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a b s t r a c t

Aiming at the diversity of user features, the uncertainty and the variation characteristics of quality of
service (QoS), by exploiting the continuousmonitoring data of cloud services, this paper proposes amulti-
valued collaborative approach to predict the unknown QoS values via time series analysis for potential
users. In this approach, the multi-valued QoS evaluations consisting of single-value data and time series
data from consumers are transformed into cloud models, and the differences between potential users
and other consumers in every period are measured based on these cloud models. Against the deficiency
of existing methods of similarity measurement between cloud models, this paper presents a new vector
comparison method combining the orientation similarity and dimension similarity to improve the
precision of similarity calculation. The fuzzy analytic hierarchy process method is used to help potential
users determine the objective weight of every period, and the neighboring users are selected for the
potential user according to their comprehensive similarities of QoS evaluations in multiple periods. By
incorporating the multi-valued QoS evaluations with the objective weights among multiple periods, the
predicted results can remain consistentwith the periodic variations of QoS. Finally, the experiments based
on a real-world dataset demonstrate that this approach can provide high accuracy of collaborative QoS
prediction for multi-valued evaluations in the cloud computing paradigm.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

In recent years, the cloud computing has been gaining
enormous momentum. The cloud service providers (CSPs) around
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the world have publicized many services by encapsulating the
various software applications, computing power and storage
capacity [1]. With the increasing presence of cloud services,
the accurate quality of service (QoS) data is required for cloud
service selection approaches [2,3] and cloud services composition
approaches [4,5] to work well. The QoS consists of both user-
independent attributes and user-dependent attributes [6]. The
user-independent QoS attributes, such as price and popularity,
can be measured at the server-side and have identical values for
different cloud service consumers (CSCs), while user-dependent
QoS attributes, such as response time and throughput, can be
measured at the client-side. How to obtain the sufficient and
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Table 1
An example of user-service matrices for response time.

Users Cloud services
s1 s2 s3 s4

u1 1.53 2.35 1.37 2.20
u2 1.15 2.28 2.91
u3 0.95 1.28 2.15
u4 0.86 0.88 4.38
u5 0.90 3.95 4.60

accurate user-dependent QoS attributes data has been the critical
issue for selecting the optimal cloud service for potential users
from a large number of candidates. This task includes the following
challenges:

(1) The performance of a cloud service observed from the CSCs’
perspective is usually very different from that declared by CSPs in
service level agreement (SLA). The differences mainly due to the
following reasons [7–9]:
(a) The QoS performance of cloud services is highly related to the

invocation time, since the service status, such as the workload
and the number of clients, and the network environment,
such as congestion, change over time. Taking the real-world
WS-DREAM dataset #3 for example, we have analyzed the
QoS evaluations of 4532 services in 64 time intervals, and
demonstrated the fact that one cloud service may have the
quite different QoS performance in different periods [10].

(b) The CSCs are typically distributed in different geographical lo-
cations or network locations. The CSCs-observed QoS perfor-
mance of cloud services is greatly influenced by the Internet
connections between CSCs and cloud services. In the previous
research [11], we proposed a user feature model to systemati-
cally analyze the influence of both geographical locations and
network locations for 339 users and 5825 services in experi-
ments based on the real-worldWS-DREAM dataset #2. The re-
sults demonstrated that the different CSCsmight observe quite
different QoS performance even if they invoke the same ser-
vice.

The SLA contains the service-level objectives (SLOs) and various
QoS objectives, which the service must fulfill. Considering the
cases of violations, SLA often defines the monetary penalties and
prompts CSPs to reduce the number of SLA violations for their
services. Thereby, the prior identification of SLA violations has
become a very important research topic [2,12], which focuses
on predicting the SLA violations by comparing the prediction
values of SLOs with the existing customer SLAs. The SLO is usually
composed of one or more QoS measurements that are combined
to produce the SLO values [8]. Thus, the approach for predicting
the unknown QoS values with high accuracy for potential users is
really important for the identification of SLA violations.

(2) In reality, the long-term QoS guarantees from a CSP may
not be always available [4]. For example, in Amazon EC2, only
the ‘‘availability’’ attribute of QoS is advertised for a long-term
guarantee [13]. Obviously, detailed QoS information facilitates
potential users to make the sound and timely decisions when
selecting the optimal cloud service from a large number of
candidates. Hence, on the basis of the limited historical QoS data,
predicting other unknown QoS values for potential users is always
a valuable research area.

(3) A user usually only invokes a small number of cloud services
in the past and thus only observes the QoS values of these invoked
cloud services.Without sufficient QoS information, it is difficult for
potential users to select the optimal service from the candidates. To
obtain accurate QoS values about more user-dependent attributes
for different users, the client-side QoS evaluations are usually
needed. However, invoking all of the cloud services from the
CSCs’ perspectives for the evaluation purpose is quite difficult and
includes the following critical drawbacks [7,14]:
(a) The invocations of services may be too expensive for CSCs
because CSPs may charge for these invocations.

(b) It is time-consuming to evaluate all the services if there are a
large number of candidate services.

To address the above problems, an efficient way is via a
collaborative filtering algorithm (CFA) by employing the historical
QoS data [6,8,15,16]. In CFA, the user-service QoS matrix [5,14,
17,18] is used as the fundamental data source. An example of
user-service matrices for response time is shown in Table 1, in
which each column represents a service and each entry is a
historical response time data invoked by a user on the specified
service. Considering that each user can only invoke limited cloud
services, such a matrix is filled with numerous unknown entries
and thus the key is how to accurately predict them based on the
known ones [18,19].

Over the past few years, security problems have increasingly
emerged in cloud services. In order to facilitate users to select the
highly trustworthy cloud services, continuous monitoring of QoS
for cloud services has been an urgent need [10]. Currently, some
organizations [20–22] have carried out work on continuous moni-
toring of cloud services and it becomes possible to thoroughly ana-
lyze the QoS of cloud services based on time series data. For exam-
ple, Cloud Security Alliance (CSA) launched the Security, Trust, and
Assurance Registry (STAR) Program [20]; Yunzhiliang.net [21] re-
leased the assessment reports for popular cloud services deployed
in China. China Cloud Computing Promotion and Policy Forum
(3CPP) published the trusted services authentication standards and
the evaluation result for trusted services [22]. Besides, Zheng et al.
explored the Planet-lab project to collect real-world QoS evalua-
tions from 142 users on 4532 services over 64 timeslots [7,14,23].
Additional studies [24,25] have demonstrated that the agent soft-
ware deployed in the CSCs’ terminal devices can easily capture
real-time monitoring data. In contrast to the discrete QoS data ob-
served in a single timeslot, the time series QoS data produced by
continuous monitoring is more likely to help potential users, es-
pecially those who pay attention to a service’s performance during
specified periods, to investigate the QoS of candidate services from
a comprehensive perspective.

However, continuous monitoring inevitably degrades the
client’s performance and creates hidden security threats. Please
note that, by ‘‘clients’’ we mean the computers operated by the
users. CSCs tend to prohibit agents from running for extended
periods in clients. Instead, CSCs prefer to actively submit the
QoS evaluations at discrete time points or specified periods to a
trustworthy third-party platform. Thus, in practical applications,
the QoS evaluation data is usually multi-valued, consisting of the
time series data and single-valued data. Existing studies mainly
involving the single-valued QoS data cannot directly support the
users’ decision-making based on multi-valued QoS evaluations.

Meanwhile, the conventional studies [10,26] have revealed that
cloud services’ QoS has the apparent characteristic of periodic
variation. Cloud services perform the best in idle hours and
performance become worse during busy hours. Furthermore, CSCs
have different requirements for the performance of services in
different periods. For example, a security company that pays
particular attention to the busy times for buying and selling stocks,
such as the periods from 9:30 a.m. to 11:30 a.m. and from 1:00
p.m. to 3:00 p.m., expects a cloud storage service to provide high
performance in concurrent reading and writing during these two
periods. The cloud storage service with enough concurrent reading
capacity in other periods is satisfactory because the security
company provides only query services for stock information. In
contrast, for a logistics company, statistical data indicates that the
peak times for querying express packages occur between 12:00
a.m. and 2:00 p.m. and between 6:00 p.m. and 8:00 p.m. Therefore,
this company needs cloud storage services that demonstrate
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superior concurrent reading performance during these twoperiods
compared to other periods. Obviously, considering the periodic
variations in QoS and the CSCs’ application requirements during
different periods can improve the accuracy of QoS prediction.

1.2. Our contributions

To address this challenge, we propose a multi-valued collabo-
rative approach for the time-aware QoS prediction of cloud ser-
vices. The basic idea is that the QoS values of user-dependent at-
tributes for one user can be predicted via time series analysis by
utilizing the past usage experiences of other users. Building on the
time series feature analysis of QoS data, this paper introduces the
cloud model theory to describe the changeable characteristics of
QoS in every period. Themulti-valued data of QoS evaluations from
CSCs are transformed into cloud models, and the differences be-
tween a potential user and other CSCs in different periods are ana-
lyzed based on these cloud models. In order to accurately identify
the neighboring users for a potential user, we propose a new vec-
tor comparison method to calculate the similarity between cloud
models and employ the fuzzy analytic hierarchy process (FAHP)
method to determine the objective weights of different periods. By
incorporating the multi-valued QoS evaluations from neighboring
users with the objective weights among multiple periods, the un-
known QoS values of a cloud service can be predicted for the po-
tential user.

The main contributions of this paper are as follows:
(1) Aiming at the time series feature of QoS and the multi-

valued feature of QoS evaluations, we propose a collaborative
QoS prediction approach based on cloud model theory and time
series analysis, in which themulti-valued QoS data is preprocessed
and modeled as cloud models in multiple periods. In order to
identify exactly the neighboring users for a potential user, we
measure the similarity between cloud models in every period
separately and employ FAHP method to determine the objective
weights of periods according to the application requirements
of potential users. The predicted results can remain consistent
with the periodic variations of QoS in multiple periods with high
prediction precision.

(2) Against the deficiency of existingmethods of similaritymea-
surement between cloud models, we propose a novel vector com-
parison method combining the orientation similarity and dimen-
sion similarity to improve the precision of similarity calculation.
This method supports the different measurement scales of three
numerical characteristics in cloud models. Numerical examples
demonstrate that this method can yield a more accurate measure-
ment of the similarity between cloud models than the existing
methods.

(3) We examine the proposed approach through experiments
using a real-world dataset. Results demonstrate that this approach
can provide high accuracy of multi-valued collaborative QoS
prediction in the dynamic and vulnerable cloud environment,
and can contribute to selecting the suitable cloud services with
consideration of both the periodic variations of QoS and the
application requirements of potential users in themultiple periods.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work. Section 3 is the problem statement. Sec-
tion 4 gives the time series analysis of QoS based on cloud mod-
els. Section 5 proposes the scheme of collaborative QoS predic-
tion. Section 6 presents a new method to measure the similarity
between cloud models. Section 7 puts forward the procedure of
multi-valued collaborative QoS prediction. Section 8 analyzes the
experiments and results. Finally, Section 8 presents conclusions.

2. Related works

On the whole, QoS prediction is still a new direction in cloud
computing [27], there are some literatures on the QoS prediction
approaches, which are valuable to estimate the unknown QoS
values of cloud service for potential users based on the multi-
valued evaluations. In this section, we categorize the relatedworks
into three groups as follows:

2.1. Collaborative QoS prediction based on neighboring users

CFA is a classic prediction method of employing collective
intelligence, which can extract the users’ preferences and their
behavior characteristics from the historical evaluation data
provided by consumers. Inspired by the successes of CFA achieved
by recommender systems,many studies haveutilized collaborative
method based on neighboring users to predict the unknown QoS
values for cloud services [19,28–30]. These approaches generally
consist of two steps: (a) finding similar users or services and
mining their similarities; and (b) calculating unknown QoS values
according to the known data of similar users or services.

Zheng et al. [28] employed CFA to predict the reliability of
services by computing the user similarity and item similarity based
on the Pearson correlation coefficient (PCC). Chen et al. [29] used
a region model to study personalized service recommendation
based on the hybrid CFA. Considering that the QoS evaluations
of cloud services are related to not only objective measurements
but also subjective perceptions of consumers, Ding et al. [19]
employed the collaborative filtering recommendation technology
and utility theory to predict the unknown QoS value based on the
usage experiences of other similar services. In order to improve
the prediction accuracy of CFA, Hu et al. [30] proposed a time-
aware CFA to predict the unknown QoS values, in which the users’
historic data about services at different time intervals is collected
for calculating the similarity between services or that between
users.

However, the recommender systems mainly process subjective
data, while the QoS data related to cloud services is objective.
Ma et al. [6] found that some significant differences between
subjective data and objective data may bring errors to the
prediction of unknown QoS values with traditional CFA. Two users
may observe quite differentQoS values on their commonly invoked
services even they have a high similarity based on PCC. Moreover,
the normalization methods cannot be used for cloud service QoS
data. It is difficult to determine the QoS values scope of cloud
services since the scope of QoS value often changes.

2.2. Collaborative QoS prediction based on matrix factorization

Matrix factorization (MF) has been employed for QoS prediction
in recent years [14,15,31–34]. The collaborative QoS prediction
based on MF aims to learn the latent factors that decide the
QoS values. Usually, these approaches firstly identify the users’
interests characteristic from the training dataset and the attribute
characteristic of cloud services, and then predict the unknown
values with the two characteristics.

Zhong et al. [31] proposed a time-aware personalized QoS
prediction approach which analyzed the latent features of users,
services and times by performing tensor factorization. Aiming
at the important impact of context information for the QoS of
cloud services, Xu et al. [32] proposed two matrix factorization-
based QoS prediction models by employing both the geographical
information from user side and the affiliation information from
service side. Lo et al. [33] presented a collaborative framework
for predicting QoS with location-based regularization, in which
the latitude and longitude information of users are employed
to identify the neighboring users. Yin et al. [34] proposed three
service neighborhood prediction models based on probabilistic
matrix factorization. These models learn the predicted value by
utilizing the feature vectors of both the active service and its
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Table 2
An example of user-service sub-matrices related to timeslot #1.

Users Cloud services
s1 s2 s3 s4 s5 s6 s7

u1 1.53 2.35 1.37 2.20 3.05 0.85 4.50
u2 1.15 2.28 2.91 1.57
u3 0.95 1.28 2.15 1.41 2.28
u4 0.36 0.88 4.38 3.05
u5 0.90 3.95 4.60 0.55 1.70
u6 1.67 2.51 1.46
u7 1.60 4.03 1.21 0.48 1.62

neighbors, and integrating with each neighbor’s weight computed
from the similarity.

Although the MF-based approaches achieve higher prediction
accuracy than CFA-based approaches in some cases, there are
some drawbacks due to the utilization of QoS values in similarity
computation [32]: (1) The uncertainty of QoS in the dynamic
and vulnerable cloud environment lowers the credibility of the
similarity results for cloud services; (2) the similarity is likely to
be inaccurate when the QoS evaluations are sparse.

2.3. Other collaborative QoS prediction approaches

Recently, some other methods, such as neural networks [17,35]
and evidence theory [11], are introduced into the QoS prediction
research.

Aiming at the nonlinear and dynamic property of QoS data, Luo
et al. [17] extracted the fuzzy rules from QoS data by constructing
fuzzy neural networks (FNN) as well as the action network,
and proposed a QoS prediction approach through the fusion
of FNN and adaptive dynamic programming. Kumar et al. [35]
presented an artificial neural network (ANN)modelwith Bayesian-
regularization to predict the unknown QoS values based on the
past QoS performance data. To improve the precision of predicting
the QoS for cloud services, Ma et al. [11] put forward an evidence
theory-based approach combining the user features similarity
calculation and incremental refinement iteration to filter the
unreliable QoS evaluations.

For the above approached based on FNN and evidence theory,
these abnormal data need be filtered out from the training dataset
for the purpose of saving the training time or improving the
calculation precision. However, in a dynamic cloud environment,
the abnormal data itself probably becomes the important feature
information. For example, both user #1 anduser #2 experienced an
abnormal QoS value in a specified period when invoking the same
service, which means that they maybe distribute in the similar
geographical locations or network locations. In that case, the QoS
evaluations fromuser #1 have a higher value for user #2 than other
users to improve the QoS prediction quality.

It has been a novel idea to predict the QoS of cloud service
based on time series analysis [4,8,10]. With the consideration of
correlations among the QoS attributes, Ye et al. [4] proposed a
prediction model based on multivariate QoS analysis to predict
the long-term QoS provisions according to the service providers’
past QoS data and short-term advertisements. To overcome the
shortcomings of both memory-based methods and model-based
methods, Yu et al. [8] proposed a time-aware and location-
aware CFA to predict the QoS values. In their method, the
average similarity between target services at every time interval
is calculated, and these services similar to the target service are
selected for calculating the users’ average similarity. In order to
support the tradeoffs between performance-costs and potential
risks, Ma et al. [10] proposed a trustworthy service selection
approach via time series analysis, and the problem of time-aware
trustworthy service selection is formulated as a multi-criterion
Fig. 1. A user-service-time QoS matrix for response time.

decision-making problem of creating a ranked services list, solved
by developing a rankingmethod based on interval neutrosophic set
theory.

To the best of our knowledge, no similar research has
investigated the collaborative QoS prediction approach via time
series analysis based on the historical QoS data from users or
inquired into employing the cloud model theory to analyze the
multi-valued evaluations containing the abnormal QoS data in
multiple periods from the perspective of similarity measurement.

3. Problem statement

Since many cloud services can provide the similar functions,
consumers are not possible to use every service. Therefore, the
QoS data of unused services plays an important role in providing
suitable services to potential users. Just like the example of user-
service QoS matrices shown in Table 1, each entry in it represents
the response time data of a cloud service invoked by a user. A
blank entry means that the user has not invoked this specified
service. For the purpose of service selection or service composition,
the potential users need to know all of the QoS data of candidate
services related to them. However, the real-world QoS data is
similar to this example in Table 1. Thus, it is significant to predict
the blank entries before QoS-based service selection or service
composition. The researchers have proposed some collaborative
approaches [8,17,19,28–35] to predict the unknown QoS values.

Nevertheless, a series of security incidents emerged in cloud
services have raised great concerns about the consistent capacity
of service provision. In order to facilitate users to select the
highly trustworthy cloud services, the continuous monitoring
of QoS for cloud services has been an urgent need currently
[20–22,24,25]. Some organizations have carried out work on the
continuous monitoring of cloud services. Compared with the
user-service QoS matrix in Table 1 used by the existing QoS
prediction approaches [5,14,17,18], the continuous monitoring of
cloud services can produce the time series QoS data, presenting a
user-service-time QoS matrix shown in Fig. 1, and facilitates the
potential users, especially those who pay attention to a service’s
performance during specified periods, to investigate QoS from a
comprehensive perspective.

According to Fig. 1, this user-service-time matrix records the
response time data of p services invoked by q users in n timeslots.
From the perspective of a timeslot, we can get a user-service sub-
matrix just like Table 1 for every timeslot. Some blank entries may
still exist in the user-service sub-matrix. For example, the user-
service sub-matrix related to timeslot t1 is shown in Table 2.

From the perspective of a service, we can similarly get a user-
timeslot sub-matrix for every service. In the user-timeslot sub-
matrix, the QoS data of one usermay compose a time series if there
are no blank entries related to this user. However, providing the
complete time series QoS data for every user is still an illusion
due to the time-consuming and costly cloud service invocation.
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Table 3
An example of user-timeslot QoS sub-matrices for multi-valued response time data.

Users Timeslots
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

u1 1.53 0.28 0.21 0.29 0.25 0.42 0.31 1.24 0.25 1.38
u2 1.15 0.27 0.44 0.64 0.67 0.27 0.88 1.22 8.29
u3 0.95 0.35 1.01 0.66 0.83 0.24 0.95 8.20
u4 0.36 0.24 0.23 0.40 0.23 0.25 0.83 1.57
u5 0.33 0.20
u6 0.53
u7 1.60 0.87 1.28
Therefore, the real user-timeslot QoS sub-matrix related to service
s1 is usually composed of the multi-valued data shown in Table 3.

To explain the multi-valued QoS data easily, we present three
definitions as follows:

Definition 1 (Single-Valued QoS Evaluations). This refers to the real
QoS data measured by one user only in a timeslot.

For example, in Table 3, u6 only observed the QoS of the service
in t5, and thus the QoS data provided by u6 is single-valued.

Definition 2 (Time Series QoS Evaluations). This refers to the real
QoS data measured by one user in at least 2 timeslots. Time series
QoS data can be further subdivided into two categories, namely the
complete time series data and incomplete time series data. If a user
observed the QoS of one service in every timeslot, the QoS data
measured by this user is a complete time series data. Namely there
is no unknown QoS value of the service for this user.

For example, in Table 3, u1 observed the QoS of the service in all
of the timeslots. Assume that the total number of timeslots is n. The
QoS data measured by this user is an incomplete time series data
when the length of time series QoS data is less than n and greater
than 1.

Definition 3 (Multi-Valued QoS Evaluations). This refers to the real
QoS data of candidate services observed by multiple users in
multiple timeslots, composed of the single-value data and the time
series data.

The existing approaches [4,7,8,30] mainly studied the time-
aware QoS prediction from the perspective of user-service QoS
sub-matrix, while this paper will start by the time series analysis
of user-timeslot QoS sub-matrix, and aggregate the information
associated to both user-service correlations and user-timeslot
correlations. In the previous research [10], on the premise that
the complete time series data is available, we have studied the
trustworthy service selection approach via the time series analysis
from the perspective of user-timeslot QoS sub-matrix. Considering
that the difficulties of acquiring the complete time series data in a
real-world cloud environment, as a result, the problem we study
in this paper is how to precisely predict the unknown QoS values
for potential users in accordancewith the knownmulti-valuedQoS
data. In this paper, the abnormal data, such as the last column of
Table 3, will be not filtered out directly, and become the significant
feature information for accurately identifying the neighboring
users. We will introduce cloud model theory to analyze the time
series feature of multi-valued QoS data; these abnormal data can
contribute to generating a more exact cloud model by the entropy
and hyper entropy, which conforms to the real QoS situations of
cloud services.

4. Time series analysis of QoS based on cloud models

Aiming at overcoming the deficiencies of existing methods
in solving the uncertainty of information, Li et al. proposed the
cloud model theory [36] combining the probability theory and
fuzzy theory in 1995. Recently, cloud models have been applied
successfully inmany fields, such as knowledge discovery [37], trust
evaluation [38] and decision analysis [39]. The cloud model theory
can also provide strong support for analyzing the latent features
hidden in time series data [40]. If the time series data is divided
intomultiple subsequences, the local feature of every subsequence
can be described via a cloud model. Then, a set of cloud models
corresponding to multiple subsequences facilitates depicting the
global feature and local features of the time series data [41,42].

Considering the uncertainty of cloud environments, this paper
introduces the cloud model theory to analyze the time series fea-
ture of QoS for cloud services. A QoS cloud model is composed of
three numerical characteristics, namely Ex (expectation), En (en-
tropy) and He (hyper entropy), defined as cm = {Ex, En,He}. Ex is
the most representative value of QoS, En represents the granular-
ity scale of QoS, and He depicts the uncertainty of the QoS gran-
ularity. From the viewpoint of fuzzy set, Ex is the expected value
of QoS with membership degree 1, En represents the uncertainty
of QoS values, which can be used to calculate the membership de-
gree, and He depicts the uncertainty of membership degree. Cloud
models make it possible to get the distributing range of a qualita-
tive QoS based on the continuous monitoring data.

A QoS cloud consists of many cloud drops. The QoS evaluations
from consumers can be viewed as cloud drops and sent to a
reverse cloud generator (RCG). Assuming that there is a time series
QoS data consisting of N timeslots, Ei = {ei,1, ei,2, . . . , ei,N},
which is provided by consumer #i, the numerical characteristics
of consumer #i’s QoS cloud model can be obtained by Eq. (1) [43]:
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where ei,j represents the QoS evaluation value from consumer #i
in timeslot #j, Exi is the mean value of QoS evaluations, σ is the
standard deviation of Exi, and S2 is the sample variance of Exi.

We analyzed the QoS data of real services using theWS-DREAM
dataset #3 [7,23], which collected the real-world QoS evaluations
about the response time and throughput of 4532 services provided
by 142 users in 64 timeslots based on PlanetLab. These datasets
have frequently been applied in researches concerned with cloud
computing [14,19].Wedivide the response timedata from timeslot
#1 to #60 into six periods and therefore six subsequences, and
create cloudmodels corresponding to these periods. Table 4 shows
these cloud models that reflect the response time data of service
#601 and #609 as provided by user #9.

In Table 4, every period consists of ten timeslots. The set of QoS
cloud models is noted as CM = {cm1, cm2, . . . , cm6}, and the set
of periods is noted as TP = {tp1, tp2, . . . , tp6}.
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Fig. 2. Comparisons between fitting data and original data. (a) service #601; (b) service #609.
Table 4
Cloud models of response time for service #601 and service #609.

Periods Cloud models for service #601 Cloud models for service #609
Ex En He Ex En He

tp1 0.2672 0.0163 0.0076 0.6494 0.2422 0.0683
tp2 0.7173 0.5822 0.2896 0.8809 0.5726 0.2288
tp3 0.3379 0.1750 0.1738 0.6139 0.1846 0.0986
tp4 0.2457 0.0108 0.0049 0.5891 0.1749 0.0533
tp5 0.2514 0.0120 0.0077 0.6278 0.1186 0.0270
tp6 0.2461 0.0107 0.0035 0.6050 0.1604 0.1137

To further illustrate the effectiveness of the QoS cloud model in
describing time series data, we compared the fitting data of cloud
drops obtained by the forward cloud generator with the original
data. The forward cloud generator produces ten cloud drops for
every cloud model, and these cloud drops are arranged into a new
sequence according to the order in which they were created. Fig. 2
demonstrates that the sixty cloud drops generated by the cloud
models precisely reflect the variation characteristics of the original
data in six periods.

Fig. 2 suggests that the cloud model theory is an effective tool
for analyzing the time series features of QoS. Although the mean
response time of service #601 and service #609 is similar, they
have distinctly different performances in six periods. According
to Fig. 2, the response speed of service #601 is much faster than
service #609; the response time of service #601 is quite steady in
most of the periods apart from tp2 and tp3, and the response time
of service #609 varies greatly in all periods. Therefore, analyzing
the time series features of QoS facilitates evaluating accurately the
differences between cloud services.

5. Collaborative QoS prediction scheme

Assuming that U = {u1, u2, . . . , uq} is the users set, up

represents the potential user, S = {s1, s2, . . . , sp} is the cloud
services set, TP = {tp1, tp2, . . . , tpd} is the periods set, and T =

{t1, t2, . . . , tr×d} is the timeslots set, the problem of multi-valued
collaborative QoS prediction for potential users via time series
analysis can be formulated as shown in Fig. 3.

According to Fig. 3, the continuous monitoring data of QoS,
namely themulti-valuedQoS evaluations, can beprovidedby cloud
service consumers who could be individual users or correlative
organizations, such as CSA and 3CPP. The multi-valued QoS
evaluations can be abstracted into a user-service-time matrix just
like Fig. 1.

To facilitate a potential user to select an optimal service for
service selection problem or service composition problem, the
unknown QoS data, namely the blank entries of the user-service-
time matrix, should be firstly estimated by employing the QoS
prediction approach. Therefore, exactly predicting the unknown
QoS value of sk in ti for potential users based on this user-service-
time matrix is the core goal of this problem. In this problem, the
input data includes the ID of up, the ID of sk, the ID of ti, the multi-
valued QoS evaluation data (M) from consumers which consist
of time series data and single-valued data, and the sensitivity
scores for periods (B) provided by up. Potential users can give
the sensitivity scores for every period by employing the five-level
complementary scales of the FAHP method, and the scores should
reflect the application requirements for different periods.

After the potential user provides the input data, the subsequent
process via time series analysis ensures that the unknown QoS
values are predicted accurately, which can be generalized into six
steps as follows:

(1) Preprocessing the multi-valued QoS evaluation data. These
data will be transformed into the cloud model matrix
corresponding to multiple periods.

(2) Calculating the user similarity based on the training data by
measuring the similarity between cloud models in different
periods.

(3) Determining theweights of different periods by employing the
FAHP method.

(4) Aggregating the cloud models with the weights in multiple
periods.

(5) Identifying the neighboring users from cloud service con-
sumers for the potential user according to the similarity
threshold. The QoS cloud models of neighboring users should
be highly similar to the QoS cloud models of potential users in
multiple periods.

(6) Predicting the QoS for potential users according to the
similarity between the cloud models.

In order to solve this problem, we must accurately measure the
differences between cloud service consumers based on the QoS
cloudmodels inmultiple periods. In the following sections, wewill
discuss the similarity calculationmethods of cloudmodels and the
procedure of multi-valued collaborative QoS prediction.
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Fig. 3. Collaborative QoS prediction scheme.
6. Similarity measurement between cloud models

6.1. Existing methods

The existing methods for measuring similarities between cloud
models mainly include:

(1) SCM [44]. Thismethodmeasures the similarity between two
cloudmodels by calculating the distances between sampling cloud
drops. Assume that ni is the number of cloud drops from cloud
model cmi and nj is the number of cloud drops from cloud model
cmj. These cloud drops should satisfy (Ex−3En) ≤ x ≤ (Ex+3En),
assuming ni ≤ nj. C

ni
nj represents the combinatorial number of

pairwise comparisons in which any ni sampling cloud drops are
chosen from nj cloud drops of cmj, and they are compared with
any ni sampling cloud drops of cmi. Then, the similarity between
cmi and cmj is calculated by Eq. (2):

s(cmi, cmj) =


1
Cm
n

×


(drop(i) − drop(j))2

1/2 
m, (2)

where drop(i) and drop(j) represent the cloud drops from cmi
and cmj, respectively. Obviously, The smaller s (cmi, cmj) is, the
more similar the two cloud models are. Considering that Cni

nj
requires extensive calculations, a great deal of time is spent in
calculating the similarity between two cloud models. Moreover,
the calculation accuracy is limited and difficult to improve.
Therefore, the SCMmethod is not widely applied in practice.

(2) LICM [45]. This method employs the cosine distance to
measure the similarity between cmi and cmj by Eq. (3):

s(cmi, cmj) =
−→
Vi •

−→
Vj /

−→
Vi

 −→
Vj

 , (3)
where
−→
Ei = (ei,1, ei,2, ei,3) = (Exi, Eni,Hei);

−→
Ej = (ej,1, ej,2, ej,3)

= (Exj, Enj,Hej). The greater the cosine distance is, the more
similar the two cloud models are. In a cloud model, Ex is usually
much larger than En and He; however, the cosine distance treats
the three numerical characteristics of a cloud model equally
although they have different measurement scales. Therefore, it
produces results that apparently different cloud models may be
very similar.

(3) ECM and MCM [46]. ECM uses expectation curves to reflect
the overall features of cloudmodels, and it calculates the similarity
by integral operation of the two expectation curves. MCM uses
the maximum boundary curve to compute the similarity between
cloud models. Assuming x0 is the intersection of the expectation
curves of cmi and cmj, the similarity in ECM can be obtained by
Eq. (4):

s(cmi, cmj) =

 x0

−∞

yi(x)dx +


∞

x0
yj(x)dx, (4)

where yi(x) and yj(x) represent the expectation curves of cmi and
cmj, respectively. ECM totally ignores the influence ofHe. However,
the real He values of cloud models are usually different, and
they convey some critical information about the cloud features.
Especially in cases where two cloud models have the same Ex and
En and different He, ECM cannot provide correct similarity results.
In contrast, MCM exaggerates the influence of He, easily producing
calculation errors.

(4) Similarity measurement method based on Euclidean
distance [47]. Thismethod employs Euclidean distance to calculate
the similarity between cloud models, noted as EDCM. The
Euclidean distance between cmi and cmj is calculated by Eq. (5):

s(cmi, cmj) = 1


1 +


(eik − ejk)2


. (5)
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Table 5
Five cloud models.

Numerical characteristics of cloud
model

Cloud models

cm1 cm2 cm3 cm4 cm5

Ex 9.500 9.200 9.300 9.200 8.500
En 0.255 0.286 0.372 0.301 0.578
He 0.017 0.020 0.091 0.195 0.034

EDCM can provide more accurate results than other similarity
measurementmethods. However, it can still treat two distinctively
different cloudmodels as very similar objects. The deficiency of the
Euclideandistancemodel is that the Euclideandistance depends on
the measurement scale because it is assumed that all coordinates
use the same scale. In some practical applications, such as
similaritymeasurements of cloudmodels, themeasurement scales
of coordinates are different. Therefore, when the dimensions of
variables have different measurement scales, errors will inevitably
be introduced into calculation results based on the Euclidean
distances. This is especially true when calculating the similarity
between cloud models, because the measurement scales of three
numerical characteristics in cloud models are very different, and
Ex is usually many times greater than En and He.

6.2. A new method based on vector comparison

To overcome the deficiency of existing methods, we proposed a
new similarity measurement method based on vector comparison,
noted as VCM.

Assume that
−→
Ei = (ei,1, ei,2, ei,3) = (Exi, Eni,Hei) and

−→
Ej =

(ej,1, ej,2, ej,3) = (Exj, Enj,Hej) are the two vectors corresponding
to cloud models cmi and cmj. Then, the angle between cmi and cmj
can be calculated by Eq. (6):

⇀

Ej,
⇀

Ej


= arccos


−→
Ei •

⇀

Ej /|
−→
Ei | |

⇀

Ej |


, (6)

where
−→
Ei •

⇀

Ej =
n

k=1(ei,k × ej,k); |
−→
Ei | =

n
k=1 e

2
i,k; |

−→
Ej | =n

k=1 e
2
j,k. The orientation similarity between cmi and cmj can be

obtained by Eq. (7):

O(
−→
Ei ,

−→
Ej ) = 1 −


−→
Ei ,

−→
Ej

 
90. (7)

Meanwhile, in view of the differences of measurement scales
of QoS cloud models, we define a dimension similarity to calculate
the similarities between

−→
Ei and

−→
Ej from the perspectives of three

numerical characteristics separately. The dimension similarity
between

−→
Ei and

−→
Ej can be calculated by Eq. (8):

D(
−→
Ei ,

−→
Ej ) = 1 −

1
n

×

n
k=1

ei,k − ej,k


ei,k
, (8)

where D(
−→
Ei ,

−→
Ej ) is an aggregated value of the absolute deviations

in the three dimensions of QoS cloud models.
Then, the overall similarity between cmi and cmj can be

calculated by Eq. (9):

s(cmi, cmj) = α × O(
−→
Ei ,

−→
Ej ) + (1 − α) × D(

−→
Ei ,

−→
Ej ), (9)

where α is the regulatory factor in determining the weights of
the orientation similarity and dimension similarity, and α should
be set in the range from 0.5 to 0.6. According to Eq. (9), the
overall similarity between two cloud models is obtained by the
vector comparison combining their orientation similarity and
dimension similarity, and the different measurement scales of
three numerical characteristics no longer cause the significant
errors.
6.3. Numerical example

In this section, a numerical example is given to verify the
efficiency of the VCM. Assume that there are five cloud models,
noted as cm1–cm5, as shown in Table 5.

According to Table 5, the similarity between cm2 and cm1 is ob-
viously larger than the similarity between cm3 and cm1. Neverthe-
less, the calculation results obtained by different similarity mea-
surement methods vary greatly, shown in Table 6.

Table 6 demonstrates that the LICM,MCMand VCM can identify
exactly cm2 as the most similar cloud model with cm1. However,
this numerical example also reveals the obvious flaw of both
LICM and MCM, in which some cloud models apparently different
from cm1, such as cm3 and cm4, got the fairly high similarity
value. Especially, the difference among similarities obtained by
the LICM is very small, and easily causes the calculation errors
in the following process of QoS prediction. SCM, ECM and EDCM
got the incorrect similarity values, and cannot accurately measure
the differences between the cloud models. Table 6 exposed the
superiority of VCM,which can provide the similaritymeasurement
results coinciding well with the actual situation of cloud models.

7. Procedure of multi-valued collaborative QoS prediction

Let mi,j represent the QoS evaluation value of sj provided by ui.
A q × p matrix of QoS evaluations is represented as follows:

M =


m1,1 m1,2 · · · m1,p
m2,1 m2,2 · · · m2,p

...
... mi,j

...
mq,1 mq,2 · · · mq,p

 , (10)

where q is the number of cloud service consumers and p is the
number of cloud services.

Assume that themaximum length of a time series is r×d, where
d is the number of periods and r is the average length of a period.
Considering themulti-valued feature ofQoS evaluations, themulti-
valued QoS matrix for si, noted asMi, is as follows:

Mi =


m1,i

m2,i

.

.

.

mq,i



=


(p11,i, p

2
1,i, . . . , p

r
1,i)

1 (p11,i, p
2
1,i, . . . , p

r
1,i)

2
· · · (p11,i, p

2
1,i, . . . , p

r
1,i)

d

(p12,i, p
2
2,i, . . . , ∅)1 (p12,i, ∅, . . . , ∅)2 · · · (∅, ∅, . . . , pr2,i)

d

.

.

.
.
.
.

.

.

.
.
.
.

(∅, ∅, . . . , pq,i)1 (p1q,i, p
2
q,i, . . . , p

r
q,i)

2
· · · (∅, p2q,i, . . . , p

r
q,i)

d

 ,

(11)

where mq,i represents the QoS evaluations of si submitted by uq;
(p11,i, p

2
1,i, . . . , p

r
1,i)

d is the QoS data for si in period tpd submitted
by u1, which is a complete time series data with the length r; ∅
represents an unknown value; (∅, ∅, . . . , pq,i)1 is the single-value
QoS evaluation of si submitted by uq in tp1, where the length of
the time series data is equal to 1; and (p12,i, p

2
2,i, . . . , ∅)1 is the

incomplete time series data for si in tp1 submitted by u2.
Then, the procedure of multi-valued collaborative QoS predic-

tion is as follows:
(1) Preprocessing the QoS evaluations data into a cloud model

for every period.
For period tpi such that the QoS evaluations are the time series

data, all evaluations in tpi are sent to RCG, and a cloud model
including three numerical characteristics can be established for tpi
according to Eq. (1). For period tpi satisfying the QoS evaluations
are the single-valued data, let pi be the unique evaluation value
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Table 6
Similarity measurement results between cloud models.

Measurement methods Cloud models
cm1 cm2 cm3 cm4 cm5

SCM 0.9999 0.9933 0.9940 0.9930 0.9793
LICM 1.0000 1.0000 0.9998 0.9998 0.9994
ECM 1.0000 0.6135 0.7403 0.6223 0.3075
MCM 1.0000 0.6731 0.6432 0.5668 0.3938
EDCM 1.0000 0.7692 0.7860 0.7437 0.5142
VCM 1.0000 0.9314 −0.4881 −2.1295 0.1820
in tpi; then, the cloud model of tpi can be transformed into a
specific cloudmodel {pi, 0, 0}. Thus, the cloudmodelmatrix of QoS
evaluations for si is obtained as follows:

Ci =


cm1,1 cm1,2 · · · cm1,d
cm2,1 cm2,2 · · · cm2,d

...
... cmi,j

...
cmq,1 cmq,2 · · · cmq,d



=



Ex11, En

1
1,He

1
1

 
Ex21, En

2
1,He

2
1


· · ·


Exd1, En

d
1,He

d
1


Ex12, En

1
2,He

1
2

 
Ex22, En

2
2,He

2
2


· · ·


Exd2, En

d
2,He

d
2


...

...
...

...
Ex1q, En

1
q,He

1
q

 
Ex2q, En

2
q,He

2
q


· · ·


Exdq, En

d
q,He

d
q



 ,

(12)

where cmi,j =


Exji, En

j
i,He

j
i


represents the QoS cloud model of ui

in tpj.
(2) Calculating the QoS cloud model similarity between the

potential user and other consumers.
Assume that u1 is the potential user, compare QoS cloud model

of u1 with QoS cloud models of other q − 1 consumers in every
period, and the similarity matrix of QoS cloudmodels can be noted
as follows:

SIM =


sim1

2 sim2
2 · · · simd

2

sim1
3 sim2

3 · · · simd
3

...
... simk

i

...

sim1
q sim2

q · · · simd
q

 , (13)

where simk
i = s(cm1,k, cmi,k) represents the similarity between

u1 and ui in tpk. The similarity between QoS cloud models can be
calculated by employing those methods introduced in Section 6,
such as SCM, LICM, ECM, MCM, EDCM or VCM.

(3) Determining the objective weights of periods based on
sensitivity scores.

Considering that the weight of a period varies widely in
different application scenarios, it is not appropriate to synthesize
the similarity values of periods with the weighted mean method.
The analytic hierarchy process (AHP) is a scientific evaluation
analysis method. But its accuracy is not high enough. Combining
the fuzzy logic, the FAHP method [48] can overcome the
shortcomings of AHP, which is suitable for solving the multiple
attribute decision-making problems. Therefore, the FAHP method
is used to identify the objective weights of different periods.

Supposing B = (bi,j)d×d is the sensitivity score for periods
submitted by a potential user, which is a fuzzy judgment matrix
with 0 ≤ bi,j ≤ 1, where d is the number of periods, and bi,j is
the importance ratio of period tpi compared to period tpj. bij can
be determined according to the five-level complementary scale
shown in Table 7.

If bi,j + bj,i = 1 and bi,i = 0.5, B is a fuzzy complementary
judgment matrix. Giving an integer k, if bi,j = bi,k − bj,k + 0.5,
B is a fuzzy consistency matrix. For transforming B into a fuzzy
Table 7
Five-level complementary scales used in FAHP method.

Scales Description

0.1 tpi is much less important than tpj
0.3 tpi is less important than tpj
0.5 tpi is equally important as tpj
0.7 tpi is more important than tpj
0.9 tpi is much more important tpj

complementary judgment matrix, the sum of each row of B is
computed by bi =

n
k=1 bi,k and the mathematical manipulation

is performed by Eq. (14):

ci,j = 0.5 + (bi − bj)/2(n − 1). (14)

A new fuzzy matrix C = (ci,j)n×n can be obtained, which is
a fuzzy consistency judgment matrix. Then, the sum of each row
is computed and standardized. Accordingly, the weight of tpi is
calculated by Eq. (15):

wi =
1

n(n − 1)

n
j=1

ci,j +
n
2

− 1, i = 1, 2, . . . , n. (15)

Theweightmatrix of periods (W ) can be established as follows:

W =


w1 0 · · · 0
0 w2 0 · · ·

...
... wi

...
0 0 · · · wd

 , (16)

where wi represents the importance degree of tpi for the potential
user; 0 ≤ wi ≤ 1,

d
i=1 wi.

(4) Aggregating the cloudmodels inmultiple periods and obtain
the comprehensive similarities between the potential user and
other cloud service consumers.

Aggregate the cloudmodelswithweightmatrix (W ) inmultiple
periods by Eq. (17):

C = SIM × W

=


sim1

2 sim2
2 · · · simd

2

sim1
3 sim2

3 · · · simd
3

...
... simk

i

...

sim1
q sim2

q · · · simd
q




w1 0 · · · 0
0 w2 0 · · ·

...
... wi

...
0 0 · · · wd



=


c2,1 c2,1 · · · c2,d
c3,1 c3,1 · · · c3,d
...

...
...

...
cq,1 cq,1 · · · cq,d

 . (17)

Then, the comprehensive similarity between u1 and ui is
obtained by Eq. (18):

C(u1, ui) =

d
j=2

ci,j. (18)
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(5) Selecting the neighboring users for potential user u1
according to a similarity threshold.

The neighboring users set of potential user u1, noted as NU, can
be selected by Eq. (19):

NU = {ui|ui ∈ U, C(u1, ui) ≥ sth}, (19)

where U is the set of cloud service consumers and sth is the
similarity threshold.

(6) Predicting the QoS according to the time series data
provided by the neighboring users.

The unknown QoS value of service sk in timeslot ti is predicted
for the potential user u1 by Eq. (20):

pred(u1, i) =


b∈NU

C(u1, b) × mi
b,k

b∈NU
C(u1, b)

, (20)

where mi
b,k is the QoS evaluation data of sk provided by ub in ti.

8. Experiments

8.1. Experiment setup

The WS-DREAM dataset #3 [7,23] is used to verify the
effectiveness of the proposed approach. We firstly analyze the QoS
data from this real-world dataset in experiments. The coefficients
of variation (CV) of response time data of 3873 services and the
CV of throughput data of 2630 services are larger than 1.0, as
shown in Fig. 4. The results explain the dynamismand vulnerability
of cloud computing environment. The main reasons for this
finding are significant differences of client features among users,
unpredictable network congestion, and unexpected exceptions.

The mean absolute error (MAE) method is used to measure the
accuracy of QoS prediction approaches, which is defined by Eq.
(21):

MAE =
1
N

N
i=1

v∗

i − vo
i

 , (21)

where N denotes the total number of executed QoS predictions;
v∗

i represents the real QoS value in timeslot ti experienced by the
potential user; vo

i represents the predicted QoS value in ti for the
potential user. The smaller the MAE is, the better the accuracy is.

In the following experiments, the regulatory factor α of VCM
is set as 0.6. To ensure the repeatability of experiments, all of the
periods are given equal weights.

8.2. Impacts of similarity threshold sth

In the procedure of multi-valued collaborative QoS prediction,
similarity threshold sth decides the number of neighboring users.
To analyze the impact of sth, we compare the MAE values when
sth varies from 0.06 to 0.54 with a step value of 0.03 in our
experiments. Those services with their CVs smaller than 1.5 are
selected as candidate services and the density of training matrix is
set as 30% for ensuring the relative stability of experiment results.
In the experiments, 100 consumers are chosen at random and a
potential user is selected from these consumers at random. Fig. 5
shows the experiment results.

According to Fig. 5(a) and (b), the prediction quality of response
time is the best when sth = 0.18, and the MAE values become
rather poor when sth > 0.30; the prediction quality of the
throughput is the best when sth = 0.15, and the MAE values
become rather poor when sth > 0.36. We can analyze the
experiment results by comparing Fig. 5 with Fig. 4 as follows: Fig. 4
shows that the CV values of the throughput are much larger than
the CV values of response time; the large CV values mean the
high dispersion of data and the low similarity of QoS evaluations;
for getting the enough neighboring users, the smaller similarity
threshold of throughput data between consumers are required in
contrast to the response time data. Fig. 5 also displays that theMAE
values of throughput rise sharplywhen sth > 0.3. The reason is that
fewer neighboring users in NU fail to resist the disruption of noisy
data to prediction results.

8.3. Impacts of period length

Considering that the period length has a major impact on the
accuracy of cloud models and the precision of QoS prediction.
In order to analyze the impacts of period length, some response
time data about service #741 invoked by user #9–#13 in timeslot
#1–#40 is extracted from the dataset, shown in Table 8.

In Table 8, 40 unknown QoS values are marked by a
strikethrough. In the experiment, we compared the proposed ap-
proach of multi-valued collaborative QoS prediction employing
VCM to measure the similarity between cloud models, noted as
QP_VCM, with the other five approaches as follows: (1) The multi-
valued collaborative QoS prediction employing LICM, noted as
QP_LICM; (2) The multi-valued collaborative QoS prediction em-
ploying EDCM, noted as QP_EDCM; (3) The user-based collab-
orative filtering employing Pearson correlation coefficient (PCC)
to measure the similarity between two users, noted as UPCC;
(4) item-based collaborative filtering employing cosine similarity
to identify the similar users, noted as ICOS; and (5) item-based col-
laborative filtering employing improved cosine similarity to iden-
tify the similar users, noted as IICOS. In ICOS and IICOS, a timeslot is
viewed as an item. Considering the obvious drawback of the SCM,
ECM and MCM in measuring the similarity between cloud models,
they were not compared in experiments. Additionally, MF-based
prediction approaches were also not compared in the experiments
because the evaluation data in every period is quite sparse. The
MAE values obtained by the six approacheswhen the period length
varies from 6 to 40 are shown in Table 9.

Table 9 demonstrates that four approaches including UPCC,
QP_LICM, QP_EDCM and QP_VCM, get the smallest MAE values
respectively when the period length is equal to 8 compared to
other period lengths. Especially, QP_VCM obtained the optimal
MAE value when the period length is equal to 8. In general, more
periods may depict the variation characteristic QoS more exactly
since the service status and the network environment change over
time. However, continuous monitoring of cloud services is still
time-consuming and costly, which causes that the total number
of timeslots is limited. In that case, more periods mean a smaller
amount of timeslots in every period, which make it difficult to
employ the cloud model to accurately describe the QoS feature
of a cloud service in every period based on the limited timeslots
data. Accordingly, dividing the limited timeslots into more periods
usually produces a lower precision of QoS prediction.

8.4. Comparisons of prediction approaches

In the following experiments, we compared QP_VCM with
QP_LICM, QP_EDCM, UPCC, ICOS and IICOS when the density of
training matrix varies from 5% to 32%. sth = 0.18 for the response
timedata and sth = 0.15 for the throughput data. The period length
is set as 8. The results are shown in Fig. 6.

Fig. 6 demonstrates that the time series analysis based on
QoS cloud models facilitates QP_VCM, QP_LICM and QP_EDCM
to achieve a higher precision of QoS prediction compared with
traditional approaches, such as UPCC, ICOS and IICOS. The main
reason is that UPCC, ICOS and IICOS are incapable of extracting the
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Fig. 4. Coefficients of variation. (a) response time; (b) throughput.
Fig. 5. Impacts of similarity threshold sth . (a) response time; (b) throughput.
Fig. 6. Comparisons of prediction approaches. (a) response time; (b) throughput.
variation characteristic QoS evaluations to improve the selection
quality of neighboring users and lead to the larger MAE values
than those of QP_VCM, QP_LICM and QP_EDCM. The reason
that QP_VCM obtained the optimal prediction quality lies in
the advantage of the proposed VCM in similarity calculation
between cloud models. Because VCM calculates the similarity
with consideration of the difference of measurement scales, VCM
can ensure the identification accuracy of neighboring users. In
addition, Fig. 6 showed that the results are consistent with those
shown in Fig. 4. According to Fig. 4, the throughput data is more
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Table 8
Some response time data from the dataset.

Users Timeslots
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

User #9 0.283 0.282 0.281 0.296 0.252 0.381 0.319 0.240 0.255 0.38
User #10 0.495 0.279 0.449 0.297 0.247 0.275 0.279 0.290 0.272 0.294
User #11 0.554 0.230 0.256 0.212 0.260 0.833 0.247 0.258 0.244 0.207
User #12 0.498 0.244 0.242 0.239 0.205 0.239 0.255 0.215 0.235 0.576
User #13 0.378 0.311 0.295 0.277 0.254 0.321 0.291 0.282 0.324 0.442

Users Timeslots
#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

User #9 0.253 0.441 0.245 0.258 0.289 0.316 0.350 0.302 0.262 0.330
User #10 0.290 0.293 0.296 0.255 0.315 0.247 0.292 0.294 0.266 0.251
User #11 0.216 0.219 0.199 0.599 0.272 0.199 0.250 0.228 0.507 0.201
User #12 0.239 0.508 0.253 0.243 0.248 0.211 0.514 0.263 0.204 0.252
User #13 0.300 0.272 0.321 0.303 0.274 0.281 0.312 0.422 0.264 0.328

Users Timeslots
#21 #22 #23 #24 #25 #26 #27 #28 #29 #30

User #9 0.307 0.320 0.283 0.258 0.254 0.267 0.373 0.258 0.477 0.407
User #10 0.310 0.233 0.276 0.338 0.239 0.326 0.440 0.311 0.431 0.394
User #11 0.476 0.200 0.235 0.245 0.218 0.530 0.225 0.236 0.231 0.678
User #12 0.241 0.202 0.399 0.539 0.201 0.225 0.216 0.860 0.221 0.215
User #13 0.354 0.263 1.214 0.277 0.363 0.413 0.323 0.353 0.397 0.433

Users Timeslots
#31 #32 #33 #34 #35 #36 #37 #38 #39 #40

User #9 0.266 0.335 0.311 0.304 1.189 0.334 0.326 0.348 0.450 0.730
User #10 0.362 0.315 0.419 0.320 0.323 0.325 0.425 0.380 0.301 0.304
User #11 0.236 0.274 0.560 0.227 0.249 0.240 0.219 1.290 0.221 0.217
User #12 0.276 0.236 0.209 0.237 0.246 0.263 0.202 0.227 0.240 0.220
User #13 0.333 0.370 0.316 0.361 0.376 0.332 0.502 0.401 0.404 0.352
Table 9
Impacts of period length.

Period length QoS prediction approaches
UPCC ICOS IICOS QP_LICM QP_EDCM QP_VCM

6 0.0723 0.0970 0.1033 0.0402 0.0399 0.0393
8 0.0428 0.0664 0.0697 0.0301 0.0300 0.0295

10 0.0735 0.0773 0.0732 0.0377 0.0376 0.0370
15 0.0581 0.0688 0.0559 0.0395 0.0394 0.0387
20 0.0785 0.0724 0.0796 0.0501 0.0500 0.0494
25 0.1047 0.0656 0.0662 0.0546 0.0546 0.0542
30 0.0971 0.0908 0.0883 0.0795 0.0794 0.0792
35 0.1179 0.1074 0.1085 0.1042 0.1041 0.1039
40 0.1271 0.1129 0.1122 0.1142 0.1141 0.1135
discrete than the response time data; and the more discrete the
evaluation data is, the larger the MAE of QoS prediction based on
these data becomes.

9. Conclusions and future work

In the dynamic and vulnerable cloud computing environment,
predicting accurately the uncertain QoS of cloud services for po-
tential users has become a tough task. The continuous monitor-
ing of cloud services can provide the time series QoS data and help
potential users to investigate QoS during specified periods from a
comprehensive perspective. However, themulti-valuedQoS evalu-
ations consisting of time series data and single-valued data, in turn,
present a new challenge for the QoS prediction research.

Aiming at the time series feature of QoS and the multi-valued
feature of QoS evaluations, this paper proposes a collaborative
QoS prediction approach based on cloud model theory and time
series analysis, in which the multi-valued QoS evaluations are
preprocessed and modeled as a set of cloud models in multiple
periods. In order to identify exactly the neighboring users for
potential users, we put forward a new vector comparison method
combining the orientation similarity and dimension similarity
to improve the accuracy of similarity calculation between cloud
models and employed the FAHPmethod to determine the objective
weights of periods according to application requirements of
potential users. The unknown QoS values of cloud services are
predictedwith consideration of both the periodic variations of QoS
and the users’ application requirements in different periods. The
experiments based on a real-world dataset demonstrate that this
approach can provide high accuracy of multi-valued collaborative
QoS prediction for potential users in cloud paradigm.

As for future work, we will study the following problems:
(1) to automatically identify the optimal period length for specific

application scenarios; and
(2) to achieve the dynamic pattern recognition between the time

series feature of QoS and the users’ application requirement in
multiple periods.
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