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Abstract. In this paper, we introduced some new concepts of a neutrosophic
set such as neutrosophic convex set, strongly neutrosophic convex set, neutrosophic
convex function, strongly neutrosophic convex function, the minimum and maxi-
mum of a function f with respect to neutrosophic set, min and max neutrosophic
variational inequality, neutrosophic general convex set, neutrosophic general convex
function and min, max neutrosophic general variational inequality. We introduced
some basic results on these new concepts. Moreover, we discussed the applica-
tion of neutrosophic set in optimization theory. We developed an algorithm using
neutrosophic min and max variational inequality and identi�ed the maximum and
minimum pro�t of the company.
Keyword. Neutrosophic Set, Neutrosophic Convex Set, Neutrosophic Convex

Function, max and min Neutrosophic Variational Inequality.

1. Introduction

Zadeh (1965a) suggested the theory of fuzzy sets (FSs) to solve various forms
of uncertainties. This theory has now been successfully implemented in di¤erent
�elds (Pedrycz 1990 and Zadeh 1975b). A single value �A(x) 2 [0; 1] is used by
traditional FSs to describe the degree of membership of the fuzzy set A, which is
speci�ed on a universal scale, they are unable to manage those instances where it
is di¢ cult to describe �A by speci�c value one. Atanassov introduced intuitionist
fuzzy sets (IFSs) (2016), which are an extension of Zadeh�s FSs, to address the lack
of knowledge of non-membership degrees. Moreover, vague sets were described by
Gau and Buehrer (9193). Burillo and Bustince (1996) subsequently pointed out
that these vague sets and Atanassov�s IFSs are mathematically equivalent objects.
IFSs have been commonly used to solve multi-criteria decision-making (MCDM)
problems (Xu 2012; Zhi 2012, Zeng 2011); medical diagnosis (Shinoj 2012), neural
networks (Sotirov 2009), market prediction (Joshi 2012), and color region extraction
(Chaira) .
The membership degree, non-membership degree and degree of hesitation are

taken into account simultaneously by the IFSs. They are thus, more �exible and
realistic than traditional FSs when discussing fuzziness and ambiguity. Moreover,
the membership degree, non-membership degree and hesitation degree of an element
in IFSs may not be a speci�c number in some real cases. Thus they were extended
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to interval-valued intuitive fuzzy sets (2016). Moreover, Torra and Narukawawa
introduced hesitant fuzzy sets in order to deal with situations where people are
hesitant when expressing their preferences regarding objects in the decision-making
process.
Although the theory of FSs has been developed and generalized, in various real-

life problems, it does not deal with all uncertainty. For example, it is not possible
to deal with certain kinds of uncertainty, such as indeterminate and inconsistent
information. For example, when an expert is asked for his or her opinion about a
certain statement, he or she may say that the possibility that the statement is true
is 0.5, that it is false is 0.6 and the degree that he or she is not sure is 0.2 (Wang
2010a). This problem is beyond the reach of FSs and IFSs, so it needs some new
theories.
Samarandache (1999a) suggested neutrosophic (NS) sets and neutrosophic logic.

An NS is a set where each element of the universe has the degrees of truth, inde-
terminacy and falsity and it lies in ]0�; 1+[, the non standard unit interval (2008).
This is simply an extension to the standard interval [0, 1] of the IFSs. Moreover,
the uncertainty presented here, i.e. the indeterminacy element, is independent of
the values of true and falsity, while the incorporated uncertainty depends on the
degree of belonging and non-belonging to IFSs (2014). However, in practical situa-
tions, NSs are di¢ cult to apply without a particular description. In various areas of
knowledge, this theory is being used. See recent examples as Ajay (2020), Crespo
Berti (2020) in modeling real life problems; Hatip (2020) and Saqlain et, al., (2020)
who developed extensions of it. A new framework for dealing with impreciseness
is provided by Neutrosophic Theory. It is well known that statistical concepts and
methods can be expanded using a Neutrosophic point of view, see Smarandache
(2013b, 2014c), Schweizer (2020), Cacuango et, al., (2020).
Single-value neutrosophic sets (SVNSs), which are a variant of NSs, were pro-

posed in (Majumdar 2014). Moreover, the information energy of SVNSs, their
coe¢ cient of correlation and correlation and the process of decision-making used
by them were proposed in (Ye 2013a). In addition, Ye (2014b) introduced the Sim-
pli�ed Neutrosophic Sets (SNSs), which can be represented by three real numbers
in the real unit interval [0,1], and proposed a method of MCDM using SNS aggrega-
tion operators. Moreover, Majumdar and Samant (2014) introduced a measure of
SVNS entropy. The de�nition of Interval Neutrosophic Sets (INSs) was proposed by
Wang, Samarandache, Zhang, and Sunderraman (2005b). In addition, Ye (2014c)
proposed similarity measures between SVNSs and INSs based on the relationship
between measures of similarity and distances.
There are twenty-seven new concepts developed from NS, neutrosophic proba-

bility and neutrosophic statistics. Each of these is interactive. The sets derived
from NS are intuitionistic set, paraconsistent set, paradoxist set, trivialist set, ni-
hilist set, dialetheist set and faillibilist set. Tautological probability and statistics,
intuitionistic probability and statistics, dialetheist probability and statistics, failli-
bilist probability and statistics, paraconsistent probability and statistics, trivialist
probability and statistics and nihilist probability and statistics are derived from
neutrosophic probability and statistics. N. A. Nabeeh (2019) proposed an approach
that would facilitate a personal selection process by incorporating the process of
neutrosophic analytical hierarchy to demonstrate the ideal solution between vari-
ous options similar to an ideal solution for order preference technique (TOPSIS).
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M. A. Baset (2019a) developed a new kind of technique for neutrosophy called
neutrosophic numbers of type 2. They suggested a novel T2NN-TOPSIS process,
combining type 2 neutrosophic number and TOPSIS, which is very useful in group
decision-making. A multi-criteria group decision-making method of the analytical
network process method and the Visekriterijusmska Optmzacija I Kommpromisno
Resenje method was investigated in a neutrosophical setting dealing with high-order
imprecision and incomplete information (Baset 2019b). M. A. Baset introduced a
new technique for estimating the GDM selection process for smart medical devices
in a vague decision-making environment. Neutrosophic with the TOPSIS strategy
is used in decision-making processes to deal with incomplete information, vagueness
and ambiguity, taking into account the decision-making criteria in the information
obtained by decision-makers in (Baset 2019c). They proposed a robust ranking
method with NS to manage the performance of the Supply Chain Management
(GSCM) and methods that have been commonly used to promote environmental
sustainability and achieve competitive advantages. The principle of the N.S. has
been used to handle imprecision, linguistic imprecision, ambiguous details and in-
complete information (Baset 2019d). Moreover, M. A. Baset (2018e) et, al., used
NS for evaluation techniques and decision-making to identify and analyze factors
in�uencing the selection of suppliers for the supply chain management. T. Bera
(2018a) et, al., characterized a neutrosophic norm for a soft linear space known as
a neutrosophic soft linear space. They also explore the notion of neutrosophic soft
(Ns) prime ideal over a ring. They introduced the idea of N�s completely prime
ideals, N�s fully semi-primary ideals and N�s prime K-ideals (Bera 2018b). More-
over, T. Bera (2018c) established the concept of connectedness and compactness
in N�s topological space along with its various characteristics. R. A. Cruz (2017)
et, al., studied the P-OR, P-intersection and P-union and P-AND of neutrosophic
cubic sets and their associated properties. N. Shah (2016) et, al., discussed neutro-
sophic soft graphs. They proposed a connection between the neutrosophic soft sets
and the graphs.
In decision making problems, the use of optimization approaches is ubiquitous.

The purpose of this article is two-fold. The �rst half aims to present the theo-
retical foundations of neutrosophic in optimization such as neutosophic variational
inequalities, neutrosophic convex function and the second half aims to present these
theoretical foundations and key techniques in convex optimization, decision making,
and the principle of the neutrosophic variational inequalities in a coherent manner.
The purpose of these innovative concepts is, to provide a new approach with useful
mathematical tools to address the fundamental problem of decision-making (e.g
maximization and minimization of the problem). The generality of the neutro-
sophic variational inequalities system is given special importance, illustrating how
many interesting optimization decision-making problems can be formulated as a
problem of neutrosophic variational inequalities. These applied contexts provide
solid evidence of the wide applications of the neutrosophic variational inequality
approach to model and research decision-making problems. This article will stim-
ulate the interest in neutrosophic variational inequality and its application in the
optimization.
In this paper, we introduce some new concepts of a neutrosophic set such as

neutrosophic convex set, strongly neutrosophic convex set, neutrosophic convex
function, strongly neutrosophic convex function, the minimum and maximum of a
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function f with respect to neutrosophic set; min and max neutrosophic variational
inequality, neutrosophic general convex set, neutrosophic general convex function
and min, max neutrosophic general variational inequality. We study some basic
results on these new concepts. Moreover, we discuss the application of neutrosophic
set in optimization theory. We propose a method using neutrosophic min and
max variational inequality and identify the maximum and minimum pro�t of the
company.

2. Preliminaries

We will de�ne here some new concepts on the neutrosophic set and also discuss
particular examples of these new concepts. In this paper, we take the function
f : � ! � 0; where � ; � 0 denotes the collection of neutrosophic sets N .

De�nition 1. (Samarandache 1999a) Let X be a space of points and let x 2 X.
A neutrosophic set N in X is characterized by a truth membership function TN ,
an indeterminacy membership function IN , and a falsity membership function FN .
TN (x), IN (x), and FN (x) are real standard or non-standard subsets of ]0�; 1+[, and
FN . TN (x),IN (x),FN (x) : X ! ]0�; 1+[. The neutrosophic set can be represented
as:

N = f(x; TN (x); IN (x); FN (x)) : x 2 Xg:

There is no restriction on the sum of TN (x); IN (x); and FN (x); so

0� � TN (x); IN (x); FN (x) � 3+:

De�nition 2. (Ali 2017) The complement of a neutrosophic set N is denoted by
c(N) and is de�ned by

Tc(N)(x) = FN (x); Ic(N)(x) = 1� IN (x); Fc(N)(x) = TN (x) for all x 2 X:

De�nition 3. (Ali 2017) Let N1 and N2 be two neutrosophic sets in a universe of
discourse X. Then, the union of N1 and N2 is denoted by N1[N2; which is de�ned
by

N1 [N2 = f(x; TN1
(x) _ TN2

(x); IN1
(x) ^ IN2

(x); FN1
(x) ^ FN2

(x) : x 2 Xg

for all x 2 X; and _ and ^ represents the max and min operator, respectively.

De�nition 4. (Ali 2017) Let N1 and N2 be two neutrosophic sets in a universe of
discourse X. Then, the intersection of N1 and N2 is denoted by N1 \N2; which is
de�ned by

N1 \N2 = f(x; TN1(x) ^ TN2(x); IN1(x) _ IN2(x); FN1(x) _ FN2(x) : x 2 Xg

for all x 2 X; and _ and ^ represents the max and min operator, respectively.

De�nition 5. A neutrosophic set N is convex if

N((1� t)x+ ty) � min(N(x); N(y):

Or
�N ((1� t)x+ ty) � min(�N (x); �N (y))

for all x; y 2 Rn and t 2 [0; 1]:

De�nition 6. A neutrosophic set N is strongly convex if

N((1� t)x+ ty) > min(N(x); N(y):
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Or
�N ((1� t)x+ ty) > min(�N (x); �N (y))

for all x 6= y; x; y 2 Rn and t 2 [0; 1]:
Note: Strongly neutrosophic convex set is neutrosophic convex set but the

converse not true.

De�nition 7. Let N be a neutrosophic convex set, then the function f on neutro-
sophic convex set N is said to be neutrosophic convex function if

f(N((1� t)x+ ty)) � min(f(N(x)); f(N(y))

for all x; y 2 Rn and t 2 [0; 1]:

Example 1. The identity function on the neutrosophic convex set N is a neutro-
sophic convex function.

De�nition 8. A neutrosophic set Ni(x) 2 � is called a minimum of f , if f(Ni(x)) �
f(Nj(x)) for all Ni(x) 2 � :

De�nition 9. Let � be a collections of neutrosophic convex sets. Then the inequal-
ity

hf(Ni(x)); f(Ni(x)) \ f(Nj(x))i � f(Ni(x)) � f(Nj(x)); i 6= j;
8N1(x); N2(y) 2 �

is called neutrosophic min variational inequality.

Example 2. Let N1 = [
(0:4;0:7;1)

x + (0:5;0:8;0:2)
y + (0:2;0:5;1)

z ] and N2 = [
(0:6;0:9;1)

x +
(0:3;0:8;0:6)

y + (0:3;0:7;0:9)
z ] be two neutrosophic sets and f be a function de�ned by

(0:4;0:7;1)
x

f! (0:2;0:5;1)
x ; (0:5;0:8;0:2)y

f! (0:3;0:6;0:2)
y ; (0:2;0:5;1)z

f! (0;0:3;1)
z

(0:6;0:9;1)
x

f! (0:4;0:7;1)
x ; (0:7;0:9;0)y

f! (0:5;0:7;0)
y ; (0:3;0:7;0:9)z

f! (0:1;0:5;0:9)
z :

We have
f(N1) = [

(0:2;0:5;1)
x + (0:3;0:6;0:2)

y + (0;0:3;1)
z ] and f(N2) = [

(0:4;0:7;1)
x + (0:5;0:7;0)

y +
(0:1;0:5;0:9)

z ]
then

hf(N1); f(N1) \ f(N2)i =
* [ (0:2;0:5;1)x + (0:3;0:6;0:2)

y + (0;0:3;1)
z ];

[ (0:2;0:5;1)x + (0:3;0:6;0:2)
y + (0;0:3;1)

z ]

\[ (0:4;0:7;1)x + (0:5;0:7;0)
y + (0:1;0:5;0:9)

z ]

+

=

*
[ (0:2;0:5;1)x + (0:3;0:6;0:2)

y + (0;0:3;1)
z ];

[ (0:2;0:7;1)x + (0:3;0:7;0:2)
y + (0;0:5;1)

z ]

+

(1) hf(N1); f(N1) \ f(N2)i = [
(0:04; 0:35; 1)

x
+
(0:09; 0:42; 0:04)

y
+
(0; 0:15; 1)

z
]:

Now

(2) f(N1) � f(N2) = [
(0:08; 0:35; 1)

x
+
(0:15; 0:42; 0)

y
+
(0; 0:15; 0:9)

z
]

From (1) and (2); we have

hf(N1); f(N1) \ f(N2)i � f(N1) � f(N2):
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De�nition 10. A neutrosophic set Ni(x) 2 � is called a maximum of f , if f(Ni(x)) �
f(Nj(x)) for all Nj(x) 2 � :

De�nition 11. Let � be a collection of neutrosophic convex sets. Then the inequal-
ity

hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i � f(Ni(x)) � f(Nj(x)); i 6= j;
8N(x); N(y) 2 �

is called neutrosophic max variational inequality.

Example 3. Let N1 = [
(0:4;0:7;1)

x + (0:5;0:8;0:2)
y + (0:2;0:5;1)

z ] and N2 = [
(0:6;0:9;1)

x +
(0:3;0:8;0:6)

y + (0:3;0:7;0:9)
z ] be two neutrosophic sets and f be a function de�ned by

(0:4;0:7;1)
x

f! (0:2;0:5;1)
x ; (0:5;0:8;0:2)y

f! (0:3;0:6;0:2)
y ; (0:2;0:5;1)z

f! (0;0:3;1)
z

(0:6;0:9;1)
x

f! (0:4;0:7;1)
x ; (0:7;0:9;0)y

f! (0:5;0:7;0)
y ; (0:3;0:7;0:9)z

f! (0:1;0:5;0:9)
z :

We have
f(N1) = [

(0:7;0:8;0:2)
x + (0:6;0:7;0:4)

y + (1;0:6;0:5)
z ] and f(N2) = [

(0:4;0:7;1)
x + (0:5;0:6;0:9)

y +
(0:1;0:5;0:6)

z ]: Then

hf(N1); f(N1) [ f(N2)i =
* [ (0:7;0:8;0:2)x + (0:6;0:7;0:4)

y + (1;0:6;0:5)
z ];

[ (0:7;0:8;0:2)x + (0:6;0:7;0:4)
y + (1;0:6;0:5)

z ]

[[ (0:4;0:7;1)x + (0:5;0:6;0:9)
y + (0:1;0:5;0:6)

z ]

+

=

*
[ (0:7;0:8;0:2)x + (0:6;0:7;0:4)

y + (1;0:6;0:5)
z ];

[ (0:7;0:7;0:2)x + (0:6;0:6;0:4)
y + (1;0:5;0:5)

z ]

+

(1)

hf(N1); f(N1) [ f(N2)i = [
(0:49; 0:56; 0:04)

x
+
(0:36; 0:42; 0:16)

y
+
(1; 0:30; 0:25)

z
]:

Now

(2) f(N1) � f(N2) = [
(0:28; 0:56; 0:2)

x
+
(0:36; 0:42; 0:36)

y
+
(0:1; 0:30; 0:30)

z
]

From (1) and (2); we have

hf(N1); f(N1) [ f(N2)i � f(N1) � f(N2):

2.1. Generalized Convex Set and Convex Function. In the problems, if the
domain set may not be a convex set, in those situations, the non-convex set can
be made a convex set with respect to an arbitrary function. These sets are called
general convex sets and the function de�ned on the general convex set is called
general convex function.

De�nition 12. A neutrosophic set N is general convex if

N((1� t)g(x) + tg(y)) � min(N(g(x)); N(g(y)):

Or
�N ((1� t)g(x) + tg(y)) � min(�N (g(x)); �N (g(y)))

for g(x); g(y) 2 Rng and t 2 [0; 1]:
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De�nition 13. Let N be a neutrosophic convex set, then the function f on neu-
trosophic general convex set N is said to be neutrosophic general convex function
if

f(N((1� t)g(x) + tg(y))) � min(f(N(g(x)); f(N(g(y)))

for all g(x); g(y) 2 Rng and t 2 [0; 1]:

Case 1. If g = I; then the neutrosophic general convex function is neutrosophic
convex function.

De�nition 14. Let � be a collection of neutrosophic general convex sets. Then the
inequality

hf(Ni(g(x))); f(Ni(g(x))) \ f(Nj(g(x)))i � f(Ni(g(x))) � f(Nj(g(x))); i 6= j;
8N(g(x)); N(g(x)) 2 �

is called neutrosophic min general variational inequality.

De�nition 15. Let � be a collection of neutrosophic general convex set. Then the
inequality

hf(Ni(g(x))); f(Ni(g(x))) [ f(Nj(g(x)))i � f(Ni(g(x))) � f(Nj(g(x)));
8Ni(g(x)); Nj(g(y)) 2 �

is called neutrosophic max general variational inequality.

3. Main Results

Proposition 1. Let � be a collection of neutrosophic convex sets and Ni(x) 2 � be
a minimum of the neutrosophic convex function f on � : Then Ni(x) satis�es the
neutrosophic min variational inequality.

Proof. Let Ni(x) 2 � be the minimum of f: Then

(1) f(Ni(x)) � f(Nj(x)); 8Nj(x) 2 � :
Also from (1); we have

(2) (f(Ni(x)) \ f(Nj(x))) � f(Nj(x)); 8Nj(x) 2 � :
(2) can be written as

f(Ni(x)) � (f(Ni(x)) \ f(Nj(x))) � f(Ni(x)) � f(Nj(x))
hf(Ni(x)); f(Ni(x)) \ f(Nj(x))i � f(Ni(x)) � f(Nj(x));

8Ni(x); Nj(y) 2 � :
Thus Ni(x) 2 � satis�es the neutrosophic min variational inequality. �

Proposition 2. Let � be a collection of neutrosophic convex sets and Ni(x) 2 � be
a maximum of the neutrosophic convex function f on � : Then Ni(x) satis�es the
neutrosophic max variational inequality.

Proof. Let Ni(x) 2 � be the maximum of f: Then

(1) f(Ni(x)) � f(Nj(x)); 8Nj(x) 2 � :
Also from (1); we have

(2) (f(Ni(x)) [ f(Nj(x))) � f(Nj(x)); 8Nj(x) 2 � :
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(2) can be written as

f(Ni(x)) � (f(Ni(x)) [ f(Nj(x))) � f(Ni(x)) � f(Nj(y))
hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i � f(Ni(x)) � f(Nj(x));

8Ni(x); Nj(x) 2 � :
Thus Ni(x) 2 � satis�es the neutrosophic max variational inequality. �

Proposition 3. Let � be a collection of neutrosophic general convex sets and
Ni(g(x)) 2 � be a minimum of the neutrosophic general convex function f on
� : Then Ni(g(x)) satis�es the neutrosophic general variational inequality.

Proof. Let Ni(g(x)) 2 � be the minimum of f: Then

(1) f(Ni(g(x))) � f(Nj(g(x))); 8Nj(g(x)) 2 � :
Also from (1); we have

(2) (f(Ni(g(x))) \ f(Nj(g(x))) � f(Nj(g(x))); 8Nj(g(x)) 2 � :
(2) can be written as

f(Ni(g(x))) � (f(Ni(g(x))) \ f(Nj(g(x))) � f(Ni(g(x))) � f(Nj(g(x)))
hf(Ni(g(x))); f(Ni(g(x))) \ f(Nj(g(x)))i � f(Ni(g(x))) � f(Nj(g(x)));

8Ni(g(x)); Nj(g(x)) 2 � :
Thus Ni(g(x)) 2 � satis�es the neutrosophic general min variational inequality.

�

Proposition 4. Let � be a collection of neutrosophic general convex sets and
Ni(g(x)) 2 � be a maximum of the neutrosophic max general convex function f
on � : Then Ni(g(x)) satis�es the neutrosophic max general variational inequality.

Proof. Let Ni(g(x)) 2 � be the maximum of f: Then

(1) f(Ni(g(x))) � f(Nj(g(x))); 8Nj(g(x)) 2 � :
Also from (1); we have

(2) (f(Ni(g(x))) [ f(Nj(g(x))) � f(Nj(g(x))); 8Nj(g(x)) 2 � :
(2) can be written as

f(Ni(g(x))) � (f(Ni(g(x))) [ f(Nj(g(x))) � f(Ni(g(x))) � f(Nj(g(x)))
hf(Ni(g(x))); f(Nj(g(x))) [ f(Nj(g(x)))i � f(Ni(g(x))) � f(Nj(g(x)));

8Ni(g(x)); Nj(g(x)) 2 � :
Thus Ni(g(x)) 2 � satis�es the neutrosophic max general variational inequality.

�

Proposition 5. For any two neutrosophic convex sets N1 and N2; N1 [N2 is also
neutrosophic convex set.

Proof. Since N1 is neutrosophic convex set, we have

�N1
((1� t)x+ ty) � min(�N1

(x); �N1
(y)):

Also N2 is neutrosophic convex set, then

�N2
((1� t)x+ ty) � min(�N2

(x); �N2
(y)):
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Now since

�N1[N2
((1� t)x+ ty) � min(�N1[N2

(x); �N1[N2
(y)):

Thus N1 [N2 is neutrosophic convex set. �
Proposition 6. If Ni(x) 2 � be a minimum of the neutrosophic convex function
f . Then

hf(Ni(x)); f(Ni(x)) \ f(Nj(x))i � hf(Ni(x)); f(Nj(x)) [ f(Nj(x))i ;8Nj(y) 2 � :

Proof. Assume that Ni(x) 2 � be a minimum of f: Then

(1) hf(Ni(x)); f(Ni(x)) \ f(Nj(x))i � f(Ni(x)) � f(Nj(x));8Nj(x) 2 � :
Since for Ni(x) 2 � ; we have

(2) f(Ni(x)) � f(Nj(x)) � hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i :
From (1) and (2); we have

hf(Ni(x)); f(Ni(x)) \ f(Nj(x))i � hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i ;8Nj(x) 2 � :
�

Proposition 7. If Ni(x) 2 � be a maximum of the neutrosophic convex function
f . Then

hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i � hf(Ni(x)); f(Nj(x)) \ f(Ni(x))i ;8Nj(x) 2 � :

Proof. Assume that Ni(x) 2 � be a maximum of f: Then

(1) hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i � f(Ni(x)) � f(Nj(x));8Nj(x) 2 � :
Since for Ni(x) 2 � ; we have
(2) hf(Ni(x)); f(Ni(x)) \ f(Nj(x))i � f(Ni(x)) � f(Nj(x)):
From (1) and (2); we have

hf(Ni(x)); f(Ni(x)) \ f(Nj(x))i � hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i ;8Nj(x) 2 � :
�

Theorem 1. Let f : � ! � 0 be a mapping and "� " be a relation de�ned in the
following way �f(N1); f(N2) 2 � 0; f(N1) � f(N2) if the min variational inequality
is hold. Show that the relation "� " is an order relation.

Proof. To prove the relation "� " is an order relation, we have to show the following.
i): The relation "� " is re�exive, that is, f(N1) � f(N1):
(ii): The relation "� " is anti-symmetric, that is, if f(N1) � f(N2) and f(N2) �

f(N1), then f(N1) = f(N2):
(iii): The relation "� " is transitive, that is, if f(N1) � f(N2) and f(N2) �

f(N3); then f(N1) � f(N3):
i): Re�exive
The relation "� " is re�exive, since for any f(N1) 2 � 0; we have

hf(N1(x)); f(N1(x)) \ f(N1(x))i � f(N1(x)) � f(N1(x)):
Hence f(N1) � f(N1): Thus the relation "� " is re�exive.
ii): Anti-symmetric
Assume that f(N1) � f(N2) and f(N2) � f(N1); then

hf(N1(x)); f(N1(x)) \ f(N2(x))i � f(N1(x)) � f(N2(x))
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implies that

(1) f(N1(x) � f(N2(x)
and

hf(N2(x)); f(N2(x)) \ f(N1(x))i � f(N2(x)) � f(N1(x))
implies that

(2) f(N2(x) � f(N1(x):
From (1) and (2); we have f(N1) = f(N2): Thus "� " is antisymmetric.
iii): Transitive
Assume that f(N1) � f(N2) and f(N2) � f(N3); then

hf(N1(x)); f(N1(x)) \ f(N2(x))i � f(N1(x)) � f(N2(x))
implies that

(3) f(N1(x) � f(N2(x)
and

hf(N2(x)); f(N2(x)) \ f(N3(x))i � f(N2(x)) � f(N3(x))
implies that

(4) f(N2(x)) � f(N1(x)):
From (3) and (4); we have f(N1) � f(N3). Then

hf(N1(x)); f(N1(x)) \ f(N3(x))i � f(N1(x)) � f(N3(x)):
Hence f(N1) � f(N3): Thus the relation "� " is transitive and consequently the

relation � is order relation. �

Theorem 2. Let f : � ! � 0 be a mapping and "� " be a relation de�ned in the
following way �f(N1); f(N2) 2 � 0; f(N1) � f(N2) if the max variational inequality
is hold. Show that the relation � is an order relation.

Proof. To prove the relation "� " is an order relation, we have to show the following.
i): The relation "� " is re�exive, that is, f(N1) � f(N1):
(ii): The relation "� " is anti-symmetric, that is, if f(N1) � f(N2) and f(N2) �

f(N1), then f(N1) = f(N2):
(iii): The relation "� " is transitive, that is, if f(N1) � f(N2) and f(N2) �

f(N3); then f(N1) � f(N3):
i): Re�exive
The relation "� " is re�exive, since for any f(N1) 2 � 0; we have

hf(N1(x)); f(N1(x)) [ f(N1(x))i � f(N1(x)) � f(N1(x)):
Hence f(N1) � f(N1): Thus the relation "� " is re�exive.
ii): Anti-symmetric
Assume that f(N1) � f(N2) and f(N2) � f(N1); then

hf(N1(x)); f(N1(x)) [ f(N2(x))i � f(N1(x)) � f(N2(x))
implies that

(1) f(N1(x) � f(N2(x)
and

hf(N2(x)); f(N2(x)) [ f(N1(x))i � f(N2(x)) � f(N1(x))
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implies that

(2) f(N2(x) � f(N1(x):

From (1) and (2); we have f(N1) = f(N2): Thus "� " is antisymmetric.
iii): Transitive
Assume that f(N1) � f(N2) and f(N2) � f(N3); then

hf(N1(x)); f(N1(x)) [ f(N2(x))i � f(N1(x)) � f(N2(x))

implies that

(3) f(N1(x) � f(N2(x)

and
hf(N2(x)); f(N2(x)) [ f(N3(x))i � f(N2(x)) � f(N3(x))

implies that

(4) f(N2(x)) � f(N1(x)):

From (3) and (4); we have f(N1) � f(N3). Then

hf(N1(x)); f(N1(x)) [ f(N3(x))i � f(N1(x)) � f(N3(x)):

Hence f(N1) � f(N3): Thus the relation "� " is transitive and consequently the
relation "� " is order relation. �

4. Applications

We are going to discuss a real-life application of newly de�ned neutrosophic max
and neutrosophic min variational Inequalities. In fact, we will discuss that how
our novel concepts have real-life applications. Speci�cally, the neutrosophic max
and neutrosophic min variational inequality explain how to get the maximum and
minimum pro�t of the company.
We will discuss the algorithm by using the neutrosophic max variational inequal-

ity and neutrosophic min variational inequality. In this algorithm, we will discuss
how the trucking company gets maximum pro�t and minimum pro�t.

Algorithm
Suppose ABC Trucking is a company that operates 20 trucks for transport and

logistics. When they are full and on the track, trucks make the most money for the
company. ABC Trucking has the following vector entities or groups:
(i): Truck Company(truck type, age, engine size).
(ii): Income ((Euro)1, (Euro)2, (Euro)3).
A neutrosophic set N1; N2; and N3 inX = truck type; Y = age; Z = engine size

is characterized by a truth membership function TN1
; TN2

; TN3
, an indeterminacy

membership function IN1 ; IN2 ; IN3 , and a falsity membership function FN1 ; FN2 ;
FN3 . TN1 ; TN2 ; TN3 , IN1 ; IN2 ; IN3 , and FN1 ; FN2 ; FN3 are real standard or non-
standard subsets of ]0�; 1+[ : A neutrosophic set N 0

1; N
0
2; and N

0
3 in X

0 = Euro;
Y 0 = Doller; Z = Riyal is characterized by a truth membership function TN 0

1
; TN 0

2
;

TN 0
3
, an indeterminacy membership function IN 0

1
; IN 0

2
; IN 0

3
, and a falsity membership

function FN 0
1
; FN 0

2
; FN 0

3
. TN 0

1
; TN 0

2
; TN 0

3
, IN 0

1
; IN 0

2
; IN 0

3
and FN 0

1
; FN 0

2
; FN 0

3
are real

standard or non-standard subsets of ]0�; 1+[ :
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The trucking company needs to optimize the use of its trucks and workers for
the highest possible pro�ts. To �nd the probability of the maximum or minimum
pro�t of the trucking company, we de�ne a relation f : � ! � 0 by

(truck type = a; TN1
(a); IN1

(a); FN1
(a))

f! ((Euro)1; TN 0
1
(x); IN 0

1
(x); FN 0

1
(x));

(age = b; TN2
(b); IN2

(b); FN2
(b))

f! ((Euro)2; TN 0
2
(x); IN 0

2
(x); FN 0

2
(x));

(engine size = c; TN3
(c); IN3

(c); FN3
(c))

f! ((Euro)3; TN 0
3
(x); IN 0

3
(x); FN 0

3
(x)):

Now if the relation f satis�es the max variational inequality, that is,

(1) hf(Ni(x)); f(Ni(x)) [ f(Nj(x))i � f(Ni(x)) � f(Nj(x)); 8Ni(x) 6= Nj(y) 2 �

By taking the left hand side of (1), we have

hf(Ni(x)); f(Ni(x)) [ f(Nj(y))i = N 0 = (z; TN 0(z); IN 0(z); FN 0(z))

which gives the maximum pro�t with a neutrosophic set N 0 is characterized by
a truth membership function TN 0 , an indeterminacy membership function IN 0 , and
a falsity membership function FN 0 :
If the relation f satis�es the min variational inequality, that is;

(2) hf(Ni(x)); f(Ni(x)) \ f(Nj(y))i � f(Ni(x))�f(Nj(y)); 8Ni(x) 6= Nj(y) 2 N:

By taking the left hand side of (2), we have

hf(Ni(x)); f(Ni(x)) \ f(Nj(y))i = N 00 = (z; TN 00(z); IN 00(z); FN 00(z))

which gives the minimum pro�t is characterized by a neutrosophic set N 00 with a
truth membership function TN 00 , an indeterminacy membership function IN 00 , and
a falsity membership function FN 00 :

Example 4. Suppose ABC Trucking is a company that operates 20 trucks for
transport and logistics. When they are full and on the track, trucks make the most
money for the company. ABC Trucking has the following vector entities or groups:

(i): Truck Company (X = truck type, Y = age, Z = engine size).
(ii): Income (X 0 = (Euro)1, Y 0 = (Euro)2, Z 0 = (Euro)3).
The neutrosophic sets N1; N2; and N3 in X, Y and Z are

N1 =
(0:4; 0:5; 0:8)

x
; N2 =

(0:2; 0:7; 0:3)

x
; N3 =

(0:5; 0:4; 1)

x

Let f be a function de�ned by

(0:4; 0:5; 0:8)

x

f! (0:8; 0:6; 0:2)

x
(0:2; 0:7; 0:3)

x

f! 0:7; 0:5; 0:8)

x
(0:5; 0:4; 1)

x

f! (0:5; 0:3; 1)

x
:

Now clearly, we have

(1) hf(N1(x)); f(N1(x) [ f(Nj(x)i � f(N1(x)) � f(Nj(x)); j = 2; 3

Take the left side of the inequality (1); we have
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hf(N1(x)); f(N1(x) [ f(N2(x)i =
�
(0:8; 0:6; 0:2)

x
;
(0:8; 0:6; 0:2)

x
[ 0:7; 0:5; 0:8)

x

�
=

�
(0:8; 0:6; 0:2)

x
;
(0:8; 0:5; 0:2)

x

�
=
(0:64; 0:30; 0:04)

x
:

Also

hf(N1(x)); f(N1(x) [ f(N3(y)i =
�
(0:8; 0:6; 0:2)

x
;
(0:8; 0:6; 0:2)

x
[ (0:5; 0:3; 1)

x

�
=

�
(0:8; 0:6; 0:2)

x
;
(0:8; 0:3; 0:2)

x

�
=
(0:64; 0:18; 0:04)

x
:

Now we have two neutrosophic values with respect to f(N1(x)); that is;

(0:64; 0:30; 0:04)

x
;
(0:64; 0:18; 0:04)

x
:

The max value of these two is

maxf (0:64; 0:30; 0:04)
x

;
(0:64; 0:18; 0:04)

x
g = (0:64; 0:30; 0:04)

x
:

Thus the maximum pro�t with a neutrosophic value, N 0 = (0:64;0:30;0:04)
x is char-

acterized by a truth membership function TN 0 = 0:40, an indeterminacy member-
ship function IN 0 = 0:30, and a falsity membership function FN 0 = 0:2:
Also clearly, we have

(2) hf(N3(x)); f(N3(x) \ f(Nj(x)i � f(N3(x)) � f(Nj(x)); j = 1; 2:

Take the left side of the inequality (1); we have

hf(N3(x)); f(N3(x) \ f(N1(x)i =
�
(0:5; 0:3; 1)

x
;
(0:5; 0:3; 1)

x
\ (0:8; 0:6; 0:2)

x

�
=

�
(0:5; 0:3; 1)

x
;
(0:5; 0:6; 1)

x

�
=
(0:40; 0:36; 0:2)

x
:

Also

hf(N3(x)); f(N3(x) \ f(N2(x)i =
�
(0:5; 0:3; 1)

x
;
(0:5; 0:3; 1)

x
\ (0:7; 0:5; 0:8)

x

�
=

�
(0:5; 0:3; 1)

x
;
(0:5; 0:5; 1)

x

�
=
(0:40; 0:30; 0:2)

x
:
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Now we have two neutrosophic values with respect to f(N3(x)); that is;

(0:40; 0:36; 0:2)

x
;
(0:40; 0:30; 0:2)

x
:

The min value of these two is

minf (0:40; 0:36; 0:2)
x

;
(0:40; 0:30; 0:2)

x
g = (0:40; 0:30; 0:2)

x
:

Thus the minimum pro�t with a neutrosophic value, N 00 = (0:40; 0:30; 0:2) is
characterized by a truth membership function TN 00 = 0:40, an indeterminacy mem-
bership function IN 00 = 0:30, and a falsity membership function FN 00 = 0:2:

5. Comparison

The neutrosophic set has many applications in many �eld of science. Here we
discussed the application of neutrosophic set in decision-making problems. In this
practical application, one of the main issue is that, how to choose a suitable model.
We examined this idea in depth and used the neutrosophicmax andmin variational
inequalities.
In the real world, fuzziness is a common phenomenon and is unavoidable in

many realistic �elds. In 1965, Zadeh (1965a) suggested the idea of fuzzy sets and
developed the theory of fuzzy sets. It is used in many �elds, including fuzzy con-
trol, fuzzy optimization, fuzzy analysis of data, fuzzy time series, etc. Here are
some interesting references: (Bukley 1988a, 1989b) used possibility distribution,
(Herrera 1983) used fuzzi�ed constraints and objective functions, transformed a
fuzzy linear optimization problem to a classical one by using the structural proper-
ties of fuzzy numbers. With the development of computer science and evolutionary
computation theory, evolutionary computation methods came into play in fuzzy op-
timization problems. Razavi et, al., in (2014) discussed the fuzzy linear programing
and proposed method is to maximize or minimize the total utility of the objective
function, as an aggregated function of its intersection with the minimization and
maximization sets. Shirin in (2014) discussed the application of optimization prob-
lem which belongs to fuzzy environment. He used the fuzzy linear programming
for the setting of company production plan. However, many researchers are using
the fuzzy linear programming for the applications of fuzzy optimization. Moreover,
Cahkraborty et, al., in (2014) have proposed a new method for solving an intuition-
istic fuzzy CCM using chance operators and discussed three di¤erent approaches
to solve the intuitionistic fuzzy linear programming (IFLPP) using possibility, ne-
cessity and credibility measures. The model that presented in this paper for opti-
mization problems (maximization and minimization problems) is unique then the
methods previously developed. Here we used a max and min variational inequal-
ities to develop an algorithm for further use in optimization problems. Moreover
through this model we determined the maximum value and minimum value sepa-
rately. However our designed model is not a perfect one, it stuck with a de�ciency
of theoretical support. The concept of neutrosophic variational inequalities may be
useful for applications. Therefore it will be signi�cant for future work.

6. Conclusion

In this paper, we have introduced some new concepts of a neutrosophic set such
as neutrosophic convex set, strongly neutrosophic convex set, neutrosophic convex
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function, strongly neutrosophic convex function, the minimum and maximum of a
function f with respect to neutrosophic set, min and max neutrosophic variational
inequality, neutrosophic general convex set, neutrosophic general convex function
and min, max neutrosophic general variational inequality. We have discussed some
basic results on these new concepts. Moreover, we proposed the application of neu-
trosophic set in optimization theory. This work and further study of neutrosophic
max and min variational inequalities will give a new direction of application in the
�eld of optimization.
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