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Foreword

This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical
and applied contributions of researchers working in different fields of applications and in mathematics,
and is available in open-access. The collected contributions of this volume have either been published
or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf
or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars,
workshops and journals, or they are new. The contributions of each part of this volume are chronologically
ordered.

First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified
Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening
techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set
classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria
analysis with PCR, and improved PCRS and PCR6 rules preserving the (quasi-)neutrality of
(quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes.

Because more applications of DSmT have emerged in the past years since the apparition of the fourth
book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly
in building change detection, object recognition, quality of data association in tracking, perception in
robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image
fusion, coarsening techniques, recommender system, levee characterization and assessment, human
heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria
analysis, group decision, human activity recognition, storm prediction, data association for autonomous
vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST
code library for information fusion including PCR rules, and network for ship classification.

Finally, the third part presents interesting contributions related to belief functions in general published
or presented along the years since 2015. These contributions are related with decision-making under
uncertainty, belief approximations, probability transformations, new distances between belief functions,
non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes
theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence
numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy,
imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well.

We want to thank all the contributors of this fifth volume for their research works and their interests
in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for
encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions
and comments on DSmT through the years. We thank the International Society of Information Fusion
(www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the
international fusion conferences series over the years.

Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially
sponsored him to attend international conferences, workshops and seminars on Information Fusion.

Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the
French Aerospace Lab (Office National d’Etudes et de Recherches Aérospatiales), Palaiseau, France,
for encouraging him to carry on this research and for its financial support.

Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during
more than 20 years to follow and share his smart and beautiful visions and ideas in the development
of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of
Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to
attend international conferences on Information Fusion.

The Editors:

Prof. Florentin Smarandache  Dr. Jean Dezert Dr. Albena Tchamova

Tucson, USA. Orléans, France. Sofia, Bulgaria.
http://fs.unm.edu/DSmT.htm https://www.onera.fr/fr/staff/jean-dezert  https://sdp.iict.bas.bg/staff/albenaEN.html
http://fs.unm.edu/FS.htm Email: jean.dezert@onera.fr Email: albena.tchamova@iict.bas.bg

Email: smarand@unm.edu
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Modified PCR Rules of Combination
with Degrees of Intersections

Florentin Smarandache?, Jean Dezert?

“Departrilent of Mathematics, University of New Mexico, Gallup, NM, USA.
The French Aerospace Lab, ONERA/DTIS, Palaiseau, France.

Emails: smarand @unm.edu, jean.dezert@onera.fr

Originally published as: F. Smarandache, J.Dezert, Modified PCR Rules of Combination with Degrees
of Intersections, in Proc. of the 18th Int. Conf. on Information Fusion (Fusion 2015), Washington
D.C, USA, July 6-9, 2015, and reprinted with permission.

Abstract—In this paper, we propose a modification of PCRS
and PCR6 fusion rules with degrees of intersections for taking
into account the cardinality of focal elements of each source
of evidence to combine. We show in very simple examples the
interest of these new fusion rules w.r.t. classical Dempster-Shafer,
PCR6, Zhang’s and Jaccard’s Center rules of combination.

Keywords: Information fusion, belief functions, DSmT,
PCR6, degrees of intersection.

I. INTRODUCTION

In this paper, we propose modifications of the Proportional
Conflict Redistribution rule no. 6 (PCR6) [1] (Vol. 3) for
the combination of basic belief assignments (BBA’s) which
integrate the degrees of intersections of focal elements of
each source of evidence to combine. Because we consider two
possible definitions of degrees of intersections (i.e. Zhang’s
and Jaccard’s degrees) and also two normalization methods
(simplest and sophisticate), we propose four modified versions
of PCR6 rules'. After a brief presentation of classical rules
of combination and a detailed presentation of our modified
PCR6 rules, we evaluate and compare their behaviors in
different emblematic examples to guide the choice of the most
interesting one.

II. BELIEF FUNCTIONS AND CLASSICAL FUSION RULES

Belief functions have been introduced by Shafer in 1976
from Dempster’s works [2] in Dempster-Shafer’s theory (DST)
of evidence. DST is mainly characterized by a frame of
discernment (FoD), sources of evidence represented by basic
belief assignment (BBA), belief (Bel) and plausibility (P1)
functions, and Dempster’s rule of combination, denoted as DS
rule in the sequel® of combination. DST has been modified
and extended into Dezert-Smarandache theory [1] (DSmT) to
work with quantitative or qualitative BBA and to combine the
sources of evidence in a more efficient way thanks to new
proportional conflict redistribution (PCR) fusion rules — see
[3]-[6] for discussion and examples.

'The methodology proposed in this paper is general and can also be applied
to modify similarly other PCR rules. Since we consider PCR6 rule the most
efficient one [6], we focus our presentation on PCR6 only

DS acronym standing for Dempster-Shafer since Dempster’s rule has been
widely promoted by Shafer in the development of his mathematical theory of
evidence.

17

More precisely, let’s consider a finite discrete FoD © =
{61,02,...,60,}, with n > 1, of the fusion problem under
consideration and its fusion space G© which can be chosen
either as the power-set 2°, the hyper-power set® D®, or the
super-power set S© depending on the model that fits with
the problem [1]. A BBA associated with a given source of
evidence is defined as the mapping m(.) : G® — [0,1]
satisfying m(0) = 0 and ) ,.e m(A) = 1. The quantity
m(A) is called mass of belief of A committed by the source
of evidence. Belief and plausibility functions are defined by

Bel(A)= Y m(B), and PI(A)= > m(B). (1)
BCA BNA#)
BeG® BeG®

If for some A € G®, m(A) > 0 then A is called a focal ele-
ment of the BBA m(.). When all focal elements are singletons
and G© = 2© then the BBA m/(.) is called a Bayesian BBA [2]
and its corresponding belief function Bel(.) is homogeneous
to a (possibly subjective) probability measure, and one has
Bel(A) P(A) = PI(A), otherwise in general one has
Bel(A) < P(A) < PI(A), VA € G®. The vacuous BBA , or
VBBA for short, representing a totally ignorant source is
defined as m,(I;) = 1, where the total ignorance defined as
1; éb’l U, U...Ud0, if the FoD is © = {6‘1,92,...79n}.
Since in Shafer’s book [2], the total ignorance I, is also
denoted ©, we will adopt this notation in the sequel.

Many rules have been proposed in the literature over the
decades (see [1], Vol. 2 for a detailed list of fusion rules) to
combine several distinct sources of evidence represented by
the BBA’s m1(.), ma(.), ..., ms(.) (s > 2) defined on same
fusion space G®. In DST, the combination of s > 2 BBA’s
is traditionally accomplished with Dempster-Shafer (DS) rule
[2] defined by mP¥ () = 0 and for all X # () in 2°

> li[mi(Xi)7 2

X1,...,X€29 =1
X1N..NXs=X

A 1

)= T

where the numerator of (2) is the mass of belief on the con-
junctive consensus on X . The denominator 1 — m1,...,s((/)) is a

3which corresponds to a Dedekind’s lattice, see [1] Vol. 1.
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normalization constant. The total degree of conflict m17,,,,s((2))
between the s sources of evidences is defined by

> I]max).

X1, X€29 i=1
XiN..NnX;=0

ml,-..,S((Z)) £

3)

DS rule is associative and commutative and preserves the
neutrality of the VBBA. s sources of evidence are said in
total conflict if m; (@) = 1. In this case the combination
of the sources by DS rule cannot be done because of the
mathematical 0/0 indeterminacy in (2). In DS rule, mq . +(0)
is redistributed to all focal elements of the conjunctive operator
only proportionally to their mass (i.e. without taking care of
their cardinalities). So with DS rule and with combination
of 2 BBA’s, the product mi(X7)ma(Xs) is transferred to
X1 N Xo = X only, no matter how the ratio between the
cardinality of X and X; U X, varies. This DS principle of
redistribution has been questioned by Zhang in [7] and Fixsen
and Malher in [8] because it does not discriminate the case
where XU X5 is large but X1 M .X5 is small with respect to the
case where X; U X5 is small but X; N X5 is large. To palliate
this problem, Zhang proposed in 1994 a modified version of
DS rule [7] including a measure of degree of intersection of
focal elements. The general formula of this modified DS rule
is defined by m{’ () = 0 and for all X # {) in 2°

D(X1,..., Xo) [[mi(x0),
i=1

“
where D(X1,...,X;) denotes a measure of the degree of
intersection between the focal elements X, X, ... X, and

where K 1]:,)...,5 is a normalization constant allowing to get
> xesemi. o(X) = 1. Because the measure of degree of
intersection D (X7, ..., X;) can be defined in different ways,
this yields to different versions of the modified DS rule above.
In [7], Zhang suggested to define D(X7,..., Xy) as

2 |X1ﬂX2ﬂ...ﬂXS|
| X1 |- [ Xa] o [ X]

where |X; N Xo N ... N X,| is the cardinality of the in-
tersection of the focal elements X7, Xs,..., X, and |X1],
| X3|, ...|Xs| their cardinalities. Replacing D(X1, ..., X;) by
D?(X1,...,X,) in the formula (4) defines Zhang’s Center
Rule (ZCR) of combination [7], denoted m{“%(.) in the
sequel. The normalization constant of ZCR is denoted K 1Z CIE

If we use Jaccard’s index as measure of the degree of

intersection [9] which is defined by

a |X1ﬂX2ﬂ...ﬂX5|
T XiUXa UL UX]

D?(Xy,...,Xs) (5)

D7 (X1,...,X,) (6)

then we obtain Jaccard’s center rule (JCR) of combination,
and we denote it m{“* (), in replacing D(X1,...,X,) by
D’ (X1,...,Xs) in the formula (4). The normalization con-
stant of JCR is denoted K{“". ZCR and JCR rules are partic-
ular instances of Modified DS rule (MDS) proposed by Fixsen
and Mabhler in [8]. ZCR and JCR are commutative but not

idempotent. It can be proved that Zhang’s degree is associative
that is DZ(Xy,Xo,...,Xs) = D?(Xy,D?(Xo,...,X,)),
whereas Jaccard’s degree is not associative. If one combines
three (or more) BBA’s and there is no conflicting mass, then
ZCR is associative, whereas JCR is not associative. If there is
conflicting masses, then ZCR is still associative, but JCR is
not associative. Zhang’s and Jaccard’s degrees pose a problem
because ZCR and JCR become strictly equivalent with DS
rule when the cardinality is 1 for all relevant sets, or when
|X1 n X2 n...N XS| = |X1| . |X2| C et |XS| in the
circumstance of conflicting evidence. Therefore, it inherits the
same limitations as DS rule — see example 2 in Section V.
The doubts of the validity of DS rule has been discussed
by Zadeh in 1979 [10]-[12] based on a very simple example
with two highly conflicting sources of evidences. Since 1980’s,
many criticisms have been done about the behavior and the
justification of such DS rule. More recently, Dezert et al. in
[3], [4], [18] have put in light other counter-intuitive behaviors
of DS rule even in low conflicting cases and showed serious
flaws in logical foundations of DST [5]. To overcome the
limitations and problems of DS rule of combination, a new
family of PCR rules have been developed in DSmT framework
[1]. In PCR rules, we transfer the conflicting mass only to the
elements involved in the conflict and proportionally to their
individual masses, so that the specificity of the information is
entirely preserved. The general principle of PCR consists: 1) to
apply the conjunctive rule, 2) to calculate the total or partial
conflicting masses; 3) then redistribute the (total or partial)
conflicting mass proportionally on non-empty sets according
to the integrity constraints one has for the frame ©. Because
the proportional transfer can be done in different ways, there
exist several versions of PCR rules of combination. PCR6
fusion rule has been proposed by Martin and Osswald in [1]
Vol. 2, Chap. 2, as a serious alternative to PCRS fusion rule
proposed originally by Smarandache and Dezert in [1] Vol.
2, Chap. 1. When only two BBA’s are combined, PCR6 and
PCRS fusion rules coincide, but they differ in general as soon
as more than two sources have to be combined altogether.
Recently, it has been proved in [6] that only PCR6 rule is
consistent with the averaging fusion rule which allows to
estimate the empirical (frequentist) probabilities involved in
a discrete random experiment, and that is why we recommend
to use it in applications when possible. For Shafer’s model of
FoD*, the PCR6° combination of two BBA’s m(.) and ma(.)
is defined by m| g /°(@) = 0 and for all X # § in 2°

myg XY= DT ma(Xy)ma(Xa)

X1,Xp€29
X1NXo=X

LY mi(X)*ma(Y) | ma(X)*mi(Y) L
X Y X )"

y oy M) F (V) ma(X) Fm(Y)
XNy =0
4that is when G© = 29, and assuming all elements exhaustive and
exclusive.

Swhich turns to be equal to PCR5 formula in case of fusion of two BBA’s
only.
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where all denominators in (7) are different from zero. If a
denominator is zero, that fraction is discarded. All proposi-
tions/sets are in a canonical form [1]. Basic MatLab codes of
PCR rules can be found in [1], [13] or from the toolboxes
repository on the web [14]. The general and concise formula
of PCR6 rule for combining s > 2 sources of evidences is

PCR6
my 2

S(X) = ®)

aaaaa

where mj 2 s(X) corresponds to the conjunctive consensus
on X between s sources of evidence, which is defined by

X1,...X€29 =1
X1M..NXs=X

L

mi,2,...s(X) )

and where CRP“R6(X) is the part of the conflicting masses
redistributed back to the focal element X according to PCR6
redistribution principle, that is

1x. . Z Z

i 12,4.4,X7;keG@\X (i1,92,..i)EPS ({1
(N Xi;)NX=0
[mil (X) + mlz(X) +.ot mbk(X)]
My (X) ce My, (X)mik“ (Xik+1) cee My (Xzs)

.mil(X)_F"'+mik(X)+mik+1(Xik+l)+"'+mis(X’is)‘ 0
(10)

s—1

CRPCRS(X) L

el
Il

,,,,,

In Eq.(10), P({1,...,s}) is the set of all permutations of

the elements {1,2,...,s}. It should be observed that X;,,
Xy, . .X;, may be different from each other, or some of
them equal and others different, etc. As discussed and justified
in [6], we focus here and in the sequel on PCR6 rule of
combination rather than PCRS5, but the general formula of
PCRS rule can be found in [1], [6] with examples, and a
concise PCRS5 general formula similar to (11) is possible. Like
the averaging fusion rule, the PCR5 and PCR6 fusion rules are
commutative but not associative.

III. PCR6 RULE WITH DEGREES OF INTERSECTION

As presented in the previous section, the original versions
of PCRS or PCR6 rules of combination (as well as original
DS rule) use only part of the whole information available
(i.e. the values of the masses of belief only), because they
do not exploit the cardinalities of focal elements entering in
the fusion process. Because the cardinalities of focal elements
are fully taken into account in the computation of the measure
of degree of intersection between sets, we propose to improve
PCR rules using this measure. The basic idea is to replace
any conjunctive product by its discounted version thanks to
the measure of degree of intersection 1D when the intersection
of focal elements is not empty. The product of partial (or total)
conflicting masses are not discounted by the measure of degree
of intersection because the degree of intersection between two
(or more) conflicting focal elements always equals zero, that
isif X NY = 0, then D(X,Y) = 0. Because there are
different ways to define degrees of intersection between set
(here we consider only Zhang’s and Jaccard’ degrees), and

s})
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there are different ways to make the normalization because
of the weighted conjunctive product involved in formulas,
we come up with several versions of modified PCR6 rule of
combination. We consider in fact two main modified versions
of PCR6. The first modified version uses a classical normal-
ization step based on the division by a normalization factor.
The second modified version uses a sophisticate normalization
step as shown through the general modified PCR6 formulas.

A. Simplest modified PCR6 rule

The simplest modified PCR6 rule including the measure of
degree of intersection between sets is defined for s > 2 BBA
by mPLEF5(()) = 0 and for any non empty X € 29, by

1,2,...,s
1
m1a L (X) 2 sepperg M2, < (X) + CRTCT(X)], ()
1,2,...,s
where KPPCF6 is a normalization constant allowing to get

S veoo miSH0 (X) = 1; CRPORS(X) is the part of the

conflicting masses redistributed back to the focal element X
according to PCR6 redistribution principle and defined by

by the measure of the degree of intersection, defined by

>

X1,...X,€2°
X1N..NX.=X

D(X1,...,Xo) [[mi(X0). (12)
i=1

A similar general formula holds for the modified PCRS rule
with degrees of intersection between focal elements. For the
fusion of two BBA’s m(.) and ms(.), the modified PCR6 and
PCRS5 formulas coincide and reduce to the formula below

1

DPCR5/6
Ky,

[ Z D(leXZ)ml(X1)m2(X2)

DPCR5/6
1,2

(x) =

XlaX2€2(_)
X1NXo=X
ma (X)?ma(Y) ma(X)?m1(Y)
Ry

Depending on the degree of intersection we take (either D?
or D7), we get two versions of this modified PCR6 rule.
The result of the fusion for each version will be denoted
m{HCES () and m{ 5970 () in the sequel. ZPCR6 and JPCR6

rules® are commutative but not associative.

B. Sophisticate modified PCR6 rule

We propose here a more sophisticate modified PCR6 rule
which does not use the normalization by the division with
a normalization constant but which makes a proportional
redistribution of the non conflicting mass missing from the
discounted conjunctive rule (after including a degree of inter-
section). Before providing the general formula of this sophis-
ticate modified PCR6 rule, let’s explain how the redistribution
that we propose is done in the two BBA’s case at first for
simplicity.

6ZPCR6 and JPCR6 denote the PCR6 rules modified with Zhang’s and
Jaccard’s degrees of intersection respectively.
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Let’s suppose to have only two BBA’s m;j(.) and
mz(.) defined on the same FoD © (assuming Shafer’s
model for simplicity). When X; N Xo = X, then (1 —
D(X1, X2))m1(X1)ma(Xs2) will be transferred back to X
and Xy proportionally with respect to their masses (following
PCR5/6 principle), that is:

o B (1=D(Xy, X5))mi(X1)ma(Xs)
m1(X1) mz(XQ) ml(Xl) +m2(X2) )
whence, ()
o= (1= DX, X)Xy
m1 (X1)m3(Xz)

(1= D(X1, X2)) -

g 1 () + ma(Xa)
The formula of this sophisticate modified combination rule,
denoted” SDPCR5/6, is given by m; 5 7“"/6(()) = 0 and by

1,2
myg POy & ST D(Xy, Xo)ma (X1)ma(Xz)

aaees
m1(X)2m2(Y) mz(X)2m1(Y)
+ 2
reiesig MO ] T a0 £ mafY)
ma (X)2m2(Y)
+ YE;;{X}O - D%, Y))[m1 X) +ma(Y)
XNY#D
ma(X)*ma(Y)
T na(X) + (V)

(14)

The third sum of Eq.(14) represents the non-conflicting mass
missing from the conjunctive rule including a degree of inter-
section. As for ZPCR6 or JPCR6 rules, we can choose Zhang’s
or Jaccard’s degrees (or any other measures of degree of
intersection if preferred). The generalization of this principle
of redistribution of missing discounting conjunctive masses
yields the following general sophisticate modified PCR6 rule
of combination.

D

~~~~~~

J(X) + CRPOT(X) + MRTOT(X),
1s)
where M RPCFS(X) is the part of the missing conjunctive
masses due to discounting back to the focal element involved
in the conjunction which is redistributed according to PCR6
redistribution principle. M RP¢R6(X) is defined by

> >

»»»»»

MRPCRS(X) A

k=1 X5 Xy Xy €29\ X (i1,i2,...,ix) EPS({1,...,5})
(=1 Xi,)NX#0
k
(1=D(X,..., X, Xipyso o, Xi))) = Y mi (X)
j=1
) My (X)mlk(X)mlk+1(Xlk+1)mls(Xls)
My (X) +omy, (X) + Mgy (X’ik+1) T M (X’is )(‘16)

SZPCR6 and SJPCR6 rules® are commutative but not associa-
tive.

7S letter in this acronym stands for Sophisticate.
8SZPCR6 and STPCR6 denote the PCR6 rules modified with Zhang’s and
Jaccard’s degrees of intersection respectively.
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IV. ANALYSIS OF THE NEUTRALITY OF VBBA

When there is no conflict between BBA’s, DS, PCR5 or
PCRG6 rules reduce to the conjunctive rule which preserves the
neutrality of VBA. When there is conflict between BBA’s only
DS preserves neutrality of VBA because DS is associative. In
general, PCR5 and PCR6 do not preserve the neutrality of
the VBA if more than two conflicting BBA’s (including the
VBA) are combined altogether’. In general, the VBA m,,(.)
is not a neutral element for the conjunctive rule of combination
discounted with Jaccard’s degree of intersection when combin-
ing two (or more) BBA’s as shown in the following counter-
example. If we take © = {A, B}, with AN B =0, and m(.)
defined as m1(A) = 0.5, m;(B) = 0.3 and m,(AUB) = 0.2.
Then the result of the JCR fusion is m{S%(A) ~ 0.4167,
m{SE(B) = 0.25 and m{C (AU B) ~ 0.3333, which shows
that m{S%(.) # my(.). The VBA m,(.) is a neutral element
for the ZCR combination of mq(.) with the VBA m,(.),
because the discounted conjunctive mass for any focal element

. Xne X
X is my,(X) = %ml(X)mv(G)) = %-ml(X)-l =
Lm1(X), where n = |©|. The normalization constant equals

KZ5R =3 Lmy(X) = 1/n. Therefore, after dividing by
KEUCR, we always gets mZCf(X) = my(X) for any focal
element X of mq(.). Same property holds if we combine
three (or more) BBA’s with the VBA and even if these
BAA’s are in conflict or not. Because D?(X1,...,X,,,0) =
D%(Xy,...,X,)/|©| and m,(©) 1, the constant |©]
always simplifies in normalization step of ZCR and because
conjunctive rule and Zhang’s degree are associative. In the
general case, ZPCR6, SZPRC6, JPRC6 and SJPCR6 do not
preserve the neutrality of the VBA. This can be verified using
the simple example of the footnote no 9. More precisely, the
combination [m; @ ma & ... H m, O m,|(.) is not equal to
[m1@ma®...®m,|(.). In the very specific case when there
is no conflict between the BBA’s, only ZPCRG6 rule preserves
the neutrally of VBA because it coincides with ZCR.

V. EXAMPLES

Here we analyze the behavior of the different rules (DS,
PCR6, ZCR, JCR, ZPCR6, JPCR6, SZPCR6 and SJPCR6) in
emblematic examples to determinate which one presents the
best interest for the combination of BBA’s.

Example 1: (No conflicting case)

Let’s consider the FoD © = {A;,As,...,Ajo} with
Shafer’s model, and the following two BBA’s to combine
ml(Al) = 09, m1(®) = 01, mQ(X) = 0.9 and m2(®) =
0.1 where the focal element X of mg(.) can take the values
Al, A1 UAQ, A1UA2UA3, ..., O o.

In this case, the DS and PCR5/6 rules coincide with
the conjunctive rule of combination because there is no

9For example, if one considers ® = {A, B} with Shafer’s model, and
the BBA’s {ml(A) = a1,m1(B) = b1,7TL1(@) = 61}, {mz(A) =
az2,m2(B) = ba,m2(0) = c2, my(©) = 1}. Then [my & m2](.) #
[m1 @ ma @ my](.) (where @ denotes the PCR5 or PCR6 fusion rule)
because in m1 & mg nothing from the redistribution of the conflicting mass
goes to ignorance, contrarily to what happens in [m1 @ ma @ my](.).
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conflicting mass to redistribute because mio(0)) = 0. If
X = Aq, then mEQS(Al) = migRG(Al) =mq(A1)me (A1)+
ml(Al)mg(@) + m1(®)m2(A1) = 0.99 and mff(@)
mi§H8(0) = m1(0)m2(©) = 0.01, which is a reasonable
result since the belief in A; is reinforced because each source
does strongly support the same hypothesis A;. When X D A4,
and |X| > 1, the behavior of the conjunctive rule becomes
questionable because one always gets

mP5 (A1) = my g0 (A1) = ma (A1) (m2(X) +m2(©)) = 0.9,
mPS(x) = PCW %(X) = m1(©)m2(X) = 0.09,
m1 5(0) = fch5/6(®) =m1(0)m2(0) = 0.01.

When X — O, ma(.) tends to become a fully ignorant source
of evidence, and the combination of m;(.) with ms(.) tends
towards m;(.) because ms(.) brings none useful information
at all in this limit case. This behavior of conjunctive rule
is then conform with what we intuitively expect. However,
when | X| decreases from r = 10 to r = 2, the behavior of
conjunctive rule (and in this case DS and PCR6 rules also) is
not very satisfactory, because we obtain same results on the
mass of A; whatever the cardinality of X is. In fact, it is rather
intuitively expected that after the combination, the mass of A;
should substantially increase if the cardinality of X decreases
because m2(.) becomes more and more specific (and focused
towards A;). When mo(.) is more in agreement with mq(.),
the combination of m;(.) with ms(.) should reinforce the
belief on A; when |X | decreases, which is not what happens
with the pure (strict) conjunctive rule.
Let’s examine how ZCR, JCR rules work in this example.
Let |X| = r > 1, and » < 10. Also |©] = |4; U Ay U
..UA;p| = 10. If we compute the (unnormalized) discounted
conjunctive fusion with Zhang’s degree of intersection, we get

|41 N X]| |A1 N O]
Ap) = A X) 4+ = —Imi(A e)
mi 5 (Ar) |A1\-|X\m1( 1)m2(X) + ‘A1|.‘9|m1( 1)m2(©)
1 .
= 2(0.9)(0.9) + i(0.9)(0.1) _ 08l +0.009,
r 10 r
onXx| 1
z X:| e) X) = —(0.1)(0.9) = 0.009
m{ 5(X) |®‘.‘X|m1( yma(X) 10( )(0.9) ;
7 [©ne| 1
0) = e) ©) = —(0.1)(0.1) = 0.001.
m{ 4(0) |®‘.‘9|m1( )m2(©) 10( )(0.1)

If we compute the (unnormalized) discounted conjunctive
fusion with Jaccard’s degree of intersection, we get

A1 N O]

mi o (A1) = A, UX|m1(A1)m2(X) + mml(Al)”"@(@)
- 1(0.9)(0.9) + %(0.9)(0.1) = 0% +0.009,

mi 5(X) = :ggi:m (©)ma(X) = 1%(0.1)(0.9) =0.009 - ,

m{ (0) = :g B g: m1(0)ma () = %(0.1)(0.1) — 0.01.

After normalization of m%,(.) by K7, = %3 4 0.019, and
m{ 5(.) by K{5 = %L 40.009 - 4 0.010 we get the result
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of ZCR and JCR rules, which are

0.81

0.81
[— + 0. 009}/K1 2,

97 (A1) = [= = +0.009]/ K,

myo ]CR( 1) =

my o
mZGE(X) =0.009/KZ,,
mZ§R(0) = 0.001/K{,,

m{ G (X) = 0.009 - r/K{»,
miSR(©) = 0.01/K{.
In the limit case when r = 1 we get
mf§T (A1) = 0.988,
m#§(©) = 0.012,

m{GR(A1) = 0.988,
m{$%(©) = 0.012.
In the limit case when r = 10 we get
mf§ T (A1) = 0.90,
m{§T(©)=0.10,

m{ G (A1) = 0.4337,
m{$%(©) = 0.5263.

Clearly, one sees that both ZCR and JCR have now a good
expected behavior when | X | decreases, but only ZCR provides
also a good behavior when r = 10 because in this case one
gets m?§7(.) = m4(.) which is normal because ms(.) is the
VBA (fully ignorant source). With JCR, the result we obtain
when |X| =7 = 10 is not good because m#Z§%(.) # my(.).
Because there is no conflict, ZPCR6 rule coincides with ZCR
rule in this example, and JPCRG6 rule coincides with JCR rule.
Therefore, JPCR6 rule does not work well (at least for this
example) as explained previously. The evaluation of masses
of A; and of © after the combination of my (.) with mg(.) for
the different rules is shown in Fig. 1 and Fig. 2 respectively
and for different values of r = | X|.

m(A,) after the combination

mass of belief
°
S

®.

—*— DS(=PCR5)
—*—ZCR
—+—JCR

O SZPRCE
~ » — SJPCR6

. . . . . . . .
1 2 3 4 5 6 7 8 9 10
v =Card(X)

Figure 1. m(A1) after combination of mq(.) with ma(.).

m(®) after the combination

—*— DS(=PCR5)
—+—2ZCR
—+—JCR

©  SZPRC6
— * — SJPCR6

mass of belief
3

6
r =Card(X)

Figure 2. m(©) after combination of m(.) with ma(.).
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If we apply sophisticate normalization procedures we ob-
tain'® with SZPCR6 and SJPCR6

1 1
m$4PORS (A1) = 0.0819 + 0.81 - ~ + 0.405 - ——,
T T

1
mSZPORS(X) = 0.0819 + 0.405 -
’ T

m7 4R (9) = 0.0262,

1 1
mSIPCRO (A1) = 0.0819 +0.81 - ~ +0.405 - -,
’ T T

—1
m$LPCRO(X) = 0.009 - 7 + 0.405 -~ + (10 — 7) - 0.0081,
3 I8
m§IPER0 (@) = 0.0181 + (10 — r) - 0.0081.
In the limit case, when r» = 1 we get

m7PgPOR0 (A1) = 0.9738,
m74POR (0) = 0.0262,

mPIPORO(Ay) = 0.9738,
m7IPOR0(0) = 0.0262.
In the limit case, when r = 10 we get

mPgPOR0 (A1) = 0.5274,
m74PORS (©) = 0.4726,

m7 3P0 (A1) = 0.5274,
mPIPOR0(©) = 0.4726.

This result shows clearly that SZPCR6 and SJPCR6 rules
behave better than conjunctive rule (and so better than DS
and PCR6 rules) in the limit case when X = A; because
after the combination the mass committed to A; is reinforced
(as it is naturally expected). But the reinforcement of mass
of A; is lower than with ZPCR6 or JPCR6 rules!' based on
simple normalization because the sophisticate normalization
procedure degrades the specificity of the information. In
the other limit case when r = 10, (i.e. X = O, and ma(.)
equals the VBA) SZPCR6 and SJPCR6 rules do not work
well because clearly one has m747F6()) # m4(.) and
my3PCH0 () # my(.) also. So we at least have shown one
example where SZPCR6 and SJPCR6 are not very efficient
and consequently, we do not recommend to use them. In
summary, only ZCR and ZPCR6 (equivalent to ZCR in this
example) allow to get an acceptable behavior for combining
the two BBA’s m;(.) and mgo(.) for any focal element
X DA

Example 2 (Zadeh [10], [12]): (Conflicting case)

Let’'s © = {A, B,C} with Shafer’s model, and the two
BBA’s to combine mq(A4) = 0.9, m1(C) = 0.1, ma(B) = 0.9
and m2(C) = 0.1.

In this case, Shafer’s conflict is m1 2(0) = mq(A)(ma(B)+
ma(C)) +m1(C)ma(B) = 0.940.1-0.9 = 0.99. If we use
DS rule (2), we get mP5(C) = 1. The discounted conjunctive
consensus D(C, C)my(C)my(C) (with Zhang’s or Jaccard’s
degree) is always equal to the un-discounted conjunctive con-

sensus m1(C)mz(C) = 0.01 because DZ(C,C) = Ilglrjlg‘l =
1 and D7(C,C) = }gggi = 1. Therefore the degree of

intersection does not impact the conjunctive combination result

10Here there is no conflicting mass to redistribute which makes the
derivation more easier.

which coincide here with ZCR and JCR rule because there is no
conflicting mass to redistribute.
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and ZCR and JCR rules (4) give same counter-intuitive result
as DS rule, that is mZ§7(C) = m{GH(C) = m{P3 (C) = 1.
Because the degree of intersection does not impact the
conjunctive combination part of PCR6 rule in this example,
modified PCR6 rules (ZPCR6, JPCR6, SZPCR6 and SJPCR6)

give the same result as PCR6 rule which is mfg%/ (A) =

0.486, my 5 **/%(B) = 0.486 and m1 5 */°(C) = 0.028.

In summary, ZCR and JCR rules do not help to modify the
result obtained by DS rule in Zadeh’s example and cannot
be viewed as real alternatives to DS rule for this example.
Conversely, ZPCR6, JPCR6, SZPCR6 and SJPCR6 rule
(which coincide with PCR6 rule in this example) remain

good alternatives to DS rule.

Example 3 (Voorbraak [15]): (Conflicting case)

Let’s consider the FoD © = { A, B, C'} with Shafer’s model,
and the following two BBA’s to combine m;(A4) = 0.5,
m1(BUC) = 0.5, ma(C) = 0.5, and ma(AU B) = 0.5.

One has mq2(0) = m1(A)m2(C) = 0.25, and DS rule
gives m{’5 (A) = mP5(B) = mP5(C) = 1/3. As reported
by Voorbraak [15], this result is 'counterintuitive, since in-
tuitively B seems to share twice a probability mass of 0.5,
while both A and C only have to share once 0.5 with B
and are once assigned 0.5 individually. This counterintuitive
result comes from the fact that DS rule implicitly assumes
that all possible pairs of focal elements are equally confirmed
by the combined evidence, while intuitively, in this example
B = (BUC)N(AUB) is less confirmed than A = AN(AUB)
and C'= (BUC)NC. With ZCR and JCR rules, we get

m{§F(A) = 0.40, m{GR(A) = 0.375,
m{§"(B) = 0.20, m{SR(B) = 0.250,
m{§H(C) = 0.40, m{$R(C) = 0.375.

Contrarily to DS rule, with ZCR or JCR rules one sees
that the mass committed to B is less than of A and of
C which is a more reasonable result. In applying PCR6
rule, we also circumvent this problem because we get from
Eq. (13), meCRG(A) = 0.375, meCRG(B) = 0.25 and
mi{§H8(C) = 0.375 (same as with JCR results for this
particular example).

With ZPCR6 rule, we compute at first the following (un-
normalized) discounted conjunctive masses added with pro-
portional conflict redistribution

AN (AUB)| 1
Z,(A _An(auB) A AUB)+ = =0.25
mi2(A) A |AU B mi (A)ma( )+ 5mi2(0) ;
z [((BUC)N (AU B)|
B) = BuUC AU B) =0.0625
m1,2( ) [BUC|-|AU B] mi ( yma ( ) )
s (BUC)NC| 1
C)y=——"—— BUC C — = 0.25.
my 5 (C) \BUC|-[C| ma ( Jma( )+2m1,2(@)

After a simple normalization (dividing by Kfz = 0.25 +
0.0625 + 0.25 = 0.5625), we get finally
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mZPCRG

ZDCRS(4) = 0.25/0.5625 ~ 0.4444,
Z PCR6

my 5 (B) = 0.0625/0.5625 ~ 0.1112,
m{{ER0(C) = 0.25/0.5625 ~ 0.4444.
Similarly, if we apply JPCRG6 rule based on Jaccard’s index
and simple normalization step, we will get the following result
(A) = [(0.25/2) + 0.125]/ K , ~ 0.4286,
m{5°H5(B) = (0.25/3) /K, = 0.1428,
m{5CH(C) = 1(0.25/2) + 0.125]/ K , ~ 0.4286,

JPCRG6
my o

where the normalization factor equals K{, = (0.25/2) +
0.125 + (0.25/3) + (0.25/2) + 0.125 ~ 0.5833.

These results show that ZPCR6 and JPCR6 rules diminish
substantially the mass committed to B (as expected) and
reinforce more strongly the masses of A and C' than with
ZCR, JCR or PCR6 rules.

If we apply the sophisticate normalization for SZPCR®6, the

lost discounted mass (1 — %)ml(/l)mg(/l UB) =

0.125 is redistributed to A and to A U B proportionally'? to
mq(A) = 0.5 and ma(AUB) = 0.5. Similarly, the second lost
discounted mass (1— W)ml (BUC)m2(AUB) =
0.1875 is redistributed to B U C' and to A U B proportionally
to m1(BUC) = 0.5 and m2(A U B) = 0.5, and the third

lost discount.ed mass (1-— %)mﬂB u C’)mg(C’) =
0.125 is redistributed to B U C and to C' proportionally to

m1(BUC) = 0.5 and m2(C) = 0.5. Similar computations
are done for SJPCRG in replacing Zhang’s degree by Jaccard’s
degree of intersection. Finally we obtain with SZPCR6 and
SJPRCG6 the following combined masses:

m74PORS (4) = 0.3125,
m7P4PORS(B) = 0.0625,
m74PCR5(C) = 0.3125,

mP4PORS (AU B) = 0.15625,
m74POR (B U C) = 0.15625,

and

mPIPORO(A) = 0.3125,
m7 3P0 (B) ~ 0.0833,
mPIPORS(C) = 0.3125.

mP3POR (AU B) ~ 0.14585,
m7 PR (B U C) ~ 0.14585,

Of course, these results are a bit less specific than with ZPCR6
and JPCR6, which is normal. As shown, SZPCR6 and SJPCR6
rules diminish also the mass committed to B (as expected)
but reinforce less strongly the masses of A and C' because the
specificity of the result is degraded because one gets positive
masses committed to new uncertainties A U B and B U C.
For this example, ZPCR6 and JPCR6 are the most interesting
rules for combining BBA’s m(.) and ma(.).

2equally in fact in this case.
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Example 4 (Dezert et al. [3]): (Conflicting case)

This emblematic example is very interesting to analyze
because for in this case the DS rule does not respond to level of
conflict between the sources. This anomaly has been analyzed
and discussed in details in [3].

Let’s consider the FoD © = { A, B, C'} with Shafer’s model,
and the following two BBA’s to combine

mi (A) = 0.9,
mg(C) = 0.7,

ml(AUB)ZO.l, mQ(AUB):O.L
m2(AUBUC) =0.2.

In this example, the two sources are not vacuous (they are
truly informative), they are in conflict because m172(®) =0.7
but DS rule does not respond to the level of conflict because
one gets my2(.) = mq(.). In fact, the second source has no
impact in the DS fusion as if it is equivalent to the VBA.

If we apply PCR6 rule of combination the first par-
tial conflict m4 (A)mso(C) = 0.72 is redistributed to A and
C' proportionally to my(A) and mg(C), and the sec-
ond conflict my(AU B)mz(C) = 0.08 is redistributed to
AUB and to C proportionally to m;(A U B) and mo(C).
So with PCR6 rule (7), we obtain mi§76(A) = 0.6244,
m{ (AU B) =0.0388 and m{$7(C)=0.3369. One
sees that the PCRO6 fusion result now reacts with the value
of second sources because m{$(.) # my(.) which makes
sense if both sources are equireliable, truly informative and in
some disagreement.

In discounting with Zhang’s degree, one gets the (unnor-
malized) discounted conjunctive BBA

1 1
my,(A) = 5(0.9)(0.1) + 5(0-9)(0-2> = 0.1050,
2 2
m{,(AUB) = ﬁ(0.1)(0.1) + 2—3(0.1)(0.2) ~ 0.0117.
After the normalization by the factor K1Z72 =
0.1050 + 0.0117 = 0.1167, we get finally
m#§R(A) = 0.1050/0.1167 ~ 0.9 and m{§F(AU B) ~

0.0117/0.1167 ~ 0.1. Therefore as with DS rule, we get
same behavior with ZCR rule that is mZ§7(.) = my(.) as if
the second informative source does not count in the fusion

process, which is abnormal.

If we use Jaccard’s degree, one gets

J

mi 5(A) = %(0.9)(0.1) + %(0.9)(0.2) — 01050,

m{ ,(AUB) = 5(0.1)(0.1) + %(0.1)(0.2) ~ 0.0233.

After the normalization by the factor K i] o = 0.1050 +
0.0233 = 0.12833, we get finally m{§¥(A) ~ 0.8182 and
m{§H(AUB) ~ 0.1818. One sees that JCR fusion result is not
equal to the BBA m; (.), which means that ms(.) has had some
impact in the fusion process with JCR (as expected). However,
it is not clear why such JCR result will really make sense or
not. Because we have already shown in Example 1, that it

can happen than JCR does not work well, we have serious
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doubt on the interest of using JCR result in such emblematic

example.
With ZPCR6 rule of combination, we obtain
m{Fers(A) = KZPCRF[O 1050 + z(A)] = 0.56250,

mEEOR (AU B) = gfoms [0.0117 + 2(A U B)] = 0.0250,
and mZPCRG(C) = W[(El(c) + I'Q(C)] = 04125

where K{LCF6 is the normalization constant, and where

z(A) = ml(A)% = 0.354375 is the part of the
conflicting mass my(A)m2(C) = 0.63 transferred to A;
21(C) = ma(C)lerelCls — 0275625 is the part of

the conflicting mass m1(A)mo(C) = 0.63 transferred to C;
2(AUB) = m (AU B)b2m2 (. — 0.00875 s the part
of the conflicting mass m1(A U B)mso(C) = 0.07 transferred
to AU B; and 25(C) = my(C) i mes = 0.06125
is the part of the conflicting mass m;(A U B)mo(C) = 0.07
transferred to C.

With JPCR6 rule of combination, obtain

m{5CR5(A) ~ 0.55458, m{5°H5(A U B) 0.03873
and m{5M0(C) 0.40669, which is close to ZPCR6
result. Comparatively to PCR6, we diminish the mass of
belief committed to A and to A U B and we reinforce the
mass committed to C' using ZPCR6 and JPCR6 rules. We
do not give results with SZPCR6 and SJPRC6 due to space
constraint and because we know that these rules do not

perform so well as shown in the previous examples.

we

Example 5 (Sebbak [16]): (Conflicting case with 3 sources)
Let’s consider the FoD © = { A, B, C'} with Shafer’s model,
and the following three BBA’s to combine

ml(A) = 0.8, ml(A UBU C) =0.2,
mg(A) = 0.1, mg(C) = 0.9,

The conjunctive rule gives

mi,2,3 (A) = ma (A)mz(A)mg(A) + mq (A)mz (A)m‘;(@)
+ m1(0)mz(A)ms(0©) + m1(0)ma(A)ms(A) = 0.10
m1.25(C) = m1(0)ma(C)ms(©) = 0.108

with the total conflicting mass
m1,2,3(0) = mi(A)ma(C)ms(A) + m1(A)ma(C)ms(O)
+my (@)mg(C)m3 (A) =0.792.

With DS rule we get m2%(A) ~ 0.4808 and m%°
0.5192, and With PCRS5 and PCR6 rules [17]

~
~

(@)

mP ST (A) = 0.3450, m?T S0 (A) = 0.4340,
miSIP(C) =0.5327,  miSE(C) = 0.4437,
mPE(O) =0.1223,  mITE(O) = 0.1223.

Note that with PCR5 one gets 0.4247/0.7920 ~ 53.62% of
the total conflicting mass redistributed to C, but not almost all
conflicting mass. Using PCR6, C' actually gained from the total
conflicting mass only 0.3357/0.7920 ~ 42.3864%, not even
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half of it, not almost all of the conflicting mass (the majority)
as the authors wrongly claimed in [16].
With ZCR and JCR rules, one gets
m?§ 5 (A) = 0.8125,
m? 5 (©) = 0.1875,

m{G%(A) = 0.6032,
m{5%(0) = 0.3968.

With ZPCR6, JPCR6, SZPCR6 and SJPCR6 rules!? one gets

mZESR(A) = 04511,  m{5GHO(A) = 0.4405,
mZESRS(C) = 04061,  m{EGR6(C) = 0.4210,
mZESR(0) = 0.1428,  m{5SR9(0) = 0.1385.
mP55OM0(A) = 0.4102955, m{LECHO(A) = 0.412699,
my5ECR0(0) = 0.3984240, mP LR (C) = 0.409718,
SZPCRG(Q) = 0.1912805, m3ECH(0) = 0.177616.

)
One sees that C' gained (0.4061 —0.108)/0.7920 ~ 37.64%
using ZPCR6, (0.4210 — 0.108)/0.7920 39.52% using
JPCRG, (0.398424—0.108)/0.7920 ~ 36.67% using SZPCRG,
and (0.409718 — 0.108)/0.7920 ~ 38.10% using SJIPCRS.

~
~

VI. CONCLUSIONS

The modifications of the PCR6 rule of combination pre-
sented exploit judiciously Zhang’s and Jaccard’s degrees of in-
tersections of focal elements. Our analysis shows that ZPCR6
rule is in fact the most interesting modified PCR6 rule because
it behaves well in all emblematic examples contrarily to other
rules. SZPCR6 and SJPCR6 rules are more complicate to
implement and they increase the non-specificity of the result in
general which is not good for helping the decision-making. So
we do not recommend them for applications. All these rules
are not associative and do not preserve the neutrality of VBA
when some sources are in conflict.
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Abstract—In many applications involving epistemic uncertain-
ties usually modeled by belief functions, it is often necessary
to approximate general (non-Bayesian) basic belief assignments
(BBAs) to subjective probabilities (called Bayesian BBAs). This
necessity occurs if one needs to embed the fusion result in a sys-
tem based on the probabilistic framework and Bayesian inference
(e.g. tracking systems), or if one wants to use classical decision
theory to make a decision. There exists already several methods
(probabilistic transforms) to approximate any general BBA to a
Bayesian BBA. From a fusion standpoint, two approaches are
usually adopted: 1) one can approximate at first each BBA in
subjective probabilities and use Bayes fusion rule to get the final
Bayesian BBA, or 2) one can fuse all the BBAs with a fusion rule,
typically Dempster-Shafer’s, or PCR6 rules (which is very costly
in computations), and convert the combined BBA in a subjective
probability measure. The former method is the simplest method
but it generates a high loss of information included in original
BBAs, whereas the latter is intractable for high dimension
problems. This paper presents a new method to achieve this
task based on hierarchical decomposition (coarsening) of the
frame of discernment, which can be seen as an intermediary
approach between the two aforementioned methods. After the
presentation of this new method, we show through simulations
how its performs with respect to other methods.

Keywords: Information fusion, belief functions, DST, DSmT,

PCRG6 rule, coarsening.

I. INTRODUCTION

The theory of belief functions, known as Dempster-Shafer
Theory (DST) has been developed by Shafer [1] in 1976
from Dempster’s works [2]. Belief functions allow to model
epistemic uncertainty and they have been already used in many
applications since the 1990’s [3], mainly those related to expert
systems, decision-making support and information fusion. To
palliate some limitations of DST, Dezert and Smarandache
have proposed an extended mathematical framework of belief
functions with new efficient quantitative and qualitative rules
of combinations, which is called DSmT (Dezert and Smaran-
dache Theory) in the literature [4], [S] with applications listed
in [6]. One of the major drawbacks of DST and DSmT is their
high computational complexities, as soon as the fusion space
(i.e. frame of discernment - FoD) and the number of sources
to combine are large!.

'DSmT is more complex than DST, and the Proportional Conflict Redistri-
bution rule #6 (PCR6 rule) becomes computationally intractable in the worst
case as soon as the frame of discernment has at least six elements.
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To reduce the computational cost of operations with belief
functions when the number of focal elements is very large,
several approaches have been proposed by different authors.
Basically, the existing approaches rely either on efficient
implementations of computations as proposed for instance in
[7], [8], or on approximation techniques of original Basic
Belief Assignment (BBA) to combine [9]-[12], or both. In
many applications involving epistemic uncertainties usually
modeled by belief functions, it is often necessary to approxi-
mate general (non-Bayesian) basic belief assignments (BBAs)
to subjective probabilities (called Bayesian BBAs). This neces-
sity occurs if one needs to embed the fusion result in a system
based on the probabilistic framework and Bayesian inference
(e.g. tracking systems), or if one wants to use classical decision
theory to make a decision. From a fusion standpoint, two
approaches are usually adopted: 1) one can approximate at
first each BBA in subjective probabilities and use Bayes fusion
rule to get the final Bayesian BBA, or 2) one can fuse all
the BBAs with a fusion rule, typically Dempster-Shafer’s, or
PCRG6 rules (which is very costly in computations), and convert
the combined BBA in a subjective probability measure. The
former method is the simplest method but it generates a high
loss of information included in original BBAs, whereas the
latter direct method is intractable for high dimension problems.
This paper presents a new method to achieve this task based
on hierarchical decomposition (coarsening) of the frame of
discernment, which can be seen as an intermediary approach
between the two aforementioned methods.

This paper presents a new approach to fuse BBAs into a
Bayesian BBA in order to reduce computational burden and
keep the fusion tractable even for large dimension problems.
This method is based on a hierarchical decomposition (coars-
ening) framework which allows to keep as much as possible
information of original BBAs in preserving lower complexity.
The main contributions of this paper are:

1) the presentation of the FoD bintree decomposition on
which will be done the BBAs approximations;

2) the presentation of the fusion of approximate BBAs from
bintree representation.

This hierarchical structure allows to encompass bintree
decomposition and BBAs approximations on it to obtain the
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final approximate fusioned Bayesian BBA.

This paper is organized as follows. In section II, we recall
some basics of DST and DSmT that are relevant to the new
method presented in this paper. More details with examples
can easily be found in [1], [S]. We will also briefly recall
our preliminary works about hierarchical coarsening of FoD.
Section III presents the novel hierarchical flexible (adaptive)
coarsening method which can be regarded as the extension of
our previous works. Two simple examples are given in section
IV to illustrate the detailed calculation steps. Simulation
experiments are presented in section V to show the rationality
of this new approach. Finally, Sect.VI concludes the paper
with future works perspectives.

I[I. MATHEMATICAL BACKGROUND

This section provides a brief reminder of basics of DST and
DSmT, and of original hierarchical coarsening method which
are necessary for the presentation and the understanding of
the more general flexible coarsening approximate method of
section III.

A. Basics of DST and DSmT

In DST framework, the frame of discernment’> ©
{01,...,0,} (n > 2) is a set of exhaustive and exclusive
elements (hypotheses) which represent the possible solutions
of the problem under consideration and thus Shafer’s model
assumes 6; N 0; = O for ¢ # j in {1,...,n}. A basic
belief assignment (BBA) m(-) is defined by the mapping:
29+ [0, 1], verifying m() = 0 and > 4 5o m(A) = 1. In
DSmT, one can abandon Shafer’s model (if Shafer’s model
doesn’t fit with the problem) and refute the principle of
the third excluded middle®. Instead of defining the BBAs
on the power set 2 £ (O©,U) of the FoD, the BBAs
are defined on the so-called hyper-power set (or Dedekind’s
lattice) denoted D® £ (©,U,N) whose cardinalities follows
Dedekind’s numbers sequence, see [5], Vol.1 for details and
examples. A (generalized) BBA, called a mass function, m(+)
is defined by the mapping: D® — [0, 1], verifying m () = 0
and ), pe m(A) = 1. DSmT framework encompasses DST
framework because 2© C D®. In DSmT we can take into ac-
count also a set of integrity constraints on the FoD (if known),
by specifying all the pairs of elements which are really
disjoint. Stated otherwise, Shafer’s model is a specific DSm
model where all elements are known to be disjoint. A € D® is
called a focal element of m(.) if m(A) > 0. A BBA is called
a Bayesian BBA if all of its focal elements are singletons
and Shafer’s model is assumed, otherwise it is called non-
Bayesian [1]. A full ignorance source is represented by the
vacuous BBA m,(0©) = 1. The belief (or credibility) and
plausibility functions are respectively defined by Bel(X) £
Yvepejycx m(Y) and PI(X) = 2veneiynxom™Y)-
BI(X) £ [Bel(X),PI(X)] is called the belief interval of

ZWe use the symbol £ to mean equals by definition.
3The third excluded middle principle assumes the existence of the comple-
ment for any elements/propositions belonging to the power set 2.
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X. Its length U(X) £ PI(X) — Bel(X) measures the degree
of uncertainty of X.

In 1976, Shafer did propose Dempster’s rule* to combine
BBAs in DST framework. DS rule is defined by mps(0) =0
and VA € 29\ {0},

ZB,CEQ“’lBﬂC:A m1(B)ma(C)
1= ZB,Ceze\BmC:w mi1(B)ma(C)

DS rule formula is commutative and associative and can be
easily extended to the fusion of S > 2 BBAs. Unfortunately,
DS rule has been highly disputed during the last decades
by many authors because of its counter-intuitive behavior in
high or even low conflict situations, and that is why many
rules of combination have been proposed in the literature to
combine BBAs [13]. To palliate DS rule drawbacks, the very
interesting PCR6 (Proportional Conflict redistribution rule #6)
has been proposed in DSmT and it is usually adopted® in
recent applications of DSmT. The fusion of two BBAs m(.)
and mo(.) by the PCR6 rule is obtained by mpcre(f) = 0
and VA € D®\ {0}

mpcre(A) = mig(A)+
Z [ ml(A)QmQ(B)

BeD®\{A}|ANB=0 ml(A) + mQ(B)

mps(A) D

mo (A)2m1 (B)

ma(A) -, (B)”

2
where mi12(A) = > 5 cepeipnoma m1(B)m2(C) is the
conjunctive operator, and each element A and B are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCR6 formula for combining more than two BBAs
altogether is given in [5], Vol. 3. We adopt the generic notation
miCRS () = PCR6(my(.),ma(.)) to denote the fusion of
m1(.) and ms(.) by PCR6 rule. PCR6 is not associative
and PCR6 rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing D® by 2€ in Eq. (2).

B. Hierarchical coarsening for fusion of Bayesian BBAs

Here, we briefly recall the principle of hierarchical coarsen-
ing of FoD to reduce the computational complexity of PCR6
combination of original Bayesian BBAs. The fusion of original
non-Bayesian BBAs will be presented in the next section.

This principle was called rigid grouping in our previous
works [17]-[19]. The goal of this coarsening is to replace
the original (refined) Frame of Discernment (FoD) © by a
set of coarsened ones to make the computation of PCR6 rule
tractable. Because we consider here only Bayesian BBA to
combine, their focal elements are only singletons of the FoD
© = {0y,...,0,}, withn > 2, and we assume Shafer’s model
of the FoD ©.

A coarsening of the FoD © means to replace it with another
FoD less specific of smaller dimension 2 = {wy, . ..,wx} with
k < n from the elements of ©. This can be done in many

“We use DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone book [1].
SPCR6 rule coincides with PCR5 when combining only two BBAs [5].
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ways depending the problem under consideration. Generally,
the elements of (2 are singletons of ©, and disjunctions of
elements of ©. For example, if © = {61, 02,053,064}, then the
possible coarsened frames built from © could be, for instance,
Q= {w1 = 0170.)2 = 0270.)3 = 93 U94}, or 2 = {w1
01U02, wy = 03U04}, etc. When dealing with Bayesian BBAs,
the projection® m(.) of the original BBA m®(.) is simply
obtained by taking
> me6;).

0;Cw;

mﬂ(wi) _

3)

The hierarchical coarsening process (or rigid grouping) is
a simple dichotomous approach of coarsening obtained as
follows:

o If n=|0©] is an even number:
The disjunction of the n/2 first elements 61 to 0= of ©
define the element wy of €2, and the last n/2 elements
O%H to 0,, of © define the element wy of 2, that is

Qé{wl:91U...U9%,w2:9%+1U...U9n}7

and based on (3), one has

m®(w,) = Z m®(8;), “4)
j=1,...,%

mP(wa) = Y mO(). (5)
j=%5+1,...n

For example, if © = {61, 65,03,604}, and one considers
the Bayesian BBA m®(6,) 0.1, m®(6y) 0.2,
m®(03) = 0.3 and m®(64) = 0.4, then Q = {w; =
01 U bz, we = 63U 94} and mﬂ(wl) =01402=0.3
and m®(wy) = 0.3 + 0.4 = 0.7.

If n = |O| is an odd number:

In this case, the element w; of the coarsened frame 2 is
the disjunction of the [n/2 +1]7 first elements of ©, and
the element ws is the disjunction of other elements of O.
That is

Qé {w1 = 91U...U9[%+1],WQ :9[%+1]+1U...U0n},

and based on (3), one has

mPw) = Y, m°(b;), 6)
=1, (3 +1]
mPw) = Y. mO;) 7
J=[2+1]+1,...,n

For example, if © = {61, 02,03,04, 05}, and one consid-
ers the Bayesian BBA m®(6;) = 0.1, m®(6,) = 0.2,
m®(03) = 0.3, m®(04) = 0.3 and m®(#5) = 0.1, then
Q= {wl 91 U92U03,UJ2 :94U05} and mQ(wl) =
0.1+0.2+ 0.3 = 0.6 and m*(wy) = 0.3 + 0.1 = 0.4.

SFor clarity and convenience, we put explicitly as upper index the FoD for
which the belief mass refers.
"The notation [z] means the integer part of .
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Of course, the same coarsening applies to all original BBAs
m®(.), s=1,...5 of the S > 1 sources of evidence to work
with less specific BBAs m{(.), s = 1,...S. The less specific
BBAs (called coarsened BBAs by abuse of language) can then
be combined with PCR6 rule of combination according to
formula (2). This dichotomous coarsening method is repeated
iteratively [ times as schematically represented by a bintree®.
The last step of this hierarchical process is to calculate the
combined (Bayesian) BBA of all focal elements according
to the connection weights of the bintree structure, where the
number of iterations (or layers) [ of the tree depends on
the cardinality |©| of the original FoD ©. Specifically, the
assignment of each focal element is updated according to the
connection weights of link paths from root to terminal nodes.
This principle is illustrated in details in the following example.

Example 1: Let’s consider © = {61,05,03,04,605}, and the
following three Bayesian BBAs

Focal elem. | mP(.) | m§() | m§ ()
01 0.1 04 0
0, 0.2 0 0.1
05 0.3 0.1 0.5
04 0.3 0.1 0.4
05 0.1 0.4 0

The hierarchical coarsening and fusion of BBAs is obtained
from the following steps:

Step 1: We define the bintree structure based on iterative
half split of FoD as shown in Fig. 1.

r N
=y

0)”2

Figure 1: Fusion of Bayesian BBAs using bintree coarsening
for Example 1.

The connecting weights are denoted as Aq,..

elements of the frames (2; are defined as follows:
o At layer =1 Q= {(.Ul £ 01 U605 U B3, ws £ 04 U95}
o Atlayer [ = 2:

. ,)\8. The

Qy = {wn £ 01 U0, w12 £ 03, wo1 £ 04, w00 = 95}

8Here we consider bintree only for simplicity, which means that the
coarsened frame €2 consists of two elements only. Of course a similar method
can be used with tri-tree, quad-tree, etc.
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o At layer [=3: Q3= {w111 £ 01, w112 £ 02}
Step 2: The BBAs of elements of the (sub-)frames (2; are
obtained as follows:

o Atlayer [ = 1, we use (6)-(7) because |©| = 5 is an odd
number. Therefore, we get

Focal elem. mi(.) ‘ mi () ‘ m$(.)
w1 S 01 U 92 U 93 0.6 0.5 0.6
wo = 04U 05 0.4 0.5 0.4

o At layer [ = 2: We work with the two subframes 9 S
{(JJU, wlz} and Qoo £ {(JJ21, WQQ} of Q)5 with the BBAs:

Focal elem. ‘ m?ﬂ () ‘ mQZl() ‘ mgm(.)
wip = 9A1 U 02 3 £ 3
enze | 4| D%
Focal elem. | m{**(.) | mg>(.) | m§**(.)
w21 f 94 % % 1
wWo9 = (95 % % 0

These mass values are obtained by the proportional
redistribution of the mass of each focal element with
respect to the mass of its parent focal element in the bin
tree. For example, the value m$2! (wy;) = 4/5 is derived
by taking

m§ (61) + ms (62)
m (01) +mS§ (62) + mS(63)

Other mass values are computed similarly using this
proportional redistribution method.

04 4
mgzl _ _

(wi1) =

o At layer [ = 3: We use again the proportional redistribu-
tion method which gives us

Focal elem. ‘ mi¥(.) ‘ St ‘ mi ()
w111 £ 91 % 1 0
w112 é 02 % 0 1
Step 3: The connection weights A; are computed

from the assignments of coarsening elements. In each
layer I, we fuse sequentially’ the three BBAs us-
ing PCR6 formula (2). More premsely, we compute at

first meBG 2y = PCR6(m(.), m2 '(.)) and then
Mgy () = PCR6(my, "%(),mg(.). Hence, we

obtain the following connecting weights in the bintree:
o Atlayer [ =1:

M= m(5E5% (W) = 0.6297,
Ay = m{5 2™ (wp) = 0.3703.

e Atlayer [ = 2:

As = m (155" (win) = 0.4137,
A= m (55" (wi2) = 0.5863,
A5 = ﬁ%’gﬁ 222 (1) = 0.8121,
Ao = m (155072 (was) = 0.1879,

9Because PCR6 fusion is not associative, we should apply the general
PCRG6 formula to get best results. Here we use sequential fusion to reduce the
computational complexity even if the fusion result is approximate.

=9E= %

e Atlayer | = 3:

e = SO 1) = 03103,

Ag = mgg)fg&% (wi12) = 0.6897.

Step 4: The final assignment of belief mass to the elements
of original FoD © are calculated using the product of the
connection weights of link paths from root (top) node to
terminal nodes (leaves). We finally get the following resulting
combined and normalized Bayesian BBA

m®(61) = A1 - Az - A7 = 0.6297 - 0.4137 - 0.3103 = 0.0808,
m®(62) = Ay - Az - Ag = 0.6297 - 0.4137 - 0.6897 = 0.1797,
m®(03) = A - Ay = 0.6297 - 0.5863 = 0.3692,
m®(04) = Aa - As = 0.3703 - 0.8121 = 0.3007,
m®(65) = A - Ag = 0.3703 - 0.1879 = 0.0696.

III. NEW HIERARCHICAL FLEXIBLE COARSENING METHOD

Contrary to the (rigid) hierarchical coarsening method pre-
sented in section II, in our new flexible coarsening approach
the elements #;, ¢ = 1,...,n in FoD © will not be half
split to build coarsening focal elements w;, j = 1,...,k of
the FoD €. In the hierarchical flexible (adaptive) coarsening
method, the elements 6; chosen to belong to the same group
are determined using the consensus information drawn from
the BBAs provided by the sources. Specifically, the degrees
of disagreement between the provided sources on decisions
(61,02, ,0,) are first calculated using the belief-interval
based distance dp; [16], [20] to obtain disagreement vector.
Then, the k-means algorithm is applied for clustering elements
0;,i=1,...,n based on the corresponding value in consensus
vector. It is worth noting that values of disagreement reflect the
preferences of independent sources of evidence for the same
focal element. If they are small, it means that all sources have
a consistent opinion and these elements should be clustered in
the same group. Conversely, if disagreement values are large,
it means that the sources have strong disagreement on these
focal elements, and these focal elements need to be clustered
in another group.

A. Calculating the disagreement vector

Let us consider several BBAs m?(+), (s = 1,..., ) defined
on same FoD © of cardinality \®| = n. The specific BBAs
mg,(.), ¢ = 1,...,n entirely focused on 6, are defined by
me, (0;) = 1, and for X # 6; my,(X) = 0. The disagreement
of opinions of two sources about 6; is defined as the L;-
distance between the dp; distances of the BBAs m%(.), s =
1,2 to my,(.), which is expressed by

Diz(6:) £ [dpr(m?(-), me, () —dpr(m3 (), me, (-))]. (8)

The disagreement of opinions of .S > 3 sources about 6;, is
defined as

A
Di_s5(6;) =

I\D\’—‘

s S
ZZ dpr(m;(-),me,(.))

—dpr(m$(-),me, ()], (9)
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where dp; distance is defined by'? [20]

2n—1
dgr(mi,ma) £ \|ne- Y [d(BIL(6:), BIy(6:))]>. (10)
i=1
Here, n., = 1/2"‘1 is the normalization constant and
d!([a,b],[c,d]) is the Wasserstein’s distance defined by
d'([a,0],[c,d]) = /15" — U2 + 3[°5% - 5°]2. And
BI(0;) = [Bel(9;), Pl(0;)].
The disagreement vector D;_g is defined by
D, g £ [Dy_s(th),...,D1_s(0n)]. (1n

B. Clustering focal elements

Once D;_g is derived, a clustering algorithm is used to
coarsen focal elements according to their corresponding values
in D;_g. In this paper, we have used the k-means algorithm!!
to cluster focal elements. For each source s = 1,...,S, the
mass assignments of focal elements in two'? different clusters
are added up according to formulas (12)—(13).

mi(w1) = Y m®(6:), (12)
0;€w

m(wg) = Z m®(6;). (13)
0wz

C. Combination of the BBAs

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure based on this flexible coarsening
decomposition is obtained (see example in the next section)
and the elements in FoD © are grouped more reasonably
in each layer of the decomposition. Once the adaptive bin-
tree structure is derived, other steps (multiplications of link
weights) can be implemented which are identical to hierarchi-
cal (rigid) coarsening method presented in section II to get the
final combined Bayesian BBA.

D. Summary of the method

The fusion method of BBAs to get a combined Bayesian
BBA based on hierarchical flexible decomposition of the FoD
consists of the four steps below illustrated in Fig. 2.

o Step 1 (pre-processing): At first, all input BBAs to
combine are approximated to Bayesian BBAs with DSmP
transform.

Step 2 (disagreement vector): D, _g(-) is calculated us-
ing dps distances to estimate the degree of disagreement
of BBAs m?, e, m? on potential decisions 61,..., 6,.
Step 3 (adaptive bintree): The adaptative bintree de-
composition of the FoD © is obtained using k-Means
algorithm to get elements of subframes §;.

Step 4 (assignments and connection weights): For
each source m®(-) to combine, the mass assignment of

10Eor simplicity, we assume Shafer’s model so that |2®\ = 2™, otherwise
the number of elements in the summation of (10) should be |[D®| — 1 with
another normalization constant n..

which is implemented in Matlab™

2because we use here the bisection decomposition.
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each element of subframe €2; is computed by (12)—(13).
The weight of links between two layers of the bintree
decomposition are obtained with PCR6 rule'3.

o Step 5 (fusion): The final result (combined Bayesian
BBA) is computed by the product of weights of link paths
from root to terminal nodes.

Input BBAs
m () is Bayesian?
no
DSmP
transform =

L

no

Flexible grouping using
K-Means

PCR6 fusion

Product of path
link weights

1

no

Final Combined
Bayesian BBA

Figure 2: Hierarchical flexible decomposition of FoD for
fusion.

IV. TWO SIMPLE EXAMPLES
A. Example 1 (fusion of Bayesian BBAs)

Let us revisit example 1 presented in section II-B. It can be
verified in applying formula (9) that the disagreement vector
D;_3 for this example is equal to

D;_3 = [0.4085,0.2156, 0.3753, 0.2507, 0.4080]
The derivation of D;_3(6) is given below for convenience.

D1_3(61) = |dpr(mP(-), me, (61)) — dpr(m$(-), me, (61))|
+ |dpr(mS (), me, (61)) — dpr(m5 (), ma, (61))]
+ |dg1(mS (-), me, (61)) — dpr(m5 (), me, (61))|
= 0.4085.

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure is obtained and shown in Fig. 3.
Compared to Fig. 1, the elements in FoD © are grouped more
reasonably. In vector D;_3, 6; and 05 lie in similar degree of
disagreement so that they are put in the same group. Similarly
for 65 and 6,. However, element 05 seems weird, which is
put alone at the beginning of flexible coarsening. Once this
adaptive bintree decomposition is obtained, other steps can
be implemented which are identical to hierarchical coarsening
method of section II to get the final combined BBA.

The flexible coarsening and fusion of BBAs is obtained from
the following steps:

3general formula preferred, or applied sequentially to reduce complexity.
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Figure 3: Example 1: Flexible bintree decomposition of FoD.

Step 1: According to Fig.3, the elements of the frames {2;
are defined as follows:

o At layer =1 Q= {w1 £ 937LU2 £ 01 U6y U0y U05}

o At layer 1 =2: Q9 = {(JJQl £ 60, U 057OJ22 £ 0, U (94}

o At 1ayer [ =3: Q3 = {wgn e 01, wo12 =

02, w22 £ 94}

Step 2: The BBAs of elements of the (sub-)frames €2; are

obtained as follows:

o Atlayer [ =1, we use (12)-(13) and we get

A
= Os5,wo01 =

Focal elem. ‘ mit(.) ‘ mi(.) ‘ mi(.)
w2 £ 01 U 92 U 94 U 95 0.7 0.9 0.5

o At layer [ = 2: We use again the proportional redistribu-
tion method which gives us:

Focal elem. | m{*(.) | m$*() | m3?()
woy = 6 U B
Wz = 0y UG,
o At layer | = 3: We work with the two subframes 3, =
{UJQH,WQlQ} and 932 2 {Wle,WQgg} of Qg with the

=Tl
[elISIII'N
QU=

e Atlayer | = 3:

X5 = 0.5; Ag = 0.5; A7 = 0.0669; s = 0.9331.

Step 4: We finally get the following resulting combined and
normalized Bayesian BBA

m® () = {0.0855,0.0406, 0.2226, 0.5658, 0.0855}.

B. Example 2 (with non-Bayesian BBAs)

Example 1bis: Let’s consider © = {61, 62,03, 04,05}, and the
following BBAs given by

Focal elem. | mP(.) m&() mE()
01 0.1 0.4 0
0 0.2 0 0
03 0.3 0.05 0
04 0.03 0.05 0
05 0.1 0.04 0
01 U0, 0.1 0.04 0
,U0;U6s | 0 002 01
03 U6, 0.02 0.1 0.2
01 U 05 0.1 0.3 0.2
© 0.05 0 0.5

Step 1 (Pre-Processing): All these three BBAs are trans-
formed into Bayesian BBAs with DSmP transform and the
generated BBAs are illustrated as

Focal elem. | mP(.) m&() mf()
01 0.1908 0.7127 0.2000
0 0.2804 0 0.1334
03 0.3387 0.1111 0.2333
04 0.0339 0.1 0.2000
05 0.1562 0.0761 0.2333

It can be verified in applying formula (9) that the disagree-
ment vector D;_3 for this example is equal to

D;_3 = [0.5385,0.3632,0.3453, 0.2305, 0.2827].

Step 2: According to the clustering algorithm, the elements
of the frames €2; are defined as follows:

o At layerlzl: 0 :{w1 é017WQé92U03U04U95}

o At layer [=2:Qy = {OJQl £ 0o U O3, wos =

04U 05}

o At layer [ =3: Q3 = {WQH e 92,&)212 e 03, wao1 £

A
04, w222 = 05}

Step 3: The BBAs of elements of the (sub-)frames €2; are

BBAs

Focal elem. m?“ () m?“ @) 7,”:?31 ()
£9 I 1 T

w211 Z 1 % % %

wo12 = O 3 1 :

Focal elem. m?” () mgw(.) m?sz ()

wao1 = 02 z 0 =

wazo = 04 % 1 %

Step 3: The connection weights \; are computed from the

assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:
o Atlayer [ = 1:

A1 =0.2226; Ao = 0.7774.
o Atlayer [ = 2:
Az = 0.2200; A4 = 0.7800.
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obtained as follows:

o Atlayer [ =1, we use (12)-(13) and we get

Focal elem. ‘ mi () ‘ ms(.) ‘ m$ ()
w1 260, 0.1908 | 0.7127 | 0.2000
we 20, U03U0, U605 | 0.8092 | 0.2873 | 0.8000

o At layer [ = 2: We use again the proportional redistribu-
tion method which gives us:

Focal elem. ‘ mi2(.) ‘ mi2(.) ‘ m$?(.)
wop = 03 UBs | 0.7651 | 0.3867 | 0.4584
wao = 0, U05 | 0.2349 | 0.6133 | 0.5416
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o At layer [ = 3: We work with the two subframes 23, £
{war1,wa12} and Qzp 2 {woor,waze} of Q3 with the
BBAs:

Focal elem. | m$¥' () | m$=1 () | mg= ()
wor1 =60y | 0.4529 0 0.3638
wore 2603 | 0.5471 1 0.6362
Focal elem. | m{2(.) | m$#2(.) | mi()
woor =64 | 0.1783 | 0.5679 | 0.4616
wose =05 | 0.8217 | 0.4321 | 0.5384

Step 4: The connection weights ); are computed from the
assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

o Atlayer [ = 1:

A1 = 0.2345; Ay = 0.7655.
o Atlayer [ = 2:

Az =0.5533; A4 = 0.4467.
e Atlayer [ = 3:

As = 0.1606; X = 0.8394;

A7 =0.3349; Ag = 0.6651.

Step 5: We finally get the following resulting combined and
normalized Bayesian BBA

m®(-) = {0.2345,0.0681,0.3555, 0.1145, 0.2274}.

V. SIMULATION RESULTS AND PERFORMANCES
A. Flexible Grouping of Singletons

1) Similarity: '* Assuming that © = {01,605, 03, 04,05, 06,
07,0s,09, 010,011,012, 013, 014, 915} and first, we randomly
generate 2 BBAs, denoted as m$(-) and m$(-), which can
be seen in Table I.

Table I: BBAs for Two Sources mP(-) and m9(-)
91 92 93 94 95
mg() 0.1331  0.0766  0.0175  0.0448  0.0229
mg(-) 0.1020  0.0497 0.1094 0.0612  0.0612
06 67 03 () 010
mg () 0.1142 0.0023 02254 0.1583  3.4959e-04
mg () 0.0060 0.0070 0.0128  0.0833 0.0338
011 012 613 014 015
mP() 00075 00514 01121 00314 00021
mg(-) 0.1180 0.1202  0.1351  0.0686  0.0309

In order to fully verify the similarity between hierarchical
flexible coarsening method and PCR6 in DSmT, a new strict

14Similarity represents the approximate degree between fusion results using
flexible coarsening and PCR6.
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Figure 4: Structure of Hierarchical Flexible Coarsening.

distance metric between two BBAs, denoted d%;, was recently
proposed in [20], [16] and it will be used in this paper.

In this paper, we regard d%, as one criteria for evaluating
the degree of similarity between the fusion results obtained
from flexible coarsening and PCR6.

Based on (8) and (10), the disagreement vector D(-) is
obtained:

D(-) = (0.0032,0.0020, 0.0290, 0.0092, 0.0147, 0.0228,
0.0059,0.0537,0.0154,0.0131,0.0338, 0.0235,
0.0118,0.0145,0.0120).

Thus, bintree structure of hierarchical flexible coarsening is
illustrated in Fig. 4 and the similarity between fusion results of
hierarchical flexible coarsening and PCR6 is 0.9783. And the
similarity between hierarchical coarsening method and PCR6
is 0.9120. In particular, terminal nodes (the red small box
in Fig. 4) of flexible grouping are not in accordance with the
original order 601,05, - - - , 615. This is quite different compared
to original hierarchical coarsening method.

From the point of view of statistics, 100 BBAs are randomly
generated to be fused with three methods: hierarchical flexible
coarsening, hierarchical coarsening and also PCR6. Compar-
isons are made in Fig. 5, which show the superiority of our
new approach proposed in this paper (Average value of new
method is 97% and the old method is 93.5%).

B. Flexible Grouping of Conflicting Focal Elements

Assuming that there are five sources of evidence
mP (), mP(-),mS(-),mP(-),mP(-), and the restricted hype-
power set De = {(91, (92, (937 (94, (95, (96, (97, (98, (99, 910, 91 N
0,05 N B N O7,00 N O5N 0Oy N 910}. And then we randomly
generate 1000 BBAs for each source to calculate the similarity
using (10). From Fig. 6, we can find that hierarchical flexible
coarsening method can also maintain high degree of similarity
which performs better than hierarchical coarsening.
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Figure 6: Comparisons Between HFC and HC (Singletons and
Conflicting Focal Elements).

C. Flexible Grouping of Uncertain and Hybrid Focal Elements

We can also deal with uncertain and hybrid focal el-
ements. Assuming that there are also five sources of
evidence m9(-),m(-),m§(-),m(-),mE(:) and DP
{91, 92, 93, 94, 95, 967 97, 987 99, 910, 91 U 927 95 U 96 U 97, 91 U
05 U09 U910}; Dg) = {91, 92, 93, 94, 95, 067 97, 087 09, 0107 92 n
04 U 06,01 U 03N 05 U607 NBy}15. And then we respectively
and randomly generate 1000 BBAs for these two cases DY
and DS . Finally, we calculate the average similarity degree of
HFC and HC with PCR6 in Table II, which illustrates HFC
performs better than old method. However, there exist the extra
time cost of HFC compared to HC due to the clustering steps
in coarsening process.

Table II: Similarity Comparisons

Hierarchical Flexible Coarsening

98%
97%

Hierarchical Coarsening

91%
93%

D®
Dp

VI. CONCLUSION AND PERSPECTIVES
A novel hierarchical flexible approximate method in DSmT
is proposed here. Compared to original hierarchical coarsen-

5Tn this case, D? represents uncertain focal elements and DS’ represents
hybrid focal elements.

34

ing, flexible strategy guarantees higher similarity with PCR6
rules in fusion process. Besides, whether focal elements in
hyper power set are singletons, conflicting focal elements,
uncertain or even hybrid focal elements, the new method
works well. In the future work, we will focus on the general
framework of hierarchical coarsening, which could generate
final non-Bayesian BBAs in order to avoid loss of informa-
tion. Furthermore, other advantages or disadvantages of our
proposed methods such as computational efficiency and time

consumption need to be further investigated.
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Abstract—The dynamical systems in various science and en-
gineering problems are often governed by nonlinear equations
(differential equations). Due to insufficiency and incompleteness
of system information, the parameters in such equations may
have uncertainty. Interval analysis serves as an efficient tool for
handling uncertainties in terms of closed intervals. One of the
major problem with interval analysis is handling ‘“‘dependency
problems” for computation of tightest range of solution enclosure
or exact enclosure. Such dependency problems are often observed
while dealing with complex nonlinear equations. In this regard,
initially two test problems comprising of interval nonlinear
equations are considered. The Set Inversion via Interval Analysis
(SIVIA) along with Monte-Carlo approach is used to compute the
exact enclosure of the test problems. Further, the efficiency of the
proposed approach has also been verified for solving nonlinear
differential equations (Van der Pol oscillator) subject to interval
initial conditions.

Keywords: uncertain nonlinear equations, nonlinear oscillator,
dependency problem, SIVIA Monte-Carlo, contractor.

I. INTRODUCTION

Various vibration problems in science and engineering dis-
ciplines viz. structural mechanics, control theory, seismology,
physics, biology etc. may be expressed in terms of nonlinear
equations, system of nonlinear equations and nonlinear differ-
ential equations. Generally, the parameters in such equations
deal with precise variables. But, the insufficiency and incom-
pleteness of the system information often led to parameters or
variables with imprecision or uncertainty. For instance, let us
consider a nonlinear damped spring-mass system as given in
Fig. 1 governed by the equation,

mi + ci + ai? 4+ kx + Ba® = f(1), ()

where, m, c and k are respectively mass, damping and stiffness
of the nonlinear system. Here, the external force applied on
the system is f(t) with damping force f; = ci + ai? and
spring force f, = kx + Ba>.
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Figure 1. Damped spring-mass system.

The uncertainty of the material properties in Eq. (1) led to
uncertain nonlinear differential equation. Such uncertainties
may be modeled either using probabilistic approach, interval
computation or fuzzy set theory. In case of non-availability of
sufficient experimental data, probabilistic methods may not be
able to deliver reliable results. Moreover, in fuzzy set theory a
fuzzy number is expressed in terms of closed intervals through
a-cut approach. As such, interval analysis have emerged as a
powerful tool for various practical problems in handling the
uncertainties.

In early 1960s the pioneer concept related to interval com-
putations, functions, matrices, integral and differential equa-
tions has been started by R. E. Moore [12]-[14]. System of
equations, algebraic eigenvalue problems, second order initial
and boundary value problems has been discussed by Alefeld
and Herzberger [3]. Guaranteed interval computations with
respect to set approximations, parameter and state estimation
with applications in robust control and robotics are addressed
by Jaulin et al. [10]. While dealing with interval computations,
one of the major obstacle is to handle the ‘dependency prob-
lems’ effectively such that the tightest enclosure of solution
bound may be obtained. Such dependency problems often
occur in dealing with systems governed by complex nonlinear
equations which often lead to over-estimation of solution
bound. The dependency problem due to overestimation (wrap-
ping effect) has been studied by Kriamer [11] with respect
to generalized interval arithmetic proposed by Hansen [9].
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Other approach for reduction of overestimation while handling
dependency problem may be performed using contractors [10],
affine arithmetic [15] and/or parametric forms. As such, the
present work proceeds with the introduction section. The
preliminaries of classical arithmetic of Interval Analysis (IA)
along with its application for two complex nonlinear equations
comprising of imprecise variables are considered in Section
II. The Set Inversion via Interval Analysis (SIVIA) along
with Monte-Carlo approach is then used to compute the exact
enclosure of the two test problems in Section III. Further,
the proposed approach has also been verified for computing
validated enclosure of nonlinear differential equations (Van der
Pol oscillator) subject to interval initial conditions in Section
Iv.

II. CLASSICAL INTERVAL COMPUTATIONS

Interval analysis deals with interval computations on a set
of closed intervals IR of real line R, in order to obtain the
tightest bound or enclosure for uncertain systems. A closed
interval [z] C IR is denoted by [z] = [z, ] such that

(7] = [z,7] = {t| z <t <7T, where z, T € R}.

Here, = inf[z] is the inifimum or lower bound of [z] and
T = sup|x] is the supremum or upper bound of [z]. The width
and center of [x] may be referred as [z]” =7 — z and [z]°
ZET respectively.

Basic operations using classical interval arithmetic given in

Moore et al. [14] are illustrated as follows:
o Addition:

2] + [yl =[z+y, T+7],

o Subtraction:
[l -yl =[z-7, T-yl
o Multiplication:
[2] - [y] = [min{S. ([2], [y])}, max{S. ([z], [y])}],

where S. ([7], [y]) = {zy, 27, Ty, Ty}

Division:
{[xm} . [?’ g} :
(—00,00),

— If n > 0 is an odd number, then

0¢ [y, Yl

0€ly, 7l

« Power:

— If n > 0 is an even number, then

@, >0,
[X]n = [fnvgn] ’ [X] <0,
[0, max{z™,Z"}], 0 € [x].

Then, we have illustrated two test examples for the
implementation of basic interval arithmetic in Examples 1
and 2.
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Example 1: Compute the bound [z1] satisfying constraint
2)

such that z1 + x5 + x3 1 and y1 + y2 + y3 1.
Here, 1 € [z1] = [0.2,0.3], z2 € [z2] = [0.1,0.2],
y1 € [y1] =10.4,0.6] and y2 € [y2] = [0.2,0.3].

z1 = T1Y1 + T1Y3 + T3Y1.

Using classical IA, the bounds [z3] and [ys] are
initially estimated as [z3] ~ 1 — [x1] — [z2] = [0.5,0.7] and
[ys] ~ 1 —[y1] — [y2] = [0.1,0.4] respectively with respect to
the constraints x1 + x2 +x3 = 1 and y1 +y2 + y3 = 1. Then,
the bound [z] is obtained as

~ [z1] - [ya] + [21] - [ya] + [23

Further, we have considered a more complicated nonlinear
constraint in Example 2, related to problems of multi-criteria
decision-making under imprecise scores given in Dezert et al.

[7].

[21]74 ]-[11] = [0.30,0.72]. (3)

Example 2: [7] Compute the bound [z5] satisfying con-
straint given by the imprecise proportional conflict redistribu-
tion (PCR) fusion rule

Yy
Y1+ x2

x?yg
1+ Y2

such that z; € [0.2,0.3], z2 € [0.1,0.2], y1 € [0.4,0.6] and
yo € 0.2,0.3].

4)

29 = 21+

Here, the bound of [z9] is obtained as

(1] [2]
[y1] + [z2]

1] [ye]
[z1] + [y2]

[22)" 4 ~ [21]" A+ — [0.3333,0.9315].

(5)
The enclosures obtained in Egs. (3) and (5) have been com-

pared with enclosures obtained using Monte-Carlo simulation
in Table L.

Table 1
INTERVAL BOUNDS OF z1 AND z2.

Interval bounds
[Zi}IA [Zi]l\/IC’
[0.30,0.72] 0.3850,0.5935
[0.3333,0.9315] 0.4617,0.6825

i

1
2

Here, the Monte-Carlo simulation approach using uniformly
distributed 100000 independent random sample values of
variables x1, x2, Y1 and ys have been considered, where z; ~
U(x]), z2 ~ U([x2]), y1 ~ U([y1]) and y2 ~ U([yz]).
From Table I, it is worth mentioning that the bounds for
1 = 1,2 satisfy

[ZZ‘}JWC C [Zi]IA.

In case of more sample values, the Monte-Carlo simu-
lation may yield better interval enclosure with respect to
the constraints (2) and (4), but such approach is inefficient
with respect to computational time. So, we may consider the
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problem in handling interval computations as to interpret the
tightest or the exact enclosure [z;] of z; that satisfies
IA

[z ¢ [ai] € [, (©)
such that
inf [z;]74 < inf[z;] < inf [2;]MC, ™
sup 2" < sup [z;] < sup [z]"4.
or N c
2 < g, < 2MC)
Wil ®
zp <7z <7z

Although in the above computations, interval arithmetic
looks simple for basic operations with intervals and seems
appealing. But, the “dependency problem” is a major obstacle
when complicated expressions have to be computed in order
to find tightest enclosure. In this regard, the dependency effect
has been discussed in detail in next section.

A. Dependency Problem in IA

Variable or parameter dependency problem in IA is gen-
erally exhibited when we have more than one occurrence of
imprecise parameter in the governing constraint. For instance,
in case of the nonlinear constraint

z =22 +y?* for x € [0.1,0.5] and y € [—0.6,0.1],

the occurrence of each imprecise variable x and y is once.
The computation of enclosure with respect to constraint z =
2% + y? using classical TA results to [2]’4 = [0.01,0.61]
which is found equivalent to the Monte-Carlo simulation of
xz ~ U([0.1,0.5]), y ~ U ([—0.6,0.1]) for 100000 sample
values yield [z]M¢ = [0.01,0.61]. But, the complexity occurs
while dealing with complex nonlinear constraints as given in
Examples 1 and 2, where the dependency effect is exhibited
due to multiple occurrence on imprecise variables.

The dependency effect may be reduced by replacing the
constraint given in Eq. (2) with an equivalent simpler con-
straint having less (or none) redundant variables. For instance,
the equivalent constraint

9

21 = (1 —22)y2 + 2311

results to a better enclosure approximation [z;]/4
[0.34,0.66]. Here, the interval bound [0.34, 0.66] is contained
in the bound [0.30,0.72] obtained using the equivalent con-
straint given in Eq. (2). But, on the other-hand an equivalent
constraint

z1= (1 —y2)z1+ (1 —z2)ph — 1)1 (10)
results to an overestimated bound [z,]'4 = [0.28,0.70].
Due to such dependency, the interval bounds often yield
overestimation of the tightest enclosure. Similar, dependency
effect is exhibited while computing [z5]# for constraints

-1
29 =21 + (wllyz + é) + +
(lez + 53  with respect to (4). As such, identification of
£ 1
constraint yielding tightest enclosure is cumbersome. In this
regard, the problem formulation for reduction of dependency
effect has been carried out in the next section.

zny
r1+Y2

yrzs
Yy1tx2

and 2o = 21 +

1
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1) Problem Formulation: The main aim in the present work
is to compute tightest enclosure [z;, Z;] or exact enclosure such
that [2;]M€ ~ [2]'4 or

IA _ , _ _MC
2T T AT & (11)
—MC _ —. _ —IA
zZ Y =%, =77,
associated with some nonlinear constraint z; =
f(z1,22,91,92), where z; € [x;] and y; € [y;] for

i = 1,2. In this regard, SIVIA Monte-Carlo approach based
on set inversion via interval computations and Monte-Carlo
simulation have been proposed to estimate exact bounds in
next section.

III. SIVIA MONTE-CARLO APPROACH

Initially, the general procedure of SIVIA has been incorpo-
rated in Section III-A followed by contractors in Section III-B.
Finally, the combination of SIVIA with Monte-Carlo approach
(i.e SIVIA-MC) has been performed in Section III-C.

A. SIVIA

Set inversion of a typical set X C R” with respect to
function f: R™ — R" is expressed as

X=fY)={eeR™| fx) €Y},

where, ¥ C R™. In case of SIVIA [10], an initial search
set [zo] is assumed containing the required set X. Then,
using sub-pavings as given in Fig. 2, the desired enclosure of
solution set X is obtained based on the inclusion properties:

1) Case I [f|([x]) CY = |[x] C X, then [x] is a
solution,

2) Case II: [f]([x)NY = ¢ = [x]NX = ¢, then [x]
is not a solution,

3) Case II: [f](x]) NY # ¢ and [f]([x]) ¢ Y then, [x]

is an undetermined solution.

Case 111
Figure 2. Set inversion via interval analysis.

The detailed illustration of set computation using SIVIA
based on regular sub-pavings, bisections etc. may be found in
[10]. The sub-pavings in SIVIA may be improved with the
usage of contractors discussed in next section.
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B. Contractor
Contractor: ( [4], [10]) A contractor C associated with a
set X C R™ over domain DD is an operator

C:IR" — IR"

satisfying the following properties:

« Contraction: C([z]) C [z], V]z] € IR",

o Completeness: C([z]) N X = [2] N X, V[z] € IR".
The pictorial representation of implementation of contractor
over set X C R? is illustrated in Fig. 3

C([x)

7

Figure 3. Contraction of [z].

There exist various types of contractors viz. fixed-point,
forward-backward, Newton, Gauss-Seidel contractors etc.
Contractor based set inversion of leminscate curve (z2+y2)?+
a?(z* — y*) = 0 having width a € [2,3] has been obtained
based on the Pylbex library [6] and depicted in Fig. 4, where
the initial search set is [—4, 4] x [—4, 4].

Figure 4. SIVIA of leminscate curve with width [2, 3].

In order to perform SIVIA Monte-Carlo approach, we have
used forward-backward and fixed-point contractors. Detailed
implementation of forward-backward and fixed-point contrac-
tors have been incorporated in Appendix.
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C. SIVIA Monte-Carlo

SIVIA Monte-Carlo (or SIVIA-MC) is two form iterative
methodology that includes implementation of SIVIA using
contractor programming and the Monte-Carlo simulation till
the exact enclosure is obtained satisfying (11). In this regard,
the iterative procedure is incorporated in Algorithm 1 with
respect to constraint z = f(x1,x2,...,%,) such that each
x; € [x;]) € IR for i = 1,2,...,n. Here, the initial search set
containing the exact enclosure is assumed as [2g].

Algorithm 1: Implementation of SIVIA-MC approach
Input: [z;] for i 1,2,...,n; Initial domain
X =[z1], [z2], .-, [xn]s

Initial search set [zg]

Step 1: Compute enclosure using Monte-Carlo
2MC = mel(X) and ZMC€ = meu(X)
Step 2: Compute enclosure using contractors
214 = Ctel(X, [20]) and 2 = Cteu(X, [20))
Step 3: Improve lower and upper range of z
ze [§1A7§MC} and = € [EMC7§IA]
(A7 ([, 2M€))

Step 4: Compute improved lower X

and

upper X = [f]~!([2™C, z"4]) domains using SIVIA
X, X=SIVIA(X7 [f]’ [20]7 6)

Step 5: Repeat steps 1 to 3 for domains X and X

Step 6: Repeat step 4 for different domains X and X

Step 7: Tterate steps 4 and 5 till z = A ~ MC

5 — zMC _ 51A

Output: [z, Z]

and

In Algorithm 1, mel(-), mcu(-) are functions that compute
the minimum and maximum function value with respect to
domain X. Then, Ctcl(-), Ctcu(-) uses forward-backward con-
tractor along with fixed-point contractor for computing interval
enclosure based on classical IA. Further, SIVIA(-) computes
the set inversion for domain X based on constraint function f
with precision e.

Let us again consider the Examples 1 and 2 in order to
compute the exact enclosure using SIVIA Monte-Carlo in
Example 3.

Example 3: Compute the interval bounds for the constraints

Yty
Y1 + X2

x%y2
1+ Y2

Z1 = x1y1 + 21y3 + x3y; and 2 = 21 +

using SIVIA Monte-Carlo such that z; + 2 + 3 = 1 and
y1 +y2 +ys = 1. Again, z1 € [x1] =[0.2,0.3], z2 € [x2] =
[0.1,0.2], y1 € [y1] = [0.4,0.6] and y2 € [y2] = [0.2,0.3].
Using Algorithm 1 for SIVIA precision € = 0.001 and
different sample values viz. 100000, 1000, 100, 10, the tightest
enclosures with r%spect to gonstraints z1 = x1Y1+x1Yys+ T3y
and zo = 21 + % + % for different sample values are
obtained and incorporated in Tables II and III respectively.
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Table II

INTERVAL ENCLOSURE OF z1

SIVIA (0.001 precision) and Monte Carlo samples

Iterations 100000 samples 1000 samples
2z, € zZ1 € Z € Z1 €
1 [0.3796, 0.385] [0.5935,0.6007] [0.3796,0.3850 0.5935,0.6007
2 [0.3796,0.3807]  [0.5993,0.6007] [0.3796,0.3822 0.5971,0.6007
3 [0.3796,0.3801]  [0.5999,0.6006] [0.3796,0.3808 0.5987,0.6008
4 — — 0.3797,0.3803 0.5995,0.6007
[21] [0.38,0.6] [0.38,0.6]
Time (s) 5.1388 5.5936
. 100 samples 10 samples

Iterations Z € TR Z, € TR
1 [0.3796,0.385] [0.5935,0.6007]  [0.3796,0.385] 0.5935, 0.6007
2 [0.3796,0.3833]  [0.5965,0.6007]  [0.3796,0.384] 0.5945, 0.6007
3 [0.3797,0.3817]  [0.5982,0.6007] [0.3796,0.3836]  [0.595,0.6007]
4 [0.3797,0.3814]  [0.5989,0.6007] [0.3797,0.3829] [0.5971,0.6007
5 [0.3797,0.3808]  [0.5995,0.6006] [0.3797,0.3811] [0.5977,0.6007
6 [0.3797,0.3805]  [0.5996,0.6006] [0.3797,0.3808] [0.5978,0.6006
7 — — [0.3797,0.3805]  [0.5988,0.6006

[z1] [0.38,0.6] [0.38,0.6]
Time (s) 6.0616 9.511
Table III

INTERVAL ENCLOSURE OF 22

SIVIA (0.001 precision) and Monte Carlo samples

Iterations 100000 samples 1000 samples

100 samples

10 samples

2o € z2 € Z5 € z2 € 25 € z2 € 2y € z2 €
1 [0.4565, 0.4617]  [0.6825, 0.6889]  [0.4565,0.4617] [0.6825,0.6889]  [0.4565, 0.4617]  [0.6825, 0.6889]  [0.3796, 0.385]  [0.5935, 0.6007]
2 [0.4565, 0.4581]  [0.6869, 0.6887]  [0.4565, 0.4591]  [0.6859, 0.6887]  [0.4565, 0.4609]  [0.6826, 0.6887]  [0.4565, 0.4609]  [0.6854, 0.6887]
3 [0.4566,0.4575]  [0.6872, 0.6886]  [0.4565, 0.4579] [0.6864, 0.6887]  [0.4565, 0.4599]  [0.6858, 0.6887]  [0.4565, 0.4601]  [0.6828, 0.6886]
4 — — [0.4565, 0.4577]  [0.6867, 0.6887]  [0.4566, 0.4578]  [0.6863, 0.6885]  [0.4565, 0.4589]  [0.6836, 0.6886]
5 — — [0.4565, 0.4575] [0.6869, 0.6887]  [0.4566, 0.4577] [0.6864, 0.6891]  [0.4565, 0.4584]  [0.6839, 0.6885]
6 — — [0.4565, 0.4574]  [0.687, 0.6889]  [0.4566, 0.4576]  [0.6866, 0.689]  [0.4565, 0.4581]  [0.685, 0.6885]
7 — — — — [0.4566, 0.4574]  [0.6867, 0.689]  [0.4565, 0.4577] [0.6856, 0.6885]
8 — — — — — — [0.4565, 0.4575]  [0.686, 0.6885]
9 — — — — — — [0.4566, 0.4574]  [0.6865, 0.6884]
[22] [0.46,0.69] [0.46,0.69] [0.46,0.69] [0.46,0.69]
Time (s) 6.7797 7.5464 9.2454 24.847

It may be observed from Table II that the SIVIA Monte-
Carlo method iteratively converge to exact enclosure [0.38, 0.6]
(up to two decimals) even for less sample values viz. 100
and 10 respectively. Also, it may be noted that the iterative
enclosures converge to exact bound though the computational
time increases from 5.1388 to 9.511 seconds for different
samples ranging from 100000 to 10 respectively. From Table
II, the proposed method seems appealing as even for less
sample values the convergent or exact solution bound is
achieved. Many practical application problems do not yield
sufficient data and sometimes availability of large data are cost
effective, in such cases the proposed method may be used to
obtain exact enclosure and the increase in computational time
may be neglected.

Similar observations of exact enclosure convergence may
be found in Table III with respect to different sample values.
Moreover, due to complexity of the constraint (4), the required
computational time 24.847 seconds for [z2] is comparatively
higher than time 9.511 seconds required for [z;]. Further,
a nonlinear differential equations with respect to dynamic
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problems has been considered in next section for verification
and effectiveness of SIVIA Monte-Carlo approach.

IV. NONLINEAR OSCILLATOR

Sometimes, dynamic problems are governed by ma + cx +
kx = f(t) having nonlinear stiffness (k12 + kox?+...) which
result to nonlinear differential equations (nonlinear oscilla-
tors). In case of uncertain nonlinear oscillators, the SIVIA
Monte-Carlo method has been implemented using nonlinear
equations obtained based on Runge-Kutta 4" order [5], [8].
As such, the enclosure obtained in present section yield a
validated enclosure rather than the tighest bound. There exists
several validated interval methods and solvers viz. Dynlbex
[16] and CAPD [1] libraries for obtaining validated bounds.

Example 4: Consider Van der Pol equation (crisp or precise

case given in Akbari et al. [2]),
i(t)+0.15 (1 —2®) & + 1.442 = 0, (12)

subject to uncertain initial conditions x(0) € [0.1,0.3] and
3(0) = 0.
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The system of first-order differential equation corresponding
to (12) is obtained as

v = 0.15(u*~1)v—1.44u = f,(t,u,v),

subject to initial conditions »(0) € [0.1,0.3] and v(0) = 0. Us-
ing Runge-Kutta fourth-order (RK4), the nonlinear constraints
involved in computation of (12) are

u=v= fu(tvuvU)v

h
+ 5 (k1 4 2ko + 2k3 + ky), (13)

Up41 = Un

h
Un+1 = Un —+ 6 (ll + 212 —+ 213 + l4) y (14)

where,

k= hfu tnaun7vn L = hfv(tnaunavn)

kl l
hfu( 2 2,’()n—|—2>,
h kjl L
Z2—hfv(tn+27 27n+5 )
h kg lo
h’fu (tn+ 27 27U7l+2 b
h k l
d—hfv(t + = un+227vn+2>a

k4 - hfu (tn +h7un +k3,’Un +l3 )
l4 = hfv (tn + hyun + kS;vn + l3) .
Using Algorithm 1 with respect to constraints (13) and

(14), the validated enclosure of xz(t)|;—r is obtained and
incorporated in Table IV and Fig. 5.

Table IV
INSTANTANEOUS SOLUTION ENCLOSURE OF Z(t)|t=T.

T Enclosures

[](T) = [ul(T) [v)(T)
0.1 [0.0992,0.2978] [-0.0428,-0.0143]
0.2 [0.0971,0.2917] [-0.0843,-0.0282]
0.3 [0.0898,0.2828] [-0.1242,-0.0414]

0.3

= o5
=

Figure 5. Enclosure of z(t) for ¢ € [0, 1].
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V. CONCLUSION

Generally, dynamical systems occurring in various science
and engineering problems are governed by nonlinear equations
or nonlinear differential equations. An iterative procedure
based on set inversion via interval analysis and Monte-Carlo
method has been proposed for computation of exact enclosure
of nonlinear equations having imprecise or uncertain variables.
The effectiveness of SIVIA Monte-Carlo method has also
been verified based on the considered test problems that yield
exact enclosures even with respect to very less sample values.
So, the method may be well implemented in computation of
exact enclosures of various nonlinear equations irrespective of
the dependency problem. Further, the method has also been
implemented to compute validated enclosure in case of Van der
Pol oscillator. Accordingly, the method may be applied to other
practical nonlinear system of equations involving uncertain
parameters.

APPENDIX

Forward-backward contractor: The forward-backward
contractor is based on constraint f(z) = 0 where = € [z] and
[x] € IR™ which is illustrated using an example problem.

Example A1: Perform forward-backward contractor subject
to constraint w = 2u + v where, [w]| = [3,20], [u] = [-10, 5]
and [v] = [0,4].

Here, the constraint w = 2u + v may be expressed in
terms of function f as f(u,v,w) = w — 2u — v. Further, the
possible different forms of the constraint may be written are:

w—v
2

v =w — 2u,

u =

)

w = 2u + v.

The forward-backward steps are then followed with respect to
classical interval computations mentioned in Section II as:

[u]N ([w];[”]) = [~10,5]N (W) = [-0.5,5],
[0} N ([w] = 2[ul) = [0,4] N ([3,20] — 2[-0.5,5]) = [0, 4],
[w] N (2[u] + [v]) = [3,20] N (2[—0.5,5] + [0,4]) = [3, 14].

As such, the new interval bounds are [z] = [3,14],

[z] = [-0.5,5] and [y] = [0, 4].

Fixed-point contractor: A fixed-point contraction associ-
ated with ¢ is implemented with respect to the constraint
f(z) = 0 as = 9(x), where © € [z] € IR". The fixed-
point contractor with respect to constraint u? + 2u 4+ 1 = 0 is

performed as

u € [u] and u = P(u) = u € [u] and u € Y([u]),
= u € [u] N [P([u])-
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In case of implementation of forward-backward contractor

along with fixed point contractor helps in computation of

forward-backward contractor until the fixed interval is reached.
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Abstract—The classifier based on rough sets is widely used in
pattern recognition. However, in the implementation of rough set-
based classifiers, there always exist the problems of uncertainty.
Generally, information decision table in Rough Set Theory
(RST) always contains many attributes, and the classification
performance of each attribute is different. It is necessary to
determine which attribute needs to be used according to the
specific problem. In RST, such problem is regarded as attribute
reduction problems which aims to select proper candidates.
Therefore, the uncertainty problem occurs for the classification
caused by the choice of attributes. In addition, the voting
strategy is usually adopted to determine the category of target
concept in the final decision making. However, some classes of
targets cannot be determined when multiple categories cannot
be easily distinguished (for example, the number of votes of
different classes is the same). Thus, the uncertainty occurs for
the classification caused by the choice of classes. In this paper, we
use the theory of belief functions to solve two above mentioned
uncertainties in rough set classification and rough set classifier
based on Dezert-Smarandache Theory (DSmT) is proposed. It
can be experimentally verified that our proposed approach can
deal efficiently with the uncertainty in rough set classifiers.
Keywords: Classification, rough set, uncertainty, evidence

reasoning, DSmT, belief functions..

I. INTRODUCTION

a) Motivation: In recent years, we have witnessed the
rapid development of Rough Set Theory (RST) [1]. There are
many practical applications of this theory [2], [3], [4], [5].
Among these, Rough Set Classifier (RSC) has been widely
used in the real classification problems [6], [7], [8], [9].

b) Challenges: However, in the practical use of RSC,
there always exists uncertainty. In the literature [10] and [11],
the discussions of the uncertainty in RST mainly focus on
the following points of view: Chen [10] proposed several
uncertainty measures of neighborhood granules, which are
neighborhood accuracy, information quantity, neighborhood
entropy and information granularity in the neighborhood RST;
Zheng [11] estimated the uncertainty of rough set originated
from two parts of boundary region. Although the uncertainties
discussed in the above literature are of certain significance,
however, the uncertainties discussed in this paper are shown
in two aspects:

1) The choice of attributes: for example, in the decision
information table, some attributes are not significant in a
representation and deleting of these attributes has no real
impact on the classification results. However, such concept
of significancy is relative, for different problems, the role of
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each attribute is quite different. Thus, the problems of attribute
selection are always ad hoc and depending on the user’s
preference. Obviously, different attribute selections correspond
to different strategies, which generally yield different results.
For example, in [12], authors attempted to select the most
information-rich attributes from a dataset by incorporating a
controlled degree of misclassification into approximations of
rough sets. Gao et.al [13] proposed a new uncertainty measure,
named maximum decision entropy, for attribute reduction in
the decision-theoretic rough set model. Although many robust
and efficient reduction algorithms have been proposed, most of
them concentrate on the properties of data or user preference
in the definition of attribute reduction, which result in the
difficulties of choosing appropriate attribute reductions for
specific applications. For the same data, different users can
define different reductions and obtain their interested results
according to their applications. Jia et.al [14] reviewed nearly
twenty two different attribute reduction methods, but to design
of a robust attribute reduction method is not the focus of this
paper. We emphasize the uncertainty caused by the choice
of attributes, which is not discussed in details in the recent
development of RST. For this aim, one typically seeks a policy
for avoiding choosing attributes, and we propose to emphasize
the importance of each attribute for the specific problems.

2) The choice of classes: besides, in RST, the category of
target concept is determined according to the element compo-
sition of its corresponding approximate set: if the number of
elements belonging to one class is the largest, the concept of
target is labelled as this class. However, this kind of voting
method often leads to uncertainty in making decisions, which
affects the final precision of RSC. In order to illustrate this
problem more vividly, we explain it through Figure 1: in case
one, the approximate set of target concept (red five-poited
star) has four elements (plus) belonging to class 1, three
elements (plus) belonging to class 2 and two elements (plus)
belonging to class 3. Thus, in case one, we can easily draw
the conclusion that the target belongs to class 1. However,
in case two or case three, the target cannot be labelled with
single category because there are some classes (class 1 and
class 2 in case two, class 1, class 2 and class 3 in case three)
that have the same number of votes. More specifically, if
the approximate set of such target is empty-set (case four),
which category should be allocated to the target concept?
As aforementioned, for the RSCs, there are two mentioned
neglected uncertainty issues. The theory of belief functions
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[15] is widely used in uncertainty management and uncertainty
reasoning for decision-making. In this paper, we attempt to use
it to model and manage the uncertainty incorporated in RSCs.

Class |

&

*

Class 3

Case two
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\teeaa= )
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Figure 1: Uncertainty in Voting Strategy.

c) Contributions: Because a certain attribute does not
have the ability to distinguish items on a particular problem,
but there may be a discriminative performance on another
problem. Thus, according to the classification performance of
each attribute, the corresponding weights of all attributes in
information decision table are calculated, which are used as the
evaluation index of the importance of an attribute. At the same
time, we do not directly delete unimportant attributes which
the classical reduction algorithms have done. We just consider
all the attributes in the final classification, after all, we consider
that all existing attributes must play a role in the decision.
For the uncertainty of the voting strategy in traditional RSC,
we have no statistics of the number of votes of each class
in approximate sets. Instead, we first calculate the coordinate
of each class with respect to each attribute and then get the
distance between the target concept and each class in every
attribute, in order to calculate the Basic Belief Assignment
(BBA) of the target in each attribute. Then, we use the classical
combination rule (PCRS is used in this paper) proposed in
DSmT [16] to sequentially! combine all BBAs (each attribute
has a corresponding BBA). Finally, according to the principle
of maximum belief mass, we can obtain the final class of the
target concept.

This paper is organized as follows. Section II reviews some
basic concepts of Dempster-Shafer Theory (DST), and DSmT.
The new rough set classifier based on DSmT (RSCD) is
proposed in section III. Section IV gives the summary of the

IBecause PCRS rule is not associative, which means that the fusion results
depend on the order you have chosen. Here, our default way of combination
is to combine BBAs in order from small to large. For example, if there are
three BBAs: m1, ma, ms, the way of fusion is m; = PCR5 (m1, ma2) —
mi23 = PCR5(m12,Mm3) = Mfysion = M123.
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proposed classifier. In section V, we give some experimental
results to show the performances of our new method. Also,
some meaningful discussions about the extension of RSCD
are given in section VI. Section VII concludes the paper with
a summary and direction for future.

II. PRELIMINARIES

This section provides a brief reminder of the basics of
DST and DSmT, which is necessary for the presentation and
understanding of the more general fusion of evidence.

In DST framework, the Frame of Discernment (FoD)>?
O = {01,...,0,} (n > 2) is a set of exhaustive and exclusive
elements (hypotheses) which represent the possible solutions
of the problem under consideration and thus Shafer’s model
assumes 6; N 0; = O for i # j in {1,...,n}. A BBA
m (-) is defined by the mapping: 2 + [0,1], verifying
m (@) =0and )", pe m (A) = 1. In DSmT, one can abandon
Shafer’s model (if Shafer’s model doesn’t fit with the prob-
lem) and refute the principle of the third excluded middle.
The third excluded middle principle assumes the existence
of the complement for any elements/propositions belonging
to the power set 2°. Instead of defining the BBAs on the
power set 2 £ (©,U) of the FoD, the BBAs are defined
on the so-called hyper-power set (or Dedekind’s lattice) de-
noted D® £ (©,U,N) whose cardinalities follows Dedekind’s
numbers sequence, see [17], Vol.1 for details and examples.
A (generalized) BBA, called a mass function, m (-) is de-
fined by the mapping: D® ~ [0, 1], verifying m (}) = 0
and ) 4. pe m (A) = 1. The DSmT framework encompasses
DST framework because 2 ¢ D®. In DSmT, we can take
into account also a set of integrity constraints on the FoD
(if known), by specifying all the pairs of elements which
are really disjoint. Stated otherwise, Shafer’s model is a
specific DSm model where all elements are deemed to be
disjoint. A € D® is called a focal element of m(.) if
m(A) > 0. A BBA is called a Bayesian BBA if all of its
focal elements are singletons and Shafer’s model is assumed,
otherwise it is called non-Bayesian [18]. A full ignorance
source is represented by the vacuous BBA m,(©) = 1. The
belief (or credibility) and plausibility functions are respectively
defined by Bel(X) éZYeD@‘YGX m(Y) and PI(X) 2
ZYGD@‘YOX?E@ m(Y). BI(X) 2 [Bel(X), PI(X)] is called
the belief interval of X. Its length U(X) = PI(X) — Bel(X)
measures the degree of uncertainty of X.

In 1976, Shafer did propose Dempster’s rule and we use
DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone
book [18]) to combine BBAs in DST framework. DS rule
for combining two distinct sources of evidence characterized
by BBAs m1(-) and my(-) is defined by mpg (#) = 0 and
VA €29\ {0}:

ZB,CGQGNBOC:A my(B)mz(C)
1- ZB,CG2@\BHC:® mi(B)ma(C)

ng(A)

D

L

ZHere, we use the symbol £ to mean equals by definition.
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The DS rule formula is commutative and associative and
can be easily extended to the fusion of S > 2 BBAs. Un-
fortunately, DS rule has been highly disputed during the
last decades by many authors because of its counter-intuitive
behavior in high or even low conflict situations, and that is
why many rules of combination were proposed in literature to
combine BBAs [19]. To palliate DS rule drawbacks, the very
interesting PCRS5 was proposed in DSmT and it is usually
adopted® in recent applications of DSmT. The fusion of two
BBAs mi(.) and mgy(.) by the PCR5 rule is obtained by
mpcrs(0)) =0 and VA € D®\ {0}

mpors(A) = mia(A)+
m2(A)my(B m3(A)ym,(B
>y [ (A)m2(B) (A)mi(B)

peporiaqianpy LT1(A) +m2(B) © ma(A) +ma(B) |7
2
where mi12(A) = > 5 cepejpno=a m1(B)m2(C) is the
conjunctive operator, and each element A and B are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCRS formula for combining more than two BBAs
altogether is given in [17], Vol. 3. We adopt the generic nota-
tion mICF% () = PCR5(my(.), ma(.)) to denote the fusion
of m1(.) and mo(.) by PCRS rule. PCRS is not associative
and PCRS rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing D® by 2° in Eq (2).

III. NEwW ROUGH SET CLASSIFIER BASED ON DSMT
(RSCD)

A. Weights of each attribute

RST is a mathematical tool to deal with vagueness and
uncertainty [1], which can effectively analyse the incomplete
information and does not need additional data beyond the prior
information. Next, we briefly give several relevant definitions
to show how to calculate the weights of attributes:

Definition 1: An information decision system S is S =
(U, A, D), where U = {x1,29,- - ,z,} is non-empty finite
set of samples, A = {ay,az, - ,a;} is a non-empty finite set
of attributes, D is a non-empty set of finite decision classes.

Definition 2: Each attribute a € A defines an information
function f, : U — V,, and Vj, is the set value of the attribute
a. We further extend these notations for a set of attributes
B C A, an indiscernibility relation Ind(B) can be defined as
follows:

Ind(B) = {(z;,2;) € U*| fi(a) = f;(a),Ya€ B , (3)

where x; and x; are indiscernible when (x;,x;) € Ind(B).
Some equivalence classes or elementary sets are generated by
Ind(B). The elementary set of x; is represented by [x;].
Any finite union of elementary sets is called a B-definable
set. For pattern classification, elements have the same class

3Recently, a new combination rule PCR6 was proposed to combine all the
BBAs altogether in a single fusion step, which can be found in [20]. Because
PCR6 rule coincides with PCRS when combining only two BBAs [17], we
just use PCRS rule to combine BBAs in this paper.
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label consisting of a concept X so that X € U/D, where
U/D = {[xi], | xi € U} and [x;], represents the elementary
sets of x; with respect to decision attribute D. Sometimes X C
U is not B-definable. In other words, there exists elements
that are in the same elementary set, but have different class
labels, so that X becomes a vague concept. For this, we give
the following definitions of approximation sets of such vague
concept:

Definition 3: The B-upper approximation BX and the B-
lower approximation BX of the vague concept X is defined
as follows:

“)
®)

BX C BX, and BX consists of elements that certainly
belong to X, whereas B consists of elements that possibly
belong to X. The set BNg(X) = BX — BX is called the B-
boundary region of X, and thus consists of those objects that
we cannot decisively classify into X on the basis of knowledge
in B.

Definition 4: POSB(D) is a positive region of the partition
U/D with respect to B and is defined as follows:

BX ={z; €U |[zi]p C X},

POSp(D)= | ) BX 6)

X€eU/D
=J{VIYCX,YCU/B, X €U/D}. (7)

Definition 5: The degree of support of the condition at-
tributes B with respect to the decision attribute D is defined

as follows:
g = \POSsD)
U]

Here, ¢ is regarded as the degree of importance of each
attribute in the information decision table S. In order to
illustrate how to calculate the weight of a particular attribute
based on the aforementioned five definitions, we give a simple
example below:

@®)

Example 1: Table I is an information decision table
with U {z1, 29, ,212}, A {a1,a2,as3,a4},
D ={d; =1,ds = 2,d3 = 3}. According to the decision
attribute d and Eq.(3), if x; is set to U and B is
equal to d, we can get the [x;]; = [U], = U/D
Uz, 24, w7, 28, 210}, {22, 23, 9, T10, 711}, {25, 76 } }.
Meanwhile, we can also partition U by using each attribute
a;,t = 1,---,m based on the indiscernibility relation
Ind(B), which are illustrated in Table II.

Thus, each element X in [U], can be approximated by each
condition attribute a;,7 = 1,--- ,m, and then we can obtain
a; X in Table III according to Definition 3. Based on Eq.(7),
we can get the positive domain of D with respect to each
attribute a;, which is also given in Table IV.

In order to explain how positive domains are calculated in
detail, we take POS,, (D) as an example: U/D = [U]
Hw1, 24, w7, w8, 212}, {22, 23, 9, 10, 711}, {25, 76 }

Ufar = [U],, = {{z1, 24} {22}, {23}, {z5}  {we} {27},

p =
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Table I: Information decision table.

U al as as a4 as
1 51 |35 | 14 02 1

T2 6.6 | 29 | 46 | 1.3 2
T3 52127 |39 | 14 2
T4 51 |38 | 15103 1

5 64 | 27 | 53 | 19 3

T6 6.8 | 3.0 | 55| 2.1 3

7 55|42 | 14 ] 02 1

g 50 | 33 | 1.4 | 02 1

g 50 | 20 | 35| 10 2
zi0 | 59 | 3.0 | 42 | 1.5 2
z11 | 57 | 26 | 35| 1.0 2
z12 | 46 | 3.6 | 1.0 | 0.2 1

Table II: Results of partitioning the domain U using each
attribute.

The partitioning domain
{{$1, £B4} ’ {1,2} ) {13} ) {$5} ) {$6} ) {f?}
zg, 29}, {z10}, {z11}, {12}
{{z1} {=z2}, {23, 25}, {xa}, {w6, 210}
{z7} , {zs}, {wo}, {11}, {z12}}
{{‘Tlv 3:7718} ; {1’2} ) {333} ; {:E4} ’ {375}
{ze} {zo, 11}, {z10}, {712} }
{H{z1, 27,28, z12} , {w2}, {23}, {wa}, {25}

{z6}, {29,211}, {z10

vl

ay

[0

a2

[v]

a3

[v]

aa

Table III: The lower approximation of elements in [U], using
each attribute.

BX
a1{x1, x4, 7, 28, 12}
ai{xa, x3,79, 10,11}

a1{ws,z6}
az{x1, x4, 7, 28, 12}
az{x2, 3,9, 10,11}
al{x&xﬁ}
az{z1, x4, 7,78, T12}
az{z2,x3,T9, 10,711}
aj{x&xﬁ}
ag{w1, x4, 7,78, T12}
ag{z2,T3,T9, 10,711}
%{$5716}

The B-lower approximation
Hz1, 24}, {27} {z12}}
{=z2}, {z3}, {z10} {211 }}
Hzs} {z6}}

{{xl}: {I4}7 {I7}’ {‘TS}v {xIZ}}
{{z2}, {18}7 {z11}}

{{Z17I7’ ZES}v {I4}7 {I12}}
{{1’2}, {I3}’ {339, Z11}7 {3710}}
{{=s}, {ze}}

{z1, 27,258,212}, {za}}
{{1}2}, {Z3}a {Ig, 1’11}, {5310}}
{{=s}, {ze}}

Table IV: The positive domain of [U], with respect to each
attribute and weights of each attribute according to Eq.(8).

Attribute Domain ¢
xT T xr3,T I

POSal(D) { 1,22,X3,L4,T5, %
6,7, £10, L11, L12}

T1,T2,T4,T7 10

POS D { ; ) ; ) 10

a2 (D) 8, %9, T11,T12} 12

{z1, 22,23, 24,25, T6 10

POSGS(D) bl b bl ) b 7} E
T7,T8,T9,T10,T11,T12

{z1, 22,23, 24,5, %6 10

POSa4(D) b b K b b 7} ﬁ
7,28, T9,T10,T11,T12

{zs,x9},{x10},{x11},{x12}}, for any elements Y , where
Y € U/ay, if Y meets the condition: ¥ C X, where
X € U/D, then Y belongs to the domain POS,, (D), for
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example, when Y = {z1, 24} and X = {x, 24,27, 25,212},
it satisfies ¥ C X, so {z1,z4} belongs to POS,, (D).
However, if Y = {xs,29}, Y is not a subset of any elements
in U/D, so {xg,z9} does not belong to POS,, (D). Thus,
according to Eq.(8), we can obtain the degree of support
of a; with respect to the decision attribute D in Table IV,
which will be regarded as the weights of each attribute in the
classification problem.

B. Construction of BBA of Target Concept

As discussed in the introduction section, the traditional
way of voting decision will cause uncertainty when using
RSC, and directly affect the final classification accuracy. The
evidence theory has a good ability to deal with the uncer-
tainty problem, and evidence theory generally describes such
concept of uncertainty through BBAs. However, the BBAs
in evidence theory are always given by experts depending
on their own experience, which cannot be obtained directly
in practical problems. Thus, this requires that, when solving
such problems, the corresponding BBAs are first constructed
and calculated before using them to make decisions. Referring
to the construction methods of BBAs in [21], [22], [23], we
propose in this paper a new construction method for the BBA
based on so-called attribute polygon in RST. Each polygon
represents an attribute and each vertice in a polygon represents
one category. That is to say, if it is a two-classification
problem, the attribute polygon is the line segment; Similarly,
if it is the three-classification problem, such polygon is the
triangle, and so on. Figure 2 illustrates the corresponding
four polygons which represent for two, three, four and five
classification problems.

Three Classification

Two Classification

Figure 2: Attribute polygon. Pentagram represents the test
example and for example, in three classification, the distances
(dotted line) are calculated between the value of one attribute
of pentagram and the vertices of one attribute triangle.

all

Besides, the coordinates of all vertices in
attribute polygons are calculated according to [U],
{{I17I4,$7,$8,$12},{5E2,I37I9,$10,$11},{$57I6}}~
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Then, the Euclidean distance is used to calculate the distance
between test example and each attribute polygon. Finally, we
can get the belief mass value of this example belonging to
each class with respect to one attribute by using Eq.(9) and
Eq.(10).

8
s) - ae’hd )

oo
mg (0) =1

m

®

@ (10)

— aes
where «, 75 and (8 are turning parameters and according to
the recommendations given in [24], these parameters are set
to o = 0.95, 75 = —2 and 8 = 1. Besides, d is the distance
between the vertices of a; attribute polygon and each attribute
value of text example x*. Next, we will show how to calculate
BBAs through Example 1.

Example 1 revisited:

According to the decision attribute d in Table I, we
know that this simple example is a three-class problem
because D = {dj,ds,ds}, so we need to construct the
triangles. Because the decision table has four condition
attributes, we need to construct four triangles. In order
to show how to calculate the coordinates of vertices in
each attribute triangle, we give the calculation steps as
follows: Based on the partitions of the decision attribute
d: {{9517!104,537,13879012}7 {$2,$3,$979€10,$11}7 {135,906}},
we can obtain the coordinates of each category with respect
to attribute a;:

« the coordinate of class one with respect to a;:

> flx,a1) =5.06,

z€X (a1)

I()I

where X (a1) = {1, 4,27, 28,212} and |-| denotes the
cardinality;
« the coordinate of class two with respect to ay:

> flw,a1) = 5.6800,

‘X( 1)| z€X (a1)

where X (a1) = {x2, 23,29, T10, 211 };
« the coordinate of class three with respect to a;:

> f=,a1) = 6.6000,
‘ ( )| z€X(ar)

where X (a1) = {5, z6}-
Here, f(x;,a;) is the value of the cell of the Table I corre-
sponding to value x; and attribute a;.

Table V: All coordinates of three classes in each attribute.

Attribute | Class 1 Class 2 | Class 3
al 5.0600 5.6800 6.600
a2 3.6800 2.6400 2.8500
as 1.3400 3.9400 5.4000
aq 0.2200 1.2400 2.0000
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Similarly, we can calculate all the coordinates of three
classes of four attributes, which is given in Table V as
follows. Then, we randomly select a test example, which is
denoted as z* = {5.1000, 3.5000, 1.4000, 0.2000}. Based on
the Euclidean distance*, the corresponding distances between
x* and each attribute polygon is given in Table VL.

Table VI: Distances between target x* and all vertices of

attribute polygons.

Distance Class 1 Class 2 | Class 3
ay <> x* 0.0400 0.5800 1.5000
az > x* 0.1800 0.8600 0.6500
az <> x* 0.0600 2.5400 4.0000
ag > ¥ 0.0200 1.0400 1.8000

Based on Eq.(9) and Eq.(10), we can transform these values
of distances into belief mass so as to obtain the BBAs of each
attribute, which is given in Table VIL

Table VII: BBAs of x* with respect to each attribute.

m(-) | Class 1 | Class 2 | Class 3 €]

mq(-) | 0.7778 | 0.0523 | 0.0005 | 0.1694
mo(-) | 03862 | 0.0129 | 0.0368 | 0.5641
m3(-) | 0.7038 | 0.0000 | 0.0000 | 0.2962
ma(-) | 0.8596 | 0.0052 | 0.0043 | 0.1309

Finally, we use PCRS formula Eq.(2) to combine the weight
of each attribute and the BBAs of each attribute so as to obtain
the final BBA of z*>. According to the fusion result, we can
draw a conclusion that z* belong to class 1 based on maximum
of belief mass principle, which is consistent with the label of

* in the original dataset.

T
mfusi(m(el) = 0.8827; mfusi,m(Hg) = 0.0009;
M fusion(03) = 0.0007; M fysion (©) = 0.1157;

IV. THE SUMMARY OF RSCD

On the next page, we give a brief pseudo-code of RSCD in
Algorithm 1. Because RSCD in this paper is a data-driven
model, so, first of all, we need to divide original dataset
into training datasets and test samples (the experiments in
this paper are using ten-fold cross validation). Afterwards, the
training datasets are applied to construct attribute polygons
and calculate the weights of attributes. Finally, we can obtain
the corresponding BBAs of each test samples by calculating
the distances between test examples and attribute polygons.

V. SIMULATIONS

We have tested the different classifiers on real datasets
given in the machine learning repository of the University of
California Irvine (UCI) [25] and listed in Table VIIIL.

(x

“The Euclidean distance d;; = d (x;,%;) =
used here.

SIn the final BBA, for the sake of convenience, 01, 62, 03 and
represent class 1, class 2, class 3 and unknown; And m fysion(-)
[(m1(:) ® ma(-)) ® ma(-)] ® ma(-), where & denotes PCR5 rule.

i —Xj)T(Xi —Xj) is
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Algorithm 1 Solving classification problem by RSCD
Dataset, « = 095 v = -2, and f = 1
Thefinal BBAoftestdata : m fysion(-)

1) Calculate the weights of attributes wg, by

POSg(D
POSE(D) = | BX;wp =g = L2,
U]
XeU/D
2) Calculate the BBA of each attribute, by
* dﬁ Lk dﬁ .

mg (05) = ae™ ;mg () =1 — e

3) Combine all BBAs of attributes sequentially, by
mfusion(') =1i=1

4) while ¢ < m do Mmyysion(-) = PCR5(Mfysion(-),w; -
m;i(+)) Normalization(m fysion(:))-

Table VIII: UCI datasets used in the experiments.

Datasets Class Num. | Feature Dimention | Sample Num.
Iris 3 4 150
Wine 3 13 178
Pima 2 8 768
Bupa 2 6 345
ITonosphere 2 34 351

In our tests, we do not deal with the missing data problem,
all the samples with missing values have been eliminated.
Features of the samples are normalized by their means and
standard deviations before their classification. As with the
artificial datasets, we have evaluated the nearest neighbor (NN)
classifier, the nearest class centroid (NC) classifier, two k-NN
classifiers (one is with big k (k = 40) and the other with a
small £ (k =15)), and the ER-NN-NC classifier (both with
DS+BetP option, and with PCR5+DSmP option) [26]. The
results are listed in Table IX. As we can see in Table IX,
RSCD performs better in three datasets (Iris, Pima and Bupa)
and the classification results are close to ER-NN-NC on the
other two datasets (Wine and Ionosphere).

d, =d,
d,=d,
d.=d,

d,=ds=d,

Figure 3: The principle of expanded attribute polygon.

VI. DISCUSSIONS

In this paper, the Frame of Discernment (FoD) is © =
{61,02,- - ,0,} where 6; represents the category and here we
just consider singletons without compound focal elements®.
Actually, some examples are difficult to be divided into a
single class, and it may be possible to belong to two categories
or several categories at the same time. On the basis of con-
structing attribute polygons in this paper, we can easily expand
the mentioned principle above to more complex circumstances
so as to ensure the particular target can belong to several
classes simultaneously. The principle is illustrated in Figure 3:
In this figure, we give a brief description of the expanded
principle by using the three classification problem (triangle).
In this triangle, three vertices (light blue and solid frame)
represent single class, which is denoted by 6, 02 and 6s.
The difference is that, the centers of the three edges of such
triangle and the center of gravity of this triangle are defined as
compound focal elements, respectively. Specifically, the center
of #; and 05 is denoted as A, N @y, in turn, we can define all
the centers of all edges of this triangle. Besides, the center
of gravity of this triangle is defined as 6; N 63 N 63. Then,
we can calculate all the coordinates of these centers and also
the corresponding distances so as to obtain the BBAs of all
attributes. To illustrate the principle of the expanded attribute
polygon, we again revisit Example 1 as follows: Since the
extension method is mainly aimed at constructing BBAs, there
is no impact on the calculation of attribute weights, so the
following steps are only for BBAs calculation.

o Step 1: Calculate all relevant points in expanded polygon
which are given in Table X. In Table X, 61, 62 and 03
represent Class 1, Class 2 and Class 3. ;N5 corresponds
to the hypothesis for which the target belongs to two
categories simultaneously, and so on. The coordinates of
01 N6y and 61 N 62 N O3 are calculated as for example by:

0 0
a1(0y 1 6;) = ) L0 () 1);(“( 2) _5.37,

a1(01) + a1(62) + ay(03)

=5.78.
3

(11(01 N 92 N 03) =

o Step 2: Based on Euclidean distance, we can obtain the
corresponding distances between the target concept z*
and all relevant points in expanded polygon, which is
given in Table XI.

o Step 3: According to Eq.(9) and Eq.(10), BBAs of z*
with respect to each attribute are shown in Table XII.

o Step 4: Sequentially combine all four BBAs with PCRS

%Here, we do not regard © in Eq (10) as a compound focal element even
though © can be defined as © = 61 U2 U --- U 6,,. Because © represents
the ignorance or unknown of category of target concept, however, compound
focal elements here mean that this target belongs to two categories or three
categories at the same time.
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Table IX: UCI datasets used in the experiments.

Classifiers Iris(%) | Wine(%) | Pima(%) | Bupa(%) | Ionosphere(%).
NN 93.84 94.76 69.04 60.46 84.41
NN (Center) 92.09 95.68 72.70 56.54 79.25
ER— NN — NC(DSmT + DSmP) 95.15 96.42 73.38 60.96 87.76
k — NN(k = 40) 89.43 95.28 71.60 61.99 67.63
k— NN(k=25) 95.65 95.28 72.10 59.57 82.41
RSCD 98.00 94.17 74.50 62.87 84.11
rule and then, we can get the final BBA as follows. REFERENCES

M fusion(01) = 0.8763; M fysion (02) = 0.0001;

M fusion(03) = 0.0000; M fy550n (61 N O2) = 0.0240;

M fusion (02 N 03) = 0.0000; m fysi0n (01 N O3) = 0.0006;
1 pusion (01 0 02 01 03) = 0.0004; M fusion (©) = 0.0985.

Thus, we can also get the result that * belongs to Class
1 (A1). The biggest difference between the extension method
and the RSCD is that the possible category of target is
further divided so as to reduce the uncertainty in classification
problem, which can be embodied in mx(-) in Table VII and
Table XII. In RSCD, the assignment of z* to © with respect
to as is 0.5640 (see the BBA my(-) of Table VII), which
means the class of * cannot be determined if the principle
of maximum belief mass is applied. However, in expanded
strategy, © is further divided into 61 N 63, 63 N O3, 61 N O3,
01 N 62 N O3, which ensure the target can be labelled with the
correct class.

VII. CONCLUSION

In this paper, a new rough set classifier based on DSmT has
been proposed to manage uncertainties using belief function
theory. Our simulation results show clearly that RSCD per-
forms well and its implementation is relatively simple since
the attribute reduction in traditional rough set is avoided. In the
implementation of RSCD, different types of combination rules
can be used which give some flexibility to the users. In this
paper, only one combination rule in DSmT (PCRS5) has been
tested. Of course many more could be implemented and tested,
especially globally combing all BBAs in a single fusion step
with PCR6 rule, which is left for future investigations. Also,
The way of the attribute weights and BBAs’ calculation used in
RSCD is an open question and we plan to make investigations
on this question, and evaluate the robustness of RSCD in future
research works.
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Abstract—In this paper, we prove that any dichotomous basic
belief assignment (BBA) m can be expressed as the combination
of two simple belief assignments m, and m. called respectively
the pros and cons BBAs thanks to the proportional conflict
redistribution rule no 5 (PCRS5). This decomposition always exists
and is unique and we call it the canonical decomposition of the
BBA m. We also show that canonical decompositions do not exist
in general if we use the conjunctive rule, the disjunctive rule,
Dempster’s rule, Dubois and Prade’s or Yager’s rules, or even the
averaging rule of combination. We give some numerical examples
of canonical decompositions and discuss of the potential interest
of this canonical decomposition for applications in information
fusion.

Keywords: Belief Functions, Contra-evidence, Pro-evidence,
PCRS5, Canonical Decomposition.

I. INTRODUCTION

The belief functions (BF) introduced by Shafer in the
mid of 1970’s [1] from Dempster’s works are well known
and used in the artificial intelligence community to model
epistemic uncertainty and to reason with it for information
fusion. In Dempster-Shafer theory, the combination of basic
belief assignments (BBAs) provided by distinct sources of
evidence is done with Dempster’s rule of combination which
suffers of serious drawbacks in high conflict situation as
discussed by Zadeh [16], [17], but also in very low conflict
situations [4]. As a matter of fact many rules of combination
have been proposed in the literature [2] (Vol. 2), among
them the combination of two sources of evidence based on
the proportional conflict redistribution principle no5 (PCRS
rule) [8] has been shown successful in applications, and well
justified theoretically. However its complexity remains one of
its limitations to prevent its use in large fusion problems.

In this study, we show how the fusion of dichotomous
BBAs could be done thanks to their PCRS5-based canonical
decomposition which is always possible. Such decomposition
of dogmatic or nondogmatic BBA has never been presented in
the literature so far. Only a canonical decomposition based on
conjunctive rule involving improper BBA has been proposed
by Smets in 1995 [3] and extended later by Denceux [12] to
develop the cautious rule of combination. Here the canonical
decomposition we present is done differently, and we show
that any dichotomous BBA is always the result of the PCR5
fusion of a simple proper pro-evidence BBA m, with a
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simple proper contra-evidence BBA m,, and we show that
this decomposition is unique.

This paper is organized as follows. After a brief recall
of basics of belief functions in section II, we present the
canonical decomposition problem (CDP) in section III and
we show the impossibility to realize the CDP of a non
dogmatic BBA with conjunctive rule, disjunctive rule, Yager’s
and Dubois & Prade rules, and even with the averaging rule
of combination. In section IV, we analyze the CDP based on
Dempster’s rule of combination and we show that it cannot
be done for a dogmatic BBA. In section V, we prove that
the canonical decomposition based on PCRS rule always exist
for all the cases. In section VI, we present some particular
decompositions of a dichotomous BBA (including dogmatic
BBA). Some numerical examples are presented in section
VII, and potential interests of this PCRS5-based canonical
decomposition are discussed in section VIII. The last section
concludes this paper and opens a challenging question for
application of this new approach.

II. BASICS OF BELIEF FUNCTIONS

BF have been introduced by Shafer in [1] to model epis-
temic uncertainty. We assume that the answer' of the problem
under concern belongs to a known (or given) finite discrete
frame of discernment (FoD) © = {01,0s,...,0,}, with
n > 1, and where all elements of © are mutually exclusive?.
The set of all subsets of © (including empty set () and ©)
is the power-set of © denoted by 2°. A proper Basic Belief
Assignment (BBA) associated with a given source of evidence
is defined [1] as a mapping m(-) : 2© — [0,1] satisfying
m(0) 0 and ) .00 m(A) 1. In some BF related
frameworks, like in Smets Transferable Belief Model (TBM)
[3], m(0) is allowed to take a positive value. In this case, m(-)
is said improper because it does not satisfy Shafer’s definition
[1]. The quantity m(A) is called the mass of A committed by
the source of evidence. Belief and plausibility functions are
respectively defined from a proper BBA m(-) by

D

Be2©|BCA

Bel(A) = m(B), (1

IThat is, the solution, or the decision to take.
2This is so-called Shafer’s model of FoD [2].
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and

PI(A) m(B) =1 — Bel(A),

D

Be29|ANB#()

(@)

where A is the complement of A in ©.

Bel(A) and PI(A) are usually interpreted, respectively, as
lower and upper bounds of an unknown (subjective) probabil-
ity measure P(A). A is called a focal element (FE) of m(-)
if m(A) > 0. When all FEs are singletons then m(-) is called
a Bayesian BBA [1] and its corresponding Bel(-) function is
equal to PI(-), and they are homogeneous to a (subjective)
probability measure P(-). The vacuous BBA, or VBBA for
short, representing a totally ignorant source is defined as®
m,(©) = 1. A dogmatic BBA is a BBA such that m(©) = 0.
If m(©) > 0 the BBA m(-) is nondogmatic. A simple BBA is
a BBA that has at most two focal sets and one of them is O.
A dichotomous non dogmatic mass of belief is a BBA having
three focal elements A, A and AU A with A and A subsets
of ©.

In his Mathematical Theory of Evidence [1], Shafer pro-
posed to combine s > 2 distinct sources of evidence rep-
resented by BBAs m;(.),...,ms(.) over the same FoD ©
with Dempster’s rule (i.e. the normalized conjunctive rule).
The justification and behavior of Dempster’s rule have been
disputed over the years from many counter-examples involving
high and low conflicting sources (from both theoretical and
practical standpoints) as reported in [4]-[7].

Many rules of combination exist in the literature*, among
them we recommend the rule based on the proportional
conflict redistribution principle no5 (PCRS rule) [8] which
has been shown successful in applications and well justified
theoretically. That is why we analyze it in details for solving
the BF canonical decomposition problem (BF-CDP). PCR5
transfers the conflicting mass only to the elements involved
in the conflict and proportionally to their individual masses,
so that the specificity of the information is entirely preserved
in this fusion process. (see [2], Vol. 2 and Vol. 3 for full
justification and examples). The PCRS combination of two
BBAs mj and ms defined on the same FoD ©, denoted
by mpcrs = PCR5(mq,m2), is mathematically defined as
mpcors(0) = 0, and VX € 29\ {0}

mpcrs(X) = Z my (X1 )ma(Xo)+
ml(i);))(;;;(Xg) ma(X)2my (Xa)
X2Z€2® [ml(X)-l-mz(Xg) m2(X)+m1(X2)]’ 3)

XoNX=0

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded. The proper-
ties of PCRS5 can be found in [9]. Extension of PCRS5 for
combining qualitative BBA’s can be found in [2], Vol. 2 and
3. All propositions/sets are in a canonical form. A variant

3The complete ignorance is denoted © in Shafer’s book [1].
4see [2], Vol. 2 for a detailed list of fusion rules.
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of PCRS, called PCR6 has been proposed by Martin and
Osswald in [2], Vol. 2, for combining s > 2 sources. The
general formulas for PCRS and PCR6 rules are also given in
[2], Vol. 2. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6 lies
in the way the proportional conflict redistribution is done as
soon as three (or more) sources are involved in the fusion.
From the implementation point of view, PCR6 is simpler
to implement than PCRS. For convenience, very basic (not
optimized) Matlab codes of PCR5 and PCR6 fusion rules can
be found in [2], [10] and from the toolboxes repository on
the web [11]. In the sequel we work with PCRS rule because
only two BBAs are involved in the canonical decomposition
process we present.

III. THE CANONICAL DECOMPOSITION PROBLEM

We consider a dichotomous (simplest) FoD © made of only
two exclusive elements A and A, that is © = {A, A} and we
consider a given proper’ BBA m(-) : 2© — [0, 1] of the form

m(A)=a, m(A)=b, m(AUA)=1—-a—b, (4)

withO0<a<1l,0<b< 1l anda+b< 1.

The conditions 0 < @ < 1 and 0 < b < 1 mean that A and
A are FEs of the BBA. The restriction a+b < 1 means that the
BBA is nondogmatic. This assumption of nondogmaticity of
the BBA m(-) can be justified because most (if not all) states
of belief, being based on imperfect and not entirely conclusive
evidence, should be represented by nondogmatic BFs, even if
the mass m(©) is very small as argued by Denceux in [12]
(p- 240). In fact, we can always slightly modify a dogmatic
BBA m(-) in a nondogmatic BBA by discounting it with some
small discount rate ¢ > 0, and letting e tend towards O [3].
The case of dogmatic belief, as well as degenerate cases with
a = 0 and b = 0 will be discussed in Section VI. Note that his
assumption of nondogmaticity of the BBA m(-) is necessary
for Smets canonical decomposition [3], but it is not essential
for our PCR5-based canonical decomposition because it also
works with a dogmatic BBA as discussed in section VI.

The belief function canonical decomposition problem can
be expressed as follows:

Given a nondogmatic BBA m(-) as in (4) and a chosen rule
of combination, find the two following simple proper BBAs
my and m, of the form

mp(A) =,
mc(le) =Y,

(&)
(6)

with (z,y) € [0,1] x [0, 1], such that m = Fusion(m,, m.),
for a chosen rule of combination denoted Fusion(-,-).
my(+) is called the pro-BBA (or pro-evidence) of A, and
m.(+) the contra-BBA (or contra-evidence) of A. In the section
V we prove that this decomposition is always possible and
unique and we call it the (PCR5-based) canonical decompo-
sition of the BBA m(-). The BBA m,(-) is interpreted as

my(AUA) =1-z,
me(AUA)=1—y,

Swhich means that m()) = 0.
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a source of evidence providing uncertain evidence in favor
of A, whereas m.(-) is interpreted as a source of evidence
providing uncertain evidence against A. The BBA m(-) can
be interpreted as the result of the PCRS fusion of these two
(pros and cons) aspects of evidence about A.

It is worth noting that this BF-CDP must not be confused
with canonical decomposition problem addressed by Smets in
[3] in his TBM framework, which is based on conjunctive
rule of combination and which involves, in general, improper
BBAs, called generalized simple BBA (GSBBA) in Smets
terminology.

A. Impossibility of decompositions by some well-known rules

Here we analyze briefly the impossibility of a canonical
decomposition for some well-known rules of combination.

1) Conjunctive rule: We consider x > 1 and y > 1 so that
the two BBAs are really informative (otherwise they become
vacuous and useless from decision-maing standpoint). In this
case we always have a conflict between m,(-) and m.(-)
resulting of the conjunctive rule of combination. That is

Meoni(0) = mp(A)me(A) =2y >0 @)
Hence mcon;(l) # 0 is incompatible with the constraint
m(P) = 0. Therefore, the canonical decomposition of the

BBA m(-) expressed as the conjunctive fusion of pros and
cons BBAs m,,(-) and m.(-) is impossible to get in general®,
but in the very degenerate cases where a = 0, or b = 0, or
a = 0 and b = 0 which would involve vacuous BBAs in the
decomposition and of course will be useless.

2) Disjunctive rule: If we consider the disjunctive rule
of combination of m,(-) and m.(-) we will always obtain
the vacuous BBA because m,,(A)m.(A), m,(A)m.(AU A),
my(A U A)m.(A) and m,(A U A)m.(A U A) will all be
committed to the uncertainty AUA. Therefore the combination
result is nothing but the vacuous belief assignment m,,, that
is Disj(my, m:) = m,. In conclusion, we cannot make a
decomposition of the BBA m(-) based on the disjunctive rule
in general because if m(-) is informative (e.g. not vacuous)
one always has a + b < 1 so that m(A U A) < 1 whereas
the disjunctive rule of my(-) and m.(-) will always provide
m(AUA) = 1.

3) Yager’s and Dubois & Prade rules: Due to the
particular simple form of BBAs m,(A) and m.(-), Yager’s
rule [13] and Dubois-Prade rule [14] coincide. Based on these
rules we are searching = and y in [0, 1] such that

m(4) = a=z(1-y) ®
m(A) =b=(1-a)y ©)
m(AUA)=1-a-b=(1-2)(1-y)+ay (10)

Because the third equation is dependent of the two first,
we have only to solve the following system of equations

Sthat is for any a and b values of mass of FEs A and A of the BBA m.).
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x — 2y =aand y — xy = b. Assuming’ y < 1, one gets from
the first equation x = lfy. By replacing x by its expression
in the second equation y — 2y = b we have to find y in [0, 1)
such that (after basic algebraic simplifications)

Y4+ (a—b—1y+b=0 (11)

This second-order equation admits one or two real solutions
y1 and yo if and only if the discriminant is null or positive
respectively, that is if (@ — b — 1)2 — 4b > 0. However this
discriminant can become negative depending on the values of
a and b. For instance, for a = 0.4 and b = 0.5, we have
(a —b—1)? —4b = —0.79 which means that there is no real
solution for the equation 32 — 1.1 -y + 0.5 = 0. Therefore, in
general, the canonical decomposition of the BBA m(-) cannot
be accomplished from Yager’s and Dubois & Prade rules of
combination.

4) Averaging rule: Suppose we combine m,,(-) and m.(-)
with the averaging rule. Then we are searching x and y in
[0, 1] such that

m(A) =a=(z+0)/2 (12)
m(A) =b=(04y)/2 (13)
mAUA) =1—a—b=(1—xz)+(1—y))/2 (14)

This means that © = 2a and y = 2b with = and y in [0, 1].
So, if @ > 0.5 or b > 0.5 the canonical decomposition is
impossible to make with the averaging rule of combination.
Therefore, in general, the averaging rule is not able to provide
a canonical decomposition of the BBA m(-).

IV. DECOMPOSITION BASED ON DEMPSTER’S RULE

Let consider a nondogmatic BBA m(A) = a, m(A) = b and
m(AUfl)zl—a—bwithOﬁa,bg land1—a—5b>0,
and let’s see if a decomposition of (-) is possible based on
Dempster’s rule of combination [1]. For this, we are searching
2 and y in [0, 1] such that xy # 1 and

_ o _z(l-y)
m(A) =a= 1oy (15)
o, yl-2)
m(A) =b= 17, (16)
m(AUfl)zl—a—b:w. (17)
1—2zy

Because the third equality is redundant with the two first,
we just have to solve the system of two equations expressed
as

(1 —-2ay)a=2x(1-y), (18)
(1 —zy)b=y(1l—2x). (19)
That is, one should have
T — 2y +ary = a, (20)
y—ay + bxy = b, 21

7taking y = 1 would means that 2(1 —y) = 0 but m(A) = a with a # 0
in general, so that the choice of y = 1 is not possible.
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with the constraints 0 < z < 1 and 0 < y < 1. So one must

have
a

1
T ey Y7 Toa 2)
and solve the equation y — zy + bxry = b with x expressed as

function of y as above. We get the equation for a # 1

(a—1)y*+(1+b—a)y—b=0, (23)
whose solutions have the form
—(14+b—0a) VA
_Z(+b-aEVA (24)
2(a—1)

where the discriminant A is given by

A=(1+b—a)*—4(1—a)b
=1+4+b>+a%+2b—2a— 2ab+ 4ab — 4b
=a?4+b24+1—2b+ 2ab—2a

=(a+b—172%=(1—-a—-0b)?>

One sees that A is strictly positive because a + b < 1 (m
being a nondogmatic BBA). So, there exist two real solutions
y1 and yo of (23) of the form

—(l+b-a)+VA b
= 20a—1) .

_ —(l4b-a)-VA 1-a
v2 = 20a—1)

(25)

= =1.
1—a

(26)

For the case a # 1, the second “solution” yo = 1 implies

T = y———— = = =1 which is not an acceptable solution®
Y2+ays2 a .

because one must have xy # 1. The solution (x,y) of the

decomposition problem for a # 1 is actually given by the first

solution yq, that is

b
=y = 0,1 27
Yy Y1 1—@6[7) ( )
a a

le—y—i—ay:l—b

€1[0,1) (28)
The case a = 1 corresponding to the dogmatic BBA given
by m(A) =a=1,m(A) =b=0,m(AUA) =1—a—b=0
is analyzed in details in Section VI - See lemma right after
Theorem 4.
In summary, the unique solution of decomposition of a
nondogmatic BBA with 0 <a<1l,0<b<landa+b<1

using Dempster’s rule is z = % and y = 7.

Example 1: Consider m(A) =a=0.6, m(A)=b=0.2
and m(AUA)=1—-a—0b=02. The solution (z,y) of
the decomposition of m(-) based on Dempster’s rule is
z=1% =20 =075andy = & = ;22 = 0.5. There-
fore, my(A) =z =0.75, mp(AUA)=1—2=0.25 and
me(A) =y =05, m.(AUA) =1—y=0.5. It can be ver-
ified that m, @ m. = m, where @ represents symbolically
Dempster’s rule of combination [1].

8otherwise the denominators of Eqs. (15)—(17) will be equal to zero.
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V. DECOMPOSITION BASED ON PCRS5 RULE

In this section we prove that the decomposition of a
dichotomous nondogmatic BBA m(-) based on PCR35 rule
of combination is always possible and unique. Suppose we
combine m,,(-) and m.(-) with the PCRS rule of combination.
Then we are searching (z,y) € [0, 1] satisfying

1727; % + Ty — a:y2
A = = 1 — + : = : 9 29
m(A) =a=x(l—y)+ 2L = TR o)
2 2 2
i Y Yoy — a7y
A)=b=(1- + = , 30
m(A) =b=(1-x)y+ =LY o)
mAUA)=1—-a-b=1—xz—y+ay, 31
under the constraints (a,b) € [0,1]% and 0 < a+b < 1.
The equations (29) and (30) can be rewritten as
2
ry
- =a, 32
el (32)
22y
— =, 33
A (33)
from which (31) is redundant because (29) + (30) gives
r+y—xy=a+b. (34)

Therefore (1 —x)(1 —y) =1— (a+b) and that is why the
constraint a +b <1 is necessary9 for the existence of the
solution (x,y).

With z and y in [0, 1] the solutions of (32) and (33) verify

T > a, (35)
y>b. (36)

Moreover, the equality (34) implies
zx(l—y)=a+b—y = y<a-+b, (37
yl—z)=a+b—2 = x<a+b (38)
For x # 1, from (34) one gets y = ‘“{E;z and from (32) one

has

22 +azy — xy? = ax + ay. (39)
Putting this expression of y in (39), yields the equation

b_ 2
—:v(a—li—_ x) —ax

which can be expressed after elementary algebraic calculation
as

a+b—=x
1—=x

2%+ (x —a) 0, (40)

zt + (—a —2)2® + (2a + b)2?
+(a+b—ab—bH)x+ (—a® —ab)=0. (41)

This equation of degree 4 has at most four real solutions.
We have to take only the solution 2 from the open interval
(0,1) and y = (a+b—x)/(1 — x) with y € [0, 1].

The general expression of the solutions of this quartic
equation [15] is very complicate to obtain analytically even

°In fact we use the constraint a + b < 1 because in this section we consider
only nondogmatic BBA. The canonical decomposition of a dichotomous
dogmatic BBA will be analyzed in the section VI.
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with modern symbolic computing systems like Maple™, or
Mathematica™, but the solutions can be easily calculated
numerically by these computing systems, and even with
Matlab™system (thanks to the fsolve command) as soon
as the numerical values are committed to a and to b.
Another method to make the decomposmon c0n51sts to solve

T +;Ey my
numerically the system of equations iy a and

% = b for numerical values committed to a and b
thanks to Mathematica™, Maple™, or Matlab™computing
systems for instance. Of course the solutions provided by the
two methods are the same.

Example 2: Let consider m(A) = 0.6, m(A) = 0.3 and
m(AU A) = 0.1, therefore a = 0.6 and b = 0.3. The quartic
equation (41) becomes

zt —2.62% + 1.52% +0.63z — 0.54 = 0. (42)

The four solutions of this quartic equation provided by the
computing system'? are approximately
x1 &~ 0.7774780438,
2o =~ 0.9297589637,
x3 ~ 1.419151582,
x4 ~ —0.5263885898,

which are shown on the graph of figure 1 obtained easily from
Desmos online tool!!.

L &%«

+

2663+ 152 £ 063v— 0.5

-0.526,0)  (0.777.0)

o k - +
\ (0.93.0) (1.419.0)

Figure 1. Plot of the quartic function.

Clearly x3 and x4 are not acceptable solutions because they
do not belong to [0, 1]. If we take x1 ~ 0.7774780438 then
will get y1 = (a+b—x1)/(1—21) = (0.9 —21) /(1 — x1)
0.5506061437, so the pair (z1,y1) € [0,1]* is a solution of
the decomposition problem of the BBA m(-). If we take x2
0.9297589637 then will get y2 = (a +b — x2)/(1 — x2)
(0.9 — 22)/(1 — x2) = —0.4236692006, so we see that y ¢
[0,1] and therefore the pair (x2,y2) cannot be a solution of
the decomposition problem of the BBA m(-). Therefore the
canonical masses my(-) and m.(-) are given by

my(A) ~ 0.7774780438, m,(AU A) ~ 0.2225219562,
me(A) ~ 0.5506061437, me(AU A) ~ 0.4493938563.

~
~

~
~

10We did also obtain the same solutions with Maple™, and also with
Matlab™,
Mhttps://www.desmos.com/calculator
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It can be verified that the PCRS5 combination of the BBAs m,,
and m,, denoted PC R5(m,,, m.), is equal to the BBA m(-).
The following important theorem holds.

Theorem 1: Consider a dichotomous FoD © = {A, A} with
A # © and A # () and a nondogmatic BBA m(-) : 2 — [0, 1]
defined on © by m(A) = a, m(A) = b, and m(A U A) =
1 —a—b, where a,b € [0,1] and a + b < 1. Then the BBA
m(-) has a unique canonical decomposition using PCR5 rule
of combination of the form m = PCR5(m,, m.) with pro-
evidence m,(A) = 2, my(AUA) = 1—z and contra-evidence

me(A) =y, me(AUA) =1 —y, where z,y € [0, 1].

Proof: Based on (29)-(30), we have to prove that the following
system S, ; of equations always admits one and only one

solution (z,y) € [0, 1] x [0, 1]
h =
Sus : (z,y) = a, (43)
h(y, ) = b,
with h(x,y) = w =x-— —y The h function can be
prolonged in (0, 0) by continuity by setting /(0,0) = 0.
One has to prove the existence of a unique

x € [a,a+b] C[0,1] and y € [b,a + b] C [0, 1] solutions of
Sap, or equivalently solutions of y = % and of (41)
P(z) =0 with

P(z) £ 2)z® + (2a + b)a?

+ (a+b)(1—b)x—ala+D).

4+ (—a —
(44)

Because!? lim P(x) = 400 and"® P(a) < 0, there exists
Tr—r— 00

x1 € (—o00,a) such that P(z1) = 0. The solution z; is not
acceptable because z1 ¢ [a,a + b]. Because!* P(1) < 0 and
hrn P(z) = +o0, there exists also 24 € (1, 400) such that

T—+
P(:z:4) = 0. The solution z4 is not acceptable because x4 ¢

[a,a+b]. For a+b # 1, one has'> P(a+b) > 0and P(1) < 0.
Therefore there exists x5 € (a+b, 1) such that P(z3) = 0 but
this solution x5 is also not acceptable because x5 & [a,a+ b].
Because P(a) < 0 and P(a+b) > 0 there exists z2 € [a, a+D]
such that P(z3) = 0 which is the only satisfactory solution.
The value yo is given by yo ‘“rb 42=22 " and one has yo > 0
because 19 < a+b and Yo < 1 because a-+0b < 1. Moreover,
from (33), yo—b = Zi_yj which is always positive, therefore
y2 > b, and from (34) y2 — (a + b) = z2(y2 — 1) which
is always negative, therefore yo < a + b. This completes the
proof of Theorem 1.

12P(x) being polynomial, it is continuous and if P(c)P(d) < O there
exist at least one solution between |[c, d]. Therefore, we are not sure a priori
there is only one solution between [c, d]. In our case, the signs of P(z) for
r = —o0,a,a + b, 1,400 are respectively +,-,+,- and +. But because one
has four intervals, into each interval it is not possible to have more than one
solution (because otherwise will get five or more solutions, while this equation
has only up to four real solutions). Therefore in each interval there exists only
one real solution.

Bbecause P(a) = ab — ab(a + b) = —ab?.

Ybecause P(1) = —1+a+b+ (a+b)(1 —b—a)

Bbecause from (40), P(a +b)/(1 — a — b)?
P(a+0b)=bla+b)(1—a—b)?2>0.

—(a+b—1)>2.
:(a+b)2—a(a+b):>
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VI. PARTICULAR CASES OF DECOMPOSITIONS

Here we examine the canonical decomposition of particular
cases, including dogmatic BBA.

A. Dogmatic BBA: a +b=1

Theorem 2: Any dogmatic BBA defined by m(A) = a and
m(A) = b, where a,b € [0,1] and a + b = 1, has a canonical
decomposition using PCRS5 rule of combination of the form
m = PCR5(myp, m.) with m,(A) =2, my(AUA)=1—x
and m.(A) =y, m.(AU A) =1 —y where z,y € [0, 1].

Proof: Any solution of S, ; verifies

.’L'y2

—a= , 45
r—a Tty 45)

22y
—b= , 46
y r+y (46)

and therefore from (45)+(46) one has

ry(y — x)
—y)—(a—b) = ———, 47
(x—y)—(a—0) prar (47)
which can be rewritten as
Yy

— )1+ = (a—0>). 48
(@ =y+ ;] = (a=b) (48)

This means that differences (z — y) and (a — b) have the
same sign. Moreover from (34) with a+b=1 one has
x+y—axy = 1, or equivalently (1 — z)(1 — y) = 0 which is
satisfied if z =1, or if y =1 or both equal one. We must
distinguish three cases as follows:

e If a < bthen'® x < y therefore y = 1 and h(x,1) = a.
Solving h(z,1) = a is equivalent to solve 22 —az—a = 0
which admits only one positive solution = € [a,a+b = 1]
given by z = ¢4 Note if ¢ +b =1 and a < b,
then necessarily a < 0.5.

If @ > b then © > y therefore x = 1 and h(1,y) = 0.
Solving h(1,y) = b is equivalent to solve y?> —by—b =0
which admits only one positive solution y € [b,a+b = 1]
given by y = Z’Jrivgz“b. Note if a +b =1 and a > b,
then necessarily b < 0.5.

e fa=banda+b=1thena=b=05andz =y =1.

So we have proved that a decomposition based on PCRS al-
ways exists and it is unique also for any dogmatic dichotomous
BBA. Therefore, this decomposition of dogmatic dichotomous
BBA is canonical, which completes the proof of Theorem 2.

Theorem 3: Any dogmatic BBA m(A) = a, m(A) = b with
a+b=1and 0 <a <1 is not decomposable from Yager’s
rule and Dubois-Prade rule of combination.

Proof: We have the following system of equations to solve

(49)
(50)

T —zy = a,

y—ay =b.

1because (z — ) and (a — b) have the same sign.
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From (49) and (50), we geta—b=x—zy— (y—ay) = z—y,
so y = x — a + b. After replacing this expression of y into
(49) and algebraic manipulations, we have to solve

2 —2ax +a =0,
whose solutions are of the form
a(a —1).

For 0 <a <1 the system has no real solutions because
a(a — 1) < 0, which completes the proof of Theorem 3.

r=ax

Theorem 4: Any dogmatic BBA m(A) = a, m(A) = b
with a + b 1 is not decomposable from Dempster’s
rule of combination for the case when (a,b) # (1,0) and

(a,b) # (0,1).

Proof: We have the following system of equations to solve
with0<z,y<land1—zy+#0

TTAW _ (51)
1—ay
v (52)
1—2ay

After adding the two equations (51) and (52) and because
a +b = 1, we obtain %‘w = a4+ b = 1, whence
r+y—2xy =1—xy, or a:—i—y zy=1,orx+y(l—x)=1,
ory(l —x)=1—ux, or = == = 1 when z # 1. From (52),
one should have 71’_:“’ =b Wlth y = 1, that 131 L } =0, or
1 = b which is false becauself() < a < 1 then b_ 1—a# 1.

This completes the proof of theorem 4.

Lemma: The dogmatic BBAs m(A) =1, m(A) =0 (case
(a,b) = (1,0)), orm(A) = 0, m(A) = 1 (case (a,b) = (0,1))
have infinitely many decompositions based on Dempster’s rule
of combination.

Proof: For the case (a,b) = (1,0) one has to solve with 0 <
z,y < 1and 1 — a2y # 0 the system of equations

1 -2y

=1, and =0. (53)

1—ay ’
This system is satisfied for z =1 and y € [0, 1), that is any
value in [0,1) can be chosen for y.

For the case (a,b)=(0,1) one has to solve with
0<z,y<1and 1l —xy # 0 the system of equations

1 -2y

and =1.

=0, (54)

1—ay

This system is satisfied for y = 1 and = € [0, 1), that is any
value in [0,1) can be chosen for x. Therefore one sees that
for the case (a,b) = (1,0) and the case (a,b) = (0,1) there
is no unique decomposition of these BBAs from Dempster’s
rule of combination, which completes the proof of the lemma.
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B. Case when a =0 and b = 0 (i.e., m is the vacuous BBA)

This is the most degenerate case where the BBA m(-) cor-
responds to the vacuous BBA. For averaging rule, conjunctive
rule, Yager’s, Dubois-Prade’s, Dempster’s and PCRS rules one
has x = 0 and y = 0 (conflict between canonical masses is
zero). In fact the vacuous BBA m(-) can always be interpreted
as the fusion of m, and m., where m, and m. are also
vacuous BBAs. This degenerate case has no particular interest
in practice but to model the total ignorant state of knowledge.

C. Case when a =0, or b=0

In the case @ = 0 and 0 < b < 1, then for conjunctive rule,
Yager’s, Dubois-Prade’s, Dempster’s and PCRS rules one has
xz =0 and y = b (conflict between canonical masses is zero)
and m(-) corresponds to the fusion of vacuous pro-evidence
m, = m, with the contra-evidence m. = m. In the case
0 < a <1 and b = 0, then for conjunctive rule, Yager’s,
Dubois-Prade’s, Dempster’s and PCRS rules one has x a
and y = 0 (conflict between canonical masses is zero) and
m(-) corresponds to the fusion of the pro-evidence m, = m
with the vacuous contra-evidence m,. = m,,. These cases have
no particular interest because they can be seen just as the
combination of pros (or cons) BBA with the vacuous BBA

D. Case when a =b € (0,0.5)

Theorem 5: In the case a b € (0,0.5), the BBA
m(A) m(A) a and m(A U A) 1 — 2a can be
canonically decomposed from PCRS5 rule with the BBAs

my(4) = 1 = V1—=2a, my(AU A) = V/T—2a and
me(A) =1—+1-2a, m.(AUA) =+/1—2a.
Proof: From (29) and (30), one has mﬂfifi;zyz = ¢ and one

has also in this case % = b = a. Therefore x2? +
xy—:vy2 = y2+9cy—:v2y, oer—ny—yg—i—:v?y =0,
or (x —y)(x+y+2y) =0. 2 >0 and y > 0 because they
represent the masses. Therefore  + y + xy > 0. The sum
4+ y+ 2y = 0 if and only if x = y = 0, but this produces
the degenerate case, which is corresponding to a = b = 0
(i.e. the vacuous BBA). Yet, in our theorem’s hypothesis we
assumed a,b € (0,0.5), so a > 0, and b > 0. Therefore
x+y+ 2y > 0. Hence = y. Therefore the canonical BBAs
must be of the form m,(A) = x, my,(AUA) =1 —z and
me(A) = x, m.(AU A) = 1 — x. So one must solve the
equation'” z — z? + % = m(A) = a, or equivalently 2% —
xr + a = 0, whose solutions are 1 = 1 + /1 — 2a, and
r9 = 1 —+/1—=2a. For 0 < a < 0.5, the solution z; >
1 is not admissible because 21 ¢ [0,1]. The solution x5 is
acceptable because if 0 < a < 0.5, then 0 < 2a < 1, or
—1 < —1+2a < 0, or (by multiplying by -1 the inequalities)
1>1-2a>0,0r0<1-2a<1,0rV0<yIT—2a<V1,
or0 > —/1—2a > —1,or1 > 1—+/1—2a > 0 hence

x2 € (0,1). This completes the proof of Theorem 5.

2 _
71n fact, we have also the second equation  — %+ S =m(A)=b=a
to solve which is the same as the first one.
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VII. EXAMPLES

We give in Tables I-IX some numerical examples of PCRS5-
based canonical decompositions of BBA m(-) for different
sampled values of a and b for convenience. These numerical
examples may be useful for researchers working with belief
functions and interested by this new type of decomposition in
their own examples. The values have been approximated at
the 10th digit.

(a,b) z Yy
(0.1,0.1) | 0.1055728059 | 0.1055728059
(0.1,0.2) | 0.1155063468 | 0.2085867463
(0.1,0.3) | 0.1283308324 | 0.3116654549
(0.1,0.4) | 0.1445620975 | 0.4155040377
(0.1,0.5) | 0.1653570911 0.5207531320
(0.1,0.6) | 0.1926613985 0.6284087006
(0.1,0.7) | 0.2298437881 | 0.7403124237
(0.1,0.8) | 0.2834628414 | 0.8604398965
(0.1,0.9) | 0.3701562119 1

Table 1

DECOMPOSITION OF BBA WHEN m(A) = 0.1.

(a,b) z Yy
(0.2,0.1) | 0.2085867463 | 0.1155063468
(0.2,0.2) | 0.2254033308 | 0.2254033308
(0.2,0.3) | 0.2477759456 | 0.3353044255
(0.2,0.4) | 0.2763932022 | 0.4472135955
(0.2,0.5) | 0.3133633342 | 0.5630877072
(0.2,0.6) | 0.3628331876 | 0.6861104563
(0.2,0.7) | 0.4339764332 | 0.8233289109
(0.2,0.8) | 0.5582575695 1

Table II

DECOMPOSITION OF BBA WHEN m(A) = 0.2.

(a,b) z Yy
(0.3,0.1) | 0.3116654549 | 0.1283308324
(0.3,0.2) | 0.3353044255 0.2477759456
(0.3,0.3) | 0.3675444680 | 0.3675444680
(0.3,0.4) | 0.4098895428 | 0.4916206002
(0.3,0.5) | 0.4669657064 | 0.6247896197
(0.3,0.6) | 0.5506061437 | 0.7774780438
(0.3,0.7) | 0.7178908346 1

Table TII

DECOMPOSITION OF BBA WHEN m(A) = 0.3.

(a,b) z Yy
(0.4,0.1) | 0.4155040377 | 0.1445620975
(0.4,0.2) | 0.4472135955 | 0.2763932022
(0.4,0.3) | 0.4916206002 | 0.4098895428
(0.4,0.4) | 0.5527864045 | 0.5527864045
(0.4,0.5) | 0.6442577571 | 0.7188975951
(0.4,0.6) | 0.8633249581 1

Table TV

DECOMPOSITION OF BBA WHEN m(A) = 0.4.

(a,b) z Yy
(0.5,0.1) | 0.5207531320 | 0.1653570911
(0.5,0.2) | 0.5630877072 | 0.3133633342
(0.5,0.3) | 0.6247896197 | 0.4669657064
(0.5,0.4) | 0.7188975951 | 0.6442577571
(0.5,0.5) 1 1

Table V

DECOMPOSITION OF BBA WHEN m(A) = 0.5.



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

(a,b) z Yy
(0.6,0.1) | 0.6284087006 | 0.1926613985
(0.6,0.2) | 0.6861104563 | 0.3628331876
(0.6,0.3) | 0.7774780438 | 0.5506061437
(0.6,0.4) 1 0.8633249581

Table VI

DECOMPOSITION OF BBA WHEN m(A) = 0.6.

(a,b) x y
(0.7,0.1) | 0.7403124237 | 0.2298437881
(0.7,0.2) | 0.8233289109 | 0.4339764332
(0.7,0.3) 1 0.7178908346

Table VII

DECOMPOSITION OF BBA WHEN m(A) = 0.7.

(a,b) x y
(0.8,0.1) | 0.8604398965 | 0.2834628414
(0.8,0.2) 1 0.5582575695

Table VIII

DECOMPOSITION OF BBA WHEN m(A) = 0.8.

(a,b) | = Yy
(0.9,0.1) | 1T | 0.3701562119
Table IX

DECOMPOSITION OF BBA WHEN m(A) = 0.9.

Figures 2 and 3 show the shapes of the pro-evidence x =
f(a,b) and the contra-evidence y = g(a,b) surfaces proving
graphically the existence of canonical decomposition based
on PCRS5 at the sampling rate of 0.025. The values (a, b) for
which a + b > 1 are not acceptable and f(a,b) and g(a,b)
have been set to zero in the figures.

Pro-evidence: x=f(a,b)

0.6

0.6 0.4

avalue b value

Figure 2. Plot of z = f(a,b) pro-evidence surface.

VIII. INTEREST OF CANONICAL DECOMPOSITION

The canonical decomposition based on PCRS offers several
practical interests and advantages that are briefly listed here.

1) From the theoretical standpoint, one has proved that the
canonical decomposition based on PCRS rule always
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Contra-evidence: y=g(a,b)

0.4

0.6 " balue

avalue ) 1

Figure 3. Plot of y = g(a, b) contra-evidence surface.

exists in all the cases for nondogmatic or dogmatic
BBAs contrariwise to other rules of combination that
only work in some restrictive cases. Therefore this
decomposition is more general and mathematically well
justified.

This canonical decomposition of any dichotomous BBA
m(-) into the pro-evidence m,(-) and the contra-
evidence m.(-) allows to define now the notion of
internal conflict of a (dichotomous) source of evidence,
denoted K, (m), by

Kint(m) £ my,(A)ym.(A), (55)

where m,(A) = x and m.(A) = y are the canoni-
cal factors of the BBA m(:) based on PCRS5 rule of
combination. It is worth noting that the BBA m(-) has
no internal conflict, if and only if at least one of its
factor is the vacuous belief mass, that is if x = 0 or
y = 0, or both, which makes sense. For instance the
BBA m(A) = 0.3 and m(A U A) = 0.7 does not carry
internal conflict because m;, = m and m. = m, (the
vacuous BBA) so that its internal conflict K;,;(m) £
mp(A)me(A) = 0.3-0 = 0. In fact in this example
the BBA m(-) carries only uncertain pro-evidence, and
vacuous contra-evidence. This internal conflict measure
should contribute somehow in the definition of the
information content carried by a (dichotomous) source
of evidence. This aspect however is not detailed in this
paper and is left for future research works. It is clear
that the maximum of internal conflict K;,:(m) = 1 is
obtained for the dogmatic BBA m(A) = m(A) = 0.5
whose canonical decomposition by PCRS is m,(A) =1
and m.(A) = 1 which shows the full conflict between
the pro-evidence m,(-) and the contra-evidence m.(-) of
the source. Of course, there is no internal conflict for the
vacuous BBA. More precisely, K;,:(m,) = 0 because
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if a = b = 0 then one has x = y = 0 calculated from
PCRS5-based decomposition. Figure 4 shows the internal
conflict K;,+(m) of a dichotomous BBA m.

Internal conflict: K._=x- y
it

0.4

avalue

Figure 4. Internal conflict K¢ (m).

This canonical decomposition allows also to define the
notion of level of uncertainty U(m) of a dichotomous
source of evidence m(-) as the conjunction of the
uncertainties of pro and contra evidences, that is

U(m) £ m,(AU A)m.(AU A)
=1l-2)l-y)=1l—-z—y+ay

=1—2—y+ Kin:(m). (56)

Because of PCRS5-based decomposition one gets (as
already shown in (31)) U(m) 1 — a — b which
always belongs to [0, 1]. The formula (56) is interesting
because it clearly shows the link between the pro-
evidence value z, the contra-evidence value y and the
internal conflict K;,+(m) = xy. Clearly, if x =0 and
y = 0, then K;,,;(m) = 0 and the uncertainty is maximal
(i.e. U(m) = 1) because the dichotomous BBA m is the
vacuous BBA m(AU A) = 1. It can be verified that a
dichotomous BBA m has no uncertainty (U(m) = 0) if
and only if z = 1, or y = 1, or both which means that
m(-) is a Bayesian dichotomous BBA.

The canonical decomposition allows also to adjust/revise
easily a dichotomous source of evidence (if needed)
according the knowledge one has on it. For instance,
suppose one knows that the source which provides the
BBA m(-) usually over estimates with a reinforce-
ment factor of 3, =20% the belief mass committed
to hypothesis A but is always fair (unbiased) when
committing its mass to A. Under this condition, we
make the canonical decomposition of m(-) to get my(-)
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and m.(-) and we have to discount'® the pro-evidence
myp(+) with the discounting rate of a, =1/(1+ 3,)
to get the new unbiased BBA my,(-) and keep the
contra-evidence m.(-) unchanged, so that the corrected
(unbiased) BBA m/(-) will be obtained by the PCR5
combination of mj,(-) with m.(-). Of course similar
principles can be applied to discount (or reinforce) m.(-)
as we prefer (and when necessary) by choosing the

adequate discounting (or reinforcing) factors.

5) This canonical decomposition opens the door to new
rules of combination for the fusion of S > 2 (dichoto-
mous) distinct!” BBAs mg(-), s=1,2...,5. After
making their canonical decompositions to get S pro-
evidences My s = (mys(A), My s(A), my (AU A))
equal to (z5,0,1—25), and S contra-evidences
Me,s = (Mes(A),mes(A),mes(AUA))  equal to
(0,ys,1 —ys) for s =1,2,...,5, one can for instance
combine the S informative non-conflicting pro-
evidences m,, s altogether by the conjunctive rule (or
any rule one prefers) to get the combined pro-evidence
my(+), and do similarly to combine altogether the non
conflicting contra-evidences m, . to get the combined
contra-evidence m.(-). Once my(-) and me(-) are
calculated, we combine them with PCRS to get the
final resulting BBA. Processing this way will greatly
simplify the combination of many dichotomous BBAs.
Once the decomposition of each dichotomous BBA is
done, we could also consider to apply some importance
discounting [10] with rates s to combine separately
the set of BBAs {m,,,s = 1,...,S5} and the set of
BBAs {m.s,s = 1,...,5} before making their PCR5
combination.

IX. CONCLUSIONS

In this study, we have proved that any dichotomous basic
belief assignment (nondogmatic, or dogmatic) can be decom-
posed into two simpler proper belief assignments called the
pro-evidence and contra-evidence that can be combined with
PCRS rule to retrieve the original BBA. This canonical decom-
position is unique and is always possible. No simple explicit
form of the expression of the solution exists but the solution
can be found quite easily with numerical solvers (Matlab,
Maple, etc). We have also shown that the decomposition of
any dichotomous basic belief assignment cannot be done in all
the cases with other well-known rules of combination, which
reinforce the interest of PCRS principle for BF combination.
This PCR5-based canonical decomposition allows also to es-
tablish the notion of internal conflict of a dichotomous source
of evidence which could be helpful in some applications. It
offers the possibility to combine several dichotomous sources
of evidence based on the fusion of their canonical components.
This will be presented in details in a forthcoming publication.
The open challenging question is how to extend this notion of

I18We use classical Shafer’s discounting method [1].
19i ., cognitively independent.
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canonical decomposition for working with more general basic
belief assignments to make their combination more effective
(if possible), and how could we define a measure of (uncertain)
information thanks to this canonical decomposition.
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Abstract—We present a new methodology for decision-making
support based on belief functions thanks to a new theoretical
canonical decomposition of dichotomous basic belief assignments
(BBAs) that has been developed recently. This decomposition
based on proportional conflict redistribution rule no 5 (PCRS)
always exists and is unique. This new PCR5-based decomposition
method circumvents the exponential complexity of the direct
fusion of BBAs with PCRS rule and it allows to fuse quickly
many sources of evidences. The method we propose in this paper
provides both a decision and an estimation of the quality of the
decision made, which is appealing for decision-making support
systems.

Keywords: Decision-Making, Belief Functions, PCRS5.

I. INTRODUCTION

This paper deals with the decision-making support prob-
lem from many sources of evidence characterized by belief
functions (BF) defined over a same frame of discernment.
Belief functions introduced by Shafer [1] are appealing to
model epistemic uncertainty. They are well-known and used
in the artificial intelligence community to fuse uncertain
information and to make a decision. However, many debates in
scientific community started with Zadeh’s criticism [2], [3] -
see additional references in [4] - have bloomed on the validity
of Dempster’s rule of combination and its counter-intuitive
behavior (not only in high conflicting situations, but also in
low conflicting situations as well). That is why many rules
of combination have been developed by different researchers
[5] (Vol. 2) over the last decades. In this work we consider
only the rule based on the proportional conflict redistribution
principle no 5 (PCRS rule) to combine basic belief assignments
(BBAs). This choice is motived not only by its conflict
redistribution principle, but also by its ability to generate a
unique canonical decomposition of any dichotomous BBA that
will be convenient for decision-making from many sources of
evidence.

This paper is organized as follows. After a brief recall of
basics of belief functions in Section II, we present succinctly
the canonical decomposition of a (dichotomous) BBA in
Section IIT based on [6]. Then we propose a new decision-
making support methodology that exploits this canonical de-
composition in Section IV for working in a general framework
with many (non dichotomous) sources of evidences, with basic
illustrative examples. Conclusions are given in Section V.
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II. BASICS OF BELIEF FUNCTIONS
A. Definitions

The answer! of the problem under concern is supposed to
belong to a given finite discrete frame of discernment (FoD)
O = {601,0s,...,0,}, with n > 1. All elements of © are
mutually exclusive?. The set of all subsets of © (including
empty set () and ©) is the power-set of © denoted by 2°. A
Basic Belief Assignment (BBA) given by a source of evidence
is defined [1] as m(-) : 2 — [0, 1] satisfying m(()) = 0 and
> acoe M(A) = 1. The quantity m(A) is the mass of belief
of A. Belief and plausibility functions are respectively defined
from m(-) by

Bel(A)= > m(B), (1)
Be2®|BCA
and
Pi(A)= Y m(B)=1-Bel(A). 2)

Be29|ANB#()
where A is the complement of A in ©.

Bel(A) and PI(A) are usually interpreted respectively as
lower and upper bounds of an unknown (subjective) proba-
bility measure P(A). A is called a Focal Element (FE) of
m(-) if m(A) > 0. When all focal elements are singletons
then m(-) is called a Bayesian BBA [1] and its corresponding
Bel(+) function is equal to PI(-) and they are homogeneous
to a (subjective) probability measure P(-). The vacuous BBA
(VBBA for short) representing a totally ignorant source is
defined as® m,(©) = 1. A dogmatic BBA is a BBA such that
m(©) =0. If m(0) > 0 the BBA m(-) is nondogmatic. A
simple BBA is a BBA that has at most two focal sets and
one of them is ©. A FoD is a dichotomous FoD if it has
only two elements, say © = {A, A} with A # () and A # ©.
A dichotomous BBA is a BBA defined over a dichotomous
FoD.

B. PCRS5 Rule of Combination

The combination of distinct sources of evidence character-
ized by their BBAs is done by Dempster’s rule of combi-
nation in Shafer’s mathematical theory of evidence [1]. The

e the solution, or the decision to take.
2This is so-called Shafer’s model of FoD [5].
3The complete ignorance is denoted © in Shafer’s book [1].
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justification and behavior of Dempster’s rule (corresponding
to the normalized conjunctive rule) have been disputed from
many counter-examples involving high and low conflicting
sources (from both theoretical and practical standpoints) as
reported in [4]. Many alternatives to Dempster’s rule are
now available [5], Vol. 2. Among them, we consider in the
sequel the PCRS rule which transfers the conflicting mass only
to the elements involved in the conflict and proportionally
to their individual masses, so that a more sophisticate and
precise distribution is done with the PCRS5 fusion process.
The PCRS rule is presented in details (with justification and
examples) in [5], Vol. 2 and Vol. 3. We only briefly recall
for convenience its formula for the fusion of two BBAs,
which is symbolically noted as mpcprs = PCR5(my, ms),
where PCR5(-,-) represents the PCRS fusion rule for two
BBAs. With this PCRS5 rule, one has mpcrs(0) =0, and
VX €29\ {0}

mpors(X) = meon; (X)

my (X)*ma(X2)
+
X2Z€26 [ml X) +m2(X2)
XonX=0

mg(X)2m1 (Xg)
ma(X) + mi(X2)

E)

where mconi (X) = > - x, x,e00 M1 (X1)m2(X2) is the con-

X1NXo=X

junctive rule, and where all denominators in (3) are different
from zero. If a denominator is zero, that fraction is discarded.
Extension of PCRS5 for combining qualitative BBA’s can be
found in [5], Vols. 2 & 3. All propositions/sets are in a
canonical form. A variant of PCR5, called PCR6 has been
proposed by Martin and Osswald in [5], Vol. 2, for combining
5 > 2 sources. The general formulas for PCRS and PCR6 rules
are also given in [5], Vol. 2. PCR6 coincides with PCRS when
one combines two sources. The difference between PCRS and
PCR6 lies in the way the proportional conflict redistribution
is done as soon as three (or more) sources are involved in the
fusion.

III. CANONICAL DECOMPOSITION OF A DICHOTOMOUS
BASIC BELIEF ASSIGNMENT

Because the canonical decomposition of a dichotomous
BBA has been presented in details in [6], we only make
a succinct presentation here. A FoD is a dichotomous FoD
if it is made of only two elements, say © = {A, A} with
AUA=0and AN A = (. A is different from © and from
Empty-Set because we want to work with informative FoD. A
dichotomous BBA m(-) : 2 — [0, 1] has the general form

m(A) = a, m(AUA)=1—a—b, ()

m(A) = b,
with a,b € [0,1] and a + b < 1.

The canonical decomposition problem consists in finding
the two following simpler BBAs m,, and m, of the form

my(A) =z, my(AUA)=1-uz, 5)
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me(A) =y, (©6)

with (z,y) € [0,1] x [0, 1], such that m = Fusion(m,, m.),
for a chosen rule of combination denoted by Fusion(-,-). The
simple BBA m,(-) is called the pro-BBA (or pro-evidence)
of A, and the simple BBA m.(-) the contra-BBA (or contra-
evidence) of A. The BBA m,(-) is interpreted as a source
of evidence providing an uncertain evidence in favor of A,
whereas m. () is interpreted as a source of evidence providing
an uncertain contrary evidence about A. In [6], we proved that
this decomposition always exists and is unique if we use the
PCRS fusion rule. In the vacuous BBA case when a = 0 and
b = 0, the BBA m(-) can be interpreted as the PCR5 fusion
of two degenerate pro- and contra-evidences BBAs m,(+) and
m.(-) which coincide with the vacuous BBA with z = 0 and
y = 0. Hence any (Bayesian, or non Bayesian) dichotomous
BBA m(-) can be always interpreted as the result of the PCR5
fusion of these two (pros and cons) aspects of evidence about
A. Tt is worth noting that this type of canonical decomposition
is different of Smets’ canonical decomposition problem [7]
which needs to work with generalized simple BBA which are
not stricto sensu valid BBAs as defined by Shafer [1].

For the case of dichotomous dogmatic BBA, the expression
of solutions x and y of canonical decomposition are as follows
[6]:

e ifa=banda+b=1thena=b=05andxz=y =1,

o if a < b then x < y, and we have

{

e if @ > b then = > y, and we have
=1,

{ _ b+Vb2+4b
Yy = 2 ‘

For the case of dichotomous non-dogmatic BBA, the ex-
pression of solutions x and y of the canonical decomposition
do not have simple analytical expression because one has to
find x and y solutions of the system

me(AUA) =1—y,

y =1,
a++va2+4a .

Xr = B) 5

x? x2—|—x — xy?
a=a(l—y)+—L = W o
r+vy r—+vy

zy? 2 4y — 22
b=(1-ay+ =L THTI
r+y r—+vy

under the constraints (a,b) € [0,1]% and 0 < a +b < 1.
In fact, we have proved in [6] that = € [a,a + b] C [0,1]
and y € [b,a + b] C [0,1], but the explicit expression of x
and y are very complicated to obtain analytically (even with
modern symbolic computing systems like Mathematica™, or
Maple™) because after algebraic calculation, and for x # 1,
one has to solve the following quartic equation which has at
most four real solutions with only a valid one in [a,a + 1]

zt + (—a — 2)2® + (2a + b)2?
+(a4+b—ab—b*)z + (—a* —ab) =0, (9)

and then compute y by y = (a + b — z)(1 — ).
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Once the numerical values are committed to @ and to b the
numerical (approximate) solutions x and then y can be easily
obtained by a standard numerical solver. For instance, with
Matlab™we can use the fsolve command, and this is what
we use to make the canonical decomposition of dichotomous
non-dogmatic BBA.

A. Canonical Decompositions From Other Well-Known Rules

In [6] we did prove that this type of canonical decom-
position cannot be obtained by the conjunctive rule only,
because if m, and m, exist and if x > 0 and y > 0 then
Mcon;(0) = x -y > 0 which means that m = Conj(my,, m.)
is not a proper BBA as defined by Shafer’s. If we use
the disjunctive rule of combination we will always ob-
tain the vacuous BBA as the result* of Disj(m,,m.) be-
cause my(A)me(A), my(A)m.(AU A), m,(AU A)ym.(A)
and my,(AU A)ym.(AUA) will all be committed to the
uncertainty A U A. So for any choice of m, and m, we
always get same result (the vacuous BBA) when using the
disjunctive rule making the canonical decomposition of non
vacuous dichotomous BBA m just impossible. Due to the
particular simple form of BBAs m,(-) and mc(-), Yager’s
rule [8] and Dubois-Prade rule [9] coincide, and we have to
search « and y in [0,1] such that m(4) = a = z(1 — y)
and m(A) = b= (1 — z)y. Assuming® y < 1, one gets from
the first equation x a/(1l — y). By replacing x by its
expression in the second equation y — zy = b we have to
find y in [0, 1) such that (after basic algebraic simplifications)
y*+(a—b—1)y+b = 0. This 2nd order equation admits one
or two real solutions y; and y if and only if the discriminant
is null or positive respectively, that is if (a —b—1)% —4b > 0.
However this discriminant can become negative depending on
the values of a and b. For instance, for ¢« = 0.3 and b = 0.6,
we have (@ — b —1)? — 4b = —0.71 which means that there
is no real solution for the equation y2 —1.3-y+ 0.6 = 0.
Therefore, in general (that is for all possible values a and b of
the BBA m), the canonical decomposition of the BBA m(-)
cannot be obtained from Yager’s and Dubois & Prade rules of
combination. If we use the averaging rule, we are searching
x and y in [0,1] such that m(4) = a = (z + 0)/2 and
m(A) = b= (0 +y)/2, which means that x = 2a and y = 2b
with z and y in [0, 1]. So, if @ > 0.5 or b > 0.5 the canonical
decomposition is impossible to make with the averaging rule
of combination. Therefore, in general, the averaging rule is not
able to provide a canonical decomposition of the BBA m(-).

If we consider the canonical decomposition of a dichoto-
mous non-dogmatic BBA (a + b <1) using Dempster’s rule
of combination [1], denoted DS(m,, m.), we have to obtain

4Disj(myp, me) denotes the disjunctive fusion of my with me.
Taking y = 1 would means that (1 —y) = 0 but m(A) = a with a # 0
in general, so the choice of y = 1 is not possible.
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x and y in [0,1] such that® xy # 1 and

z(l—y)
A)=a=—"" 10
m(A) =a =52, (10)
i y(1 —x)
A)=b="—— 11
m(A) =b=15—". (an
with the constraints 0 <z < 1land 0 <y < 1.
Therefore,
a 1
=— 12
=T tay VFE o (12)

and we solve the equation y — zy + bzy = b with = expressed
as function of y as above. We get the equation for a # 1

(a—1)y*+(1+b—a)y—b=0, (13)

whose two solutions are y; = b/(1 — a) and y2 =1 - see [6]
for details.
For the case a # 1, the second “solution” yo = 1 implies

T = = @ — 1 which is not an acceptable solution’

1—y2+ays ~a

because one must have xy # 1. The solution (x,y) of the
decomposition problem for a # 1 is actually given by the first
solution y1, that is

b

Y=y = € [071)7 (14)

a
€r = =
l—y+ay 1-0

a

€[0,1). (15)

The analysis of the case a =1 corresponding to the
dogmatic BBA given by m(A) =a=1, m(A) =b=0,
m(AUA) =1—a— b= 0 shows that this BBA is not canon-
ically decomposable by Dempster’s rule. Why? Because one
has to solve with 0 < z,y < 1 and 1 — zy # 0 the system of
equations (v —zy)/(1 —2y) =1 and (y —zy)(1 —2ay) =0
which is satisfied for z =1 and y € [0,1), that is any
value in [0,1) can be chosen for y. Similarly, for the
case (a,b) = (0,1) one has to solve with 0 < z,y <1 and
1 —zy # 0 the system of equations (z —zy)/(1 —2y) =0
and (y — 2zy)/(1 — xy) = 1 which is satisfied for y = 1 and
x €[0,1), that is any x value in [0,1) can be chosen.
Therefore one sees that for the case (a,b) = (1,0) and the
case (a,b) = (0, 1) there is no unique decomposition of these
dogmatic BBAs from Dempster’s rule of combination. More
generally, any dogmatic BBA m(A) =a, m(A) =b with
a + b =1 is not decomposable from Dempster’s rule of com-
bination for the case when (a,b) # (1,0) and (a,b) # (0, 1)
- See Theorem 4 with its proof in [6].

In summary, the canonical decomposition based on Demp-
ster’s rule of combination is possible only for nondogmatic
BBA with 0 < a<1,0<b< land a+b < 1 and we

have z = ;%5 and y = ﬁ Dempster’s rule does not allow
to obtain a canonical decomposition if the BBA is a Bayesian

(dogmatic) dichotomous BBA.

OThe third equality m(AUA) = 1—a—b = %S;y) being redundant
with (10) and (11) is useless.
7Otherwise the denominator of (10) and (11) will equal zero.
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Example where Dempster’s canonical decomposition is
possible

_ Consider m(A) = a = 0.6, m(A) = b = 0.2 and m(A U
A) =1—a—b=0.2. The solution (x, y) of the decomposition
of m(-) based on Dempster’s rule is

a

TET T, T 1o0n 0T
and
b 0.2
/I — —
V=14 1-06 %

Therefore, the pro- and contra- evidential BBAs m,, and m,
are given by
my(A) = x = 0.75,

me(A) =y = 0.50,

my(AUA) =1—2 =0.25,
m.(AUA) =1—y=0.50.

It can be verified that D.S(m,,, m.) = m.

If we make the PCR5-based canonical decomposition, we
will obtain in this example = =~ 0.6861 and y ~ 0.3628.
Therefore, the pro- and contra- evidential BBAs m,, and m.
based on the PCR5-based canonical decomposition are

my(A) =2 =0.6861, my(AUA)=1-x=0.3139,

me(A) =y =0.3628, m(AUA) =1—1y=0.6372.

It can be verified that PCR5(mp, m.) = m.

In the case where Dempster’s rule can be applied for making
the canonical decomposition (that is when a + b < 1) we see
that the canonical values (parameters) x and y can be very
different from those obtained with PCRS rule as shown in the
previous example. This is normal because the principles of
conflicting information redistribution of Dempster’s rule and
PCRS5 rule are very different, and there is no link between
parameters x and y obtained with Dempster’s rule versus those
obtained from PCRS. In PCRS rule the conflict is a refined
conflict, i.e. the conflict is split into partial conflicts, so in
PCRS the total conflict is more accurately redistributed than
in Dempster’s rule because each partial conflict is redistributed
only to the elements involved into it, while in Dempster’s rule
the total conflict is redistributed to all focal elements, therefore
even the elements that were not involved in the conflict receive
conflicting mass, which is inaccurate.

It is worth noting that the internal
of m based on Dempster’s rule will be
example xy =0.75-0.5=0.375, whereas the
conflict of m based on PCRS rule will be only
zy =~ 0.6861-0.3628 ~ 0.2489. In fact we can attest
that the internal conflict obtained from PCRS-based
canonical decomposition is always lesser (or equal) to
the internal conflict obtained from Dempster-based canonical
decomposition. Although such claim cannot be proved
algebraically®, we can always make a fine sampling of (a,b)
values in [0,1) satisfying @ + b < 1 to evaluate numerically

conflict
in this
internal

8Because there is no simple analytical expressions for solutions z and y
of PCRS5-based canonical decomposition.
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z and y and compare the internal conflict zy to the internal
conflict, denoted z'y" = %5 - lTba’ obtained with Dempster-
based canonical decomposition. In doing this we see that
the difference A = z'y’ — xy is always greater (or equal)
to zero as clearly shown in Figure 1. This means that the
PCRS5-based canonical decomposition is more efficient than
Dempster-based canonical decomposition because it always
yield pro- and contra-evidences which are less conflicting
when using PCRS5 rule than when using Dempster’s rule,
which is normal.

Difference between internal conflicts based on Dempster's and PCR5 decompositions

0.6

Figure 1. Plot of A = z’y’ — zy as function of @ and b.

It is important to keep in mind that Dempster-based canon-
ical decomposition is only possible for non-dogmatic BBAs
(when a+b < 1) but cannot be obtained with dogmatic BBAs,
whereas PCR5-based canonical decomposition works for all
types of dichotomous BBAs (dogmatic and non-dogmatic
ones).

B. Simple Example of PCR5-Based Canonical Decomposition
Let consider m(A) = 0.3, m(A) = 0.4 and m(AU A) =

1—m(A) —m(A) = 0.3, therefore « = 0.3 and b = 0.4. The
quartic equation (9) becomes

a2t —2.32% + 22 + 0.422 — 0.21 = 0. (16)

The four solutions of this quartic equation are approxi-
mately®
1.5203,
ro ~ —0.4243,
x3 ~ 0.7942,
x4 =~ 0.4099.

~
~

T1

~
~

One sees that x; and x5 are not acceptable solutions because
they do not belong to [0,1]. If we take x5 ~ 0.7942 then
will get y3 = (a +b— x3)/(1 — x3) = (0.7 — x3)/(1 —
x3) ~ —0.4576. We see that y3 ¢ [0, 1] and therefore the pair
(x3,y3) cannot be a solution of the PCR5-based canonical

9The solutions can be easily obtained with the roots command of Matlab™.
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decomposition problem for the BBA m(-) of this example. If
we take x4 ~ 0.4099 then will get y4 = (a+b—x4)/(1—24) =
(0.7 —x4)/(1 — x4) =~ 0.4916 which belongs to [0, 1]. So the
pair (z4,y4) € [0,1]? is the unique solution of the canonical
decomposition problem. Therefore the canonical masses 1, ()
and m.(-) are given by

my(A) 2 0.4099, m,(AUA) ~ 0.5901,

and - -
me(A) = 0.4916, m.(AU A) ~ 0.5084.

It can be verified that PCR5(my, m.) = m.

C. Advantages and Limitation of PCRS5-Based Decomposition

The PCR5-based canonical decomposition offers the follow-
ing advantages:

1) It is well justified theoretically.

2) It gives us access to the simpler pro- and contra-
evidences my,(+) and m.(-) which are unique and always
exist for any possible (dogmatic, or non-dogmatic) di-
chotomous BBA m(-).

It allows to define clearly the notion of internal con-
flict of a dichotomous source of evidence simply as
Kint(m) & my,(A)ym.(A).

It always provides less conflicting pro- and contra-
evidences than what we would obtain with Dempster’s
rule when considering non-dogmatic dichotomous BBA
m(-). This proves the superiority of PCR5-based canon-
ical decomposition over Dempster’s-based canonical de-
composition in general.

It allows also to adjust or revise!? quite easily a dichoto-
mous source of evidence (if needed) according to the
knowledge one has on it by reinforcing or discounting
its pro- or contra-evidential BBA.

It can be easily achieved with classical numerical solvers
on the shelf.

The decomposition can be done off-line for many sam-
pled (a, ) values at any precision we want, and stored in
computer memory for working directly with m,(-) and
m.(-) instead of making the decomposition on the fly.
This is of prime importance for real-time applications
where this method could be used.

It allows to establish efficient fast'! suboptimal PCRS
fusion scheme, see [10] for details, examples and eval-
uations.

3)

4)

5)

6)

7)

8)

The only important limitation of this PCR5-based canon-
ical decomposition is that it applies only to dichotomous
BBAs, and it seems very difficult (maybe impossible) to
use or to extend it for making directly some new canonical
decomposition of non dichotomous BBAs. Because of this
limitation the use of PCRS5-based canonical decomposition
appears, at first glance, quite restrictive for being really useful
in applications involving non dichotomous BBAs. Of course

10This point is not detailed here because is out of the scope of this paper.
"Where the complexity is linear with the number of dichotomous BBAs
to fuse.

65

in applications working with dichotomous BBAs (like those
in robotics or for autonomous vehicle navigation using belief-
based perception based on grid occupancy) this PCR5-based
canonical decomposition may have a great interest. In fact we
have already used it for belief-based inter-criteria analysis in
[11] and that is why we do not present our results in this
work. Nevertheless we will show in the next section how this
PCR5-based canonical decomposition could be used for the
decision-making support in a more general context involving
many non-dichotomous BBAs. This is a problem which has
not been addressed in [6].

IV. DECISION-MAKING USING PCR5-BASED
DECOMPOSITION

In this section we propose a new simple general decison-
making scheme based on PCRS5-based canonical decomposi-
tion of dichotomous BBA. We consider S > 2 distinct sources
of evidence characterized by their BBAs'? m&(-) defined over
the same (possibly non dichotomous) FoD © = {6,,...,6,},
with n > 1.

Can we exploit the PCR5-based canonical decomposition in
this context to make a decision? How? We answer positively to
the first question and explain in details how we can proceed.
For this, we need to express the problem in the framework
of dichotomous BBAs that has been presented in the previous
section. More precisely, suppose one has a BBA m®(.) defined
on 2° with |©| > 2, then based on Bel and PI formulas (1)-
(2), it is always possible to calculate Bel®(X) and PI®(X)
for any X € 2°. From Bel®(X) and PI®(X) one can
always build a simpler coarsened dichotomous BBA on the
dichotomous (coarsened) FoD ©x = {X, X} if X # () and
X # Ox as follows

m®X(X) = Bel®(X), (17)
m®X(X) =1- PI°(X), (18)
m®X (X UX) = PI®(X) — Bel®(X). (19)

Hence, Bel®X(X) = m®*(X) = Bel(X) and PI®% (X) =
mOx(X) + m®*(X U X) = Bel®(X) + PI®(X) —
Bel®(X) = PI®(X). This dichotomous BBA m®X (-) can
always be decomposed canonically into its pro- and contra-
evidences m$X () and m2 (.).

Therefore, instead of combining S > 1 non dichotomous
BBAs m?(.) for s =1,2,...,S altogether from which a
decision is classically drawn, we propose to make the decision
from the set of all combined coarsened BBAs relatively to
each possible dichotomous frame of discernment ©x. Of
course this decision-scheme is only suboptimal because the
whole information is not processed (combined) altogether, but
separately using only the coarsened (less informative) BBAs
m&x (X). However, this method allows to use fast suboptimal
PCRS5 fusion of m&¥(X) thanks to PCRS5-based canonical
decomposition as presented in [10] which can be applied with
many (hundreds or even thousands) sources of dichotomous

12For clarity, we need to introduce in the notations a superscript to indicate
the FoD we are working on.



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

BBAs. With this simple suboptimal decision-scheme we can
easily restrict the domain D on which the decisions can be
made, for instance D can be chosen as the set of singletons
of 29, or any other subset of 2€ depending on the application
under concern as it will be shown in the next section. The
generic steps of the method we propose are as follows:

o Inputs: BBAs m2(-),s=1,...,
D C 2°.

e Step 1: For s 1,...,S, coarsening of m®(-) into
dichotomous BBA m®x (), for each X € D based on (17)-
(19).

e Step 2: For s = 1,...,
position of m$x(-) to get pro- and contra-evidences m
and m&x (-).

o Step 3 Conjunctlve fusion of all the pro-evidences m® ()
to get mS X (-).

e Step 4 Conjunctive fusion of all the contra-evidences
mEX (+) to get mEx (-).

o Step 5: PCRS fusion of m9x
MmpEps(-) for X € D.

e Step 6: Decision-making from the set of the combined
coarsened dichotomous BBAs {mS% - (-), X € D} to get the
final decision X € D.

e Output: the final decision XeD

S, and the decision domain

S, PCR5-based canonical decom-
ox ()

p;s

() with m9x(-) to get

In steps 3 and 4 we use the conjunctive fusion because there
is no conflict between all pro-evidences m§§ (+), and there is
also no conflict between all contra-evidences m®X (), s
1,...,5. The steps 1 to 5 do not require high computatlonal
burden and they can be done very quickly, specially if PCRS-
based decompositions have been done off-line (as they should
be) [10].

We must detail a bit more the principle of the decision-
making for the step 6. Actually, the decision-making for
step 6 can be interpreted as a decision-making problem from
a set or coarsened BBAs mS% () defined over different
dichotomous FoD © x which are all the different coarsenings
of the whole (refined original) FoD ©. In this paper we
propose two methods to make the decision from the set of
coarsened BBAs {m9& 1 (+), X € D}.

A. Method 1 for Step 6

This method is very simple. We take the decision X
corresponding to the largest value of mgé rs(X), that is

X = argmax(mpg s (X)) (20)

If there exist several arguments having the largest value (i.e.
there is a tie), we select the one whose m 9% s (X) is smaller.

Example 1 (without tie): Suppose © = {A, B,C, D, E} and
we want to make a decision/choice only among the elements
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of D = {A, B,C}. Suppose after applying steps 1-5 we get
the following 3 BBAs

Mpgrs(A) = 0.3, mpdps(A) = 0.2,mpd s (AU A) = 0.5,
mggRS(B) :Ol7mggR5(B) 0.5 mPCR5(BUB) = ,
MPE s (C) = 0.4,mPE s (C) = 0.3, mPE ps (CUC) =

The decision will be X = C' because

Oc

mpeps(C) > mgé‘RS(A) > mgé%(B).

Example 2 (with tie) We consider same m?cm() and
mSE ps (1) as in example 1 but m94 o (.) is given by

O4

mpéps(A) = 0.4, m%é]%(‘zl) =02, mgACR5(A UA) =04

In this case, there is a tie between A and C because
Oc

M P ps(A) = mPE ps(C) = 0.4. But because mPE ps(A) <
MG ps(C) we will take X = A as the final decision.

The interest of this method is above all its simplicity, but
it does not allow to quantify the quality (trustfulness) of the
decision which is often useful and required in decision-making
support systems, and that is why we propose a second method
for the decision-making of step 6.

B. Method 2 for Step 6

This second method is a bit more sophisticate but it circum-
vents the exponential complexity of the direct PCR6 fusion
of S > 2 BBAs defined on non dichotomous FoD ©. Once
the step 5 is accomplished we propose to fuse altogether the
(coarsened) dichotomous mgé 5 (+) and to apply the decision-
making method based on the distance between the belief
intervals [12]. Because the fusion must operate on the same
common frame, we need just to express each BBA m$ %5( )
as a dichotomous BBA on © which is denoted mPc;%()
This is done very easily by just expressing each X as the
disjunction of all elements of © included in X. The fusion
of BBAs mgég?() is done by the weighted averaging rule
of combination, where each weighting factor depends on the
decisioning-making easiness of the BBA mgé rs(+) to fuse.
The easier the decision-making, the higher the weighting
factor. We summarize this method 2:

1) For each X € D, establish mHghe(-) from m9X oo ()

2) For each X € D, compute the weighting factor w(X) of

ox16
mpéj%( -) by
1
w(X) = 51~ h(mp2Es)). @
where ' is a normalization factor given
by C= Z ( (m%g}?)) and where
h(mgé%(;) H( PCRS)/Hmax S [O 1] is the

normalized pignistic entropy of the BBA mgég? defined

by H(mSEhe) = — 3 xese BetP(X)logy(BetP(X))
and BetP(X) is the pignistic probability of X [13], and

Hpnax = log, |©].
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0x10

3) Make the weighting average of m p¢ pr

to get the BBA
me() = 3" w(X)

XeD

0x10

MpcRs (22)

()-

4) From m®(-) make the decision based on minimum of

belief-interval distance [12], that is

(S}

X :arg)lglei%dgl(mg,mx (23)

);
where m¥ is the BBA focused on X thatis m$ (X) =1
and mQ(Y) = 0if Y # X, and where dp;(.,.) is the
belief-interval distance defined by (see [12] for details,
justification and examples)

dB](ml,mg \/ Z d2 BIl
(24

Xe2®
where N, = 1/2/®I=1 is a normalization factor to have
dB](ml, mg) S [O, 1], and dy (BIl (X), BIQ(X)) is the
Wassertein’s distance between belief intervals

), BI2(X)),

BI(X) £ [Bely(X), Ply(X)] = [a1, b1],
and
BI;(X) £ [Bely(X), Ply(X)] = [az, ba],
given by
ay+b as +b
dw ([a1, b1], a2, ba]) = | [F5— = =5
1b1—a1 bg—agzé
+3[ 2 2 ]}

5) The quality (or trustfulness) of the decision is given by
dB[ (m, mX)

ZXeD dpr(m, mX).

g(X) 21 (25)

q(X) € [0,1] becomes maximum (equal to one) when
dBI(m@,m?() is zero, which means that m®(-) is fo-
cused only on X. The higher q(X ) is, the more confident
in the decision X we are. When there exists a tie between
multiple decisions { X, j > 1}, then the prudent decision
corresponding to their disjunction X = UjX ; should be
preferred (if allowed), or we can apply the method 1
to resolve the tie, or in desperation select randomly X
among the elements X 4 involved in the tie.

Of course we could adopt a more complicate method
where the averaging fusion could operate on all the possible
dichotomous BBAs related with each element X € 29\{?.6}
instead of X € D, but this would substantially increase
the computational burden. Because the decision X must be
constrained to belong to D, we restrict the fusion to be applied
only for the dichotomous BBAs related to these elements only.
By doing this we can reduce substantially the computational
burden if |D| is much lesser than 2/©!.

For convenience, we show how works the method 2 in the
previous Example 1 using the same © and D = {A, B,C}.
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(-) forall X € D We have to make the weighted average of the three following

BBAs

%8}?5(0 UC=0)=03,

with BUCUDUE = A, AUCUDUE = B and
AUBUDUE = C. The pignistic entropies are respectively

equal to H(mBats) ~ 21710, H(mBEh) ~ 2.3201
and H(m9&hY) ~ 2.0754, and their normalized values are

h(A) ~ 2.1710/2.3219 = 0.9350, h(B) ~ 2.3201/2.3219 =
0.9992 and h(C) ~ 2.0754/2.3219 = 0.8938. From Eq.
(21) we get the weighting factors w(A) ~ 0.37803, w(B)
0.00463 and w(C') =~ 0.61734, and the weighted average BBA

~
~

~
~

m®(A) = w(A)mHE e (A) +w(B) - 0+ w(C) -0 ~ 0.1134,
m®(B) = w(A) - 0+ w(Bym2ZI2(B) + w(C) - 0 ~ 0.0005,
m®(C) = w(A) -0+ w(B) -0+ wC)mHEN (C) ~ 0.2469,
m®(BUCUDUE) = w(A)mgg;(;(B UCUDURE)
w(B) -0 4 w(C) -0 ~ 0.0756,
m®(AUCUDUE) :w(A) 0
+w(Bym2E2(AUCUDUE)
+w(C) - 0~ 0.0023,
m®(AUBUDUE) =w(A)-04+w(B)-0
+w(C)ymPG2(AUBUDUE)
~ 0.1852,
m®(0) = w(A)mpER (0) +w(B)mp 3 (0)
+w(C)mSGI2(©) = 0.3761.

From Eq. (24) we get

dBI(m@,mg) ~ 06818,
dBI(m@,m%) ~ 0.7541,
dp1(m®,m&) ~ 0.5874.

Because dpr(m®,me) < dpr(m®,m%) < dpr(m®,m%y),

the final decision must be X = C because it corresponds
to the smallest dp; distance value. This decision is the
same as with method 1. Based on Eq. (25) one has
¢(X = C) ~ 0.7096 indicating a pretty good trustful decision
because it is much greater than 0.5. If one have preferred
X = A (the second best choice) then ¢(X = A) ~ 0.6630
which is a bit worse, and for X = B one gets the least
trustful decision because ¢(X = B) ~ 0.6273. Note that a
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more optimistic attitude (if preferred) could be obtained by
replacing the BetP probability by the DSmP probability [5]
(Chap. 3 of Vol. 3) in the entropy derivation.

V. CONCLUSIONS

In this work we have presented a very new methodology
for decision-making under uncertainty in the framework of
belief functions thanks to the unique PCRS5-based canonical
decomposition of any (dogmatic or non-dogmatic) dichoto-
mous BBAs. We have shown that this new canonical decom-
position provides less conflicting contra- and pro-evidences
with respect to the decomposition based on Dempster’s rule
when the latter can be applied. Any BBAs defined on a general
(non dichotomous) frame of discernment can be transformed
into a set of coarsened dichotomous BBAs that can always
be decomposed canonically and combined easily and quickly
in one PCRS fusion step to get a suboptimal fusion result for
each element of the decision space under consideration. The
final decision can be made in two ways: either by a simple
comparative analysis of masses of elements of the decision
space, or on the minimization of belief-interval distance which
also offers the advantage of quantifying the quality of the
decision. The evaluation of this new methodology for real ap-
plications is under progress and it will reported in forthcoming
publications.

REFERENCES

[11 G. Shafer, A Mathematical theory of evidence, Princeton University
Press, 1976.

[2] L.A. Zadeh, On the validity of Dempster’s rule of combination, ERL
Memo M79/24, Department of EECS, Univ. of California, Berkeley,
U.S.A., 1979.

[3] L.A. Zadeh, A simple view of the Dempster-Shafer theory of evidence
and its implication for the rule of combination, The Al Magazine,
vol. 7(2), pp. 85-90, 1986.

[4] J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and
its interpretation as a generalization of bayesian fusion rule, Int. J. of
Intelligent Syst., Vol. 29(3), pp. 223-252, 2014.

[5] F. Smarandache, J. Dezert (Editors), Advances and applications of DSmT
for information fusion, Volumes 1-4, American Research Press, 2004—
2015.

[6] J. Dezert, F. Smarandache, Canonical decomposition of dichotomous
basic belief assignment, International Journal of Intelligent Systems,
pp. 1-21, 2020.

[71 P. Smets, The canonical decomposition of a weighted belief, in Proc. of
Int. Joint Conf. on Artif. Intell., pp. 1896-1901, San Mateo, CA, USA,
1995.

[8]1 R. Yager, On the Dempster-Shafer framework and new combination
rules, Information Sciences, Vol. 41, pp. 93-138, 1987.

[9] D. Dubois, H. Prade, Representation and combination of uncertainty
with belief functions and possibility measures, Computational Intelli-
gence, Vol. 4, pp. 244-264, 1988.

[10] J. Dezert, F. Smarandache, F., A. Tchamova, D. Han, Fast fusion of basic
belief assignments defined on a dichotomous frame of discernment, in
Proc. of Int. Conf. on Information Fusion (Fusion 2020), Pretoria, South
Africa, 2020.

[11] J. Dezert, S. Fidanova, A. Tchamova, Fast BF-ICrA method for the
evaluation of MO-ACO algorithm for WSN layout, in Proc. of FedCSIS
Int. Conference, Sofia, Bulgaria, 2020.

[12] D. Han, J. Dezert, Y. Yang, Belief interval based distances measures in
the theory of belief functions, IEEE Trans. on SMC, Vol. 48(6), pp. 833—
850, 2018.

[13] P. Smets, R. Kennes, The transferable belief model, Art. Intell.,
Vol. 66(2), pp. 191-234, 1994.

68



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

Fast Fusion of Basic Belief Assignments
Defined on a Dichotomous Frame of Discernment

Jean Dezert®, Florentin Smarandache?, Albena Tchamova®, Degqiang Han®

%The French Aerospace Lab, ONERA/DTIS, Palaiseau, France.
bDepartment of Mathematics, University of New Mexico, Gallup, NM, USA.
“Inst. of 1&C Tech., Bulgarian Academy of Sciences, Sofia, Bulgaria.
dnst. of Integrated Automation, Xi’an Jiaotong Univ., Xi’an, China.

Emails: jean.dezert@onera.fr, smarand @unm.edu, tchamova@bas.bg, deqhan @xjtu.edu.cn

Originally published as: J. Dezert, F. Smarandache, A. Tchamova, D. Han, Fast Fusion of Basic Belief
Assignments Defined on a Dichotomous Frame of Discernment, in Proc. of Int. Conf. on Information
Fusion (Fusion 2020), Online Conference, July 6-9, 2020, and reprinted with permission.

Abstract—In this paper, we propose a new fusion approach
to combine basic belief assignments (BBAs) defined on a di-
chotomous frame of discernment based on their canonical de-
composition. In a companion paper, we have already proved
that the canonical decomposition of this type of BBA (called
dichotomous BBA) is always possible and unique thanks to
the proportional conflict redistribution rule No 5 (PCRS). More
precisely, any dichotomous BBA is always the PCR5 combination
of two simpler basic belief assignments named respectively the
pro-evidence, and the contra-evidence. From this interesting
canonical decomposition, we present a new way of combining
many dichotomous BBAs and we show that the computational
time for fusing these dichotomous BBAs based on their canonical
decomposition is quasi-linear with the number of sources to
combine, contrary to the direct fusion of the dichotomous BBAs
altogether.

Keywords: Information fusion, canonical decomposition, be-
lief functions, PCRS5 rule, PCR6 rule.

I. INTRODUCTION

The belief functions (BF) introduced by Shafer in the
mid of 1970’s [1] from Dempster’s works are well known
and used in the artificial intelligence community to model
epistemic uncertainty and to reason with it for informa-
tion fusion and decision-making support. Dempster’s rule to
combine distinct sources of evidence characterized by their
basic belief assignments (BBAs) defined on the same frame
of discernment (FoD) is the historical and emblematic rule
of combination in Dempster-Shafer Theory (DST). Unfortu-
nately, Dempster’s rule (denoted by DS rule for short) suffers
of serious drawbacks in high conflict evidences as pointed
out by Zadeh [2], [3], but more importantly also in some
very low conflict situations [4] as well. That is why many
rules have been proposed in the literature [5] (Vol.2), among
them the combination of two sources of evidence based on
the proportional conflict redistribution principle No. 5! (PCRS
rule) justified theoretically in [6], which has been shown
successful in applications. However its complexity remains

! Actually PCR6 rule is preferentially used for the combination of more than
two sources altogether. For two sources, PCRS and PCR6 rules coincide and
because canonical decomposition involved only two sources, we only need to
work with PCRS rule to combine the pro-evidence with its contra-evidence.
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one of its limitations which prevents its use in fusion problems
involving many sources of evidence to combine, and its non
associativity property? which make it not so appealing because
the fusion order matters when sequential PCR5 fusion is
applied instead of global combination of the sources altogether.

In this work, we show how the fusion of many sources
of evidences represented by BBAs defined on a same di-
chotomous frame of discernment can be easily done based on
the PCR5-based canonical decomposition of the BBAs. Such
decomposition of BBA has been proposed recently in [7].

We recall that another canonical decomposition based on
conjunctive rule (but involving improper’ BBA) had been
proposed in 1995 by Smets [8], and extended later by Denceux
[11] to develop the so-called cautious rule of combination.
In this new approach we use our well justified canonical
decomposition based on PCRS which is strictly based on a
proper (i.e. normal) BBAs as defined by Shafer himself. We
have shown that any dichotomous BBA is always the result
of the PCRS5 fusion of a simple proper pro-evidence BBA
m,, with a simple proper contra-evidence BBA m,, and that
this decomposition is unique. Based on this important result,
we address in this work the problem of combination of many
dichotomous BBAs based on their canonical decomposition.

This paper is organized as follows. After a brief recall of
basics of belief functions in section II, we present briefly the
canonical decomposition for any dichotomous BBA based on
PCRS5 rule of combination in section III which is explained
in more details with proofs, and examples in [7]. The fusion
of dichotomous BBAs based on the principle of canonical
decompositions is detailed in section IV. Concluding remarks
with perspectives are given in the last section.

II. BASICS OF BELIEF FUNCTIONS

Belief functions (BF) have been introduced by Shafer in [1]
to model epistemic uncertainty. We assume that the answer* of
the problem under concern belongs to a known (or given) finite

2PCR5 is only quasi-associative.

3We call a BBA improper when it does not satisfy Shafer’s original
definition. Smets called it a generalized simple BBA (GSBBA).

4i.e. the solution, or the decision to take.
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discrete frame of discernment (FoD) © = {61,65,...,0,},
with n > 1, and where all elements of © are mutually
exclusive and exhaustive’. The FoD is said dichotomous when
it involves only two elements (one subset and its complement),
that is © = {A, A} where A is the complement of A in
©O. The set of all subsets of © (including empty set () and
©) is the power-set of © denoted by 2°. A proper Basic
Belief Assignment (BBA) associated with a given source of
evidence is defined [1] as a mapping m(-) : 2 — [0,1]
satisfying m(0) = 0 and ), .6 m(A) = 1. In some BF
related frameworks, like in Smets Transferable Belief Model
(TBM) [8], m(0) is allowed to take a positive value. In this
case, m(-) is said improper because it does not satisfy Shafer’s
definition [1]. The quantity m(A) is called the mass of A
committed by the source of evidence. Belief and plausibility
functions are respectively defined from a proper BBA m(-) by

Bel(A)= Y m(B), (1)
Be29|BCA
and
Pl(A)= > m(B)=1-Bel(4), 2)

Be2°|ANB#£D
where A is the complement of A in ©.

Bel(A) and PI(A) are interpreted respectively as lower and
upper bounds of an unknown (subjective) probability measure
P(A) in original Dempster’s works [9], [10]. The quantities
m(-) and Bel(-) are one-to-one and the following Mobius
inverse formula holds (see [1], p. 39)

m(A)= Y (-1)*PIBel(B).

BCACO

3

A is called a Focal Element (FE) of m(-) if m(A4) > 0.
When all focal elements are singletons, m(-) is called a
Bayesian BBA [1] and its corresponding Bel(-) function is
equal to PI(-) and they are homogeneous to a (subjective)
probability measure P(-). The vacuous BBA, or VBBA for
short, representing a totally ignorant source is defined as®
my(0) 1. A dichotomous BBA is a BBA defined on
a dichotomous FoD. A dogmatic BBA is a BBA such that
m(©) = 0. If m(©) > 0 the BBA m(-) is nondogmatic. A
simple BBA is a BBA that has at most two focal sets and one
of them is ©. A dichotomous non dogmatic mass of belief is
a BBA having three focal elements A, A and AU A with A
and A subsets of ©.

In his Mathematical Theory of Evidence [1], Shafer pro-
posed to combine s > 2 distinct sources of evidence rep-
resented by BBAs my(.),...,ms(.) over the same FoD ©
with Dempster’s rule (i.e. the normalized conjunctive rule).

SThis is so-called Shafer’s model of FoD [5].
%The complete ignorance is denoted © in Shafer’s book [1].
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For the combination of two BBAs, Dempster’s rule formula
[1] is given by mps(0) = 0 and VX € 2°\ {0}

1
mps(X) = 7N Z mi(X1)me(X2), 4
P ames
with K12 =1- Z ml(Xl)mg(Xg).

X1,X2€29(X1NX2=0

The justification and behavior of Dempster’s rule have been
disputed over the years from many counter-examples involving
high and low conflicting sources (from both theoretical and
practical standpoints) as reported in [4], [12]-[14]. Many rules
of combination exist in the literature’, among them we recom-
mend the rule based on the proportional conflict redistribution
principle No. 5 (PCRS rule) [6] which has been shown to
be successful in applications and well justified theoretically.
That is why we analyze it in details for solving the BF
canonical decomposition problem (BF-CDP). PCRS transfers
the conflicting mass only to the elements involved in the
conflict and proportionally to their individual masses, so that
the specificity of the information is entirely preserved in this
fusion process (see [5], Vol. 2 and Vol. 3 for full justification
and examples): mpcrs(0)) = 0 and VX € 29\ {0}

mpcrs(X) = Z le(Xl)mZ(XZ)‘i‘
ml(X)S;Xz(Xz) ma(X)*m1(Xa)
2 T T ma) ) e @
XahX =0

where all denominators in (5) are different from zero. If a
denominator is zero, that fraction is discarded. The properties
of PCRS5 can be found in [15]. Extension of PCRS5 for
combining qualitative BBA’s can be found in [5], Vol. 2 & 3.
A variant of PCRS, called PCR6 has been proposed by Martin
and Osswald in [5], Vol. 2, for combining s > 2 sources. The
general formulas for PCRS and PCR6 rules are also given in
[5], Vol. 2. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCRS and PCR6 lies
in the way the proportional conflict redistribution is done as
soon as three (or more) sources are involved in the fusion.
From the implementation point of view, PCR6 is simpler
to implement than PCRS. For convenience, very basic (not
optimized) Matlab™codes of PCR5 and PCR6 fusion rules
can be found in [5], [16] and from the toolboxes repository
on the web [17]. The main drawback of PCR5 and PCR6
rules is their combinatorial complexity when the number of
source is big. Even for combining BBAs defined on a simple
dichotomous frame of discernment, the computational time for
combining more than 20 sources can take several hours®.
Our main motivation and contribution is to propose a faster
fusion method to combine many dichotomous BBAs in order

Tsee [5], Vol. 2 for a detailed list of fusion rules.

8due to the exponential complexity of the PCR6 rule (as shown in Figure
4). For our simulations, we did use a MacBook Pro 2.8 GHz Intel Core i7
with 16 Go 1600 MHz DDR3 memory running Matlab™ R2018a.
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to overcome the combinatorial complexity problem by estab-
lishing a new effective (approximating) fusion method based
on the new PCRS5-based canonical decomposition principle.
It is worth noting that our new method is very different
of the method based on the clustering of non conflicting
BBAs followed by a discounting step and the conjunctive rule
presented in [18].

III. CANONICAL DECOMPOSITION OF DICHOTOMOUS BBA

A FoD © = {A, A} is called dichotomous if it consists of
only two elements A and A with AUA =0 and ANA =),
A is different from © and from Empty-Set because we want
to work with informative FoD. Indeed, the very special frame
{©,0} does not bring any useful information since the only
possible BBA with such frame is the vacuous BBA. So, we
consider a given proper’ BBA m(-) : 2© — [0, 1] of the form

m(A) = a, m(AUA)=1—a—b, (6)

m(A) = b,
with0<a<1l,0<b<landa+b<1.

The conditions 0 < @ < 1 and 0 < b < 1 mean that A and
A are focal elements of the BBA. The restriction a + b < 1
means that the BBA is nondogmatic.

This assumption of nondogmaticity of the BBA m(-) is
necessary for Smets canonical decomposition [8], but it is
not essential for our PCR5-based canonical decomposition (as
we will show in the sequel) because our decomposition also
works directly with a dogmatic BBA. Of course any dogmatic
BBA can always be modified as a non-dogmatic BBA by
using a very small discounting number (¢ > 0) so that, in
practice, Smets’ decomposition can always be applied, but
this is not sufficient to prove that Smets approach always
provides relevant results. Why? just because we know (and we
have proved) that Dempster’s (normalized conjunctive rule)
and even the conjunctive rule in Smets’ TBM suffers of
serious drawbacks - see justifications in our aforementioned
references. That is why we explore in this work another way of
making a canonical decomposition, which is, for now, limited
to dichotomous BBA.

Our canonical decomposition problem consists in finding
the two following simple proper BBAs m, and m. of the
form

myp(A) =z,

mc(A) =Y,

my(AUA) =1-—2,
me(AUA)=1—y,

)
®)

with (z,y) € [0,1] x [0, 1], such that m = Fusion(m,, m.),
for a chosen rule of combination denoted by Fusion(-,-). The
simple BBA m,(-) is called the pro-BBA (or pro-evidence)
of A, and the simple BBA m.(-) the contra-BBA (or contra-
evidence) of A. The BBA m, () is interpreted as a source
of evidence providing an uncertain evidence in favor of A,
whereas m.(+) is interpreted as a source of evidence providing
an uncertain contrary evidence about A.

This decomposition is possible with Dempster’s rule only
if0<a<1l,0<b<1and a+b<1, and in this case we

9which means that m(()) = 0.
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a b

have z = 1%, and y = ;2. However, any dogmatic BBA
m(A) = a, m(A) = b with a + b = 1 is not decomposable
from Dempster’s rule for the case when (a,b) # (1,0) and
(a,b) # (0,1) (see Theorem 4 in [7]), and the dogmatic
BBAs m(A4) = 1, m(A) 0 (case (a,b) (1,0)),
or m(A) 0, m(A) = 1 (case (a,b) = (0,1)) have
infinitely many decompositions based on Dempster’s rule of
combination (see Lemma in [7]). In [7], we have shown
that our canonical decomposition cannot be achieved from
conjunctive, disjunctive, Yager’s [19] or Dubois-Prade [20]
rules of combination, neither from averaging rule. However,
such type of decomposition is unique and is always possible
in all cases of dichotomous BBA m(-) using the PCRS5 rule

of combination. In [7], we did prove the following Theorem.

Theorem 1: Consider a dichotomous FoD © = {A, A} with
A # © and A # () and a nondogmatic BBA m/(-) : 2© — [0, 1]
defined on © by m(A) = a, m(A) = b, and m(A U A) =
1—a—b, where a,b € [0,1] and a + b < 1. Then the BBA
m(-) has a unique canonical decomposition using PCR5 rule
of combination of the form m = PCR5(my, m.) with pro-
evidence m,(A) = z, m,(AUA) = 1—x and contra-evidence
me(A) =y, me(AUA) =1 —y where z,y € [0,1].

Moreover, we also proved in [7] that the canonical decom-
position also exists even if the dichotomous BBA is dogmatic
(i.e. Bayesian) and the following theorem also holds.

Theorem 2: Any dogmatic BBA defined by m(A) = a and
m(A) = b, where a,b € [0,1] and a + b = 1, has a canonical
decomposition using PCRS rule of combination of the form
m = PCR5(my, m.) with m,(A) =2, my(AUA)=1—x
and m.(A) =y, m.(AU A) =1 — y where z,y € [0,1].

Theorems 1 & 2 prove that the decomposition based on
PCRS5 always exists and it is unique for any dichotomous
(nondogmatic, or dogmatic) BBA.

For the case of dichotomous dogmatic BBA considered
in Theorem 2, the expression of solutions z and y can be
established explicitly as follows - see [7] for details

e If a < bthen z < y, and we have y = 1 and =
a+\/a2+4a'

2
e If a > bthen x > y, and we have x = 1 and y =
b+V0214b
3 .

e fa=banda+b=1thena=b=05andxz =y = 1.

For the case of dichotomous nondogmatic BBA considered
in Theorem 1, one has to find = and y solutions of the system

x? x2—|—x — xy?
a=z(1—y)+ Yy _ Y y, 9)

r+y r+y

o 2 4 gy — 2
b=(1-ay+ 2L =L TWZTV ()

r+y r—+vy

under the constraints (a,b) € [0,1]?, and 0 < a +b < 1. In
fact, it has been proved in [7] that € [a,a + b] C [0,1]
and y € [b,a + b] C [0,1], but the explicit expression of x
and y are very complicated to obtain analytically (even with
modern symbolic computing systems like Mathematica™, or
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Maple™) because after algebraic calculation, and for x # 1,
one has to solve the following quartic equation which has at
most four real solutions with only a valid one in [a, a + 0]

zt + (—a — 2)2® + (2a + b)2?

+(a+b—ab—b*)x+ (—a® —ab) =0, (11)

__ a+tb—=2x
and then compute y as y = “3=_*.

Fortunately, the solutions can be easily calculated nu-
merically by these computing systems, and even with Mat-
lab™system'? as soon as the numerical values are committed
to a and to b, and this is what we do in our simulations in the
sequel.

Example 1: Let consider © = {4, A} and m(A4) = 0.6,

m(A) = 0.3 and m(AUA) = 1—-m(A)—m(A) = 0.1. Hence,
a = 0.6 and b = 0.3. The quartic equation (11) becomes

2t —2.62° + 1.52% + 0.63z — 0.54 = 0. (12)

The four solutions of this quartic equation provided by the
computing system!! are approximately

21~ 07774780438,
23~ 1.4191515820,

T2 ~ 0.9297589637,
T4 &~ — 0.5263885898.

Clearly x3 and x4 are not acceptable solutions because they
don’t belong to [0,1]. If we take x; =~ 0.7774780438, then
we will get y1 = (a+b—21)/(1 —21) = (0.9 —21)/(1 —
x1) =~ 0.5506061437. The pair (z1,y1) € [0,1]? is a solution
of the decomposition problem of the BBA m(-). If we take
x2 ~ 0.9297589637, then we will get y2 = (a+b—x2)/(1 —
22) = (0.9 — 22)/(1 — 22) ~ —0.4236692006. We see that
y2 ¢ [0, 1], and therefore the pair (z2, y2) cannot be a solution
of the decomposition problem of the BBA m(-). Therefore the
canonical masses my(-) and m.(-) are given by

~
~

my(A) ~ 0.7774780438,

me(A) ~ 0.5506061437,

m, (AU A) ~ 02225219562,
me(AU A) ~ 0.4493938563.

It can be verified that the PCRS combination of BBAs m,, and
me, denoted by PCR5(my, m.), is equal to the BBA m(-).

Of course there are necessarily numerical approximations
involved by the proposed decomposition because this decom-
position is obtained by numerical solvers. This may have some
little impact in the PCRS fusion result but because PCRS rule
is numerically robust to small input changes (contrariwise to
Dempster’s rule) the PCRS result will not change substantially
with small changes (due to small numerical imprecisions) in
the values of BBAs to combine.

A. Particular cases

1) Case (a,b) = (0,0) (i.e. m is the vacuous BBA): This
is the most degenerate case where the BBA m(-) corresponds
to the vacuous BBA. For averaging rule, conjunctive rule,
Yager’s, Dubois-Prade’s, Dempster’s and PCRS rules one has

10thanks to the fsolve Matlab™ command.
1 We did get same solutions with Maple™, and with Matlab™.
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T 0 and y 0 (conflict between canonical masses is
zero). In fact the vacuous BBA m(+) can always be interpreted
as the fusion of m, and m., where m, and m. are also
vacuous BBAs. This degenerate case has no particular interest
in practice but to model the total ignorant state of knowledge.

2) Case when a = 0, or b = 0: In the case a = 0 and
0 < b < 1, then for conjunctive rule, Yager’s, Dubois-Prade’s,
Dempster’s and PCRS rules one has x = 0 and y = b (conflict
between canonical masses is zero) and m(-) corresponds to
the fusion of vacuous pro-evidence m, = m,, with the contra-
evidence m, = m. In the case 0 < a < 1 and b = 0, then
for conjunctive rule, Yager’s, Dubois-Prade’s, Dempster’s and
PCRS rules one has © = a and y = 0 (conflict between
canonical masses is zero) and m(-) corresponds to the fusion
of the pro-evidence m,, = m with the vacuous contra-evidence
me. = m,,. These cases have no particular interest because they
can be seen just as the combination of pro (or contra) BBA
with the vacuous BBA.

3) Case when a = b € (0,0.5): In this case, the BBA
m(A) = m(A) = a and m(AUA) = 1—2a can be canonically
decomposed from PCRS5 rule with the BBAs m,(A) = 1 —
V1 —=2a, m,(AUA) = /T —2a and m.(A) =1—+/1—2a,
me(AUA) = /1 - 2a - see details and proof in [7].

B. Benefits of canonical decomposition

The canonical decomposition based on PCRS offers several
interests and advantages that are briefly listed.

1) This canonical decomposition of m(-) into the pro-
evidence m,(-) and the contra-evidence m.(-) allows to
define the notion of internal conflict of a dichotomous
source of evidence, denoted by Kj,:(m), as

Kint(m) & my,(A)ym.(A),

where m,(A) = x and m.(A) = y are the canonical
factors of the BBA m(-) based on PCRS rule of combi-
nation.

The canonical decomposition also allows to adjust/revise
easily a dichotomous source of evidence (if needed)
according to the knowledge one has on it. For instance,
if one knows that a source over (or under) estimate the
hypothesis A, then one could apply an adjustment (based
on some discounting or reinforcing factors) on the pro
(or contra) evidence to de-bias this source of evidence.
This canonical decomposition can help to develop
new fast rules of combination for the fusion of
S > 2 (dichotomous) distinct'> BBAs my(-)
(ms(A),ms(A), ms(AU A)) = (as,bs,1 — as — by),
s=1,2,...,5. This is presented next.

13)

2)

3)

IV. FAST FUSION OF DICHOTOMOUS BBAS

In this section, we show how to combine many dichotomous
BBAs defined on the same FoD © thanks to their canonical
decompositions.

12j.e. cognitively independent.
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A. Principle of the fast fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous
BBAs is, at first, to decompose canonically each dichoto-
mous BBA mg(.), for s = 1,2,...,5 into their pro and
contra evidences m,, s = (m, s(A), my s(A),m, s(AUA)) =
(75,0,1—z5) and m s = (Me s(A), mes(A), me s(AUA)) =
(0,ys,1 — ys), and then to combine the pro-evidences m,,
for s = 1,2,...,5 altogether on one hand to get a global
pro-evidence m,, and to combine the contra-evidences m. s
for s = 1,2,...,S5 altogether on the other hand to get a
global contra-evidence m.. The fusion step of pro and contra
evidences is discussed in section IV-D. Once m, and m.
are calculated, then one combines them with PCRS5 fusion
rule to get the final result. This general principle of the new
fusion method is represented by the diagram of figure 1 for
convenience.

Dichotomous BBA Dichotomous BBA
my T ms
e P
k(f;muui(:;ll decomposition ] ------ k Canonical decomposition j

l

Pro-evidence
Mp,1

} l

Contra-evidence Pro-evidence | | Contra-evidence
Me 1 Mp.§ Me 8

=

g \ e \
| Fusion of pro-evidences Fusion of contra-evidences|
| {mps,s=1,...,4 S} {mes,s=1,...,5}

‘?tp*l_ﬂr PCR5 | _WJ;L_‘

\_Fusion )

)
/

Combined BBA
m

Figure 1. General principle of the fusion of dichotomous BBAs from their
canonical decompositions.

This new fusion approach is interesting because the fusion
of the pro-evidence m,, , (resp. contra-evidences m ) is quite
simple because there is non conflict between m,, s (resp.
between m. ), so that their fusion can be done quite easily
and a large number of sources can be combined without a high
computational burden. In fact, with this fusion approach, only
one PCRS fusion step of simple (combined) canonical BBAs
is needed at the very end of the fusion process. It is worth
noting that in this work there is no link with the canonical
decomposition proposed by Shafer and then extended by
Smets because here we use another fusion rule based on the
proportional conflict redistribution principle.

B. Analysis of the effectiveness of this new fusion approach

Because the PCR5 rule!? of combination is not associative,
the fusion'* of the canonical BBAs followed by their PCRS

13The same remark holds for PCR6 rule with more than two BBAs.

14We assume here that the fusion of all the pro-evidences (resp. contra-
evidences) is done with PCRS5 rule which coincides in this case with the
conjunctive rule because there is no conflict between the pro-evidences (resp.
the contra-evidences).
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fusion will not provide in general the same result as the
direct fusion of the dichotomous BBAs altogether but only
an approximate result, which is normal.

The main question is to know how good is the approx-
imation obtained by this new fusion method based on the
fusion of pro-evidences and contra-evidences with respect to
the direct fusion of the BBAs with PCR5 (or PCR6 when
considering more than two sources to combine). To answer to
this important question we make a statistical analysis of the
quality of the combined result m, with respect to the direct
PCRS, or PCR6 fusion of all BBAs altogether.

The measure of the goodness is obtained by the normalized
(Euclidean) Belief Interval distance dpj(mpcrs, m) (for the
case of two BBAs only), or by dpr(mpcre,m) if more
than two sources are considered in the fusion process, where
m is the result of the fusion principle based on canonical
decompositions, and mpcrs (resp. mpcre) is the result
of the combination of original BBAs altogether with PCR5
(resp. PCR6) rule. The dp; distance between two BBAs
m1(-) and mo(-) defined on the powerset of a given FoD
O = {61,...,0,} has been proposed and justified in [21],
[22]. It is defined by

dpr(mi,mg) & [New Y d}(BL(X), BIx(X)), (14)
Xe2®

where N, 1/27=1 is a normalization factor to
make dBI(ml,mg) S [O, 1], and dw(Bfl(X),BIQ(X))
is Wassertein’s distance [23] between belief intervals
BIL(X) 2 [Bely(X),Pli(X)] = [a1,b1] and BI(X) £
[BGZQ(X),PZQ(X)] = [ag,bg]. Here, d%V(Bll(X),BIQ(X))
entering in (14) is given by

a1 +b as + b 2
dQVV([alubl]v[aQ,bg])é |: 1 5 1 22 2:|
1 bl — a1 b2 — as 2
3 - . (15
" 3[ > 5 } (15)
Figure 2 shows the normalized histogram (i.e. the

empirical probability distribution) of the distance values
dE (mpcrs,m) based on 20000 random'> generations of
dichotomous BBAs m and ms. One observes that the new
fusion approach based on the canonical decompositions of
BBAs (with the conjunctive fusion of pro-evidences, and the
conjunctive fusion of contra-evidences) provides a solution
which is very close to what we obtain from the direct ap-
plication of PCRS rule, with a mean of 0.0287 and a standard
deviation of 0.0289. In 98.20% of cases, the final decision
(based on the min of dg 1 decision-making strategy explained
in [22]) based on mpcRs, or on m are in agreement. This
means that the decision agreement (DA) rate is 98.20%.
Figures 3 show the normalized histograms of the
dE,(mpcre,m) values based also on 20000 random runs
for the fusion of 6 dichotomous BBAs respectively. We use

I5For this, we generate three random numbers uniformly distributed in [0, 1]
and we normalize them to generate randomly a dichotomous BBA.
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Figure 2. Normalized histogram of dg ;(mpcrs, m) for 2 dichotomous
BBAs case (20000 runs).

PCRG6 rule instead of PCRS rule to combine the 6 dichotomous
BBAs altogether because PCR6 rule has been recognized to
be more effective than PCRS in applications [5] (Vol.2 - Chap.
2). As we can observe, the shape of the histograms is a bit
different from the histogram of fig. 2, but what matters is that
the mean value and the standard deviation of the d%, distance
are still low (0.1119 and 0.0392 respectively) indicating that
the approximation obtained by this new fusion method is
globally very good. Also the decision based on this new
fusion approach is globally coherent with the decision taken
by the direct PCR6 fusion of the BBAs (95.84% of decision
coherence).

Normalized histogram of dg,(m,
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Figure 3. Normalized histogram of dg 1(mpcre, m) for 6 dichotomous
BBAs case (20000 runs).

Several Monte Carlo simulations have been done with
different numbers of dichotomous BBAs to combine. The
results obtained based on 20000 runs Monte Carlo simulations
are summarized in the Table 1.

The second column of Table I indicates the mean value,
denoted by mean(d%;), of the normalized Euclidean belief
Interval distance between the direct fusion of the BBAs by
the PCRS (when combining 2 BBAs only), or PCR6 rule
(when combining more than two BBAs) and the new fusion
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# of BBAs mean(dg ) std(dg ;) | Decision Agreement (%)
2 0.0287 0.0289 98.20
3 0.0578 0.0373 97.52
4 0.0838 0.0394 96.69
5 0.1008 0.0397 96.05
6 0.1119 0.0392 95.84
7 0.1169 0.0385 95.40
8 0.1200 0.0374 94.89
9 0.1211 0.0365 94.25
10 0.1204 0.0348 94.21

Table 1

COMPARATIVE EVALUATION OF CANONICAL DECOMPOSITION FUSION
METHOD W.R.T. THE DIRECT PCR-BASED FUSION METHOD.

rule based on their canonical decomposition. The third column
of the Table I shows the corresponding standard deviation
values denoted by std(d%;). The last column indicates the
decision agreement (DA) factor between the decision taken
from the direct fusion method, and the indirect (canonical
decomposition based) method. As we can see, the DA factors
are very high which means that most of the time the decisions
taken from the direct fusion method and from the indirect
fusion method are the same.

After a deep analysis of our simulation results, one can
attest that the decision-making disagreement occurs when the
numerical values of the mass of A and the mass of A are very
close. This indicates a very high ambiguity in the decision to
take in such situation which can be easily tracked in practice
by evaluating the quality indicator of the decision-making -
see [22] for details.

In this paper we did not investigate the quality of the
approximation of the fusion result based on this canonical
decomposition when replacing the PCR5 fusion step of m,,
and m, by other rules of combination because the core of the
canonical decomposition is based on PCRS.

C. Computational time of the new fusion method

Because of very high combinatorial complexity (and thus
high computational time) required for applying the direct
PCR6 fusion of many BBAs, we did only make the perfor-
mance evaluation up to the fusion of ten BBAs only with
PCR6. We conjecture that the performances of this new fusion
method based on canonical decomposition will very slowly
degrade with the increase of the number of BBAs involved in
the fusion process. Of course the new fusion method based on
this canonical decomposition does not suffer of combinatorial
complexity limitation which is of great interest in some
applications (like in multi-spectral imagery for detection and
classification) because many (hundreds or even thousands) of
dichotomous BBAs could be easily combined very quickly.
Actually with this method what takes a bit time is only the
canonical decomposition done by the numerical solver!.

Figure 4 shows the average (based on 50 random runs)
computational time (in seconds) of the direct PCR6 fusion
of the BBAs altogether (red plot), and the average compu-
tational time of the new fusion method based on canonical
decomposition (blue plot). It is clear that the computational

16We did use Matlab™ fsolve function for this.
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time of the direct PCR6 fusion method (the red curve) grows
exponentially with the number of sources, whereas the com-
putational time grows only slowly and quasi-linearly with the
new method proposed in this work.

c
T T
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times (based on 50 random runs)
T T T T

with the direct PCR fusion of all BBAS
with the fusion based on the canonical decompositions of BBAs

Averaged Time (in seconds)

2 3 4 5 6 7 8
Number of dichotomous BBAs to combine

Figure 4. Computing time versus number of BBAs to combine.

Based on a set of 1000 random dichotomous BBAs, figure
5 shows that the computational time (in seconds) of the
fusion based on the canonical decomposition is a quasi-linear!”
function of the number of BBAs to combine.
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Figure 5. Computing time versus number of BBAs to combine.

Figures 4 and 5 show the computational times including
the canonical decomposition itself done on the fly. Of course,
the canonical decomposition could be done off-line once for
all and stored in the computer memory (if necessary) - see
for instance the (z,y) values given in [7] for convenience.
If we have n dichotomous BBAs to combine, we have to
make their canonical decomposition at first and because the n

171t is not strictly linear because the time for the numerical fsolve search
of pro-evidence and contra-evidence factors for making the canonical decom-
position is not constant.
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pro-evidence BBAs to combine (resp. contra evidence BBAs)
have a very simple structure their conjunctive fusion m,(A)
is obtained very quickly by the direct product of n real
numbers, that is my(A) = [[i_, mp.(A), and we need
also a subtraction because m,(A U A) = 1 — m,(A). The
complexity of this fast suboptimal PCR fusion approach (once
the canonical decomposition is available) is therefore 2(n— 1)
multiplications and 2 subtractions for making the conjunctive
fusion of m,; and the conjunctive fusion of m,;, and 7
additions and 5 multiplications for making the PCRS5 fusion of
my, with m.. There is no need to use the commonality function
or the Smets canonical decomposition to make the fusion of
these dichotomous BBAs. These figures show clearly the real
advantage of the fusion of dichotomous BBAs based on their
canonical decompositions in term of computational time, and
that is why we can say that the new proposed method is really
a fast fusion method with respect to the direct PCRS or PCR6
rule of combination when working with a dichotomous frame
of discernment.

D. On the fusion of pro and contra evidences

In the previous analysis, we did use the conjunctive rule for
the intermediary fusion step of pro-evidences in one hand, and
the intermediary fusion step of contra-evidences in the other
hand. It is worth noting that the intermediary step of fusion of
pro-evidences, and the intermediary step of fusion of contra-
evidences can be done in parallel which offers a computational
advantage with respect to the direct fusion method (if one
has many sources to combine in a specific application). This
parallelization cannot be achieved in general with the other
existing rules of combination of evidences.

Because of the fusion principle depicted in Figure 1, this
new fusion method offers also the possibility (if one prefers
for some own specific reasons) of selecting other fusion rules
for the intermediary fusion steps for combining the pro-
evidences, and the contra-evidences. Of course the choice of
the fusion rules used for the combination of pro-evidences and
the combination of contra-evidences impacts the final result,
but depending on the type of rules chosen we can obtain an
associative rule, an idempotent rule, and even a new cautious
rule. For example, let’s consider the same type of fusion rule
for combining the pro-evidences m, s s = 1,...,.5, and for
combining contra-evidences m. s s = 1,...,5 and consider
the following cases:

1) If we use the conjunctive rule [5] (Vol. 1), denoted by
Conj(.,...,.) (as we did previously in our Monte Carlo
simulations for histogram plots), then

my = Conj(mp,...,mps),

and one has m,(AUA) = [[°_, (1 —z,) and m,(A)
1—m,(AUA). Because the conjunctive rule is associa-
tive the fusion of pro-evidences can be done sequentially.
Similarly, for the fusion of contra-evidences using the
conjunctive rule one has m.(AUA) = HSS:1 (1—ys) and

mp(A) =1 —m.(AUA). Because there is no conflict
between the pro-evidences (resp. contra-evidences), the
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fusion result of the pro-evidences (resp. the contra-

evidences) by PCRS (or PCR6) rules is equivalent to the

conjunctive fusion result. The conjunctive rule however
is not idempotent in general but in very specific cases
where only one focal element gets all the mass of belief.

If we prefer to use the averaging rule, then we will

have m,(A) = + 37 &, and my(AU A) = 1 —

mp(A) = § 271 (1 = a), and me(d) = § 57, v,

and m (AU A) = 1 —me(A) = £37 (1 - y,).
Because the averaging rule is not associative, the se-
quential fusion of pro-evidences (and contra-evidences)
is not recommended, however the averaging rule allows
to get an idempotent fusion rule based on canonical
decompositions if needed.

3) We could also prefer to use the min rule to build a new
cautious rule of combination which will be associative
and idempotent. For this, we just have to take m,(A) =
ming_; _g(ws) and m,(AUA) = 1—m,(A). Similarly,
me(A) = ming_1,_s(ys) and m.(AUA) = 1—m,(A).

2)

V. CONCLUSIONS

In this research paper, we did propose a new fusion
method to combine very quickly many BBAs defined on a
dichotomous frame of discernment thanks to their unique
canonical decompositions. This new interesting method can
be parallelized and offers the advantage to have a quasi-linear
computational time with the number of sources. For now, this
method is limited to the fusion of many BBAs that are defined
on a simple (dichotomous) frame of discernment. After some
unsuccessful attempts, it appears that the development of a fast
fusion method based on the canonical decomposition principle
for working with non-dichotomous frames of discernment is
actually a very difficult problem that we want to address to the
scientific community working with belief functions as a future
research challenge. This very new method brings already a
significant benefit for real application involving inter-criteria
analysis for the evaluation of multiple-objective ant colony op-
timization algorithm for wireless sensor networks deployment
that should be reported in a forthcoming publication.
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Abstract—In this paper, we present a fast Belief Function
based Inter-Criteria Analysis (BF-ICrA) method based on the
canonical decomposition of basic belief assignments defined on
a dichotomous frame of discernment. This new method is then
applied for evaluating the Multiple-Objective Ant Colony Op-
timization (MO-ACO) algorithm for Wireless Sensor Networks
(WSN) deployment.

Keywords: Inter-Criteria Analysis, belief functions, informa-
tion fusion, canonical decomposition, PCR5 rule.

I. INTRODUCTION

In our previous work [1] we propose a new and improved
version of classical Atanassov’s InterCriteria Analysis (ICrA)
[2]-[4] approach based on Belief Functions (BF-ICrA). This
method proposes a better construction of Inter-Criteria Matrix
that fully exploits all the information of the score matrix, and
the closeness measure of agreement between criteria based
on belief interval distance. In [5], we show how the fusion
of many sources of evidences represented by Basic Belief
Assignments (BBAs) defined on a same dichotomous frame
of discernment can be fast and easily done thanks to the Pro-
portional Conflict Redistribution rule no.5 (PCR5) and based
on canonical decomposition of the BBAs, proposed recently
in [6]. In the recent paper we consider BF-ICrA based on this
promising technique. Then we show how to apply it for the
evaluation of the Multiple-Objective Ant Colony Optimization
(MO-ACO) algorithm for Wireless Sensor Networks (WSN)
deployment. After a condensed presentation of basics of belief
functions in Section II, including the short description of
canonical decomposition of dichotomous BBAs approach, and
the main steps of fast fusion method of dichotomous BBAs,
in Section III the BF-ICrA method is described and analyzed.
Section IV is devoted to the multi-objective ACO algorithm.
In Section V the results of the fast BF-ICrA method with the
MO-ACO algorithm for WSN layout deployment is presented
and discussed. Conclusion is given in Section V1.

II. BASICS OF BELIEF FUNCTIONS

A. Basic definitions

Belief functions (BF) have been introduced by Shafer in
[7] to model epistemic uncertainty and to combine distinct
sources of evidence thanks to Dempster’s rule of combination.
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In Shafer’s framework, we assume that the answer' of the
problem under concern belongs to a known finite discrete
frame of discernment (FoD) © = {01,0s,...,0,}, with
n > 1, and where all elements of © are mutually exclusive
and exhaustive. The set of all subsets of © (including empty
set () and ©) is the power-set of © denoted by 2©. A proper
Basic Belief Assignment (BBA) associated with a given source
of evidence is defined [7] as a mapping m(-) : 2° — [0,1]
satisfying m(#) = 0 and . ,e m(A) = 1. The quantity
m(A) is called the mass of A committed by the source of
evidence. Belief and plausibility functions are respectively
defined from a proper BBA m(-) by

Bel(A)= > m(B), (1)
Be2°|BCA
and
Pl(A)= > m(B)=1-Bel(A), @)

BE2°9|ANBAD
where A is the complement of A in ©.

Bel(A) and PI(A) are usually interpreted respectively as
lower and upper bounds of an unknown (subjective) probabil-
ity measure P(A). The quantities m(-) and Bel(-) are one-
to-one and linked by the Mdébius inverse formula (see [7], p.
39). A is called a Focal Element (FE) of m(-) if m(A) > 0.
When all focal elements are singletons, m(:) is called a
Bayesian BBA [7] and its corresponding Bel(-) function is
equal to PI(-) and they are homogeneous to a (subjective)
probability measure P(-). The vacuous BBA, representing
a totally ignorant source, is defined as m,(©) = 1. A
dichotomous BBA is a BBA defined on a FoD which has only
two proper subsets, for instance © = {4, A} with A # © and
A # (). A dogmatic BBA is a BBA such that m(©) = 0. If
m(©) > 0 the BBA m(-) is nondogmatic. A simple BBA is
a BBA that has at most two focal sets and one of them is ©.
A dichotomous non dogmatic mass of belief is a BBA having
three focal elements A, A and AU A with A and A subsets
of ©.

In his Mathematical Theory of Evidence [7], Shafer pro-
posed to combine s > 2 distinct sources of evidence repre-
sented by BBAs with Dempster’s rule (i.e. the normalized con-
junctive rule), which unfortunately behaves counterintuitively

li.e. the solution, or the decision to take.
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both in high and low conflicting situations as reported in [8]-
[11]. In our previous works (see [12], Vol. 2 and Vol. 3 for full
justification and examples) we did propose new rules of combi-
nation based on different Proportional Conflict Redistribution
(PCR) principles, and we have shown the interest of the PCR
rule No 5 (PCR5) for combining two BBAs, and PCR rule
No 6 (PCR6) for combining more than two BBAs altogether
[12], Vol. 2. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6 lies in
the way the proportional conflict redistribution is done as soon
as three (or more) sources are involved in the fusion. PCR5
transfers the conflicting mass only to the elements involved in
the conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved in
this fusion process.

The general (complicate) formulas for PCR5 and PCR6
rules are given in [12], Vol. 2. The fusion of two BBAs based
on PCR5 (or PCR6) rule which will be use for canonical
decomposition of a dichotomous BBA is obtained by the
formula

mpers(X) = Y mi(X1)ma(Xa)+
Z [ml(X)sz(Xz) ma(X)*m(Xa) 3)
. ml(X)+m2(X2) 7’TL2()()—|'7’Tl/1(~X2)7
XX26x20®
2NX=

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded.

From the implementation point of view, PCR6 is simpler
to implement than PCR5. For convenience, very basic (not
optimized) Matlab™ codes of PCR5 and PCR6 fusion rules
can be found in [12], [13] and from the toolboxes repository
on the web [14]. The main drawback of PCR5 and PCR6 rules
is their very high combinatorial complexity when the number
of source is big, as well as the cardinality of the FoD. In this
case, PCR5 or PCR6 rules cannot be used directly because
of memory overflow. Even for combining BBAs defined on a
simple dichotomous FoD as those involved in the Inter-Criteria
Analysis (ICrA), the computational time for combining more
than 10 sources can take several hours?. That is why a fast
fusion method to combine dichotomous BBAs is necessary,
and we present it in the next subsections.

B. Canonical decomposition of dichotomous BBA

A FoD © = {A, A} is called dichotomous if it consists of
only two proper subsets A and A with AUA = © and ANA =
(), where A is the complement of A in © and A is different
from © and from Empty-Set. We consider a given proper BBA
m(-) : 2® — [0,1] of the general form

m(A) =a, m(A)=b,

m(AUA)=1—a—b. (4)

2with a MacBook Pro 2.8 GHz Intel Core i7 with 16 Go 1600 MHz DDR3
memory running Matlab™ R2018a.
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The canonical decomposition problem consists in finding the
two following simple proper BBAs m,, and m,. of the form

mp(A) =z, my(AUA)=1-uz, (5)

with (z,y) € [0,1] x [0, 1], such that m = Fusion(m,, m.),
for a chosen rule of combination denoted by Fusion(-,-). The
simple BBA m,(-) is called the pro-BBA (or pro-evidence)
of A, and the simple BBA m.(-) the contra-BBA (or contra-
evidence) of A. The BBA my(-) is interpreted as a source
of evidence providing an uncertain evidence in favor of A,
whereas m.(-) is interpreted as a source of evidence providing
an uncertain contrary evidence about A.

In [6], we have shown that this decomposition is possible
with Dempster’s rule only if 0 < ¢ < 1, 0 < b < 1 and
a+b < 1, and we have 2 = - and y = . However,

any dogmatic BBA m(A) = a,l T)’bl(/I) =b wlithaa +b=1
is not decomposable from Dempster’s rule for the case when
(a,b) # (1,0) and (a,b) # (0,1), and the dogmatic BBAs
m(A) = 1, m(A) = 0, or m(A) = 0, m(A) = 1 have
infinitely many decompositions based on Dempster’s rule of
combination. We have also proved that this canonical decom-
position cannot be done from conjunctive, disjunctive, Yager’s
[15] or Dubois-Prade [16] rules of combination, neither from
the averaging rule. The main result of [6] is that this canonical
decomposition is unique and is always possible in all cases
using the PCR5 rule of combination. This is very useful to
implement a fast efficient approximating fusion method of
dichotomous BBAs as presented in details in [5]. We recall

the following two important theorems proved in [6].

Theorem 1: Consider a dichotomous FoD © = {A, A} with
A # ©and A # () and a nondogmatic BBA m(-) : 29 — [0, 1]
defined on © by m(A) = a, m(A) = b, and m(AU A) =
1 —a— b, where a,b € [0,1] and a + b < 1. Then the BBA
m(-) has a unique canonical decomposition using PCR5 rule
of combination of the form m = PCR5(my, m.) with pro-
evidence m,(A) = x, m,(AUA) = 1—x and contra-evidence

me(4) =y, m(AU A) =1 — y where z,y € [0, 1].
Theorem 2: Any dogmatic BBA defined by m(A) = a and

m(A) = b, where a,b € [0,1] and a + b = 1, has a canonical
decomposition using PCR5 rule of combination of the form
m = PCR5(myp, m.) with my(A) =2, m(AUA)=1-x
and m.(A) =y, m(AUA) =1 — y where z,y € [0, 1].
Theorems 1 & 2 prove that the decomposition based on

PCR5 always exists and it is unique for any dichotomous
(nondogmatic, or dogmatic) BBA.

For the case of dichotomous nondogmatic BBA considered
in Theorem 1, one has to find  and y solutions of the system

2 2 2
x x4y —x
a=x(l—y)+-—2 = YW @)
r+y r+y
N R
b=(1-z)y+ = : 8)
r+y r+y
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under the constraints (a,b) € [0,1]%, and 0 < a + b < 1.
The explicit expression of = and y are difficult to obtain
analytically (even with modern symbolic computing systems
like Mathematica™ , or Maple™ ) because one has a quartic
equation to solve whose general analytical expression of its
solutions is very complicate. Fortunately, the solutions can be
easily calculated numerically by these computing systems, and
even with Matlab™ system (thanks to the fsolve function) as
soon as the numerical values are committed to a and to b, and
this is what we use in our simulations.

C. Fast Fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous
BBAs mg(.), for s =1,2,...,S defined on the same FoD ©
is based on the three following main steps:

1) In the first step, one decomposes canonically each di-
chotomous BBA m(+) into its pro and contra evidences
Mp,s = (mpys(A)a mpys(A)a mp75(4U A)) = (xsvpa 1-
xs) and mes = (Mes(A),mes(A),me (AU A)) =
(Oa Ys, 1- ys);

In the second step, one combines the pro-evidences
mp s for s = 1,2,...,5 altogether to get a global
pro-evidence m,,, and in parallel one combines all the
contra-evidences m. s for s = 1,2,...,5 altogether to
get a global contra-evidence m.. The fusion step of pro
and contra evidences is based on conjunctive rule of
combination;

Once m, and m, are calculated, then one combines
them with PCR5 fusion rule to get the final result.

Because the PCR5 rule of combination is not associative, the
fusion of the canonical BBAs followed by their PCR5 fusion
will not provide in general the same result as the direct fusion
of the dichotomous BBAs altogether but only an approximate
result, which is normal. However, this new fusion approach
is interesting because the fusion of the pro-evidence my, g
(resp. contra-evidences m. ) is very simple because there is
no conflict between m,, s (resp. between m. ), so that their
fusion can be done quite easily and a large number of sources
can be combined without a high computational burden. In fact,
with this fusion approach, only one PCR5 fusion step of simple
(combined) canonical BBAs is needed at the very end of the
fusion process. In [5], we have proved with a Monte-Carlo
simulation analysis that the approximation obtained by this
new fusion method based on the fusion of pro-evidences and
contra-evidences with respect to the direct fusion of the BBAs
with PCR5 (or PCR6 when considering more than two sources
to combine) is effective because the agreement between the
decision taken from the direct fusion method, and the indirect
(canonical decomposition based) method is very good. This
new fusion method based on this canonical decomposition
does not suffer of combinatorial complexity limitation which is
of great interest in some applications because many (hundreds
or even thousands) of dichotomous BBAs could be easily
combined very quickly. Actually with this method what takes
a bit time is only the canonical decomposition done by the

2)

3)
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numerical solver. Our analysis [5] has shown that complexity
of this fast approach is quasi-linear with the number of sources
to combine.

III. THE BF-ICRA METHOD

In [1], we did present an improved version of Atanassov’s
Inter-Criteria Analysis (ICrA) method [2]-[4] based on belief
functions. This new method has been named BF-ICrA (Belief
Function based Inter-Criteria Analysis) for short. It has already
been applied to GPS surveying problems in [17]. We present
briefly in this section the principles of BF-ICrA.

BF-ICrA starts with the construction of an M x N BBA
matrix M = [m;;(-)] from the score matrix S = [S;;]. The
BBA matrix M is obtained as follows - see [18] for details
and justification.

mi;(A;) = Bel;j(Ai), 9
mi;(A;) = Belij(A;) =1 — Pl;j(A;),  (10)
where?
Bel;j(Ai) £ Supj(A;) /Al (12)
Bel;j(A;) £ Inf;(Ai) /AL, (13)
with
Sup;(A;) & |Si; — Sk;l, (14)
ke{l,...,M}|Sk;<Si;
Infi(4;) & — > 1S5 — Skjl,  (15)
kG{l,...,M}‘Sk]‘ZSi]‘
and
A'Ijnax £ max Supj (Az)v (16)
Al & min Inf;(A;). (17)

For another criterion C}s and the j'-th column of the score
matrix we will obtain another set of BBA values mj(-).
Applying this method for each column of the score matrix we
are able to compute the BBA matrix M = [m;;(-)] whose each
component is in fact a triplet (m;(A;), mi;(A;), mij(A; U
A;)) of BBA values in [0, 1] such that m;(A4;) +m;(A4;) +
mij(A;UA;))=1foralli=1,...,Mandj=1,...,N.

The next step of BF-ICrA approach is the construction of
the N x N Inter-Criteria Matrix K = [K;/] from M x N
BBA matrix M = [m;;(-)] where elements K ;; corresponds
to the BBA (mj;/(6),m;;(0),m;;(6 U 0)) about positive
consonance , negative consonance # and uncertainty between
criteria C; and C} respectively. The construction of the triplet
Kjj = (mjj (0),m;; (0),m;; (UH)) is based on two steps:

o Step 1 (BBA construction): Getting m} (.).
For each alternative A; for i=1,...,M, we first

compute the BBA (m?;, (), m}; (9),m’ (6 U 0)) for

3assuming that Adae # 0 and A7

. min 7é 0. If Agnax = 0 then
Bel;j(A;) =0, and if A7 . =0 then Pl;(A;) = 1.
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any two criteria j,j € {1,2,...,N}. For this, we
consider two sources of evidences (SoE) indexed
by j and j' providing the BBA m;; and myj
defined on the simple FoD {A;, A;} and denoted
mig = [mij(As), mi;(Ai), mij(A; U A;)] and myy =
[mij/ (Ai), myjr (Al), Mg (AZU/L)] We also denote © =
{6,6} the FoD about the relative state of the two SoE,
where 6 means that the two SoE agree,  means that they
disagree and 6 U § means that we don’t know. Hence,
two SoE are in total agreement if both commit their
maximum belief mass to the same element A; or to
the same element A;. Similarly, two SoE are in total
disagreement if each one commits its maximum mass
of belief to one element and the other to its opposite,
that is if one has m;;(A;) = 1 and m;; (4;) = 1, or
if m;j(A;) = 1 and m;;(A;) = 1. Based on this very
simple and natural principle, one can now compute the
belief masses as follows:

mi(0) = mij(Ad)mag (Ai) +mij(A)mij (), (18)
m’ i (0) = ma (Ad)mag (As) + mm( i)mijr (Aq), (19)
mi L (0U8) =1—mi,(0) — mi, (). (20)

mj-j, (0) represents the degree of agreement between the
BBA m;;(-) and mj (-) for the alternative A;, m’ ., (6)
represents the degree of disagreement of the two BBAs
and mj;, (6 U 0) the level of uncertainty (i.e. how much
we don’t know if they agree or dlsagree) By construction
m_]_] () m 7’ () m_]_] (6) m]] (6) (eue) [ ]
and mj; L (6) + m; (0) +mj; (0 U 0) = 1. This BBA
modeling permlts to build a set of M symmetrical
Inter-Criteria Belief Matrices (ICBM) K’ = [K;] of
dimension N X N relative to each alternative A; whose
components K’ i j+ correspond to the triplet of BBA values
mi, = (mJJ (9),mﬂ 6),m (00U 6)) modeling the
belief of agreement and of disagreement between C'; and

Cj based on A;.
Step 2 (fusion): Getting m;j (.).

In this step, one needs to combine the BBAs mJi.j,(.) for
i=1,..., M altogether to get the component K;;; =
(myj(0), m;; (8),m;; (0U0)) of the Inter-Criteria Belief
matrix* (ICBM) K = [Kjj;/|. For this and from the
theoretical standpoint, we recommend to use the PCR6
fusion rule [12] (Vol. 3) because of known deficiencies
of Dempster’s rule.

Once the global Inter-Criteria Belief Matrix (ICBM) K =
[ij/ = (mjj/ (9),mjj/(9),mjj/ (6‘ @] é))] is calculated, we
can identify the criteria that are in strong agreement, in
strong disagreement, and those on which we are uncertain.
For identifying the criteria that are in strong agreement, we
evaluate the distance of each component of K ;;» with the BBA

the ICBM K, with K

“For the presentation convenience,

[ij/ = ( /(6) (9) /(9 UG))] is decomposed into three ma-
trices K(G) [Ke, = m; /(9)} ( 9) = [K = = my;/(9)] and
K@Ouf) = [Keu@ =1—my;(0) —m;; (0]
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representing the best agreement state and characterized by the
specific BBA® mr(6) = 1. From a similar approach we can
also identify, if we want, the criteria that are in very strong
disagreement using the distance of m;;/(-) with respect to the
BBA representing the best disagreement state characterized
by the specific BBA mp(f) = 1. We use the belief interval
distance dpy(mi,m2) presented in [19] for measuring the
distance between the two BBAs.

A. Fast BF-ICrA method

The computational complexity of BF-ICrA is of course
higher than the complexity of ICrA because it makes a more
precise evaluation of local and global inter-criteria belief
matrices with respect to inter-criteria matrices calculated by
Atanassov’s ICrA. The overall reduction of the computational
burden of the original MCDM problem thanks to BF-ICrA
depends highly on the problem under concern, the complexity
and cost to evaluate each criteria involved in it, as well as the
number of redundant criteria identified by BF-ICrA method.

The main drawback of BF-ICrA method is the PCR6
combination required in its step 2 for combining altogether
the dichotomous BBAs m’;,(.). Because of combinatorial
complexity of PCR6 rule, it cannot work in reasonable com-
putational time as soon as the number of sources to combine
altogether is greater than 10, which prevents its use for solving
ICrA problems involving more than 10 alternatives (as in
the examples 2 and 3 presented in section V). That is why
it is necessary to adapt the original BF-ICrA method for
working with a large number of alternatives and criteria. For
this, we can in step 2 of BF-ICrA exploit the method for
the fast fusion of dichotomous BBAs presented in section
II-C. More precisely, each dichotomous BBA m, (.) will be
canonically decomposed in its pro-evidence mj j p( ) and its
contra-evidence mj, .(.) that will be combined separately to
get the global pro- ~evidence m;; p(.) and the global contra-
evidence mj;/ c(.). Then, the BBAs m;j »(.) and m; ;s .(.)
are combined with PCR5 rule to get the BBAs m;;/(.) and,
finally, the global Inter-Criteria Belief Matrix K = [K;;; =
(mjr(0),m;;(6),m;; (0 U G))]. The principle of this mod-
ified step 2 of BF-ICrA is summarized in the Figure 1 for
convenience.

Another simpler fusion method to combine the dichotomous
BBAs m} (.) would just consist to average them. In section V,
we will show how these two methods behave in the examples
chosen for the evaluation of MO-ACO Algorithm for optimal
WSN deployment.

IV. MULTI-OBJECTIVE ACO ALGORITHM

Recently Wireless Sensor Networks (WSNs) have attracted
the attention of the research scientists community, conditioned
by a set of challenges: theoretical and practical. WSNs consists
of distributed sensor nodes and their main purpose is to
monitor the real-time environmental status, based on gathering
available sensor information, processing and transmitting the

SWe use the index T in the notation mq(-) to refer that the agreement is
true, and F' in mp(-) to specify that the agreement is false.
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Dichotomous BBA

m;;’ ()= (mﬁ}(b‘), m’”:,l (6), m_'i.] gu8))

( Canonical dc(:olnpoaitiauw’
1 I
Pm CVldCﬂCC Cnnlm cv1dcnce

Dichotomous BBA

(miM (0), miM (8), mi5M (0 U )

Canonical decomposition ]
\‘_1—14
Pro- cv1dcnce Contra-evidence

V=M ( i=M
mii. migie(+)

></
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‘.,“‘7;_\:‘,) _

]J P

Figure 1. Principle of fast fusion of méj, () of Step 2 of BF-ICrA.

collected data to the specified remote base station. It is a
promising technology that is used in a coverage of application
requiring minimum human contribution, ranging from civil
and military to healthcare and environmental monitoring. One
of the key mission of WSN is the full surveillance of the moni-
toring region with a minimal number of sensors and minimized
energy consumption of the network. The lifetime of the sensors
is strongly related to the amount of the power loaded in the
battery, that is why the control of the energy consumption
of sensors is an important active research problem. The small
energy storage capacity of sensor nodes intrudes the possibility
to gather the information directly to the main base. Because
of this they transfer their data to the so called High Energy
Communication Node (HECN), which is able to collect the
information from across the network and to transmit it to the
base computer for processing. The sensors transmit their data
to the HECN, either directly or via hops, using closest sensors
as communication relays. The WSN can have large numbers
of nodes and the problem can be very complex.

In order to solve successfully the key mission of WSNs, in
[20], we did apply multi-objective Ant Colony Optimization
(ACO) to solve this hard, from the computational point of
view, telecommunication problem. The number of ants is
one of the key algorithm parameters in the ACO and it is
important to find the optimal number of ants needed to achieve
good solutions with minimal computational resources. In [20],
the optimal solution was obtained by applying the classical
Atanassov’s ICrA method. In the next section we will present
the results obtained by the fast BF-ICrA approach and compare
their results.

The problem of designing a WSN is multi-objective, with
two objective functions: 1) one wants to minimize the energy
consumption of the nodes in the network, and 2) one wants
to minimize the number of nodes. The full coverage of the
network and connectivity are considered as constraints. For
solving this problem, we have proposed to use a Multi-
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Objective Ant Colony Optimization (MO-ACO) algorithm in
[20] and we have studied the influence of the number of ants
on the algorithm performance and quality of the achieved solu-
tions. The computational resources, which the algorithm needs,
are not negligible. The computational resources depends on the
size of the solved problem and on the number of ants. The aim
is to find a minimal number of ants which allow the algorithm
to find good solution for WSN deployment.

The ACO algorithm uses a colony of artificial ants that
behave as cooperating agents. With the help of the pheromone
and the heuristic information they try to construct better solu-
tions and to find the optimal ones. The pheromone corresponds
to the global memory of the ants and the heuristic information
is a some preliminary knowledge of the problem. The problem
is represented by a graph and the solution is represented by
a path in the graph or by tree in the graph. Ants start from
random nodes and construct feasible solutions. When all ants
construct their solution the pheromone is updated. The new,
added, pheromone depends to the quality of the solution. The
elements of the graph, which belong to better solutions will
receive more pheromone and will be more desirable in the
next iteration. In our implementation, we use the MAX-MIN
Ant System (MMAS) which is one of the most successful
ant approaches originally presented in [21]. In our case, the
graph of the problem is represented by a square grid. The
nodes of the graph are enumerated. The ants will deposit
their pheromone on the nodes of the grid. We will deposit
the sensors on the nodes of the grid too. The solution is
represented by tree. An ant starts to create a solution starting
from random node, which communicates with the HECN.
Construction of the heuristic information is a crucial point
in the ant algorithms. Our heuristic information represented
by (21) is a product of three values.

bij) (21)

where s;; is the number of the new points (nodes of the
graph) which the new sensor will cover, and which are not
covered by other sensors, and

lij—{

and where b;; is the solution matrix. The matrix element
bi; equals 1 when there is sensor on this position, otherwise
bi; = 0. With s;;, we try to increase the number of points
covered by one sensor and thus to decrease the number of
sensors we need. With [;;, we guarantee that all sensors
will be connected. With b;; we guarantee that maximum one
sensor will be mapped on the same point. The search stops
when transition probability p;; = O for all values of i and
j. It means that there are no more free positions, or that
all area is fully covered. At the end of every iteration the
quantity of the pheromone is updated according to the rule:
Tij < pTij + A7y, with the increment A7;; = 1/F (k) if
(i,7) belongs to the non-dominated solution constructed by
ant k, or A7;; = 0 otherwise. The parameter p is a pheromone

nij () = sijlij (1 —

1 if communication exists ;

0 (22)

if there is no communication.
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decreasing parameter chosen in [0, 1]. This parameter p models
evaporation in the nature and decreases the influence of old
information on the search process. After that, we add the new
pheromone, which is proportional to the value of the fitness
function constructed as F(k) ma,{il((;l)(i)) ma:i2 ((J]‘? @)’
where f1(k) is the number of sensors proposed by the k-th ant,
and f3(k) is the energy of the solution of the k-th ant. These
are also the objective functions of the WSN layout problem.
We normalize the values of two objective functions with their
maximal achieved values from the first iteration.

V. APPLICATION OF THE FAST BF-ICRA METHOD

In this section we present the results of the fast BF-
ICrA method with the MO-ACO algorithm for WSN layout
deployment. Fidanova and Roeva have developed a software,
which realizes the MO-ACO algorithm. This software can
solve the problem at any rectangular area, the communication
and the coverage radius can be different and can have any
positive value. We can have regions in the area. The program
was written in C language, and the tests were run on computer
with an Intel Pentium 2.8GHz processor. In their tests, they
use an example where the area is square. The coverage and
communication radii cover 30 points. The HECN is fixed in
the centre of the area. In the sequel we consider three examples
of areas with three sizes: 350 x 350 points, 500 x 500 points,
and 700 x 700 points. The MO-ACO algorithm is based on 30
runs for each number of ants. We extract the Pareto front from
the solutions of these 30 runs, and we show the achieved non
dominated solutions (approximate Pareto fronts) for each case
on which the BF-ICrA will be applied. The score matrices for
each case is given in Tables I, II and III [20].

ACO; ACOg ACO3 ACO4 ACOg
0 36 90 0 20
0 26 20 2 20
26 26 26 26 26

26 26 26 26 26

Table I
THE 6 X 10 SCORE MATRIX S FOR 350 x 350 CASE (EXAMPLE 1).

ACOg ACO7 ACOg ACOg ACOpg
30 30 30 30 30
30 30 30 30 30
30 28 28 28 28
26 26 26 26 26
26 26 26 26 26
26 25 25 26 25

111
112
113
114
115
116

ACOp ACOg ACO3 ACO4 ACO5 ACOg ACO7 ACOg ACOg ACO1q

223 1 90 96 90 90 89 81 90 90 90 90
224 61 96 89 89 88 65 61 59 57 71
225 61 96 74 58 60 58 57 58 57 57
226 59 95 73 57 59 57 56 58 57 57
227 60 57 57 57 57 56 56 57 57 57
228 60 57 57 57 57 56 56 57 54 57
229 58 57 57 55 57 56 56 56 54 56
230 57 57 57 55 57 52 56 54 54 56
231 57 55 57 55 55 52 56 54 54 56
232 57 55 55 51 54 50 52 51 54 48

s — 233 57 55 55 51 54 50 51 51 54 48
234 57 55 55 51 53 50 51 48 53 48
235 57 55 54 51 53 50 51 48 50 48
236 57 55 54 51 53 50 51 48 50 48
237 57 55 54 51 53 50 51 48 50 48
238 57 55 53 51 53 50 51 48 50 48
239 56 55 53 50 53 50 51 48 50 48
240 53 53 53 50 53 50 51 48 50 48
241 53 53 53 50 53 50 51 48 50 48
242 53 53 53 50 53 50 51 48 50 48
243 53 53 53 50 53 50 51 48 50 48
244 L 53 53 53 50 52 50 51 48 50 48

Table II
THE 22 X 10 SCORE MATRIX S FOR 500 X 500 CASE (EXAMPLE 2).

Each row of S corresponds to the number of sensors used in
WSN to cover the area as indicated in the first column at the
left side of the score matrix. Each column of S corresponds
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ACO; ACOp ACO3 ACO4 ACO; ACOg ACO; ACOg ACOg ACOq(
437 [ 173 173 173 173 173 118 168 172 261 172 7
438 | 173 173 173 173 173 118 112 117 260 172
439 | 172 173 173 173 140 93 110 115 131 172
440 | 172 173 173 173 115 93 110 114 111 162
441 | 172 173 173 122 111 93 110 114 111 110
442 | 172 173 173 114 111 93 110 112 111 110
443 | 172 150 123 114 111 93 110 112 111 110
444 | 124 112 112 106 107 93 110 102 111 105
445 | 117 112 112 106 107 93 110 102 108 105

S =446 | 117 112 105 105 105 93 107 102 104 105
447 | 117 112 105 105 105 93 105 102 102 105
448 | 115 111 105 105 105 93 105 102 102 105
449 | 115 111 105 105 105 93 102 99 102 105
450 | 113 111 105 105 105 93 102 99 102 105
451 | 113 109 105 105 105 93 102 99 97 105
452 | 113 109 105 105 105 93 99 99 97 104
453 | 113 109 105 105 105 93 99 99 97 104
454 | 113 109 105 105 96 93 96 96 96 104
455 L 106 106 105 105 96 93 96 96 96 97

Table IIT

THE 19 X 10 SCORE MATRIX S FOR 700 X 700 CASE (EXAMPLE 3).

to ACO; algorithm used with j ants (j = 1,2,...,10). Each
element S;; of S corresponds to the energy corresponding to
this number of sensors and with the number of ants used for
Multiple Objective ACO algorithm.

Application of BF-ICrA in example 1 (350 x 350 points)

In this example, one sees from the score matrix of the
Table I that ACO;, ACO3 and ACOg algorithms perform
equally for all alternatives (i.e. all rows) and they define
a first group/cluster of methods providing exactly the same
performances. Similarly, ACO4, ACO5 and ACOg constitute a
second group of algorithms. The third group is made of ACO~,
ACOg and ACOqp algorithms. It is worth noting that these
three groups {ACO;, ACO3, ACOg}, {ACO4, ACO5, ACOg},
and {ACO7, ACOs, ACOy(} differ only very slightly, whereas
the ACO; algorithm (i.e the 2nd column of the score matrix
S) differs a bit more from all the three aforementioned groups.

Example 1 with fast PCR6: If we apply the fast BF-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 6 dichotomous BBAs
(m;(0),m’ (9), m? (60U 0)), we get the matrix of mass of

belief of agreement between criteria given in Table® IV.
0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.821 0.928 0.821 0.950 0.950 0.950 0.805 0.805 0.821 0.805
0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843
0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843

Table IV

MATRIX K~ pore(6) FOR EXAMPLE 1.

The matrix of distances to full agreement based on fast BF-
ICrA method, denoted by D~ pcoge(6), is given in Table V.

In examining the table V, one sees that ACO1, ACO3
and ACO9 are at a small distance 0.134, with respect to
other algorithms, so that they belong to the same group
and behave similarly. Same remarks holds for the group
{ACO4,ACO5,ACOg} because its inter-distance is zero,

6 All the numerical values presented in the matrices have been truncated at
their 3rd digit for typesetting convenience.
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0.134
0.178
0.134
0.209
0.209
0.209
0.193
0.193
0.134
0.193

0.178
0.071
0.178
0.049
0.049
0.049
0.194
0.194
0.178
0.194

0.134
0.178
0.134
0.209
0.209
0.209
0.193
0.193
0.134
0.193

0.209
0.049
0.209

0

o

o
0.204
0.204
0.209
0.204

0.209
0.049
0.209

(o]

0

(o}
0.204
0.204
0.209
0.204

Table V
MATRIX D~ pore(6) WITH FAST BF-ICRA FOR EXAMPLE 1.

0.209
0.049
0.209

(o]

o

0
0.204
0.204
0.209
0.204

0.193
0.194
0.193
0.204
0.204
0.204
0.156 0.156
0.156 0.156
0.193 0.193
0.156 0.156

0.193
0.194
0.193
0.204
0.204
0.204

0.134
0.178
0.134
0.209
0.209
0.209
0.193
0.193
0.134
0.193

0.193
0.194
0.193
0.204
0.204
0.204
0.156
0.156
0.193
0.156

and for the group {ACO7, ACOg, ACO;o} because its inter-
distance is 0.156. In a relative manner ACO; appears closer
to {ACO4,ACO5,AC06}, than {ACOl,AC03,AC09} or
{ACO7, ACOg, ACOqp}, which intuitively makes sense when
comparing directly the columns of the matrix of Table I

Example 1 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by Dy (), is given in Table VI.

0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.082 0.030 0.082 0.016 0.016 0.016 0.142 0.142 0.082 0.142
0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198
0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198
Table VI
MATRIX Dy, (f) WITH BE-ICRA USING AVERAGING RULE FOR
EXAMPLE 1.

One sees that only the group {ACO4, ACOs,ACOg}
can be clearly identified based on the averaging fu-
sion rule. The other groups ACOy appears also close to
{ACO4,ACO5,ACO6}. But ACO;, ACO3 and ACOg are
closer to {ACOy4, ACO5, ACOg} also than in-between. Same
remarks holds for ACO7, ACOg, and ACO1g. So one sees that
the averaging fusion rule is not recommended for making the
BF-ICrA in this example.

Application of BF-ICrA in example 2 (500 x 500 points)

Example 2 with fast PCR6: If we apply the fast BE-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 22 dichotomous BBAs
(mi;,(8),mi; (6),mi,; (6 U0)), we get the following matrix
of distances to full agreement, denoted by D~ pcre(6), given
in Table VII.

0.158
0.376
0.338
0.300
0.286
0.279
0.247
0.251
0.225
0.280

0.376
0.324
0.426
0.456
0.437
0.453
0.457
0.433
0.435
0.449

0.338
0.426
0.407
0.411
0.382
0.423
0.418
0.402
0.393
0.414

0.300
0.456
0.411
0.349
0.323
0.381
0.368
0.370
0.362
0.363

0.286
0.437
0.382
0.323
0.284
0.348
0.334
0.334
0.328
0.333

Table VII
MATRIX Dx pcre(6) WITH FAST BF-ICRA FOR EXAMPLE 2.

0.279
0.453
0.423
0.381
0.348
0.316
0.298
0.317
0.308
0.308

0.247
0.457
0.418
0.368
0.334
0.298
0.235
0.276
0.255
0.283

0.251
0.433
0.402
0.370
0.334
0.317
0.276
0.265
0.260
0.303

0.225
0.435
0.393
0.362
0.328
0.308
0.255
0.260
0.211
0.304

0.280
0.449
0.414
0.363
0.333
0.308
0.283
0.303
0.304
0.277

Based on these results, one sees that no clear group can
be identified but we emphasize in boldface in Table VII the
minimal value for each row of the distance matrix D~ pc re(6)
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(diagonal elements excluded). We see that ACOy is at the
farthest distance of ACO; because D13(f) = 0.376, but in
the mean time ACOs is at closest distance to ACO; because
Dy;(8) > 0.376 (for j > 2) as shown in second line of
Table VII. So we can conclude that ACO5 is not close to
any other algorithm in fact. If we choose a ad-hoc distance
threshold, say for instance 0.28, then we can identify the group
{ACO;,ACO7,ACOg,ACOg}.

Example 2 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by Dy, (0), is given in Table VIIL

0.361
0.316
0.310
0.311

0.316
0.125
0.158
0.198
0.336 0.225
0.300 0.187
0.306 0.216
0.316 0.225
0.320 0.240
0.309 0.206

0.310
0.158
0.165
0.185
0.215
0.178
0.200
0.215
0.227
0.193

0.311
0.198
0.185
0.183
0.216
0.181
0.197
0.217
0.231
0.192

0.336
0.225
0.215
0.216
0.243
0.214
0.231
0.249
0.261
0.226

Table VIII
MATRIX Daygr. (6) WITH BF-ICRA USING AVERAGING RULE FOR
EXAMPLE 2.

300
187
178
181
214
159
175
0.194
0.210
0.176

0.306
0.216
0.200
0.197
0.231
0.175
0.181
0.202
0.216
0.186

0.316
0.225
0.215
0.217
0.249
0.194
0.202
0.215
0.229
0.204

0.320
0.240
0.227
0.231
0.261
0.210
0.216
0.229
0.233
0.222

0.309
0.206
0.193
0.192
0.226
0.176
0.186
0.204
0.222
0.183

ocoocoooo

Based on the average fusion rule there is no clear
clustering of algorithms. However based on shortest inter-
distance we could make the following distinct pairwise group-
ings {ACOQ, ACOg}, {ACOG, ACO7}, {ACO47 ACOlo},
{ACOg, ACOg} and {ACO;, ACOs} if necessary, but remem-
ber that average fusion rule cannot provide the best result as
shown in Example 1.

Application of BF-ICrA in example 3 (700 x 700 points)

Example 3 with fast PCR6: If we apply the fast BE-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 19 dichotomous BBAs
(mi,(8),m?, (6), m,;, (0UF)), we get the matrix of distances
to full agreement, denoted by D~ pore(6), given in Table IX.

0.313 0.388 0.465 0.498 0.469 0.500 0.426 0.451 0.498 0.477
0.388 0.339 0.403 0.496 0.461 0.500 0.421 0.440 0.497 0.464
0.465 0.403 0.348 0.493 0.456 0.500 0.416 0.437 0.495 0.457
0.498 0.496 0.493 0.362 0.385 0.500 0.376 0.391 0.470 0.303
0.469 0.461 0.456 0.385 0.230 0.380 0.256 0.288 0.300 0.324
0.500 0.500 0.500 0.500 0.380 0  0.312 0.356 0.308 0.500
0.426 0.421 0.416 0.376 0.256 0.312 0.137 0.185 0.272 0.330
0.451 0.440 0.437 0.391 0.288 0.356 0.185 0.205 0.314 0.351
0.498 0.497 0.495 0.470 0.300 0.308 0.272 0.314 0.283 0.438
0.477 0.464 0.457 0.303 0.324 0.500 0.330 0.351 0.438 0.228
Table IX

MATRIX D pogre(6) WITH FAST BF-ICRA FOR EXAMPLE 3.

We observe that the average distance between ACO algo-
rithms is much higher than in Tables V and VII of examples
1 and 2. This shows clearly the difficulty to precisely identify
the clusters of similar algorithms because only few ACO
algorithms perform actually very well for this third example.
Eventually, and based on shortest inter-distance we could make
the first pairwise group {ACO7, ACOg} because D7s(0)
0.185 is the minimal inter-distance we have between the ACO
algorithms. Once the rows and columns of Table IX corre-
sponding to ACO7 and ACOg are eliminated, then the second
best group will be {ACOs5, ACOg} because Ds9(0) = 0.300.
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Similarly, we will get the group {ACO4,ACO;o} because
D4 10(0) = 0.303, and then the group {ACO;, ACO2 } because
D12(0) = 0.388. Finally we could also cluster ACO3 with
ACOg because Ds6(f) = 0.500, although this distance of
agreement is quite large to be considered as a trustable cluster.

Example 3 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by Dy (), is given in Table X.

0.154 0.142
0.120 0.092
0.092 0.042
0.167 0.114
0.321 0.289
0.295 0.237
0.369 0.342

0.221
0.167
0.114
0.054
0.255
0.139
0.327
0.260
0.184
0.177

0.351
0.321
0.289
0.255
0.339
0.245
0.391
0.355
0.287
0.324

Table X
MATRIX Dy, (f) WITH BE-ICRA USING AVERAGING RULE FOR
EXAMPLE 3.

0.350
0.295
0.237
0.139
0.245
0
0.304
0.242
0.115
0.247

0.392
0.369
0.342
0.327
0.391
0.304
0.390
0.368
0.336
0.387

0.345
0.313
0.279
0.260
0.355
0.242
0.368
0.328
0.288
0.341

0.332
0.290
0.242
0.184
0.287
0.115
0.336
0.288
0.190
0.279

0.298
0.261
0.224
0.177
0.324
0.247
0.387
0.341
0.279
0.261

313 0.279
290 0.242
261 0.224

Sooooooo00d

0.
0.
0.

Surprisingly, the use of averaging rule provides in this
example lower distance values on average with respect to
values given in Table IX. However no clear clustering of
algorithms can be made because only few ACO algorithms
perform actually very well for this third example. If we adopt
the pairwise strategy to cluster algorithms, we will obtain
now as first group {ACO2, ACO3} because Da3() = 0.092,
as second group {ACOg, ACOg} because Dgg(f) = 0.115,
as third group {ACO4, ACOq0} because Dy 10(8) = 0.177,
as fourth group {ACO;, ACOg} because Dig(6) = 0.345,
and finally we could also cluster ACO; with ACO; because
D57(0) = 0.391. one sees that there is no strong correlation
between results obtained from BF-ICrA based on fast PCR6
and those based on averaging rule, which is not surprising
because the rules are totally different. Nevertheless the group
{ACOy4, ACO1¢} is agreed by both methods here.

VI. CONCLUSIONS

The fast Belief Function based Inter-Criteria Analysis
method, using the canonical decomposition of basic belief
assignments defined on a dichotomous frame of discernment
was applied, tested and analysed in this paper. This new
method was applied for evaluating the Multiple-Objective
Ant Colony Optimization (MO-ACO) algorithm for Wireless
Sensor Networks (WSN) deployment. Based on the BF-ICrA
outcomes it was shown a very high correlation with fast
PCR6 rule for the ACO;, ACO3 and ACOg group, for the
ACOy4, ACOs and ACOg group, and for the ACO7, ACOsg
and ACO;p group of algorithms in example 1 (case of
size 350 x 350) as intuitively expected. This is because the
considered ACO algorithms can solve the problem with good
solution quality in example 1. These high correlations were
not observed in the other two cases for example 2 (case of
size 500 x 500) and 3 (case of size 700 x 700) because
only few ACO algorithms perform actually very well for
these examples. So, if we considered results in case of larger
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problem sizes, the BF-ICrA results show that the number of
ants has the significant influence on the obtained results, as
already pointed out in [20].
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Abstract—This paper discusses and analyzes the behaviors of
the proportional conflict redistribution rules no. 5 (PCR5) and
no. 6 (PCR6) to combine several distinct sources of evidence
characterized by their basic belief assignments defined over the
same frame of discernment. After a brief review of these rules,
the paper shows through simple examples why their behaviors
can sometimes increase the uncertainty more than necessary
which is detrimental to decision-making support drawn from the
result of the combination. We present a theoretical improvement
of these rules, and establish new PCR5" and PCR6™ rules of
combination. These new rules overcome the weakness of PCRS
and PCR6 rules by computing binary keeping-indexes that allow
to keep only focal elements that play an effective role in the
partial conflict redistribution. PCR5" and PCR6™ rules are not
associative but they preserve the neutrality of the vacuous belief
assignment contrary to the PCRS and PCR6 rules, and they make
a more precise redistribution which does not increase improperly
the mass of partial uncertainties.

Keywords: information fusion, belief functions, PCR5™,
PCR6T, PCR5, PCR6 fusion rules..

I. INTRODUCTION

There exist different theories based on distinct representa-
tions and modelings of uncertainty to deal with uncertain infor-
mation to conduct information fusion [1]. The theory of prob-
ability [2], [3], the theory of fuzzy sets [4], [5], the possibility
theory [6], [7], and the theory of belief functions [8]-[10] are
the most well-known ones. This paper addresses the problem
of information fusion in the mathematical framework of the
belief functions introduced by Shafer from Dempster’s works
[11], [12]. The belief functions are often used in decision-
making support applications because the experts are generally
able to express only a belief in a hypothesis (or a set of
hypotheses) from their partial knowledge, experience and from
their own perception of the reality. To conduct information
fusion, we need some efficient rules of combination that are
able to manage the conflicting sources of evidence (if any), or
expert opinions expressed in terms of belief functions. Readers
interested in belief functions can found classical related papers
in [13] and in the special issue [14] which includes also a list
of good selected papers. It is worth to mention that the recent
book of Cuzzolin [15] includes 2137 references, with many
of them related to belief functions.
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In this paper, we adopt the notion of conflict introduced
by Shafer in [8] (p. 65). This notion of conflict is often
adopted by researchers working with belief functions, as in
[16] p. 17 for instance, because this notion is quite simple to
understand. Different definitions and interpretations of conflict
can be also found in [17]-[27] for readers interested in this
topic. In this paper, two (or more) sources are said conflict-
ing if they support incompatible (disjoint, or contradictory)
hypotheses. We also work with distinct sources of evidences
that are considered as (cognitively) independent and reliable.
We do not consider, nor apply discounting techniques of belief
assessments listed in [14] before combining them to keep the
presentation and notations as simple as possible!.

While the conjunctive rule makes it possible to combine
information between different sources of information by esti-
mating the level of existing conflict, Dempster-Shafer (DS)
rule [8], [16] proposes a distribution of this conflict on
the hypotheses characterized by the sources of information.
The normalization carried out by the DS rule may however
be considered counter-intuitive especially when the level of
conflict between the sources of information is high [28],
[29], but also in some situations where the level of conflict
between sources is low as shown in [30] showing a dictatorial
behavior of DS rule. The Proportional Conflict Redistribution
rules (PCRS [31] and PCR6 [32], [33]) have been proposed
to circumvent the problem of the DS rule to make a more
judicious management of the conflict.

In this paper, we put forward a flawed behavior of these
combination rules in some cases attributed to the non-
neutrality of the vacuous BBA (Basic Belief Assignment),
and we propose an improvement of these two combination
rules (denoted by PCR5™ and PCR6™) in order to ensure the
neutrality property of the vacuous BBA. This is achieved by
discarding specific elements implied in the partial conflict and
which are not useful for making the conflict redistribution.

In the PCR rules [32]-[34] one redistributes the product of
masses of belief of incompatible (i.e. conflicting) elements
whose intersection is empty only to elements involved in

1Of course discounted belief assignments can also be combined by the rules
presented in this paper.
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this product and proportionally to their mass of belief. For
instance, let’s consider two elements A, B of a frame of
discernment (FoD) with A N B = (}, and three basic belief
assignments mq(-), ma(-), ms(-) defined on this FoD with
m1(A) >0, me(B) >0, and mz(AU B) > 0. The product
m1(A)ma(B)ms(AU B) > 0 is called a conflicting product
hereafter because AN BN (AU B) = (). Based on PCR5 (and
PCRO) rule, we will redistribute the value of this product back
to the focal® elements A, B and AU B, and proportionally to
m1(A), ma(B) and mg(A U B). In the improved PCR rules
developed in this paper we will redistribute this conflicting
product only to the focal elements A and B since the focal
element AU B is neither in conflict with A, nor with B. Such
an improvement in the proportional conflict redistribution is
made possible by defining a binary keeping-index for each
focal element involved in the conflicting product. This index
will allow the identification of elements of the conflicting
product that will have an effective role in the proportional
redistribution of conflicting product. All elements (if any)
having a binary keeping-index equal to zero are discarded of
the conflict redistribution process. This main idea is developed
in this paper and illustrated with several examples. It allows to
preserve the neutrality of the total ignorant source of evidence
in the improved versions of PCR5 and PCR6 rules, which
is often considered as a desirable property for a rule of
combination of distinct and reliable sources of evidence.

For the reader not immersed in the belief mathematics
notion, the comparative numerical examples of Example 1 of
section III-B as compared with Example 1 revisited of section
VII, provide a quick verification of the improvements.

This paper is organized as follows. We give the basics of
belief functions in Section II. We present the PCRS and PCR6
rules of combination in Section III with new general formulas
in subsection III-C, and associated examples in Section IV.
The flawed behavior of PCRS and PCR6 rules are highlighted
in Section V through specific examples. Then, Section VI
proposes the mathematical expression of the new improved
PCR5' and PCR6" rules of combination, as well as the
very detailed procedure to select the focal elements for these
new proportional redistributions. Finally, comparative results
for relevant examples are shown in Section VII in order to
compare the PCRS and PCR6 results with the PCR5™ and
PCR6™ results. Concluding remarks are given in section VIII.
For convenience, two Matlab™ routines are also given in the
appendix 3 of this paper for PCRS™ and PCR6™ rules of
combination.

II. BASICS OF BELIEF FUNCTIONS

We consider a given finite set © of n > 1 distinct elements
© = {61,0,,...,0,} corresponding to the frame of discern-
ment (FoD) of the fusion problem, or the decision-making
problem, under concern. All elements of © are mutually

2 A focal element is an element (i.e. a subset) having a strictly positive mass
of belief committed to it - see section II elements
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exclusive® and each element is an elementary choice of the
potential decision to take. The power set of © is the set of all
subsets of © (including empty set () and ©) and it is usually
denoted 2° because its cardinality equals 2/°/. We adopt
Shafer’s formalism whereby propositions are represented by
subsets [8] (Chap.2, pp. 35-37). Hence, the propositions under
concern are in one-to-one correspondance with subsets of ©.
We also use classical notations of set theory [35], i.e. @ for
the empty set, AU B for the union* of sets A and B (which
is the set of all objects that are a member of the set A, or
the set B, or both), A N B for their intersection (which is
the set of all objects that are members of both A and B),
etc. A Basic Belief Assignment (BBA) given by a source of
evidence is defined by Shafer [8] in his Mathematical Theory
of Evidence (known also as Dempster-Shafer Theory, or DST)
as m(-) : 2 — [0, 1] satisfying

{m(w) =0,

ZAeze m(A) =1,

where m(A) is the mass of belief exactly committed to A,
what we usually call the mass of A. A BBA is said proper
(or normal) if it satisfies Shafer’s definition (1). The subset
A C O is called a Focal Element (FE) of the BBA m(:) if
and only if m(A) > 0. The empty set is not a focal element
of a BBA because m()) = 0 according to definition (1). The
set of all focal elements of a BBA m(-) is denoted F(m). Its
mathematical definition is F(m) = {X € 2°|/m(X) > 0}.
The cardinality |F(m)| of the set F(m) is denoted F,. The
order of focal elements of F(m) does not matter and all the
focal elements are different. The set F(m) of focal elements
of m(-) has at least one focal element, and at most 2/ — 1
focal elements.

Belief and plausibility functions are respectively defined
from m(-) by [8]

1)

Bel(A)= > m(X), 2)
X€20|XCA
and
Pi(A)= > m(X)=1-Bel(A). 3)

Xe29|ANX#D
where A represents the complement of A in ©.

Bel(A) and PI(A) are usually interpreted respectively as
lower and upper bounds of an unknown (subjective) probabil-
ity measure P(A) [11], [12]. The functions m(.), Bel(.) and
PI(.) are one-to-one. A belief function Bel(.) is Bayesian if
all Bel’s focal elements are singletons [8] (Theorem 2.8 p.
45). In this case, m(X) = Bel(X) for any (singleton) focal
element X, and m(.) is called a Bayesian BBA. Corresponding
Bel(-) function is equal to PI(-) and these functions can be

3This standard assumption is called Shafer’s model of FoD in DSmT
(Dezert-Smarandache Theory) framework [34].

4We prefer the notation A U B for denoting the union of sets A and B,
which is a formal mathematical notation for the union of two sets, instead of
the notations AB or {A, B} used by some authors.
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interpreted as a same (possibly subjective) probability measure
P(-). The vacuous BBA (VBBA for short) representing a
totally ignorant source is defined as m,(0) = 1.

IIT. COMBINATION OF BBAS

This Section presents at first the conjunctive rule of com-
bination which is one of the main rules to combine reliable
sources of evidence and which allows to identify the con-
flicting information among the sources. Then we present the
proportional conflict redistribution rules no. 5 (PCRS5) [31]
and no. 6 (PCR6) [32], [33] as alternatives of Dempster’s rule
of combination [8]. The development of these rules has been
motivated by the counter-intuitive behavior of Dempster’s rule
[8] when combining high conflicting sources of evidences, but
also when combining low conflicting sources of evidences as
well>. The reader interested in this topic can refer to [13],
[28]-[30] to see theoretical justifications and examples. In the
following, and for simplicity, we restrain our presentation to
the classical framework of belief functions, and we work with
BBAs defined only on the power set 2€ of a FoD ©. PCR
rules have been defined originally for working with Dedekind’s
lattice as well, see Chapter 1 of [34] (Volume 2). In this paper,
we present simple general expressions of PCRS and PCR6
fusion rules because they are more easy to understand than
the original general formulas, and they afford expressions of
the improved PCR5" and PCR6™ rules in a direct and useful
manner.

After a brief presentation of the main notations used in
this paper, we will recall both PCR5 and PCR6 rules for
historical and technical reasons. PCR5 has been developed at
first, and then PCR6 has been proposed based on a modified
redistribution principle inspired by PCRS. In this paper, we
follow the logical and historical development of these PCR5
and PCR6 rules to make the presentation of their improved
versions PCR5" and PCR6™. It seems easier to understand
PCR6™ fusion formula once the PCR5' formula will have
been established. By presenting both rules, we offer to the
readers a global deeper view on how these new rules work and
their fundamental and mathematical differences in their con-
flict redistribution principles. In the sequel, all the introducedg
examples assume the model of Shafer’s frame of discernment
as in the classical DST framework.

A. Notations

When we make the combination of S > 2 BBAs by the
conjunctive rule, or by the PCR5 and PCR6 fusion rules,
we have to compute the product of the masses of the focal
elements composing any possible S-tuple of focal elements.
Each possible S-tuple is noted by®

X (Xh,XD,...,XjS)Ef(ml)x]:(mg)x

where j1 € {1,2,...,Fm,}> jo € {1,2,...,
js € {1,2,..., Fme}. The element X,

..><.7:(m5),
Fm2}7

is the focal element

SWhich is known as the dictatorial behavior of Dempster’s rule [30].
6The symbol £ means “equals by definition”.
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of m;(-) that makes the i-th component of the j-th S-tuple

X;.

For notation convenience also, the cartesian product
F(mq1)x F(ma)X...x F(mg) is denoted by F(mq, ..., mg)
in the sequel.

We have F £ |F(mq,...,mg)] Hl L F(mg)| =

Hl 1 Fm, products of masses of focal elements to consider
and to calculate because we have F,,, focal elements in
F(m1), Fm, focal elements in F(ms), ..., and Fy,, focal
elements in F(mg). Each product for j = 1 to F is of the
form
s
Flj(leijzﬁ...ﬂX )éHmz(XJT) )
i=1
There are two types of products:
o (X, NX;, N...NX,) is called a non-conflicting
(mass) product if

leﬁijﬂ...ﬁXjS:X;A(Z).

In this case, 7;(X;, N X, N...
m;(X) for short.

(] Wj(le ijz n...
product if

N X;,) is also noted by

NXj) is called a conflicting (mass)

X;NnX,n...NnX;=0.

In this case, 7;(X;, N X;, N...
7;(0) for short.

It is worth noting that an element X € 2€\ {(}} may belong
to sets of focal elements of the different BBAs to combine,
and therefore a S-tuple X; can have duplicate components.
Because all the BBAs are normalized, we always have

N X ) is also noted by

F
ij(leﬁijﬂ... 5)

Jj=1

ﬁXjS) =1.

As a simple example to illustrate our notations, let’s con-
sider two BBAs m;(-) and mz(-) defined over the FoD © =
{A, B,C} with respectively two and three focal elements,
say F(m1) = {A,BUC} and F(me) = {B,C,AU C}.
Here F,,, = |F(m1)| = 2 and F,,,, = |F(m2)| = 3. For
J1 = 1 (the first focal element of m(-)) one has X; = A,
and for j; = 2 (the second focal element of m4(-)) one has
X;, = BUC. Similarly, for jo = 1 (the first focal element of
ma(-)) one has X;, = B, for jo = 2 (the 2nd focal element
of ma(-)) one has X,;, = C, and j, = 3 (the 3rd focal
element of mo(-)) one has X;, = AU C. In this case we
have F = F,,, - Fm, = 6 products of masses to consider in
the conjunctive fusion rule (see next sub-section) which are

m (AN B) =my(A)ma(B),
m2 (AN C) =my(A)my(C),
m3(AN(AUC)) =mi(A)ma(AUC),
m4((BUC)N B) =my(BUC)mz(B),
m5((BUC)NC) =mi(BUC)m(C),
T6((BUC)N(AUC)) =mi1(BUC)ma(AUC).
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The products 71 and 7y are called conflicting products because
e for 7, the focal elements A and B involved in m; are
incompatible (i.e. disjoint) because ANB = ). 71 (ANB)
is of course equivalent to 7;(X;, N X,,) with j =1 by
taking X;, = A and X, = B;
o for mo, one has AN C = (. me(A N C) is equivalent
to m;(X;, N X,,) with 7 = 2 by taking X;, = A and
X;, =C, etc.
The products 73, ..., and mg are not conflicting products
because the focal elements involved in each product have
non-empty intersection. Because my(A4) + my(BUC) = 1
and m2(B) + ma(C) + ma2(A U C) 1, one has
(ml(A) + ml(B @] C))(mg(B) + mg(C) +m2(AU C)) =1,
and therefore Z?:l m; = 1. This illustrates the formula (5).

In this paper, i € {1,...,S5} represents the index of the i-th
source of evidence characterized by the BBA m;(-), and j €
{1,...,F} represents the index of the j-th product 7;(X;, N
ij n...N st).

B. The conjunctive rule of combination

Let’s consider S > 2 distinct reliable sources of evidence
characterized by their BBA ms(-) (s = 1,...,5) defined on
29, Their conjunctive fusion’ is defined for all A € 2° by

s(4) >

Xje]:(ml,...,ms)
leﬂ...ﬂXjS:A

>

.....

Conj o
My,

7Tj(Xj1 ﬁij ﬂ...ﬁXjS)

S
[T mi(x;0)- (©)
i=1

The symbol @ is also used in the literature, for instance in [36],
. . . . C()nj o
to note the conjunctive fusion operator, i.e. my, ¢(A) =

[ml@mg@ cen @ms](A)

The total conflicting mass between the S sources of evidence,
denoted m$% (0, is nothing but the sum of all existing
conflicting mass products, that is

>

Xje]:(ml,...,ms)
X N..NX; =0

Cont
1- Z mloznjs(A)

Ae209\{0}

Conj
My 2,

.....

Wj(le ﬁij ﬂ...ﬁXjS)

)

Note that the combined BBA m$%’ () given in (6) is not
a proper BBA because it does not satisfy Shafer’s definition
(1). In general the S sources of evidence to combine do not

fully agree, and we have consequently mff’;j s(0) > 0.
Dempster’s rule of combination (called also orthogonal sum
by Shafer [8], p. 6) coincides with the normalized version

of the conjunctive rule. It is defined by m'fySQ_’___yS(A) =

.....

"The conjunctive fusion rule is also called Smets’ rule of combination by
some authors because it has been widely used by Philippe Smets in his works
related to belief functions. But Smets himself call it conjunctive rule, see his
last paper [20], p. 388.
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Conj Conj . Conj
myy  g(A)/(1=my% (D)), assuming my5’  (0) # 1.

The DS upper notation refers to initials of Dempster and
Shafer names because Dempster’s rule has gained its pop-
ularity through Shafer’s works on belief functions. Shafer
uses the symbol @ to note Dempster’s fusion operator, i.e.

mP%  o(A) = [m1 ®@ma @ ... ®ms](A) for A # 0, and
mP% (D) = 0. A probabilistic analysis of Dempster’s rule

of combination can be found in [37], and the geometry of
Dempster’s rule is analyzed in [38].

Example 1: Consider © = {A, B} and two following BBAs

ml(A) = 01, mi (B) = 02, m1(A U B) = 07,
m2(A) = 0.4, mg(B) = 0.3, m2(A U B) =0.3.
We have m{%(#) = 0.11, and
mi%(A) =0.35, m{%(B)=0.33, mi{%(O)=0.21

Symbolically we denote the conjunctive fusion of S sources
as mfozms = Conj(mq,ms,...,mg). This conjunctive rule
is commutative and associative. This means that the sources
can be combined altogether in one step, or sequentially in any
order and it does not matter. Also, the total ignorant source
represented by the vacuous (non-informative) BBA has no

impact in the fusion result - see Lemma 1 below.

Lemma 1: The vacuous BBA m,, has a neutral impact in the
conjunctive rule of combination, that is

Conj(mi, ma,...,mg,my) = Conj(mi,ma,...,mg). (8)

Proof: see appendix 1.

The main drawback of this fusion rule is that it does
not generate a proper BBA because m5% (@) > 0 in

general, and also it can provide a fusion result m$%’ (0)
that quickly tends to one after only few steps of a sequential
fusion processing of the sources which is not very useful
for decision-making support. This is because the empty set
() is the absorbing element for the conjunctive operation since
PN A= forall Ac 29 so that the mass committed to the
empty set always increases through the repeated conjunctive
fusion rule. The main interest of this rule is its ability to
identify the partial conflicts and to provide a measure of the
total level of conflict m{%’ () between the sources which
can be used to manage (select or discard) the sources in the
fusion process if one prefers, see [39] for an application in
geophysics for instance.

C. PCR5 and PCR6 rules of combination

The Proportional Conflict Redistribution Rules (PCR) have
been developed originally in the framework of DSmT (Dezert-
Smarandache Theory) [31], [32], [34] but they can work also
in the classical framework of Shafer’s belief functions as well.
Six rules have been proposed and they are referred as PCR1,
..., PCRG6 rules of combination having different complexities,
PCR1 being the most simplest (but less effective) one. All
these rules share the same general principle which consists of
three steps:
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apply the conjunctive rule (6);

calculate the conflicting mass products 7;(0);
redistribute the conflicting mass products 7; () propor-
tionally on all non-empty sets involved in the conflict.

The way the conflicting mass product 7, (() is redistributed
yields to different versions of PCR combination rules that work
for any degree of conflict. The sophistication/complexity and
preciseness of PCR rules increases from the first PCR1 rule up
to the last rule PCR6. The main disadvantage of these rules,
aside their complexity, is their non-associativity properties
which impose to combine all the BBAs altogether with PCR
rules rather than sequentially to expect the best fusion result.

In this paper, we focus on the presentation of PCRS and
PCR6 only because they are the most well-known advanced
fusion rules used so far in the belief functions community. A
detailed presentation of other rules of combination encoun-
tered in the literature can be found in [40]. Symbolically,
the PCRS5 fusion and the PCR6 fusion of S > 2 BBAs
are respectively denoted m[®° ¢ = PCR5(my, ma, ..., ms),
and mER® o = PCR6(m1, ma, ..., ms).

Readers familiar with PCR rules could quickly read the
example 1 given in section III-B, and the results obtained with
classical and improved PCRS5 and PCR6 rules in section VII
to appreciate the discussion throughout the paper.

The PCRS rule of combination [31]: This rule transfers
the conflicting mass 7;(()) to all the elements involved in
this conflict and proportionally to their individual masses, so
that a more sophisticate and specific distribution is done with
the PCRS fusion process with respect to other existing rules
(including Dempster’s rule). The PCRS rule is presented in
details (with justification and examples) in [34], Vol. 2 and
Vol. 3.

e The PCRS fusion of two BBAs is obtained by m{G(0) = 0,
and for all A € 2°\ {0} by
mia’ (A) = mip (A)+
Z [ ma (A)z’IRQ(X) MQ(A)2m1(X) ] (9)
o mi(A) +ma(X)  ma(A) +mi(X)”

Xe2

XNA=0
where m{%(A) is the conjunctive rule formula (6) with

S = 2, and where all denominators in (9) are different from
zero. If a denominator is zero, that fraction is discarded. All
propositions/sets are in a canonical form. We take the disjunc-
tive normal form, which is a disjunction of conjunctions, and
it is unique in Boolean algebra and simplest. For example,
X =ANnBN(AUBUC() itis not in a canonical form, but
we simplify the formula and X = AN B is in a canonical
form.

The PCRS formula (9) for two BBAs can also be expressed
by considering only the focal elements of m;(-) and ma(-) as
follows
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PCRS
mi 2

(A) _ Conj

=My 9

>

(Xjy,Xjy)EF(m1) X F(m2)

(4)
ma (X, )ma(X5,)

+
m1(Xj,) +ma(Xj,)

m1(Xj,) -

mi (le )m2 (ij)
m1(Xj,) +ma(X;,)’

ma(Xj,) -
(le ,Xj2)€]:(m1)><]:(m2)

X NXj,=0
Xj,=A
(10)
or equivalently, with shorthand 7; notations, as
miE(4) = m ()
+ Z [mz‘e{1,2}\xji:A(in)
JE{L ..., F}X; €EF (my,ms)
X NXjp=
€x;
mi (le ) + me (ij )

where F = |F(my)]|-|F(mz)| is the total number of products
7Tj(Xj1 ﬂXj2) = ml(Xj )mQ(Xj2), and A € Xj means that
at least one component of X; equals A.

e The explicit formula of the PCRS5 fusion of three BBAs is
given in [41].

e A simple formulation of the general expression of
the PCRS fusion of S >2 basic belief assignments
is obtained by redistributing each conflicting product
mi(0) =m;(X;, N...NX;, =0) = Hle m;(X;,) to some
elements of the power set of the FoD that are involved in the
conflict. Each 7;(0) is redistributed proportionally to elements
involved in this conflict based on the PCRS redistribution
principle. When an element A € 2 is not involved in a
conflicting product 7, ((}), i.e. A ¢ X;, the conflicting product
7j(() is not redistributed to A. If an element A is involved in
the conflict X;, N...NX;, =0, ie. A€ X, and 7;(() occur,
then the proportional redistribution of 7, () to A is given by

z;(A) = ( 11 mi(X;,))
i€{1,...S}X;,=A
XEeX; i€{l,..,8}|X,, =X

where A € X; means that at least one component of the S-
tuple X; = (Xj,,..., Xj5) € F(mu,...,mg) equals A.

Finally the mass value of A obtained by the PCRS rule is
calculated by

(A) COIlj
JE{1,... . FHAEX ;Am; ()

=My,

.....

z;(A),

13)
where A € X; A 7;(0) is a shorthand notation meaning that
at least one component of the S-tuple X; equals A and the
components of X are conflicting, i.e. X;, N...N X, = 0.
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Therefore the general PCRS formula can be expressed as

mES () =0, and for A € 29\ {0} by
miee g(A)=mi% o(A)
+ 3 I max)

GE{L FHAEX Am (@) i€{l,....5}|X;,=A

7;(0)

ie{1,....S}|X;, =X

e (14)

Ji

7
X€eX;
It is worth noting that the formula (14) is a generalization
of the formula (11), i.e. (14) coincides with (11) when S = 2.
This general PCRS5 formula is equivalent to the original
PCRS5 formula given in [31] but it involves only the focal
elements of the BBAs to combine which makes the derivation
more efficient (less computationally demanding) than the orig-
inal general PCRS formula, specially when each BBA has only
few focal elements. We use this new general PCRS formula
because it is relatively simple and easy to improve it into
PCR5™" formula - see section VI-B. The extension of PCRS
for combining qualitative® BBAs can be found in [34], Vol. 2
& 3, and in [33]. PCRS rule is not associative and the best
fusion result is obtained by combining the sources altogether at
the same time when possible. A suboptimal fast fusion method
using PCR5-based canonical decomposition [42] can be found
in [43].

The PCR6 rule of combination [32]: A variant of PCR5
rule, called PCR6 rule, has been proposed by Martin and
Osswald in [32], [33] for combining S > 2 sources. Because
PCR6 coincides with PCR5 when one combines two sources,
we do not provide the PCR6 formula for two sources which is
the same as (9). The difference between PCRS5 and PCR6 lies
in the way the proportional conflict redistribution is done as
soon as three (or more) sources are involved in the fusion as it
will be shown in the example 2 introduced in the next section.
The explicit formula of the PCR6 fusion of three BBAs is
given in [41] for convenience.

The PCR6 fusion of S > 2 BBAs is obtained by
R6 4(0) =0, and for all A €29\ {0} by’

PC
mya..

PR s(A) =mi%Y  s(A)
+ 3 > mix))
Je{1l,.. . FHAeX jAm;(0)  ie{l,....,S}X;,=A
m;(0)
. (15

XeX,; ie{l,...,S}|in:X

The difference between the general PCRS5 and PCR6
formulas is that the PCRS5 proportional redistribution in-

volves the products 11 m;(X;,) of multiple same
S} X, =A

SA qualitative BBA is a BBA whose values are labels (e.g. low, medium,
high, etc) instead of real numbers.
9We wrote this PCR6 general formula in the style of PCR5 formula (14).
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focal elements A (if any) in the conflict, whereas the

PCR6 conflict redistribution principle works with their sum
m;(X;,) instead. The next section presents

S} X;,=A

some examples for PCRS and PCR6 rules of combinations.

We use this general PCR6 formula instead of the original
Martin-Osswald’s PCR6 formula [32] because it is more
easy to improve it into PCR6" formula - see section VI-B.
From the implementation point of view, PCR6 is simpler
to implement than PCRS. From the Decision-Making (DM)
standpoint, PCR6 is better than PCRS when S > 2 as reported
by Martin and Osswald in [32] (see also the Example 3
in the next section) in their applications. For convenience,
some Matlab™ codes of PCRS and PCR6 fusion rules can
be found in the appendix of [44], also in Chap. 7 of [34]
(Vol. 3), or from Arnaud Martin’s web page [45]. PCR6 code
(in R programming language) can be found also in iBelief
package developed by Kuang Zhou and Arnaud Martin from
the BFAS!? repository [46], or directly from [47] as well.
When we have only two BBAs to combine, PCR5 and PCR6
rules provide the same result because formulas (14) and (15)
coincide for S = 2.

In this paper, we have voluntarily chosen to present the
two rules PCRS, PCR6 and their improved versions mainly
for historical reasons and because these two rules have strong
theoretical links as we have shown. By doing this, we offer the
possibility to readers (and potential users) to test each of these
advanced fusion methods and evaluate their performances
on their own applications. Even though PCR6 is posterior
to PCRS, since some researchers have implemented and are
using PCRS5 fusion rule, it appears important to introduce the
improved version of this rule. Furthermore, PCRS goes back
exactly on the tracks of the conjunctive rule, while PCR6 does
not.

.....

IV. EXAMPLES FOR PCR5 AND PCR6 FUSION RULES

Here we provide two simple examples showing the dif-
ference of the results between PCRS and PCR6 rules. For
convenience, all numerical values given in the examples of this
paper have been rounded to six decimal places when necessary.

Example 2: We consider the simplest FoD © = {A, B}, and
the three following BBAs

ml(A) = 06,m1(B) = Ol,ml(A U B) = 03,
mg(A) = 0.5,m2(B) = 0.3,m2(A @] B) =0.2,
mg(A) = 04,m3(B) = 0.1,m3(A U B) =0.5.

Because F,, = |[F(m1)| = 3, Fm, = |[F(m2)| = 3 and
Fms = |F(ms)| = 3, we have F = Fo, - Fony - Fong 7
products to consider. Fifteen products are non-conflicting and

will enter in the calculation of m$%%(A), mi%%(B) and

mf°;j3 (AU B), and twelve products are conflicting products

10Belief Functions and Applications Society.
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that will need to be proportionally redistributed. The conjunc-
tive combination of these three BBAs is

Conj
My 23

(A) = ma(A)ma(A)ms(A)

Conj
Myo3

(B) =

Conj

my 53(AUB) =mi(AU B)ma(AU B)ms(AU B)

=0.3-0.2-0.5=0.0300,

and

Conj

Conj
Mi23

0 =1~ My a3
= 0.3430.

Conj

Conj
Mi23

(4) = (B) = my5,3(AUB)

In this example we have twelve partial conflicts, noted 7; ()

(3 =1,...,12), which are given by the following products
71(0) = ma (A)ma(A)ms(B) = 0.0300,
m2(0) = m1(A)mz(B)ms(A) = 0.0720,
m3(0) = m1(B)ma2(A)ms(A) = 0.0200,
ma(0) = m1(B)ma2(B)ms(A) = 0.0120,

75 (0) = ma(B)ma(A)ms(B) = 0.0050,
76(0) = m1(A)mz(B)ms(B) = 0.0180,
m7(0) = m1(AU B)ma(A)ms(B) = 0.0150,
73(0) = m1 (AU B)ma(B)ms(A) = 0.0360,
o (0) = ma(B)ma(A)ms(A U B) = 0.0250,
m10(0) = ma(A)m2(B)ms(A U B) = 0.0900,
m11(0) = m1(A)ma(A U B)ms(B) = 0.0120,
m12(0) = m1(B)m2(A U B)ms(A) = 0.0080

In applying the PCRS5 formula (14), and the PCR6 formula

(15) we obtain finally m{S3(0) = m{F§(0) = 0, and'!
(A) ~ 0.723281,

(B) ~ 0.182460,
(AU B) ~ 0.094259,

PCR5
Mmi23
PCRS
mi23
/mPCRS
mi23

11'The symbol ~ means “approximately equal to”.
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and

PCR6
mi23

PCR6( g
my23

(A) ~ 0.743496,
(B) ~ 0.162245,

mPRS(A U B) & 0.094259.
We see a difference between the BBAs m{ 53 and m[S'S

which is normal because the PCR principles are quite different.
Using the PCRS fusion rule the first partial conflicting mass
m1(0) = m1(A)ma(A)ms(B) = 0.03 will be redistributed
back to A and B proportionally to mj(A)mg(A) and to
ms(B) as follows

©nd)  nB) ™ (0)
ma (A)mg (A) ms (B) ml(A)mg (A) + ms (3)7
whence
_ _ma(A)ma(A)mi (D)
z1(A) = A (A) s ms(B) — 0.0225
B ma(B)m1(0) _
21(B) = — D (A) + ma(B) = 0.0075.

We can verify 71 (0) = 21(A) + z1(B) = 0.03.

Using the PCR6 fusion rule the first partial conflicting
mass 71(@) = 0.03 will be redistributed back to A and B
proportionally to (m1(A) + m2(4)) and to m3(B). So we
will get the following redistributions x1(A) = 0.0275 for A
and z1(B) = 0.0025 for B because

z1(A) _mn(B) _ m1(0)
mi (A) + mo (A) ms (B) ml(A) + Mo (A) + ms (B)
whence
_(ma(A) +ma(A)m()
z1(A) = T (A) £ 12 (A) + mo(B) = 0.0275
21(B) = ma(B)m(0) = 0.0025

m1(A) +ma(A) +ms(B)
We can verify 71 (0) = 21(A) + z1(B) = 0.03.

Note that for all the partial conflicts having no duplicate
element involved in the conflicting product 7;(()) we make
the same redistribution with PCRS5 rule and with PCR6 rule.

For instance, for 77 () = m1(AU B)ma(A)ms(B) = 0.0150
we get
137(A U B) _ £C7(A) _ £C7(B)
mi(AUB)  ma2(A)  m3(B)
m7(0)

m1(A U B) +m2(A) + ’ITLg(.B)7
= 27(AUB) +27(A) +27(B) = 0.0150 with
AU B)mr(0)

whence 77 ()

ma( _
27(AUB) = (AUB)+m2( B+ = 0080,
_ ma(A)m7(0) -
21(A) = TTATB) + ma(A) T mam) 0083
27(B) = ma(B)m:(0) ~ 0.0017.

ml(A U B) + mz(A) + mg(B)

The next example shows also the difference between PCRS
and PCR6 rules, and it justifies why PCR6 rule is usually

preferred to PCRS rule in applications.
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Example 3: we consider the FoD © = {A, B,C}, and the
four very simple BBAs defined by

ml(AUB) = 1,m2(B) = 1,m3(AUB) =1, and m4(C) =1.

These BBAs are in conflict because the intersection of their
focal elements is (AUB)NAN(AUB)NC =0. In this
example, one has only one product of masses to calculate,
which is m((AUB)NAN (AU B)NC) my(A U
B)ma(A)ms(A U B)my(C) = 1. In fact this product is
a conflicting product denoted 1 (f)). We can also denote
it (@) because the index j = 1 is useless in this case.
Moreover, these BBAs are also in total conflict because
7(0) = m1(AU B)ma(A)ms(AU B)my(C) = 1.

If one applies the PCR5 rule principle we get

(AU B) _ z(B) _ z(C)
mi(AUB)m3(AUB) mao(B) ma(C)
m(0)

= m1(AUB)ms(AUB) + ma2(B) + ma(C)

whence ©(AU B) = 1/3, (B) = 1/3 and z(C) = 1/3 so
that

miG34(AUB) =2(AUB) =1/3
miag4(B) = x(B) =1/3
my55.4(C) = 2(C) =1/3

This PCRS5 result appears counter-intuitive because three
sources among the four sources exclude definitely the hypoth-
esis C because one has Pl;(C) = Ply(C) = Pl3(C) =0, so
it is intuitively expected that after the combination of all the
four BBAs the mass committed to C' should not be greater
than 1/4 = 0.25.

If one applies the PCR6 rule principle we get

z(AUB) _ z(B) _ z(C)
T)’h(AUB)—‘r’Iﬂg(AUB) mg(B) m4(C)
(D)

o m1(AU B) +m3(AU B) +m2(B) *‘-TTM(C’)7

whence (AU B) = 2/4, (B) = 1/4 and z(C) = 1/4 so
that

mias4(AUB) = 2(AUB) = 0.5,
155.4(B) = 2(B) = 0.25,
PR 4(C) = 2(C) = 0.25,

which is in better agreement with what we intuitively expect
because m{G§ ,(C) is not greater than than 1/4. Of course
in this example, Dempster’s rule of combination cannot be
simply applied because the conflict is total yielding a division
by zero in Dempster’s rule formula [8], but by using eventually
some discounting methods to modify the BBAs to combine.
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V. FLAWED BEHAVIOR OF PCR5 AND PCR6 RULES

Formula (17) shows that in general PCR6 is not associative,
and by combining two sources in a row each time and we
continue doing that the results is different from the global
combination of all sources using PCR6. The formula is true.
Formula (18) says that in general PCRS is different from
PCR6, of course except the case when we combine only 2
sources. Formula (19) shows that in general PCRS does not
have the ignorance source as a neutral element.

The PCRS and PCR6 rules of combination are not associa-
tive which means that the fusion of the BBAs must be done
using general formulas (14) or (15) if one has more than two
BBAs to combine, which is not very convenient. Therefore,
the sequential PCRS or PCR6 combination of S > 2 BBAs are
not in general equal to the global PCRS or PCR6 fusion of the
S BBAs altogether because the order of the combination of the
sources does matter in the sequential combination. In general
(i.e. when conflicts exist between the sources of evidence to
combine) one has for S > 2

PCR5(my, ma,...,mg) #
PCR5(PCR5(PCR5(mq,m2), m3),...,mg), (16)
and
PCR6(m1, ma,...,mg) #
PCR6(PCR6(PCR6 (11, ma), m3), . .., ms), (17)

and also for S > 2 PCRS fusion result is generally different
of PCR6 fusion result that is

PCR5(m1, ma,...,mg) # PCR6(m1,ma,...,mg). (18)

PCR5 and PCR6 rules can become computationally in-
tractable for combining a large number of sources and for
working with large FoD. This is a well-known limitation of
these rules, but this is the price to pay to get better results
than with classical rules.

Aside the complexity of these rules, it is worth to mention
that the neutral impact property of the vacuous BBA m,, is lost
in general when considering the PCRS5 or PCR6 combination

of S > 2 BBAs altogether, that is

PCR5(myq,...,ms_1,my) # PCR5(mq,...,ms_1), (19)
and
PCR6(myq,...,mg_1,my) # PCR6(m1,...,mg_1). (20)

This is due to the redistribution principles used in PCRS and
in PCR6 rules. Example 4 shows the non-neutral impact of
the vacuous BBA in PCRS and PCR6 rules for convenience.
Note that the vacuous BBA has a neutral impact in the fusion
result if and only if one has only two BBAs to combine
with PCRS5, or PCR6, and one of them is the vacuous BBA
because in this case there is no possible (partial) conflict to
redistribute between any BBA m(-) defined over the FoD ©
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and the vacuous BBA m,,(-). That is, for any BBA m;(-) one
always has

PCR5(my, m,) = PCR6(my, m,) = my. 21)

Example 4: we consider the FoD © = {A, B} having only

two elements, and the following four BBAs as follows:
mi1(A) = 0.6,m1(B) =0.1,m (AU B) =0.3,

ma(A) = 0.5,ma(B) = 0.3, ma(AU B) = 0.2,

ms(A) = 0.4 mg(B) =0.1,m3(AU B) = 0.5,

my(AUB) =

BBAs m1, mo and ms3 are as in example 2, and the BBA my
is nothing but the vacuous BBA m,, defined over this FoD ©.

In example 2, we did obtain with PCR5(m1, m2, m3) and
with PCR5(my, mo, m3, my) the following resulting BBAs

(A) ~ 0.723281,
(B) ~ 0.182460,

PCR5
mi23

PCRS
mi23

miS3(A U B) &~ 0.094259,
and
miS3 4(A) = 0.654604,
mi53.4(B) ~ 0.144825,
miS3 4(AU B) ~ 0.200571.

Clearly, PCR5 (ml, ma, mg) }é PCR5 (ml, ma,ms, m4) cven
if m4 is the vacuous BBA.

Analogously, we did obtain with PCR6(m;, ma, m3) and
with PCR6(my, ma, ms3, my)
(A) ~ 0.743496,
(B) ~ 0.162245,

PCR6
mi23

PCR6 (3
my23

miSS (AU B) &~ 0.094259,
and
miSS 4(A) =~ 0.647113,
miS 4(B) ~ 0.128342,
miSS J(AU B) ~ 0.224545.

Therefore, PCR6(m1, mao, m3) 75 PCR6(m1, mo, ms, m4),
even if my is the vacuous BBA.

This example 4 shows clearly that the vacuous BBA does
not have a neutral impact in the PCRS and PCR6 rules of
combination. In fact, adding more vacuous BBAs m,, in the
PCRS or PCR6 fusion will increase more and more the mass of
AUB while decreasing more and more the masses of A and of
B with PCRS5, and PCR6. When the number of vacuous BBAs

m, increases, we will have'? m{G3% (AU B) — 1
PCRS/6 PCRS/6
Mi23m,,. ,mU(A) — 0, and m123mu,...,mv(B) — 0.

This is unsatisfactory because the vacuous BBA brings no
useful information to exploit, and it is naturally expected that it

PCR5/6 PCRS

12The notation m’ indicates “m mPCRO” for convenience.
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must not impact the fusion result in the combination of BBAs.
This can be seen as a flaw of the behavior of PCR5 and PCR6
rules of combination.

To emphasize this flaw, we give in the example 5 a case
where the mass committed to some partial uncertainties can
increase more than necessary with PCRS and with PCR6 rules
of combination. This is detrimental for the quality of the fusion
result and for decision-making because the result is more
uncertain than it should be, and consequently the decision is
more difficult to make.

Example 5: we consider the FoD © = {A, B,C, D, E}, and
the following three BBAs

m1(AU B) = 0.70,

m1(C U D) = 0.06,

mi(AUBUCUD)=0.15,
(

m1(E) = 0.09,

and
ma(AU B) = 0.06,
ma(C U D) = 0.50,
ma(AUBUCUD) =0.04,
mo (E) = 0.407

and

TTL3(B) =0.01
m3(AUBUCUDUE) = 0.99.

{

Note that the BBA mg is not equal to the vacuous BBA but
it is very close to the vacuous BBA because mg3(©) is close
to one.

If we make the PCR6(m 1, m2) fusion of only the two BBAs
mq and mg altogether, which is also equal to PCR5(my, ms),
we obtain

RE(A U B) =~ 0.465309,

(C'U D) ~ 0.296299,
(AUBUCUD) =~ 0.023471,
(E) =~ 0.214921.

PCR
PCR6
PCR6

If we make the PCR6(m1, mg, ms3) fusion of all these three
BBAs altogether we obtain

B) ~ 0.000962,

B) ~ 0.286107,

D) = 0.203454,
UBUCUD) =~ 0.012203,
E) ~ 0.116038,
AUBUCUDUE) = 0.381236.

i
it
it
it
iss

23(
(AU
(cu
(A
(
(

One sees that combining the BBAs m;, mg with the BBA
ms (where ms is close to vacuous BBA, and therefore mg is
almost non-informative) generates a big increase of the belief
of the uncertainty in the resulting BBA. This behaviour is
clearly counter-intuitive because if the source is almost vac-
uous, only a small degradation of the uncertainty is expected
and in the limit case when mg is the vacuous BBA no impact
of m3 on the fusion result should occur. Note that this behavior
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also occurs with PCR5(mq, ms, m3) because one has for this
example

PCR5

mi23 B) ~ 0001103,
PCRS

(
miR3 (AU B) ~ 0.286107,
mlicz“%(c U D) ~ 0.203384,
mi%3(AUBUCUD) ~ 0.012203,
(E) ~ 0.115967,
(

mis
AUBUCUDUE) = 0.381236.

s

The deep analysis of the partial conflict redistributions done
in this interesting example reveals clearly the flaw of the
principles of PCR5 and PCR6 rules of combination. Indeed,
for this example one has Fy,, - Frmy - Fny =4-4-2=32
products Ty (le n Xj2 n Xj3) = ml(le)mQ(Xj2)m3 (Xj3)
to calculate, where X;, € F(mq) ={AUB,CUD,AUBU
CUD, E}, X,, € F(mz2) = {AUB,CUD, AUBUCUD, E},
and X, € F(ms) = {B,AUBUCUDU E}. Among these
32 possible conjunctions of focal elements, twenty products
corresponds to partial conflicts when X;, N X;, N X, = 0,
which need to be redistributed properly to some elements of
29\ {0} according to the PCRS5, or the PCR6 redistribution
principles.

More precisely, we have to consider all the following
products 7; for calculating the result
= mi1(AU B)mz2(A U B)ms(B) = 0.00042,
= m1(AU B)m2(AU B)ms(©) = 0.04158,

m4(0) = m1(A U B)ma(C U D)m3(0) = 0.3465,

7m5(B) = mi(AU B)mz2(AU B UC U D)ms(B) = 0.00028,
m6(AUB) =mi (AU B)m2(AUBUCUD)ms(0) = 0.02772,
m7(0) = m1(A U B)ma(E)ms(B) = 0.0028,

m3(0) = m1(A U B)ma(E)ms(0©) = 0.2772,

m9(0) = m1(C U D)m2(A U B)msz(B) = 0.000036,

10 (Z)) =m1(C U D)ma(AU B)ms(0) = 0.003564,

m11(0) = m1(C U D)m2(C U D)ms(B) = 0.0003,

=m1(CUD)m2(AUBUC UD)ms(B) = 0.000024,

= ’IH1(C U D)mQ(A JBUCU D)m;;(@)

= 0.002376,

(0) = m1 (C' U Dyma(E)ms(B) = 0.00024,

(0) = m1 (C'U Dyma(E)ms(0) = 0.02376,

(B) = mi(AUBUC U D)ma(AU B)ms(B) = 0.00009,

7T18(A @] ) =m (A UBUCU D)mQ(A @] B)m;;(@) = 0.00891,
(
(

(
(
m12(C'U D) = m1(C' U D)ma(C'U D)ms(©) = 0.0297,
(
(

=mi (A JBUCU D)’IRQ(C @] D)mg(B) = 0.00075,
= M1(A UBUCU D)mg(C U D)mg(@)
= 0.07425,
m1(A JBUCU D)mz(A UBUCU D)mg(B)
= 0.00006,
WQQ(AUBUCUD) :m1(AUBUCUD)m2(AUBUCUD)
-m3(©) = 0.00594,
=ma (A JBUCU D)’IHQ (E)mg(B) = 0.0006,
=mi1(AUBUC U D)ma(E)m3(©) = 0.0594,
ma5(0) = m1(E)m2 (AU B)ms(B) = 0.000054,

7T21(B) =

726(0) = m1(E)ma(A U B)ms(©) = 0.005346,

727(0) = m1(E)ma(C U D)ms(B) = 0.00045,

7a5(0) = m1 (E)ma(C U DYms() = 0.04455,

729(0) = m1(E)ma(AU B U C U D)yms(B) = 0.000036,
30(0) = m1(E)ma(AU B U C U D)ms(©) = 0.003564,
731(0) = my (E)ma(E)ms(B) = 0.00036,

m32(E) = m1(E)mz(E)ms(0) = 0.03564

The conjunctive rule gives

m$%s(B) = m1(B) + m5(B) + mi7(B) + m21(B) = 0.00085,
m{%s(AU B) = m(AUB) + m6(AU B) + ms(AU B)
—0.07821,
fogjs(c U D) =m2(CUD)+m4(CUD)+ 7m0 (C U D)
— 0.106326,
mSW(AUBUC U D) = m22(AUBUC U D) = 0.00594,
mS (E) = m32(E) = 0.03564.

The total conflicting mass between these three BBAs is

> ;(0)

7j=3,4,7,...,11,13,15,16,19,23,...,31
=1 - m{%L(B) — m{%% (AU B) — m{%%(C U D)
—mSPL(AUBUC U D) —mS,(E) = 0.773034.

my s (0) =

Let’s examine how the m{G3(©) ~ 0.381236 value is

obtained based on the PCRS5 redistribution principle. Based
on the structures of m; () products, we have to consider only
products involving a proportional redistribution to ©. So we
get a proportional redistribution to © only from the following
products

(@) = m1(AU B)m2(C U D)m3(0) = 0.3465,
78(0) = m1(AU B)ma(E)ms(©) = 0.2772,

710(0) = m1(C U D)ma(A U B)ms(©) = 0.003564,
m16(0) = m1(C U D)m2(E)ms(0) = 0.02376,

m24(0) = m1(AUBUC U D)ma(E)ms(©) = 0.0594,
m26(0) = m1(E)ma(AU B)ms(0) = 0.005346,

m28(0) = m1(E)ma(C U D)ms(©) = 0.04455,

m30(0) = m1(E)m2(AU BUC U D)m3(0) = 0.003564.

Because there is no duplicate focal elements in each of these
products, the PCRS and PCR®6 redistributions to © will be the
same in this example.

The proportional redistribution of 74(0) to © is

m3(0)m4(0)
ml(A U B) =+ TTLQ(C U D) + m:;(@)

24(0) = ~ 0.156637.

The proportional redistribution of 7g(f)) to © is

m3(0)ms(0)

~ 0.131305.
ml(A U B) + mz(E) =+ mg(@)

:Cg(@) =
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The proportional redistribution of 719(0) to © is

m3(©)m10(0)

= =~ 0.003179.
ml(C’ U D) —+ mz(A U B) —+ mg(@)

10 (@)

The proportional redistribution of 714(0) to © is

_ ms3(0)mi6(0)

= ~ 0.016222.
m1(C U D) + ma(E) + ms3(©)

T16 (@)

The proportional redistribution of a4 (@) to © is

m3(©)ma4(0)

_ s
mi(AUBUCUD) +ma(E) + ma(@) 000

:E24(@)

The proportional redistribution of 7a6(0) to © is

m3(©)ma6(0)

~ 0.004643.
mi1(E) + ma(AU B) + m3(0)

1’26(@) =

The proportional redistribution of 7ag(0)) to © is

m3(©)mas (0)

~ 0.027914.
ml(E) + mg(C @] D) + mg(@)

xI28 (@) =

The proportional redistribution of 730 () to © is

m3(©)ms0(0)

~ 0.003150.
mi(E) +m2(AUBUCUD) +ms3(0) 0.003150

5630(@) =

Therefore we finally obtain the quite big value for the mass
committed to ©
(@) = $4(®) + 1'8(@) + wlo(@) + 1'16(9) + 1'24(9)
+ 226(0) + 2258(0) + 30(0)
~ 0.381236.

PCR5
mias3

We see clearly why PCRS (and PCR6) redistributes some
mass to uncertainty © although the focal element © is not in
conflict with other focal elements involved in each product
m4(0), ws(0), m0(0), m6(0), m24(0), m26(0), m25(P) and
730 (0), which is an undesirable behavior that we want to avoid.
That is why we propose in the next section some improvement
of PCR5 and PCR6 rules of combination.

VI. IMPROVEMENT OF PCR5 AND PCR6 RULES

To circumvent the weakness of the orignal PCRS and PCR6
redistribution principles, we propose an improvement of these
rules that will be denoted as PCR5" and PCR6™ in the sequel.
These new rules are not redundant with PCRS nor with PCR6
when combining more than two BBAs altogether..

The very simple and basic idea to improve PCRS5 and
PCRG6 redistribution principles is to discard the elements that
contain all the other elements implied in the partial conflict
7j(0) calculation. Indeed, the elements discarded are regarded
as non-informative and not useful for making the conflict
redistribution.

For instance, if we consider the previous Example 5, the
conflicting mass with PCR5" and PCR6™ for the conflicting
product m4(0) = mi(A U B)ma(C U D)m3(©) will be
proportionally redistributed back only to AU B and to C'U D
but not to © because AU B C © and CU D C ©. Thus
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with PCR5% and PCR6™ rules we will make the following
redistribution:

CC4(AUB) - $4(CUD) - 71'4(@)

mi(AUB) ~ m2(CUD)  mi(AUB)+me(CUD)’

Here, 24(0) is set to 0 with PCR5™ and PCR6™ principles
because no proportion of m4(f)) must be redistributed to ©.

However, with PCR5 and PCR6 rule we make the redistri-
butions according to

:E4(C U D)

1’4(14 U B)
mi1(AUB)  m2(CUD)

" mi(AUB) +m2(CUD) +m3(0)’

A. Selection of focal elements for proportional redistribution

The main issue to improve PCRS5 and PCR6 rules of
combination is how to identify in each conflicting product
7;(0) the set of elements to keep for making the improved
proportional redistribution.

In this section we propose a solution of this problem that
can be easily implemented. For convenience, we give also the
basic Matlab™codes of PCR5" and PCR6™ in appendix 3.

Let’s consider 7;(0) = mq(X;,)ma(X;,)...ms(X,g) a
conflicting product!® where X;, N X;, N...N X;, = 0. We
denote by &X; = {X1,...,X,,,s; < S} the set of all distinct
components of the S-tuple X, related with the conflicting
product 7;(0). The order of the elements in X; does not matter.
The number s; of elements in X; can be less than S because
it is possible to have duplicate focal elements in 7;(()). We
consider in X; only the distinct focal elements involved in
7j(0) (see the next example) and we will define their binary
keeping-index indicator which will allow to know if each
element of X; needs to be kept in the proportional conflict
redistribution, or not, in the improved PCRS and PCR6 rules
of combination.

For each element X; € A& we first define its binary
containing indicator ¢;(Xy, X;) with respect to X € X to
characterize if X; contains (includes) X;» in wide sense, or
not. Therefore, we take 0, (X, X;) =1if Xp N X; = Xy, or
equivalently if X;y C X, and ¢;(X,, X;) = 0 otherwise. The
definition of this binary containing indicator is summarized by
the formula

Of course 0;(X;, X;) = 1 because X; N X; = X, and we
have §; (X, X;) = 0 as soon as | Xy/| > | X;|, where | X/| and
| X;| are the cardinalities of X, and X respectively. We have

1 if Xp C X,
0 if Xp ¢ X,

L

0 (X, Xy) = (22)

BWe consider S > 2 BBAs because for S = 2 BBAs no improper
increasing of uncertainty occurs with PCRS5 or PCR6.
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also 6;(Xy, X;) = 0 when Xy N X; # Xp. For X; = ©, we

have 0;(Xy, X;) = 0;(Xy,©0) =1 for any X € Xj.

To know if a focal element X;, € X; must be kept, or
not, in the proportional redistribution of the j-th conflicting
mass ;() with PCR5S" and PCR6™ rules, we have to
determinate its binary keeping-index r;(X,). For this, we
define x;(X;,) € {0,1} as follows

II

X, X1 €X;
X #X
Iin ‘S‘Xl‘
| X 1<1X]

ki(X5) 21— 6;( Xy, X)) (23)

The value x;(X;,) = 1 stipulates that the focal element
X;, € X; must receive some proportional redistribution
from the conflicting mass 7;((})). The value x;(X;,) = 0
indicates that the focal element X;, will not be involved

in the proportional redistribution of the conflicting mass 7, (().

The binary keeping-index can also be defined equivalently

as
1if ¢(X,) is true,
ki (X)) =1 =11 xuex; 0;(Xp,X;,)if c(Xj,) is false,
Xy #X5,
[ X0 | <1 X5

24

where the condition ¢(X},) is defined as

c(X;,) £ 3X; € X; such |X; (X)) =1

Because this second definition of k;(X;,) is self-
referencing, we need to calculate the binary keeping-indexes
iteratively starting by the element of X; of highest cardinality
(say X), then for elements of X; of cardinality |X| — 1 (if
any), then for elements of X; of cardinality |X| — 2 (if any),
etc. From the implementation standpoint the definition (24) is
more efficient than the direct definition (23).

Remark 1: We always have x;(©) = 0 if © € X because
© always includes all other focal elements of & and © has
the highest cardinality, so J;(X;,0) = 1 for all X, € &j.
Therefore the binary keeping-index formula (23) reduces to

I &0

Xy eX;

=1-1-1- -1=0.
|X;| terms

Remark 2: For a given FoD and a given number of BBAs
to combine, it is always possible to calculate off-line the
values of the binary keeping-indexes of focal elements of all
possible combinations of focal elements involved in conflicting
products 7, (()) > 0 because the binary keeping-index depends
only on the structure of the focal elements, and not on the
numerical mass values of the focal elements. This remark is
important, especially in applications where we have thousands
or millions of fusion steps to make because we will not have to
recalculate in each fusion step the binary keeping-indexes for
each 7;(0)) even if the input BBAs values to combine change.
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Remark 3: It is worth to recall that PCRS" and PCR6™ have
interest if and only if we have more than two (S > 2) BBAs
to combine. If we have only two BBAs to combine (S = 2)

we always get mpcrs = Mpcrs+ = MPCR6 = Mpcre+ DeEcause
in this case the PCR5, PCR5™", PCR6, PCR6™ rules coincide.

For convenience, we illustrate the calculation of these
binary keeping-indexes based on the direct calculation (23)
for different examples.

Example 6: We consider the FoD © = {4, B,C, D}, six
BBAs, and the j-th conflicting (assumed strictly positive)
product whose structure is as follows

ﬂ'j(@) = ml(A)mg(B @] C)mg(A U C’)m4(B U C)

-ms(AUBUC)mg(AUBUCUD)

In this product 7, ((}) we have the duplicate focal element BU
C because it appears both in mg(BUC) and in m4(BUC'). The
focal elements entering in each BBA of 7;(0)) are respectively
le = A, ij = BUC, st = AUC, Xj4 = BUC(C,
Xy, =AUuBUC,and X;;, = AUBUCUD = 0. So
we have to consider only the following set of distinct focal
elements for this 7; () product

Xj = {Xl =AXo=BUC, X3=
X, =AUBUC, X5

AucC,
= AUBUCUD}
Therefore, considering only X;» # X; and | X;/| < | X that

are conditions entering in formula (23), we have the following
binary containing indicator ¢, (X, X;) values:

8;(X1,X2) = 0 because (X1 = A) ¢ (X2 =BUCQO),
0;(X1,X3) =1 because (X1 =A) C(X3=AUCQ),
0j(X1,X4) =1 because (X1 =A) C (X4 =AUBUC),
0j(X1,Xs5) =1 because (X1 = A) C (X5 =0),
8;(X2,X3) = 0 because (X2 = BUC) ¢ (X3 =AUCQ),
0j(X2,X4) =1because (X2 =BUC)C (X4 =AUBUC),
0j(X2,X5) =1 because (X2 = BUC) C (X5 =0O),
8;(X3,X2) = 0 because (X3 =AUC) ¢ (X2 =BUCQ),
0j(X3,X4) =1because (X3 =AUC)C (X4 =AUBUC),
0j(X3,X5) =1 because (X3 =AUC) C (X5 = @),
0j(X4,Xs5) =1 because (X4 =AUBUC) C (X5 =0).

The binary keeping-indexes x;(X;,) for i = 1,2,...,6 are
calculated based on the formula (23) as follows:

o For the focal element X; = A =X; of A} having
| X, | =1, we get

I1

X, X 1€X;
X #X,
[ X5, I<1X0]
[ X 121X
=1—[6;(X1, X2)d; (X1, X3)0;(X1, Xa)0; (X1, X5)
05 (X2, X3)0; (X2, X4)6; (X2, X5)6;(Xs, X2)
- 8;(Xs, X4)9;(X5, X5)0; (X4, X5)]
=1-0-1-1-1-0-1-1-0-1-1-1=1.

l{j(A):l— 5j(Xy,Xl)
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Hence the focal element X; = A will be kept in the
proportional redistribution of the conflicting mass 7 (().

o For the focal element X;, = BUC = X, of A having
| X, | =2, we get

ki (BUC)=1- H 85 (X, Xi)
X X1 E€EX;
Xp#£X,
[ X5, |<1X ]
[ X, 11X
=1—[0;(X1, X2)0; (X1, X3)0; (X1, Xa)
- 0;(X1, X5)05 (X2, X3)0;(X2, X4)
05( X2, X5)6; (X3, X2)6;(Xs, X4)
6j(X3, X5)0; (X4, Xs5)]
=1-0-1-1-1-0-1-1-0-1-1-1=1.

Hence the focal element X;, = BUC will be kept in the
proportional redistribution of the conflicting mass 7 (()).

o For the focal element X;, = AUC = X3 of &} having

| X, | =2, we get

ri(AuC)=1- ] &(Xv, X))
X, X EX;
Xp#£X,
1 X4 1<1X0]
[ X 11X
=1—[0;(X1, X2)0; (X1, X5)0, (X1, Xa)
< 0j(X1, X5)0; (X2, X3)0;(X2, X4)
- 05(X2, X5)0; (X3, X2)6;(X3, X4)
6j(X3, X5)0; (X4, Xs5)]
=1-0-1-1-1-0-1-1-0-1-1-1=1.

Hence the focal element X;, = A U C will be kept in the
proportional redistribution of the conflicting mass 7 ((}).

For the duplicate focal element X;, = BU C of X; hav-
ing |X,,| = 2, we have k;(X;,) = 1 because X;, = X},
and Kj(ij) =1

For the focal element X;, = AUBUC = X, of X;j
having | X, | = 3, we get

ri(AUBUC)=1— ] &, X))
X, X EX;
Xy #X;
[ X5 1<1X]
[ X 1<IX ]
=1- [5j(X17X4)6‘(X17X)
- 05(X2, X4)d;(X2, X5)6; (X3, Xa)
- 0;(Xs, X5)0;(Xa, X5)]

=1-1-1-1-1-1-1-1-1=0.

Hence the focal element X;, = AU B U C will
be discarded in the proportional redistribution of the
conflicting mass 7;(0).

For the focal element X;, = AUBUCUD =0 = X5
of X; having | X;,| = 4, we get
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kj(©)=1- ]

XLI,XZEX]‘
X #X,

[ X6 1<1X0]
[ X 1<1X]

=1-6;(X1,X5)0; (X2, X5)8; (X3, X5)0;(Xa, Xs5)
=1-1-1-1-1=0.

0; (X, X1)

This result illustrates the validity of the aforementioned
remark 1. Hence the focal element X;, = AUBUCUD =
© will be discarded in the proportional redistribution of
the conflicting mass ;(0).

In summary, the conflicting product 7; () = m4(A)meo(BU
CYms(A U C)my(B U C)ms(A U B U C)mg(O) will be
redistributed only to the three focal elements A, B U C' and
AU C with the improved rules PCR5" and PCR6™", whereas
it would have been redistributed to all five focal elements A,
BUC, AuC, AUBUC and © with the classical PCR5 and
PCRG6 rules. Thus, two focal elements were discarded.

Example 7: This example is somehow an extension of ex-
ample 6 by including a new element E in the FoD. So,
the FoD is © = {A, B,C, D, E}, seven BBAs, and the j-th
conflicting (assumed strictly positive) product whose structure
is as follows

7;(0) = m1(AUE)m2(BUCUE)m3(AUCUE)m4(BUCUE)

-ms(AUBUCUE)mg(AUBUCUDU E)m7(A).

In this product 7;(P)) we have the duplicate focal element
B U C U E because it appears both in my(B U C U E) and
in m4(BUC UE). The focal elements entering in each BBA
of 7;(() are respectively X;, = AUE, X;,, = BUCUE,
X,;,=AUCUE, X;,,=BUCUE, X;, =AUBUCUE,
X;s =AUBUCUDUE =0 and X;, = A. So we have to
consider only the following set of distinct focal elements for
this 7; (@) product

X;j={X,=AUE, X, =BUCUE,X;=AUCUE,
X, =AUBUCUE, X5 = AUBUCUDUE, Xg = A}.
Therefore, considering only X;; # X; and | X/| < |X;| that

are conditions entering in formula (23), we have the following
binary containing indicator ¢;(Xy, X;) values:

0j(Xe6,X1) =1 because (Xg = A) C (X1 =AUE),
§;(Xe6,X2) = 0 because (X = A) € (X2 = BUCUE),
0j(Xe6,X3) =1 because (Xg =A) C(X3=AUCUE),
0j(Xe6,X4) =1 because (Xg =A) C (X4 =AUBUCUE),
0;(Xe6,X5) =1 because (Xg = A) C (X5 =0),
3;(X1,X2) =0 because (X1 = AUE) ¢ (X2 =BUCUE),
0;(X1,X3) =1because (X1 =AUE)C (X3=AUCUE),
0j(X1,X4) =1because (X1 =AUE)C (X4 =AUBUCUE),
0;(X1,Xs5) =1 because (X1 = AUE) C (X5 =0),
§;(X2,X3) =0 because (Xo =BUCUE) ¢ (X3s=AUCUE),
) (X2

0j(X2,X4) =1 because =BUCUE)C (X4 =AUBUCUE),
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0;(X2,X5) =1 because (X2 = BUCUE) C (X5=0),

3;(X3,X2) =0 because (X3 =AUCUE) ¢ (X2 =BUCUE),
0;(X3,X4) =1 because (X3 =AUCUE)C (X4 =AUBUCUE),
0j(X3,Xs5) =1 because (X3 =AUCUE) C (X5 =0),

0j(X4,X5) =1 because (X4 = AUBUCUE) C (X5 =0).

The binary keeping-indexes r;(X;,) for i = 1,2, ...
calculated based on the formula (23) as follows

o For the focal element X;, = AU E = X; of X having
| X, | =2, we get

K (X50) = I
X, X1 €X;
X, £X,
1X 5, I<1X3]
| X/ 1<]1X]

- [5-(X17X2)5 (X1, X3)3,(X1, Xa)8; (X1, X5)
3;(X2, X5)6; (X35, X2)

, 7 are

6i( Xy, X1)

65 (X2, X3)0; (X2, X4) )
05 (X3, X4)d; (X3, X5)0;(X4, X5)6; (X6, X1)
6J(X67X2) (X6, X3)0;(Xe, Xa)d; (X6, X5)]

=1-0-1-1-1-0-1-1-0-1-1-0-1-1-1=1.
Hence the focal element X;, = A U E will be kept in the

proportional redistribution of the conflicting mass 7 (().

o For the focal element X;, = BUCUE = X, of &
having | X;,| = 3, we get

ki (X)) =1— ] &(Xu,X)
Xl/,XZEXj
XLI¢XL
[ X5, 1<1X]
[ X 11X
:1—[5-(X1,X2)5J(Xl,Xg)ci](Xl,le)d‘(Xl,X5)
07 (X2, X3)0; (X2, X4)d;(X2, X5)0; (X3, X2)
07 (X3, X4)d; (X3, X5)0;(Xa, X5)0;(Xe, X2)
35 (Xe, 3)5J(X7X4)6](X67 5)]
=1-0-1-1-1-0-1-1-0-1-1-1-0-1-1-1

=1.

Hence the focal element X;, = BUC U E will also be
kept in the proportional redistribution of the conflicting
mass 7;(0).

e For the focal element Xj,
having | X;,| = 3, we get

I1

X, X1 €X;
X #£X,
[ X4 |<1X0]
[ X, 11X
—1- [5-(X17Xz)éj(X17X3)6J(X17X4)6 (X1, Xs)
05 (X2, X3)0; (X2, X4)6;(X2, X5)6; (X3, X2)
(X37 4:)5]()(37)(5)(5]()(47 5)(5 (Xa Xz)
6j(Xe, X3)d;(Xe, X1)0;(Xe, X5)]
=1-0-1-1-1-0-1-1-0-1-
=1.

:AUOUE:Xg of Xj

ki (Xjs) =1— 8 (X, Xi)

1-1-0-1-1-1

Hence the focal element X;;, = AUC U E is also kept
in the redistribution.
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o For the duplicate focal element X;, = B U C U E having
|X,,| = 3, we have k;(X;,) = 1 because X;, = X, and
k(X ,) =1.

« For the focal element X;,
ing |X,;| =4, we get

I1

X, X1 €X;
X,#X,
[ X5 I<1X0]
[ X <X
=1—[0;(X1, X4)3; (X1, X5)0; (X2, X4)d; (X2, X5)
< 05(Xs, X4)0;(X3, X5)0;(Xa, X5)0;(Xe, Xa)
<05 (Xe, X5)]
=1-1-1-1-1-1-1-1-1-1=0.

=AUBUCUEFE = X4 hav-

ki(Xjs) =1— 8 (X, Xi)

Hence the focal element X;, = AU BUC U E must be
ignored in the proportional redistribution.

e For X;,=AUBUCUDUE=0=Xs having
| X
ki (X)) =1— [] &(Xv, X))
X, X1 €X;
X, #X,
[ X6 |<1X0]
X 11X

=1—[0;(X1, X5)3; (X2, X5)3; (X3, X5)d; (X4, X5)
+05(Xe, X5)]
=1-1-1-1-1-1=0.
This result illustrates the validity of the aforementioned

remark 1. Hence the focal element X;, = AUBUC U
DU EFE must be ignored in the proportional redistribution.

o For the focal element X;, = A = X having | X;,| =1,
we get naturally (see our previous remark 1)

ki (X)) =1— [ &, X)
Xl/,XZEXj
XLI¢XZ
1 X5, 1<1Xq]
[ X <X
=1- [5 (X1, X2)0; (X1, X3)0;(X1, X4)0; (X1, X5)
05 (X2, X3)0; (X2, X4)d; (X2, X5)0; (X35, X2)
05 (Xs, X4)0;(Xs5, X5)0;(Xa, X5)0;(Xe, X2)
6](X67X3)5J(X7X4)5J(X67 5)]
=1-0-1-1-1-0-1-1-0-1-1-1-0-1-1-1

=1.

Hence the focal element X;, = A must be kept in the
proportional redistribution.

In summary, the conflicting product 7;(0)
mi(A U Eyme(B U C U E)ymg(A U C U E)
ma(B U C U E)msz(A U B UC U E)mg(©)m7(A) will
be redistributed only to focal elements AU E, BUC U E,
AUCUE and A with the improved rules PCR5' and
PCR6™, whereas it would have been redistributed to all focal
elements AUE, BUCUE, AUCUE, AUBUCUE, ©
and A with the classical PCR5 and PCR6 rules.
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Example 8: This is a somehow simplified version of example
6. We consider the FoD © = {A, B,C, D}, only five BBAs,
and suppose that the j-th conflicting (assumed strictly positive)
product is as follows

ﬂ'j(@) = ml(A)mg(B U C)mg(A @] C’)m4(B U C)

ms(AUBUCUD,).

Based on (23), it can be verified'* that the binary keeping-
indexes of focal elements involved in conflicting products are

ri(A) =1,

Kj(BUC) =1,

ki (AUC) =1,
kj(AUBUCUD)=0.

Example 9: We consider the FoD © = {A, B,C, D}, seven
BBAs, and suppose that the j-th conflicting (assumed strictly
positive) product is as follows

ﬂ'j(@) = ml(A)mg(B U C)mg(A @] C’)m4(B U C)

-ms(AUBUCUD)mg(AUBUC)m7(AUBUCQC).

Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting products are

ki (A) =1,

kj(BUC) =1,
ki(AUC) =1,
kj(AUBUCUD) =0,
ki (AUBUC) =0.

Example 10: We consider the FoD © = {A, B,C}, three
BBAs, and suppose that the j-th conflicting (assumed strictly
positive) product is as follows

Wj(@) = ml(A)mg(B @] C)mg(A U C)

Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting products are

kj(A) =1,
kj(BUC) =
ki (AUC) =

Example 11: We consider the FoD © = {A, B,C}, four
BBAs, and suppose that the j-th conflicting (assumed strictly
positive) product is as follows

ﬂ'j(@) = ml(A)mg(B @] C)mg(A U C’)m4(A @] B)

14The verification is left to the reader.
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Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting products are

(A ) L,
J(BUC) =
k(AU C)
Kj (A U B) = 1.
Example 12: We consider the FoD © = {4, B,C}, three

BBAs, and suppose that the j-th conflicting (assumed strictly
positive) product is as follows

Kj

&

m;(0) = m1(AU BUC)ma(A)ms(BUC).

Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting products are

ki (AUBUC) =
'ij(A) =1,
KJ(BUO) =1.

Example 13: We consider the FoD © = {4, B,C, D}, and
the three following BBAs

ml(A @] B) =0.8, ml(C @] D) =0.2,

ms(B) =0.1,mg(AUBUCUD)=0.9.

We have F = |F(maq)| - |F(me)| - |F(ms)|=2-2-2=38
products 7; (j = 1,...,F) entering in the fusion process as
follows

m1(B) = m1(AU B)ma(AU B)ms(B) = 0.032,
m2(AU B) = m1(AU B)ma(AU B)ms(0) = 0.288,
m3(0) = m1 (AU B)mo(C U D)ms(B) = 0.048,
74(0) = m1(AU B)m2(C U D)m3(0) = 0.432,

75(0) = m1(C U D)ma (AU B)ms(B) = 0.008,
76(0) = m1(C U D)mo(AU B)m3(0) = 0.072,

77(0) = m1(C U D)ma(C U D)m3z(B) = 0.012,
78(C' U D) =m1(C U D)ms(C U D)ms(©) = 0.108.

Based on (23), it can be verified" that the binary keeping-
indexes of focal elements involved in conflicting products
73(0) to m7(0) are

k3(AUB) =1,k3(CUD) =1,k3(B) =1,
ka(AUB) =1,k4(CUD) =1,k4(0) =0,
ks(CUD) =1,k5(AUB) =1,k5(B) =1,
ke(CUD) =1,k6(AUB) =1,k6(0) =0,

k7(CUD) =1, k(B) = 1.

In summary, once the binary keeping-index of x;(X,) of
all focal elements X;, involved in a conflicting product 7; ()
are calculated, we can apply PCRS5, or PCR6 redistribution
principle only with the focal elements for which x;(X;,) = 1.

I5The verification is left to the reader.
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With this new improved method of proportional redistribution
PCR5™ and PCR6™ rules will never increase the mass of non
conflicting elements involved in each 7;(0)) (if any), and in
doing this way we will preserve the neutrality of the vacuous
belief assignment in the PCR5™ and PCR6™ fusion rules,
which is a very desirable behavior.

B. Expressions of PCR5S" and PCR6™ fusion rules

The expressions of PCRS' and PCR6™ fusion rules are
proper modifications of PCRS5 and PCR6 formulas (14) and
(15) taking into account the selection of focal elements on
which the proportional redistribution must apply thanks to the
value of their binary keeping-index.

The PCR5' fusion of S >2 BBAs is obtained by
mPRSTS(#) =0, and for all A € 29\ {0} by

.....

.
mFl)?zl?.S..,S(A) =

+ > f(’fj (4) II

J€{1o FYAEX A (0) i€{1, 0 SHX ), =A

m; (0)

ie{1,....S}|X;, =X

(25)

> (mi(X) mz‘(in))]

XeX,;

The PCR6' fusion of S >2 BBAs is obtained by

ml]?%lfﬁts(m) = O’ and for all A = 26 \ {Q} by

+ Conj
mioe s(A) =myy’

’ L

JE{1,... . FHAEX ;Am;(0)

i€{1,...5} X, =A

; (0)

ie{1,....S}|X;, =X

(26)
> (ki(X)

XeX;
where ;(A) and k;(X) are respectively the binary keeping-
indexes of elements A and X involved in the conflicting
product 7;(0), that are calculated by the formula (23) or (24).

Remark 4: It is worth mentioning that PCR5™" formula (25)
is totally consistent with PCR5 formula (14) when all binary
keeping-indexes are equal to one. Similarly, the PCR6™
formula (26) reduces to PCR6 formula (15) if all binary
keeping-indexes equal one.

Theorem: The vacuous BBA m, has a neutral impact in
PCR5" and PCR6™ rules of combination.

Proof: see appendix 2.

C. On the complexity of PCR5T and PCR6™ fusion rules

The complexity of PCR5 and PCR6 rules is difficult to
establish precisely because the number of computations highly
depends on the structure of focal elements of the BBAs
to combine, but definitely it is higher than Dempster’s rule
of combination. What about the complexity of PCR5' and
PCR6™ fusion rules? On the one hand, PCR5" and PCR6™
seem more complex than PCRS and PCR6 rules because one
needs extra computational burden with respect to PCRS and

PCR6 rules to calculate the binary keeping-indexes. But in
fact, the calculation of binary keeping-indexes do not depend
on the mass values of focal elements but only on their struc-
ture. Hence, the binary keeping-indexes can be calculated off-
line once for all for many possible structures of focal elements
of BBAs to combine. On the other hand, if the binary keeping-
index calculation is done off-line, then PCR5" and PCR6™
become less complex than PCRS and PCR6 rule because some
elements are discarded with PCR5" and PCR6™ making the
redistribution simpler and more effective than with PCR5 and
PCR6 rules. It is not possible to say for sure if globally
PCR5™ and PCR6™ are more (or less) complex than PCR5 and
PCR6 because it really depends on the fusion problem under
consideration and the structure of focal elements of BBAs
to combine. If the sources of evidence to combine generate
many partial conflicts to redistribute including many elements
to discard, then PCR5"™ and PCR6" are more advantageous
than PCRS and PCR6 in terms of reduction of complexity.

VII. EXAMPLES FOR PCR5" AND PCR6™ FUSION RULES

Here we compare the results obtained with PCR5' and
PCR6" with respect to those drawn from PCR5 and PCR6
rules on the examples from 1 to 13 in the previous sections.
Since these following examples, for PCRS™ and PCR6™
fusion rules, respectively consider the same FoD and BBAs as
those presented, they will be denoted as “revisited examples”.

Example 1 (revisited): Consider © =
following BBAs

{A,B} and two

ml(A) = 01,

ml(B) =0. 5 ml(AUB) = 07,
mg(A) = 0.4, 0

2
mg(B) = 0.3, mg(A U B) =0.3.
Because there is only two BBAs to combine, we have

PCR5(m1,m2) = PCR6(’ITL1,’ITL2)
PCR5+(m1,m2) = PC’R6+(m1,m2).

We have m{%'(4)=0.35 ~m{%(B)=033, and
m{%(©)=0.21, and we have the two conflict-
ing products m1(0) = m1(A)mo(B) = 0.03 and

w2 (0) = ma(A)my(B) = 0.08 to redistribute.
Applying PCRS5 principle for 7 (#) = 0.03 we get

r(4) _ m(B) _ ™ (9)
ml(A) mao (B) ml(A) + ma (B) ’
whence z1(A) = 0.1 5255 = 0.0075 and 21(B) = 0.3 -
Ttes = 0.0225.
Applying PCRS5 principle for mo(f) = 0.08 we get
z2(A) _ ma(B) _ m2(9)
mao (A) ml(B) meo (A) + my (B) ’
whence z5(A) = 0.4 - 5355 ~ 0.0533 and 22(B) = 0.2 -
008~ 0.0267.
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Therefore we get
Conj
myg (A) = mi5(A) = myy' (A) + w1 (A) + 22(4)
= 0.35+0.0075 + 0.0533 = 0.4108,
Conj
myae(B) =mi5®(B) = m1 3 (B) + 21(B) + 22(B)
= 0.33 + 0.0225 + 0.0267 = 0.3792,
mPRS (AU B) = mER(AUB) = mSW (AU B) = 0.21,

If we want to apply PCR5™, or PCR6™, rule we need to
compute the binary keeping-indexes of each focal element
entering in the conflicting products 7 () and 72((). In this
example for m1(0) = mq(A)mo(B) we have X3 = {A, B},
and for m(0) = mao(A)my(B) we have Xy = {A, B}.
Applying formula (22), we get §1(A, B) = 0 because A ¢ B,
and 1(B,A) = 0 because B ¢ A (and also 05(A,B) = 0
and d2(B, A) = 0). Applying formula (23) we get the binary
keeping-indexes k1(A) = 1, kK1(B) = 1, k2(A) = 1, and
ko(B) = 1 indicating that the redistribution of 71 (()) must
operate on all elements of X; = {A, B}, and the redistribution
of 2 () must also operate on all elements of Xy = {A, B},
so there is no element that must be discarded for making the
improved redistribution in this example. Therefore PCR5™, or
PCR6™ results coincide with PCR5 and PCR6 results, that
is mPCRS(.) _ mPCRG(.) _ mPCRS*(.) _ mPCRG*(,) which is

normal.

Example 2 (revisited): Consider © = {A, B} and the three

following BBAs
ml(A) = 06, ml(B) = Ol,ml(A U B) = 03,
ma(A) = 0.5, ma(B) = 0.3,m2(AU B) = 0.2,
mg(A) = 04,m3(B) = 0.1,m3(A U B) =0.5.

As shown in Section IV, for this example one has the follow-

ing twelve conflicting products to redistribute when applying
PCRS5, or PCR6 fusion formulas.

m1(0) = m1 (A)ma(A)yms(B) = 0.0300,
m2(0) = m1(A)mz2(B)ms(A) = 0.0720,
m3(0) = m1(B)ma2(A)ms(A) = 0.0200,
m4(0) = m1(B)ma(B)ms(A) = 0.0120,
75(0) = m1 (B)ma(A)ms(B) = 0.0050,
76(0) = m1(A)ma(B)ms(B) = 0.0180,
m7(0) = m1(AU B)ma(A)ms(B) = 0.0150,
7s(0) = m1 (AU B)yma(B)ms(A) = 0.0360,
9 (D) = m1(B)ma(A)ms(A U B) = 0.0250,
m10(0) = m1(A)ma(B)ms(A U B) = 0.0900,
m11(0) = m1(A)m2(A U B)ms(B) = 0.0120,
m12(0) = m1(B)ma2(A U B)ms(A) = 0.0080.

With PCR5 and PCR6 the products m1()) to mg(P) are
redistributed to A and B only, whereas the products 77 ()
to m2(0) are redistributed to A, B and A U B. Apply-
ing PCRS formula (14), and PCR6 formula (15) we obtain
b (0) = mEE(0) = 0 and
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miR5(A) ~ 0.723281,
miRy(B) ~ 0.182460,
mERS (AU B) & 0.094259,

miRG(A) ~ 0.743496,
mERE(B) ~ 0.162245,
miRS (AU B) ~ 0.094259.

and

The calculation of the binary keeping-indexes by the for-
mula (23) gives in this example

lij(A):l,FLj(B>:1, fOI‘jzl,...,G
Iij(A):1,I€j(B):1,I€j(AUB):O, fOIj:7,...,12

Therefore, if we apply the PCR5™ and PCR6™ improved
rules of combination, we redistribute the products 7 (0) to
76(0) to A and B (as for PCR5 and PCR6 rule), but the
products 77 (@) to m12(0) will be redistributed to A, B only,
and not to AU B because kj(AUB) =0for j=7,...,12.
So finally, we obtain mfl”%l?? 0) = m11>,c21?36’+ (0) =0 and

mERS" (A) ~ 0.788847,
mERS" (B) ~ 0.181153,
mERST (AU B) = 0.03.

miR5 (A) ~ 0.768631,
mER" (B) ~ 0.201369,
i (AU B) = 0.03,

and

We can verify that we obtain a more precise redistribution
with PCR5™ (resp. PCR6™) rule with respect to PCRS (resp.
PCR6) rule because mlf’%lf; (AUB) < m{$3(AU B) and
also m11>,c21?36’+ (AUB) <m{F§(AUB).

Example 3 (revisited): we consider © = {A, B,C'}, and the
four very simple BBAs defined by

ml(AUB) = 1,m2(B) = 1,m3(AUB) =1, and m4(C) =1

These four basic belief assignments are in total conflict be-
cause (AUB)N AN (AUB)NC =0, and one has only one
product () = m1(AU B)mz(A)ms(AU B)m4(C) =1 to
consider, so 7 = 1 in this case and it can be omitted in the
notations of the binary keeping-indexes.

As shown previously, one has

mi534(AUB) =1/3, mis4(AUB) = 0.5,
mi%s.4(B) =1/3, and mi5%.4(B) = 0.25,

B)

mi53,4(C) = 1/3, mi%S 4(C) = 0.25.

Because all focal elements A U B, A and C entering in
() are conflicting then one has the binary keeping-indexes
k(AUB) =1, k(A) =1 and x(C) =1 i.e. all these elements
will receive a redistribution of the conflicting mass 7 (0).
Therefore there is no restriction for making the redistribution.
Consequently, PCR5% result coincides with PCRS result,
and PCR6™ result coincides with PCR6 result.

Example 4 (revisited): we consider © = {4, B}, and the
following four BBAs
mi1(A) =0.6,m1(B) =0.1,m (AU B) = 0.3,
ma(A) = 0.5,m2(B) = 0.3, my(AU B) = 0.2,
ms3(A) = 0.4,m3(B) = 0.1,m3(AU B) = 0.5,
ma(AUB) =1 (my is the vacuous BBA).
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The BBAs mj, my and ms are the same as in Example 2, and
the BBA my is the vacuous BBA. We have already shown that
PCR5(m1, ma, m3) # PCR5(m1, ma, ms, my) even if my is
the vacuous BBA, and

PCRS

miy 23, 4(A) =~ 0.654604,
M, (B) ~ 0.144825,

mi53.4(AU B) &~ 0.200571.

Similarly, PCR6(my, ma,m3) # PCR6(my, ma,ms,my),
and

mESG 4(A) = 0.647113,

mbS 4 (B) ~ 0.128342,

mERG 4(AU B) & 0.224545.
Applying the PCR5™ formula (25), and the PCR6™ formula
(26) we will obtain M55 (0) = mPRS,(0) = 0 and
mERS L (A) ~ 0.788847,
mERS" (B) ~ 0.181153,
mERE (AU B) = 0.03.

MRS L (A) ~ 0.768631,
mERS L (B) ~ 0.201369,
mER3 (AU B) = 0.03,

and

One has PCR5+(m1, mo, M3, m4) = PCR5+(m1, mg,m3)
and also PCR6T (my,ma, ms3,mg) = PCR6T (my, ma, m3)
because with the improved proportional redistribution of
PCR5" and PCR6" rules the vacuous BBA has always
a neutral impact in the fusion result, which is what we
intuitively expect.

Example 5 (revisited): we consider © = {A, B,C, D, E'}, and
the following three BBAs

m1(AU B) = 0.70,

m1(C U D) = 0.06,

mi(AUBUCUD) =0.15,
(

m1(E) = 0.09,

and
ma(AU B) = 0.06,
ma(C U D) = 0.50,
me(AUBUCUD) =0.04,
mQ(E) = 0.40,

and

ms(B) = 0.01,
m3(AUBUCUDUE) = 0.99.

Note that the BBA mg is not equal to the vacuous BBA but
it is very close to the vacuous BBA because mg3(0) is close
to one.

If we consider the fusion of only the two first BBAs m;
and mg, we have PCR6(mq,ms) = PCR6T (my,my) =
PCR5(my, ma) = PCR5" (my, my) because all these rules
coincide when combining two BBAs.

miSe (AU B) ~ 0.465309,

mER6(C U D) ~ 0.296299,

PCR (AUBUC U D) = 0.023471,
mli%Rﬁ(E) ~ 0.214921.

If we make the PCR5, PCR5", PCR6 and PCR6" fu-
sion of these three BBAs altogether we obtain now dif-
ferent results which is normal, because for S > 2
one has PCR5"(my,...,mg) # PCR5(my,...,mg) and

PCR6T (my,...,mg) # PCR6(my, ..., mg) in general. So,
in this example 5 we get results shown in Tables I and II.
Focal Elements mli%R; 3 mll)czl“; 3
B 0.001103 0.001107
AUB 0.286107 | 0.464483
cCuD 0.203385 0.296186
AuBUCUD 0.012203 | 0.023408
E 0.115966 | 0.214816
AUBUCUDUE | 0.381236 0
Table I

EXAMPLE 5: RESULTS OF PCR51 VERSUS PCRS5.

Focal Elements mll)%{% ) mliczRy?,f )
B 0.000962 0.000967
AUB 0.286107 0.464483
cCubD 0.203454 0.296255
AuBUCUD 0.012203 0.023408
E 0.116038 0.214887
AUBUCUDUE | 0.381236 0

Table 11
EXAMPLE 5: RESULTS OF PCR61 VERSUS PCR6.

These values highlight the great ignorance of the results
proposed by PCR5 and PCR6 when the third (almost
vacuous) source of information is taken into account. Indeed,
miGF3(0) = miF§(O) is the greatest mass among the set
of hypotheses, whereas the results proposed with PCR5™" and
PCR6™ combination rules discard the ignorant information
and propose results closer to those obtained by merging two

sources. Indeed, the largest mass is allocated to AU B.

The next examples 6 to 12 are very simple examples
involving only categorical BBAs so that only one conflicting
product (equals to one) needs to be redistributed based on
PCRS5, PCR6, PCR5" and PCR6" rules. These examples
offer the possibility to the reader to do the derivations
manually for making a verification of our results.

Example 6 (revisited): we consider © = {A, B,C, D}, and
the following categorical BBAs m4(A) =1, ma(BUC) =1,
m3(AUC) =1, my(BUC) =1, ms(AUBUC) =1 and
meg(AU B UCUD) = 1. If we make the PCR5, PCR5™,
PCR6 and PCR6™ fusion of these six BBAs altogether we
obtain results given in Tables III and IV.

In this example, we have only one conflicting product 7 ()
to redistribute which is given by

T (@) = ml(A)mg (B @] C)m3 (A U C)m4(B U C)

ms(AUBUC)mg(AUBUCUD).

Because k1 (AUBUC) = 0 and k1 (AUBUCUD) = 0, these
two disjunctions are discarded and more mass is committed
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Focal Elements mli%RZ 156 () mlicg §;4,5 6(*)
y) 175 173
AucC 1/5 173
BUC /5 173
AUBUC 1/5 0
AUBUCUD 1/5 0

Table III
EXAMPLE 6: RESULTS OF PCR51 VERSUS PCR5.

Focal Elements mli%Rb; 45,6 ) ml{c; §:4,5 6 )
A 1/6 1/4
AucC 1/6 14
BUC 1/3 172
AuBUC 1/6 0
AUBUCUD 1/6 0

Table IV
EXAMPLE 6: RESULTS OF PCR61 VERSUS PCR6.

to A, AUC and BUC with PCR5" and PCR6™ rules. There
is more mass allocated to BUC with PCR6™ and PCR6 than
with PCR5™ and PCR5 because two sources of information
support this hypothesis.

Example 7 (revisited): we consider © = {A,B,C,D, E},
and the following seven categorical BBAs m1(AU E) = 1,
mQ(BUCUE) = 1, mg(AUCUE) = 1, m4(BUCUE) = 1,
ms(AUBUCUE) =1, mg(AUBUCUDUE) =1, and
my(A) = 1. If we make the PCR5, PCR5, PCR6 and PCR6™
fusion of these seven BBAs altogether we obtain results given
in Tables V and VL

Focal Elements m‘{%‘f@, 45 6,7(') ml;,CQR‘?;t; 5.6 7()
A 1/6 1/4
AUE 1/6 1/4
AUCUE 1/6 1/4
BUCUE 1/6 1/4
AUBUCUE 1/6 0
AUBUCUDUE 1/6 0
Table V

EXAMPLE 7: RESULTS OF PCR51 VERSUS PCRS.

Focal Elements m]iczRg 45 6,7(') mliycgk?;t; 5.6 7()
A 1/7 1/5
AUEFE 1/7 1/5
AUCUE 7 1/5
BUCUE 217 2/5
AUBUCUE 177 0
AUBUCUDUE 1/7 0
Table VI

EXAMPLE 7: RESULTS OF PCR61 VERSUS PCR6.

In this example 7, we have only one conflicting product
m1(0) to redistribute which is given by

m(0) =m1 (AU E)me(BUCUE)Ym3(AUCUE)
-my(BUCUE)Yms(AUBUCUE)
-mg(AUBUCUDU E)mz(A).

Because k1 (AUBUCUE) = 0 and 1 (AUBUCUDUE) = 0,
these two disjunctions are discarded and more mass is
committed to A, AUFE, AUCUE and BUC U E with
PCR5" and PCR6" rules. There is more mass allocated
to BUC UE with PCR6" and PCR6 than with PCR5™
and PCRS because two sources of information support this
hypothesis.

Example 8 (revisited): we consider © = {A, B,C, D}, and
the following categorical BBAs m1(A) = 1, ma(BUC) =1,
m3(AUC) =1, m4(BUC) =1and m5(AUBUCUD) =1.
If we make the PCR5, PCR5", PCR6 and PCR6™ fusion of
these seven BBAs altogether we obtain results given in Tables
VII and VIIL.

Focal Elements m‘{%‘% 4, 5() ]1)C2R,§3+4,5(')
A 1/4 1/3
AuC 1/4 173
BUC 1/4 1/3
AUBUCUD 1/4 0

Table VII
EXAMPLE 8: RESULTS OF PCR51 VERSUS PCRS5.

Focal Elements mll)CQRg 4, 5() ]1)C2R,§3+4,5(')

A 1/5 1/4

AucC /5 1/4

BUC 2/5 172

AUBUCUD /5 0
Table VIII

EXAMPLE 8: RESULTS OF PCR61 VERSUS PCR6.

Because k1(AUBUCUD) =0, this disjunction is
discarded and more mass is committed to A, A U C and
B U C with PCR5" and PCR6™ rules. There is more mass
allocated to BU C with PCR6™ and PCR6 than with PCR5™
and PCRS because two sources of information support this
hypothesis.

Example 9 (revisited): we consider © = {A,B,C, D},
and the following seven categorical BBAs mj(A) = 1,
mg(BUC) =1, mg(A U C) = 1, m4(B U C) = 1,
ms(AUBUCUD) =1, mg(AUBUC) = 1, and
m7(AU BUC) = 1. If we make the PCRS, PCR5™, PCR6
and PCR6™ fusion of these seven BBAs altogether we obtain
results given in Tables IX and X.

Focal Elements ml;’%k?;’ 15.6.7() m‘{%‘f §;4,5 6.7()
a1 /5 /3
AUC /5 173
BUC 15 1/3
AUuBUC /5 0
AUuBUCUD 1/5 0

Table IX

EXAMPLE 9: RESULTS OF PCR51 VERSUS PCRS.

Because k1 (AUBUCUD)=0and k;(AUBUC) =0,
these disjunctions are discarded and more mass is committed
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Focal Elements mli%R‘; ) mll)C;? )

A 1/3 12

BUC 1/3 172

AUuBUC 1/3 0
Table XII

Focal Elements mli%Rg’ 15.6.70) m‘{%‘f §;4,5 6.7()
71 77 174
AUC 1/7 1/4
BUC 27 12
AUBUC 2/7 0
AUBUCUD 177 0

Table X

EXAMPLE 9: RESULTS OF PCR61 VERSUS PCR6.

to A, AUC and BUC with PCR5" and PCR6™ rules. There
is more mass allocated to BUC with PCR6™ and PCR6 than
with PCR5" and PCRS because two sources of information
support this hypothesis. Similarly, more mass is allocated to
(AU B UC) with PCR6 than PCR5 since two sources of
information support this hypothesis.

Example 10 (revisited): we consider © = {4, B, C'}, and the
following three categorical BBAs mq(A4) = 1, mo(BUC) =1,
and m3(A U C) = 1. We have only one conflicting product
m1(0) = mi1(A)me(B U C)ms(A U C) = 1 to redistribute,
and for this example we have k1(A) = 1, k1 (AUC) =1
and x1(B UC) = 1 which means that all focal elements A,
AUC and BUC must be kept, and they must receive a mass
through the proportional redistribution princifle. Hence in this
example we have m{G3 = miQ§ = m{ 53" = mlfjcfgi and
the combined masses are evenly distributed as shown in the
Table XI.

F T
Focal Elements mlicgg ) mll)%{?s ) mll)%{%() mlicgg )
A 173 173 173 173
AuC 173 173 173 173
BUC 1/3 1/3 1/3 1/3
Table XI

EXAMPLE 10: RESULTS OF PCR5, PCR51, PCR6, PCR6™T.

Example 11 (revisited): we consider © = {A,B,C},

EXAMPLE 12: RESULTS OF PCRS, PCR5T.

redistribution of the conflicting mass 71 () = 1 only between

A and BUC. In this example we have m{R3 = mPRE, and
+ + . T -
PCRY™ = mIRE", because no mass is allocated on the same

hypothesis by two different sources.

Example 13 (revisited): we consider © = {A, B,C, D}, and
the three following BBAs

m1(AU B) = 08, m1(C U D) = 02,
mQ(AU B) =04, mg(C @] D) = 0.6,
ms(B) =0.1,ms(AUBUCUD) =0.9.

If we make the PCR5, PCR5™, PCR6 and PCR6™ fusion of
these seven BBAs altogether we obtain results given in Tables
XIII and XIV.

EXAMPLE 13: RESULTS OF PCR51 VERSUS PCRS.

Focal Elements mll)%Ri() mli%R‘:r ()

B 0.041797 0.041797

AUB 0.487632 0.613029

cCubD 0.258327 0.345174

AUBUCUD | 0.212244 0
Table XIII

and the following four categorical BBAs my(A4) = 1,
mQ(B U C) = 1, mg(A U C) = 1, and m4(A U B) = 1.
Because we have only one conflicting product
m(0) = mi(A)m2(B U C)ms(A U C)my(AU B) = 1
and Kl(A) = 1, I<61(A U B) = 1, Iil(A U C) =1
and x1(B U C) = 1 no hypothesis is discarded in

the proportional conflict redistribution, and we get
PCR5 _ , PCR6 _ , PCR5t _ _PCR6T -
Mi534 = Miss4 = Mis34 = My 534 With the merged

masses being evenly distributed, that is m{G3 ,(4) = 1/4,

miSS (AU B) = 1/4, miR,(A4UC) = 1/4, and
mi 3 ,(BUC) = 1/4. o

Example 12 (revisited): we consider © = {A, B,C?}, and
the following three categorical BBAs m;(AU BUC) = 1,
ma(A) = 1, mg(BUC) = 1. If we make the PCR5
fusion, and the PCR5T fusion, of these three BBAs
altogether we obtain results given in Table XII. Because
(@) = mi(A U B U C)ma(A)ms(B U C), we get
k1 (AUBUC) =0, k1(A) =1 and k1 (BUC) = 1 based on
(23). Therefore, using the PCR5' combination rule, we get a

Focal Elements m]iczRg ) m§?§%+ )

B 0.037676 0.037676

AUB 0.487632 0.613029

cubD 0.262448 0.349295

AuUuBUCUD 0.212244 0
Table XIV

EXAMPLE 13: RESULTS OF PCR61 VERSUS PCR6.

Because x;(©) = 0 for any conflicting product ;(0)
involving O, this hypothesis is discarded in the redistribution
of m4(0) and of 7s(0) (see Example 13 in subsection VI-A
for details), and therefore more mass is redistributed to AU B
and C' U D with PCR5' and PCR6™ rules. No more mass
is committed to B with PCR5™ and PCR6™ respectively in
comparison with PCRS and PCR6. This is because B is not
implied in any partial conflict with © (cf. subsection VI-A for
details).

VIII. CONCLUSION

In this paper, after having demonstrated the flawed behavior
of PCR5 and PCR6 rules of combination for .S > 2 BBAs (in-
cluding possibly vacuous BBAs), we proposed improvements
to correct these behaviors. A computation of a binary keeping-
index has been detailed which makes it possible to discard
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ignorant information sources for the calculation of each partial
conflict. This binary keeping-index has been integrated into
the original formulations of PCRS5 and PCR6 in order to
ensure the neutrality property of the vacuous BBA and to
propose two new combination rules for a number of sources
greater than 2: PCR5' and PCR6™ rules. The interest of such
combination rules could prove to be particularly important
in an application case identifying many ignorant sources of
information. In such a scenario, the preponderant ignorance
of a certain number of sources will no longer obscure a more
precise characterization provided by other sources. These new
rules of combination have been already applied to risk analysis
issues for geophysical and geotechnical data fusion in order
to reinforce the levee protection characterizations [48].

APPENDIX 1: PROOF OF THE LEMMA 1

We prove that: m$%" 4 ¢ (A) =m{% ¢(A), forany A €

29\ {0}, where ms,1(©) = 1 is the vacuous BBA m,,.
The set of focal elements of mg41(+) is F(msy1) = {0},
therefore F,,5,, = 1 and X, , = ©. Based on the formula

(6) written for S 4+ 1 BBAs, we have

Coni
mlf)gj,.A.,S,SJrl(A) = Zﬂ—j (le N...NX;s N st+1)

X;eF(my,....,ms,mg11)
XjyNenXjgNXjg,  =A
S+1

= > I ma(x50)

X EF(m1,...,mg,mgq1) i=1
X, N.NX;NO=A

@7

Because X, = O is constant and mgy1(Xje,,) =

mg4+1(©) = 1, one has

S+1

S S
H mi(Xj;) = (H mi(Xj,)) - ms+1(0) = Hmi(in)

and le ﬁ...ﬁXjS ﬂst+1 = le ﬁ...ﬁXjS ne =

X; N...NXjg. Therefore the formula (27) becomes
S+1

> 1T mi(x50)

X]‘ Gf(ml,...,ms,ms+1) =1
le ﬂ...ﬂstﬁ("):A

S

Xje]:(ml,...,ms) i=1
le ﬂ...ﬂX]‘S:A

Cont
m1,02n,J...,S,s+1(A) =

-
=miy s(4)

which completes the proof of the Lemma 1.

APPENDIX 2: PROOF OF THE THEOREM

We prove that PCRS"(my,...,mg,mgy1) =
PCR5" (my,...,mg), or equivalently that m11°C2RS+ s11(A) =
mlfCQR5+S(A) for any A € 29 \ {0}, where
msy1(Xjs,,) = msy1(©) = 1 is the vacuous BBA.

It is worth noting that m{% ¢ ¢, (A) = m{%  4(A) for

any A € 29\ {()} because the vacuous BBA mg(.) is the

neutral element of the conjunctive rule (see Lemma 1). It is
important to note that when considering A = ©, we have

+ Conj Conj
always mllp,c21§fs..,s+1(®) = m1,2,J...,S,S+1(®) = m1,23...,s(®) =
mlfCQR5+ 5(0©) because the binary keeping-index of © is always

equal to zero (see remark 1), i.e. k;(©) = 0. Therefore all the
redistribution terms to © in PCR5™ (and in PCR6™) formula
are equal to zero when A = ©. So, we just have to consider
A # O to make the proof.

Because mg41(-) is the vacuous BBA, its set of focal
elements is F(mg41) = {O} and it contains only one focal
element, i.e. |[F(mgy1)| = 1. Therefore

F = |F(m)|-|F(ma)|-...-
= |F(my)| - |F(ma)|-...-

[ F(ms)| - |F(ms1)]
[ F(ms)|

(28)
(29)

This means that the number of conflicting products 7;(0)
associated to the S + 1-tuple X; = (Xj,,...,X;4,0) €
F(ma,...,mg,mg4+1) is equal to the number of conflicting
products 7;(()) associated to S-tuple X; = (Xj,,...,Xj,) €
F(myq,...,mg). Moreover, we always have

S+1 S s
T mi(x5) = Q[ mi(X5.) - msa(©) = [ ma(X;.)
i=1 i=1 i=1

Hence, we always have

Wj(le ﬁ...ijSQQZQ)):Wj(le ﬁ...ﬁst ZQ))

because X; N...NX;; NO =X; N...NXj,.
Based on the formula (25) written for S+ 1 BBAs, we have

PCR5T

m1,2,...,5,s+1(A) = mioznf...,s,SH(A)
n 3 [(s5(4) 11 mi(X;,))

je{1,.... F}AeX Am;(0) ie{l,....,S+1}[X;,=A
7Tj(Xj1 ﬁ"'ijS ﬁ@:@)
> (m5(X)

XeX;

i€{1,...,5+1}|X;,=X

where F is given by (28).
Because X,
have always

I

i€{1,...,S+1}| X, =A

= O and because we consider A # O, we

mi(Xj,) =

II

ie{1,...,5}|X;,=A

mi(Xj,)

Whether X € X; = (Xj,...,Xj5) or X € X; =
(Xjy,-.., Xjg,0) the value of x;(X) is the same since the
additional binary containing indicator §;(X,©) entering in
the product of the computation of the binary keeping-index
is always equal to 1 and does not modify ;(X) value, and
of course when X = A. Because the binary keeping-index
entering in the numerator and denominator of formula (30)
removes the factor mg1(0) from all products it belongs to
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(since O includes all elements of the product it belongs to),
the formula (30) reduces to the following formula

+ Conj
mlf%f..,s,sH(A) = ml,ozn,J...,s(A)

+ > () T maxs)
JE{L,. FYAEX ;A (0) ie{1,....5}]X;,=A
Wj(leﬁ...ﬂst:(Z)) }
> (ki(X) [I mi(X;,))

XeX; i€{1,...,5} X, =X

=mi® (4) (D)

where X; represents now the S-tuple (X;,,..., X, ), and
Wj(@) = Wj(le n... ﬁst = @)

So, we have proved PCRS5"(my,...,mg,msy1) =
PCR5" (my,...,mg) when mg. is the vacuous BBA. Sim-
ilarly, we can prove that PCR6" (my,...,mg, mgy1) =
PCR6" (my,...,mg) when mg.; is the vacuous BBA. This

completes the proof of the theorem.

APPENDIX 3: CODES OF PCR5™ AND PCR6™ RULES

For convenience, we provide two basic Matlab™codes for
PCR5" and PCR6" for the fusion of S > 2 BBAs for
working with 2, i.e. working with Shafer’s model. No input
verification of input is done in the routines. It is assumed that
the input matrix BBA is correct, both in dimension and in
content. The derivation of all possible combinations is done
with combvec (Combinations, vec) instruction which
is included in the Matlab™ neural networks toolbox. This
combvec call can be a very time-consuming task when the
size of the problem increases. A standalone version of these
codes is also available upon request to the authors. The j-th
column of the BBA input matrix corresponds to the (vertical)
BBA vector m;(.) associated with the j-th source s;. Each
element of a BBA matrix is in [0,1] and the sum of each
column must be one. If IV is the cardinality of the frame ©
and if S is the number of sources, then the size of the BBA
input matrix is ((2) — 1)) x S. Each column of the BBA
matrix must use the classical binary encoding of elements.
For example, if © = {4, B, C'}, then we encode the elements
of 29\ {(} by the binary sequence 001 = A, 010 = B,
011=AUB, ..., 111 = AUBUC. The mass of empty set
is not included in the BBA vector because its is always set to
Zero.

These codes can be used and shared for free for research
purposes only. Commercial uses of these codes, or adaptation
of them in any programming language, is not allowed without
written agreement of the authors. These codes are provided
by the copyright holders “as is” and any express or implied
warranties are disclaimed. The copyright holder will not be
liable for any direct, or indirect damages of the use of these
codes. The authors would appreciate any feedback in the use
of these codes, and publication using these codes should cite
this paper in agreement for their use.

function

[MPCR5plus]=PCRSplusfusion (BBA)

% Authors and copyrights:
% Input:
% Output: mPCRSplus is PCR5+(ml,m2,...,mS) fusion result

BBA=([ml m2 ...

Theo Dezert & Jean Dezert

mS]= Matrix of BBAs to combine with PCR5+

NbrSources=size (BBA, 2) ; CardTheta=1log2 (size (BBA, 1) +1);

if (NbrSources==1), mPCR5plus=BBA(:,1)

mPCRSplus=zeros (size (BBA,

end

PC=Combinations (c, :)

jreturn, end

1),1);FocalElem = cell (NbrSources,1);
for i=l:NbrSources, FocalElem{i}=find(BBA(:,i)> 0)’;end
Combinations=combvec (FocalElem{l:NbrSources})’;

for c=l:size(Combinations, 1)

;jmasseConj=diag (BBA(PC,:))’;

massConj=prod (diag (BBA(PC, :))’,2); Intersections=PC(1);

for s=2:NbrSources,

if (Intersections™=0)
mPCRS5plus (Intersections)=mPCRSplus (Intersections)+massConi;

els

end

e

Binary=[];CardPC=[];KeepIndex=[];

for

end
for

end

i=1:NbrSources

Intersections=bitand(Intersections,PC(s)); end

Binary (i, :)=bitget (PC(i),CardTheta:-1:1,"int8");

CardPC(i, :)=s

j=1:NbrSources
delta=[];

for js=1:NbrSo

if CardpC(

for jp=

um (Binary (i, :)==1);

urces
js)>=CardPC (j)
1:NbrSources

if PC(Jp) "=PC(js) && CardPC (jp)<=CardPC (js)

end
if isempty (del
KeepIndex (j
else
KeepIndex (j
end

if sum(Binary (jp,
delta=[delta 1];

ta)==1
,1)=1;

,1)=1-prod(delta);

KeepIndex=KeepIndex’ ;

for

end

i=1:NbrSources

:)<=Binary (js, :)) ==CardTheta

else, delta=[delta 0];

if KeepIndex(i)==1, KeepIndex (i)=masseConj(i); end

UQ=unique (PC) ; Proportions=0+UQ; DenPCR5=0;

for

end

u=1:size(UQ,2)
SamePropositio

ns=find (PC==UQ(u));

MassProd=prod (KeepIndex (SamePropositions));
Proportions (u) = MassProd+massConj;DenPCR5=DenPCR5+MassProd;

Proportions=Proportions/DenPCR5;

for u=1l:size(UQ,2),mPCR5plus (UQ (u)

)=mPCR5plus (UQ (u))+Proportions (u)

; end

function

[MPCR6plus]=PCR6plusfusion (BBA)

% Authors and copyrights:
% Input:
% Output:

BBA=[ml m2 ...
mPCRéplus is PC

Theo Dezert & Jean Dezert

R6+ (ml, m2, ..

mS]= Matrix of BBAs to combine with PCR6+
.,m8) fusion result

NbrSources=size (BBA, 2);CardTheta=log2 (size (BBA,1)+1);

if (NbrSources==1), mPCR6éplus=BBA(:,1)

jreturn, end

mPCR6éplus=zeros (size (BBA, 1),1) ;FocalElem = cell (NbrSources,1);

for i=l:NbrSources,

FocalElem{i}=find (BBA(:,i)> 0)’;end

Combinations=combvec (FocalElem{1:NbrSources})’;
for c=l:size (Combinations, 1)
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PC=Combinations (c, :)
massConj=prod (diag (BBA (PC, :)

jmasseConj=diag (BBA(PC, :)) ' ;
)’,2);Intersections=PC(1);

for s=2:NbrSources, Intersections=bitand(Intersections,PC(s));end
if (Intersections”=0)
mPCR6plus (Intersections)=mPCR6plus (Intersections) +massConj;

els

end

e

Binary=[];CardPC=[];KeepIndex=[];

for

end
for

end

i=1:NbrSources

Binary (i, :)=bitget (PC(i),CardTheta:-1:1,’int8’);

CardpC (i, :)=s

j=1:NbrSources
delta=[];

for js=1:NbrSo

if CardPC(

for jp=

if

end
if isempty (del
KeepIndex (j
else
KeepIndex (j
end

um (Binary (i, :)==1);

urces
is) >=CardpPC (7)
1:NbrSources

PC(jp) "=PC(js) && CardPC (jp)<=CardPC(js

if sum(Binary (jp,:)
delta=[delta 1];

ta)==1
y1)=1;

,1)=1-prod(delta);

<=Binary (js, :))=—=CardTheta
else, delta=[delta 0];

KeepIndex=KeepIndex’; IgnoringSetOfFE=find (KeepIndex==0);
masseConj (IgnoringSetOfFE)=[];PC(IgnoringSetOfFE)=[];

for s=1:numel (masseConj)
Proportion= masseConj(s) = (massConj/ (sum(masseConj, 2)));

end

mPCRéplus (PC(s)

) =mPCRéplus (PC(s)

) +Proportion;
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Abstract—This short paper presents the explicit formulas of
the PCRS and PCR6 rules of combination for three bayesian
basic belief assignments. We give a simple example to show how
to apply them.
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I. INTRODUCTION

Among many existing rules of combination of Basic Belief
Assignments (BBAs), the conjunctive rule, Dempster-Shafer
(DS) rule [1], and the Proportional Conflict Redistrinution
rules no 5 (PCR5) and no 6 (PCR6) are the most used rules of
combination. While the conjunctive rule makes it possible to
combine information between different sources of information
represented by belief functions by estimating the level of
existing conflict, DS rule [1], [2] proposes a distribution of
this conflict on the hypotheses characterized by the sources
of information. The normalization carried out by the DS rule
may however be considered counter-intuitive especially when
the level of conflict between the sources of information is high
[3], [4], but also in some situations where the level of conflict
between sources is low as shown in [5] showing a dictatorial
behavior of DS rule. The Proportional Conflict Redistribution
rules (PCR5 [6] and PCR6 [7], [8]) have been proposed
to circumvent the problem of the DS rule to make a more
judicious management of the conflict. Moreover, improved
versions of PCR5 and PCR6 rules preserving the neutrality
of a vacuous (i.e. a totally ignorant) source of evidence in
the PCR process have been recently proposed in [9]. They
are denoted by PCR5" and PCR6™ fusion rules. We will
not present in detail these improved rules here because we
address the problem of fusing only Bayesian BBAs and for
these particular type of BBAs PCR5" coincides with PCRS5,
and PCR6™ coincides with PCR6 because there is no mass
committed to partial and to total ignorances (i.e. to all possible
disjunctions) involved in partial conflict to redistribute thanks
to PCR5 and PCR6 principles.

After a brief recall of basics of belief functions in section II,
we present the general formulas for PCR5 and PCR6 fusion
rules in section III based on [9], with a simple example in
section IV. In section V we present the direct formulas for
PCR5 and PCR6 rules for three general (i.e. non-Bayesian)

BBAs, and the direct formulas for PCR5 and PCR6 rules
for three Bayesian BBAs in section VI. A simple example of
application of these formulas for the fusion of three Bayesian
BBAs defined on the simple frame of discernment with two
elements is given in section VII with complete calculation for
convenience. Section VIII concludes this paper.

II. BASICS OF BELIEF FUNCTIONS

We consider a given finite set © of n > 1 distinct elements
© = {01,0,,...,0,} corresponding to the frame of discern-
ment (FoD) of the fusion problem, or the decision-making
problem, under concern. All elements of © are mutually
exclusive! and each element is an elementary choice of the
potential decision to take. The power set of © is the set
of all subsets of © (including empty set ) and ©) and it
is usually denoted 2° because its cardinality equals 2/l
A Basic Belief Assignment (BBA) given by a source of
evidence is defined by Shafer [1] in his Mathematical Theory
of Evidence (known also as Dempster-Shafer Theory, or DST)
as m(+) : 22 — [0, 1] satisfying

m(0) =0,
{ZA@@ m(A) =1, (1)

where m(A) is the mass of belief exactly committed to A,
what we usually call the mass of A. A BBA is said proper
(or normal) if it satisfies Shafer’s definition (1). The subset
A C O is called a Focal Element (FE) of the BBA m(:) if
and only if m(A) > 0. The empty set is not a focal element
of a BBA because m(()) = 0 according to definition (1). The
set of all focal elements of a BBA m(-) is denoted F(m). Its
mathematical definition is F(m) = {X € 2°|m(X) > 0}.
The cardinality |F(m)| of the set F(m) is denoted F,. The
order of focal elements of F(m) does not matter and all the
focal elements are different. The set F(m) of focal elements
of m(-) has at least one focal element, and at most 2/ — 1
focal elements.

'This standard assumption is called Shafer’s model of FoD in DSmT
(Dezert-Smarandache Theory) framework [10].
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Belief and plausibility functions are respectively defined

from m(-) by [1]
D

Xe29|XCA

Bel(A) = m(X), (2)

and

PI(A) = m(X)=1-Bel(A). (3

>

X€29|ANX#£D
where A represents the complement of A in ©.

Bel(A) and PI(A) are usually interpreted respectively as
lower and upper bounds of an unknown (subjective) probabil-
ity measure P(A) [11], [12]. The functions m(.), Bel(.) and
PI(.) are one-to-one. A belief function Bel(.) is Bayesian if
all Bel’s focal elements are singletons [1] (Theorem 2.8 p.
45). In this case, m(X) = Bel(X) for any (singleton) focal
element X, and m(.) is called a Bayesian BBA. Corresponding
Bel(-) function is equal to PI(-) and these functions can be
interpreted as a same (possibly subjective) probability measure
P(-). The vacuous BBA (VBBA for short) representing a
totally ignorant source is defined as m,(©) = 1.

III. PCR5 AND PCR6 RULES OF COMBINATION
A. The PCRS5 rule of combination

The PCR5 rule [6] transfers the conflicting mass to all the
elements involved in this conflict and proportionally to their
individual masses, so that a more sophisticate and specific
distribution is done with the PCR5 fusion process with respect
to other existing rules (including Dempster’s rule). The PCR5
rule is presented in details (with justification and examples)
in [10], Vol. 2 and Vol. 3.

A simple formulation of the general expression of the
PCR5 fusion of S > 2 basic belief assignments is obtained
by redistributing each conflicting product defined by

S
mi(0) = (X5 NN X =0) = [[mi(X5.), @
=1

to some elements of the power set of the FoD that are involved
in the conflict X;, N...NX;, = (. Each 7;(0) is redistributed
proportionally to elements involved in this conflict based on
the PCR5 redistribution principle. When an element A € 2©
is not involved in a conflicting product 7;(0), i.e. A ¢ X,
the conflicting product 7;(0) is not redistributed to A. If an
element A is involved in the conflict X;, N...N X, =0, i.e.
A € X; and 7;(0) occur, then the proportional redistribution
of m;(0) to A is given by

zj(A) 2 ( 11

i€{1,....5}X;,=A

mi(X;,))

XeX; ie{l,....S}X;, =X

where A € X; means that at least one component of the S-
tuple X; equals A, with

Xjé(le?ijv"'vst)E}—(mlv"'vms)v
where
. j1€{1,2,...,]:m1},
e 2€{1,2,.... F,}
. j56{1,2,...,]:m5},
e and
F(my,...,mg) = F(my) x F(ma) x ... x F(mgs),

S S
FE2|F(ma,....ms)| = [[1Fm)| = ] Fm.-
=1 i=1

The element X, is the focal element of m,(-) that makes the
i-th component of the j-th S-tuple X;.
The mass of A obtained by the PCR5 rule is

mIl)CzRBS(A) = mfo;Js(A)

+ > zj(A), (6)
je{1,...,. F}HAeX ;Am;(0)

where A € X; A 7;(0) is a shorthand notation meaning that
at least one component of the S-tuple X; equals A and the
components of X; are conflicting, i.e. X; N...N X5 = 0.

The

PCR5
myo

general PCR5 formula can be
5(0) =0, and for A € 29\ {0} by

expressed as

ot
=mp5) s(A)

S

Je{1,....FHAEX Am;(0)

I

ie{1,...8}|X; =A
m;(0) }
mi(X;,))

m; (Xh ))

@)

XeX; iefl,..,S}X;,=X

where mfonJS(A) is the mass of A obtained by the

conjunctive rule, that is

mi%y  s(A) = i (X5, NG, NN X))

[T mix;0). (8)
X, €F(my,...,mg) i=1
le ﬂ...ﬂst:A

The total conflicting mass between the S sources of evidence,
denoted my%’ _4(M), is nothing but the sum of all existing
conflicting mass products, that is

mi%y  s(0) = mi (X5, NXG, NN X))

> omiY (A, ©)

Ae20\{0}
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Note that the combined BBA mfoznjs() given in (8) is not
a proper BBA because it does not satisfy Shafer’s definition
(1). In general the S sources of evidence to combine do not
fully agree, and we have consequently m{%’ <(0) > 0.

B. The PCR6 rule of combination

A variant of PCR5 rule, called PCR6 rule, has been pro-
posed by Martin and Osswald in [7], [8] for combining S > 2
sources. The difference between PCR5 and PCR6 lies in the
way the proportional conflict redistribution is done as soon as
three (or more) sources are involved in the fusion. The PCR6

,,,,,,

for all A € 29\ {0} by?

miGe g(A) =m{%  (A)

+ > [

JE{L,.. . FHAEX A; (D)

>

’ie{l ..... S}|X]12A

™ (0)

ie{1,...,5}| X;, =X

mi(in))] (10)

XeX,;

The difference between the general PCR5 and PCR6
formulas is that the PCR5 proportional redistribution in-
volves the products 11 m;(X;,) of multiple same

focal elements A (if any) in the conflict, whereas the
PCR6 conflict redistribution principle works with their sum
> m;(X;,) instead.

PCRG6 coincides with PCR5 when one combines two sources
of evidence.

IV. SIMPLE EXAMPLE OF PCR5 AND PCR6 FUSION RULES

Here we provide a simple example showing the difference
of the results between PCR5 and PCR6 rules. This example
has been already presented in [9]. For convenience, all nu-
merical values have been rounded to six decimal places when
necessary.

Example 1: We consider the simplest FoD © = {A, B}, and
the three following BBAs

ml(A) = 06,m1(B) = Ol,ml(A U B) = 03,
ma(A) = 0.5, ma(B) = 0.3, ma(AU B) = 0.2,
mg(A) = 04,m3(B) = 0.1,m3(A @] B) =0.5.

Because F,,, = |F(m1)| = 3, Fp, = |F(m2)| = 3 and
Fms = |F(ms)| = 3, wehave F = Fp,,-Fpny-Fmy = 27 non-
zero products to consider. Fifteen products are non-conflicting
and enter in the calculation of mi%5(A), m{%5(B) and
m(f:);f3 (AU B), and twelve products are conflicting products

2We wrote this PCR6 general formula in the style of PCR5 formula (7).
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that need to be proportionally redistributed. The conjunctive
combination of these three BBAs is

mi%G 5 (A) = mi(A)mz(A)ms(A)
=+ ml(A)mg(A)mg(A U B)

m{%s(B) = mi(B)ms

meSJS(A UB) =mi(AUB)m2(AUB)ms(AUB
=0.3-0.2-0.5 = 0.0300,
and the total conflict between these three BBAs is given by
m?’;]s(@) =1- m?’;]s(A) - m?’;]s(B) - mfogjs(A uB)
= 0.3430.

In this example we have twelve partial conflicts, noted 7; ()
( =1,...,12), which correspond to the following products

m1(0) = m1(A)ma(A)ms(B) = 0.0300,
m2(0) = m1(A)ma(B)ms(A) = 0.0720,
m3(0) = m1(B)m2(A)ms(A) = 0.0200,
m4(0) = m1(B)ma(B)ms(A) = 0.0120,
m5(0) = m1(B)ma(A)ms(B) = 0.0050,
m6(0) = m1(A)ma(B)ms(B) = 0.0180,
m7(0) = m1(A U B)ma(A)ms(B) = 0.0150,
7s(0) = m1 (AU B)yma(B)ms(A) = 0.0360,
70(0) = m1(B)yma(A)ms(AU B) = 0.0250,
m10(0) = m1(A)m2(B)ms(A U B) = 0.0900,
m11(0) = m1(A)ma(A U B)ms(B) = 0.0120,
m12(0) = m1(B)m2(A U B)ms(A) = 0.0080.

In applying the PCR5 formula (7), and the PCR6 formula
(10) we obtain finally m{%55(0) = mEGS(0) = 0, and®
mi93(A) ~ 0.723281,
mERS(B) ~ 0.182460,
mEQ(A U B) ~ 0.094259,
and
mERS(A) ~ 0.743496,
mR8(B) ~ 0.162245,
mEPS(A U B) & 0094259,
We see a difference between the BBAs m{%3'3 and m{%'

which is normal because the PCR principles are quite different.

3The symbol ~ means “approximately equal to”.
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Using the PCR5 fusion rule the first partial conflicting mass
m1(0) = mq(A)ma(A)ms(B) = 0.03 is redistributed back to
A and B proportionally to mi(A)ma(A) and to ms(B) as
follows

n(d)  m(B) ™ (9)
my (A)mg (A) ms (B) mq (A) 2 A) + ms (B)
whence
_ mi(A)me(A)m (@)
z1(A) = (A ma(A) - ms(B) — 0.0225,
_ ms(B)m1(0) .
x1(B) = () + ma(B) 0.0075.

We can verify 71 (0) = 21(A) + z1(B) = 0.03.

Using the PCR6 fusion rule the first partial conflicting mass
m1(0) = 0.03 is redistributed back to A and B proportionally
to (m1(A) +ma(A)) and to m3(B). So we get the following
redistributions 1 (A4) = 0.0275 for A and z1(B) = 0.0025
for B because

n(4) _ w(B) _ 1 (0)
mi(A) +ma(A)  ms(B)  mi(A) +me(A) +ms(B)’
whence
_ _(mu(A) +ma(A))m (@) _
z1(A) = T CA) e ¥ (B 025,
21(B) = ma(B)m (0) = 0.0025.

mi(A) +m2(A) + m3(B)

We can verify 71 (0) = z1(A) + 21 (B) = 0.03.

Note that for all the partial conflicts having no duplicate
element involved in the conflicting product 7;(()) we make
the same redistribution with PCR5 rule and with PCR6 rule.

For instance, for 77(0) = m1 (AU B)mg(A)ms(B) = 0.0150
we get
177(14 U B) _ :E7(A) _ :E7(B)
ml(A U B) mz(A) mg(B)
m7(0)

m1(A U B) + m2(A) + ’ITLg(.B)7

whence 77(0) = 27(AUB) +x7(A) +z7(B) = 0.0150, with

_ mi (A U B) 7(@)
(AU B) = e S ) = 0050,
_ ma(A)m7(0) N
21(A) = T AT + ma(A) T mam) 00083
27(B) = ma(B)mr (0) ~ 0.0017.

mi(AU B) + m2(A) + ms(B)

V. PCR5 AND PCR6 RULES FOR THREE BBAS

The previous general formulas of PCR5 (7) and PCR6 (10)
can be written more explicitly for the fusion of three BBAs

as follows (see [13] for details*) when working with a FoD ©
with Shafer’s model.

miz(A) = mi5s(A)

m1(A)*ma(X)ms(Y)
* Z@ [ml(A)+m2(X)+m3(Y)
A#)?:;};SEXE,X#Y
ANXNY =0
L m()ma(APms(X)

( )+ ma(A) + m3(X)
ma (X)ma(Y)ms(A)? ]

m1(X) +ma(Y) + ms(A)
1(4)?*ma(X)ms(X)
+ XZ@ [m1(A)—|—m2(X)m3(X)
AnX=o (11)

mi(X)ma(A)*ms(X)

m1(X)ms(X) +ma(A)
mi (X)ma(X)ms(A)* ]
ml(X)m2(X) + m3(A)

ma(A)*ms(X)

> [ ol A) 3 (%)
A=

+ m1(X)m2 A)zmg(A)z

and
mi%S (4) = m$, (4)

DY

X,ye2®
A#£X, ALY, XAY
ANXNY=0

mi(X)mz(Y)ma(A)? ]
m1(X) +ma(Y) +ms(A)

ml(A)zmg(X)mg(X)
+ Z@ [ml(A) (X)) + ma(X)
Anx=o
ml(X)mg(A)zmg(X)

m1(X) +ma(A) +ms(X)

m1(X)ma(X)ms(A)? }

ml(X)+m2( ) +ms(A)
A) 4+ ma(A))mi (A)ma(A)ms(X)
m1(A) +ma(A) +ms(X)

+Z[

Xe29
ANX=0

(m2(A) + ms(A))m1(X)ma(A)ms(A)
m1(X) +m2(A4) +ms(A)

(ma(A) + m3(A))m1(A)m2(X)m3(A)]
m1(A) +m2(X) +ms(A)

+

+
(12)

It is worth mentioning that if some fractions involved in the
formulas (11) and (12) have their denominators equal to zero,

41t is worth mentioning that PCR5 for three BBAs given in the section 2
of [13] is incorrect, and it must be replaced by formula (11) of this paper.
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these fractions are just discarded. It can be easily verified on
example 1 that PCR5 formula (11) gives the same result as
with the formula (7), and that the PCR6 formula (12) gives
the same result as with the formula (10).

VI. PCR5 AND PCR6 RULES FOR THREE BAYESIAN BBAS

If we want to work with three Bayesian BBAs only, the
focal elements of BBAs to combine are only singletons of the
power set 29, In this particular case, the previous PCR5 and
PCR6 formulas (11) and (12) can be simplified as

miBE(A) = ma (A)ma(A)ms(A)

ma (A)2m2 (X)m3 (Y)
+ va)%:}\,{A} m1(A) + mz(X) + ma(Y)

mias(A) = mi%5(A)

n m1(A)*ma(X)ms(Y)
xveglia m1(A) +ma(X) +ms(Y)
+ ma (Y)mz (A)2m3(X)
mi Y) —+ mg(A) —+ mg(X)
+ mi (X)mz (Y)mg(A)2 ]
mi X) —+ TTLQ(Y) —+ mg(A)
ml(A)zmg(X)mg(X)
+
Xeg;{A} [ml(A) + m2(X) + mg(X)
ma (X)mz(A)2m3(X)

m1(X) +ms(X) + ma(A)
mi (X)MQ(X)T)’LS(A 2 ]
m1(X) + ma(X) + ms3(A)
(m1(A) + ma(A))ma(A)ma(A)ms(X)
t 2 T @ e+ me)
4 (ma(A) 4 ms(A))ma (A)ma(X)ms(A)
mi(A) +ms(A) + ma(X)
(ma(A) + ma(A))ma(X)mo (A)ma(A)]
m1(X) +m2(A) +ms(A)

(14)

In the formulas (13) and (14) the subset A is any singleton
of 2© (i.e. any element of ©). For any non-singleton A of
29 we have my%3(A) = 0 because the fusion of Bayesian
BBAs by PCR5 and PCR6 always produces a Bayesian BBA.
It is worth mentioning that if some fractions involved in the
formulas (13) and (14) have their denominators equal to zero,

these fractions are just discarded.

VII. EXAMPLE OF PCR5 AND PCR6 FUSION OF THREE
BAYESIAN BBAS

Here we provide a simple example showing the differ-
ence of the results between PCR5 and PCR6 rules for three
Bayesian BBAs. For convenience, all numerical values have
been rounded to six decimal places when necessary.

Example 2: We consider the simplest FoD © = {A, B}, and
the three following BBAs
ml(A) = 02, ml(B) = O8,m1(A U B) = 0,
mQ(A) = Ol,mQ(B) = 09,m2(A U B) = 0,
mg(A) = 0.6, mg(B) = 0.4,m3(A U B) =0.
Because F,,, = |F(m1)| = 2, Fn, = |F(m2)| = 2 and
Fms = |[F(ms)| = 2, we have F = Fpy - Finy - Frng =
8 non-zero products to consider. Two non-zero groducts are

non-conflicting and enter in the calculation of mlj)zr’f3 (A) and

Conj . L
my'55(B), and six non-zero products are conflicting products

that need to be proportionally redistributed. The conjunctive
combination of these three Bayesian BBAs is

my%5(A) = mi(A)ma(A)ms(A) = 0.012,
my% 3(B) = m1(B)ma(B)ms(B) = 0.288,
m{% (AU B) = mi(AU B)ma(AU B)ms(AU B) = 0,
and the total conflict between these three BBAs is
m§0;3(®) =1- mf°§J3(A) - m§0;J3(B) - mf°§J3(A uUB)
= 0.70.

In this example we have six partial conflicts, noted 7;((})
(j =1,...,6), which are given by the following products

71 (0) = m1(A)ma(A)ms(B) = 0.008,
72 (0) = m1(A)me(B)ms(A) = 0.108,
73(0) = m1(B)ma(A)ms(A) = 0.048,
m4(0) = m1(B)ma(B)ms(A) = 0.432,
7m5(0) = m1(B)ma2(A)ms(B) = 0.032,
71'6(@) = m1(A)m2(B)m3(B) =0.072

A. PCRS fusion of the three Bayesian BBAs of example 2

Using the general PCR5 fusion rule (7) with S = 3 (ie.
3 BBAs) we manage the the conflicting mass products as
follows:

e Conflicting mass 71 () = m1(A)ma(A)ms(B) = 0.008
is redistributed back to A and B proportionally to
mq(A)ma(A) and to ms(B) as follows

r1(A) x(B)

ml(A)mg(A) o m3(B)

_ ™ (9)
ml(A)mg (A) + ms (B) ’
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whence
mi(A)mz(A)m(0)
(A = e O (B~ 0000381,
ms(B)m1(0) N
B(B) = e ey 007619,

We can verify m1(0) = 21 (A) + z1(B) = 0.008.

e Conflicting mass m2(f)) = my(A)ma(B)mg(A4) = 0.108
is redistributed back to A and B proportionally to
mq(A)ms(A) and to mo(B) as follows

wa(A) _ wa(B) _ m2(0)
m1(A)mgz(A)  ma(B)  myi(A)mz(A) +ma(B)’
whence
ol A) = i (A)ms(A)ma(0)
2(A) = (A ma(A) - ma(B) 0.012706,
22(B) = mz(B)m2(0) ~ 0.095294.

mi1(A)ms(A) + ma(B)

e Conflicting mass 73(f)) = my(B)ma(A)ms(A) = 0.048
is redistributed back to A and B proportionally to
ma(A)ms(A) and to mq(B) as follows

w3(A) _ r3(B) _ m3(0)
mo(A)mgz(A)  mi(B)  ma(A)mz(A) +my(B)’
whence
- __ ma(A)ms(A)ms(0)
) = e (B~ 0003349,
23(B) = ma(B)ms (D) ~ 0.044651.

mz(A)msz(A) + ma(B)

e Conflicting mass m4(0)) = mq(B)ma(B)ms(A) = 0.432
is redistributed back to A and B proportionally to ms(A) and
to m1(B)ma(B) as follows

2i4) _ w(B) m4(0)
mgz(A)  mi(B)ma(B) m3(A) +mi(B)ma(B)’
whence
o msAm®)
4(A) (&) + 111 (B (B) 0.196364,
__ma(B)ma(B)ma(0)
24(B) = ) ¥ Byma(B) ~ -235636.

e Conflicting mass m5(0)) = mq(B)ma(A)ms(B) = 0.032
is redistributed back to A and B proportionally to mo(A) and
to m1(B)ms(B) as follows

w5(A) _ v5(B) _ 75(0)
mo(A)  my(B)ms(B) ma(A) +mi(B)ms(B)’
whence
2o (A) — mz(A)ms(0) ~
5(A) (&) + 111 (Bya (B) 0.007620,
__ muB)ms(B)ms(0)
T(B) = e ()~ 0024350,

e Conflicting mass mg(0)) = mq(A)mo(B)ms(B) = 0.072
is redistributed back to A and B proportionally to m(A) and
to ma(B)ms(B) as follows

z6(A) _ z6(B) _ 76(0)
m1(A)  ma(B)m3z(B) my(A) +ma(B)mg(B)’
whence
O mAm®)
:Ca(A) = (A) x mg(B)mg(B) =~ 0.025714,
ro(B) = 2 BmaBIme@) 6556

mi1(A) +ma(B)ms(B)
Therefore in applying PCR5 formula we get

MESE(A) = mi%5(A) + 21 (A) + 22(A) + 23(A)
+ 24(A) + 25(A) + 26(A) ~ 0.258134,
mEG3(B) = m{%s(B) + x1(B) + 22(B) + x3(B)

+ 24(B) + x5(B) + z6(B) ~ 0.741866,
and because the result is a Bayesian BBA we have also
miG5(AUB) = 0.

Now if we apply the PCR5 combination of the three
Bayesian BBAs of example 2 using the direct formula (13),
we have to work with © = {4, B}. So, for the focal element
A we must consider all X € ©\ {A} in the second and third
summations but © \ {A} = {B}, hence X = B only. In the
first summation there is no X, Y € O\ {A} such that X #Y,
so the first summation does not exist for this example. For
the focal element A, the formula (13) reduces to the simple
expression

mi55(A) = mi(A)ma(A)ms(A)

m{% 4 (A4)=0.012
|: ml(A)ng(B)mg(B)
m1(A) + ma(B)ms(B)

26(A)~0.025714
mi1 (B)mz(A)2m3(B)
m1(B)ms(B) + m2(A)

o5 (A)=~0.007620
mi (B)ma(B)ms(A)? ]
m1(B)ma(B) +ms(A)

24 (A)=~0.196364 (15)

ma (A)*mz(A)*ms(B)
mi(A)ma(A) + ms(B)

21 (A)~0.000381
mi(A)*ma(B)ms(A)?
m1(A)ms(A) + m2(B)

25 (A)~0.012706
mi(B)mz(A)*ms(A)? }
m1(B) + ma(A)ms(A)

23(A)~0.003349
=~ 0.258134

+|

+
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Similarly, for the example 2 and using the direct PCR5
formula (13) for three bayesian BBAs we have for the focal
element B

mi55(B) = mi(B)ma(B)ms(B)

m{% 5 (B)=0.288
[ m1(B)*ma(A)ms(A)
m1(B) + ma(A)ms(A)
©3(B)~0.044651
m1(A)mz(B)*ms(A)
m1(A)ms(A) + ma(B)
22(B)~0.095294
mi(A)mz(A)ms(B)>? ]
m1(A)mz(A) + ms(B)
z1(B)~0.007619
m1(B)*ma(B)*ms(A)
m1(B)ma(B) + ms(A)

(16)

+

x4(B)~0.235636
ma (B)2m2(A)m3(B)2
m1(B)ms(B) + m2(A)

x5(B)~0.024380
mi1(A)ma(B)*ms3(B)? ]
m1(A) +ma(B)ms(B)

+

26(B)~0.046286
~ 0.741866

It is clear that the results obtained with the direct formula
(13) are in agreement with those obtained by the general PCR5
formula (7) when S = 3.

B. PCR6 fusion of the three Bayesian BBAs of example 2

Using the general PCR6 fusion rule (10) with S =3 (i.e.
3 BBAs) we manage the the conflicting mass products as
follows:

e Conflicting mass 71 () = mq(A)ma(A)ms(B) = 0.008
is redistributed back to A and B proportionally to m(A) +
mz(A) and to mz(B) as follows

x1(A) _ x1(B) _ m1(0)
m1(A) +ma(A)  mz(B)  mi(A) +ma(A) +ms3(B)’
whence
_ (ma(A) +ma(A))m (0) N
BA) = D () 0003429,
21 (B) = ma(B)m (0) ~ 0.004571.

mi(A) +mz(A) + ms(B)
We can verify 71 (0) = z1(A) 4+ z1(B) = 0.008.

e Conflicting mass m2(f)) = my(A)ma(B)mg(A4) = 0.108
is redistributed back to A and B proportionally to mq(A) +
m3(A) and to mao(B) as follows

za(A) _ m2(B)
ml(A) + m3 (A) mg(B)

_ m2(0)
mq (A) + mg(A) + TI’LQ(.B)7

whence
__(ma(A) +m3(A)m(0)
2o(A) = A A () 0030824,
22(B) = mz(B)m2(0) ~ 0.057176.

mi(A) + my(A) + m2(B)

e Conflicting mass 73(0)) = my(B)ma(A)ms(A) = 0.048
is redistributed back to A and B proportionally to ma(A) +
m3(A) and to mq(B) as follows

x3(A) _ m3(B) _ m3(0)
mao (A) + ms (A) ml(B) mo (A) + ms (A) + mq (B) ’
whence
_ (ma(A) + ms(A)ms(0)
z3(A) = ma(A) + (A ¥ ma(B) ™ 0.022400,
z3(B) = ma(B)ms(0) ~ 0.025600.

ma(A) +ms(A) +mi(B)

e Conflicting mass m4(0) = mq(B)ma(B)ms(A4) = 0.432
is redistributed back to A and B proportionally to m3(A) and
to m1(B) + ma(B) as follows

za(A) _ r4(B) _ ma(0)
m3(A)  mi(B) +ma(B)  m3(A) +mi(B) +ma(B)’
whence
_ ms3(A)ma(0) -
BilA) = s ey ~ 0112696,
a(B) = B A ma(B)ma(®) 51090,

ms(A) +mi(B) + ma(B)

e Conflicting mass m5(0)) = mq(B)ma(A)ms(B) = 0.032
is redistributed back to A and B proportionally to mo(A) and
to mq(B) + ms(B) as follows

z5(A) _ x5(B) _ 75(0)
mg(A) ml(B) +m3(B) mg(A) +m1(B) +m3(B)’
whence
- ma(A)s(0) ~
Ea(A) = ey~ 0.002462
vs(B) = B A ms(B)msO) - hogssg

ma(A) +mi(B) + ms(B)

e Conflicting mass 76 (0) = mq(A)ma(B)ms(B) = 0.072
is redistributed back to A and B proportionally to m4(A) and
to mo(B) + ms(B) as follows

w6(4) z6(B) _ ()
mi(A)  mz(B) +m3(B)  mi(A) +ma(B) +ms(B)’
whence
_ mi(A)me(0) -
26(A) = o Sy~ 009600,
vo(B) = 2B+ ma(B)me @) 56040

mi(A) +m2(B) + ms3(B)
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Therefore in applying PCR6 formula (10) with S = 3 we get
finally

mESS(A) = miG5(A) + 21 (A) + 22(A) + 23(A)
mIl),Czl?g(B) = mgf;jg(B) + x1(B) + x2(B) + x3(B)

— =

and because the result is a Bayesian BBA we have also

m38(AUB) = 0.

When using the direct formula (14) of PCR6 rule for the
three bayesian BBAs of example 2 we obtain for the focal
element A

mi2,3(A) = mi(A)yma(A)ms(A)

14

m{% 5 (4)=0.012
[ ma(A)*ma(B)ms(B)
m1(A) +ma(B) + ms(B)
26(A)~0.009600
mi (B)ma(A)*ms(B)
m1(B) 4+ ms(B) + m2(A)
25(A)~0.002462
mi (B)ma(B)ms(A)? ]
m1(B) + ma(B) +ms(A)

24(A)~0.112696

(17)

n [ (m1(A) + ma(A))ma(A)ma(A)ms(B)
m1(A) +ma(A) +ms(B)
21 (A)~0.003429
(m1(A) + ms(A))ma(A)ma(B)ms(A)
mi(A) +ms(A) + m2(B)
22(A)~0.050824
(m2(A) + ms(A))ma(B)ma(A)ms(A) }
mi(B) +ma(A) +ms(A)
23 (A)~0.022400
~ 0.213411

Similarly, for the example 2 and using the direct formula

(14) we have for the focal element B
m155(B) = mi(B)ma(B)ms(B)

m$°Y 5 (B)=0.288

|: mi (B)ng(A)mg(A)
m1(B) +ma2(A4) +ms(A)
23(B)~0.025600
mi(A)ma(B)*ms(A)
m1(A) +ma(A) +ma(B)
x9(B)=0.057176
mi(A)ma(A)ms(B)* }
m1(A) +ma(A) +ms(B)
21 (B)=0.004571
n [ (m1(B) + ma(B))m1(B)ma(B)ms(A)
m1(B) + ma(B) + ms(A)
24(B)~0.319304
(m1(B) + ms(B))ma (B)ma(A)ms(B)

T n(B) + ma(B) + ma(A)
x5 (B)~0.029538
n (m2(B) + m3(B))m1(A)ma(B)ms(B) }
m1(A) + ma(B) + ms(B)
26 (B)~0.062400
~ 0.786589

(18)

It is clear that the results obtained with the direct formula
(14) are in agreement with those obtained by the general PCR6
formula (10) when S = 3.

VIII. CONCLUSION

In this paper we have developed explicit formulas for the
PCR5 and PCR6 fusion of three bayesian BBAs which work
with any cardinality of the frame of discernment greater or
equal to two. We have verified that our formulas are coherent
with general PCR5 and PCR6 formulas. We have also provided
the correct PCR5 formula for three BBAs which was erroneous
in our 2010 original paper [13]. We hope that these formulas
will be helpful for some users of belief functions working only
with bayesian belief masses and with only three sources of
evidence to combine because these direct formulas are much
easier to implement than general PCR5 and PCR6 formulas.
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Abstract—3D Building change detection has become a popular
research topic along with the improvement of image quality
and computer science. When only building changes are of
interest, both the multi-temporal images and Digital Surface
Models provide valuable but not comprehensive information in
the change detection procedure. Therefore, in this paper, belief
functions have been adopted for fusing information from these
two sources. In the first step, two change indicators are proposed
by focusing on building changes. Both indicators have been
projected to a sigmoid curve, in which both the concordance
and discordance indexes are considered. In order to fuse the
concordance and discordance indexes and further fuse the two
change indicators, two belief functions are considered. One is
the original Dempster-Shafer Theory (DST), and the most recent
one is Dezert-Smarandache Theory (DSmT). This paper shows
how these belief-based frameworks can help in building change
detection problem. Besides using different belief functions in
obtaining the global BBAs, four decision-making criteria are
tested to extract final building change masks. The results have
been validated by compared to the manually extracted change
reference mask.

Keywords: belief functions, DSmT, satellite imaging, building
change detection.

I. INTRODUCTION

Accurate and efficient detection of changes is of great
importance for urban monitoring, which is also an important
research field in remote sensing. Change detection methods on
large scale land cover monitoring have been intensively studied
and reviewed [1], [2]. Along with the ascending of image
spectral and temporal resolution, the expectation on automatic
change detection has progressively increased, not only on
results accuracy, but also on the efficiency and robustness of
the methods. Moreover, change detection for a specific target
of interest, like buildings is becoming an important research
topic. In small scale 2D change detection, which is performed
based on only 2D multi-temporal spectral images, problems
arise due to misdetections caused by irrelevant changes. The
influence of these irrelevant changes is growing as higher
resolution images showing more details. Therefore, in this
paper, we will further work on satellite multispectral and
stereo images, which provides both spectral and height change
information.

Adopting satellite stereo imagery for 3D change detection
is an exciting and challenging task. Benefiting from improved
data quality and advanced computer vision technique, the
quality of the generated Digital Surface Models (DSMs) has
been largely improved and it is possible to detect changes
even for small objects, like single buildings. On the other
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side, the DSMs may still exhibit some outliers resulting in
occlusions within the stereo/multi views. Several approaches
have been proposed for DSM assisted change detection [3], [4],
[5], [6]. According to our previous research results, the belief
functions introduced in DST allow to work more efficiently
and robustly in urban building change detection with very
high resolution satellite images [7]. So far, only a basic
DS fusion model has been proposed in [6] to define the
Basic Belief Assignments (BBAs) thanks to a sigmoid curve
considering only the concordance index. Improvement of this
DS fusion model for BBAs construction is proposed in this
paper to achieve better performance by considering both the
concordance and discordance indexes. Since DSmT [8] has
been developed in last years as an interesting alternative to
DST to circumvent problems of Dempster-Shafer’s (DS) rule
of combination [9], we also investigate the possibility of using
the Proportiobnal Conflict Redistribution Rule #6 (PCR6) of
DSmT in our application.

II. BASICS OF BELIEF FUNCTIONS

Detailed presentations of DST and DSmT can be found
in [8], [9] and [10]. Let © be a frame of discernment of a
problem under consideration. © = {601,60s,...,0y} consists
of a list of N exhaustive and mutually exclusive elements 6;,
i=1,2,...,N. Each 6; represents a possible state related to
the problem we want to solve. The assumption of exhaustivity
and mutual exclusivity of elements of O is classically referred
as Shafer’s model of the frame ©. A BBA also called a belief
mass function (or just a mass for short), is a mapping m(.) :
29 — [0, 1] from the power set' of © denoted 2° to [0, 1],
that verifies [10]:

Y mX) =1 (1)

Xe20

m(X) represents the mass of belief exactly committed to X.
An element X € 2€ is called a focal element if and only if
m(X) > 0. In DST, the combination (fusion) of several inde-
pendent sources of evidences is done with Dempster-Shafer?
(DS) rule of combination, assuming that the sources are not
in total conflict’. DS combination of two independent BBAs
m1(.) and my(.), denoted symbolically by DS(my,ma), is

IThe power set is the set of all subsets of ©, empty set included.

2 Although the rule has been proposed originally by Dempster, we call it
Dempster-Shafer rule because it has been widely promoted by Shafer in DST.

3otherwise DS rule is mathematically not defined because of 0/0 indeter-
minacy.
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defined by m”9(()) = 0, and for all X € 29\ {0} by:

1
DS —
m (X)_ 1— KDS Z

X1,X2€2°
X1NXo=X

my(X1)ma(X2), (2)

where the total degree of conflict KP° is given by

KPS %

X1,X5€2°
X1NX2=0

my(X1)ma(Xa). 3)

A discussion on the validity of DS rule and its incompatibility
with Bayes fusion rule for combining Bayesian BBAs can be
found in [9], [11], [12]. To circumvent the problems of DS
rule, Smarandache and Dezert (see [8], Vol. 2, Chap. 1), then
Martin and Osswald (see [8], Vol. 2, Chap. 2) have developed
in DSmT [8] two fusion rules called PCRS and PCR6 based on
the proportional conflict redistribution (PCR) principle which
consists

1)  to apply the conjunctive rule;

2) calculate the total or partial conflicting masses;

3) then redistribute the (total or partial) conflicting mass
proportionally on non-empty sets according to the
integrity constraints one has for the frame ©.

This PCR principle transfers the conflicting mass only to the
elements involved in the conflict and proportionally to their
individual masses, so that the specificity of the information
is not degraded. Because the proportional transfer can be
done in two different ways, this has yielded to two different
fusion rules. It has been proved in [13] that only PCR6 rule
is compatible with frequentist probability estimation, and that
is why we recommend its use in the applications. PCRS and
PCRG6 rules simplify greatly and coincide for the combination
of two sources. In this case, the PCR6 combination is obtained
by taking mZCF6(()) = 0, and for all X # ) in 2° by

mPERS (X)) = Z my(X1)ma(Xa)+
m1(X:);m2(Y) ma(X)2my (Y)
XNy =0

where all denominators in Eq. (4) are different from zero. If
a denominator is zero, that fraction is discarded.

III. BUILDING CHANGE DETECTION MODELS
A. Choice of the frame of discernment

We now use two sources (indicators) of evidences to solve
our problem. As a preparation step, the indicators and focal
elements have to be introduced. Two data sources are used for
building change detection. One is the satellite images, which
contain 2D spectral information. Here we use the Iteratively
Reweighted Multivariate Alteration Detection (IRMAD) [14]
to highlight changes from the spectral images. The other is
the robust height difference which can be calculated from
the two Digital Surface Models (DSMs) [6]. Detail of the
DSM generation procedure and the characters of the DSMs
quality have been described in [5]. As it has been explained
in [6], we suppose that new, demolished or changed buildings
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exhibit both height changes and spectral changes. The seasonal
changes will only influence the spectral images. Therefore,
for building change detection, we consider the following three
classes (hypotheses) to define our frame of discernment satisfy-
ing Shafer’s model: © = {#; = Pixel € BuildingChange,f, =
Pixel € OtherChange,f3 = Pixel € NoChange}.

B. Sigmoidal model for BBA construction

BBAs construction is a prerequisite for the combination of
sources of evidence. In our previous works [6], the BBAs were
built based on sigmoid curves related with the concordance
index only. In this paper, we improve our model to construct
the BBAs thanks to sigmoidal models for both concordance
and discordance indexes following idea proposed in [15]. As
explained in [6], the original sigmoid curve is defined as

forry(x) = 0.99/(1+ 5, ©)

where z is the original value of each indicator. Two parameters
T and 7 are used to control the symmetry point and the
slope of the sigmoid function. The symmetry point indicates
a certainty of 50%. The construction of BBAs is explained in
[15] and adopted in this paper. In [15] these two parameters
T and 7 are manually given to sigmoid curve. Here, the
multi-level Otsu’s thresholding method [16] is used to get
symmetry points for both concordance index and discordance
index. Otsu’s algorithm defines that an image is composed of
objects and background. A discriminant analysis is performed
by minimizing the intra-class variance. When three classes are
of interest, two threshold values are expected. Otsu’s method
can be extended to

o2 (T1, Ts) = wio7 (T, To)
+CU20'§(T1,T2)+UJ3J§(T1,T2). (6)

The weights w; are the probabilities obtained from the image
histogram that are separated by the thresholds 77 and T5. o;
are the variances of the three classes. 77 and 7% can be used
as the symmetry points of discordance and concordance index
respectively. Thus, using height change index as example, the
BBAs for discordance and concordance height change index
are presented as aanpg and bap

aarng = frr(AH), and bamg = for1n(AH). (7)

The factor 7 is calculated with a sample value (AH = 1,
ang = 0.1), which means 1 meter height change indicates
10% probability to be building changes. The BBAs for discor-
dance and concordance image change index are built similarly.
Differences appearing in 2D images give a concordance indi-
cation for all changes, which include the building changes and
other changes (01 U#65). In this paper the changes from images
are named Almg.

C. BBAs construction using concordance and discordance

The BBAs related with the concordance and discordance
indexes are combined to get the global BBA related to each
source of evidence. These global BBAs will then be used as
input for solving the change detection problem thanks to their
combination. In the Tables I and II, we present the two ways
of construction of the BBAs of the sources of evidence based
either on DS or on PCR6 rules of combination for the height
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TABLE 1. BBA CONSTRUCTION FOR HEIGHT CHANGE INDICATOR AH. [Kag = aagban]
Focal Elem. m1(.) mi() "L1D 8) ,"L{’CRG(')
a (1=5 Y a K
0 s 0 BT a0 ban) IR
2
O3 0 0 0 0
61 U 05 0 0 0 0
0 0 0 b (A—apnmg)oan 1— b bAHEAH
2 U 03 AH 1*K€H (I —aam)ban + 20T L
l1—a 1—b
61 U6y UBb3 1—aap 1—bany % (1_aAH)(1_bAH)
TABLE II. BBA CONSTRUCTION FOR IMAGE CHANGE INDICATOR AImg. [KATmg = aAImgbATmg]
Focal Elem. ma(.) ma(.) mP3() mP OOy
61 0 0 0 0
62 0 0 0 0
(I—anrmglbar barmgKEar
05 0 bAImg 7171;191mg mg (1 = anrmg)barmg + 7GA1::+5A;:Z
aAImg(lfbAlrn‘q) _ aAImgEATImg
01 U 02 AATImg 0 T—KATmg anrmg(l = barmg) + AATmgTOATImg
62 U 03 0 0 0 0
(A—aarmg)(A=bATmg)
01 U02U03 1 —anrmg 1—barmg 1=K Arma (1= aarmg)(l —barmg)

change indicator (i.e. the first source of evidence) and the
image change indicator (i.e. the second source of evidence).
In Table I, my(.) and m/(.) represent the concordance and
discordance BBAs from AH, whereas in Table II mo(.) and
mi(.) represent the concordance and discordance BBAs from
images.

Here for comparison of the two belief functions, these two
BBAs are fused with both DS and PCR6 fusion rules. The
fusion rules for height change indicator and image change
indicator are explained in Table I and Table II. In Table I,
the my and m} represent the concordance and discordance
BBAs from AH. In Table I we use mo and m} to represent
the concordance and discordance BBAs from images.

D. BBAs combination for building change detection

From the previous step of BBAs modelings, each pixel
will get two sets of BBAs to combine resulting from Table
I and II. More precisely, we will have to combine either
{mPS(), mé’s(.)} if DS rule is preferred for the BBA model-
ing, or {mI 6 () mP R ()} if PCR6 rule is adopted. These
BBAs have been represented by ai,b1,c; and as, by, co in
Table III.

TABLE III. FUSION MODELS FOR BUILDING CHANGE DETECTION.
Focal Elem. mj(.) ma() m% @) 77L{320R6(‘)
01 @ 0 11(,”;7;’;’;) a1 (by + bs) + L2172
02 0 0 T fillbg azby
Os 0 b2 % (az + a3)bz2 + %
01 U 02 0 by 1ﬁi}}1b2 asby
02U 05 a2 0 1ii;§2 azbs3
© a3 bs T fiﬁq azbs

Based on different BBAs and fusion methods, four sets of
global BBAs can be computed from Table III.

Gv = DS{m{%(.),m5% ()},

Ga = PCR6{m{*(.),m3* ()},

Gs = DS{my (), my 70 ()},
Gy = PORG{mEY RO (), mECRE( )},

®)

After the fusion step, each pixel in the images will get a
certain degree of belief for all focal elements. Based on the
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these BBAs, a final decision can be made. DST and DSmT
have different approaches to get this final decision. In this
paper four decision criteria are tested. More precisely, we have
evaluated the maximum of global BBAs (Max_Bel), maximum
of plausibility (Max_Pl), maximum of betting probabilities
(Max_BetP) and the maximum of DSmP (Max_DSmP),), see
[8] (Vol. 3, Chap. 3) and [10] for the mathematical definitions
of Bel(.), PI(.), BetP(.) and DSmP(.) functions.

IV. EXPERIMENTS

The two proposed BBAs modelings and fusion methods
(based on DS and PCR6 rules) have been tested on one real
dataset. The dataset and the results from each step are detailed
in this section.

A. Datasets

The experimental dataset for this research work are dis-
played in Fig.1. It consists of two pairs of IKONOS stereo
imagery captured at February 2006 and May 2011 respectively.
As a pre-processing step, all data have been correctly radio-
metrically and geographically co-registered as described in [6].
As shown in Fig. 1, this is a normal building change example.
Several buildings have been built on flat surface. The generated
DSMs are displayed in Fig. 1c and d.

B. Results and evaluation

As the first step, BBAs from image change and height
change are extracted and refined based on DS fusion and
PCRG6 fusion rules. The four sets of global BBAs are prepared
corresponding to Eq. (8). Among them the BBA for the
focal element #; (Building change) are shown in Fig. 2. The
accuracy of these BBAs have been evaluated by area under
Receiver Operating Characteristic curve (AUC). The AUC has
been recorded on this figure as the caption of each subfigure.
An advantage of PCR6 can be proved here. It has to be
noted that the AUCs obtained here are much higher than
using only height (AUC = 0.9299) [6] or spectral information
(AUC=0.8823), and generally better than the fusion result
described in [6] (AUC=0.9621).
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& | ‘.. & :;;

Panhmmatic datel

DSM datel DSM date2 Elevation (m)

Fig. 1. Experimental dataset: a) panchromatic image from datel; b) panchromatic image from date2; c) DSM from datel; (d) DSM from date2.

(c) AUC=0.9763 (d) AUC=0.9767

Fig. 2. Four global BBAs sets (a) G1; (b)G2; (¢)G3; (d)Ga4.
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Besides the AUC comparison, the building change masks
extracted from these four global BBAs sets are compared and
evaluated. Each global BBA set can generate four building
change mask based on these four decision make criteria.
These building change masks are evaluated based on Kappa
statistic (KA) and true detected rate (TR). In this paper
TR = % x 100 (in %). The comparison results of
TR and KK values are shown in Table IV. From Table IV,
one sees that, G3 and G4 are more advantageous than GG; and
G>. However, the highest KA is obtained by GG; by taking the
Max_Pl. However, in this paper, only the reference data for
building changes are available. For better understanding these
four global BBAs and decision making criteria, reference data
of all three focal elements 6, 6> and 03 are required.

TABLE IV. CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS.
G1 G2 G3 G4
TR [%] KA TR[%] KA TR [%] KA TR [%] KA
Max_Bel 93.35 0.7729  93.35 0.7729 93.39 0.7725 93.39 0.7724
Max_Pl 93.23 0.7768 93.23 0.7762 93.23 0.7763 93.25 0.7756
Max_BetP 93.28 0.7747 93.32 0.7762 93.32 0.7745 93.32 0.7741
Max_DSmP 93.30 0.7739  93.30 0.7734 93.30 0.7737 93.34 0.7734

V. CONCLUSIONS

Belief functions are good choices for DSM assisted change
detection. Firstly, once the BBA construction is well done, it
can be robustly used for other images in other regions effi-
ciently. Secondly, this fusion approach matches well with the
characteristics of our research topic. Since height information
is important for separating high/low level objects. Satellite
images directly highlight all changes on the land surface. None
of these two sources of information can easily and directly
lead to a reliable decision on building changes, which matches
with the initial idea of belief functions. Generally speaking,
both DST and DSmT frameworks offer the possibility to
reach a high accuracy result, and PCR6 looks advantageous
when a larger conflict exists between the different sources
of evidence. More experiments are under progress to provide
a finer quantitative comparative analysis in a forthcoming
publication.
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Abstract—Digital Surface Models (DSMs) generated from
satellite stereo imagery provide valuable but not comprehensive
information for building change detection. Therefore, belief func-
tions have been introduced to solve this problem by fusing DSM
information with changes extracted from images. However, miss-
detection can not be avoided if the DSMs are containing large
region of wrong height values. A refined workflow is thereby
proposed by adopting the initial disparity map to generate a
reliability map. This reliability map is then built in the fusion
model. The reliability map has been tested in both Dempster-
Shafer Theory (DST), and Dezert-Smarandache Theory (DSmT)
frameworks. The results have been validated by comparing to
the manually extracted change reference mask.

Keywords: belief functions, DSmT, satellite imaging, building
change detection.

I. INTRODUCTION

In our previous research [1] [2], belief functions have
performed very well for 3D building change detection. As we
have mentioned, the accuracy of 2D change detection is limited
due to the misdetections caused by irrelevant changes. These
irrelevant changes have a larger effect on very high resolution
(VHR) images since many details of building changes are
expected. The DSMs generated from satellite stereo imagery
can largely help to solve this problem. However, the DSMs
may still exhibit some outliers resulting in occlusions within
the stereo/multi views and due to matching mistakes. In this
case, change information from spectral information of the
original stereo imagery can and should be used together with
height changes to eventually highlight building changes. For
this purpose proper fusion theories and approaches are needed.

In paper [2], the belief functions introduced in the
Dempster-Shafer Theory (DST) [3] [4], and extended in
Dezert-Smarandache Theory (DSmT) [5] are used to deal
with the uncertainty information delivered from the DSMs.
In [2] the possibility of using Dempter’s fusion rule and the
Proportional Conflict Redistribution Rule #6 (PCR6) of DSmT
in our application have been tested. Though improvements
have been proven by comparing to the method stated in [1],
false alarms can not be avoided in case of large regions of
wrong height change values. Thereupon, in this paper the
reliability map is adopted as an additional source of evidence
to correct the basic Belief Assignments (BBAs) and thus refine
the fusion model.

This paper is organized as follow. Firstly, the belief
functions and building change detection fusion models are
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briefly reviewed. Then, the reliability discounting techniques
are presented and the reliability map is generated. Later, the
final four global BBAs are described together with the four
decision criteria with which the final change detection mask
can be generated. In the end, these refined fusion models are
tested on two sets of satellite real data.

II. BELIEF FUNCTION BASED BUILDING CHANGE
DETECTION

A. Basics of belief functions

Detailed presentations of DST and DSmT can be found
in [5], [6] and [3]. Let © be a frame of discernment of a
problem under consideration. © = {601,0,,...,0n} consists
of a list of N exhaustive and mutually exclusive elements 6;,
i =1,2,...,N. Each 6; represents a possible state related to
the problem we want to solve. The assumption of exhaustivity
and mutual exclusivity of elements of © is classically referred
as Shafer’s model of the frame ©. A BBA also called a belief
mass function (or just a mass for short), is a mapping m(.) :
29 — [0, 1] from the power set' of © denoted 2° to [0, 1],

that verifies [3]:
> m(X)=1.
Xe20

m(@) =0, and

ey

m(X) represents the mass of belief exactly committed to X.
An element X € 29 is called a focal element if and only if
m(X) > 0. In DST, the combination (fusion) of several inde-
pendent sources of evidences is done with Dempster-Shafer?
(DS) rule of combination, assuming that the sources are not
in total conflict®. DS combination of two independent BBAs
m1(.) and my(.), denoted symbolically by DS(mq,ms), is
defined by m®??(()) = 0, and for all X € 29\ {0} by:

1
mDS(X) = m Z Tnl(Xl)mQ(X2)v (2)
X1,X2€2°
X1NXs=X

The power set is the set of all subsets of ©, empty set included.

2 Although the rule has been proposed originally by Dempster, we call it
Dempster-Shafer rule because it has been widely promoted by Shafer in DST.

3otherwise DS rule is mathematically not defined because of 0/0 indeter-
minacy.
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where the total degree of conflict KP9 is given by

KPS 2 N my(Xy)ma(X). 3)

X1,X5€2°
X1NXo=0

A discussion on the validity of DS rule and its incompat-
ibility with Bayes fusion rule for combining Bayesian BBAs
can be found in [6], [7], [8]. To circumvent the problems of DS
rule, Smarandache and Dezert (see [5], Vol. 2, Chap. 1), then
Martin and Osswald (see [5], Vol. 2, Chap. 2) have developed
in DSmT [5] two fusion rules called PCRS and PCR6 based on
the proportional conflict redistribution (PCR) principle which
consists

1)  to apply the conjunctive rule;

2) calculate the total or partial conflicting masses;

3)  then redistribute the (total or partial) conflicting mass
proportionally on non-empty sets according to the
integrity constraints one has for the frame ©.

This PCR principle transfers the conflicting mass only to
the elements involved in the conflict and proportionally to their
individual masses, so that the specificity of the information
is not degraded. Because the proportional transfer can be
done in two different ways, this has yielded to two different
fusion rules. It has been proved in [9] that only PCR6 rule
is compatible with frequentest probability estimation, and that
is why we recommend its use in the applications. PCRS and
PCRG6 rules simplify greatly and coincide for the combination
of two sources. In this case, the PCR6 combination is obtained
by taking m”CF5(()) = 0, and for all X # () in 2© by

mPERS(X) = Z my(X1)ma(Xo)+
””:;();Zf:);mz(Y) ma(X)2my (V)
YGQ@E\:{X}[m1(X) +ma(Y)  mo(X) +m1(Y)]’ )
XNy=0

where all denominators in Eq. (4) are different from zero.
If a denominator is zero, that fraction is discarded. If a
denominator, e.g., m1(X)+ma(Y') tends towards 0, then also
the conflicting mass mq(X)mo(Y) that is transferable tends
to zero because mq(X) and mo(Y') tend to zero (since they
are positive), therefore the redistribution masses also tend to
zero. That reflects the continuity of PCR6.

B. BBAs for Building change detection

1) Choice of the frame of discernment: Focusing on build-
ing change detection, two change indicators, one from images
and one from DSMs are used. Changes from spectral images
are highlighted by using the Iteratively Reweighted Multivari-
ate Alteration Detection (IRMAD) [10]. Consequently height
changes from DSMs are shown after robust height difference
[1]. Three classes are considered to define the frame of
discernment satisfying Shafer’s model:

O = {6; = Pixel € BuildingChange,
05 £ Pixel € OtherChange, (®))
03 = Pixel € NoChange},
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and
01 Nb;NO; = . ©6)

Based on the three classes, the set of focal elements F'E
that are of interest in our application is:

FE = {0;,05,05,0, U005 U05,0, U Ub3}. (7)

2) BBAs construction: Paper [2] constructed the sigmoidal
model for both concordance and discordance indexes. The
details and advantages of this approach are described in [11].
The concordance index measures the concordace of change
indicator and BBA in the assertion, while the discordance
measures the opposition of change indicator to the BBAs in
the assertion. The original sigmoid curve is defined as

formy () = 0.99/(1+ e "5), (8)

where x is the original value of each indicator. Two parameters
T and 7 are used to control the symmetry point and the slope of
the sigmoid function. The symmetry point indicates a certainty
of 50%. In [11] these two parameters 7' and 7 are manually
given. Here, the multi-level Otsu’s thresholding method [12]
is used for automatically getting the symmetry points for both
concordance index and discordance index. Otsu’s algorithm
defines that an image is composed of objects and background.
A discriminant analysis is performed by minimizing the intra-
class variance. When three classes are of interest, two threshold
values are expected. Otsu’s method can be extended to

G‘z(T17T2) = wl(]‘%(Tl,Tg)
+ woo3 (T1, To) + w303 (T1, To).  (9)

The weights w; are the probabilities obtained from the image
histogram that are separated by the thresholds 73 and T5. o;
is the standard deviation of the i-th class, for ¢ = 1,2,3. Ty
and 75 can be used as the symmetry points of discordance
and concordance index respectively. Thus, using height change
index as example, the BBAs for discordance and concordance
height change index are functions of values aay and bapy
defined by

GAH:f‘nTl(AH)? and bAH:f—T7T2(AH) (10)

The factor 7 is calculated with a sample value (AH =1,
aang = 0.1), which means 1 meter height change indicates
10% probability to be building changes. The BBAs for discor-
dance and concordance image change index are built similarly.
Differences appearing in 2D images give a concordance indi-
cation for all changes, which include the building changes and
other changes (6, U62). In this paper the changes from images
are named Almg.

In the Tables I and II, we present the two ways of
construction of the BBAs from the sources of evidence based
either on DS or on PCR6 rules of combination for the height
change indicator (i.e. the first source of evidence) and the
image change indicator (i.e. the second source of evidence).
In Table I, my(.) and m/}(.) represent the concordance and
discordance BBAs from AH, whereas in Table II m2(.) and
mi(.) represent the concordance and discordance BBAs from
images.
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TABLE 1. BBA CONSTRUCTION FOR HEIGHT CHANGE INDICATOR AH. [Kag = aagban]
Focal Elem. ma(.) mi() 7”1 @) m{’CRG(')
b K
01 NS 7QAH,(;( ﬁH) anp(l—bam)+ 7;£5+bilé
[ 0 0 0
[ 0 0 0 0
6, U6 0 0 0 0
02 U0 0 b % (1 —ann)t RN LINT,
i il LKA AHOAH T Gy Thap
01 U6z U b3 1—aamn 1—ban % (1 —aam)(l —bam)
TABLE II. BBA CONSTRUCTION FOR IMAGE CHANGE INDICATOR Almg. [KAImg = aATmgbATmg]
Focal Elem. ma(.) mbh(.) D3() meRG(A)
61 0 0 0 0
D 0 0 0 0
(O—anrmg)bAarm bATmgEAIm
03 0 bAImg W (1 — CLAImg)bAImg + m
AATmg 1—PATImg) AIATmgKATm
61 U 62 AATImg 0 W anTmg(l —barmg) + W
02 U 03 0 0 0
(1= Y(I—0 vq)
61 UB2 U b3 1 —aarmg 1—bArmg GAII:”I%AIWQAIWQ (1= antmg)(l — batmg)

III. RELIABILITY DISCOUNTING

The reliability discounting has been described and dis-
cussed in the references [13] and [14]. Briefly said, if an
additional knowledge about the reliability («) of certain in-
dicator (X) is available, it can be adopted to refine the initial
BBAs. o would be a value ranging from 0 to 1. And o = 1
means fully reliable, while &« = 0 means the indicator is
totally unreliable. Based on Shafer’s discounting model [3],
the reliability discounting factor « is introduced to discount
any BBA m/(.) defined on the power set 2° as follows:

{ma(X) m(X),for X # 0O, (11

mae(0) =a-m(0)+ (1 - a).

In the DSM assisted building change detection, false alarms
are detected if wrong heights are present in DSM for large
regions [1]. And these wrong heights are mostly introduced
not in the stereoscope images matching procedure, but in
the gaps filling step. In our DSM generation procedure, the
height of un-matched pixels are interpolated using the height
values of neighborhood pixels. Therefore, a reliable height
value can be achieved for small gaps. When large gaps turn up
in the disparity map, for example, a whole building roof, the
height of that building can not be correctly interpolated. Thus,
the percentage of available correctly matched neighborhood
pixels inside a predefined region can be used to generate the
height reliability. Fig. 1 shows an example of the generated
reliability map. Fig. la is the gaps mask. The gaps region of
the disparity map is represented with black color. Pixels with
proper elevation values are displayed with white color. It can
be observed, based on our approach that pixels in the center
of a gap get lower reliability factor values than pixels next to
the gap boundary (see Fig.1b).

In the building change detection procedure, the reliability
map of two DSMs (apsy1 and apsare ) are calculated
respectively. They are then fused together to generate a final
reliability map aa g for the height change indicator.

QAH = ODSM1 - XDSM?2- (12)
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(b)

Fig. 1. Reliability map (b) generated from the gaps mask (a).

IV. GLOBAL BBAS AND CHANGE DETECTION
A. Global BBAs generation

The BBAs related with the concordance and discordance
indexes are combined to get the global BBA regarding to each
source of evidence. These global BBAs will then be used
as input for solving the change detection problem thanks to
their combination. From the previous step of BBAs modelings,
each pixel will get two sets of BBAs to combine results from
Table I and II More precisely, we will have to combine either
{mPS(. g{ 1f DS rule is preferred for the BBA mod-
eling, or {m mLCF5()} if the PCR6 rule is adopted.
These BBAs from Table I and II have been represented by
ai,by,c1 and as,ba,ce. In this paper, the mass values aj,
b1, and ¢ are further discounted by the generated reliability
map aay and denoted respectively as Ay, By, and C;. More
precisely, one computes

AL = aam - ar,
(13)

By = aag - b1,
Ci=aayg-c1 + (1 — aAH).

In this application, only the reliability map for height
change indicators is generated. The reliability map for image
change indicators can also be constructed according to the
change objects of interested. For instance, vegetation mask can
be used to discount the reliability of building changes. How-
ever, this paper focuses on the reliability of height information.
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When the reliability map of image changes is available, it could
be used as the same way as height change reliability map. Table
IIT and Table IV describe the final building change detection
models based either on DS or on PCR6 rules. Here, the
discounted height change indicators is denoted as M4, (.)-

TABLE III. DS FUSION MODEL FOR BUILDING CHANGE DETECTION.
Focal Elem. || mia, () || ma() mis ()
A1(b1+b3)
01 A1 0 A
Aod
02 0 0 1_3\11,)2
(AsFa3z)b
03 0 b2 Ay
61 U 0o 0 by 114%?11)2
02 U 03 Ao 0 =35
A3b
) As bs e
TABLE IV. PCR6 FUSION MODEL FOR BUILDING CHANGE
DETECTION.
Focal Elem. LETYNTIO) ma(.) mf;(’ R6()
61 A1 0 Al(bl =+ b3) + 1:1111:22
0 0 0 Aazby
03 0 b2 (A2 + az)b2 + Lfﬁ:fj
61 U 0o 0 by Aszby
6> U 03 As 0 Asbs
[€) As b3 Asbs

Miaay () can be obtained from the discounting of the
fusion results presented in Table I. Thus they have been
denoted respectively as m$> (.) and miCF5()). This dis-
counted height change indicators are fused in the second step
with image change indicator m4(.) to generate the final global
BBAs. From the tables III and IV, four sets of global BBAs
can be computed based on different BBAs and fusion methods

as follows:

G, = DS{m?aiH(')vmgs(')},
Gy = PCR6{mPS (1), mP5 ()},

laang

14
Gy = DS{mECTE() mEeT (). ”
Gy = PCR6{m{CRO (), myORo( )},

For example, if both the BBA modeling procedure and
global BBAs are constructed based on DS fusion rule, the
generated global BBA is recorded as G.

B. Change mask generation

After the fusion step, each pixel in the images will get a
certain degree of belief for all focal elements. The value of
global BBAs in 6; gives a direct building change probability
map. A change mask can be generated after giving a threshold
value. However, BBAs on the partial ignorance and full ig-
norance set should also be considered in the decision making
procedure. DST and DSmT propose different approaches to
take the final decision. In this work, the same decision criteria
as used in [2] are tested. They are: 1) maximum of global
BBAs (Max_Bel), 2) maximum of plausibility (Max_Pl), 3)
maximum of betting probabilities (Max_BetP) and 4) the
maximum of DSmP (Max_DSmP). The reader can refer to
[3] and [5] (Vol. 3, Chap. 3) for the mathematical definitions
of Bel(.), PI(.), BetP(.) and DSmP(.) functions.
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V. EXPERIMENTS

The improved building change detection fusion models
have been tested on satellite images. The datasets and the
experiments are described in this section.

A. Datasets

The experimental datasets consist of two pairs of IKONOS
stereo imagery captured in February 2006 and May 2011
respectively shown in Fig. 2 and 3. The first two images in each
figure are the panchromatic images of two dates. (c¢) and (d)
are the generated DSMs. They have been generated based on
the method explained in [15]. The colors represent the height
range in this test region.

85 70 75 80 g5 Elevation (m)

Fig. 2. Experimental dataset: a) panchromatic image from datel; b)
panchromatic image from date2; c) DSM from datel; (d) DSM from date2.

- 9
65 70 75 80 85 90 Elevation(m)

Fig. 3. Datasets of the 2nd test region; a) panchromatic image from datel;
b) panchromatic image from date2; c) DSM from datel; (d) DSM from date2.
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The spatial co-registration is achieved though camera
model parameter corrections before the DSM generation pro-
cedure [15]. The radiometrical co-registration method has been
described in [1]. Fig. 2 shows a normal building change
example. Several buildings have been built on flat surface. The
generated DSMs are displayed in Fig. 2¢ and d. In the second
example (shown in Fig. 3), a large percentage of pixels on the
roof of the large building in the center appear as gaps in the
disparity map. In the filling procedure, the large size of the
gap in the datel data lead to the missing of this building in
the DSM (Fig. 3c).

B. Results and evaluation

The refined DS fusion model and PCR6 fusion model
have been applied to both datasets respectively. To show the
improvement obtained by our method, we have compared
its results with the original results we can obtain with the
method in [2]. Firstly, the global BBAs of #; are compared
and displayed in Fig. 4 below.

(a)

Fig. 4. Global Building change BBAs (a) Initial result; (b) Refined result;
(¢) Ground truth.

Fig. 4(a) corresponds to the original* result, and Fig. 4(b)
shows the refined result based on G (61). By comparing to the
ground truth (Fig. 4(c)), the improvements can be clearly ob-
served in the building boundary regions, especially the building
marked with a white circle. In the initial result, the pixels next
to this building are falsely detected as BuildingChange.

To evaluate quantitatively the performances of the different
fusion approaches, the extracted BBAs from both approaches
(original and refined) are compared to the manually extracted
change reference masks. The results are analyzed in terms of
Receiver Operating Characteristic (ROC) curve [16]. A larger
area under the ROC curve (AUC) indicates a better accuracy
of the building change map. The numerical evaluation results
are described in Table V. The obtained AUC values prove a
general improvement after reliability discounting is applied.

In addition to the AUC comparison, the building change
masks extracted from these four global BBAs sets are com-
pared and evaluated. Each global BBA set can generate four
building change masks based on these four decision criteria.

“4obtained without reliability discounting, as presented in [2].
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TABLE V. QUALITY COMPARISON OF GLOBAL BBA (BUILDING
CHANGE).
Test Region 1 Test Region 2
Original | Refined | Original | Refined
G || 09811 || 0.9833 || 0.9509 || 0.9950
Go || 0.9829 || 0.9839 || 0.9485 || 0.9931
Ga3 || 09815 || 0.9837 || 0.9512 || 0.9955
G4 || 0.9835 || 0.9844 || 0.9487 || 0.9939

These building change masks are compared with the masks
from paper [2] based on Kappa statistic (KA). The comparison
results of Test region 1 are shown in Table VI. Limited by the
reference data we can get, only the building change frame
is evaluated here. One sees the reliability discounting map
helps to improve the result accuracy in all fusion and decision
approaches.

In the second test region, there is actually no building
changes. The purpose of showing this test region is to further
prove the advantage of the extracted reliability map. Fig. 5
shows the extracted reliability discounting map of the height
changes. The windowsize we selected for this test region is
9 x 9. By using this reliability map, final fusion result of
G1(01) is achieved and shown in Fig. 6(a). As a comparison,
the G1(61) of the initial fusion model is displayed in Fig. 6(b).
This is the same building that we have discussed in paper
[1]. It can be noted in Fig. 3, this building exists in both
panchromatic images of two dates. However, only the DSM
from datel contains the correct height of this building. In Fig.
3c, this building can not be recognized. Therefore, a very high
BBA would be achieved in the height change indicator. A high
value in mq (.) leads to a high global BBAs in building changes
(as shown in Fig. 6(a)). Thus this building would be falsely
detected as building changes. However, after discounting this
region has much lower global BBAs (see Fig. 6(b)), and can
be further correctly detected as NoChange.

Fig. 5. Generated height change reliability map of the test region 2.

®) p———
0 1

Fig. 6. Global Building change BBAs (a) Initial result; (b) Refined result.
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TABLE VI CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS.
G1 Go G3 Gy
Original | Refined | Original | Refined | Original | Refined | Original | Refined
Max_Bel 0.9271 || 0.9324 || 0.9271 || 0.9324 || 0.9266 || 0.9322 || 0.9265 || 0.9321
Max_PI 0.9291 || 0.9342 || 0.9288 || 0.9339 || 0.9287 || 0.9339 || 0.9284 || 0.9336
Max_BetP || 0.9283 || 0.9335 || 0.9282 || 0.9334 || 0.9279 || 0.9333 || 0.9278 || 0.9333
Max_DSmP || 0.9281 || 0.9333 || 0.9280 || 0.9331 || 0.9278 || 0.9331 || 0.9276 || 0.9330
VI. CONCLUSIONS [7] J. Dezert, P. Wang, and A. Tchamova, “On the validity of Dempster-

Building change detection is a difficult topic, especially
when the building changes happen together with other ir-
relevant changes. Our previous research has evidenced the
performance of the belief functions in DSM assisted change
detection [2]. In this paper, the change detection accuracy is
further improved by adopting an additional reliability map.
Height has proved to be an important feature for building
change detection. However, the DSMs from satellite images
do not always provide reliable height information, due to the
occlusion and matching errors. The wrong height information
will thus bring false alarms to the change detection procedure.
Therefore, the original unfilled disparity maps are adopted to
generate an height change reliability map, which is further used
in the fusion models.

Our first experimental results have shown that this relia-
bility map can improve the quality of all four global BBAs,
and further influences the final change detection results from
four decision criteria. However, the two test regions were
quite small to draw a definitive conclusion that is why more
experiments will be performed on a wider variety of regions
with different types of backgrounds. A detailed statistical
analysis and comparisons of the results with other techniques
is under progress and they will be presented in a forthcoming
publication.

Generally speaking, both DST and DSmT frameworks offer
the possibility to reach a high accuracy result. The workflow
proposed in this paper enables an automatic building change
detection procedure. Other reliability maps from images would
be further adopted in future work. Furthermore, besides build-
ing changes, more change objects will be considered in the
fusion model.
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Abstract—This paper proposes a new generic object recog-
nition (GOR) method based on the multiple feature fusion of
2D and 3D SIFT (scale invariant feature transform) descriptors
drawn from 2D images and 3D point clouds. We also use
trained Support Vector Machine (SVM) classifiers to recognize
the objects from the result of the multiple feature fusion. We
analyze and evaluate different strategies for making this multiple
feature fusion applied to real open-datasets. Our results show
that this new GOR method has higher recognition rates than
classical methods, even if one has large intra-class variations,
or high inter-class similarities of the objects to recognize, which
demonstrates the potential interest of this new approach.

Keywords: generic object recognition, point cloud, 2D SIFT,
3D SIFT, Feature fusion, BoW, SVM, belief functions, PCR.

I. INTRODUCTION

Generic object recognition (GOR) in real environment plays
a significant role in computer vision and artificial intelli-
gence. It has important applications in intelligent monitoring,
robotics, medical image processing, etc [1]-[3]. Contrariwise
to specific object recognition', GOR is much more difficult
to accomplish. Mainly because the generic features of objects
which express the common properties in the same class and
help to make the difference between classes need to be found
out, instead of defining characteristics of particular category as
used in specific object recognition (SOR) methods. The current
main techniques for GOR are based on local feature extraction
algorithms on 2D images, typically the 2D SIFT (scale invari-
ant feature transform) descriptors [4], [5]. However, 2D images
lose the 3D information of the objects, and are susceptible
to change due to various external illumination conditions. To
solve this drawback, 3D SIFT descriptors based on volumes
[31, [6]-[10], and 3D descriptors based on point cloud model
[11]-[13] have been proposed recently by several researchers
because point cloud model of object is obtained from the depth
images which only depends on the geometry of the objects.
Such point cloud model has nothing to do with the brightness
and reflection features of the objects. That is the main reason
why we are also interested by these technique in this paper.
3D SIFT descriptors have been applied successfully in motion

such as face recognition [1] (SOR) where only certain objects or certain
categories need to be recognized, which can be accomplished by training mass
samples.
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recognition of consecutive video frames by Scovanner et al.
[6]. They show good performance in medical image processing
[3], [7]-[9] as well. Object recognition has also be done with
3D SIFT in complex Computed Tomography (CT) for airport
baggage inspection and security by Flitton et al. [10].

The object recognition algorithms based on single feature
only often generate erroneous object recognitions, specially
if there are big intra-class variations and some inter-class
high similarities, or if there exist important changes in pose
and appearance of objects. In these conditions, the use of a
single feature is insufficient to make a reliable recognition
and classification. To overcome this serious drawback, new
recognition algorithms based on multiple features and fusion
algorithms have been proposed recently in the literature [14]—
[17]. Compared with the recognition algorithm using single
feature only, the feature fusion algorithms combine multi-
ple features information which can improve substantially the
recognition rate.

In this paper, we propose a new method for GOR based on
feature fusion of 2D and 3D SIFT descriptors, which consists
of two main phases: 1) a training phase, and 2) a testing phase.
In the both phases, we consider two types of inputs:

1) The first type of input is a database with 3D point cloud
model representation of different objects from different
categories (classes). In this work, our database has been
just obtained from the web?. It is characterized by 3D
SIFT descriptors adapted (in this paper) for point cloud
— see the next section for details.

2) As second input, we use the same database with 2D
images including some objects that are characterized by
their 2D SIFT descriptors.

From these two inputs, the 2D and 3D SIFT feature
descriptors are transformed into the corresponding Bag of
Words (BoW) feature vector [18]. In the training phases,
these two BoW feature vectors (drawn from the 2D and 3D
SIFT) describing the object are used to train Support Vector
Machines (SVMs) [19] to get the prediction functions. After
this training phase, the system is used to recognize unknown
objects in the testing phase. These two BoW feature vectors

Zhttp://rgbd-dataset.cs.washington.edu/dataset.html
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describing the object are used to make the object recognition
in the testing phase. In this paper, we test:

1) the feature-level fusion strategy, where we combine
(fuse) directly the two BoW-based feature vectors and
we feed the trained SVM with the fused vector to get
the final recognition result.

2) the decision-level fusion strategy, where each of the
two BoW-based feature vectors feeds its corresponding
trained SVM to get the corresponding recognition re-
sult separately. Then we test different fusion rules to
combine these two recognition results to get the final
recognition result.

The paper is organized as follows. The recognition algo-
rithm is described in details in section II. Section III evaluates
the performances of this new method on real datasets. Con-
clusions with perspectives are given in section IV.

II. NEW GENERIC OBJECT RECOGNITION METHOD

This new method of object recognition consists in three
main steps (features extraction and representation, features
fusion, and classifier design) that we present in details in
this section. To achieve the good recognition of objects,
we propose to combine 2D scale-invariant feature transform
(2D SIFT) characterizing the object features, with 3D SIFT
(based on point clouds model). We need at first to recall the
principle of 2D SIFT [4], [5], and we explain improved 3D
SIFT descriptors applied in point cloud.

Step 1: Features extraction and representation

Feature extraction and representation are necessary for any
object recognition algorithm. In many situations the object
recognition task is very difficult because it is possible that
some (partial) similarities exist in different classes of objects,
as well as (partial) dissimilarities in the same class of objects.
So the feature extraction process must be done as efficient as
possible in order to help the recognition of objects by making
the difference between object classes biggest, and by making
the difference in the same class smallest. The objects need also
to be represented at a certain level of semantic, using limited
training objects to represent the class [2].

— 2D SIFT descriptor

In 1999, David Lowe [4] did present for the first time
a new method to extract keypoints of objects in images,
and to describe their local features that allows to make
generic object recognition, for example in computer vision
applications. His method has then been improved in [5], and
extended to 3D by other authors (see next paragraph). The
feature description of the object drawn from a training image
is then used to identify the presence (if any) of the object
in real (usually cluttered) observed scene. To get good object
recognition performances, Lowe proposed a (2D) SIFT (scale-
invariant feature transform) that warranties that the features
extracted (i.e. the key-points) from the training image are
detectable under changes in image orientation, scale, noise

and illumination, and even if partial object occlusions occur
in the observed scene. Lowe’s SIFT feature descriptor is
invariant to uniform scaling, orientation, and partially invariant
to illumination changes and robust to local geometric (affine)
distortion. The stable key-points locations of SIFT are given
by the detection of scale-space extrema in the Difference-of-
Gaussian (DoG) function D(x, y, o) convolved with the image
I(z,y). More precisely, one defines [5]

D({L‘,y70') éL($7y,kU)—L($,y,J), (1)

where L(z,y,ko) £ G(z,y,ko) * I(x,y) and L(x,y,0) =
G(z,y,0) = I(x,y) are Gaussian-blurred images at nearby
scale-space o separated by a constant multiplicative factor’
k, and where x is the convolution operator and G(x,y, o) is
the centered Gaussian kernel defined by

G(z,y,0) & Lef(fﬂf)/?d?_ )
2mo?

The local extreme points of D(z,y,0) functions (DoG
images) define the set of keypoint candidates (the SIFT
descriptor). To detect the keypoints, each sample point (pixel)
is compared to its eight neighbors in the current image and
its nine neighbors in the scale below and above. The sample
point under test is considered as a keypoint (local extrema) if
its value is larger (or smaller) than all of its 26 neighbors. The
localization of a candidate keypoint is done by the 2nd-order
Taylor expansion of the DoG scale-space function D(z,y, o)
with the candidate keypoint taken as the origin [5]. However
in general there are too many candidate keypoints and we need
to identify and remove the bad candidates that have too low
contrast*, or are poorly localized along an edge. For doing this,
a contrast thresholding is applied on D(x,y, o) to eliminate
all the candidate keypoints below a chosen’ threshold value 7.
To eliminate the candidate keypoints that are poorly localized
along an edge, Lowe [5] uses a thresholding method based on
the ratio of the eigenvalues of the Hessian matrix H of the
DoG function, because for poorly defined extrema in the DoG
function the principal curvature across the edge would be much
larger than the principal curvature along it. More precisely, if
the ratio 7r(H)?/Det(H) > (r¢,+1)? /14, then the candidate
keypoint is rejected. Here, 1, is a chosen threshold value of
the ratio between the largest magnitude eigenvalue of H and
the smaller one®.

Once all the keypoints are determined, one must assign
a consistent orientation based on local image properties,
from which the keypoint descriptor can be represented, hence
achieving invariance to image rotation. For this, the scale of
the keypoint is used to choose the Gaussian-blurred image
L with the closest scale. The keypoint descriptor is created
by computing at first the gradient magnitude m(x,y) and its

3The choice for k = 21/5 is justified by Lowe in [4], where s is an integer
number of intervals

“because they are sensitive to noise.
SWe have chosen 7 = 0.02 in our simulations.
6In [5], Lowe takes 75, = 10.
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orientation 6(x,y) at each pixel (z,y) in the region around
the keypoint in this Gaussian-blurred image L as follows [5]

— /12 2
O(x,y) = tan™! (74),

with L, & L(x + 1,y) — L(z — 1,y) and L, = L(z,y +
1) = L(z,y — 1). In [5], a set of orientation histograms is
created on 4x4 pixel neighborhoods with 8 directions (bins)
each. These histograms are computed from magnitude and
orientation values of samples in a 16 x 16 region around
the keypoint such that each histogram contains samples from
a 4 x 4 subregion of the original neighborhood region. The
magnitudes are weighted by a Gaussian function with o equal
to one half the width of the descriptor window. The descriptor
then becomes a 128-dimensional feature vector because there
are 4x4 = 16 histograms each with 8 directions. This vector is
then normalized to unit length in order to enhance invariance
to affine changes in illumination. Also a threshold of 0.2 is
applied to reduce the effects of non-linear illumination, and the
vector is again normalized. The figure 1 shows an example of
4 x 4 keypoint descriptor, where the space delimited by the
purple ellipse is the neighborhood under consideration.
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N
/s
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4x4 Keypoint descriptor
(128 features)

Image gradient

Fig. 1: A 4 x 4 Keypoint descriptor (Credit: J. Hurrelmann).

The simplest method to find the best candidate match
for each keypoint would consist in identifying its nearest’
neighbor in the database of key points from training images.
Unfortunately, SIFT-based keypoint matching requires more
sophisticate methods because many features from an image
will not have any correct match in the training database
because of background clutter in observed scene and because
of possible missing features in training images, see [5] for
details. SIFT method is patented by the University of Bristish
Columbia (US Patent 6,711,293 — March 23, 2004) and a demo
is available in [20]. Open SIFT codes can be found on the web,
for example in [21].

— 3D SIFT descriptor

The previous 2D SIFT descriptor working with pixels has
been extended to 3D using volumes in different manners by
different authors [3], [6]-[10]. In this paper, we adapt the
3D SIFT for point cloud inspired by [6], [13]. But all the
methods require same functional steps as for 2D SIFT, that

Tbased on Euclidean distance metric.

is 1) Keypoints detection; 2) Key points orientation; and 3)
Descriptor representation. We present these steps in detail in
the next subsections.

1) Keypoint detection

The scale space of a 3D input point cloud is defined as a 4D
function L(z,y,2,0) = G(x,y,2,ko) * P(xz,y,z) obtained
by the convolution of a 3D variable-scale centered Gaussian
kernel G(x,y, z,0), with the input point P(z,y, z), where

_
( 27TO')3

Extending Lowe’s approach [5], scale-space o is separated by
a constant multiplicative factor k, and the candidate keypoints
in 4D scale space are taken as the local extrema (maxima or
minima) of the multi-scale DoG defined for 7 € [0, s + 2] by

G(z,y,2,0) = e (Pt 207 gy

D(z,y,z,k'o) = L(z,y, 2, k' o) — L(2,y,2,k'0).  (5)

To find extrema of the multi-scale DoG function, each
sample point is compared to its 27 + 26 + 27 = 80 neighbors,
where 26 neighbors belong to the current scale, and each
27 neighbors in the scale above and below. A keypoint is
chosen only if it is larger than all of its neighbors or smaller
than all of them. To eliminate the bad candidate keypoints
having low contrast, one uses a thresholding method to re-
move the erroneous points. A contrast threshold is applied on
D(z,y, 2, k'o) to eliminate all the candidate keypoints below
a chosen® threshold value 7.

2) Keypoint orientations

Similarly to 2D SIFT, once all the keypoints are determined
in 3D, one must assign a consistent orientation based on local
points properties, from which the keypoint descriptor can be
represented, hence achieving invariance to object rotation. For
this, The two-dimensional histogram is calculated by gathering
statistics of the angles between the neighboring points and
their center. The keypoint descriptor is created by computing
at first the vector magnitude m(z,y, z) and its orientations
0(x,y,z) (azimuth angle) and ¢(z,y,z) (elevation angle)
between each point (x,y, z) in the region around the keypoint
and their center (., ., z.) as follows’

m(x,y,z) = \/(ZL’ - xc)Q + (y - yc)2 + (Z - 26)27
O(z,y,2) =tan™" ((y —yc)/(z — xc)), (6)
$(x,y,2)  =sin~" ((z - z)/m(z,y,2)).

In 3D point cloud, each point has two values which represent
the direction of the region, whereas in 2D case each pixel had
only one direction of the gradient.

Extending Lowe’s approach in 3D case, in order to find the
keypoint orientations we construct a weighted histogram for

8We have chosen 7 = 0.5 in our simulations.

In Eq.(6), 8 and ¢ refer to the original coordinate system. In the paragraph
“Descriptor representation” on p. 4, they refer to the rotated coordinate system.
(¢, Ye, zc) is not same as (xp, Yp, 2p). The former refers to the center of
the keypointOs r-points neighborhood. The latter refers to the keypoint.
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the 3D neighborhood around each candidate keypoint. There
are different ways for doing this. In this work, a 2D-histogram
is produced by grouping the angles in bins which divide 6 and
¢ into 10 deg angular bins. A regional Gaussian weighting of
e~ (2d/Rumax)” for the points whose magnitude is d is applied to
the histogram, where R,,.x represents the max distance from
the center. The sample points at a distance greater than R, ax
are ignored. The histogram is smoothed using a Gaussian filter
to limit the effect of noise. The dominant azimuth o and
elevation § of the keypoint are determined by the peaks of
the 2D-histogram. In order to enhance robustness, peaks in
the histogram within 80% of the largest peak are also retained
as possible secondary orientations.

3) Descriptor representation

Each keypoint p is described by its location p £
[%p, Yp, 2p]', scale oy, and orientation angles ay, and 3,. The
descriptor representation associated with a keypoint p is based
on the local spatial characteristics around it to describe its
features. To ensure rotation invariance of the descriptor, the r-
points p; (i = 1,...,r) of coordinates p; = [x;,¥;, ;]! around
the keypoint of interest p are at first transformed (rotated) in
the dominant orientation of p by the following transformation

cosapcos B, —sina, —cosa,sinf,
p; = |sinaycosB, cosa, —sinaysing, | -pi. (7)
sin 3, 0 cos Bp

Then the vector n at the key point which is normal to the
surface of the r-points neighborhood is calculated according
to the routine available in the open Point Cloud Library (PCL)
[22]. For each (rotated) point p} (i = 1,...,r) in the r-points
neighborhood of the (rotated) keypoint p’, we calculate the
vector p’p} and the magnitude m and angles 6 and ¢ according
to Eq. (6). The angle ¢ between n and p’p) is given by

p'p;-n )
Ip'pil - In|

Therefore, a keypoint p’ with its neighbor p} is represented
by the 4-tuple (m, 6, ¢, ). To reduce the computational time,
instead of dividing the neighborhood into n X n X n subregions
(with n = 4 as in Lowe’s 2D SIFT descriptor), we take directly
the entire neighborhood, which means that we have n = 1. The
histogram used to generate the 3D descriptor at the keypoint
p’ is derived by splitting (6, ¢, §) space into 45 deg bins, and
adding up the number of points with the Gaussian weighting
of e~ (2m/Rmax)* Qo the dimension of our 3D SIFT descriptor
ismxnxnx4x4x8=128 (as for the 2D SIFT descriptor
described previously), because n = 1; the azimuth angle § €
[0,360] deg which is split into 8 bins of 45 deg; the elevation
angle ¢ € [—90,90] deg which is split into 4 bins of 45 deg;
and ¢ € [0, 180] deg which is also split into 4 bins of 45 deg.
Each 3D SIFT descriptor is normalized to unity.

The 2D and 3D SIFT descriptors summarize efficiently the
useful information contained in 2D and 3D images. Instead
of working directly with whole images, it is usually more
interesting (in terms of computational burden reduction) to

8 =cos™ ! (

®)

work directly with 2D and 3D SIFT descriptors, specially if
real-time object recognition is necessary. Generally, the objects
characterized by 2D and 3D SIFT descriptors have different
number of keypoints which makes the feature fusion (FF)
problem for object recognition very challenging. For example,
for a simple object like an apple, we can get 45 keypoints
using 3D SIFT descriptor, and 38 keypoints using 2D SIFT
descriptor. To overcome this problem, we adopt the Bag of
Words (BoW) model [18] to gather the statistics of the 2D
and 3D SIFT descriptors to describe the objects.

— BoW model for features vector

In the BoW feature model, the feature descriptors of all
the interest points are quantized by clustering them into a
pre-specified!® number of clusters. Instead of using k-means
algorithm as in [2], we use the k-means++ method [23] which
selects more effectively the initial cluster centers to complete
this step. The resultant cluster centers are now called visual
words, while the collection of these cluster centers is referred
to as the visual word vocabulary. Once our vocabulary is
computed, the descriptors are matched to each visual word
based on the Euclidean distance and the frequency of the
visual words in image and in point cloud is accumulated into
a histogram, which is the BoW feature vector of the image
and of the point cloud. So each object in 2D image and in
3D point cloud is described by a 1 x 300 BoW-based feature
vector denoted respectively BoWsp and BoW 3p. These two
BoW-based feature vectors will be used for feeding the trained
SVM classifiers to get the final object recognition.

Step 2: Classifier design

Once the object description is completed, SVMs are trained
to learn objects categories and to perform the object clas-
sification. SVM is a supervised and discriminative machine
learning method providing usually good performance. Through
offline training of pre-limited samples, we seek a compromise
between model complexity and learning ability, to get a
good discriminant function [19]. Linear SVM classifier is
applied for its efficiency and it is a typical classifier for
two categories problems. In many real-life applications, we
are face to multi-category classification problems and we use
trained 1V1 SVMs between classes to set up a multi-category
classifier. The training process is done as follows: for training
samples belonging to the ith category, we make a pairwise
SVM training with respect to all the other classes. So, we get
C2 = n(n —1)/2 1V1 SVM classifiers for training samples
of n categories.

Step 3: Features fusion strategies

When the two BoW-based features vectors of the object to
recognize have been computed from 2D and 3D SIFT descrip-
tors, we have to use them to achieve the object recognition
thanks to the trained SVMs from the BoW-based features
vectors of known objects of our data base. In this paper, we

100 our simulations, we took K = 300.
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present briefly the following different strategies that we have
tested:

1) The direct feature-level fusion strategy: this feature-level
fusion is for feeding SVM classifiers in training phase
and then making object recognition. With this strategy
we combine (fuse) directly the two BoW-based feature
vectors BoWsp and BoW;p, and we feed the trained
(global) SVM classifiers with the fused vector to get the
final recognition. The principle of our method based on
this strategy is summarized in Fig 2.

3D SIFT, BoW
Feature

Point Feature
cloud description vector
2D SIFT, BoW
|mage Feature Feature
s description vector
Voting
Multi trained 1V1 SVMs }—b{ P(i) }—b Recognition result

Fig. 2: Direct feature-level fusion strategy.

Feature-
level
fusion

Object to be Object
recognized description

2) The decision-level fusion strategy: each BoW-based
feature vector BoWs,p and BoWj3p feeds a spe-
cific trained SVM to get separately the corresponding
recognition result. Then we test different fusion rules
to combine these two recognition results to get the
final fusioned recognition result. In this work we have
evaluated the performances of the following rules:

« Average weighted fusion rule,
o PCR6 fusion rule of DSmT [24],
e Murphy’s rule of combination [26].

The principle of our method based on this strategy is
summarized in Fig 3.

Point
cloud

3DSIFT

Feature Object

BoW
description description
Feature Bow Object
description description

Decision-level fusion

Object to be
recognized

Multi trained X
1V1 SVMs P(i)_30
Multi trained
1V1 SVMs P20

Fig. 3: Decision-level fusion strategy.

Recognition

Voting result

1) The direct feature-level fusion strategy

This strategy consists of the following steps:

1-a) For any object to classify, we extract its 2D and 3D
SIFT descriptors associated with each keypoint. So we
get Nop 2D SIFT descriptors of size 1 x 128 if one has
extracted Nop keypoints from the 2D image under test,
and we get Nsp 3D SIFT descriptors of size 1 x 128
if one has extracted N3p keypoints from the 3D point
cloud under test.

From the Nyp 2D SIFT descriptors of size 1 x 128, we
compute 1 x 300 BoW feature vectors BoWsp, and
from the N3p 3D SIFT descriptors of size 1 x 128, we

1-b)

compute 1 x 300 BoW feature vectors BoWsp thanks
to the BoW model representation [18].

The direct feature-level fusion is done by stack-
ing the BoW-based feature vectors BoW,p and
BoW;p to get a 1 x 600 vector BoWapsp =
[BOWQD, B0W3D].

The feature-level fused vector BoWgp 3p is fed in all
1vl trained SVMs to get the corresponding discriminant
results. The probability P(i) of the object to belong to
the category ¢; (1 = 1,2,...,n) is estimated by voting.
The object is associated to the category (or class) having
the largest probability, that is:

1-¢)

1-d)

1-e)

Class(Object) = arg Jmax {P(i)}. )

2) The decision-level fusion strategy

As stated before, with this strategy each BoW-based feature
vector BoWsyp and BoW;p feeds a specific trained SVM
to get separately the corresponding recognition result. Then
different fusion rules can be used to combine these two
recognition results to get the final fusionned recognition result.

2-a) The average weighted fusion rule: This very simple
rule consists of a voting procedure. The BoWsp and
BoW3p vectors feed separately all corresponding 1v1
trained SVMs to get the discriminant results, and we
compute the corresponding number of votes voteli] for
each class ¢;, i = 1,2,...,n. We will denote votesp|i]
the distribution of votes drawn from 2D SIFT, and
votesp[i] the distribution of votes drawn from 3D SIFT.
The probability P>p (i) of the object to belong to the
class ¢; based on 2D SIFT descriptors is estimated
by Pap(i) = voteapli]/ >°]_; votespli], similarly we
have P3p(i) = wvotespli]/ > |_, votesp[i]. Then the
voting results drawn from SVMs feeded with 2D and
3D SIFT are averaged to obtain the fusion result.
PCR6 combination rule: The BBA (Basic Belief As-
signment) m;(.) and mg(.) are built from the empirical
probability obtained by voting procedure described in 2-
a). The elements of the frame of discernment © are the
n different classes ¢y, ca, ..., ¢,,. To get the final result,
the BBA’s m(.) and my(.) are fused using the PCR6
combination rule'! [24], defined by mpcre(f)) = 0 and
for all X # () in 29,

2-b)

mpcre(X) & Y mi(X1)ma(Xa)+

ml(;;)zj;;((y) ma(X)?*my (V)

(10)

'pCR6 formula coincides with the formula of PCRS fusion rule here
because one considers only two BBA’s to combine. If more than two BBA’s
have to be fused altogether, we advise to use PCR6 rather than PCRS - see
[25] for a theoretical justification.
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where all denominators in Eq.(10) are different from
zero. If a denominator is zero, that fraction is discarded.
All propositions/sets are in a canonical form.
Murphy’s rule: Taking the feature-level fusion of 2D
and 3D SIFT as a separate feature, together with the 2D
and 3D SIFT, there are three features. Then the BBA
m1(.), ma(.) and ms(.) are built from the empirical
probability obtained by the voting procedure. The vote
results of the features are combined based on the Mur-
phy rule'? [26].

2-¢)

III. SIMULATION RESULTS
A. The experimental setup

We evaluate the recognition algorithm on a large-scale
multi-view object dataset collected using an RGB-D camera
[27]. This dataset contains color, depth images and point
clouds of 300 physically distinct everyday objects taken from
different viewpoints. The objects belong to one of 51 cate-
gories and contain three viewpoints. To test the recognition
ability of our features, we test category recognition on objects
that were not present in the training set. At each trial, we
randomly choose one test object from each category and train
classifiers on the remaining objects. We randomly choose 100
training samples and 60 test samples for each category. The
object recognition rate (ORR) is calculated by

ORR = n,/N. (11)

where n, is the number of objects correctly recognized, and
N is the total number of test samples.

B. Experiment results and analysis

B.1 Accuracy of our 3D SIFT descriptor

In this simulation, we choose six categories with significant
intra-class variations and high inter-class similarities. The
objects to recognize are apple, tomato, banana, pitcher,
cereal_box, and kleenex. The Point Feature Histogram (PFH)
[11] and PFHRGB methods in open PCL [22] outperform the
existed 3D features based on point clouds [28]. In order to
verify the advantages of the proposed 3D SIFT for GOR, we
compare these tree feature descriptors under the same condi-
tions. Keypoints are detected using SIFTKeypoint module in
open PCL [22] for each feature descriptors. Then the vectors
of different feature descriptors of the keypoints are calculated.
The object recognition rates (ORR) that we get are shown in
Table I.

Type of feature descriptor ORR (in %)
PFH based on [11] 81.39
PFHRGB based on [22] 84.17
3D SIFT based on this paper 91.11

TABLE I: Object recognition rates (ORR) of three descriptors.

The PFHRGB descriptor is an improved PFH feature de-
scriptor enriched with color information which allows to im-
proves object recognition rate. As shown in Table 1, compared

12Because results of the fusion with Dempster’s rule are very close to results
with Murphy’s rule in our applications, we do not report them in our analysis.

with PFH and PFHRGB, the object recognition rate we get
with our 3D SIFT descriptor adapted for point cloud gains
6.94% w.r.t. PFHRGB and 9.72% w.r.t PFH.

B.2 Performances of feature fusion strategies

Here, we evaluate the performance (i.e. the ORR) of
the different features fusion strategies presented in Sec-
tion II (Step 3). We have chosen 10 categories (apple,
tomato, banana, pitcher, cereal_box, kleenex, camera,
cof fee_mug, calculator, cell_phone) having significant
intra-class variations and high inter-class similarities. We com-
pare our four fusion approaches: the direct feature-level fusion
and the three decision-level fusions (by average weighted
fusion, PCR6, and Murphy’s rule). The results are shown in
Fig. 4.
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Fig. 4: Performances of the four feature fusion strategies.

where the legend of curves of Fig.4 must be read as follows:
DSmT means PCR6 rule in fact, 2D+3D SIFT means the
direct feature-level fusion of 2D and 3D SIFT, and ave means
the average weighted feature fusion rule. The horizontal axis
represents the total number of categories that we have tested.
Due to the variability of the objects, the information provided
by a single feature is too imprecise, uncertain and incomplete
for getting good ORR. As shown in Fig.4, ORR obtained with
the different feature fusion strategies are better than the ORR
obtained with the best single descriptor. The results of average
weighted fusion and PCR6 are close, but are lower than the
other two fusion methods. Feature-level fusion of 2D and 3D
SIFT is taken as the third feature for Murphy’s rule. However,
compared with the feature-level fusion, the performances of
Murphy’s rule do not improve. So, the direct feature-level
fusion performs best among these fusion strategies, and the
following experiments are completed based on the direct
feature-level fusion. One clearly sees that 3D SIFT proposed
in this work significantly outperforms 2D SIFT and PFHRGB
descriptors for GOR. As shown in Fig.4, ORR decreases
with the increasing of the number of categories because of
the design of the multi-category classifier which consists of
many 1V1 SVM classifiers. Each classification error will be
accumulated to the final voting results, leading to an increasing
of recognition errors.
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B.3 Robustness to intra-class variation and inter-class
similarities

In this study, we compare the ORR performances in dif-
ferent classes having high similarity (e.g., apple and tomato),
and in the same class but having strong variation (e.g., pitcher
object) as in Figs. 5 and 6 below. We evaluate the accuracy

e & ‘

Fig. 6: Pitchers.

Fig. 5: Apple and Tomato.

of PFHRGB, 2D SIFT, 3D SIFT and the feature-level fusion
of 2D and 3D SIFT under the same conditions. Training and
testing samples are the same as in the first experiment. Our
simulation results are shown in Table II.

Feature descriptor | PFHRGB | 2D SIFT | 3D SIFT | 2D+3D SIFT
ORR(apple) 61.67 53.33 71.67 65.00
ORR(tomato) 100 98.33 91.67 100
ORR(banana) 91.67 93.33 93.33 100
ORR(pitcher) 70.00 95.00 96.67 98.33
ORR(cereal_box) 91.67 98.33 95.00 95.00
ORR (kleenex) 90.00 90.00 100 100
Averaged ORR 84.17 88.06 91.11 93.06
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Fig. 7: ORR Performances under 3 angles of view.

and robust for category recognition even under very distinct
angles of view.

B.5 Robustness to size scaling

The training samples are the same as in the first experiment.
To evaluate the robustness of our method to size scaling
(zooming), the test samples are zoomed out to 1/2, 1/3 and
1/4. As shown in Table III.

TABLE II: ORR (in %) of different classes.

As we see from Table II, using 3D SIFT increases the ORR
of 3.05% w.r.t. 2D SIFT. This shows that the introduction of
the depth information improve the quality of object recogni-
tion. Three different objects of the pitcher class are shown
in Figure 6. As we see, there are great differences within
such class. 3D SIFT achieves ORR with 96.67% accuracy,
much superior to the 70% obtained with PFHRGB. Apple and
tomato displayed in Figure 5 look highly similar even if they
belong to two distinct classes. 3D SIFT provides much better
ORR than the other descriptors. As shown in Table II, our
GOR method based on feature-level fusion of 2D and 3D SIFT
offer better robustness to intra-class variations and inter-class
similarities, and 3D SIFT gives higher accuracy than the other
single descriptors.

B.4 Robustness to changes of the angle of view

In this experiment, we evaluate the performance of our GOR
method when applied under different observation conditions,
more precisely when the objects are observed under three very
distinct angles of view (30 deg, 45 deg and 60 deg).Training
samples are the same as the Experiment 1. Randomly select
60 objects from each view to be as the test samples. So for
each view, there are 360 test samples from 6 categories. The
experimental results are shown in Fig. 7.

From Fig. 7, one sees that ORR with 3D SIFT is relatively
accurate and stable compared with PFHRGB descriptor. The
direct feature-level fusion strategy (with ORR > 90%) offers
much better ORR than using the best single descriptor, which
indicates that the combination of 2D and 3D SIFT is effective

Feature descriptor PFHRGB | 2D SIFT | 3D SIFT | 2D+3D SIFT
ORR (no Zoom) 84.17 88.06 91.11 93.06
ORR (Zoom=1/2) 74.44 77.50 76.67 82.78
ORR (Zoom=1/3) 63.33 64.17 65.28 68.89
ORR (Zoom=1/4) 61.39 46.94 61.67 63.05

TABLE III: Averaged ORR (in %) for different zoomings.

As one sees in Table III, our GOR method with fusion is
superior to the algorithm based on single descriptor. However,
the ORR of each feature descriptor has decreased. Especially
when zoomed to 1/4, the accuracy of ORR with 2D SIFT is
only 46.94%. The main reason is that part of the images, such
as apple (whose original size is only 84 x 82) after scaling,
reduces the number of useful keypoints. The feature-level
fusion algorithm still provides an averaged ORR of 63.05%.

B.6 Computational time evaluation

The computational times (CT) of the different feature de-
scriptors have been evaluated with an i7-3770@3.4GHz CPU,
under x64 Win7 operating system and are shown in Table
IV. The training and test samples are the same as in the first
experiment. Because the Point cloud model contains a larger
amount of data and richer information than image, therefore
CT using point cloud is relatively long, which is normal. The
largest proportion of CT in the whole recognition process
is the feature extraction and description. 3D SIFT includes
keypoints detection and description. If the points’ number of
the object is n, the time complexity of keypoints detection is
O(octaves- scale - k-n). Because the pyramid layers octaves,
scale of each layer scale and neighborhood of key points &
are constant, the time complexity is O(n). For the detected m
keypoints, the time complexity of calculating the descriptors
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of the key points is O(mn). So the time complexity of 3D
SIFT is O(mn + n), ignoring lower-order item, the time
complexity is O(mn). As seen in Table IV, the CT of 3D
SIFT has diminished of 34.75% w.r.t. PFHRGB, and the CT
performance with fusion of 2D and 3D SIFT turns out to be
faster (22.07%) than PFHRGB, and the ORR performance is
substantially improved.

Feature descriptors CT of CT of

360 test samples (in s) | each test sample (in s)
PFHRGB 3404.628 9.4573
3D SIFT 2221.608 6.1711
2D+3D SIFT 2653.272 7.3702

TABLE IV: Computational times for feature descriptors.

IV. CONCLUSIONS

Because there are many complex objects in the real scenes
we observe in the nature and because of possible large intra-
class variations and high inter-class similarities, the generic
object recognition (GOR) task is very hard to achieve in
general. In this paper we have proposed a new GOR method
based on 2D and 3D SIFT descriptors that allows to calculate
multiple feature vectors which are combined with different
strategies, and feed SVM classifier for making object recog-
nition. The evaluation of the performances based on real
open-datasets has shown the superiority of our new 3D SIFT
descriptor adapted for point cloud with respect to the existing
3D features such as PFHRGB. Our GOR method based on
feature fusion of 2D and 3D SIFT works better than the
one using best single feature. For now, if the environment
substantially changes, we have to retrain the system. To
overcome this problem we will also consider background
segmentation within GOR in future works. Also, we would like
to reduce the computational time needed for feature extraction
and description in maintaining good recognition rate, and we
want to explore more feature fusion strategies to improve (if
possible) the recognition performances.
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Abstract—In this paper, we present a method to estimate the
quality (trustfulness) of the solutions of the classical optimal
data association (DA) problem associated with a given source of
information (also called a criterion). We also present a method to
solve the multi-criteria DA problem and to estimate the quality of
its solution. Our approach is new and mixes classical algorithms
(typically Murty’s approach coupled with Auction) for the search
of the best and the second best DA solutions, and belief functions
(BF) with PCR6 (Proportional Conflict Redistribution rule #
6) combination rule drawn from DSmT (Dezert-Smarandache
Theory) to establish the quality matrix of the global optimal
DA solution. In order to take into account the importances of
criteria in the fusion process, we use weighting factors which
can be derived by different manners (ad-hoc choice, quality of
each local DA solution, or inspired by Saaty’s Analytic Hierarchy
Process (AHP)). A simple complete example is provided to show
how our method works and for helping the reader to verify by
him or herself the validity of our results.

Keywords: Data association, Multi-criteria analysis, belief
functions, PCR6, DSmT.

I. INTRODUCTION

Efficient algorithms for modern multisensor-multitarget
tracking (MS-MTT) systems [1], [2] require to estimate and
predict the states (position, velocity, etc) of the targets evolving
in the surveillance area covered by a set of sensors. These
estimation and prediction are based on sensors measurements
and dynamical models assumptions. In the monosensor con-
text, MTT requires classicallyto solve the data association
(DA) problem to associate the available measurements at a
given time with the predicted states of the targets to update
their tracks using filtering techniques (Kalman filter, Particle
filter, etc). In the multisensor MTT context, we need to solve
more difficult multi-dimensional assignment problems under
constraints. Fortunately, efficient algorithms have been devel-
oped in the operational research and tracking communities for
formalizing and solving these optimal assignments problems
(see the related references detailed in the sequel).

Before going further, it is necessary to recall briefly the basis
of DA problem and the methods to solve it. This problem
can be formulated as follows: We have m > 1 targets T;
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(i=1,...,m), and n > 1 measurements' z; (j =1,...,n)
at a given time k, and a m x n rewards (gain/payoff) matrix
Q = [w(i,j)] whose elements w(i,j) > 0 represent the

payoff (usually homogeneous to the likelihood) of the asso-
ciation of target 7; with measurement z;, denoted (73, z;).
The data association problem consists in finding the global
optimal assignment of the targets with some measurements by
maximizing? the overall gain in such a way that no more than
one target is assigned to a measurement, and reciprocally.

Without loss of generality, we can assume w(i,j) >0
because if some elements w(i,j) of 2 were negative, we
can always add the constant value® to all elements of € to
work with a new payoff matrix Q' = [w/(7,7)] having all
elements w’(i,7) > 0, and we get same optimal assignment
solution with € and with €’. Moreover, we can also assume
without loss of generality m < n because otherwise we can
always swap the roles of targets and measurements in the
mathematical problem definition by working directly with
Q! instead, where the superscript ¢ denotes the transposition
of the matrix. The optimal assignment problem consists of
finding the m x n binary association matrix A = [a(i,])]
which maximizes the global rewards

R(Q,A) £ > w(i,j)ali, ), 1)
i=1 j=1
dSiai,j) =1 (i=1,....,m),
subject to Yitia(i,j) <1 (j=1,....,n), (2)

a(i,j) € {0,1}.

The association indicator value a(i,7) =1 means that
the corresponding target 7; and measurement z; are asso-
ciated, and a(7,j) = 0 means that they are not associated
G=1,....,mand j=1,...,n).

'In a multi-sensor context targets can be replaced by tracks provided by
a given tracker associated with a type of sensor, and measurements can be
replaced by another tracks set. In different contexts, possible equivalents are
assigning personnel to jobs or assigning delivery trucks to locations.

2In some problems, the matrix € = [w(i,j)] represents a cost matrix
whose elements are the negative log-likelihood of association hypotheses. In
this case, the data association problems consists in finding the best assignment
that minimizes the overall cost.

3equals to the absolute value of the minimum of 2.



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

The solution of the optimal assignment problem stated in
(1)-(2) is well reported in the literature and several efficient
methods have been developed in the operational research
and tracking communities to solve it. The most well-known
algorithms are Kuhn-Munkres (or Hungarian) algorithm [3],
[4] and its extension to rectangular matrices proposed by
Bourgeois and Lassalle in [5], Jonker-Volgenant method [6],
and Auction [7]. More sophisticated methods using Murty’s
method [8], and some variants [9], [10], [11], [12], [13], [14],
[15], are also able to provide not only the best assignment, but
also the m-best assignments. We will not present in details all
these classical methods because they have been already well
reported in the literature [16], [17].

The purpose of this paper is to propose a solution for
two important problems related with the aforementioned Data
Association issue:

e Problem 1 (mono-criterion): Suppose that the DA reward
€2, has been established based on a unique criterion C; then
we want to evaluate the quality* of each association (pairing)
provided in the optimal solution by one of the aforementioned
algorithms. The choice of the algorithm does not matter as
soon as they are able to provide the optimal DA solution
represented by a binary matrix A; (assumed to be unique
here for convenience). So based on €£2; and A, we want to
estimate the quality matrix Q; of the optimal pairing solutions
given in Aj. This quality matrix will be useful to select
optimal association pairings that have sufficient quality to be
used to update the tracking filters, and not to use the optimal
data associations that have a poor quality, which will save
computational time and avoid to potentially degrade tracking
performances.

e Problem 2 (multi-criteria): We assume that we have
different Rewards matrices €21,..., Qg (K > 1), established
from different criteria from which we can draw optimal DA
solutions Aj,..., Ax with their corresponding quality ma-
trices Q1, ..., Qi (obtained by the method used for solving
Problem 1). We assume that each criterion Cy, k =1,..., K
has its own importance with respect to the others which is
expressed either by a given relative importance K x K matrix
M, or directly by a weighting M x 1 vector w. The problem
2 consists in finding the optimal (i.e. the one generating the
best global quality) DA solution based on all information
drawn from the independent multiple criteria we have, that
is from Qq, ..., Qx and M (or w) in a well-justified and
comprehensive manner.

This paper is organized as follows: in section 2 we present
a method for solving problem 1 which uses both Ist-best and
2nd-best DA solutions provided by Murty’s algorithm. Our
method is based on Belief Functions (BF), the Proportional
Conflict Redistribution fusion rule #6 (PCR6) developed in
Dezert-Smarandache Theory (DSmT) framework [19], and the
pignistic probability transform. Section 3, proposes a solution

“In this paper, the quality of a pairing of the optimal DA solution refers to
a confidence score which corresponds to a degree of trustfulness one grants
to this pairing for taking the decision to use it, or not.

for Problem 2 exploiting Saaty’s AHP method, BF and also
Murty’s algorithm. Section 4 presents a full simple detailed
example to show how the method works for readers who want
to check by themselves our results. Section 5 will conclude
this paper with perspectives.

II. SOLUTION OF PROBLEM 1 (MONO-CRITERION)

This solution has already been addressed in details in [21]
and we will just briefly present here the main ideas for making
this paper self containing. In problem 1, we want to establish
a confidence level (i.e. a quality indicator) of the pairings of
the optimal data association solution. More precisely, we are
searching for an answer to the question: how to measure the
quality of the pairings a(i,j) =1 provided in the optimal
assignment solution A? The necessity to establish a quality
indicator is motivated by the following three main practical
reasons:

1) In some practical tracking environment with the
presence of clutter, some association decisions
(a(i,j)=1) are doubtful. For these unreliable

associations, it is better to wait for new information
(measurements) instead of applying the hard data
association decision, and making potentially serious
association mistakes.

2) In some multisensor systems, it can be also important
to save energy consumption for preserving a high
autonomy of the system. For this goal, only the most
trustful specific associations provided in the optimal
assignment have to be used instead of all of them.

3) The best optimal assignment solution is not necessarily
unique. In such situation, the establishment of quality
indicators may help in selecting one particular optimal
assignment solution among multiple possible choices.

It is worth noting that the Ist-best, as well as the 2nd-
best, optimal assignment solutions are unfortunately not nec-
essarily unique. Therefore, we need to take into account
the possible multiplicity of assignments in the analysis of
the problem. The multiplicity index of the best optimal as-
signment solution is denoted (5 > 1, and the multiplicity
index of the 2nd-best optimal assignment solution is denoted
B2 > 1, and we will denote the sets of corresponding as-
signment matrices by A; = {Agkl), kiy=1...,51} and by
As = {Ag”)7 ko =1...,52}. Here are three simple examples

with different multiplicities in solutions:
Example 1: If we take 2 = 2 zl)) g , then 87 = 2 and

B2 = 1 because the Ist best and 2nd best DA solutions are

[t oo L 0o 00 1
S R e R RS
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14 1,thenﬁlzland

Example 2: If we take 2 = f 3 9
2nd best DA solutions are

(B2 = 2 because the Ist best an

Al_[o 0 1},A§2_1_[1 0 0],A,2€2_2_[0 0 1]'

01 0 0 1 0

Example 3: If we take 2 = 411 ? Z’ , then 87 = 2 and

32 = 2 because the Ist best and 2nd best DA solutions are

Akl_l_[o 1 o] Akl_Q_[o 0 1}
1 - ) 1 - )

1 0 0

00 1 010
o [too [0 01
ko=1 __ ko=2 __

Az _[001]’ Az _[100]

To establish the quality of the specific associations (pair-
ings) (4,7) satisfying a;(i,j5) = 1 belonging to the optimal
assignment matrix A, we propose to use both A; and 2nd-
best assignment solution A,. The basic idea is to use the
values a1(7,j) = 1 in the best, and as(7,j) in the 2nd-best
assignments to identify the change (if any) of the optimal
pairing (7,7). In fact, we assume’ that higher quality of an
entry in a quality matrix suggests that its association in an
optimal solution is more stable across those good solutions.
The connection between the stability of an association across
the good solutions and the stability over an error in measure-
ment is done through the components of the reward matrices
(the inputs of our method) which must take into account
the measurement uncertainties. Based on this assumption, our
quality indicator will be defined using both the stability of
the pairing and its relative impact in the global reward. This
proposed method works also when the 2nd-best assignment
solution A, is not unique (as shown in examples 2 and 3).
Our method helps to select the best (most trustful) optimal
assignment in case of multiplicity of A; matrices. We do
not claim that the definition of the quality matrix proposed
in this work is the best proposal. However, we propose a new
comprehensive way of solving this problem from a practical
standpoint.

To take into account efficiently the reward values of each
specific association given in the best assignment A; and in
the 2nd-best assignment Agz for estimating the quality of
DA solutions, we propose to use the following construction
of quality indicators depending on the type of matching:

e When a;(i,j) = a¥?(i,j) = 0, one has full agreement
on “non-association” (T}, z;) in A; and in A%? and this
non-association (73, z;) has no impact on the global rewards
R1(Q, A7) and R2(9, A;”), and it will be useless. Therefore,
we can set its quality arbitrarily to any arbitrary value, typi-
cally we take ¢*2(i, j) = 0 because these values are not useful
at all for the application (i.e. tracking) standpoint.

e When a;(i,5) = ak?(i,j) = 1, one has a full agreement on
the association (77, z;) in A; and in A2 his association
(T3, z;) has however different impacts in the global rewards
values R1(Q, A;) and Ry(Q, A%?). To qualify the quality

S5This assumption has however not been proven formally yet and its validity
is a challenging open-question left for future research works.

of this association (77}, z;), we define the two basic belief
assignments (BBAs) on X £ (T3, 7;) and X U X (the
ignorance), for s = 1,2 as follows:
ms(X) :GS(iaj)'W(iaj)/RS(QaAS)v (3)
ms(X U-X)=1—ms(X).
Applying the conjunctive fusion rule (here one has no con-
flicting mass), we get

m(X) = mi(X)ma(X) + mi(X)me(X U-X),
+my (X U-X)ma(X), “4)
m(X U-X)=mi (X U-X)ma(X U-X).

Applying the pignistic transformation® [20], we get finally
BetP(X) = m(X) 4+ 3 - m(X U —X) and BetP(—~X) =
2 - m(X U —X). Therefore, we choose as quality indicator
for the association (7}, z;) the value ¢*2(i, j) £ BetP(X) =
m(X)+ 3 -m(XU-X).

e When a;(i,j) =1 and a}?(i,j) = 0, one has a disagree-
ment (conflict) on the association (7;,z;) in A; and in
(Ti, 2j,) in A%2, where jy is the measurement index such
that as (7, j2) = 1. To qualify the quality of this non-matching
association (77}, z;), we define the two following basic belief
assignments (BBA’s) of the propositions X = (T}, z;) and
Yy £ (TM ij)

mi(X) = a1(i. ) - g, 5)
mi(XUY)=1-m(X),

and VY = a0 (i i) - —@lij2)
ma(Y) = as(i, j2) Ra(2,A52)’ (6)
ma(XUY) =1-ma(Y).

Applying the conjunctive fusion rule, we get m(XNY = () =
mi (X)mg (Y) and

m(X) =mi(X)ma(X UY),
m(Y) =mi (X UY)ma(Y), (7
mXUY)=mi (X UY)m(X UY).

Because we need to work with a normalized combined BBA,
we can choose different rules of combination (say either
Dempster-Shafer’s rule, Dubois-Prade’s rule, Yager’s rule [19],
etc). In this work, we propose to use the Proportional Conflict
Redistribution rule no. 6 (PCR6) proposed originally in DSmT
framework [19] because it has been proved very efficient in
practice [28], [29]. Hence with PCR6, we get:

m1(X)mo(Y
m(X) = mi (X)ma(X UY) 4+ my(X) - W
mXUY)=mi(XUY)m (X UY).
)
Applying the pignistic probability transformation, we
get finally BetP(X)=m(X)+ 3 -m(XUY) and

%We have chosen here BetP for its simplicity and because it is widely
known, but DSmP could be used instead for expecting better performances
[19].
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BetP(Y)=m(Y)+ 3 -m(X UY). Therefore, we choose
the quality indicators as follows: ¢*2(i,j) = BetP(X), and
q* (i, j2) = BetP(Y).

The absolute quality factor (Qgps(A1) of the optimal as-

signment given in A; conditioned by AR for any
ko € {1,2,..., B2} is defined as
Qabs(A1, AS?) £ ZZ (1,9)d% (@, 5). )

The absolute average quality factor @Quuer(A1) per associ-
ation of the optimal assignment given in A; conditioned by
Agz, for any ko € {1,2,..., 52} is defined by

1
Qaver(A17 A§2) = E ' Qabs(Alu A§2) (10)

where m is the number of “1” in the optimal DA matrix A,
(i.e. the number of targets).

To take into account the eventual multiplicities (when

B2 > 1) of the 2nd-best assignment solutions Akz,
ka=1,2,...,02, we need to combine the Qr(A;, As?)
values. Several methods can be used for this, in particular we
can use either:
— A weighted averaging approach: The quality indicator
components ¢(7, j) of the quality matrix Q are then obtained
by averaging the qualities obtained from each comparison of
A, with Agz. More precisely, one will take

B2
q(i, 1) 2 Y w(A5?)d" (i, 5), (11)
ko=1
where w(A%?) is a weighting factor in [0,1], such that

Zk2 L w(A%?) =1. Since all assignments A%? have the
same global reward value Ry, then we suggest to take
w(A%?) = 1/8,. A more elaborate method would consist of
using the quality indicator of A’262 based on the 3rd-best
solution, which can be itself computed from the quality of
the 3rd assignment solution based on the 4th-best solution,
and so on by a similar mechanism.

— A Dbelief-based approach: (see [18] for basics on be-
lief functions): A second method would express the qual-
ity by a belief interval [¢™"(4, ), g™ (i, )] in [0,1] in-
stead of single real number ¢(4,7) in [0, 1]. More precisely,
one can compute the belief and plausibility bounds of the
quality by taking ¢™" (4, j) = Bel(a1(i,j)) = ming, ¢*2 (i, )
and ¢™*(i,§) = Pl(a1(i, 7)) = maxy, ¢*2(i,7). Hence for
each possible pair (i,j), one can define a basic belief
assignment (BBA) m,;(.) on the frame of discernment
© £ {T = trustful, =7 = not trustful}, which characterizes
the quality of the pairing (i,7) in the optimal assignment
solution A, as follows

mij(T) = ¢™™ (i, ),
mii(=T) =1 —¢™*(i, j),
mij (T U=T) = ¢™*(i, j) — ¢™™(i, j).

12)

Because only the optimal associations’ (i,j) such that
a1(i,7) =1 are useful in tracking algorithms to update the
tracks, we do not need to pay attention (compute and store)
the qualities of components (7, ) such that a;(i,j) = 0. In
fact all components (¢, j) such that a (¢, j) = 0 should be set
to zero by default in Q matrix.

Example 4: Let’s consider the rewards matrix

1 11 45 30
Q=17 8 38 27
10 14 35 20

We get one 1st best (51 = 1) and four 2nd best (S2 = 4)
DA solutions with their respective qualities as follows:

0 0 1 0

00 1 0
A,=|0 0 0 1 :>R1(Q,A1):86,
0 1 0 0
0 0 0 1]
ARl =10 0 1 0] = Ry(Q, AS2=) =82,
0 1 0 0
0 0 05 0
QA AR Y~ o 0o 0 o041,
0 065 0 0
00 10
AR=2 =11 0 0 0] = Ry(Q, AF2=3) =82,
000 1
0 0 08 0
QA AP~ 0 0 0 056,
0 045 0 0
00 1 0
AR2=3 = 10 0 0 1| = Ry(Q, AN2=3) =82,
1 000
0 0 08 0
QA AP~ 0 0o 0 076,
0 052 0 0
000 1
A=t =11 0 0 0| = Ry(Q, A=) =82,

0 .
QAL AR~ 0 0 0
0 0.35 0 0

Note that the absolute quality factors are :
Qubs (A1, A=) ~ 1.66,
Qubs (A1, A=) =~ 2.19,

Qups(A1, AS=?) = 1.91,
Qubs(A1, A=) =~ 1.51.

Therefore, we can see that

Qubs(A1, AS=3) > Qups (A1, AF=?)
> Qabs (A1, AFTY) > Qups (A, AS=H),

Tfound using Murty’s algorithm.
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which makes perfectly sense because A; has more matching
pairings with A§2:3 than with others 2nd-best assignments
Agz (k2 # 3). These pairings have also the strongest impact
in the global reward value. Therefore, the quality matrix Q
differentiates the quality of each pairing in the optimal assign-
ment A, as expected. This method provides an effective and
comprehensive solution to estimate the quality of each specific
association provided in the optimal assignment solution A;.
The averaged qualities per association are:

Qaver(Ala A§2:1) ~ 0557 Qaver(AIa A§2:2) ~ 0637
Qaver(Ala A§2:3) ~ 0737 Qaver(AIa A§2:4) ~ 0.50.

The global quality matrix is then given by (using the
averaging approach)

B2
1
Q(A1, As) = — Y Q(A4,AS)
B2 =,
0 0 074 0

~ |0 0 0 0.57
0 049 O 0

The global quality indexes Qups(A1,A2) and
Qaver(A1, As) are then approximately equal to 1.8 and
0.6 respectively.

One can also improve the estimation of the quality matrix by
using the absolute quality factor of each solution Q(A1, A%?),
for ko = 1,... 32 to define the normalized weighting factors
as follows:

W = [wk2,k2 = 1, . ..ﬂg]/,

- abs (A1,AL2 o
with wy, = w, and where the normalization factor

K is given by K = Zfi:l Qabs(Al,Agz). In this example,
we get the weights
1.66 1.91 2.19 1.51

w=[w wy w3 wy] ~[z— = — —

727 727 7.27 7.27
= [0.2283 0.2627 0.3012 0.2077]'.

The global quality matrix is then given by (using the
averaging approach)

B2
Q(AlvAQ) - Z wk2Q(A1,A§2)
ko=1
0 0 0.76 0
~ 10 0 0 0.58

0 049 O 0

If we prefer to use the Belief Interval Measure (BIM)
instead of the previous averaging approach, we will get in
this example the following imprecise qualities values:

Optimal. assignments BIM
(1,3) ~ [0.59,0.89]
(2,4) ~ [0.41,0.76]
(3,2) ~ [0.35,0.65]

Based on the comparisons of (pessimistic) lower bounds,
or (optimistic) upper bounds of BIM, we observe that we get

a consistent ordering of the qualities of the optimal solutions
(same ordering as with the averaging method).

III. SOLUTION OF THE 2ND PROBLEM (MULTI-CRITERIA)

In this section, we evaluate the global DA association
solution, with estimation of its quality, based on the
knowledge of the qualities of multiple optimal DA solutions
established separately based on distinct association criteria
Cr, k = 1,..., K. More precisely, given the set of quality
matrices Q* (¢ = 1,...,K) defined by the components
q"(i,7) according to Eq.(11), how to establish the global
optimal DA solution with its overall quality matrix Q?
Moreover, we want to take into account the importance
of each criteria (when defined) in the establishment of the
solution.

In fact this 2nd problem is linked to the previous one and
the method developed for solving our first problem will also
help to solve this second problem as it will be shown in the
following. Our solution is based on four distinct steps:

e Step 1: Estimation of the normalized weighting vector w of
the criteria: Two simple approaches are proposed to establish
the normalized criteria ranking (weighting) vector.

1) Direct method: The weightings factors can be directly
established either by an external source of information,
or by the system designer. If these weightings factors
are not available, we propose to compute them from
the qualities indicators derived by the method used to
solve the 1st problem (see the previous section). For
example, if we consider K criteria providing quality

factors Q% (A1(C), A2(Ck)), k = 1,2,..., K, then

we compute the normalized K x 1 weighting vector
w = [wiws...wk]" with the k-th component given by

s Qups(A1(Cr), A>(Cy))

W - ; (13)
D51 Qs (A1(Cy), A2(C5)
where Q% (A1(Cy), A2(Cy)) is the absolute quality

factor obtained from the quality matrix Q¥ (A, As) of
the optimal DA for the criteria C},.

2) Saaty’s method: This method is part of Saaty’s AHP
method widely used for multi-criteria decision analysis
in operational research [22], [23], [24], and it has been
connected with information fusion and belief functions
in [25], [26], [27]. The relative importance of one
criterion over another must be expressed by the system
designer using a pairwise K x K comparison matrix
(also called knowledge matrix) M = [m,,] where
the element m,,, of the matrix defines the importance
of criteria C), with respect to the criteria C,, with
p,q € {1,2,..., K}. For example, see [25] for details,
let’s consider only K = 3 criteria, if the comparison
matrix is given by

(/1) (1/3) (4/1)
M= |(3/1) (/1) (5/1)},
(1/4) (1/5) (1/1)
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it means that the element m3 = 4/1 indicates that the
criteria C1 is four times as important as the criteria C's
for the system designer (or decision-maker), etc. From
this pairwise matrix, Saaty demonstrated that the ranking
of the priorities of the criteria can be obtained from the
normalized eigenvector, denoted w, associated with the
principal/max eigenvalue of the matrix M, denoted A.
In our example, one gets A = 3.0857 and and w =
[0.27970.6267 0.0936]" which shows that C criterion is
the most important criterion with the weight 0.6267, then
the criterion C is the second most important criterion
with weight 0.2797, and finally C'5 criterion is the least
important criterion with weight 0.0936.

e Step 2: Combined estimation of the qualities of each target
association

Once the normalized weighting vector w of the criteria
has been obtained, we need at first to compute the com-
bined/weighted estimation of the qualities of each target
association with the n available measurements. This is done
by building the following n x K matrix

Qi £ [qi(Ch) ... q:(Ck)],

where each column q;(C}) of the matrix Q; corresponds to
the transpose of the i-th row of the quality matrix Q¥ (A1, As).

Then following AHP approach, we multiply this n x K
matrix Q; by the normalized criteria ranking K x 1 vector
w (obtained either from the direct method of Saaty’s one) to
get the combined estimation of the qualities of each target
association. More precisely, for the i-th target, we obtain the
following n x 1 vector

(14)

q = Qiw. (15)

e Step 3: Search for the optimal global assignment based on
combined qualities derived from the criteria.

From the set of m vectors q; (i=1,2,...,m) we need to solve
now a new optimal DA association problem with the (global)
m X n rewards matrix defined by
(16)

Qc2 a1 g2 -..an.

Murty’s algorithm is then used again here to get the optimal
DA solution(s) providing the best global reward, and to
generate also all the 2nd-best solutions that are necessary to
estimate its quality in Step 4.

e Step 4: Estimation of the quality of the optimal DA solution.

We use the method described in Section 2 for solving the
problem 1 to estimate the quality of the optimal DA solution.
If several 1st-best DA solutions occur, we choose the solution
generating the highest Qs quality index.

IV. A SIMPLE ILLUSTRATIVE EXAMPLE

For the sake of simplicity, let’s consider the following
example with m = 3 targets, n = 5 measurements, and 3
criteria C', Co and Cjs associated with the (randomly chosen)
rewards matrices:

100 20 33 5 27
QC)= |11 80 25 37 62|,
38 2 24 78 46

[87 35 43 20 95]
Q(Cy) = |28 83 25 10 29/,
10 7 72 41 29

(25 78 49 60 9]
Q(C5) =130 26 79 20 49| .
20 20 3 47 81]

A. Qualities of optimal data associations

Applying the method described in section 1, we easily
obtain the following quality matrices of optimal DA solutions:

o For criterion C, one gets 51 = 1 and §; = 1, and the
following 1st best and 2nd best DA solutions

1 0 0 0O
Ai=|0 1 0 0 0f,

00 0 10

Q(Cl) = F 3
100 00
A,=|0 0 0 0 1},

00 0 1 0]

providing the 1Ist and 2nd best global rewards

R(Q(Cl),Al) = 258 and R(Q(Cl),Ag) = 240. Ap-
plying the method described in Section 2, we obtain the
following quality matrix related with the optimal DA
based on criterion C;:

082 0 0 0 0
Q'~| 0 052 0 0 0
0 0 0 07 0

o For criterion C5, one gets 51 = 1 and §2 = 1, and the
following Ist best and 2nd best DA solutions

0 0 0 01
A;=|0 1 0 0 0f,

001 00O

Q(Cg) = F 3
100 00
A,=10 1 0 0 0Of,

0 0 1 0 0]

providing the Ist and 2nd best global rewards

R(Q(Cg),Al) = 250 and R(Q(Cg),Ag) = 242. Ap-
plying the method described in Section 2, we obtain the
following quality matrix related with the optimal DA
based on criterion Cy:

0 0 0 0 051
Q*~ 1|0 078 0 0 0
0 0 074 0 0

o For criterion C3, one gets 57 = 1 and 2 = 1, and the
following 1st best and 2nd best DA solutions
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[0 1 0 0 0]
Ar=10 0 1 0 0],

0y = 00 0 0 1
00010
A,=10 0 1 0 0,
000 0 1]

providing the Ist and 2nd best global rewards
R(Q(C5), A1) = 238 and R(Q2(C5),As) = 220. Ap-
plying the method described in Section 2, we obtain the
following quality matrix related with the optimal DA
based on criterion Cs:

0 053 0 O O
Q*~ 1|0 0 078 0 0
0 0 0 0 079

B. Multicriteria-based DA solution with its quality

e Case 1: If we assume that all criteria have the same

weights in the search of optimal DA solution, then
we take the normalized weighting vector as w =
[1/3 1/3 1/3]’. Therefore, the weighted average Q¢ =

=2 wp QF of the quality matrices Q!, Q2 and Q?
gives us the following rewards matrix

0.27 017 0 0 0.17
Qg~| 0 043 026 O 0
0 0 025 0.25 0.26

Now we solve the DA association problem to maximize
the global quality reward using Murty’s algorithm and we
get the following 1st best and 2nd best DA solutions:

(1 0 0 0 0]
A= |0 0 0 of,
00 0 0 1]

QG:>
(1 0 0 0 0]
A,=10 1 0 0 0f,
0 0 0 1 0

with the Ist and 2nd best global rewards R(Q2q, A1) ~
0.97 and R(2g,As) ~ 0.96. Applying the method
described in Section II to estimate the quality of this
optimal DA solution, we obtain the following quality
matrix:

074 0 0 0 O
Q~ |0 08 00 0
0 0 0 0 050

Case 2: If we use the prior information given by abso-
lute quality indicators to build the normalized weighting
vector, we get

s = DD Qi) ~ 211,

i=1 j=1
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ibs = ZZ QQ(Zv.]) ~ 2'045

i=1 j=1
o =D D Q%0,5) =~ 210,
i=1 j=1
and we have Q}, + Q2. + Q3, = 6.2672. So that, the

normalized weights are given by

2.1154 2.0426 2.1091

I
6.2672 6.2672 6.2672]
~ [0.3375 0.3260 0.3365)'.

w = [wy wy w3] =]

The weighted average Q¢ = ZkK:f wr Q" of the quality
matrices Q', Q? and Q? give us now the following
rewards matrix

0.27 0.17 0 0 0.16
Qg~| 0 043 026 O 0
0 0 024 0.25 0.26

Now we solve the DA association problem to maximize
the global quality reward and we get the following 1st
best and 2nd best DA solutions:

1 000 0
Ai=10 10 0 0f,

0000 1

Q¢ = ] -

(1 0 0 0 0]
A,=10 1 0 0 0f,

0 0 0 1 0

with the Ist and 2nd best global rewards R(Q¢g, A1) =
0.97 and R(Q2g,As) ~ 0.96. Applying the method
described in Section 2 to estimate the quality of this
optimal DA solution, we obtain the following quality
matrix:

074 0 0 0 0
Q~| 0 08 00 0
0 0 0 0 050

Because the normalized weights based on the absolute
quality indicators, in this example, are all close to 1/3,
we obtain the result of the multicriteria-based optimal DA
and its quality close to what we get when assuming equi-
importance of the criteria in the fusion process, which is
normal.

To qualify qualitatively the quality of the pairings in the
optimal DA solution, we split the quality range [0;1] into three
subintervals as follows®

Low quality : if q(i,7) € [0;1/3],
if q(i,j) € [1/3:2/3],

if q(i,7) € [2/3;1].

Medium quality :
High quality :

80f course, other repartitions could be used instead depending on the what
would prefer the system designer.
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Based on this qualitative scale, we finally get for our
example the final multicriteria-based DA solution

1 0 0 0 O
A;=10 1 0 0 0},
0 00 01
with the qualitative quality matrix
High — - - —
Qqualitative _

— High — — —
— Medium
where the notation “—” means “that the quality evaluation

does not apply”, or is interpreted (by default) as “the worst
quality”.

Remark: It is worth to note that this approach provides in
general not the same results as if one would combine (and
weight) directly the original reward matrices of each criterion.
In this example, the weighted global reward matrix Qgirect =
Zszl wi2(Cy) would be equal to

69.07 45.39 41.75 29.31 40.85
22.93 6143 44.46 22.79 47.44
23.13  9.98 30.78 55.75 53.53

corresponding to the quality matrix of optimal DA solution

073 0 0 0 0
Qdirecte= | 0 084 0 0 O
0 0 0 047 0

One sees that these high quality solutions are fully consis-
tent with the high quality solutions of our method. However,
the medium quality solution (we get (3,4) pairing from the
direct optimal assignment versus (3,5) assignment obtained by
our method) mismatch. This reflects an ambiguity in the choice
of the assignment of target T5. Therefore, such assignment is
unreliable because of its low quality, and should not be used
to update the track of this target.

Qdirect ~ )

V. CONCLUSION

In this paper, we have proposed two methods based on belief
functions for establishing: 1) the quality of pairings given
by optimal data association (or assignment) solution using a
chosen algorithm (typically Murty’s algorithm coupled with
Auction algorithm) with respect to a given criterion, and 2)
the quality of the multicriteria-based optimal data association
solution. Our methods are independent of the choice of the
algorithm used in finding the optimal assignment solution, and,
in case of multiple optimal solutions, they provide also a way
to select the best optimal assignment solution (the one having
the highest absolute quality factor). The methods developed
in this paper are general in the sense that they can be applied
to different types of association problems corresponding to
different sets of constraints. This method can be extended to
SD-assignment problems as well. As perspectives, we would
like to extend our approach to the n-D assignment context,
and then evaluate its performances in a realistic multi-target
tracking scenario.
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Abstract—Grid map offers a useful representation of the per-
ceived world for mobile robotics navigation. It will play a major
role for the security (obstacle avoidance) of next generations of
terrestrial vehicles, as well as for future autonomous navigation
systems. In a grid map, the occupancy of each cell representing
a small piece of the surrounding area of the vehicle must
be estimated at first from sensors measurements, and then it
must also be classified into different classes in order to get a
complete and precise perception of the dynamic environment
where the vehicle moves. So far, the estimation and the grid
map updating have been done using fusion techniques based on
the probabilistic framework, or on the classical belief function
framework thanks to an inverse model of the sensors and
Dempster-Shafer rule of combination. Recently we have shown
that PCR6 rule (Proportional Conflict Redistribution rule #6)
proposed in DSmT (Dezert-Smarandache) Theory did improve
substantially the quality of grid map with respect to other
techniques, specially when the quality of available information is
low, and when the sources of information appear as conflicting. In
this paper, we go further and we analyze the performance of the
improved version of PCR6 with Zhang’s degree of intersection.
We will show through different realistic scenarios (based on a
4-layers LIDAR sensor) the benefit of using this new rule of
combination in a practical application.

Keywords: Information fusion, grid map, cell occupancy,

perception, belief functions, DSmT, PCR6, ZPCR6.

I. INTRODUCTION

Occupancy Grids (OG) are often used for intelligent vehicle
environment perception and navigation, which requires tech-
niques for data fusion, localization and obstacle avoidance. As
OGs manage a representation of the environment that does
not make any assumption on the geometrical shape of the
detected elements, they provide a general framework to deal
with complex perception conditions. In our previous works, we
did focus on the use of a multi-echo and multi-layer LIDAR
system in order to characterize the dynamic surrounding
environment of a vehicle driving in common traffic conditions.
The perception strategy involved map estimation and scan
grids [1], [2] based either on the classical bayesian framework,
or on classical evidential framework based on Dempster-Shafer
theory (DST) [3] of belief functions. The map grid acts as a
filter that accumulate information and allows to detect moving
objects. A comparative analysis of performances of these
approaches has already been published recently in [4].

In dynamic environments, it is crucial to have a good
modeling of the information flow in the data fusion process
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in order to avoid adding wrong implicit prior knowledge that
will need time to be forgotten. In this context, evidential OG
are particularly interesting to make a good management of
the information since it is possible to explicitly make the
distinction between non explored and moving cells.

The idea of using the probabilistic framework to estimate the
grid occupancy has been popularized by Elfes in his pioneered
works in 1990’s [8]. Later, the idea has been extended with
the fuzzy logic theory framework by Oriolo et al. [10], and in
parallel with the belief function (evidential) framework as well
[11]-[15]. Most of the aforementioned research works dealt
only with acoustic sensors (i.e SONAR). Recently, DSmT has
also been applied for the perception of the environment with
acoustic sensors as reported in [16]-[18].

The aim of this paper is to analyze the performance of
the improved version of PCR6 taking into account Zhang’s
degree of intersection of focal elements (called ZPCR6 rule)
which has been presented in details in the companion paper
[7] in a realistic perception problem using a 4-layers LIDAR
sensor. We show how the environment perception with non
acoustic sensors can be done, and compare the performances
of different fusion rules (Bayesian, Dempster-Shafer, PCR6
and ZPCR6) in terms of accuracy of grid map estimation.

This paper is organized as follows. After a short presentation
of the basics of belief functions and rules of their combination
based on DST and DSmT in the next section, we will present
the inverse sensor models in section III with the construction of
the basic belief assignments (BBA). In section IV, we present
an illustrating scenario for environment perception including
a mobile object with a platform equipped with a LIDAR, and
we compare our new realistic simulation results with those
obtained by the probabilistic and the classical belief-based
approaches. We will show how static and mobile objects are
extracted from the occupancy grid map using digital image
processing. Finally, conclusion and outline perspectives are
given in section V.

II. BASICS OF BELIEF FUNCTIONS AND THEIR FUSION

Dempster-Shafer’s theory (DST) of evidence has been de-
veloped by Shafer in 1976 from Dempster’s works [3] . DST is
known also as the theory of belief functions and it is mainly
characterized by a frame of discernment (FoD), sources of
evidence represented by basic belief assignment (BBA), belief
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(Bel) and plausibility (PI) functions, and Dempster’s rule and
denoted DS rule in the sequel! of combination. DST has been
modified and extended into Dezert-Smarandache theory [6]
(DSmT) to work with quantitative or qualitative BBA and to
combine the sources of evidence in a more efficient way thanks
to new proportional conflict redistribution (PCR) fusion rules —
see [19]-[22] for discussion and examples. We briefly recall in
the next subsections the basics of the theory of belief functions

A. Belief functions

Let consider a finite discrete FoD Q = {w1,wa,...,wn},
with n > 1, of the fusion problem under consideration and
its fusion space G*! which can be chosen either as the power-
set 2%, the hyper-power set> D, or the super-power set S
depending on the model that fits with the problem [6]. A
BBA associated with a given source of evidence is defined
as the mapping m(.) : G — [0,1] satisfying m(0)) = 0
and ) , .o m(A) = 1. The quantity m(A) is called mass of
belief of A committed by the source of evidence. Belief and
plausibility functions are defined by

Bel(A)= Y m(B) and Pi(A)= > m(B) (1)
BCA BNA#D
BeGY BeG?

The degree of belief Bel(A) given to a subset A quantifies the
amount of justified specific support to be given to A, and the
degree of plausibility P1(A4) quantifies the maximum amount
of potential specific support that could be given to A. If for
some A € G, m(A) > 0 then A is called a focal element
of the BBA m(.). When all focal elements are singletons and
G = 29 then the BBA m(.) is called a Bayesian BBA [3]
and its corresponding belief function Bel(.) is homogeneous
to a (possibly subjective) probability measure, and one has
Bel(A) = P(A) = PI(A), otherwise in general one has
Bel(A) < P(A) < PI(A), VA € G*. The vacuous BBA
representing a totally ignorant source is defined as m,, (2) = 1.

B. Fusion rules

Many rules have been proposed in the literature in the past
decades (see [6], Vol. 2 for a detailed list of fusion rules)
to combine efficiently several distinct sources of evidence
represented by the BBA’s m1(.), ma(.), ..., ms(.) (s > 2)
defined on same fusion space G*!. In this paper, we focus
only on DS rule because it has been historically proposed in
DST and it is still widely used in applications, and on the PCR
rule no. 6 (i.e. PCR6) proposed in DSmT because it provides
a very interesting alternative of DS rule, even if PCR6 is more
complex to implement in general than DS rule.

In DST framework, the fusion space G*! equals the power-
set 2 because Shafer’s model of the frame  is assumed,
which means that all elements of the FoD are exhaustive and

DS acronym standing for Dempster-Shafer since Dempster’s rule has been
widely promoted by Shafer in the development of his mathematical theory of
evidence [3] .

2which corresponds to a Dedekind’s lattice, see [6] Vol. 1.

exclusive. The combination of the BBA’s m1(.) and ma(.), is
done by : m{’5 () =0 and for all X # () in 2

2
1
DS A
my 5 (X) = Z Hmi(Xi) )
’ 1—my () 0

X1,Xpe2% i=1

X1NXo=X
where the numerator of (2) is the mass of belief on the
conjunctive consensus on X . The denominator 1 — my 2(0) is
a normalization constant. The total degree of conflict between
the two sources of evidences is classically defined by

my2(0) £ Z Hmi(Xi)

X1,Xpe21=1
X1NXo=0

3

According to Shafer [3], the two sources are said in total
conflict if mq 2(@) = 1. In this case the combination of the
sources by DS rule cannot be done because of the mathe-
matical 0/0 indeterminacy. The vacuous BBA m,(2) = 1
is a neutral element for DS rule. This rule is commutative
and associative, and the formula (2) can be easily generalized
for the combination of s > 2 sources of evidences. DS rule
remains the milestone fusion rule of DST.

The doubts of the validity of DS rule has been discussed
by Zadeh in 1979 [28]-[30] based on a very simple example
with two highly conflicting sources of evidences. Since 1980’s,
many criticisms have been done about the behavior and the
justification of such DS rule. More recently, Dezert et al. in
[19], [20] have put in light other problematic behaviors of DS
rule even in low conflicting cases and showed serious flaws in
logical foundations of DST [21]. To overcome the limitations
and problems of DS rule of combination, a new family of PCR
rules have been developed in DSmT framework. We present
the most elaborate one, i.e. the PCR6 fusion rule, which has
been used in our perception application for grid occupancy
estimation.

In PCR rules, instead of following the DS normalization
(the division by 1 —mj 2(0)), we transfer the conflicting mass
only to the elements involved in the conflict and proportionally
to their individual masses, so that the specificity of the
information is entirely preserved. The general principle of PCR
consists: 1) to apply the conjunctive rule, 2) to calculate the
total or partial conflicting masses; 3) then redistribute the (total
or partial) conflicting mass proportionally on non-empty sets
according to the integrity constraints one has for the frame
). Because the proportional transfer can be done in different
ways, there exist several versions of PCR rules of combination.
PCRG6 fusion rule has been proposed by Martin and Osswald in
[6] Vol. 2, Chap. 2, as a serious alternative to PCRS fusion rule
proposed originally by Smarandache and Dezert in [6] Vol. 2,
Chap. 1. Martin and Osswald had proposed PCR6 based on
intuitive considerations and they had shown through different
simulations that PCR6 was more stable than PCRS in term
of decision for combining s > 2 sources of evidence. When
only two sources are combined, PCR6 and PCRS5 fusion rules
coincide, but they differ as soon as more than two sources
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have to be combined altogether. Recently, it has been proved
in [22] that only PCR6 rule is consistent with the averaging
fusion rule which allows to estimate the empirical (frequentist)
probabilities involved in a discrete random experiment. For
Shafer’s model of FoD?, PCR6 fusion of two BBA’s m(.)
and my(.) is defined by mi§76(0) = 0 and for all X # 0 in
29

miSE(X) = 3 ma(X1)ma(Xo)
X1,X2€29
X1NXa=X
ma (X)?ma (V) ma(X)*ma (V)
+ [ | @
2 OO Tl ) £ )
XNy=0

where all denominators in (4) are different from zero. If a
denominator is zero, that fraction is discarded. All proposi-
tions/sets are in a canonical form [6]. Very basic Matlab codes
of PCR rules can be found in [6], [23] and from the toolboxes
repository on the web [27]. Like the averaging fusion rule,
the PCR6 fusion rule is commutative but not associative. The
vacuous belief assignment is a neutral element for this rule.
The PCR6 rule of combination (as well as DS rule) use only
part of the whole information available (i.e. the values of the
masses of belief only), and they don’t exploit the cardinalities
of focal elements entering in the fusion process. Because the
cardinalities of focal elements are fully taken into account
in the computation of the measure of degree of intersection
between sets, we have recently proposed to improve PCR6
rules using this measure in the companion paper [7]. The basic
idea is to replace any conjunctive product by its discounted
version thanks to the measure of degree of intersection D when
the intersection of focal elements is not empty. The product
of partial (or total) conflicting masses are not discounted by
the measure of degree of intersection because the degree of
intersection between two (or more) conflicting focal elements
always equals zero, that is if X N'Y =0, then D(X,Y") = 0.
In [7], we have shown in different examples why Zhang’s
degree of intersection [31], denoted DZ(Xl, ..., Xs), is more

interesting than classical Jaccard’s degree. DZ (X1, ..., X,) is
mathematically defined by
XinXen...NnX,
DZ(Xl,...,XS)é| 1 -2 | (5)

| X ]| Xof - X

where |X; N Xo N ...N X| is the cardinality of the inter-
section of the focal elements X1, Xo,..., X, and | X[, | X3|,
...| X their cardinalities. The improved version of PCR6 with
Zhang’s degree of intersection (called ZPCR®6 rule) is easy to
get and it corresponds to the following formula*

3that is when G = 2%
exclusive.
4The general ZPCR6 formula for s > 2 sources in detailed in [7].

and assuming all elements exhaustive and
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1
mi3“"(X) = fzpoms

[ Z DZ(leXQ)ml (Xl)mQ(XQ)

X1,X2€2%

X1NXo=X

m1(X)?my(Y) ma(X)?my (Y)
T 6
2 T = me)) ©
XNYy=0

where K{ZLCFS is a normalization constant such that
S xeon MPECES(X) = 1. As for PCR6, one has
m{FCH6(0) = 0 and ZPCR6 is commutative but not asso-
ciative. The advantage of ZPCR6 over PCR6 and DS rules is
its ability to respond to the inputs in a more effective way
has clearly shown in very interesting examples detailed in [7].
Due to space limitation, these examples will not be presented
and discussed here again.

C. Discounting

A discounting effect can be applied on a mass function m(.) if
a piece of information has its reliability lowered. In this case,
a new mass function mg(.) (with « € [0,1]) is computed
from m(.) and a part of the mass of each element of the FoD
is transferred to the whole FoD 2 which represents the total
ignorance.

o fa—am@
o(4) {(1—04)-m(A)+04

if A#£Q
ifA=Q
III. EVIDENTIAL OCCUPANCY GRID

The basic idea of an Occupancy Grid (OG) is to divide the
surrounding environment (the ground plane of 2D world) into
a set a cells (denoted C?, i € [0, n]) in order to estimate their
occupancy state. In a probabilistic framework, the aim is to
estimate the probabilities P (O%|z1.) and P (F'|z1.) given a
set of measures z7.; from the beginning up to the current time
t. O (resp. F'¥) denotes the occupied (resp. free) state of the
cell C'. Finally, a decision rule is applied in order to select
the most likely state for each cell.

For Evidential approach, occupancy grid represents the in-
formation using a mass function over the frame of discernment
(FoD) Q = {F, O}. So the mass functions used in grid have
the structure

The occupancy mass function can be used during the fu-
sion process, then the decision can be taken using pignistic
transform [26] to get a probability measure and use the same
decision rule. An interesting part of evidential occupancy grid
is that the FoD can be more complex, and as the fusion is
done cell by cell the fusion scheme will be still valid.
Occupancy grids can be classified into two categories de-
pending on the use of a forward or inverse sensor model. The
forward model relies on Bayes inference. Since this approach
takes into account the conditional dependency of the cells of
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the map, it is well adapted to a sensor that observes a large
domain of cells with only one reading measurement (e.g. an
ultrasonic sonar). However, it requires heavy processing that
can be handled by optimized approximation.

The inverse model approach is well adapted to narrow fields
of measure by sensors (e.g. LIDAR). It is composed of two
separate steps. First, a snapshot map of the sensor reading is
built using an inverse sensor model P (Oi|zt). This model
can take into account the conditional dependency between the
sensor reading and the occupancy of the seen cells. Then, a
fusion process (denoted ©) is done with the previous map
P (O'|z1:4-1) as an independent opinion poll fusion:

P (O%21:4) = P (0']z) ® P (O'|21:4-1) )

In the probabilistic framework, the usual fusion operation
between states A and B coming from independent measure-
ment, use independent opinion poll [34] :

P(A)P(B)
P(A)P(B) + (1 - P(A))(1 - P(B))

Inverse approaches have very efficient implementations (e.g.
log-odd) that make them popular in mobile robotics [8], [9],
[25]. Maps built using inverse models are usually less accurate,
since they just take into account the dependency of the cells
observed in one reading, but it is a good approximation
with accurate and high resolution sensors observing a limited
number of cells at a time. Moreover, when the sensor is multi-
echo and multi-layer, the conditional dependency of the seen
cells can be modeled in an efficient way.

P(A)® P(B) =

(10)

A. Fusion strategy with the inverse model

When dealing with the inverse model approach, an estimate
of the pose of the robot has to be available, and a map
grid GM has to be handled. This grid is defined in a world-
referenced frame (so it does not move with the robot) and it
is updated when a new sensor reading is available. Because of
the likely evolution of the world in a dynamic environment,
the OG update has to be completed by a remanence strategy.
The fusion architecture is based on a prediction-correction
paradigm to fuse one or several sensors observations.

a) Prediction step: The prediction step computes the
predicted map grid at time ¢ from the map grid estimated at
time ¢t — 1. Depending on the available information, this step
can be very refined as done in [24]. Because we don’t have
specific information on the velocity of the objects (or cells), the
prediction step is done by the classical discounting technique.
The confidence in past data is controlled by a remanence factor
a € [0;1]. The prediction stage is therefore governed by

Y

b) Correction step: The correction step consists in the
combination of the previously estimated map grid with the
grid built from the current measures thanks to the inverse
model sensor (see more details in [1], [2]). This one is called
ScanGrid G¥. As this information is referenced in the sensor
frame, a 2D warping is applied to reshape this grid into the

GM = discount (G’ﬁl, a)

fusion frame. To perform this operation, the current pose ¢,
is estimated using a GPS sensor and the rigid homogeneous
transformation matrix H; is computed. When GPS becomes
unavailable, the CAN (Controller Area Network) bus is used
to get the robot odometric data. The motion matrix H; and the
extrinsic calibration matrix C' are used to compute a remapping
function f(z.y) according to Eq. (12) below

T

fly)=C-Hi- |y
1

12)

Finally, the ScanGrid is remapped with f and fused with the
previous map grid according to 