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ABSTRACT

As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to
represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. In
this paper,this article introduces an approach to handle multi-criteria decision making (MCDM) problems
under the SVNSs. Therefore, we develop some new geometric and arithmetic aggregation operators, such
as the single valued neutrosophic weighted arithmetic (SVNWA) operator, the single valued neutrosophic
ordered weighted arithmetic (SYNOWA) operator,the single-valued neutrosophic sets hybrid ordered
weighted arithmetic (SVNSHOWA) operator, the single-valued neutrosophic weighted geometric
(SVNWG) operator and the single-valued neutrosophic ordered weighted geometric(SVNOWG) operator
and the single-valued neutrosophic hybrid ordered weighted geometric (SYNHOG )operator, which extend
the intuitionistic fuzzy weighted geometric and intuitionistic fuzzy ordered weighted geometric operators
to accommodate the environment in which the given arguments are single valued neutrosophic sets which
are characterized by a membership function, an indeterminacy-membership function and a non-
membership function. Some numerical examples are given to illustrate the developed operators. Finally, a
numerical example is used to demonstrate how to apply the proposed approach.

KEYWORDS: Neurosophic set, Single valued neutrosophic weighted geometric (SVNWG)
operator, Single valued neutrosophic weighted arithmetic (SVNWA) operator.
Sectionl. Introduction

To handle with imprecision and uncertainty, concept of fuzzy sets and intuitionistic fuzzy sets
originally introduced by Zadeh (Zadeh 1965) and Atanassov (Atanassov 1986), respectively.
Then, Smarandache (Smarandache 1998) proposed concept of neutrosophic set which is
generalization of fuzzy set theory and intuitionistic fuzzy sets. The neutrosophic sets may express
more abundant and flexible information as compared with the fuzzy sets and intuitionistic fuzzy
sets. Recently, neutrosophic sets have been researched by many scholars in different fields. For
example; on multi-criteria decision making problems (Liuet al. 2017a, 2017b, 2017¢c, Lin 2017,
Kandasamy and Smarandache 2017) etc. Also the notations such as fuzzy sets, intuitionistic fuzzy
sets and neutrosophic sets have been applied to some different fields in (Broumi et al. 2014a,
2014b,2015a, 2015b, 2015c¢, 2016a,2016b,2016¢,2016d, He et al. 2014a, 2014b, 2014c, Sahin et al
2015,2016,Ulucay et al. 2016a, 2016b).

This paper mainly discusses extension forms of these aggregation operators with intuitionistic
fuzzy sets, including the intuitionistic fuzzy weighted averaging operator, intuitionistic fuzzy
OWA operator, intuitionistic fuzzy hybrid weighted averaging operator, intuitionistic fuzzy
GOWA operator, intuitionistic fuzzy generalized hybrid weighted averaging operator and their
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applications to multi-attribute decision-making with intuitionistic fuzzy sets (Li 2011,Li 2010, Li
et al. 2010a Wang et al.2009, Li et al 2010b).

In this paper, we shall develop some geometric operators andarithmetic operator, such as the
single-valuedneutrosophicweighted arithmetic operator (SVNWAO), the single valued
neutrosophic weighted geometric (SVNWG) operator, the intuitionistic fuzzy ordered weighted
geometric (IFOWG) operator and the intuitionistic fuzzy hybrid geometric (IFHG) operator. To
do so, this paper is structured as follows. In Section 2, we review the weighted geometric (WG)
operator and the ordered weighted geometric (OWG) operator. In Section 3, we develop the
IFWG operator, the IFOWG operator, and the IFHG operator, and study their various properties.
In Section 4, we give an application of the IFHG operator to multiple attribute decision making
with intuitionistic fuzzy information. Concluding remarks are made in Section 5.

Section 2. Preliminaries

To facilitate the following discussion, some concepts related to neutrosophic set and single valued
neutrosophic set are briefly introduced in this section.

Definition 2.1(Smarandache 1998) LetXbe a space ofpoints (objects), with a generic element in
X, denoted by x.An NS Ain Xis characterised by a truth-membership functionT,(x), an
indeterminacy-membership functionl, (x) and a falsity-membership function F, (x).T, (x), I (x)
and F, (x) are standard or non-standard subsets of]07, 17 [that is,
Ty(x): X =]07,1%[I,(x): X =]07,1%[and F,(x): X = ]07,17 [ There is no restriction on
the sumof T, (x), I,(x) and F, (x), therefore

07 < sup T, (x) + sup L(x) + sup Fy(x) 37

Definition 2.2(Smarandache 1998)The complement of a neutrosphic set Ais denoted by A®and is
defined as

=1Lk, L=01loLk, =010/ K
forevery elementxinX.

Definition 2.3(Smarandache 1998) A neutrosophic set Ais contained in the other neutrosophicset
B,A € B if and only if

inf Ty(x) < inf Ty(x), sup Ty(x) < sup Ty(x), inf Li(x) = inf Ig(x), supl,(x) =

sup Iz(x), inf E,(x) = inf F;(x) and supF, (x) = sup F;(x)

for every xink.

Definition 2.4 (Smarandache 1998) The union of two neutrosophic sets Aand Bis a neutrosophic
set € denoted by € = A UBE, whose truth-membership, indeterminacy-membership and false-
membership functions are related to those of Aand Eby

T, (x) = T,(x)BTz(x) S Ty(x) @ Ty(x)
I(x) = 1,(x) © I (x)and
F(x) =F (x) O Fy ()
for any xinX.
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Definition 2.5 (Smarandache 1998)The intersection of two neutrosophic sets Aand FEis a
neutrosophicset C, denoted by € = A n B, whose truth-membership, indeterminacy-membership
and false-membership functions are related to those of Aand Bby

To () = T,(x) © To()

I-(x) = I, (x) @ Ig(x)and

F(x) = F, (x) O F ()
for any xinX.

A single valued neutrosophic set (SVNS) is an instance of a neutrosophic set, which can be used
in real scientific and engineering applications (Ye 2014)

Note that the set of all SVNSs on R will be denoted by A.

Definition 2.6 (Wang et al. 2010)Let X be a universe set, with a generic element in X denoted by
x. A single valued neutrosophic set (SVNS) Ain Xis characterized by truth-membership
functionT, (x), indeterminacy-membership function I, (x)and falsity-membership function E; (x).
For each element xink, T,(x),I,(x),F;(x) € [0,1]. Therefore, a SVNS A can be written as
follows:

A = {{x, Ty (x), (x),Fy (x)) |x € X}.
For two SVNSs 4, B, Wang et al. (Wang et al. 2010)presented the following expressions:
(1) A € Bifand only if Ty(x) < Ty (x), I, (x) = I5(x) and F, (x) = F;(x) forevery x € X.
(2) A=FBifandonlyif ASEFand B S A.
(3) A4° = {(x, E, (2),1 — L(x), Ty(x))x € X},
A SVNS A4is usually denoted by the simplified symbol A = {T,(x),I,(x),F,(x))}or any
x € XFor any two SVNSs Aand B, the operational relations are defined by Wang et al. (Wang et
al. 2010).
(DAUB = {max(T,(x),Tg(x)), min(L,(x), I5(x)), min( F, (x),Fy (x) ))for every x € X.
(Q)AUB = {min[TA (x),Tg(x) ), max[IA (x), Ig(x) ), max[ﬂ_ (x),Fy (x]))for every x € X.
(3)A X B = AT, (x) 4+ Tg(x) — T (x). Ty (x), 1, (x).15(x),Fy(x). Fg(x))for every x € X.
For a SVNS Ain X, Ye (Ye 2014) called the triplet {T,(x).I,(x),F, (x)) single valued
neutrosophic number (SVNN), which is denoted by & = (T}, I, F; ).
Definition 2.7(Ju 2014)Let @ = (T,I,F)be a SVNN, then the score function and the

accuracyfunction of Aare determined by Eqgs. (1) and (2), respectively
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S(@=(T+1—-1+1—-F)/3 (1)
V(@)= (T+F+1-1)/3 2)

Theorem 2.8(Ju 2014) Let& = (T,,1,, F,)and b = (T,,1,. F, )be two SVINNs, then the comparison
laws between them are shown as follows:

1-If (&) > S(b), then & = b;
2-1f 5(&) < S(b), then & < b;
3-1f S(&) = S(b), then:

-

(1) If (&) =V (b), then &
() If (&) < v (b), then &
() If (@) =V (b), then &

Mo
SRR

-

Definition 2.9(Chi 2013) Let@ = (T,I,F), @, = (Ty,I;, F; Yand @, = (T, I,, F, }be any threesingle
valued neutrosophic numbers, and = (greater than) 0 , then some operational laws of the
SVNNs are defined as follows.

(NYa, ®a,=(Ty+T, =Ty XT,, I, XI,,F; X F,};

QR a, ®a,=(TyXT,, ., +1, -1, XL,,F; + F, —F, X K

3)Ad=(1—(1—- 1), I*F*),4 = 0

@dt =T 1-(1-DY1-01-F)%, 1>0.

Obviously, the above operational results are still SVNNs. Some relationships can be further
established for these operations on SVINNs.

Section 3. Arithmetic operators and Geometric operators of the SVIN5

3.1 Arithmetic operators of the SVNS

Definition 3.1.1 Letd; = (&, ¢, {;) EA(JEL,). Then SVNS weighted arithmetic
operator,denoted by, is defined as;

n

Yoot A" MY (A, Ay, A) = Z w, A,
=1

where, w = (wy, w5, ..,w, )T is a weight vector associated with the 1, operator, for
everyj € I,such thatw; € [0,1] and Zigw; =1

Theorem 3.1.2 Let 4; = (&, @, ;) EA (jEL, ) (wy,w,,...,w, ) be a weight vectorof 4;, for
everyj € I,In such that w; € [0,1] and¥?_, w; = 1.Then, their aggregated value by using
i, ,operator is also a SVNS and
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n g n W n wj
E_;.‘:l f_q_l.- E_;u‘=1 {p—‘l_." E_;u‘=1 qA_,-'

wmiﬂljﬂg, "'JA?!} = {

Wi ! W Wil IeE
1+ M8y 2- [Bey) M0y |2 - [B, 00 -

-
10

Proof: The proof can be made by using mathematical induction on n as; assume that,

A, = (& 9., )and4, = (&, ,@, ,{,)be two SVNS then, for n = 2, we have

2 LW 2 wj 2 AW
EJ.':1 'f.q; % =1 '-'FA Ny EJ-'=1 {:1;

Pooldy, A4 ) = ¢

_ Sa i ot on i+ e
GG 2o e — e ] 2= [+ O - 0

If holds for n = k, that is

1+ Hfzifz.f [Ef 1@.4 —TIZ 1-rpA ] 2— [Ele {:j I {E]?

Wi w;
E_J;:lf_q; E;F:l‘PA-J E;{ 1@_
ﬂJM(AlJA:J"'JAk}: { I 1..-;_' k % % %
1+ H}'=lfA_|-' E_;l 1"rpA l_[_; 1fﬂA ] 2_[2}':1{4 H_;, 1{»-1 ]
then, when n = k + 2; by the operational laws in Definition 2.9, I have
Ek 151""-.1" + f“‘?{+_ f“ e+
J=1>4; Ap Ay
ﬂ’m"zﬂl:ﬂz: ---:AkJAk+1JAk+2} = k" wj = Wi K::{ﬂ ’
1+ [(H}.zlfﬂj ) IfA?f+‘_ 'f—‘l?ﬂz ]
Wi wy
(E_; 1'-?'-:'A )+ @A'{T '-’F'A:::
i Wirgs W i Wi W3 !
[(E} 1'-’#'_4 )+fp_4,fj Pap — (l‘[}:l @Aj) Py A;Jf]
Wh+1 Witz
(E 1{‘1 ) —‘1»{+ + {Ar{+z \
i Wi W ,H._ 1.-'. T4z Wh+s =Whsz
2= [(E_?ﬂ q—"’l_." ) H {—‘1»{+ —‘1»{+z - (l_[IL 1 {A ) {—‘1»{+ {Ar{+zi|
k+2 1'1.' k+2 Wi k+2
(4,.4 AAH]{El Elﬂ Elqﬁ )
YaolAr Az A Agig- Ag ) = i - ;
1+ n +2 ‘:r.q "o I:En+1 (P;J Hn+1 (p;)] [EHL ':7.4 HHL ':'.4 ]

Example 3.1.3 4, = (0.3,0.2,0.5), 4, = (0.1,0.5,0.7), 4; = (0.7,0.1,0.8)and
. = (0.4,0.2,0.5) w = (0.3,0.4,0.1,0.2)7

L 1'f“r L 1?3"” L 10,

Wy

1:'-"@":—"11:—"12:1’13:—"14}: ( wy ¥

1+ l_[4 1-.;:

_, 03%%401% 4+0.7% + 04%2
T 14 0.3%3 % 0,194 % 0.791 x 402’

89

- - )
[E;} 19, ~ H_?:ﬂﬁ;] [Ej 1':7 ' — H;} 14, r]
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0.293 +0.5%% + 0,101 + 0,202
2 —[(0.2°3 + 0.5%% + 0.1%T + 0.2°%) — (0.2%% x 0.5%* x 0.1 x 0.292)]"

0.5%2 +0.7%% + 0.8%1 + 0.5°2
2 — [(0.5%3 + 0.7°* + 0.8%1 + 0.5%2) — (0.5%% x 0.7%% x 0.8%1 x 0.592)]

)

= {2.365,—4.632,—3.800)

Definition 3.1.4 Letd; = (&, @, {;)€A (JEL,) w=(w;,w,,..,w, ) .Then SVNS ordered
weighted arithmetic operator denoted by

oo’

is defined as;
lﬂaﬂo : A" = Ariﬂoﬂo (A1’A2 ’ ""An ) = Z_?=1W_J'A}"

where(w, , w5 , ..., w,, )7is a weight vector associated with the mapping ,,,; which satisfies the
normalized conditions: w,, € [0,1] and ZP_,w, =1 ; B, = (& P ("}-} is the k-th largest of the
nSVNSwhich is determined through using ranking method in Definition 2.7.

It is not difficult to follows from Definition 3.1.4 that

1 Wi 1 Wi 1 A
E_?:j_ EBJ- _?:1‘?3'3; E_?:l(_ﬁ;

_ )
g =1 1 Wi 1 W 1 oh
1+ H.ii"‘=l"fBJ,- 2 - [Ei-"!=1¢';]- - n_?—j. ‘P;J-] 2- [E_Lj_(‘ - n_?:j_(;j- ]

d = BJ’

Woao(By. By, Bpd =

which is summarized as in Theorem 3.1.5

Theorem 3.1.5 Letd; =({, ¢, {;}) €A (jEI,). ThenSVNS ordered weighted arithmetic
operator denoted by ¥,,,, 1s defined as; Yogo + A7 = A

1 Wi 1 e Wi 1 A
E_?:j_'f_ﬁj _?:1 ‘F'BJ-L E_?:l(_ﬁ;

- )
1 = W 1 =]’ 1 W 1 W
1+ n.ii"‘=1"fB‘.- 2— [2?:1‘?5';}- - ]-_-[_ii"‘—i ‘F';J-] 2— I:E_Lj_(;}- - H_L,_(;}_ ]

Waoao(By. By By) =

wherew,, € [0,1]and Xiw, =1B,={,4,)is the k-th largest
ofthen SVNS 151'}- (j € I, )which is determined through using ranking method in Definition 2.7.

Proof: Theorem 3.1.5 can be proven in a similar way to that of Theorem 3.1.2 (omitted).

Example 3.1.6 4, = {0.1,0.2,0.4), A, = {0.2,0.5,0.3), Ay = {0.5,0.2,0.1) and
A, = (0.5,0.1,0.1)w = (0.1,0.4,0.3,0.2)7

T, +1—-I, +1—F,

s(4) = 3
0141-024+1-04
s(A,) _( - ) _ 0.5
0241-05+1-0.3
s(A,) _ ¢ 5 )_ 0.466
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(05+1—024+1—0.1)

s(A;) = 3 =0.733
05+1—-01+1-0.1
s(A,) = ( 3 ) = 0.76€

It is obvious thats(A,) = s(A;) = s(A; ) = s(A;) . Hence, according to the above scoring
function ranking method, it follows that A, = A; = A, = A, . Thus, we have:

B, =A, =1(05,0.4,0.7)
B, =A;, ={0.6,0.4,0.5)
B, = A, = (0.1,0.2,0.4)
B,=A, = {(0.7,0.2,0.9)

n W no =W n Wi
E_i'=1. EBJ' _i.=1(P.i5“; _i.=1(.i5“;

_ )
1 =1 1 awi ] 1 W 1 AW
1+ n.ii"‘=l"fB‘,- 2 - I:E_?=L(P;J- - n_?—j_ ‘F';J-] 2 - [E_?=1(_13J- - n_?:j_(;j]

Woap By By By) =

3 EI.SD"' + UIﬁDA + EI.'J.D'! + U.?D': U.‘]:'D'l + U.‘]:'DA + Ulzﬂ'.! + U.ED':
T 140590 % 0,64 % 0,102 % 0.7%272 — [(0.40-1 +0.4%4 4 0.202 4 0.202) — (0.401 % 0.404 x .20 % 0.202)]

0.7" + 0.5"* + 0.4%? 4 0.0%
2 — [(0.7"1 £ 05" + 0.4 £ 0.0%) — (0.7% x 0.57F x 0.4%° x 0.072)]

)

=(2.320,—4.931,—4.984)
Definition 3.1.7 Let A, = (¢, 0, {,) €A (jEIL)w = (w,w,, ..,w, ) .Then SVNS hybrid
ordered weighted arithmetic operator denoted by 1, ., is defined as;

whﬂﬂ t AT o ﬁr whﬂo(}llrﬂzr ...,an] = Z W_;I'BJ'

=1

where w = (wy,,w, , .., w, )T .w, €[0, l]andZ;?:l w; =1 is a weight vector associated with the
mappingy;, ;.. B, =nw4, here n is regarded as a balance factorw = (w,, w,, .., w,)7is a
weight vector of the 4, € A (j € ) B, is the k-th largest of the n SNS B, € A (j € I,,) which are
determined through using some ranking method such as the above scoring function ranking
method.

Note that if w = [1,{“ , 1,.4”, ey 1fﬂ)r , then W, ., degenerates to the U, ..

Theorem 3.1.8 Let 4; = (£, 9, {;) EA (jE L) w= (wy,w,,..,w, ) be a weight vector of 4;
with w; € [0,1] and E?:l w; = 1. Then their aggregated value by using ,,, operator is also a

SVNS and Yhoa * A" = A
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n g n =WJ mn
E_;.':j_ fgj. E_;l'=1 '{pﬁ_l.- E}'zl qﬁ_,-'

whoE(El L BE LRLY En} = { Wi W —wil W W }
1+ H_?:l fg; 2— I:E_?zlfﬂg.'l - E:lfﬂgj'l] 2— I:E_?:j_{_ﬁ; - H_?:j_{g;]

)

whereB; = (£, @;,(;) is the k-th largest of the n SNS B, = nwA,(j € I,) which is determined

through using some ranking method such as the above scoring function ranking method.
Proof : Theorem 3.1.8 can be proven in a similar way to that of Theorem 3.1.2 (omitted).

Example 3.1.9 4, = {0.2,0.1, 0.3}, A, = {0.8,0.5,0.9), Ay = {0.2,0.4,0.5) and
A, ={0.3,0.7,0.2) w= (05,0.2,0.1,0.2)Tw = (0.4,0.1,0.2,0.3)

B, = 4% 0.44; = (1 — (1 — 0.2)%%04 0,1**% 0.3%"%) = (0.300,0.025,0.145)
B, =4%0.14, = (1 — (1 —0.8)%% 05" 0.9%%!) = (0.474,0.757,0.958)
By =4 X 024; = (1 — (1 —0.2)#02 0.4**%2 0.5%%%) = (0.163,0.480,0.574)
By=4 X 034, = (1 — (1 — 0.3)#x03 0,7%%%3 02%03) = (0.348,0.651,0.144)

we obtain the scores of the Simplifiedneutrosophicsets B, (j = 1, 2,3, 4 Jas follows:

L+1-1,+1—-F

s{4) = 3

. (0300 +1—0.025+1 — 0.145)

s(B,) = 2 = 0.709
. (0474+1—0.757 +1 —0.958)

s(B,) = 2 = 0.252
. (0.163 +1 —0.480+1 — 0.574)

s(By) = 3 = 0.369
. (0348 +1—-0.651+1—0.144)

s(B,) = 2 =0.517

respectively. Obviously, 5(B,) = s(B,) = s(B,;) > s(E,).Thereby, according to the above
scoring function ranking method, we have:

B, = B, = (0.300,0.025,0.145)
B, = B, =(0.348,0.651,0.144)
B, =B, =1{0.163,0.480,0.574)
B,=B,=(0.474,0.757,0.958)
by 'f_;j Zia ‘5;;. i ':7_;;

Wnoo (By By, By) =1 =7 - —. - —)
1+ ]:[i"_ i _ n W _Tn —h,l] _ [ n W _Tn ‘h,l]
J—lfgj 2 E_i'=j_ ':FIBJ ]-_-[Fl':j_qggj. Z E_;':lfgj. ]-_-[_i'=1 EB_I

0.300%° + 0.348% + 0.163%! + 0.474%°
1+ 0.300%° x 0.348™ % 0.163%! x 0.4740%

#’hﬂ,ﬂ(gl 1 EE 1 Eﬂ.l Eﬂ-} = {
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0.025%% + 0.651%* + 0.480% + 0.757%2
2 — [(0.025% 4 0.651%2 + 0.480%1 + 0.757%2) — (0.025%5 x 0.651%2 x 0.480%! x 0.757%2)]

0.145% + 0.144% + 0574% 4+ 0.958%¢
2 — [(0.145%5 +0.144%2 + 0.574%1 4+ 0.958%2) — (0.145%5 x 0.144%2 x 0.574%! x 0.9558%2)]
=(2.315,—3.582, —3.9563)

3.2. Geometric operators of the SVNS

)

In this section, three SVN5 weighted geometric operator of SVNS is called SVNS weighted
geometric operator, SVNS ordered weighted geometric operator and SVNShybrid ordered
weighted geometric operator is given. Some of it is quoted from application in (He 2014a 2014b,
2014c, Xu and Yager 2006, Wei 2010).

Definition 3.2.1 Letd; = (&, ¢, {;) € A (€ I, ) Then SVNSweighted geometric operator,

denoted by U__ , is defined as;

go
n
U, : A" AU, (4;,4,,..,4,)= | | AV
=1

where,w = (wy ,w, ,...,w, )T is a weight vector associated with the U, operator, for
everyj € I,such that, w; € [0,1]and E7_, w; = 1.

Theorem 3.2.2 Let 4, = (&, 0, {;) €A (JE L) (wy,w,,...,w, ) be a weight vectorof A;, for
everyj € L,In such that w; € [0,1]andX}-, w; = 1.Then, their aggregated value by using
U, operator is also a SVN5 and

ws W W
E_?zl fAJ—'J Z;‘E:l ‘;J_AJ_J Z_;;!: 1 (A;

W w: ]’ Wi Wi
72— [E?:l {‘1; — H?:l fAJ.-J ] 1+ n;?:l Q;JAJ 1+ njle (A;

Ugo(Ay, 4y, 4y) =

d

Proof:The proof can be made by using mathematical induction on n as; assume that,
Al = {fj_ ¥ ?91 Ll (j_:'andiqz = {f: r‘p: il (2 l}be tWO .SN.S then,
forn = 2, we have

2 W 2 Wi 2 wj
E_;l'=1 f_q_l.- E_;u‘=1 {p—‘lf E_;u‘=1 qA_,-'

Wt - Wi
1+ H_;.':j_{AJ_-J

U, (4,,4,) = { _ —
qo 1.422 2 Wi 2 wil! 2
- [Ehigy — T | 1+ e,

Car T 8a Car ¥ 0a  CalTl
L

= - 5 . N Wy Wy W
2- [ -] 1+ et en 1+ GG

If holds for n = k, thatis
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Wi i .

U,,(4,,A A) = { Eﬁzlfﬂf X fﬂA; Ejf:lfﬂ;
go W1 A2 ey At = Wi Wi W W
2 — E_J;:lf_q; - H_J;:lfA;] 1+ H_J;=1 ,{ij_-' 1+ H:{:j_{AJ:J

then, when n = k + 2; by the operational laws in Definition 2.9, | have

oW L WL 22
(T )+ 8 + £

2= (e ) e + a0 - (Mgl < < a7 ]

Ugo (4 4z s A Ay i) =

k wj Wiry 1 Wirn k wj Wit n Wirn
(E_;.‘:l @AJ.- )+ {p—‘lkw_ + {p—‘l?nz (E-?':lqﬂj ) + {A?{+‘_ + {A?{+z
k wj Wirps Wiz k Wy Wit Witz
1+ (H}'=1 ‘ﬂA_I-' ) * ‘ﬂA;H-_ * ‘ﬂA;ﬁ.z 1+ (H}:iq—‘l_,-‘ ) t q—‘ikw_ + qA?{+:‘.
k2 WS k42 Wi k+2 -WF
E_;‘:l fA_I-' j=1 '{pA_f E_;l'=1 qA_I-'

U,o(A1, Az, 0 A ArcspArss) = _ _ )
go 102 gy APy A0 A 42 +3 W] 2 Wi 42 Wi k42 =W
2 - [ =1 fAJ-'J - l_[_;l':j. fﬂ;] 1 + H}':j_ prJ_.J 1 + H}':i qAJ-'J

Example3.2.3 4, = (0.4,05,0.6), A, = (0.8,0.9,0.3), 4, ={0.8,0.5,0.3) and
A, = (0.7,0.6,0.5)w = (0.1,0.5,0.2,0.2)7

Wi Wi Wi
E_?zl fAJ—'.I E_:‘E:j_ fp‘q—: E_:!: 1 (AJ_..I

- ol W b Wi
72— [E?:l {‘1; — H?:l fAJ.-J ] 1+ H;?:l Q;JAJ 1+ H?:l (A;

U, (Ay, 4, , ., 4,) = (

d

iy 0.401 4 0,895 4 0.802 4 0,702
T 2 - [(04%1 +0.8%F +0.8°2 + 0.792) — (0.4% x 0.8%% x 0.8%2 x 0.7°2)]’

0.5%1 +0.9%% +0.5%2 + 062 0.6 +0.3%5 +0.3°2 + 0,502
1+ 0.5%% x 0.9%% x 0.5%2 x 0.6%2" 1 + 0.6%1 x 0.3%5 x 0.3%2 x 0.592

)

= (—3.818,2.155,2.326)
Definition 3.2.4Let 4 ={(&, ¢, {;) €A (JEL) w= (wy.w,,..,w, )".Then SVNS ordered
weighted geometric operator denoted by U,_,, is defined as;
)
Uppot A" = AU, 0 (Ay 4y, Ay) = 1_[ B,*i

=1

where(wy ,w, ,...,w,, )7is a weight vector associated with the mapping U,gq Which satisfies the
normalized conditions:w,, € [0,1] and Z7_,w, = 1; B, = (& @ ("}-} is the k-th largest of the
nSVNSwhich is determined through using ranking method in Definition 2.7.

It is not difficult to follows from Definition 3.2.4 that
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s W W
2?21 fBJ-J Z_?:l QJ_E; Z;:: 1 (Bj.l

Uogo (BlFBE po ’Bn) = W swi] ! Wit FW
22— [E_?:j_fﬂ; - ]-_[}':1{3;] 1+ H_?ZIQJE‘J 1+ H_?zlqﬂ;

J

which is summarized as in Theorem 3.2.5.

Theorem 3.2.5 Letd; = {f}.,g:}., { }.} €A (jeIl,). Then SVN5 orderedweighted geometric
operator denoted byU, ,,, is defined as; Upgo 1 A" = A

s W W
2?21 fBJ-J Z_?:l QJ_E; Z;:: 1 (Bj.l

2— [Ej,Lﬁ;f—H;&ﬁ;ﬂ L+ Mz &) 14 IG5

U,g0(B1,By, B = (

wherew,. £ [0,1] and T—yw; = 1B; = (& B ("}.}is the k-th largest of

then SVNS A; (j € I,)which is determined through using ranking method in Definition 2.7.

Proof: Theorem 3.2.5 can be proven in a similar way to that of Theorem 3.2.2 (omitted).

Example3.2.64, = (0.2,0.4,0.3), 4, = (0.7,0.2,0.9), 4, = (0.5,0.4,0.7) and
A, = (0.6,0.4,0.5) w = (0.6,0.1,0.1,0.2)7

T, +1-1, +1 —F
s(4) =4 . 4

(02+1-04+1-03)

s(A,) =

3 0.5
S(A) = (0.7+1— c;z +1—0.9) 0533
s(a) = (05+1-— u; +1-0.7) _ 0466
s(a) = (06+1— u; +1-0.5) _ 0566

It is obvious thats(A,) = s(A,) = s(A; ) = s(A;) . Hence, according to the above scoring
function ranking method, it follows that A, > A, = A; = A, . Thus, we have:

B, =A; =(0.5,04,0.7)
B, =A, =(0.6,0.4,05)
B, =A, ={0.2,0.4,03)
B,=A, = {(0.7,0.2,0.9)

SW W FWj
Z_?Zl fBJ-'J Z_?:l QJ.E'J-'J Z?: 1 ')FBJ:J

Uogo (BlFBE B ’Bn) = W swi] ! ~Wi ! Wy
2 - [Zr &) - T, &) 1+ Ty gy 1+ T )

J

. 0.506 + 0,601 4 0.201 4 0,702
© 2 —[(0.5%% + 0.6%1 + 0.291 + 0.7%2) — (0.5%¢ x 0.6%1 x 0.2%1 x 0.7%2)]’

95



Florentin Smarandache, Surapati Pramanik (Editors)

0496 + 0401 +0.4%1 + 0202 0.7%€ +0.5%! +0.3%1 + 0.9°2
1+ 0.4%% x 0.4%1 X 0.4%1 x 0.2%2"1 + 0.7%6 x 0.5%T x 0.3%1 x 0.992

)

=(—3.818,2.310,2.252)

Definition ~ 3.2.7Let A, = (¢, @, {;) € A(j € I)w = (wy,w,, ...,w, )" . ThenSVNShybrid

ordered weighted geometric operator denoted by U, ,,, is defined as;

n ..
Upogt A" = AU (4.4, ..,4,) = 1_[ B,
=1
where w = (wy,w;,...,w,, )".w; € [0, 1landX?_, w; =1 is a weight vector associated with the
mappingUy,, ;. B - = nwA_ here n is regarded as a balance factorw = (w,;, @y, ..., w, )Tis a weight
vector of thed; €A (j€ I )Bjis the k-th largest of the nSVNS E"J- € A (j € I, )which are

determined through using some ranking method such as the above scoring function ranking
method.

Note that if w = [1,’“ . 1,{”, s 1,’“)? , then U, _ - degenerates to the U

hog hog:

Theorem 3.2.8 Letd; = (&, ¢,,{;) € A(j € I,)w = (wy, Wy, .., w,, ) be a weight vector ofA;with
w; € [0,1]and X7%_; w; = 1. Then their aggregated value by using Uy, operator is also a SVNS

and Unog * A" = A

= W =
E_?zl fg:l ::1 ‘;JE_J ::1 (E:J
4 4 4

2 — [E-?:l fﬂ_jj _ ]__[-?;:1 EE_:J] 1+ HE::L (?B—JJ 1+ HE:i t:E_'JJ

whereB; = (£, @;, {;) is the k-th largest of the n SVNS B, = nwA, (j € I,) which is determined
through using some ranking method such as the above scoring function ranking method.

Proof : Theorem 3.2.8 can be proven in a similar way to that of Theorem 3.2.2 (omitted).

Example 3.2.9 A; =(0.2,0.7,0.6), A, = (0.3,0.5,0.8), A; = (0.2,0.9,0.6)and
A, =(0.2,02,0.4) w= (0.1,0.5,0.1,0.3)Tw = (0.4,0.2,0.2,0.2)

B, = 4% 0.44; = (1 — (1 — 0.2)%<04 0.7*%% 06%"%) = (0.300,0.565,0.441)
B, =4x 024, = (1 — (1 —0.3)%02 05" 0.8%%%) = (0.248,0.574,0.836)
B, =4x 024, = (1 —(1—0.2)%#02 0.9%02 0.6¥0%) = (0.163,0.919,0.664)

By=4x 024, = (1 — (1 — 0.2)#x02 02**%2 04%%%) = (0.163,0.275,0.480)
we obtain the scores of the single-valuedneutrosophicsets B, (j = 1, 2,3, 4 Jas follows:

S(A) = (Ty +1 -1, + 1 —F)/3
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(030041 —0.565+1 —0.441)

s(By) = 3 =0.431
. (0.248+1—0.574+1—0.836)

s(B,) = 3 =0.279
. (0163 +1—0.919+1 — 0.664)

s(B3) = 3 =0.193
. (0.163+1 —0.275+ 1 — 0.480)

s(B.) = 3 = 0.469

respectively. Obviously, s(B;) = s(B,) = s(B,) = s(B;).Thereby, according to the above
scoring function ranking method, we have:

, = B, ={0.163,0.275, 0.480)
, =B, =1(0.300,0.565,0.441)
' )

Dol o)

B, =B, =(0.248,0.574,0.836
E4 =H; = {0.163,0.919,0.664)
=L W W
_ _ Lima &y k=1Pg k=15
Uhog[glr‘gzr""gnj = { n W) - n Wil n J—""'_."’ n J“""j'
2— [z}:l FE I 5 ] 1+ G, 07 1+ TG Gy

Uhag(ElJ EE ! EEJ Eﬂ})

=

0.163%1 + 0.300%% + 0.248%! + 0.163°%3
2 —[(0.163%* + 0.300%5 + 0.248%1 + 0.163%%) — (0.163%* % 0.300%5 x 0.248% x 0.163%3)]

0275 +0.565"° + 0574 +0919%*  0.480%' +0.441°° + 0.836%* + 0.664°°
14+ 0.275" % 0.565%° %0574 % 0.919%" 1 + 0.480%! x 0.441%° x 0.836"! x 0.664"3

=(—4.705,2.206,2.252)

Section4. Single valued neutrosophic sets and their applications in multi-criteria
groupdecision-making problems

There is a panel with four possible alternatives to invest the money (adapted from Herrera 2000):
(1) x4is a car company; (2) x,is a food company; (3) xzis a computer company; (4) x.is a
television company. TheinvestmentCompany must take a decision according to the following
three criteria: (1) u4is the risk analysis;(2) it,is the growth analysis; (3) u5is the environmental
impact analysis; (4) ugsocial political impactanalysis. The four possible alternatives are to be
evaluated under the above three criteria by correspondingto linguistic values of SVNSs for
linguistic terms (adapted from Ye 2011), as shown in Table 1.
h Uz U3 Ly

(0.3,0.2,0.5) (0.1,05,0.7) (0.7,0.1,0.8) (0.4,0.2,0.5)
11{(0.2,0.7,0.6) (0.3,0.5,0.8) (0.2,0.9,0.6) (0.2,0.2,0.4)
? (0.4,05,0.6) (0.8,09,0.3) (0.8,0.5,0.3) (0.7,0.6,0.5)
%, (0.2,04,0.3) (0.7,0.2,09) (0.5,0.4,0.7) (0.6,04,0.5)
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Definition 4.1 :Let X = (x;,%,, ..., x,,) be a set of alternatives, U = (uy,u,, ..., u, Jbe the set of
attributes. If a;; = (§;;, @, {;;) €4, then

Uy Uy Uy
X 9y Gyg Lyn
1laz; ag oy
[g. ] = X, . .
Udmxn : : :
x a’ni a’n! a’nn

is called an SVNS-multi-criteria decision-making matrix of the decision maker.
Now, we can give an algorithm of the §VNS5s-multi-criteria decision-making method as follows;
Algorithm:

Step 1. Construct the decision-making matrix [a; }-] for decision;

maEn Wy Wy
) E'l".:_':‘{, oy Ik 1{,{-.

Step 2. Compute the SVNSs (4, .45, ... 4,)

l:'i+ ]-[ﬂ-:l.‘-'-.{n [‘-"-1;9‘{ ]-T_"l-:l.;g‘h] [""-1 .{. ].:[“'-1 :,I]}and erte

the decision-making matrix [1‘1:' il and obtain the scores of the SVNSs 1, (A, 45, ... A, );
M Xh

=Wy sy Wy
. E""-:.‘-'-E: ?"'1;92: H'-I?E‘l

Step 3. Compute the SVNSsy,. (B, .5;...

1+1'[“.1c2. 2- [or. B8 -T2 [T s.-l'[f-‘.li"s"_!]}and

write the decision-making matrix[fli }-] e ; and obtain the scores of the SVNSS w,..(B, .5z ... By)s
M Xh

T 7t

| Lpmi g 'u’ﬂ- Lpmatg,

Step 4. Compute the SVNSsy,.(5, .5,.... 5,) =

l:'1+]_'["'_1.;2 [‘_.._1;9_ ]--["'-:l.i':l ] [‘-"-1 = ].:[ﬂ-:._zl]}and erte

the decision-making matrix [1‘1:' il and obtain the scores of the SVNS5sy, . (5, .5, ..... B.);
M Xh

w: W
Ef:;'.":ﬂ'.l Ef:;?-"ﬂj E}:—ifﬂj

— - withen,

;—[...j:il:‘q‘l._ ‘lI:il:‘q‘l'] 1+Hj“=1;ﬂﬂ j""]-T‘Ilﬁ—i.{,acl‘l

W

Step 5. Compute the SVNSsU,, (4, 45, 4y ) =

write the decision-making matrix[fli- }-] o and obtain the scores of the SVNSsU,, (41,43, .., 4, );
T ="

Step 6. Compute the SVNSs U, (B, .B; ... By} ={ Hf:_-i.gaj S — e HFJE’“-.}
[Tnta] ] e Moy e ]
then, write the decision-making matrix [.ﬁli }-]mm; and obtain the scores of the
SVNSsU, 40(By , Bz, e, By
Step 7. Compute the SVNSsU, (5,5, ... B,) = Tt ?aj F?j}
. hog“ 1S3 S . E}’:{-:‘;;‘:—l'["}’:il;‘;:f . 1+1TE=12‘-"5..“:J1-+1TE=1?§;

then, write the decision-making matrix[ 4, }-] o and obtain the scores of the SVN5s
TR AN
Uhog(Bl ¥ BE LRLLY Bn}’
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Step 8. Rank all alternatives x; by using the ranking method of 5V NSs and determine the best
alternative.

SectionS. Application

In this section, we give an application for the SV 5s -multi-criteria decision-making method, by
using theGy,,operator. Some of it is quoted from application in (Deli 2015, Herrera 2000, Ye
2011).

Example S.1Let us consider the decision-making problem adapted from (Ye 2015). There is an
investment company, which wants to invest a sum of money in the best option. There is a panel
with the set of the four alternatives is denoted by
X=

{x; = car company,x, = food company, x; = computer company ,x, =

television company }

to invest the money. The investment company must take a decision according to the set of the four
attributes is denotedbyli={u,=risk analysis, 1,=growth analysis, uz=environmental impact analysis,
uy= social political impact analysis}.Then, the weight vector of the attributes is
w = (0.1,0.2,0.3,0.4)7and the position weight vector is w = (0.3,0.4,0.1,0.2)"by using the
weight determination based on the normal distribution. For the evaluation of an alternative
% (I = 1,2,3,4) with respect to a criterion u; (j = 1,2,3,4), it is obtained from the questionnaire
of'a domain expert. Then,

Step 1.The decision maker construct the decision matrix [311]4“35 follows:

Uy q g Ty

.. /030205 010507 070108 040205
0] = +[020706 030508 020906 020204
Ulmxn 7| 040506 080903 080503 070605

020403 070209 050407 060405

Step 2.The values ofy, ., (4,4, , ....4, Jare compute with the help of single-valued neutrosophic
weighted arithmetic operator.

2365 —4632 -—3.800

[4,] =if 2275 —3.820 -—3.804
U gxa x; 2194 -3.793 -—-3.924
x, \2288 —4.168 —3.754

The score function values of x,,x,, x5 and x, are calculated.

L+1-1,+1—-F
3

s{4) =

23654+ 1—-1(—4632)+ 1—{—3.800
slxy) = ( 3 ) ( ) = 4265
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2275+1—-(—3.820)+1—(—3.804)

slx,) = 3 = 3.966
2194 +1—(—3.793) +1—(—3.924

sxg) = ( 3 ) ( ) = 3.970
2288+1—(—4.168)+ 1 — (—3.754

slxs) = ( 3 ) ( ) = 4.070

s(xq) = 5(xy) = s(x3) = s(x5)

Step 3.The values ofy,,, (4,4, , ..,4, ) are compute with the help of single-valued

neutrosophic ordered weighted arithmetic operator.

2305 —4967 -—3.778

12275 —3783 —3.787
x; 2176 —3.802 -—3949
Xy 2221 —4168 -—3.794

The score function values of x1,x,, x3 and x, are calculated.

s(x;) = 4350
s(x,) =3.949
s(x3)=3.97¢
s(x,) =4.061

s(xy) = s(xy) = s(x3) = 5(x;)

Step 4. The values ofy,,,(4,,4,,..,4, ) are compute with the help ofthe Single-valued

neutrosophic sets hybrid ordered weighted arithmetic operator(SVNSHOWA).

2301 5279 -—3.754

2267 —3715 —3720
x|\ 2208 —3774 —3.970
x, \2299 —4086 —3.779

The score function values of x,,x,, x; and x, are calculated.

s(x,) = 4.445
s(x,)=3.901
s(x;) =3.984
s(x,) = 4.055

s(xy) = s(xy) = s(x3) = 5(x;)

Step 5. The values of U,,,(A4;,4;,.., 4, )are compute with the help of single-valued

neutrosophic weighted geometric operator.

100



New Trends in Neutrosophic Theory and Applications. Volume II

—4.319 2280 2.205

X

| —4882 2264 2.193
x,| —3769 2178 2.294
x, \=3819 2325 2236

The score function values of x4,%,, X3 and x4 are calculated.

s(x,) =—2.268
s(x,)=—2.446
s(x;)=—2.080
s(x,)= —2.126

s(xg) = s(xy) = 5(x;) = 5(x,)

Step 6.The values of U, (4;.4,,..,4,) are compute with the help of single-valued
neutrosophic ordered weighted geometric operator.

—4.086 2299 2.201

[ —a882 2301 2210
x| ~3792 2230 2.280
x, \-3.848 2325 2.184

The score function values of x4,x,, x5 and x, are calculated.
s(x,) =—2.195
s(x,)=—2.464
s(x;)=—2.097
s(x,)= —2.119

s(x3) > s(xy) = s(x;) = 5(x3)

Step 7.The values ofU,,,(A;,4;,..,4,)are compute with the help of single-valued
neutrosophic hybrid ordered weighted geometric operator.

—4.014 2326 2.219

“t[ —5132 2377 2254
x| —3739 2251 2317
x, \—3837 2312 2.240

The score function values of x,,x,, x; and x, are calculated.

s(x,) = —2.187
s(x,)=—2.588
s(x5)= —2.102
s(x,)= —2.130
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s(xg) = s(xy) = 5(x;) = 5(x,)

Step 8.

Operators
Yo (Ag, A4, 45,4, ) | s(x) = s(x,) = s(xg) = 5(x5)
MG(Al,Aﬂ,AE,A )| s(x) = 5(x,) = s(x3) = s(x;)
th[}ll,Aﬂ,Aa,ﬂ ) s[xlj }s[xaj}s(xzj = 5(x,)
(A:L!A" ,1’113,1’:14] Stxaj :‘5(«"’543 = 5(3'51] :’S[xzj
U, 0 (Ay,4;,45,4,) | s(xg) = s(xy) = s(x) = s(x,)
U, (Ay,4;,45,4,) | s(xg) = s(xy) = s(x,) = s(xy)

Section 6. FUTURE RESEARCH DIRECTIONS

In this paper, this article introduces an approach to handle multi-criteria decision making
(MCDM) problems under the SVNSs. Using this concept we can extend our work in (1) More
effective approaches for SVNSs (2) How to determine the weight vectors for SVNSs (3) An
approach of multi-criteria decision making with weight expressed by SVNSs.

Section 7. Conclusion

This paper proposes six operator are called the single valued neutrosophic weighted geometric
(SVNWG) operator, the single valued neutrosophic ordered weighted geometric (SVNOWG)
operator, the single-valued neutrosophic sets hybrid ordered weighted arithmetic (SVNSHOWA)
operator, the single-valued neutrosophic weighted geometric (SVNWG) operator , the single-
valued neutrosophic ordered weighted geometric(SVNOWG) operator and the single-valued
neutrosophic hybrid ordered weighted geometric (SVNHOG)operator. Then an approach is
developed to solve more general multi-criteria decision making problems as straightforward
manner.
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