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PREFACE 
 
 
 
 
 
 
Authors in this book construct interval bistructures using only 
interval groups, interval loops, interval semigroups and interval 
groupoids.  

Several results enjoyed by these interval bistructures are 
described.  By this method, we obtain interval bistructures 
which are associative or non associative or quasi associative.  
The term quasi is used mainly in the interval bistructure B = B1 
∪ B2 (or in n-interval structure) if one of B1 (or B2) enjoys an 
algebraic property and the other does not enjoy that property 
(one section of interval structure satisfies an algebraic property 
and the remaining section does not satisfy that particular 
property). The term quasi and semi are used in a synonymous 
way. 

This book has four chapters.  In the first chapter interval 
bistructures (biinterval structures) such as interval bisemigroup, 
interval bigroupoid, interval bigroup and interval biloops are 
introduced. Throughout this book we work only with the 
intervals of the form [0, a] where a ∈ Zn or Z+ ∪ {0} or R+ ∪ 
{0} or Q+ ∪ {0} unless otherwise specified. Also interval 
bistructures of the form interval loop-group, interval group-
groupoid so on are introduced and studied. 

In chapter two n-interval structures are introduced.  n-
interval groupoids, n-interval semigroups, n-interval loops and 
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so on are introduced and analysed. Using these notions n-
interval mixed algebraic structure are defined and described. 

Some probable applications are discussed.  Only in due 
course of time several applications would be evolved by 
researchers as per their need. 

The final chapter suggests around 295 problems of which 
some are simple exercises, some are difficult and some of them 
are research problems. 

This book gives around 388 examples and 124 theorems 
which is an attractive feature of this book. 

We thank Dr. K.Kandasamy for proof reading. 
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 
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Chapter One 
 
 

 
 
INTERVAL BISTRUCTURES  
 
 
 
This chapter has four sections. Section one is introductory. We 
introduce biintervals and biinterval matrices. These concepts 
will be used to construct bi-interval algebraic structures.  

Let I (Zn) = {[0, a] / a ∈ Zn} be the set of modulo integer 
intervals. 
I (Z+ ∪ {0}) = {[0, a] / a ∈ Z+ ∪ {0}} is the integer intervals. 
I (Q+ ∪ {0}) = {[0, a] / a ∈ Q+ ∪ {0}} is the rational intervals. 
I (R+ ∪ {0}) = {[0, a] / a ∈ R+ ∪ {0}} is the real intervals.  
 Section two introduces interval bigroupoids. Interval 
bigroups and their generalizations are given in section three. In 
section four interval biloops are introduced and studied. 
 
 
1.1 Interval Bisemigroups 

 
Now we define a biinterval. A biinterval is the union of two 

distinct intervals I = I1 ∪ I2 = [0, a] ∪ [0, b] where a ≠ b, I1 and 
I2 are intervals. 
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If a = b the biinterval will be known as the pseudo 
biinterval. We do not demand [0, a] ⊄ [0, b] or [0, b] ⊄ [0, a] or 
[0, b] ⊆ [0, a]. 

 
We will illustrate this situation by some examples. 

 
Example 1.1.1: Let I = {[0, 7]} ∪ {[0, 2 ]} be the biinterval 
where 7, 2 , ∈ R+ ∪ {0}. 
 
Example 1.1.2: Let I = [0, 9] ∪ [0, 2 ] be the biinterval where 9 
∈ Z+ ∪ {0} and 2  ∈ Z4. 
 
Example 1.1.3: Let I = I1 ∪ I2 = [0, 3 ] ∪ [0, 7 ] where 3  ∈ Z6 
and 7  ∈ Z10 be the biinterval. 
 
Example 1.1.4: Let I = I1 ∪ I2 = [0, 20] ∪ [0, 17 ] where 20 ∈ 

Z+ ∪ {0} and 17  ∈ R+ ∪ {0} be the biinterval.  
Now we have seen examples of biintervals. We will define 

some operations on these biintervals so that they get some 
algebraic structures. 

Further it is easy to define concepts like n-intervals; when n 
= 2 we get the biinterval and when n = 3 we get the triinterval. 

We will define them in the following.  
Let I = I1 ∪ I2 ∪ I3 be such that each interval Ij is distinct 1 

< j < 3, then we define I to be a triinterval and Ij can take their 
values from Z+ ∪ {0} or Zn or R+ ∪ {0} or Q+ ∪ {0} or not 
used in the mutually exclusive sence, 1 < j < 3.  

Suppose I = I1 ∪ I2 ∪ … ∪ In, (n > 2) where Ij is an interval 
from Q+ ∪ {0} or R+ ∪ {0} or Z+ ∪ {0} or Zm; 1 < j < n, Ij ≠ Ik 
if k ≠ j; 1 < j, k < n then we define I to be an n-interval.  

We will give some examples before we proceed onto define 
further structures. 
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Example 1.1.5: Let I = I1 ∪ I2 ∪ I3 = [0, 3] ∪ [0, 7 ] ∪ [0, 5 ] 

be a triinterval where 3 ∈ Z+ ∪ {0} 7  ∈ R+ ∪ {0} and 5  ∈ 
Z11.  
 
Example 1.1.6: Let I = I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 = {[0, 7] ∪  

[0, 5] ∪ [0, 2] ∪ [0, 7/3] ∪ [0, 71 ] ∪ [0, 27
31

]} be a 6-interval 

where the entries in each interval is from R+ ∪ {0}. 
 
Example 1.1.7:  Let I = I1 ∪ I2 ∪ … ∪ I9 = {[0, x1] ∪ … ∪  
[0, x9]} where xi ∈ Z+ ∪ {0}, 1 < i < 9, be the 9-interval. 
 
Example 1.1.8: Let I = I1 ∪ I2 ∪ I3 ∪ I4 = [0, x1] ∪ [0, x2] ∪  
[0, x3] ∪ [0, x4] where x1 ∈ Z7, x2 ∈ Z12, x3 ∈ Z17 and x4 ∈ Z21 
be the 4-interval. 
 
DEFINITION 1.1.1:  Let S = S1 ∪ S2 where S1 and S2 are distinct 
interval semigroups under the operations ‘*’ and ‘o’ 
respectively. (S1 ≠ S2, S1 ⊄ S2 and S2 ⊄ S1) then (S, .) is defined 
as a interval bisemigroup or biinterval semigroup denoted by  
S = S1 ∪ S2 = {[0, a], *} ∪ {[0, b], o} = {[0, a] ∪ [0, b] / [0, a] 
∈ S1 and [0, b] ∈ S2}. I.J = ([0, a] ∪ [0, b]). ([0, x] ∪ [0, y]) 
where ‘.’ is defined as I.J = {[0, a] * [0, x] ∪ [0, b] o [0, y]}. 
 
We will illustrate this situation by some examples. 
 
Example 1.1.9: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0} be an 
interval semigroup under addition} ∪ {[0, b] / b ∈ Z20 under 
multiplication modulo 20 is an interval semigroup} be the 
interval bisemigroup or biinterval semigroup. 
 
Example 1.1.10 : Let S = S1 ∪ S2 where S1 = {[0, a] / a ∈Q+ ∪ 
{0} under multiplication} is an interval semigroup and S2 = {[0, 
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a] / a ∈ R+ ∪ {0} under addition} be the interval semigroup. S 
is an interval bisemigroup. 
 Now we see the examples given in 1.1.9 and 1.1.10 are 
biinterval semigroups of infinite order. 
 We see how in the example 1.1.9 the operation is carried 
out on the interval bisemigroup. Let I = I1 ∪ I2 = [0, 10] ∪ [0, 4] 
and J = [0, 2] ∪ [0, 12] be in S. 
I. J   =  {[0, 10] ∪ [0, 4]} . {[0, 2] ∪ [0, 12]}  

=  {[0, 10] + [0, 2] ∪ [0, 4] × [0, 12]} 
 =  {[0, 10+2] ∪ [0, 4 × 12 (mod 20)]} 

=  [0, 12] ∪ [0, 8]. 
Thus (S, ‘⋅’) is also known as biinterval semigroup as its 

elements are biintervals. 
 
Example 1.1.11: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z13 under 
addition modulo 13} ∪ {[0, b] / b ∈ Z16 under multiplication 
modulo 16} be a biinterval semigroup. 
 Clearly if x = [0, 10] ∪ [0, 14] and y = [0, 7] ∪ [0, 10] are 
in S, then x.y = ([0, 10] ∪ [0, 14]). ([0, 7] ∪ [0, 10]) = ([0, 10] + 
[0, 7]) ∪ ([0, 14] × [0, 10]) = [0, 17 (mod 13)] ∪ [0, 140 (mod 
16)] = [0, 4] ∪ [0, 12]. 
 It is interesting to note that the biinterval semigroup given 
in example 1.1.11 is of finite order. 
 We say biinterval semigroup is commutative if both S1 and 
S2 are commutative interval semigroups. If only one of  
S1 or S2 is a commutative interval semigroup and the other is not 
commutative then we say S is a semi commutative biinterval 
semigroup. 
 All the examples of biinterval semigroups given are 
commutative to define biinterval semigroups which are semi 
commutative we have to use either matrix interval semigroups 
or symmetric interval semigroups. For more about these please 
refer [10, 14].  

We will give examples of non commutative biinterval 
semigroups and semi commutative biinterval semigroups. 



 11

Clearly elements of these biinterval semigroups will not be 
biintervals so with some flaw we will call them as interval 
bisemigroups. 
 
Example 1.1.12 : Let S = S1 ∪ S2 where  

S1 = 
[0,a] [0,b]

a,b,c,d Z {0}
[0,c] [0,d]

+
⎧ ⎫⎡ ⎤⎪ ⎪∈ ∪⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

 and  

S2 = 7

[0,a] [0,b] [0,c]
[0,d] [0,f ] [0,h] a,b,c,d,f ,h,m,n,p Z
[0,m] [0,n] [0,p]

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ∈⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 are 

interval matrix semigroups under multiplication. S = S1 ∪ S2 is 
an interval bisemigroup which is non commutative. 
For take  

x = 
[0,9] [0,2]
[0,3] [0,1]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪ 
[0,1] 0 0
[0,3] [0,4] 0
[0,2] 0 [0,6]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  

y = 
[0,1] [0,10]

[0,12] [0,4]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪ 
[0,2] [0,1] [0,3]
[0,1] [0,4] [0,1]

0 [0,1] 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

in S. 

x.y = 
[0,9] [0,2]
[0,3] [0,1]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 × 
[0,1] [0,10]

[0,12] [0,4]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪ 

[0,1] 0 0
[0,3] [0,4] 0
[0,2] 0 [0,6]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 × 
[0,2] [0,1] [0,3]
[0,1] [0,4] [0,1]

0 [0,1] 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

= 
[0,9][0,1] [0,2][0,12] [0,9][0,10] [0,2][0,4]
[0,3][0,1] [0,1][0,12] [0,3][0,10] [0,1][0,4]

+ +⎡ ⎤
⎢ ⎥+ +⎣ ⎦

 ∪  
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[0,1][0,2] 0 0
[0,3][0,2] [0,4][0,1] 0

[0,2][0,2] 0 0

+ +⎡
⎢ + +⎢
⎢ + +⎣

 

[0,1][0,1] 0 0 [0,1][0,3] 0 0
[0,3][0,1] [0,4][0,4] 0 [0,3][0,3] [0,4][0,1] 0
[0,2][0,1] 0 [0,6][0,1] [0,2][0,3] 0 0

+ + + + ⎤
⎥+ + + + ⎥
⎥+ + + + ⎦

 

 

= 
[0,9] [0,24] [0,90] [0,8]
[0,3] [0,12] [0,30] [0,4]

+ +⎡ ⎤
⎢ ⎥+ +⎣ ⎦

 ∪ 

[0,2] 0 0 [0,1] 0 0 [0,3] 0 0
[0,6] [0,4] 0 [0,3] [0,2] 0 [0,2] [0,4] 0

[0,4] 0 0 [0,2] 0 [0,6] [0,6] 0 0

+ + + + + +⎡ ⎤
⎢ ⎥+ + + + + +⎢ ⎥
⎢ ⎥+ + + + + +⎣ ⎦

 

= 
[0,33] [0,98]
[0,15] [0,34]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪ 
[0,2] [0,1] [0,3]
[0,3] [0,5] [0,6]
[0,4] [0,1] [0,6]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Example 1.1.13: Let S = S1 ∪ S2 where S1 = {S (X) where X = 
([0, 1], [0, 2], [0, 3])} is the interval symmetric semigroup and 
S2 = {All 5 × 5 interval matrices with intervals of the form [0, a] 
where a ∈ Z12} be the interval matrix semigroup under 
multiplication. S is a interval bisemigroup, non commutative 
and is of finite order. The product on S is defined as follows.  
Let  

x = 
[0,1] [0,2] [0,3]
[0,3] [0,2] [0,1]
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ 

0 [0,1] 0 [0,2] 0
[0,3] 0 [0,4] 0 [0,1]

0 [0,2] 0 [0,3] 0
[0,5] 0 [0,1] 0 [0,2]

0 [0,3] 0 [0,7] 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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and 

y = 
[0,1] [0,2] [0,3]
[0,2] [0,1] [0,3]
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ 

[0,1] 0 [0,2] 0 [0,3]
0 [0,4] 0 [0,5] 0

[0,6] 0 [0,7] 0 [0,8]
0 [0,9] 0 [0,10] 0

[0,11] 0 [0,1] 0 [0,2]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

belong to S. 
Now  

x.y = 
[0,1] [0,2] [0,3]
[0,3] [0,2] [0,1]
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 
[0,1] [0,2] [0,3]
[0,2] [0,1] [0,3]
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ 

 
0 [0,1] 0 [0,2] 0

[0,3] 0 [0,4] 0 [0,1]
0 [0,2] 0 [0,3] 0

[0,5] 0 [0,1] 0 [0,2]
0 [0,3] 0 [0,7] 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 × 

[0,1] 0 [0,2] 0 [0,3]
0 [0,4] 0 [0,5] 0

[0,6] 0 [0,7] 0 [0,8]
0 [0,9] 0 [0,10] 0

[0,11] 0 [0,1] 0 [0,2]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

 

=
[0,1] [0,2] [0,3]
[0,3] [0,1] [0,2]
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ 

0 [0,10] 0 [0,1] 0
[0,2] 0 [0,5] 0 [0,9]

0 [0,5] 0 [0,4] 0
[0,3] 0 [0,1] 0 [0,3]

0 [0,3] 0 [0,1] 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

is in S. 
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 We can have any number of finite or infinite, commutative 
or non commutative interval bisemigroups. We have seen 
examples of them. 
 We can define substructures for them. 
 
DEFINITION 1.1.2: Let S = S1 ∪ S2 be an interval bisemigroup. 
P = P1 ∪ P2 ⊆ S1 ∪ S2 = S be a proper non empty bisubset of S. 
If each Pi is an interval subsemigroup of Si, i=1,2 then we call P 
to be an interval subbisemigroup or interval bisubsemigroup of 
S. 
 
We will illustrate this situation by some examples. 
 
Example 1.1.14 : Let S = S1 ∪ S2 where S1 = {[0, a] / a ∈ Z+ ∪ 
{0}} is the interval semigroup under multiplication and  
S2 = {[0, a] / a ∈ Z24} is the interval semigroup under addition 
be a biinterval semigroup. Consider P = P1 ∪ P2 = {[0, a] / a ∈  
3Z+ ∪ {0}} ∪ {[0, a] / a ∈ {0, 2, 4, 6, 8, 10, …, 20, 22} ⊆ Z24} 
⊆ S1 ∪ S2 = S. It is easily verified P is a biinterval 
subsemigroup of S. 
 
Example 1.1.15: Let S = S1 ∪ S2 where S1 = {[0, a] / a ∈ Z11} is 
the interval semigroup under addition modulo 11 and  
S2 = {[0, b] / b ∈ Z17} be the interval semigroup under addition 
modulo 17. S is a biinterval semigroup. It is easily verified S 
has no biinterval subsemigroups. 
 If an interval bisemigroup has no interval subsemigroups 
then we call S to be a simple biinterval semigroup.  
 We have a class of biinterval semigroups which are simple. 
 
THEOREM 1.1.1: Let S = S1 ∪ S2 = {[0, a] / a ∈ Zp, p a prime, 
+} ∪ {[0, b] / b ∈ Zq, q a prime, +} (p ≠ q) be a biinterval 
semigroup. S is a simple biinterval semigroup.  
 
The proof is direct and left as an exercise for the reader.  
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Example 1.1.16 : Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}} ∪ 
{[0, b] / b ∈ Z43} be an interval bisemigroup with operation 
addition defined on both S1 and S2. Clearly S1 has interval 
subsemigroups where as S2 has no interval subsemigroups. 
 We do not call S as simple but we define such substructure 
as quasi interval bisubsemigroup and these interval semigroups 
are also known as quasi simple interval bisemigroups.  
 We will illustrate this situation by some examples. 
 
Example 1.1.17: Let S = S1 ∪ S2 = {[0, a] / a ∈ R+ ∪ {0}} ∪ 
{[0, a] / a ∈ Z23} be an interval bisemigroup under interval 
addition. Take P = P1 ∪ P2 = {[0, a] / a ∈ Q+ ∪ {0}} ∪ P2 = 
(=S2) ⊆ S1 ∪ S2 = S; P is a quasi interval bisubsemigroup of S. 
 Infact S has infinitely many quasi interval bisubsemigroups. 
 
Example 1.1.18: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z12, ×, 
multiplication modulo 12} ∪ {[0, a] / a ∈ Z43, addition modulo 
43} be an interval bisemigroup. 
 Consider P = P1 ∪ P2 = {[0, a] / a ∈ {0, 3, 6, 9} ⊆ Z12} ∪ P2 
(= S2) ⊆ S1 ∪ S2 = S; P is a quasi interval bisubsemigroup. S is 
a quasi simple interval bisemigroup. We see S has only 4 quasi 
interval bisubsemigroups and S is of finite order.  
 Now we proceed onto give examples of interval biideals or 
biinterval ideals of an interval bisemigroup S. 
 
Example 1.1.19: Let S = S1 ∪ S2 = {[0, a] / +, a ∈ Z+ ∪ {0}} ∪ 
{[0, b] / ×, b ∈ Z24} be an interval bisemigroup. Consider J = J1 
∪ J2 = {[0, a] / a ∈ 5Z+ ∪ {0}}∪ {[0, b] / b ∈ {0, 3, 6, 9, 12, 
15, 18, 21} ⊆ Z24} ⊆ S1 ∪ S2 = S; it is easily verified J is a 
biideal of S called the interval biideal or biinterval ideal of S. 
 
Example 1.1.20: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z6} ∪ {[0, b] / 
b ∈ Z30} be a biinterval semigroup under multiplication. 
Consider P = P1 ∪ P2 = {[0, a] / a ∈ {0, 2, 4} ⊆ Z6} ∪ {[0, b] / 
b ∈ {10, 20, 0} ⊆ Z30} ⊆ S1 ∪ S2; P is a biinterval ideal of S.  



 16

 
Example 1.1.21: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z11} ∪ {[0, b] / 
b ∈ Z17} be an interval bisemigroup. S has no biideals.  

We call those interval bisemigroups to be ideally simple 
interval bisemigroups if S has no biideals. Example 1.1.21 is an 
ideally simple interval bisemigroup. We have an infinite class of 
ideally simple interval bisemigroups. 
 
THEOREM 1.1.2: Let S = S1 ∪ S2 = {[0, a] / a ∈ Zp , p a prime} 
∪ {[0, b] / b ∈ Zq , q a prime} (p ≠ q) be an interval 
bisemigroup. S is an ideally simple interval bisemigroup.  
 
 The reader is left with the task of proving this result.  
 
Example 1.1.22: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z11} ∪ {[0, b] / 
b ∈ Z+ ∪ {0}} be an interval bisemigroup under multiplication. 
We see S1 has no ideals, but S2 has infinitely many ideals. Thus 
S has quasi interval ideals.  

If S has only quasi interval ideals then we define S to be a 
quasi ideally simple interval bisemigroup.  

We give examples of this structure.  
 
Example 1.1.23: Let S = S1 ∪ S2 = {[0, a] / a ∈ R+ ∪ {0}} ∪ 
{[0, b]/b ∈ Z30} be a biinterval semigroup under multiplication. 
P = P1 (=S1) ⊆ S1 ∪ S2; P is a quasi ideal hence S is a quasi 
ideally simple biinterval semigroup. 
 
Example 1.1.24: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z7} ∪ {[0, a] / a 
∈ Z50} be an interval bisemigroup. Consider H = H1 (=S1) ∪ H2 
= S1 ∪ {[0, a] / a ∈ {0, 5, 10, 15, …, 45} ⊆ Z50} ⊆ S1 ∪ S2; H is 
a biideal and S is a quasi ideally simple biinterval semigroup. 
 
Example 1.1.25: Let S = S1 ∪ S2 = {[0, a] / a ∈ R+ ∪ {0}} ∪ 
{[0, b] / b ∈ Q+ ∪ {0}} be a biinterval semigroup. S is an 
ideally simple biinterval semigroup.  
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We can define bizero divisors, quasi bizero divisors, biunits, 
quasi biunits and biidempotents and quasi biidempotents in 
these biinterval semigroups.  

Let S = S1 ∪ S2 be an biinterval semigroup. Let α = α1 ∪ α2 
be a biinterval in S if there exists a β = β1 ∪ β2 in S which is a 
biinterval such that α . β= 0 ∪ 0 then we say α is a bizero 
interval zero divisor in S. 
 
 We will first illustrate this situation by some examples. 
 
Example 1.1.26: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z12} ∪ {[0, b] / 
b ∈ Z420} be a biinterval semigroup.  
Choose α = α1 ∪ α2 = [0, 6] ∪ [0, 60] in S1 ∪ S2.  β = β1 ∪ β2 = 
[0, 4] ∪ [0, 7] in S1 ∪ S2 is such that αβ = ([0, 6] ∪ [0, 60]) [[0, 
4] ∪ [0, 7]) = [0, 0] ∪ [0, 0] thus α is a interval bizero divisor in 
S. 
 Let x = x1 ∪ x2 = [0, 11] ∪ [0, 419] be in S = S1 ∪ S2. 
 We see x2 = [0, 1] ∪ [0, 1] is a biunit in S. Consider y = y1 
∪ y2 = [0, 4] ∪ [0, 36] ∈ S1 ∪ S2 is such that ([0, 4] ∪ [0, 36])2 
= [0, 4] ∪ [0, 36] = y1 ∪ y2 is an interval biidempotent of  
S = S1 ∪ S2. 
 
Example 1.1.27: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}} ∪ 
{[0,b] / b ∈ Q+ ∪ {0}} be an interval bisemigroup; S has no 
bizero divisors or biunits or biidempotents. 
 
Example 1.1.28: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z7} ∪ {[0, b] / 
b ∈ Z19} be an interval bisemigroup of finite order. S has no non 
trivial biidempotents or bizero divisors but has a biunit given by 
x = [0, 6] ∪ [0, 18] ∈ S1 ∪ S2 is such that x2 = [0, 1] ∪ [0, 1]. 
 
Example 1.1.29: Suppose S = S1 ∪ S2 = {[0, a] / a ∈ Zp, p a 
prime} ∪ {[0, b] / b ∈ Zq, q a prime}; p ≠ q be a biinterval 
semigroup. Then S has only one non trivial biunit given by  
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α = [0, p-1] ∪ [0, q-1] ∈ S, is such that α2 = [0, 1] ∪ [0, 1]. 
 Now we have seen the special elements in the interval 
bisemigroup. It may so happen one of Si may have units, zero 
divisors and idempotents and Sj (i≠j) may not have any of these 
in these situations we do define the following. 
 α = [0, x] + 0 in S is a quasi biunit if there exists a β = [0, y] 
+ 0 in S such that αβ = [0, 1] + 0. 
 Similarly we define quasi biidempotent and quasi bizero 
divisor in S = S1 ∪ S2. 
 We will only illustrate these situations by some examples. 
 
Example 1.1.30: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}} ∪ 
{[0, b] / b ∈ Z30} be a biinterval semigroup. We see S1 has no 
units or zero divisors or idempotents but S2 has zero divisors, 
units and idempotents, hence S can have only quasi biunits, 
quasi biidempotents and quasi bizero divisors. 
 Consider α = 0 ∪ [0, 29] ∈ S = S1 ∪ S2. Clearly α2 = 0 ∪ 
[0, 1] is a quasi biunit. 
 Take β = 0 ∪ [0, 15] ∈ S = S1 ∪ S2 we have γ = 0 ∪ [0, 4] 
∈ S such that βγ = 0 ∪ 0. Hence β is a quasi bizero divisor in S. 
 Take x = 0 ∪ [0, 15] ∈ S, we see x2 = 0 ∪ [0, 225] = [0, 15] 
∈ S is a quasi biidempotent of S. 
 Thus S has only quasi biunits, quasi bizero divisors and 
quasi biidempotents in it.  
 
Example 1.1.31: Let S = S1 ∪ S2 = {[0, a] / a ∈ R+ ∪ {0}} ∪ 
{[0, a] / a ∈ Z31} be a biinterval semigroup. We see S has only 
one quasi biunit and has no quasi bizero divisors or quasi 
biidempotents.  

This is also a different situation from example 1.1.30. 
 
Example 1.1.32: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z29} ∪ {[0, b] / 
b ∈ Z35} be a biinterval semigroup. We see S has a biunit given 
by x = [0, 28] ∪ [0, 34] ∈ S = S1 ∪ S2. Clearly x2 = [0, 1] ∪  
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[0, 1]. But S has no biidempotents or bizero divisors. But S has 
both quasi bizero divisors and quasi biidempotents. 
 Take α = 0 ∪ [0, 5] ∈ S, we see β = 0 ∪ [0, 7] is such that 
αβ = 0 ∪ 0. Also y = 0 ∪ [0, 14] is such that αy = 0 ∪ 0. Thus 
S has quasi bizero divisors. Consider x = 0 ∪ [0, 15] ∈ S; we 
see x2 = 0 ∪ [0, 15] = x. Thus x is a quasi biidempotent in S.  
 Now having seen special elements in biinterval semigroups. 
We see some examples of special type of interval bisemigroups. 
 
Example 1.1.33: Let S = S1 ∪ S2  

= i
12

i 0
[0,a]x a Z

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

[0,a] [0,b]
a,b,c,d Z {0}

[0,c] [0,d]
+

⎧ ⎫⎡ ⎤⎪ ⎪∈ ∪⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

 

be an interval bisemigroup. S has bizero divisors. 
Take  

x = {[0, 4] x7] ∪ 
[0,a] 0

0 0
⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 in S = S1 ∪ S2. 

We see  

y = {[0, 3] x9} ∪ 
0 0
0 [0,b]

⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 

in S is such that  

xy = 0 ∪
0 0
0 0

⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 . 

Thus S has bizero divisors. It is easily verified S has both 
biunits and biidempotents. 
 
Example 1.1.34: Let S = S1 ∪ S2 = {All 3 × 3 interval matrices 
with intervals of the form [0, a] where a ∈ Z+ ∪ {0}} ∪ {All  
2 × 2 interval matrices with intervals of the form [0, b], b ∈ Z47} 
be an interval bisemigroup. S has bizero divisors, biunits and 
biidemponents.  

The following theorem is direct and the proof is left as an 
exercise for the reader. 
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THEOREM 1.1.3: Let S = S1 ∪ S2 be an interval bisemigroup (or 
biinterval semigroup). If S has biunits or biidempotents or 
bizero divisors then S has quasi biunits or quasi biidempotents 
or quasi bizero divisors. But if S has quasi biunits or quasi 
biidemponents or quasi bizero divisors then S in general need 
not contain biunits or bizero divisors or biidempotents. 
 
Now we proceed onto define Smarandache interval bisemigroup 
and quasi Smarandache interval bisemigroups and illustrate 
them by examples. 
 
DEFINITION 1.1.3: Let S = S1 ∪ S2 be an interval bisemigroup. 
Suppose A = A1 ∪ A2 ⊆ S1 ∪ S2 is such that each Ai is an 
interval group under the operations of Si (i = 1, 2) then we 
define S = S1 ∪ S2 to be a Smarandache interval bisemigroup. 
(S-interval bisemigroup). If only one of the Ai’s is an interval 
group and other Aj is not an interval group for any subset Aj of 
Sj (i ≠ j) then we call S = S1 ∪ S2 to be a quasi Smarandache 
interval bisemigroup (quasi S-interval bisemigroup). 
 
We will provide examples of these definitions. 
 
Example 1.1.35: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z40} ∪ {[0, a] / 
a ∈ Z24} be an interval bisemigroup. Consider A = A1 ∪ A2 = 
{[0, 1], [0, 39]} ∪ {[0, 1], [0, 23]} ⊆ S1 ∪ S2 = S is an interval 
bigroup (as Ai is an interval group for i = 1,2). Hence S is a  
S-interval bisemigroup of finite order. 
 
Example 1.1.36: Let S = {S(X) where X = ([0, 1] [0, 2] [0, 3] 
[0, 4]) be an interval symmetric semigroup} ∪ {[0, a] / a ∈ Z19} 
be an interval bisemigroup of finite order. Consider A = S1 ∪ S2 
= {Sx, the interval symmetric group of S (X)} ∪ {[0, a] / a ∈ Z19 
\ {0}} ⊆ S1 ∪ S2 is an interval bigroup. Thus S is a  
S-interval bisemigroup.  
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Example 1.1.37: Let S = {[0, a] / a ∈ Z23} ∪ {[0, b] / b ∈ Z41} 
be an interval bisemigroup. A = A1 ∪ A2 = {[0, a] / Z23 \ {0}} ∪ 
{[0, b] / Z41 \ {0}} ⊆ S1 ∪ S2 = S is a interval bigroup. Thus S is 
a S-interval bisemigroup. 
 We see from examples 1.1.36 and 1.1.37 that the interval 
bigroup which we have considered in these interval 
bisemigroups are the largest ones. We call such large A as 
Smarandache hyper bigroup of S. 
 
THEOREM 1.1.4: Let S = S1 ∪ S2 = {[0, a] / a ∈ Zp, p a prime} 
∪ {[0, b] / b ∈ Zq, q a prime} (p ≠ q). S has only one large 
interval bigroup and it is the S-hyper bisubgroup of S. 
 
The proof is left as an exercise for the reader. 
 
THEOREM 1.1.5: Let S = S1 ∪ S2 = {S (x) / x = ([0, a1], …, [0, 
an])} ∪ {S (y) / y = ([0, b1] , …., [0, bm])} m ≠ n be an interval 
bisemigroup. S has a S-hyper subbigroup. However S has 
several interval bigroups.  
 

This proof is also left as an exercise to the reader. For more 
information refer [10, 13-4]. Now having seen examples of S-
interval bisemigroups we proceed onto give examples of quasi 
S-interval bisemigroups. 
  
Example 1.1.38: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}} ∪ 
{[0, b] / b ∈ Z6} be an interval bisemigroup. We see S1 has no 
proper interval subgroup but S2 has proper interval subgroups. 
Hence S is only a quasi Smarandache interval bisemigroup. 
 
Example 1.1.39: Let S = S1 ∪ S2 = {[0, a] / a ∈ 3Z+ ∪ {0}} ∪ 
{[0, b] / b ∈ Z52} be an interval bisemigroup. It is easily verified 
S is only a quasi S-interval bisemigroup.  
 
Now we proceed onto define semi interval bisemigroup. 
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DEFINITION 1.1.4: Let S = S1 ∪ S2 where only one of S1 or S2 is 
an interval semigroup and the other is a semigroup. We call S a 
semi interval bisemigroup. 
 
Example 1.1.40 : Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}} ∪ 
{Z12, ×} be a semi interval bisemigroup of infinite order. 
 
Example 1.1.41: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z49} ∪ {Z15, ×} 
be a semi interval bisemigroup of finite order.  
 
Example 1.1.42 : Let S = {S (X) | X = {([0, 1], [0, 2], [0, 3] [0, 
4])} be the interval symmetric semigroup} ∪ {Z29, ×} = S1 ∪ S2 
is the semi interval bisemigroup of finite order which is quasi 
commutative. 
 
Example 1.1.43: Let S = S1 ∪ S2 =  

11 12 13

21 22 23 ij

31 32 33

a a a
a a a a Z {0}
a a a

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ∈ ∪⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 ∪ {[0, a] / a ∈ Q+ ∪ {0}}  

be a semi interval bisemigroup of infinite order which is quasi 
commutative. 
 Now as in case of usual biinterval semigroup we can define 
substructures and special elements, this task is assigned to the 
reader. 
 We will however illustrate these by some examples. 
 
Example 1.1.44: Let S = S1 ∪ S2 = (Z+ ∪ {0}) ∪ {[0, a]| a ∈ Q+ 
∪ {0}} be a semi interval bisemigroup of infinite order. T = T1 
∪ T2 = {5Z+ ∪{0}} ∪ {[0, a] | a ∈ Z+ ∪{0}} ⊆ S1 ∪S2 is a semi 
interval bisubsemigroup of S. Clearly T is not an ideal of S.  
 
Example 1.1.45: Let S = S1 ∪ S2 = {([0, a1], [0, a2], [0, a3],  
[0, a4], [0, a5])| ai ∈ Z20 under multiplication modulo 20} ∪  
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S(6) be a semi interval bisemigroup of finite order. T = T1 ∪ T2 
= {([0, a1], [0, a2], 0, 0, [0, a3], [0, a4]) / ai ∈ Z20, 1 < i < 4} ∪  

1 2 3 4 5 6
2 1 3 4 5 6

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, 
1 2 3 4 5 6
1 2 3 4 5 6
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

1 2 3 4 5 6
1 1 3 4 5 6
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 2 3 4 5 6
2 2 3 4 5 6

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 

⊆ S1 ∪ S2 be a semi interval bisubsemigroup of finite order. 
Clearly T is not an ideal of S. 
 
Example 1.1.46: Let S = S1 ∪ S2 =  

1

2
i

10

[0,a ]
[0,a ]

a Q {0};1 i 10

[0,a ]

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ∈ ∪ ≤ ≤⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

∪ {All 10 × 10 matrices with entries from Z6}, (S1 under 
interval matrix multiplication) is a semi interval bisemigroup of 
infinite order. Take I = I1 ∪ I2  

= 

[0,a]
[0,a]

a Z {0}

[0,a]

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ∈ ∪⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

∪ {All 10 × 10 upper triangular matrices with entries from Z6} 
⊆ S1 ∪ S2 is a semi interval subbisemigroup of S and I is not an 
ideal of S. 
 Now we will give examples of ideals in a semi interval 
bisemigroups. 
 
Example 1.1.47: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}} ∪ 
{All 5 × 5 matrices with entries from Z+ ∪ {0}} be a semi 
interval bisemigroup of infinite order. T = T1 ∪ T2 = {[0, a] / a 
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∈ 3Z+ ∪ {0}} ∪ {All 5 × 5 matrices with entries from 5Z+ ∪ 
{0}} ⊆ S1 ∪ S2, is an ideal of S. 
 
Example 1.1.48: Let S = S1 ∪ S2 = {([0, a1], [0, a2] ,…, [0, a7]) / 
ai ∈ Z24; 1 < i < 7} ∪ {Z30, ×} be a semi interval bisemigroup of 
finite order. Consider I = I1 ∪ I2 = {([0, a1], [0, a2] ,…,  
[0, a7]) / ai ∈ {0, 2, 4, 6, …, 22} ⊆ Z24 ; 1 < i < 7} ∪ {{0, 10, 
20}. ×} ⊆ S1 ∪ S2; I is an ideal of S. 
 
Example 1.1.49: Let S = S1 ∪ S2 = {All 6 × 6 matrices with 
entries from Z+ ∪ {0}} ∪ {[0, a] / a ∈ Q+ ∪ {0}} be a semi 
interval bisemigroup. We see S has semi interval sub 
bisemigroups but no ideals. However S1 contains ideals and S2 
has no ideals. We call I = I1 ∪ {0} where I1 is an ideal of S1 as 
quasi semi interval biideal of S. 
 We will first illustrate this situation by some examples. 
 
Example 1.1.50: Let S = S1 ∪ S2 = (Q+ ∪ {0}) ∪ {[0, a] / a ∈ 
Z+ ∪ {0}} be a semi interval bisemigroup. Consider J = J1 ∪ J2 
= {0} ∪ {[0, a] / a ∈ 7Z+ ∪ {0}} ⊆ S1 ∪ S2; J is a quasi semi 
interval biideal of S. 
 
Example 1.1.51: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z7} ∪ {all 12 × 
12 matrices with entries from Z12} be a semi interval 
bisemigroup. T = T1 ∪ T2 = {0} ∪ {12 × 12 matrices with 
entries from {0, 2, 4, 6, 8, 10} ⊆ Z12} ⊆ S1 ∪ S2; T is a quasi 
semi interval biideal of S. 
 
Example 1.1.52: Let S = S1 ∪ S2 = {Z11} ∪ {[0, a] / a ∈ Z+ ∪ 
{0}} be a semi interval bisemigroup. P = P1 ∪ P2 = {0} ∪  
{[0, a] | a ∈ 3Z+ ∪ {0}} ⊆ S1 ∪ S2 is a quasi semi interval 
biideal of S. 
 
Example 1.1.53: Let S = S1 ∪ S2 = Q+ ∪ {0} ∪ {[0, a] / a ∈ 
Z13} be a semi interval bisemigroup, S has no ideals. 
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 In view of this we can as in case of interval bisemigroups 
define simple semi interval bisemigroups and ideally simple 
semi interval bisemigroup; we only give examples of this. 
 
Example 1.1.54: Let S = S1 ∪ S2 = (Z7, ×) ∪ {[0, a] / a ∈ Z13} 
be a semi interval bisemigroup. Clearly S is an ideally simple 
interval bisemigroup. However P = P1 ∪ P2 = {0, 1, 6} ∪  
{[0, 1], 0, [0, 12]} ⊆ S1 ∪ S2 is a semi interval bisubsemigroup 
of S which is not an ideal of S. 
 

Example 1.1.55: Let S = S1 ∪ S2 = 13

[0,a]
[0,a]

a Z

[0,a]

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ∈⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 ∪  

{([0, a] [0, a] [0, a]) / a ∈ Z43} be a semi interval bisemigroup. 
Clearly S is a simple as well as ideally simple semi interval 
bisemigroup. 
 We can define bizero divisors, biidempotents and biunits in 
semi interval bisemigroups. We also can define quasi bizero 
divisors, quasi biunits and quasi biidempotents for semi interval 
bisemigroups as in case of interval bisemigroups. This task is a 
matter of routine and the reader is expected to do this job. 
 We will only give examples of these. 
 
Example 1.1.56: Let S = S1 ∪ S2 = {Z12, ×} ∪{[0, a] / a ∈ Z24} 
be a semi interval bisemigroup. X = {6} ∪{[0, 12]} is a zero 
divisor for Y = {4} ∪ {[0, 2]} in S is such that XY = 0 ∪ 0. 
Consider x = {4} ∪ {0, 16]} ∈ S is such that x2 = x = {4} ∪ 
{[0, 16]}, thus x is a biidempotent. 
 Consider m = {11} ∪ {[0, 23]} ∈ S is such that m2 = {1} ∪ 
[0, 1], hence m is a biunit in S. 
 
Example 1.1.57: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z18} ∪ {Z+ ∪ 
{0}} be a semi interval bisemigroup. Consider x = [0, 17] ∪ 0 is 
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a quasi biunit. Y = [0, 9] ∪ {0} is a quasi biidempotent in S. 
Consider α = [0, 6] ∪ {0} ∈ S; we have β = [0, 3] ∪ {0} ∈ S is 
such that α.β = 0 ∪ 0. 
 We call a semi interval bisemigroup S = S1 ∪ S2 to be S-
semi interval bisemigroup (Smarandache semi interval 
bisemigroup) if both S1 and S2 are Smarandache semigroups. 
 We will give examples of them. 
 
Example 1.1.58: Let S = S1 ∪ S2 = {[0, a] / a ∈ Z17} ∪ {2 × 2 
matrices with entries from Q+ ∪ {0}} be a semi interval 
bisemigroup. Consider  

A = {[0, a] / a ∈ Z17 \ {0}} ∪ 
a 0

b,a Q
0 b

+
⎧ ⎫⎡ ⎤⎪ ⎪∈⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

 ⊆ S1 ∪ S2, 

is a semi interval bigroup. 
  

Hence S is a S-semi interval bisemigroup. 
 
Example 1.1.59: Let S = S1 ∪ S2 = Z+ ∪ {0} ∪ {[0, a] / a ∈ Q+ 
∪ {0}} be a semi interval bisemigroup. S is not a S-semi 
interval bisemigroup as S1 is not a S-semigroup. 
 
 In view of this we have the following definition. If a semi 
interval bisemigroup S has only one of S1 or S2 to be a S-
semigroup then we define S to be a quasi Smarandache semi 
interval bisemigroup.  
 
Example 1.1.60: Let S = S1 ∪ S2 = {3Z+ ∪ {0}} ∪ {[0, a] / a ∈ 
Z48} be a semi interval bisemigroup. Clearly S is only a quasi S-
semi interval bisemigroup as S1 is not a S-semigroup. S2 
contains A2 = {[0, 1], [0, 47]} ⊆ S2 is an interval group. 
 
Example 1.1.61: Let S = S1 ∪ S2 = {[0, a] / a ∈ 5Z+ ∪ {0}} ∪ 
{Z30} be a semi interval bisemigroup. S is only a quasi S-semi 
interval bisemigroup as S1 has no proper interval subgroup 
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where as in S2, A2 = {1, 29} to be a subset which is a group. 
That is A2 = {1, 29} ⊆ S2. Hence S is only a quasi S-semi 
interval bisemigroup. Now we can define ideals and 
subsemigroups for semi interval bisemigroups also. This task is 
left as an exercise for the reader.  

In the next section we proceed onto define the notion of 
interval bigroupoids and discuss the properties associated with 
them.  
 
 
1.2 Interval Bigroupoids 
 
In this section we define interval bigroupoids and quasi interval 
bigroupoids. We also discuss the properties associated with 
them and analyse their substructures. 
 
DEFINITION 1.2.1: Let G = G1 ∪ G2 where both G1 and G2 are 
interval groupoids; then we define G to be a interval bigroupoid 
or biinterval groupoid under the operation ‘⋅’ inherited from G1 
and G2.  

For more about interval groupoids please refer [7, 11, 14]. 
We will illustrate this situation by some examples.  
 
Example 1.2.1: Let G = G1 ∪ G2 = {[0, a], *, (2, 3), a ∈ Z7} ∪ 
{[0, b] / b ∈ Z+ ∪ {0}, *, (7, 10)} be an interval bigroupoid or 
biinterval groupoid under the operation ‘.’; we see G is of 
infinite biorder. Further if x = [0, 3] ∪ [0, 20] and y = [0, 2] ∪ 
[0, 1] ∈ G = G1 ∪ G2 ; 
x.y   =  ([0, 3] ∪ [0, 20]) . ([0, 2] ∪ [0, 1]) 

 =  [0, 3] * [0, 2] ∪ [0, 20] * [0, 1] 
 =  [0, 6 + 6 (mod 7)] ∪ [0, 20 × 7 + 1 × 10]  
 =  [0, 5] ∪ [0, 150] ∈ G. 

 
Example 1.2.2: Let G = G1 ∪ G2 = {[0, a] / *, (3, 9), a ∈ Z20} ∪ 
[0, b] / *, (2, 11), b ∈ Z14} be an interval bigroupoid with an 
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operation ‘.’ on G. Let x = [0, 3] ∪ [0, 7] and y = [0, 1] ∪ [0, 
13] be in G.  
x.y   =  ([0, 3] ∪ [0, 7]) ⋅ ([0, 1] ∪ [0, 13]) 
  =  [0, 3] * [0, 1] ∪ [0, 7] * [0, 13]  
  =  [0, 9 + 9 (mod 20)] ∪ [0, 14+13 × 11 (mod 14)]  
  =  [0, 18] ∪ [0, 3].  
 

(G, .) is an biinterval groupoid of finite order. Clearly G is 
non associative and non commutative.  
 
Example 1.2.3: Let G = G1 ∪ G2 = {[0, a]| a ∈ Z+ ∪ {0}, *, (7, 
2)} ∪ {[0, b]| b ∈ Q+ ∪ {0}, *, (17, 5)} be a biinterval groupoid 
of infinite order. G is both non associative and non 
commutative. 
 
Example 1.2.4: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z+ ∪ {0}, *,  
(4, 7)} ∪ {[0, b] / b ∈ Z+ ∪ {0}, *, (21, 17)} be a interval 
bigroupoid of infinite order. 
 
Example 1.2.5: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z14, *, (10, 0)} 
∪ {[0, b] / b ∈ Z14, *, (2, 5)} be an interval bigroupoid of finite 
order. G is non commutative. 
 
Example 1.2.6: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z11, *, (3, 7)} ∪ 
{[0, b] / b ∈ Z13, *, (3, 7)} be an interval bigroupoid of finite 
order. 
 Now we have seen examples of interval bigroupoids. 
 We proceed onto give examples of substructures in them. It 
is important and interesting to note that it is not very easy to 
find substructures for the operation ‘*’ defined on them is in a 
complicated way to make the binary operation non associative. 
 
Example 1.2.7: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z+ ∪ {0}, *,  
(8, 12)} ∪ {[0, a] / a ∈ Z+ ∪ {0}, *, (2, 6)} be an interval 
bigroupoid. Consider H = H1 ∪ H2 = {[0, a] / a ∈ 2Z+ ∪ {0}} ∪ 



 29

{[0, b] / b ∈ 2Z+ ∪ {0}, *, (2, 6)} ⊆ G1 ∪ G2; H is an interval 
subgroupoid of G. 
 Suppose we have G1 = {[0, a] / a ∈ 3Z+ ∪ {0}, *, (3/2, 9)} 
is not a groupoid for if we consider [0, 3], [0, 4] in G1  
[0, 3] * [0, 4]  =  [0, 3.3/2 + 4.3]  

=  [0, 9/2 + 12]  
= [0, 33/2] ∉ G1. 

 So while choosing the pair which operates on G1 we need 
them to be present in G1. For if this point is not taken into 
account we will have problem about the closure of the operation 
defined on G1. 
 
Example 1.2.8: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z6, *, (2, 4)} ∪ 
{[0, b] / b ∈ Z8, *, (2, 6)} be an interval bigroupoid. Take P = P1 
∪ P2 = {[0, a] / a ∈ {0, 2, 4} ⊆ Z6, *, (2, 4)} ∪ {[0, b] | b ∈ {0, 
2, 4, 6} ⊆ Z8, *, (2, 6)} ⊆ G1 ∪ G2, P is an interval bigroupoid 
of G. 
 
Example 1.2.9: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (2, 10)} 
∪ {[0, b] / b ∈ Z12, *, (10, 8)} be an interval bigroupoid. P = P1 
∪ P2 = {[0, a] / a ∈ {0, 2, 4, 6, 8, 10} ⊆ Z12, * (2, 10)} ∪ {[0, b] 
/ b ∈ {0, 4, 8} ⊆ Z12, (10, 8)} ⊆ G1 ∪ G2 is such that P is an 
interval subbigroupoid. 
 Now we can define on an interval bigroupoid G = G1 ∪ G2 
the notion of P-interval bigroupoid, alternative interval 
bigroupoid and so on. 
 We say an interval bigroupoid G = G1 ∪ G2 to be a  
P-interval bigroupoid if both G1 and G2 are P-interval 
groupoids.  
 If only one of G1 or G2 is a P-interval groupoid and the 
other is not a P-interval groupoid then we define G = G1 ∪ G2 to 
be a quasi P-interval bigroupoid. 
 We will give examples of both the situations. 
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Example 1.2.10: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z45, *, (7, 7)} 
∪ {[0, b] / a ∈ Z15, *, (4, 4)} is an interval bigroupoid which is a 
P-interval bigroupoid. 
 
Example 1.2.11: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z19, *, (3, 3)} 
∪ {[0, b] / b ∈ Z21, *, (5, 5)} be an interval bigroupoid. G is an 
interval P-bigroupoid. 
 We have the following theorem the proof of which is left as 
an exercise to the reader. 
 
THEOREM 1.2.1: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (t, t)} ∪ 
{[0, b] / b ∈ Zm, *, (u, u)} (m ≠ n) be an interval bigroupoid. G 
is a P-interval bigroupoid.  
 
Example 1.2.12: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z25, *, (2, 2)} 
∪ {[0, a] / a ∈ Z19, *, (3, 0)} be an interval bigroupoid. Clearly 
G is not a P-interval bigroupoid. It is only a quasi interval P-
bigroupoid. 
 
Example 1.2.13: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z23, *, (4, 4)} 
∪ {[0, b] / b ∈ Z17, *, (8, 0)} be an interval bigroupoid. Clearly 
G is a quasi P-interval bigroupoid.  
 Now we have some results the proofs which are direct. 
 
THEOREM 1.2.2: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(0, t)} ∪ {[0, b] / b ∈ Zm, *, (u, 0)} be an interval bigroupoid.  
G is a P-interval groupoid if and only if t2 = t mod n and u2 = u 
mod m. 
 
THEOREM 1.2.3: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zp, *, (t, 0)}; 
p a prime} ∪ {[0, b] / b ∈ Zn, *, (r, 0)} be an interval 
bigroupoid. G is a quasi interval P-bigroupoid if and only if  
r2 ≡ r mod n. 
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THEOREM 1.2.4: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, (t, t), *} ∪ 
{[0, b] / b ∈ Zp, *, (u, 0), p a prime} be an interval bigroupoid. 
G is a quasi interval P-bigroupoid. 
 
Example 1.2.14: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z11, *, (8, 0)} 
∪ {[0, b] / b ∈ Z43, *, (10, 0)} be an interval bigroupoid. G is 
not an interval P-bigroupoid or quasi interval P-bigroupoid. 
 We define an interval bigroupoid G = G1 ∪ G2 to be an 
alternative interval bigroupoid if both G1 and G2 are interval 
alternative groupoid. If only one of G1 or G2 is an interval 
alternative groupoid then we define G to be a quasi alternative 
interval bigroupoid. 
 
 We will give examples of this situation. 
 
Example 1.2.15: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z24, *, (9, 9)} 
∪ {[0, a] / a ∈ Z12, *, (4, 4)} be an alternative interval 
bigroupoid. 
 
Example 1.2.16: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z24, *, (9, 0)} 
∪ {[0, b] / b ∈ Z36, *, (9, 9)} be an alternative interval 
bigroupoid.  

We have the following results which are direct. 
 
THEOREM 1.2.5: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (t, t)} ∪ 
{[0, b] / b ∈ Zm, *, (u, u)} be an interval bigroupoid. G is an 
alternative interval bigroupoid if and only if t2 = t mod n and  
u2 = u mod m. 
 
THEOREM 1.2.6: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (t, 0)} 
∪ {[0, b] / b ∈ Zm, *, (u, 0)} be an interval bigroupoid G is an 
alternative interval bigroupoid if and only if t2 = t mod n and  
u2 = u mod m. 
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THEOREM 1.2.7: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (0, t)} 
∪ {[0, b] / b ∈ Zm, *, (u, u)} be an interval bigroupoid. G is an 
alternative interval bigroupoid if and only if t2 = t mod n and  
u2 = u mod m. 
 
We also have a class of interval bigroupoids which are not 
alternative interval bigroupoids, which is given by the following 
theorem. 
 
THEOREM 1.2.8: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zp, *, (t, t); p 
a prime} ∪ {[0, b] / b ∈ Zp, *, (u, u); q a prime} be an interval 
bigroupoid. G is not an alternative interval bigroupoid. 
 Now we will proceed onto give examples and results related 
with quasi interval alternative bigroupoids. 
 
Example 1.2.17: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z19, *, (9, 0)} 
∪ {[0, a] / a ∈ Z24, *, (9, 9)} be an interval bigroupoid. Clearly 
G is not an alternative interval bigroupoid but G is a quasi 
alternative interval bigroupoid.  
 
Example 1.2.18: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z47, *, (8, 8)} 
∪ {[0, a] / a ∈ Z12, *, (4, 4)} be an interval bigroupoid. Clearly 
G is a quasi alternative interval bigroupoid. 
 
THEOREM 1.2.9: G = G1 ∪ G2 = {[0, a] / a ∈ Zp, *, (t, t), p a 
prime} ∪ {[0, b] / a ∈ Zn, *, (u, u)} is a quasi interval 
alternative bigroupoid if and only if u2 = u mod n.  
 
THEOREM 1.2.10: G = G1 ∪ G2 = {[0, a] / a ∈ Zp , *,  
(t, 0), p a prime} ∪ {[0, b] / b ∈ Zn, (u,0)} is a quasi alternative 
interval bigroupoid if and only if u2 = u (mod n). 
 
 We call an interval bigroupoid G = G1 ∪ G2 to be an 
idempotent interval bigroupoid if both G1 and G2 are idempotent 
interval groupoids. If only one of G1 or G2 is an idempotent 
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interval groupoid then we define G to be a quasi idempotent 
interval bigroupoid.  
 We will first give examples of this situation. 
 
Example 1.2.19: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (7, 6)} 
∪ {[0, b] / b ∈ Z15, *, (9, 6)} be an interval bigroupoid. Clearly 
G is an idempotent interval bigroupoid. 
 
Example 1.2.20: G = G1 ∪ G2 = {[0, a] / a ∈ Z19, *, (16, 4)} ∪ 
{[0, a] / a ∈ Z13, (8, 6)} is an idempotent interval bigroupoid.  
 
Example 1.2.21: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z15, *, (2, 3)} 
∪ {[0, b] / b ∈ Z11, *, (3, 5)} be an quasi idempotent interval 
bigroupoid. 
 We state a few theorems the proofs of which are direct. 
 
THEOREM 1.2.11: G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(t, u)} ∪ {[0, b] / b ∈ Zm, *, (r, s)} is an idempotent interval 
bigroupoid if and only if t + u = 1 mod n and r + s = 1 mod m. 
 
THEOREM 1.2.12: G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(t, u); t + u ≠ 1 mod n} ∪ {[0, b] / b ∈ Zm, *, (r, s)} is a quasi 
interval idempotent bigroupoid if and only if r + s = 1 mod m.  
 
We say an interval bigroupoid is bisimple if and only if both G1 
and G2 are simple. 
 We say quasi bisimple only one of G1 or G2 is simple. 
 
Example 1.2.22: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (5, 7)} 
∪ {[0, b] / b ∈ Z20, *, (7, 13)} be an interval bigroupoid. G is a 
bisimple interval bigroupoid. 
 
Example 1.2.23: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z19, (2, 17)} ∪ 
{[0, b] / b ∈ Z12, *, (11, 2)} be an interval bigroupoid. Clearly G 
is an interval bisimple bigroupoid. 
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Example 1.2.24: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z14, *, (2, 3)} 
∪ {[0, a] / a ∈ Z20, *, (17, 3)} be a quasi bisimple interval 
bigroupoid. 
 
Example 1.2.25: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z13, *, (9, 4)} 
∪ {[0, b] / a ∈ Z36, *, (31, 5)} be a quasi bisimple interval 
bigroupoid. 
 We give a few results and expect the reader to supply the 
proof. 
 
THEOREM 1.2.13:  Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (t, 
u)} ∪ {[0, b] / b ∈ Zm, *, (r, s)} be an interval bigroupoid. If n = 
t + u and m = r + s and t, u, r and s are primes then G is a 
bisimple interval bigroupoid.  
 
THEOREM 1.2.14: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(t, u); (t, u) = d; d ≠ 1} ∪ {[0, a] / a ∈ Zm, *, (r, s)} be an 
interval bigroupoid. If r + s = m and r and s are primes then G 
is a quasi bisimple interval bigroupoid.  
 
THEOREM 1.2.15: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(t, u)} ∪ {[0, b] / b ∈ Zm, *, (r, s)} be an interval bigroupoid. G 
is an interval bisemigroupoid if and only if (t, u) = 1 and t2 ≡ t 
mod n and u2 ≡ u mod n and (r, s) = 1 with r2 = r mod m and  
s2 = s mod m (t ≠ 0, u ≠ 0, r ≠ 0 and s ≠ 0). 
 
Now we proceed onto define Smarandache interval bigroupoid 
G = G1 ∪ G2. We say G is a Smarandache interval bigroupoid 
(S-interval bigroupoid) if each Gi is a S-interval groupoid; 
i=1,2. 
 We say quasi Smarandache interval bigroupoid if only one 
if one of G1 or G2 is a S-interval groupoid.  
 
Example 1.2.26: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z8, *, (2, 6)} 
∪ {[0, b] / b ∈ Z5, *, (3, 3)} be a S-interval bigroupoid. For A = 
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{[0, a] / a ∈ {0, 4} ⊆ Z8, *, (2, 6)} ∪ {[0, b] / b ∈ {4} ⊆ Z5} = 
A1 ∪ A2 ⊆ G1 ∪ G2 is a bisemigroup in G. 
 
Example 1.2.27: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z5, *, (1, 3)} 
∪ {[0, a] / a ∈ Z5, *, (2, 1)} be an interval bigroupoid. G is not a 
S-interval bigroupoid as well as not a quasi S-interval 
bigroupoid. 
 
Example 1.2.28 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z10, *, (1, 2)} 
∪ {[0, b] / b ∈ Z5, *, (2, 1)} be a quasi Smarandache interval 
bigroupoid. 
 In view of this we give the following results. 
 
THEOREM 1.2.16: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(t, u), (t, u) = 1 ; t ≠ u; t + u ≡ 1 (mod n)} ∪ {[0, b] / b ∈ Zm, *, 
(r, s), (r, s) = 1, r ≠ s, r + s = 1 (mod m)} (m > 5 and n > 5) be 
an interval bigroupoid. G is a S-biinterval groupoid.  

Now as in case in usual bigroupoids we can define 
Smarandache interval bigroupoid, this task exercise for the 
reader. 
 
Example 1.2.29: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z8, *, (2, 6)} 
∪ {[0, b] / b ∈ Z12, *, (3, 9)} be an interval bigroupoid P = P1 ∪ 
P2 = {[0, a] / a ∈ {0, 2, 4, 6} ⊆ Z8, *, (2, 6)} ∪ {[0, b] / b ∈ {0, 
3, 6, 9} ⊆ Z12, *, (3, 9)} ⊆ G1 ∪ G2 is a Smarandache interval 
subbigroupoid of G.  
 
The notion of Smarandache interval P-subbigroupoid, 
Smarandache strong P-interval groupoid, Smarandache Bol 
interval bigroupoid, Smarandache strong Bol interval 
bigroupoid, Smarandache right alternative interval bigroupoid 
so on can be defined as in case of usual groupoids [7, 11, 14].  
 We will give examples and related results for the reader. 
The definition is a matter of routine. 
 



 36

Example 1.2.30 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (3, 4)} 
∪ {[0, b] / b ∈ Z4, *, (2, 3)} be an interval bigroupoid. It is 
easily verified G is a Smarandache interval Bol bigroupoid. 
 
Example 1.2.31: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z6, *, (4, 3)} 
∪ {[0, b] / b ∈ Z6, *, (3, 5)} be an interval groupoid. G is a 
Smarandache interval P-bigroupoid. 
 
Example 1.2.32 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z10, *, (5, 6)} 
∪ {[0, b] / b ∈ Z12, *, (3, 9)} be an interval bigroupoid. G is a 
Smarandache Moufang interval bigroupoid. 
 
Example 1.2.33: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z11, *, (6, 6)} 
∪ {[0, b] / b ∈ Z19, *, (10, 10)} be an interval bigroupoid. It is 
easily verified G is a Smarandache idempotent bigroupoid. 
 
 We will now state a theorem the proof of which is left as an 
exercise for the reader. 
 
THEOREM 1.2.17: Let G = G1 ∪ G2 = {[0, a] / *, a ∈ Zp, 

+ +⎛ ⎞
⎜ ⎟
⎝ ⎠

p 1 p 1,
2 2

} ∪ {[0, b] / *, b ∈ Zq, 
+ +⎛ ⎞

⎜ ⎟
⎝ ⎠

q 1 q 1,
2 2

}, where p 

and q are two distinct primes, then G is a Smarandache 
idempotent interval bigroupoid. 
 
THEOREM 1.2.18: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(m, m)} ∪ {[0, a] / a ∈ Zs, *, (t, t)} where t ≠ n and m + m ≡ 1 
(mod n), t + t ≡ 1 (mod t) and m2 = m (mod n) and t2 = t (mod 
s). G is a 

1. Smarandache idempotent interval bigroupoid. 
2. S-strong P-interval bigroupoid . 
3. Smarandache strong interval Bol bigroupoid. 
4. Smarandache strong Moufang interval bigroupoid. 
5. Smarandache strong interval alternative bigroupoid. 
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THEOREM 1.2.19: Let G = G1 ∪ G2 be a S-strong alternative 
interval bigroupoid then G is a S-alternative interval 
bigroupoid.  
 
In this theorem 1.2.19 if we replace the S-strong alternative 
interval groupoid. G by S-strong Moufang or S-strong P-
bigroupoid or S-strong idempotent bigroupoid or S-strong Bol 
bigroupoid then G will be a S-Moufang or S-P-groupoid or S-
idempotent bigroupoid or S-Bol interval bigroupoid. 
 
THEOREM 1.2.20: G = G1 ∪ G2 = {[0, a] /a ∈ Zn, *,  
(t, u), (t + u) ≡ 1 mod n} ∪ {[0, b] / b ∈ Zm, *, (r, s), (r + s) ≡ 1 
mod m}, m ≠ n is a S-strong Moufang interval bigroupoid,  
S-interval idempotent bigroupoid, S-strong Bol interval 
bigroupoid and S-strong alternative interval bigroupoid if and 
only if t2 ≡ t (mod n), u2 ≡ u (mod n), r2 ≡ r (mod m) and s2 ≡  
s (mod m). 
 
THEOREM 1.2.21:  Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (m, 
0)} ∪ {[0, b] / b ∈ Zt, *, (r, 0)}, t ≠ n with m2 ≡ m (mod n) and r2 
= r (mod t). Then G is a S-strong Bol interval bigroupoid, S-
strong Moufang interval bigroupoid, S-strong P-interval 
bigroupoid and S-strong alternative interval bigroupoid. 
 
Several interesting results in this direction can be obtained by 
any interested reader. 
 Now we can define quasi interval bigroupoid, as a 
bigroupoid G = G1 ∪ G2 where only one of G1 or G2 is an 
interval groupoid and the other is just a groupoid. 
 We will illustrate this situation by some examples. 
 
Example 1.2.34: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z7, *, (3, 2)} 
∪ Z11(5, 4) be a quasi interval bigroupoid. Clearly G is of finite 
order. 
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Example 1.2.35 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z+ ∪ {0}, *, 
(7, 8)} ∪ Z17 (3, 8) be a quasi interval bigroupoid of infinite 
order. 
 
Example 1.2.36 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z27, *, (3, 8)} 
∪ {Z27 (19, 4)} be a quasi interval bigroupoid of finite order.  
Now we can find substructure in them. 
 
Example 1.2.37 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z6, *, (2, 2)} 
∪ {Z6 (0, 2)} be a quasi interval bigroupoid. P = P1 ∪ P2 = {[0, 
a] / a ∈ {0, 2, 4} *, (2, 2)} ∪ {{0, 2, 4} ⊆ Z6, *, (0, 2)} is a 
quasi interval subbigroupoid of G. 
 
Example 1.2.38: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (3, 9)} 
∪ {Z6 (5, 5)} be a quasi interval bigroupoid. S = S1 ∪ S2 = {[0, 
a] / a ∈ {0, 3, 6, 9}, *, (3, 9)} ∪ {{4} ⊆ Z6, *, (5, 5)} ⊆ G1 ∪ 
G2 is a quasi interval subbigroupoid of G. 
 
Example 1.2.39 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (2, 10)} 
∪ {Z12 (10,8)} be a quasi interval bigroupoid. Consider  
P = P1 ∪ P2 = {[0, a] / a ∈ {0, 2, 4, 6, 8, 10} ⊆ Z12, *, (2, 10)} ∪ 
{{2, 6, 10} ⊆ Z12, *, (10, 8)} ⊆ G1 ∪ G2, P is a quasi interval 
subbigroupoid of G. 
  
Now we say a quasi interval bigroupoid is a Smarandache quasi 
interval bigroupoid if it has quasi interval bisemigroup. 
Likewise one can derive results for other S-structures associated 
with identities. We will illustrate these situations by some 
examples. 
 
Example 1.2.40 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z18, *, (0, 3)} 
∪ {Z18 (0, 11) be a quasi interval bigroupoid. Clearly G is not a 
quasi P-interval bigroupoid or a quasi alternative interval 
bigroupoid. 
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Example 1.2.41: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (0, 4)} 
∪ {Z6 (0, 3)} be a quasi P interval bigroupoid as well as quasi 
alternative interval bigroupoid. 
 
Example 1.2.42: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (9, 0)} 
∪ {Z9 (0, 10)} be a quasi P-interval bigroupoid as well as quasi 
alternative interval bigroupoid. 
 
We will give a theorem which gurantees the existence of quasi 
P-interval bigroupoid and quasi alternative interval bigroupoid. 
 
THEOREM 1.2.22: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(0, t)} ∪ {Zm (0, r)} be a quasi interval bigroupoid. G is a quasi 
P-interval bigroupoid and quasi interval alternative bigroupoid 
if and only if t2 ≡ t (mod n) and r2 ≡ r (mod m), m ≠ n.  
 
COROLLARY 1.2.1: In the above theorem if n and m are primes 
then the statement of the theorem is not true. 
 
We also have a class of quasi normal interval bigroupoid. 
 
Example 1.2.43: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z13, *, (7, 7)} 
∪ {Z19 (2, 2)} be a quasi interval bigroupoid. Clearly G is a 
quasi interval normal bigroupoid.  
 
Example 1.2.44: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z43, (17, 17)} 
∪ Z23 (4, 4) be a quasi normal interval bigroupoid. 
 In view of this we have the following theorem. 
 
THEOREM 1.2.23: Let G = G1 ∪ G2 = Zp (t, t) ∪ {[0, a] / a ∈ 
Zq, *, (u, u)} p and q are primes with t < p and u < q, then  
G = G1 ∪ G2 is a quasi normal interval bigroupoid. 
 
The proof is easy and hence is left as an exercise for the reader. 
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THEOREM 1.2.24: Let G = G1 ∪ G2 = Zn (t, t) ∪ {[0, b] / b ∈ 
Zm, *, (u, u)} be a quasi interval bigroupoid. G is a quasi 
interval P-bigroupoid. 
 
THEOREM 1.2.25: Let G = G1 ∪ G2 = Zn (t, t) ∪ {[0, a] / a ∈ 
Zm, *, (u, u)}, 1 < t < n and 1 < u < m be a quasi interval 
bigroupoid, G is a not a quasi alternative interval bigroupoid if 
m and n are primes. 
 In view of this we have the following corollary. 
 
COROLLARY 1.2.2: Let G = G1 ∪ G2 = Zn (t, t) ∪ {[0, b] /  
b ∈ Zm, *, (u, u)}, n and m are not primes be a quasi interval 
bigroupoid. G is a quasi alternative interval bigroupoid if and 
only if t2 = t (mod n) and u2 = u (mod m). 
 
Proof:  Follows from the fact  

t2x + t2y + tx = tx + t2y + t2x mod n 
and  

[0, u2b] + [0, u2d] + [0, ub]= [0, ub] + [0, u2d] + [0, u2b], 
i.e., [0, u2b + u2d + ub] = [0, ub + u2d + u2b] 

where  
([0, b] * [0, d]) * ([0, b]) = ([0, b] * ([0, d] * [0, b]). 

For more about these properties refer [7, 11, 14]. 
 
Example 1.2.45: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *,  
(7, 5)} ∪ {Z24 (13, 11)} be a quasi interval bigroupoid. Clearly 
G is a simple quasi interval bigroupoid. 
 
Example 1.2.46: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z7 (2, 5)} ∪ 
{Z20 (7, 13)} be a simple quasi interval bigroupoid.  
 
THEOREM 1.2.26: Let G = G1 ∪ G2 = Zn (t, p) ∪ {[0, a] / a ∈ 
Zm; *, (q, r)} be a quasi interval bigroupoid. If t + p = n and  
q + r = m where t, p, q and r are primes then G is a simple 
quasi interval bigroupoid. 
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THEOREM 1.2.27: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (t, u) 
= 1; t, u ∈ Zn \ {0}} ∪ {Zm (r, s) / (r, s) = 1 r, s, ∈ Zm \ {0}} be a 
quasi interval bigroupoid. {0} ∪ {0} is not a biideal of G.  
 
THEOREM 1.2.28: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *,  
(t, u); t, u ∈ Zn \ {0} and (t, u) = 1} ∪ {Zm (r, s) / r, s ∈ Zm \ {0} 
and (r, s) = 1} be a quasi interval bigroupoid. G is a quasi 
interval bisemigroup if and only if t2 ≡ t (mod n), u2 ≡ u (mod n), 
r2 ≡ r (mod n) and s2 ≡ s (mod n). 
 Now we give examples of these situations. 
 
Example 1.2.47: Let G = G1 ∪ G2 = {[0, a] / a ∈Z20, *, (8, 12)} 
∪ {Z15, (7, 8)} be a quasi interval bigroupoid. G is a quasi 
idempotent interval bigroupoid. 
 
Example 1.2.48: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z10, *, (5, 6)} 
∪ {Z12 (4, 9)} be a quasi interval bigroupoid. Clearly G is a 
quasi interval bisemigroup. 
 
Example 1.2.49: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z4, *, (2, 3)} 
∪ {Z4 (3, 2)} be the quasi interval bigroupoid. G has both left 
ideals as well as right ideals. 
 In view of this we have the following theorem. 
 
THEOREM 1.2.29: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (t, u)} 
∪ {Zm (p, q)} be a quasi interval bigroupoid. P = P1 ∪ P2 is a 
right biideal of G if and only if P = P1 ∪ P2 is a left biideal of 
G′ = 1 2G G′ ′∪  = {[0, a] / a ∈ Zn, *, (u, t)} ∪ {Zn (q, p)}. 
 
 We as in case of interval bigroupoid can define S-interval 
quasi bigroupoid or S-quasi interval bigroupoid. The definition 
is a matter of routine, so we will give only examples of them. 
 
Example 1.2.50: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (1, 3)} 
∪ {Z5 (3, 3) be a quasi interval bigroupoid. Clearly G is a 
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Smarandache quasi interval bigroupoid as P = P1 ∪ P2 = {[0, a] / 
a ∈ {0, 6}, *, (1, 3)} ∪ {a = {4}, *, (3, 3), 4 ∈ Z5} ⊆ G1 ∪ G2 is 
a quasi interval bisemigroup. Hence the claim. 
 
Example 1.2.51: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z6, *, (4, 5)} 
∪ {Z6, (2, 4)} be a quasi interval bigroupoid. Consider P =  
P1 ∪ P2 = {[0, a] / a ∈ {1, 3, 5} ⊆ Z6, *, (4, 5)} ∪ {(0, 2, 4) ⊆ 
Z6, *, (2, 4)} ⊆ G1 ∪ G2, P is an interval biideal of G. 
 However P is not a S-biideal of G. 
 Several other concepts like S-semi normal S-semiconjugate 
and S-normal can be defined for quasi interval bigroupoids. We 
can define identities in these special type of bigroupoids also. 
This task is also a matter of routine hence left to the reader. 
However we will give examples of them. 
 
Example 1.2.52: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z10, *, (5, 6)} 
∪ {Z12, (3, 9)} be a quasi interval Smarandache Moufang 
bigroupoid.  
 
Example 1.2.53: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (3, 4)} 
∪ {Z4 (2,3)} be a quasi Smarandache Bol interval bigroupoid. 
 
Example 1.2.54: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z6, *, (4, 3)} 
∪ {Z6 (3, 5)} be a quasi Smarandache P-interval bigroupoid of 
finite order. 
 
Example 1.2.55 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z14, *, (7, 8)} 
∪ {Z12 (1, 6)} be a Smarandache quasi alternative interval 
bigroupoid.  
 
 Now results related with interval bigroupoids can be got in 
an analogous way for quasi interval bigroupoids also. This task 
is left as an exercise to the reader. Now we define interval 
semigroup interval groupoid which we term as biinterval 
groupoid-semigroup or biinterval semigroup-groupoid. 
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DEFINITION 1.2.2: Let G = S ∪ G1 where (S, .) is an interval 
semigroup and (G1, *) is an interval groupoid. (G, o) which 
inherits the operations of S and G1 is defined to be a biinterval 
semigroup groupoid. The operation ‘o’ is defined as follows. 
 First of all G = S ∪ G1 = {[0, s] / [0,s] ∈ S} ∪ {[0, g1] / 
[0,g1] ∈ G1} = {[0, s] ∪ [0, g1] / [0, s] ∈ S and [0, g1] ∈ G1}. 
 Let x = [0, s] ∪ [0, g] and y = [0, t] ∪ [0, h] be in G.  

x o y = ([0, s] ∪ [0, g]) o ([0, t] ∪ [0, h]) 
= {([0, s]. [0, t] ∪ [0, g] * [0, h])} = [0, st] ∪ [0, g*h] ∈ G 

as [0, st] ∈ S and [0, g*h] ∈ G1. 
 
Elements of G are biintervals so we define G as biinterval 
semigroup- groupoid. We will first illustrate this situation by 
some examples. 
 
Example 1.2.56: Let G = G1 ∪ S = {[0, a] / a ∈ Z14, *, (3, 7)} 
∪{[0, t] / t ∈ Z+ ∪ {0}, × } be a biinterval groupoid-semigroup. 
 
Example 1.2.57 : Let G = S ∪ G2 = {[0, a] / a ∈ Z15, under 
multiplication modulo 15} ∪ {[0, b] / b ∈ Z18, *, (5, 7)} be a 
biinterval semigroup-groupoid. We see G is of finite order and 
is non commutative.  
Example 1.2.58 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z20, 
multiplication under modulo 20} ∪ {[0, b] / b ∈ Z20, *, (3, 7)} 
be a biinterval semigroup - groupoid of finite order; order of  
G is just (20, 20) so 202 elements are in G. 
 
Example 1.2.59 : Let G = S ∪ G1 = {interval symmetric 
semigroup S(X) where X = {([0, a1], [0, a2], [0, a3]) } ∪ {[0, a] / 
a ∈ Z49, *, (0, 9)} be a biinterval semigroup groupoid of finite 
order. Clearly G is non commutative. 
 Now we proceed onto define substructures in them. 
 We call a proper bisubset P = P1 ∪ P2 ⊆ S ∪ G1 = G a 
biinterval semigroup-groupoid to be a biinterval subsemigroup-
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subgroupoid if P1 is an interval subsemigroup of S and P2 is an 
interval subgroupoid of G1.  
 We will illustrate this situation by some examples. 
 
Example 1.2.60: Let G = S ∪ G1 = {[0, a] / a ∈ Z40 under 
multiplication modulo 40} ∪ {[0, b] / b ∈ Z14, *, (8, 7)} be a 
biinterval semigroup groupoid. Consider P = P1 ∪ P2 = {[0, a] / 
a ∈ {0, 2, 4, 6, …, 38} ⊆ Z40} ∪ {[0, a] / a ∈ {0, 4} ⊆ Z14} ⊆  
G = S ∪ G1 is a biinterval subsemigroup - subgroupoid of G. 
 
Example 1.2.61: Let G = G1 ∪ S = {[0, a] / a ∈Z12, *, (1, 3)} ∪ 
{[0, b] / b ∈ Z16} be a biinterval groupoid - semigroup.  
T = T1 ∪ T2 = {[0, a] / a ∈ {0, 3, 6, 9} ⊆ Z12} ∪ {[0, b] / b ∈ 
{0, 2, 4, 6, …, 14} ⊆ Z16} ⊆ G1 ∪ S is a biinterval subgroupoid 
- subsemigroup of G. 
 In a similar way we can define ideals, S-subgroupoid  
S-subsemigroups and so on.  
 We will call a biset P = P1 ∪ P2 ⊆ G1 ∪ S = G to be a 
Smarandache sub biinterval groupoid - semigroup if P1 is an 
interval S-subgroupoid and P2 is an interval S-semigroup.  
 We will illustrate this situation by some examples. 
 
Example 1.2.62: Let G = G1 ∪ S2 be a biinterval groupoid-
semigroup where G1 = {[0, a] / a ∈ Z12, *, (1, 3)} the interval 
groupoid and S2 = {[0, a] / a ∈ Z20} an interval semigroup under 
multiplication modulo 20. Choose P = P1 ∪ P2 = {[0, a] / a ∈ 
{0, 3, 6, 9} ⊆ Z12, *, (1, 3)} ∪ {[0, a] / a ∈ {0, 5, 10, 15} ⊆ Z20} 
⊆ G1 ∪ S2 = G. P is a Smarandache subinterval groupoid - 
semigroup of S. 
 It is pertinent to mention here that every biinterval 
subgroupoid-subsemigroup need not in general be a 
Smarandache biinterval subgroupoid - subsemigroup. 
 Infact every S-sub biinterval groupoid-semigroup 
(Smarandache biinterval subgroupoid - subsemigroup) is also a 
biinterval subgroupoid - subsemigroup and not conversely. We 
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also have the following theorem the proof of which is left to the 
reader. 
 
THEOREM 1.2.30: Let S1 ∪ G1 = G be a biinterval semigroup - 
groupoid. If G has a S-subbiinterval semigroup-groupoid then 
G is a S-biinterval semigroup - groupoid. 

 
S-interval biideals can be defined in an analogous way. We 

now define the notion of quasi biinterval semigroup - groupoid 
(groupoid - semigroup). Let G = S1 ∪ G1, if S1 is a semigroup 
and not an interval semigroup and G1 and interval groupoid or 
S1 an interval semigroup and G1 an ordinary groupoid not an 
interval groupoid then we define G to be a quasi biinterval 
semigroup - groupoid (quasi biinterval groupoid - semigroup).  
 We will illustrate this situation by some examples. 
 
Example 1.2.63: Let G = S ∪ G1 = {[0, a] / a ∈ Z45 under 
multiplication modulo 45} ∪ {Z12 (3, 4)} be a quasi biinterval 
semigroup - groupoid. 
 
Example 1.2.64: Let G = S ∪ G1 = {S (7); the symmetric 
semigroup on (1, 2, …, 7)} ∪ {[0, a] / a ∈ Z43, *, (10, 11)} be a 
quasi biinterval semigroup - groupoid of finite order which is 
non commutative. 
 
Example 1.2.65: Let G = S ∪ G1 = {All 3 × 3 matrices with 
entries from Z40} ∪ {[0, a] / a ∈ Z19, *, (2, 3)} be a quasi 
biinterval semigroup - groupoid. 
 
Example 1.2.66 : Let G = S ∪ G1 = {[0, a] / a ∈ Z+ ∪ {0} under 
multiplication} ∪ {Z45 (3, 8)} be a quasi biinterval semigroup-
groupoid. 
 We can define substructures and S-structures and S-
substructure in an analogous way. This is direct and the 
interested reader can do the job.  
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Example 1.2.67 : Let G = G1 ∪ S = {Z14 (7, 8)} ∪ {[0, a] / a ∈ 
Z+ ∪ {0}} be a quasi biinterval groupoid - semigroup. P = P1 ∪ 
P2 = {0, 2} ⊆ Z14, *, (7, 8)} ∪ {[0, a] / a ∈ 3Z+ ∪ {0}} ⊆ G1 ∪ 
S is a quasi biinterval subgroupoid-subsemigroup (quasi sub 
biinterval groupoid - semigroup). 
 
Example 1.2.68 : Let G = G1 ∪ S = {Z7 \ {0}, ×} ∪ {[0, a] / a ∈ 
Z7, *, (3, 2)} be a biinterval quasi semigroup - groupoid. G is a 
simple biinterval quasi semigroup - groupoid as G has no 
subbiinterval quasi semigroup - groupoid. 
 Now we can also define bizerodivisors, biunits, 
biidempotents and their Smarandache analogue for these 
structures. 
 This task is also left for the reader. 
 We can define identities as semigroups can satisfy these 
identities as it holds an associative operation on it.  
 
 
1.3 Interval Bigroups and their Generalization 
 
In this section we introduce interval bigroups and generalize 
them to biinterval group-semigroup and biinterval group - 
groupoid. We will illustrate this by examples. 
 
DEFINITION 1.3.1: Let G = G1 ∪ G2 where (G1, o) and (G2, *) 
be two distinct interval groups; G with the inherited operations 
of G1 and G2 is a bigroup called the interval bigroup. G = G1 ∪ 
G2 = {[0, a] ∪ [0, b] / [0,a] ∈ G1 and [0,b] ∈ G2} with 
operation ‘⋅’ defined by, for g = [0, a] ∪ [0, b] and h = [0, c] ∪ 
[0, d] we have g.h = ([0, a] ∪ [0, b]). ([0, c] ∪ [0, d]) = [0, a] 
o [0, c] ∪ [0, b] * [0, d] = [0, a o c] ∪ [0, b * d] is in G. 
 
It is a matter of routine to prove (G, .) is a bigroup. This task is 
left as an exercise for the reader. 
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Example 1.3.1: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z10 under 
addition modulo 10} ∪ {[0, b] / b ∈ Z11 \ {0} under 
multiplication modulo 11} is an interval bigroup. [0, 0] ∪ [0, 1] 
is the bidentity of G. We will describe the operations on the 
elements of G. Let x = [0, 6] ∪ [0, 3] ∈ G the inverse of x is [0, 
4] ∪ [0, 4] = x-1. For we see  

xx-1  =  ([0, 6] ∪ [0, 3]) . ([0, 4] ∪ [0, 4]) 
=  [0, 10 (mod 10)] ∪ [0, 12 (mod 11)] 
=  [0,0] ∪ [0, 1] = the biidentity in G. 

Now consider x = [0,9] ∪ [0, 2] and y = [0, 4] ∪ [0, 7] in G.  
x.y   =  ([0, 9] ∪ [0, 2]) . ([0, 4] ∪ [0, 7]) 

=  ([0,9] + [0, 4]) ∪ [0, 2] × [0, 7])  
=  [0, 13 (mod 10)] ∪ [0, 14 (mod 11)] 
=  [0, 3] ∪ [0, 3] ∈ G.  

We will give more examples of these interval bigroups. 
 

Example 1.3.2: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z23 \ {0}, 
multiplication modulo 23} ∪ {[0, b] / b ∈ Z19 \ {0}, 
multiplication modulo 19} be a interval bigroup. Clearly G is 
commutative and is of finite order. 
 

Example 1.3.3: Let G = G1 ∪ G2 = i
45

i 0
[0,a]x a Z

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪  

{[0, a] / a ∈ Z29 \ {0}} be an interval bigroup of infinite order. 
 
Example 1.3.4: Let G = G1 ∪ G2  

= 
7

i
25

i 0
[0,a]x a Z

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

9
i
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i 0

[0,a]x a Z
=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  

be a finite interval bigroup, both G1 and G2 are groups under 
polynomial modulo addition. 
 
Example 1.3.5: Let G = G1 ∪ G2 = {GX where X = {([0, a1] , [0, 
a2] … [0, a7]) under composition of mapping} ∪ {SY where Y = 
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{([0, b1], [0, b2], [0, b3])} under composition of mapping} be an 
interval bigroup. Clearly G is a non commutative interval 
bigroup of finite order. 
 Now we proceed onto give examples of substructures in 
them. 
 
Example 1.3.6: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z28, under 
addition modulo 28} ∪ {[0, b] / b ∈ Z19 \ {0}, under 
multiplication modulo 19} be an interval bigroup. Choose  
P = P1 ∪ P2 = {[0, a] / a ∈ {0, 7, 14, 21} ⊆ Z28} ∪ {[0, b] / b ∈ 
{1, 18} ⊆ Z19 \ {0} ⊆ G1 ∪ G2 is an interval subbigroup of G. 
 
Example 1.3.7: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z200} ∪ {[0, a] / 
a ∈ Z144} be an interval bigroup. P = P1 ∪ P2 = {[0, a] / a ∈  
{0, 10, 20, …, 190} ⊆ Z200} ∪ {[0, a] / a ∈ {0, 2, …, 142} ⊆  
G1 ∪ G2 be an interval subbigroup of G. 
 All these interval bisubgroups are also normal as G is a 
commutative interval bigroup. 
 
Example 1.3.8: Let G be an interval bigroup where G1 is an 
interval symmetric group on X = {([0, a1] , …, [0, a11])} and G2 
is also an interval symmetric group on Y = {([0, b1], …, [0, 
b7])} i.e., G = G1 ∪ G2. 
 Let A = Ax ∪ Ay, the alternative interval bisubgroup of G.  
 Clearly A is an interval binormal subgroup of G. Infact all 
interval bisubgroups of G are not binormal in G.  
 
Example 1.3.9: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z10} ∪ {[0, b] / 
b ∈ Z42} be an interval bigroup. All interval bisubgroups of  
G are normal as G is a commutative interval bigroup.  

We define the biorder of G to be |G1| . |G2|. We see all the 
properties enjoyed by usual groups are true in case of interval 
bigroups provided this is taken as the order, for G = G1 ∪ G2 = 
{[0, a] ∪ [0, b] / a ∈ G1 and b ∈ G2}; if both G1 and G2 are 
assumed to be of finite order all classical theorems for finite 
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groups are true in case of interval bigroups. This is only a matter 
of routine and can be easily derived as a regular simple exercise.  
 We will illustrate this by some simple examples. 
 
Example 1.3.10 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12} ∪ {[0, a] 
/ a ∈ Z5 \ {0}} be an interval bigroup. Clearly G is of finite 
biorder. |G| = |G1| . |G2| = 12.4 = 48. 
 Now consider H = H1 ∪ H2 = {[0, a] / a ∈ {0, 2, 4, 6, 8, 10} 
⊆ Z12} ∪ {[0, a] / a ∈ {1, 3} ⊆ G2 = Z5 \ {0}} ⊆ G1 ∪ G2, the 
interval subbigroup of G. Order of H is |H1|. |H2| = 6.2 = 12. We 
see 12/48. Now we define for any x = [0, a] ∪ [0, b] ∈ G we 
define xn = [0, 1] ∪ [0, 1] if [0, a]t = 1 and [0, b]s = 1 then n = st. 
We will illustrate this by some examples. 
 Let x = [0, 6] ∪ [0, 4] ∈ G then x2 = [0, 0] ∪ [0, 1] 
biidentity element of G. If x = [0, 9] ∪[0, 3] ∈ G then x16 = [0, 
9]4 ∪ [0, 3]4 = [0, 0] ∪ [0, 1]. 
 Likewise Cauchy theorem will be true in case of finite 
interval bigroups. Sylow theorems can be easily proved for 
finite interval bigroups. Cayley theorem can be extended by 
using two suitable symmetric interval bigroup in which all 
interval bigroups can be embedded.  
 
 Now we proceed onto define quasi interval bigroups. 
 
DEFINITION 1.3.2: Let G = G1 ∪ G2, where only one of G1 or 
G2 is an interval group and the other is just a group then we 
call G to be a quasi interval bigroup. The operations are 
defined on G as in case bigroups and interval bigroups. 
 
We will give examples of these structures. 
 
Example 1.3.11 : Let G = G1 ∪ G2 = <g / g12 = 1> ∪ {[0, a] / a 
∈ Z32} be a quasi interval bigroup of finite order. |G| = 12 ×32. 
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Example 1.3.12 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z23 \ {0}} ∪ 
{all 5 × 5 matrices with entries from R such that their 
determinant is non zero} be a quasi interval bigroup. Clearly G 
is of infinite order and G is non commutative.  
 
Example 1.3.13 : Let G = G1 ∪ G2 = {S3} ∪ {[0, a] / a ∈ Z45} 
be a quasi interval bigroup of order 6 × 45. 
 
Example 1.3.14 : Let G = G1 ∪ G2 = S5 ∪ {([0, a1] … [0, a6]) 
the symmetric interval group on 6 intervals} be a quasi interval 
bigroup of order 5! × 6!. 
 Clearly G is a non commutative quasi interval bigroup. 
  
We can define substructures in them in an analogous way which 
is direct. 
 
Example 1.3.15: Let G = G1 ∪ G2 = S3 ∪ {[0, a] / a ∈ Z40} be a 
quasi interval bigroup.  
Consider P = P1 ∪ P2 =  

1 2 3
1 2 3

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, 
1 2 3
2 3 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 2 3
3 1 2

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 

∪ {[0, a] / a ∈ {0, 2, 4, …, 38} ⊆ Z40} ⊆ G1 ∪ G2. P is a quasi 
interval bisubgroup of G and |P| = 3.20 = 60. We see P is also 
the quasi interval normal subbigroup of G. We see G has quasi 
interval subbigroups which are not normal in G. 
 Choose  

S = S1 ∪ S2 = 
1 2 3
1 2 3

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, 
1 2 3
1 3 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 in S3} 

∪ {[0, a] / a ∈ {0, 10, 20, 30} ⊆ Z40} ⊆ G1 ∪ G2; S is only a 
quasi interval subbigroup of G and is not normal in G.  
 If G = G1 ∪ G2 is a quasi interval bigroup which is non 
commutative but all its quasi interval bisubgroups are 
commutative then we define G to be a quasi commutative quasi 
interval bigroup. 
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 The quasi interval bigroup G given in example 1.3.15 is 
only a quasi commutative quasi interval bigroup; but G is 
clearly non commutative.  

Now having seen the substructures as in case of interval 
bigroup G, if G is a quasi interval bigroup of finite order say if 
G = G1 ∪ G2 then |G| = |G1|. |G2| and all classical theorems true 
for usual groups hold good for quasi interval bigroups also. 
Now we just give some examples. 
 
Example 1.3.16: Let G = G1 ∪ G2 = {S4} ∪ {[0, a] / a ∈ Z150} 
be a quasi interval bigroup of finite order. |G| = |4 × 150 = 3600. 
It is easily verified every quasi interval bisubgroup of  
G divides the order of G hence the Lagrange theorem is true.  
 Further G is not a quasi commutative quasi interval bigroup. 
For take in G; P = P1 ∪ P2 = A4 ∪{[0, a] / a ∈ {0, 10, 20, 30, …, 
140} ⊆ G1 ∪ G2; we see P is quasi interval bisubgroup but 
clearly P is non commutative, hence G is not a quasi 
commutative quasi interval bigroup. G has also commutative 

interval subbigroups, for take T = T1 ∪ T2 = 
1 2 3 4
1 2 3 4

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, 

1 2 3 4
2 3 4 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 2 3 4
3 4 1 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 2 3 4
4 1 2 3

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 ∪ {[0, a] / a 

∈{0, 30, 60, 90, 120} ⊆ Z150} ⊆ G1 ∪ G2; T is commutative 
quasi interval subbigroups. Consider an element  

x = 
1 2 3 4
2 3 4 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ {[0, 20] / 20 ∈ Z150} 

in G. We see 
1 2 3 4
1 2 3 4
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ {[0, 0]} is the biidentity element 

of G. We see x-1 = 
1 2 3 4
4 1 2 3
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ {[0, 130]} ∈ G is the 

biinverse of x. Consider y = 
1 2 3 4
2 3 4 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ {[0, 50]} ∈ G. 
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We see y12 = 
1 2 3 4
1 2 3 4
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ {[0, 0]}. It is easily verified 

Cauchy theorem is true. Also one can easily check Sylow 
theorems are true for G.  

Now consider the following examples. 
 
Example 1.3.17: Let G = G1 ∪ G2 = <g / g17 = 1> ∪ {[0, a] / a 
∈ Z19} be a quasi interval bigroup. We see G is a strongly 
simple quasi interval bigroup for both G1 and G2 does not 
contain subgroups. If only one of G1 or G2 has subgroups we 
call G to be a simple quasi interval bigroup. 
 
Example 1.3.18: Let G = G1 ∪ G2 = <g / g23 = 1 ∪ {[0, a] / a ∈ 
Z49} be a quasi interval bigroup. Clearly G is only a simple 
quasi interval bigroup and is not a strongly simple quasi interval 
bigroup for G2 has subgroup with respect to addition modulo 49.  
 
Example 1.3.19: Let G = G1 ∪ G2 = {D29} ∪ {[0, a] / a ∈ Z43} 
be a quasi interval bigroup. G is only a simple quasi interval 
bigroup for G2 has no proper interval subgroups. Thus G is not a 
doubly simple quasi interval bigroup.  
 

We have the following theorem, the proof of which is direct 
and is left as an exercise to the reader. 
 
THEOREM 1.3.1: A simple quasi interval bigroup is not strongly 
simple quasi interval bigroup.  
 
Now we can define biinterval group - semigroup (semigroup - 
group). 
 
DEFINITION 1.3.3: Let G = G1 ∪ G2 where (G1, *) is an interval 
group and (S2, o) is an interval semigroup. G with operation ‘.’ 
such that for every x = [0, a] ∪ [0, b] and y = [0, c] ∪ [0, d] in 
G we define  
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 x.y  = ([0, a] ∪ [0, b]) . ([0, c] ∪ [0, d]) 
  = [0, a] * [0, c] ∪ [0, b]o [0, d]  
  = [0, a * c] ∪ [0, b o d] ∈ G. 
(G1, .) is defined as the biinterval group - semigroup. We call G 
a biinterval group - semigroup as elements in G are biintervals. 
 
We illustrate this situation by some examples. 
 
Example 1.3.20 : Let G = G1 ∪ G2 = {[0, a]| a ∈ Z40, +}∪{[0, b] 
| b ∈ Z20 under multiplication modulo 20} be the biinterval 
group-semigroup of finite order. Clearly |G| = |G1| |G2| = 40 × 20 
= 800. Suppose x = [0, 9] ∪ [0, 10] and y = [0, 1] ∪ [0, 7] are in 
G. 
 x.y  = ([0, 9] ∪ [0, 10]) . ([0, 1] ∪ [0, 7]) 
  = ([0, 9] + [0, 1]) ∪ ([0, 10] . [0, 7]) 
  = [0, 10] ∪ [0, 10] ∈ G. 
[0, 0] ∪ [0, 1] is the biidentity of G. 
 In general every biinterval group - semigroup need not 
contain the biidentity. This is evident from the following 
example.  
 
Example 1.3.21 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z45} ∪ {[0, a] 
/ a ∈ 2Z+ ∪ {0} under multiplication} be a biinterval group - 
semigroup. Clearly order of G is infinite and G has no biidentity 
for the interval semigroup is not a monoid. 
 
Example 1.3.22: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z7 \ {0}} ∪ 
{[0, b] / b ∈ Z19} be an interval group - semigroup. We see  
{[0, 1] ∪ [0, 1]} is the biidentity of G.  
 When a biinterval group - semigroup (semigroup - group) 
has no biinterval subgroup- subsemigroup then we call G to be a 
simple biinterval group - semigroup.  
 We will first illustrate this by some examples. 
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Example 1.3.23: Let G = G1 ∪ S1 = {[0, a] / a ∈ Z20} ∪ {[0, b] / 
b ∈ Z40} be a biinterval group - semigroup. Consider H = H1 ∪ 
H2 = {[0, a] / a ∈ {0, 2, 4, 6, 8, …, 18} ∪ {[0, b] / b ∈ {0, 10, 
20, 30} (multiplication modulo 40)} ⊆ G = G1 ∪ S1 is a 
biinterval subgroup - subsemigroup of S. 
 
Example 1.3.24: Let G = G1 ∪ S1 = {[0, a] / a ∈ Z11} ∪ {[0, b] / 
b ∈ Z7} be a biinterval group-semigroup. We see G1 has no 
interval subgroup where as S = {[0, a] / 0, 1, 6} ⊆ S is an 
interval subsemigroup.  
 We under these conditions define the following. 
 
DEFINITION 1.3.4: Let G = G1 ∪ S1 be a biinterval group - 
semigroup. If only one of G1 or S1 has interval subgroup or 
interval subsemigroup, then we define G to be a quasi 
subbiinterval group - semigroup. 
 
Example 1.3.25: Let G = G1 ∪ G2 = {S(〈X〉); interval 
symmetric semigroup} ∪ {[0, a] / a ∈ Z42} be the biinterval 
semigroup-group of finite order which is non commutative. 
 
Example 1.3.26: Let G = S1 ∪ G1 = {[0, a] / a ∈ Z17} ∪ {[0, a] / 
a ∈ Z41} be a biinterval semigroup-group. G is of finite order 
and order of G is 17.41. 
 Now we define quasi biinterval semigroup - group (group - 
semigroup) if only one of them is group or the interval 
semigroup or an interval group or interval semigroup. 
 We will illustrate this situation by some examples. 
 
Example 1.3.27: Let G = G1 ∪ S1 = {Z15, +} ∪ {[0, a] / a ∈ Z7, 
×} be a quasi biinterval group-semigroup of finite order. |G| = 
15.7 = 105.  
 
Example 1.3.28 : Let G = G1 ∪ S1 = {S9} ∪ {[0, a] / a ∈ Z12, *} 
be a quasi biinterval group-semigroup. 
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Example 1.3.29 : Let G = S1 ∪ G1 = {S(〈X〉) / 〈X〉 = 〈([0, x1] 
,…, [0, x7])〉} ∪ {Z15, +} be a quasi biinterval semigroup - 
group. 

We will now give some substructures of them. 
 
Example 1.3.30 : Let G = S1 ∪ G1 = {[0, a] / a ∈ Z45, ×} ∪ {Z40, 
+} be a quasi biinterval semigroup - group. Consider H = H1 ∪ 
H2 = {[0, a] / a ∈ {0, 5, 10, 15, 20, 25, 30, 35, 40} ⊆ Z45, ×} ∪ 
{0, 10, 20, 30} ⊆ Z40, +} ⊆ S1 ∪ G1 = G is a quasi biinterval 
subsemigroup-subgroup (quasi subbiinterval semigroup- group). 
 
Example 1.3.31 : Let G = S1 ∪ G1 = {Z120, ×} ∪ {[0, a] / a ∈ 
Z19 \ {0}, ×} be a quasi biinterval semigroup-group. Choose H = 
H1 ∪ H2 = {{0, 10, 20, …, 110} ⊆ Z120, ×} ∪ {[0, a] / a ∈  
{1, 18} ⊆ Z19, ×} ⊆ S1 ∪ G1 is a quasi subbiinterval semigroup- 
group of G. 
 
Example 1.3.32 : Let G = G1 ∪ S1 = {Z7, +} ∪ {[0, a] / a ∈ Z3 \ 
{0}} be a quasi biinterval group - semigroup. G has no quasi 
subbiinterval group - semigroup.  
 
In view of this we have the following results the proof of which 
is direct. 
 
THEOREM 1.3.2: Let G = G1 ∪ S1 = {Zp, +} ∪ {any interval 
semigroup} be a quasi biinterval group-semigroup. G is a quasi 
simple biinterval group-semigroup. 
 
THEOREM 1.3.3: Let G = G1 ∪ S1 = {[0, a ] / a ∈ Zp, +, p a 
prime} ∪ {any semigroup} be a quasi biinterval group-
semigroup. G is a quasi simple biinterval group - semigroup. 
 
Now we cannot have all classical theorems to be true in case of 
quasi biinterval group - semigroup.  

This will be illustrated by some examples.  
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Example 1.3.33 : Let G = S1 ∪ G1 = {Z16, ×} ∪ {[0, a] / a ∈ Z7 \ 
{0}, ×} be a quasi biinterval semigroup - group of order 16 × 6 
= 96. 
 Consider H = H1 ∪ H2 = {{0, 4, 8, 12, 1} ⊆ Z16, ×} ∪ {[0, 
a] / a ∈ {1, 6} ⊆ Z7 \ {0}} ⊆ S1 ∪ G1 = G; H is a quasi 
subbiinteval semigroup - group of order 5 × 2 = 10 we see  
10 /  96. 
 Thus the classical Lagrange’s theorem for finite groups is 
not true in general for biinterval semigroup - group or quasi 
biinterval semigroup - group. This is evident from the above 
example.  
 
Example 1.3.34 : Let G = G1 ∪ S1 = {Z11 \ {0}, ×} ∪ {[0, a] / a 
∈ Z9, ×} be a quasi biinterval group - semigroup of order 10 × 9 
= 90. H = {[0, a] / a ∈ {1, 10} ⊆ Z11 \ {0}, ×} ∪ {[0, a] / a ∈ {0, 
3} ⊆ Z9, ×} = H1 ∪ H2 ⊆ G1 ∪ S1 = G; H is a quasi - 
subbiinterval group-semigroup of order 4. Clearly 4 × 90. 
Further Cauchy theorem is also not true for x = {10} ∪ {[0, 8]} 
∈ G is such that x4 = {1} ∪ {[0, 1]} identity element of G and  
4 /  90. Thus in general Cauchy theorem for finite groups is not 
true in case of quasi interval group - semigroup. 
 
Example 1.3.35 : Let G = G1 ∪ S1 = {S3} ∪ {[0, a] / a ∈ Z11, ×} 
be a quasi - biinterval group semigroup. Consider H = H1 ∪ H2 
= {A3} ∪ {[0, 0] , [0, 1], [0, 10] ∈ S1} ⊆ G1 ∪ S1 is a quasi sub 
biinterval group - semigroup of G. Now o (G) = 6 × 11 = 66 and 
o (H) = 3 × 3 = 9 and 9 /  66. 
 Thus all classical theorems except Cayleys theorem (when 
modified for semigroups) does not hold good for quasi 
biinterval group - semigroup.  
  
Having defined quasi biinterval group - semigroups we can 
define also quasi biinterval group - groupoid (groupoid - group). 
We wish to state here that the term biinterval is used in an 
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appropriate way but only to signify the structure under 
consideration is a bistructure. We also define the notion of 
biinterval group - groupoid.  
 Let G = G1 ∪ G2 where {G1, ‘o’} is an interval group and 
{G2, *} is an interval groupoid we define ‘.’ on G which 
operations is described in the following.  
 G = G1 ∪ G2 = {[0, a] ∪ [0, b] / [0,a] ∈ G1 and [0,b] ∈ G2}. 
Let x = [0, a] ∪ [0, b] and y = [0, c] ∪ [0, d] be in G. Now  
x.y   =  ([0, a] ∪ [0, b]) . ([0, c] ∪ [0, d]) 

=  [0, a] o [0, c] ∪ [0, b] * [0, d] 
=  [0, a o c] ∪ [0, b * d] ∈ G  

 
as [0,a], [0,c] ∈ G1 and [0,c], [0,d] ∈G2. We define (G1, .) to be 
a biinterval group groupoid. 
 If both G1 and G2 are of finite order we say G is of finite 
order and |G| = |G1| × |G2|, even if one of G1 or G2 is of infinite 
order then we define G to be of infinite order. If both G1 and G2 
are commutative we say G is commutative otherwise non 
commutative. 
 
 We will illustrate this situation by some examples.  
 
Example 1.3.36: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z42, +} ∪ {[0, 
b] / b ∈ Z9, * (2, 4)} be a biinterval group - groupoid. Clearly G 
is of finite order. For |G| = |G1| |G2| = 42.9 = 378. G is non 
commutative as G2 is non commutative. 
Let x = [0, 24] ∪ [0, 4] and y = [0, 7] ∪ [0, 3] ∈ G = G1 ∪ G2. 
x.y   = ([0, 24] ∪ [0, 4]) . ([0, 7] ∪ [0, 3]) 
  = ([0, 24] + [0, 7]) ∪ ([0, 4] * [0, 3]) 
  = [0, 31] ∪ [0, 8+12 (mod 9)] 
  = [0, 31] ∪ [0, 2] ∈ G. 
 
 We in general cannot talk about biidentity or biinverse for 
G2 the groupoid may or may not have identity hence inverse 
may or may not exist. 
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Example 1.3.37 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z23, *, (3, 2)} 
∪ {[0, a] / a ∈ Z25, +} be an biinterval groupoid - group. Clearly 
G is of finite order and non commutative. G has no biidentity. 
 Further in general all the classical theorems for finite groups 
may not be true in case of finite biinterval group-groupoids 
(groupoids - group).  
 
Example 1.3.38: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z19 \ {0}} ∪ 
{[0, a] / a ∈ Z40, *, (7, 9)} be a biinterval group - groupoid of 
order 18 × 40. Take H = H1 ∪ H2 = {[0, a] / a ∈ {1, 18} ⊆ Z19 \ 
{0}} ∪ {[0, a] / a ∈ {0, 10, 20, 30} ⊆ Z40, *, (7, 9)} ⊆ G1 ∪ G2 
= G is a subbiinterval group-groupoid of order 2 × 4 = 8. We 
see o(H) / o(G). 
 Thus we may have some sub biinterval group - groupoids 
whose biorder divides the biorder of the biinterval group - 
groupoid. 
 
Example 1.3.39 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z25, +} ∪ {[0, 
a] / a ∈ Z120, *, (3, 7)} be a biinterval group – groupoid. Clearly 
G is non commutative. Biorder of G is 25 × 120. Consider H = 
H1 ∪ H2 = {[0, a] / a ∈{0, 5, 10, 15, 20} ⊆ Z25, +} ∪ {[0, a] /  
a ∈ {0, 10, 20, 30, 40, 50, …, 110} ⊆ Z120, *, (3, 7)} ⊆ G1 ∪ G2, 
H is a subbiinterval group - groupoid of G. o(H) = 5 × 12 = 60. 
We see o(H) / o(G). 
 Now we have also examples of finite quasi biinterval group- 
groupoids G such that it contains subbiinterval group - groupoid 
H such that o(H) / o(G). 
 We will give some examples of them. 
 
Example 1.3.40 : Let G = G1 ∪ G2 = {Z20, +} ∪ {[0, a] / a ∈ Z9, 
*, (5, 3)} be a biinterval group - groupoid of finite order o(G) = 
20 × 9. Consider = {0, 5, 10, 15} ∪ {1, 2, 4, 5, 7, 8} = H1 ∪ H2 
⊆ G1 ∪ G2 be a subbiinterval group-groupoid. Clearly o(H) = 
4.6 = 24. o(G) = 20 × 9.  24 / 180. Hence the order does not 
divide. 
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 We can have such examples. This distinguishes usual 
interval bigroups from biinterval group-groupoids. 
 
Next we proceed onto describe formally quasi biinterval group-
groupoids. 
 Let G = G1 ∪ G2 only one of G1 or G2 is an interval group 
or interval groupoid we define ‘.’ on G so that (G, .) is defined 
as the quasi biinterval group-groupoid or quasi interval 
groupoid-group. 
 Let (G, .) be a group and (G2, *) be an interval groupoid 
then G = G1 ∪ G2 = {g ∪ [0, a] / g ∈ G1, [0, a] ∈ G2}, define ‘.’ 
on G as follows. x = g ∪ [0, a] and y = h ∪ [0, b] in G.  

x.y  = (g ∪ [0, a]) ∪ [h ∪ [0, b]) 
= g. h ∪ [0, a] * [0, b] 
= g.h ∪ [0, a * b] ∈ G. 

Thus (G, .) is the quasi interval group - groupoid.  
 
Example 1.3.41: Let G = G1 ∪ G2= {g / g12 = 1} ∪ {[0, a] / a ∈ 
Z42, *, (9, 8)} be a quasi interval group - groupoid of G order  
12 × 42. 
  
Example 1.3.42 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z57, *,  
(17, 11)} ∪ {S10} be a quasi interval groupoid-group of order 57 
× o (S10) = 57 × |10. 
 
Example 1.3.43: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z409, +} ∪ {Z9, 
(2, 4)} be a quasi interval group-groupoid. Clearly order of G is 
409 × 9. 
 
Example 1.3.44 : Let G = G1 ∪ G2 = {[0, a] / a ∈ Z43 \ {0}, ×} 
∪ {Z45, (8, 11)} be a quasi interval group-groupoid of order  
42 × 45.  

Now having seen examples of quasi interval group - 
groupoids we now proceed onto give examples of their 
substructures. 
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Example 1.3.45: Let G = G1 ∪ G2 = S3 ∪ {[0, a] / a ∈ Z9, *, (5, 
3)} be a quasi interval group-groupoid. Clearly G is non 
commutative. o(G) = 6 × 9 = 54. Let H = H1 ∪ H2 = A3 ∪  
{1, 2, 4, 5, 7, 8 ∈ Z9, *, (5, 3)} ⊆ G1 ∪ G2 is a quasi interval 
subgroup - groupoid or quasi subbiinterval group - groupoid.  
o (H) = 3 × 6 = 18. Clearly o(H) / o(G). 
 
Example 1.3.46 : Let G = G1 ∪ G2 = {g / g24 = 1} ∪{[0, a] / a ∈ 
Z6, *, (2, 2)} be a quasi interval group-groupoid. Clearly G is 
commutative. o(G) = 24 × 6. 
 
Example 1.3.47: Let G = G1 ∪ G2= {g / g20 = 1} ∪ {[0, a] / a ∈ 
Z20, *, (4, 4)} be a quasi interval group-groupoid. G is 
commutative and is of order 20 × 20. 
 
Now we have the following result which is left as an exercise 
for the reader. 
 
THEOREM 1.3.4: Let G = G1 ∪ G2 = {g / gn = 1} ∪ {[0, a] / a ∈ 
Zn, *, (t, t)} be a quasi interval group - groupoid G is 
commutative. 
 
THEOREM 1.3.5: Let G = G1 ∪ G2 = {Sn} ∪ {[0, a] / a ∈ Zn, *, 
(t, u); t ≠ u, t, u ∈ Zn \ {0}} be a quasi interval group - groupoid. 
G is non commutative.  
 
Example 1.3.48: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z19 \ {0}, ×} ∪ 
{Z19, (3, 3)} be a quasi interval group-groupoid. G is non 
commutative of order 18 × 19. 
 
Example 1.3.49: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z11, +} ∪ {Z12, 
(3, 7)} be a quasi interval group - groupoid, G is non 
commutative and has no substructures. 
 In view of this we have the following theorem the proof of 
which is direct. 
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THEOREM 1.3.6: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zp, +} ∪ {Z19, 
(3, 2)} is a quasi interval group - groupoid p, a prime has no 
substructures.  
 
THEOREM 1.3.7: Let G = G1 ∪ G2 = {[0, a] / a ∈ Zn, n a 
composite number, +} ∪ {Zm, (t, u)} be a quasi interval group -
groupoid. G has substructures. 
 
Example 1.3.50: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, +} ∪ {Z10, 
(5, 6)} is a quasi interval group - groupoid, G has substructures.  

It is pertinent to mention that almost all classical theorems 
for finite groups in general is not true for these quasi interval 
group - groupoids. Further certain concepts cannot be even 
extended to these structures. Thus we have limitations however 
these structures can find its applications in appropriate fields. 
Now having seen these semi associative and non associative 
bistructures with single binary operation we now proceed onto 
define interval biloops. 
 
 
1.4 Interval Biloops and their Generalization 
 
In this section we introduce the notion of interval biloops quasi 
intervals biloops, interval loop - group, interval group - loop, 
interval groupoid - loop interval loop-semigroup and so on and 
describe them.  

We now define and describe these structures. These 
structures also do not in general satisfy the classical theorems 
for finite groups. 
 
DEFINITION 1.4.1: Let L = L1 ∪ L2 where both L1 and L2 are 
two distinct interval loops (L, .) with ‘.’ an operation inherited 
from both L1 and L2 is a loop called the biinterval loop or 
interval biloop. 

 
We will illustrate this situation by some examples. 
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Example 1.4.1: Let L = L1 ∪ L2 = {[0, a] | a ∈ {e, 1, 2, …, 9}, 
m = 8, *, where [0, a] * [0, b] = [0, 7b + 8a (mod 9)} ∪ {[0, b] / 
b ∈ {e, 1, 2, 3, …, 15}, m = 8, *} be a biinterval loop.  

Suppose x = [0, 6] ∪ [0, 9] and y = [0, 4] ∪ [0, 10] in L.  
 
x . y  = ([0, 6] ∪ [0, 9] . ([0, 4] ∪ [0, 10])  

=  [0, 6] * [0, 4] ∪ [0, 9] * [0, 10]  
= [0, 7.6 ; 4.8 (mod 9)] ∪ [0, 7.9 + 8.10 (mod 15)] 
=  [0, 2] ∪ [0, 8] ∈ L.  

L is of finite order and is of even order given by |L1 | . |L2| = 
10.16 = 160.  
 
We can construct several such interval biloops. 
 
Example 1.4.2: Let L1 ∪ L2 = {[0, a] | a ∈ {e, 1, 2, …, 11}, 6, 
*} ∪ {[0, b] / b ∈ {e, 1, 2, .., 5}, 3, *} be a biinterval loop of 
order 12 × 6 = 72.  
 
It is easily verified L is a commutative interval biloop. 
 
Example 1.4.3: Let L = L1 ∪ L2 where L1 and L2 are given by 
the following tables. 
 

Table of L1 
 

* [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, e] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, 1] [0, 1] [0, e] [0, 3] [0, 5] [0, 2] [0, 4]
[0, 2] [0, 2] [0, 5] [0, e] [0, 4] [0, 1] [0, 3]
[0, 3] [0, 3] [0, 4] [0, 1] [0, e] [0, 5] [0, 2]
[0, 4] [0, 4] [0, 3] [0, 5] [0, 2] [0, 3] [0, 1]
[0, 5] [0, 5] [0, 2] [0, 4] [0, 1] [0, 3] [0, e]

 
Clearly L1 is of order 6 built using the loop L5(2). 
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 Now the table for the interval loop L2 is as follows 
 

* [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, e] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, 1] [0, 1] [0, e] [0, 4] [0, 2] [0, 5] [0, 3]
[0, 2] [0, 2] [0, 4] [0, e] [0, 5] [0, 3] [0, 1]
[0, 3] [0, 3] [0, 2] [0, 5] [0, e] [0, 1] [0, 4]
[0, 4] [0, 4] [0, 5] [0, 3] [0, 1] [0, e] [0, 2]
[0, 5] [0, 5] [0, 3] [0, 1] [0, 4] [0, 2] [0, e]

 
 We see L1 is non commutative interval loop of order 6 
where as L2 is a commutative interval loop of order 6. Thus  
L = L1 ∪ L2 is a non commutative biinterval loop of order  
6 × 6 = 36. 
 We have several properties associated with them which we 
will be discussing. For more about loops refer [5, 9, 11]. 
 Let us show by examples the properties satisfied by these bi 
interval loops. 
 
Example 1.4.4: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 7}, 
*, ‘6’} ∪ {[0, b] / b ∈{e, 1, 2, …, 13}, *, 9} be a biinterval loop 
of order 8 × 14 = 112. We see L is a S-biinterval loop, for  
P = P1 ∪ P2 = {[0, e], [0, 6], *} ∪ {[0, e], [0, 11], *} ⊆ L1 ∪ L2 
is an interval bigroup of order 2 × 2 = 4. Thus L is a 
Smarandache interval biloop and is non commutative. 
 
Example 1.4.5: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 19}, 
* , 8} ∪ {[0, b] | b ∈ {e, 1, 2, …, 23} *, 10} be an interval 
biloop. This has no proper interval bisubloop but has only 
interval bisubgroups. 
 These types of biinterval biloops which has no biinterval 
subloops but only biinterval subgroups will be defined as 
Smarandache biinterval subgroup loop or Smarandache interval 
bisubgroup biloops. 
 We have the following theorem. 
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THEOREM 1.4.1: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, p}, 
p a prime m ≠ e or 1 or p, *} ∪ {[0, b] / b∈ {e, 1, 2, …, q} 
where q is a prime m′ ≠ e or 1 or q, *) be a biclass of interval 
loops. (This is a class for as m' can vary from 2 ≤ m ≤ p – 1 and 
2 ≤ m′ ≤ q – 1 respectively). This class of biinterval loop is a S- 
biinterval bisubgroup biloop.  
 
Proof: Given p and q are primes so L has (p + 1) . (q + 1) 
elements (L given in the theorem). By the very construction 
every bielement [0, a] ∪ [0, b] in L generates an interval 
bigroup of order two. Hence L has no biinterval subloops only 
has biinterval subgroups. Hence the claims. 

We can also define for biinterval loops principal isotope, as 
in case of loops [5, 9, 11]. We shall illustrate them by examples. 
 
Example 1.4.6: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, 3, 4, 5}, 
2, *} ∪ {[0, b] / b ∈ {e, 1, 2, 3, 4, 5}, 3, *} be biinterval biloop 
given by the following tables. 
 

* [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, e] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, 1] [0, 1] [0, e] [0, 3] [0, 5] [0, 2] [0, 4]
[0, 2] [0, 2] [0, 5] [0, e] [0, 4] [0, 1] [0, 3]
[0, 3] [0, 3] [0, 4] [0, 1] [0, e] [0, 5] [0, 2]
[0, 4] [0, 4] [0, 3] [0, 5] [0, 2] [0, e] [0, 1]
[0, 5] [0, 5] [0, 2] [0, 4] [0, 1] [0, 3] [0, e]

 
* [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

[0, e] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, 1] [0, 1] [0, e] [0, 4] [0, 2] [0, 5] [0, 3]
[0, 2] [0, 2] [0, 4] [0, e] [0, 5] [0, 3] [0, 1]
[0, 3] [0, 3] [0, 2] [0, 5] [0, e] [0, 1] [0, 4]
[0, 4] [0, 4] [0, 5] [0, 3] [0, 1] [0, e] [0, 2]
[0, 5] [0, 5] [0, 3] [0, 1] [0, 4] [0, 2] [0, e]
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 Now let S = S1 ∪ S2 = {[0, a] / a ∈ {e, 1, 2, 3, 4, 5}, ⊗, 2} 
∪ {[0, b] / b ∈ {e, 1, 2, 3, 4, 5}, ⊗, 3} be the principal bi 
isotopes of L = L1 ∪ L2 given by the following tables. 
 

⊗ [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, e] [0, 3] [0, 2] [0, 5] [0, e] [0, 1] [0, 4]
[0, 1] [0, 5] [0, 3] [0, 4] [0, 1] [0, e] [0, 2]
[0, 2] [0, 4] [0, e] [0, 3] [0, 2] [0, 5] [0, 1]
[0, 3] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, 4] [0, 2] [0, 5] [0, 1] [0, 4] [0, 3] [0, e]
[0, 5] [0, 1] [0, 4] [0, e] [0, 5] [0, 2] [0, 3]

 
and the table of S2 is as follows :  
 

⊗ [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, e] [0, 4] [0, 5] [0, 3] [0, 1] [0, e] [0, 2]
[0, 1] [0, 3] [0, 2] [0, 5] [0, 3] [0, 1] [0, 4]
[0, 2] [0, 5] [0, 3] [0, 1] [0, 4] [0, 2] [0, e]
[0, 3] [0, 2] [0, 4] [0, e] [0, 5] [0, 3] [0, 1]
[0, 4] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, 5] [0, 1] [0, e] [0, 4] [0, 2] [0, 5] [0, 3]

 
Now we can define as in case of bi interval loops define 

Smarandache simple interval biloops. This task is also left to the 
reader. 
 
Example 1.4.7: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, n}, 
*, m such that (m – 1, n) = 1 = (m, n), 1 < m < n} ∪ {[0, b] / b 
∈ {e, 1, 2, …, t}, *, s such that {s – 1, t) = (t, s) = 1 and 1 < s < 
t} be an interval biloop. It is easily verified L is a Smarandache 
interval bisimple loop. 
 We have the following theorem which guarantees the 
existence is a class of such interval biloops. 
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THEOREM 1.4.2: L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, m], *, t 
where (t, m) = (t – 1, m) = 1; 1 < t < m} ∪ {[0, b] / b ∈  
{e, 1, 2, …, n}, *, s such that {s, n) = (s-1, n) = 1 and 1 < s < n} 
(m ≠ n or if m = n then s ≠ t) be an interval biloop. L is a 
Smarandache simple interval biloop.  
 
The proof is direct and is left as an exercise for the reader to 
prove. 

In fact we have for every t in L such that (t, m) = 1 and  
(t – 1, m) = 1 we have an interval loop hence we have a class of 
interval loops associated with each t which we can denote by 
{Lm[0,a](t)}. Similarly for L2 we have a class denoted by  
{Ln [0, b] (s)}. So this class {Lm [0,a] (t)} ∪ {Ln [0, b] (s)} is a 
Smarandache interval bisimple loop. 

We will define an interval biloop to be A Smarandache 
weakly Lagrange biloop if there exist atleast one interval 
bisubgroup H = H1 ∪ H2 in L = L1 ∪ L2 such that o(H)/o(L) that 
is |H1| |H2| / |L1| |L2|. 

 
We will first illustrate this situation by an example. 

 
Example 1.4.8: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 15], 
*, 2} ∪ {[0, b] / b ∈ {e, 1, 2, …, 7}, *, 6} be an interval biloop.  

Clearly L is only a Smarandache weakly Lagrange 
biinterval loop. 

For take H = H1 ∪ H2 {[0, e], [0, 8], *, 2} ∪ {[0, e], [0, 3], 
*, 6} ⊆ L1 ∪ L2. H is an biinterval subgroup of G. o(H) = 2 × 2 
= 4. Now o(L) = |L1| |L2| = 16.8. 4 / 16.8. 

Consider T = T1 ∪ T2 = {[0, a] / a ∈ {e, 1, 2, 5, 8, 11,14} ⊆ 
{e, 1, 2, 3, …, 15} *, 2} ∪ {[0, e], [0, 4], *, 6} ⊆ L1

 ∪ L2, T is 
such that |T1| . |T2| = 6.2 / 16.8. Hence L is only a Smarandache 
weakly Lagrange interval biloop. 

 
Infact we have a non empty class of Smarandache weakly 

Lagrange interval biloop. 
 

THEOREM 1.4.3: L = {Ln [0, a] (t)] ∪ {Lm [0, b] (s) } (m ≠ n) be 
a class of biinterval loop (interval biloops). Every interval 
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biloop in L is a Smarandache weakly Lagrange interval 
bilooop.  
 

The proof is straight forward and is hence left as an exercise 
to the reader [9]. 
 We can define Smarandache Lagrange interval biloop in a 
similar way [9] and it is also easy to verify that every 
Smarandache Lagrange interval biloop is a Smarandache 
weakly Lagrange interval biloop [9].  

Now we can define as in case of usual loops the notion of 
Smarandache Cauchy interval biloop. 
 Let L = L1 ∪ L2 be an interval biloop. Let x = [0, a] ∪ [0, b] 
∈ L we say x is a Smarandache-Cauchy biinterval element of L 
if 1 2r rrx [0,a] [0,b]= ∪ = [0, 1] ∪ [0, 1] and r1 > 1, r2 > 2 with r1 
r2 /L1| |L2|, otherwise x is not a Smarandache Cauchy bi interval 
element of L. 
 
Example 1.4.9: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 11], 
*, 3} ∪ {0, a] / a ∈ {e, 1, 2, …, 13}, *, 7} be an interval biloop.  
 Clearly o(L) = |L1| . |L2| = 12.14. Consider x = [0,2] ∪ [0, 4] 
∈ L. x * x = [0, 2] × [0, 2] ∪ [0, 4] [0, 4] = [0, 2 * 2] ∪ [0, 4 * 
4] = [0, e] ∪ [0, e]. Thus r1 = r2 = 2. Now 2.2/|L1| |L2|. Thus x is 
a S-Cauchy biinterval element of L. 
 Recall if every bielement in L is a S-Cauchy bi interval 
element of L then we define L to be a Smarandache Cauchy 
interval biloop (S-Cauchy interval biloop) we will show we 
have a class of interval biloops which are S-Cauchy biinterval 
loops. 
 
THEOREM 1.4.4: Let L = {L1} ∪ {L2} = {Ln[0, a](t)} ∪  
{Lm [0, b](s)} n ≠ m, be a class of biinterval loops. Every 
interval biloop in L is a Smarandache Cauchy interval biloop. 
 
Proof is direct for we see in every interval biloop every bi 
interval element x = [0, a] ∪ [0, b] ∈ L is of biorder 2.2 and 
since every interval loop Ln [0, a] (t) is of even order 2.2 / |L1 | . 
|L2|. One can extend the notion of Smarandache pseudo 
Lagrange loops to interval biloops. 
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 Let L = L1 ∪ L2 be an interval biloop of finite order. If the 
biorder of every interval S-subbiloop (S-biinterval subloop or S-
interval subbiloop) divides the biorder |L1| |L2| then we say L is 
a Smarandache pseudo Lagrange biinterval loop or 
Smarandache pseudo Lagrange interval biloop. 
 If L has atleast one S-interval subbiloop K = K1 ∪ K2 ⊆ L1 
∪ L2 such that |K1| . |K2| / |L1| . |L2| then we say L is a 
Smarandache weakly pseudo Lagrange interval biloop [5, 9]. 
 It is easily verified that every S-pseudo biinterval Lagrange 
loop is a S-weakly pseudo Lagrange biinterval loop [5,9,11]. 
Interested reader is expected to construct examples to this 
effect. 
 We can define Smarandache p-Sylow interval subbiloops as 
in case of loops [5, 9, 11]. We also can as in case of loops 
define Smarandache p-Sylow subgroup [5, 9, 11]. 
 Further for Smarandache interval bisubgroup biloop we can 
define strong Sylow substructures. Let L = L1 ∪ L2 be a 
Smarandache biinterval subgroup loop of finite biorder; if every 
interval subbigroup is either of a prime power biorder and that 
bidivides o(L) = |L1| |L2| then we call L to be a Smarandache 
strong interval p-Sylow biloop (S-strong interval p-Sylow 
biloop) [5, 9, 11]. 
 We have a class of Smarandache strong 2-Sylow biloops. 
 
Example 1.4.10: L = L1 ∪ L2 = L5 [0,a] (3) ∪ L7 [0, b] (3) be an 
interval biloop given by the following tables. 
 

Table of L5 [0, a] (3) 
 

* [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, e] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
[0, 1] [0, 1] [0, e] [0, 4] [0, 2] [0, 5] [0, 3]
[0, 2] [0, 2] [0, 4] [0, e] [0, 5] [0, 3] [0, 1]
[0, 3] [0, 3] [0, 2] [0, 5] [0, e] [0, 1] [0, 4]
[0, 4] [0, 4] [0, 5] [0, 3] [0, 1] [0, e] [0, 2]
[0, 5] [0, 5] [0, 3] [0, 1] [0, 4] [0, 2] [0, e]
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Table for L7 [0,b] (3) 

 
* [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7] 

[0, e] [0, e] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7] 
[0, 1] [0, 1] [0, e] [0, 4] [0, 7] [0, 3] [0, 6] [0, 2] [0, 5] 
[0, 2] [0, 2] [0, 6] [0, e] [0, 5] [0, 1] [0, 4] [0, 7] [0, 3] 
[0, 3] [0, 3] [0, 4] [0, 7] [0, e] [0, 6] [0, 2] [0, 5] [0, 1] 
[0, 4] [0, 4] [0, 2] [0, 5] [0, 1] [0, e] [0, 7] [0, 3] [0, 6] 
[0, 5] [0, 5] [0, 7] [0, 3] [0, 6] [0, 2] [0, e] [0, 1] [0, 4] 
[0, 6] [0, 6] [0, 5] [0, 1] [0, 4] [0, 7] [0, 3] [0, e] [0, 2] 
[0, 7] [0, 7] [0, 3] [0, 6] [0, 2] [0, 5] [0, 1] [0, 4] [0, e] 

 
We see every interval bielement x = [0, a] ∪ [0, b] ∈ L is 

such that x2 = [0, 1] ∪ [0, 1]. Thus L is a Smarandache strong  
2-Sylow interval biloop. 
 
THEOREM 1.4.5: Let = {Lp [0, a] (t)} ∪ {Lq [0,b] (s)} (p and q 
two distinct primes) be a Smarandache interval biloop of order 
|p+1|. |q+1|. Then every interval biloop in L is a Smarandache 
strong biinterval 2-Sylow loop. 
 
 Proof follows from the fact the biorder of L = |L1| . |L2| = 
|p+1| |q+1| = even number × even number and as p and q are 
two distinct primes every interval bielement in L is of biorder 
2.2. Hence each interval biloop in L is a Smarandache strong  
2-Sylow biloop. 
 Now we can define as in case of usual S-loops the notion of 
Smarandache interval biloop homomorphism and S-interval 
biloop isomorphism [5, 9, 11]. Interested reader can substantiate 
this with examples. As in case of general loops we define 
Smarandache commutative interval biloop [5, 9, 11].  
 
Example 1.4.11: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 7], 
*, 3} ∪ {[0, b] / b ∈ {e, 1, 2, …, 11}, *, 3} be a biinterval loop. 
Clearly L is a S-commutative interval biloop. 
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 We say an interval biloop L = L1 ∪ L2 to be a Smarandache 
strongly commutative (S-strongly commutative) interval billoop 
if every proper bisubset S = S1 ∪ S2 ⊆ L1 ∪ L2 which is a 
biinterval group (interval bigroup) is a commutative interval 
bigroup. 
 Also it is clear from the very definition if L = L1 ∪ L2 is  
S-strongly commutative interval biloop then L is a Smarandache 
commutative interval biloop. 
 
Example 1.4.12: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 
19], *, 8} ∪ {[0, b] / b ∈ {e, 1, 2, …, 23}, *, 9} be an interval 
biloop. It is easily verified that L is a S-substrongly 
commutative interval biloop. 
 
Example 1.4.13: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 
21], 11, *} ∪ {[0, b] / b ∈ {e, 1, 2, …, 15}, 8, *} be a bi interval 
loop. 
 Clearly L is S-commutative biinterval biloop. 
 Now we have the following interesting theorem. 
 
THEOREM 1.4.6: Let L = {Lp [0, a] (t)} ∪ {Lq [0, b] (s)}, p and 
q two distinct primes be a class of biinterval loops. Every 
interval biloop in L is a S-strongly commutative interval biloop. 
 
 Follows from the fact every proper bisubset A = A1 ∪ A1 ⊆ 
L which is an interval subbigroup is of biorder 2.2, and has no 
other interval subbiloops. Hence the claim. 
 Now as in case of loops we can in case of interval bilooops 
also define the notion of Smarandache cyclic interval biloop or 
Smarandache bicyclic interval biloop or Smarandache cyclic 
biinterval loop [5, 9, 11]. Also the notion of Smarandache 
strong cyclic biinterval loop as in case of loops. It is easily 
verified that every S-strong biinterval cyclic loop is a S-cyclic 
interval biloop.  

We will illustrate this by some examples. 
 
Example 1.4.14: L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, 3,4,5}, 4, 
*} ∪ {[0, b] / b ∈ {e, 1, 2, …, 29}, *, 7} be a biinterval loop. It 
is easily verified that L is S-strongly cyclic interval biloop. 
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 We have a very large classes of class of S-strongly cyclic 
interval biloop which is stated in the following theorem the 
proof of which is left as an exercise to the reader. 
 
THEOREM 1.4.7: Let L = {Lp [0, a] (t)} ∪ {Lq [0, b] (s)}, p and 
q two distinct primes be a class of biinterval loop. Then every 
biinterval loop in L is a S-strongly cyclic interval biloop. 
 
 In fact by varying the primes p and q over the set of primes 
we can get an infinite class of S-strongly cyclic interval biloops. 
 We have the following interesting theorem which gives the 
number of strictly non commutative interval biloops which are 
S-strongly commutative interval biloops and S-strongly cyclic 
interval biloops. 
 
THEOREM 1.4.8: Let L = {Ln [0, a] (t)} ∪ {Lm [0, b] (s)}  
(m ≠ n, m > 3, n > 3) where n = k1

1 kp pαα  and m = s1 tt
1 sq q  

with αi > 1, tj > 1, 1 < i < k and 1 < j < s. Then L contains 
exactly Fn . Fm interval biloops which are strictly non 
commutative and they are 

1. S-strongly commutative interval biloops and 
2. S-strongly cyclic interval bilooops where 

1

1

( 3) −

=

= −∏ i

K

n i i
i

F p pα , 1

1

( 3) −

=

= −∏ j
s

t
m j j

j

F q q . 

 
We can as in case of usual biloops define Smarandache pseudo 
commutative interval biloop and Smarandache strongly pseudo 
commutative interval biloop. We can also define the notion of 
Smarandache commutator interval bisubloop denoted by LS = 

s s
1 2L L∪ . We have the following interesting result viz. if L = L1 

∪ L2 be an S-interval biloop which has no S-interval subbiloops 
then L′ = Ls = 1 2L L′ ′∪ = s s

1 2L L∪  where L′ = 1 2L L′ ′∪  = 
<{[0,x] ∈ L1 / [0, x] = ([0, y], [0,z]) for some [0,y], [0,z] ∈ L1}> 
∪ <{[0,y] ∈ L2 / [0,y] = ([0,s], [0,t] for some [0,s], [0,t] in L2}> 
and Ls = s s

1 2L L∪  = { s
1L  is the interval subloop generated by all 

the interval commutators A1, A1 a S-interval subloop of the 
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interval loop L1} ∪ { s
2L is the interval subloop generated by all 

the interval commutators A2, A2 a S-interval subloop of the 
interval loop L2}. We have the following theorem.  
 
THEOREM 1.4.9: Let L = {Ln [0,a] (t) / n is a prime; 0 < t < n} 
∪ {Lm [0, b] (s) / m is a prime, 0 < s < m} be a class of non 
commutative interval biloops. Then we have L′ = { ′1L  [0,a] 
(t)} ∪ { ′mL [0, b](s)} = Ls = { s

nL [0,a] (t)} ∪ { s
mL  [0, a] (s)} 

for every pair taken in L. 
 
 Here nL′ [0, a] (t) = 〈{[0, d] ∈ Ln [0,a] (t) / [0, d] = ([0, b], 
[0, c]) for some [0, b], [0, c] in Ln [0, a] (t)}〉. Similarly  

mL′ [0, b] (s) is defined. 
 The proof is direct for more information please refer [5]. 

We can as in case of loops define for interval biloops the 
notion of Smarandache associative interval biloops [5]. 
 
Example 1.4.15: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 
13], *, 5} ∪ {[0,b] | b ∈ {e, 1, 2, …, 17} *,7} be an interval 
biloop. Clearly L is not a S-associative interval biloop. 
 We have a very large class of interval biloops which are not 
S-associative interval biloops. This is evident from the 
following theorem, the proof of which is straight forward. 
 
THEOREM 1.4.10: Let L = {Ln [0, a] (t)} ∪ {Lm [0, b] (s)} (n 
and m are two distinct primes 1 < t < n and 1 < s < m) be class 
of interval biloops. None of the interval biloops in this class of 
(n+1) (m+1) biloops is an S-associative interval biloop. 
 
The notion of Smarandache strongly pairwise associative 
interval biloops can be defined in an analogous way for interval 
biloops. We will illustrate this by an example. 
 
Example 1.4.16 : Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 
19}, t = 7, *, 1 < t < 19} ∪ {[0, b] / b ∈ {e, 1, 2, …, 11}, *, s = 
5, 1 < s < 11} m and n are distinct be a S-strongly pairwise 
associative interval biloop. 
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THEOREM 1.4.11: Let L = L1 ∪ L2 = {Ln[0, a](t) / 0 < t < n, *} 
∪ {Lm [0, b](s) | 0 < s < m, *} (m ≠ n, m > 3, n > 3; m and n 
positive integers) be a class of interval biloops. L is a class of  
S-strongly pairwise associative interval biloops.  
 

We give only hint of the proof. 
 Let a = [0, x] ∪ [0, y] ∈ 1 2

1 2L L∪ where 1
1L  and 2

2L  are 
interval loops from the class of loops L1 and L2 respectively. 
Similarly b = [0, p] ∪ [0, s] ∈ 1 2

1 2L L∪ .  
Now clearly using some simple number theoretic techniques 

we have  
(a b)a  =  (([0, x] ∪ [0, y]) ([0, p] ∪ [0, s]) × ([0, x] ∪ [0, y]) 

  =  [0, {xp) x] ∪ [0 (ys) y] 
=  [0, x(px)] ∪ [0, y(sy)] 
=  a(ba) [ ]. 

We can also define the notion of Smarandache associator 
interval subbiloop denoted by LA = 1 2A A

1 2L L∪ = {<interval 
subloop generated by all the interval associators in A1, where A1 
is a S-interval subloop of L1; that is A1 ⊆ L1>} ∪ {<interval 
subloop generated by all the interval associators in A2, where A2 
is a S-interval subloop of L2 that is A2 ⊆ L2>}. 
 If L is a S-interval biloop which has no S-interval 
bisubloops then we have A(L) = LA = A1 (L1) ∪ A2 (L2) = 

1 2A A
1 2L L∪ that is the associator interval subbiloop of L 

coincides with the S-associator interval subbiloop [ ]. 
 We have the following theorem which guarantees such class 
of interval biloops. 
 
THEOREM 1.4.12: Let L = L1 ∪ L2 = {Ln [0, a] (t) ; *, 1 < t < 
n} ∪ {Lm [0,a] (s), *, 1 < s < m} be a class of interval biloops 
where Li’s are S-interval loops and has no S-interval subloops,  
i = 1, 2. Then A{L} = A(L1) ∪ A(L2)  = A A

1 2L L∪ . 
 
(Here we mean every pair of interval biloops in the class 
satisfies the condition which is represented by the class L = L1 
∪ L2). 
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 In general we cannot say this for S-interval biloops which 
has S-interval subbiloops. Interested reader can construct 
examples to this effect [5, 9, 11]. Consequent of this we have 
the following theorem. 
 
THEOREM 1.4.13: Let L = L1 ∪ L2 be an S-interval biloop 
having a S-interval subbiloop A = A1 ∪ A2, then A(L) ≠ LA that 
is A(L) = A1(L1) ∪ A2 (L2) ≠ 1 2A A

1 2L L∪ .  
This proof is by constructing counter examples to this effect 

[5, 9, 11]. We can as in case of loops define for interval biloops 
the notion of S-first normalizer and S-second normalizer and 
obtain the condition for the S-first normalize to be equal to S-
second normalize for interval biloops. 

 
Example 1.4.17: Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 
21], *, 8} ∪ {[0, b] / b ∈ {e, 1, 2, …, 33}, *, 5} be an interval 
biloop. Clearly 1

1H  (7) is the interval subloop of L is given by 
the following table 1

1H (7) = {[0, e], [0, 1], [0, 8], [0, 15]}. 
  

* [0, e] [0, 1] [0, 8] [0, 15]
[0, e] [0, e] [0, 1] [0, 8] [0, 15]
[0, 1] [0, 1] [0, e] [0, 15] [0, 8] 
[0, 8] [0, 8] [0, 15] [0, e] [0, 1] 

[0, 15] [0, 15] [0, 8] [0, 1] [0, e] 
 

2
1H (11) = {[0, e], [0, 11], [0, 12], [0, 23]} is an interval subloop 

of L2 given by the following table: 
 

* [0, e] [0, 1] [0, 12] [0, 23]
[0, e] [0, e] [0, 1] [0, 12] [0, 23]
[0, 1] [0, 1] [0, e] [0, 23] [0, 12]

[0, 12] [0, 12] [0, 23] [0, e] [0, 1] 
[0, 23] [0, 23] [0, 12] [0, 1] [0, e] 
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 Consider the interval bisubloop 1
1H (7) ∪ 2

1H (11) ⊆ L1 ∪ 
L2. It is easily verified that SN1 ( 1

1H (7)) ∪ SN1 ( 2
1H (11)) =  

SN2 ( 1
1H (7)) ∪ SN2 ( 2

1H (11)). 
 In view of this we have the following important theorem. 
 
THEOREM 1.4.14: Let L = L1 ∪ L2 = {Ln[0, a](t)} ∪ {Lm[0, 
b](s)} be the class of interval biloops (this forms a class of 
interval biloops). For any pair of interval biloops from L say 

1 2
n mL L∪ ∈ L1 ∪ L2, let 1

inH ([0, a](p)) ∪ 2
imH ([0,b](q)) ⊆ 

2
n mL L′ ∪ be its interval S-subbiloop. 

Then  
SN1 ( 1

inH ([0, a] (p)) ∪ SN2 ( 2
imH ([0,b] (q)) 

= SN2 ( 1
inH ([0, a] (p)) ∪ SN2 ( 2

imH ([0,b] (q)) 
if and only if 

(t2 – t + 1, p) = (2t – 1, p) and (s2 – s + 1, q) = (2s -1, q). 
 

Proof: Let 1 2
n mL L∪ be as in theorem and 1

inH ([0, a] (p)) ∪ 
2
imH ([0,b] (q)) ⊆ 2

n mL L′ ∪  be an S-interval bisubloop of 
1 2
n mL L∪ . First we show that first interval S-binormalizer 

 SN1 ( 1
inH ([0, a] (p))) ∪ SN1 ( 2

imH ([0,b] (q))) = 1
inH (k1) ∪ 

2
imH (k2) where k = k1 ∪ k2 = p/d1 ∪ q/d2 and d1 ∪ d2 = (2t-1, p) 

∪ (2s-1, q), we use only simple number theoretic arguments and 
the definition SN1 ( 1

inH ([0, a] (p)) ∪ SN2 ( 2
imH ([0,b] (q)) = 

{[0,j1] ∈ nL′ /[0, j1] 1
inH ([0, a] (p)) = 1

inH ([0, a] (p)) [0, j1]} ∪ 
{[0,j2] ∈ 2

nL / [0, j2] 2
imH ([0,b](q)] = 2

imH ([0,b] (q)) [0, j2]} is 
the S-first interval binormalizer of 1

inH ([0, a] (p)) ∪  
2
imH ([0,b] (q)).  

It is left for the reader to verify [0, j1] 1
inH ([0, a] (p)) ∪  

1
inH  ([0,a] (p)). [0, j1] if and only if (2t-1) (i –j1) ≡ 0 mod (p) and  

[0, j1] 2
imH ([0, a] (q)) = 2

imH ([0, b] (q)) [0, j2] if and only if  
(2s – 1) (i – j2) ≡ 0(mod q). 
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 For [0, j1] ∉ 1
inH ([0, a] (p)) and [0, j2] ∉ 2

imH ([0,b] (q)) 
further if [0, j1] ∈ 1

inH ([0, a] (p)) we have [0, j1] 1
inH  ([0,a] (p)) 

= 1
inH  ([0,a] (p)) [0, j1]. 

 Similar argument holds for 2
imH ([0,b] (q)) and [0, j2]. 

 Now for the other part reasoning is done as in case of usual 
loops. Please refer [ ]. 
 We have an interesting result relating Ln([0, a) (t)) ∪  
Lm([0, b] (s)) where n and m are two distinct primes and  
SN(Ln ([0, a] (t)) ∪ SN (Lm ([0, b] (s)). 
 

THEOREM 1.4.15: Let L = n m
1 2L L∪ = {Ln([0, a] (t)} ∪ {Lm ([0, 

b](s)} be a class of interval biloops where n and m are two 
distinct primes. Then for every pair of interval biloops 1

nL ([0, 
a])(t) ∪ 2

mL ([0, b]) (s)∈ L we have SN( 1
nL ([0, a]) (t)) ∪ 

SN( 2
mL ([0, b]) (s)) = {e} ∪ {e}. 

 
For proof refer [5, 9, 11]. 
 Analogously one can derive for interval biloops with 
appropriate changes. 
 We can for interval biloops define S-Moufang bicenter. 
This is easily done by suitably extending to interval biloops. 
 We have the following theorems the proofs can be obtained 
as in [ 5, 9, 11] with appropriate modifications. 
 
THEOREM 1.4.16: Let L = L1 ∪ L2 = {Ln [0, a](t)} ∪  
{Lm [0, b](s)}, n and m are two distinct primes be a class of 
interval bilooops, then S-Moufang bicenter of every interval 
biloop from L say 1

nL ([0, a]) (t) ∪ 2
mL ([0, b]) (s) for fixed t 

and s is either {e} ∪ {e} or 1
nL ([0, a]) (t) ∪ 2

mL ([0, b]) (s). 
 
THEOREM 1.4.17: Let L = L1 ∪ L2 = {Ln [0, a](t)} ∪ {Lm [0, 
b](s)} be a class of interval biloops where n and m are two 
distinct primes.  

Then NZ( 1
nL ([0, a]) (t)) ∪ NZ( 2

mL ([0, b])(s)) = Z( 1
nL ([0, 

a]) (t)) ∪ Z ( 2
mL ([0, b]) (s)) = {e} ∪ {e} for every pair of 



 77

interval biloops 1
nL  ([0, a]) (t)) ∪ 2

mL ([0, b]) (s) in  
L1 ∪ L2 for a fixed t and s.  

 
For proof refer [5, 9] and obtain the proof with proper 

modifications for interval biloops. We can as in case of loops 
define direct product in case of interval biloops and derive their 
related properties. Now using interval loops we can define 
interval group - loop, interval semigroup - loop, quasi interval 
biloops and interval groupoid - loop. 
 Now we proceed onto define these structures and study 
some of their related properties. 
 
DEFINITION 1.4.2: Let L = L1 ∪ L2 where L1 be an interval loop 
and G2 is just a loop. We call L a quasi interval biloop. The 
operations from L1 and G2 are carried over to L.  
 
We will illustrate this with examples. 
 
Example 1.4.18: Let L = L1 ∪ L2 where L1 is L5(3) and L2 = 
{[0,a] / a ∈ {e, 1, 2, …, 7}, *, 6} be a quasi interval biloop. We 
will just show how on L operations are carried out. Let x = 2 ∪ 
[0,4] and y = 4 ∪ [0, 6] be in L = L1 ∪ L2,  
x . y  =  (2 ∪ [0, 4]) . (4 ∪ [0,6])  

=  2 * 4 ∪ [0, 4] * [0, 6] 
=  (4 × 3 – 2 × 2) (mod 5) ∪ {[0, 4 × 6]} 
=  {12 + 1 (mod 5)} ∪ {(0, {36 – 4 × 5) (mod 7)} 
=  3 ∪ [0, 2] ∈ L1 ∪ L2 = L.  

e ∪ [0, e] ∈ L acts as the identity element. This quasi interval 
biloop is of order 6 × 8 = 48.  
 
Example 1.4.19: Let L = L1 ∪ L2 = {[0,a] | a ∈ {e, 1, …, 11}, *, 
9} ∪ L7(3) be a quasi interval biloop of order 20 × 8 = 160. L = 
{[0, a] ∪ b / a ∈ {e, 1, 2, …, 11} and b ∈ {e, 1, 2, …, 7}}. 
Operations on them can be carried out as shown in example 
1.4.18. Now we can define quasi interval subbiloop, quasi 
interval S-biloops and so on. Several of the theorems proved for 
interval biloops can be derived also for quasi interval biloops 
with some simple changes. 
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 We will illustrate these situations by some examples. 
 
Example 1.4.20: L = L1 ∪ L2 = {[0,a] / a ∈ {e, 1, 2, …, 21}, *, 
5} ∪ 33L (8)  be a quasi interval biloop. L is a S-quasi interval 
biloop. For take A = A1 ∪ A2 = {[0, e], [0, 10]} ∪ {e, 6} ⊆ L1 ∪ 
L2 is a quasi interval bigroup, hence L is a S-quasi interval 
biloop. Consider H1(7) = {[0, e], [0,1], [0,8], [0,15]} and H1(11) 
= {e, 1, 12, 23} subloops of L1 and L2 respectively. H = H1(7) ∪ 
H1(11) ⊆ L1 ∪ L2 is not only a quasi interval subbiloop but also 
H is a S-quasi interval bisubloop of order 4 × 4 = 16. 
 
Example 1.4.21: Let . L = L1 ∪ L2 = {[0,a] / a ∈ {e, 1, 2, …, 
19}, *, 8} ∪ L17 (3) be a quasi interval biloop. L is a S-quasi 
interval biloop. 
 For take A = A1 ∪ A2 = {[0, e], [0, 3]} ∪ {e, 9} ⊆ L1 ∪ L2 ; 
A is a quasi interval bigroup, hence L is a S-quasi interval 
biloop. Infact we have a class of S-quasi interval biloop. 
 
THEOREM 1.4.18: Let . L = L1 ∪ L2 = Ln(m) ∪ {[0,a] / a ∈ {e, 
1, 2, …, t}, *, s; 1 < s < t (t, s) = 1 = (s – 1, t)} be a quasi 
interval biloop. L is a Smarandache quasi interval biloop. 
 
The proof is straight forward and hence is left as an exercise for 
the reader. In fact a class of quasi interval biloops exists. For in 
the theorem m and s can vary and we have a class. If we vary n 
and t we get classes of quasi interval biloops of finite order. 
 We have a class of quasi interval biloops which are 
bisimple. We will first illustrate by an example. 
 
Example 1.4.22: Let L = L9 (8) ∪ {[0,a] / a ∈ {e, 1, 2, …, 19}, 
*, 11} be a quasi interval biloop which is clearly bisimple. 
 In fact we have a class of bisimple quasi interval biloops. 
 
THEOREM 1.4.19: L = L1 ∪ L2 = Ln ∪ {Lt[0,a](s)} be a class of 
quasi interval biloops. Clearly every pair of quasi interval 
biloops are simple. 
 
Proof is straight forward as L has no non-trivial quasi interval 
normal bisubloops. Hence the claim. 
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Example 1.4.23: Let L = L1 ∪ L2 = {L19(3)} ∪ {[0,a] / a ∈ {e, 1, 
2, 3, …, 23}, *, 5} be quasi interval biloop. Clearly L is a 
Smarandache quasi interval bisubgroup biloops. 
 We have a class of S-quasi interval bisubgroup biloop. 
 
THEOREM 1.4.20: Let L = L1 ∪ L2 = Ln ∪ {{Lt[0,a] (s)} where n 
and t are distinct primes, be a class of quasi interval biloops. L 
is a S-quasi interval subgroup biloop. 
 
Now we have a class of quasi interval S-Cauchy biloops. 
 
Example 1.4.24: Let L = L15 (8) ∪ {[0,a] / a ∈ {e, 1, 2, …, 21}, 
11, *} be a quasi interval biloop. Clearly L is a quasi interval S-
Cauchy biloop or S-Cauchy quasi interval biloop. 
 
THEOREM 1.4.21: Let L = L1 ∪ L2 = {Lm} ∪ {Lt [0,a] (s) /  
1 < s < t, *} be a class of quasi interval biloops. Every quasi 
interval biloop in this class is a S-Cauchy quasi interval biloop. 
 The proof is left as an exercise to the reader. 
 
Example 1.4.25: Let L = L1 ∪ L2 = L15(2) ∪ {[0,a] / a ∈ {e, 1, 2, 
…, 15}, *, 2} be a quasi interval biloop of order 16 × 16. 
 We see L has quasi interval S-subbiloops. H = H1 ∪ H2 = {e, 
2, 5, 8, 11, 14} ∪ {[0, a] / a ∈ e, 2, 5, 8, 11, 14} ⊆ L1 ∪ L2 is a 
quasi interval S-subbiloop of order 6 × 6. Clearly o(H) /  {L} 
that is 6.6 / 16.16. 
 
THEOREM 1.4.22: Let Ln ∪ {Lm [0,a] (t)} = L be a class of 
quasi interval biloops. Every quasi interval biloop in L is a S-
weakly Lagrange quasi interval biloop. 
  
Proof is straight forward and is left as an exercise for the reader.  

We have a class of quasi interval biloops which are 
Smarandache strong quasi interval 2-Sylow biloops. 
 
Example 1.4.26: Let L = L1 ∪ L2 = L7(3) ∪ {[0,a] / a ∈ {e, 1, 2, 
…, 29}, *, 12} be a quasi interval biloop which is a S-strong 
quasi interval 2-Sylow biloop. 
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 We have the following theorem which guarantees the 
existence of a class of quasi interval Smarandache strong 2-
Sylow biloops. 
 
THEOREM 1.4.23: Let L = Ln ∪ {[0,a] / a ∈ {e, 1, 2, …, q}, *, t, 
1 < t < q}; n and q primes be a class of quasi interval biloops. 
Every quasi interval biloop in L is a Smarandache strong quasi 
interval 2-Sylow biloop. 
 
The proof is straight forward and hence is left as an exercise to 
the reader. 
 
Example 1.4.27: Let L = L1 ∪ L2 = L5(4) ∪ {[0,a] / a ∈ L7 (2)} 
is a quasi interval biloop. 
 Clearly L is a S-strongly cyclic quasi interval biloop. 
 
THEOREM 1.4.24: Let L = L1 ∪ L2 = Ln ∪{[0,a] / a ∈ Lm(t); *; 1 
< t < m} (n > 3, m > 3) n and m are primes be a quasi interval 
biloop. Then every quasi interval biloop in L is bicyclic so L is a 
S-strongly cyclic quasi interval biloop.  
 

The proof is direct and hence left for the reader to prove. 
Now we will give the theorem which gives even the number of 
quasi interval bicyclic biloops. 
 
THEOREM 1.4.25: Let L = Ln ∪ {Lm ([0,a] (s)} (n > 3, m > 3) 
be a class of quasi interval biloops. If n = t1 2

1 2 tp p pαα α  and m 

= p1 2 tt t
1 2 pq q q (αi > 1, tj > 1; 1 < i < t; 1 < j < p) then it 

contains exactly Fn . Fm quasi interval biloops which are strictly 
noncommutative and they are 

1) S-strongly commutative quasi interval biloops and 
2) S-strongly quasi interval cyclic biloops where 

t

n
i 1

F
=

=∏ (pi – 3) 1−i
ipα  and 

p

m
i 1

F
=

=∏ (qi – 3) 1−it
iq  

 
Proof is direct for information related to it refer [5, 9]. 
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 Also we can say when the S-commutative quasi interval 
biloop coincides with the quasi interval biloop. 
 To this effect we first give an example and then give the 
related theorem. 
 
THEOREM 1.4.26: Let L = Ln ∪ {Lm ([0,a] (t)} | 1 < t < m} be a 
class of quasi interval biloops n and m distinct primes and L is 
noncommutative. Every quasi interval biloop P = P1 ∪ P2 ⊆ Ln 
∪ {Ln ([0, a]), (t)} is such that P′ = 1P′  ∪ 2P′  = Ps = s

1P ∪ s
2P  

= P = P1 ∪ P2. 
 
 For proof in an analogous way please refer [5, 9, 11]. 
 
 We have a class of quasi interval biloops which are non 
associative. We will first illustrate this by an example. 
 
Example 1.4.28: Let L = L1 ∪ L2 = Ln ∪ {[0,a] | a ∈ {e, 1, 2, …, 
m}, *, t; 1 < t < m} where n and m are two distinct primes. For 
varying elements s and t between 1 to n and 1 to m respectively 
we get a class of quasi interval biloops. Every biloop in this 
class is not a S-associative quasi interval biloops. 
 
 We say quasi interval biloops P = P1 ∪ P2 is Smarandache 
strongly pair wise associative if for all [0, x] ∪ [0, y], [0, a] ∪ 
[0, b] in P1 ∪ P2 we must have ([0, x] [0, a] ([0, x]) ∪ ([0,y] 
[0,b]) [0, y] = [0, x] ([0, a] [0,x]) ∪ [0, y] ([0, b] [0, y]). We 
show we have a class of S-strongly associative quasi interval 
biloops. 
 

Let L = L1 ∪ L2 = L9 (8) ∪ { ([0,a] | a ∈ {e, 1, 2, …, 15}, *, 
14} be a quasi interval biloop which is clearly S-strongly 
associative quasi interval biloop. 
 
THEOREM 1.4.27: Let L = L1 ∪ L2 = Ln ∪ {Lm([0,a] (s)} | 1 < s 
< m} be a class of quasi interval biloops. Every quasi interval 
biloop in L is S-strongly associative quasi interval biloop. 
 
Proof given in [5] can be analogously used for L = L1 ∪ L2. 
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Example 1.4.29: Let L = L1 ∪ L2 = L11 (5) ∪ { ([0,a] } a ∈ {e, 
1, 2, …, 25}, * 24} be a quasi interval biloop. Clearly L is S-
biloop and has no S-subloops. Further A(L) = A(L1 ∪ L2) = 
A(L1) ∪ A(L2) = LA = A A

1 2L L∪ = L1 ∪ L2. 
 We have a class of quasi interval biloops which satisfy the 
following condition. 
 
THEOREM 1.4.28: Let L = L1 ∪ L2 = {Ln} ∪ {[0, a] | a ∈{e, 1, 2, 
.., m}, *, 1 < t < m} (m and n distinct odd numbers greater than 
three) be a class of quasi interval biloops. Every biloop P = P1 
∪ P2 in L is such that 

1) P is S-quasi interval biloop. 
2) P has no S-quasi interval subbiloops 
3) A(P) = A(P1) ∪ A(P2)   

PA = A A
1 2P P∪ = P1 ∪ P2 

for every P in L. 
 
The proof is direct using definitions and simple number 

theoretic techniques. 
We leave it as an exercise to the reader to prove that we 

have a class of quasi interval biloops for which the first 
normalize is equal to second normalilzer under the condition 
(m2 – m +1, t) = (2m – 1, t) where Ln(m) ∈ Ln and t/n and (2p – 
p + 1, s) = (2p – 1, t) an interval loop Lq in which s/q and Lq is 
built using p where (p, q) = (p, q – 1) = 1. 
Further when both the interval loop and loop are built using Zq 
and Zp, where p and q are primes we see the quasi interval 
biloop L = Lp (t) ∪ {Lq ([0, a]) s} is such that SN (L) =  
SN (Lp (t)) ∪ SN (Lq ([0, a]) (s)) = {e} ∪ {e} where 1 < t < p 
and 1 < s < q. 
Further for all the quasi interval biloops given above we see the 
S-Moufang bicentre is {e} ∪ {e} or total of L. 
 Also in this case when p and q are two distinct primes we 
see the quasi interval biloops we have NZ (L) = NZ (Lp (t)) ∪ 
NZ (Lq [0, a] (s))) = Z (L) = Z (Lp (t)) ∪ Z (Lq [0, a] (s)) =  
{e} ∪ {e}. 
 We can also define the notion of direct product to obtain 
more classes of quasi interval biloops. 
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DEFINITION 1.4.3: Let L = L1 ∪ G where L1 is an interval loop 
and G is an interval group, then L is a interval loop - group. 
The operations on L1 and G are carried on L component wise.  
 
 We will illustrate this situation by some examples. 
 
Example 1.4.30: Let L = L1 ∪ G1 = {[0, a] / a ∈ {e, 1, 2, …, 7}, 
3, *} ∪ {[0, b] / b ∈ Z14, +} be a interval loop group of finite 
order. 
 Order of L is 8.14 = 112. 
 
Example 1.4.31: Let L = G1 ∪ L1 = {Z19 \ {0}, ×} ∪ {[0, a] /  
a ∈ {e, 1, 2, …, 25}, *, 24} be an interval group-loop of finite 
order. 
 
Example 1.4.32: Let L = G1 ∪ L1 = {Z19 \ {0}} ∪ {[0, a] / a ∈ 
{e, 1, 2, …, 23}, *, 12} be an interval group-loop of order  
18 × 24. If one of them is alone an interval structure we define 
then as quasi interval loop-group. Clearly L is a commutative 
quasi interval group-loop. 
 
 We can define quasi interval subgroup - subloop as in case 
of other algebraic structures. 
  
Example 1.4.33: Let G = G1 ∪ L1 = {Z25, +} ∪ {[0, a] / a ∈  
{e, 1, 2, …, 15}, *, 8} be an quasi interval group - loop. 
 
Example 1.4.34: Let V = V1 ∪ V2 = {Z16, +} ∪ {[0, a] / a ∈  
{e, 1, 2, …, 15}, 8, *} be an quasi interval group - loop. 
Consider P = P1 ∪ P2 = {{0, 4, 8, 12}, +} ∪ {[0, a] / a ∈ {e, 1, 
6, 11}, *, 8} ⊆ V1 ∪ V2 given by the following tables. 
 

+ 0 4 8 12 
0 0 4 8 12 
4 4 8 12 0 
8 8 12 0 4 

12 12 0 4 8 
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and 
 

* [0, e] [0, 1] [0, 6] [0, 11] 
[0, e] [0, e] [0, 1] [0, 6] [0, 11] 
[0, 1] [0, 1] [0, e] [0, 11] [0, 6] 
[0, 6] [0, 6] [0, 11] [0, e] [0, 1] 

[0, 11] [0, 11] [0, 6] [0, 1] [0, e] 
 
 P is a quasi interval subgroup subloop of finite order. 
Clearly o (P) / o (L). 
 
Example 1.4.35: Let L = L1 ∪ L2 = {Z23, +} ∪ {[0, a] / a ∈  
{e, 1, 2, …, 47}, *, 9} be a quasi interval group-loop. L has no 
proper interval group-loop. 
 
Example 1.4.36: Let L = L1 ∪ G2 = L9 (8) ∪ {[0, a] / a ∈ {Z12}, 
+} be a quasi interval loop-group. 
 
 Clearly L has substructures. 
 
Example 1.4.37: Let L = L1 ∪ G1 = {[0, a] / a ∈ {e, 1, 2, …, 
17}, *, 10} ∪ {[0, b] / b ∈ Z23 \ {0}, ×} be an interval loop-
group of order 18 × 22. L has interval bigroup as and has no 
interval loop-group. A = A1 ∪ A2 = {[0, e], [0, 7], *, 10} ∪  
{[0, 1], [0, 22]} ⊆ L1 ∪ G1 is an interval bigroup of L. 
 
Example 1.4.38: Let G = L1 ∪ G2 = {[0, a] / a ∈ {Z43}, +} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 19}, *, 10} be an interval group - loop. 
Clearly G has no interval substructures. 

 

Infact we have a class of interval group - loop which has no 
substructures. 
 
THEOREM 1.4.29: Let L = L1 ∪ L2 = {[0, a] / a ∈ Zp, +; p a 
prime} ∪ {[0, b] / b ∈ Zq, *, t ; 1 < t < q, q a prime} be an 
interval group-loop. L has no interval substructures. 

 

Proof is direct and hence is left as an exercise to reader. 
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Example 1.4.39: Let L = L1 ∪ G1 = L15 (8) ∪ {[0, a] / a ∈ Z40, 
+} be a quasi interval loop - group of finite order. Clearly  
P = P1 ∪ {[0, a] / a ∈ {0, 4, 8, 12, 16, 20, 24, 28, 32, 36} ⊆ Z40, 
+} ⊆ L1 ∪ G1 where P1 = {{e, 1, 6, 11} is a subloop of L1 so P 
is a quasi interval subloop-subgroup of finite order. 
 
Example 1.4.40: Let L = L1 ∪ L2 = {L19 (8)} ∪ {[0, a] / a ∈ Z49, 
+} be a quasi interval loop- group of order 20 × 49. Clearly L 
has proper quasi interval bigroup.  

 

The notion of Smarandache cannot arise as we are involving 
groups in these quasi structures. 
  

Now we can define interval loop - semigroup and quasi 
interval loop - semigroup. 
 
DEFINITION 1.4.4: Let L = S1 ∪ L1 where S1 is an interval 
semigroup and L1 is an interval loop; operations carried out on 
L using operations of S1 and L1. We define L to be an interval 
semigroup - loop. 
 

 We will illustrate this by some examples so that one can 
easily follow how the operations on L are carried out. 
 
Example 1.4.41: Let L = S1 ∪ L1 = {[0, a] / a ∈ Z24, ×} ∪  
{[0, b] / b ∈ {e, 1, 2, …, 11}, 8} be an interval semigroup-loop 
of order 24 × 12. 
 
 Let x = [0, 5] ∪ [0, 7] and y = [0, 12] ∪ [0, 5] ∈ L.  
 x.y  = ([0, 5] ∪ [0, 7]) . )[0, 12] ∪ [0, 5]) 
  = [0, 5] × [0, 12] ∪ [0, 7] * [0, 5] 
  = [0, 5 × 12 (mod 24)] ∪ [0, 40-50 (mod 11)] 
  = [0, 12] ∪ [0, 7+10 (mod 11)]  
  = [0, 12] ∪ [0, 6] ∈ L. 
 
 Now it is easily verified that L is an interval semigroup-
loop. 
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Example 1.4.42: Let L = L1 ∪ S1 = {[0, a] / a ∈ {e, 1, 2, …, 15, 
*, 8} ∪ {[0, b] / b ∈ Z28, ×} be an interval semigroup-loop of 
finite order. Clearly o (L) = 16 × 28. L is commutative.  
 
Example 1.4.43: Let L = S1 ∪ L2 = {S(X) / X = ([0, a1], [0, a2], 
[0, a3], [0, a4])} ∪ {[0, b] | b ∈ {e, 1, 2, …, 19}, *, 2} be an 
interval semigroup-loop. L is of finite order and is non 
commutative. 
 
Example 1.4.44: Let L = L1 ∪ S1 = {[0, a] / a ∈ {e, 1, 2, …, 
23}, 4, *} ∪ {S (〈X〉) / 〈X〉 = 〈{[0, a1], [0, a2], [0, a3], [0, a4], [0, 
a5]}〉} is an interval loop semigroup which is non commutative. 
We say L = S1 ∪ L1 is a quasi interval semigroup-loop if only 
one of S1 or L1 is an interval structure and the other is a usual 
structure. 
 
Example 1.4.45: Let L = L1 ∪ S1 = {[0, a] / a ∈ Z40, ×} ∪ L11(3) 
be a quasi interval semigroup-loop of finite order. L is a non 
commutative structure. 
 
Example 1.4.46: Let L = L1 ∪ S1 = {[0, a] | a ∈ Z25, ×} ∪ 
L19(10) be a quasi interval semigroup-loop of finite order. 
Clearly L is a commutative structure. 
 We have a class of commutative quasi interval semigroup-
group which is evident from the following theorems, the proof 
of which are direct. 
 
THEOREM 1.4.30: Let L = S1 ∪ L1 = {[0, a] / a ∈ Zm, ×} ∪  
 

⎧ +⎛ ⎞
⎨ ⎜ ⎟

⎝ ⎠⎩
n

n 1L
2

, *, }+n 1
2

 

be a quasi interval semigroup-loop. L is commutative.  
 
THEOREM 1.4.31: Let L = L1 ∪ S1 = {[0, a] / a ∈ {e, 1, 2, …, 

p}, *, p 1
2
+ } ∪ {Zn, ×} be a quasi interval loop - semigroup of 

finite order. L is a commutative structure.  
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Now we can also have a class of non commutative quasi 
interval loop semigroups which is evident from the following 
theorems the proof of which is direct. 
 
THEOREM 1.4.32: Let S = S (n) ∪ {[0, a] / a ∈ {e, 1, 2, …, n}, 

*, t ≠ +n 1
2

} be a quasi interval semigroup - loop. S is non 

commutative. 
 
THEOREM 1.4.33: Let S = S1 ∪ L1 = {S (X) / X = ([0, a1] , …, 

[0, an])} ∪ {Ln (m)} (m ≠ n 1
2
+ ) be a quasi interval semigroup - 

loop. S is non commutative.  
 
 Now we can define substructures which is a matter of 
routine. We will however give examples of them. 
 
Example 1.4.47: Let G = S1 ∪ L1 where S1 = {S(〈X〉)/ X = ([0, 
a1], [0, a2], …, [0, a8])} be the special interval symmetric 
semigroup and L1 = {[0, a] / a ∈ {e, 1, 2, …, 35}, *, 9} be the 
interval loop. G is a interval semigroup-loop of finite order. 
Take P = P1 ∪ P2 = {S (X) ⊆ S (〈X〉)} ∪ {[0, a] / a ∈ {3e, 1, 8, 
15, 22, 29}, *, 9} ⊆ S1 ∪ L1, P is an interval subsemigroup - 
subloop of L. 
 
Example 1.4.48: Let G = {Z50, ×} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
15}, 8, *} be a quasi interval semigroup - loop. Choose  
H = H1 ∪ H2 = {{0, 10, 20, 30, 40} ⊆ Z50, ×} ∪ {[0, a] / a ∈  
{e, 1, 6, 11} ⊆ {e, 1, 2, …, 15}, 8, *} ⊆ G, H is a quasi interval 
subsemigroup-subloop of G. 
 
Example 1.4.49: Let G = G1 ∪ S1 = L21 (5) ∪ {[0, a] / a ∈ Z30, 
×} be a quasi interval semigroup-loop. H = H1 ∪ H2 = {a ∈  
{e, 1, 8, 15}, *, 5} ∪ {[0, a] / a ∈ {0, 2, 4, 6, 8, …, 26, 28}, ⊆ 
Z30, ×} ⊆ G1 ∪ S1, is a quasi interval subsemigroup - subloop of 
L. 
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 We can define Smarandache interval smeigroup-loop and 
Smarandache quasi interval semigroup - loop. 
 

 We will leave the task of defining the Smarandache 
structure to the reader as it is a matter of routine, however we 
give examples of them.  
 
Example 1.4.50: Let L = S1 ∪ L1 = {Z18, ×} ∪ {[0, a] / a ∈  
{e, 1, 2, …, 21}, *, 11} be a quasi interval semigroup - loop. 
Clearly L is a S-quasi interval semigroup-loop for L contains A 
= A1 ∪ A2 = {{1, 17} ⊆ Z18, ×} ∪ {[0, e], [0, 19], *, 10} ⊆  
L = S1 ∪ L1 which is a quasi interval bigroup. 
 
Example 1.4.51: Let G = S1 ∪ L1 = {S (〈X〉) / X = ([0, a1], [0, 
a2], [0, a3])} ∪ {L19 (7)} be a quasi interval semigroup loop. 
Clearly G is a S-quasi interval semigroup loop for H = H1 ∪ H2 
= SX ∪ {{e, 11} ⊆ L19 (7)} is a quasi interval bigroup of G. 
 
Example 1.4.52: Let G = S1 ∪ L1 = {[0, a] / a ∈ Z48, ×} ∪  
L15 (8) is a quasi interval semigroup-loop. Consider H = H1 ∪ 
H2 = {[0, a] / a ∈ {0, 4, 8, 12, …, 44}, ×} ∪ {{e, 1, 6, 11} /  
8, *} ⊆ S1 ∪ L1 is a quasi interval subsemigroup-subloop of G. 
Also P = P1 ∪ P2 = {[0, 1], [0, 4], ×} ∪ {{e, 12}, *, 8} ⊆ S ∪ L1 
is a quasi interval bigroup of G. 
 
Example 1.4.53: Let G = S1 ∪ L1 = {[0, a] / a ∈ Z20, ×} ∪ {[0, 
b] / b ∈ {e, 1, 2, …, 7}, *, 4} be a interval semigroup-loop. 
Clearly G is a S-interval semigroup-loop but G has no S-interval 
subsemigroup - subloop. 
 

 We have a class of interval semigroup loop which has no S-
interval subsemigroup - subloop. 
 
THEOREM 1.4.34: Let S = G1 ∪ L1 = {Ln / n a prime} ∪  
{Zp, +} be a class of interval loop - semigroup for varying 
primes p. Clearly S has no S-quasi interval subloop - 
subsemigroup. 
 

 The proof is direct and hence it left as an exercise for the 
reader. 
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THEOREM 1.4.35: Let L = S ∪ L1 = {[0, a] / a ∈ Zp, p a prime p 
varying over the set of all primes, under ×} ∪ {[0, a] / a ∈  
{e, 1, 2, …, n}, n a prime, t, 1 < t < n, *, for varying t between 
(1, n)} be a class of interval semigroup - loop L has no  
S-interval subsemigroup - subloop. 
 

 The proof is an easy consequence of the definition and 
hence is left as an exercise for the reader.  
 

This is a quasi associative interval algebraic structure.  
 

Now we proceed onto define interval loop-groupoids. 
 
DEFINITION 1.4.5: Let G = G1 ∪ L1 where G1 is an interval 
groupoid and L1 is an interval loop and G inherits the operation 
from G1 and L1 denote the operation by ‘.’, (G, .) is defined as 
the interval groupoid-loop. 
 

 We will illustrate this by some examples. 
 
Example 1.4.54: Let G = G1 ∪ L1 = {[0, a] / a ∈ Z8,{3, 7}, ⊗} 
∪ {[0, a] / a ∈ {e, 1, 2, …, 7}, *, 3} be an interval groupoid-
loop. 
 
 Suppose x = [0, a] ∪ [0, b] and y = [0, c] ∪ [0, d] be in G. 
 x.y = ([0, a] ∪ [0, b]) . ([0, c] ∪ [0, d]) 
  = [0, a] ⊗ [0, c] ∪ [0, b] * [0, d] 
  = [0, a ⊗ c] ∪ [0, b * d] 
  = [0, 3a + 7c (mod 8)] ∪ [0, 3d – 2b (mod 7)] is in G. 
 
Example 1.4.55: Let G = G1 ∪ L1 = {[0, a] / a ∈ Z15, *, (8, 4)} 
∪ {[0, d] / d ∈ {e, 1, 2, …, 19}, *, 4} be a interval groupoid-
loop. 
 
Example 1.4.56: Let G = G1 ∪ L = {[0, a] / a ∈ Z+, *, (3, 2)} ∪ 
{[0, b] / b ∈ {e, 1, 2, …, 43}, 24, *} be an interval groupoid - 
loop. Clearly G is of infinite order.  
 

All other examples of interval groupoid - loop given are 
only of finite order.  
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 We can define substructures in them, this task is left to the 
reader. We give only examples. 
 
Example 1.4.57: Let G = G1 ∪ L1 = {[0, a] / a ∈ Z6, *, (4, 5)} ∪ 
{[0, b] / b ∈ {e, 1, 2, …, 35}, *, 9} be interval groupoid-loop of 
order 6 × 36. 
 
 Take H = H1 ∪ H2 = {[0, 2], [0, 4], 0 / 0, 4, 2 ∈ Z6, *,  
(4, 5)} ∪ {[0, b] / b ∈ {e, 1, 8, 15, 22, 29} ⊆ {e, 1, 2, …, 35}, *, 
9} ⊆ G1 ∪ L1, H is an interval subgroupoid-subloop of G. 
 
 The order of H is 3.6 clearly o(H) / o(G). 
 
Example 1.4.58: Let G = H1 ∪ G1 = {[0, a] / a ∈ Z8, *, (2, 6)} ∪ 
{[0, b] / b ∈ {e, 1, 2, …, 15}, *, 8} be an interval groupoid-loop 
of order 8.16. Consider A = A1 ∪ A2 = {[0, a] / a ∈ {0, 2, 4, 6} 
⊆ Z8, *, (2, 6)} ∪ {[0, b] / b ∈ {e, 1, 6, 11} ⊆ {e, 1, 2, 3, …, 14, 
15}, *, 8} ⊆ H1 ∪ G1. A is an interval subgroupoid - subloop of 
G and o (A) = 4.4 and o (A) / o (G), that is 4.4 / 8.16 
 
 Now we can define S-interval groupoid - loop. Further this 
algebraic structure is a non associative structure. 
 
Example 1.4.59: Let G = H1 ∪ H2 = {[0, a] / a ∈ Z8, *, (2, 6)} ∪ 
{[0, b] / b ∈ {e, 1, 2, …, 21}, *, 11} be an interval groupoid - 
loop of order 8.22 = 176. Let A = A1 ∪ A2 = {[0, a] / a ∈ {0, 2, 
3, 4, 6} ⊆ Z8, *, (2, 6)} ∪ {[0, b] / b ∈ {e, 1, 8, 15}, *, 11} ⊆ H1 
∪ H2 ; A is an interval subgroupoid - subloop of G. Clearly  
o (H) / o (G) for o (H) = 5.4 and 5.4 /  8.22. We can define 
Smarandache structures in these algebraic structure. 
 

 An interval groupoid - loop G is said to be a Smarandache 
interval groupoid - loop if G has a proper subset H = H1 ∪ H2 
where H1 is an interval semigroup and H2 is an interval 
subgroup.  
 

We will illustrate this structure by an example. 
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Example 1.4.60: Let G = G1 ∪ G2 = {[0, a] / a ∈ Z5, *, (3, 3)} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 19}, *, 8} be an interval groupoid - 
loop. Consider H = H1 ∪ H2 = {[0, 1] / 1 ∈ Z5, *, (3, 3)} ∪ {[0, 
e] [0, 9] / e, 9 ∈ {e, 1, 2, …, 19}, *, 8} ⊆ G1 ∪ G2, is an interval 
semigroup-group, contained in G. Hence G is a S-interval 
groupoid - loop.  
 

We have a class of such S-interval groupoid - loops. 
 
Example 1.4.61: Let H = H1 ∪ H2 = {[0, a] / a ∈ Z6, *, (4, 5)} ∪ 
{[0, b] / b ∈ {e, 1, 2, …, 19}, *, 3} be a S-interval groupoid 
loop. 
 
THEOREM 1.4.36: Let S = G1 ∪ G2 = {[0, a] / a ∈ Z2p, p a 
prime, *, (1, 2)} ∪ {[0, b] / b ∈ {e, 1, 2, …, n}; n > 3, 1 < m < 
n, (m, n) = (1-m,n) = 1, *} be a class of interval groupoid - loop 
for varying p. Clearly every interval groupoid-loop in S is a 
Smarandache groupoid-loop. 
 

 Proof is direct and is left as an exercise to the reader.  
 

 We call an interval groupoid - loop to be a S-Bol interval-
groupoid loop if both the interval-groupoid and interval loop are 
S-Bol. Similarly S-Moufang, S-alternative and S-idempotent 
interval gropoid-loop.  
 

 Interested reader is expected to supply examples of these 
structures. However since both the interval structures are non - 
associative we can define interval S-quasi Bol groupoid - loop, 
or S-quasi Bol loop - groupoid, interval S-quasi Moufang loop - 
groupoid or interval S-quasi P-groupoid and so on. We will also 
give the related theorems. We will further give examples of 
them. 
 
Example 1.4.62: Let G = L1 ∪ G1 where L1 = {[0, a] / a ∈  
{e, 1, 2, …, 19}, *, 12} be a S-strong interval cyclic loop and  
G1 = {[0, b] / b ∈ Z28, *, (7, 3)} be an interval groupoid. Clearly 
G1 is a not a S-strongly interval cyclic groupoid. Hence G the 
interval loop - groupoid is only a interval quasi  
S-strongly cyclic loop-groupoid. 
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Example 1.4.63: Let G = G1 ∪ L1 = {[0, a] / a ∈ Z20, *, (7, 8)} 
∪ {[0, b] / b ∈ {e, 1, 2, …, 23}, *, 8} be an interval groupoid - 
loop. G is only a interval quasi S-strongly commutative 
groupoid loop as only L1 the interval loop is S-strongly 
commutative interval loop where as G1 is not a S-strongly 
interval commutative groupoid. 
  

Several related results and properties can be derived with 
appropriate modifications. This can be treated as a matter of 
routine and carried out by the interested reader. 
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Chapter Two 
 
 
 
 

 
n-INTERVAL ALGEBRAIC STRUCTURES 
WITH SINGLE BINARY OPERATION  
 
 
 
 
 
 
In this chapter we introduce several new types of n-interval 
algebraic structures (n>2) with single binary operation. These 
structures are so mixed and they are utilized in places of 
appropriate applications. This chapter has five sections. Sections 
one deals with n-interval semigroups and analysis their 
properties. Section two introduces the notions of n-interval 
groupoids (n>3) and generalizes them. The notion of n-interval 
group and quasi n-interval structures using groups, semigroups 
groupoids are introduced for the first time in section three. The 
four section defines the notion of n-interval loops and describes 
a few properties related with them. The final section introduces 
the notion of mixed n-interval algebraic structures. 
 
 
2.1 n-Interval Semigroups  
 
 In this section we introduce n-interval semigroups (n > 2) 
and describe a few properties related with them. 
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DEFINITION 2.1.1: Let S = S1 ∪ S2 ∪ … ∪ Sn, (n > 2) where 
each Si is an interval semigroup, Si ⊄ Sj for any i≠ j; 1 < i, j < n. 
The operation on S is the component wise operation on each Si 
carried out in a systematic way and denoted by ‘.’; 1 < i < n. 
 Thus any element s ∈ S is represented as s = s1 ∪ s2 ∪ … ∪ 
sn where si ∈ Si; 1 < i < n and (S, .) is defined as the n-interval 
semigroup.  

If n = 2 we call it as the biinterval semigroup or interval 
bisemigroup. 
 
 If the order of every Si is finite S will be finite 1 < i < n. 

Even if one of the Si’s is of infinite order, S will be of 
infinite order; 1 < i < n. 
 
 We will first illustrate this situation by examples. 
 
Example 2.1.1: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ 
Z40, ×} ∪ {[0, b] / b ∈ Z+ ∪ {0}, +} ∪ {[0, c] / c ∈ Z25, +} ∪ 
{[0, d] / d ∈ Z17, ×} ∪ {[0, g] / g ∈ Z12, ×} be a 5-interval 
semigroup. 
 
Take   

x = [0, 2] ∪ [0, 4] ∪ [0, 3] ∪ [0, 7] ∪ [0, 8] 
and  

y = [0, 1] ∪ [0, 5] ∪ [0, 20] ∪ [0, 4] ∪ [0, 4] 
in S. 
 
 x.y  = ([0, 2] ∪ [0, 4] ∪ [0, 3] ∪ [0, 7] ∪ [0, 8]) ([0, 1] ∪  

 [0, 5] ∪ [0, 20] ∪ [0, 4] ∪ [0, 4]) 
 
   = ([0, 2]. [0, 1] ∪ [0, 4] [0, 5] ∪ [0, 3] . [0, 20] ∪  

 [0, 7] [0, 4] ∪ [0, 8] [0, 4]) 
 
   = [0, 2] ∪ [0, 20] ∪ [0, 10] ∪ [0, 11] ∪ [0, 8] 
is in S. 
 Thus (S, .) is a 5-interval semigroup of infinite order. 
Clearly S is a commutative S-interval semigroup as each Si is a 
commutative semigroup, 1 < i < 5. 
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Example 2.1.2: Let V = V1 ∪ V2 ∪ V3 ∪ V4 = 

 
[0,a] [0,b]
[0,c] [0,d]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

/ a, b, c, d ∈ Z20, ×} ∪ 

 
{([0, a], [0, b], [0, c], [0, d]) / a, b, c, d, ∈ Z15} ∪ 

 
[0,a]
[0,b]
[0,c]
[0,d]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

| a, b, c, d ∈ Z12} ∪ {[0, a] / a ∈ Z47} 

 
be a 4-interval semigroup. Clearly V is of finite order but V is 
non commutative. 
 
Example 2.1.3: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 =  
 
{([0, a], [0, b]) / a, b ∈ Z10, ×} ∪  
 

[0,a]
[0,b]
[0,c]
[0,d]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

| a, b, c, d ∈ Z15, +} 

 
 
∪ {S(X) / X = ([0, a], [0, b], [0, c])} ∪ {All 3 × 3 interval 
matrices with intervals of the form [0, a] where a ∈ Z12} ∪  
{[0, a] / a ∈ Z19} ∪ {All 2 × 4 interval matrices with intervals of 
the form [0, a] where a ∈ Z8, +} be a 6-interval semigroup. 
 Clearly S is of finite order and S is non commutative.  
 

Example 2.1.4: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {
5

i

i 0
[0,a]x

=
∑ |  

a ∈ Z12, +} ∪ {([0, b], [0, a], [0, c]) / a, b, c ∈ Z14, +} ∪  
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[0,a]
[0,b]
[0,c]

⎧⎡ ⎤
⎪⎢ ⎥
⎨⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎩

/ a, b, c ∈ Z15, +} ∪ 

{3 × 5 interval matrices with intervals of the form [0, a] where a 
∈ Z20, +} be a 4-interval semigroup. S is of finite order and is 
commutative. 
 
 Now having seen examples of n-interval semigroups we 
give examples of n-interval subsemigroups and ideals in n-
interval semigroups. 
 
 The task of giving definition is a matter of routine and 
hence is left as an exercise to the reader. 
 
Example 2.1.5: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z+ ∪ 
{0}} ∪ {([0, a], [0, b], [0, c]) / a, b, c ∈ Z20} ∪  

[0,a]
[0,b]
[0,c]

⎧⎡ ⎤
⎪⎢ ⎥
⎨⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎩

/ a, b, c ∈ Z+ ∪ {0}} ∪ {
5

i

i 0
[0,a]x

=
∑  / a ∈ Z40, +} 

be a 4-interval semigroup.  
Consider A = A1 ∪ A2 ∪ A3 ∪ A4 = {[0, a] / a ∈ 3Z+ ∪ 

{0}} ∪ {([0, a], 0, [0, b]) / a, b ∈ Z20} ∪  
[0,a]
[0,b]
[0,c]

⎧⎡ ⎤
⎪⎢ ⎥
⎨⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎩

/ a, b, c ∈ 5Z+ ∪ {0}} ∪ {
8

i

i 0
[0,a]x

=
∑  | 

a ∈ {2, 0, 4, 8, …, 36, 38} ⊆ Z40, +} ⊆ S1 ∪ S2 ∪ S3 ∪ S4; A is 
a 4-interval subsemigroup of S. It is easily verified, A is not an 
ideal of S. 
 
Example 2.1.6: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ 
Z+ ∪ {0}} ∪ {All 3 × 3 interval matrices with intervals of the 
form [0, a] / a ∈ Z+ ∪ {0}} ∪ {all 1 × 5 row interval matrices 
with intervals of the form [0, a] / a ∈ Z+ ∪ {0}, ×} ∪  
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[0,a] [0,b]
[0,c] [0,d]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| a, b, c, d ∈ Z+ ∪ {0}}∪{
8

i

i 0
[0,a]x

=
∑  | a ∈ Z+ ∪ 

{0}, × with x9 = 1} be an 5-interval semigroup.  
Consider P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 = {[0, a] / a ∈ 5Z+ ∪ 

{0}} ∪ {All 3 × 3 interval matrices with intervals of the form 
[0, a] where a ∈ 7Z+ ∪ {0}, ×} ∪ {All 1 × 5 row interval 
matrices with intervals of the form [0, a] where a ∈ 19Z+ ∪ {0}, 
×} ∪  

[0,a] [0,b]
[0,c] [0,d]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| a, b, c, d ∈ 3Z+ ∪ {0}} ∪ 

{
8

i

i 0
[0,a]x

=
∑ / x9 = 1, a ∈ 5Z+ ∪ {0}, ×} 

 
⊆ S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = S be a 5-interval subsemigroup of 
S. It is easily verified P is also a 5-interval ideal of S. 
 

 However it is interesting note the following result. 
 
THEOREM 2.1.1: Let S = S1 ∪ S2 ∪ … ∪ Sn be a n-interval 
semigroup. Let P = P1 ∪ P2 ∪ … ∪ Pn ⊆ S1 ∪ S2 ∪ … ∪ Sn be a 
n-interval subsemigroup. P in general is not a n-interval ideal 
of S. Further every n-interval ideal of a n-interval semigroup is 
a n-interval subsemigroup of S. 
 

 The proof is direct and hence is left as an exercise for the 
reader. 
 

 Now having seen the notion of n-ideals in an n-interval 
semigroups and n-interval subsemigroups we now proceed onto 
define S-n-interval semigroups. 
 
DEFINITION 2.1.2: Let S = S1 ∪ S2 ∪ … ∪ Sn be a n-interval 
semigroup. If each Si is a Smarandache semigroup then we 
define S to be a Smarandache n-interval semigroup (S-n-
interval semigroup) 1 < i < n. 
 

 We will illustrate this situation by some examples. 
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Example 2.1.7: Let S = S1 ∪ S2 ∪ S3 ∪ S4 be a 4-interval 
semigroup, where S1 = {[0, a] / a ∈ Z12, ×}, S2 = {([0, a], [0, b] / 
a, b ∈ Z9}, S3 = {([0, a], [0, b], [0, c], [0, d]) / a ∈ Z11} and  
 

S4 = 

[0,a]
[0,b]
[0,c]
[0,d]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

 / a, b, c, d ∈ Z18, under ‘+’}. 

 
Now choose A = A1 ∪ A2 ∪ A3 ∪ A4  
 
= {[0, 1], [0, 11] / 1, 11 ∈ Z12} ∪ {([0, 1] [0, 1]), ([0, 8],  
[0, 8]), ([0, 8], [0, 1]) ([0, 1], [0, 8])} ∪ {([0, 1], [0, 1], [0, 1], 
[0, 1]), ([0, 10], [0, 10], [0, 10], [0, 10]) ∪  
 

[0,a]
[0,b]
[0,c]
[0,d]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

| a, b, c, d ∈ {0, 3, 6, 9, 12, 15} ⊆ Z18, +} 

⊆ S1 ∪ S2 ∪ S3 ∪ S4. It is easily verified A is a 4-interval group 
in S. 
 Hence each Si is a S-interval semigroup, 1 < i < 4. Thus S is 
a S-4-interval semigroup.  
 It is important and interesting to note that in general all n-
interval semigroups need not be S-n-interval semigroups.  

 
We will illustrate this situation by an example. 

 
Example 2.1.8: Let S = S1 ∪ S2 ∪ S3 = {[0, a] / a ∈ Z+ ∪ {0}, 

×} ∪ {
[0,a]
[0,b]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 / a, b ∈ Z+ ∪ {0}, +} ∪ {([0, a] [0, b]) / a, b ∈ 

Q+ ∪ {0}} be a 3-interval semigroup. It is easily verified S is 
not a S-3- interval semigroup.  

We can define as a matter of routine the notion of S-interval 
subsemigroup. We will only give an example of it. 
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Example 2.1.9: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {S(X) | X = ([0, 
a1], [0, a2], [0, a3])} ∪ {S(〈X〉) / X = ([0, x1], [0, x2], [0, x3])} ∪ 
{[0, a] / a ∈ Z20, +} ∪ {([0, a], [0, b], [0, c], [0, d]) / a, b, c, d ∈ 
Z15, +} be a 4-interval semigroup. Consider V = V1 ∪ V2 ∪ V3 
∪ V4 = {SX} ∪ {S<X>} ∪ {[0, a] /a ∈ {2, 0, 4, 6, 8, 10, …, 18} 
⊆ Z20, +} ∪ {([0, a], [0, b], [0, c], [0, d]) / a, b, c, d ∈ {0, 3, 6, 9, 
12} ⊆ Z15, +} ⊆ S1 ∪ S2 ∪ S3 ∪ S4. 

It is easily verified V is a 4-interval subsemigroup of S. 
Consider A = A1 ∪ A2 ∪ A3 ∪ A4 = {AX} ∪ {A<X>} ∪ {[0, a] / 
a ∈ {0, 4, 8, 12, 16} ⊆ Z20, +}, {([0, a] [0, a] [0, a]) / a ∈ {0, 2, 
4, 6, 8, 10, …, 18} ⊆ Z20, +} ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ⊆ S1 ∪ S2 
∪ S3 ∪ S4. Clearly each Ai is a interval group in Si; 1 < i < 4. 
Thus A is a 4-interval group. Hence V is a S-4-interval 
subsemigroup. 
 
Example 2.1.10: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z11, 
×} ∪ {[0, b] / b ∈ Z13, ×} ∪ {[0, c] / c ∈ Z19, ×} ∪ {[0, d] / d ∈ 
Z23, ×} be a 4-interval semigroup. Clearly S is a S-4-interval 
semigroup as A = A1 ∪ A2 ∪ A3 ∪ A4 = {[0, 1], [0, 10], ×} ∪ 
{[0, 1], [0, 12], ×} ∪ {[0, 1], [0, 18], ×} ∪ {[0, 1], [0, 22], ×} ⊆ 
S1 ∪ S2 ∪ S3 ∪ S4 is a 4-itnerval group. 
 
Example 2.1.11: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ 
Z6, ×} ∪ {[0, a] / a ∈ Zq, ×} ∪ {[0, a] / a ∈ Z16, ×} ∪ {[0, a] / a 
∈ Z25, ×} ∪ {[0, a] / a ∈ Z36, ×} be a 5-interval semigroup. 
 
 Consider P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 = {[0, a] / a ∈ {0, 2, 
4} ⊆ Z6, ×} ∪ {[0, a] / a ∈ {0, 3, 6} ⊆ Z9, ×} ∪ {[0, a] / a ∈ {0, 
4, 8, 12} ⊆ Z16, ×} ∪ {[0, a] / a ∈ {0, 5, 10, 15, 20} ⊆ Z25, ×} ∪ 
{[0, a] / a ∈ {0, 6, 12, 18, 24} ⊆ Z36, ×} ⊆ S1 ∪ S2 ∪ S3 ∪ S4 ∪ 
S5. P is a 5-interval subsemigroup of S. But P is not a S-5-
interval subsemigroup of S. However S is a S-5-interval 
semigroup as A = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 = {[0, 1], [0, 5], × } 
∪ {[0, 1], [0, 8], × } ∪ {[0, 1], [0, 24], × } ∪ {[0, 1], [0, 35], × } 
⊆ S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 is a 5-interval group. Thus S is a S-5-
interval semigroup but every 5-interval subsemigroup of S need 
not be a S-5-interval subsemigroup.  
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In view of this we have the following theorem the proof of 
which is direct.  
 
THEOREM 2.1.2: Let S = S1 ∪ S2 ∪ … ∪ Sn be a n-interval 
semigroup. If S has a S-n-interval subsemigroup then S is a S-n-
interval semigroup. Suppose S is a S-n-interval semigroup then 
every n-interval subsemigroup of S in general is not a S-n-
interval subsemigroup. 
 
 Now having seen examples of these situations we leave the 
task of defining S-n-interval ideal and illustrate them by 
examples. 
 
 Now as in case of usual n-semigroups we can in case of n-
interval semigroups also define the notion of n-zero divisors, n-
units and n-idempotents and quasi n-zero divisors, quasi n-units 
and quasi n-idempotents. 
 
DEFINITION 2.1.3: Let S = S1 ∪ S2 ∪ … ∪ Sn be a n-interval 
semigroup. Suppose for x = x1 ∪ x2 ∪ … ∪ xn ∈ S there exists a 
y = y1 ∪ y2 ∪…∪ yn ∈ S such that x.y=x1 y1 ∪ x2 y2 ∪ …∪ xn yn 
= 0 ∪ 0 ∪ … ∪ 0 in S then we call x to be a n-interval zero 
divisor of S. 
 
 We will illustrate this situation by some examples. 
 
Example 2.1.12: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a]|a ∈ Z12, ×} 
∪ {[0, b] / b ∈ Z15, ×} ∪ {([0, a], [0, b]) where a, b ∈ Z24, ×} ∪  

[0,a]
[0,b]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| a, b ∈ Z10, +} 

be a 4-interval semigroup. Let  

x = {[0, 4] ∪ [0, 3] ∪ ([0, 12], [0, 6])} ∪ 
[0,5]
[0,7]
⎡ ⎤
⎢ ⎥
⎣ ⎦

} ∈ S. 

We have  

y = [0, 3] ∪ [0, 5] ∪ ([0, 2] [0, 4]) ∪ 
[0,5]
[0,3]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∈ S 

is such that  
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x.y   =  ([0, 4] ∪ [0, 3] ∪ ([0, 12], [0, 6]) ∪ (
[0,5]
[0,7]
⎡ ⎤
⎢ ⎥
⎣ ⎦

)  

([0, 3] ∪ [0, 5] ∪ ([0, 2], [0, 4]) ∪ 
[0,5]
[0,3]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

= [0, 4] × [0, 3] ∪ [0, 3] × [0, 5] ∪ ([0, 12], [0, 6]) × 

  ([0, 2], [0, 4]) ∪ 
[0,5]
[0,7]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 + 
[0,5]
[0,3]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

=  [0, 12] ∪ [0, 15] ∪ ([0, 24], [0, 24]) ∪ 
[0,10]
[0,10]
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

=  0 ∪ 0 ∪ 0 ∪ 0  
 
is a 4-interval zero divisor in S.  
 
Example 2.1.13: Let S = S1 ∪ S2 ∪ S3 = {[0, a] / a ∈ Z+ ∪ {0}} 
∪ {[0, a] / a ∈ Z19 \ {0}} ∪ {[0, a] / a ∈ Q+ ∪ {0}} be a  
3-interval semigroup. S has no interval zero divisors. 
 
Example 2.1.14: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {([0, a], [0, b], 
[0, c], [0, d]) / a, b, c, d ∈ Z+ ∪ {0}} ∪ {[0, a] / a ∈ Z16, ×} ∪ 
{([0, a], [0, b], [0, c], [0, d], [0, e]) / a, b, c, d, e, ∈ Q+ ∪ {0}} ∪ 
{[0, a] / a ∈ Z40, ×} be a 4-interval semigroup. G has non trivial 
4 - interval zero divisors. For take x = ([0, 0], [0, 8], [0, 0],  
[0, 12]) ∪ {[0, 8]} ∪ ([0, 2], [0, 1/3], [0, 0], [0, 8/9], [0, 0]) ∪ 
[0, 10] ∈ G, we have y = ([0, 2], [0, 0], [0, 12], [0, 0]) ∪  
{[0, 4]} ∪ {([0, 0], [0, 0], [0, 9/7], [0, 0], [0, 11/3])} ∪ [0, 8] in 
G such that  
x.y   = {([0, 0], [0, 8], [0, 0], [0, 12]) ∪ [0, 8] ∪ ([0, 2],  
   [0, 1/3], [0, 0], [0, 8/9], [0, 0]) ∪ [0, 10]} .{[0, 2], 
   [0, 0], [0, 12], [0, 0]) ∪ [0, 4] ∪ ([0, 0], [0, 0],  
   [0, 9/7], [0, 0], [0, 11/3]) ∪ [0, 8]} 

= ([0, 0], [0, 8], [0, 0], [0, 12]) × ([0, 2], [0, 0],  
  [0, 12], [0, 0]) ∪ [0, 8] [0, 4] ∪ ([0, 2], [0, 1/3],  
  [0, 0], [0, 8/9], [0, 0]) × ([0, 0], [0, 0], [0, 9/7],  
  [0, 0], [0, 11/3]) ∪ [0, 10] × [0, 8] 
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= ([0, 0], [0, 2], [0, 8], [0, 0], [0, 0], [0, 12], [0, 12]. [0, 0]) 
  ∪ [0, 32] ∪ ([0, 2], [0, 0], [0, 1/3], [0, 0], [0, 0],  
  [0, 9/7], [0, 8/9], [0, 0], [0, 0], [0, 11/3]) ∪ [0, 80] 

= ([0, 0], [0, 0], [0, 0], [0, 0]) ∪ [0, 0] ∪ ([0, 0], [0, 0],  
  [0, 0], [0, 0], [0, 0]) ∪ [0, 0]. 

 
Thus x is a 4 interval zero divisor in S. 

Now one can define S-n-interval zero divisor analogous to 
S-zero divisors and illustrate by examples. 
  

Now we proceed onto give examples of n-interval 
idempotents in a n-interval semigroup S.  
 
Example 2.1.15: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] /  
a ∈ Z6, ×} ∪ {[0, a] / a ∈ Z20, ×} ∪ {[0, a] / a ∈ Z18, ×} ∪ {[0, 
a] / a ∈ Z24, ×} ∪ {[0, a] / a ∈ Z10} be a 5-interval semigroup. 
Consider x = [0, 3] ∪ [0, 5] ∪ [0, 9] ∪ [0, 9] ∪ [0, 5] ∈ S. 
 Clearly  
x2  = ([0, 3] ∪ [0, 5] ∪ [0, 9] ∪ [0, 9] ∪ [0, 5]) ([0, 3] ∪  
  [0, 5] ∪ [0, 9] ∪ [0, 9] ∪ [0, 5]) 
 = [0, 3]. [0, 3] ∪ [0, 5] [0, 5] ∪ [0, 9]. [0, 9] ∪ [0, 9]  
  [0, 9] ∪ [0, 5] [0, 5] 
 = [0, 9 (mod 6)] ∪ [0, 25 (mod 20)] ∪ [0, 81 (mod 18)] ∪ 
  [0, 81 (mod 24)] ∪ [0, 25 (mod 10)]  
 = [0, 3] ∪ [0, 5] ∪ [0, 9] ∪ [0, 9] ∪ [0, 5]  

=  x. 
Thus x is a 5-interval idempotent in S. 
 
Example 2.1.16: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈  
Z+ ∪ {0}} ∪ {[0, a] / a ∈ Q+ ∪ {0}} ∪ {[0, a] / a ∈ R+ ∪ {0}} 
∪ {[0, a] / a ∈ Z43} be a 4 - interval semigroup. It is easily 
verified S has only trivial 4 - interval idempotents like ([0, 1] ∪ 
[0, 1] ∪ [0, 1] ∪ [0, 1]) or [0, 0] ∪ [0, 0] ∪ [0, 0] ∪ [0, 0] or 
elements of the form [0, 1] ∪ [0, 0] ∪ [0, 1] ∪ [0, 1] and so on. 
We call all those idempotents constructed using [0, 0] and [0, 1] 
as trivial interval idempotents. 
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Example 2.1.17: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z+} 
∪ {[0, a] / a ∈ Q+} ∪ {[0, a] / a ∈ R+} ∪ {[0, a] / a ∈ Z43 \ {0}} 
be a 4-interval semigroup. S has only non trivial 4-interval 
idempotents. 
 Let S = S1 ∪ S2 ∪ … ∪ Sn be a n-interval semigroup we can 
define the notion of Smarandache Lagrange semigroup, 
Smarandache p-Sylow semigroup and Smarandache weakly 
Lagrange semigroup. 
 
We see if S = S1 ∪ S2 ∪ … ∪ Sn be n-interval semigroup say 
each Si is of order mi then |S| = m1 m2 … mn. 
 We say a n-interval subsemigroup P of S divides the order 
of P if o(P) / o(S). 
  We define S-Lagrange interval semigroup and S-weakly 
Lagrange interval semigroup in an analogous way [10-3].  

 
 
We leave this routine task to the reader but give some examples 
of them. 
  
Example 2.1.18: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {S (X) where X = 
{([0, a1], [0, a2], [0, a3], [0, a4])}} ∪ {S (Y) / Y = {([0, a1], [0, 
a2], [0, a3])} ∪ {S (A) / A = {([0, a1], [0, a2])} ∪ {S(B) / B = 
{([0, a1], [0, a2], …, [0, a7])}} be a 4-interval semigroup. 
 

A = A1 ∪ A2 ∪ A3 ∪ A4 = 
 

1 2 3 4

1 2 3 4

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

,

1 2 3 4

2 3 4 1

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

1 2 3 4

3 4 1 2

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

1 2 3 4

4 1 2 3

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 ∪ 
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1 2 3

1 2 3

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, 1 2 3

2 1 3

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

1 2 3

3 1 2

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 ∪  

1 2

1 2

[0,a ] [0,a ]
[0,a ] [0,a ]

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, 1 2

2 1

[0,a ] [0,a ]
[0,a ] [0,a ]

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 ∪ 

1 2 7

1 2 7

[0,a ] [0,a ] ... [0,a ]
[0,a ] [0,a ] ... [0,a ]

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

,  

1 2 7

2 3 1

[0,a ] [0,a ] ... [0,a ]
[0,a ] [0,a ] ... [0,a ]
⎛ ⎞
⎜ ⎟
⎝ ⎠

, …, 

1 2 7

7 1 6

[0,a ] [0,a ] ... [0,a ]
[0,a ] [0,a ] ... [0,a ]

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 

 
⊆ S1 ∪ S2 ∪ S3 ∪ S4, A is a 4-intrval group of S. o(A) / o(S). 
We have o(S) = 44. 33.22.77 and o(A) = 4.3.2.7 so o(A) /  
o(S). 

We see S is only a S-weakly Lagrange 4-interval 
semigroup. Consider H = H1 ∪ H2 ∪ H3 ∪ H4 = SX ∪ SY ∪ SA 
∪ SB ⊆ S1 ∪ S2 ∪ S3 ∪ S4 is a 4-interval subgroup. 

Clearly o(H) /  o(S); where o(H) = 4! × 3! × 2! × 7! and  
o(H) /  o(S). Thus S cannot be a S-Lagrange 4-interval 
semigroup only a S-weakly Lagrange 4-itnerval semigroup. 
 
Having seen an example of a S-weakly Lagrange 4-interval 
semigroup. 

 
Example 2.1.19: Let S = S1 ∪ S2 ∪ S3 = {[0, a] / a ∈ Z12, ×} ∪ 
{[0, a] / a ∈ Z10, ×} ∪ {[0, a] / a ∈ Z6, ×} be a 3-interval 
semigroup. Consider H = H1 ∪ H2 ∪ H3 any 3-interval group in 
S = S1 ∪ S2 ∪ S3. We see S is a S-weakly Lagrange 3-interval 
semigroup. Take A = A1 ∪ A2 ∪ A3 = {[0, a] / a ∈ {1, 11} ⊆ 
Z12} ∪ {[0, a] / a ∈ {1, 9} ⊆ Z10} ∪ {[0, a] / a ∈ {1, 5} ⊆ Z6} ⊆ 
S1 ∪ S2 ∪ S3, A is a 3-interval group and o (A) = 2.2.2 / 
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12.10.6. Consider S1, the subgroups in S1 are A1 = {[0, 1],  
[0, 11}, B1 = {[0, 1], [0, 5]} and C1 = {[0, 1], [0, 7]}. The 
interval groups in S3 are as follows: A3 = {[0, 1], [0, 5]} is the 
only interval subgroup of S3.  

Now the subgroups of S2 are A2 = {[0, 1], [0, 9]}, B2 = {[0, 
1], [0, 3], [0, 9], [0, 7]} is given by the following table. 
  

× [0, 1] [0, 3] [0, 7] [0, 9] 
[0, 1] [0, 1] [0, 3] [0, 7] [0, 9] 
[0, 3] [0, 3] [0, 9] [0, 1] [0, 7] 
[0, 7] [0, 7] [0, 1] [0, 9] [0, 3] 
[0, 9] [0, 9] [0, 7] [0, 3] [0, 1] 

  
 Clearly B2 is a interval subgroup of S2 but o (B2) /  o (S2).  
 S2 has only two subgroups. Only one of them divide the 
order of S2. Thus S is only a S-weakly Lagrange interval 
semigroup and is not a S-Lagrange interval semigroup. 
 
Example 2.1.20: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z61} 
∪ {[0, a] / a ∈ Z7} ∪ {[0, a] / a ∈ Z11} ∪ {[0, a] / a ∈ Z13} be a 
4-interval semigroup.  

It is easily verified S is a S-4-interval semigroup as A = A1 
∪ A2 ∪ A3 ∪ A4 = {[0, a] / a = 1 and 60, ×} ∪ {[0, a] / a = 1 
and 6, ×} ∪ {[0, a] / a = 1 and 10, ×} ∪ {[0, a] / a = 1 and 12, 
×} ⊆ S1 ∪ S2 ∪ S3 ∪ S4 is a 4-interval subgroup of S. Thus S is 
a Smarandache 4-interval semigroup. Clearly o(A) /  o(S) as 
o(A) = 24 and o(S) = 61.7.11.13. Further S is only a S-weakly 
Lagrange semigroup.  
 

Now in view of this we have the following theorem.  
 
THEOREM 2.1.3: Let S = S1 ∪ S2 ∪ … ∪ Sn be a n-interval 
semigroup where each Si = {[0, a] / a ∈ Zp, p a prime, ×}; 1 < i 
< n. Clearly S is a S-n-interval semigroup and S is only a  
S-weakly Lagrange n-interval semigroup.  
 

 The proof is left as an exercise to the interested reader. 
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Example 2.1.21: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z6, 
×} ∪ {[0, b] / b ∈ Z12, ×} ∪ {S(X) / X = ([0, a1], [0, a2],  
[0, a3])} ∪ {[0, a] / a ∈ Z8, ×} be a 4-interval semigroup. It is 
easily verified S is a S-weakly cyclic 4-interval semigroup.  
 
Example 2.1.22: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z18, 
×} ∪ {[0, b] / b ∈ Z40, ×} ∪ {[0, c] / c ∈ Z64, ×} ∪ {[0, d] / d ∈ 
Z72, ×} be a 4-interval semigroup. Clearly S is a S-weakly cyclic 
4-interval semigroup. 
 

 In view of this we have the following theorem which 
guarantees a classes of S-n-interval semigroups which are  
S-weakly cyclic n-interval semigroups. 
 
THEOREM 2.1.4: Let S = S1 ∪ S2 ∪ … ∪ Sn = {S (X1) / X1 = 
([0, a1], …, [0, 

1ma ] )} ∪ {S (X2) / X2 = ([0, a1] , …, [0, 
2ma ])} 

∪ … ∪ {S (Xn) / Xn = {([0, a1], …, [0, 
nma ])} be a n-interval 

semigroup. Clearly S is a S-weakly cyclic n-interval semigroup.  
 
 This proof is also direct and hence is left as an exercise to 
the reader. 
 
Example 2.1.23: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z10, 
×} ∪ {[0,a] | a ∈ Z32, ×} ∪ {[0, a] / a ∈ Z42, ×} ∪ {[0, a] / a ∈ 
Z28, ×} be a 4-interval semigroup. Clearly S is a S-2-Sylow 4-
interval semigroup. 
 
 Inview of this we have a theorem which gurantees the 
existence of a class of S-2-Sylow n-interval semigroups. 
 
THEOREM 2.1.5: Let S = S1 ∪ S2 ∪ … ∪ Sn = {[0, a] / a ∈ 

12mZ , ×} ∪ {[0, a] / a ∈ 
22mZ , ×} ∪ … ∪ {[0, a] / a ∈ 

nmZ2 × } 
be a n interval semigroup. Clearly S is a S-2-Sylow n-interval 
semigroup. 
 
 The proof is left as an exercise. 
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Example 2.1.24: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z12} 
∪ {[0, b] / b ∈ Z30, ×} ∪ {[0, a] / a ∈ Z40, ×} ∪ {[0, a] / a ∈ Z16, 
×} be a 4-interval semigroup. S has S-Cauchy elements.  
 
However every n-interval semigroup need not have S-Cauchy 
elements. 
 
Example 2.1.25: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z11, 
×} ∪ {[0, b] / b ∈ Z11, ×} ∪ {[0, a] / a ∈ Z19, ×} ∪ {[0, a] / a ∈ 
Z13, ×} be a 4-interval semigroup.  S has S-Cauchy elements.  
 

Inview of this we have a theorem which guarantees the 
existence of n-interval semigroups which have no S-Cauchy 
elements. 
 
THEOREM 2.1.6: Let S = S1 ∪ S2 ∪ … ∪ Sn = {[0, a] / a ∈ 

1pZ , 

p1 a prime, ×} ∪ {[0, a] / a ∈ 
2pZ , p2 a prime, ×} ∪ … ∪ {[0, 

a] / a ∈ 
npZ , pn a prime, ×} be a n-interval semigroup where 

p1, p2, …, pn are n distinct primes. S has no S-Cauchy elements. 
 
 The proof is straight forward and hence is left as an exercise 
to the reader. 
 
Example 2.1.26: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {S (X) / X = ([0, 
a1], [0, a2], …, [0, a6])} ∪ {S (Y) / Y = ([0, a1], [0, a2], …, [0, 
a10])} ∪ {S (A) / A = ([0, a1], [0, a2], …, [0, a15])} ∪ {S (B) / B 
= ([0, a1], [0, a2], …, [0, a21])} be a 4-interval semigroup. S is a 
S-2-Sylow 4-interval semigroup.  
 Also S is a S(3, 5, 3, 7) - Sylow 4-interval semigroup. 
Further S is also a S - (3, 2, 3, 3) Sylow 4-interval semigroup. S 
is also a S (3, 5, 5, 7) - Sylow 4-interval semigroup.  
 

Thus if S = S1 ∪ S2 ∪ … ∪ Sn is such that each Si = S (Xi) 
with Xi = ([0, a1], …, [0, 

ima ]) where mi = i
1p  … 

i

i
tp  ( i

jp  
distinct primes, 1 < j < ti) for i = 1, 2, …, n be a n-interval 
semigroup. 
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 Then S is a S- ( )1 2 n

1 2 n
t t tp ,p ,...,p  Sylow n-interval semigroup 

where 
ki

i
tp  can vary in i

1p  … 
i

i
tp  i=1,2, …, n and 1 < ki < i. 

Thus we get several S- ( )1 2 n

1 2 n
t t tp ,p ,...,p  Sylow n-interval 

semigroups from S. 
 
 It is easily verified these S - i

1(p  … 
i

i
tp )  - Sylow n-interval 

semigroups in general need not be conjugate. 
 
 When the n-interval semigroups are constructed using 
interval matrix semigroups or interval polynomial semigroups 
calculations become very difficult. At this juncture it is 
suggested that a nice program in general be made so that 
calculations become easy. 
 
Now we can define n-interval homomorphisms of n-interval 
semigroups in four ways. 
 
(1) We take two n-interval semigroups S = S1 ∪ … ∪ Sn and P 

= P1 ∪ P2 ∪ … ∪ Pn and define n-homomorphism from  
η: S → P by assigning to each Si a unique Pj, 1 < i, j<n 
where η = η1 ∪ η2 ∪ … ∪ ηn and ηi : Si → Pj such that 
each ηi is an interval semigroup homomorphism.  

 
(2) Another way of defining η : S → P where η = η1 ∪ η2 ∪ … 

∪ ηn : S → P is such that ηi : Si → Pj to a Si any Pj is 
assigned that for more than one Si the same Pj may be 
assigned. 

 
(3) Suppose S = S1 ∪ S2 ∪ … ∪ Sn and P = P1 ∪ P2 ∪ … ∪ Pm 

be any n-interval semigroup and m-interval semigroup 
respectively. n < m. 

 
 Let η = η1 ∪ η2 ∪ … ∪ ηn: S → P is such that ηi : Si → Pj 
each Pj is distinct or we can assign to more than one Si same 
Pj’s. 
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 If m < n then η = η1 ∪ η2 ∪ … ∪ ηn : S1 ∪ S2 ∪ … ∪ Sn → 
P1 ∪ … ∪ Pm where ηi : Si → Pj maps more than one Si to same 
Pj’s.  
 
 Thus when we define the n-homomorphism of n-interval 
semigroups we can have several n-homomorphism for each Si 
can be mapped on to any one of the Pj’s. 
 Interested reader can analyse the properties of n-interval 
homomorphism of n-interval semigroups.  
 
 Now we proceed onto define quasi n-interval semigroups or 
quasi (s, r) - interval semigroup. 
 
DEFINITION 2.1.4: Let S = S1 ∪… ∪ Sn where s of the 
semigroups are distinct interval semigroups and n - s of them 
are just n-s distinct semigroups. Then we define S to be a quasi 
n-interval semigroup or quasi (s, n-s) - interval semigroup.  

 
We will first illustrate this situation by some examples.  

 
Example 2.1.27: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ 
Z12, ×} ∪ {Z19, ×} ∪ {[0, a] / a ∈ Z25, ×} ∪ {Z36, ×} ∪ {[0, a] / 
a ∈ Z30, ×} be a quasi 5-interval semigroup or quasi (3, 2) - 
interval semigroup. 
  
Example 2.1.28: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 =  
{[0, a] / a ∈ Z8, ×} ∪ {Z20, ×} ∪ {Z48, ×} ∪ {[0, a] / a ∈ Z11, ×} 
∪ {Z18, ×} ∪ {[0, a] / a ∈ Z12, ×} be a quasi 6-interval 
semigroup or a quasi (3, 3)-interval semigroup. 
 
Example 2.1.29: Let S = S1 ∪ S2 ∪ S3 = (Z48, ×) ∪ {[0, a] /  
a ∈ Z12, ×} ∪ {Z20, ×} be a quasi 3-interval semigroup or quasi 
(2, 1) interval semigroup.  
 

Now having seen examples of quasi (r, s)-interval 
semigroups we now proceed onto give examples of 
substructures. The task of defining these substructures is left as 
an exercise to the reader.  
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Example 2.1.30: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {Z40, ×} ∪  
{[0, a] / a ∈ Z18, ×} ∪ {Z48, ×} ∪ {[0, a] / a ∈ Z20, ×} be a quasi 
4-interval semigroup. 
 

 Consider V = V1 ∪ V2 ∪ V3 ∪ V4 = {{0, 2, 4, 8, …, 38}, ×} 
∪ {[0, a] / a ∈ {0, 3, 6, 9, 12, 15}, Z18, ×} ∪ {{0, 6, 12, 18, …, 
42} ⊆ Z48, ×} ∪ {[0, a] / a ∈ {0, 5, 10, 15} ⊆ Z20, ×} ⊆ S1 ∪ S2 
∪ S3 ∪ S4; V is a quasi 4-interval subsemigroup of S. Clearly  
V is also a quasi 4-interval ideal of S. 
 
Example 2.1.31: Let S = S1 ∪ S2 ∪ S3 = {[0, a] / a ∈ R+ ∪ {0}, 
×} ∪ {[0, a] / a ∈ Q+ ∪ {0}, ×} a quasi 3-interval semigroup.  
 

 Consider X = X1 ∪ X2 ∪ X3 = {[0, a] / a ∈ Q+ ∪ {0}} ∪ 
{[0, a] / a ∈ Z+ ∪ {0}} ∪ {Q+} ⊆ S1 ∪ S2 ∪ S3 = S; X is only a 
quasi 3-interval subsemigroup but is not a quasi 3-interval ideal 
of S.  
 

Thus every quasi n-interval subsemigroup of a quasi n-
interval semigroup need not be a quasi n-interval ideal.  
  

Inview of this we have the following theorem the proof of 
which is direct. 
 
THEOREM 2.1.7: Let S = S1 ∪ S2 ∪ … ∪ Sn be a quasi n-
interval semigroup. Every quasi n-interval ideal of S is a quasi 
n-interval subsemigroup of S, but in general a quasi n-interval 
subsemigroup need not be a quasi n-interval ideal of S. 
  

We will illustrate by some examples S-quasi n-interval 
semigroups.  
 

It is pertinent to mention here that every quasi n-interval 
semigroup need not in general be a S-quasi n-interval 
semigroup. 
 
Example 2.1.32: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {Z45, ×} ∪ {[0, a] 
/ a ∈ Z20} ∪ {Z17, ×} ∪ {[0, a] / a ∈ Z80} be a quasi  
4-interval semigroup. Consider H = H1 ∪ H2 ∪ H3 ∪ H4 =  
{{1, 44} ⊆ Z45} ∪ {[0, 1], [0, 19] / 1, 19 ∈ Z20} ∪ {1, 16} ∪ 
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{[0, 1] [0, 79] / 1, 79 ∈ Z80} ⊆ S1 ∪ S2 ∪ S3 ∪ S4. H is a quasi 
4-interval group. So S is a S-quasi 4-interval semigroup. 
 
Example 2.1.33: Let S = S1 ∪ S2 ∪ S3 = {[0, a] / a ∈ Z+ ∪ {0}} 
∪ {[0, a] / a ∈ R+, +} ∪ {3Z+ ∪ {0}, +} be a quasi  
3-interval semigroup. Clearly S is not a S-quasi 3-interval 
semigroup. 
 
 Now we will give classes of quasi n-interval semigroups 
which are S-quasi n-interval semigroups. 
 
THEOREM 2.1.8: Let S = S1 ∪ S2 ∪ … ∪ Sn where Si = {[0, a] / 
a ∈

inZ , ×} and Sj = {
jmZ , ×}, 1 < i, j < n be a quasi n-interval 

semigroup. S is a S-quasi n-interval semigroup. 
 
 The proof is direct however we give a small hint which 
makes the proof obvious. 
 Let A = A1 ∪ A2 ∪ … ∪ An where Ai = {[0, 1], [0, ni-1]} ⊆ 
Si and Aj = {1, mj-1} ⊆ Sj are subgroups and A is a quasi 
interval n-group so S is a S-quasi n-interval semigroup. 
 
THEOREM 2.1.9: Let S = S1 ∪ S2 ∪ … ∪ Sn = S (X1) ∪ S(m2) S 
(X2) ∪ … ∪ S (m2) ∪ … ∪ S (Xn) where S (Xi) is the interval 
symmetric semigroup group on ni intervals and S (mj) are just 
symmetric semigroups on mj elements, 1≤ i, j≤ n. Thus S is a 
quasi n-interval semigroup. S is a S-quasi n-interval semigroup.  
 

For this theorem also we only give an hint. 
Every Si if Si is a interval symmetric semigroup then Si = 

S(Xi) has Ai = 
iXS  to be the symmetric interval group in Si. 

Similarly for Sj = S(mj) we have Aj = 
jmS  ⊆ S (mj) is the 

symmetric group, 1 ≤ i, j ≤ n. So A = A1 ∪ A2 ∪ … ∪ An ⊆ S1 
∪ S2 ∪ … ∪ Sn is the quasi n-interval group, hence S is a S-
quasi n-interval semigroup. 
 

Now we will give examples of S-quasi interval 
subsemigroups. 
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Example 2.1.34: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {Z20, ×} ∪ 
{[0, a] / a ∈ Z15} ∪ {Z19, ×} ∪ {[0, a] / a ∈ Z30} ∪ {Z12, ×} be a 
quasi 5-interval semigroup.  
 

 P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 = {{1, 19} ⊆ Z20, ×} ∪ {[0, 1], 
[0, 14] / {1, 14} ∈ Z15} ∪ {1, 18 / 1, 18 ∈ Z19} ∪ {[0, 1], [0, 
29] / 1, 29 ∈ Z30} ∪ {1, 11 / 1, 11 ∈ Z12, ×} ⊆ S1 ∪ S2 ∪ S3 ∪ 
S4 ∪ S5 is a quasi 5-interval group. So S is a S-quasi 5-interval 
semigroup. Now consider the quasi 5-interval subsemigroup T = 
T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 = {{0, 10}, ×} ∪ {[0, 5], [0, 10], [0, 0], 
×} ∪ {[0, 0], [0, 1]} ∪ {[0, 0], [0, 10]} ∪ {0, 6} ⊆ S1 ∪ S2 ∪ S3 
∪ S4 ∪ S5 is a quasi 5-interval subsemigroup of S. Clearly T is 
not a S-quasi 5-interval subsemigroup. However S is a S-quasi 
5-interval semigroup. 
 

 Inview of this we have the following theorem. 
 
THEOREM 2.1.10: Let S = S1 ∪ S2 ∪ … ∪ Sn be a S-quasi n-
interval semigroup. Then if T = T1 ∪ T2 ∪ … ∪ Tn ⊆ S1 ∪ S2 ∪ 
… ∪ Sn = S be a quasi n-interval subsemigroup of S. T in 
general need not be a S-quasi n- interval subsemigroup of S.  
 

The proof is by counter example. Example 2.1.34 will prove 
the theorem. 
 
THEOREM 2.1.11: Let S = S1 ∪ S2 ∪ … ∪ Sn be a quasi n-
interval semigroup. If P = P1 ∪ P2 ∪ … ∪ Pn ⊆ S1 ∪ S2 ∪ … ∪ 
Sn be a S-quasi n-interval subsemigroup of S then S is a S-quasi 
n-interval semigroup.  
 

 The proof is direct and hence is left as an exercise to the 
reader. 
 

 Now one can as in case of n-interval semigroups define the 
notion of n-interval zero divisors, n-interval units and n-interval 
idempotents [10-3]. 
 

 We will illustrate this situation by some examples.  
 

Example 2.1.35: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z20} 
∪ {Z12, ×} ∪ {[0, a] / a ∈ Z15} ∪ {Z24, ×} be a quasi 4-interval 
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semigroup. Now take x = {[0, 10]} ∪ {6} ∪ {[0, 5]} ∪ {12} ∈ 
S. Choose y = {[0, 6]} ∪ {2} ∪ {[0, 6]} ∪ {6} ∈ S. We see xy 
={0} ∪ {0} ∪ {0} ∪ {0}. Thus S has 4-interval zero divisor. 
 

 Consider x = [0, 19] ∪ {11} ∪ {[0, 14]} ∪ {23} ∈ S. We 
see x2 = [0, 1] ∪ {1} ∪ {[0, 1]} ∪ {1} so x is a 4-interval unit 
in S.  
 

 x = {[0, 5]} ∪ {9} ∪ {[0, 10]} ∪ {9} in S is such that x2 = 
[0, 25 (mod 20)] ∪ {81 (mod 12)} ∪ [0, 100 (mod 15)} ∪ {81 
(mod 24)} = [0, 5] ∪ {9} ∪ {[0, 10]} ∪ {0} = x. Thus x is a 4-
interval idempotent of S. 
 
Example 2.1.36: Let S = S1 ∪ S2 ∪ S3 = {[0, a] / a ∈ Z+, ×} ∪ 
{[0, b] / b ∈ Q+} ∪ {R+, ×} be a quasi 3-interval semigroup. S 
has no 3-interval units, no 3-interval zero divisors and no three 
interval idempotents. Thus we have 3-interval semigroups 
which have none of the special elements. It is further important 
to note that S is not Smarandache quasi 3-interval semigroup. 
 

 Further S has no quasi 3-interval ideals. However S has 
quasi 3-interval subsemigroup say P = P1 ∪ P2 ∪ P3 = {3Z+, ×} 
∪ {[0, b] / b ∈ Z+} ∪ {[0, b] / b ∈ Q+} ⊆ S1 ∪ S2 ∪ S3. Infact S 
has infinite number of quasi 3-interval subsemigroups none of 
them are quasi 3-interval ideals. 
 

 Now as in case of n-interval semigroups or quasi interval 
bisemigroups discuss and study the concept of zero divisors, S-
zero divisors, idempotents and S-idempotents. We give 
examples of quasi n-interval semigroups using interval matrices 
and interval polynomials. 
 
Example 2.1.37: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 = 

i

i 0

[0,a]x a Z {0},
∞

+

=

⎫⎧⎪ ⎪∈ ∪ ×⎨ ⎬
⎪ ⎪⎩ ⎭
∑  ∪ {All 8 × 4 interval matrices 

with intervals of the form [0, a] / a ∈ Z40, +} ∪ {[0, a1], [0, a2], 
…, [0, a9] / ai ∈ Z23, 1 < i < 9, ×} ∪  
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1

2
i 120,

3

4

[0,a ]
[0,a ]

a Z ,1 i 4
[0,a ]
[0,a ]

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ∈ + ≤ ≤⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

∪ {All 7 × 7 upper triangular interval matrices with intervals of 
the form [0, a] where a ∈ Q+ ∪ {0}, +} ∪ 
 

i
48

i 0

[0,a]x a Z ,
∞

=

⎧ ⎫⎪ ⎪∈ ×⎨ ⎬
⎪ ⎪⎩ ⎭
∑  ∪ 

27
i

144
i 0

[0,a]x a Z ,
=

⎧ ⎫
∈ +⎨ ⎬

⎩ ⎭
∑  

is a 7-interval semigroup of infinite order which is clearly non 
commutative.  
 
Example 2.1.38: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {([0, a1], [0, 
a2], …, [0, a12]) / ai ∈ Z50, 1 < i < 12, ×} ∪ {All 3 × 3 matrices 
with entries from Z250, ×} ∪ {all 7 × 2 interval matrices with 
intervals of the form [0, a] / a ∈ Z420, +} ∪  

 

i
i i

i 0

a x a Q {0},
∞

+

=

⎧ ⎫⎪ ⎪∈ ∪ ×⎨ ⎬
⎪ ⎪⎩ ⎭
∑  ∪ 

{S(8)} be a quasi 5-interval semigroup.  
 
 We see in these two examples the interval semigroups and 
semigroups are of varying types. 
 
 Now having seen such hectrogeneous examples now we 
proceed onto describe n-interval groupoids and quasi n-interval 
groupoids. 
 
 
2.2 n-Interval Groupoids 
 
 In this section we proceed onto describe the notion of n-
interval groupoids, quasi n-interval groupoids and (m, n) 
interval semigroup-groupoids (interval m-semigroup-n-
groupoids) and its quasi analogue.  
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DEFINITION 2.2.1: Let G = G1 ∪ G2 ∪ G3 ∪ … ∪ Gn be such 
that each Gi is an interval groupoid and the Gi’s are distinct (Gi 
⊄ Gj, if i ≠ j 1 < i, j < n). We define ‘.’ on G which takes 
operations on each of the Gi’s; 1 < i < n. We define (G, .) to be 
the n-interval groupoid (n > 2). If n = 2 we call G as interval 
bigroupoid. 
 

 We will illustrate this by examples. 
 
Example 2.2.1: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] | a ∈ Z14, 
*, (3, 5)} ∪ {[0, b] | b ∈ Z20, *, (7, 0)} ∪ {[0, c] | c ∈ Z19, *, (4, 
4)} ∪ {[0, d] / d ∈ Z17, *, (1, 3)} be a 4-interval groupoid. We 
define ‘.’ on G as follows. Suppose x = [0, 3] ∪ [0, 8] ∪ [0, 1] 
∪ [0, 5] and y = [0, 2] ∪ [0, 1] ∪ [0, 8] ∪ [0, 10] ∈ G. Then  
 

x.y = ([0, 3] ∪ [0, 8] ∪ [0, 1] ∪ [0, 5]) . ([0, 2] ∪ [0, 1] ∪  
  [0, 8] ∪ [0, 10])  
 = [0, 3] * [0, 2] ∪ [0, 8] * [0, 1] ∪ [0, 1] ∪ [0, 8] ∪  
   [0, 5] * [0, 10] 
 = [0, 3.3 + 2.5 (mod 14)] ∪ [0, 7.8 + 0.1 (mod 20)] ∪  

[0, (1.4 + 1.8) mod 19] ∪ [0, (1.5 + 3.10) (mod 17)]  
=  [0, 5] ∪ [0, 16] ∪ [0, 12] ∪ [0, 1] ∈ G.  

Thus (G, .) is a 4-interval groupoid of finite order.  
 
Example 2.2.2: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ 
Z+ ∪ {0}, *, (3, 2)} ∪ {[0, a] / a ∈ Z45, *, (2, 1)} ∪ {[0, a] / a ∈ 
Z20, *, (13, 0)} ∪ {[0, a] / a ∈ R+ ∪ {0}, *, (3, 0)} ∪ {[0, a] / a 
∈ Z48, *, (0, 7)} be a 5-interval groupoid.  
 
Example 2.2.3: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {All 3 × 3 interval 
matrices with intervals of the form [0, a]; a ∈ Z12, *, (7, 0)} ∪ 
 

i
15

i 0

[0,a]x a Z ,*,(0,3)
∞

=

⎧ ⎫⎧⎪⎪ ⎪∈⎨⎨ ⎬
⎪⎪ ⎪⎩⎩ ⎭
∑  ∪ i

19
i 0

[0,a]x a Z ,*,(4,0)
∞

=

⎧ ⎫⎧⎪⎪ ⎪∈⎨⎨ ⎬
⎪⎩⎪ ⎪⎩ ⎭
∑  

 
∪ {([0, a1], [0, a2] ,…, [0, a6])| ai ∈ Z120, *, (8, 5)} be a 4-
interval groupoid where we describe the operations in each of 
the Si, 1 ≤ i  ≤ 4. 
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Let  

A = 
[0,3] [0,1] [0,7]
[0,1] [0,8] [0,0]
[0,2] [0,0] [0,5]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, B = 
[0,2] [0,0] [0,0]
[0,7] [0,5] [0,0]
[0,1] [0,3] [0,8]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

in S1. 
 

A * B = 
[0,3] [0,1] [0,7]
[0,1] [0,8] [0,0]
[0,2] [0,0] [0,5]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 * 
[0,2] [0,0] [0,0]
[0,7] [0,5] [0,0]
[0,1] [0,3] [0,8]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

 
[0, (3.7 0.2) mod12] [0, (0.7 0.1) mod12] [0, (0.7 0.7) mod12]
[0, (7.7 0.1) mod12] [0, (5.7 8.0) mod12] [0, (7.0 0.0) mod12
[0, (7.1 0.2) mod12] [0, (8.3 0.0) mod12] [0, (8.7 0.5) mod12

+ + +

+ + +

+ + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
  

= 
[0,9] [0,0] [0,0]
[0,1] [0,11] [0,0]
[0,7] [0,0] [0,8]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 

We now describe the operation in S2. 
 

p (x) = [0, 5] x7 + [0, 2] x3 + [0, 3] x + [0, 1] 
and 

q (x) = [0, 1] x6 + [0, 9] x + [0, 7] x3 + [0, 4] ; 
 
p (x) * q (x)  = [0, 0] x7 + [0, 3] x6 + [0, (2.0+7.3) mod 15] 
     x3 + [0, (3.0 + 9.3) mod 15] x +  
     [0, (0.1 + 4.3) mod 15] 

   = [0, 3] x6 + [0, 9] x3 + [0, 9] x. 
 
 Thus this is the way * on the interval polynomial groupoid 
S2 is defined.  
 In a similar way the operation on S3 is carried out. Now 
consider the operation * on S4. Take x = ([0, 3], [0, 2], [0, 1], [0, 
0], [0, 5], [0, 9]) and y = ([0, 9], [0, 12], [0, 20], [0, 40],  
[0, 8], [0, 1]) in S4. Now x*y = ([0, (24 + 45) mod 120],  
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[0, (16+60) mod 120], [0, (8+120) mod 120], [0, (0+40×5) mod 
120], [0, (40+40) mod 120], [0, (72+5) mod 120]) 
 = ([0, 69], [0, 76], [0, 8], [0, 0], [0, 80], [0, 77]). 
 
Example 2.2.4: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 = {All 5 × 
5 interval matrices with intervals of the form [0, a] where a ∈ 
Z7, *, (3, 4)} ∪ {([0, a1], [0, a2], …, [0, a10]) / ai ∈ Z11, 1 < i < 
10, *, (8, 3)] ∪ {[0, a] / a ∈ Z6, *, (4, 0)} ∪ {[0, a] / a ∈ Z14, *, 

(0, 3)} ∪{
9

i

i 0

[0,a]x
=
∑  , *, a ∈ Z10, (3, 2)} ∪ {[0, a] / a ∈ Z4, *, 

(2, 2)} be a 6-interval groupoid.  
 

 We have seen examples of n-interval groupoids. 
 Now we proceed onto illustrate the substructure of an n-
interval groupoid. As the definition is easy the reader is left with 
the task of defining the substructures. 
 
Example 2.2.5: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z+ ∪ 
{0}, (3, 0), *} ∪ {([0, a1], [0, a2], [0, a3]) / ai ∈ Z10, 1 < i < 3, *, 
(7, 2)} ∪ {[0, b] / b ∈ Z40, *, (10, 13)} ∪ {[0, c] / c ∈ Z12, *, (8, 
0)} be a 4-interval groupoid. Consider V = V1 ∪ V2 ∪ V3 ∪ V4 
= {[0, a] / a ∈ 7Z+ ∪ {0}, *, (3, 0)} ∪ {([0, a1], 0, [0, a2]) / a1, a2 
∈ Z10, *, (7, 2)} ∪ {[0, b] / b ∈ {0, 10, 20, 30} ⊆ Z40, *,  
(10, 13)} ∪ {[0, c] / c ∈ {0, 2, 4, 6, 8, 10} ⊆ Z12, *, (8, 0)} ⊆  
S1 ∪ S2 ∪ S3 ∪ S4; V is a 4-interval subgroupoid of S. 
 
Example 2.2.6: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {([0, a1],  
[0, a2], [0, a3], [0, a4], [0, a5]) / ai ∈ Z12, *, 1 < i < 5, (3, 2)} ∪ 
{[0, a] / a ∈ Z35, *, (7, 0)} ∪ {All 2 × 2 interval matrices with 
intervals of the form [0, a] where a ∈ Z40, *, (10, 2)} ∪  
 

15

[0,a]
[0,b] a,b,c Z ,*,(3,2)
[0,c]

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ∈⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 ∪ 
7

i
24

i 0

[0,a]x a Z ,*,(3,11)
=

⎫⎧⎪ ⎪∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑   

 
be a 5-interval groupoid. P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 = {([0, a1], 
[0, a2], …, [0, a5]) / ai ∈ {0, 2, 4, 6, 8, 10} ⊆ Z12, *, (3, 2)} 
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∪{[0, a] / a ∈ {0, 5, 10, …, 30} ⊆ Z35, *, (7, 0)} ∪ {All 2 × 2 
interval matrices with intervals of the form [0, a] where a ∈ {0, 
2, 4, … , 38} ⊆ Z40, (10, 2)} ∪  
 

15

[0,a]
[0,b] a,b,c {0,5,10} Z ,*,(3,2)
[0,c]

⎫⎧⎡ ⎤
⎪⎪⎢ ⎥ ∈ ⊆⎨ ⎬⎢ ⎥

⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∪  

 
3

i
24

i 0

[0,a]x a Z ,*,(3,11)
=

⎫⎧⎪ ⎪∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

 
⊆ S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 is a 5-interval subgroupoid of S. 
 
Example 2.2.7: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {All 2 × 5 interval 
matrices with intervals of the form [0, a], a ∈ Z8, *, (3,1)} ∪  
 

9
i

10
i 0

[0,a]x a Z ,(2,0),*
=

⎫⎧⎪ ⎪∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

 

∪ {[0, a] / a ∈ Z12, *, (4, 3)} ∪ 
4

i
40

i 0

[0,a]x a Z ,*,(0,7)
=

⎫⎧⎪ ⎪∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

 
be a 4-interval groupoid.  

Consider G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ {0, 2, 4, 6} 
⊆ Z8, *, (3, 1)} ∪  

9
i

10
i 0

[0,a]x a {0,2,4,6,8} Z ,*,(2,0)
=

⎫⎧⎪ ⎪∈ ⊆⎨ ⎬
⎪ ⎪⎩ ⎭
∑  ∪ 

{[0, a] / a ∈ {0, 3, 6, 9} ⊆ Z12, (4, 3)} ∪ 
4

i
40

i 0

[0,a]x a {0,4,8,12,...,36} Z ,*,(0,7)
=

⎫⎧⎪ ⎪∈ ⊆⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

⊆ S1 ∪ S2 ∪ S3 ∪ S4 = S is a 4-interval subgroupoid of S.  
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 Now having seen n-interval subgroupoids now we proceed 
onto describe other properties like S-n-interval groupoids and 
special identities satisfied by the n-interval groupoids. We will 
call a n-interval groupoid S = S1 ∪ S2 ∪ … ∪ Sn to be a S-n-
interval groupoid if S has a proper subset A = A1 ∪ A2 ∪ … ∪ 
An where each Ai is an interval semigroup under the operations 
of S, 1 ≤ i ≤ n, that is if S contains a n-interval semigroup then 
we call S to be a Smarandache n-interval groupoid.  
  
We will illustrate this situation by some examples. 
 
Example 2.2.8: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ 
Z10, *, (5, 6)} ∪ {[0, a] / a ∈ Z12, *, (3, 9)} ∪ {[0, a] / a ∈ Z12, 
*, (3, 4)} ∪ {[0, a] / a ∈ Z4, *, (2, 3)} ∪ {[0, a] / a ∈ Z6, *,  
(4, 3)} be a 5-interval groupoid it is easily verified S is a 
Smarandache 5-interval groupoid of finite order. 
 
Example 2.2.9: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z6, *, 
(3, 5)} ∪ {[0, a] / a ∈ Z14, *, (7, 8)} ∪ {[0, a] / a ∈ Z12, *,  
(5, 10)} ∪ {[0, a] / a ∈ Z12, *, (2, 10)} be a 4-interval groupoid 
and S is a Smarandache 4-interval grouped of finite order.  
 
Example 2.2.10: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6 ∪ G7 
= {[0, a] / a ∈ Z9, *, (7, 3)} ∪ {[0, a] / a ∈ Z16, *, (7, 10)} ∪ 
{[0, a] / a ∈ Z20, *, (10,11)} ∪ {[0, a] / a ∈ Z19, *, (17, 3)} ∪ 
{[0, a] / a ∈ Z14, *, (8, 7)} ∪ {[0, a] / a ∈ Z22, *, (12, 11)} ∪ 
{[0, a] / a ∈ Z27, *, (23, 5)} is a 7-interval groupoid which is a 
S-7-interval groupoid.  
 

In view of this we have the following theorem which 
guarantees the existence of a class of S-n-interval groupoids.  

 
THEOREM 2.2.1: Let G = G1 ∪ G2 ∪ G3 ∪ … ∪ Gn where Gi = 
{[0, a] / a ∈ 

imZ , *, (ti, ui) where (ti, ui) = 1 and ti + ui ≡  
1(mod mi)} true for i=1,2,…, n and each mi > 5. Then G is a 
Smarandache n-interval groupoid of order m1, m2, …, mn. 
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Proof is straight forward as every n-element. x = [0, a1] ∪ [0, a2] 
∪ … ∪ [0, an] ∈ G such that x*x = x so {x} is a n-interval 
semigroup in G. 
 Hence the claim. 
 
 We say an n-interval groupoid G = G1 ∪ G2 ∪ … ∪ Gn is 
said to be an n-interval idempotent groupoid if for every x = x1 
∪ x2 … ∪ xn in G we have x * x = x. 
 
 We will first illustrate this by some examples. 
 
Example 2.2.11: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z10, 
(7, 4), *} ∪ {[0, a] / a ∈ Z13, *, (9, 5)} ∪ {[0, a] / a ∈ Z20, *, 
(11, 10)} ∪ {[0, a] / a ∈ Z15, *, (9, 7)} be a 4-interval groupoid. 
It is easily verified G is a 4-interval idempotent groupoid. For 
take x = [0, 5] ∪ [0, 7] ∪ [0, 12] ∪ [0, 9] in S. 
 
x2  = [0, 5] * [0, 5] ∪ [0, 7] * [0, 7] ∪ [0, 12] * [0, 12] ∪  
  [0, 9] * [0, 9] 
 =  [0, (35 + 20) (mod 10)] ∪ [0, (63+35) mod 13] ∪  
  [0, (132+120) mod 20] ∪ [0, (81+63) mod 15] 
 =  [0, 5] ∪ [0, 7] ∪ [0, 12] ∪ [0, 9]  
 =  x. 
 
 It is easily verified x2 = x for every x ∈ S is a 4-interval 
groupoid. It is easily verified G is a 4-interval idempotent 
groupoid.  

In view of this we have the following theorem which 
guarantees the existence of n-interval idempotent groupoid. 
 
THEOREM 2.2.2: Let G = G1 ∪ G2 ∪ G3 ∪ … ∪ Gn be a n-
interval groupoid Gi = {[0, a] / a ∈ 

imZ , (ti, ui) = 1 (ti + ui) ≡ 1 
mod mi, *} is an interval groupoid for each i = 1,2,…,n. 
 G is a n-interval idempotent groupoid.  
 
 The proof is direct and is left as an exercise to the reader. 

Now we will give examples of n-interval groupoids which 
has S-n-interval subgroupoids. 
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Example 2.2.12: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z14, 
*, (7, 8)} ∪ {[0, a] / a ∈ Z12, *, (5, 10)} ∪ {[0, a] / a ∈ Z10, *, 
(5, 6)} ∪ {[0, a] / a ∈ Z12, *, (1, 3)} be a 4-interval groupoid of 
finite order. Consider A = A1 ∪ A2 ∪ A3 ∪ A4 = {[0, a] / a ∈ 
{0, 4}, *, {7, 8}} ∪ {[0, a] / a ∈ {0, 6} ⊆ Z12, *, (5, 10)} ∪ {[0, 
a] / a ∈ {0, 5} ⊆ Z10, *, (5, 6)} ∪ {[0, a] / a ∈ {0, 6, 3, 9} ⊆ Z12, 
*, (1, 3)} ⊆ S1 ∪ S2 ∪ S3 ∪ S4. Clearly a is a Smarandache 4-
interval subgroupoid. As P = P1 ∪ P2 ∪ P3 ∪ P4 = {[0, 4], *, (7, 
8)} ∪ {[0, 6] / 6 ∈ Z12, *, (5, 16)} ∪ {[0, 5] / 5 ∈ Z10, *, (5, 6)} 
∪ {[0, 0] , [0, 6] / 0, 6 ∈ Z12, *, (1, 3)} ⊆ A1 ∪ A2 ∪ A3 ∪ A4 = 
A ⊆ S1 ∪ S2 ∪ S3 ∪ S4 = S is a 4-interval semigroup in A.  
 

 Thus A is a S-4-interval subgroupoid of S. 
 

 Now we have the following nice theorem the proof of which 
is direct. 
 
THEOREM 2.2.3: Let G = G1 ∪ G2 ∪ … ∪ Gn be a n-interval 
groupoid. If A = A1 ∪ A2 ∪ … ∪ An is a n-interval subgroupoid 
of G which is a S-n-interval subgroupoid, then G is itself a S-n-
interval groupoid. But if G is a S-n-interval groupoid then in 
general every n-interval subgroupoid of G need not be a S n-
interval subgroupoid of G. 
 

 To this effect the interested reader can give examples. 
 
Example 2.2.13: Let G = G1 ∪ G2 ∪ G3 = {[0, a] / a ∈ Z4, *, 
(2,3)} ∪ {[0, a] / a ∈ Z12, (3,4), *} ∪ {[0, a] / a ∈ Z6, *, (2,3)} 
be a Smarandache Bol 3-interval groupoid.  
 

 This can be easily verified by the reader. However G is not 
a S-strong Bol 3-groupoid. 
 
Example 2.2.14: Let G = G1 ∪ G2 ∪ G3 = {[0, a] / a ∈ Z6, *, 
(4,3)} ∪ {[0, a] / a ∈ Z4, *, (2,3)} ∪ {[0, a] / a ∈ Z6, *, (3,5)} be 
a Smarandache strong 3-interval P-groupoid. Hence G is a 
Smarandache 3-interval P-groupoid.  
 

 The following theorem guarantees the existence of 
Smarandache n-interval P-groupoid. 
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THEOREM 2.2.4: Let G = G1 ∪ G2 ∪ … ∪ Gn be a n-interval 
groupoid. If each Gi = {[0, a] / a ∈ 

imZ , *, ti + ui ≡ 1 (mod mi) 
(ti, ui)} is an interval groupoid 1 < i < n. G is a Smarandache 
alternative n-interval groupoid if and only if 2

it  = ti (mod mi) 

and 2
iu  = ui (mod mi), for every i=1,2,…,n. 

  

The proof is direct for analogous methods refer [ ].   

The next theorem guarantees the existence of a class of 
Smarandache n-interval P-groupoids. 
 
THEOREM 2.2.5: Let G = G1 ∪ G2 ∪ … ∪ Gn where Gi =  
{[0, a] / a ∈ 

imZ , *, (ti, ui) 1 + ui = 1 (mod mi)}, 1 < i < n be a 
n-interval groupoid. G is a Smarandache n-interval P-groupoid 
if and only if 2

it  = ti (mod mi) and 2
iu  = ui (mod mi) for i = 1, 2, 

…, n. 
  
Now we will give example of a Smarandache strong  
n-interval Moufang groupoid.  
 
Example 2.2.15: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] / a 
∈ Z12, *, (4, 9)} ∪ {[0, a] / a ∈ Z10, (5, 6), *} ∪ {[0, a] / a ∈ Z15, 
*, (6, 10)} ∪ {[0, a] / a ∈ Z20, (5, 16), *} ∪ {[0, a] / a ∈ Z21, (7, 
15)} be a 5-interval groupoid. 
 Clearly G is a Smarandache strong Moufang 5-interval 
groupoid.  

 
We give a theorem which gurantees the existence of 
Smarandache strong Moufang n-interval groupoid. 
 
THEOREM 2.2.6: Let G = G1 ∪ G2 ∪ … ∪ Gn = {[0, a] / a ∈ 

1mZ , *, (t1, u1), t1 + u1 = 1 (mod m1)} ∪ {[0, a] / a ∈ 
2mZ , *, (t2, 

u2), t2 + u2 = 1 (mod m2)} ∪ … ∪ {[0, a] / a ∈ 
nmZ , *, (tn, un), tn 

+ un = 1(mod mn)} be a n-interval groupoid. G is a 
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Smarandache strong Moufang n-interval groupoid if and only if 
2
iu  = ui (mod mi) and 2

it  = ti (mod mi), i=1,2,…,n. 
 
Now we give the existence of a class of Smarandache strong 
Bol n-interval groupoid. 
 
THEOREM 2.2.7: Let G = G1 ∪ G2 ∪ … ∪ Gn = {[0, a] / a ∈ 

1mZ , *, (t1, u1); t1 + u1 ≡ 1 (mod m1)} ∪ {[0, a] / a ∈ 
2mZ , *, (t2, 

u2), t2 + u2 ≡ 1 (mod m2)} ∪ … ∪ {[0, a] / a ∈ 
nmZ , *, (tn, un), *, 

tn + un ≡ 1, (mod mn)} be a n-interval groupoid. G is a 
Smarandache strong Bol n-interval groupoid if and only if  

2
it  = ti (mod mi) and 2

iu  = ui (mod mi); i=1,2,…, n. 
 
The proof is straight forward for  
(([0, xi] * [0, yi]) * ([0, zi]) * [0, xi]  

=  ([0, ti xi + ui yi] * [0, zi]) * [0, xi] 
=  [0, 2

it  + tiuiyi + uizi] * [0, xi] 
=  [0, 3

it  xi + 2
it ui yi + ti ui zi + ui xi] 

=  [0, tixi + ti uiyi + ti uizi + ui xi]    -  I 
( 3

it  = ti (mod mi)) 
[0, xi] * (([0, yi] * [0, zi]) * [0, xi]) 

=  [0, xi] * ([0, tiyi + uizi] * [0, xi]) 
=  [0, xi] * [0, 2

it uiyi + tiuizi + 2
iu xi] 

=  [0, tixi + 2
it uiyi + ti 2

iu xi + uixi]    -  II 
( 2

iu =ui (mod mi)) 
  

I and II are equal for every [0, xi], [0, yi], [0, zi] ∈ Gi; for i = 1, 
2, …,n. Hence G is a Smarandache strong Bol n-interval 
groupoid. 

We give examples of Smarandache n-interval idempotent 
groupoids. 
 
Example 2.2.16: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] / a 
∈ Z11, *, (6,6)} ∪ {[0, a] / a ∈ Z19, *, (10,10)} ∪ {[0, a] / a ∈ 
Z13, *, (7,7)} ∪ {[0, a] / a ∈ Z23, *, (12,12)} ∪ {[0, a] / a ∈ Z43, 
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*, (22,22)} be a 5-interval groupoid. It is easily verified G is a 
Smarandache 5-interval idempotent groupoid.  
 

We have a class of Smarandache n-interval groupoid, which 
is evident from the following theorems.  
 
THEOREM 2.2.8: Let G = G1 ∪ G2 ∪ G3 ∪ … ∪ Gn = {[0, a] / a 

∈ 
1pZ , *, + +⎛ ⎞

⎜ ⎟
⎝ ⎠

1 1p 1 p 1,
2 2

, *, p1 a prime} ∪ {[0, a] / a ∈ 
2pZ , 

*, + +⎛ ⎞
⎜ ⎟
⎝ ⎠

2 2p 1 p 1,
2 2

, *, p2 a prime} ∪ … ∪ {[0, a] / a ∈ 
npZ , *, 

+ +⎛ ⎞
⎜ ⎟
⎝ ⎠

n np 1 p 1,
2 2

, *, pn a prime} (all the pi’s are n-distinct 

primes, i=1,2,…,n). G is a Smarandache n-interval idempotent 
groupoid. 
  

The proof is straight forward and hence is left as an exercise 
for the reader to prove. 

Now having seen the properties enjoyed by n-interval 
groupoids now we proceed onto define quasi n-interval 
groupoids and (t, s) interval semigroup - groupoid and (t, s) 
quasi interval semigroup- groupoid. 

Let G = G1 ∪ G2 ∪ … ∪ Gn where some t number Gi’s are 
distinct interval groupoids and the remaining n-t are just 
groupoids then we define G to be a quasi n-interval groupoid or 
quasi (t, (n-t)) - interval groupoid.  

If in G = G1 ∪ G2 ∪ … ∪ Gn, t of the Gi’s are interval 
semigroups and n-t- of the Gj’s are interval groupoids and 
groupoids we define G to be a quasi n-interval semigroup- 
groupoid.  
 

We will illustrate this situation by some examples.  
 
Example 2.2.17: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6 ∪ G7 
= {Z9 (3, 2)} ∪ {[0, a] / a ∈ Z40, *, (19,11)} ∪ {[0, a] / a ∈ Z24, 
*, (11,13)} ∪{Z12 (7, 5)} ∪ {[0, a] / a ∈ Z42, *, (8,11)} ∪ {Z27 
(3, 1)} ∪ {Z45 (11, 13)} be a quasi 7-interval groupoid. 
 



 125

Example 2.2.18: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {All 3 × 3 
interval matrices with intervals of the form [0, a] where a ∈ Z7, 
(2, 3)} ∪ {(a1, a2, a3, a4) / ai ∈ Z5, *, (3, 3)} ∪ {[0, a] / a ∈ Z9, *, 
(2, 7)} ∪ {Z11 (3, 2)} be a quasi 4-interval groupoid. 
 

Let  

x = 
[0,3] [0,2] [0,1]

0 [0,4] 0
[0,3] 0 [0,2]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ∪ (2, 1, 0, 3) ∪ {[0, 7]} ∪ {3}  

and 

y = 
[0,3] 0 [0,1]

0 [0,5] 0
[0,5] [0,4] [0,2]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ∪ (3, 1, 2, 4) ∪ [0, 5] ∪ {9} ∈ G. 

 
x.y is calculated as follows; 
 

x.y = 
[0,3] [0,2] [0,1]

0 [0,4] 0
[0,3] 0 [0,2]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 * 
[0,3] 0 [0,1]

0 [0,5] 0
[0,5] [0,4] [0,2]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

∪ (2, 1, 0, 3) * (3, 1, 2, 4) ∪ [0, 7] * [0, 5] ∪ {3 * 9} 
 

=
[0,6 9(mod7)] [0,4 0(mod7)] [0,2 3(mod7)]
[0,0 0(mod7)] [0,8 15(mod7)] [0,0]
[0,6 15(mod7)] [0,12(mod7)] [0,4 6(mod 7)]

+ + +⎛ ⎞
⎜ ⎟+ +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

 

= [(6+9(mod 5), (3+3) (mod 5), (0+6 mod 5), (9+12) mod 5] 
∪ [0, 14 + 35 (mod 9)] ∪ [9+18 (mod 11)] 

 

= 
[0,1] [0,4] [0,5]
[0,0] [0,9] [0,0]
[0,0] [0,5] [0,3]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ (0, 4, 1, 1)∪ [0, 4] ∪{5} 

 
is in G. Thus G is a quasi 4-interval groupoid of finite order. 
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Example 2.2.19: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = Z10 (3, 2) 
∪ {[0, a] / a ∈ Z11, *, (8, 9)} ∪ {Z45 (7, 2)} ∪ {[0, a] / a ∈ Z9, *, 

(2, 4)} ∪ {
7

i

i 0

[0,a]x
=
∑ / a ∈ Z40, *, (3, 2)} be a quasi 5-interval 

groupoid of finite order. 
 
Example 2.2.20: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ 
Z10, ×} ∪ {[0, a] / a ∈ Z12, ×} ∪ {[0, a] / a ∈ Z19, ×} ∪ {[0, a] / 
a ∈ Z20, ×, (11, 7)} be a 4-interval semigroup-groupoid of finite 
order. 
 
Example 2.2.21: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {S (X) / X = 
([0, a1], [0, a2], [0, a3], [0, a4])} ∪ {[0, a] / a ∈ Z+ ∪ {0},  
(9, 3)} ∪ {[0, a] / a ∈ Z120, *, (43, 29)} ∪ {[0, a] / a ∈ Z40, ×} ∪ 
{[0, a] / a ∈ Z25, *, (3, 7)} be a 5-interval groupoid semigroup 
of infinite order.  
 

Having seen examples of these structures it is a matter of 
routine to define substructures, however we give examples of 
them. 
 
Example 2.2.22: Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z4, 
(2, 3), *} ∪ {Z12 (3, 4)} ∪ {[0, a] / a ∈ Z10, *, (5, 6)} ∪ Z12 (1, 
3) be a 4-interval groupoid. H = H1 ∪ H2 ∪ H3 ∪ H4 = {{[0, 0], 
[0, 2] / 0, 2 ∈ Z4, *, (2, 3)} ∪ {0, 4 ∈ Z12, *, (3, 4)} ∪{[0, 0],  
[0, 2] / 0, 2 ∈ Z10, *, (5, 6)} ∪ {0, 3, 6, 9, ∈ Z12, *, (1, 3)} ⊆  
S1 ∪ S2 ∪ S3 ∪ S4; is a quasi 4-interval subgroupoid of S. 
 
Example 2.2.23: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ 
Z12, *, (1, 3)} ∪ {Z6 (4, 5)} ∪ {[0, a] / a ∈ Z8, *, (2, 6)} ∪  
Z12 (10, 8) be a quasi 4-interval groupoid of finite order. 
Consider A = A1 ∪ A2 ∪ A3 ∪ A4 = {[0, a] / a ∈ {0, 3, 6, 9} ⊆ 
Z12, *, (1, 3)} ∪ {{1, 3, 5} ⊆ Z6, *, (4, 5)} ∪ {[0, a] / a ∈ {0, 2, 
4, 6} ⊆ Z8, *, (2, 6)} ∪ {{6, 2, 10} ⊆ Z12, *, (10, 8)} ⊆ S1 ∪ S2 
∪ S3 ∪ S4, A is a quasi 4-interval subgroupoid of G.   

Now we can as in case of n-interval groupoids mention 
special identities satisfied by quasi n-interval groupoids.  
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 In case of quasi n-interval groupoids also all theorems given 
for n-interval groupoids can be proved with appropriate 
modifications. We now proceed onto describe substructure of n-
interval semigroup groupoid.  
 
Example 2.2.24: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] / a 
∈ Z24, ×} ∪ {[0, a] / a ∈ Z9, *, (5, 3)} ∪ {[0, a] / a ∈ Z40, ×} ∪ 
{[0, a] / a ∈ Z12, *, (3, 9)} ∪ {[0, a] / a ∈ Z12, ×} be a  
5-interval semigroup-groupoid. Let A = A1 ∪ A2 ∪ A3 ∪ A4 ∪ 
A5 = {[0, a] / a ∈ {0, 2, 4, …, 22} ⊆ Z24, ×} ∪ {[0, a] / a ∈ {1, 
2, 4, 5, 7, 8} ⊆ Z9, *, (5, 3)} ∪ {[0, a] / a ∈ {0, 10, 20, 30} ⊆ 
Z40, ×} ∪ {[0, a] / a ∈ {0, 3, 6, 9} ⊆ Z12, *, (3, 9)} ∪ {[0, a] / a 
∈ {0, 3, 6, 9} ⊆ Z12, ×} ⊆ G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5, A is a 5-
interval subsemigroup - subgroupoid of G. 
 
Example 2.2.25: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ 
Z24, ×} ∪ {[0, a] / a ∈ Z12, *, (3, 9)} ∪ {[0, a] / a ∈ Z10, *,  
(5, 6)} ∪ {S(X) / X = ([0, a1], [0, a2], [0, a3], [0, a4])} be a 4-
interval semigroup-groupoid. It is easily verified G is a 
Smarandache 4-interval semigroup-groupoid.  
 

 Now having seen examples of these new structures now we 
proceed onto define the notion of quasi n-interval semigroup- 
groupoid. G = G1 ∪ G2 ∪ … ∪ Gn is a quasi n-interval 
semigroup-groupoid if some Gi’s are interval groupoids some 
Gj’s are groupoids some Gk’s are interval semigroups and the 
rest are semigroups.  
 

 We will describe them by some examples. 
 
Example 2.2.26: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 = 
{Z25, ×} ∪ {Z7 (3, 2)} ∪ {[0, a] / a ∈ Z40, ×} ∪ {[0, a] / a ∈ Z23, 

*, (3, 2)} ∪ {
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

/ a, b, c, d ∈ Z12, ×} ∪ {([0, a], [0, b],  

[0, c]) / a, b, c ∈ Z43, *, (7, 0)} be a quasi 6-interval semigroup-
groupoids. 
 

 If both of interval semigroups and semigroups are 
Smarandache and both groupoids and interval groupoids are 
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Smarandache then we define the quasi n-interval semigroup- 
groupoid to be a Smarandache quasi n-interval semigroup- 
groupoid.    

Interested reader can construct examples of them. The 
notion of zero divisors, idempotents, S-zero divisors and S-
idempotent are defined in case of these structures also. However 
it is only semiassociative so one cannot deal with special 
identities. All other results can be derived and illustrated with 
examples by any interested reader. In the next section we 
proceed on to define and describe n-interval groups and their 
generalizations.  
 
 
2.3 n-Interval Groups and their Properties 

 
In this section we proceed onto describe n-interval groups, quasi 
n-interval groups, n-interval group-semigroups and n-interval 
groupoid - groups and enumerate a few of the properties related 
with them. 

 
DEFINITION 2.3.1: Let G = G1 ∪ G2 ∪ … ∪ Gn be such that 
each Gi is an interval group and Gi ≠ Gj or Gi ⊄ Gj; if i ≠ j, 1 < 
i, j < n. Then G obtains the operation ‘.’, componentwise 
inherited from Gi’s so G with this operation is defined as the n-
interval group. If n = 2 we get the interval bigroup of biinterval 
group. 
 
 We will illustrate this situation by some examples.  
 
Example 2.3.1: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ Z12, 
+} ∪ {[0, a] / a ∈ Z19 \ {0}, ×} ∪ {[0, a] / a ∈ Z17, +} ∪ {[0, a] / 
a ∈ Z43 \ {0}, ×} be a 4-interval group of finite order. Clearly G 
is a commutative 4-interval group. Consider x = {[0, 3] ∪ [0, 2] 
∪ [0, 7] ∪ [0, 40]} and y = [0, 7] ∪ [0, 10] ∪ [0, 12] ∪ [0, 10] 
in G. 
x.y  =  ([0, 3] + [0, 7]) ∪ ([0, 2] × [0, 10]) ∪ ([0, 7] +  
   [0, 12]) ∪ ([0, 40] × [0, 10]) 
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  =  [0, 10 (mod 12)] ∪ [0, 20 (mod 19)] ∪ [0, 19 (mod 
   17)] ∪ [0, 400 (mod 43)]  

=  [0, 10] ∪ [0, 1] ∪ [0, 2] ∪ [0, 13] ∈ G. 
 

It is easily verified G has a group structure.  
 
Example 2.3.2: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {Sx / x = 

([0, a1], [0, a2], [0, a3], [0, a4])} ∪ { i

i 0

[0,a]x
∞

=
∑  / a ∈ Z29 \ {0}, 

×} ∪ {[0, a] / a ∈ Z45, +} ∪ {[0, a] / a ∈ Z420, +} ∪ {[0, a] / a ∈ 
Z11 \ {0}, ×} be a 5-interval group. G is non commutative 
infinite 5-interval group. 
 
Example 2.3.3: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6 =  

{[0, a] / a ∈ Z15, +} ∪ {[0, a] / a ∈ Z23 \ {0}, ×} ∪ {
9

i

i 0

[0,a]x
=
∑ / 

a ∈ Z45, +} ∪ {Sx / x = {([0, a1] [0, a2] [0, a3])}} ∪ {A = 
[0,a] [0,b] [0,e]
[0,c] [0,d] [0,f ]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 / a, b, c, d, e, f, ∈ Z420, +} ∪ {Σ  

[0, a] / a ∈ Z19 \ {0}, ×} be a 6-interval group. e = [0, 0] ∪  

[0, 1] ∪ [0, 0] ∪ 1 2 3

1 2 3

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ 
0 0 0
0 0 0

⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 ∪ 

[0, 1] acts as the 6-interval identity of G.  
 

 Now having seen examples of n-interval groups we now 
proceed onto describe substructures in them and illustrate it with 
examples. 
 
DEFINITION 2.3.2: Let G = G1 ∪ G2 ∪ G3 ∪ … ∪ Gn be an n-
interval group under the operation ‘.’. Let H = H1 ∪ H2 ∪ H3 ∪ 
… ∪ Hn ⊆ G1 ∪ G2 ∪ G3 ∪ … ∪ Gn; if each Hi is an interval 
subgroup of Gi, i=1,2,…, n then (H, .) is defined as the n-
interval subgroup of G. If each Hi is normal in Gi for i = 1, 2, 3, 
…, n then we call H to be a n-interval normal subgroup of G. 
 

 We will say G is n-interval simple group if G has no n-
interval normal subgroup.  
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Now these definitions are described by the following 
examples. 
 
Example 2.3.4: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] / a 
∈ Z40, +} ∪ {[0, a] / a ∈ Z29 \ {0}, ×} ∪ {Sx where X = ([0, a1] 

[0, a2], [0, a3])} ∪ {
[0,a]
[0,b]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 / b, a ∈ Z45, +} ∪ {
[0,a] [0,b]
[0,c] [0,d]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 / 

a, b, c, d ∈ Z200, +} be a 5-interval group. Choose H = H1 ∪ H2 
∪ H3 ∪ H4 ∪ H5 = {[0, a] / a ∈ {0, 2, 4, …, 38}, +} ∪ {[0, 1], 
[0, 28] / 1, 28 ∈ Z29 \ {0}, ×} ∪  

1 2 3 1 2 3

1 2 3 2 1 3

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
,

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 

[0,a]
[0,b]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| a, b ∈ {0, 3, 6, 9, 12, …, 42, +} ∪ 
[0,a] 0

0 [0,b]
⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

/ 

a, b ∈ Z200, +} ⊆ G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 , H is a 5-interval 
subgroup of G. Every 5-interval subgroup in G is not a 5-
interval normal subgroup of G. Infact G is not a 5-interval 
simple group.  
 
Example 2.3.5: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {Ax / x = 
([0, a1], [0, a2], [0, a3], [0, a8])} ∪ {[0, a] / a ∈ Z11, +} ∪ {[0, 1], 
[0, 26]/ 1, 26 ∈ Z27, ×} ∪ {Ax / x = {[0, a1], [0, a2], …, [0, a10]} 
∪ {[0, a] / a ∈ Z5, +} be a 5-interval group. G is a 5-interval 
simple group. Infact G has no 5-interval subgroup.  
 
Example 2.3.6: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] / a 
∈ Z45, +} ∪ {([0, a1], [0, a2], …, [0, a9]) / ai ∈ Z20, 1 < i < 9, +} 

∪ {
1

2

3

[0,a ]
[0,a ]
[0,a ]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

/ ai ∈ Z42, +. 1 < i < 3} ∪ { 1

1

[0,a] [0,a ]
[0,a ] [0,a]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 / a, a1 

∈ Z24, +} ∪ {[0, a] / a ∈ Z19 \ {0}, ×} be a 5-interval group. 
This has 5-interval subgroups. G is commutative and is of finite 
order.  
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 Now having seen examples of substructures in n-interval 
groups we can extend all the classical theorems for groups to n-
interval groups with out any difficulty.   

Further if G = G1 ∪ G2 ∪ … ∪ Gn is a n-interval group 
where each Gi is of finite order then o (G) = o (G1) o (G2) …  
o (Gn) = |G1| |G2| … |Gn|.   

We have several classical theorems like Lagrange, Sylow, 
Cauchy, Cayley which are true for n-interval groups.    

We now proceed onto describe quasi n-interval groups. Let 
G = G1 ∪ G2 ∪ … ∪ Gn be such that some of the groups Gi are 
groups and the rest of the Gj are interval groups. We define  
G to be quasi n-interval group. 
 

 We give examples of this structure. 
 
Example 2.3.7: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = S3 ∪  
{[0, a] / a ∈ Z12, +} ∪ {[0, a] / a ∈ Z17 \ {0}, ×} ∪ D26 ∪ {[0, a] 
/ a ∈ Z19 \ {0}, ×} be a quasi 5-interval group. Clearly G is of 
finite order and is non commutative. Order of G = 6 × 12 × 16 × 
12 × 18. 
 
Example 2.3.8: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ Z45, 
+} ∪ {[0, a] / a ∈ Z19 \ {0}} ∪ <g / g5 = 1> ∪ (Z10, +) be a quasi 
4-interval group o (G) = o (G1) o (G2)o (G3) o (G4) = 45 × 18 × 
5 ×10. Clearly G is commutative.  
 
Example 2.3.9: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {A9} ∪ 
{[0, a] / a ∈ Z19, +} ∪ {[0, a] / a ∈ Z11, +} ∪ {A7} ∪ {g / g7 = 
1} be a quasi 5-interval group.  
 

 Clearly G is non commutative and o (G) = 
9 719 11 7
2 2
× × × . Further G has no quasi 5-interval normal 

subgroup hence G is simple. 
 
Example 2.3.10: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {S4} ∪ {[0, a] / 
a ∈ Z12, +} ∪ {[0, a] / a ∈ Z11 \ {0}, ×} ∪ {A5} be a quasi 4-
interval group of order |4 × 12 × 10 × |5/2. Clearly G is non 
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commutative. Consider H = H1 ∪ H2 ∪ H3 ∪ H4 = {A4} ∪  
{[0, a] / a ∈ {0, 2, 4, 6, 8, 10}, +} ∪ {[0, 1], [0, 10]/ 1, 10 ∈ Z11 

\ {0}, ×} ∪ {<
1 2 3 4 5
2 3 4 5 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

>}. G1 ∪ G2 ∪ G3 ∪ G4. H is a 

quasi 4-interval subgroup of G. Clearly G has no quasi 4-
interval normal subgroups as A5 has no normal subgroup. 
 

 o (H) = |4/2 . 6 × 2 × 5 = 720.  
 

 Interested reader can construct any number of examples. All 
classical theorem for groups are true in case of quasi n-interval 
groups. One can easily verify this claim.  
 

 Now we proceed onto define n-interval semigroup group. 
Let G = G1 ∪ G2 ∪ … ∪ Gn where some of the Gi’s are interval 
semigroups and the rest are interval groups. We define G with 
inherited operations from G to be a n-interval semigroup - 
group. 
 

 We will illustrate this situation by some examples. 
 
Example 2.3.11: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] / a 
∈ Z10, ×} ∪ {[0, a] / a ∈ Z11 \ {0}, ×} ∪ {[0, b] / b ∈ Z40, ×} ∪ 
{[0, a] / a ∈ Z15, +} ∪ {([0, a] [0, b] [0, c])/ a, b, c ∈ Z24, ×} be 
a 5-interval group-semigroup of finite order. Clearly G is 
commutative 5-interval group semigroup. 
 
Example 2.3.12: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ 
Z16, +} ∪ {([0, a], [0, b], [0, c])/ a, b, c ∈ Z15, ×} ∪ {All 4 × 4 
interval matries with intervals of the form [0, a] where a ∈ Z30, 
×} ∪ {[0, a] / a ∈ Z3 \ {0}, ×} is a 4-interval semigroup-group 
of finite order. 
 

 We can have substructures in them. 
 
Example 2.3.13: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] / a 
∈ Z40, +} ∪ {S(X) / X = ([0, a1] … [0, a5]) where ai ∈ I, 1 < i < 
5} ∪ {SY / Y = ([0, a1], …, [0, a4]) / ai ∈ Im 1<i<4} ∪ {[0, a] / a 
∈ Z13 \ {0}, ×} ∪ {[0, a] / a ∈ Z16, +} be a 5-interval semigroup 
– group of finite order. Clearly G is non commutative.  
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Example 2.3.14: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {S (X) / X = 
([0, 1], [0, 2], [0, 3])} ∪ {[0, a] / a ∈ Z24, ×} ∪ {[0, a] / a ∈ Z7 \ 
{0}, ×} ∪ {[0, a] / a ∈ Z14, +} be a 4-interval group-semigroup 
of finite order.  
 

 Clearly G is non commutative and G is not simple. G has 4-
interval subgroup - subsemigroup.  
 

 H = H1 ∪ H2 ∪ H3 ∪ H4 = {Sx} ∪ {[0, a] / a ∈ 2Z24, ×} ∪ 
{[0, 1], [0, 6] ×} ∪ {[0, a] / a ∈ {0, 7} +} ⊆ G1 ∪ G2 ∪ G3 ∪ G4 
is a 4-interval subsemigroup subgroup of G. 
 

 Now we will proceed onto define the notion of quasi 
interval semigroup - group. 
 

 Let G = G1 ∪ G2 ∪ … ∪ Gn where G1, G2, …, Gn are set of 
semigroups, interval semigroups, groups and interval groups. G 
with the inherited operations from G1, G2, …, Gn forms the 
quasi n-interval semigroup-group. 
 

 We will illustrate this situation by some examples. 
 
Example 2.3.15: Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {S (3)} ∪ 
{[0, a] / a ∈ Z24, ×} ∪{S5} ∪ {[0, a] / a ∈ Z19 \ {0}, ×} ∪ 

[0,a]
[0,b]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

/ a, b ∈ Z25, +} be a 5-interval semigroup - group. 

Clearly S is of finite order but non commutative.  
 

 Now we give an example of a quasi n-interval semigroup - 
group of infinite order and non commutative.  
 
Example 2.3.16: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {Z, +} ∪ 
{[0, a] / a ∈ Z+ ∪ {0}, ×} ∪ {S26} ∪ S (46) ∪ {[0, a] / a ∈ Z45, 
×} be the quasi 5-interval semigroup - group. Clearly G is non 
commutative but is of infinite order. 
 
Example 2.3.17: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ Z7 \ 
{0}, ×} ∪ {([0, a], [0, b], [0, c]) / a, b, c ∈ Z25, ×} ∪ {G3 = <g / 
g27 = 1>} ∪ {Z28, ×} be a quasi 4-interval semigroup-group of 
finite order.  
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 Defining substructures in them is a matter of routine we will 
give one or two examples of them. 
 
Example 2.3.18: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {S7} ∪ 
{S(3)} ∪ {[0, a] / a ∈ Z240, ×} ∪ {[0, a] / a ∈ Z43 \ {0}, ×} ∪ 

[0,a]
[0,b]
[0,c]

⎧⎡ ⎤
⎪⎢ ⎥
⎨⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎩

| a, b, c ∈ Z12, +} be a 5-quasi interval group-

semigroup of finite order which is non commutative. Consider 
W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 = A7 ∪ {S3} ∪ {[0, a] / a ∈ 

2Z240, ×} ∪ {[0, a] / a = 1, 42 ∈ Z43 \{0}, ×} ∪ 
[0,a]
[0,b]
[0,c]

⎧⎡ ⎤
⎪⎢ ⎥
⎨⎢ ⎥
⎪⎢ ⎥⎣ ⎦⎩

 / a, b, 

c ∈ 2Z12, +} ⊆ G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5; clearly W is a quasi 
5-interval subgroup -subsemigroup of G. 
 
Example 2.3.19: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {S (X) where X 
= ([0, a1], [0, a2] [0, a3])} ∪ {S7} ∪ <g / g120 = 1> ∪ {[0, a] / a ∈ 
Z47 \ {0}, ×} be quasi 4-interval group - semigroup. Take H = 
H1 ∪ H2 ∪ H3 ∪ H4 = {A (X) / X = ([0, a1], [0, a2], [0, a3])} ∪ 
{A7} ∪ {<g2n / n = 0, 2, …, 118 when g120 = 1>} ∪ {[0, a] / a = 
1 and 46 ∈ Z47 \ {0}, ×} ⊆ G1 ∪ G2 ∪ G3 ∪ G4. H is a quasi 4-
interval subgroup-subsemigroup. 
 

 It is pertinent to mention here that all classical theorems in 
group theory are not in general true in case of quasi 4-interval 
group-semigroup.  
 

 This sort of contradictions can be easily derived by 
constructing counter examples. 
 
Example 2.3.20: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 be a quasi 5 
interval semigroup - group. If even only one of the Gi is S (n) or 
S(X) symmetric semigroup or symmetric interval semigroup we 
see Lagrange theorem for finite groups, Sylow theorems for 
finite groups and Cauchy theorem for finite groups cannot hold 
good. 
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 We will leave the task of providing counter examples to the 
reader. Now in the next section we proceed onto define n-
interval loops, quasi n-interval loops and their generalizations. 
 
 
2.4 n-Interval Loops 
 

 In this section we proceed onto describe and define n-
interval loops, quasi n-interval loops and n-interval loop-group 
and so on. 
 
DEFINITION 2.4.1: Let G = G1 ∪ G2 ∪ G3 ∪ … ∪ Gn be such 
that each Gi be an interval loop. G with the component wise 
operations from each Gi is defined to be the n-interval loop. 
 We will illustrate this by some simple examples. 
 
Example 2.4.1: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 19} (3), *} ∪ {[0, a] / a ∈ {e, 1, 2, …, 7}, *, 5} ∪ 
{[0, a] / a ∈ {e, 1, 2, 3, …, 23}, 10, *} ∪ {[0, a] / a ∈ {e, 1, 2, 
…, 15}, 8, *} ∪ {[0,a] | a ∈ {e, 1, 2, …, 17}, *, 8} be a 5-
interval loop. Clearly L is of finite order and L is non 
commutative. 
 
Example 2.4.2: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈ {e, 1, 
2, …, 29}, *, 20} ∪ {[0, a] / a ∈ {e, 1, 2, …, 11}, *, 6} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, 9}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 31}, *, 
9} be a 4-interval loop. 
 
Example 2.4.3: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] /  
a ∈ {e, 1, 2, …, 43}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 43}, *, 
40} ∪ {[0, a] / a ∈ {e, 1, 2, …, 43},. *, 32} ∪ {[0, a] / a ∈  
{e, 1, 2, …, 43}, *, 25} ∪ {[0,a] | a ∈ {e, 1, 2, …, 43}, *, 15} 
be a 5-interval loop of order (43)5. Clearly L is non 
commutative.  
 
Example 2.4.4: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈ {e, 1, 
2, …, 17}, 9, *} ∪ {[0, a] / a ∈ {e, 1, 2, …, 27}, 14, *} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, 19}, *, 10} ∪ {[0, a] / a ∈ {e, 1, 2, …, 21}, 
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11, *} be a 4-interval loop. Clearly L is a commutative 4-
interval loop. 
 
Example 2.4.5: Let L = L1 ∪ L2 ∪ L3 = {[0, a] / a ∈ {e, 1, 2, …, 
9}, 8, *} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 8} ∪ {[0, a] / a ∈ 
{e, 1, 2, …, 25}, *, 12} be a 3-interval loop. Consider H = H1 ∪ 
H2 ∪ H3 = {[0, a] / a ∈ {e, 1, 4, 7} ⊆ {e, 1, 2, 3, …, 9}, *, 8} ∪ 
{[0, a] / a ∈ {e, 1, 6, 11} ⊆ {e, 1, 2, …, 15}, *, 8} ∪ {[0, a] / a 
∈ {e, 1, 6, 11, 16, 21}} ⊆ L1 ∪ L2 ∪ L3 is a 3-interval subloop 
of L.  
 

 Now having given one example of n-interval subloop 
interested reader can construct n-interval subloops and study 
their properties. 
 

We will give some of the properties of n-interval loops. 
 
Example 2.4.6: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 19}, *, 10} ∪ {[0, a] / a ∈ {e, 1, 2, …, 19}, *, 10} 
∪ {[0, a] / a ∈ {e, 1, 2, …, 27} *, 17} ∪ {[0, a] / a ∈ {e, 1, 2, 
…, 43}, *, 25} ∪ {[0, a] / a ∈ {e, 1, 2, …, 47}, *, 32} be a 5-
interval loop of finite order.  
 
Example 2.4.7: let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈ {e, 1, 
2, …, 45}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 9}, *, 8} ∪ {[0, a] / 
a ∈ {e, 1, 2, …, 25}, *, 12} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 
2} be a 4-interval loop.   

H = H1 ∪ H2 ∪ H3 ∪ H4 = {[0, a] / a ∈ {e, 1, 16, 31} ⊆ {e, 
1, 2, …, 45} *, 8} ∪ {[0, a] / a ∈ {e, 1, 4, 7} ⊆ {e, 1, 2, …, 9}, 
*, 8} ∪ {[0, a] / a ∈ {e, 1, 6, 11, 16, 21} ⊆ {e, 1, 2, 3, …, 25}, 
*, 12} ∪ {[0, a] / a ∈ {e, 1, 6, 11} ⊆ {e, 1, 2, …, 15} *, 2} ⊆ L1 
∪ L2 ∪ L3 ∪ L4 is 4-interval subloop of L. 
 The reader is expected to define n-interval subloops of a n-
interval loop. 
 
 We now give a theorem which guarantees the existence of 
n-interval subloops of an n-interval loop. 
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THEOREM 2.4.1: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈  
{e, 1, 2, …, m1}, *, s1}  ∪  {[0, a] / a ∈ {e, 1, 2, …, m2}, *, s2} ∪ 
… ∪ {[0, a] / a ∈ {e, 1, 2, …, mn}, *, sn} be a n-interval loop 
where each H = H1 (t1) ∪ H2 (t2) ∪ … ∪ Hn (tn) = {e, i, i +t1, …, 
(k1-t1)t1} ∪ {e, j, j+t2, …, (k2-t2) t2} ∪ … ∪ {e, p, p + tn, …, (kn – 
tn) tn} where ki = ni / ti i=1, 2, …, n.  H is a n-interval subloop 
infact a S-n- interval subloop of L (1 < t1, j < t2, …, p < tn). 
 
The proof is left to the reader as an exercise. This proves the 
existence of n-interval subloops and S-n-interval subloops of an 
n-interval loop. 
 Now we can define Smarandache n-interval loop. Let L = 
L1 ∪ L2 ∪ L3 ∪ … ∪ Ln be a n-interval loop.  If each Li is a 
Smarandache interval loop then we call L to be Smarandache n-
interval loop (S-n-interval loop). 
 
We will illustrate this by some examples. 
 
Example 2.4.8: Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {[0, a] / a ∈  
{e, 1, 2, …, 13}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 8} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 17}, *, 7} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
19}, *, 6} be a 4-interval loop.  L is a S-4-interval loop for A = 
A1 ∪ A2 ∪ A3 ∪ A4 = {[0, e], [0, 7], *, 8} ∪ {[0, e]  
[0, 5], *, 8} ∪{[0, e], [0, 15], *, 7} ∪ {[0, e] [0, 11], *, 6} ⊆ L1 
∪ L2 ∪ L3 ∪ L4  is a 4-interval group in L hence L is a S-4-
interval loop. 
 
Example 2.4.9:  Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 19}, *, 7} ∪ {[0, a] / a ∈ {e, 1, 2, …, 19}, *, 6} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 19}, *, 3} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
19}, *, 2} ∪ {[0, a] / a ∈ {e, 1, 2, …, 19}, *, 9} be a 5-interval 
loop. Clearly L is a S-5-interval loop.  
 
 Now using these examples we can have the following 
theorem which guarantees the existence of S-n-interval loops. 
 
THEOREM 2.4.2:  Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, 2, …, m1}, *, p1} ∪ {[0,a] | a ∈ {e, 1, 2, …, m2}, *,  p2} ∪ … 
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∪ {[0,a] | a∈ { e, 1, 2, …, mn}, *, pn} be a n-interval loop. L is a 
S-n-interval loop.  
 

The proof is direct for in each Li, Ai = {[0,e], [0,a]} is an 
interval subgroup.  

Hence the theorem follows.  
 

COROLLARY 2.4.1: If L = L1 ∪ L2 ∪ … ∪ Ln be a S-n-interval 
loop then every n-interval subloop of L is a S-n-interval subloop 
of L.  
 
Further we give examples of S-n-interval simple loops. 
 
Example 2.4.10: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈  
{e, 1, 2, …, 23}, *, 14} ∪ {[0, a] / a ∈ {e, 1, 2, …, 29}, *, 28} 
∪ {[0, a] / a ∈ {e, 1, 2, …, 31}, *, 17} ∪ {[0, a] / a ∈ {e, 1, 2, 
…, 37}, *, 19} be a 4-interval loop.  It can be easily verified 
that L has no S-4-interval normal subloops. Hence L is a 4-
interval S-simple loop.   
 

In view of this we have a theorem which establishes the 
existence of a class of n-interval S-simple loops. 
 
THEOREM 2.4.3: Let L = L1 ∪ L2  ∪ … ∪ Ln = {[0, a] / a ∈  
{e, 1, 2, …, m1}, *, p1} ∪ {[0, a] / a ∈ {e, 1, …, m2}, *, p2} 
∪…∪ {[0, a] / a ∈ {e, 1, …, mn}, *, pn} be an n-interval loop. L 
is a n-interval S-simple loop. 
 
 The proof is left as an exercise to the reader. Now we have 
seen a class of n-interval S-simple loops.  Now we will give 
an example of a Smarandache n-interval subgroup-loop. 
 
Example 2.4.11: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 =  
{[0, a] / a ∈ {e, 1, 2, …, 23}, *, 4} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
29}, *, 5} ∪ {[0, a] / a ∈ {e, 1, 2, …, 17}, *, 8} ∪ {[0, a] / a ∈ 
{e, 1, 2, …, 47}, *, 9} ∪ {[0, a] / a ∈ {e, 1, 2, …, 53}, *, 12} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 41}, *, 14} be a 6-interval loop. 
Clearly L is a 6-interval S-subgroup loop. 
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 Inview of this example we will now proceed onto give a 
theorem which gurantees the existence of n-interval S-subgroup 
loop. 
 
THEOREM 2.4.4: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, 2, …, p1}, *, m1} ∪ {[0, a] / a ∈ {e, 1, 2, …, p2}, *, m2} ∪ … 
∪ {[0, a] / a ∈ {e, 1, 2, …, pn}, *, mn} be a n-interval loop 
where p1, p2 , …, pn are n primes then L is a n-interval S-
subgroup loop.  
 
 The proof is straight forward and is left as an exercise for 
the reader to prove. 
 We will give an example of Smarandache Cauchy n-interval 
loop. 
 
Example 2.4.12: Let L = L1 ∪ L2 ∪ L3 ∪ … ∪  L6 = {[0, a] / a 
∈ {e, 1, 2, …, 25}, *, 7} ∪ {[0, a] / a ∈ {e, 1, 2, …, 37}, *, 11} 
∪ {[0, a] / a ∈ {e, 1, 2, …, 85}, *, 7} ∪ {[0, a] / a ∈ {e, 1, 2, 
…, 93}, *, 17} ∪ {[0, a] / a ∈ {e, 1, 2, …, 23}, *, 10} ∪ {[0, a] 
/ a ∈ {e, 1, 2, …, 43}, *, 27} be a 6-interval loop. Clearly L is a 
6-interval S-Cauchy loop. 
 
 Infact we have a class of n-interval S-Cauchy loops which is 
evident from the following theorem. 
 
THEOREM 2.4.5: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, 2, …, m1}, *, t1} ∪ {[0, a] / a ∈ {e, 1, 2, …, m2}, *, t2} ∪ … ∪ 
{[0, a] / a ∈ {e, 1, 2, …, mn}, *, tn}  be n-interval loop.  L is a n-
interval S-Cauchy loop. 
 
Proof:  Every loop Li in L is of even order.  Further |L| = |L1| … 
|Ln| = 2nM, where  
 

 M = 1 2 nL L L...
2 2 2

; 1 < i < n.   

 Since every interval loop Li is a S interval loop and 2 / |Li|; 
1 < i < n, we see every interval loop Li is a S-Cauchy interval 
loop, hence L is a n-interval S-Cauchy loop. 
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 Now we proceed onto describe by an example of a 4-n 
interval Lagrange loop. 
 
Example 2.4.13: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈ {e, 
1, 2, …, 23}, *, 14} ∪ {[0, a] / a ∈ {e, 1, 2, …, 29}, *, 14} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 37}, *, 14} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
43}, *, 14} be a 4-interval loop. Clearly L is a 4-interval 
Lagrange loop. 
 

 Since each Li is an interval loop of order a prime number 
plus one.  The only interval subgroups are of order 2, 1 < i < 4.  
Thus L is a 4-interval S-Lagrange loop. 
 
 Inview of this we have the following theorem which gives a 
class of S-n-interval Lagrange loop. 
 
THEOREM 2.4.6: Let G = G1 ∪ G2 ∪ … ∪ Gn = {[0, a] / a ∈ 
 {e, 1, 2, …, p1}, *, m1} ∪ {[0, a] / a ∈ {e, 1, 2, …, p2}, *, m2} ∪ 
… ∪ {[0, a] / a ∈ {e, 1, 2, …, pn}, *, mn} be n-interval loop 
where p1, …, pn are primes.  Then G is a S-n-interval Lagrange 
loop. 
 
 The proof is left as an exercise to the reader. 
 
THEOREM 2.4.7: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, 2, …, m1}, t1, *} ∪ {[0, a] / a ∈ {e, 1, 2, …, m2}, t2, *} ∪ … ∪ 
{[0, a] / a ∈ {e, 1, 2, …, mn}, tn, *} be a n-interval loop; m1, …, 
mn are non primes.  L is not a S-n-interval Lagrange loop but 
only a S-n-interval weakly Lagrange loop. 
 
 This proof is also direct and hence left as an exercise to the 
reader.  However we give examples of them. 
 
Example 2.4.14:  Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {[0, a] / a ∈ {e, 
1, 2, …, 15}, *, 2} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 8} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, 15}, *, 14} ∪ {[0, a] / a ∈ {e, 1, 2, …, 63}, 
*, 14} is a 4-interval loop, which can be easily checked to be a 
S-n-interval weakly Lagrange loop.   
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We next proceed onto show Smarandache strong n-interval 
p-Sylow loop by examples and give a theorem which gurantees 
the existence of such n-interval loops. 
 
Example 2.4.15: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈ {e, 
1, 2, …, 13}, *, 10} ∪ {[0, a] / a ∈ {e, 1, 2, …, 43}, *, 20} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 23}, *, 20} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
19}, *, 12} be a 4-interval loop. It is easily verified L is a 
Smarandache strong 4-interval 2-Sylow loop. 
 
 In this we observe each of the interval loops Li given in 
example 2.4.14 is of order a prime + 1, (pi+1).  Thus we have 
the following theorem which proves the existence of a class of 
n-interval loops which are Smarandache strong 2-Sylow n-
interval loops. 
 
THEOREM 2.4.8: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, 2, …, p1}, *, t1} ∪ {[0, a] / a ∈ {e, 1, 2, …, p2}, *, t2} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, p3}, *, t3} ∪ … ∪  {[0, a] / a ∈ {e, 1, 2, …, 
pn}, *, tn} be a n-interval loop where p1, p2, …, pn are primes. 
Then L is a Smarandache strong n-interval 2-Sylow loop. 
 
 Proof is direct and hence is left for the reader to prove [   ].  
It is pertinent to mention here that the interval loop Li in L can 
be many for varying ti and for the fixed pi.  Thus we get a class 

ipL ([0, a] (ti))  for every i, i = 1, 2, …, n.  Hence we have a 
class of n-interval loops which are Smarandache strong n-
interval 2-Sylow loops.  Now we will give examples of 
Smarandache commutative n-interval loops.  
 
Example 2.4.16: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 21}, *, 11} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 8} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 25}, *, 12} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
27}, *, 26} ∪ {[0, a] / a ∈ {e, 1, 2, …, 9}, *, 2} be a 5-interval 
loop. Clearly L is a Smarandache commutative 5-interval loop.  
 

We have a class of S-commutative n-interval loops. 
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THEOREM 2.4.9: Let L = L1 ∪ L2 ∪ L3 ∪ … ∪  Ln = {[0, a] / a 
∈ {e, 1, 2, …, m1}, *, t1} ∪ {[0, a] / a ∈ {e, 1, 2, …, m2}, *, t2} ∪ 
… ∪ {[0, a] / a ∈ {e, 1, 2, …, mn}, *, tn} be a n-interval loop.  L 
is a Smarandache commutative n-interval loop.   
 

The proof is direct [5]. 
 
Example 2.4.17: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 19}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 11}, *, 7} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 23}, *, 12} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
31}, *, 13} ∪ {[0, a] / a ∈ {e, 1, 2, …, 37}, *, 20} be a 5-
interval loop. It is easily verified that L is a Smarandache 
strongly commutative 5-interval loop.   

We now give a class of n-interval loops which are 
Smarandache strongly commutative n-interval loop.  We first 
observe the entries of the interval loops given in example 2.4.17 
is built using e and 

ipZ , pi are primes. 

 
THEOREM 2.4.10: Let L = L1 ∪ L2 ∪ L3 ∪ … ∪  Ln = {[0, a] / a 
∈ {e, 1, 2, …, p1}, *, m1} ∪ {[0, a] / a ∈ {e, 1, 2, …, p2}, *, m2} 
∪ … ∪ {[0, a] / a ∈ {e, 1, 2, …, pn}, *, mn} be a n-interval loop, 
where p1, p2, …, pn are primes. L is a Smarandache strongly 
commutative n-interval loop.   
 

The proof  easily follows from the result [5, 11-2].    

Now we give examples of S-strongly n-cyclic loop. 
 
Example 2.4.18: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 19}, *, 3} ∪ {[0, a] / a ∈ {e, 1, 2, …, 23}, *, 4} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 29}, *, 3} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
31}, *, 4} ∪ {[0, a] / a ∈ {e, 1, 2, …, 37}, *, 3} be a 5-interval 
loop. Clearly L is a Smarandache strong 5-interval cyclic loop. 
All the loops are built using 

ipZ  ∪ {e}, pi’s are prime,  
1 < i < 4.   

We will illustrate this situation by a theorem.  This theorem 
will prove the existence of a class of n-interval loops which are 
Smarandache strongly cyclic. 
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THEOREM 2.4.11: Let L = L1 ∪ L2 ∪ L3 ∪ … ∪  Ln = {[0, a] / a 
∈ {

1pZ ∪ {e}}, *, t1}  ∪ {[0, a] / a ∈ {
2pZ ∪ {e}}, *, t2} ∪ … ∪ 

{[0, a] / a ∈ {
npZ ∪ {e}}, *, tn} be a n-interval loop.  L is a 

Smarandache strongly cyclic n-interval loop.   
 

 
For proof refer [5]. 
 Now we can derive most of the results which are true for 
interval biloops in case of n-interval loops like S-right nucleus, 
S-left nucleus, S-center, S-Moufang center and so on. 
 We will give examples of n-interval loops in which 
Smarandache first normalizer is equal to Smarandache second 
normalizer in S-n-interval subloop. 
 
Example 2.4.19: Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {[0, a] / a ∈ {e, 
1, 2, …, 9}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 25}, *, 7} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, 49}, *, 9} ∪ {[0, a] / a ∈ {e, 1, 2, …, 121}, 
*, 3} be a 4-interval loop. Clearly if we take H = H1 ∪ H2 ∪ H3 
∪ H4  = {[0, a] / a ∈ {e, 1, 4, 7}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 6, 
11, 16, 21}, *, 7} ∪ {[0, a] / a ∈ {e, 1, 8, 19, 40}, *, 9} ∪  
{[0, a] / a ∈ {e, 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111}, *, 
3} ⊆ L1 ∪ L2 ∪ L3 ∪ L4 is a 4-interval S-subloop of L.  
 

 We see SN1 (H) = SN2(H) that is SN1(H1(3)) ∪  
SN1(H1 (5)) ∪ SN1 (H1 (7)) ∪ SN1 (H1 (11)) = SN2 (H1 (3)) ∪ 
SN2(H1 (5)) ∪ SN2 (H1 (7)) ∪ SN2 (H1 (11). 
 

 In view of this we have the following theorem.  
 
THEOREM 2.4.12: Let L = L1 ∪ L2 ∪ L3 ∪ … ∪  Ln = {[0, a] / 
a ∈ {e, 1, 2, …, m1}, *, p1} ∪ {[0, a] / a ∈ {e, 1, 2, …, m2}, *, 
p2} ∪ … ∪ {[0, a] / a ∈ {e, 1, 2, …, mn}, *, pn} be a n-interval 
loop.  Suppose H = 1

iH (t1) ∪ 2
iH  (t2) ∪ … ∪ n

iH  (tn) ⊆ L1 ∪ 
L2 ∪ … ∪ Ln be a S-subloop of L; SN1 (H) = SN2 (H) if and only 
if ( 2

im  - mi + 1, ti) = (2mi – i, ti) for every i, i = 1, 2, …, n. 
 
For analogous proof refer [5, 11-2]. 
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Example 2.4.20: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 7}, *, 4} ∪ {[0, a] / a ∈ {e, 1, 2, …, 13}, *, 4} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 19}, *, 14} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
23}, *, 20} be a 4-interval loop. Clearly SN (L) = {[0, e] ∪ [0, 
e] ∪ [0, e] ∪ [0, e]}.   

In view of this we have the following theorem.  We first 
make a small observation each Li is built using Zp, p a prime viz 
in this; example 2.4.20, 7, 13, 19 and 23 are primes, so that S(L) 
is the identity. 
  
THEOREM 2.4.13: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, 2, …, p1}, *, t1} ∪ {[0, a] / a ∈ {e, 1, 2, …, p2}, *, t2} ∪ … ∪ 
{[0, a] / a ∈ {e, 1, 2, …, pn}, *, tn} be a n-interval loop.  pi’s are 
primes, 1 < i < n.  We see SN (L) = [0, e] ∪ … ∪ [0, e] (Infact 
we get a class of n-interval loop {L} = {L1} ∪ … ∪ {Ln} as Li 
can be constructed using any ti; 1 < ti < pi , i=1, 2, …, n). 
 
Proof:  Given p1,…, pn are prime.  Hence L has no S-n- interval 
subloop but L is a S-n-interval loop. 
 Hence N (L) = {[0, e] ∪ … ∪ [0, e]} further we know  
SN (L) = N (L).  Hence we have used analogous results for 
interval loops. SN (L) = [0, e] ∪ [0, e] ∪ … ∪ [0, e].  
 
Example 2.4.21: Let L = L1 ∪ L2 ∪ L3  = {[0, a] / a ∈ {e, 1, 2, 
…, 23}, *, 14} ∪ {[0, a] / a ∈ {e, 1, 2, …, 19}, *, 11} ∪ {[0, a] 
/ a ∈ {e, 1, 2, …, 13}, *, 10} be a 3-interval loop.  It is easily 
verified S-Moufang centre of L is either [0, e] ∪ [0, e] ∪ [0, e] 
or L = L1 ∪ L2 ∪ L3.   
 

We have the following theorem. 
 

THEOREM 2.4.14: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, 2, …, p1}, *, t1} ∪ {[0, a] / a ∈ {e, 1, 2, …, p2}, *, t2} ∪ … ∪ 
{[0, a] / a ∈ {e, 1, 2, …, pn}, *, tn} be a n-interval loop where p1, 
p2, …, pn are primes.  Then S-Moufang n-center of L is {[0, e] ∪ 
[0, e] ∪ … ∪ [0, e]} or L1 ∪ L2 ∪ … ∪ Ln.  
 
 For analogous proof refer [5]. 
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THEOREM 2.4.15: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a 
∈ {e, 1, 2, …, p1}, *, t1} ∪ {[0, a] / a ∈ {e, 1, 2, …, p2}, *, t2} ∪ 
… ∪ {[0, a] / a ∈ {e, 1, 2, …, pn}, *, tn} be a n-interval loop 
where p1, …, pn are n primes.  NZ (L) = Z (L) = {[0, e], [0, e], 
…, [0, e]}. 
 

The proof is direct and hence left as an exercise to the 
interested reader. 

All other properties enlisted in interval biloops can be 
analogously obtained for n-interval loops.  It is left as an 
exercise to the reader. 

Now we proceed onto define and describe quasi n-interval 
loops. 
 
DEFINITION 2.4.2: Let L = L1 ∪ L2 ∪ … ∪ Ln where some Li’s 
are interval loops and the rest are just loops. L inherits the 
operations from each Li; 1 < i < n, denoted by ‘.’, (L, .) is 
defined as the quasi n-interval loop. 
 
 We will illustrate this situation by some examples. 
 
Example 2.4.22: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {L9 (8)} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 11}, *, 7} ∪ {L11 (3)} ∪ {[0, a] / a ∈ 
{e, 1, 2, …, 13}, *, 9} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 8} be 
a quasi 5-interval loop.  Suppose x = {6 ∪ [0, 10] ∪ 7 ∪ [0, 8] 
∪ [0, 12]}, y = {2 ∪ [0, 7] ∪ 3 ∪ [0, 5] ∪ [0, 10]} are in L.  
 
x.y  =  (6 * 2) ∪ [(0, 10] * [0, 7]) ∪ (7 * 3) ∪ ([0, 8] * [0, 5]) 
  ∪ ([0, 12] * [0, 10]) 

= (16-42 (mod 9) ∪ {[0, 49-60 (mod 11)]} ∪ {9 – 7 ×  
  2(mod 11)} ∪ {[0, 45-64 (mod 13)} ∪  
  {[0, 80-84 (mod 15)]}. 
 =  {1} ∪ {[0, 0]} ∪ {6} ∪ {[0, 3]} ∪ {[0, 11]} ∈ L. 
  
Thus L is a quasi 5-interval loop.  
 
Example 2.4.23: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {L23 (7)} ∪  
{[0, a] / a ∈ {e, 1, 2, …, 23}, *, 20} ∪ {L19 (6)} ∪ {[0, a] / a ∈ 
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{e, 1, 2, …, 19}, *, 12} be a quasi 4-interval loop of order  
242 202. 
 

 Clearly L is non commutative.  Now we can define 
substructure in quasi n-interval loop, this task is left as an 
exercise to the reader.  However we will provide this by some 
simple examples. 
 
Example 2.4.24: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 15}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 14} ∪ 
L15 (2) ∪ {[0, a] / a ∈ {e, 1, 2, …, 21}, *, 11} ∪ L21 (5) be a 
quasi 5-interval loop.  Consider H = H1 ∪ H2 ∪H3 ∪ H4 ∪ H5 = 
{[0, a] / a ∈ {e, 1, 6, 11}, *, 8} ∪ {[0, a] / a ∈ {e, 2, 7, 12}, *, 
14} ∪  {[0, a] / a ∈ {e, 1, 4, 7, 10, 13}, *, 2} ∪ {[0, a] / a ∈  
{e, 1, 8, 15}, *, 11} ∪ {{e, 1, 4, 7, 10, 13, 16, 19}, *, 5} ⊆ L1 ∪ 
L2 ∪ L3 ∪ L4 ∪ L5 is a quasi 5-interval subloop of L. 
 
Example 2.4.25: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {L49 (10)} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, 49}, *, 12} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
121}, *, 4} ∪ {L121 (8)} be a quasi 4-interval loop.  Consider H 
= H1 ∪ H2 ∪ H3 ∪ H4 = {{e, 1, 8, 15, 22, 29, 36, 43}, *, 10} ∪ 
{[0, a] / a ∈ {e, 2, 9, 16, 23, 30, 37, 44}, *, 12} ∪ {[0, a] / a ∈ 
{e, 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111}, *, 4} ∪ {{e, 3, 
14, 25, 36, 47, 58, 69, 80, 91, 102, 113}, *, 8} ⊆ L1 ∪ L2 ∪ L3 
∪ L4 is a quasi 4-interval subloop of L.  
 

We say a quasi n-interval loop is a Smarandache quasi n-
interval loop (S-quasi n-interval loop) if L has a proper subset A 
= A1 ∪ A2 ∪ … ∪ An ⊆ L1 ∪ L2 ∪ … ∪ Ln such that A is a 
quasi n-interval group with respect to the operations on L.   

We will illustrate first this by some examples. 
 
Example 2.4.26: Let L =  L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a 
∈ {e, 1, 2, …, 29}, *, 8} ∪ L19 (8) ∪ {[0, a] / a ∈ {e, 1, 2, …, 
17}, *, 3} ∪ L23 (9) ∪ {[0, a] / a ∈ {e, 1, 2, …, 143}, *, 15} be 
a quasi 5-interval loop. H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 = {[0, e], 
[0, 7], *, 8} ∪ {e, 12, *} ∪ {[0, e], [0, 10], *, 3} ∪ {e, 15, *, 9} 
∪ {[0, e] [0, 141], *, 15} ⊆ L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 is a S-quasi 
5-interval loop, as H is a S-quasi 5-interval group. 
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Example 2.4.27: Let L =  L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 = {[0, 
a] / a ∈ {e, 1, 2, …, 47}, *, 10} ∪ L53 (2) ∪ L61 (5) ∪ {[0, a] / a 
∈ {e, 1, 2, …, 79}, *, 14} ∪ L19 (3) ∪ {[0, a] / a ∈ {e, 1, 2, …, 
101}, *, 42} be a quasi 6-interval loop. H = H1 ∪ H2 ∪ … ∪ H6  
= {[0, 1], [0, 46], *, 10} ∪ {e, 38, *, 2} ∪ {e, 48, *, 5} ∪ {[0, 
e], [0, 77], *, 14} ∪ {[e, 8, * 3} ∪ {[0, e] [0, 98], *, 42} ⊆ L1 ∪ 
L2 ∪ … ∪ L6 is a quasi 6-interval group hence L is a S-quasi 6-
interval loop. 
 

 Now having seen examples of S-quasi n-interval loops we 
now proceed onto give a class of S-quasi n-interval loops.  
 
THEOREM 2.4.16:  Let L = L1 ∪ L2 ∪ … ∪ Ln = 

1mL  (t1) ∪ {[0, 
a] / a ∈ {e, 1, 2, …, m2}, *, t2} ∪ {

3mL  (t3)} ∪ {
4mL  (t4)} ∪ … ∪ 

{[0, a] / a ∈ {e, 1, 2, …, mn}, *, tn} be a quasi n-interval loop.  L 
is a S-quasi n-interval loop. 
 

 Infact we get of class of such loops using m1, m2, …, mn 
and appropriately varying t1, …, tn in m1, m2, …, mn 
respectively.  
 

 The proof is easy and hence is left as an exercise to the 
reader. 
 
Example 2.4.28: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {L9 (5)} ∪ 
{L15 (8)} ∪ {L17 (3)} ∪ {[0, a] / a ∈ {e, 1, 2, …, 11}, *, 4} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 19}, *, 8} be a quasi 5-interval loop.  
We see A (L) = L. 
 

 For more refer [5]. 
 

 Inview of this we have the following theorem which gives a 
class of loops {L} such that for each L in {L} are have  
A (L) = L. 
 
THEOREM 2.4.17: {L} = {

1mL } ∪ {
2mL } ∪ {{[0, a] / a ∈ {e, 1, 

…, mi}, *, ti; 1 < ti < mi}} ∪ … ∪ {
+i rmL } ∪ … ∪ {{[0, a] / a ∈ 

{e, 1, 2, …, mn}, *, tn; 1 < tn < mn}} be a class of quasi n-
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interval loops.  Every quasi n-interval loop L in {L} is such that 
A (L) = L. 
 

 Proof follows from the fact that every loop Li in L is such 
that A (Li) = Li where Li is an interval loop or other wise. 
 
Example 2.4.29: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {L9 (5)} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 11}, *, 6} ∪ {L13 (7)} ∪ {[0, a] / a ∈ 
{e, 1, 2, …, 21}, *, 11} ∪ L43 (22) be a quasi 5-interval loop. 
 

 We have the following theorem which guarantees the 
existence of quasi n-interval loop. 
 
THEOREM 2.4.18: Let L = L1 ∪ L2 ∪ … ∪ Ln =  

{
1mL  +⎛ ⎞
⎜ ⎟
⎝ ⎠

1m 1
2

} ∪ {
2mL  +⎛ ⎞
⎜ ⎟
⎝ ⎠

2m 1
2

} ∪ … ∪ {{[0, a] / a ∈ {e, 1, 

…, mi}, *, +⎛ ⎞
⎜ ⎟
⎝ ⎠

im 1
2

} ∪ … ∪ {
nmL   +⎛ ⎞

⎜ ⎟
⎝ ⎠

nm 1
2

}  be a quasi n-

interval loop.  L is a commutative quasi n-interval loop. 
 
Example 2.4.30: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {L11 (3)} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 19}, *, 3} ∪ L17 (8) ∪  {[0, a] / a ∈ {e, 
1, 2, …, 29}, *, 24} ∪ L43 (8) be a quasi 5-interval loop.  L has 
quasi 5-interval subloops.  L is a Smarandache 5-interval 
subgroup loop. 
 
THEOREM 2.4.19: Let L = L1 ∪ L2 ∪ … ∪ Ln = {

1pL (m1)} ∪ 

{[0, a] / a ∈ {e, 1, 2, …, p2}, *, m2} ∪  {
3pL (m3)} ∪ {[0, a] / a 

∈ {e, 1, 2, …, p4}, *, m4} ∪ {[0, a] / a ∈ {e, 1, 2, …, p5}, *, m5} 
∪ … ∪ {

npL  (mn)} be a quasi n-interval loop.  L is a S-quasi n-
interval subgroup loop.  
 
Example 2.4.31: Let L = L1 ∪ L2 ∪ L3  = {L7 (3)} ∪ {[0, a] / a 
∈ {e, 1, 2, …, 15}, *, 8} ∪ L25 (8) be a quasi 3-interval loop.  It 
is easily verified L is a S-quasi 3-interval simple loop. (quasi 3-
interval S-simple loop).   

In view of this example we have the following theorem. 
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THEOREM 2.4.20: Let L = L1 ∪ L2 ∪ … ∪ Ln = {

1mL  (t1)}  ∪ 

{[0, a] / a ∈ {e, 1, 2, …, m2}, t2, *} ∪ … ∪ {
nmL  (tn)} be a quasi 

n-interval loop.  L is a S-quasi n-interval simple loop (quasi n-
interval S-simple loop). 
 

 Proof is obvious. 
 
Example 2.4.32: Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {L9 (5)} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, 17}, *, 4} ∪ {L15 (14)} ∪ L29 (3) be a quasi 
4 interval loop.  L is a S-quasi 4-interval Cauchy loop (quasi 4-
interval S-Cauchy loop). 
 

 In view of this we have the following theorem. 
 
THEOREM 2.4.21:  Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ 
{e, 1, …, m1}, *, t1} ∪ {

2mL  (t2)} ∪ {
3mL  (t3)} ∪ … ∪ {[0, a] / a 

∈ {e, 1, 2, …, mn-1}, *, tn-1}  ∪ 
nmL  (tn) be a quasi n-interval 

loop.  L is a S-Cauchy quasi n-interval loop. 
 

Proof  follows from the fact order of each Li is of even order 
and 2n/|L|.  Infact we get a class of such loops for appropriate t1, 
…, tn.    
 
Example 2.4.33: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] /  
a ∈ {e, 1, …, 19}, *, 8} ∪ L11 (9) ∪ L12 (7) ∪ {[0, a] / a ∈  
{e, 1, …, 23}, *, 12} ∪ L43 (2) be a quasi 5-interval loop.  L is  
a Smarandache Lagrange quasi 5-interval loop. 
 
Example 2.4.34: Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {L15 (8)} ∪ {[0, 
a] / a ∈ {e, 1, …, 25}, *, 7} ∪ L49 (9) ∪ {[0, a] / a ∈ {e, 1, …, 
21}, *, 5} be a quasi 4-interval loop.  Clearly L is a 
Smarandache weakly Lagrange quasi 4-interval loop. 
 

 In view of these examples we have a class of S-weakly 
Lagrange quasi n-interval loops and S-Lagrange n-interval loop. 
 
THEOREM 2.4.22: Let L = L1 ∪ L2 ∪ … ∪ Ln = {[0, a] / a ∈ {e, 
1, …, p1}, *, t1} ∪ {

2pL  (t2)} ∪ {
3pL  (t3)} ∪ … ∪ {[0, a] / a ∈ 
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{e, 1, 2, …, pn-1}, *, tn-1}  ∪ 
npL  (tn) be a quasi n-interval loop, 

here p1, p2, …, pn are n primes. L is a S-Lagrange quasi interval 
loop.   

Proof  is direct hence left as an exercise to the reader. 
 
THEOREM 2.4.23: Let L = L1 ∪ L2 ∪ … ∪ Ln = 

1mL  (t1) ∪  
{[0, a] / a ∈ {e, 1, …, m2}, *, t2} ∪ {

3mL  (t3)} ∪ … ∪  {[0, a] / a 
∈ {e, 1, 2, …, mn}, *, tn} be a quasi n-interval loop where m1, 
m2, …, mn are not primes. Then L is only a S-weakly Lagrange 
quasi n-interval loop. 
 
Example 2.4.35: Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {L19 (8)} ∪ {[0, 
a] / a ∈ {e, 1, …, 11}, *, 3} ∪ L13 (9) ∪ {[0, a] / a ∈ {e, 1, …, 
43}, *, 29} be a quasi 4-interval loop.  Clearly L is a 
Smarandache strong quasi 4-interval 2-Sylow loop.   

In view of this we have the following theorem the proof of 
which is easy.  Only one thing to observe from example 2.4.35 
is that all the Zi’s used are prime fields of characteristic 19, 11, 
13 and 29.  Keeping this in mind we state the theorem. 
 
THEOREM 2.4.24: Let L = L1 ∪ L2 ∪ … ∪ Ln = {

1pL (m1)} ∪ 
{[0, a] / a ∈ {e, 1, …, p2}, *, m2} ∪ {

3pL  (m3)} ∪ … ∪ {[0, a] / 
a ∈ {e, 1, 2, …, pn}, *, mn} be a quasi n-interval loop where p1, 
p2, …, pn are  primes.  L is a Smarandache strongly quasi n-
interval commutative loop. 
 

 It is verified L mentioned in the above theorem is also a 
Smarandache strongly quasi n-interval cyclic loop. 
 

 Several other results obtained in case of n-interval loops can 
also be derived for quasi n-intervals.  This task is left to the 
reader. 
 

 Now we proceed onto define n-interval loop - group. 
 
DEFINITION 2.4.3: Let L = L1 ∪ L2 ∪ … ∪ Ln be such that some 
Li’s are interval groups and rest are interval loops. L inherits 
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the operations from Li.(1 < i < n).  L is a n-interval group - 
loop.     

We will first illustrate this situation by some examples. 
 
Example 2.4.36: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈ Z28, 
+} ∪{[0, a] / a ∈ {e, 1, …, 47}, *, 9} ∪{[0, a] / a ∈ Z19 \ {0}, × 
} ∪{[0, a] / a ∈ {e, 1, …, 43}, *, 7} be a 4-interval group-loop. 
 
Example 2.4.37: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
Z10, +} ∪{[0, a] / a ∈ Z11 \ {0}, ×} ∪ {[0, a] / a ∈ Z27, +} ∪ {[0, 
a] / a ∈ {e, 1, 2, …, 13}, *, 7} ∪ {[0, a] / a ∈ {e, 1, 2, …, 27}, 
*, 11} be a 5-interval group-loop. 
 

 We cannot talk of any of the usual properties studied for 
non associative structures.  The only thing we can analyse is 
about substructures and Lagrange theorem, Cauchy element and 
Sylow theorems. 
 

 We will just give examples of substructures.  
 
Example 2.4.38: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
Z40, +} ∪{[0, a] / a ∈ Z11 \ {0}, ×} ∪ {[0, a] / a ∈ {e, 1, 2, …, 
15}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 25}, *, 12} ∪ {[0, a] / a ∈ 
Z24, +} be a 5-interval group-loop. 
 

 Consider H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 = {[0, a] / a ∈ {0, 
4, 8, 12, 16, …, 36}, +} ∪ {[0, 1] [0, 11], ×} ∪ {[0, a] / a ∈ {e, 
1, 6, 11}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 6, 11, 16, 21}, *, 12} ∪ 
{[0, a] / a ∈ {0, 3, 6, 9, 12, 15, 18, 21}, +} ⊆ L1 ∪ L2 ∪ L3 ∪ L4 
∪ L5 is a 5-interval subgroup - subloop of L. 
 

 If L has no n-interval normal subgroup - normal subloop 
then we call L to be a n-interval S-simple group-loop. 
 
Example 2.4.39: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
Z11, +} ∪{[0, a] / a ∈ {e, 1, 2, …, 11}, *, 7} ∪ {[0, a] / a ∈ {e, 
1, 2, …, 13}, *, 8} ∪ {[0, a] / a ∈ Z17, +} ∪ {[0, a] / a ∈ {e, 1, 
2, …, 23}, *, 18} be a 5-interval loop-group. 
 

 Clearly L is a 5-interval S-simple loop-group or S-simple 5 
interval loop - group. 
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 For we know very well the notion of Smarandache simple in 
case of group has no meaning. 
 
Example 2.4.40: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
Z23 \ {0}, ×} ∪ {[0, a] / a ∈ Z47 \ {0}, ×} ∪  {[0, a] / a ∈  
{e, 1, 2, …, 21}, *, 11} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 8} ∪ 
{[0, a] / a ∈ Z37 \ {0}, ×} be a 5-interval group - loop. Every 
element in L is a Cauchy element. 
 

 For o (L) = |L1| |L2| |L3| |L4| |L5| 
   = 22 × 46 × 22 × 16 × 36. 
 

 In general we have Cauchy theorem to be true in case of n-
interval loop-group for the special class of interval loops. 
 
THEOREM 2.4.25: Let L = L1 ∪ L2 ∪ … ∪ Ln  be a n-interval 
loop - group where some Li are interval groups and the rest of 
the Lj′s are interval loops of the form {[0, a] / a ∈ {e, 1, …, mi}, 
ti, *}.  Then every element in L is a Cauchy element. 
 

 Proof is straight forward as every element in these type of 
interval loops are of order two and every interval loop of this 
type is of even order. 
 
Example 2.4.41: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] /  
a ∈ Z46, +} ∪ {[0, a] / a ∈ {e, 1, 2, …, 25}, *, 12} ∪ {[0, a] / a 
∈ Z13 \ {0}, ×} ∪  {[0, a] / a ∈ {e, 1, 2, …, 15}, 8, ×} ∪ {[0, a] / 
a ∈ Z20, +} be a 5-interval group - loop. Clearly L is a only S-
weakly 5-interval group-loop. 
 
Example 2.4.42: Let L = L1 ∪ L2 ∪ L3 be a 3-interval group-
loop where L1 = {[0, a] / a ∈ {e, 1, 2, …, 19, *, 14}, L2 = {[0, a] 
/ a ∈ Z24, +} and L3 = {[0, a] / a ∈ Z23 \ {0}, ×}.  It is easily 
verified that L is a S-Lagrange 3-interval group-loop.   

When we say S-Lagrange the Smarandache qualifies only 
the loop and not the group as for groups Smarandache has no 
relevance.   

We will now illustrate by some theorems which gurantees 
such n-interval group-loops. 
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THEOREM 2.4.26:  Let L = L1 ∪ L2 ∪ … ∪ Ln where some Li’s 
are interval groups of finite order and the rest of the Lj’s are 
interval loops of the form {[0, a] / a ∈ {e, 1, 2, …, mj}, *, tj} and 
(mj’s are non prime odd numbers greater than three) be a n-
interval group-loop.  L is a Smarandache weakly Lagrange n-
interval loop-group. 
 

 The proof is direct and easy and hence is left as an exercise 
for the reader to prove. 
 
THEOREM 2.4.27: Let L = L1 ∪ L2 ∪ … ∪ Ln, where some Li’s 
are interval groups of finite order and the rest of the Lj’s are 
interval loops of the form {[0, a] / a ∈ {e, 1, 2, …, pj}, tj, *,  
1 < tj < pj}, pj’s are prime.  L is a n-interval group-loop and L is 
a Smarandache Lagrange n-interval loop - group. 
 

 Proof is direct hence left as an exercise. 
 

 We cannot prove p-Sylow theorems for n-interval group-
loops.  However only special p-Sylow theorems can be derived 
for these n-interval group-loops.  
 
Example 2.4.43:  Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {[0, a] / a ∈ Z24, 
+} ∪ {[0, a] / a ∈ {e, 1, 2, …, 19}, *, 12} ∪ {[0, a] / a ∈ {e, 1, 
2, …, 13}, *, 10} ∪ {[0, a] / a ∈ Z19 \ {0}, ×} be a 4-interval 
group-loop.  Clearly L is a 4-interval Smarandache 2-Sylow 
loop-group. 
 

 In view of this we have the following theorem. 
 
THEOREM 2.4.28: Let L = L1 ∪ L2 ∪ … ∪ Ln be a n-interval 
group - loop where some Li’s are interval groups of finite order 
and the rest are interval loops of the form {[0, a] / a ∈ {e, 1, 2, 
…, p} / *, ti, 1 < ti < p}, p a prime.  L is a Smarandache strong 
2-Sylow interval loop-group.    

Automatically interval groups are of finite order hence will 
be Sylow but the interval loops of only this type is a 
Smarandache strong 2-Sylow loops.   
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Similar results proved for n-interval loop can also be easily 
extended in case of n-interval loop-group.  We see however all 
results cannot be extended for general interval loops.   

Now having seen this type of n-interval loop-group we will 
now proceed onto define n-interval loop - semigroup.  
 
DEFINITION 2.4.4: Let L = L1 ∪ L2 ∪ … ∪ Ln be such that some 
Li’s are interval semigroups and the rest interval loops.  The 
operation on L is inherited from each Li, 1 < i < n, L will be 
defined as n-interval loop-semigroup or n-interval semigroup-
loop. 
 

 We will illustrate this situation by some example. 
 
Example 2.4.44: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
Z24, ×} ∪ {[0, a] / a ∈ {e, 1, 2, …, 25}, *, 8} ∪ {[0, a] / a ∈ Z12, 
×} ∪ {[0, a] / a ∈ {e, 1, 2, …, 27}, *, 11} ∪ {[0, a] / a ∈ Z40, ×} 
be a 5-interval semigroup-loop of finite order o (L) = |L1| |L2| 
|L3| |L4|  |L5| = 24.25.12.27.40.  Clearly L is non commutative. 
 
Example 2.4.45: Let L = L1 ∪ L2 ∪ L3 = { S (X) /  X = {([0, a1] 
[0, a2] [0, a3] [0, a4]) ∪ {[0, a] / a ∈ Z14, ×} ∪ {[0, a] / a ∈ Z42, 
×} be a 3-interval loop semigroup of finite order and L is non 
commutative.  Now o (L) = 44.14.42. 
 

 Now as only one of the structure is associative and other is 
non associative we cannot proceed to arrive results for non 
associative structure.  
 

 We can define substructures, this task is left as an exercise. 
 
Example 2.4.46:Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {[0, a] / a ∈ {e, 
1, 2, …, 15}, *, 8} ∪ {[0, a] / a ∈ Z24, ×} ∪ {[0, a] / a ∈ {e, 1, 
2, …, 25}, *, 12} ∪ {[0, a] / a ∈ Z40, ×} be a 4-interval loop 
semigroup.  Consider H = H1 ∪ H2 ∪ H3 ∪ H4 = {[0, a] / a ∈  
{e, 1, 4, 7, 10, 13}, *, 8} ∪ {[0, a] / a ∈ {0, 2, 4, …, 22} ⊆ Z24, 
×} ∪ {[0, a] / a ∈ {e, 1, 6, 11, 16, 21}, *, 12} ∪ {[0, a] / a ∈ {0, 
10, 20, 30}, ×} be the 4-interval subloop - subsemigroup of L. 
  



 155

Example 2.4.47: Let S = S1 ∪ S2 ∪ S3 = {[0, a] / a ∈ Z27, ×} ∪ 
{[0, a] / a ∈ Z+ ∪ {0}, ×} ∪ {[0, a] / a ∈ {e, 1, 2, …, 11}, *, 4}  
be 3-interval loop-semigroup.  Clearly S is of infinite order, but 
S-commutative and has 3-interval subloop-subsemigroup of 
only infinite order.  Except when the subsemigroup of S2 is 
taken as {0, 1} under product.  Thus S has only one finite 3-
interval subloop - subsemigroup, but infinite number of infinite 
3 interval subloop - subsemigroup.  One more observation is 
infact the interval subloop is an interval group  only. 
 

 Other properties like zero divisors, etc associated with 
interval semigroup cannot be studied as interval loops do not 
have such properties associated with it. 
 

 Next we proceed onto study describe and define n-interval 
loop-groupoid. 
 

 Let G = G1 ∪ G2 ∪ … ∪ Gn be a n interval in which some 
Gi’s are interval loops and the rest are interval groupoids.  G 
inherits operations of every Gi done component wise denoted by 
‘.’ (G, .) is defined as the n-interval loop-groupoid. 
 

 It is nice to observe that both the algebraic structures are 
non associative hence they have several common properties 
enjoyed by them which will be discussed.  We will illustrate this 
situation by some examples. 
 
Example 2.4.48: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6 be a 
6-interval loop groupoid where G1 = {[0, a] / a ∈ Z7, *, (3, 2)},  
G2 = {[0, a] / a ∈ {e, 1, 2, …, 7}, *, 4} G3 = {[0, a] / a ∈ Z12, *, 
(3, 7)}, G4 = {[0, a] / a ∈ {e, 1, 2, …, 19}, *, 10},  G5 = {[0, a] / 
a ∈ Z18, *, (0, 7)} and G6 = {[0, a] / a ∈ {e, 1, 2, …, 23}, *, 7}.  
Clearly G is of finite order.  |G| = |G1| |G2| … |G6| 
= 7 × 8 × 12 × 20 × 18 × 24. 
 
Example 2.4.49: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {[0, a] / a ∈ Z25, 
*, (7, 0)} ∪ {[0, a] / a ∈ {e, 1, 2, …, 101}, *, 6} ∪ {[0, a] / a ∈ 
Z32, *} ∪  {[0, a] / a ∈ {e, 1, 2, …, 43}, *, 7} be a 4-interval 
loop-groupoid of finite order which is clearly non commutative.   
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Now having seen examples of n interval loop-groupoids we 
now leave the task of defining substructures to the reader, but 
we give some examples of substructures in them.  
 
Example 2.4.50: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
{e, 1, 2, …, 15}, *, 8} ∪ {[0, a] / a ∈ {e, 1, 2, …, 25}, *, 9} ∪ 
{[0, a] / a ∈ {e, 1, 2, …, 21}, *, 11} ∪ {[0, a] / a ∈ {0, 2, 4, 6, 
8, 10}, *, (3, 0)} ∪ {[0, a] / a ∈ {e, 3, 6, 9, 12}, *, (0, 2)} ⊆ L1 
∪ L2 ∪ L3 ∪ L4 ∪ L5.  H is a 5-interval subgroupoid subloop.  
Both L and H are non commutative and is of finite order. 
 

Example 2.4.51: Let L = L1 ∪ L2 ∪ L3 ∪ L4  = {[0, a] / a ∈ Z7, 
+}  ∪ {[0, a] / a ∈ {e, 1, 2, …, 11}, *, 10} ∪ {[0, a] / a ∈ Z13, 
+} ∪ {[0, a] / a ∈ {e, 1, 2, …, 17}, *, 12} be a 4-interval 
groupoid-loop.  

L has no 4-interval subgroupoid-subloop.  Thus L is a 
simple 4-interval groupoid-loop.   

Now we will study some of the special identities satisfied n-
interval groupoid-loops for this we need to know about 
Smarandache n-interval groupoid-loops. 
We will call a n-interval groupoid-loop G = G1 ∪ G2 ∪ … ∪ Gn 
to be Smarandache n-interval groupoid - loop if G contains a n-
interval group-semigroup.  It is interesting to note that in 
general all n-interval loop-groupoids are not Smarandache n-
interval loop-groupoids. 
 

We will illustrate this situation by some examples. 
 

Example 2.4.52: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ {e, 
1, 2, …, 11}, *, 4} ∪ {[0, a] / a ∈ {e, 1, 2, …, 13}, *, 5} ∪ {[0, 
a] / a ∈ Z12, *, (2, 0)} ∪ {[0, a] / a ∈ {e, 1, 2, …, 17}, *, 10} be 
a 4-interval loop-groupoid. G is a Smarandache 4-interval loop-
groupoid.  
 
Example 2.4.53: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ 
Z15, *, (3, 6)} ∪ {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 8} ∪ {[0, a] / a 
∈ {e, 1, 2, …, 17}, *, 3} ∪ {[0, a] / a ∈ {e, 1, 2, …, 25}, *, 9} 
∪ {[0, a] / a ∈ Z12, *, (2, 1) } be a 5-interval loop-groupoid.  
Clearly L is a Smarandache 5-interval loop-groupoid.   
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Now having seen examples of S-n-interval loop-groupoid 
interested reader can construct examples of n-interval loop-
groupoids which satisfies special identities.  
 
Example 2.4.54: Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5=  {[0, a] / a ∈ 
{e, 1, 2, …, 41}, *, 20} ∪ {[0, a] / a ∈ {e, 1, 2, …, 43}, *, 38} 
∪ {[0, a] / a ∈ {e, 1, 2, …, 29}, *, 14} ∪ {[0, a] / a ∈ Z25, *, (3, 
0)} ∪ {[0, a] / a ∈ Z30, *, (4, 7)} be a n-interval groupoid-loop.  
L is not S-5-interval Bol groupoid - loop.  L is also not a 
Smarandache 5-interval Moufang loop-groupoid.  
 
 
2.5 n-Interval Mixed Algebraic Structures 

 
In this section we define the new notion of n-interval  mixed 

algebraic structures and describe a few properties associated 
with them.  These structures are so unique that they are mixture 
of associative and non associative algebraic structures. 
 
DEFINITION 2.5.1: Let M = M1 ∪ M2 ∪ … ∪ Mn be a  
n-interval set, where some Mi’s are interval loops, some Mj’s 
are interval groupoids, some Mk’s are interval groups and the 
rest are interval semigroups (1 < i, j, k < n); M  obtains the 
operation ‘.’ which is  the componentwise operation of every 
Mi; i=1, 2, … n.  (M, .) is defined as the n-interval mixed 
algebraic structure or mixed n-interval algebraic structure.  
 
 We will first accept even if three algebraic structures are 
involved then also M is a mixed n-interval algebraic structure.  
Thus what we demand is more than two algebraic structure must 
be present in the mixed n-interval algebraic structure.  We see 
the n-interval algebraic structures discussed in earlier sections 
are not mixed n-interval algebraic structures as they do not 
contains more than two structures. 
 We will illustrate this situation by some examples. 
 
Example 2.5.1:  Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {[0, a] /  
a ∈ Z20, ×} ∪ {[0, a] / a ∈ Z19 \ {0}, ×} ∪ {[0, a] / a ∈ Z11, +} ∪ 
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{[0, a] / a ∈ Z40, * (3, 1)} ∪ {[0, a] / a ∈ {e, 1, 2, …, 27} *, 8} 
be a mixed 5-interval algebraic structure. 
 
Example 2.5.2: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ Z40, 
×} ∪ {[0, a] / a ∈ Z15, +} ∪ {[0, a] / a ∈ {e, 1, …, 29}, *, 8} ∪ 
{[0, a] / a ∈ Z12, ×} be mixed 4-interval algebraic structure. 
 
Example 2.5.3: Let G = L1 ∪ L2 ∪ L3 = {[0, a] / a ∈ Z7, +} ∪ 
{[0, a] / a ∈ Z16, ×} ∪ {[0, a] / a ∈ Z7, *, (3, 2)} be a mixed 3-
interval algebraic structure. 
 
Example 2.5.4: Let G = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 = {[0, a] 
/ a ∈ Z64, ×} ∪ {All 3 × 3 interval matrices with intervals of the 
form [0, a] where a ∈ Z11 under matrix addition} ∪ {All 1 × 7 
row interval matrices with intervals of the form [0, a] where a ∈ 
Z11, *, (3, 7)} ∪ {[0, a] / a ∈ {e, 1, 2, …, 45}, *, 17} ∪ 

{
10

i

i 0

[0,a]x
=
∑ / a ∈ Z+ ∪ {0} under polylnomial addition} ∪ 

{ i

i 0

[0,a]x
∞

=
∑ / a ∈ Z12, under polynomial multiplication} be a 6-

interval mixed algebraic structure.   
 

Clearly L is of infinite order and is non commutative.  We 
can only define substructure of one type as this is a mixed n-
interval algebraic structure. We leave the task of defining the 
substructure to the reader, but give examples of the same. 
 
Example 2.5.5: Let G = G1 ∪ G2 ∪ G3 ∪ G4 = {[0, a] / a ∈ {e, 
1, 2, …, 27}, *, 8} ∪ {[0, a] / a ∈ Z12, ×} ∪ {[0, a] / a ∈ Z45, +} 
∪ {[0, a] / a ∈ Z14, *, (2, 0)} be a 4-interval mixed algebraic 
structure.  Consider H = H1 ∪ H2 ∪ H3 ∪ H4 = {[0, a] / a ∈ {e, 
1, 4, 7, 10, 13, 16, 19, 22, 25}, *, 8} ∪ {[0, a] / a ∈ {0, 2, 4, 6, 
8, 10}, ×} ∪ {[0, a] / a ∈ {0, 5, 10, 15, 20, 25, 30, 35, 40}, +} ∪ 
{[0, a] / a ∈ {0, 2, 4, 6, 8, 10, 12}, *, (2, 0)} ⊆ G1 ∪ G2 ∪ G3 ∪ 
G4, H is a mixed 4-interval algebraic substructure of G. 
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We cannot define identities or other algebraic properties as 
they are mixed. 

  

Now the following examples will show the way these mixed 
structures can be used in n-models.  
 
Example 2.5.6: Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {All 5 × 3 interval 
matrices with intervals of the form [0, a] where a ∈ Z12, *, (5, 
7)} ∪ {All 4 × 7 interval matrices with intervals of the form [0, 
a] where a ∈ Z20 under usual matrix addition} ∪ {All 4 × 4 
interval matrices with intervals of the form [0, a]  where a ∈ {e, 
1, 2, …, 19}, *, 12} ∪ {All 7 × 5 interval matrices with 
intervals of the form [0, a] where a ∈ Z40 under matrix addition} 
be a mixed 4-interval algebraic structures which is non 
commutative and is of finite order. 
 
Example 2.5.7: Let L = L1 ∪ L2 ∪ L3 = {All 5 × 5 interval 
matrices with intervals of the form [0, a] with a ∈ Z42 under 
matrix addition} ∪ {All 3 × 7 interval matrices with intervals of 
the form [0, a] with a ∈ Z18 under matrix addition} ∪ {All 6× 2 
interval matrices with intervals of the form [0, a] with a ∈ Z27 
with operation *, (3, 8)} be mixed 3-interval algebraic 
structures.  This sort of mixed 3-interval matrices can be used in 
mathematical models.   

 
We will just show how operations on this interval matrices 

are carried out on each of interval groupoids, interval 
semigroups, interval groups and interval loops. 
  

Suppose B, A is a m × n interval matrix from an m × n 
interval matrix groupoid G = {([0, aij]) / aij ∈ Zm, *, (t, u), t, u ∈ 
Zm}  
 

A = ([0, aij])   1 < i < m,  1 < j < n 
and 

B = ([0, bij])   1 < i < m , 1 < j < n 
  
A*B  =  ([0, aij] * [0, bij]) 
  =  ([0, taij + u bij (mod m)]); 
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* in general is non associative.  We follow the same 

operation even if m = n.  
  

Suppose S is an interval matrix semigroup.  
  

We can have two operations.  If A, B ∈ S are two interval m 
× n matrices m ≠ n then A + B, + the usual matrix addition is 
the only operation on S.  If A, B ∈ S are such that the interval 
matrices are square matrices then we can have usual interval 
matrix addition ‘or’ usual interval matrix multiplication.  

  

In both cases this S has a semigroup structure.  ‘or’ used 
only in the mutually exclusive sense. 

  

Suppose L denotes the set of all interval m × n matrices 
with intervals of the form [0, a] with entries from {{e, 1, 2, …, 
m} m > 3, m odd, t, *, where 1 < t < m with (t, m) = (t – 1, m) = 
1 and for [0, a], [0, b] in this set. 

 
[0, a] * [0, b] = [0, tb – (t-1) a (mod m))]. 

 
Now  

A = ([0, aij])    1 < i < m    1 < j < n 
and  

B = ([0, bij]) in L, 
then  

A * B = ([0, (tbij – (t-1) aij) mod m]). 
  

This is the only operation L which is compatible and even if 
m = n we have only this operation.  

  

If G is the set of all m × n interval matrices then usual 
interval matrix addition is the operation.  If m ≠ n multiplication 
cannot be adopted for interval matrices.  If m = n then the 
interval matrix can have either addition or multiplication. 

  

Thus we have these mixed n-interval structures to function 
as dynamical systems in the mathematical modeling. 
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Chapter Three 
 
 

 
 
APPLICATIONS OF INTERVAL 
STRUCTURES AND N-INTERVAL 
STRUCTURES  
 
 
 
 
These n-interval structures and biinterval structures are newly 
introduced in this book.  A few of the probable applications are 
mentioned in this chapter. 
 

1. Some of these interval structures can be adopted in 
finite interval analysis. 

 
2. If the experts wants more than one approximate 

solution or if the experts are interested in 
appropriate solution with some possible flexibility 
these interval structures can be used.  For the 
experts can have the liberty to choose the 
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appropriate solution from the interval than 
forcefully accepting the approximate solution. 

 
3. The introduction of n-interval matrix loops, 

(groupoids or groups or semigroups) gives the 
expert liberty to choose the suitable n-interval 
algebraic structure depending on the experiment / 
study.  So non associative n-interval matrix 
algebraic structure would be a boon to them. 

 
4. The n-interval m × s matrices with the operations 

defined on them can be used in interval stiffness 
matrix, which will yield an interval solution. 

 
5. With the advent of computers several such models 

can be studied simultaneously using these n-interval 
matrix algebraic structures or mixed n-interval 
matrix algebraic structure.  
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Chapter Four 
 
 

 
 
SUGGESTED PROBLEMS  
 
 
 
 
In this chapter we suggest around 295 problems for the reader 
some of which, are simple and some of them are difficult and 
some at research level. 
 

1. Obtain some interesting properties about interval 
bisemigroups. 

 
2. Let S = S1 ∪ S2 be a finite interval bisemigroup. 

a. Can every interval bisubsemigroup divide the order of 
S? 

b. Does a interval bisemigroup have in general interval 
bisubsemigroups which are not interval biideals? 

 
3. Give an example of a non commutative interval bisemigroup 

of finite order. 
 
4. Give an example of a commutative interval bisemigroup. 
 
5. Does there exist a cyclic interval bisemigroup? 
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6. Is S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}} ∪ {S <X> / X = ([0, 
a1], [0, a2], [0, a3])} a finite interval bisemigroup? 

a. Find interval subbisemigroups in S. 
b. Prove S has interval biideal! 
c. Does S contain interval bisubsemigroups which are not 

ideals? 
 
7. Does there exist an interval bisemigroup which has no interval 

biideals? 
 
8. Does there exist an interval bisemigroup of prime order? 

Justify your answer. 
 
9. Does there exist an interval bisemigroup in which every 

interval bisubsemigroup is an interval biideal? 
 
10. Find only left biideals of S = S1 ∪ S2 = {S(〈X〉) / X = ([0, a1], 

[0, a2], [0, a3])} ∪ {S(〈Y〉) where Y = {([0, b1], …, [0, b8])} 
the interval bisemigroup (symmetric bisemigroup). 

a. Show every left biideal in general is not a right  
b. biideal. 
c. Can S have two sided interval biideals? 
d. Can S have interval bisubsemigroups which are not 

interval biideals? 
 
11. Give an example of an interval bisemigroup which has no 

interval bizero divisors. 
 
12. Does there exist interval bisemigroups which are interval 

idempotent bisemigroups? 
 
13. Give an example of an interval bisemigroup which has no non 

trivial idempotents. 
 
14. Give an example of a bisemigroup which has non trivial zero 

divisors. 
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15. Give an example of an interval bisemigroup which has no 
zero divisors and no idempotents. 

 
16. Let S = S1 ∪ S2 = {[0, a] / a ∈ Z450, ×} ∪ {[0, b] / b ∈ Z41, ×} 

be an interval bisemigroup. 
a. Can S have S-zero divisors? 
b. Is S a S-interval bisemigroup? 
c. Can S have S-interval biideals? 
d. Can S have S-interval bisubsemigroups? 
e. Give at least an interval biideal which is not an S-interval 

biideal. 
f. Can S have S-idempotent? 

 
17. Give an example of a interval bisemigroup which is not an S-

interval bisemigroup. 
 
18. Prove the class of special symmetric biinterval semigroups are 

always S-interval semigroups. 
 
19. Can S = S1 ∪ S2 = {[0, a] / a ∈ Z19, +} ∪ {[0, b] / b ∈ Z43, +} 

the interval bisemigroup be a S-interval bisemigroup? 
 
20. Show if in problem (19) + is replaced by × S is a S-interval 

bisemigroup. 
 
21. Let S = S1 ∪ S2 = {[0, a] / a ∈ Z420, ×} ∪ {[0, b] / b ∈ Z240, ×} 

be an interval bisemigroup. 
a. Find all bizero divisors of S. 
b. Does S have S-bizero divisors? 
c. Find all biidempotents of S. 
d. Can S have S-biidempotents? 
e. Find atleast 5 biideals of S. 
f. Can S have S-biideals? 
g. Can S have S-interval bisemigroups which are not S- 

ideals? 
h. Can S have S-interval bisubsemigroups? 
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i. Can S have binilpotents? 
 
22. Let S = S1 ∪ S2 be a quasi interval bisemigroup. Obtain some 

properties enjoyed by these algebraic structures which are not 
enjoyed by the interval bisemigroups. 

 

23. Let S = S1 ∪ S2 = {Z30, ×} ∪ {[0, a] / a ∈ Z+ ∪ {0}} be a 
quasi interval bisemigroup. 
a. Is S a S-quasi interval bisemigroup? 
b. Can S have S-interval biideals? 
c. Can S have S-interval bisubsemigroups? 
d. Find quasi interval bisubsemigroup in S. 
e. Find quasi interval biideals in S which are not S-ideals? 
f. Can S have S-zero divisors? 
g. Can S have S-idempotents? 

 

24. Let S and G be any two interval bisemigroups. Define a 
interval bisemigroup homomorphism from S to G.  Is it always 
possible to define bikernel of an interval bisemigroup 
homomorphism? Justify! 

 

25. Let S = S1 ∪ S2 = {[0, a] / a ∈ Z+ ∪ {0}, ×} ∪ {[0, b] / b ∈ 
Z244, ×} be an interval bisemigroup. 
a. Define η : S → S so that η is an interval bisemigroup 

homomorphism such that η has a nontrivial bikernel. 
b. Define η : S → S so that η is one to one but different 

from identity bihomomorphism. 
c. Is biker η = ker η1 ∪ ker η2 where ηi : Si → Si, 1 < i < 2, 

an interval biideal of S. Illustrate this situation by an 
example. 

 

26. Let S = S1 ∪ S2 = {[0, a] / a ∈ 3Z+ ∪ {0}, ×} ∪ {[0, b] / b ∈ 
5Z+ ∪ {0}, ×} be an interval bisemigroup under 
multiplication. 
a. Is S a S-interval bisemigroup? 
b. Does S have S-interval biideals? 
c. Can S have S-bizero divisors? 
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27. Let G = G1 ∪ G2 = S(X) ∪ {[0, a] / a ∈ Z43, ×} where X = 
{([0, a1], [0, a2], …, [0, a11])} be an interval bisemigroup. 
a. Find the order of G. 
b. Does the biorder of every interval bisubsemigroup divide 

the biorder of the interval bisemigroup? 
c. Does G have S-interval biideals? 
d. Is G a S-interval bisemigroup? 
e. Can S have biideals which are not S-biideals? 

 
28. Obtain some interesting properties related with the interval 

bisemigroup. 
 (Properties like S-Lagrange, S-p-Sylow, S-Cauchy,…) 
 
29. Does there exist an interval bisemigroup in which every 

element is S-Cauchy? 
 
30. What is the marked difference between a S-interval 

bisemigroup and interval bisemigroup? 
 
31. Let G = G1 ∪ G2 be any S-interval matrix bisemigroup. Can S 

have S biideals? 

32. Let G = G1 ∪ G2 = 
[0,a] [0,b]
[0,c] [0,d]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| a, b, c, d ∈ Z+ ∪ {0}, ×} 

∪ 

[0,a]
[0,b]
[0,c]
[0,d]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

| a, b, c, d ∈ Z+ ∪{0}, +} be an interval 

bisemigroup. 
a. Does S have S-interval biideals? 
b. Can S have S-zero divisors? 
c. Can S have interval bisemigroups which are not S- 
d. interval bisemigroups? 
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33. Let S = S1 ∪ S2 = {([0, a1], [0, a2], …, [0, a11]) / ai ∈ Z27, ×} ∪ 
1 2 3 4

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| ai ∈ Z45, +, 1 < i < 8} be 

an interval bisemigroup. 
a. Find the biorder of S. 
b. Can S satisfy the modified form of S-Lagrange theorem? 
c. Can S have S-biideals? 
d. Can S have S-zero divisors? 

 

34. Let G = G1 ∪ G2 = 

1 2

3 4

5 6

7 8

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

| ai ∈ Z+ ∪ {0}, +} ∪ 

1 2 9

10 11 18

[0,a ] [0,a ] ... [0,a ]
[0,a ] [0,a ] ... [0,a ]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| ai ∈ Z+ ∪ {0}, +} be an 

interval matrix bisemigroup. 
a. Show G is of infinite order. 
b. Can G have S-biideals? 
c. Can G have S-zero divisors or just zero divisors? 

 
35. Let G = G1 ∪ G2 = {Set of all 5 × 5 interval matrices with 

intervals of the form [0, a1] where ai ∈ Z5} ∪ {set of all 6 × 6 
interval matrices with intervals of the form [0, ai] where ai ∈ 
Z4} be an interval matrix bisemigroup. 
a. Find the biorder of G. 
b. Is P = P1 ∪ P2 = {set of all 5 × 5 interval diagonal 

matrices with intervals of the form [0, a] where a ∈ Z5} ∪ 
{set of all diagonal 4 × 4 interval matrices with intervals 
of the form [0, ai] where ai ∈ Z4} ⊆ G1 ∪ G2 an S biideal 
of G? 
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c. If diagonal interval matrices in P are replaced by upper 
triangular interval matrices will that structure be an 
interval biideal? Justify. 

d. Can G have S-bizerodivisors? 
e. Can G have biidempotents? 
f. Can G have S-binilpotents? 
g. Can G have S-Cauchy bielements? 

 
36. Give some interesting properties enjoyed by interval matrix 

bisemigroups which are not in general true for interval 
bisemigroups. 

 

37. Let S = S1 ∪ S2 = 
8

i
9

i 0
[0,a]x a Z ,

=

⎧ ⎫
∈ +⎨ ⎬

⎩ ⎭
∑  ∪ 

12
i

12
i 0

[0,b]x b Z ,
=

⎧ ⎫
∈ +⎨ ⎬

⎩ ⎭
∑  be an interval polynomial 

bisemigroup.  
a. Find biideals if any in S. 
b. What is the biorder of S? 
c. Does S contain any Cauchy bielement? 
d. Is S a S-interval polynomial bisemigroup? 
e. Can S have S-biidempotents? 

 

38. Let G = i
40

i 0
[0,a]x a Z , ' '

∞

=

⎧ ⎫
∈ ×⎨ ⎬

⎩ ⎭
∑  ∪ i

25
i 0

[0,b]x b Z , ' '
∞

=

⎧ ⎫
∈ ×⎨ ⎬

⎩ ⎭
∑  

be an interval bisemigroup. 
a. Prove G is of infinite biorder.  
b. Find some interval biideals in G. 
c. Can G have S-biideals? 
d. Can G have S-bizero divisors? 
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39. Let S = S1 ∪ S2 = 
5

i

i 0
[0,a]x a Z {0},+

=

⎧ ⎫
∈ ∪ +⎨ ⎬

⎩ ⎭
∑  ∪ 

i
12

i 0
[0,b]x b Z

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  be an interval polynomial bisemigroup. 

a. Find the biorder of S. 
b. Find biideals and S-biideals in S. 
c. Find interval subbisemigroups which are not biideals of S. 

 
40. Let S = S1 ∪ S2 = {[0, a] | a ∈ Z40, ×} ∪ 

3
i

12
i 0

[0,a]x a Z , ' '
=

⎧ ⎫
∈ +⎨ ⎬

⎩ ⎭
∑  be an interval bisemigroup. 

a. Find the biorder of S. 
b. Does S satisfy the S-Lagrange theorem for  
c. bisemigroups? 
d. Can S satisfy the S-Cauchy theorem? 
e. Can S have S-bizero divisors? 

 

41. Let S = S1 ∪ S2 = 

[0,a]
[0,b]
[0,c]
[0,d]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

| a, b, c, d ∈ Z14, +} ∪ {[0, a] / a ∈ 

Z12, ×} be an interval bisemigroup. 
a. What is the order of S? 
b. Can S have S interval bisubsemigroups? 
c. Find S-bizero divisors if any in S. 
d. Can S have S-biidempotents? 

 

42.  Let G = G1 ∪ G2 = {All 8 × 8 interval matrices with intervals 

of the form [0, a] / a ∈ Z2, ×} ∪ {
9

i
i

i 0
[0,a ]x

=
∑ / ai ∈ Z2, +} be 

an interval bisemigroup. 
a. Prove G is of finite biorder. 
b. Find the biorder of G. 
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c. Can G have S-zero divisors? 
d. Can G have biideals which are not S-biideals? 
e. Can G have bizero divisors which are not S-bizero 

divisors? 
 

43. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, ×} ∪ {All 7 × 1 interval 
column matrices with entries from Z3} be an interval 
bisemigroup. 
a. What is the biorder of G? 
b. Find atleast 4-interval sub bisemigroups. 
c. Is G a S-interval bisemigroup? 
d. Can G have S-interval biideals? Justify. 

 

44. Let S = S1 ∪ S2 = i
2

i 0
[0,a]x a Z

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ {[0, a] / a ∈ Z7} be 

an interval bisemigroup. Enumerate the properties enjoyed by 
S. 

 
45. Give an example of a bisimple interval bisemigroup. 
 
46. Give an example of a S-bisimple interval bisemigroup. 
 
47. Is a S-bisimple interval bisemigroup bisimple? Justify. 
 
48. Let S = S1 ∪ S2 = {([0, a], [0, b]) / a, b ∈ Z15, ×} ∪ {([0, a], 

[0, b], [0, c], [0, d]) / a, b, c, d ∈ Z12} be an interval 
semigroup. 
a. What is the order of S? 
b. Find bizero divisor and S-bizero divisor in S? 
c. Can S have S-biideals? 
d. Is every biideal a S-biideal? Justify! 

 
49. Does there exist an interval bisemigroup of order 47? Justify! 
 
50. Give an example of an interval bisemigroup of order 1048. 
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51. What are the special properties enjoyed by interval 
bigroupoids? 

 
52. Give conditions under which an interval bigroupoid G is a S-

interval bigroupoid. 
 
53. Give an example of an interval bigroupoid which is not a S-

interval bigroupoid. 
 
54. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, (3, 2), *} ∪ {[0, b] / b ∈ 

Z9, *, (8, 0)} be an interval bigroupoid. 
a. What is the biorder of G? 
b. Find S-interval bisubgroupoid in G. 
c. Is every interval bisubgroupoid in G a S-interval  
d. subbigroupoid?  

 
55. Let G = {[0, a] / a ∈ Z7, *, (1, 4)} ∪ {[0, b] / b ∈ Z11, *,  

(2, 3)} be an interval bigroupoid. 
a. Find the biorder of G. 
b. Does G have interval subbigroupoid? 
c. Can G have bizero divisors? 
d. Is G commutative? 
e. Is G a S-interval bigroupoid? 
f. Does the biorder of interval subbigroupoid divide  
g. biorder of G? 

 
56. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z+ ∪ {0}, *, (3, 2)} ∪ {[0, a] / 

a ∈ 3Z+ ∪ {0}, *, (0, 30)} be an interval bigroupoid. 
a. Prove G is of infinite biorder. 
b. Find interval bisubgroupoids if any in G. 
c. Does G have S-interval subbigroupoids? 
d. Is G a S-interval bigroupoid? 
e. Can G satisfy any of the well known identities? 

 
57. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z41, *, (3, 9)} ∪ {[0, b] / b ∈ 

Z43, *, (3, 9)} be an interval bigroupoid. 
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a. Find biorder of G. 
b. Can G have interval bisubgroupoids? 
c. Is G a S-interval bigroupoid? 
d. Is G a S-interval P-bigroupoid? 
e. Is G commutative? 
f. Can G have S-interval subbigroupoids? 

 
58. Let G = {[0, a] / a ∈ R+ ∪ {0}, *, (8, 3)} ∪ {[0, a] / a ∈ Q+ ∪ 

{0}, *, (7, 11)} = G1 ∪ G2 be an interval bigroupoid. 
a. Prove G is infinite. 
b. Enumerate all properties enjoyed by G. 
c. Is G a S-interval bigroupoid? 
d. Can G have S-interval bisubgroupoids? 

 
59. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z19, (11, 9), *} ∪ {[0, b] / b ∈ 

Z11, (7, 5), *} be an interval bigroupoid. Find all the special 
properties enjoyed by G. 

 
60. Does there exist an interval bigroupoid which is not an S-

interval bigroupoid? 
 
61. Does there exists an interval bigroupoid in which all interval 

bisubgroupoids are S-interval subbigroupoids? 
 
62. Give an example of an interval Bol bigroupoid. 
 
63. Give an example of an S-strong interval Bol bigroupoid. 
 
64. Give an example of a S-Bol interval bigroupoid. 
 
65. Give an example of an interval bigroupoid of order 218. 
 
66. Does there exist an interval bigroupoid of order 23? Justify 

your answer. 
 
67. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z12, *, (2, 6)} ∪ {[0, b] / b ∈ 

Z20, *, (10, 2)} be an interval bigroupoid. Can G have an 
interval subbigroupoid H so that o (H) / o (G) ? 



 174

 
68. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z19, *, (3, 2)} ∪ {[0, b] / b ∈ 

Z43, *, (11, 3)} be an interval bigroupoid. Does G contain an 
interval subbigroupoid H such that o(H) / o(G)? 

 
69. Give an example of an interval bigroupoid which has no S-

interval subbigroupoids. 
 
70. Give an example of an interval bigroupoid which has no 

interval normal subbigroupoids. 
 
71. Give an example of an interval bigroupoid which is an 

interval normal bigroupoid. 
 
72. Give an example of an interval bigroupoid which is a 

Moufang interval bigroupoid. 
 
73. Give an example of an interval bigroupoid G in which every 

interval subbigroupoid is a S-Moufang interval bigroupoid but 
G is not a Moufang interval bigroupoid. 

 
74. Suppose G = G1 ∪ G2 be an interval bigroupoid of order p. q, 

where p and q are two distinct primes, Can G be an interval 
alternative bigroupoid? 

 
75. Determine some important and interesting properties enjoyed 

by interval bigroupoids of order pq where p and q are primes. 
 
76. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z18, *, (3, 0)} ∪ {[0, b] / b ∈ 

Z36, *, (0, 5)} be an interval bigroupoid. What are the special 
properties enjoyed by G? 

 
77. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z43, *, (7, 0)} ∪ {[0, b] / b ∈ 

Z47, *, (0, 7)} be an interval bigroupoid. 
a. Is G left alternative? 
b. Can G be alternative? 
c. Is G a P-interval bigroupoid? 
d. Can G be a S-interval bigroupoid? 

  Justify all your claims. 
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78. Give an example of an interval bigroupoid which has no zero 

divisors. 
 
79. Give an example of an interval bigroupoid which has every 

element to be an idempotent. 
 
80. Give an example of an interval bigroupoid which has 

biidentity. 
 
81. Does there exist an interval bigroupoid in which every 

interval subbigroupoid is an interval bisemigroup? 
 
82. Does there exist an interval bigroupoid in which no interval 

subbigroupoid is an interval bisemigroup? If that is the case 
what is the speciality of that interval bigroupoid? 

 
83. Define the notion of finite biorder of elements in an interval 

bigroupoid and illustrate them with an example. 
 
84. Let G = {[0, a] / a ∈ Z20, *, (3, 3)} ∪ {[0, b] / b ∈ Z13, *, (10, 

10)} be an interval bigroupoid. 
a. Is G an interval bisemigroup? 
b. Can G has non associative triples? 
c. Can G have interval subbigroupoids? 
d. Is G a S-interval bigroupoid? 
e. Does G satisfy any of the special identities? 

 
85. Give an example of an interval bigroupoid which is right 

alternative but not left alternative. 
 
86. Give an example of a commutative interval bigroupoid. 
 
87. Give an example of an S-interval inner commutative 

bigroupoid. 
 
88. Give an example of an interval P-bigroupoid. 
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89. Prove there exist an infinite class of interval bigroupoids of 
finite order. 

 
90. Prove there does not exist an interval bigroupoid of prime 

order. 
 
91. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z11, *, (3, 2)} ∪  

{[0, b] / b ∈ Z42, *, (7, 4)} and H = H1 ∪ H2 = {[0, a] / a ∈ 
Z11, *, (5, 7)} ∪ {[0, b] / b ∈ Z42, *, (3, 2)} be two interval 
bigroupoids. 

 (i) How many distinct homomorphisms from G to H exist? 
 (ii) Can ever G be isomorphic with H? 
 
92. Let G = G1 ∪ G2 = {[0, a] / a ∈ 3Z+, *, (3, 2)} ∪  

{[0, b] / b ∈ 5Z+, *, (3, 2)}. Is G an interval bigroupoid? 
Prove your claim. 

 
93. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z49, *, (7, 0)} ∪  

{[0, b] / b ∈ Z25, *, (5, 0)} be an interval bigroupoid. Does G 
enjoy any special property? 

 
94. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z7, *, (3, 2)} ∪ {[0, b] / b ∈ 

Z7, *, (2, 3)} be an interval bigroupoid. Does G have any 
special property associated with it? 

 
95. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z24, *, (11, 13)} ∪  

{a / a ∈ Z40, *, (7, 3)} be an interval quasi bigroupoid. 
 (i) Is G a S-quasi interval bigroupoid? 
 (ii) Can G have S-quasi interval subbigroupoids? 
 
96. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z+ ∪ {0}, *, (3, 2)} ∪ {x / x 

∈ Q+ ∪ {0}, *, (3, 29)} be a quasi interval bigroupoid. 
a. Can G be a S-quasi interval bigroupoid? 
b. Does G satisfy any of the special identities? 
c. Does G contain quasi interval subbigroupoids? 
d. Give any of the special features enjoyed by G. 

 



 177

97. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z9, *, (4, 4)} ∪ {a / a ∈ R, *, 
( 3 , 2)} be a quasi interval bigroupoid. 
a. Does G have S-quasi interval S subbigroupoids? 
b. Can G satisfy any one of the special identities? 

 
98. Let G = G1 ∪ G2 = {([0, a1], [0, a2], [0, a3], [0, a4]) / ai ∈ Z14, 

*, (3, 7), 1 < i < 4} ∪ {[0, b] / b ∈ Z43, *, (3, 7)} be an 
interval bigroupoid. Mention atleast two special features 
satisfied by G. 

 

99. Let G = G1 ∪ G2 = { i

i 0
[0,a]x

∞

=
∑ / a ∈ Z11, *, (3, 2)} ∪ {[0, a] / 

a ∈ Z3, *, (1, 2)} be an interval bigroupoid. 
 (In G1; ([0, a] xi) * ([0, b] xj) = [0, a * b] xi+j = [0, 3a + 2b 

(mod 11)] xi+j extended for any sum). 
a. Is G a S-interval bigroupoid? 
b. Can G have interval subbigroupoids? 
c. Does G satisfy any special identities? 

 
100. Let G = G1 ∪ G2 be an interval semigroup-groupoid. Analyse 

the properties specially enjoyed by G. 
 
101. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z40, ×} ∪ {[0, b] / b ∈ Z40, *, 

(7, 11)} be an interval semigroup-groupoid. 
a. Is G a S-interval semigroup-groupoid? 
b. Can G have interval subsemigroup-subgroupoid H such 

that o (H) / o (G)? 
 
102. Give an example of a S-interval semigroup-groupoid. 
 
103. Give an example of an interval semigroup-groupoid which is 

not a S-interval semigroup-groupoid. 
 
104. Does there exist an interval semigroup-groupoid in which 

every interval subsemigroup-subgroupoid is a S-interval 
subsemigroup-subgroupoid? 
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105. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z14, *, (3, 2)} ∪ {S (X)} be an 
interval groupoid - semigroup where X = ([0, a1], [0, a2], …, 
[0, a7]);  
a. Find the biorder of G. 
b. Is G a S-interval groupoid-semigroup? 
c. Does G have S-interval subgroupoid-subsemigroup? 
d. Does G contain interval bisubsemigroup? 

 

106. Let G = G1 ∪ G2 = {
8

i
i

i 0
[0,a ]x

=
∑ | ai ∈ Z15, +} ∪ {[0, a] / a ∈ 

Z15, *, (2, 7)} be an interval semigroup-groupoid. 
a. What is the biorder of G? 
b. Can G have S-interval subsemigroup-subgroupoid? 

 
107. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z16, *, (3, 7)} ∪  

{[0, a] / a ∈ Z16, ×} be an interval semigroup-groupoid. 
 Enumerate some of the special properties enjoyed by G. 
 
108. Let G = G1 ∪ G2 = Z12 (3, 7) ∪ {[0, a] / a ∈ Z12, ×} be a quasi 

interval groupoid-semigroup. 
a. Is G a S-quasi interval groupoid-semigroup? 
b. What is the biorder of G? 
c. Does G have any proper bistructures? 

  
109. Let G = G1 ∪ G2 = {[0, a] / a ∈ {e, 1, 2, …, 23}, *, 3} ∪ {[0, 

a] / a ∈ {e, 1, 2, …, 11}, *, 3} be a biinterval loop or interval 
biloop. 
a. What is the biorder of G? 
b. Is G a S-interval biloop? 
c. Can G have S-interval subbiloop? 
d. Is G S-bisimple? 
e. Does G satisfy any one of the special identities? 
f. Does G satisfy in particular right alternative condition? 

 
110.  Let G = G1 ∪ G2 = {[0, a] / a ∈ {e, 1, 2, …, 43} *, 7} ∪ {[0, 

b] / b ∈ {e, 1, 2, 3, 4, …, 13}, *, 7} be an interval biloop. 
a. What is the biorder of G? 
b. Is G commutative? 
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c. Is G S-Lagrange? 
d. Is G a S-2-Sylow? 
e. Can G have substructures other than biorder 4? Justify all 

your claims. 
 
111. Give an example of an interval biloop which is not a S-

interval biloop. 
 
112. Let G = G1 ∪ G2 be an interval biloop where G1 = {[0, a] / a 

∈ {e, 1, 2, …, 45}, (23), *} and G2 = {[0, b] / b ∈ {e, 1, 2, …, 
55}, *, 13};  
a. Find all interval bisubloops of G. 
b. Prove all interval bisubloops of G are also S-interval 

bisubloops. 
c. Prove G is also an S-interval biloop. 
d. Does G satisfy any one of the special identities? 

 
113. Let G = G1 ∪ G2 be an interval biloop where G1 ∪ G2 = {[0, 

a] / a ∈ {e, 1, 2, …, 19}, *, 18} ∪ {[0, b] / b ∈ {e, 1, 2, *, 
43}, *, 12}. 
a. Does G satisfy any one of the special identities? 
b. Prove G has no S-interval bisubloops or interval 

bisubloops. 
c. Can G be interval biloop which is bisimple? 

 Justify your answers. 
 
114. Let G = G1 ∪ G2 = {[0, a] / a ∈ {e, 1, 2, …, 47}, *, 12} ∪ 

L25(7) be a quasi interval biloop. 
a. Is G a S-quasi interval biloop? 
b. Is G a S-strong Moufang quasi interval biloop? 

 
115. Give an example of a Moufang interval biloop. 
 
116. Give an example of a right alternative interval biloop. 
 
117. Give an example of a Jordan interval biloop. 
 
118. Give an example of an interval Burck biloop. 
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119. Give an example of an interval P-biloop. 
 
120. Give an example of an S-interval Moufang loop. 
 
121. Give an example of a S-interval strongly cyclic biloop. 
 
122. Is L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 13}, *, 10} ∪ {[0, 

b] / b ∈ {e, 1, 2, …, 17}, *, 9} an interval biloop? Is L a S-
strongly interval biloop? 

 
123. Give an example of a S-strongly commutative interval biloop. 
 
124. Give an example of a S-pseudo commutative interval biloop. 
 
125. For the interval biloop L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 

29}, *, 12} ∪ {[0, b] / b ∈ {e, 1, 2, …, 31}, *, 15} find its 
principal biisotope. 

 Does it preserve the properties enjoyed by L = L1 ∪ L2? 
 
126. Let L = L1 ∪ L2 be an interval biloop. Find Z (L) =  

Z (L1) ∪ Z (L2) where L = {[0, a] / a ∈ {e, 1, 2, …, 23}, *, 
22} ∪ {[0, a] / a ∈ {e, 1, 2, …, 29}, *, 28}. 

 
127. Let G = G1 ∪ G2 be an interval biloop, where G1 = {[0, a] / a 

∈ {e, 1, 2, …, 47}, *, 43} and G2 = {[0, a] / a ∈ {e, 1, 2, …, 
43}, *, 42}. Is G a S-Lagrange interval biloop? 

 
128. Let G = G1 ∪ G2 = L7 (4) ∪ {[0, a] / a ∈ {e, 1, 2, …, 7}, *, 5} 

be a quasi interval biloop. Find the right regular 
birepresentation of L. 

 
129. Obtain some interesting properties enjoyed by interval 

biloops. 
 
130. Obtain the special properties related with S-interval biloops. 
 
131. Obtain some interesting properties related with quasi interval 

biloops. 
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132. Let G = G1 ∪ G2 = L23 (9) ∪ {[0, a] / a ∈ Z40, ×} be a quasi 
interval loop - semigroup. 
a. Find the biorder of G. 
b. Find substructure of G. 

 
133. Let G = G1 ∪ G2 = {[0, a] / a ∈ {e, 1, 2, …, 27}, 11} ∪ {[0, 

b] / b ∈ Z42, ×} be an interval loop - semigroup. 
a. Find interval subloop-subsemigroups of G. 
b. Is G a S-interval loop-semigroup? 
c. Does G have S-interval subloop-subsemigroup? 

 
134. Let G = G1 ∪ G2 = L17 (3) ∪ {[0, a] / a ∈ {e, 1, 2, …, 43}, *, 

2} be a quasi interval biloop.  
a. Find S (N (G)) = S (N (G1)) ∪ S (N (G2)).  
b. Is SZ (G) = SZ (G1) ∪ SZ (G2)? 

 
135. Does there exist an interval biloop whose Smarandache 

binucleus is empty? 
 
136. Let L = L1 ∪ L2 = {[0, a] / a ∈ {e, 1, 2, …, 15}, *, 2} ∪ {[0, 

b] / b ∈ {e, 1, 2, …, 45}, *, 8} be an interval biloop. 
a. Find SZ (L) = SZ (L1) ∪ SZ (L2). 
b. Is SN (L) = SN (L1) ∪ SN(L2)? 
c. Determine an interval S-bisubloop A = A1 ∪ A2 of L and 

find SN1 (A) and SN2 (A). 
 
137. Is G = G1 ∪ G2 = {[0, a] / a ∈ Z6, *, (4, 3)} ∪ {[0, b] / b ∈ Z6, 

*, (3, 5)} the interval bigroupoid a S-P-interval bigroupoid? 
 
138. Give an example of a S-strong P-interval bigroupoid. 
 
139. Give an example of a S-Bol interval bigroupoid. 
 
140. Give an example of a S-strong right alternative interval 

bigroupoid.  
 
141. Give an example of a S-strong Moufang interval loop-

groupoid. 
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142. Give an example of a S-Bol interval loop-groupoid. 
 
143. Characterize those interval bigroupoids which are S-strong 

Bol bigroupoids. 
 
144. Give some special properties enjoyed by S-strong Moufang 

biloops. 
 
145. Enumerate the properties enjoyed by S-strong idempotent 

interval bigroupoid. 
 
146. Does there exist a S-strong Bol interval matrix bigroupoid? 

Illustrate your claim if it exists. 
 
147. Does there exists a S-strong Moufang interval polynomial 

bigroupoid? 
 
148. Give an example of a S-right alternative interval matrix 

bigroupoid. 
 
149. Give an example of a S-strong quasi interval P-bigroupoid.  
 
150. Prove G = G1 ∪ G2 = {[0, a] / a ∈ Zn, *, (t, u)} ∪  

{[0, b] / b ∈ Zm, *, (r, s)} is a S-alternative interval bigroupoid 
if and only if t2 = t (mod n), u2 = u (mod n), s2 = s (mod m) 
and r2 = r (mod m) with t + u = 1 (mod n) and s + r = 1 (mod 
m). Illustrate this situation by an example. 

 
151. Is the interval bigroupoid given in problem, (150) a S-strong 

Bol interval bigroupoid? 
 
152. Is the interval bigroupoid G = G1 ∪ G2 = {[0, a] / a ∈ Z2p, *, 

(1, 2)} ∪ {[0, b] / b ∈ Z2q, *, (1, 2)}, p and q two distinct 
primes a S-interval bigroupoid ? 

 
153. Give an example of a S-interval bigroupoid which is not a S-

interval P-bigroupoid.  
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154. Give an example of an interval bigroupoid which is not a S-
strong Bol interval bigroupoid. 

 
155. Give an example of a S-interval bigroupoid which is not an S-

interval idempotent bigroupoid. 
 
156. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z20, +} ∪ {[0, b] / b ∈ Z42, +} 

be an interval bigroup. 
a. Verify whether Lagrange theorem for finite groups is 

satisfied by G. 
b. Find all interval subbigroups of G. 
c. Verify p-Sylow theorems for G. 

 
157. Let G = G1 ∪ G2 = {SX , X = ([0, a1], …, [0, a7])} ∪ {[0, a] / a 

∈ Z19 \ {0}, ×} be an interval bigroup. 
a. Prove G is non commutative.  
b. Find normal interval bisubgroups of G. 
c. Is Cauchy theorem for groups satisfied by G? 

 
158. Obtain some interesting properties enjoyed by interval groups. 
 
159. Can Lagrange theorem in general be true for interval bigroups 

of finite biorder? 
 
160. Give an example of an interval bigroup which is bicyclic. 
 
161. Can all the Sylow theorem be true in case of finite interval 

bigroups? Justify your answer. 
 
162. Obtain the classical homomorphism theorems in case of 

interval bigroups. 
 
163. Determine the conditions under which we can extend Cayleys 

theorem in case of interval bigroups. 
 
164. Enumerate all classical properties which are not true in case 

of interval bigroups.  
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165. Define interval bigroup automorphisms. Is the collection of all 
interval bigroup automorphisms a bigroup? Justify your 
claim. 

 
166. Can we derive all properties associated with cosets in case of 

groups in case of interval bigroup? 
 
167. Define permutation birepresentation of an interval bigroup.  
 
168. Suppose G = {[0, a] / a ∈ Zp,+} ∪ {[0, b] / b ∈ Zq, +}, p and q 

primes be an interval bigroup. What is the special property 
enjoyed by it? 

 
169. Define interval matrix bigroup. Illustrate it by an example. 
 
170. Let G = G1 ∪ G2 = S20 ∪ {[0, a] / a ∈ Z20, ×} be a quasi 

interval bigroup. 
a. What is the order of G? 
b. Find atleast 3 quasi bisubgroups of G. 
c. Can G have more than one quasi interval normal 

bisubgroup? 
d. Is Lagrange theorem for finite groups true in case of the 

quasi interval bigroup G? 
 
171. Let G = G1 ∪ G2 = <g / g26 = 1> ∪ {[0, a] / a ∈ Z13 \ {0}, ×} 

be a quasi interval bigroup. 
a. Find the order of G. 
b. Prove G has quasi interval subbigroups and all of them 

are binormal in G. 
 
172. Let G = S5 ∪ Sx where X = {[0, a1], [0, a2], [0, a3]}} be the 

quasi interval bigroup. 
a. Find the biorder of G. 
b. Find all quasi interval normal subbigroups of G. 
c. Find the (p, q)-Sylow quasi interval bisubgroups of G ( p 

= 5 and q = 3). 
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173. Let G = G1 ∪ G2 = {S10} ∪ 
[0,a] [0,b]
[0,c] [0,d]

⎧⎡ ⎤⎪
⎨⎢ ⎥
⎪⎣ ⎦⎩

| a, b, c, d ∈ Z20 

with [0, ad] - [0, bc] ≠ [0, 0] that is [0, (ad-bc) (mod 20)] ≠ [0, 
0]. 

 

a. Is G a commutative quasi interval bigroup? 
b. Find the biorder of G. 
c. Can G have quasi interval normal bisubgroups? 
d. Find atleast 5 distinct quasi interval bisubgroups. 
e. What is the biorder of them? Will their biorder divide the 

biorder of G? 
 

174. Let G = G1 ∪ G2 = {A = 
a b c
d e f
g h i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 | det A ≠ 0; a, b, c, d, e, 

f, g, h, i ∈ Z29} ∪ {A = 
1 2 3

4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 | det A ≠ 0, 

ai ∈ Z19, 1 < i < 9}. Is G a quasi interval bigroup? 
 
175. Does their exist a quasi interval bigroup G of finite biorder 

which has a quasi interval subbigroup whose biorder does not 
divide the biorder of G? Justify your answer. 

 
176. Let G = G1 ∪ G2 = {[0, a] / a ∈ Z26, +} ∪ {[0, b] / b ∈ Z26, ×} 

be an interval group-semigroup. 
a. What is the biorder of G? 
b. Can Lagrange theorem for finite groups be true in case of 

this G? 
c. Find atleast 2 interval subgroup-subsemigroup of G.  
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177. Let G = G1 ∪ G2 = {All 3 × 3 interval matrices with intervals 

of the form [0, a] where a ∈ Z+ ∪ {0}} ∪ 

1

2

3

4

[0,a ]
[0,a ]
[0,a ]
[0,a ]

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎩

| ai ∈ Z20, 

+, 1 < i < 4} be an interval semigroup-group. Prove G has 
infinite number of interval subsemigroup-subgroup.  

 
 

178. Let G = G1 ∪ G2 = {
7

i

i 0
[0,a]x

=
∑ / a ∈ Z15, +} ∪ { i

i 0
[0,a]x

∞

=
∑ / a 

∈ Z+ ∪ {0}} be an interval group- semigroup.  Prove G in 
problem (177) is different from G given in problem (178). 

 

179. Let G = G1 ∪ G2 = { i

i 0
[0,a]x

∞

=
∑ |ai ∈ Z+ ∪ {0}} ∪ { i

i 0
[0,a]x

∞

=
∑ |  

ai ∈ Z48} be an interval bisemigroup. Find interval biideals of 
G. Does G contain an interval subbisemigroup which is not an 
interval biideal of G? 

 

180. Let G = {
6

i
i

i 0
[0,a ]x

=
∑ | ai ∈ Z40, x7 = 1, ×} ∪ {All 8 × 8 

matrices A with entries from Z20 where |A| ≠ 0} be a quasi 
interval semigroup-group. 
a. What is the biorder of G? 
b. Find quasi interval subsemigroup-subsemigroups in G. 

 
181. Let G = G1 ∪ G2 = {<g / g20 = 1> ∪ {SX where X = ([0, a1], 

[0, a2], …, [0, a10])} be a quasi interval bigroup. 
a. What is the biorder of G? 
b. Find quasi interval normal bisubgroups in G. 
c. Using the quasi interval binormal bisubgroup. H = {1, g4, 

g8, g12, g16} ∪ A(X) = H1 ∪ H2 ⊆ G1 ∪ G2, define the 
quasi interval quotient bigroup G/H = G1/H1 ∪ G2 /H2. 
What is the biorder of G / H? 
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182. Describe any stricking property enjoyed by a quasi interval 
bigroupoid.  

 
183. Find some dissimilarities between interval biloops and 

interval bigroupoids in general. 
 
184. Determine some similarities between quasi interval bigroups 

and interval bigroups. 
 
185. Find atleast one marked difference between a quasi interval 

semigroup and a quasi interval group semigroup. 
 
186. Find some applications of interval bigroups. 
 
187. How can interval biloops be used in the biedge colouring 

problems K2n ∪ K2m? 
 
188. Can interval bigroupoids be used in biautomaton? 
 
189. Will interval bisemigroups be used in bisemiautomaton so as 

to yield a better result? 
 
190. Let G = G1 ∪ G2 ∪ G3 be a 3-interval groupoid or interval 

trigroupoid where G1 = {[0, a]| a ∈ Z11, *, (3, 2)}, G2 = {[0, b] 
/ b ∈ Z20, *, (1, 4)} and G3 = {[0, c] / c ∈ Z40, *, (0, 11)}. Find 
the triorder of the triinterval groupoid. Find substructures of 
G.  

 
191. Obtain any interesting property associated with n-interval 

groupoids.  
 
192. Give an example of a S-strong 5-interval Bol groupoid. 
 
193. Give an example of a S-5-interval Bol groupoid. 
 
194. Give an example of a 7-interval P-groupoid. 
 
195. Does their exist a 8-interval groupoid which is not a S-8-

interval groupoid? 
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196. Give an example of a 10-interval groupoid which is not a S-

strong right alternative 10-interval groupoid. 
 
197. Give an example of a 5-interval groupoid which is a S-left 

alternative 5-interval groupoid. 
 
198. Give an example of a S-strong 4-interval Moufang groupoid.  
 
199. Find a necessary and sufficient condition of a 7-interval 

groupoid to be a S-strong P-groupoid. 
 
200. Give an example of a 3-interval idempotent groupoid. 
 
201. Give an example of a 5-interval semigroup which has no 5-

interval ideals. 
 
202. Give an example of a 12-interval semigroup in which every 

12-interval subsemigroup is a 12-interval ideal.  
 
203. What makes the study of n-interval semigroups interesting? 
 
204. Obtain some interesting results about n-interval groupoids (n 

> 2). 
 
205. Characterize those n-interval groupoids which are not 

Smarandache n-interval groupoids.  
 
206. Give an example of a 7-interval groupoid which is not a S-7-

interval groupoid. 
 
207. Give an example of a 6-interval groupoid in which every 6-

interval subgroupoid is a S-6-interval subgroupoid. 
 
208. Give an example of a 17-interval groupoid G which has no S - 

17 interval subgroupoids but G is a S-17-interval groupoid. 
 
209. Can these new structures be used in cryptography? 
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210. Give an example of a 3-interval semigroup which is a S-
interval semigroup. 

 
211. Give an example of a 5-interval semigroup which is not a S-5-

interval semigroup. 
 
212. Give an example of a n-interval semigroup (n > 2) in which 

every n-interval subsemigroup is a S-n interval subsemigroup. 
 
213. Give an example of a n-interval semigroup (n>2) in which 

every n-interval subsemigroup is a S-n-interval ideal. 
 
214. Let G = G1 ∪ G2 ∪ G3 ∪ G4 be a 4-interval groupoid where 

G1 = {[0, a] / a ∈ Z8, *, (3, 0)}; G2 = {[0, b] / b ∈ Z10, *, (7, 
0)}; G3 = {[0, c] / c ∈ Z8, *, (0, 3)} and G4 = {[0, d] / d ∈ Z10, 
*, (0, 7)}.  
a. What is the 4-order of G? 
b. Find some 4-interval subgroupoids. 
c. Is G a S-4-interval groupoid? 
d. Does G satisfy any one of the special identities? 
e. Can G be have S-4-interval subgroupoids? 

 
215. Let G = G1 ∪ G2 ∪ G3 = {[0, a] / a ∈ Z12, (3, 2), *} ∪ {[0, b] / 

b ∈ Z12, (7, 5), *} ∪ {[0, c] / c ∈ Z12, (8, 11), *} be a 3-
interval groupoid? 
a. Is G a S-3- interval groupoid? 
b. Can G have S-3- interval subgroupoids? 
c. Does G satisfy any one of the special identities? 
d. Is G a normal 3-interval groupoid? 

 
216. Obtain some interesting properties enjoyed by n interval 

semigroups. 
 
217. Does there exist a n-interval semigroup which is S-Lagrange 

n-interval semigroup? 
 
218. Give an example of a n-interval semigroup which is not S-

weakly Lagrange n-interval semigroup. 
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219. Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {[0, a] / a ∈ Z11, ×} ∪ {[0, a] / a 
∈ Z13, ×} ∪ {[0, a] / a ∈ Z19, ×} ∪ {[0, a] / a ∈ Z5, ×} be a 4-
interval semigroup. 
a. What is the order of S? 
b. Prove S is a S-4-interval semigroup. 
c. Is S a S-weakly Lagrange 4-interval semigroup? 
d. Is S a S-Lagrange 4 interval semigroup? 
e. Find all the 4-interval subgroups in S. 

 
220. Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ Z22, ×} ∪ {[0, 

a] / a ∈ Z26, ×} ∪ {[0, a] / a ∈ Z42, ×} ∪ {[0, a] / a ∈ Z240, ×} 
∪ {[0, a] / a ∈ Z36, ×} be a 5-interval semigroup. 
a. Find the order of S. 
b. Is S a S-5-interval semigroup? 
c. Is S a S-Lagrange 4-interval semigroup? 
d. Can S be only a S-weakly Lagrange 4-interval 

semigroup? 
e. Find 4-interval zero divisors in S. 
f. Does S have 4-interval idempotents? 
g. Does S have 4-interval units? 

 
221. Illustrate by example a quasi n-interval semigroup which is S-

quasi n-interval semigroup but has no S-quasi n-interval 
subsemigroup. 

 
222. Find all the zero divisors and idempotents and units in S = S1 

∪ S2 ∪ S3 = {[0, a] / a ∈ Z24, ×} ∪ {Z28, ×} ∪ {[0, b]| b ∈ Z42, 
×}, the quasi 3-interval semigroup. 

 
223. Give an example of a quasi n-interval semigroup in which 

every quasi n-interval subsemigroup is a S-quasi n-interval 
subsemigroup.  

 
224. Give an example of a quasi n-interval semigroup which has 

no S - quasi n-interval ideals. 
 
225. Enumerate all the special properties enjoyed by a quasi n-

interval semigroup. 
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226. Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {Z8, ×} ∪ {[0, a] / a ∈ Z9, 
×} ∪ {Z12, ×} ∪ {[0, a] / a ∈ Z15, ×} ∪ {Z18, ×} be a quasi 5-
interval semigroup. 
a. What is the order of S? 
b. Is S a S-Lagrange quasi 5-interval semigroup? 
c. Is S only a S-weakly Lagrange quasi 5-interval 

semigroup? 
d. Is S a S-quasi 5-interval semigroup? 
e. Is S a S-quasi 5-interval cyclic semigroup? 
f. Can S be a S-p-Sylow 5-quasi interval semigroup? 
g. Find zero divisors, units and idempotents if any in S. 
h. Does S have S-zero divisors, S-units and S-idempotents? 

 
227. Let S = S1 ∪ S2 ∪ S3 ∪ S4 be a quasi 4-interval semigroup 

where S1 = S (3), S2 = S (7), S3 = S (5) and S4 = {S (X) / X = 
([0, a1], [0, a2], …, [0, a6])}.  
a. Is S a S-Lagrange quasi 4-interval semigroup? 
b. Is S a S-weakly Lagrange quasi 4-interval  
c. semigroup? 
d. Find S-quasi 4-interval subsemigroups of S (if any). 
e. Find S-quasi 4-interval ideals in S. 
f. Does S have zero divisors? 
g. Find the set of all units in S. 
h. Can S have S-units? 
i. What is the order of S? 

 
228. Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ 3Z+ ∪ {0}} ∪ 

{8Z+ ∪ {0}, ×} ∪ {[0, a] / a ∈ 19Z+} ∪ {13Z+, ×} ∪ {11Z+, 
×} be a quasi 5-interval semigroup. 
a. Can S have S-zero divisors? 
b. Can S have idempotents? 
c. Is S a S-quasi 5-interval semigroup? 
d. Can S have S-quasi 5-interval ideals? 
e. Find at least 2 quasi 5-interval subsemigroups in S. 

 
229. Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {[0, a] / a ∈ Z24, ×} ∪ {Z30, 

×} ∪ {[0, a] / a ∈ Z45, ×} ∪ {Z120, ×} ∪ {Z240, ×} be a quasi 
5-interval semigroup. 
a. Find the order of S. 
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b. Can S have S-zero divisors? 
c. Find quasi 5-interval ideals of S. 
d. Is S a S-quasi 5-interval semigroup? 
e. Can S have S-quasi 5-interval ideals? 
f. Can S have quasi 5-interval subsemigroups? 

 
230. Let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = {Z12, ×} ∪ {[0, a] / a ∈ Z36, 

×} ∪ S (5) ∪ {3 × 3 interval matrices with intervals of the 
form [0, a] where a ∈ Z24} ∪ {([0, a] [0, b], [0, c]) / a, b, c ∈ 
Z10, ×} be a quasi 5-interval semigroup. 
a. What is the order of S? 
b. Is S a S-quasi 5-interval semigroup? 

 
231. Give an example of a Smarandache strong n-interval Bol 

loop. 
 

232. Give an example of a S-quasi n-interval Bol loop. 
 

233. Does there exist any n-interval Bruck loop of finite order? 
 

234. Construct a n-interval m × s matrix loop which is a S-n-
interval m × s matrix loop. 
 

235. Show by an example all n-interval loop which is not a 
Smarandache n-interval loop. 
 

236. Obtain some interesting applications of S-n-interval loop. 
 

237. Derive some interesting properties about quasi n-interval 
loops of finite order. 
 

238. Prove in general all n-interval loops are not S-strongly 
Lagrange n-interval loop. 
 

239. Give an example of a S- Lagrange n-interval loop. 
 

240. Is every n-interval loop a S-Cauchy loop? 
 

241. Give an example of a 7-interval loop which is S-Cauchy loop. 
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242. Give an example of a quasi 8-interval loop which is a S-2-

Sylow loop. 
 

243. Give an example of a mixed 5-interval algebraic structure of 
finite order. 
 

244. Let L = L1 ∪ L2 ∪ … ∪ L7 be a 7-interval loop built using L7 
(5), L9 (5), L13 (7), L21(11), L43 (20), L25 (9) and L49 (9). 
a. What is the order of L? 
b. Is L a S-strongly Lagrange? 
c. Is L commutative? 
d. Can L have 7-inteval subloops? 
e. Is L a S-2-Sylow loop? 
f. Can L have 7-interval normal subloop? 
g. Is L S-simple. 
h. Is SN1 (L) = SN2 (L)? 
i. Does L satisfy any the well known identities? 
j. Find the S-Moufang center of L. 
k. Is L a power associative loop? 
l. Prove L is a S-7-interval loop. 
m. Can L have proper S-7-interval subloops? 

 
245. Let G = G1 ∪ G2 ∪ G3 = {3 × 2 interval matrices with 

intervals of the form [0, a], a ∈ Z22, *, (10, 0)} ∪ {2 × 4 
interval matrices with interval of the form [0, a] where a ∈ Z12 
under +} ∪ {3 × 3 interval matrices with intervals of the form 
[0, a], a ∈ Z8 under ×} be a mixed 3 interval matrix algebraic 
structure.  
a. Is G commutative? 
b. What is the order of G? 
c. Find at least 3 substructures in G. 
d. Does the substructure satisfy any well known classical 

theorems for finite groups? 
 

246. Give an example of a 5-interval group-loop of order 256. 
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247. Give an example of a 3-interval groupoid-loop G of infinite 
order and such that G is non commutative and has no 
substructures. 

 
248. Give an example of a 8-interval groupoid-loop which is not a 

S-8-interval groupoid-loop. 
 
249. Obtain some interesting applications of quasi n-interval 

groupoid-loops? 
 

250. Find zero divisors and S-zero divisors of a 3-interval 
groupoid-semigroup G by constructing G of order 9.12.24. 
 

251. Give an example of a n-interval semigroup which is not a S-n-
interval semigroup. 

 
252. Give an example of a quasi 18-interval semigroup with out 

zero divisors. 
 
253. Can n-interval semigroups constructed using special 

symmetric semigroups have zero divisors? Justify your claim. 
 
254. Give an example of a quasi 4-interval semigroup S using 

symmetric interval semigroups of order 33, 44 , 22 and 55. 
 
255. Does S in problem (254) S-Lagrange? 

 
256. Does S in problem (254) S-quasi 4-interval symmetric 

semigroup? 
 
257. Obtain atleast one quasi 5-interval semigroup which is not a 

S-quasi 5-interval semigroup.  
 
258. State and prove any interesting result on mixed quasi n-

interval algebraic structure. 
 
259. Can any mixed quasi n-interval algebraic structure be S-quasi 

n-interval algebraic structure? Justify your claim. 
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260. Give an example of a mixed quasi n-interval algebraic 
structure which has no mixed quasi n-interval algebraic 
substructure. 
 

261. Does there exists a 5-interval loop which is not a S-Cauchy 5-
interval loop. 
 
262. Give an example of S-Cauchy 6-interval loop. 
 

263. Give an example of a S-strong Lagrange 7-interval loop. 
 

264. Give an example of a 5-interval loop which is not a S-
Lagrange 5-interval loop. 
 

265. Let L = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 = {[0, a] / a ∈ {e, 1, 2, …., 
17, *, 10} ∪ L13 (7) ∪ Z8 (3, 4) ∪ {[0, a] / a ∈ Z18, *, 90, 5} 
∪ {[0, a] / a ∈ Z12, *, (0, 5)} be a 5 quasi interval loop-
groupoid. 
a. Find the order of L. 
b. Is L a S-5-quasi interval loop-groupoid? 
c. Does L satisfy any of the special identities? 
d. Is L a S-strongly Moufang? 
e. Obtain any other interesting property about L. 
 

266. Obtain some interesting properties about n-quasi interval 
semigroup-groupoid. 
 

267. Give an example of a quasi n-interval semigroup groupoid 
which is not a S-quasi interval semigroup-groupoid. 

 
268. Can a n-interval loop of odd order exist? 
 
269. Give an example of a 5-interval loop of order 251. 
 
270. Give an example of a n-interval groupoid - loop of order 2t. (t 

is at the readers choice, t > n) 
 

271. Let L = L1 ∪ L2 ∪ L3 be a 3-loop of order 16.18.20 built using 
Z15, Z17 and Z19. 
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a. Is L S-simple? 
b. Is L S-Lagrange? 
c. Prove L is S-Cauchy. 
d. Is L S-strongly cyclic? 
e. Does L have proper S-subloops? 

 
272. Give an example of a 3-simple interval group. 

 
273. Does there exists a 6-interval group which is non 

commutative of order |3. 12 |5.25.29.43?  
 

274. Let L = L1 ∪ L2 ∪ L3 ∪ L4 = {All 2 × 2 interval matrices with 
intervals of the form [0, a] where a ∈ Z12 under 
multiplication} ∪ {([0, a1] [0, a2] … [0, a5]) | ai ∈ {e, 1, 2, …, 

27}, *, 11} ∪ {
1

2

3

[0,a ]
[0,a ]
[0,a ]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 / ai ∈ Z15, *, (2, 3); 1 < i < 3} ∪ (Z20, 

×) be a quasi 4-interval mixed algebraic structure. 
a. What is the order of L? 
b. Find substructures of L. 

 
275. Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 = {3 × 3 interval matrices 

with intervals of the form [0, a] where a ∈ Z12, under 
multiplication} ∪ {3 × 5 interval matrices with intervals of 
the form [0, a] where a ∈ Z40, +} ∪ {1 × 6 interval matrices 
with intervals of the form [0, a] where a ∈ Z25, ×} ∪ {4 × 3 
interval matrices with intervals of the form [0, a] where a ∈ 
Z120, +} ∪ {2 × 2 upper triangular interval matrices with 
intervals of the form [0, a] where a ∈ Z21, ×} be a 5-interval 
semigroup. 
a. What is the order of G? 
b. Find substructures in G. 
c. Find zero divisors in G. 
d. Find S-zero divisors in G. 
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e. Find S-ideals if any in G. 
f. Find S-subsemigroups which are not S-ideals if any  
g. in G. 
h. Find idempotents in G. 

 
276. Give an example of a quasi mixed n-interval algebraic 

structure which does not have any substructure. 
 
277. Give an example of a quasi mixed 5-interval algebraic 

structure which has atleast 3-substructures. 
 

278. What is the order of S = {Z27, ×} ∪ {Z40, +} ∪ {[0, a] / a ∈ 
Z9, *, (2, 3)} ∪ {[0, a] / a ∈ {e, 1, 2, …, 27}, *, 5} ∪ L29 (7)?  
Does S have substructures? 
 

279. Give an example of a 5-interval S-simple loop. 
 
280. Give an example of a 6-interval simple group. 
 
281. What can one say about homomorphism of 3-interval group 

into a 4-interval group? Illustrate this situation by some 
examples. 

 
282. Give any nice application of n-interval groupoids. 

 
283. Can n-interval semigroups be used in automaton construction? 

(Here interval solution for machines to be used)? 
 
284. What is the application of n-interval loops in colouring 

problem of K2n?  
 

285. Give an example of a n-interval loop which is has no S-
subloops. 

 
286. Give any interesting applications of mixed n-interval matrix 

algebraic structure. 
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287. What can one say about applications of quasi mixed n-interval 
matrix algebraic structure? 

 
288. Give any possible applications of n-interval matrix groupoids. 
 
289. Can the notion of n-interval matrix groups help in any 

applications in physics? 
 
290. What can one say about the applications of quasi n-matrix 

interval semigroups? 
 
291. Determine those n-matrix interval semigroups which has no 

S-n-ideal. 
 

292. Find some interesting applications of n-matrix interval 
groupoids built using Zn’s. 

 
293. What is the benefit of using n-interval structures? 

 
294. Find an example 7-interval groupoid-loop which is S-

Moufang. 
 
295. Give an example quasi 6-interval loop-groupoid which is a S-

Bol. 
 

296. Give an example of a 5-interval loop-groupoid which is 
Smarandache strong right alternative. 
 

297. Obtain some special properties about S-strong Bol n-interval 
groupoid-loops which is not in general true for other n-
interval groupoid-loops. 

 
298. Give an example of a S-quasi 4-interval groupoid of order 

420. How many such S-quasi 4-interval groupoids can be 
constructed using Si = ([0, a] / a ∈ Zi, *, (p, q)),  
0 < i < ∞ ? 
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