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The starting point of this article is represented by a recent work of Finch [2000].  Based on two

asymptotic results concerning the Erdos function, he proposed some interesting equations

concerning the moments of the Smarandache function. The aim of this note is give a bit modified

proof and to show some computation results for one of the Finch equation. We will call the

numbers obtained from computation ‘the Erdos-Smarandache Numbers’. The Erdos-

Smarandache number of order 1 is obtained to be the Golomb-Dickman constant.

1. INTRODUCTION

We briefly present the results used in this article. These concern the relationship between the

Smarandache and the Erdos functions and some asymptotic equations concerning them. The

Smarandache and Erdos functions are important functions in Number Theory defined as follows:

• The Smarandache function [Smarandache, 1980] is S N N: * → ,

( )S n k N k n n N( ) min{ | ! } *= ∈ ∀ ∈M .  (1)

• The Erdos function is NNP →*: ,

( ) 0)1(,}1\{*}prim is |min{)( =∈∀∧∈= PNnppnNpnP M .  (2)

Their main properties are:

( ) )}(),(max{)()},(),(max{)(1),(*, bPaPbaPbSaSbaSbaNba =⋅=⋅⇒=∈∀ .      (3)

( ) aaSaPNa ≤≤∈∀ )()(*  and the equalities occur iif a is prim.                         (4)

An important equation between these functions was found by Erdos [1991]
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which was extended by Ford [1999] to
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n
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Equations (5-6) are very important because create a similarity between these functions especially

for asymptotic properties. Moreover, these equations allow us to translate convergence properties

of the Smarandache function to convergence properties on the Erdos function and vice versa. The

main important equations that have been obtained using this translation are presented in the

following.
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and their generalizations









+⋅

+
+

=∑
= )(ln)ln(1

)1(
)(

1
2

2 n

n
O

n

n

a

a
iP

n

aan

i

a ζ
 [Knuth and Pardo 1976]









+⋅

+
+

=∑
= )(ln)ln(1

)1(
)(

1
2

2 n

n
O

n

n

a

a
iS

n

aan

i

a ζ
 [Finch, 2000]

The log-average values
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and their generalizations
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The Harmonic Series
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2. THE ERDOS-SMARANDACHE NUMBERS

From a combinatorial study of random permutation Sheep and Lloyd [1964] found the following

integral equation
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Finch [2000] started from Equation (7) and translated it from the Smarandache function.



Theorem [Finch, 2000] If a is a positive integer number then
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Proof

Many terms of the difference ∑∑
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The general term of the last sum is superiorly bounded by
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Therefore, the chain of inequalities is continued as follows:
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Therefore, the equation ∑∑
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The essence of this proof and the proof from [Finch, 2000] is given by Equation (6).  But the

above proof is a bit general giving even more
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Definition. The Erdos-Smarandache number of order Na ∈  is defined by
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Equation (7) gives a formula for this number ∫ ∫
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is in fact the Golomb-Dickman constant. Using a simple Maple computation the values of the first

20 Erdos-Smarandache numbers have been calculated with 15 exact decimals. They are presented

below.

a=1 ⇒ λ1=0.624329988543551

a=2 ⇒ λ2=0.426695764659643

a=3 ⇒ λ3=0.313630673224523

a=4 ⇒ λ4=0.243876608021201

a=5 ⇒ λ5=0.197922893443075

a=6 ⇒ λ6=0.16591855680276

a=7 ⇒ λ7=0.142575542115497

a=8 ⇒ λ8=0.124890340441877

a=9 ⇒ λ9=0.111067241922065

a=10 ⇒ λ10=0.0999820620134543

a=11 ⇒ λ11=0.0909016222187764

a=12 ⇒ λ12=0.083330176072027

a=13 ⇒ λ13=0.0769217248993612

a=14 ⇒ λ14=0.0714279859927442

a=15 ⇒ λ15=0.0666664107138031

a=16 ⇒ λ16=0.0624998871487541

a=17 ⇒ λ17=0.0588234792828849

a=18 ⇒ λ18=0.0555555331402286

a=19 ⇒ λ19=0.0526315688647356

a=20 ⇒ λ20=0.049999954405103

3. Final Remarks

The numbers provided by Equation (7) could have many other names such as the Golomb-

Dickman generalized constants or …. Because they are implied in Equation (8), we believe that a

proper name for them is the Erdos-Smarandache numbers. We should also say that it is the Finch

major contribution in rediscovering a quite old equation and connecting it with the Smarandache

function.
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