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Foreword 

The topics discussed in this book are Int-soft semigroup, Int-soft left (right) ideal, Int-soft 
(generalized) bi-ideal, Int-soft quasi-ideal, Int-soft interior ideal, Int-soft left (right) duo 
semigroup, starshaped (∈, ∈∨ qk)-fuzzy set, quasi-starshaped (∈, ∈∨ qk)-fuzzy set, 
semidetached mapping, semidetached semigroup, (∈, ∈ ∨qk)-fuzzy subsemi-group, (qk, ∈ 
∨qk)-fuzzy subsemigroup, (∈, ∈ ∨ qk)-fuzzy subsemigroup, (qk, ∈ ∨ qk)-fuzzy 
subsemigroup, (∈ ∨ qk, ∈ ∨ qk)-fuzzy subsemigroup, (∈, ∈∨ qkδ)-fuzzy subsemigroup, ∈∨ 
qkδ -level subsemigroup/bi-ideal, (∈, ∈∨ qkδ )-fuzzy (generalized) bi-ideal, δ-lower (δ-
upper) approximation of fuzzy set, δ-lower (δ-upper) rough fuzzy subsemigroup, δ-rough 
fuzzy subsemigroup, Neutrosophic N -structure, neutrosophic N -subsemigroup, ε-
neutrosophic N -subsemigroup, and neutrosophic N -product. 

The first chapter, Characterizations of regular and duo semigroups based on int-soft set 
theory, investigates the relations among int-soft semigroup, int-soft (generalized) bi-ideal, 
int-soft quasi-ideal and int-soft interior ideal. Using int-soft left (right) ideal, an int-soft 
quasi-ideal is constructed. We show that every int-soft quasi-ideal can be represented as the 
soft intersection of an int-soft left ideal and an int-soft right ideal. Using int-soft quasi-
ideal, an int-soft bi-ideal is established. Conditions for a semigroup to be regular are 
displayed. The notion of int-soft left (right) duo semigroup is introduced, and left (right) 
duo semigroup is characterized by int-soft left (right) duo semigroup. Bi-ideal, quasi-ideal 
and interior ideal are characterized by using (Φ, Ψ)-characteristic soft sets. 

The notions of starshaped (∈, ∈ ∨ qk)-fuzzy sets and quasi-starshaped (∈, ∈ ∨ qk)-fuzzy sets 
are introduced in the second chapter, Generalizations of starshaped (∈, ∈∨q)-fuzzy sets, and 
related properties are investigated. Characterizations of starshaped (∈, ∈ ∨ qk)-fuzzy sets and 
quasi-starshaped (∈, ∈ ∨ q)-fuzzy sets are discussed. Relations between starshaped (∈, ∈ ∨ 
qk)-fuzzy sets and quasi-starshaped (∈, ∈∨ qk)-fuzzy sets are investigated. 

The notion of semidetached semigroup is introduced the third chapter (Semidetached 
semigroups), and their properties are investigated. Several conditions for a pair of a 
semigroup and a semidetached mapping to be a semidetached semigroup are provided. The 
concepts of (∈, ∈ ∨ qk)-fuzzy sub-semigroup, (qk, ∈ ∨ qk)-fuzzy subsemigroup and (∈ ∨ qk, 
∈ ∨ qk)-fuzzy subsemigroup are introduced, and relative relations are discussed. 

The fourth chapter, Generalizations of (∈, ∈∨ qk)-fuzzy (generalized) bi-ideals in 
semigroups, introduces the notion of (∈, ∈ ∨ qkδ)-fuzzy (generalized) bi-ideals in 
semigroups, and related properties are investigated. Given a (generalized) bi-ideal, an (∈,∈ 
∨ qkδ)-fuzzy (generalized) bi-ideal is constructed. Characterizations of an (∈, ∈ ∨ qkδ )-
fuzzy (generalized) bi-ideal are discussed, and shown that an (∈, ∈∨ qkδ)-fuzzy generalized 
bi-ideal and an (∈, ∈ ∨ qkδ)-fuzzy bi-ideal coincide in regular semigroups. Using a fuzzy set 
with finite image, an (∈, ∈∨ qkδ)-fuzzy bi-ideal is established. 
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Lower and upper approximations of fuzzy sets in semigroups are considered in the fifth 
chapter, Approximations of fuzzy sets in semigroups, and several properties are investigated. 
The notion of rough sets was introduced by Pawlak. This concept is fundamental for the 
examination of granularity in knowledge. It is a concept which has many applications in data 
analysis. Rough set theory is applied to semigroups and groups, d-algebras, BE-algebras, 
BCK-algebras and MV-algebras etc. 

Finally, in the sixth and last paper, Neutrosophic N-structures and their applications in 
semigroups, the notion of neutrosophic N -structure is introduced, and applied to semigroup. 
The notions of neutrosophic N-subsemigroup, neutrosophic N-product and ε-neutrosophic 
N-subsemigroup are introduced, and several properties are investigated. Conditions for 
neutrosophic N-structure to be neutrosophic N-subsemigroup are provided. Using 
neutrosophic N-product, characterization of neutrosophic N-subsemigroup is discussed. 
Relations between neutrosophic N-subsemigroup and ε-neutrosophic N-subsemigroup are 
discussed. We show that the homomorphic preimage of neutrosophic N-subsemigroup is a 
neutrosophic N-subsemigroup, and the onto homomorphic image of neutrosophic N -
subsemigroup is a neutrosophic N-subsemigroup. 

Young Bae Jun, Madad Khan, Florentin Smarandache, Saima Anis

8



Characterizations of regular and duo semigroups

based on int-soft set theory

Abstract Relations among int-soft semigroup, int-soft (generalized) bi-ideal, int-soft

quasi-ideal and int-soft interior ideal are investigated. Using int-soft left (right) ideal,

an int-soft quasi-ideal is constructed. We show that every int-soft quasi-ideal can be rep-

resented as the soft intersection of an int-soft left ideal and an int-soft right ideal. Using

int-soft quasi-ideal, an int-soft bi-ideal is established. Conditions for a semigroup to be

regular are displayed. The notion of int-soft left (right) duo semigroup is introduced, and

left (right) duo semigroup is characterized by int-soft left (right) duo semigroup. Bi-ideal,

quasi-ideal and interior ideal are characterized by using (Φ, Ψ)-characteristic soft sets.

Keywords: Int-soft semigroup, Int-soft left (right) ideal, Int-soft (generalized) bi-ideal,

Int-soft quasi-ideal, Int-soft interior ideal, Int-soft left (right) duo semigroup.

2010 Mathematics Subject Classification. 06D72, 20M12, 20M99.

1 Introduction

The soft set theory, which is introduced by Molodtsov [13], is a good mathematical model

to deal with uncertainty. At present, works on the soft set theory are progressing rapidly.

In fact, in the aspect of algebraic structures, the soft set theory has been applied to rings,

fields and modules (see [1, 3]), groups (see [2]), semirings (see [6]), BL-algebras (see [15]),

BCK/BCI-algebras ([7], [8], [10], [11]), d-algebras (see [9]), Song et al. [14] introduced

the notion of int-soft semigroups and int-soft left (resp. right) ideals, and investigated

several properties. As a continuation of the paper [14], Jun and Song [12] discussed fur-

ther properties and characterizations of int-soft left (right) ideals. They introduced the

notion of int-soft (generalized) bi-ideals, and provided relations between int-soft general-

ized bi-ideals and int-soft semigroups. They also considered characterizations of (int-soft)

generalized bi-ideals and int-soft bi-ideals. In [5], Dudek and Jun introduced the notion

of an int-soft interior, and investigated related properties.

In this paper, we investigate relations among int-soft semigroup, int-soft (generalized)

Fuzzy and Neutrosophic Sets in Semigroups
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bi-ideal, int-soft quasi-ideal and int-soft interior ideal. Using int-soft left (right) ideal, we

construct an int-soft quasi-ideal. We show that every int-soft quasi-ideal can be repre-

sented as the soft intersection of an int-soft left ideal and an int-soft right ideal. Using

int-soft quasi-ideal, we establish an int-soft bi-ideal. We display conditions for a semigroup

to be regular. We introduce the notion of int-soft left (right) duo semigroup, characterize

it by int-soft left (right) duo semigroup. We also characterize bi-ideal, quasi-ideal and

interior ideal by using (Φ, Ψ)-characteristic soft sets.

2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B

is defined as follows:

AB = {ab ∈ S | a ∈ A and b ∈ B} .

A semigroup S is said to be regular if for every x ∈ S there exists a ∈ S such that

xax = x,

A nonempty subset A of S is called

• a subsemigroup of S if AA ⊆ A, that is, ab ∈ A for all a, b ∈ A,

• a left (resp., right) ideal of S if SA ⊆ A (resp., AS ⊆ A), that is, xa ∈ A (resp.,

ax ∈ A) for all x ∈ S and a ∈ A,

• a two-sided ideal of S if it is both a left and a right ideal of S,

• a generalized bi-ideal of S if ASA ⊆ A,

• a bi-ideal of S if it is both a semigroup and a generalized bi-ideal of S,

• an interior ideal of S if SAS ⊆ A.

A semigroup S is said to be

• left (resp., right) duo if every left (resp., right) ideal of S is a two-sided ideal of S,

• duo if it is both left and right duo.

A soft set theory is introduced by Molodtsov [13], and Çaǧman et al. [4] provided new

definitions and various results on soft set theory.

In what follows, let U be an initial universe set and E be a set of parameters. Let

P(U) denotes the power set of U and A, B, C, · · · ⊆ E.

Young Bae Jun, Madad Khan, Florentin Smarandache, Saima Anis
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Definition 2.1 ([4, 13]). A soft set (α, A) over U is defined to be the set of ordered

pairs

(α, A) := {(x, α(x)) : x ∈ E, α(x) ∈ P(U)} ,

where α : E → P(U) such that α(x) = ∅ if x /∈ A.

The function α is called approximate function of the soft set (α, A). The subscript A

in the notation α indicates that α is the approximate function of (α,A).

For any soft sets (α, S) and (β, S) over U, we define

(α, S) ⊆̃ (β, S) if α(x) ⊆ β(x) for all x ∈ S.

The soft union of (α, S) and (β, S) is defined to be the soft set (α ∪̃ β, S) over U in which

α ∪̃ β is defined by

(α ∪̃ β) (x) = α(x) ∪ β(x) for all x ∈ S.

The soft intersection of (α, S) and (β, S) is defined to be the soft set (α ∩̃ β, S) over U

in which α ∩̃ β is defined by

(α ∩̃ β) (x) = α(x) ∩ β(x) for all x ∈ S.

The int-soft product of (α, S) and (β, S) is defined to be the soft set (α ◦̃ β, S) over U in

which α ◦̃ β is a mapping from S to P(U) given by

(α ◦̃ β)(x) =





⋃
x=yz

{α(y) ∩ β(z)} if ∃ y, z ∈ S such that x = yz

∅ otherwise.

3 Int-soft ideals

In what follows, we take E = S, as a set of parameters, which is a semigroup unless

otherwise specified.

Definition 3.1 ([14]). A soft set (α, S) over U is called an int-soft semigroup over U if

it satisfies:

(∀x, y ∈ S) (α(x) ∩ α(y) ⊆ α(xy)) . (3.1)

Definition 3.2 ([12]). A soft set (α, S) over U is called an int-soft generalized bi-ideal

over U if it satisfies:

(∀x, y, z ∈ S) (α(x) ∩ α(z) ⊆ α(xyz)) . (3.2)

Fuzzy and Neutrosophic Sets in Semigroups
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If a soft set (α, S) over U is both an int-soft semigroup and an int-soft generalized

bi-ideal over U , then we say that (α, S) is an int-soft bi-ideal over U .

Definition 3.3 ([14]). A soft set (α, S) over U is called an int-soft left (resp., right) ideal

over U if it satisfies:

(∀x, y ∈ S) (α(xy) ⊇ α(y) (resp., α(xy) ⊇ α(x))) . (3.3)

If a soft set (α, S) over U is both an int-soft left ideal and an int-soft right ideal over

U, we say that (α, S) is an int-soft two-sided ideal over U .

Obviously, every int-soft left (resp., right) ideal over U is an int-soft semigroup over

U. But the converse is not true in general (see [14]).

Definition 3.4. A soft set (α, S) over U is called an int-soft quasi-ideal over U if

(α ◦̃χS, S) ∩̃ (χS ◦̃ α, S) ⊆̃ (α, S) . (3.4)

Definition 3.5 ([5]). A soft set (α, S) over U is called an int-soft interior ideal over U

if it satisfies:

(∀a, x, y ∈ S) (α(xay) ⊇ α(a)) . (3.5)

For a nonempty subset A of S and Φ, Ψ ∈ P(U) with Φ ) Ψ, define a map χ
(Φ,Ψ)
A as

follows:

χ
(Φ,Ψ)
A : S → P(U), x 7→

{
Φ if x ∈ A,

Ψ otherwise.

Then
(
χ

(Φ,Ψ)
A , S

)
is a soft set over U, which is called the (Φ, Ψ)-characteristic soft set. The

soft set (χ
(Φ,Ψ)
S , S) is called the (Φ, Ψ)-identity soft set over U. The (Φ, Ψ)-characteristic

soft set with Φ = U and Ψ = ∅ is called the characteristic soft set, and is denoted by

(χA, S). The (Φ, Ψ)-identity soft set with Φ = U and Ψ = ∅ is called the identity soft set,

and is denoted by (χS, S).

Lemma 3.6. Let (α, S), (β, S) and (γ, S) be soft sets over U . If (α, S) ⊆̃ (β, S), then

(α ◦̃ γ, S) ⊆̃ (β ◦̃ γ, S) and (γ ◦̃α, S) ⊆̃ (γ ◦̃ β, S).

Proof. For any x ∈ S, if x is expressible as x = yz, then

(α ◦̃ γ) (x) =
⋃

x=yz

{α(y) ∩ γ(z)}

⊆
⋃

x=yz

{β(y) ∩ γ(z)}

= (β ◦̃ γ) (x).

Young Bae Jun, Madad Khan, Florentin Smarandache, Saima Anis
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Otherwise implies that (α ◦̃ γ) (x) = ∅ = (β ◦̃ γ) (x). Hence (α ◦̃ γ, S) ⊆̃ (β ◦̃ γ, S). Simi-

larly, we have (γ ◦̃α, S) ⊆̃ (γ ◦̃ β, S).

Theorem 3.7. Every int-soft quasi-ideal is an int-soft semigroup.

Proof. Let (α, S) be an int-soft quasi-ideal over U . Since (α, S) ⊆̃ (χS, S), it follows from

Lemma 3.6 that (α ◦̃α, S) ⊆̃ (χS ◦̃α, S) and (α ◦̃α, S) ⊆̃ (α ◦̃χS, S). Hence

(α ◦̃α, S) ⊆̃ (χS ◦̃α, S) ∩̃ (α ◦̃χS, S) ⊆̃ (α, S).

Therefore (α, S) is an int-soft semigroup over U .

Theorem 3.8. Every int-soft quasi-ideal is an int-soft bi-ideal.

Proof. Let (α, S) be an int-soft quasi-ideal over U . Then (α, S) is an int-soft semigroup

by Theorem 3.7, and hence (α ◦̃α, S) ⊆̃ (α, S). Since (α ◦̃χS, S) ⊆̃ (α, S), we have

(α ◦̃χS ◦̃α, S) ⊆̃ (χS ◦̃α, S) . (3.6)

Also, since (χS ◦̃α, S) ⊆̃ (χS, S), we have

(α ◦̃χS ◦̃α, S) ⊆̃ (α ◦̃χS, S) . (3.7)

It follows from (3.4), (3.6) and (3.7) that

(α ◦̃χS ◦̃α, S) ⊆̃ (χS ◦̃α, S) ∩̃ (α ◦̃χS, S) ⊆̃ (α, S).

Therefore (α, S) is an int-soft bi-ideal over U .

The converse of Theorem 3.8 is not true in general as seen in the following example.

Example 3.9. Let S = {0, 1, 2, 3} be a semigroup with the multiplication table which is

appeared in Table 1.

Let (α, S) be a soft set over U = Z defined as follows:

α : S → P(U), x 7→





2Z ∪ {1, 3, 5} if x = 0,

4Z if x = 1,

2Z if x = 2,

4N if x = 3.

Then (α, S) is an int-soft bi-ideal over U , but it is not an int-soft quasi-ideal over U .

Fuzzy and Neutrosophic Sets in Semigroups

13



Table 1: Cayley table for the multiplication

0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 1

3 0 0 1 2

Lemma 3.10. For any soft sets (α, S), (β, S) and (γ, S) over U , we have

(1) (α ◦̃ (β ∪̃ γ), S) = ((α ◦̃ β) ∪̃ (α ◦̃ γ), S).

(2) ((β ∪̃ γ) ◦̃α, S) = ((β ◦̃α) ∪̃ (γ ◦̃α), S).

(3) (α ◦̃ (β ∩̃ γ), S) ⊆̃ ((α ◦̃ β) ∩̃ (α ◦̃ γ), S).

(4) ((β ∩̃ γ) ◦̃α, S) ⊆̃ ((β ◦̃α) ∩̃ (γ ◦̃α), S).

Proof. For any x ∈ S, if x is expressible as x = yz, then

(α ◦̃ (β ∪̃ γ))(x) =
⋃

x=yz

{α(y) ∩ (β ∪̃ γ)(z)}

=
⋃

x=yz

{α(y) ∩ (β(z) ∪ γ(z))}

=
⋃

x=yz

{(α(y) ∩ β(z)) ∪ (α(y) ∩ γ(z))}

=

( ⋃
x=yz

{α(y) ∩ β(z)}
)
∪

( ⋃
x=yz

{α(y) ∩ γ(z)}
)

= (α ◦̃ β)(x) ∪ (α ◦̃ γ)(x)

= ((α ◦̃ β) ∪̃ (α ◦̃ γ)) (x)
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and

(α ◦̃ (β ∩̃ γ))(x) =
⋃

x=yz

{α(y) ∩ (β ∩̃ γ)(z)}

=
⋃

x=yz

{α(y) ∩ (β(z) ∩ γ(z))}

=
⋃

x=yz

{(α(y) ∩ β(z)) ∩ (α(y) ∩ γ(z))}

⊆
( ⋃

x=yz

{α(y) ∩ β(z)}
)
∩

( ⋃
x=yz

{α(y) ∩ γ(z)}
)

⊆ (α ◦̃ β)(x) ∩ (α ◦̃ γ)(x)

= ((α ◦̃ β) ∩̃ (α ◦̃ γ)) (x).

Obviously, (α ◦̃ (β ∪̃ γ))(x) = ((α ◦̃ β) ∪̃ (α ◦̃ γ)) (x) and

(α ◦̃ (β ∩̃ γ))(x) = ((α ◦̃ β) ∩̃ (α ◦̃ γ)) (x)

if x is not expressible as x = yz. Therefore (α ◦̃ (β ∪̃ γ), S) = ((α ◦̃ β) ∪̃ (α ◦̃ γ), S) and

(α ◦̃ (β ∩̃ γ), S) ⊆̃ ((α ◦̃ β) ∩̃ (α ◦̃ γ), S). Similarly we can show that

((β ∪̃ γ) ◦̃α, S) = ((β ◦̃α) ∪̃ (γ ◦̃α), S)

and ((β ∩̃ γ) ◦̃α, S) ⊆̃ ((β ◦̃α) ∩̃ (γ ◦̃α), S).

Lemma 3.11. If (α, S) is a soft set over U , then

(α ∪̃ (χS ◦̃α), S) and (α ∪̃ (α ◦̃χS), S)

are an int-soft left ideal and an int-soft right ideal over U respectively.

Proof. Using Lemma 3.10, we have

(χS ◦̃ (α ∪̃ (χS ◦̃α)), S) = ((χS ◦̃α) ∪̃ (χS ◦̃ (χS ◦̃α)), S)

= ((χS ◦̃α) ∪̃ ((χS ◦̃χS) ◦̃α), S)

⊆̃ ((χS ◦̃α) ∪̃ (χS ◦̃α), S)

= (χS ◦̃α, S)

⊆̃ (α ∪̃ (χS ◦̃α), S) .

Hence (α ∪̃ (χS ◦̃α), S) is an int-soft left ideal over U . Similarly, (α ∪̃ (α ◦̃χS), S) is an

int-soft right ideal over U .
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Lemma 3.12. Let (α, S) and (β, S) be an int-soft right ideal and an int-soft left ideal

over U respectively. Then (α ∩̃ β, S) is an int-soft quasi-ideal over U .

Proof. Since

(((α ∩̃ β) ◦̃χS) ∩̃ (χS ◦̃ (α ∩̃ β)), S) ⊆̃ ((α ◦̃χS) ∩̃ (χS ◦̃ β), S) ⊆̃ (α ∩̃ β, S),

we know that (α ∩̃ β, S) is an int-soft quasi-ideal over U .

Theorem 3.13. Every int-soft quasi-ideal can be represented as the soft intersection of

an int-soft left ideal and an int-soft right ideal.

Proof. Let (α, S) be an int-soft quasi-ideal over U . Then

(α ∪̃ (χS ◦̃α), S) and (α ∪̃ (α ◦̃χS), S)

are an int-soft left ideal and an int-soft right ideal over U respectively by Lemma 3.11.

Since (α, S) ⊆̃ (α ∪̃ (α ◦̃χS), S) and (α, S) ⊆̃ (α ∪̃ (χS ◦̃α), S), it follows that

(α, S) ⊆̃ ((α ∪̃ (χS ◦̃α)) ∩̃ (α ∪̃ (α ◦̃χS)), S)

= (((α ∪̃ (χS ◦̃α)) ∩̃α) ∪̃ ((α ∪̃ (χS ◦̃α)) ∩̃ (α ◦̃χS)), S)

⊆̃ ((α ∪̃ ((α ∪̃ (χS ◦̃α)) ∩̃ (α ◦̃χS)), S)

= (α ∪̃ ((α ∪̃ (χS ◦̃α)) ∪̃ ((χS ◦̃α) ∩̃ (α ◦̃χS))), S)

⊆̃ (α ∪̃ ((α ∩̃ (α ◦̃χS)) ∪̃α, S)

⊆̃ (α ∪̃ (α ∪̃α), S)

= (α, S),

and so that (α, S) = ((α ∪̃ (χS ◦̃α)) ∩̃ (α ∪̃ (α ◦̃χS)), S) which is the soft intersection of

the int-soft left ideal (α ∪̃ (χS ◦̃α), S) and the int-soft right ideal (α ∪̃ (α ◦̃χS), S) over

U .

Theorem 3.14. Let (α, S) and (β, S) be soft sets over U . If (α, S) is an int-soft quasi-

ideal over U , then the soft product (α ◦̃ β, S) is an int-soft bi-ideal over U .

Proof. Assume that (α, S) is an int-soft quasi-ideal over U . Since every int-soft quasi-ideal

is an int-soft bi-ideal, we have (α ◦̃χS ◦̃α, S) ⊆̃ (α, S). Hence

((α ◦̃ β) ◦̃ (α ◦̃ β), S) = ((α ◦̃ β ◦̃α) ◦̃ β, S)

⊆̃ ((α ◦̃χS ◦̃α) ◦̃ β, S)

= (α ◦̃ β, S)
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and

((α ◦̃ β) ◦̃χS ◦̃ (α ◦̃ β), S) = ((α ◦̃ (β ◦̃χS) ◦̃α) ◦̃ β, S)

⊆̃ ((α ◦̃ (χS ◦̃χS) ◦̃α) ◦̃ β, S)

⊆̃ ((α ◦̃χS ◦̃α) ◦̃ β, S)

⊆̃ (α ◦̃ β, S) .

Therefore (α ◦̃ β, S) is an int-soft bi-ideal over U .

Definition 3.15. A semigroup S is said to be int-soft left (resp., right) duo if every

int-soft left (resp., right) ideal over U is an int-soft two-sided ideal over U .

If a semigroup S is both int-soft left and int-soft right duo, we say that S is int-soft

duo.

Lemma 3.16. For a nonempty subset A of S, the following are equivalent.

(1) A is a left (resp., right) ideal of S.

(2) The (Φ, Ψ)-characteristic soft set
(
χ

(Φ,Ψ)
A , S

)
over U is an int-soft left (resp., right)

ideal over U .

Proof. The proof is easy, and hence we omit it.

Corollary 3.17 ([14]). For a nonempty subset A of S, the following are equivalent.

(1) A is a left (resp., right) ideal of S.

(2) The characteristic soft set (χA, S) over U is an int-soft left (resp., right) ideal over

U .

Theorem 3.18. For a semigroup S, the following assertions are equivalent.

(1) S is regular.

(2) (α ∩̃ β, S) = (α ◦̃ β, S) for every int-soft right ideal (α, S) and every int-soft left ideal

(β, S) over U .

Proof. For the necessity, see [14]. For the sufficiency, assume that (2) is valid. Let A and

B be any right ideal and any left ideal of S, respectively. Then obviously AB ⊆ A ∩ B,

and the (Φ, Ψ)-characteristic soft sets
(
χ

(Φ,Ψ)
A , S

)
and

(
χ

(Φ,Ψ)
B , S

)
over U are an int-soft
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right ideal and an int-soft left ideal, respectively, over U by Lemma 3.16. Let x ∈ A∩B.

Then

χ
(Φ,Ψ)
AB (x) = (χ

(Φ,Ψ)
A ◦̃χ

(Φ,Ψ)
B )(x) = (χ

(Φ,Ψ)
A ∩̃χ

(Φ,Ψ)
B )(x) = χ

(Φ,Ψ)
A∩B (x) = Φ

and so x ∈ AB which shows that A ∩ B ⊆ AB. Hence A ∩ B = AB, and therefore S is

regular.

Theorem 3.19. For a regular semigroup S, the following conditions are equivalent.

(1) S is left duo.

(2) S is int-soft left duo.

Proof. (1) ⇒ (2). Let (α, S) be an int-soft left ideal over U and let x, y ∈ S. Note that

the left ideal Sx is a two-sided ideal of S. It follows from the regularity of S that

xy ∈ (xSx)y ⊆ (Sx)S ⊆ Sx.

Thus xy = ax for some a ∈ S. Since (α, S) is an int-soft left ideal over U , we have

α(xy) = α(ax) ⊇ α(x).

Hence (α, S) is an int-soft right ideal over U and so (α, S) is an int-soft two-sided ideal

over U . Therefore S is int-soft left duo.

(2)⇒ (1). Let A be a left ideal of S. Then the (Φ, Ψ)-characteristic soft set
(
χ

(Φ,Ψ)
A , S

)

over U is an int-soft left ideal over U by Lemma 3.16. It follows from the assumption that(
χ

(Φ,Ψ)
A , S

)
is an int-soft two-sided ideal over U . Therefore A is a two-sided ideal of S by

Lemma 3.16.

Similarly, we have the following theorem.

Theorem 3.20. For a regular semigroup S, the following conditions are equivalent.

(1) S is right duo.

(2) S is int-soft right duo.

Corollary 3.21. A regular semigroup is duo if and only if it is int-soft duo.

Theorem 3.22. For any nonempty subset A of S, the following are equivalent.

(1) A is a bi-ideal of S.
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(2) The (Φ, Ψ)-characteristic soft set
(
χ

(Φ,Ψ)
A , S

)
over U is an int-soft bi-ideal over U

for any Φ, Ψ ∈ P(U) with Φ ) Ψ.

Proof. Assume that A is a bi-ideal of S. Let Φ, Ψ ∈ P(U) with Φ ) Ψ and x, y, z ∈ S. If

x, z ∈ A, then χ
(Φ,Ψ)
A (x) = Φ = χ

(Φ,Ψ)
A (z), xz ∈ AA ⊆ A and xyz ∈ ASA ⊆ A. Hence

χ
(Φ,Ψ)
A (xz) = Φ = χ

(Φ,Ψ)
A (x) ∩ χ

(Φ,Ψ)
A (z) (3.8)

and

χ
(Φ,Ψ)
A (xyz) = Φ = χ

(Φ,Ψ)
A (x) ∩ χ

(Φ,Ψ)
A (z). (3.9)

If x /∈ A or z /∈ A, then χ
(Φ,Ψ)
A (x) = Ψ or χ

(Φ,Ψ)
A (z) = Ψ. Hence

χ
(Φ,Ψ)
A (xz) ⊇ Ψ = χ

(Φ,Ψ)
A (x) ∩ χ

(Φ,Ψ)
A (z) (3.10)

and

χ
(Φ,Ψ)
A (xyz) ⊇ Ψ = χ

(Φ,Ψ)
A (x) ∩ χ

(Φ,Ψ)
A (z). (3.11)

Therefore (χ
(Φ,Ψ)
A , S) is an int-soft bi-ideal over U for any Φ, Ψ ∈ P(U) with Φ ) Ψ.

Conversely, suppose that the (Φ, Ψ)-characteristic soft set
(
χ

(Φ,Ψ)
A , S

)
over U is an

int-soft bi-ideal over U for any Φ, Ψ ∈ P(U) with Φ ) Ψ. Let b and a be any elements

of AA and ASA, respectively. Then b = xz and a = xyz for some x, z ∈ A and y ∈ S.

Hence

χ
(Φ,Ψ)
A (b) = χ

(Φ,Ψ)
A (xz) ⊇ χ

(Φ,Ψ)
A (x) ∩ χ

(Φ,Ψ)
A (z) = Φ ∩ Φ = Φ, (3.12)

and

χ
(Φ,Ψ)
A (a) = χ

(Φ,Ψ)
A (xyz) ⊇ χ

(Φ,Ψ)
A (x) ∩ χ

(Φ,Ψ)
A (z) = Φ ∩ Φ = Φ. (3.13)

Thus χ
(Φ,Ψ)
A (b) = Φ and χ

(Φ,Ψ)
A (a) = Φ. Hence b, a ∈ A, which shows that AA ⊆ A and

ASA ⊆ A. Therefore A is a bi-ideal of S.

Similarly, we have the following theorems.

Theorem 3.23. For any nonempty subset A of S, the following are equivalent.

(1) A is a quasi-ideal of S.
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(2) The (Φ, Ψ)-characteristic soft set
(
χ

(Φ,Ψ)
A , S

)
over U is an int-soft quasi-ideal over

U for any Φ, Ψ ∈ P(U) with Φ ) Ψ.

Theorem 3.24. For any nonempty subset A of S, the following are equivalent.

(1) A is an interior ideal of S.

(2) The (Φ, Ψ)-characteristic soft set
(
χ

(Φ,Ψ)
A , S

)
over U is an int-soft interior ideal

over U for any Φ, Ψ ∈ P(U) with Φ ) Ψ.

Theorem 3.25. For a regular semigroup S, the following conditions are equivalent.

(1) Every bi-ideal of S is a right ideal of S.

(2) Every int-soft bi-ideal over U is an int-soft right ideal over U .

Proof. (1) ⇒ (2). Let (α, S) be an int-soft bi-ideal over U and let x, y ∈ S. Note that the

set xSx is a bi-ideal of S, and so it is a right ideal of S by assumption. The regularity of

S implies that

xy ∈ (xSx)S ⊆ xSx,

and so there exists a ∈ S such that xy = xax. It follows from (3.2) that

α(xy) = α(xax) ⊇ α(x) ∩ α(x) = α(x)

and so that (α, S) is an int-soft right ideal over U .

(2) ⇒ (1). Let A be a bi-ideal of S. Then the (Φ, Ψ)-characteristic soft set
(
χ

(Φ,Ψ)
A , S

)

is an int-soft bi-ideal over U by Theorem 3.22, and so it is an int-soft right ideal over U

by assumption. It follows from Lemma 3.16 that A is a right ideal of S.

Similarly, we get the following theorem,

Theorem 3.26. For a regular semigroup S, the following conditions are equivalent.

(1) Every bi-ideal of S is a left ideal of S.

(2) Every int-soft bi-ideal over U is an int-soft left ideal over U .

For any two int-soft sets (α, S) and (β, S) over U , we consider the following identity.

(α ∩̃ β, S) = (α ◦̃ β ◦̃α, S) . (3.14)
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Theorem 3.27. Let S be a regular semigroup. If (α, S) and (β, S) are an int-soft gener-

alized bi-ideal and an int-soft interior ideal, respectively, over U , then the equality (3.14)

is valid.

Proof. Let (α, S) and (β, S) be any int-soft generalized bi-ideal and any int-soft interior

ideal, respectively, over U . Then

(α ◦̃ β ◦̃α, S) ⊆̃ (α ◦̃χS ◦̃α, S) ⊆̃ (α, S)

and

(α ◦̃ β ◦̃α, S) ⊆̃ (χS ◦̃ β ◦̃χS, S) ⊆̃ (β, S) .

Thus (α ◦̃ β ◦̃α, S) ⊆̃ (α ∩̃ β, S). Let x ∈ S. Then there exists a ∈ S such that x =

xax (= xaxax) by the regularity of S. Since (β, S) is an int-soft interior ideal over U , we

get

(α ◦̃ β ◦̃α) (x) =
⋃

x=yz

{α(y) ∩ (β ◦̃α)(z)}

⊇ α(x) ∩ (β ◦̃α)(axax)

= α(x) ∩
( ⋃

axax=pq

{β(p) ∩ α(q)}
)

⊇ α(x) ∩ (β(axa) ∩ α(x))

⊇ α(x) ∩ β(x)

= (α ∩̃ β)(x)

and so (α ∩̃ β, S) ⊆̃ (α ◦̃ β ◦̃α, S). Therefore (α ∩̃ β, S) = (α ◦̃ β ◦̃α, S).

Corollary 3.28. Let S be a regular semigroup. If (α, S) and (β, S) are an int-soft bi-ideal

and an int-soft interior ideal, respectively, over U , then the equality (3.14) is valid.

Corollary 3.29. Let S be a regular semigroup. If (α, S) and (β, S) are an int-soft quasi-

ideal and an int-soft interior ideal, respectively, over U , then the equality (3.14) is valid.

Lemma 3.30 ([14]). For a semigroup S, the following are equivalent.

(1) S is regular.

(2) (α, S) = (α ◦̃χS ◦̃α, S) for every int-soft quasi-ideal (α, S) over U .

Theorem 3.31. In a semigroup S, if the equality (3.14) is valid for every int-soft quasi-

ideal α and an int-soft two-sided ideal β over U , then S is regular.
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Proof. Note that χS is an int-soft two-sided ideal over U . Hence

(α, S) = (α ∩̃χS, S) = (α ◦̃χS ◦̃α, S) .

It follows from Lemma 3.30 that S is regular.

Theorem 3.32. If S is a regular semigroup, then (α ∩̃ β, S) ⊆̃ (α ◦̃ β, S) for all int-soft

generalized bi-ideal (α, S) and int-soft left ideal (β, S) over U .

Proof. Let (α, S) and (β, S) be any int-soft generalized bi-ideal and any int-soft left ideal

over U , respectively. For any x ∈ S there exists a ∈ S such that x = xax since S is

regular. Hence

(α ◦̃ β)(x) =
⋃

x=yz

{α(y) ∩ β(z)}

⊇ α(x) ∩ β(ax)

⊇ α(x) ∩ β(x)

= (α ∩̃ β)(x)

and so (α ∩̃ β, S) ⊆̃ (α ◦̃ β, S).

Corollary 3.33. If S is a regular semigroup, then (α ∩̃ β, S) ⊆̃ (α ◦̃ β, S) for all int-soft

bi-ideal (α, S) and int-soft left ideal (β, S) over U .

Corollary 3.34. If S is a regular semigroup, then (α ∩̃ β, S) ⊆̃ (α ◦̃ β, S) for all int-soft

quasi-ideal (α, S) and int-soft left ideal (β, S) over U .

Lemma 3.35 ([14]). If (α, S) is an int-soft right ideal over U and (β, S) is an int-soft

left ideal over U , then (α ◦̃ β, S) ⊆̃ (α ∩̃ β, S).

Theorem 3.36. In a semigroup S, if (α ∩̃ β, S) ⊆̃ (α ◦̃ β, S) for every int-soft quasi-ideal

(α, S) and an int-soft left ideal (β, S) over U , then S is regular.

Proof. Since every int-soft right ideal is an int-soft quasi-ideal, it follows that

(α ∩̃ β, S) ⊆̃ (α ◦̃ β, S)

for every int-soft right ideal (α, S) and every int-soft left ideal (β, S) over U . Obviously,

(α ◦̃ β, S) ⊆̃ (α ∩̃ β, S),

and thus (α ◦̃ β, S) = (α ∩̃ β, S) for every int-soft right ideal (α, S) and every int-soft left

ideal (β, S) over U . Therefore S is regular by Theorem 3.18.
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Theorem 3.37. If S is a regular semigroup, then (γ ∩̃α ∩̃ β, S) ⊆̃ (γ ◦̃α ◦̃ β, S) for every

int-soft right ideal (γ, S), every int-soft generalized bi-ideal (α, S) and every int-soft left

ideal (β, S) over U .

Proof. Let (γ, S), (α, S) and (β, S) be any int-soft right ideal, any int-soft generalized

bi-ideal and any int-soft left ideal, respectively, over U . Let x ∈ S. Then there exists

a ∈ S such that x = xax since S is regular. Hence

(γ ◦̃α ◦̃ β) (x) =
⋃

x=yz

{γ(y) ∩ (α ◦̃ β)(z)}

⊇ γ(xa) ∩ (α ◦̃ β)(x)

= γ(x) ∩
( ⋃

x=pq

{α(p) ∩ β(q)}
)

⊇ γ(x) ∩ (α(x) ∩ β(ax))

⊇ γ(x) ∩ (α(x) ∩ β(x))

= (γ ∩̃α ∩̃ β) (x),

and so (γ ∩̃α ∩̃ β, S) ⊆̃ (γ ◦̃α ◦̃ β, S).

Corollary 3.38. If S is a regular semigroup, then (γ ∩̃α ∩̃ β, S) ⊆̃ (γ ◦̃α ◦̃ β, S) for every

int-soft right ideal (γ, S), every int-soft bi-ideal (α, S) and every int-soft left ideal (β, S)

over U .

Corollary 3.39. If S is a regular semigroup, then (γ ∩̃α ∩̃ β, S) ⊆̃ (γ ◦̃α ◦̃ β, S) for every

int-soft right ideal (γ, S), every int-soft quasi-ideal (α, S) and every int-soft left ideal (β, S)

over U .

Theorem 3.40. Let (γ, S), (α, S) and (β, S) be soft sets over U in a semigroup S such

that

(γ ∩̃α ∩̃ β, S) ⊆̃ (γ ◦̃α ◦̃ β, S).

If (γ, S) is an int-soft right ideal, (α, S) is an int-soft quasi-ideal and (β, S) is an int-soft

left ideal over U , then S is regular.

Proof. Since χS is an int-soft quasi-ideal over U , we have

(γ ∩̃ β, S) = (γ ∩̃χS ∩̃ β, S) ⊆̃ (γ ◦̃χS ◦̃ β, S) ⊆̃ (γ ◦̃ β, S) .

Clearly, (γ ◦̃ β, S) ⊆̃ (γ ∩̃ β, S). Hence (γ ◦̃ β, S) = (γ ∩̃ β, S), and therefore S is regular

by Theorem 3.18.
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Generalizations of starshaped (∈, ∈∨q)-fuzzy sets

Abstract The notions of starshaped (∈, ∈ ∨ qk)-fuzzy sets and quasi-starshaped (∈,

∈∨ qk)-fuzzy sets are introduced, and related properties are investigated. Characteriza-

tions of starshaped (∈, ∈∨ qk)-fuzzy sets and quasi-starshaped (∈, ∈∨ q)-fuzzy sets are

discussed. Relations between starshaped (∈, ∈∨ qk)-fuzzy sets and quasi-starshaped (∈,

∈∨ qk)-fuzzy sets are investigated.

Mathematics Subject Classification (2010): 03E72, 52A30.

Keywords: Starshaped (∈, ∈∨ qk)-fuzzy set, quasi-starshaped (∈, ∈∨ qk)-fuzzy set.

1 Introduction

The concept of starshaped fuzzy sets, which are a generalization of convex sets, is in-

troduced by Brown [1], and Diamond defined another type of starshaped fuzzy sets and

established some of the basic properties of this family of fuzzy sets in [2]. Brown’s star-

shaped fuzzy sets was called quasi-starshaped fuzzy sets, and its properties are provided in

the paper [6]. As a generalization of starshaped fuzzy sets and quasi-starshaped fuzzy sets,

Jun et al. [4] used the notion of fuzzy points, and discussed starshaped (∈, ∈∨ q)-fuzzy

sets and quasi-starshaped (∈, ∈∨ q)-fuzzy sets.

In this paper, we consider more general form than Jun and Song’s consideration in

the paper [4]. We introduce the concepts of starshaped (∈, ∈∨ qk)-fuzzy sets and quasi-

starshaped (∈, ∈ ∨ qk)-fuzzy sets, and investigate related properties. We provide char-

acterizations of starshaped (∈, ∈∨ qk)-fuzzy sets and quasi-starshaped (∈, ∈∨ qk)-fuzzy

sets. We provide a condition for a fuzzy set to be a starshaped (∈, ∈ ∨ qk)-fuzzy set.

We discuss relations between starshaped (∈, ∈∨ qk)-fuzzy sets and quasi-starshaped (∈,

∈∨ qk)-fuzzy sets.
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2 Preliminaries

Let Rn denote the n-dimensional Euclidean space. For x, y ∈ Rn, the line segment xy

joining x and y is the set of all points of the form αx + βy where α ≥ 0, β ≥ 0 and

α + β = 1. A set S ⊆ Rn is said to be starshaped related to a point x ∈ Rn if xy ⊆ S for

each point y ∈ S. A set S ⊆ Rn is simply said to be starshaped if there exists a point x in

Rn such that S is starshaped relative to it. Note that a star-shaped set is not necessarily

convex in the ordinary sense.

A fuzzy set A ∈ F (Rn) is called a starshaped fuzzy set relative to y ∈ Rn (see [6, 7])

if it satisfies:

(∀x ∈ Rn)(∀δ ∈ [0, 1]) (A(δ(x− y) + y) ≥ A(x)) . (2.1)

A fuzzy set A ∈ F (Rn) is called a quasi-starshaped fuzzy set relative to y ∈ Rn (see

[1, 6]) if it satisfies:

(∀x ∈ Rn)(∀δ ∈ [0, 1]) (A(δx + (1− δ)y) ≥ min{A(x),A(y)}) . (2.2)

A fuzzy set A in a set X of the form

A(y) :=

{
t ∈ (0, 1] if y = x,

0 if y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt.

For a fuzzy set A in a set X, a fuzzy point xt is said to

• contained in A, denoted by xt ∈ A (see [5]), if A(x) ≥ t.

• be quasi-coincident with A, denoted by xt qA (see [5]), if A(x) + t > 1.

For a fuzzy point xt and a fuzzy set A in a set X, we say that

• xt ∈∨ qA if xt ∈ A or xt qA.

Jun [3] considered the general form of the symbol xt qA as follows: For an arbitrary

element k of [0, 1), we say that

• xt qkA if A(x) + t + k > 1.

• xt ∈∨ qkA if xt ∈ A or xt qkA.
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3 Starshaped (∈, ∈∨ qk)-fuzzy sets

In what follows, let F (Rn) and k denote the class of fuzzy sets on Rn and an arbitrary

element of [0, 1), respectively, unless otherwise specified.

Definition 3.1 ([4]). A fuzzy set A ∈ F (Rn) is called a starshaped (∈, ∈∨ q)-fuzzy set

relative to y ∈ Rn if

xt ∈ A ⇒ (δ(x− y) + y)t ∈∨ qA (3.1)

for all x ∈ Rn, δ ∈ [0, 1] and t ∈ (0, 1].

Definition 3.2. A fuzzy set A ∈ F (Rn) is called a starshaped (∈, ∈ ∨ qk)-fuzzy set

relative to y ∈ Rn if

xt ∈ A ⇒ (δ(x− y) + y)t ∈∨ qkA (3.2)

for all x ∈ Rn, δ ∈ [0, 1] and t ∈ (0, 1].

Note that a starshaped (∈, ∈ ∨ qk)-fuzzy set relative to y ∈ Rn with k = 0 is a

starshaped (∈, ∈∨ q)-fuzzy set relative to y ∈ Rn.

Example 3.3. The fuzzy set A ∈ F (R) given by

A : R→ [0, 1], x 7→





1.25 + x if x ∈ (−1.5,−0.5],

0.25− x if x ∈ (−0.5, 0],

0.25 + x if x ∈ (0, 0.5],

1.25− x if x ∈ (0.5, 1.5),

0 otherwise,

is a starshaped (∈, ∈∨ qk)-fuzzy set relative to y = 0 with k = 0.6.

Obviously, every starshaped (∈, ∈∨ q)-fuzzy set relative to y ∈ Rn is a starshaped (∈,

∈∨ qk)-fuzzy set relative to y ∈ Rn, but the converse is not true. In fact, the starshaped

(∈, ∈∨ qk)-fuzzy set A relative to y = 0 with k = 0.6 in Example 3.3 is not a starshaped

(∈, ∈∨ q)-fuzzy set relative to y = 0 since if we take x = 0.12, δ = 0.9 and t = 0.3, then

xt ∈ A and (δx)t ∈ A, but (δx)t qA. Hence (δx)t∈∨ qA.

We provide a condition for a fuzzy set A ∈ F (Rn) to be a starshaped (∈, ∈∨ qk)-fuzzy

set relative to y ∈ Rn.
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Theorem 3.4. Given y ∈ Rn, if a fuzzy set A ∈ F (Rn) satisfies the condition

xt ∈∨ qkA ⇒ (δ(x− y) + y)t ∈∨ qkA (3.3)

for all x ∈ Rn, δ ∈ [0, 1] and t ∈ (0, 1], then A is a starshaped (∈, ∈∨ qk)-fuzzy set relative

to y ∈ Rn.

Proof. Straightforward.

Corollary 3.5 ([4]). Given y ∈ Rn, if a fuzzy set A ∈ F (Rn) satisfies the condition

xt ∈∨ qA ⇒ (δ(x− y) + y)t ∈∨ qA (3.4)

for all x ∈ Rn, δ ∈ [0, 1] and t ∈ (0, 1], then A is a starshaped (∈, ∈∨ q)-fuzzy set relative

to y ∈ Rn.

We consider characterizations of a starshaped (∈, ∈∨ q)-fuzzy set.

Theorem 3.6. For a fuzzy set A ∈ F (Rn), the following are equivalent:

(1) A is a starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

(2) A satisfies:

(∀x ∈ Rn)(∀δ ∈ [0, 1])
(A(δ(x− y) + y) ≥ min{A(x), 1−k

2
}) (3.5)

Proof. Assume that A is a starshaped (∈, ∈ ∨ qk)-fuzzy set relative to y ∈ Rn. Let

x ∈ Rn and δ ∈ [0, 1]. If A(x) ≥ 1−k
2

, then x1−k
2

∈ A and so (δ(x − y) + y)1−k
2

∈∨ qkA
by (3.2), that is, A(δ(x − y) + y) ≥ 1−k

2
or A(δ(x − y) + y) + 1−k

2
+ k > 1. Thus

A(δ(x−y)+y) ≥ 1−k
2

since A(δ(x−y)+y) < 1−k
2

induces a contradiction. Consequently,

A(δ(x−y)+y) ≥ min{A(x), 1−k
2
} for all x ∈ Rn and δ ∈ [0, 1]. Suppose that A(x) < 1−k

2
.

If A(δ(x− y) + y) < A(x), then A(δ(x− y) + y) < t ≤ A(x) for some t ∈ (0, 1−k
2

) and so

xt ∈ A but (δ(x−y)+y)t ∈A. Since A(δ(x−y)+y)+t+k < 1, we have (δ(x−y)+y)t qkA.

Hence (δ(x − y) + y)t ∈∨ qkA, a contradiction. Thus A(δ(x − y) + y) ≥ A(x) and

consequently A(δ(x− y) + y) ≥ min{A(x), 1−k
2
} for all x ∈ Rn and δ ∈ [0, 1].

Conversely, assume that a fuzzy set A ∈ F (Rn) satisfies the condition (3.5). Let

x ∈ Rn, δ ∈ [0, 1] and t ∈ (0, 1] be such that xt ∈ A. Then A(x) ≥ t. Suppose that

A(δ(x− y) + y) < t. If A(x) < 1−k
2

, then A(δ(x− y) + y) ≥ min{A(x), 1−k
2
} = A(x) ≥ t,

a contradiction. Hence A(x) ≥ 1−k
2

, and so

A(δ(x− y) + y) + t + k > 2A(δ(x− y) + y) + k ≥ 2 min{A(x), 1−k
2
}+ k = 1.
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Thus (δ(x − y) + y)t ∈∨ qkA. Therefore A is a starshaped (∈, ∈∨ qk)-fuzzy set relative

to y ∈ Rn.

Corollary 3.7 ([4]). A fuzzy set A ∈ F (Rn) is a starshaped (∈, ∈∨ q)-fuzzy set relative

to y ∈ Rn if and only if

(∀x ∈ Rn)(∀δ ∈ [0, 1]) (A(δ(x− y) + y) ≥ min{A(x), 0.5}) (3.6)

Using Theorem 3.6, we know that if k < r in [0, 1), then every starshaped (∈, ∈∨ qk)-

fuzzy set relative to y ∈ Rn is a starshaped (∈, ∈∨ qr)-fuzzy set relative to y ∈ Rn. But

the converse is not true. In fact, the starshaped (∈, ∈ ∨ q0.6)-fuzzy set relative to y = 0

in Example 3.3 is not a starshaped (∈, ∈ ∨ q0.4)-fuzzy set relative to y = 0.

Theorem 3.8. For a fuzzy set A ∈ F (Rn), the following are equivalent:

(1) A is a starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

(2) The nonempty t-level set U(A; t) of A is starshaped relative to y ∈ Rn for all

t ∈ (0, 1−k
2

].

Proof. Assume that A is a starshaped (∈, ∈ ∨ qk)-fuzzy set relative to y ∈ Rn and let

t ∈ (0, 1−k
2

] be such that U(A; t) 6= ∅. Let x ∈ U(A; t). Then xt ∈ A, and so

A(δ(x− y) + y) ≥ min{A(x), 1−k
2
} ≥ min{t, 1−k

2
} = t

by Theorem 3.6. Hence xy ⊆ U(A; t) for t ∈ (0, 1−k
2

]. Therefore U(A; t) is starshaped

relative to y ∈ Rn for all t ∈ (0, 1−k
2

].

Conversely, suppose that the nonempty t-level set U(A; t) is starshaped relative to

y ∈ Rn for all t ∈ (0, 1−k
2

]. For δ ∈ [0, 1] and x ∈ Rn, let A(x) = tx. Then xy ⊆ U(A; tx),

and so

A(δ(x− y) + y) ≥ tx = A(x) ≥ min{A(x), 1−k
2
}.

It follows from Theorem 3.6 that A is a starshaped (∈, ∈ ∨ qk)-fuzzy set relative to

y ∈ Rn.

Corollary 3.9 ([4]). A fuzzy set A ∈ F (Rn) is a starshaped (∈, ∈∨ q)-fuzzy set relative

to y ∈ Rn if and only if its nonempty t-level set U(A; t) is starshaped relative to y ∈ Rn

for all t ∈ (0, 0.5].

Theorem 3.10. Given a starshaped fuzzy set A ∈ F (Rn), the following are equivalent:
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(1) The nonempty t-level set U(A; t) is a starshaped subset of Rn relative to y ∈ Rn for

all t ∈ (1−k
2

, 1].

(2) A satisfies the following condition.

A(x) ≤ max{A(δ(x− y) + y), 1−k
2
} (3.7)

for all x ∈ Rn and δ ∈ [0, 1].

Proof. Assume that the nonempty t-level set U(A; t) is starshaped relative to y ∈ Rn for

all t ∈ (1−k
2

, 1]. If the condition (3.7) is false, then there exists a ∈ Rn such that

A(a) > max{A(δ(a− y) + y), 1−k
2
}.

Hence ta := A(a) ∈ (1−k
2

, 1] and a ∈ U(A; ta). But A(δ(a − y) + y) < ta implies that

ay * U(A; ta), that is, U(A; ta) is not a starshaped subset of Rn relative to a ∈ Rn. This

is a contradiction, and so the condition (3.7) is valid.

Conversely, suppose that A satisfies the condition (3.7). For any δ ∈ [0, 1] and t ∈
(1−k

2
, 1], let x ∈ U(A; t). Using the condition (3.7), we have

max{A(δ(x− y) + y), 1−k
2
} ≥ A(x) ≥ t > 1−k

2
.

Thus A(δ(x − y) + y) ≥ t, and hence δ(x − y) + y ∈ U(A; t), that is, xy ⊆ U(A; t).

Therefore the nonempty t-level set U(A; t) is a starshaped subset of Rn relative to y ∈ Rn

for all t ∈ (1−k
2

, 1].

Corollary 3.11 ([4]). For a starshaped fuzzy set A ∈ F (Rn), the nonempty t-level set

U(A; t) is a starshaped subset of Rn relative to y ∈ Rn for all t ∈ (0.5, 1] if and only if A
satisfies the following condition.

A(x) ≤ max{A(δ(x− y) + y), 0.5} (3.8)

for all x ∈ Rn and δ ∈ [0, 1].

Combining Theorems 3.8 and 3.10, we have a corollary.

Corollary 3.12. For a starshaped fuzzy set A ∈ F (Rn), the nonempty t-level set U(A; t)

is a starshaped subset of Rn relative to y ∈ Rn for all t ∈ (0, 1] if and only if A satisfies

two conditions (3.1) and (3.7).

Theorem 3.13. Given a fuzzy set A ∈ F (Rn), the following are equivalent:
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(1) A is a starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

(2) A satisfies:

(x + y)t ∈ A ⇒ (δx + y)t ∈∨ qkA (3.9)

for all x ∈ Rn, δ ∈ [0, 1] and t ∈ (0, 1].

Proof. Suppose that A ∈ F (Rn) is a starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

Let δ ∈ [0, 1], t ∈ (0, 1] and (x + y)t ∈ A for every x ∈ Rn. Then A(x + y) ≥ t. Replacing

x by x + y in (3.5), we have

A(δx + y) = A(δ((x + y)− y) + y)

≥ min{A(x + y), 1−k
2
}

≥ min{t, 1−k
2
}.

If t ≤ 1−k
2

, then A(δx + y) ≥ t and so (δx + y)t ∈ A. If t > 1−k
2

, then

A(δx + y) + t + k > 1−k
2

+ t + k > 1−k
2

+ 1−k
2

+ k = 1

and so (δx + y)t qkA. Hence (δx + y)t ∈∨ qkA.

Conversely, suppose that A satisfies the condition (3.9). We first show that

A(δx + y) ≥ min{A(x + y), 1−k
2
}. (3.10)

Assume that A(x + y) < 1−k
2

. If A(δx + y) < A(x + y), then A(δx + y) < t ≤ A(x + y)

for some t ∈ (0, 1−k
2

). Hence (x + y)t ∈ A and (δx + y)t ∈A. Also, since

A(δx + y) + t + k < 2t + k < 1,

we get (δx+y)t qkA. Thus (δx+y)t ∈∨ qkA, a contradiction. Hence A(δx+y) ≥ A(x+y).

Now, suppose that A(x + y) ≥ 1−k
2

. Then (x + y)1−k
2

∈ A and so (δx + y)1−k
2

∈∨ qkA
by (3.9). If A(δx + y) < 1−k

2
, then (δx + y)1−k

2

∈A and A(δx + y) + 1−k
2

+ k < 1,

that is, (δx + y)1−k
2

qkA. This is a contradiction, and so A(δx + y) ≥ 1−k
2

. Therefore

A(δx + y) ≥ min{A(x + y), 1−k
2
}, Now if we replace x + y by x in (3.10), then

A(δ(x− y) + y) = A(δ((x + y)− y) + y) = A(δx + y)

≥ min{A(x + y), 1−k
2
}

= min{A(x), 1−k
2
}.

It follows from Theorem 3.6 that A is a starshaped (∈, ∈ ∨ qk)-fuzzy set relative to

y ∈ Rn.
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Corollary 3.14 ([4]). A fuzzy set A ∈ F (Rn) is a starshaped (∈, ∈∨ q)-fuzzy set relative

to y ∈ Rn if and only if it satisfies:

(x + y)t ∈ A ⇒ (δx + y)t ∈∨ qA (3.11)

for all x ∈ Rn, δ ∈ [0, 1] and t ∈ (0, 1].

Definition 3.15 ([4]). A fuzzy set A ∈ F (Rn) is called a quasi-starshaped (∈, ∈∨ q)-

fuzzy set relative to y ∈ Rn if

xt ∈ A, yr ∈ A ⇒ (δx + (1− δ)y)min{t,r} ∈∨ qA (3.12)

for all x ∈ Rn, δ ∈ [0, 1] and t, r ∈ (0, 1].

Definition 3.16. A fuzzy set A ∈ F (Rn) is called a quasi-starshaped (∈, ∈∨ qk)-fuzzy

set relative to y ∈ Rn if

xt ∈ A, yr ∈ A ⇒ (δx + (1− δ)y)min{t,r} ∈∨ qkA (3.13)

for all x ∈ Rn, δ ∈ [0, 1] and t, r ∈ (0, 1].

The quasi-starshaped (∈, ∈ ∨ qk)-fuzzy set A relative to y ∈ Rn with k = 0 is a

quasi-starshaped (∈, ∈∨ q)-fuzzy set A relative to y ∈ Rn.

Example 3.17. The fuzzy set A in Example 3.3 is a quasi-starshaped (∈, ∈∨ qk)-fuzzy

set relative to y = 0 with k = 0.6.

Example 3.18. The fuzzy set A ∈ F (R) given by

A : R→ [0, 1], x 7→





1.75 + x if x ∈ [−1.5,−1),

0.75 if x ∈ [−1,−√0.5) ∪ (
√

0.5, 1],

0.25 + x2 if x ∈ [−√0.5,
√

0.5],

1.75− x if x ∈ (1, 1.5],

0.25 otherwise

is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y = 0 with k = 0.58.

We consider characterizations of a quasi-starshaped (∈, ∈∨ qk)-fuzzy set.

Theorem 3.19. For a fuzzy set A ∈ F (Rn), the following assertions are equivalent:

(1) A is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.
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(2) A satisfies:

A(δx + (1− δ)y) ≥ min{A(x),A(y), 1−k
2
} (3.14)

for all x ∈ Rn and δ ∈ [0, 1].

Proof. Assume that A is a quasi-starshaped (∈, ∈ ∨ qk)-fuzzy set relative to y ∈ Rn.

Let x ∈ Rn and δ ∈ [0, 1], and suppose that min{A(x),A(y)} < 1−k
2

. If there exists

t ∈ (0, 1−k
2

) such that

A(δx + (1− δ)y) < t ≤ min{A(x),A(y)},

then xt ∈ A and yt ∈ A, but

(δx + (1− δ)y)min{t,t} = (δx + (1− δ)y)t ∈A
and

A(δx + (1− δ)y) + t + k < 2t + k < 1,

that is, (δx + (1− δ)y)t qkA. Hence (δx + (1− δ)y)t ∈∨ qkA, a contradiction. Thus

A(δx + (1− δ)y) ≥ min{A(x),A(y)}

Now assume that min{A(x),A(y)} ≥ 1−k
2

. Then x1−k
2

∈ A and y1−k
2

∈ A, and so

(δx + (1− δ)y)1−k
2

∈∨ qkA,

that is, (δx + (1− δ)y)1−k
2

∈ A or (δx + (1− δ)y)1−k
2

qkA by (3.13). If

(δx + (1− δ)y)1−k
2

∈A, i.e., A(δx + (1− δ)y) < 1−k
2

then A(δx + (1− δ)y) + 1−k
2

+ k < 1, i.e., (δx + (1− δ)y)1−k
2

qkA, This is a contradiction.

Consequently,

A(δx + (1− δ)y) ≥ 1−k
2
≥ min{A(x),A(y), 1−k

2
}

for all x ∈ Rn and δ ∈ [0, 1].

Conversely, assume that a fuzzy set A ∈ F (Rn) satisfies the condition (3.14). Let

x ∈ Rn, δ ∈ [0, 1] and t, r ∈ (0, 1] be such that xt ∈ A and yr ∈ A. Then A(x) ≥ t

and A(y) ≥ r. If A(δx + (1 − δ)y) < min{A(x),A(y)}, then min{A(x),A(y)} ≥ 1−k
2

.

Otherwise, we have

A(δx + (1− δ)y) ≥ min{A(x),A(y), 1−k
2
} ≥ min{A(x),A(y)},
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a contradiction. It follows that

A(δx + (1− δ)y) + min{t, r}+ k

> 2A(δx + (1− δ)y) + k

≥ 2 min{A(x),A(y), 1−k
2
}+ k = 1

and so that (δx+(1− δ)y)min{t,r} qkA. Thus (δx+(1− δ)y)min{t,r} ∈∨ qkA, and therefore

A is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

Corollary 3.20 ([4]). A fuzzy set A ∈ F (Rn) is a quasi-starshaped (∈, ∈∨ q)-fuzzy set

relative to y ∈ Rn if and only if

(∀x ∈ Rn)(∀δ ∈ [0, 1]) (A(δx + (1− δ)y) ≥ min{A(x),A(y), 0.5}) (3.15)

The following proposition is straightforward by Theorem 3.19.

Proposition 3.21. For a fuzzy set A ∈ F (Rn), if k ∈ [0, 1) satisfies:

(∀x ∈ Rn)
(A(x) ≥ 1−k

2

)
,

then A is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ F (Rn).

Corollary 3.22. If a fuzzy set A ∈ F (Rn) satisfies:

(∀x ∈ Rn) (A(x) ≥ 0.5) ,

then A is a quasi-starshaped (∈, ∈∨ q)-fuzzy set relative to y ∈ F (Rn).

Theorem 3.23. Given a fuzzy set A ∈ F (Rn), the following assertions are equivalent:

(1) A is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

(2) The nonempty t-level set U(A; t) of A is starshaped relative to y ∈ Rn for all

t ∈ (0, min{A(y), 1−k
2
}].

Proof. Suppose A is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn. Assume

that U(A; t) 6= ∅ for every t ∈ (0, min{A(y), 1−k
2
}]. Then y ∈ U(A; t), that is, A(y) ≥ t.

If x ∈ U(A; t), then A(x) ≥ t. It follows from (3.14) that

A(δx + (1− δ)y) ≥ min{A(x),A(y), 1−k
2
} ≥ min{t, 1−k

2
} = t,

that is, δx+(1−δ)y ∈ U(A; t). Hence xy ⊆ U(A; t), and so U(A; t) is starshaped relative

to y ∈ Rn for all t ∈ (0, min{A(y), 1−k
2
}].
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Conversely, suppose the nonempty t-level set U(A; t) is starshaped relative to y ∈ Rn

for all t ∈ (0, min{A(y), 1−k
2
}]. For any δ ∈ [0, 1] and x ∈ Rn, let A(y) = ty when

A(y) < A(x). Then xy ⊆ U(A; ty), and so

A(δx + (1− δ)y) ≥ min{A(x),A(y)} ≥ min{A(x),A(y), 1−k
2
}.

Similarly, we have

A(δx + (1− δ)y) ≥ min{A(x),A(y), 1−k
2
}

by putting A(x) = tx when A(x) ≤ A(y). It follows from Theorem 3.19 that A is a

quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

Corollary 3.24 ([4]). A fuzzy set A ∈ F (Rn) is a quasi-starshaped (∈, ∈∨ q)-fuzzy set

relative to y ∈ Rn if and only if its nonempty t-level set U(A; t) is starshaped relative to

y ∈ Rn for all t ∈ (0, min{A(y), 0.5}].
Theorem 3.25. Given y ∈ Rn, every starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn

is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn.

Proof. Let A be a starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn. Taking δ = 0 in

(3.5) induces A(y) ≥ min{A(x), 1−k
2
} for all x ∈ Rn. It follows from (3.5) that

A(δx + (1− δ)y) = A(δ(x− y) + y) ≥ min{A(x), 1−k
2
} = min{A(x),A(y), 1−k

2
}

for all x ∈ Rn and δ ∈ [0, 1]. Therefore A is a quasi-starshaped (∈, ∈ ∨ qk)-fuzzy set

relative to y ∈ Rn by Theorem 3.19.

Corollary 3.26 ([4]). Given y ∈ Rn, every starshaped (∈, ∈ ∨ q)-fuzzy set relative to

y ∈ Rn is a quasi-starshaped (∈, ∈∨ q)-fuzzy set relative to y ∈ Rn.

The converse of Theorem 3.25 is not true in general. In fact, take the quasi-starshaped

(∈, ∈∨ qk)-fuzzy set A relative to y = 0 with k = 0.58 in Example 3.18. If we put x = 0.5

and δ = 0.8, then A(δx) < min{A(x), 0.5} and so A is not a quasi-starshaped (∈, ∈∨ qk)-

fuzzy set relative to y = 0 by Corollary 3.7.

Theorem 3.27. If A ∈ Rn is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn

with A(y) 6= 1−k
2

, then the set

A := {x ∈ Rn | A(x) > 1−k
2
}

is starshaped relative to y ∈ Rn.
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Proof. Let x ∈ A. Then A(x) > 1−k
2

. Take ty := A(y) when A(x) > A(y). Then, by

Theorem 3.23, U(A; ty) is starshaped relative to y, and so xy ⊆ U(A; ty) ⊆ A. Similarly,

if we take A(x) = tx when A(x) ≤ A(y), then xy ⊆ U(A; tx) ⊆ A. Therefore A is

starshaped relative to y ∈ Rn.

Corollary 3.28 ([4]). If A ∈ Rn is a quasi-starshaped (∈, ∈ ∨ q)-fuzzy set relative to

y ∈ Rn with A(y) 6= 0.5, then the set

A := {x ∈ Rn | A(x) > 0.5}

is starshaped relative y ∈ Rn.

In Theorem 3.27, the condition A(y) 6= 1−k
2

is necessary. In Example 3.18, A is a

quasi-starshaped (∈, ∈ ∨ qk)-fuzzy set relative to y = 2 with k = 0.5 and A(2) = 1−k
2

.

But the set

A = {x ∈ Rn | x ∈ (−1.5, 0)} ∪ {x ∈ Rn | x ∈ (0, 1.5)}
is not starshaped relative to y = 2.

Theorem 3.29. If A ∈ Rn is a quasi-starshaped (∈, ∈∨ qk)-fuzzy set relative to y ∈ Rn

with A(y) 6= 1−k
2

, then the closure A of A := {x ∈ Rn | A(x) > 1−k
2
} is starshaped relative

to y ∈ Rn.

Proof. For any δ ∈ [0, 1] and x0 ∈ A, take a0 := δx0 + (1 − δ)y in Rn and let G be

a neighborhood of a0. Since A(x) = δx + (1 − δ)y is continuous at x, there exists a

neighborhood H of x0 such that if x ∈ H then δx + (1 − δ)y ∈ G. Since x0 ∈ A, we

know that x ∈ A ∩ H. Since A is starshaped relative to y by Theorem 3.27, we get

δx + (1 − δ)y ∈ A ∩ G and so δx0 + (1 − δ)y ∈ A. Thus x0y ⊆ A, and A is starshaped

relative to y ∈ Rn.

Corollary 3.30 ([4]). Let A ∈ Rn be a quasi-starshaped (∈, ∈∨ q)-fuzzy set relative to

y ∈ Rn with A(y) 6= 0.5. Then the closure A of A := {x ∈ Rn | A(x) > 0.5} is starshaped

relative to y ∈ Rn.
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Semidetached semigroups

Abstract The notion of semidetached semigroup is introduced, and their properties are

investigated. Several conditions for a pair of a semigroup and a semidetached mapping

to be a semidetached semigroup are provided. The concepts of (∈, ∈ ∨ qk)-fuzzy sub-

semigroup, (qk, ∈ ∨ qk)-fuzzy subsemigroup and (∈ ∨ qk, ∈ ∨ qk)-fuzzy subsemigroup are

introduced, and relative relations are discussed.

Keywords: Semidetached mapping, semidetached semigroup, (∈, ∈ ∨qk)-fuzzy subsemi-

group, (qk, ∈ ∨qk)-fuzzy subsemigroup, (∈, ∈∨ qk)-fuzzy subsemigroup, (qk, ∈∨ qk)-fuzzy

subsemigroup, (∈ ∨ qk, ∈ ∨ qk)-fuzzy subsemigroup.
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1 Introduction

Zadeh [28] introduced the concept of a fuzzy set in 1965. Based on the pioneering Zadeh’s

work, Kuroki introduced fuzzy semigroups and various kinds of fuzzy ideals in semigroups

and characterized certain semigroups using those fuzzy ideals (see [15, 16, 17, 18, 19]).

Since then the literature of various fuzzy algebraic concepts has been growing very rapidly.

In the literature, several authors considered the relationships between the fuzzy sets and

semigroups (see [5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 22]). In [23], the idea of fuzzy point

and its belongingness to and quasi-coincidence with a fuzzy subset were used to define

(α, β)-fuzzy subgroups, where α, β ∈ {∈, q, ∈∨ q, ∈∧ q} and α 6= ∈∧ q. This was further

studied in detail by Bhakat [1, 2], Bhakat and Das [3, 4], and Yuan et al. [27]. This notion

is applied to semigroups and groups (see [2], [3], [4], [12], [24], [25]), BCK/BCI-algebras

(see [6], [8], [9], [10], [21], [29], [30]), and (pseudo-) BL-algebras (see [20], [31]). General

form of the notion of quasi-coincidence of a fuzzy point with a fuzzy set is considered by

Jun in [11]. Shabir et al. [25] discuss semigroups characterized by (∈, ∈∨ qk)-fuzzy ideals.

In this paper, we introduce the notion of semidetached semigroups, and investigate

their properties. We provide several conditions for a pair of a semigroup and a semide-

tached mapping to be a semidetached semigroup. We also introduced the concepts (∈,

∈ ∨ qk)-fuzzy subsemigroup, (qk, ∈ ∨ qk)-fuzzy subsemigroup and (∈ ∨ qk, ∈ ∨ qk)-fuzzy
subsemigroup, and investigated relative relations.
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2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B

is defined as follows:

AB = {ab ∈ S | a ∈ A and b ∈ B} .

Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S

such that A2 ⊆ A. For the sake of convenience, we may regard the empty set to be a

subsemigroup.

A fuzzy set λ in a semigroup S is called a fuzzy subsemigroup of S if it satisfies:

(∀x, y ∈ S) (λ(xy) ≥ λ(x) ∧ λ(y)) . (2.1)

For any fuzzy set λ in a set S and any t ∈ [0, 1], the set

U(λ; t) = {x ∈ S | λ(x) ≥ t}
is called a level subset of λ.

A fuzzy set λ in a set S of the form

λ(y) :=

{
t ∈ (0, 1] if y = x,

0 if y 6= x,
(2.2)

is said to be a fuzzy point with support x and value t and is denoted by (x, t).

For a fuzzy set λ in a set S, a fuzzy point (x, t) is said to

• contained in λ, denoted by (x, t) ∈ λ (see [23]), if λ(x) ≥ t.

• be quasi-coincident with λ, denoted by (x, t) q λ (see [23]), if λ(x) + t > 1.

• (x, t) ∈∨ q λ if (x, t) ∈ λ or (x, t) q λ.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,

sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,

inf{ai | i ∈ Λ} otherwise.

For any real umbers a and b, we also use a ∨ b and a ∧ b instead of
∨{a, b} and

∧{a, b},
respectively.
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3 Semidetached mappings in semigroups

In what follows, let S denote a semigroup unless otherwise specified.

Jun [11] considered the general form of the symbol (x, t) q λ as follows: For an arbitrary

element k of [0, 1), we say that

• (x, t) qk λ if λ(x) + t + k > 1.

• (x, t) ∈∨ qk λ if (x, t) ∈ λ or (x, t) qk λ.

Definition 3.1 ([11]). A fuzzy set λ in S is called an (∈, ∈∨ qk)-fuzzy subsemigroup of

S if it satisfies:

(∀x, y ∈ S)(∀t1, t2 ∈ (0, 1]) ((x, t1) ∈ λ, (y, t2) ∈ λ ⇒ (xy, t1 ∧ t2) ∈∨ qk λ) . (3.1)

Definition 3.2. Let Ω be a subinterval of [0, 1]. A mapping f : Ω → P(S) is called a

semidetached mapping with respect to t ∈ Ω (briefly, t-semidetached mapping over Ω) if

f(t) is a subsemigroup of S.

We say that f : Ω → P(S) is a semidetached mapping over Ω if it is t-semidetached

mapping with respect to all t ∈ Ω, and a pair (S, f) is called a semidetached semigroup

over Ω.

Given a fuzzy set λ in S, consider the following mappings

Aλ
U : Ω → P(S), t 7→ U(λ; t), (3.2)

Aλ
Qk

: Ω → P(S), t 7→ {x ∈ S | (x, t) qk λ}, (3.3)

Aλ
Ek

: Ω → P(S), t 7→ {x ∈ S | (x, t) ∈∨ qk λ}. (3.4)

Lemma 3.3 ([26]). A fuzzy set λ is a fuzzy subsemigroup of S if and only if U(λ; t) is

a subsemigroup of S for all t ∈ (0, 1].

Theorem 3.4. A pair (S,Aλ
U) is a semidetached semigroup over Ω = (0, 1] if and only if

λ is a fuzzy subsemigroup of S.

Proof. Straightforward from Lemma 3.3.

Theorem 3.5. If λ is an (∈, ∈)-fuzzy subsemigroup (or equivalently, λ is a fuzzy sub-

semigroup) of S, then a pair
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω = (0, 1].
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Proof. Let x, y ∈ Aλ
Qk

(t) for t ∈ Ω = (0, 1]. Then (x, t) qk λ and (y, t) qk λ, that is,

λ(x) + t + k > 1 and λ(y) + t + k > 1. It follows from (2.1) that

λ(xy) + t + k ≥
∧
{λ(x), λ(y)}+ t + k

=
∧
{λ(x) + t + k, λ(y) + t + k} > 1.

Hence (xy, t) ∈ ∨ qk λ, and so xy ∈ Aλ
Qk

(t). Therefore Aλ
Qk

(t) is a subsemigroup of S.

Consequently
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω = (0, 1].

Corollary 3.6. If λ is an (∈, ∈)-fuzzy subsemigroup (or equivalently, λ is a fuzzy sub-

semigroup) of S, then a pair
(
S,Aλ

Q

)
is a semidetached semigroup over Ω = (0, 1].

Definition 3.7. A fuzzy set λ in S is called a (qk, ∈∨ qk)-fuzzy subsemigroup of S if it

satisfies:

(∀x, y ∈ S)(∀t, r ∈ (0, 1−k
2

]) (xt qk λ, yr qk λ ⇒ (xy, t ∧ r) ∈∨ qk λ) . (3.5)

Theorem 3.8. Every (qk, ∈ ∨ qk)-fuzzy subsemigroup is an (∈, ∈ ∨ qk)-fuzzy subsemi-

group.

Proof. Let λ be a (qk, ∈ ∨ qk)-fuzzy subsemigroup of S. Let x, y ∈ S and t, r ∈ (0, 1]

be such that (x, t) ∈ λ and (y, r) ∈ λ. Then λ(x) ≥ t and λ(y) ≥ r. Suppose that

(xy, t ∧ r)∈∨ qk λ. Then

λ(xy) < t ∧ r (3.6)

λ(xy) + t ∧ r + k ≤ 1. (3.7)

It follows that

λ(xy) < 1−k
2

. (3.8)

Combining (3.6) and (3.8), we have

λ(xy) <
∧
{t, r, 1−k

2
}

and so

1− k − λ(xy) > 1− k −
∧
{t, r, 1−k

2
}

=
∨
{1− k − t, 1− k − r, 1− k − 1−k

2
}

≥
∨
{1− k − λ(x), 1− k − λ(y), 1−k

2
}.

Hence there exists δ ∈ (0, 1] such that

1− k − λ(xy) ≥ δ >
∨
{1− k − λ(x), 1− k − λ(y), 1−k

2
}. (3.9)
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The right inequality in (3.9) implies that λ(x) + δ + k > 1 and λ(y) + δ + k > 1, that is,

(x, δ) qk λ and (y, δ) qk λ. Since λ is a (qk, ∈∨ qk)-fuzzy subsemigroup of S, it follows that

(xy, δ) ∈∨ qk λ. On the other hand, the left inequality in (3.9) implies that

λ(xy) + δ + k ≤ 1, that is, (xy, δ) qk λ,

and

λ(xy) ≤ 1− δ − k < 1− k − 1−k
2

= 1−k
2

< δ, i.e., (xy, δ)∈λ.

Hence (xy, δ)∈∨ qk λ, which is a contradiction. Therefore (xy, t∧ r) ∈∨ qk λ, and thus λ

is an (∈, ∈∨ qk)-fuzzy subsemigroup of S.

Corollary 3.9. Every (q, ∈∨ q)-fuzzy subsemigroup is an (∈, ∈∨ q)-fuzzy subsemigroup.

We consider the converse of Theorem 3.8.

Theorem 3.10. If every fuzzy point has the value t in (0, 1−k
2

], then every (∈, ∈∨ qk)-fuzzy

subsemigroup is a (qk, ∈∨ qk)-fuzzy subsemigroup.

Proof. Let λ be a (∈, ∈∨ qk)-fuzzy subsemigroup of S. Let x, y ∈ S and t, r ∈ (0, 1−k
2

] be

such that (x, t) qk λ and (y, r) qk λ. Then λ(x) + t + k > 1 and λ(y) + r + k > 1. Since

t, r ∈ (0, 1−k
2

], it follows that λ(x) > 1− t− k ≥ 1−k
2
≥ t and λ(y) > 1− r− k ≥ 1−k

2
≥ r,

that is, (x, t) ∈ λ and (y, r) ∈ λ. It follows from (3.1) that (xy, t ∧ r) ∈∨ qk λ. Therefore

λ is a (qk, ∈∨ qk)-fuzzy subsemigroup of S.

Corollary 3.11. If every fuzzy point has the value t in (0, 0.5], then every (∈, ∈∨ q)-fuzzy

subsemigroup is a (q, ∈∨ q)-fuzzy subsemigroup.

Theorem 3.12. If
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
, then λ

satisfies:

(∀x, y ∈ S)(∀t, r ∈ Ω) ((x, t) ∈ λ, (y, r) ∈ λ ⇒ (xy, t ∨ r) qk λ) . (3.10)

Proof. Let x, y ∈ S and t, r ∈ Ω =
(

1−k
2

, 1
]

be such that (x, t) ∈ λ and (y, r) ∈ λ. Then

λ(x) ≥ t > 1−k
2

and λ(y) ≥ r > 1−k
2

, which imply that λ(x)+t+k > 1 and λ(y)+t+k > 1,

that is, (x, t) qk λ and (y, r) qk λ. It follows that x, y ∈ Aλ
Qk

(t ∨ r) and t ∨ r ∈ (
1−k
2

, 1
]
.

Since Aλ
Qk

(t ∨ r) is a subsemigroup of S by assumption, we have xy ∈ Aλ
Qk

(t ∨ r) and so

(xy, t ∨ r) qk λ.

Corollary 3.13. If
(
S,Aλ

Q

)
is a semidetached semigroup over Ω = (0.5, 1], then λ satis-

fies:

(∀x, y ∈ S)(∀t, r ∈ Ω) ((x, t) ∈ λ, (y, r) ∈ λ ⇒ (xy, t ∨ r) q λ) . (3.11)
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Theorem 3.14. If
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
0, 1−k

2

]
, then λ

satisfies:

(∀x, y ∈ S)(∀t, r ∈ Ω) ((x, t) qk λ, (y, r) qk λ ⇒ (xy, t ∨ r) ∈ λ) . (3.12)

Proof. Let x, y ∈ S and t, r ∈ Ω =
(
0, 1−k

2

]
be such that (x, t) qk λ and (y, r) qk λ. Then

x ∈ Aλ
Qk

(t) and y ∈ Aλ
Qk

(r). It follows that x, y ∈ Aλ
Qk

(t ∨ r) and t ∨ r ∈ Ω =
(
0, 1−k

2

]
.

Thus xy ∈ Aλ
Qk

(t ∨ r) since Aλ
Qk

(t ∨ r) is a subsemigroup of S by the assumption. Hence

λ(xy) + k + t ∨ r > 1 and so λ(xy) > 1 − k − t ∨ r ≥ 1−k
2
≥ t ∨ r. Thus (xy, t ∨ r) ∈ λ,

and (3.12) is valid.

Corollary 3.15. If
(
S,Aλ

Q

)
is a semidetached semigroup over Ω = (0, 0.5], then λ satis-

fies:

(∀x, y ∈ S)(∀t, r ∈ Ω) ((x, t) q λ, (y, r) q λ ⇒ (xy, t ∨ r) ∈ λ) . (3.13)

Theorem 3.16. If λ is a (qk, ∈∨ qk)-fuzzy subsemigroup of S, then
(
S,Aλ

Qk

)
is a semide-

tached semigroup over Ω =
(

1−k
2

, 1
]

Proof. Let x, y ∈ Aλ
Qk

(t) for t ∈ (
1−k
2

, 1
]
. Then (x, t) qk λ and (y, t) qk λ. Since λ is a (qk,

∈∨ qk)-fuzzy subsemigroup of S, we have (xy, t) ∈∨ qk λ, that is, (xy, t) ∈ λ or (xy, t) qk λ.

If (xy, t) ∈ λ, then λ(xy) ≥ t > 1−k
2

> 1− t− k and so λ(xy) + t + k > 1, i.e., (xy, t) qk λ.

Hence xy ∈ Aλ
Qk

(t). If (xy, t) qk λ, then xy ∈ Aλ
Qk

(t). Therefore Aλ
Qk

(t) is a subsemigroup

of S, and consequently
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
.

Corollary 3.17. If λ is a (q, ∈∨ q)-fuzzy subsemigroup of S, then
(
S,Aλ

Q

)
is a semide-

tached semigroup over Ω = (0.5, 1]

Theorem 3.18. For a subsemigroup A of S, let λ be a fuzzy set in S such that

(1) λ(x) ≥ 1−k
2

for all x ∈ A,

(2) λ(x) = 0 for all x ∈ S \ A.

Then λ is a (qk, ∈∨ qk)-fuzzy subsemigroup of S.

Proof. Let x, y ∈ S and t, r ∈ (0, 1−k
2

] be such that (x, t) qk λ and (y, r) qk λ. Then

λ(x) + t + k > 1 and λ(y) + r + k > 1, which imply that λ(x) > 1 − t − k ≥ 1−k
2

and

λ(y) > 1 − r − k ≥ 1−k
2

. Hence x ∈ A and y ∈ A. Since A is a subsemigroup of S, we

get xy ∈ A and so λ(xy) ≥ 1−k
2
≥ t ∨ r. Thus (xy, t ∨ r) ∈ λ, and so (xy, t ∨ r) ∈∨ qk λ.

Therefore λ is a (qk, ∈∨ qk)-fuzzy subsemigroup of S.

Corollary 3.19. For a subsemigroup A of S, let λ be a fuzzy set in S such that

(1) λ(x) ≥ 0.5 for all x ∈ A,
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(2) λ(x) = 0 for all x ∈ S \ A.

Then λ is a (q, ∈∨ q)-fuzzy subsemigroup of S.

Using Theorems 3.16 and 3.18, we have the following theorem.

Theorem 3.20. For a subsemigroup A of S, let λ be a fuzzy set in S such that

(1) λ(x) ≥ 1−k
2

for all x ∈ A,

(2) λ(x) = 0 for all x ∈ S \ A.

Then
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
.

Theorem 3.21. If
(
S,Aλ

Ek

)
is a semidetached semigroup over Ω = (0, 1], then λ satisfies:

(∀x, y ∈ S)(∀t, r ∈ Ω) ((x, t) qk λ, (y, r) qk λ ⇒ (xy, t ∨ r) ∈∨ qk λ) . (3.14)

Proof. Let x, y ∈ S and t, r ∈ Ω = (0, 1] be such that (x, t) qk λ and (y, r) qk λ. Then

x ∈ Aλ
Qk

(t) ⊆ Aλ
Ek

(t) and y ∈ Aλ
Qk

(r) ⊆ Aλ
Ek

(r). It follows that x, y ∈ Aλ
Ek

(t ∨ r) and so

from the hypothesis that xy ∈ Aλ
Ek

(t ∨ r). Hence (xy, t ∨ r) ∈ ∨ qk λ, and consequently

(3.14) is valid.

Corollary 3.22. If
(
S,Aλ

E
)

is a semidetached semigroup over Ω = (0, 1], then λ satisfies:

(∀x, y ∈ S)(∀t, r ∈ Ω) ((x, t) q λ, (y, r) q λ ⇒ (xy, t ∨ r) ∈∨ q λ) . (3.15)

Lemma 3.23 ([25]). A fuzzy set λ in S is an (∈, ∈∨ qk)-fuzzy subsemigroup of S if and

only if it satisfies:

(∀x, y ∈ S)
(
λ(xy) ≥

∧
{λ(x), λ(y), 1−k

2
}
)

. (3.16)

Theorem 3.24. If λ is an (∈, ∈∨ qk)-fuzzy subsemigroup of S, then
(
S,Aλ

Qk

)
is a semide-

tached semigroup over Ω =
(

1−k
2

, 1
]
.

Proof. Let x, y ∈ Aλ
Qk

(t) for t ∈ Ω =
(

1−k
2

, 1
]
. Then (x, t) qk λ and (y, t) qk λ, that is,

λ(x) + t + k > 1 and λ(y) + t + k > 1. It follows from Lemma 3.23 that

λ(xy) + t + k ≥
∧
{λ(x), λ(y), 1−k

2
}+ t + k

=
∧
{λ(x) + t + k, λ(y) + t + k, 1−k

2
+ t + k}

> 1.

Hence (xy, t) qk λ, and so xy ∈ Aλ
Qk

(t). Therefore Aλ
Qk

(t) is a subsemigroup of S for all t ∈(
1−k
2

, 1
]
, and consequently

(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
.
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Corollary 3.25. If λ is an (∈, ∈∨ q)-fuzzy subsemigroup of S, then
(
S,Aλ

Q

)
is a semide-

tached semigroup over Ω = (0.5, 1].

Theorem 3.26. If
(
S,Aλ

Ek

)
is a semidetached semigroup over Ω = (0, 1], then λ is an

(∈, ∈∨ qk)-fuzzy subsemigroup of S.

Proof. For a semidetached semigroup
(
S,Aλ

Ek

)
over Ω = (0, 1], assume that there exists

a, b ∈ S such that

λ(ab) <
∧
{λ(a), λ(b), 1−k

2
} , t0.

Then t0 ∈ (0, 1−k
2

], a, b ∈ U(λ; t0) ⊆ Aλ
Ek

(t0), which implies that ab ∈ Aλ
Ek

(t0). Hence

λ(ab) ≥ t0 or λ(ab)+t0+k > 1. This is a contradiction. Thus λ(xy) ≥ ∧{λ(x), λ(y), 1−k
2
}

for all x, y ∈ S. It follows from Lemma 3.23 that λ is an (∈, ∈∨ qk)-fuzzy subsemigroup

of S.

Theorem 3.27. If λ is an (∈, ∈∨ qk)-fuzzy subsemigroup of S, then
(
S,Aλ

Ek

)
is a semide-

tached semigroup over Ω =
(
0, 1−k

2

]
.

Proof. Let x, y ∈ Aλ
Ek

(t) for t ∈ Ω =
(
0, 1−k

2

]
. Then (x, t) ∈ ∨ qk λ and (y, t) ∈ ∨ qk λ.

Hence we have the following four cases:

(1) (x, t) ∈ λ and (y, t) ∈ λ,

(2) (x, t) ∈ λ and (y, t) qk λ,

(3) (x, t) qk λ and (y, t) ∈ λ,

(4) (x, t) qk λ and (y, t) qk λ.

The first case implies that (xy, t) ∈ ∨ qk λ and so xy ∈ Aλ
Ek

(t). For the second case,

(y, t) qk λ induces λ(y) > 1 − t − k ≥ t, i.e., (y, t) ∈ λ. Hence (xy, t) ∈ ∨ qk λ and

so xy ∈ Aλ
Ek

(t). Similarly, the third case implies xy ∈ Aλ
Ek

(t). The last case induces

λ(x) > 1− t− k ≥ t and λ(y) > 1− t− k ≥ t, that is, (x, t) ∈ λ and (y, t) ∈ λ. It follows

that (xy, t) ∈∨ qk λ and so that xy ∈ Aλ
Ek

(t). Therefore Aλ
Ek

(t) is a subsemigroup of S for

all t ∈ (
0, 1−k

2

]
. Hence

(
S,Aλ

Ek

)
is a semidetached semigroup over Ω =

(
0, 1−k

2

]
.

Corollary 3.28. If λ is an (∈, ∈∨ q)-fuzzy subsemigroup of S, then
(
S,Aλ

E
)

is a semide-

tached semigroup over Ω = (0, 0.5].

Theorem 3.29. If λ is a (qk, ∈∨ qk)-fuzzy subsemigroup of S, then
(
S,Aλ

Ek

)
is a semide-

tached semigroup over Ω =
(

1−k
2

, 1
]
.

Proof. Let x, y ∈ Aλ
Ek

(t) for t ∈ Ω =
(

1−k
2

, 1
]
. Then (x, t) ∈ ∨ qk λ and (y, t) ∈ ∨ qk λ.

Hence we have the following four cases:
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(1) (x, t) ∈ λ and (y, t) ∈ λ,

(2) (x, t) ∈ λ and (y, t) qk λ,

(3) (x, t) qk λ and (y, t) ∈ λ,

(4) (x, t) qk λ and (y, t) qk λ.

For the first case, we have λ(x) + t + k ≥ 2t + k > 1 and λ(y) + t + k ≥ 2t + k > 1, that

is, (x, t) qk λ and (y, t) qk λ. Hence (xy, t) ∈∨ qk λ, and so xy ∈ Aλ
Ek

(t). In the case (2),

(x, t) ∈ λ implies λ(x) + t + k ≥ 2t + k > 1, i.e., (x, t) qk λ. Hence (xy, t) ∈∨ qk λ, and

so xy ∈ Aλ
Ek

(t). Similarly, the third case implies xy ∈ Aλ
Ek

(t). For the last case, we have

(xy, t) ∈∨ qk λ, and so xy ∈ Aλ
Ek

(t). Consequently, Aλ
Ek

(t) is a subsemigroup of S for all

t ∈ Ω =
(

1−k
2

, 1
]
. Therefore

(
S,Aλ

Ek

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
.

Corollary 3.30. If λ is an (q, ∈∨ q)-fuzzy subsemigroup of S, then
(
S,Aλ

E
)

is a semide-

tached semigroup over Ω = (0.5, 1].

For α ∈ {∈, qk} and t ∈ (0, 1], we say that (x, t) α λ if (x, t) α λ does not hold.

Definition 3.31. A fuzzy set λ in S is called an (∈, ∈∨ qk)-fuzzy subsemigroup of S if it

satisfies:

(∀x, y ∈ S)(∀t, r ∈ (0, 1]) ((xy, t ∧ r)∈λ ⇒ (x, t)∈ ∨ qk λ or (y, r)∈ ∨ qk λ) . (3.17)

An (∈, ∈∨qk)-fuzzy subsemigroup with k = 0 is called an (∈, ∈∨q)-fuzzy subsemigroup.

We provide a characterization of an (∈, ∈ ∨ qk)-fuzzy subsemigroup.

Theorem 3.32. A fuzzy set λ in S is an (∈, ∈∨ qk)-fuzzy subsemigroup of S if and only

if the following inequality is valid.

(∀x, y ∈ S)
(∨

{λ(xy), 1−k
2
} ≥ λ(x) ∧ λ(y)

)
. (3.18)

Proof. Let λ be an (∈, ∈∨ qk)-fuzzy subsemigroup of S. Assume that (3.18) is not valid.

Then there exist a, b ∈ S such that

∨
{λ(ab), 1−k

2
} < λ(a) ∧ λ(b) , t.

Then 1−k
2

< t ≤ 1, (a, t) ∈ λ, (b, t) ∈ λ and (ab, t)∈λ. It follows from (3.17) that (a, t) qk λ

or (b, t) qk λ. Hence

λ(a) ≥ t and λ(a) + t + k ≤ 1

or
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λ(b) ≥ t and λ(b) + t + k ≤ 1.

In either case, we have t ≤ 1−k
2

which is a contradiction. Therefore
∨{λ(xy), 1−k

2
} ≥ λ(x) ∧ λ(y)

for all x, y ∈ S.

Conversely, suppose that (3.18) is valid. Let (xy, t∧r)∈λ for x, y ∈ S and t, r ∈ (0, 1].

Then λ(xy) < t ∧ r. If
∨{λ(xy), 1−k

2
} = λ(xy), then t ∧ r > λ(xy) ≥ λ(x) ∧ λ(y) and

so λ(x) < t or λ(y) < t. Thus (x, t)∈λ or (y, r)∈λ, which implies that (x, t)∈ ∨ qk λ or

(y, r)∈ ∨ qk λ. If
∨{λ(xy), 1−k

2
} = 1−k

2
, then λ(x) ∧ λ(y) ≤ 1−k

2
. Suppose (x, t) ∈ λ or

(y, r) ∈ λ. Then t ≤ λ(x) ≤ 1−k
2

or r ≤ λ(y) ≤ 1−k
2

, and so

λ(x) + t + k ≤ 1−k
2

+ 1−k
2

+ k = 1

or

λ(y) + r + k ≤ 1−k
2

+ 1−k
2

+ k = 1.

Hence (x, t) qk λ or (y, r) qk λ. Therefore (x, t)∈ ∨ qk λ or (y, r)∈ ∨ qk λ. This shows that

λ is an (∈, ∈ ∨ qk)-fuzzy subsemigroup of S.

Corollary 3.33. A fuzzy set λ in S is an (∈, ∈∨ q)-fuzzy subsemigroup of S if and only

if the following inequality is valid.

(∀x, y ∈ S)
(∨

{λ(xy), 0.5} ≥ λ(x) ∧ λ(y)
)

. (3.19)

Theorem 3.34. A fuzzy set λ in S is an (∈, ∈∨ qk)-fuzzy subsemigroup of S if and only

if
(
S,Aλ

U

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
.

Proof. Assume that λ is an (∈, ∈ ∨ qk)-fuzzy subsemigroup of S. Let x, y ∈ Aλ
U(t) for

t ∈ Ω =
(

1−k
2

, 1
]
. Then λ(x) ≥ t and λ(y) ≥ t. It follows from (3.18) that

∨{λ(xy), 1−k
2
} ≥ λ(x) ∧ λ(y) ≥ t.

Since t > 1−k
2

, it follows that λ(xy) ≥ t and so that xy ∈ Aλ
U(t). Thus Aλ

U(t) is a

subsemigroup of S, and
(
S,Aλ

U

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
.

Conversely, suppose that
(
S,Aλ

U

)
is a semidetached semigroup over Ω =

(
1−k
2

, 1
]
. If

(3.18) is not valid, then there exist a, b ∈ S such that
∨{λ(ab), 1−k

2
} < λ(a) ∧ λ(b) , t.

Then t ∈ (1−k
2

, 1], a, b ∈ Aλ
U(t) and ab /∈ Aλ

U(t). This is a contradiction, and so (3.18) is

valid. Using Theorem 3.32, we know that λ is an (∈, ∈∨qk)-fuzzy subsemigroup of S.

Theorem 3.35. A fuzzy set λ in S is an (∈, ∈∨ qk)-fuzzy subsemigroup of S if and only

if
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
0, 1−k

2

]
.
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Proof. Assume that
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
0, 1−k

2

]
. If (3.18) is

not valid, then there exist a, b ∈ S, t ∈ Ω and k ∈ [0, 1) such that
∨{λ(ab), 1−k

2
}+ t + k ≤ 1 < λ(a) ∧ λ(b) + t + k.

It follows that (a, t) qk λ and (b, t) qk λ, that is, a, b ∈ Aλ
Qk

(t), but (ab, t) qk λ, i.e., ab /∈
Aλ

Qk
(t). This is a contradiction, and so (3.18) is valid. Using Theorem 3.32, we know that

λ is an (∈, ∈ ∨ qk)-fuzzy subsemigroup of S.

Conversely, suppose that λ is an (∈, ∈∨qk)-fuzzy subsemigroup of S. Let x, y ∈ Aλ
Qk

(t)

for t ∈ Ω =
(
0, 1−k

2

]
. Then (x, t) qk λ and (y, t) qk λ, that is, λ(x) + t + k > 1 and

λ(y) + t + k > 1. It follows from (3.18) that
∨{λ(xy), 1−k

2
} ≥ λ(x) ∧ λ(y) > 1− t− k ≥ 1−k

2

and so that λ(xy) + t + k > 1, that is, xy ∈ Aλ
Qk

(t). Therefore Aλ
Qk

(t) is a subsemigroup

of S, and
(
S,Aλ

Qk

)
is a semidetached semigroup over Ω =

(
0, 1−k

2

]
.

Definition 3.36. A fuzzy set λ in S is called an (∈ ∨ qk, ∈ ∨ qk)-fuzzy subsemigroup of

S if for all x, y ∈ S and t, r ∈ (0, 1],

(xy, t ∧ r)∈ ∨ qk λ ⇒ (x, t)∈ ∨ qk λ or (y, r)∈ ∨ qk λ. (3.20)

Theorem 3.37. Every (∈ ∨ qk, ∈ ∨ qk)-fuzzy subsemigroup is an (∈, ∈ ∨ qk)-fuzzy sub-

semigroup.

Proof. Let x, y ∈ S and t, r ∈ (0, 1] be such that (xy, t ∧ r)∈λ. Then (xy, t ∧ r)∈ ∨ qk λ,

and so (x, t)∈ ∨ qk λ or (y, r)∈ ∨ qk λ by (3.20). Therefore λ is an (∈, ∈ ∨ qk)-fuzzy

subsemigroup of S.

Definition 3.38. A fuzzy set λ in S is called a (qk, ∈∨ qk)-fuzzy subsemigroup of S if for

all x, y ∈ S and t, r ∈ (0, 1],

(xy, t ∧ r) qk λ ⇒ (x, t)∈ ∨ qk λ or (y, r)∈ ∨ qk λ. (3.21)

Theorem 3.39. Assume that t∧r ≤ 1−k
2

for any t, r ∈ (0, 1]. Then every (qk, ∈∨qk)-fuzzy

subsemigroup is an (∈, ∈ ∨ qk)-fuzzy subsemigroup.

Proof. Let λ be an (qk, ∈ ∨ qk)-fuzzy subsemigroup of S. Assume that (xy, t ∧ r)∈λ for

x, y ∈ S and t, r ∈ (0, 1] with t ∧ r ≤ 1−k
2

. Then λ(xy) < t ∧ r ≤ 1−k
2

, and so

λ(xy) + k + t ∧ r < 1−k
2

+ 1−k
2

+ k = 1,

that is, (xy, t∧r) qk λ. It follows from (3.21) that (x, t)∈∨qk λ or (y, r)∈∨qk λ. Therefore

λ is an (∈, ∈ ∨ qk)-fuzzy subsemigroup of S.
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Corollary 3.40. Assume that t∧ r ≤ 0.5 for any t, r ∈ (0, 1]. Then every (q, ∈∨ q)-fuzzy

subsemigroup is an (∈, ∈ ∨ q)-fuzzy subsemigroup.

Theorem 3.41. Assume that t∧r > 1−k
2

for any t, r ∈ (0, 1]. Then every (∈, ∈∨qk)-fuzzy

subsemigroup is a (qk, ∈ ∨ qk)-fuzzy subsemigroup.

Proof. Let λ be an (∈, ∈ ∨ qk)-fuzzy subsemigroup of S. Assume that (xy, t ∧ r) qk λ for

x, y ∈ S and t, r ∈ (0, 1] with t ∧ r > 1−k
2

. If (xy, t ∧ r) ∈ λ, then λ(xy) ≥ t ∧ r and so

λ(xy) + k + t ∧ r > 1−k
2

+ 1−k
2

+ k = 1.

Hence (xy, t∧ r) qk λ, a contradiction. Thus (xy, t∧ r)∈λ, which implies from (3.17) that

(x, t)∈∨ qk λ or (y, r)∈∨ qk λ. Therefore λ is a (qk, ∈∨ qk)-fuzzy subsemigroup of S.

Corollary 3.42. Assume that t∧r > 0.5 for any t, r ∈ (0, 1]. Then every (∈, ∈∨q)-fuzzy

subsemigroup is an (q, ∈ ∨ q)-fuzzy subsemigroup.
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Generalizations of (∈, ∈∨ qk)-fuzzy (generalized) 
bi-ideals in semigroups

Abstract The notion of (∈, ∈∨ qδ
k)-fuzzy (generalized) bi-ideals in semigroups is intro-

duced, and related properties are investigated. Given a (generalized) bi-ideal, an (∈,

∈ ∨ qδ
k)-fuzzy (generalized) bi-ideal is constructed. Characterizations of an (∈, ∈ ∨ qδ

k)-

fuzzy (generalized) bi-ideal are discussed, and shown that an (∈, ∈∨ qδ
k)-fuzzy generalized

bi-ideal and an (∈, ∈ ∨ qδ
k)-fuzzy bi-ideal coincide in regular semigroups. Using a fuzzy

set with finite image, an (∈, ∈∨ qδ
k)-fuzzy bi-ideal is established.

Keywords: (∈,∈∨ qδ
k)-fuzzy subsemigroup, ∈∨ qδ

k-level subsemigroup/bi-ideal, (∈,∈∨ qδ
k)-

fuzzy (generalized) bi-ideal.

2010 Mathematics Subject Classification. 20M10, 03E72, 20M12

1 Introduction

Fuzzy points are applied to several algebraic structures (see [1], [2], [3], [4], [5], [6], [7],

[8], [9], [13], [14], [16], [18], [19], [20] and [21]). As a generalization of fuzzy bi-ideals in

semigroups, Kazanci and Yamak [12] introduced (∈, ∈∨ q)-fuzzy bi-ideals in semigroups.

Jun et al. [8] considered more general forms of the paper [12], and discussed (∈, ∈∨ qk)-

fuzzy bi-ideals in semigroups.

The aim of this paper is to study the general type of the paper [8]. We introduce the

notion of (∈, ∈∨ qδ
k)-fuzzy (generalized) bi-ideals in semigroups, and investigate related

properties. Given a (generalized) bi-ideal, we construct an (∈, ∈∨ qδ
k)-fuzzy (generalized)

bi-ideal. We consider characterizations of an (∈, ∈ ∨ qδ
k)-fuzzy (generalized) bi-ideal.

We show that an (∈, ∈∨ qδ
k)-fuzzy generalized bi-ideal and an (∈, ∈∨ qδ

k)-fuzzy bi-ideal

coincide in regular semigroups. Using a fuzzy set with finite image, we establish an (∈,

∈∨ qδ
k)-fuzzy bi-ideal. We make an (∈, ∈∨ qδ

k)-fuzzy bi-ideal generated by a fuzzy set.
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2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B

is defined as follows:

AB = {ab ∈ S | a ∈ A and b ∈ B} .

Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S such

that A2 ⊆ A. A nonempty subset A of S is called a generalized bi-ideal of S if ASA ⊆ A.

A nonempty subset A of S is called a bi-ideal of S if it is both a generalized bi-ideal and

a subsemigroup of S.

For any fuzzy set λ in a set S and any t ∈ [0, 1], the set

U(λ; t) = {x ∈ S | λ(x) ≥ t}
is called a level subset of λ.

A fuzzy set λ in a set S of the form

λ(y) :=

{
t ∈ (0, 1] if y = x,

0 if y 6= x,
(2.1)

is said to be a fuzzy point with support x and value t and is denoted by (x, t).

For a fuzzy set λ in a set S, a fuzzy point (x, t) is said to

• contained in λ, denoted by (x, t) ∈ λ (see [15]), if λ(x) ≥ t.

• be quasi-coincident with λ, denoted by (x, t) q λ (see [15]), if λ(x) + t > 1.

For a fuzzy point (x, t) and a fuzzy set λ in a set S, we say that

• (x, t) ∈∨ q λ if (x, t) ∈ λ or (x, t) q λ.

Jun [7] considered the general form of the symbol (x, t) q λ as follows: For an arbitrary

element k of [0, 1), we say that

• (x, t) qk λ if λ(x) + t + k > 1.

• (x, t) ∈∨ qk λ if (x, t) ∈ λ or (x, t) qk λ.

Jun et al. [10] considered the general form of the symbol (x, t) qk λ and (x, t) ∈∨ qk λ

as follows: For a fuzzy point (x, t) and a fuzzy set λ in a set S, we say that

• (x, t) qδ
k λ if λ(x) + t + k > δ,

• (x, t) ∈∨ qδ
k λ if (x, t) ∈ λ or (x, t) qδ

k λ

where k < δ in [0, 1]. Obviously, (x, t) qδ
0 λ implies (x, t) qδ

k λ.

For any α ∈ {∈, q,∈∨ q,∈∧ q,∈∨ qk,∈∨ qδ
k}, we say that

• (x, t) α λ if (x, t) α λ does not hold.
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3 General types of (∈,∈∨ qk)-fuzzy bi-ideals

In what follows, let S denote a semigroup unless otherwise specified.

Definition 3.1 ([11]). A fuzzy set λ in S is called an (α, ∈∨ qδ
k)-fuzzy subsemigroup of

S if it satisfies:

(x, t1) α λ, (y, t2) α λ ⇒ (xy, min{t1, t2}) ∈∨ qδ
k λ (3.1)

for all x, y ∈ S and t1, t2 ∈ (0, δ] where α ∈ {∈, qδ
0}.

Definition 3.2. A fuzzy set λ in S is called an (α, ∈∨ qδ
k)-fuzzy generalized bi-ideal of S

if it satisfies:

(x, tx) α λ, (z, tz) α λ ⇒ (xyz, min{tx, tz}) ∈∨ qδ
k λ (3.2)

for all x, y, z ∈ S and tx, tz ∈ (0, δ] where α ∈ {∈, qδ
0}.

Example 3.3. Consider a semigroup S = {a, b, c, d} with the following Cayley table:

· a b c d

a a a a a

b a a a a

c a a b a

d a a b b

(1) Let λ be a fuzzy set in S defined by λ(a) = 0.42, λ(b) = 0.40, λ(c) = 0.56, and

λ(d) = 0.22. Then λ is an (∈, ∈ ∨q0.9
0.1)-fuzzy generalized bi-ideal of S which is also an (∈,

∈ ∨q0.9
0.1)-fuzzy subsemigroup of S.

(2) Let µ be a fuzzy set in S defined by µ(a) = 0.6, µ(b) = 0.3, µ(c) = 0.4, and

µ(d) = 0.2. Then µ is an (∈, ∈ ∨q0.95
0.05)-fuzzy generalized bi-ideal of S which is not an (∈,

∈ ∨q0.95
0.05)-fuzzy subsemigroup of S.

Given a generalized bi-ideal A of S and a fuzzy set λ in S, we establish an (α, ∈∨ qδ
k)-

fuzzy generalized bi-ideal of S for α ∈ {∈, qδ
0}.

Theorem 3.4. Let A be a generalized bi-ideal of S and λ a fuzzy set in S defined by

λ(x) =

{
ε if x ∈ A,

0 otherwise,

where ε ≥ δ−k
2

. Then λ is an (α, ∈∨ qδ
k)-fuzzy generalized bi-ideal of S for α ∈ {∈, qδ

0}.
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Proof. Let x, y, z ∈ S and tx, tz ∈ (0, δ] be such that (x, tx) qδ
0 λ and (z, tz) qδ

0 λ. Then

λ(x) + tx > δ and λ(z) + tz > δ. If x /∈ A or z /∈ A, then λ(x) = 0 or λ(z) = 0. Hence

tx > δ or tz > δ which is a contradiction. Thus x, z ∈ A. Since A is a generalized

bi-ideal of S, we have xyz ∈ A and so λ(xyz) = ε ≥ δ−k
2

. If min{tx, tz} ≤ δ−k
2

, then

λ(xyz) ≥ min{tx, tz} and thus (xyz, min{tx, tz}) ∈ λ. If min{tx, tz} > δ−k
2

, then

λ(xyz) + min{tx, tz}+ k > δ−k
2

+ δ−k
2

+ k = δ,

that is, (xyz, min{tx, tz}) qδ
k λ. Therefore (xyz, min{tx, tz}) ∈∨ qδ

kλ. This shows that λ is

a (qδ
0, ∈∨ qδ

k)-fuzzy generalized bi-ideal of S.

Let x, y, z ∈ S and t1, t2 ∈ (0, δ] be such that (x, t1) ∈ λ and (z, t2) ∈ λ. Then

λ(x) ≥ t1 > 0 and λ(z) ≥ t2 > 0. Thus λ(x) = ε ≥ δ−k
2

and λ(z) = ε ≥ δ−k
2

, which imply

that x, z ∈ A. Since A is a generalized bi-ideal of S, we have xyz ∈ A. Hence λ(xyz) =

ε ≥ δ−k
2

. If min{t1, t2} ≤ δ−k
2

, then λ(xyz) ≥ min{t1, t2} and so (xyz, min{t1, t2}) ∈ λ.

If min{t1, t2} > δ−k
2

, then λ(xyz) + min{t1, t2} + k > δ−k
2

+ δ−k
2

+ k = δ and thus

(xyz, min{t1, t2}) qδ
k λ. Therefore (xyz, min{t1, t2}) ∈∨ qδ

kλ, and λ is an (∈, ∈∨ qδ
k)-fuzzy

generalized bi-ideal of S.

Corollary 3.5 ([17]). Let A be a generalized bi-ideal of S and λ a fuzzy set in S defined

by

λ(x) =

{
ε if x ∈ A,

0 otherwise,

where ε ≥ 1−k
2

. Then λ is an (α, ∈∨ qk)-fuzzy generalized bi-ideal of S for α ∈ {∈, q}.

Corollary 3.6. Let A be a generalized bi-ideal of S and λ a fuzzy set in S defined by

λ(x) =

{
ε if x ∈ A,

0 otherwise,

where ε ≥ 0.5. Then λ is an (α, ∈∨ q)-fuzzy generalized bi-ideal of S for α ∈ {∈, q}.

We consider characterizations of an (∈, ∈∨ qδ
k)-fuzzy generalized bi-ideal.

Theorem 3.7. A fuzzy set λ in S is an (∈,∈∨ qδ
k)-fuzzy generalized bi-ideal of S if and

only if it satisfies:

(∀x, y, z ∈ S)(λ(xyz) ≥ min{λ(x), λ(z), δ−k
2
}). (3.3)

Proof. Let λ be an (∈,∈ ∨ qδ
k)-fuzzy generalized bi-ideal of S. Assume that there exist

a, c ∈ S such that

λ(abc) < min{λ(a), λ(c), δ−k
2
}
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for all b ∈ S. If min{λ(a), λ(c)} < δ−k
2

, then λ(abc) < min{λ(a), λ(c)}. Hence

λ(abc) < t ≤ min{λ(a), λ(c)}
for some t ∈ (0, δ). It follows that (a, t) ∈ λ and (c, t) ∈ λ, but (abc, t)∈λ. Moreover,

λ(abc) + t < 2t < δ − k, and so (abc, t) qδ
k λ. Consequently (abc, t)∈∨ qδ

k λ, this is a

contradiction. If min{λ(a), λ(c)} ≥ δ−k
2

, then λ(a) ≥ δ−k
2

, λ(c) ≥ δ−k
2

and λ(abc) < δ−k
2

.

Thus (a, δ−k
2

) ∈ λ and (c, δ−k
2

) ∈ λ, but (abc, δ−k
2

)∈λ. Also,

λ(abc) + δ−k
2

< δ−k
2

+ δ−k
2

= δ − k,

i.e., (abc, δ−k
2

) qδ
k λ. Hence (abc, δ−k

2
)∈∨ qδ

k λ, again, a contradiction. Therefore (3.3) is

valid.

Conversely, suppose that λ satisfies (3.3). Let x, y, z ∈ S and t1, t2 ∈ (0, δ] be such

that (x, t1) ∈ λ and (z, t2) ∈ λ. Then

λ(xyz) ≥ min{λ(x), λ(z), δ−k
2
} ≥ min{t1, t2, δ−k

2
}.

Assume that t1 ≤ δ−k
2

or t2 ≤ δ−k
2

. Then λ(xyz) ≥ min{t1, t2}, which implies that

(xyz, min{t1, t2}) ∈ λ. Now, suppose that t1 > δ−k
2

and t2 > δ−k
2

. Then λ(xyz) ≥ δ−k
2

,

and thus

λ(xyz) + min{t1, t2} > δ−k
2

+ δ−k
2

= δ − k,

i.e., (xyz, min{t1, t2}) qδ
k λ. Hence (xyz, min{t1, t2}) ∈∨ qδ

k λ, and consequently, λ is an (∈,

∈∨ qδ
k)-fuzzy generalized bi-ideal of S.

Theorem 3.8. For a fuzzy set λ in S, the following are equivalent.

(1) λ is an (∈, ∈∨ qδ
k)-fuzzy generalized bi-ideal of S.

(2) The level subset U(λ; t) of λ is a generalized bi-ideal of S for all t ∈ (0, δ−k
2

].

Proof. Assume that λ is an (∈,∈ ∨ qδ
k)-fuzzy generalized bi-ideal of S. Let t ∈ (0, δ−k

2
],

y ∈ S and x, z ∈ U(λ; t). Then λ(x) ≥ t and λ(z) ≥ t. It follows from (3.3) that

λ(xyz) ≥ min{λ(x), λ(z), δ−k
2
} ≥ min{t, δ−k

2
} = t

so that xyz ∈ U(λ; t). Hence U(λ; t) is a generalized bi-ideal of S.

Conversely, suppose that U(λ; t) is a generalized bi-ideal of S for all t ∈ (0, δ−k
2

]. If

(3.3) is not valid, then there exist a, b, c ∈ S such that

λ(abc) < min{λ(a), λ(c), δ−k
2
}

and that λ(abc) < t ≤ min{λ(a), λ(c), δ−k
2
} for some t ∈ (0, 1). Then t ∈ (0, δ−k

2
] and

a, c ∈ U(λ; t). Since U(λ; t) is a generalized bi-ideal of S, it follows that abc ∈ U(λ; t)

so that λ(abc) ≥ t. This is a contradiction. Therefore (3.3) is valid, and λ is an (∈,

∈∨ qδ
k)-fuzzy generalized bi-ideal of S by Theorem 3.7.
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Taking k = 0 and δ = 1 in Theorem 3.8, we have the following corollary.

Corollary 3.9. Let λ be a fuzzy set in S. Then λ is an (∈, ∈∨ q)-fuzzy generalized bi-

ideal of S if and only if the level subset U(λ; t) of λ is a generalized bi-ideal of S for all

t ∈ (0, 0.5].

Corollary 3.10 ([17]). For a fuzzy set λ in S, the following are equivalent.

(1) λ is an (∈, ∈∨ qk)-fuzzy generalized bi-ideal of S.

(2) The level subset U(λ; t) of λ is a generalized bi-ideal of S for all t ∈ (0, 1−k
2

].

Proof. Taking δ = 1 in Theorem 3.8 induces the corollary.

Definition 3.11. A fuzzy set λ in S is called an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S if it is both

an (∈, ∈∨ qδ
k)-fuzzy subsemigroup and an (∈, ∈∨ qδ

k)-fuzzy generalized bi-ideal of S.

An (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S with δ = 1 is called an (∈, ∈∨ qk)-fuzzy bi-ideal of

S (see [17]), and an (∈, ∈∨ qk)-fuzzy bi-ideal of S with k = 0 is called an (∈, ∈∨ q)-fuzzy

bi-ideal of S (see [12]).

Example 3.12. The fuzzy set λ in Example 3.3(1) is an (∈, ∈ ∨q0.9
0.1)-fuzzy bi-ideal of S.

Combining Theorem 3.4 and [11, Theorem 3.4], we have the following theorem.

Theorem 3.13. Let A be a bi-ideal of S and λ a fuzzy set in S defined by

λ(x) =

{
ε if x ∈ A,

0 otherwise,

where ε ≥ δ−k
2

. Then λ is an (α, ∈∨ qδ
k)-fuzzy bi-ideal of S for α ∈ {∈, qδ

0}.

Corollary 3.14. Let A be a bi-ideal of S and λ a fuzzy set in S defined by

λ(x) =

{
ε if x ∈ A,

0 otherwise,

where ε ≥ 1−k
2

. Then λ is an (α, ∈∨ qk)-fuzzy bi-ideal of S for α ∈ {∈, q}.

We give characterizations of an (∈, ∈∨ qδ
k)-fuzzy bi-ideal.

Theorem 3.15. A fuzzy set λ in S is an (∈,∈∨ qδ
k)-fuzzy bi-ideal of S if and only if it

satisfies (3.3) and

(∀x, y ∈ S)(λ(xy) ≥ min{λ(x), λ(y), δ−k
2
}). (3.4)
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Proof. It is by Theorem 3.7 and [11, Theorem 3.7].

Corollary 3.16. A fuzzy set λ in S is an (∈,∈∨ qk)-fuzzy bi-ideal of S if and only if it

satisfies:

(∀x, y ∈ S)(λ(xy) ≥ min{λ(x), λ(y), 1−k
2
}), (3.5)

(∀x, y, z ∈ S)(λ(xyz) ≥ min{λ(x), λ(z), 1−k
2
}). (3.6)

Corollary 3.17 ([12]). A fuzzy set λ in S is an (∈,∈∨ q)-fuzzy bi-ideal of S if and only

if it satisfies:

(∀x, y ∈ S)(λ(xy) ≥ min{λ(x), λ(y), 0.5}), (3.7)

(∀x, y, z ∈ S)(λ(xyz) ≥ min{λ(x), λ(z), 0.5}). (3.8)

Theorem 3.18. For a fuzzy set λ in S, the following are equivalent.

(1) λ is an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S.

(2) The level subset U(λ; t) of λ is a bi-ideal of S for all t ∈ (0, δ−k
2

].

Proof. It is by Theorem 3.8 and [11, Theorem 3.10].

Corollary 3.19 ([17]). For a fuzzy set λ in S, the following are equivalent.

(1) λ is an (∈, ∈∨ qk)-fuzzy bi-ideal of S.

(2) The level subset U(λ; t) of λ is a bi-ideal of S for all t ∈ (0, 1−k
2

].

Obviously, every (∈, ∈∨ qδ
k)-fuzzy bi-ideal is an (∈, ∈∨ qδ

k)-fuzzy generalized bi-ideal,

but the converse is not true in general. In fact, the fuzzy set µ in Example 3.3(2) is an

(∈, ∈ ∨q0.95
0.05)-fuzzy generalized bi-ideal of S which is not an (∈, ∈ ∨q0.95

0.05)-fuzzy bi-ideal

of S.

We now consider conditions for an (∈, ∈∨ qδ
k)-fuzzy generalized bi-ideal to be an (∈,

∈∨ qδ
k)-fuzzy bi-ideal.

Theorem 3.20. In a regular semigroup S, every (∈, ∈∨ qδ
k)-fuzzy generalized bi-ideal is

an (∈, ∈∨ qδ
k)-fuzzy bi-ideal.

Proof. Let λ be an (∈, ∈∨ qδ
k)-fuzzy generalized bi-ideal of a regular semigroup S. Let

a, b ∈ S. Then b = bxb for some x ∈ S since S is regular. Hence

λ(ab) = λ(a(bxb)) = λ(a(bx)b) ≥ min{λ(a), λ(b), δ−k
2
}.

This shows that λ is an (∈, ∈∨ qδ
k)-fuzzy subsemigroup of S, and so λ is an (∈, ∈∨ qδ

k)-

fuzzy bi-ideal of S.
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Corollary 3.21 ([17]). In a regular semigroup S, every (∈, ∈ ∨ qk)-fuzzy generalized

bi-ideal is an (∈, ∈∨ qk)-fuzzy bi-ideal.

Theorem 3.22. If λ is an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S, then the set

Qδ

k
(λ; t) := {x ∈ S | (x, t) qδ

k
λ}, (3.9)

where (x, t) qδ
k
λ means (x, t) qδ

k λ or λ(x) + t + k = δ, is a bi-ideal of S for all t ∈ ( δ−k
2

, 1]

with Qδ

k
(λ; t) 6= ∅.

Proof. Let t ∈ ( δ−k
2

, 1] be such that Qδ

k
(λ; t) 6= ∅. Let x, z ∈ Qδ

k
(λ; t). Then λ(x)+t+k ≥ δ

and λ(z) + t + k ≥ δ. It follows from (3.4) and (3.3) that

λ(xz) ≥ min{λ(x), λ(z), δ−k
2
} ≥ min{δ − k − t, δ−k

2
} = δ − k − t,

and

λ(xyz) ≥ min{λ(x), λ(z), δ−k
2
} ≥ min{δ − k − t, δ−k

2
} = δ − k − t,

that is, (xz, t) qδ
k
λ and (xyz, t) qδ

k
λ. Hence xz, xyz ∈ Qδ

k
(λ; t) and therefore Qδ

k
(λ; t) is a

bi-ideal of S.

Corollary 3.23. If λ is an (∈, ∈∨ qk)-fuzzy bi-ideal of S, then the set

Q
k
(λ; t) := {x ∈ S | (x, t) q

k
λ}, (3.10)

where (x, t) q
k
λ means (x, t) qk λ or λ(x) + t + k = 1, is a bi-ideal of S for all t ∈ (1−k

2
, 1]

with Q
k
(λ; t) 6= ∅.

Corollary 3.24. If λ is an (∈, ∈∨ q)-fuzzy bi-ideal of S, then the set

Q(λ; t) := {x ∈ S | (x, t) q λ}, (3.11)

where (x, t) q λ means (x, t) q λ or λ(x) + t = 1, is a bi-ideal of S for all t ∈ (0.5, 1] with

Q(λ; t) 6= ∅.

Theorem 3.25. A fuzzy set λ in S is an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S if and only if the

set

U δ
k(λ; t) := U(λ; t) ∪Qδ

k
(λ; t)

is a bi-ideal of S for all t ∈ (0, δ].

We call U δ
qk

(λ; t) an ∈∨ qδ
k-level bi-ideal of λ.

Proof. Assume that λ is an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S. Let x, y ∈ U δ

k(λ; t) for t ∈ (0, δ].

Then we can consider the following four cases:
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(1) x, y ∈ U(λ; t), i.e., λ(x) ≥ t and λ(y) ≥ t,

(2) x, y ∈ Qδ

k
(λ; t), i.e., λ(x) + t + k ≥ δ and λ(y) + t + k ≥ δ,

(3) x ∈ U(λ; t) and y ∈ Qδ

k
(λ; t), i.e., λ(x) ≥ t and λ(y) + t + k ≥ δ,

(4) x ∈ Qδ

k
(λ; t) and y ∈ U(λ; t), i.e., λ(x) + t + k ≥ δ and λ(y) ≥ t.

For the case (1), we have

λ(xy) ≥ min{λ(x), λ(y), δ−k
2
} ≥ min{t, δ−k

2
}

=

{
t if t < δ−k

2
,

δ−k
2

if t ≥ δ−k
2

,

and

λ(xay) ≥ min{λ(x), λ(y), δ−k
2
} ≥ min{t, δ−k

2
}

=

{
t if t < δ−k

2
,

δ−k
2

if t ≥ δ−k
2

for all a ∈ S. Hence xy ∈ U(λ; t) or λ(xy)+ t+ k ≥ δ−k
2

+ δ−k
2

+ k = δ, i.e., xy ∈ Qδ

k
(λ; t).

Therefore xy ∈ U δ
k(λ; t). Similarly, xay ∈ U δ

k(λ; t). The second case implies that

λ(xy) ≥ min{λ(x), λ(y), δ−k
2
} ≥ min{δ − k − t, δ−k

2
}

=

{
δ−k
2

if t ≤ δ−k
2

,

δ − k − t if t > δ−k
2

,

and

λ(xay) ≥ min{λ(x), λ(y), δ−k
2
} ≥ min{δ − k − t, δ−k

2
}

=

{
δ−k
2

if t ≤ δ−k
2

,

δ − k − t if t > δ−k
2

for all a ∈ S. Thus λ(xy) ≥ δ−k
2
≥ t, i.e., xy ∈ U(λ; t) or λ(xy)+t+k ≥ δ−k−t+t+k = δ,

i.e., xy ∈ Qδ

k
(λ; t). Therefore xy ∈ U δ

k(λ; t). Similarly, xay ∈ U δ
k(λ; t). The case (3)

induces

λ(xy) ≥ min{λ(x), λ(y), δ−k
2
} ≥ min{t, δ − k − t, δ−k

2
}

and

λ(xay) ≥ min{λ(x), λ(y), δ−k
2
} ≥ min{t, δ − k − t, δ−k

2
}

for all a ∈ S. If t ≤ δ−k
2

, then λ(xy) ≥ min{t, δ − k − t} = t and so xy ∈ U(λ; t). If

t > δ−k
2

, then λ(xy) ≥ min{δ − k − t, δ−k
2
} = δ − k − t and thus xy ∈ Qδ

k
(λ; t). Therefore
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xy ∈ U δ
k(λ; t). Similarly, xay ∈ U δ

k(λ; t). The final case is similar to the third case.

Consequently, U δ
k(λ; t) is a bi-ideal of S for all t ∈ (0, δ].

Conversely, let λ be a fuzzy set in S and t ∈ (0, δ] be such that U δ
k(λ; t) is a bi-ideal

of S. Assume that there exist a, b ∈ S such that λ(ab) < min{λ(a), λ(b), δ−k
2
}. Then

λ(ab) < t ≤ min{λ(a), λ(b), δ−k
2
}

for some t ∈ (0, δ]. Then a, b ∈ U(λ; t) ⊆ U δ
k(λ; t), which implies that ab ∈ U δ

k(λ; t). Hence

λ(ab) ≥ t or λ(ab) + t + k > δ, a contradiction. Therefore λ(xy) ≥ min{λ(x), λ(y), δ−k
2
}

for all x, y ∈ S. Similarly, we obtain λ(xay) ≥ min{λ(x), λ(y), δ−k
2
} for all a, x, y ∈ S.

Using Theorem 3.15, we conclude that λ is an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S.

Corollary 3.26. A fuzzy set λ in S is an (∈, ∈∨ qk)-fuzzy bi-ideal of S if and only if the

set

Uk(λ; t) := U(λ; t) ∪Q
k
(λ; t)

is a bi-ideal of S for all t ∈ (0, 1].

Corollary 3.27. A fuzzy set λ in S is an (∈, ∈∨ q)-fuzzy bi-ideal of S if and only if the

set

U(λ; t) := U(λ; t) ∪Q(λ; t)

is a bi-ideal of S for all t ∈ (0, 1].

Let λ be a fuzzy set in S. For α ∈ {∈∨ q,∈∨ qk,∈∨ qδ
k}, an (∈, α)-fuzzy bi-ideal µ in

S is said to be an (∈, α)-fuzzy bi-ideal generated by λ in S if

(i) λ ⊆ µ, that is, λ(x) ≤ µ(x) for all x ∈ S,

(ii) For any (∈, α)-fuzzy bi-ideal γ in S, if λ ⊆ γ then µ ⊆ γ.

Theorem 3.28. Let λ be a fuzzy set in S with finite image. Define bi-ideals Ai of S as

follows:

A0 = 〈{x ∈ S | λ(x) ≥ δ−k
2
}〉,

Ai = 〈Ai−1 ∪ {x ∈ S | λ(x) = sup{λ(z) | z ∈ S \ Ai−1}〉

for i = 1, 2, · · · , n where n < |Im(λ)| and An = S. Let λ∗ be a fuzzy set in S defined by

λ∗(x) =

{
λ(x) if x ∈ A0,

sup{λ(z) | z ∈ S \ Ai−1} if x ∈ Ai \ Ai−1.

Then λ∗ is the (∈, ∈∨ qδ
k)-fuzzy bi-ideal generated by λ in S.
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Proof. Note that the Ai’s form a chain

A0 ⊆ A1 ⊆ · · · ⊆ An = S

of bi-ideals ending at S. We first show that λ∗ is an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S. Let

x, y ∈ S. If x, y ∈ A0, then xy ∈ A0 and xay ∈ A0 for all a ∈ S. Hence

λ∗(xy) = λ(xy) ≥ min{λ(x), λ(y), δ−k
2
} = min{λ∗(x), λ∗(y), δ−k

2
}.

and

λ∗(xay) = λ(xay) ≥ min{λ(x), λ(y), δ−k
2
} = min{λ∗(x), λ∗(y), δ−k

2
}.

Let x ∈ Ai \Ai−1 and y ∈ Aj \Aj−1. We may assume that i < j without loss of generality.

Then x, y ∈ Aj and so xy ∈ Aj and xay ∈ Aj for all a ∈ S. It follows that

λ∗(xy) ≥ sup{λ(z) | z ∈ S \ Aj−1}
≥ min{sup{λ(z) | z ∈ S \ Ai−1}, sup{λ(z) | z ∈ S \ Aj−1}, δ−k

2
}

= min{λ∗(x), λ∗(y), δ−k
2
}.

and

λ∗(xay) ≥ sup{λ(w) | w ∈ S \ Aj−1}
≥ min{sup{λ(w) | w ∈ S \ Ai−1}, sup{λ(w) | w ∈ S \ Aj−1}, δ−k

2
}

= min{λ∗(x), λ∗(y), δ−k
2
}.

Hence λ∗ is an (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S whose ∈∨ qδ

k-level bi-ideals are precisely the

members of the chain above. Obviously, λ ⊆ λ∗ by the construction of λ∗. Now let µ be

any (∈, ∈∨ qδ
k)-fuzzy bi-ideal of S such that λ ⊆ µ. If x ∈ A0, then λ∗(x) = λ(x) ≤ µ(x).

Let {Bti} be the class of ∈∨ qδ
k-level bi-ideals of µ in S. Let x ∈ A1 \ A0. Then λ∗(x) =

sup{λ(z) | z ∈ S \ A0} and A1 = 〈K1〉 where

K1 = A0 ∪ {x ∈ S | λ(x) = sup{λ(z) | z ∈ S \ A0}}.

Let x ∈ K1 \ A0. Then λ(x) = sup{λ(z) | z ∈ S \ A0}. Since λ ⊆ µ, it follows that

sup{λ(z) | z ∈ S \ A0} ≤ inf{µ(x) | x ∈ K1 \ A0} ≤ µ(x).

Putting ti1 = inf{µ(x) | x ∈ K1 \ A0}, we get x ∈ Bti1 and hence K1 \ A0 ⊆ Bti1 . Since

A0 ⊆ Bti1 , we have A1 = 〈K1〉 ⊆ Bti1 . Thus µ(x) ≥ ti1 for all x ∈ A1. Therefore

λ∗(x) = sup{λ(z) | z ∈ S \ A0} ≤ ti1 ≤ µ(x)

for all x ∈ A1 \A0. Similarly, we can prove that λ∗(x) ≤ µ(x) for all x ∈ Ai \Ai−1 where

2 ≤ i ≤ n. Consequently, λ∗ is the (∈, ∈∨ qδ
k)-fuzzy bi-ideal generated by λ in S.
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Corollary 3.29. Let λ be a fuzzy set in S with finite image. Define bi-ideals Ai of S as

follows:

A0 = 〈{x ∈ S | λ(x) ≥ 1−k
2
}〉,

Ai = 〈Ai−1 ∪ {x ∈ S | λ(x) = sup{λ(z) | z ∈ S \ Ai−1}〉
for i = 1, 2, · · · , n where n < |Im(λ)| and An = S. Let λ∗ be a fuzzy set in S defined by

λ∗(x) =

{
λ(x) if x ∈ A0,

sup{λ(z) | z ∈ S \ Ai−1} if x ∈ Ai \ Ai−1.

Then λ∗ is the (∈, ∈∨ qk)-fuzzy bi-ideal generated by λ in S.

Corollary 3.30. Let λ be a fuzzy set in S with finite image. Define bi-ideals Ai of S as

follows:

A0 = 〈{x ∈ S | λ(x) ≥ 0.5}〉,
Ai = 〈Ai−1 ∪ {x ∈ S | λ(x) = sup{λ(z) | z ∈ S \ Ai−1}〉

for i = 1, 2, · · · , n where n < |Im(λ)| and An = S. Let λ∗ be a fuzzy set in S defined by

λ∗(x) =

{
λ(x) if x ∈ A0,

sup{λ(z) | z ∈ S \ Ai−1} if x ∈ Ai \ Ai−1.

Then λ∗ is the (∈, ∈∨ q)-fuzzy bi-ideal generated by λ in S.
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Approximations of fuzzy sets in semigroups

Abstract Lower and upper approximations of fuzzy sets in semigroups are considered,

and several properties are investigated.

Keywords: δ-lower (δ-upper) approximation of fuzzy set, δ-lower (δ-upper) rough fuzzy

subsemigroup, δ-rough fuzzy subsemigroup.

2010 Mathematics Subject Classification. 20M10, 08A72, 20M99.

1 Introduction

The notion of rough sets was introduced by Pawlak in his paper [9]. This concept is

fundamental for the examination of granularity in knowledge. It is a concept which has

many applications in data analysis (see [10]). Rough set theory is applied to semigroups

and groups (see [3, 5, 6, 7, 11, 13]), d-algebras (see [1]), BE-algebras (see [2]), BCK-

algebras (see [4]) and MV-algebras (see [12]) etc.

In this paper, we investigate some properties of the lower and upper approximations

of fuzzy sets with respect to the congruences in semigroups.

2 Preliminaries

Let S be a semigroup. Let A and B be subsets of S. Then the multiplication of A and B

is defined as follows:

AB = {ab ∈ S | a ∈ A and b ∈ B} .

Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S such

that A2 ⊆ A. A nonempty subset A of S is called a left (right) ideal of S if SA ⊆ A

(AS ⊆ A). A nonempty subset A of S is called an interior ideal of S if SAS ⊆ A.

For the sake of convenience, we may regard the empty set to be a subsemigroup, a left

(right) ideal and an interior ideal.

For fuzzy sets λ and µ in a set S, we say that λ ≤ µ if λ(x) ≤ µ(x) for all x ∈ S. We

define λ∨µ and λ∧µ by (λ∨µ)(x) = max{λ(x), µ(x)} and (λ∧µ)(x) = min{λ(x), µ(x)},
respectively, for all x ∈ S.
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For any fuzzy set λ in a set S and any t ∈ [0, 1], the set

U(λ; t) = {x ∈ S | λ(x) ≥ t}
is called a level subset of λ. For two fuzzy sets λ and µ in S, the product of λ and µ,

denoted by λ ◦ µ, is defined by

λ ◦ µ : S → [0, 1], x 7→ sup
x=yz

min{λ(y), µ(z)}.

A fuzzy set λ in a semigroup S is called a fuzzy subsemigroup of S if it satisfies:

(∀x, y ∈ S) (λ(xy) ≥ min{λ(x), λ(y)}) . (2.1)

A fuzzy set λ in a semigroup S is called a fuzzy left (right) ideal of S if it satisfies:

(∀x, y ∈ S) (λ(xy) ≥ λ(y) (λ(xy) ≥ λ(x))) . (2.2)

A fuzzy set λ in a semigroup S is called a fuzzy interior ideal of S if it satisfies:

(∀x, a, y ∈ S) (λ(xay) ≥ λ(a)) . (2.3)

We refer the reader to the book [8] for further information regarding (fuzzy) semi-

groups.

3 Approximations of fuzzy sets

In what follows, let S denote a semigroup unless otherwise specified.

By a congruence on S (see [6]), we mean an equivalence relation δ on S such that

(∀a, b, x ∈ S) ((a, b) ∈ δ ⇒ (ax, bx) ∈ δ and (xa, xb) ∈ δ) . (3.1)

We denote by [a]δ the δ-congruence class containing a ∈ S. Note that if δ is a

congruence on S, then

(∀a, b ∈ S) ([a]δ[b]δ ⊆ [ab]δ) . (3.2)

A congruence δ on S is said to be complete (see [6]) if it satisfies:

(∀a, b ∈ S) ([a]δ[b]δ = [ab]δ) . (3.3)

For a nonempty subset A of S, the sets

δ∗(A) := {x ∈ S | [x]δ ⊆ A} (3.4)

and

δ∗(A) := {x ∈ S | [x]δ ∩ A 6= ∅} (3.5)

are called the δ-lower and δ-upper approximations, respectively, of A (see [6]).

The ordered pair δ(A) := (δ∗(A), δ∗(A)) is called a δ-rough subset of 2S×2S if δ∗(A) 6=
δ∗(A).
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Proposition 3.1 ([6]). Let δ and ε be congruences on S and let A and B be subsets of

S. Then

(1) δ∗(A) ⊆ A ⊆ δ∗(A),

(2) δ∗(A ∪B) = δ∗(A) ∪ δ∗(B),

(3) δ∗(A ∩B) = δ∗(A) ∩ δ∗(B),

(4) A ⊆ B ⇒ δ∗(A) ⊆ δ∗(B), δ∗(A) ⊆ δ∗(B),

(5) δ∗(A) ∪ δ∗(B) ⊆ δ∗(A ∪B),

(6) δ∗(A ∩B) ⊆ δ∗(A) ∩ δ∗(B),

(7) ε ⊆ δ ⇒ δ∗(A) ⊆ ε∗(A), ε∗(A) ⊆ δ∗(A),

(8) δ∗(A)δ∗(B) ⊆ δ∗(AB),

(9) If δ is complete, then δ∗(A)δ∗(B) ⊆ δ∗(AB),

(10) (δ ∩ ε)∗(A) ⊆ δ∗(A) ∩ ε∗(A),

(11) (δ ∩ ε)∗(A) = δ∗(A) ∩ ε∗(A).

Definition 3.2 ([2, 11] ). Let δ be a congruence on S. Given a fuzzy set λ in S, the

fuzzy sets δ∗(λ) and δ∗(λ) are defined as follows:

δ∗(λ) : S → [0, 1], x 7→ inf
y∈[x]δ

λ(y)

and

δ∗(λ) : S → [0, 1], x 7→ sup
y∈[x]δ

λ(y),

which are called the δ-lower and δ-upper approximations, respectively, of λ.

We say that δ(λ) , (δ∗(λ), δ∗(λ)) is a δ-rough fuzzy set of λ if δ∗(λ) 6= δ∗(λ).

Theorem 3.3. Let f : S → T be an onto homomorphism of semigroups. For a relation

δ on T , let

ε := {(x, y) ∈ S × S | (f(x), f(y)) ∈ δ}. (3.6)

(1) If δ is congruence on T , then ε is a congruence on S.

(2) If δ is complete and f is one-one, then ε is complete.

(3) f(ε∗(A)) = δ∗(f(A)) for any subset A of S.

Fuzzy and Neutrosophic Sets in Semigroups

67



(4) f(ε∗(A)) ⊆ δ∗(f(A)) for any subset A of S.

(5) If f is one-one, then the equality in (4) is valid.

Proof. (1) Assume that δ is congruence on T . Obviously, ε is an equivalence relation on

S. Let (a, b) ∈ ε for a, b ∈ S. Then (f(a), f(b)) ∈ δ. Since f is onto homomorphism and

δ is congruence on T , it follows that

(f(ax), f(bx)) = (f(a)f(x), f(b)f(x)) ∈ δ

and

(f(xa), f(xb)) = (f(x)f(a), f(x)f(b)) ∈ δ

for all x ∈ S. Hence (ax, bx) ∈ ε and (xa, xb) ∈ ε. Therefore ε is a congruence on S.

(2) Suppose that δ is complete and f is one-one. For any a, b ∈ S, let z ∈ [ab]ε. Then

(z, ab) ∈ ε and so (f(z), f(ab)) ∈ δ. Since δ is complete, it follows that

f(z) ∈ [f(ab)]δ = [f(a)f(b)]δ = [f(a)]δ[f(b)]δ,

which implies that there exist x, y ∈ S such that f(z) = f(x)f(y) = f(xy), f(x) ∈ [f(a)]δ
and f(y) ∈ [f(b)]δ. Since f is one-one, it follows that z = xy, x ∈ [a]ε and y ∈ [b]ε.

Hence z ∈ [a]ε[b]ε, and so [ab]ε ⊆ [a]ε[b]ε. It follows from (3.2) that [ab]ε = [a]ε[b]ε, and

consequently ε is complete.

(3) Let y ∈ f(ε∗(A)). Then f(x) = y for some x ∈ ε∗(A), and thus [x]ε ∩ A 6= ∅,
say a ∈ [x]ε ∩ A. Then f(a) ∈ f(A) and (f(a), f(x)) ∈ δ, i.e., f(a) ∈ [f(x)]δ. Hence

[f(x)]δ ∩ f(A) 6= ∅, which implies y = f(x) ∈ δ∗(f(A)). Therefore f(ε∗(A)) ⊆ δ∗(f(A)).

Now let y ∈ δ∗(f(A)). Since f is onto, there exists x ∈ S such that y = f(x). Hence

[f(x)]δ ∩ f(A) 6= ∅, say b ∈ [f(x)]δ ∩ f(A). Then there exists a ∈ A such that b = f(a) ∈
f(A) and f(a) = b ∈ [f(x)]δ, i.e., (f(a), f(x)) ∈ δ. Thus (a, x) ∈ ε and so a ∈ [x]ε. Hence

[x]ε ∩ A 6= ∅ which implies x ∈ ε∗(A). Therefore y = f(x) ∈ f(ε∗(A)) which shows that

δ∗(f(A)) ⊆ f(ε∗(A)).

(4) If y ∈ f(ε∗(A)), then y = f(x) for some x ∈ ε∗(A). Hence [x]ε ⊆ A. Now, if

b ∈ [y]δ, then there exists a ∈ S such that f(a) = b ∈ [y]δ = [f(x)]δ. It follows that

a ∈ [x]ε ⊆ A and so that b = f(a) ∈ f(A). Thus [y]δ ⊆ f(A), which induces y ∈ δ∗(f(A)).

Hence f(ε∗(A)) ⊆ δ∗(f(A)).

(5) Assume that f is one-one and let y ∈ δ∗(f(A)). Then there exists x ∈ S such

that y = f(x) and [f(x)]δ = [y]δ ⊆ f(A). Let a ∈ [x]ε. Then f(a) ∈ [f(x)]δ ⊆ f(A),

and so a ∈ A since f is one-one. Hence [x]ε ⊆ A, and thus x ∈ ε∗(A) which implies

that y = f(x) ∈ f(ε∗(A)). Therefore δ∗(f(A)) ⊆ f(ε∗(A)). Combing this and (4) induces

f(ε∗(A)) = δ∗(f(A)).
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Theorem 3.4. Let ε and δ be congruences on S. If λ and µ are fuzzy sets in S, then the

following assertions are valid.

(1) δ∗(λ) ≤ λ ≤ δ∗(λ),

(2) δ∗(λ ∨ µ) = δ∗(λ) ∨ δ∗(µ),

(3) δ∗(λ ∧ µ) = δ∗(λ) ∧ δ∗(µ),

(4) If λ ≤ µ, then δ∗(λ) ≤ δ∗(µ) and δ∗(λ) ≤ δ∗(µ),

(5) δ∗(λ) ∨ δ∗(µ) ≤ δ∗(λ ∨ µ),

(6) δ∗(λ ∧ µ) ≤ δ∗(λ) ∧ δ∗(µ),

(7) If δ ⊆ ε, then ε∗(λ) ≤ δ∗(λ) and ε∗(λ) ≥ δ∗(λ),

(8) (δ ∩ ε)∗(λ) ≤ δ∗(λ) ∧ ε∗(λ),

(9) (δ ∩ ε)∗(λ) ≥ δ∗(λ) ∨ ε∗(λ).

Proof. (1) Since x ∈ [x]δ for all x ∈ S, we have

δ∗(λ)(x) = inf
y∈[x]δ

λ(y) ≤ λ(x) ≤ sup
y∈[x]δ

λ(y) = δ∗(λ)(x)

which proves (1).

(2) For any x ∈ S, we have

δ∗(λ ∨ µ)(x) = sup
y∈[x]δ

(λ ∨ µ)(x) = sup
y∈[x]δ

max{λ(y), µ(y)}

= max

{
sup

y∈[x]δ

λ(y), sup
y∈[x]δ

µ(y)

}

= max{δ∗(λ)(x), δ∗(µ)(x)}
= (δ∗(λ) ∨ δ∗(µ))(x),

and so δ∗(λ ∨ µ) = δ∗(λ) ∨ δ∗(µ).

(3) For any x ∈ S, we have

δ∗(λ ∧ µ)(x) = inf
y∈[x]δ

(λ ∧ µ)(x) = inf
y∈[x]δ

min{λ(y), µ(y)}

= min

{
inf

y∈[x]δ
λ(y), inf

y∈[x]δ
µ(y)

}

= min{δ∗(λ)(x), δ∗(µ)(x)}
= (δ∗(λ) ∧ δ∗(µ))(x),
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which shows that δ∗(λ ∧ µ) = δ∗(λ) ∧ δ∗(µ).

(4) Assume that λ ≤ µ. Then λ ∧ µ = λ and λ ∨ µ = µ. Using (2) and (3), we have

δ∗(µ) = δ∗(λ ∨ µ) = δ∗(λ) ∨ δ∗(µ)

and

δ∗(λ) = δ∗(λ ∧ µ) = δ∗(λ) ∧ δ∗(µ).

Hence δ∗(λ) ≤ δ∗(µ) and δ∗(λ) ≤ δ∗(µ).

(5) Since λ ≤ λ ∨ µ and µ ≤ λ ∨ µ, it follows from (4) that δ∗(λ) ≤ δ∗(λ ∨ µ) and

δ∗(µ) ≤ δ∗(λ ∨ µ). Therefore δ∗(λ) ∨ δ∗(µ) ≤ δ∗(λ ∨ µ).

(6) Since λ ∧ µ ≤ λ and λ ∧ µ ≤ µ, it follows from (4) that δ∗(λ ∧ µ) ≤ δ∗(λ) and

δ∗(λ ∧ µ) ≤ δ∗(µ). Thus δ∗(λ ∧ µ) ≤ δ∗(λ) ∧ δ∗(µ).

(7) Let x ∈ S. If δ ⊆ ε, then [x]δ ⊆ [x]ε. Hence

ε∗(λ)(x) = inf
y∈[x]ε

λ(y) ≤ inf
y∈[x]δ

λ(y) = δ∗(λ)(x)

and

ε∗(λ)(x) = sup
y∈[x]ε

λ(y) ≥ sup
y∈[x]δ

λ(y) = δ∗(λ)(x).

Therefore ε∗(λ) ≤ δ∗(λ) and ε∗(λ) ≥ δ∗(λ).

(8) For any x ∈ S, we get

(δ ∩ ε)∗(λ)(x) = sup
y∈[x]δ∩ε

λ(y) = sup
y∈[x]δ∩[x]ε

λ(y)

≤ min

{
sup

y∈[x]δ

λ(y), sup
y∈[x]ε

λ(y)

}

= min{δ∗(λ)(x), ε∗(λ)(x)}
= (δ∗(λ) ∧ ε∗(λ))(x),

and so (δ ∩ ε)∗(λ) ≤ δ∗(λ) ∧ ε∗(λ).

(9) For any x ∈ S, we obtain

(δ ∩ ε)∗(λ)(x) = inf
y∈[x]δ∩ε

λ(y) = inf
y∈[x]δ∩[x]ε

λ(y)

≥ max

{
inf

y∈[x]δ
λ(y), inf

y∈[x]ε
λ(y)

}

= max{δ∗(λ)(x), ε∗(λ)(x)}
= (δ∗(λ) ∨ ε∗(λ))(x),

which shows that (δ ∩ ε)∗(λ) ≥ δ∗(λ) ∨ ε∗(λ).
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Theorem 3.5. Let δ be a congruence on S. If λ is a fuzzy set in S, then

U(δ∗(λ); t) = δ∗(U(λ; t)) and U(δ∗(λ); t) = δ∗(U(λ; t))

for all t ∈ (0, 1].

Proof. For any t ∈ (0, 1] and x ∈ S, we have

x ∈ U(δ∗(λ); t) ⇔ δ∗(λ)(x) ≥ t

⇔ inf
y∈[x]δ

λ(y) ≥ t

⇔ λ(y) ≥ t for all y ∈ [x]δ

⇔ y ∈ U(λ; t) for all y ∈ [x]δ

⇔ [x]δ ⊆ U(λ; t)

⇔ x ∈ δ∗(U(λ; t)),

and

x ∈ U(δ∗(λ); t) ⇔ δ∗(λ)(x) ≥ t

⇔ sup
y∈[x]δ

λ(y) ≥ t

⇔ λ(y) ≥ t for some y ∈ [x]δ

⇔ y ∈ U(λ; t) for some y ∈ [x]δ

⇔ [x]δ ∩ U(λ; t) 6= ∅
⇔ x ∈ δ∗(U(λ; t)).

Therefore U(δ∗(λ); t) = δ∗(U(λ; t)) and U(δ∗(λ); t) = δ∗(U(λ; t)).

Theorem 3.6. Let δ be a congruence on S and let λ and µ be fuzzy sets in S. Then

(1) δ∗(λ) ◦ δ∗(µ) ≤ δ∗(λ ◦ µ),

(2) δ∗(λ) ◦ δ∗(µ) ≤ δ∗(λ ◦ µ) if δ is complete.
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Proof. For any x ∈ S, we have

(δ∗(λ) ◦ δ∗(µ))(x) = sup
x=yz

min{δ∗(λ)(y), δ∗(µ)(z)}

= sup
x=yz

min

{
sup

a∈[y]δ

λ(a), sup
b∈[z]δ

µ(b)

}

= sup
x=yz

(
sup

a∈[y]δ, b∈[z]δ

min{λ(a), µ(b)}
)

≤ sup
x=yz

(
sup

ab∈[yz]δ

min{λ(a), µ(b)}
)

= sup
ab∈[x]δ

min{λ(a), µ(b)}

= sup
c∈[x]δ, c=ab

min{λ(a), µ(b)}

= sup
c∈[x]δ

(
sup
c=ab

min{λ(a), µ(b)}
)

= sup
c∈[x]δ

(λ ◦ µ)(c)

= δ∗(λ ◦ µ)(x),

which shows that δ∗(λ) ◦ δ∗(µ) ≤ δ∗(λ ◦ µ).

Assume that δ is complete and let x ∈ S. Then

(δ∗(λ) ◦ δ∗(µ))(x) = sup
x=yz

min{δ∗(λ)(y), δ∗(µ)(z)}

= sup
x=yz

min

{
inf

a∈[y]δ
λ(a), inf

b∈[z]δ
µ(b)

}

= sup
x=yz

(
inf

a∈[y]δ, b∈[z]δ
min{λ(a), µ(b)}

)

≤ sup
x=yz

(
inf

a∈[y]δ, b∈[z]δ
sup
ab=cd

min{λ(c), µ(d)}
)

= sup
x=yz

(
inf

a∈[y]δ, b∈[z]δ
(λ ◦ µ)(ab)

)

= sup
x=yz

(
inf

ab∈[yz]δ
(λ ◦ µ)(ab)

)

= sup
x=yz

δ∗(λ ◦ µ)(yz)

= δ∗(λ ◦ µ)(x).

Therefore δ∗(λ) ◦ δ∗(µ) ≤ δ∗(λ ◦ µ).
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Definition 3.7. Let δ be a congruence on S. A fuzzy set λ in S is called a δ-lower (resp.,

δ-upper) rough fuzzy subsemigroup of S if δ∗(λ) (resp., δ∗(λ)) is a fuzzy subsemigroup of

S.

We say that δ(λ) , (δ∗(λ), δ∗(λ)) is a δ-rough fuzzy subsemigroup of S if

(i) δ(λ) is a δ-rough fuzzy set,

(ii) δ∗(λ) and δ∗(λ) are fuzzy subsemigroups of S.

Theorem 3.8. If δ is a congruence on S, then every fuzzy subsemigroup of S is a δ-upper

rough fuzzy subsemigroup of S. Moreover, if δ is a complete congruence on S, then the

δ-lower approximation of a fuzzy subsemigroup of S is a fuzzy subsemigroup of S.

Proof. Let λ be a fuzzy subsemigroup of S. Then U(λ; t) is a subsemigroup of S for all

t ∈ [0, 1]. Using (8) and (4) in Proposition 3.1, we have

δ∗(U(λ; t))δ∗(U(λ; t)) ⊆ δ∗(U(λ; t)U(λ; t)) ⊆ δ∗(U(λ; t)).

It follows from Theorem 3.5 that U(δ∗(λ); t) = δ∗(U(λ; t)) is a subsemigroup of S. There-

fore δ∗(λ; t) is a fuzzy subsemigroup of S.

Now assume that δ is complete. Using (9) and (4) in Proposition 3.1, we have

δ∗(U(λ; t))δ∗(U(λ; t)) ⊆ δ∗(U(λ; t)U(λ; t)) ⊆ δ∗(U(λ; t)).

Hence, by Theorem 3.5, we know that U(δ∗(λ); t) = δ∗(U(λ; t)) is a subsemigroup of S.

Therefore δ∗(λ; t) is a fuzzy subsemigroup of S.

Corollary 3.9. Let δ be a complete congruence on S and λ a fuzzy set in S such that

δ(λ) is a δ-rough fuzzy set. If λ is a fuzzy subsemigroup of S, then δ(λ) , (δ∗(λ), δ∗(λ))

is a δ-rough fuzzy subsemigroup of S.

Theorem 3.10. If δ is a congruence on S, then every fuzzy interior ideal of S is a δ-

upper rough fuzzy interior ideal of S. Moreover, if δ is a complete congruence on S, then

the δ-lower approximation of a fuzzy interior ideal of S is a fuzzy interior of S.

Proof. Note that a fuzzy set λ in S is a fuzzy interior ideal of S if and only if U(λ; t) is

an interior ideal of S for all t ∈ [0, 1]. Hence the proof is similar to the proof of Theorem

3.8.

Theorem 3.11. Let f : S → T be an onto homomorphism of semigroups. For a relation δ

on T , let ε be a relation on S which is given in Theorem 3.3. If the ε-upper approximation

of A is a subsemigroup of S, then the δ-upper approximation of f(A) is a subsemigroup

of T where A is a subset of S. Also, the converse is valid if f is one-one.
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Proof. Assume that ε∗(A) is a subsemigroup of S. Let x, y ∈ δ∗(f(A)). Then x, y ∈
f(ε∗(A)) by Theorem 3.3(3), and so there exist a, b ∈ ε∗(A) such that f(a) = x and

f(b) = y. Then ab ∈ ε∗(A), and thus

xy = f(a)f(b) = f(ab) ∈ f(ε∗(A)) = δ∗(f(A)).

Hence δ∗(f(A)) is a subsemigroup of T . Now, suppose that f is one-one and δ∗(f(A)) is

a subsemigroup of T . Let x, y ∈ ε∗(A). Then f(x), f(y) ∈ f(ε∗(A)) = δ∗(f(A)), and so

f(xy) = f(x)f(y) ∈ δ∗(f(A)) = f(ε∗(A)).

Hence there exists a ∈ ε∗(A) such that f(xy) = f(a). Since f is one-one, it follows that

[a]ε ∩ A 6= ∅ and xy ∈ [a]ε. Thus [xy]ε ∩ A 6= ∅, and so xy ∈ ε∗(A). Therefore ε∗(A) is a

subsemigroup of S.

Theorem 3.12. Let f : S → T be an isomorphism of semigroups. For a congruence δ on

T , let ε be a relation on S which is given in Theorem 3.3. If the ε-lower approximation

of A is a subsemigroup of S, then the δ-lower approximation of f(A) is a subsemigroup

of T where A is a subset of S. Also the converse is true if ε is complete.

Proof. Suppose that ε∗(A) is a subsemigroup of S. Let x, y ∈ δ∗(f(A)). Then x, y ∈
f(ε∗(A)) by Theorem 3.3(5), and thus x = f(a) and y = f(b) for some a, b ∈ ε∗(A). Then

ab ∈ ε∗(A) and

xy = f(a)f(b) = f(ab) ∈ f(ε∗(A)) = δ∗(f(A)).

Therefore δ∗(f(A)) is a subsemigroup of T .

Conversely, assume that δ∗(f(A)) is a subsemigroup of T and ε is complete. Let x, y ∈
ε∗(A). Then f(x), f(y) ∈ f(ε∗(A)) = δ∗(f(A)), and so f(xy) = f(x)f(y) ∈ δ∗(f(A)). It

follows that

f([xy]ε) = f([x]ε[y]ε) = f([x]ε)f([y]ε)

= [f(x)]δ[f(y)]δ ⊆ [f(x)f(y)]δ

= [f(xy)]δ ⊆ f(A)

and so that [xy]ε ⊆ A. Thus xy ∈ ε∗(A), and ε∗(A) is a subsemigroup of S.

Theorem 3.13. If δ is a congruence on S, then the δ-rough fuzzy set of a fuzzy left ideal

is a fuzzy left ideal.

Proof. Let λ be a fuzzy left ideal of S and let x, y ∈ S. Then

δ∗(λ)(xy) = sup
z∈[xy]δ

λ(z) ≥ sup
b∈[y]δ

λ(xb) ≥ sup
b∈[y]δ

λ(b) = δ∗(λ)(y).
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Also, we get

δ∗(λ)(xy) = inf
z∈[xy]δ

λ(z) ≥ inf
b∈[y]δ

λ(xb) ≥ inf
b∈[y]δ

λ(b) = δ∗(λ)(y).

Hence δ(λ) , (δ∗(λ), δ∗(λ)) is a fuzzy left ideal of S.

Similarly, we have

Theorem 3.14. If δ is a congruence on S, then the δ-rough fuzzy set of a fuzzy right

ideal is a fuzzy right ideal.

In the following example, we show that there exists a fuzzy set such that its upper

approximation is a fuzzy left ideal, but it is not a fuzzy left ideal.

Example 3.15. Let S = {a, b, c, d} be a semigroup with the following Cayley table (Table

1).

Table 1: Cayley table of the operation ·

· a b c d

a a b c d

b b b b b

c c c c c

d d c b a

Let δ be a congruence on S such that the δ-congruence classes are the subsets {a},
{d} and {b, c}. Let λ be a fuzzy set in S given by λ(a) = λ(c) = λ(d) = 0.4 and

λ(b) = 0.8. Then λ is not a fuzzy left ideal of S since λ(cb) = λ(c) = 0.4 < 0.8 = λ(b).

The δ-upper approximation of λ is given as follows: δ∗(λ)(a) = δ∗(λ)(d) = 0.4 and

δ∗(λ)(b) = δ∗(λ)(c) = 0.8. It is routine to verify that δ∗(λ) is a fuzzy left ideal of S.

Theorem 3.16. Let δ be a congruence on S. If λ is a fuzzy right ideal and µ is a fuzzy

left ideal of S, then

δ∗(λ ◦ µ) ≤ δ∗(λ) ∧ δ∗(µ) and δ∗(λ ◦ µ) ≤ δ∗(λ) ∧ δ∗(µ). (3.7)
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Proof. Let x ∈ S. Then

δ∗(λ ◦ µ)(x) = sup
y∈[x]δ

(λ ◦ µ)(y)

= sup
y∈[x]δ

(
sup
y=ab

min{λ(a), µ(b)}
)

≤ sup
y∈[x]δ

(
sup
y=ab

min{λ(ab), µ(ab)}
)

= sup
y∈[x]δ

min{λ(y), µ(y)}

≤ sup
a∈[x]δ, b∈[x]δ

min{λ(a), µ(b)}

= min

{
sup

a∈[x]δ

λ(a), sup
b∈[x]δ

µ(b)

}

= min{δ∗(λ)(x), δ∗(µ)(x)}
= (δ∗(λ) ∧ δ∗(µ)) (x),

and

δ∗(λ ◦ µ)(x) = inf
y∈[x]δ

(λ ◦ µ)(y)

= inf
y∈[x]δ

(
sup
y=ab

min{λ(a), µ(b)}
)

≤ inf
y∈[x]δ

(
sup
y=ab

min{λ(ab), µ(ab)}
)

= inf
y∈[x]δ

min{λ(y), µ(y)}

= min

{
inf

a∈[x]δ
λ(a), inf

b∈[x]δ
µ(b)

}

= min{δ∗(λ)(x), δ∗(µ)(x)}
= (δ∗(λ) ∧ δ∗(µ)) (x).

Therefore δ∗(λ ◦ µ) ≤ δ∗(λ) ∧ δ∗(µ) and δ∗(λ ◦ µ) ≤ δ∗(λ) ∧ δ∗(µ).

Theorem 3.17. Let δ be a congruence on S and let λ and µ be a fuzzy right ideal and

a fuzzy left ideal, respectively, of S. If S is regular, then δ∗(λ ◦ µ) = δ∗(λ) ∧ δ∗(µ) and

δ∗(λ ◦ µ) = δ∗(λ) ∧ δ∗(µ).

Proof. Let a be any element of S. Then a = aca for some c ∈ S since S is regular. Hence
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we have

δ∗(λ ◦ µ)(x) = sup
a∈[x]δ

(λ ◦ µ)(a)

= sup
a∈[x]δ

(
sup
a=yz

min{λ(y), µ(z)}
)

≥ sup
a∈[x]δ

min{λ(ac), µ(a)}

≥ sup
a∈[x]δ

min{λ(a), µ(a)}

= min

{
sup

a∈[x]δ

λ(a), sup
a∈[x]δ

µ(a)

}

= min{δ∗(λ)(x), δ∗(µ)(x)}
= (δ∗(λ) ∧ δ∗(µ)) (x)

for all x ∈ S. Hence δ∗(λ◦µ) ≥ δ∗(λ)∧δ∗(µ). Similarly, we have δ∗(λ◦µ) ≥ δ∗(λ)∧δ∗(µ).

Therefore δ∗(λ ◦ µ) = δ∗(λ) ∧ δ∗(µ) and δ∗(λ ◦ µ) = δ∗(λ) ∧ δ∗(µ) by Theorem 3.16.
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Neutrosophic N -structures and their applications 
in semigroups

Abstract The notion of neutrosophic N -structure is introduced, and applied it to semi-

group. The notions of neutrosophic N -subsemigroup, neutrosophic N -product and ε-

neutrosophic N -subsemigroup are introduced, and several properties are investigated.

Conditions for neutrosophic N -structure to be neutrosophic N -subsemigroup are pro-

vided. Using neutrosophic N -product, characterization of neutrosophic N -subsemigroup

is discussed. Relations between neutrosophic N -subsemigroup and ε-neutrosophic N -

subsemigroup are discussed. We show that the homomorphic preimage of neutrosophic

N -subsemigroup is a neutrosophic N -subsemigroup, and the onto homomorphic image of

neutrosophic N -subsemigroup is a neutrosophic N -subsemigroup.

Keywords: Neutrosophic N -structure, neutrosophic N -subsemigroup,

ε-neutrosophic N -subsemigroup, neutrosophic N -product.

2010 Mathematics Subject Classification. 03B99, 03E99, 20M12.

1 Introduction

Zadeh [9] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy

set. As a generalization of fuzzy sets, Atanassov [2] introduced the degree of nonmem-

bership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache in-

troduced the degree of indeterminacy/neutrality (i) as independent component in 1995

(published in 1998) and defined the neutrosophic set on three components

(t, i, f) = (truth, indeterminacy, falsehood).

For more detail, refer to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm.

The concept of neutrosophic set (NS) developed by Smarandache [7] and Smarandache

[8] is a more general platform which extends the concepts of the classic set and fuzzy

set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set

theory is applied to various part (refer to the site

http://fs.gallup.unm.edu/neutrosophy.htm).
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A (crisp) set A in a universe X can be defined in the form of its characteristic function

µA : X → {0, 1} yielding the value 1 for elements belonging to the set A and the value 0

for elements excluded from the set A. So far most of the generalization of the crisp set have

been conducted on the unit interval [0, 1] and they are consistent with the asymmetry

observation. In other words, the generalization of the crisp set to fuzzy sets relied on

spreading positive information that fit the crisp point {1} into the interval [0, 1]. Because

no negative meaning of information is suggested, we now feel a need to deal with negative

information. To do so, we also feel a need to supply mathematical tool. To attain such

object, Jun et al. [3] introduced a new function which is called negative-valued function,

and constructed N -structures. This structure is applied to BE-algebra, BCK/BCI-

algebra and BCH-algebra etc. (see [1], [3], [4], [5]).

In this paper, we introduce the notion of neutrosophic N -structure and applied it to

semigroup. We introduce the notion of neutrosophic N -subsemi-group and investigate

several properties. We provide conditions for neutrosophic N -structure to be neutro-

sophic N -subsemigroup. We define neutrosophic N -product, and give characterization

of neutrosophic N -subsemigroup by using neutrosophic N -product. We also introduce ε-

neutrosophic subsemigroup, and investigate relations between neutrosophic subsemigroup

and ε-neutrosophic subsemigroup. We show that the homomorphic preimage of neutro-

sophic N -subsemigroup is a neutrosophic N -subsemi-group, and the onto homomorphic

image of neutrosophic N -subsemigroup is a neutrosophic N -subsemigroup.

2 Preliminaries

Let X be a semigroup. Let A and B be subsets of X. Then the multiplication of A and

B is defined as follows:

AB = {ab ∈ X | a ∈ A, b ∈ B}.
By a subsemigroup of X we mean a nonempty subset A of X such that A2 ⊆ A. We

consider the empty set ∅ is always a subsemigroup of X.

We refer the reader to the book [6] for further information regarding fuzzy semigroups.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,

sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,

inf{ai | i ∈ Λ} otherwise.

For any real numbers a and b, we also use a∨ b and a∧ b instead of
∨{a, b} and

∧{a, b},
respectively.
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3 Neutrosophic N -structures

Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We say that

an element of F(X, [−1, 0]) is a negative-valued function from X to [−1, 0] (briefly, N -

function on X). By an N -structure we mean an ordered pair (X, f) of X and an N -

function f on X. In what follows, let X denote the nonempty universe of discourse unless

otherwise specified.

Definition 3.1. A neutrosophic N -structure over X is defined to be the structure

XN :=
X

(TN , IN , FN)
=

{
x

(TN(x), IN(x), FN(x))
| x ∈ X

}
(3.1)

where TN , IN and FN are N -functions on X which are called the negative truth member-

ship function, the negative indeterminacy membership function and the negative falsity

membership function, respectively, on X.

Note that every neutrosophic N -structure XN over X satisfies the condition:

(∀x ∈ X) (−3 ≤ TN(x) + IN(x) + FN(x) ≤ 0) .

Example 3.2. Consider a universe of discourse X = {x, y, z}. We know that

XN =

{
x

(−0.7,−0.5,−0.1)
,

y

(−0.2,−0.3,−0.4)
,

z

(−0.3,−0.6,−0.1)

}

is a neutrosophic N -structure over X.

Definition 3.3. Let XN := X
(TN ,IN ,FN )

and XM := X
(TM ,IM ,FM )

be neutrosophicN -structures

over X. We say that XM is a neutrosophic N -substructure over X, denoted by XN ⊆ XM,

if it satisfies:

(∀x ∈ X)(TN(x) ≥ TM(x), IN(x) ≤ IM(x), FN(x) ≥ FM(x)).

If XN ⊆ XM and XM ⊆ XN, we say that XN = XM.

Definition 3.4. Let XN := X
(TN ,IN ,FN )

and XM := X
(TM ,IM ,FM )

be neutrosophicN -structures

over X.

(1) The union of XN and XM is defined to be a neutrosophic N -structure

XN∪M = (X; TN∪M , IN∪M , FN∪M)

where

TN∪M(x) =
∧{TN(x), TM(x)}, IN∪M(x) =

∨{IN(x), IM(x)} and

FN∪M(x) =
∧{FN(x), FM(x)}

for all x ∈ X.

(2) The intersection of XN and XM is defined to be a neutrosophic N -structure
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XN∩M = (X; TN∩M , IN∩M , FN∩M)

where

TN∩M(x) =
∨{TN(x), TM(x)}, IN∩M(x) =

∧{IN(x), IM(x)} and

FN∩M(x) =
∨{FN(x), FM(x)}

for all x ∈ X.

Definition 3.5. Given a neutrosophic N -structure XN := X
(TN ,IN ,FN )

over X, the comple-

ment of XN is defined to be a neutrosophic N -structure

XNc :=
X

(TNc , INc , FNc)

over X where

TNc(x) = −1− TN(x), INc(x) = −1− IN(x) and FNc(x) = −1− FN(x)

for all x ∈ X.

Example 3.6. Let X = {a, b, c} be a universe of discourse and let XN be the neutrosophic

N -structure over X in Example 3.2. Let XM be a neutrosophic N -structure over X which

is given by

XM =

{
x

(−0.3,−0.5,−0.2)
,

y

(−0.4,−0.2,−0.2)
,

z

(−0.5,−0.7,−0.8)

}
.

The union and intersection of XN and XM are given as follows respectively:

XN∪M =

{
x

(−0.7,−0.5,−0.2)
,

y

(−0.4,−0.3,−0.4)
,

z

(−0.5,−0.7),−0.8)

}

and

XN∩M =

{
x

(−0.3,−0.5,−0.1)
,

y

(−0.2,−0.2,−0.2)
,

z

(−0.3,−0.6,−0.1)

}
.

The complement of XN is given by

XMc =

{
x

(−0.7,−0.5,−0.8)
,

y

(−0.6,−0.8,−0.8)
,

z

(−0.5,−0.3,−0.2)

}
.

4 Applications in semigroups

In this section, we take a semigroup X as the universe of discourse unless otherwise

specified.
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Definition 4.1. A neutrosophic N -structure XN over X is called a neutrosophic N -

subsemigroup of X if the following condition is valid:

(∀x, y ∈ X)




TN(xy) ≤ ∨{TN(x), TN(y)}
IN(xy) ≥ ∧{IN(x), IN(y)}
FN(xy) ≤ ∨{FN(x), FN(y)}


 . (4.1)

Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such that

−3 ≤ α + β + γ ≤ 0. Consider the following sets.

T α
N := {x ∈ X | TN(x) ≤ α},

Iβ
N := {x ∈ X | IN(x) ≥ β},

F γ
N := {x ∈ X | FN(x) ≤ γ}.

(4.2)

The set

XN(α, β, γ) := {x ∈ X | TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ}
is called a (α, β, γ)-level set of XN. Note that

XN(α, β, γ) = Tα
N ∩ Iβ

N ∩ F γ
N .

Theorem 4.2. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be

such that −3 ≤ α + β + γ ≤ 0. If XN is a neutrosophic N -subsemigroup of X, then the

(α, β, γ)-level set of XN is a subsemigroup of X whenever it is nonempty.

Proof. Assume that XN(α, β, γ) 6= ∅ for α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Let

x, y ∈ XN(α, β, γ). Then TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ, TN(y) ≤ α, IN(y) ≥ β and

FN(y) ≤ γ. It follows from (4.1) that

TN(xy) ≤ ∨{TN(x), TN(y)} ≤ α,

IN(xy) ≥ ∧{IN(x), IN(y)} ≥ β, and

FN(xy) ≤ ∨{FN(x), FN(y)} ≤ γ.

Hence xy ∈ XN(α, β, γ), and therefore XN(α, β, γ) is a subsemigroup of X.

Theorem 4.3. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be

such that −3 ≤ α + β + γ ≤ 0. If Tα
N , Iβ

N and F γ
N are subsemigroups of X, then XN is a

neutrosophic N -subsemigroup of X.

Proof. Assume that there are a, b ∈ X such that TN(ab) >
∨{TN(a), TN(b)}. Then

TN(ab) > tα ≥
∨{TN(a), TN(b)} for some tα ∈ [−1, 0). Hence a, b ∈ T tα

N but ab /∈ T tα
N ,

which is a contradiction. Thus

TN(xy) ≤ ∨{TN(x), TN(y)}
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for all x, y ∈ X. If IN(ab) <
∧{IN(a), IN(b)} for some a, b ∈ X, then a, b ∈ I

tβ
N and

ab /∈ I
tβ
N for tβ :=

∧ {IN(a), IN(b)}. This is a contradiction, and so

IN(xy) ≥ ∧ {IN(x), IN(y)}
for all x, y ∈ X. Now, suppose that there exist a, b ∈ X and tγ ∈ [−1, 0) such that

FN(ab) > tγ ≥
∨
{FN(a), FN(b)}.

Then a, b ∈ F
tγ
N and ab /∈ F

tγ
N , which is a contradiction. Hence

FN(xy) ≤
∨
{FN(x), FN(y)}

for all x, y ∈ X. Therefore XN is a neutrosophic N -subsemigroup of X.

Theorem 4.4. The intersection of two neutrosophic N -subsemigroups is also a neutro-

sophic N -subsemigroup.

Proof. Let XN := X
(TN ,IN ,FN )

and XM := X
(TM ,IM ,FM )

be neutrosophic N -subsemi-groups of

X. For any x, y ∈ X, we have

TN∩M(xy) =
∨
{TN(xy), TM(xy)}

≤
∨ {∨

{TN(x), TN(y)} ,
∨
{TM(x), TM(y)}

}

=
∨ {∨

{TN(x), TM(x)} ,
∨
{TN(y), TM(y)}

}

=
∨
{TN∩M(x), TN∩M(y)} ,

IN∩M(xy) =
∧
{IN(xy), IM(xy)}

≥
∧ {∧

{IN(x), IN(y)} ,
∧
{IM(x), IM(y)}

}

=
∧ {∧

{IN(x), IM(x)} ,
∧
{IN(y), IM(y)}

}

=
∧
{IN∩M(x), IN∩M(y)}

and

FN∩M(xy) =
∨
{FN(xy), FM(xy)}

≤
∨ {∨

{FN(x), FN(y)} ,
∨
{FM(x), FM(y)}

}

=
∨ {∨

{FN(x), FM(x)} ,
∨
{FN(y), FM(y)}

}

=
∨
{FN∩M(x), FN∩M(y)}

for all x, y ∈ X. Hence XN∩M is a neutrosophic N -subsemigroup of X.
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Corollary 4.5. If {XNi
| i ∈ N} is a family of neutrosophic N -subsemigroups of X, then

so is X∩Ni
.

Let XN := X
(TN ,IN ,FN )

and XM := X
(TM ,IM ,FM )

be neutrosophic N -structures over X.

The neutrosophic N -product of XN and XM is defined to be a neutrosophic N -structure

over X

XN ¯XM =
X

TN◦M , IN◦M , FN◦M

=

{
x

TN◦M(x), IN◦M(x), FN◦M(x)
| x ∈ X

}

where

TN◦M(x) =





∧
x=yz

{TN(y) ∨ TM(z)} if ∃ y, z ∈ X such that x = yz

0 otherwise,

IN◦M(x) =





∨
x=yz

{IN(y) ∧ IM(z)} if ∃ y, z ∈ X such that x = yz

− 1 otherwise

and

FN◦M(x) =





∧
x=yz

{FN(y) ∨ FM(z)} if ∃ y, z ∈ X such that x = yz

0 otherwise.

For any x ∈ X, the element x
TN◦M (x), IN◦M (x), FN◦M (x)

is simply denoted by

(XN ¯XM) (x) := (TN◦M(x), IN◦M(x), FN◦M(x))

for the sake of convenience.

Theorem 4.6. A neutrosophic N -structure XN over X is a neutrosophic N -subsemi-

group of X if and only if XN ¯XN ⊆ XN.

Proof. Assume that XN is a neutrosophic N -subsemigroup of X and let x ∈ X. If x 6= yz

for all x, y ∈ X, then clearly XN¯XN ⊆ XN. Assume that there exist a, b ∈ X such that

x = ab.

TN◦N(x) =
∧

x=ab

{TN(a) ∨ TN(b)} ≥
∧

x=ab

TN(ab) = TN(x),

IN◦N(x) =
∨

x=ab

{IN(a) ∧ IN(b)} ≤
∨

x=ab

IN(ab) = IN(x),
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and

FN◦N(x) =
∧

x=ab

{FN(a) ∨ FN(b)} ≥
∧

x=ab

FN(ab) = FN(x).

Therefore XN ¯XN ⊆ XN.

Conversely, let XN be any neutrosophicN -structure over X such that XN¯XN ⊆ XN.

Let x and y be any elements of X and let a = xy. Then

TN(xy) = TN(a) ≤ TN◦N(a) =
∧

a=bc

{TN(b) ∨ TN(c)} ≤ TN(x) ∨ TN(y),

IN(xy) = IN(a) ≥ IN◦N(a) =
∨

a=bc

{IN(b) ∧ IN(c)} ≥ IN(x) ∧ IN(y),

and

FN(xy) = FN(a) ≤ FN◦N(a) =
∧

a=bc

{FN(b) ∨ FN(c)} ≤ FN(x) ∨ FN(y).

Therefore XN is a neutrosophic N -subsemigroup of X.

Since [−1, 0] is a completely distributive lattice with respect to the usual ordering, we

have the following theorem.

Theorem 4.7. If {XNi
| i ∈ N} is a family of neutrosophic N -subsemigroups of X, then

({XNi
| i ∈ N},⊆) forms a complete distributive lattice.

Theorem 4.8. Let X be a semigroup with identity e and let XN := X
(TN ,IN ,FN )

be a

neutrosophic N -structure over X such that

(∀x ∈ X) (XN(e) ≥ XN(x)) ,

that is, TN(e) ≤ TN(x), IN(e) ≥ IN(x) and FN(e) ≤ FN(x) for all x ∈ X. If XN

is a neutrosophic N -subsemigroup of X, then XN is neutrosophic idempotent, that is,

XN ¯XN = XN.

Proof. For any x ∈ X, we have

TN◦N(x) =
∧

x=yz

{TN(y) ∨ TN(z)} ≤ TN(x) ∨ TN(e) = TN(x),

IN◦N(x) =
∨

x=yz

{IN(y) ∧ IN(z)} ≥ IN(x) ∧ IN(e) = IN(x)

and

FN◦N(x) =
∧

x=yz

{FN(y) ∨ FN(z)} ≤ FN(x) ∨ FN(e) = FN(x).

This shows that XN ⊆ XN ¯XN. Since XN ⊇ XN ¯XN by Theorem 4.6, we know that

XN is neutrosophic idempotent.
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Definition 4.9. A neutrosophic N -structure XN over X is called an ε-neutrosophic N -

subsemigroup of X if the following condition is valid:

(∀x, y ∈ X)




TN(xy) ≤ ∨{TN(x), TN(y), εT}
IN(xy) ≥ ∧{IN(x), IN(y), εI}
FN(xy) ≤ ∨{FN(x), FN(y), εF}


 . (4.3)

where εT , εI , εF ∈ [−1, 0] such that −3 ≤ εT + εI + εF ≤ 0.

Example 4.10. Let X = {e, a, b, c} be a semigroup with the Cayley table which is given

in Table 1.

Table 1: Cayley table for the binary operation “·”
· e a b c

e e e e e

a e a e a

b e e b b

c e a b c

Let XN be a neutrosophic N -structure over X which is given as follows:

XN =
{ e

(−0.4,−0.3,−0.25)
,

a

(−0.3,−0.5,−0.25)
,

b

(−0.2,−0.3,−0.2)
,

c

(−0.1,−0.7,−0.1)

}
.

Then XN is an ε-neutrosophic N -subsemigroup of X with ε = (−0.4 −0.2, −0.3).

Proposition 4.11. Let XN be an ε-neutrosophic N -subsemigroup of X. If XN(x) ≤
(εT , εI , εF ), that is, TN(x) ≥ εT , IN(x) ≤ εI and FN(x) ≥ εF , for all x ∈ X, then XN is

a neutrosophic N -subsemigroup of X.

Proof. Straightforward.

Theorem 4.12. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0]

be such that −3 ≤ α +β + γ ≤ 0. If XN is an ε-neutrosophic N -subsemigroup of X, then

the (α, β, γ)-level set of XN is a subsemigroup of X whenever (α, β, γ) ≤ (εT , εI , εF ), that

is, α ≥ εT , β ≤ εI and γ ≥ εF .
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Proof. Assume that XN(α, β, γ) 6= ∅ for α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Let

x, y ∈ XN(α, β, γ). Then TN(x) ≤ α, IN(x) ≥ β, FN(x) ≤ γ, TN(y) ≤ α, IN(y) ≥ β and

FN(y) ≤ γ. It follows from (4.3) that

TN(xy) ≤ ∨{TN(x), TN(y), εT} ≤
∨{α, εT} = α,

IN(xy) ≥ ∧{IN(x), IN(y), εI} ≥
∧{β, εI} = β, and

FN(xy) ≤ ∨{FN(x), FN(y), εF} ≤
∨{γ, εF} = γ.

Hence xy ∈ XN(α, β, γ), and therefore XN(α, β, γ) is a subsemigroup of X.

Theorem 4.13. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0]

be such that −3 ≤ α + β + γ ≤ 0. If Tα
N , Iβ

N and F γ
N are subsemigroups of X for all

εT , εI , εF ∈ [−1, 0] with −3 ≤ εT + εI + εF ≤ 0 and (α, β, γ) ≤ (εT , εI , εF ), then XN is an

ε-neutrosophic N -subsemigroup of X.

Proof. Assume that there are a, b ∈ X such that

TN(ab) >
∨
{TN(a), TN(b), εT}.

Then TN(ab) > tα ≥
∨{TN(a), TN(b), εT} for some tα ∈ [−1, 0). It follows that a, b ∈ T tα

N ,

ab /∈ T tα
N and tα ≥ εT . This is a contradiction since T tα

N is a subsemigroup of X by

hypothesis. Thus

TN(xy) ≤ ∨{TN(x), TN(y), εT}
for all x, y ∈ X. Suppose that IN(ab) <

∧{IN(a), IN(b), εI} for some a, b ∈ X. If we take

tβ :=
∧ {IN(a), IN(b), εI}, then a, b ∈ I

tβ
N , ab /∈ I

tβ
N and tβ ≤ εI . This is a contradiction,

and so

IN(xy) ≥ ∧ {IN(x), IN(y), εI}
for all x, y ∈ X. Now, suppose that there exist a, b ∈ X and tγ ∈ [−1, 0) such that

FN(ab) > tγ ≥
∨
{FN(a), FN(b), εF}.

Then a, b ∈ F
tγ
N , ab /∈ F

tγ
N and tγ ≥ εF , which is a contradiction. Hence

FN(xy) ≤
∨
{FN(x), FN(y), εF}

for all x, y ∈ X. Therefore XN is an ε-neutrosophic N -subsemigroup of X.

Theorem 4.14. For any εT , εI , εF , δT , δI , δF ∈ [−1, 0] with −3 ≤ εT + εI + εF ≤ 0

and −3 ≤ δT + δI + δF ≤ 0, if XN and XM are an ε-neutrosophic N -subsemigroup

and a δ-neutrosophic N -subsemigroup, respectively, of X, then their intersection is a ξ-

neutrosophic N -subsemigroup of X for ξ := ε ∧ δ, that is, (ξT , ξI , ξF ) = (εT ∨ δT , εI ∧
δI , εF ∨ δF ).
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Proof. For any x, y ∈ X, we have

TN∩M(xy) =
∨
{TN(xy), TM(xy)}

≤
∨ {∨

{TN(x), TN(y), εT},
∨
{TM(x), TM(y), δT}

}

≤
∨ {∨

{TN(x), TN(y), ξT},
∨
{TM(x), TM(y), ξT}

}

=
∨ {∨

{TN(x), TM(x), ξT},
∨
{TN(y), TM(y), ξT}

}

=
∨ {∨

{TN(x), TM(x)},
∨
{TN(y), TM(y)}, ξT

}

=
∨
{TN∩M(x), TN∩M(y), ξT} ,

IN∩M(xy) =
∧
{IN(xy), IM(xy)}

≥
∧ {∧

{IN(x), IN(y), εI},
∧
{IM(x), IM(y), δI}

}

≥
∧ {∧

{IN(x), IN(y), ξI},
∧
{IM(x), IM(y), ξI}

}

=
∧ {∧

{IN(x), IM(x), ξI},
∧
{IN(y), IM(y), ξI}

}

=
∧ {∧

{IN(x), IM(x)},
∧
{IN(y), IM(y)}, ξI

}

=
∧
{IN∩M(x), IN∩M(y), ξI} ,

and

FN∩M(xy) =
∨
{FN(xy), FM(xy)}

≤
∨ {∨

{FN(x), FN(y), εF},
∨
{FM(x), FM(y), δF}

}

≤
∨ {∨

{FN(x), FN(y), ξF},
∨
{FM(x), FM(y), ξF}

}

=
∨ {∨

{FN(x), FM(x), ξF},
∨
{FN(y), FM(y), ξF}

}

=
∨ {∨

{FN(x), FM(x)},
∨
{FN(y), FM(y)}, ξF

}

=
∨
{FN∩M(x), FN∩M(y), ξF} .

Therefore XN∩M is a ξ-neutrosophic N -subsemigroup of X.

Theorem 4.15. Let XN be an ε-neutrosophic N -subsemigroup of X. If

κ := (κT , κI , κF ) =

( ∨
x∈X

{TN(x)},
∧
x∈X

{IN(x)},
∨
x∈X

{FN(x)}
)

,
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then the set

Ω := {x ∈ X | TN(x) ≤ κT ∨ εT , IN(x) ≥ κI ∧ εI , FN(x) ≤ κF ∨ εF}

is a subsemigroup of X.

Proof. Let x, y ∈ Ω for any x, y ∈ X. Then

TN(x) ≤ κT ∨ εT =
∨

x∈X

{TN(x)} ∨ εT ,

IN(x) ≥ κI ∧ εI =
∧

x∈X

{IN(x)} ∧ εI ,

FN(x) ≤ κF ∨ εF =
∨

x∈X

{FN(x)} ∨ εF ,

TN(y) ≤ κT ∨ εT =
∨

y∈X

{TN(y)} ∨ εT ,

IN(y) ≥ κI ∧ εI =
∧

y∈X

{IN(y)} ∧ εI ,

FN(y) ≤ κF ∨ εF =
∨

y∈X

{FN(y)} ∨ εF .

It follows from (4.3) that

TN(xy) ≤
∨
{TN(x), TN(y), εT}

≤
∨
{κT ∨ εT , κT ∨ εT , εT}

= κT ∨ εT ,

IN(xy) ≥
∧
{IN(x), IN(y), εI}

≥
∧
{κI ∧ εI , κI ∧ εI , εI}

= κI ∧ εI

and

FN(xy) ≤
∨
{FN(x), FN(y), εF}

≤
∨
{κF ∨ εF , κF ∨ εF , εF}

= κF ∨ εF ,

and so that xy ∈ Ω. Therefore Ω is a subsemigroup of X.

For a map f : X → Y of semigroups and a neutrosophic N -structure XN := Y
(TN ,IN ,FN )

over Y and ε = (εT , εI , εF ) with −3 ≤ εT +εI +εF ≤ 0, define a neutrosophic N -structure

Xε
N := X

(T ε
N ,Iε

N ,F ε
N )

over X by

T ε
N : X → [−1, 0], x 7→ ∨ {TN(f(x)), εT},

F ε
N : X → [−1, 0], x 7→ ∧ {IN(f(x)), εI},

F ε
N : X → [−1, 0], x 7→ ∨ {FN(f(x)), εF}.
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Theorem 4.16. Let f : X → Y be a homomorphism of semigroups. If a neutrosophic

N -structure XN := Y
(TN ,IN ,FN )

over Y is an ε-neutrosophic N -subsemigroup of Y , then

Xε
N := X

(T ε
N ,Iε

N ,F ε
N )

is an ε-neutrosophic N -subsemigroup of X.

Proof. For any x, y ∈ X, we have

T ε
N(xy) =

∨
{TN(f(xy)), εT}

=
∨
{TN(f(x)f(y)), εT}

≤
∨ {∨

{TN(f(x)), TN(f(y)), εT}, εT

}

=
∨ {∨

{TN(f(x)), εT},
∨
{TN(f(y)), εT}, εT

}

=
∨
{T ε

N(x), T ε
N(y), εT} ,

Iε
N(xy) =

∧
{IN(f(xy)), εI}

=
∧
{IN(f(x)f(y)), εI}

≥
∧ {∧

{IN(f(x)), IN(f(y)), εI}, εI

}

=
∧ {∧

{IN(f(x)), εI},
∧
{IN(f(y)), εI}, εI

}

=
∧
{Iε

N(x), Iε
N(y), εI} ,

and

F ε
N(xy) =

∨
{FN(f(xy)), εF}

=
∨
{FN(f(x)f(y)), εF}

≤
∨ {∨

{FN(f(x)), FN(f(y)), εF}, εF

}

=
∨ {∨

{FN(f(x)), εF},
∨
{FN(f(y)), εF}, εF

}

=
∨
{F ε

N(x), F ε
N(y), εF} .

Therefore Xε
N := X

(T ε
N ,Iε

N ,F ε
N )

is an ε-neutrosophic N -subsemigroup of X.

Let f : X → Y be a function of sets. If YM := Y
(TM ,IM ,FM )

is a neutrosophic N -

structures over Y , then the preimage of YM under f is defined to be a neutrosophic

N -structures

f−1 (YM) =
X

(f−1(TM), f−1(IM), f−1(FM))

over X where f−1(TM)(x) = TM(f(x)), f−1(IM)(x) = IM(f(x)) and f−1(FM)(x) =

FM(f(x)) for all x ∈ X.
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Theorem 4.17. Let f : X → Y be a homomorphism of semigroups. If YM := Y
(TM ,IM ,FM )

is a neutrosophic N -subsemigroup of Y , then the preimage of YM under f is a neutrosophic

N -subsemigroup of X.

Proof. Let

f−1 (YM) =
X

(f−1(TM), f−1(IM), f−1(FM))

be the preimage of YM under f . For any x, y ∈ X, we have

f−1(TM)(xy) = TM(f(xy)) = TM(f(x)f(y))

≤
∨
{TM(f(x)), TM(f(y))}

=
∨ {

f−1(TM)(x), f−1(TM)(y)
}

,

f−1(IM)(xy) = IM(f(xy)) = IM(f(x)f(y))

≥
∧
{IM(f(x)), IM(f(y))}

=
∧ {

f−1(IM)(x), f−1(IM)(y)
}

and

f−1(FM)(xy) = FM(f(xy)) = FM(f(x)f(y))

≤
∨
{FM(f(x)), FM(f(y))}

=
∨ {

f−1(FM)(x), f−1(FM)(y)
}

.

Therefore f−1 (YM) is a neutrosophic N -subsemigroup of X.

Let f : X → Y be an onto function of sets. If XN := X
(TN ,IN ,FN )

is a neutrosophic

N -structures over X, then the image of XN under f is defined to be a neutrosophic

N -structures

f (XN) =
Y

(f(TN), f(IN), f(FN))

over Y where

f(TN)(y) =
∧

x∈f−1(y)

TN(x),

f(IN)(y) =
∨

x∈f−1(y)

IN(x),

f(FN)(y) =
∧

x∈f−1(y)

FN(x).
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Theorem 4.18. For an onto homomorphism f : X → Y of semigroups, let XN :=
X

(TN ,IN ,FN )
be a neutrosophic N -structure over X such that

(∀T ⊆ X) (∃x0 ∈ T )




TN(x0) =
∧

z∈T

TN(z)

IN(x0) =
∨

z∈T

IN(z)

FN(x0) =
∧

z∈T

FN(z)




. (4.4)

If XN is a neutrosophic N -subsemigroup of X, then the image of XN under f is a neu-

trosophic N -subsemigroup of Y .

Proof. Let

f (XN) =
Y

(f(TN), f(IN), f(FN))

be the image of XN under f . Let a, b ∈ Y . Then f−1(a) 6= ∅ and f−1(a) 6= ∅ in X, which

imply from (4.4) that there are xa ∈ f−1(a) and xb ∈ f−1(b) such that

TN(xa) =
∧

z∈f−1(a)

TN(z), IN(xa) =
∨

z∈f−1(a)

IN(z), FN(xa) =
∧

z∈f−1(a)

FN(z),

TN(xb) =
∧

w∈f−1(b)

TN(w), IN(xb) =
∨

w∈f−1(b)

IN(w), FN(xb) =
∧

w∈f−1(b)

FN(w).

Hence

f(TN)(ab) =
∧

x∈f−1(ab)

TN(x) ≤ TN(xaxb)

≤
∨
{TN(xa), TN(xb)}

=
∨





∧

z∈f−1(a)

TN(z),
∧

w∈f−1(b)

TN(w)





=
∨
{f(TN)(a), f(TN)(b)} ,

f(IN)(ab) =
∨

x∈f−1(ab)

IN(x) ≥ IN(xaxb)

≥
∧
{IN(xa), IN(xb)}

=
∧





∨

z∈f−1(a)

IN(z),
∨

w∈f−1(b)

IN(w)





=
∧
{f(IN)(a), f(IN)(b)} ,
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and

f(FN)(ab) =
∧

x∈f−1(ab)

FN(x) ≤ FN(xaxb)

≤
∨
{FN(xa), FN(xb)}

=
∨





∧

z∈f−1(a)

FN(z),
∧

w∈f−1(b)

FN(w)





=
∨
{f(FN)(a), f(FN)(b)} .

Therefore f (XN) is a neutrosophic N -subsemigroup of Y .

Conclusions

In order to deal with the negative meaning of information, Jun et al. [3] have introduced

a new function which is called negative-valued function, and constructed N -structures.

The concept of neutrosophic set (NS) has been developed by Smarandache in [7] and

[8] as a more general platform which extends the concepts of the classic set and fuzzy

set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. In this article,

we have introduced the notion of neutrosophic N -structure and applied it to semigroup.

We have introduced the notion of neutrosophic N -subsemi-group and investigated several

properties. We have provided conditions for neutrosophic N -structure to be neutrosophic

N -subsemigroup. We have defined neutrosophic N -product, and gave characterization of

neutrosophicN -subsemigroup by using neutrosophicN -product. We also have introduced

ε-neutrosophic subsemigroup, and investigated relations between neutrosophic subsemi-

group and ε-neutrosophic subsemigroup. We have shown that the homomorphic preimage

of neutrosophic N -subsemigroup is a neutrosophic N -subsemigroup, and the onto homo-

morphic image of neutrosophic N -subsemigroup is a neutrosophic N -subsemigroup.
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