of cubic m-polar fuzzy
numbers. We input numerical values for each alter-
native under the effect of every criteria in the form
of cubic 3-polar fuzzy numbers. It is necessary to
normalize the input information before further cal-
culations to obtain the best and precise solution. In
proposed example the data is same for all attributes,
so there is no need to normalize the information. The
selection of input data for the problem is according
to the opinion of experts under the effect of uncertain
linguistic variables. If we observe Table 10 under the
effect of Table 9, then we can see that the selected
input data is precise and give best solution for our
problem. It takes the form of Table 14.

The weight vector is chosen according to the
requirement of all decision makers of the com-
pany. Then we calculate all the aggregated values
by using six aggregated operators given in equations
(A),(B),(C),(D),(E) and (F). Then we calculate score
of all attributes for each operator by using Defini-
tion 2.9. We choose the alternative having maximum
score and it is interesting to note that all aggregated
operators gives approximately the same result. Due
to the difference in numerical techniques and order-
ing strategies of presented operators, we can see the
slightly difference in the ranking of attributes. But
the results obtained from all proposed operators are
accurate and give suitable preference order for the
selection of land.

• Comparison Analysis:
In our proposed research, we defined operators by
using the advanced concept of CMPFNs. The impres-
sive point of this model is that we can use it for
mathematical modeling at a large scale or M num-
bers of degrees. These degrees basically show the
corresponding M properties or any M criteria about
the alternative ψ (for example, when we are deal-
ing with multiple windows or multi-mode phones
then we have multiple choices and M degrees for the
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Fig. 9. Ranking of C3PFNs for C3PFWAP ,C3PFOWAP and C3PFHAP .

selected alternative). We can input data at M numbers
of points for any alternative or an assembling of alter-
natives. This item proves that it is a hybrid and more
generalized model of other approaches. Other sets
such as CHFS, CIFS, CNFS, CFS, etc. become the
special case of CMPFS with the addition of some suit-
able conditions. On the same pattern all the operators
corresponding to the given sets become the particu-
lar cases of our purposed operators for CMPFS for
M = 1, 2, 3. (see Figs. 1 and 3).

In our algorithm, we are going to compare the solu-
tions obtained from different averaging aggregated
operators in tabular and graphical variety. Most of
the operators produce the same solution for the given
problem. Different operators have different ordering

strategies so they can afford the slightly different
effect according to their deliberations. So on the basis
of decision-makers the result can be chosen by com-
paring the production of various operators given in
tabular form as Table 15. Graphically this comparison
can be seen as Fig. 10.

From the results, it can be easily seen that the alter-
native ψ2 is more preferable and company should
choose ψ2 land for their agricultural project.
• Advantages of Proposed Approach:
In this part, we discuss about some advantages of pro-
posed approach based on CMPFSs.
(i) Validity of the method:
The proposed method is valid and suitable for all
types of input data. These operators easily deals with
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Table 14
Cubic 3-polar fuzzy input data in the form of linguistic terms

Order Q C3PFNs

1 ψ1 Y1 :
(
〈[ML,MH], [MH,H], [MH,H]〉, 〈M,MH,H〉

)
2 ψ1 Y2 :

(
〈[M,H], [H,H], [ML,L]〉, 〈H,H,ML〉

)
3 ψ1 Y3 :

(
〈[L,M], [ML,H], [M,H]〉, 〈ML,H,MH〉

)
4 ψ1 Y4 :

(
〈[ML,M], [ML,M], [M,MH]〉, 〈M,M,MH〉

)
5 ψ1 Y5 :

(
〈[MH,H], [MH,H], [H,H]〉, 〈MH,H,H〉

)
1 ψ2 Y1 :

(
〈[H,H], [MH,H], [H,H]〉, 〈H,H,H〉

)
2 ψ2 Y2 :

(
〈[MH,H], [H,H], [H,H]〉, 〈MH,H,H〉

)
3 ψ2 Y3 :

(
〈[M,MH], [L,M], [M,H]〉, 〈MH,ML,MH〉

)
4 ψ2 Y4 :

(
〈[ML,MH], [M,MH], [M,MH]〉, 〈M,M,MH〉

)
5 ψ2 Y5 :

(
〈[ML,H], [ML,M], [L,ML]〉, 〈M,ML,ML〉

)
1 ψ3 Y1 :

(
〈[H,H], [H,H], [MH,H]〉, 〈H,H,H〉

)
2 ψ3 Y2 :

(
〈[H,H], [MH,H], [MH,H]〉, 〈H,H,H〉

)
3 ψ3 Y3 :

(
〈[M,MH], [MH,MH], [M,MH]〉, 〈M,MH,MH〉

)
4 ψ3 Y4 :

(
〈[M,H], [L,ML], [ML,M]〉, 〈MH,L,ML〉

)
5 ψ3 Y5 :

(
〈[ML,M], [MH,MH], [ML,M]〉, 〈M,MH,ML〉

)
1 ψ4 Y1 :

(
〈[MH,H], [H,H], [H,H]〉, 〈MH,H,H〉

)
2 ψ4 Y2 :

(
〈[H,H], [MH,H], [H,H]〉, 〈H,H,H〉

)
3 ψ4 Y3 :

(
〈[M,M], [M,MH], [H,H]〉, 〈M,MH,H〉

)
4 ψ4 Y4 :

(
〈[L,ML], [M,MH], [ML,ML]〉, 〈ML,M,ML〉

)
5 ψ4 Y5 :

(
〈[ML,M], [H,H],MH,H]〉, 〈ML,H,H〉

)

Table 15
Comparison analysis

Proposed operators ψ1 ψ2 ψ3 ψ4 Ranking of the alternatives

CMPFWAR 0.4210 0.6058 0.5467 0.5905 ψ2 � ψ4 � ψ3 � ψ1
CMPFOWAR 0.4574 0.6003 0.5597 0.6214 ψ4 � ψ2 � ψ3 � ψ1
CMPFHAR 0.3979 0.5543 0.5015 0.5404 ψ2 � ψ4 � ψ3 � ψ1
CMPFWAP 0.4683 0.6636 0.6070 0.6444 ψ2 � ψ4 � ψ3 � ψ1
CMPFOWAP 0.4842 0.6621 0.6120 0.6598 ψ2 � ψ4 � ψ3 � ψ1
CMPFHAP 0.4566 0.6130 0.5438 0.5463 ψ2 � ψ4 � ψ3 � ψ1

the flaws appears in the input data and handle the
ambiguities and uncertainties. As we can see in Fig. 3
that CMPFA operator covers all the hybrid defined
operators so this is most generalized model and use
to collect data at a large scale with multiple criteria
of alternatives.
(ii) Simplicity dealing with different criteria:
In MAGDM problems we have different types of cri-
teria and input data according to the given situations.
The proposed CMPFA operators are simple and easy
to understand which can be applied easily at any type
of alternatives and criteria.
(iii) Flexibility of aggregation with different inputs
and outputs:
The proposed algorithm is flexible and easily vari-
ate according to the different situations, inputs and

outputs. There is a slightly difference between the
ranking of proposed operators because different oper-
ators have different ordering strategies so they can
afford the slightly different effect according to their
deliberations.
(iv) Superiority and sensitivity of proposed
method:
From all above discussion we observe that our pro-
posed model and CMPFA operators are superior to
others. Figure 3 clearly shows that CFA, IFA, MPFA,
NCA, IFNA etc. operators become the special casees
of CMPFA operator with the addition of some suit-
able conditions. So our method is valid flexible simple
and superior to others hybrid structures of fuzzy set
and operators defined in [10–13, 16, 44, 47].
This flexibility of our algorithm would allow
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Fig. 10. Comparison of C3PFWAR,C3PFOWAR,C3PFHAR,
C3PFWAP ,C3PFOWAP and C3PFHAP operators.

administration to perform sensitivity analysis at mul-
tiple levels and thus obtain more healthy and relevant
solutions. The result of this study helps to establish
the systematic approach to select the best land within
the set of criteria and analyze the most appropriate
alternative. Our proposed method is less sensitive and
more flexible to different input and outputs. This tool
would be acceptable to managers who have to deal
with greater magnitudes of uncertainties and vague-
ness in evaluation of the best choice.

5. Conclusion

The uncertainties present in the multi-attribute
group decision-making process are not easy to deal in
objective decision-making. This manuscript presents
a novel approach for treating these ambiguities based
on the application of land selection using linguistic
variables in CMPF decision theory. Since this is a
new model that has not been considered in the lit-
erature so far, the direction of future work should
focus on the presented application of MAGDM tech-
nique. Our propose research is unique and important
in the fiels of aggregation operators. We have estab-
lished CMPFS with the combination of CFS and
IVMPFS. Six averaging aggregated operators in the
context of CMPFNs have been determined by using
the CMPFS operations with respect to R-order and P-
order. Score function and accuracy function has been
demonstrated for the comparison of CMPFNs. In the
late years, many aggregation operators corresponding
to numerous hybrid fuzzy sets have been instituted to
deal with the MAGDM problems. We have developed
most hybrid averaging aggregation operators based

on CMPFNs and use them into MAGDM. Other sets
such as CHFS, CIFS, CNFS, CFS, etc. become the
special case of CMPFS with the addition of some suit-
able conditions. On the same pattern all the operators
corresponding to the given sets become the particu-
lar cases of our purposed operators for CMPFS for
M = 1, 2, 3. Comparative analysis showed that these
modified operators can easily deal with the real life
problems and decision-making problems. There is
slightly difference between the determination of dif-
ferent operators due to their setting up strategies and
calculations but most of them conclude the similar
results. This approach is more flexible and feasible
as compared to other approaches due to its general-
ization. In future, this work can be gone easily for
other approaches and different types of aggregated
operators. Researchers will receive beneficial results
by exploring and putting through these concepts in
the field of MAGDM by using numerous aggregation
operators.
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