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Fuzzy and Neutrosophic Sets in Semigroups

Foreword

The topics discussed in this book are Int-soft semigroup, Int-soft left (right) ideal, Int-soft
(generalized) bi-ideal, Int-soft quasi-ideal, Int-soft interior ideal, Int-soft left (right) duo
semigroup, starshaped (€, €V gk)-fuzzy set, quasi-starshaped (€, €V gk)-fuzzy set,
semidetached mapping, semidetached semigroup, (€, € Vqk)-fuzzy subsemi-group, (qk, €
vgk)-fuzzy subsemigroup, (€, € V gk)-fuzzy subsemigroup, (qk, € V qk)-fuzzy
subsemigroup, (€ V gk, € V gk)-fuzzy subsemigroup, (€, €V qkd)-fuzzy subsemigroup, EV
qkd -level subsemigroup/bi-ideal, (€, €V qko )-fuzzy (generalized) bi-ideal, o-lower (6-
upper) approximation of fuzzy set, 6-lower (6-upper) rough fuzzy subsemigroup, d-rough
fuzzy subsemigroup, Neutrosophic N -structure, neutrosophic N -subsemigroup, e-
neutrosophic N -subsemigroup, and neutrosophic N -product.

The first chapter, Characterizations of regular and duo semigroups based on int-soft set
theory, investigates the relations among int-soft semigroup, int-soft (generalized) bi-ideal,
int-soft quasi-ideal and int-soft interior ideal. Using int-soft left (right) ideal, an int-soft
quasi-ideal is constructed. We show that every int-soft quasi-ideal can be represented as the
soft intersection of an int-soft left ideal and an int-soft right ideal. Using int-soft quasi-
ideal, an int-soft bi-ideal is established. Conditions for a semigroup to be regular are
displayed. The notion of int-soft left (right) duo semigroup is introduced, and left (right)
duo semigroup is characterized by int-soft left (right) duo semigroup. Bi-ideal, quasi-ideal
and interior ideal are characterized by using (®, ¥)-characteristic soft sets.

The notions of starshaped (€, € V gk)-fuzzy sets and quasi-starshaped (€, € V gk)-fuzzy sets
are introduced in the second chapter, Generalizations of starshaped (€, €Vq)-fuzzy sets, and
related properties are investigated. Characterizations of starshaped (€, € V gk)-fuzzy sets and
quasi-starshaped (€, € V q)-fuzzy sets are discussed. Relations between starshaped (€, € V
gk)-fuzzy sets and quasi-starshaped (€, €V gk)-fuzzy sets are investigated.

The notion of semidetached semigroup is introduced the third chapter (Semidetached
semigroups), and their properties are investigated. Several conditions for a pair of a
semigroup and a semidetached mapping to be a semidetached semigroup are provided. The
concepts of (€, € V gk)-fuzzy sub-semigroup, (gk, € V qk)-fuzzy subsemigroup and (€ V gk,
€ V gk)-fuzzy subsemigroup are introduced, and relative relations are discussed.

The fourth chapter, Generalizations of (€ €V qk)-fuzzy (generalized) bi-ideals in
semigroups, introduces the notion of (€, € V qkd)-fuzzy (generalized) bi-ideals in
semigroups, and related properties are investigated. Given a (generalized) bi-ideal, an (€,€
V gko)-fuzzy (generalized) bi-ideal is constructed. Characterizations of an (€, € V gkd )-
fuzzy (generalized) bi-ideal are discussed, and shown that an (€, €V gkd)-fuzzy generalized
bi-ideal and an (€, € V qkd)-fuzzy bi-ideal coincide in regular semigroups. Using a fuzzy set
with finite image, an (€, €V qkd)-fuzzy bi-ideal is established.
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Lower and upper approximations of fuzzy sets in semigroups are considered in the fifth
chapter, Approximations of fuzzy sets in semigroups, and several properties are investigated.
The notion of rough sets was introduced by Pawlak. This concept is fundamental for the
examination of granularity in knowledge. It is a concept which has many applications in data
analysis. Rough set theory is applied to semigroups and groups, d-algebras, BE-algebras,
BCK-algebras and MV-algebras etc.

Finally, in the sixth and last paper, Neutrosophic N-structures and their applications in
semigroups, the notion of neutrosophic N -structure is introduced, and applied to semigroup.
The notions of neutrosophic N-subsemigroup, neutrosophic N-product and e-neutrosophic
N-subsemigroup are introduced, and several properties are investigated. Conditions for
neutrosophic N-structure to be neutrosophic N-subsemigroup are provided. Using
neutrosophic N-product, characterization of neutrosophic N-subsemigroup is discussed.
Relations between neutrosophic N-subsemigroup and e-neutrosophic N-subsemigroup are
discussed. We show that the homomorphic preimage of neutrosophic N-subsemigroup is a
neutrosophic N-subsemigroup, and the onto homomorphic image of neutrosophic N -
subsemigroup is a neutrosophic N-subsemigroup.
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Characterizations of regular and duo semigroups

based on int-soft set theory

Abstract Relations among int-soft semigroup, int-soft (generalized) bi-ideal, int-soft
quasi-ideal and int-soft interior ideal are investigated. Using int-soft left (right) ideal,
an int-soft quasi-ideal is constructed. We show that every int-soft quasi-ideal can be rep-
resented as the soft intersection of an int-soft left ideal and an int-soft right ideal. Using
int-soft quasi-ideal, an int-soft bi-ideal is established. Conditions for a semigroup to be
regular are displayed. The notion of int-soft left (right) duo semigroup is introduced, and
left (right) duo semigroup is characterized by int-soft left (right) duo semigroup. Bi-ideal,

quasi-ideal and interior ideal are characterized by using (®, ¥)-characteristic soft sets.

Keywords: Int-soft semigroup, Int-soft left (right) ideal, Int-soft (generalized) bi-ideal,
Int-soft quasi-ideal, Int-soft interior ideal, Int-soft left (right) duo semigroup.

2010 Mathematics Subject Classification. 06D72, 20M12, 20M99.

1 Introduction

The soft set theory, which is introduced by Molodtsov [13], is a good mathematical model
to deal with uncertainty. At present, works on the soft set theory are progressing rapidly.
In fact, in the aspect of algebraic structures, the soft set theory has been applied to rings,
fields and modules (see [1, 13]), groups (see [2]), semirings (see [6]), B L-algebras (see [15]),
BCK/BC1I-algebras ([7], [8], [10], [11]), d-algebras (see [9]), Song et al. [14] introduced
the notion of int-soft semigroups and int-soft left (resp. right) ideals, and investigated
several properties. As a continuation of the paper [14], Jun and Song [12] discussed fur-
ther properties and characterizations of int-soft left (right) ideals. They introduced the
notion of int-soft (generalized) bi-ideals, and provided relations between int-soft general-
ized bi-ideals and int-soft semigroups. They also considered characterizations of (int-soft)
generalized bi-ideals and int-soft bi-ideals. In [5], Dudek and Jun introduced the notion
of an int-soft interior, and investigated related properties.

In this paper, we investigate relations among int-soft semigroup, int-soft (generalized)
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bi-ideal, int-soft quasi-ideal and int-soft interior ideal. Using int-soft left (right) ideal, we
construct an int-soft quasi-ideal. We show that every int-soft quasi-ideal can be repre-
sented as the soft intersection of an int-soft left ideal and an int-soft right ideal. Using
int-soft quasi-ideal, we establish an int-soft bi-ideal. We display conditions for a semigroup
to be regular. We introduce the notion of int-soft left (right) duo semigroup, characterize
it by int-soft left (right) duo semigroup. We also characterize bi-ideal, quasi-ideal and

interior ideal by using (®, ¥)-characteristic soft sets.

2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B

is defined as follows:
AB={abe S|a€ Aand be B}.

A semigroup S is said to be regular if for every x € S there exists a € S such that
rar =,

A nonempty subset A of S is called

e a subsemigroup of S if AA C A, that is, ab € A for all a,b € A,

a left (resp., right) ideal of S if SAC A (resp., AS C A), that is, za € A (resp.,
ax € A) for all z € S and a € A,

a two-sided ideal of S if it is both a left and a right ideal of S,

a generalized bi-ideal of S if ASA C A,

a bi-ideal of S if it is both a semigroup and a generalized bi-ideal of S,

e an interior ideal of S if SAS C A.

A semigroup S is said to be

e left (resp., right) duo if every left (resp., right) ideal of S is a two-sided ideal of S,
e duo if it is both left and right duo.

A soft set theory is introduced by Molodtsov [13], and Cagman et al. [4] provided new
definitions and various results on soft set theory.

In what follows, let U be an initial universe set and E be a set of parameters. Let
Z(U) denotes the power set of U and A, B,C,--- C E.

10
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Definition 2.1 ([4, 13]). A soft set (a, A) over U is defined to be the set of ordered
pairs

(o, A) :={(z,a(x)) : x € E, a(x) € Z(U)},
where a1 E — Z(U) such that a(z) =0 if x ¢ A.

The function « is called approximate function of the soft set («, A). The subscript A
in the notation « indicates that « is the approximate function of («, A).
For any soft sets («,S) and (3, 5) over U, we define

(o, S) C (B, 9) if a(x) C B(z) for all z € S.

The soft union of (a, S) and (3, S) is defined to be the soft set (aU 3, S) over U in which
aU 3 is defined by

(aUpB) (z) = a(x) U B(x) for all x € S.

The soft intersection of (v, S) and (3,S5) is defined to be the soft set (aN3,S) over U
in which a0 3 is defined by

(anpP)(z) = alx) N B(x) for all x € S.

The int-soft product of (a, S) and (3, S) is defined to be the soft set (a3 3,S) over U in
which « & 3 is a mapping from S to Z(U) given by

) U {aly)np(z)} if Jy,z € S such that = = yz
(@38)(a) = { ==

0 otherwise.

3 Int-soft ideals

In what follows, we take E = S, as a set of parameters, which is a semigroup unless

otherwise specified.

Definition 3.1 ([14]). A soft set («,.S) over U is called an int-soft semigroup over U if

it satisfies:
(Vz,y € 5) (a(z) Naly) € azy)) . (3.1)

Definition 3.2 ([12]). A soft set («,S) over U is called an int-soft generalized bi-ideal

over U if it satisfies:

(Vz,y,z € S) (a(x) Na(z) C azyz)). (3.2)

11
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If a soft set («,S) over U is both an int-soft semigroup and an int-soft generalized

bi-ideal over U, then we say that («,.S) is an int-soft bi-ideal over U.

Definition 3.3 ([14]). A soft set («, S) over U is called an int-soft left (resp., right) ideal

over U if it satisfies:

(Vz,y € S) (a(zy) 2 aly) (resp., a(xy) 2 a(x))). (3.3)

If a soft set («,S) over U is both an int-soft left ideal and an int-soft right ideal over
U, we say that («,.S) is an int-soft two-sided ideal over U.
Obviously, every int-soft left (resp., right) ideal over U is an int-soft semigroup over

U. But the converse is not true in general (see [14]).
Definition 3.4. A soft set («, .S) over U is called an int-soft quasi-ideal over U if

Definition 3.5 ([5]). A soft set («,.S) over U is called an int-soft interior ideal over U

if it satisfies:

(Va,z,y € S) (a(zay) 2 ala)). (3.5)

For a nonempty subset A of S and &,V € Z(U) with & D ¥, define a map Xff’q’) as

follows:
® ifxeA,

U otherwise.

a8 — 2WU), z— {

Then (Xff’qj), S) is a soft set over U, which is called the (®, V)-characteristic soft set. The

soft set (X‘f*‘“), S) is called the (&, V)-identity soft set over U. The (®, V)-characteristic
soft set with ® = U and ¥ = () is called the characteristic soft set, and is denoted by
(x4,S5). The (@, ¥)-identity soft set with & = U and ¥ = () is called the identity soft set,
and is denoted by (xg, S).

Lemma 3.6. Let (o, S), (8,S5) and (v,S) be soft sets over U. If (a,S)C(5,S), then
(267,5) C (867,5) and (yéa,S) C (v63,5).

Proof. For any x € S, if x is expressible as x = yz, then

(ad7) (2) = [J{aly) N7(2)}

T=yz

< U {Bw) nv(=)}

=Yz

= (857) (a).

12
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Otherwise implies that (a3v) (z) = 0 = (857) (z). Hence (ad+,S) C (857, S). Simi-

larly, we have (yda,S) C (y84,5). O
Theorem 3.7. Fvery int-soft quasi-ideal is an int-soft semigroup.

Proof. Let (, S) be an int-soft quasi-ideal over U. Since (a, S) C (g, S), it follows from
Lemma [3.6 that (ad5a,S) C (xsda,S) and (ada,S) C (adxs,S). Hence

(@éa,5) C (xséa,5) N (adxs,S) C(a,9).
Therefore («, S) is an int-soft semigroup over U. ]
Theorem 3.8. Fvery int-soft quasi-ideal is an int-soft bi-ideal.

Proof. Let (a, S) be an int-soft quasi-ideal over U. Then («, S) is an int-soft semigroup
by Theorem 3.7, and hence (ada,S) C (a, S). Since (adxs,S) C (a, S), we have

(adxsoa,S) C (xsoa,S). (3.6)
Also, since (ysda,S) C (xs,S), we have
(adxsoa,S) C (adxg,9). (3.7)
It follows from (3.4)), (3.6) and (3.7) that
(@éxs6a,8) C (xs6a,8) N (adys,S) C(a,9).
Therefore (o, S) is an int-soft bi-ideal over U. O

The converse of Theorem 3.8 is not true in general as seen in the following example.

Example 3.9. Let S = {0, 1,2,3} be a semigroup with the multiplication table which is
appeared in Table [1.
Let («,S) be a soft set over U = Z defined as follows:

27U{1,3,5} ifx=0,

47, ifx =1
a:8— 2U), z— lx ’
27 if v =2,
AN if x = 3.

Then (v, S) is an int-soft bi-ideal over U, but it is not an int-soft quasi-ideal over U.

13
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Table 1: Cayley table for the multiplication

w NN = O

o O O OO
o O O O
_— O O O

N = O Ol W

Lemma 3.10. For any soft sets («,S), (5,5) and (v, S) over U, we have

(1) (a8(8U7),5) = ((@ep)U(ady),S).
(2) (BU7)5@,5) = ((Bea)U(y5a),s5).
(3) (a5(8N7),5) € ((@cf)N(as7),5).

(4) ((BN7)8a,8) C ((Bea)n(v6a),s).

(!

M
B}

Proof. For any x € S, if x is expressible as © = yz, then

(a3 (BU)(z) = | {aly) N (BU(2)}

r=yz

= J{aw) n(B(z) ur(2)}

T=Yyz

= [ J{(aly) nB(=) U (aly) n (=)}

- ( U {e)n ﬁ(z)}) U ( U fety)n 7(2)}>

T=yz

14
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and

Obviously, (ad (8U7))(z) = (a5 3)U(ad7)) (x) and
(@8 (BN)(x) = ((@sB)N (7)) ()

if z is not expressible as x = yz. Therefore (. (5U%),S) = ((ad8)U(ad7),S) and
(@3 (8N7),8) C ((ad8)N(ad7),S). Similarly we can show that

((BU)da,8) = ((B5a)U(v3a),s5)
and ((BNv)5a,S) C ((Bsa)N(yda),s). O
Lemma 3.11. If («,S) is a soft set over U, then

(aO(Xsaa)>S) and (&O(Q6X5)as)

are an int-soft left ideal and an int-soft right ideal over U respectively.

Proof. Using Lemma 3.10, we have

Hence (aU(xsd«),S) is an int-soft left ideal over U. Similarly, («U (a5 xg),S) is an
int-soft right ideal over U. O

15
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Lemma 3.12. Let («,S) and (3,S) be an int-soft right ideal and an int-soft left ideal

over U respectively. Then (a0 3,8) is an int-soft quasi-ideal over U.

Proof. Since

(((@nB)exs) N (xso (@ p)),s) € ((dxs)N(xssp),S)

we know that («N 3, S) is an int-soft quasi-ideal over U. ]

M

(anp,s),

Theorem 3.13. Fvery int-soft quasi-ideal can be represented as the soft intersection of

an int-soft left ideal and an int-soft right ideal.

Proof. Let («, S) be an int-soft quasi-ideal over U. Then
(aU(xsoa),S) and (aU(adxs),S)

are an int-soft left ideal and an int-soft right ideal over U respectively by Lemma [3.11.
Since (a, S) C (aU(adxs),S) and (o, S) C (aU(xsda),S), it follows that

(
C ((aU((aU(xsda))N(adxs)),S
((aU(xsda)U((xsda)N(adxs))),S)
C (aU((aNn(adxs))Ua,S)
C (aU(aUa),S)

and so that (o, S) = ((«U(xsoa))N(aU(adys)),S) which is the soft intersection of
the int-soft left ideal (aU (x50 «),S) and the int-soft right ideal («U (a6 xs),S) over
U. O

Theorem 3.14. Let (o, S) and (3,S) be soft sets over U. If (a,S) is an int-soft quasi-
ideal over U, then the soft product («d 3,5) is an int-soft bi-ideal over U.

Proof. Assume that («, S) is an int-soft quasi-ideal over U. Since every int-soft quasi-ideal

is an int-soft bi-ideal, we have (a6 xgda, S) C(a,S). Hence

((asp)s(asp),s) = ((acfoa)op,s)
((adxso@)5/3,5)
= (@5f,5)

IMe

16
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and
((adp)oxso (o p), ) = ((as(Boxs)oa)sf,s)
C ((ad(xsoxs)062)30,59)
C ((a6xs60)54,9)
C (ad8,5)
Therefore (a6 3,5) is an int-soft bi-ideal over U. O

Definition 3.15. A semigroup S is said to be int-soft left (vesp., right) duo if every

int-soft left (resp., right) ideal over U is an int-soft two-sided ideal over U.

If a semigroup S is both int-soft left and int-soft right duo, we say that S is int-soft

duo.
Lemma 3.16. For a nonempty subset A of S, the following are equivalent.
(1) A is a left (resp., right) ideal of S.

(2) The (P, V)-characteristic soft set (Xff’qj), S) over U is an int-soft left (resp., right)
ideal over U.

Proof. The proof is easy, and hence we omit it. O
Corollary 3.17 ([14]). For a nonempty subset A of S, the following are equivalent.
(1) A is a left (resp., right) ideal of S.

(2) The characteristic soft set (xa,S) over U is an int-soft left (resp., right) ideal over
U.

Theorem 3.18. For a semigroup S, the following assertions are equivalent.
(1) S is regular.

(2) (anp,S) = (ad3,8) for every int-soft right ideal (v, S) and every int-soft left ideal
(8,S) over U.

Proof. For the necessity, see [14]. For the sufficiency, assume that (2) is valid. Let A and
B be any right ideal and any left ideal of S, respectively. Then obviously AB C AN B,
and the (®, ¥)-characteristic soft sets (Xff’qj), S) and (ng’qj), S) over U are an int-soft

17
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right ideal and an int-soft left ideal, respectively, over U by Lemma 3.16. Let x € AN B.
Then

o,U OU) ~ (DT D) ~ (D0 o,U
X (@) = (P e xS (@) = (T Ay ) (@) = X g () = @

and so x € AB which shows that AN B C AB. Hence AN B = AB, and therefore S is

regular. 0
Theorem 3.19. For a reqular semigroup S, the following conditions are equivalent.

(1) S is left duo.

(2) S is int-soft left duo.

Proof. (1) = (2). Let (a,S) be an int-soft left ideal over U and let z,y € S. Note that
the left ideal Sz is a two-sided ideal of S. It follows from the regularity of S that

zy € (xSx)y C (Sx)S C Sx.
Thus zy = ax for some a € S. Since («, S) is an int-soft left ideal over U, we have
a(zy) = alaz) 2 alx).

Hence («, S) is an int-soft right ideal over U and so («, S) is an int-soft two-sided ideal
over U. Therefore S is int-soft left duo.

(2) = (1). Let A be aleft ideal of S. Then the (@, ¥)-characteristic soft set (Xf’qj), S)
over U is an int-soft left ideal over U by Lemma 3.16. It follows from the assumption that
(Xff’\p), S) is an int-soft two-sided ideal over U. Therefore A is a two-sided ideal of S by
Lemma 3.16. [

Similarly, we have the following theorem.
Theorem 3.20. For a reqular semigroup S, the following conditions are equivalent.
(1) S is right duo.
(2) S is int-soft right duo.
Corollary 3.21. A regular semigroup is duo if and only if it is int-soft duo.
Theorem 3.22. For any nonempty subset A of S, the following are equivalent.

(1) A is a bi-ideal of S.

18
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(2) The (®,V)-characteristic soft set (Xff’q’), S) over U is an int-soft bi-ideal over U
for any @,V € Z(U) with ® D V.

Proof. Assume that A is a bi-ideal of S. Let ®, ¥ € & (U) with ® D ¥ and z,y,z € S. If
x,z € A, then X(Aq)’qj)(x) == X(f’qj)(z), xz € AAC A and zyz € ASA C A. Hence

X (z2) = @ = T (@) TV (2) (3.8)
and
X (2yz) = @ = XTV (@) Ny (2). (3.9)

Ifx¢ Aor z ¢ A, then XSD’\I/) () =WV or Xf”w)(z) = U. Hence

W @z) 20 =X @) n ) (3.10)
and
X3 (wyz) 20 = x5 (@) nx Y (2). (3.11)

Therefore (X(Aq”\p), S) is an int-soft bi-ideal over U for any &, ¥ € Z(U) with & D .

Conversely, suppose that the (®, ¥)-characteristic soft set (XSI)’\P),S> over U is an

int-soft bi-ideal over U for any ®, ¥ € & (U) with ® D W. Let b and a be any elements
of AA and ASA, respectively. Then b = xz and a = xyz for some z,2 € A and y € S.

Hence

) =X @) 2 @) ) =ene = o, (312)
and

i (a) = x5 (ay) 200 @) () = ene = o, (3.13)

Thus Xf’q})(b) = & and Xf’m)(a) = &. Hence b,a € A, which shows that AA C A and
ASA C A. Therefore A is a bi-ideal of S. O

Similarly, we have the following theorems.
Theorem 3.23. For any nonempty subset A of S, the following are equivalent.

(1) A is a quasi-ideal of S.
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(2) The (®,V)-characteristic soft set (X(f’\p), S) over U is an int-soft quasi-ideal over
U for any ®,¥ € Z(U) with ® D V.

Theorem 3.24. For any nonempty subset A of S, the following are equivalent.
(1) A is an interior ideal of S.

(2) The (®,V)-characteristic soft set (Xf’qj),S) over U is an int-soft interior ideal

over U for any ®,¥ € Z(U) with ® 2 .
Theorem 3.25. For a regular semigroup S, the following conditions are equivalent.
(1) Every bi-ideal of S is a right ideal of S.
(2) Ewvery int-soft bi-ideal over U is an int-soft right ideal over U.

Proof. (1) = (2). Let («, S) be an int-soft bi-ideal over U and let x,y € S. Note that the
set xSz is a bi-ideal of S, and so it is a right ideal of S by assumption. The regularity of
S implies that

xy € (zSx)S C xSz,

and so there exists a € S such that xy = zaz. It follows from (3.2)) that
a(zy) = a(zaz) 2 a(x) Na(r) = a(x)

and so that («,.S) is an int-soft right ideal over U.
(2) = (1). Let A be a bi-ideal of S. Then the (®, ¥)-characteristic soft set (X(A‘I)’\I’), S)
is an int-soft bi-ideal over U by Theorem 3.22, and so it is an int-soft right ideal over U

by assumption. It follows from Lemma [3.16/ that A is a right ideal of S. O
Similarly, we get the following theorem,
Theorem 3.26. For a reqular semigroup S, the following conditions are equivalent.
(1) FEvery bi-ideal of S is a left ideal of S.
(2) FEvery int-soft bi-ideal over U is an int-soft left ideal over U.

For any two int-soft sets («, ) and (3, .S) over U, we consider the following identity.

(anB,S)=(adB5a,s). (3.14)
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Theorem 3.27. Let S be a reqular semigroup. If (a, S) and (5,S) are an int-soft gener-
alized bi-ideal and an int-soft interior ideal, respectively, over U, then the equality (3.14)

s valid.
Proof. Let (a,S) and (3, 5) be any int-soft generalized bi-ideal and any int-soft interior
ideal, respectively, over U. Then
(a5850,8) € (adxs5a,8) C (a,9)
and
(@6(6a,5) C (xs666xs,9) C (8,9).
Thus (adB85a,S) C (aNB,S). Let z € S. Then there exists a € S such that r =

zax (= raxaz) by the regularity of S. Since (3,.5) is an int-soft interior ideal over U, we

get
(@685a)(z) = |J faly) N (83a)(2)}
( U {8(p) })
D« Blaza) N a(x))
2 04(37) ﬂﬁ(x)
= (N P)(z)
and so (aNB3,5) C (adB3a,S). Therefore (aN3,5) = (adB5a,sS). O

Corollary 3.28. Let S be a regular semigroup. If («,S) and (3,S) are an int-soft bi-ideal
and an int-soft interior ideal, respectively, over U, then the equality (3.14) is valid.

Corollary 3.29. Let S be a reqular semigroup. If (o, S) and (3,S) are an int-soft quasi-
ideal and an int-soft interior ideal, respectively, over U, then the equality (5.17)) is valid.

Lemma 3.30 ([14]). For a semigroup S, the following are equivalent.
(1) S is regular.
(2) (a,S) = (adxsd,S) for every int-soft quasi-ideal (ct,S) over U.

Theorem 3.31. In a semigroup S, if the equality (3.14) is valid for every int-soft quasi-

tdeal o and an int-soft two-sided ideal 3 over U, then S is reqular.
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Proof. Note that xg is an int-soft two-sided ideal over U. Hence
<O57S) = (aﬁXS7S) = (QaXsaa,S) .
It follows from Lemma [3.30 that S is regular. O]

Theorem 3.32. If S is a reqular semigroup, then (aNB3,S) C (ad3,S) for all int-soft
generalized bi-ideal (o, S) and int-soft left ideal (3,S) over U.

Proof. Let (o, S) and (8, S) be any int-soft generalized bi-ideal and any int-soft left ideal
over U, respectively. For any x € S there exists a € S such that * = zax since S is

regular. Hence

(@3 B)(x) = | {aly) nB(2)}

T=yz

[OY
2 2
2 &

I
)
N
=
=

and so (N B3,5) C (adf,89). O

M

Corollary 3.33. If S is a regular semigroup, then (aNf3,5)
bi-ideal (v, S) and int-soft left ideal ((3,S) over U.

(d3,5) for all int-soft

M

Corollary 3.34. If S is a regular semigroup, then (aNf3,5)
quasi-ideal (o, S) and int-soft left ideal (3,5) over U.

(d3,5) for all int-soft

Lemma 3.35 ([14]). If (o, S) is an int-soft right ideal over U and (3,S) is an int-soft
left ideal over U, then (a3 3,5) C (aNf,S).

Theorem 3.36. In a semigroup S, if (aN3,S) C (adB3,85) for every int-soft quasi-ideal
(o, S) and an int-soft left ideal (3,S) over U, then S is regular.

Proof. Since every int-soft right ideal is an int-soft quasi-ideal, it follows that
(@nB,8) C (as4,5)

for every int-soft right ideal («, ) and every int-soft left ideal (3, S) over U. Obviously,
(@83,5) C (anpB,9),

and thus (a6 3,5) = (aN B, S) for every int-soft right ideal (c, S) and every int-soft left
ideal (8, S) over U. Therefore S is regular by Theorem [3.18. O
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Theorem 3.37. If S is a reqular semigroup, then (yNaNB3,S) C (yoad3,S) for every
int-soft right ideal (vy,S), every int-soft generalized bi-ideal (o, S) and every int-soft left
ideal (3,5) over U.

Proof. Let (v,S), (a,S) and ((,S) be any int-soft right ideal, any int-soft generalized
bi-ideal and any int-soft left ideal, respectively, over U. Let x € S. Then there exists

a € S such that = xax since S is regular. Hence

(v8asp) (x) = |J {vy) n(2sB)(2)}

r=yz

2 y(x) N (az) N Blax))
2 y(z) N (afz) N B(x))
= (yNanp) (z),
and so (YNaNB,9) C (y3ad3,s). O

Corollary 3.38. If S is a reqular semigroup, then (YN aNB,S) C (y5adp,S) for every
int-soft right ideal (v, S), every int-soft bi-ideal («, S) and every int-soft left ideal (/3,S)

over U.

Corollary 3.39. If S is a reqular semigroup, then (YN aNB,S) C (y5adf,S) for every
int-soft right ideal (v, S), every int-soft quasi-ideal (a, S) and every int-soft left ideal (3, S)

over U.

Theorem 3.40. Let (v,5), (a,S) and (3,S) be soft sets over U in a semigroup S such
that

(vAanpB,s) € (v5asp,s).

If (v, S) is an int-soft right ideal, (c, S) is an int-soft quasi-ideal and (3, 5) is an int-soft
left ideal over U, then S is regular.

Proof. Since xg is an int-soft quasi-ideal over U, we have

(yNB3,8) =(1NxsNB,5) C (yoxs58,5) C (v33,5).

Clearly, (v33,5) C (yN3,5). Hence (v543,5) = (yN3,S9), and therefore S is regular
by Theorem 3.18. 0
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Generalizations of starshaped (€, €Vq)-fuzzy sets

Abstract The notions of starshaped (€, € V qx)-fuzzy sets and quasi-starshaped (€,
€V qi)-fuzzy sets are introduced, and related properties are investigated. Characteriza-
tions of starshaped (€, € V qi)-fuzzy sets and quasi-starshaped (€, € V ¢)-fuzzy sets are
discussed. Relations between starshaped (€, € V g )-fuzzy sets and quasi-starshaped (€,
€V qi)-fuzzy sets are investigated.

Mathematics Subject Classification (2010): 03E72, 52A30.
Keywords: Starshaped (€, €V gi)-fuzzy set, quasi-starshaped (€, €V qx)-fuzzy set.

1 Introduction

The concept of starshaped fuzzy sets, which are a generalization of convex sets, is in-
troduced by Brown [1], and Diamond defined another type of starshaped fuzzy sets and
established some of the basic properties of this family of fuzzy sets in [2]. Brown’s star-
shaped fuzzy sets was called quasi-starshaped fuzzy sets, and its properties are provided in
the paper [6]. As a generalization of starshaped fuzzy sets and quasi-starshaped fuzzy sets,
Jun et al. [4] used the notion of fuzzy points, and discussed starshaped (€, € V q)-fuzzy
sets and quasi-starshaped (€, € V q)-fuzzy sets.

In this paper, we consider more general form than Jun and Song’s consideration in
the paper [4]. We introduce the concepts of starshaped (€, €V ¢ )-fuzzy sets and quasi-
starshaped (€, € V q;)-fuzzy sets, and investigate related properties. We provide char-
acterizations of starshaped (€, € V ¢i)-fuzzy sets and quasi-starshaped (€, € V ¢ )-fuzzy
sets. We provide a condition for a fuzzy set to be a starshaped (€, € V q)-fuzzy set.
We discuss relations between starshaped (€, € V gi)-fuzzy sets and quasi-starshaped (€,
€V q)-fuzzy sets.
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2 Preliminaries

Let R™ denote the n-dimensional Euclidean space. For z,y € R", the line segment 7y
joining = and y is the set of all points of the form ax + By where o > 0, § > 0 and
a+ 3 =1. Aset S CR"is said to be starshaped related to a point x € R" if 7y C S for
each point y € S. A set S C R" is simply said to be starshaped if there exists a point = in
R™ such that S is starshaped relative to it. Note that a star-shaped set is not necessarily
convex in the ordinary sense.

A fuzzy set A € F(R") is called a starshaped fuzzy set relative to y € R™ (see [0, [7])

if it satisfies:
(Ve € R") (Vo € [0,1]) (A(d(x —y) + y) > A(x)) . (2.1)

A fuzzy set A € F(R™) is called a quasi-starshaped fuzzy set relative to y € R™ (see
[1,16]) if it satisfies:

(Vo € R") (Vo € [0,1]) (A(dz + (1 — d)y) > min{A(x), A(y)}) . (2.2)

A fuzzy set A in a set X of the form

) te(0,1] if y=u,
Al) ._{ 0 if y#u,

is said to be a fuzzy point with support x and value ¢ and is denoted by x;.

For a fuzzy set A in a set X, a fuzzy point x; is said to

e contained in A, denoted by x; € A (see [0]), if A(x) > t.

e be quasi-coincident with A, denoted by z;q A (see [5]), if A(x) +¢ > 1.
For a fuzzy point z; and a fuzzy set A in a set X, we say that

e r,evVqgAifz, € Aor x,qA.

Jun [3] considered the general form of the symbol z; q.A as follows: For an arbitrary

element k of [0,1), we say that
o g Aif A(x) +t+k > 1.

e 1, eV Aif z, € A or ;g A.
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3 Starshaped (€, €V g;)-fuzzy sets

In what follows, let .#(R"™) and k denote the class of fuzzy sets on R” and an arbitrary

element of [0, 1), respectively, unless otherwise specified.

Definition 3.1 ([4]). A fuzzy set A € .Z(R") is called a starshaped (€, €V q)-fuzzy set
relative to y € R” if

rneA = 0(r—y) +y)eVqgA (3.1)
for all z € R", 6 € [0,1] and ¢ € (0, 1].
Definition 3.2. A fuzzy set A € Z(R") is called a starshaped (€, € V qx)-fuzzy set
relative to y € R™ if

neA = 0x—y +yieVeg A (3.2)
for all z € R”, § € [0,1] and ¢ € (0, 1].

Note that a starshaped (€, € V qi)-fuzzy set relative to y € R" with £ = 0 is a
starshaped (€, €V q)-fuzzy set relative to y € R™.

Example 3.3. The fuzzy set A € Z(R) given by

(12542 if 2 € (—1.5,-0.5),

(
025 —x if 2 € (—0.5,0],
A:R—10,1], z+— ¢ 025+ 2z if z € (0,0.5],

1.25 —z if z € (0.5,1.5),

0 otherwise,

\

is a starshaped (€, €V qx)-fuzzy set relative to y = 0 with & = 0.6.

Obviously, every starshaped (€, €V q)-fuzzy set relative to y € R" is a starshaped (€,
€V qx)-fuzzy set relative to y € R™, but the converse is not true. In fact, the starshaped
(€, €V qx)-fuzzy set A relative to y = 0 with k£ = 0.6 in Example 3.3 is not a starshaped
(€, €V q)-fuzzy set relative to y = 0 since if we take x = 0.12, § = 0.9 and t = 0.3, then
x; € A and (6z); € A, but (6z);q.A. Hence (dz),€V qA.

We provide a condition for a fuzzy set A € % (R™) to be a starshaped (€, €V g )-fuzzy
set relative to y € R"™.
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Theorem 3.4. Given y € R", if a fuzzy set A € F(R") satisfies the condition
nevagA = 0(r—y) +y):eVa A (3.3)

forallz € R*, § € [0,1] and t € (0,1], then A is a starshaped (€, €V qi)-fuzzy set relative
toy € R™.

Proof. Straightforward. ]

Corollary 3.5 ([4]). Given y € R, if a fuzzy set A € F(R"™) satisfies the condition
reVqeA = 0z —y) +y):eVqgA (3.4)

forallz € R, § € [0,1] and t € (0,1], then A is a starshaped (€, €V q)-fuzzy set relative
toy € R™

We consider characterizations of a starshaped (€, €V q)-fuzzy set.
Theorem 3.6. For a fuzzy set A € F(R"), the following are equivalent:
(1) A is a starshaped (€, €V qi)-fuzzy set relative to y € R™.
(2) A satisfies:

(Vo € R™)(VS € [0,1]) (A(0(z — y) +y) > min{A(z), 15}) (3.5)

Proof. Assume that A is a starshaped (€, € V gqi)-fuzzy set relative to y € R™. Let
z € R" and ¢ € [0,1]. If A(z) > 155, then 1 € A and so (0(z — y) —i—y)% eV A

2
by (3.2), that is, A(6(z —y) +y) > £ or A(6(z —y) +y) + 55+ k > 1. Thus

A(0(z—y)+y) > % since A(d(x—y)+vy) < % induces a contradiction. Consequently,
A(0(z—y)+y) > min{A(z), 155} for all z € R” and § € [0, 1]. Suppose that A(z) < 5%
If A(6(z —y) +y) < A(z), then A(6(z — y) +y) <t < A(z) for some ¢ € (0,15%) and so
xy € Abut (§(x—y)+y): €.A. Since A(d(z—y)+y)+t+k < 1, we have (0(z—y)+y): Gx A.
Hence (6(z — y) + y): €Vqr A, a contradiction. Thus A(6(x — y) +y) > A(x) and
consequently A(8(z — y) + y) > min{A(z), 55} for all z € R" and 6 € [0, 1].

Conversely, assume that a fuzzy set A € .#(R") satisfies the condition (3.5). Let
r € R" § €[0,1] and ¢ € (0,1] be such that z; € A. Then A(z) > t. Suppose that
A(d(z —y) +y) < t. If A(z) < 15E, then A(6(z — y) +y) > min{A(z), £} = A(z) > ¢,
a contradiction. Hence A(z) > %, and so

Az —y)+y) +t+k > 2406z —y) +y) + k> 2min{A(z), £} + k = 1.
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Thus (6(x — y) + y): €V qr A. Therefore A is a starshaped (€, €V qi)-fuzzy set relative
toy € R™. O

Corollary 3.7 ([4]). A fuzzy set A € Z(R") is a starshaped (€, €V q)-fuzzy set relative
to y € R™ if and only if

(Vz € R")(V6 € [0,1]) (A(§(x — y) + y) > min{A(z),0.5}) (3.6)

Using Theorem 3.6, we know that if & < 7 in [0, 1), then every starshaped (€, €V ¢)-
fuzzy set relative to y € R™ is a starshaped (€, €V ¢, )-fuzzy set relative to y € R™. But
the converse is not true. In fact, the starshaped (€, € V qo¢)-fuzzy set relative to y = 0

in Example [3.3is not a starshaped (€, € V qo.4)-fuzzy set relative to y = 0.
Theorem 3.8. For a fuzzy set A € F(R™), the following are equivalent:
(1) A is a starshaped (€, €V qi)-fuzzy set relative to y € R™.

(2) The nonempty t-level set U(A;t) of A is starshaped relative to y € R™ for all

t e (0,5E].

Proof. Assume that A is a starshaped (€, € V qx)-fuzzy set relative to y € R™ and let
t € (0, 5] be such that U(A;t) # 0. Let « € U(A;t). Then z; € A, and so

A(6(z —y) +y) > min{A(z), 155} > min{t, 155} = ¢

by Theorem 3.6, Hence 7y C U(A;t) for t € (0,45%]. Therefore U(A;t) is starshaped
relative to y € R™ for all ¢ € (0, 15%].

Conversely, suppose that the nonempty t-level set U(A;t) is starshaped relative to
y € R" for all t € (0,5]. For 6 € [0,1] and = € R", let A(x) =t,. Then 7y C U(A;t,),
and so

Alb(z —y) +y) > t, = A(z) > min{A(z), :5£}.

It follows from Theorem 3.0/ that A is a starshaped (€, € V qi)-fuzzy set relative to
y € R"™. O

Corollary 3.9 ([4]). A fuzzy set A € F(R") is a starshaped (€, €V q)-fuzzy set relative
to y € R™ if and only if its nonempty t-level set U(A;t) is starshaped relative to y € R
for all t € (0,0.5].

Theorem 3.10. Given a starshaped fuzzy set A € F(R"), the following are equivalent:
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(1) The nonempty t-level set U(A;t) is a starshaped subset of R™ relative to y € R™ for
all t € (55, 1].

(2) A satisfies the following condition.
Alz) < max{A(d(z — y) +y), 5} (3.7)
for all z € R™ and ¢ € [0, 1].

Proof. Assume that the nonempty t-level set U(A;t) is starshaped relative to y € R" for
all t € (15, 1]. If the condition (3.7) is false, then there exists a € R™ such that

A(a) > max{A(0(a —y) + y), %}

Hence ¢, := A(a) € (5£,1] and a € U(A;t,). But A(6(a — y) +y) < t, implies that

ay ¢ U(A;t,), that is, U(A;t,) is not a starshaped subset of R™ relative to a € R™. This
is a contradiction, and so the condition (3.7) is valid.

Conversely, suppose that A satisfies the condition (3.7). For any ¢ € [0,1] and ¢ €
(45£,1], let € U(A;t). Using the condition (3.7), we have

max{A(6(z —y) +y), 55} > A(z) > t > Lk

Thus A(d(z — y) +y) > t, and hence d(x — y) +y € U(A;t), that is, Ty C U(A;t).
Therefore the nonempty t-level set U(A;t) is a starshaped subset of R relative to y € R™
for all ¢ € (1%, 1]. O

Corollary 3.11 ([4]). For a starshaped fuzzy set A € F(R™), the nonempty t-level set
U(A;t) is a starshaped subset of R™ relative to y € R™ for all t € (0.5,1] if and only if A

satisfies the following condition.
A(z) <max{A(6(x —y)+y),0.5} (3.8)
for all z € R™ and ¢ € [0, 1].

Combining Theorems 3.8 and 13.10, we have a corollary.

Corollary 3.12. For a starshaped fuzzy set A € F(R"), the nonempty t-level set U(A;t)
is a starshaped subset of R™ relative to y € R™ for all t € (0, 1] if and only if A satisfies
two conditions (3.1) and (3.7).

Theorem 3.13. Given a fuzzy set A € F(R™), the following are equivalent:
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(1) A is a starshaped (€, €V qi)-fuzzy set relative to y € R™.
(2) A satisfies:
for allz e R, 6 € [0,1] and t € (0, 1].
Proof. Suppose that A € #(R"™) is a starshaped (€, €V qi)-fuzzy set relative to y € R™.
Let 6 € [0,1], t € (0,1] and (x +y); € A for every z € R". Then A(x +y) > t. Replacing
x by x +y in (3.5), we have
Az +y) = A0z +y) —y) +y)
> min{A( +1), '54)
> min{t, 55}
If t < 12% then A(dz +y) >t and so (dz + y); € A. Ift>%, then
Az +y)+t+k>E i+ k> b =1

and so (0x + ) qr A. Hence (0x +y); €V qi, A.
Conversely, suppose that A satisfies the condition (3.9). We first show that

A(6z +y) > min{A(z + y), 55} (3.10)
Assume that A(a: +y) < BE If A(Sz +y) < Az +y), then A0z +y) <t < Az +y)
for some t € (0, 15%). Hence (x +y): € Aand (0x +y); €. A. Also, since

Az +y)+t+k <2t+k <1,

we get (0z+y); gk A. Thus (dx+y); EV qi, A, a contradiction. Hence A(dz+y) > A(z+y).
Now, suppose that A(z +y) > 5%, Then (z + y)1 r € A and so (dz + y)1 r EVar A

by (3.9). If A(6z +y) < 5, then (dz + y)1 k E.A and A(dx + y) + 5 + k<1,
that is, (6x +y)1-% @& A. This is a contradlctlon and so A(dx +y) > ﬂ. Therefore
Az +y) > min{?A(a: +y), 5%}, Now if we replace z + y by « in (3.10), then
A(o(z —y) +y) = AW((z +y) —y) +y) = Aldz +y)
> minfA(e + ), 15}
~ min{A(x), 5541,

It follows from Theorem 3.6/ that A is a starshaped (€, € V qi)-fuzzy set relative to
y € R"™. O
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Corollary 3.14 ([4]). A fuzzy set A € Z(R") is a starshaped (€, €V q)-fuzzy set relative
to y € R™ if and only if it satisfies:

(x+y)reA = (bx+y)eVqgA (3.11)

for allz € R, 6 € [0,1] and t € (0, 1].

Definition 3.15 ([4]). A fuzzy set A € .7 (R") is called a quasi-starshaped (€, €V q)-
fuzzy set relative to y € R™ if

reA y, €A = (024 (1 =06)Y)mingty EVeA (3.12)

for all z € R", § € [0,1] and ¢,7 € (0, 1].

Definition 3.16. A fuzzy set A € #(R") is called a quasi-starshaped (€, € V q)-fuzzy
set relative to y € R™ if

€A y €A = (024 (1 = 6)Y)minftry EVa A (3.13)

for all z € R”, § € [0,1] and ¢, € (0, 1].

The quasi-starshaped (€, € V g)-fuzzy set A relative to y € R" with £k = 0 is a
quasi-starshaped (€, €V q)-fuzzy set A relative to y € R™.

Example 3.17. The fuzzy set A in Example 3.3 is a quasi-starshaped (€, €V ¢ )-fuzzy
set relative to y = 0 with k£ = 0.6.

Example 3.18. The fuzzy set A € .#(R) given by

(17542 if 2 €[-1.5,—1),
0.75 if z€[-1,—v0.5)U (V0.5,1],
A:R—[0,1], z+— ¢ 025+ 2% if x € [-+/0.5,/0.5],

1.75 -z if x € (1,1.5],

\ 0.25 otherwise

is a quasi-starshaped (€, €V gi)-fuzzy set relative to y = 0 with & = 0.58.
We consider characterizations of a quasi-starshaped (€, €V g )-fuzzy set.
Theorem 3.19. For a fuzzy set A € F(R"™), the following assertions are equivalent:

(1) A is a quasi-starshaped (€, €V qi)-fuzzy set relative to y € R™.
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(2) A satisfies:
A0z + (1 —0)y) > min{A(z), A(y), 55} (3.14)
for all z € R™ and ¢ € [0, 1].

Proof. Assume that A is a quasi-starshaped (€, € V gx)-fuzzy set relative to y € R™.
Let z € R" and § € [0,1], and suppose that min{A(z), A(y)} < 5. If there exists
t € (0,45%) such that

A(dx + (1 =98)y) <t <min{A(z), A(y)},

then z; € A and y; € A, but
(0 + (1 = 0)Y)mingty = bz + (1 —9)y), €A
and
Az + (1 =9d0)y) +t+k<2t+k <1,
that is, (dz + (1 — 0)y)¢ qx A. Hence (0x + (1 — d)y); €V qx A, a contradiction. Thus

A(dz + (1 = 0)y) = min{A(z), A(y)}

Now assume that min{A(z), A(y)} > 5%, Then x% € A and y% € A, and so
(0 4+ (1 =0)y)1-k EV i A,
2

that is, (62 + (1 — 8)y)1- € A or (0 + (1 — 0)y) 1k g A by (3.13). If
2

1—
2

(6z 4+ (1 —6)y)1-k EA, ie., A(dz + (1 — d)y) < L5~

[\

then A(dz + (1 —8)y)+ 52 +k < 1, ie., (6z+ (1 — 0)y)1—« Gk A, This is a contradiction.
Consequently,

for all x € R™ and 0 € [0, 1].

Conversely, assume that a fuzzy set A € F#(R") satisfies the condition (3.14). Let
x € R" § € [0,1] and t,r € (0,1] be such that z; € A and y,. € A. Then A(z) >t
and A(y) > r. If A(6z + (1 —d)y) < min{A(z), A(y)}, then min{A(z), A(y)} > 5=

Otherwise, we have

A0z + (1= 0)y) > min{A(z), A(y), '5°} = min{A(z), A(y)},
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a contradiction. It follows that
A(dz + (1 = 96)y) + min{t,r} + k
> 2A(0x + (1 = 9)y) + k
> 2min{A(z), A(y), 55} + k=1

and so that (02 4 (1 = 0)Y)mintr} @ A. Thus (62 + (1 = 0)Y)minft,r} €V @rA, and therefore
A is a quasi-starshaped (€, €V gi)-fuzzy set relative to y € R". O

Corollary 3.20 ([4]). A fuzzy set A € F(R") is a quasi-starshaped (€, €V q)-fuzzy set
relative to y € R" if and only if

(Vz € R") (Vo € [0,1]) (A(dx + (1 — 0)y) > min{A(x),A(y),0.5}) (3.15)
The following proposition is straightforward by Theorem 3.19.
Proposition 3.21. For a fuzzy set A € F(R"), if k € [0,1) satisfies:
(Vz € R") (A(z) > 15%),
then A is a quasi-starshaped (€, €V qi)-fuzzy set relative to y € F(R™).
Corollary 3.22. If a fuzzy set A € F(R"™) satisfies:
(Vx € R") (A(x) > 0.5),
then A is a quasi-starshaped (€, €V q)-fuzzy set relative to y € F(R™).
Theorem 3.23. Given a fuzzy set A € . (R"), the following assertions are equivalent:
(1) A is a quasi-starshaped (€, €V qi)-fuzzy set relative to y € R™.

(2) The nonempty t-level set U(A;t) of A is starshaped relative to y € R"™ for all
t € (0, min{A(y), £}

Proof. Suppose A is a quasi-starshaped (€, €V gx)-fuzzy set relative to y € R". Assume
that U(A;t) # 0 for every ¢t € (0, min{A(y), 5%}]. Then y € U(A;?), that is, A(y) > ¢.
If 2 € U(A;t), then A(z) > t. It follows from (3.14) that

A0z + (1 —0)y) > min{A(z), A(y), 55} > min{t, 155} = ¢,

that is, dx+ (1 —0)y € U(A;t). Hence Ty C U(A;t), and so U(A;t) is starshaped relative
to y € R™ for all ¢ € (0, min{A(y), :52}].
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Conversely, suppose the nonempty t-level set U(A;t) is starshaped relative to y € R
for all ¢ € (0, min{A(y), :5%}]. For any § € [0,1] and z € R, let A(y) = ¢, when
A(y) < A(z). Then 7y C U(A;t,), and so

A(0z + (1 = 8)y) = min{A(z), A(y)} = min{A(z), A(y), 15" }.
Similarly, we have
AQdz + (1= 8)y) > min{A(z), A(y), 15*}

by putting A(x) = t, when A(z) < A(y). It follows from Theorem [3.19 that A is a
quasi-starshaped (€, €V g )-fuzzy set relative to y € R". O

Corollary 3.24 ([4]). A fuzzy set A € F(R") is a quasi-starshaped (€, €V q)-fuzzy set
relative to y € R™ if and only if its nonempty t-level set U(A;t) is starshaped relative to
y € R" for all t € (0, min{A(y),0.5}].

Theorem 3.25. Given y € R™, every starshaped (€, €V q)-fuzzy set relative to y € R™
is a quasi-starshaped (€, €V qi)-fuzzy set relative to y € R™.

Proof. Let A be a starshaped (€, € V qx)-fuzzy set relative to y € R". Taking § = 0 in
(3.5) induces A(y) > min{A(z), 15} for all z € R". It follows from (3.5) that
A(dz + (1= 8)y) = A(6(z — y) +y) > min{A(z), 5} = min{A(z), A(y), 5}

for all x € R™ and 6 € [0,1]. Therefore A is a quasi-starshaped (€, € V qi)-fuzzy set
relative to y € R” by Theorem 13.19. O]

Corollary 3.26 ([4]). Given y € R", every starshaped (€, € V q)-fuzzy set relative to
y € R" is a quasi-starshaped (€, €V q)-fuzzy set relative to y € R".

The converse of Theorem 3.25/is not true in general. In fact, take the quasi-starshaped
(€, €V q)-fuzzy set A relative to y = 0 with & = 0.58 in Example 3.18. If we put z = 0.5
and § = 0.8, then A(dz) < min{A(z),0.5} and so A is not a quasi-starshaped (€, €V ¢ )-
fuzzy set relative to y = 0 by Corollary [3.7.

Theorem 3.27. If A € R" is a quasi-starshaped (€, €V q)-fuzzy set relative to y € R™
with A(y) # 5%, then the set
A= {r e R" | A(z) > £}

2

15 starshaped relative to y € R™.
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Proof. Let € A. Then A(z) > 155, Take t, := A(y) when A(z) > A(y). Then, by
Theorem 3.23, U(A;t,) is starshaped relative to y, and so 7y C U(A;t,) C A. Similarly,
if we take A(z) = t, when A(zx) < A(y), then 7y C U(A;t,) C A. Therefore A is

starshaped relative to y € R". O

Corollary 3.28 ([4]). If A € R™ is a quasi-starshaped (€, € V q)-fuzzy set relative to
y € R™ with A(y) # 0.5, then the set

A:={x eR"| A(z) > 0.5}

is starshaped relative y € R™.

In Theorem [3.27, the condition A(y) # 5% is necessary. In Example 3.18, A is a

2
quasi-starshaped (€, € V g;)-fuzzy set relative to y = 2 with k = 0.5 and A(2) = 5%
But the set

A={zeR" |z € (-1.50}U{zeR" |z € (0,1.5)}
is not starshaped relative to y = 2.

Theorem 3.29. If A € R™ is a quasi-starshaped (€, €V qi)-fuzzy set relative to y € R™
with A(y) # 15E, then the closure A of A := {x € R" | A(z) > £} is starshaped relative
toy € R™.

Proof. For any § € [0,1] and 2y € A, take ag := dz¢ + (1 — &)y in R™ and let G be
a neighborhood of ay. Since A(x) = dx + (1 — &)y is continuous at z, there exists a
neighborhood H of xq such that if + € H then dx + (1 — d)y € G. Since zy € A, we
know that z € AN H. Since A is starshaped relative to y by Theorem [3.27, we get
dx + (1 -8y € ANG and so dxg + (1 — )y € A. Thus Zoy C A, and A is starshaped
relative to y € R". O

Corollary 3.30 ([4]). Let A € R be a quasi-starshaped (€, €V q)-fuzzy set relative to
y € R™ with A(y) # 0.5. Then the closure A of A = {x € R" | A(x) > 0.5} is starshaped
relative to y € R™.
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Semidetached semigroups

Abstract The notion of semidetached semigroup is introduced, and their properties are
investigated. Several conditions for a pair of a semigroup and a semidetached mapping
to be a semidetached semigroup are provided. The concepts of (€, € V Gi)-fuzzy sub-
semigroup, (Gx, € V Gr)-fuzzy subsemigroup and (€ V @, € V qx)-fuzzy subsemigroup are
introduced, and relative relations are discussed.

Keywords: Semidetached mapping, semidetached semigroup, (€, € Vqi)-fuzzy subsemi-
group, (qx, € Vqx)-fuzzy subsemigroup, (€, € V i )-fuzzy subsemigroup, (gx, € V Gx)-fuzzy
subsemigroup, (€ V @, € V Gx)-fuzzy subsemigroup.
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1 Introduction

Zadeh [28] introduced the concept of a fuzzy set in 1965. Based on the pioneering Zadeh’s
work, Kuroki introduced fuzzy semigroups and various kinds of fuzzy ideals in semigroups
and characterized certain semigroups using those fuzzy ideals (see [15} [16, [17, [18, [19]).
Since then the literature of various fuzzy algebraic concepts has been growing very rapidly.
In the literature, several authors considered the relationships between the fuzzy sets and
semigroups (see [0, [7, 12, 13 14} 15, 16l 17, 18, 19, 22]). In [23], the idea of fuzzy point
and its belongingness to and quasi-coincidence with a fuzzy subset were used to define
(e, B)-fuzzy subgroups, where o, 5 € {€, q, €V ¢q, EAq} and a # €A q. This was further
studied in detail by Bhakat 1, 2], Bhakat and Das [3, 4], and Yuan et al. [27]. This notion
is applied to semigroups and groups (see [2], [3], [4], [12], [24], [25]), BCK/BCI-algebras
(see [6], [8], [9], [10], [21], [29], [30]), and (pseudo-) BL-algebras (see [20], [31]). General
form of the notion of quasi-coincidence of a fuzzy point with a fuzzy set is considered by
Jun in [11]. Shabir et al. [25] discuss semigroups characterized by (€, €V g )-fuzzy ideals.

In this paper, we introduce the notion of semidetached semigroups, and investigate
their properties. We provide several conditions for a pair of a semigroup and a semide-
tached mapping to be a semidetached semigroup. We also introduced the concepts (€,

€ V @x)-fuzzy subsemigroup, (G, € V Gr)-fuzzy subsemigroup and (€ V @, € V i )-fuzzy
subsemigroup, and investigated relative relations.
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2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B
is defined as follows:

AB={abe S|a€ Aand be B}.

Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S
such that A2 C A. For the sake of convenience, we may regard the empty set to be a
subsemigroup.

A fuzzy set A in a semigroup S is called a fuzzy subsemigroup of S if it satisfies:

(Vz,y € 5) (AMzy) = Az) AA(y)) - (2.1)
For any fuzzy set A in a set S and any ¢ € [0, 1], the set
UNt)={x eS| ANz) >t}

is called a level subset of .
A fuzzy set A in a set S of the form

A(y) == { et e (2.2)

is said to be a fuzzy point with support x and value ¢ and is denoted by (z,t).
For a fuzzy set A in a set S, a fuzzy point (z,t) is said to

e contained in A\, denoted by (z,t) € A (see [23]), if A(z) > t.

e be quasi-coincident with A, denoted by (x,t) g A (see [23]), if A(z) +t > 1.
o (z,t) eVgif (x,t) € Aor (x,t) g\

For any family {a; | i € A} of real numbers, we define

, max{a; | i € A} if A is finite
; A} = ’
\/{a, i€ A} { sup{a; | i € A} otherwise.

, min{a; | i € A} if A is finite
; A} = ’
/\{az [P A} { inf{a; | i € A} otherwise.

For any real umbers a and b, we also use a V b and a A b instead of \/{a, b} and A{a,b},
respectively.
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3 Semidetached mappings in semigroups

In what follows, let .S denote a semigroup unless otherwise specified.
Jun [11] considered the general form of the symbol (x,t) ¢ A as follows: For an arbitrary
element k of [0,1), we say that

o (z,t)gp Nif NMa)+t+k > 1.
o (z,t) eV Nif (z,t) € Xor (z,t) g \.

Definition 3.1 ([11]). A fuzzy set A in S is called an (€, €V qx)-fuzzy subsemigroup of
S if it satisfies:

(Va,y € S)(Vt1,ta € (0,1]) (z,t1) € A\, (y,t2) € X = (zy,ti Ata) eV A).  (3.1)

Definition 3.2. Let Q be a subinterval of [0,1]. A mapping f : 2 — P(S) is called a
semidetached mapping with respect to t € Q (briefly, t-semidetached mapping over ) if
f(t) is a subsemigroup of S.

We say that f: Q — P(S) is a semidetached mapping over € if it is t-semidetached
mapping with respect to all t € Q, and a pair (S, f) is called a semidetached semigroup
over §2.

Given a fuzzy set A in S, consider the following mappings

AY Q= P(S), t— U\ t), (3.2)
AD, Q= P(S), t{z eS| (x,t)q A}, (3.3)
Aék Q= P(S), t—{x eS| (x,t) eV A} (3.4)

Lemma 3.3 ([26]). A fuzzy set X is a fuzzy subsemigroup of S if and only if U(X\;t) is
a subsemigroup of S for all t € (0,1].

Theorem 3.4. A pair (S, A})) is a semidetached semigroup over 0 = (0,1] if and only if
A is a fuzzy subsemigroup of S.

Proof. Straightforward from Lemma 3.3l O]

Theorem 3.5. If \ is an (€, €)-fuzzy subsemigroup (or equivalently, X is a fuzzy sub-
semigroup) of S, then a pair (S, AE\\?k) is a semidetached semigroup over Q0 = (0, 1].
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Proof. Let x,y € Agk(t) for t € Q = (0,1]. Then (x,t) g A and (y,t)qr A, that is,
AMx)+t+k>1and My) +t+k > 1. It follows from (2.1) that

May) +t+k > \{A@), M)} +1+k
= N{@) +t+kAy) +t+k} > 1.

Hence (zy,t) € Vg A, and so zy € Agk (t). Therefore Agk (t) is a subsemigroup of S.
Consequently (S, 'Aé?k) is a semidetached semigroup over Q2 = (0, 1]. n

Corollary 3.6. If A is an (€, €)-fuzzy subsemigroup (or equivalently, X is a fuzzy sub-
semigroup) of S, then a pair (S, Ag) is a semidetached semigroup over Q0 = (0, 1].

Definition 3.7. A fuzzy set A in S is called a (g, €V qx)-fuzzy subsemigroup of S if it
satisfies:

(Vx,y € S)(Vt,r € (0, 1%k]) (e e Ny, Yr e A = (zy,tAT) EV @) (3.5)

Theorem 3.8. Every (qx, € V qx)-fuzzy subsemigroup is an (€, € V qx)-fuzzy subsemi-
group.

Proof. Let A be a (qx, € V qx)-fuzzy subsemigroup of S. Let z,y € S and t,r € (0, 1]
be such that (z,t) € A and (y,r) € A. Then A(z) > t and A(y) > r. Suppose that
(zy,t A1) EVgp A. Then

AMzy) <tAr (3.6)
AMzy)+tAr+k <1

It follows that
Aazy) < BE. (3.8)

Combining (3.6) and (3.8)), we have
May) < N\{t.r, 55}
and so

1—k—MNay) > 1—]{:—/\{1&,7",%}
=\{1-k—t1-k—r1—k-1~}
> \/{l—k=Aa),1-k—\y), 55}
Hence there exists ¢ € (0, 1] such that

L—k—May) > 6> \/{1—k—\ax),1— k- Ay), 55} (3.9)
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The right inequality in (3.9) implies that AM(z) +d + k& > 1 and A(y) + § + k& > 1, that is,
(x,0) qx A and (y,d) qr A. Since A is a (qx, €V g )-fuzzy subsemigroup of S, it follows that
(xy,d) €V gp A. On the other hand, the left inequality in (3.9) implies that

AMzy) + 6+ k < 1, that is, (zy,0) gk A,
and
May) 1-0-k<l-k—5E=L1F<§ ie, (zy,d)EN

Hence (zy,0) €V qx A, which is a contradiction. Therefore (xy,t A7) €V ¢ A, and thus A
is an (€, €V gi)-fuzzy subsemigroup of S. ]

Corollary 3.9. Fvery (q, €V q)-fuzzy subsemigroup is an (€, €V q)-fuzzy subsemigroup.
We consider the converse of Theorem 3.8l

Theorem 3.10. If every fuzzy point has the value t in (0, 5%], then every (€, €V qi)-fuzzy
subsemigroup is a (qr, €V qi)-fuzzy subsemigroup.

Proof. Let A be a (€, €V qx)-fuzzy subsemigroup of S. Let x,y € S and ¢,r € (0, %] be
such that (z,t) gy A and (y,7) g A. Then A(z) +t+k > 1 and A(y) +r+ k > 1. Since
t,r € (0,5E], it follows that A(z) >1—t—k>E >tand My) > 1—r—k > L5E >0,
that is, (z,t) € A and (y,r) € \. It follows from (3.1) that (xy,t Ar) €V gx A\. Therefore
Ais a (qg, €V qx)-fuzzy subsemigroup of S. n

Corollary 3.11. If every fuzzy point has the value t in (0,0.5], then every (€, €V q)-fuzzy
subsemigroup is a (q, €V q)-fuzzy subsemigroup.

Theorem 3.12. If (S, Aé?k) 1s a semidetached semigroup over ) = (%,1], then A
satisfies:

(Vz,y € S)(Vt,r € Q) ((x,t) € A, (y,7) €X = (2y,tV7T)qp N). (3.10)

Proof. Let x,y € S and t,r € Q) = (%, 1] be such that (x,t) € A and (y,r) € A\. Then
Mz) >t > 155 and A(y) > r > 5%, which imply that A(z)+t+k > 1 and A(y)+t+k > 1,
that is, (2,t) g A and (y,7) gx A It follows that z,y € A} (tVr) and t Vr e (455, 1].
Since Ay, (t V r) is a subsemigroup of S by assumption, we have zy € Ap (¢ V r) and so

(xy,t VvV r)qr A O

Corollary 3.13. If (S, Aé‘g) is a semidetached semigroup over Q = (0.5,1], then A satis-

fies:
(Vz,y € S)(Vt,r € Q) ((x,t) € A, (y,r) € X = (zy,tVr)gA). (3.11)
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Theorem 3.14. If (S, Aé\?k) is a semidetached semigroup over () = (O,%], then \
satisfies:

(Vz,y € S)(Vt,r € Q) ((z,t) gp A, (y,7)q X = (zy,tVr) e N). (3.12)

Proof. Let z,y € S and t,r € (0 = (0, %] be such that (z,t) gz A and (y,7) gx A. Then
z € A}, (t) and y € A} (r). It follows that z,y € A} (tVr)and t Vr € Q= (0,45%].
Thus zy € Aégk (t Vr) since Agk (t V r) is a subsemigroup of S by the assumption. Hence
May)+k+tVr>Tlandso Nzy) >1—k—tVr>15E>tvr Thus (zy,tVr) €\

and (3.12) is valid. O

Corollary 3.15. If (S, .Aég) is a semidetached semigroup over Q = (0,0.5], then A satis-

fies:
(Va,y € S)(Vt,r € Q) ((z,t) g\, (y,7)g\ = (zy,tVr)€EN). (3.13)

Theorem 3.16. If \ is a (qx, €V qx)-fuzzy subsemigroup of S, then (S, Aégk) is a semide-

tached semigroup over ) = (%, 1}

Proof. Let x,y € Aé?k(t) for t € (%, 1}. Then (z,t) g A and (y,t) gx A. Since A is a (g,
€V q)-fuzzy subsemigroup of S, we have (zy,t) €V qx A, that is, (zy,t) € X or (zy,t) g \.
If (zy,t) € A\, then A(zy) >t > % >1—t—kandso ANzy)+t+k>1, ie, (xy,t)q A
Hence zy € A, (t). If (zy,t) qu A, then zy € A} (t). Therefore AP (t) is a subsemigroup
of S, and consequently (S7 Aé)k) is a semidetached semigroup over {2 = (%, 1]. O

Corollary 3.17. If X is a (q, €V q)-fuzzy subsemigroup of S, then (S, Ag) is a semide-
tached semigroup over £ = (0.5, 1]

Theorem 3.18. For a subsemigroup A of S, let X be a fuzzy set in S such that
(1) Az) > 5% for all z € A,
(2) Mz) =0 forallz e S\ A.

Then X is a (qx, €V qi)-fuzzy subsemigroup of S.

Proof. Let z,y € S and t,r € (0,5%] be such that (z,t) g, A and (y,7) g A. Then
Mz)+t+k >1and My) +r+k > 1, which imply that M(z) > 1 —¢—k > 15F and
Ay) >1—r—k> % Hence © € A and y € A. Since A is a subsemigroup of S, we
get xy € A and so A(zy) > 5% >t Vr. Thus (zy,tVr) € A, and so (zy,tVr) €V g A

Therefore A is a (qx, €V qx)-fuzzy subsemigroup of S. [
Corollary 3.19. For a subsemigroup A of S, let X be a fuzzy set in S such that
(1) AM(z) > 0.5 forall x € A,
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(2) Mz) =0 forallz e S\ A.
Then X is a (q, €V q)-fuzzy subsemigroup of S.
Using Theorems 3.16/ and 3.18, we have the following theorem.
Theorem 3.20. For a subsemigroup A of S, let X be a fuzzy set in S such that
(1) AMz) > L% for all z € A,
(2) Mz)=0 forallz e S\ A.
1—k

Then (S, Agk) is a semidetached semigroup over ) = (T’ 1}.

Theorem 3.21. If (S, Aék) is a semidetached semigroup over Q@ = (0, 1], then A satisfies:

(Vo,y € S)(Vt,r € Q) ((x,t) g A, (y,7) g A = (xy, tVr) EVarN). (3.14)

Proof. Let x,y € S and t,r € Q = (0,1] be such that (x,t) g A and (y,7) g A. Then
e Ay (1) C Az (t) and y € AP, (r) C Ag (r). Tt follows that z,y € A2 (tV r) and so
from the hypothesis that zy € .Aék (t Vr). Hence (zy,t Vr) € Vg A, and consequently
(3.14) is valid. O

Corollary 3.22. If (S, Aé) is a semidetached semigroup over = (0, 1], then \ satisfies:

(Vz,y € S)(Vt,r € Q) ((z,t) g A, (y,7)gA = (zy,tVr)eEVagA). (3.15)

Lemma 3.23 ([25]). A fuzzy set X in S is an (€, €V qx)-fuzzy subsemigroup of S if and
only if it satisfies:

(vz.y € ) (May) > \TA@).AW), 155 ) (3.16)

Theorem 3.24. If X\ is an (€, €V qi)-fuzzy subsemigroup of S, then (S, Aé‘?k) is a semide-
tached semigroup over ) = (%, 1} .

Proof. Let x,y € Agk(t) for t € @ = (5%,1]. Then (z,t) g A and (y,t) gi A, that is,

AMz)+t+k>1and ANy) +t+ k > 1. It follows from Lemma [3.23/ that

May) +t+k > N{A@),Ay), 52+t +k
= N{A\@) +t+kMy) +t+k 55+t + k)

> 1.

Hence (zy,t) g A, and so zy € AP, (t). Therefore AP (t) is a subsemigroup of S for all ¢ €
(%, 1}, and consequently (S , Aé‘?k) is a semidetached semigroup over 2 = (%, 1}. O
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Corollary 3.25. If X is an (€, €V q)-fuzzy subsemigroup of S, then (S, Ag) is a semide-
tached semigroup over 2 = (0.5, 1].

Theorem 3.26. If (S, .Agk) is a semidetached semigroup over Q = (0,1], then X is an
(€, €V qy)-fuzzy subsemigroup of S.

Proof. For a semidetached semigroup (S, Aék) over = (0, 1], assume that there exists

a,b € S such that
< A, S} £ 1.

Then ¢y € (0,%], a,b € U()\;to) C Agk(to), which implies that ab € A2 (to). Hence
A(ab) > to or A(ab)+to+k > 1. This is a contradiction. Thus A(zy) > A{A(z), A(y), 3£}
for all z,y € S. It follows from Lemma [3.23 that A is an (€, € V g )-fuzzy subsemigroup
of S. =

Theorem 3.27. If X is an (€, €V qi)-fuzzy subsemigroup of S, then (S, Aj}k) is a semide-

- _ 1-k
tached semigroup over €} = (O, T} .

Proof. Let z,y € A} (t) for t € Q = (0,%5%]. Then (z,t) € Vg A and (y,t) € Vg A,

Hence we have the following four cases:

1) (x,t) € XA and (y,t

(1) (z,1) (y,t) €

(2) (z,t) € X and (y,t) g A

(3) (z,t)qx A and (y,t) € A,
) (

)
)
)
(4) (2,t) qx A and (y,t) g

The first case implies that (xy,t) € Vg A and so zy € Aék (t). For the second case,
(y,t) g A induces N(y) > 1 —t —k > t, ie., (y,t) € A\. Hence (zy,t) € Vg A and
so xy € Ag (t). Similarly, the third case implies zy € Ag (t). The last case induces
Mz)>1—t—k>tand MNy) >1—t—Fk >t thatis, (z,t) € XA and (y,t) € A\. It follows
that (zy,t) €V gr A and so that zy € Az (t). Therefore A (t) is a subsemigroup of S for
all t € (0, %} Hence (S, Aék) is a semidetached semigroup over ) = (O, %] O

Corollary 3.28. If X is an (€, €V q)-fuzzy subsemigroup of S, then (S, .Aé) 15 a semide-
tached semigroup over 2 = (0,0.5].

Theorem 3.29. If \ is a (qx, €V qx)-fuzzy subsemigroup of S, then (S, .Aék) is a semide-
tached semigroup over () = (%, 1} )

Proof. Let z,y € Ag (t) for t € Q = (35%,1]. Then (z,t) € Vg A and (y,t) € Vg \.
Hence we have the following four cases:
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For the first case, we have A\(z) +t+k >2t+ k> 1and A(y) +t+k > 2t + k > 1, that
is, (z,t) qx A and (y,t) g A. Hence (xy,t) € Vg A, and so zy € Aék (t). In the case (2),
(x,t) € XA implies A\(x) +t+k > 2t +k > 1, i.e, (z,t) g A. Hence (zy,t) € Vg A, and
so xy € Ag (t). Similarly, the third case implies zy € A2 (t). For the last case, we have
(zy,t) €V qe A, and so zy € Ag (t). Consequently, A2 () is a subsemigroup of S for all
te= (%, 1]. Therefore (S, Aék) is a semidetached semigroup over ) = (%, 1}. n
Corollary 3.30. If A is an (q, €V q)-fuzzy subsemigroup of S, then (S’, Ag) s a semide-
tached semigroup over 2 = (0.5, 1].
For a € {€, q,} and t € (0, 1], we say that (z,t)a@\ if (x,t) a X does not hold.

Definition 3.31. A fuzzy set A in S is called an (€, € V Gi)-fuzzy subsemigroup of S if it
satisfies:

(Va,y € S)(Vt,r € (0,1]) ((zy,t AT)EXN = (2, t) EVGA or (y,r)EVGA). (3.17)

An (€, €Vgy)-fuzzy subsemigroup with k£ = 0 is called an (€, €Vq)-fuzzy subsemigroup.
We provide a characterization of an (€, € V g )-fuzzy subsemigroup.

Theorem 3.32. A fuzzy set A in S is an (€, €V @ )-fuzzy subsemigroup of S if and only
if the following inequality is valid.

(va,y € 9) (\V{A@y), 155} = M) A Aw)) (3.18)

Proof. Let A be an (€, € V g)-fuzzy subsemigroup of S. Assume that (3.18) is not valid.
Then there exist a,b € S such that

V{A(ab), 552} < Aa) AA®D) £ ¢.

Then 25 < ¢t <1, (a,t) € A, (b,t) € Xand (ab,t) € X. It follows from (3.17) that (a, ) gy A
or (b,t) qr A. Hence
Aa) >tand ANa)+t+k <1

or
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A(b) > tand A(b) +t+k < 1.

In either case, we have t < 1;—’“ which is a contradiction. Therefore

ViA(@y), 54} = Az) A A(y)
for all x,y € S.

Conversely, suppose that (3.18)) is valid. Let (zy,tAr) € for x,y € S and ¢,r € (0,1].
Then Azy) < t Ar. If \V{\(zy), 555} = A(zy), then t Ar > A(zy) > Az) A A(y) and
so AM(z) <t or MN(y) < t. Thus (x,t) EX or (y,r) € A, which implies that (z,t) € V g A or
(y,r)EV g A If \V{\(wy), 55} = 155, then AMz) A My) < 15E. Suppose (z,t) € X or
(y,7) € A. Then t < A(z) < LEor r < A(y) < 5%, and so

or

Hence (z,t) G A or (y,r)Gx A\. Therefore (z,t) €V g A or (y,r) € VG, A. This shows that
Ais an (€, € V g )-fuzzy subsemigroup of S. ]

Corollary 3.33. A fuzzy set X in S is an (€, €V q)-fuzzy subsemigroup of S if and only
if the following inequality is valid.

(Vz,y € S) <\/{)\(xy), 0.5} > A(x) A A(y)) . (3.19)

Theorem 3.34. A fuzzy set A in S is an (€, €V @ )-fuzzy subsemigroup of S if and only
if (S, .A@) is a semidetached semigroup over () = (%, 1}.

Proof. Assume that X is an (€, € V @;)-fuzzy subsemigroup of S. Let z,y € Ap(t) for
t € Q= (4£,1]. Then A(z) >t and A(y) > ¢t. It follows from (3.18) that

V{Azy), 55 > M) AA(y) > t.
Since t > L5E it follows that A(zy) > t and so that zy € AN(t). Thus A}(t) is a
subsemigroup of S, and (S, Ai\]) is a semidetached semigroup over ) = (%, 1}.
Conversely, suppose that (S, Aﬁ) is a semidetached semigroup over 2 = (%, 1]. If
(3.18)) is not valid, then there exist a,b € S such that

VIAGab), 555} < Aa) AND) 2 1
Then t € (5£,1], a,b € A}(t) and ab ¢ A} (t). This is a contradiction, and so (3.18) is
valid. Using Theorem 3.32, we know that A is an (€, € V @ )-fuzzy subsemigroup of S. [

Theorem 3.35. A fuzzy set A in S is an (€, €V @ )-fuzzy subsemigroup of S if and only
1—k

iof (S, Aé?k) 1s a semidetached semigroup over () = (0, T]
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Proof. Assume that (S, Aé)k) is a semidetached semigroup over €2 = (O, %] If (3.18) is
not valid, then there exist a,b € S, t € Q and k € [0, 1) such that

V{Xab), 55} + ¢+ k <1< Xa) AXD) +t+ k.

It follows that (a,t) gy A and (b,t) gy A, that is, a,b € Agk(t), but (ab,t)q A, i.e., ab ¢
AR, (t). This is a contradiction, and so (3.18) is valid. Using Theorem 3.32, we know that
Ais an (€, € V q;)-fuzzy subsemigroup of S.

Conversely, suppose that A is an (€, €V gy )-fuzzy subsemigroup of S. Let z,y € Ag (1)
for t € @ = (0,43%]. Then (z,t) g A and (y,t)gx A, that is, A(z) + ¢+ k > 1 and
Ay) +t+ k> 1. It follows from (3.18) that

V{Azy), 55 > M) AMy) > 1 —t — k> 15k

and so that A(zy) 4+t + k > 1, that is, zy € A}, (t). Therefore A2 (t) is a subsemigroup

of S, and (S, Aé‘?k) is a semidetached semigroup over 2 = (O, %] n

Definition 3.36. A fuzzy set A in S is called an (€ V @k, € V @x)-fuzzy subsemigroup of
S if for all z,y € S and t,r € (0, 1],
(xy, tAT)EVGERA = (2, ) EVGA or (y,r)EV g A. (3.20)

Theorem 3.37. Every (€ V g, € V Qx)-fuzzy subsemigroup is an (€, € V Gx)-fuzzy sub-
Semigroup.

Proof. Let x,y € S and t,r € (0,1] be such that (zy,t A7) €. Then (zy,t A1) EV G A,
and so (z,t)EV @A or (y, 7)€V gx A by (3.20). Therefore A is an (€, € V g)-fuzzy
subsemigroup of S. O

Definition 3.38. A fuzzy set A in S is called a (Gx, € V Gx)-fuzzy subsemigroup of S if for
all z,y € S and t,r € (0,1],

(xy, t AT) G A = (z,t)EV gL A or (y,7) €V A (3.21)

Theorem 3.39. Assume that tAr < 5% for anyt,r € (0,1]. Then every (qr, €Vr)-fuzzy
subsemigroup is an (€, € V Gx)-fuzzy subsemigroup.

Proof. Let X\ be an (g, € V Gk )-fuzzy subsemigroup of S. Assume that (zy,t Ar) € X for
z,y € S and t,r € (0,1] with ¢t Ar < 15E. Then A(zy) <t Ar < 5% and so
May) +k+tAr <54 k4 k=1,

that is, (zy, t A7) g A. It follows from (3.21) that (x,t) €V, A or (y,7) €V ax A. Therefore
Ais an (€, € V @;)-fuzzy subsemigroup of S. O
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Corollary 3.40. Assume that t Ar < 0.5 for any t,r € (0,1]. Then every (g, €V q)-fuzzy
subsemigroup is an (€, € V q)-fuzzy subsemigroup.

Theorem 3.41. Assume that t \r > % for any t,r € (0,1]. Then every (€, €EVqy)-fuzzy
subsemigroup is a (G, € V Qx)-fuzzy subsemigroup.

Proof. Let X\ be an (€, € V gy )-fuzzy subsemigroup of S. Assume that (xy,t A r)g; A for
z,y € S and ¢, € (0,1] with t Ar > 155, If (zy,t A7) € A, then M(zy) > ¢ A7 and so

1-k 1-k —
Mzy) +k+tAr> 5+ 5" +k=1

Hence (zy,t A1) g A, a contradiction. Thus (zy,t Ar) € A, which implies from (3.17) that
(x,t) EVGL A or (y,r) EVg A. Therefore X is a (G, € V @x)-fuzzy subsemigroup of S. [

Corollary 3.42. Assume that t A\r > 0.5 for any t,r € (0,1]. Then every (€, EVq)-fuzzy
subsemigroup is an (G, € V q)-fuzzy subsemigroup.
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Generalizations of (€, €V ¢k)-fuzzy (generalized)
bi-ideals in semigroups

Abstract The notion of (€, € V ¢})-fuzzy (generalized) bi-ideals in semigroups is intro-
duced, and related properties are investigated. Given a (generalized) bi-ideal, an (€,
€V ¢))-fuzzy (generalized) bi-ideal is constructed. Characterizations of an (€, € V ¢?)-
fuzzy (generalized) bi-ideal are discussed, and shown that an (€, €V ¢?)-fuzzy generalized
bi-ideal and an (€, € V ¢))-fuzzy bi-ideal coincide in regular semigroups. Using a fuzzy
set with finite image, an (&€, €V ¢)-fuzzy bi-ideal is established.

Keywords: (€, €V ¢})-fuzzy subsemigroup, €V ¢2-level subsemigroup/bi-ideal, (€, €V ¢?)-
fuzzy (generalized) bi-ideal.
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1 Introduction

Fuzzy points are applied to several algebraic structures (see [1], [2], [3], [4], [5], [6], [7],
18], [9], [13], [14], [16], [18], [19], [20] and [21]). As a generalization of fuzzy bi-ideals in
semigroups, Kazanci and Yamak [12] introduced (€, €V ¢)-fuzzy bi-ideals in semigroups.
Jun et al. [§] considered more general forms of the paper [12], and discussed (€, €V qx)-
fuzzy bi-ideals in semigroups.

The aim of this paper is to study the general type of the paper [§]. We introduce the
notion of (€, € V ¢?)-fuzzy (generalized) bi-ideals in semigroups, and investigate related
properties. Given a (generalized) bi-ideal, we construct an (€, €V ¢ )-fuzzy (generalized)
bi-ideal. We consider characterizations of an (€, € V ¢))-fuzzy (generalized) bi-ideal.
We show that an (€, € V ¢))-fuzzy generalized bi-ideal and an (€, € V ¢)-fuzzy bi-ideal
coincide in regular semigroups. Using a fuzzy set with finite image, we establish an (€,
€V ¢))-fuzzy bi-ideal. We make an (€, €V ¢)-fuzzy bi-ideal generated by a fuzzy set.
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2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B
is defined as follows:

AB={abe S|ac Aand b€ B}.

Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S such
that A2 C A. A nonempty subset A of S is called a generalized bi-ideal of S if ASA C A.
A nonempty subset A of S is called a bi-ideal of S if it is both a generalized bi-ideal and
a subsemigroup of S.

For any fuzzy set A in a set S and any ¢ € [0, 1], the set

U t)={z e S| \z) >t}

is called a level subset of ).
A fuzzy set A in a set .S of the form

[ te(0,1] if y=u,
Aly) = { 0 if y#x, 21)

is said to be a fuzzy point with support x and value ¢t and is denoted by (z,t).
For a fuzzy set A in a set S, a fuzzy point (z,t) is said to

e contained in A, denoted by (x,t) € A (see [15]), if A(x) > t.

e be quasi-coincident with A, denoted by (x,t) g A (see [15]), if A(z) +¢ > 1.
For a fuzzy point (z,t) and a fuzzy set A in a set S, we say that
o (z,t) eVgif (x,t) € Aor (x,t) g

Jun [7] considered the general form of the symbol (z,t) ¢ A as follows: For an arbitrary
element k of [0,1), we say that

o () Nif Nz)+t+k>1
o (z,t) eV Nif (x,t) € Xor (x,t) g A

Jun et al. [10] considered the general form of the symbol (z,t) g, A and (z,t) €V g A
as follows: For a fuzzy point (z,t) and a fuzzy set A in a set S, we say that

o (1, )@ Nif Nz) +t+ k>0,
o (z,t)ev@ \if (v,t) € Xor (z,t) ¢\

where k < 4 in [0, 1]. Obviously, (x,t) ¢} A implies (z,t) ¢2 ).
For any a € {€,q,€EV q,EANq, EV qr, €V ¢}, we say that

o (z,t)a\if (x,t) a X does not hold.
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3 General types of (€, €V q;)-fuzzy bi-ideals

In what follows, let .S denote a semigroup unless otherwise specified.

Definition 3.1 ([11]). A fuzzy set A in S is called an (a, €V q})-fuzzy subsemigroup of
S if it satisfies:

(z,t) a X, (y,t2)a X = (zy,min{t;,t}) €V A (3.1)
for all z,y € S and ty,ty € (0,8] where a € {€,¢3}.

Definition 3.2. A fuzzy set A in S is called an (o, €V ¢)-fuzzy generalized bi-ideal of S
if it satisfies:

(z,ta)a N, (2,t.)aX = (vyz,min{t,,t.}) Vgl A (3.2)
for all z,y,z € S and t,,t, € (0,0] where a € {€,q5}.

Example 3.3. Consider a semigroup S = {a, b, ¢, d} with the following Cayley table:

a b ¢ d
ala a a a
bla a a a
cla a b a
dla a b b

(1) Let A be a fuzzy set in S defined by A(a) = 0.42, A\(b) = 0.40, A(¢) = 0.56, and
A(d) = 0.22. Then A is an (€, € Vg57)-fuzzy generalized bi-ideal of S which is also an (€,
€ Vq)))-fuzzy subsemigroup of S.

(2) Let u be a fuzzy set in S defined by p(a) = 0.6, u(db) = 0.3, u(c) = 0.4, and
p(d) = 0.2. Then p is an (€, € Vq)52)-fuzzy generalized bi-ideal of S which is not an (€,
€ Vq)52)-fuzzy subsemigroup of S.

Given a generalized bi-ideal A of S and a fuzzy set \ in S, we establish an («, €V ¢?)-
fuzzy generalized bi-ideal of S for o € {€,¢3}.

Theorem 3.4. Let A be a generalized bi-ideal of S and X a fuzzy set in S defined by

)\(x):{g if x e A,

0 otherwise,

where € > ‘S’Tk. Then X is an (a, €V q))-fuzzy generalized bi-ideal of S for a € {€,q3}.
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Proof. Let x,y,z € S and t,,t. € (0,6] be such that (x,t,) ¢\ and (2,t.) g A. Then
Mz)+t, >0and M(2)+t, > 0. If x ¢ Aor z ¢ A, then A(z) =0 or A(z) = 0. Hence
t, > 0 or t, > 0 which is a contradiction. Thus x,z € A. Since A is a generalized

bi-ideal of S, we have zyz € A and so A(zyz) = ¢ > £ If min{t,,t.} < 5%, then

Mzyz) > min{t,, t.} and thus (zyz, min{t,,t.}) € A. If min{t,, ¢} > £, then
ANzyz) + min{t,, t.} + k> 5E+ Sk 4 k=,

that is, (vyz, min{t,,t.}) ¢) A\. Therefore (zyz, min{t,,t.}) €V ¢l\. This shows that \ is
a (q), €V q))-fuzzy generalized bi-ideal of S.

Let z,y,z € S and t;,ta € (0,9] be such that (x,%;) € A and (z,t3) € A. Then
AMz) > t; > 0 and A(z) >t > 0. Thus Mz) =& > %F and A(z) = £ > %%, which imply
that x,z € A. Since A is a generalized bi-ideal of S, we have zyz € A. Hence A(zyz) =

e > %k If min{ty, to} < 5%, then Mayz) > min{ty, o} and so (zyz, min{t;, t2}) € A.

If min{t;, &2} > 25%, then A(zyz) + min{t;, b} + &k > SE + &5 + & = § and thus

(zyz, min{t;, to}) ¢ X. Therefore (zyz, min{t;,t2}) €V i), and X is an (€, €V ¢))-fuzzy
generalized bi-ideal of S. O]

Corollary 3.5 ([17]). Let A be a generalized bi-ideal of S and X\ a fuzzy set in S defined
by

)\(x):{e if x €A,

0 otherwise,

where ¢ > % Then X is an (o, €V qx)-fuzzy generalized bi-ideal of S for o € {€,q}.

Corollary 3.6. Let A be a generalized bi-ideal of S and A\ a fuzzy set in S defined by

e iftrxeA
ANMz) = ’
(z) { 0 otherwise,

where € > 0.5. Then X is an («, €V q)-fuzzy generalized bi-ideal of S for a € {€,q}.
We consider characterizations of an (€, €V ¢))-fuzzy generalized bi-ideal.

Theorem 3.7. A fuzzy set X in S is an (€, €V q))-fuzzy generalized bi-ideal of S if and
only if it satisfies:

(Vz,y, 2z € S)(A(zyz) > min{A(z), M(2), 5E}). (3.3)

Proof. Let A be an (€, € V ¢)-fuzzy generalized bi-ideal of S. Assume that there exist
a,c € S such that
A(abe) < min{A(a), A(c), 552}
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for all b € S. If min{A(a), M(¢)} < 5%, then A(abc) < min{A(a), A(c)}. Hence
A(abe) < t < min{A(a), A(c)}

for some t € (0,0). It follows that (a,t) € A and (c,t) € A, but (abc,t)€ X. Moreover,
Aabe) +t < 2t < § — k, and so (abe, t)g)\. Consequently (abe,t) €V ¢l A, this is a
contradiction If min{A(a), A(c)} > 5, then A(a) > 55, A(c) > £ and A(abe) < SE.
Thus (a, )eAand(,T’f)eAbut(b,éT’f)eA.Also,

i.e., (abe, —)q,‘i)\ Hence (abe, % )GVq,‘z)\ again, a contradiction. Therefore (3.3) is
valid.

Conversely, suppose that A satisfies (3.3). Let z,y,2 € S and t1,t € (0,4] be such
that (z,t;) € X and (z,t3) € A. Then

AMzyz) > min{)\(:z:) A(z), Tk

} =
Assume that t; < é_Tk or ty < &k Then A xyz) > min{t,,t,}, which implies that
(xyz, min{t;, t2}) € A. Now, suppose that t; > 2% and t, > £, Then A(zyz) > &F,

2
and thus

min{tl, tg, &Tk}

Azyz) + min{ty, to} > 55+ 55 =6 — k,

i.e., (zyz, min{t;,t2}) g0 \. Hence (vyz, min{t;,t2}) €V ¢} A, and consequently, A is an (€,
€V ¢))-fuzzy generalized bi-ideal of S. O

Theorem 3.8. For a fuzzy set X in S, the following are equivalent.
(1) Xis an (€, €V q))-fuzzy generalized bi-ideal of S.
(2) The level subset U(X;t) of X is a generalized bi-ideal of S for all t € (0, 5%].

Proof. Assume that X is an (€, € V ¢)-fuzzy generalized bi-ideal of S. Let ¢ € (0, %5£],
y €S and z,z € U(A;t). Then A(xz) >t and \(z) > t. It follows from (3.3) that

AMzyz) > min{\(z), A(z), 55} > minf{t, 555} = ¢

so that zyz € U(A;t). Hence U(\;t) is a generalized bi-ideal of S.
Conversely, suppose that U(A;t) is a generalized bi-ideal of S for all ¢t € (0, Tk] If
(3.3) is not valid, then there exist a,b, c € S such that

A(abe) < min{A(a), A(c), 55E}

and that A(abc) < ¢t < min{A(a), A(c), 555} for some ¢ € (0,1). Then ¢t € (0,%%] and
a,c € U(A;t). Since U(A;t) is a generalized bi-ideal of S, it follows that abc € U(A;t)
so that A(abc) > t. This is a contradiction. Therefore (3.3) is valid, and A is an (€,

€V ¢))-fuzzy generalized bi-ideal of S by Theorem 3.7. [
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Taking k£ = 0 and 0 = 1 in Theorem 3.8, we have the following corollary.

Corollary 3.9. Let A be a fuzzy set in S. Then X is an (€, € V q)-fuzzy generalized bi-
ideal of S if and only if the level subset U(X;t) of A is a generalized bi-ideal of S for all
t € (0,0.5].

Corollary 3.10 ([17]). For a fuzzy set X in S, the following are equivalent.

(1) Xis an (€, €V qx)-fuzzy generalized bi-ideal of S.

(2) The level subset U(A;t) of X is a generalized bi-ideal of S for all t € (0, 5E].
Proof. Taking § = 1 in Theorem 3.8 induces the corollary. O

Definition 3.11. A fuzzy set A in S is called an (€, €V ¢)-fuzzy bi-ideal of S if it is both
an (€, €V ¢))-fuzzy subsemigroup and an (€, €V ¢)-fuzzy generalized bi-ideal of S.

An (€, €V ¢))-fuzzy bi-ideal of S with § = 1 is called an (€, €V q)-fuzzy bi-ideal of
S (see [17]), and an (€, €V gx)-fuzzy bi-ideal of S with k = 0 is called an (€, €V q)-fuzzy
bi-ideal of S (see [12]).

Example 3.12. The fuzzy set A in Example 3.3(1) is an (€, € V¢){)-fuzzy bi-ideal of S.
Combining Theorem 3.4/ and [11, Theorem 3.4], we have the following theorem.

Theorem 3.13. Let A be a bi-ideal of S and A a fuzzy set in S defined by

e frxeA
AMz) = ’
(z) { 0 otherwise,

where € > ‘5_7”“. Then X is an (a, €V ¢C)-fuzzy bi-ideal of S for o € {€,¢3}.

Corollary 3.14. Let A be a bi-ideal of S and X a fuzzy set in S defined by

)\(:13):{8 if xe€ A,

0 otherwise,
where e > £ Then X is an (a, €V qi)-fuzzy bi-ideal of S for o € {€,q}.
We give characterizations of an (€, €V ¢} )-fuzzy bi-ideal.

Theorem 3.15. A fuzzy set X in S is an (€,€V ¢})-fuzzy bi-ideal of S if and only if it
satisfies (3.53) and

(Vz,y € S)(Mzy) > min{\(z), A\(y), 5E}). (3.4)

2
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Proof. 1t is by Theorem 3.7 and [11, Theorem 3.7]. O

Corollary 3.16. A fuzzy set X in S is an (€, €V qx)-fuzzy bi-ideal of S if and only if it
satisfies:
(Va,y € S)(A(wy) = min{A(z), A(y), 5*3),
(Va,y, 2 € S)(A(zyz) > min{A(z), A(2), :5*}).

Corollary 3.17 ([12]). A fuzzy set A in S is an (€, €V q)-fuzzy bi-ideal of S if and only
iof it satisfies:

(Vz,y € S)(A(zxy) > min{A(z), A(y),0.5}), (3.7)
(Va,y,z € S)(Mzyz) > min{A(z), A\(z),0.5}). (3.8)
Theorem 3.18. For a fuzzy set A in S, the following are equivalent.
(1) X is an (€, €V ¢))-fuzzy bi-ideal of S.
(2) The level subset U(X;t) of X is a bi-ideal of S for all t € (0, %]

Proof. Tt is by Theorem 3.8 and [11, Theorem 3.10]. O
Corollary 3.19 ([17]). For a fuzzy set X in S, the following are equivalent.

(1) Xis an (€, €V qx)-fuzzy bi-ideal of S.

(2) The level subset U(A;t) of X is a bi-ideal of S for all t € (0, 55].

Obviously, every (€, €V ¢)-fuzzy bi-ideal is an (€, €V ¢} )-fuzzy generalized bi-ideal,
but the converse is not true in general. In fact, the fuzzy set pu in Example [3.3(2) is an
(€, € Vgyi2)-Tuzzy generalized bi-ideal of S which is not an (€, € V¢ 52)-fuzzy bi-ideal
of S.

We now consider conditions for an (€, €V ¢)-fuzzy generalized bi-ideal to be an (€,
€V ¢})-fuzzy bi-ideal.

Theorem 3.20. In a regular semigroup S, every (€, €V q))-fuzzy generalized bi-ideal is
an (€, €V ¢)-fuzzy bi-ideal.

Proof. Let A be an (€, € V ¢})-fuzzy generalized bi-ideal of a regular semigroup S. Let
a,b € S. Then b = bxb for some x € S since S is regular. Hence

A(ab) = A(a(bzb)) = A(a(bz)b) > min{A(a), A(b), 5=}

This shows that \ is an (€, € V ¢})-fuzzy subsemigroup of S, and so A is an (€, €V ¢})-
fuzzy bi-ideal of S. [

58



Fuzzy and Neutrosophic Sets in Semigroups

Corollary 3.21 ([17]). In a reqular semigroup S, every (€, € V qx)-fuzzy generalized
bi-ideal is an (€, €V qi)-fuzzy bi-ideal.

Theorem 3.22. If \ is an (€, €V ¢))-fuzzy bi-ideal of S, then the set

Q1) = {z € S| (z,1) g A}, (3.9)

where (xz,t) qi A means (z,t) @A\ or N(z) +t+k =6, is a bi-ideal of S for all t € (5%, 1]

with Q) (A;t) # 0.
Proof. Let t € (%5%,1] be such that Qi()\; t) # 0. Letz, 2z € Qi()\;t). Then \(x)+t+k > 0
and A(z) +t+k > 4. It follows from (3.4) and (3.3) that

A(zz) > min{\(z), A(z), 55} > min{6 — k — ¢, 555} =6 — k — ¢,
and

AMzyz) > min{\(z),\(2), 55} > min{6 —k — ¢, SE} =6 -k — ¢,
that is, (xz,t) gi A and (zyz,t) (_]2 A. Hence zz,xyz € Q"i()\; t) and therefore Qi()\; t) is a
bi-ideal of S. U

Corollary 3.23. If A\ is an (€, €V qx)-fuzzy bi-ideal of S, then the set

Q) = {z €S (x,t)g, N, (3.10)

where (x,t) g A means (x,t) gr A or A(x) +1+k =1, is a bi-ideal of S for allt € (5, 1]
with Q, (A1) # 0.

Corollary 3.24. If X is an (€, €V q)-fuzzy bi-ideal of S, then the set
Q\;t) :={r eS| (z,t)gA}, (3.11)

where (x,t) g\ means (x,t) g or N(x) +t =1, is a bi-ideal of S for all t € (0.5, 1] with
QA1) # 0.

Theorem 3.25. A fuzzy set \ in S is an (€, €V ¢})-fuzzy bi-ideal of S if and only if the
set
U3 (A1) == U A1) U QS ()

is a bi-ideal of S for all t € (0,0].
We call ng (A;t) an €V g -level bi-ideal of \.

Proof. Assume that X is an (€, €V ¢ )-fuzzy bi-ideal of S. Let z,y € US(\;t) for t € (0, 4].
Then we can consider the following four cases:
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(1) z,y € U(Nt), ie., Max) >t and A(y) > ¢,

(2) z,y € Qi()\;t), Le, AMz)+t+k>dand AN(y) +t+ k>4,

(3) z e U(\;t) and y € Qi()\;t), ie, AMz) >tand Ny) +t+k >0,
(4) z € Qi()\;t) and y € U\ t), le, AN(z)+t+k >0 and A(y) >t

For the case (1), we have

and

[t ift< SR
S &k if > ok

for all a € S. Hence zy € U(X;t) or Azy) +t+k > 5+ 80 L k=46, ie., zy € Qi()\;t).
Therefore xy € Uj(A;t). Similarly, zay € Uj(A;t). The second case implies that

A(zy) > min{A(z), A(y), 5%} > min{6 — k — ¢, 555}

[ if ¢ < o5
Sl o—k—t ift>%E

and

foralla € S. Thus A(zy) > 5E > ¢, ie., zy € U(Ajt) or May)+t+k > 6—k—t+t+k = 4,
ie, xy € Qi()\;t). Therefore zy € US(\;t). Similarly, zay € US(\;t). The case (3)
induces

A(zy) > min{A(z), A(y), 55} > min{t, 0 — k — ¢, 555}

and
AMzay) > min{\(x), A\(y ),57} > min{t, 6 —k —t,° }

foralla € 5. It t < %E, then AN(wy) > min{t,6 — k —t} = ¢ and so zy € U(\;¢t). If
t > %k then \(zy) > mm{é k—t,%5} =6 —k—t and thus ay € Qi()\,t). Therefore
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xy € US(\;t). Similarly, zay € US(\;t). The final case is similar to the third case.
Consequently, US(\;t) is a bi-ideal of S for all ¢ € (0, d].

Conversely, let A be a fuzzy set in S and t € (0, 6] be such that US(\;t) is a bi-ideal
of S. Assume that there exist a,b € S such that A(ab) < min{A(a), A(b), 5%}. Then

Aab) < ¢ < min{A(a), A(b), %55}

for some t € (0,6]. Then a,b € U(X;t) C US(\;t), which implies that ab € US(X;t). Hence
A(ab) > t or A(ab) +t + k > &, a contradiction. Therefore A(zy) > min{A(z), A(y), 552}
for all x,y € S. Similarly, we obtain A(zay) > min{A(z), A(y), 5’7'“} for all a,z,y € S.
Using Theorem 3.15, we conclude that ) is an (€, €V ¢))-fuzzy bi-ideal of S. O]

Corollary 3.26. A fuzzy set A in S is an (€, €V qi)-fuzzy bi-ideal of S if and only if the
set
Up(\t) =UN ) U Q, (At)

is a bi-ideal of S for all t € (0,1].

Corollary 3.27. A fuzzy set A in S is an (€, €V q)-fuzzy bi-ideal of S if and only if the
set

UNt) ==U(Nt) UQ(At)
is a bi-ideal of S for all t € (0, 1].

Let A be a fuzzy set in S. For a € {€V ¢, €V g, €V @)}, an (€, a)-fuzzy bi-ideal p in
S is said to be an (€, a)-fuzzy bi-ideal generated by A in S if

(i) A C u, that is, A(z) < p(zx) for all x € S,
(ii) For any (€, a)-fuzzy bi-ideal 7 in S, if A C ~ then u C 7.

Theorem 3.28. Let )\ be a fuzzy set in S with finite image. Define bi-ideals A; of S as
follows:

Ay = ({z € S| Mz) > 5E}),
A= (A U{z eS| ANzx)=sup{A(z) | z€ S\ Ai_1})

fori=1,2,--- n where n < [Im(\)| and A, = S. Let \* be a fuzzy set in S defined by

A if v € Ay,
Y0 ={ ) 1= €5\ Aa) e e A A

Then X* is the (€, €V ¢)-fuzzy bi-ideal generated by X in S.
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Proof. Note that the A;’s form a chain
AyCAC---CA, =S

of bi-ideals ending at S. We first show that \* is an (€, € V ¢))-fuzzy bi-ideal of S. Let
r,y € S. If x,y € Ag, then xy € Ay and zay € Ag for all a € S. Hence

N (zy) = Maxy) > min{A(z), A(y), ‘S_Tk} = min{\*(z), \*(y), %}

and
X (zay) = Azay) > min{(z), A(y), 55} = min{X*(z), \*(y), 252}

Let 2 € A;\ A,y and y € A;\ A;_1. We may assume that i < j without loss of generality.
Then z,y € A; and so xy € A; and zay € A; for all a € S. It follows that
N (zy) > sup{A(z) | z€ S\ Aj_1}
> min{sup{A(z) | z € S\ Ai_1},sup{A(z) | z € S\ A4;_1}, 5_7’“
= min{\*(z), \*(y), 5%}
and
N(zay) > sup{\(w) |w e S\ A;_1}
> min{sup{\(w) | w € S\ A;_1},sup{\(w) |w e S\ Aj_1}, ‘S_T’“
— min{X*(2), X' (1), 555,
Hence \* is an (€, €V ¢})-fuzzy bi-ideal of S whose € V gi-level bi-ideals are precisely the
members of the chain above. Obviously, A C A\* by the construction of \*. Now let u be
any (€, €V q))-fuzzy bi-ideal of S such that A C p. If x € Ay, then \*(x) = M(z) < p(x).

Let {B;,} be the class of €V ¢i-level bi-ideals of p in S. Let z € A; \ Ap. Then \*(z) =
sup{\(z) | z € S\ Ao} and A; = (K;) where

Ky =AoU{x e S| ANx)=sup{A(z) | z € S\ Ao} }.
Let z € K\ Ag. Then A(z) = sup{A(z) | z € S\ Ao}. Since A C p, it follows that
sup{A(2) | z € S\ Ao} < inf{u(z) |z e K1\ Ao} < pu(x).

Putting t;; = inf{u(z) | z € K1\ Ao}, we get « € By, and hence K; \ Ay C By,,. Since
Ao C By, we have A; = (K;) C By,. Thus p(z) > t;; for all x € A;. Therefore

N(x) =sup{A(z) | z€ S\ Ao} < ti1 < p(x)

for all x € Ay \ Ag. Similarly, we can prove that \*(z) < p(z) for all z € A; \ A;_1 where
2 <i < n. Consequently, \* is the (€, €V ¢})-fuzzy bi-ideal generated by \ in S. [
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Corollary 3.29. Let X\ be a fuzzy set in S with finite image. Define bi-ideals A; of S as
follows:

Ay = ({z € S| Nz) = 1F}),
A= (A U{zr e S| ANx)=sup{A(z) | z € S\ 4i_1})
fori=1,2,--- n where n < [Im(\)| and A, = S. Let \* be a fuzzy set in S defined by

. [ M) if x € A,
Y0 ={ e 1€ 514 it e AL A

Then \* is the (€, €V qx)-fuzzy bi-ideal generated by X in S.

Corollary 3.30. Let X\ be a fuzzy set in S with finite image. Define bi-ideals A; of S as
follows:

Ay = ({z € S| \z) > 0.5)),
A= (A 1U{z e S| ANzx)=sup{\(z) | z€ S\ Ai_1})

fori=1,2,--- ,n where n < [Im(\)| and A, = S. Let \* be a fuzzy set in S defined by

o A if v € Ay,
Y0 ={ o) 1= €S\ A} e A A

Then \* is the (€, €V q)-fuzzy bi-ideal generated by A in S.
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Approximations of fuzzy sets in semigroups

Abstract Lower and upper approximations of fuzzy sets in semigroups are considered,
and several properties are investigated.
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subsemigroup, d-rough fuzzy subsemigroup.
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1 Introduction

The notion of rough sets was introduced by Pawlak in his paper [9]. This concept is
fundamental for the examination of granularity in knowledge. It is a concept which has
many applications in data analysis (see [10]). Rough set theory is applied to semigroups
and groups (see [3, B 6, [7, 11, [13]), d-algebras (see [1]), BE-algebras (see [2]), BCK-
algebras (see [4]) and MV-algebras (see [12]) etc.

In this paper, we investigate some properties of the lower and upper approximations
of fuzzy sets with respect to the congruences in semigroups.

2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B
is defined as follows:

AB={abe S|ac Aand b€ B}.

Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S such
that A2 C A. A nonempty subset A of S is called a left (right) ideal of S if SA C A
(AS C A). A nonempty subset A of S is called an interior ideal of S if SAS C A.

For the sake of convenience, we may regard the empty set to be a subsemigroup, a left
(right) ideal and an interior ideal.

For fuzzy sets A and p in a set S, we say that A < p if AM(z) < p(z) for all x € S. We
define AV pand AA p by (AV p)(z) = max{A(z), u(x)} and (AA p)(z) = min{A(z), u(x)},
respectively, for all x € S.
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For any fuzzy set A in a set S and any ¢ € [0, 1], the set
U t)={z e S| Az) >t}

is called a level subset of \. For two fuzzy sets A and p in S, the product of A and pu,
denoted by A o p, is defined by

Ao : S —[0,1], z — sup min{A(y), u(2)}.

T=yz

A fuzzy set A in a semigroup S is called a fuzzy subsemigroup of S if it satisfies:
(Va,y € S) (Aay) = minfA@), A} (2.1)
A fuzzy set A in a semigroup S is called a fuzzy left (right) ideal of S if it satisfies:
(Va,y € S) (Azy) = Aly) (May) = Mx))) - (2.2)
A fuzzy set A in a semigroup S is called a fuzzy interior ideal of S if it satisfies:
(Vz,a,y € S) (Mzay) > A a)). (2.3)

We refer the reader to the book [8] for further information regarding (fuzzy) semi-
groups.

3 Approximations of fuzzy sets
In what follows, let S denote a semigroup unless otherwise specified.
By a congruence on S (see [0]), we mean an equivalence relation 6 on S such that
(Va,b,z € S)((a,b) € § = (az,bx) €6 and (za,zb) € ). (3.1)

We denote by [a]s the J-congruence class containing a € S. Note that if ¢ is a
congruence on S, then

(Va,b € S) (lals[bls < [ab]s) - (3-2)
A congruence 0 on S is said to be complete (see [0]) if it satisfies:
(Va,b € S) ([als[bls = [abls) - (3-3)
For a nonempty subset A of S, the sets
0.(A) == {z € 5| [z]s C A} (3.4)
and
0 (A):={zx e S|[z]lsNnA#D} (3.5)

are called the d-lower and d-upper approximations, respectively, of A (see [0]).
The ordered pair 6(A) := (0,(A),5*(A)) is called a §-rough subset of 2° x 2 if §,(A) #
6*(A).
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Proposition 3.1 ([6]). Let § and € be congruences on S and let A and B be subsets of
S. Then

(0 Ne)*(A) € o*(A) Ne*(A),
(11) (5N e)(A) = 5.(A) Nel(A).

Definition 3.2 ([2, 11] ). Let 0 be a congruence on S. Given a fuzzy set A in S, the
fuzzy sets 0.(\) and 6*(\) are defined as follows:

5.(\) : S —[0,1], x— inf A(y)

y€lz]s

and
0*(A) : S —[0,1], = +— sup A(y),

y€[z]s

which are called the d-lower and d-upper approzimations, respectively, of .
We say that 6(\) £ (0,(\),6%()\)) is a d-rough fuzzy set of X if 0,(\) # 6*(\).

Theorem 3.3. Let f : S — T be an onto homomorphism of semigroups. For a relation
0 onT, let

e:={(x,y) € Sx 5| (f(x), f(y)) € 7}. (3.6)

(1) If 6 is congruence on T, then € is a congruence on S.

(2) If § is complete and f is one-one, then ¢ is complete.

(3) f(e*(A)) = 6*(f(A)) for any subset A of S.
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(4) f(e«(A)) C0.(f(A)) for any subset A of S.
(5) If f is one-one, then the equality in (4) is valid.

Proof. (1) Assume that 0 is congruence on 7. Obviously, € is an equivalence relation on
S. Let (a,b) € ¢ for a,b € S. Then (f(a), f(b)) € §. Since f is onto homomorphism and
0 is congruence on 7T, it follows that

(f(azx), f(bx)) = (f(a)f(x), f(b)f(x)) €0

and
(f(za), f(zb)) = (f(x)f(a), f(2)f(b)) € &

for all z € S. Hence (az,bz) € € and (za, xb) € . Therefore € is a congruence on S.
(2) Suppose that ¢ is complete and f is one-one. For any a,b € S, let z € [ab].. Then
(z,ab) € € and so (f(2), f(ab)) € §. Since J is complete, it follows that

f(z) € [f(ab)ls = [f(a) F ()]s = [f(a)ls[f(b)]s,

which implies that there exist x,y € S such that f(z) = f(x)f(y) = f(zy), f(x) € [ (a)ls
and f(y) € [f(b)]s. Since f is one-one, it follows that z = zy, = € [a]. and y € [bl..
Hence z € [a]:[b]c, and so [ab]. C [a].[b].. It follows from (3.2) that [ab]. = [a]e[ Je, and
consequently ¢ is complete.

(3) Let y € f(e*(A)). Then f(x) = y for some z € ¢*(A), and thus [z]. N A # (),
say a € [z]. N A. Then f(a) € f(A) and (f(a), f(z)) € 6, ie., f(a) € [f(x)]s. Hence
[£(@)s 1 F(A) # 0, which implies y — f(z) € 5°(f(A)). Therefore f(e*(A)) C 6°(f(A))
Now let y € 0*(f(A)). Since f is onto, there exists x € S such that y = f(x). Hence
[f(x)]s N f(A) # 0, say b € [f(z)]s N f(A). Then there exists a € A such that b = f(a) €
f(A) and f(a) =b € [f(2)]s, L.e., (f(a), f(z)) € 0. Thus (a,z) € £ and so a € [z].. Hence
[z]e N A # 0 which implies 2 € ¢*(A). Therefore y = f(z) € f(e*(A)) which shows that
5(f(A)) € [(e*(A)).

(4) If y € f(ex(A)), then y = f(x) for some = € £,(A). Hence [z]. € A. Now, if
b € [y]s, then there exists a € S such that f(a) = b € [y]ls = [f(x)]s. It follows that
a € [z]. € Aand sothat b= f(a) € f(A). Thus [y]s C f(A), which induces y € 0.(f(A)).
Hence f(=.(4)) C 8,(f(A)).

(5) Assume that f is one-one and let y € 3,.(f(A)). Then there exists € S such
that y = f(z) and [f(2)]s = [yls € f(A). Let a € [z]. Then f(a) € [f(z)]s € f(A),
and so a € A since f is one-one. Hence [z]. € A, and thus = € €,(A) which implies
that y = f(z) € f(e.(A)). Therefore d,(f(A)) C f(e.(A)). Combing this and (4) induces
f(e.(A)) = 0.(f(A)). 0
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Theorem 3.4. Let € and 0 be congruences on S. If X\ and p are fuzzy sets in S, then the
following assertions are valid.

1) 6,(\) <A< (N),
2) 0"(AV i) = 0"(A) vV 5" (u),
3) 0u(AA 1) = 6.(A) A o),

4) If X < p, then §,(N) < 6,(p) and 0*(N) < 0*(u),

(1) 0

(2)

(3) 0

(4) If

(5) 0.(A) V du(p) < (A V p),
(6) 0"(AAp) <67(A) NG (n),

(7) If 5 C &, then e.(\) < 6.(\) and e*(\) > 6*(\),
(8) (6Ne)*(A) <07(A) Ae™(X),
(9) (6NMe)(N) >0, (N) Ve (N).

Proof. (1) Since z € [z]s for all z € S, we have

0.(A)(x) = nf A(y) < A(x) < sup A(y) = 6"(A)(x)

velals y€Elzls

which proves (1).
(2) For any = € S, we have

O*(AV p)(x) = sup (AV p)(z) = sup max{A(y), u(y)}

y€[z]s y€[z]s

— max { sup A(y), sup u(y)}

y€elzls yelals
= max{0"(A)(x), 0" () (x)}
= (07(A\) v 8" () (),
and so 0*(AV p) = 0%(\) V 6* ().
(3) For any z € S, we have

Se(AAp)(z) = inf (AAp)(r) = inf min{A(y), u(y)}

y€lzls y€lzls
= min{ inf A(y), inf p(y )}
y€lzls ye[ﬂ:]fs

= min{8,(\)(z), 6, (1) (z)}
= (0.(A) A (1)) (),
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which shows that d,(AA ) = 0.(A) A di ().
(4) Assume that A < p. Then AA =X and AV = p. Using (2) and (3), we have

0" () = 6" (AV p) = 0°(A) V 0" ()

and
0 (A) = (A A p) = 6. (A) A bi(p).

Hence 6,(\) < 0.(p) and 6*(N\) < 6*(w).

(5) Since A < AV p and p < AV p, it follows from (4) that §,(\) < §,(AV p) and
0x(p) < 0. (AV ). Therefore §,(N\) V 8, (p) < d(AV p).

(6) Since AA < X and A A p < p, it follows from (4) that 6*(A A p) < 6*(\) and
AN p) < 0*(p). Thus (A A p) < (N Ao* ().

(7) Let x € S. If § C ¢, then [z]s C [z].. Hence

e (\)(x) = inf \(y) < inf \(y) = 6,(\)(2)

y€lz]e y€lzls

and
e*(A\)(z) = sup My) > sup A(y) = 6" (A)(x).

yelzle y€lzls
Therefore €,(A) < §.(N) and €*(\) > 6* ().
(8) For any = € S, we get

(6Ne)*AN)(z) = sup AMy)= sup A(y)

ye[z]sne y€lz]sN[z]e
< min § sup A(y), sup A(y)
yElz]s y€[z]e

= min{d"(A)(x),e* (M) ()}
= (0" (N A et (V) (@),

and so (0 Ne)*(A) < 0" (A) Ae*(N).
(9) For any = € S, we obtain

(0Ne).(N)(xz)= inf Ay)= inf A(y)

yE[z]sne y€[z]sN[x]e
> max{ inf A\(y), inf A(y )}
y€lz]s y€[z]e

= max{d.(A)(2), e.(M)(2)}
= (0:(A) Ve (M) (@),

which shows that (§ N e).(A) > 0.(A) Ve.(N). O
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Theorem 3.5. Let § be a congruence on S. If X is a fuzzy set in S, then
U(0+(A);t) = 0.(U(A; 1)) and U(6"(A); 1) = 6" (U(A;t))

for all t € (0,1].

Proof. For any t € (0,1] and z € S, we have

x € U(0:(N)it) & 0. (N\)(x) >t

< inf Ay) >t
yElz]s

S My) >t forall ye [z]s
S yeU(Nt) forall ye [z
& [7]s CU(N?)

s x € 0(UNT)),

and

t
t

z € UE*(\): 1) & 6" (\) ()
& sup A(y)

y€lz]s

< My) >t for some y € [x]s

>
>

&y e U(Nt) for some y € [z]s
< [zlsNUNt) #0
&z e §(U(N)).

Therefore U(6.(A);t) = 0.(U(A;t)) and U(6*(N);t) = §*(U(\;t)). O
Theorem 3.6. Let § be a congruence on S and let X and p be fuzzy sets in S. Then
(1) 6%(A) 0 6 () < 6"(Aop),

(2) 04(A) 0 0u(pr) < (Ao ) if § is complete.
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Proof. For any x € S, we have

(07(A) 0 0%(1))(x) = sup min{d*(A)(y), 0" (1) (=)}

=Yz

= sup min { sup A(a), sup u(b)}

=Yz a€lyls be(2]s

= sup ( . sup min{A(CL),M(@})

T=Yz ls, bE[2]s

r=yz \ abelyls

< sup ( sup min{)\(a),u(b)}>

— sup min{A(a), u(b)}

ab€[zx]s

= sup  min{A(a), u(b)}

c€lz]s, c=ab

= s (spminfa@.10)})

c€lz]s \c=ab

= sup (Ao p)(c)

c€lz]s
= 0"(Aop)(z),
which shows that 6*(\) o 0*(u) < 0*(Xo ).
Assume that 0 is complete and let x € S. Then

(0.(A) 0 0, (1)) () = sup min{d, (A)(y), 0. (1) (2)}

T=yz

= sup min{ inf \(a), inf ,u(b)}

=Yz a€lyls be(=]s

— sup <ae[ inf min{A(a),u(b)})

T=yz yls, bE[2]s

< sup (ot sup min{() ()

T=yz s, b€[z]sab=cd

o [ wt_ e nan)

T=yz yls, bE[z]s

— sup ( inf (Ao M)(ab))

z=yz \ab€lyzls

— supd. (Ao 1)(y2)

T=yz

= 0. (Ao p)(x).
Therefore d,(\) 0 0, (p) < d.(No p).
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Definition 3.7. Let § be a congruence on S. A fuzzy set A in S is called a d-lower (resp.,
d-upper) rough fuzzy subsemigroup of S if 6,(A) (resp., 6*(N)) is a fuzzy subsemigroup of
S.

We say that 0(\) = (6.()),0%()\)) is a 5-rough fuzzy subsemigroup of S if
(i) 0(A) is a d-rough fuzzy set,
(ii) 0.(A) and 0*(\) are fuzzy subsemigroups of S.

Theorem 3.8. Ifd is a congruence on S, then every fuzzy subsemigroup of S is a d-upper
rough fuzzy subsemigroup of S. Moreover, if 0 is a complete congruence on S, then the
d-lower approximation of a fuzzy subsemigroup of S is a fuzzy subsemigroup of S.

Proof. Let A be a fuzzy subsemigroup of S. Then U(A;t) is a subsemigroup of .S for all
t € [0,1]. Using (8) and (4) in Proposition [3.1, we have

(U 1))0" (U (A1) S 07 (UAHU (A1) € 67(U(A;1))-

It follows from Theorem 3.5/ that U(5*(\);t) = 6*(U(A;t)) is a subsemigroup of S. There-
fore 9*(\;t) is a fuzzy subsemigroup of S.
Now assume that 0 is complete. Using (9) and (4) in Proposition 3.1, we have

0. (U(N;1))0.(U(A; 1)) C 6. (UN U (A D)) € 0.(U(A; ).

Hence, by Theorem 3.5, we know that U(0.(\);t) = d.(U(X;t)) is a subsemigroup of S.
Therefore d,(A;t) is a fuzzy subsemigroup of S. O

Corollary 3.9. Let 6 be a complete congruence on S and \ a fuzzy set in S such that
§(N) is a d-rough fuzzy set. If X is a fuzzy subsemigroup of S, then 6(\) = (6.()\),5*(\))

is a 0-rough fuzzy subsemigroup of S.

Theorem 3.10. If § is a congruence on S, then every fuzzy interior ideal of S is a d-
upper rough fuzzy interior ideal of S. Moreover, if § is a complete congruence on S, then
the d-lower approximation of a fuzzy interior ideal of S is a fuzzy interior of S.

Proof. Note that a fuzzy set A in S is a fuzzy interior ideal of S if and only if U(\;t) is
an interior ideal of S for all ¢ € [0, 1]. Hence the proof is similar to the proof of Theorem
3.8. O]

Theorem 3.11. Let f : S — T be an onto homomorphism of semigroups. For a relation §
on T, let € be a relation on S which 1s given in Theorem 3.5. If the e-upper approximation
of A is a subsemigroup of S, then the 0-upper approximation of f(A) is a subsemigroup
of T where A is a subset of S. Also, the converse is valid if f is one-one.
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Proof. Assume that €*(A) is a subsemigroup of S. Let z,y € 6*(f(A)). Then z,y €
f(e*(A)) by Theorem 3.3(3), and so there exist a,b € €*(A) such that f(a) = x and
f(b) =y. Then ab € ¢*(A), and thus

vy = f(a)f(b) = f(ab) € f(e°(A)) = 6"(f(A)).

Hence §*(f(A)) is a subsemigroup of T'. Now, suppose that f is one-one and 6*(f(A)) is
a subsemigroup of 7. Let z,y € €*(A). Then f(x), f(y) € f(e*(A)) = 6*(f(A)), and so

fxy) = f(2)f(y) € 6°(f(A)) = [(e"(A)).

Hence there exists a € €*(A) such that f(xy) = f(a). Since f is one-one, it follows that
la]le VA # 0 and zy € [a].. Thus [zy]. N A # 0, and so zy € £*(A). Therefore £*(A) is a
subsemigroup of S. |

Theorem 3.12. Let f : S — T be an isomorphism of semigroups. For a congruence § on
T, let € be a relation on S which is given in Theorem 3.5. If the e-lower approximation
of A is a subsemigroup of S, then the §-lower approximation of f(A) is a subsemigroup
of T where A is a subset of S. Also the converse is true if € is complete.

Proof. Suppose that €,(A) is a subsemigroup of S. Let z,y € 0.(f(A)). Then z,y €
f(e«(A)) by Theorem 3.3(5), and thus x = f(a) and y = f(b) for some a,b € €,(A). Then
ab € €,(A) and

vy = f(a)f(b) = f(ab) € f(e.(A)) = 0.(f(A)).

Therefore 6.(f(A)) is a subsemigroup of 7.
Conversely, assume that d,(f(A)) is a subsemigroup of 7" and ¢ is complete. Let z,y €

£.(A). Then f(z), f(y) € f(.(A)) = 6.(f(A)), and so f(zy) = f(2)f(y) € &.(f(A)). Tt
follows that

and so that [zy]. € A. Thus xy € ,(A), and €,(A) is a subsemigroup of S. O

Theorem 3.13. If ) is a congruence on S, then the d-rough fuzzy set of a fuzzy left ideal
1S a fuzzy left ideal.

Proof. Let X be a fuzzy left ideal of S and let x,y € S. Then

5*(\)(ay) = sup A(z) > sup A(zb) > sup A(b) = 0" (\)(y).

2€[zyls belyls belyls

74



Fuzzy and Neutrosophic Sets in Semigroups

Also, we get
(M) (zy) = inf A(z) > inf A(zb) > inf A(b) = 0.(\)(y).
z€[zyls belyls b€[yls
Hence 6(\) = (6,()),6%()\)) is a fuzzy left ideal of S. O

Similarly, we have

Theorem 3.14. If § is a congruence on S, then the 6-rough fuzzy set of a fuzzy right
tdeal 1s a fuzzy right ideal.

In the following example, we show that there exists a fuzzy set such that its upper
approximation is a fuzzy left ideal, but it is not a fuzzy left ideal.

Example 3.15. Let S = {a, b, ¢, d} be a semigroup with the following Cayley table (Table

).

Table 1: Cayley table of the operation -

QL O Q2
o o o oo
>0 oo
QO O QX

QL O o e

Let 0 be a congruence on S such that the d-congruence classes are the subsets {a},
{d} and {b,c}. Let A be a fuzzy set in S given by A(a) = A(c) = A(d) = 0.4 and
A(b) = 0.8. Then A is not a fuzzy left ideal of S since A(cb) = A(c) = 0.4 < 0.8 = A(b).
The d-upper approximation of A is given as follows: 0*(\)(a) = 0*(\)(d) = 0.4 and
0*(A)(b) = 0*(N)(c) = 0.8. It is routine to verify that §*(\) is a fuzzy left ideal of S.

Theorem 3.16. Let 0 be a congruence on S. If \ is a fuzzy right ideal and p is a fuzzy
left ideal of S, then

0 (Nop) <" (A) A" () and (Ao p) < 0u(A) A du(pt). (3.7)
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Proof. Let x € S. Then

0" (Ao p)(z) = sup (Ao pu)(y)

yElz]s

= sup (Sup min{)\(a),u(b)}>
y€lz]s \y=ab

< sup (sup min{)\(ab),u(ab)})
y€lzls \y=ab

= sup min{A(y), u(y)}

y€(z]s

< sup  min{X(a),pu(b)}

a€lx]s, bE[z]s

= min { seL[q]) A a), bsélﬁ) u(b)}
= min{d"(A)(x), 0" (n)(x)}
= (0" (A) A 67 () (),

and

0.(Aop)(x) = inf (Ao pu)(y)

y€(zls

= int (s w300

yElzls \y=ab

< inf (sup min{A(ab),u(ab)})

T yelals y=ab

= inf min{\(y), u(y)}

yElz]s

— min { inf A(a), inf u(b)}

a€lz]s be(z]s
= min{d,(\)(z), 0« (1) (x)}
= (0:(A) A du()) ().

Therefore §* (Ao p) < 0*(A) A 6" () and 6.(A o u) < 0u(A) A du(p). O

Theorem 3.17. Let § be a congruence on S and let X and p be a fuzzy right ideal and
a fuzzy left ideal, respectively, of S. If S is reqular, then §*(\o p) = 6*(A) A 0*(u) and
0 (Ao ) = 0.(A) A 0u(p).

Proof. Let a be any element of S. Then a = aca for some ¢ € S since S is regular. Hence
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5 (o 1) () = sup (Ao pr)(a)

a€lz]s

= sup (sup minA(). )}

a€lz]s \a=yz

> sup min{A(ac), u(a)}

a€lz]s

> sup min{A(a), u(a)}

a€lz]s

= min { Sel[ll? Aa), sel[l;]) u(a)}
= min{d"(A)(x), 0" (u)(2)}
= (0" (A) A 0% () ()

for all z € S. Hence 6*(Aop) > 6*(A\) Ad*(u). Similarly, we have d.(Ao ) > 0.(N) Ad.(p).
Therefore 6*(\ o u) = 6*(A\) A §* () and 6,(A o p) = 0.(A) A dx(p) by Theorem 3.16. [
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Neutrosophic N-structures and their applications
in semigroups

Abstract The notion of neutrosophic N -structure is introduced, and applied it to semi-
group. The notions of neutrosophic N -subsemigroup, neutrosophic N -product and e-
neutrosophic A-subsemigroup are introduced, and several properties are investigated.
Conditions for neutrosophic N-structure to be neutrosophic N-subsemigroup are pro-
vided. Using neutrosophic N -product, characterization of neutrosophic N -subsemigroup
is discussed. Relations between neutrosophic N -subsemigroup and e-neutrosophic N-
subsemigroup are discussed. We show that the homomorphic preimage of neutrosophic
N -subsemigroup is a neutrosophic N -subsemigroup, and the onto homomorphic image of
neutrosophic N -subsemigroup is a neutrosophic A-subsemigroup.

Keywords: Neutrosophic N -structure, neutrosophic N -subsemigroup,
e-neutrosophic N -subsemigroup, neutrosophic N -product.

2010 Mathematics Subject Classification. 03B99, 03E99, 20M12.

1 Introduction

Zadeh [9] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy
set. As a generalization of fuzzy sets, Atanassov [2] introduced the degree of nonmem-
bership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache in-
troduced the degree of indeterminacy/neutrality (i) as independent component in 1995
(published in 1998) and defined the neutrosophic set on three components

(t, i, f) = (truth, indeterminacy, falsehood).
For more detail, refer to the site
http://fs.gallup.unm.edu/FlorentinSmarandache.htm.

The concept of neutrosophic set (NS) developed by Smarandache [7] and Smarandache
[8] is a more general platform which extends the concepts of the classic set and fuzzy
set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set
theory is applied to various part (refer to the site
http://fs.gallup.unm.edu/neutrosophy.htm).
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A (crisp) set A in a universe X can be defined in the form of its characteristic function
pa: X — {0, 1} yielding the value 1 for elements belonging to the set A and the value 0
for elements excluded from the set A. So far most of the generalization of the crisp set have
been conducted on the unit interval [0, 1] and they are consistent with the asymmetry
observation. In other words, the generalization of the crisp set to fuzzy sets relied on
spreading positive information that fit the crisp point {1} into the interval [0, 1]. Because
no negative meaning of information is suggested, we now feel a need to deal with negative
information. To do so, we also feel a need to supply mathematical tool. To attain such
object, Jun et al. [3] introduced a new function which is called negative-valued function,
and constructed N -structures. This structure is applied to BFE-algebra, BCK/BCI-
algebra and BC H-algebra etc. (see [1], [3], [4], [5]).

In this paper, we introduce the notion of neutrosophic NV -structure and applied it to
semigroup. We introduce the notion of neutrosophic N-subsemi-group and investigate
several properties. We provide conditions for neutrosophic N-structure to be neutro-
sophic N -subsemigroup. We define neutrosophic N -product, and give characterization
of neutrosophic N -subsemigroup by using neutrosophic N-product. We also introduce e-
neutrosophic subsemigroup, and investigate relations between neutrosophic subsemigroup
and e-neutrosophic subsemigroup. We show that the homomorphic preimage of neutro-
sophic N -subsemigroup is a neutrosophic N-subsemi-group, and the onto homomorphic
image of neutrosophic N -subsemigroup is a neutrosophic N -subsemigroup.

2 Preliminaries

Let X be a semigroup. Let A and B be subsets of X. Then the multiplication of A and
B is defined as follows:
AB={abe X |a€ A, b€ B}.

By a subsemigroup of X we mean a nonempty subset A of X such that A2 C A. We
consider the empty set () is always a subsemigroup of X.
We refer the reader to the book [6] for further information regarding fuzzy semigroups.
For any family {a; | ¢ € A} of real numbers, we define

, max{a; | i € A} if A is finite
; A} = ’
\/{a, i€ A} { sup{a; | i € A} otherwise.

. [ min{a; | i € A} if A is finite,
/\{az i€ A:= { inf{a; | i € A}  otherwise.

For any real numbers a and b, we also use a Vb and a A b instead of \/{a,b} and A{a, b},
respectively.
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3 Neutrosophic N-structures

Denote by F(X,[—1,0]) the collection of functions from a set X to [—1,0]. We say that
an element of F(X,[—1,0]) is a negative-valued function from X to [—1,0] (briefly, V-
function on X). By an N -structure we mean an ordered pair (X, f) of X and an N-
function f on X. In what follows, let X denote the nonempty universe of discourse unless
otherwise specified.

Definition 3.1. A neutrosophic N -structure over X is defined to be the structure

X T
AN o T Fy) {<TN<x>,fN<x>,FN<x>> =€ X} (3.1

where T, In and Fy are N-functions on X which are called the negative truth member-

ship function, the negative indeterminacy membership function and the negative falsity
membership function, respectively, on X.

Note that every neutrosophic N-structure Xy over X satisfies the condition:
(Ve € X) (=3 < Ty(a) + In(2) + Fu(z) < 0).

Example 3.2. Consider a universe of discourse X = {z,y, z}. We know that

N — x Y z
N (=0.7,-0.5,—-0.1) (=0.2,—0.3,—0.4)" (0.3, —0.6, —0.1)
is a neutrosophic N -structure over X.

Definition 3.3. Let Xn = (TNIXW and Xy := (TMI)(TJ\/I) be neutrosophic NV -structures

over X. We say that Xy is a neutrosophic N -substructure over X, denoted by Xn C X,
if it satisfies:

(Vz € X)(Tn(z) = Tu(z), In(z) < In(2), Fn(z) > Fu(z)).
If Xn € X and Xy € X, we say that Xn = Xvp.

Definition 3.4. Let Xy :=
over X.

and Xy := L) be neutrosophic N -structures

X
(TN INFN) (Tar,Iag For

(1) The union of XN and X is defined to be a neutrosophic N -structure

Xnom = (X; Tvuars Inoars Fvow)
where
Tyom () = N{Tn (), Tar ()}, Ivone(x) = V{Un(2), In ()} and
Fyom(z) = AN{Fn(z), Fu(x)}
for all z € X.
(2) The intersection of XN and Xy is defined to be a neutrosophic AV-structure
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XNeMm = (X; TNmMa INmM, FNmM)

where
T (x) = V{Tn(2), Tu (@)}, Inena (@) = A{In(x), Inr(2)} and
Fyom(z) = V{Fn(x), Far(x)}

for all x € X.

Definition 3.5. Given a neutrosophic N-structure Xy := ( over X, the comple-

X
TNJINEN)
ment of Xy is defined to be a neutrosophic N-structure

X

X c =
N (Twe, Ine, Fiye)

over X where
Tye(x) =—1—Ty(z), Inyc(x) = =1 — In(x) and Fye(z) = —1 — Fy(x)
for all z € X.

Example 3.6. Let X = {a, b, ¢} be a universe of discourse and let Xy be the neutrosophic
N-structure over X in Example3.2. Let Xpg be a neutrosophic N-structure over X which
is given by

Nap T Y z
M7 1(=03,-0.5,-0.2)" (=0.4,—-0.2,—0.2)" (0.5, —0.7,—0.8) | *

The union and intersection of Xn and Xy are given as follows respectively:

b% B T Y z
NOMT ) (=0.7,-0.5,—0.2)" (=0.4,—0.3,—0.4)" (0.5, —0.7), —0.8)

and

X B T Y z
NOM T (=0.3,-0.5,—-0.1)" (=0.2,-0.2, —0.2)" (0.3, 0.6, —0.1) |

The complement of Xy is given by

N — T Y z
M7 (=0.7,-0.5,—0.8)" (—0.6,—0.8, —0.8) " (0.5, —0.3,-0.2) |

4 Applications in semigroups

In this section, we take a semigroup X as the universe of discourse unless otherwise
specified.
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Definition 4.1. A neutrosophic N-structure Xy over X is called a neutrosophic N -
subsemigroup of X if the following condition is valid:

Tn(zy) < V{Tn(x), Tn(y)}
(Vo,y € X) | In(zy) 2 NMIn(2), In(v)} | - (4.1)
Fi(zy) < V{Fn(z), Fn(y)}

Let Xn be a neutrosophic N-structure over X and let «, 3,7 € [—1,0] be such that
—3 < a+ [+~ <0. Consider the following sets.

Ty ={x e X |Tn(x) <a},
IV ={xe X |Iy(z)> B, (4.2)
Fl={xe X | Fn(z) <7}

The set
Xn(a B,7) 1= {z € X | Tw(z) < a, In(x) > B, Fy(z) <7}

is called a (a, 3, 7)-level set of Xn. Note that
Xn(a,B,7) = T§ N I3 N F,

Theorem 4.2. Let Xn be a neutrosophic N -structure over X and let o, 3,7 € [—1,0] be
such that =3 < a+ [+ v < 0. If Xn is a neutrosophic N -subsemigroup of X, then the
(e, B,7)-level set of Xn is a subsemigroup of X whenever il is nonempty.

Proof. Assume that Xn(a, 3,7) # 0 for o, 3,7 € [-1,0] with =3 < a+ [+~ < 0. Let
z,y € Xn(a, 8,7). Then Ty(z) < «, Iy(z) > 3, Fy(z) <7, Ty(y) < o, In(y) > 3 and
Fn(y) <~. It follows from (4.1) that

TN(xy) < V{TN(x)7TN(y)} < a,

In(zy) = A{In(z), In(y)} = B, and

Fn(zy) < V{Fn(2), Fn(y)} <7
Hence zy € Xn(a, 3,7), and therefore Xn(«, 3,7) is a subsemigroup of X. [

Theorem 4.3. Let XN be a neutrosophic N -structure over X and let o, 3,y € [—1,0] be
such that =3 < a+0+~v<0. If Ty, Iﬁ, and FY, are subsemigroups of X, then Xn is a
neutrosophic N -subsemigroup of X.

Proof. Assume that there are a,b € X such that Tx(ab) > \/{Tn(a),Tn(b)}. Then
Ty(ab) > to > \/{Tn(a), Tn(b)} for some t, € [~1,0). Hence a,b € Ty but ab ¢ T,
which is a contradiction. Thus

Tn(zy) < V{Tn(z), Tn(y)}
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for all z,y € X. If Ix(ab) < A{In(a),In(b)} for some a,b € X, then a,b € [f\? and
ab & I? for t5:= \{In(a),Ix(b)}. This is a contradiction, and so

In(zy) > NMIn(2), In(y)}
for all z,y € X. Now, suppose that there exist a,b € X and ¢, € [-1,0) such that
Fy(ab) > t, > \/{Fx(a), Fx(b)}.
Then a,b € Ff\? and ab ¢ F ;7 , which is a contradiction. Hence
Fy(ay) < \[{Fw(2), F(y)}
for all z,y € X. Therefore Xy is a neutrosophic N -subsemigroup of X. O

Theorem 4.4. The intersection of two neutrosophic N -subsemigroups is also a neutro-
sophic N -subsemigroup.

and Xy = =——=—— be neutrosophic A/-subsemi-groups of

X
Proof. Let XN := TN ) (TarIas,Far)

X. For any =,y € X, we have
Ton(wy) = \/ {Tw(zy), Tur(zy)}
< \/{\/{TN ), Tne(y },\/{TM(JS%TM(?J)}}
=\ T6(@). T (@)} T (). T ()}
= \/ {Zwrar (@), T (9)}
Inon(zy) = N\ {In(zy), In(wy)}
>/\{/\{1N ) In()} s \ {Tu(2) ()}}

- /\ {/\{IN x ,IM(:B)},/\{IN(?J)JM(?J)}}
= /\{[NmM s Inene(y)}

and
Fyom(zy) = \/{Fw(wy), Far(xy)}
<\ A{V B @), Py )}V {Fur(o), Fu(w)} }
=V Bn(a). Fu@)} .\ {En(w). P}
=/ {Fne (), Fnons(v)}
for all #,y € X. Hence Xnnm is a neutrosophic A -subsemigroup of X. 0
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Corollary 4.5. If {Xy, | ¢ € N} is a family of neutrosophic N -subsemigroups of X, then
50 15 XN, -

Let X = (TNIXTN) and Xy := WXTJ\/I) be neutrosophic N-structures over X.
The neutrosophic N -product of X and Xy is defined to be a neutrosophic N-structure
over X

X
Xn O XM=
N M Tnors Inorts From
x
= reX
{TNOM<37>7 IN0M<37)7 FNOM<:U> | }
where
N\ {Tn(y)VTy(2)} if Jy,z € X such that x = yz
TNoM(iﬂ) = r=yz
0 otherwise,
V {In(y) NI (2)} if Jy,z € X such that z = yz
]NOM(:E) = r=yz
-1 otherwise
and
N {En(y)V Fu(2)} if 3y, z € X such that x = yz
FNoM(x) = r=yz

0 otherwise.

X
oM (), INom (%), Fnon ()

(Xn © Xm) (7) := (Tnom (2), INoms (), Fivonr())

For any = € X, the element T is simply denoted by

for the sake of convenience.

Theorem 4.6. A neutrosophic N -structure Xn over X is a neutrosophic N -subsemi-
group of X if and only if Xn ©® Xn C XN

Proof. Assume that Xy is a neutrosophic A-subsemigroup of X and let z € X. If x # yz
for all x,y € X, then clearly Xn ® Xn € Xn. Assume that there exist a,b € X such that
x = ab.

Tyon(z) = N\ {Tw(a) VTn(0)} > N Tw(ab) = Ty (),

Inon(x) = \/ {In(a) N In(0)} < \/ In(ab) = In(x),
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and

FNON /\{FN \/FN }> /\FN &b FN(Z')

r=ab r=ab

Therefore Xn ® Xn C X
Conversely, let Xn be any neutrosophic NV -structure over X such that Xn©Xn C Xn.
Let x and y be any elements of X and let a = xy. Then

Tn(zy) =Tn(a) < Tnon(a /\ {Tn(b) VIn(c)} < Tn(x) VTIn(y),

In(zy) = In(a) > Inon(a) = \/ {In(b) ALy(c)} > In(z) A In(y),

a=bc
and
Fy(zy) = Fy(a) < Fyon(a) = /\ {Fn(b) V Fx(c)} < Fy(z) V Fx(y).
a=bc
Therefore X is a neutrosophic N -subsemigroup of X. n

Since [—1,0] is a completely distributive lattice with respect to the usual ordering, we
have the following theorem.

Theorem 4.7. If {Xy, | i € N} is a family of neutrosophic N -subsemigroups of X, then
({Xn, | i € N}, Q) forms a complete distributive lattice.

X

e Y be a
(TN ,IN,FN)

Theorem 4.8. Let X be a semigroup with identity e and let XN =
neutrosophic N -structure over X such that

(Vo € X) (Xn(e) = Xn(2)),

that is, Tn(e) < Tn(z), In(e) > In(z) and Fy(e) < Fy(x) for all z € X. If Xn
is a neutrosophic N -subsemigroup of X, then Xn is neutrosophic idempotent, that is,
Xn O Xn = XN

Proof. For any z € X, we have

Tyon(x) = N {Tn(y) V Tn(2)} < Tw(2) V Tiv(e) = Ty(x),
=Yz
Inon(z) = \/ {In(y) ALy(2)} = In(z) A In(e) = In(z)
T=yz
and
Fyon(x) = /\ {Fn(y) V Fx(2)} < Fy(z) V Fy(e) = Fy(z).
r=yz
This shows that Xy € Xn ® Xn. Since Xy 2 Xn ® Xn by Theorem 4.6, we know that
X is neutrosophic idempotent. O
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Definition 4.9. A neutrosophic N-structure Xy over X is called an e-neutrosophic N -
subsemigroup of X if the following condition is valid:

TN(xy) < V{TN(:CLTN(Z/)?&T}
(Vo,y € X) | In(ay) = NMIn(2), In(y), e} |- (4.3)
FN(xy) < \/{FN(J;)7FN(Z/>7€F}

where e, er,ep € [—1,0] such that =3 < ep+e;+ep <0.

Example 4.10. Let X = {e,a,b,c} be a semigroup with the Cayley table which is given
in Table [1.

@

Table 1: Cayley table for the binary operation

e a b c
e e e e e
a e a e a
b e e b b
c e a b c

Let Xn be a neutrosophic NV -structure over X which is given as follows:

€ a
X = { , ,
N7 1(=04,-0.3,-0.25)" (=0.3,—0.5, —0.25)

b c
(—02,—03,—02)’(—01,—07,—01)}'
Then Xy is an e-neutrosophic A-subsemigroup of X with ¢ = (—0.4 —0.2, —0.3).

Proposition 4.11. Let Xn be an e-neutrosophic N -subsemigroup of X. If Xn(x) <
(er,er,er), that is, Ty (z) > er, In(x) < ey and Fx(x) > ep, for all z € X, then XN is
a neutrosophic N -subsemigroup of X .

Proof. Straightforward. O

Theorem 4.12. Let XN be a neutrosophic N -structure over X and let o, 3,7 € [—1,0]
be such that —3 < a+ B+~ < 0. If Xn is an e-neutrosophic N -subsemigroup of X, then
the (o, 3,7)-level set of XN is a subsemigroup of X whenever (o, 3,v) < (er,er,€Fr), that
15, a« > ep, B<erandy > ep.
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Proof. Assume that Xn(«, 3,7) # 0 for o, 3,7 € [-1,0] with =3 < a+ [+ v < 0. Let
T,y € XN(Oévﬁva)' Then TN<x) <o ]N< ) > B FN(:U) <7, TN(y) <o [N(y) > ﬁ and
Fn(y) <. It follows from (4.3) that

Tn(zy) < V{Tn(2), In(y).er} < V{a,er} = o,
In(zy) 2 NMIn (), In(y), €1} = N{B.e1} = 3, and
Fy(zy) < V{FNn(2), Fn(y),ert < VH{v,er} =17
Hence zy € Xn(a, 3,7), and therefore Xn(«, 3,7) is a subsemigroup of X. ]

Theorem 4.13. Let XN be a neutrosophic N -structure over X and let a, 3,y € [—1,0]
be such that =3 < a4+ +~v < 0. If Ty, [f, and Fy are subsemigroups of X for all
er,er,ep € [—1,0] with =3 <ep+er+ep <0 and (o, B,7) < (er,e1,eF), then XN is an
e-neutrosophic N -subsemigroup of X.

Proof. Assume that there are a,b € X such that

> \/{Tw(a), T (b), ex}.

Then Ty (ab) > to > \/{Tn(a), Tx(b),er} for some t, € [—1,0). It follows that a,b € Ty,
ab ¢ Ty and t, > ep. This is a contradiction since T3¢ is a subsemigroup of X by
hypothesis. Thus

Tn(wy) < V{Tn(x), Tn(y), e}

for all z,y € X. Suppose that In(ab) < A{In(a),In(b),e;} for some a,b € X. If we take
tg:= N{In(a), In(b), e}, then a,b € 1Y, ab & Iy} and tg < er. This is a contradiction,
and so

In(zy) > AN{In(2), In(y),er}

for all z,y € X. Now, suppose that there exist a,b € X and ¢, € [—1,0) such that
Fy(ab) > t, > \[{Fn(a), Fx(b),cr}.
Then a,b € F]t\?, ab ¢ F]'i,” and ¢, > ep, which is a contradiction. Hence
n(ey) < \/{Fn(@), Fa(y),er}
for all z,y € X. Therefore Xy is an e-neutrosophic N-subsemigroup of X. O

Theorem 4.14. For any er,eq,ep,07,01,0p € [—1,0] with =3 < ep + e +ep < 0
and =3 < 6p + 67 +0p < 0, if Xn and Xy are an e-neutrosophic N -subsemigroup
and a 0-neutrosophic N -subsemigroup, respectively, of X, then their intersection is a &-
neutrosophic N -subsemigroup of X for & == e A0, that is, (&r,&1,&r) = (e7 V 0,61 A
5[, erp V (SF)
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Proof. For any x,y € X, we have
Trenr(wy) = \/ {Tw (xy), Tu ()}
< VT (@), Tx(w), e}, V{Taue), Tar(y), 67} }
<\ A{V1Tw (@), Tuw). &}, \ T (), M<y>,sT}}
=\/ {\/{TN(x) T(z), &}, \/{Tw (y ,TM(y),ﬁT}}
=V {VT @), T @)} VAT 0). Tu () &}
=V {Tvenr (&), Tvews (), 6}

Inea(zy) = N\ {In(zy), I (zy)}
> A{AUN@). In(w). &1}, M), Tnw), 61}
> A AU Inw), &) \Uni(@), L), sf}}
= AM{ At o). €13, /\{IN D) Ino), &}
(

);
= NAU). 1 A0 1) ff}
:/\{INﬂM T ,[NQM( )751}’

and
Fnom(zy) = \/ {Fn(2y), Far(zy)}
<V A{VAEN @), Fu). 26} \ {Fu(@), Ful). 60} }
<\ {ViEv@). Futy). &6} \ {Fu(@), M<y>,§F}}
=\ {\V{Fx (@), Fur(o), €0} \ AW (), Fu(y), €0} }
=\ {V{EN @), Far@)}, V/{Fw (0), Far(w)} € |
= \/ {Fnam (), Fnone(y),r} -

Therefore Xyns is a &-neutrosophic N -subsemigroup of X.

Theorem 4.15. Let X be an e-neutrosophic N -subsemigroup of X. If

k= (Kr, K1, KF) (\/{TN )}, /\{]N(QU)}, \/{FN(@}) )

zeX rzeX zeX
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then the set
Q:={ze X |Tn(x) <kprVer, In(x)>rrNer, Fy(z) < kpVep}
15 a subsemigroup of X.

Proof. Let x,y € Q) for any x,y € X. Then
TN(ZB) S RT V Er = \/ {TN(ZL‘)} V er,

Iv() > ks Aer= A Ln(@)} Azr,
Fx(e) < meVer= V {Fx(@)} Ver,
T(y) < mr Ver = VATw()} ver,
In(y) > kr Nep = 7\2{11\/(9)} Ner,
Fx(y) < reVen i’iyx{mw} Ver.

It follows from (4.3)) that

Ty(zy) < \/{TN($)7TN(y)a5T}
< \/{IiT Ver, ke Ver, er}

= K’T\/gTa

In(zy) > /\{IN(JC), In(y),er}

> /\{HI Ner, kr Nerer}

=K N\Neg
and
Fy(zy) < \/{FN(J:)7FN(9)75F}
< \/{KJF Vep, kpVEp, Ep}
=Kr VEp,
and so that xy € (). Therefore (2 is a subsemigroup of X. O]
For amap f : X — Y of semigroups and a neutrosophic N-structure Xy := m

over Y and € = (er,e7,ep) with —3 < ez +er+er < 0, define a neutrosophic N -structure
XIE\T = W over X by
Ty - X = (21,00, 20 V{Tx(£(2)),er},
FJEV X = [_170]7 €T = /\{IN(f<x>>751}7
FJif X = [_170]7 T — V{FN(f<x))75F}
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Theorem 4.16. Let f : X — Y be a homomorphism of semigroups. If a neutrosophic
N -structure Xn = m over Y is an e-neutrosophic N -subsemigroup of Y, then
— X : : .

X§ = T F) 18 an e-neutrosophic N -subsemigroup of X.

Proof. For any z,y € X, we have
Tx(wy) = \/{Tw(f a:y)

= \/ {In(f )
) T (F(9), e, eT}
)

JET) \/{TN ET}MST}

Iy (xy) /\{IN (). €1}
(@) W),
= /\{/\{IN<f<x>> (f@).e: ef}

= NN G@). 2 NG W) 2121
= ANI). ), e}

8]}

and
Fi(ay) = \/ {Fx(f(29)),r}
=\/ {Fn(f(@) (). er)
<\ { VAR (7 @), Pl F ). e, eF}
- \/ {\/{FN f(z)),er}, \/{FN EF},€F}
=\ {F5 (@), Fy(y),er} .

Therefore X5 := (TEIXTFE) is an e-neutrosophic AN-subsemigroup of X. O]
N> N> N

Let f : X — Y be a function of sets. If Yy := m is a neutrosophic N-
structures over Y, then the preimage of Yy under f is defined to be a neutrosophic
N-structures

X
=0 = @y @, P )
over X where f-1(Ty)(@) = Tu(F(@), F'(Un)(x) = Lu(f(x)) and f~'(Fy)(z) =

Fyu(f(x)) for all z € X.
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Theorem 4.17. Let f : X — Y be a homomorphism of semigroups. If Yy := m

is a neutrosophic N -subsemigroup of Y, then the preimage of Yar under f is a neutrosophic

N -subsemigroup of X .

Proof. Let
X

PO = @), @, )
be the preimage of Yy under f. For any x,y € X, we have
FHTwu) (wy) = T (f(xy)) —TM(f( )f(y))
< \VATw(f(2), T (f(y))}
@) @), £ T )}

S ) (wy) = I (f(zy)) = I (f (2) f(y))
> A (F@), I (F )
— AU ) @) S () )}

and
FH(Fu)(wy) = Fu(f(xy)) = Fa(f(2)f ()
< \/{FM ( ,FM(f(y»}
=V {r @)@, En W)}
Therefore f~1 (Y1) is a neutrosophic A -subsemigroup of X. O
Let f : X — Y be an onto function of sets. If Xy := (TNIXW is a neutrosophic

N-structures over X, then the image of Xn under f is defined to be a neutrosophic

N-structures
Y

(f(TN)7 f(IN)7 f(FN))

f (XN) =

over Y where

fIw)y) = N Tn(x),

zef~1(y)
fn)) = V. In),
f(Fn)(y) = /\ Fy(x).

zef~1(y)
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Theorem 4.18. For an onto homomorphism f : X — Y of semigroups, let Xn =

(TNIXW be a neutrosophic N -structure over X such that

Tn(zo) = N\ Tn(z2)

VT C X)(@zo eT) | In(xo) = Z\E/T]N(z) . (4.4)
FN(SI,’()) = Z/e\TFN(Z)

If XN is a neutrosophic N -subsemigroup of X, then the image of X~ under f is a neu-
trosophic N -subsemigroup of Y.

Proof. Let .
XN = ) 7w, F )

be the image of Xy under f. Let a,b € Y. Then f~!(a) # 0 and f~!(a) # 0 in X, which
(b)

imply from (4.4) that there are z, € f~!(a) and x;, € f~!(b) such that
Tn(q) = /\ TN( ) In(za) = V IN( ), Fn(za) = A Fn(2),
z€ zef—1

ot z€f~1(a)
Tn(rp) = /\ TN( ), In(zp) = V IN( ), Fn(zs) = A Fn(w).
we f~1(b) we f~1(b) we f~1(b)
Hence

f(Tx)ab) =\ Ty(x) < Tn(wam)
z€f~1(ab)

< \/ (), T (1)}
:\/ /\ Tn(z), /\ Tn(w)

zef~1(a) wef1(b)

= \/{/(Tw)(a), f(Tn)(b)},
fIn)(ab) = \/  Iy(z) = Iy(waws)

zef~1(ab)
> A {Iv(xa), In(zs)}
Ay V v, V Inw)

zef~a) we f~1(b)

= /\{f(]N)(a)7f(]N)<b)}7
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and
f(Fn)(ab)= N\ Fn(z) < Fy(xem)
z€f~1(ab)
< \/{Fw(wa), Fu ()}
=V /\ Fale /\ Pl
zef-1 wEf

=\ () <FN><b>}
Therefore f (Xn) is a neutrosophic A/-subsemigroup of Y. O]
Conclusions

In order to deal with the negative meaning of information, Jun et al. [3] have introduced
a new function which is called negative-valued function, and constructed N -structures.
The concept of neutrosophic set (NS) has been developed by Smarandache in [7] and
[8] as a more general platform which extends the concepts of the classic set and fuzzy
set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. In this article,
we have introduced the notion of neutrosophic N-structure and applied it to semigroup.
We have introduced the notion of neutrosophic N -subsemi-group and investigated several
properties. We have provided conditions for neutrosophic A-structure to be neutrosophic
N-subsemigroup. We have defined neutrosophic N-product, and gave characterization of
neutrosophic N -subsemigroup by using neutrosophic A/-product. We also have introduced
e-neutrosophic subsemigroup, and investigated relations between neutrosophic subsemi-
group and e-neutrosophic subsemigroup. We have shown that the homomorphic preimage
of neutrosophic N -subsemigroup is a neutrosophic N -subsemigroup, and the onto homo-
morphic image of neutrosophic N -subsemigroup is a neutrosophic A -subsemigroup.
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The first chapter, Characterizations of regular and duo semigroups based on int-soft set
theory, investigates the relations among int-soft semigroup, int-soft (generalized) bi-ideal,
int-soft quasi-ideal and int-soft interior ideal. Using int-soft left (right) ideal, an int-soft
quasi-ideal is constructed. We show that every int-soft quasi-ideal can be represented as the
soft intersection of an int-soft left ideal and an int-soft right ideal. Using int-soft quasi-ideal,
an int-soft bi-ideal is established. Conditions for a semigroup to be regular are displayed.
The notion of int-soft left (right) duo semigroup is introduced, and left (right) duo
semigroup is characterized by int-soft left (right) duo semigroup. Bi-ideal, quasi-ideal and
interior ideal are characterized by using (®, W)-characteristic soft sets.

The notions of starshaped (€, € Vv qk)-fuzzy sets and quasi-starshaped (€, € v gk)-fuzzy sets
are introduced in the second chapter, Generalizations of starshaped (€, €Vg)-fuzzy sets, and
related properties are investigated. Characterizations of starshaped (€, € v qk)-fuzzy sets
and quasi-starshaped (€, € Vv q)-fuzzy sets are discussed. Relations between starshaped (€,
€ v qk)-fuzzy sets and quasi-starshaped (€, €v gk)-fuzzy sets are investigated.

The notion of semidetached semigroup is introduced the third chapter (Semidetached
semigroups), and their properties are investigated. Several conditions for a pair of a
semigroup and a semidetached mapping to be a semidetached semigroup are provided. The
concepts of (€, € V gk)-fuzzy sub-semigroup, (gk, € V qk)-fuzzy subsemigroup and (€ v gk,
€ Vv qk)-fuzzy subsemigroup are introduced, and relative relations are discussed.

The fourth chapter, Generalizations of (€, €V qk)-fuzzy (generalized) bi-ideals in semigroups,
introduces the notion of (€, € V gkd)-fuzzy (generalized) bi-ideals in semigroups, and
related properties are investigated. Given a (generalized) bi-ideal, an (€,€ vV qk3)-fuzzy
(generalized) bi-ideal is constructed. Characterizations of an (€, € V qkd )-fuzzy
(generalized) bi-ideal are discussed, and shown that an (€, €V qkd)-fuzzy generalized bi-
ideal and an (€, € v qk3)-fuzzy bi-ideal coincide in regular semigroups. Using a fuzzy set
with finite image, an (€, €V qkd)-fuzzy bi-ideal is established.

Lower and upper approximations of fuzzy sets in semigroups are considered in the fifth
chapter, Approximations of fuzzy sets in semigroups, and several properties are investigated.
The notion of rough sets was introduced by Pawlak. This concept is fundamental for the
examination of granularity in knowledge. It is a concept which has many applications in
data analysis. Rough set theory is applied to semigroups and groups, d-algebras, BE-algebras,
BCK-algebras and MV-algebras etc.

Finally, in the sixth and last paper, Neutrosophic N-structures and their applications in
semigroups, the notion of neutrosophic N-structure is introduced, and applied to
semigroup. The notions of neutrosophic N-subsemigroup, neutrosophic N-product and e-
neutrosophic N-subsemigroup are introduced, and several properties are investigated.
Conditions for neutrosophic N-structure to be neutrosophic N-subsemigroup are provided.
Using neutrosophic N-product, characterization of neutrosophic N-subsemigroup is
discussed. Relations between neutrosophic N-subsemigroup and e-neutrosophic N-
subsemigroup are discussed. We show that the homomorphic preimage of neutrosophic N-
subsemigroup is a neutrosophic N-subsemigroup, and the onto homomorphic image of
neutrosophic N -subsemigroup is a neutrosophic N-subsemigroup.
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