Interval Valued Bipolar Fuzzy Weighted Neutrosophic Sets and Their Application

Irfan Deli
Muallim Rifat Faculty of Education, Kilis 7 Aralik University, 79000 Kilis, Turkey, irfandeli@kilis.edu.tr

Yusuf Şubaş
Muallim Rifat Faculty of Education, Kilis 7 Aralik University, 79000 Kilis, Turkey, ysubas@kilis.edu.tr

Florentin Smarandache
University of New Mexico, 705 Gurley Ave., Gallup, New Mexico 87301, USA. fsmarandache@gmail.com

Mumtaz Ali
Department of Mathematics, Quaid-i-Azam University Islamabad, Pakistan mumtazali7288@gmail.com

Abstract—Interval valued bipolar fuzzy weighted neutrosophic set(IVBFWN-set) is a new generalization of fuzzy set, bipolar fuzzy set, neutrosophic set and bipolar neutrosophic set so that it can handle uncertain information more flexibly in the process of decision making. Therefore, in this paper, we propose concept of IVBFWN-set and its operations. Also we give the IVBFWN-set weighted average operator and IVBFWN-set weighted geometric operator to aggregate the IVBFWN-sets, which can be considered as the generalizations of some existing ones under fuzzy, neutrosophic environments and so on. Finally, a decision making algorithm under IVBFWN environment is given based on the given aggregation operators and a real example is used to demonstrate the effectiveness of the method.

Keywords—Neutrosophic set, interval valued neutrosophic set, IVBFWN-set, average and geometric operator, multi-criteria decision making.

I. INTRODUCTION

To overcome containing various kinds of uncertainty, the concept of fuzzy sets [18] has been introduced by Zadeh. After Zadeh, many studies on mathematical modeling have been developed. For example; to model indeterminate and inconsistent information Smarandache [13] introduced the concept of neutrosophic set which is independently characterized by three functions called truth-membership function, indeterminacy-membership function and falsity membership function. Recently, studies on neutrosophic sets are made rapidly in [1,2]. Bipolar fuzzy sets, which are a generalization of Zadeh’s fuzzy sets [18], were originally proposed by Lee [9]. Bose and Pivert [4] said that “Bipolarity refers to the propensity of the human mind to reason and make decisions on the basis of positive and negative effects. Positive information states what is possible, satisfactory, permitted, desired, or considered as being acceptable. On the other hand, negative statements express what is impossible, rejected, or forbidden. Negative preferences correspond to constraints, since they specify which values or objects have to be rejected (i.e., those that do not satisfy the constraints), while positive preferences correspond to wishes, as they specify which objects are more desirable than others (i.e., satisfy user wishes) without rejecting those that do not meet the wishes.” Presently, works on bipolar fuzzy sets are progressing rapidly in [3,4,8-12,17]. Also, bipolar neutrosophic set(BN-set) and its operations is given in [7].

In this study, to handling some uncertainties in fuzzy sets and neutrosophic sets, the extensions of fuzzy sets[18], bipolar fuzzy sets[9], neutrosophic sets[13] and bipolar neutrosophic sets[7], interval valued bipolar fuzzy weighted neutrosophic sets with application are introduced.

II. PRELIMINARIES

In the section, we give some concepts related to bipolar fuzzy sets, neutrosophic sets, interval valued neutrosophic set, and bipolar neutrosophic sets.

Definition 2.1. [14] Let X be a universe of discourse. Then a single valued neutrosophic set is defined as:

$$ A_{ns} = \{(x, T(x), I(x), F(x)) : x \in X\} $$

which is characterized by a truth-membership function $T_{ns}(x) : X \rightarrow [0,1]$, an indeterminacy-membership function $I_{ns}(x) : X \rightarrow [0,1]$, and a falsity-membership function $F_{ns}(x) : X \rightarrow [0,1]$. There is no restriction on the sum of $T_{ns}(x), I_{ns}(x)$, and $F_{ns}(x)$ so $0 \leq T_{ns}(x) \leq I_{ns}(x) \leq F_{ns}(x) \leq 3$.

Definition 2.2. [15] Let X, be a space of points (objects) with generic elements in X, denoted by x. An interval valued neutrosophic set (for short IVNS) A in X, is characterized by truth-membership function $T_{iv}(x)$, indeterminacy-membership function $I_{iv}(x)$, and falsity-
membership function \(F_{a}(x) \). For each point \(x \) in \(X \), we have that \(T_{a}(x), I_{a}(x), F_{a}(x) \subseteq [0,1] \).

For two IVNS
\[
A_{\text{IVNS}} = \{ (x, [\inf T_{a}(x), \sup T_{a}(x)]), [\inf I_{a}(x), \sup I_{a}(x)],
\]
\[
[\inf F_{a}(x), \sup F_{a}(x)] : x \in X \}
\]
and
\[
B_{\text{IVNS}} = \{ (x, [\inf T_{b}(x), \sup T_{b}(x)]), [\inf I_{b}(x), \sup I_{b}(x)],
\]
\[
[\inf F_{b}(x), \sup F_{b}(x)] : x \in X \}
\]
Then,
1. \(A_{\text{IVNS}} \subseteq B_{\text{IVNS}} \) if and only if
\[
\inf T_{a}(x) \leq \inf T_{b}(x), \sup T_{a}(x) \leq \sup T_{b}(x),
\]
\[
\inf I_{a}(x) \geq \inf I_{b}(x), \sup I_{a}(x) \geq \sup I_{b}(x),
\]
\[
\inf F_{a}(x) \geq \inf F_{b}(x), \sup F_{a}(x) \geq \sup F_{b}(x)
\]
for all \(x \in X \).
2. \(A_{\text{IVNS}} = B_{\text{IVNS}} \) if and only if
\[
\inf T_{a}(x) = \inf T_{b}(x), \sup T_{a}(x) = \sup T_{b}(x),
\]
\[
\inf I_{a}(x) = \inf I_{b}(x), \sup I_{a}(x) = \sup I_{b}(x),
\]
\[
\inf F_{a}(x) = \inf F_{b}(x), \sup F_{a}(x) = \sup F_{b}(x)
\]
for any \(x \in X \).
3. \(A_{\text{IVNS}} \supseteq B_{\text{IVNS}} \) if and only if
\[
A_{\text{IVNS}} = \{ (x, [\inf T_{a}(x), \sup T_{a}(x)]), [1 - \sup I_{a}(x),
\]
\[
1 - \inf I_{a}(x)], [\inf F_{a}(x), \sup F_{a}(x)] : x \in X \}
\]
4. \(A_{\text{IVNS}} \cap B_{\text{IVNS}} \) if and only if
\[
A_{\text{IVNS}} \cap B_{\text{IVNS}} = \{ (x, [\inf T_{a}(x), \sup T_{a}(x)]),
\]
\[
[\inf I_{a}(x) \lor \inf I_{b}(x), \sup I_{a}(x) \lor \sup I_{b}(x)],
\]
\[
[\inf F_{a}(x) \lor \inf F_{b}(x), \sup F_{a}(x) \lor \sup F_{b}(x)] : x \in X \}
\]
5. \(A_{\text{IVNS}} \cup B_{\text{IVNS}} \) if and only if
\[
A_{\text{IVNS}} \cup B_{\text{IVNS}} = \{ (x, [\inf T_{a}(x) \lor \inf T_{b}(x),
\]
\[
\sup T_{a}(x) \lor \sup T_{b}(x)], [\inf I_{a}(x) \land \inf I_{b}(x),
\]
\[
\sup I_{a}(x) \land \sup I_{b}(x)], [\inf F_{a}(x) \land \inf F_{b}(x),
\]
\[
\sup F_{a}(x) \land \sup F_{b}(x)] : x \in X \}
\]
Definition 2.3. [9] Let \(X \) be a non-empty set. Then, a bipolar-valued fuzzy set, denoted by \(A_{\text{BF}} \), is defined as;
\[
A_{\text{BF}} = \{ (x, \mu_{a}^{+}(x), \mu_{b}^{+}(x)) : x \in X \}
\]
where \(\mu_{a}^{+}(x) : X \to [0,1] \) and \(\mu_{b}^{+}(x) : X \to [0,1] \). The positive membership degree \(\mu_{a}^{+}(x) \) denotes the satisfaction degree of an element \(x \) to the property corresponding to \(A_{\text{BF}} \) and the negative membership degree \(\mu_{b}^{+}(x) \) denotes the satisfaction degree of \(x \) to some implicit counter-property of \(A_{\text{BF}} \).

Definition 2.4. [7] A bipolar neutrosophic set \(A \) in \(X \) is defined as an object of the form
\[
A = \{ (x, T^{+}(x), I^{+}(x), F^{+}(x), T^{-}(x), I^{-}(x), F^{-}(x)) : x \in X \}
\]
where \(T^{+}, I^{+}, F^{+} : X \to [1.0] \) and \(T^{-}, I^{-}, F^{-} : X \to [-1.0] \).

The positive membership degree \(T^{+}(x), I^{+}(x), F^{+}(x) \) denotes the truth membership, indeterminate membership and false membership of an element \(x \in X \) corresponding to a bipolar neutrosophic set \(A \) and the negative membership degree \(T^{-}(x), I^{-}(x), F^{-}(x) \) denotes the truth membership, indeterminate membership and false membership of an element \(x \in X \) to some implicit counter-property corresponding to a bipolar neutrosophic set \(A \).

Definition 2.5. [7] Let
\[
A_1 = \{ (x, T_1^{+}(x), I_1^{+}(x), F_1^{+}(x), T_1^{-}(x), I_1^{-}(x), F_1^{-}(x)) : x \in X \}
\]
and
\[
A_2 = \{ (x, T_2^{+}(x), I_2^{+}(x), F_2^{+}(x), T_2^{-}(x), I_2^{-}(x), F_2^{-}(x)) : x \in X \}
\]
be two bipolar neutrosophic sets.

I. Then \(A_1 \subseteq A_2 \) if and only if
\[
T_1^{+}(x) \leq T_2^{+}(x), I_1^{+}(x) \leq I_2^{+}(x), F_1^{+}(x) \geq F_2^{+}(x),
\]
and
\[
T_1^{-}(x) \geq T_2^{-}(x), I_1^{-}(x) \geq I_2^{-}(x), F_1^{-}(x) \leq F_2^{-}(x)
\]
for all \(x \in X \).

II. Then \(A_1 = A_2 \) if and only if
\[
T_1^{+}(x) = T_2^{+}(x), I_1^{+}(x) = I_2^{+}(x), F_1^{+}(x) = F_2^{+}(x),
\]
and
\[
T_1^{-}(x) = T_2^{-}(x), I_1^{-}(x) = I_2^{-}(x), F_1^{-}(x) = F_2^{-}(x)
\]
for all \(x \in X \).

III. Then their union is defined as:
\[
(A_1 \cup A_2)(x) = \left\{ \max \left\{ T_1^{+}(x), T_2^{+}(x) \right\}, \frac{I_1^{+}(x) + I_2^{+}(x)}{2}, \min \left\{ F_1^{+}(x), F_2^{+}(x) \right\} \right\},
\]
\[
\min \left\{ T_1^{-}(x), T_2^{-}(x) \right\}, \frac{I_1^{-}(x) + I_2^{-}(x)}{2}, \max \left\{ F_1^{-}(x), F_2^{-}(x) \right\} \right\}
\]
for all \(x \in X \).
IV. Then their intersection is defined as:
\[
(A \cap A')(x) = \left\{ \min \left\{ T^{-}_1(x), T^+_2(x) \right\}, \frac{I^{-}_1(x) + I^+_2(x)}{2}, \max \left\{ F^{-}_1(x), F^+_2(x) \right\} \right\} \conform\ \max \left\{ I^{-}_1(x) + I^+_2(x), \frac{I^{-}_1(x) + I^+_2(x)}{2}, \min \left\{ F^{-}_1(x), F^+_2(x) \right\} \right\}
\]
for all \(x \in X \).

V. Then the complement of \(A \) is denoted by \(A^c \) and is defined by
\[
A^c = \left\{ x \mid \big(T^{-}_1(x), I^+_1(x), F^+_1(x), T^+_2(x), I^{-}_2(x), F^{-}_2(x) \big) : x \in X \right\}
\]
be two bipolar neutrosophic number. Then the operations for these numbers are defined as below;

a. \(\lambda A = \left\{ (1 - (1 - T^{-}_1))^{\lambda}, (1 - (F^{-}_1))^{\lambda}, (1 - (F^+_1))^{\lambda}, (1 - (F^{-}_1))^{\lambda}, (1 - (I^+_1))^{\lambda}, (1 - (I^{-}_1))^{\lambda} \right\} \)

b. \(A^\lambda = \left\{ (T^+_1)^{\lambda}, (1 - (1 - I^{-}_1))^{\lambda}, (1 - (F^{-}_1))^{\lambda}, (1 - (F^+_1))^{\lambda} \right\} \)

c. \(A + A_2 = \left\{ T^+_1 + T^+_2, I^+_1 + I^+_2, F^+_1 + F^+_2, T^+_1 + T^+_2, I^+_1 + I^+_2, F^+_1 + F^+_2 \right\} \)

d. \(A_2 + A = \left\{ T^+_1 + T^+_2, I^+_1 + I^+_2, F^+_1 + F^+_2, T^+_1 + T^+_2, I^+_1 + I^+_2, F^+_1 + F^+_2 \right\} \)

where \(\lambda > 0 \).

Definition 2.6. [7] Let \(A = \left\{ (x, T^{-}_1(x), I^+_1(x), F^+_1(x), T^+_2(x), I^{-}_2(x), F^{-}_2(x)) : x \in X \right\} \)
be a bipolar neutrosophic number. Then, the score function \(s(\vec{a}) \), accuracy function \(a(\vec{a}) \) and certainty function \(c(\vec{a}) \) of an NBN are defined as follows:
\[
s(\vec{a}) = \frac{1}{6} \left(T^+ - 1 + I^+ + 1 - F^+ + 1 + T^- + I^- - F^- \right)
\]
\[
a(\vec{a}) = T^- + F^+ + T^- - F^-
\]
\[
c(\vec{a}) = T^+ - F^-
\]

Definition 2.7. [7] Let \(\vec{a} = \left\{ (x, T^{-}_1(x), I^+_1(x), T^+_2(x), I^{-}_2(x), F^+_1(x)) : x \in X \right\} \)
be a family of bipolar neutrosophic numbers. Then,
a. \(F_w : \mathcal{A} \to \mathcal{A} \) is called bipolar neutrosophic weighted average operator if it satisfies;
\[
F_w(\vec{a}_1, \vec{a}_2, ..., \vec{a}_n) = \sum_{j=1}^{n} w_j \vec{a}_j
\]
where \(w_j \) is the weight of \(\vec{a}_j (j = 1, 2, ..., n) \), \(w_j \in [0, 1] \) and \(\sum_{j=1}^{n} w_j = 1 \).

b. \(H_w : \mathcal{A} \to \mathcal{A} \) is called bipolar neutrosophic weighted geometric operator if it satisfies;
\[
H_w(\vec{a}_1, \vec{a}_2, ..., \vec{a}_n) = \prod_{j=1}^{n} \vec{a}_j^{w_j}
\]
where \(w_j \) is the weight of \(\vec{a}_j (j = 1, 2, ..., n) \), \(w_j \in [0, 1] \) and \(\sum_{j=1}^{n} w_j = 1 \).

III. INTERVAL VALUED BIPOLAR FUZZY WEIGHTED NEUTROSOPHIC SET

In this section we give concept of IVBFWS-set and its operations. Also we give the IVBFWS-set weighted average operator and IVBFWS-set weighted geometric operator with properties to aggregate the IVBFWS-sets based on the study given in [7].

Definition 3.1. A interval valued bipolar fuzzy weighted neutrosophic set(IVBFWS-set) \(A \) in \(X \) is defined as an object of the form
\[A = \left\{ \left(x, [T^+_i(x), T^-_i(x)], [I^+_i(x), I^-_i(x)], [F^+_i(x), F^-_i(x)] \right), \right\} \]

where \(T^+_i, T^-_i, I^+_i, I^-_i, F^+_i, F^-_i : X \to [0,1] \) and \(T^+_i, T^-_i, I^+_i, I^-_i, F^+_i, F^-_i : X \to [-1,0] \). Also \(p : X \to [0,1] \) fuzzy weighted index of the element \(x \in X \).

Example 3.2. Let \(X = \{x_1, x_2, x_3\} \). Then

\[A = \{x, [0.3,0.9], [0.1,0.8], [0.2,0.5], [-0.8,-0.7], [-0.5,-0.1], [-0.4,-0.3], 0.5\} \]

is a IVBFWN subset of \(X \).

Theorem 3.3. A IVBFWN-set is the generalization of a bipolar fuzzy set and bipolar neutrosophic set.

Proof: Straightforward.

Definition 3.4. Let

\[A_i = \left\{ \left(x, [T^+_i(x), T^-_i(x)], [I^+_i(x), I^-_i(x)], [F^+_i(x), F^-_i(x)] \right), \right\} \]

and

\[A_i = \left\{ \left(x, [T^+_i(x), T^-_i(x)], [I^+_i(x), I^-_i(x)], [F^+_i(x), F^-_i(x)] \right), \right\} \]

be two IVBFWN-sets.

1. Then \(A_i \subseteq A_i \) if and only if

\[T^+_i(x) \leq T^+_i(x), \quad T^-_i(x) \leq T^-_i(x), \quad I^+_i(x) \geq I^+_i(x), \]

\[F^+_i(x) \leq F^+_i(x), \quad F^-_i(x) \geq F^-_i(x), \]

\[T^+_i(x) \leq T^+_i(x), \quad T^-_i(x) \leq T^-_i(x), \quad I^+_i(x) \geq I^+_i(x), \]

\[F^+_i(x) \geq F^+_i(x), \quad F^-_i(x) \geq F^-_i(x), \]

and

\[p_i(x) \leq p_i(x) \]

for all \(x \in X \).

2. Then \(A_i = A_i \) if and only if

\[T^+_i(x) = T^+_i(x), \quad T^-_i(x) = T^-_i(x), \quad I^+_i(x) = I^+_i(x), \]

\[F^+_i(x) = F^+_i(x), \quad F^-_i(x) = F^-_i(x), \]

\[T^+_i(x) = T^+_i(x), \quad T^-_i(x) = T^-_i(x), \quad I^+_i(x) = I^+_i(x), \]

\[F^+_i(x) = F^+_i(x), \quad F^-_i(x) = F^-_i(x), \]

and

\[p_i(x) = p_i(x) \]

for all \(x \in X \).

3. Then their union is defined as:

\[(A_i \cup A_i)(x) = \left(\max \left\{ T^+_i(x), T^-_i(x) \right\}, \max \left\{ I^+_i(x), I^-_i(x) \right\}, \max \left\{ F^+_i(x), F^-_i(x) \right\} \right), \]

\[\left(\frac{I^+_i(x) + I^-_i(x)}{2}, \frac{I^+_i(x) + I^-_i(x)}{2} \right), \]

\[\left(\min \{ F^+_i(x), F^-_i(x) \}, \min \{ F^+_i(x), F^-_i(x) \} \right), \]

\[\left(\frac{F^+_i(x) + F^-_i(x)}{2}, \frac{F^+_i(x) + F^-_i(x)}{2} \right), \]

\[\left(\min \{ F^+_i(x), F^-_i(x) \}, \min \{ F^+_i(x), F^-_i(x) \} \right) \]

for all \(x \in X \).

4. Then their intersection is defined as:

\[(A_i \cap A_i)(x) = \left(\min \left\{ T^+_i(x), T^-_i(x) \right\}, \min \left\{ I^+_i(x), I^-_i(x) \right\}, \min \left\{ F^+_i(x), F^-_i(x) \right\} \right), \]

\[\left(\frac{I^+_i(x) + I^-_i(x)}{2}, \frac{I^+_i(x) + I^-_i(x)}{2} \right), \]

\[\left(\max \{ F^+_i(x), F^-_i(x) \}, \max \{ F^+_i(x), F^-_i(x) \} \right), \]

\[\left(\frac{F^+_i(x) + F^-_i(x)}{2}, \frac{F^+_i(x) + F^-_i(x)}{2} \right), \]

\[\left(\min \{ F^+_i(x), F^-_i(x) \}, \min \{ F^+_i(x), F^-_i(x) \} \right) \]

for all \(x \in X \).

5. Then the complement of \(A_i \) is denoted by \(A_i^c \), is defined by

\[A = \left\{ \left(x, [F^+_i(x), F^-_i(x)], [1 - I^+_i(x), 1 - I^-_i(x)], [T^+_i(x), T^-_i(x)], 1 - p_i(x) \right) : x \in X \right\} \]

Example 3.5. Let \(X = \{x_1, x_2, x_3\} \). Then

\[A = \{x_1, [0.3,0.9], [0.1,0.8], [0.2,0.5], [-0.8,-0.7], [-0.5,-0.1], [-0.4,-0.3], [-0.4,-0.3], 0.5\} \]

and

\[A = \{x_1, [0.3,0.9], [0.1,0.8], [0.2,0.5], [-0.8,-0.7], [-0.5,-0.1], [-0.4,-0.3], [-0.4,-0.3], 0.5\} \]

are two IVBFWN-sets in \(X \).
Then their union is given as follows:
\[A \cup A_1 = \left\{ x \in \mathbb{R} \mid 0.3, 0.4 \right\} \]
Then their intersection is given as follows:
\[A \cap A_1 = \left\{ x \in \mathbb{R} \mid 0.3, 0.4 \right\} \]

Definition 3.6. Let
\[A = \left[T_{i_1}(x), T_{i_2}(x) \right], \left[I_{i_1}(x), I_{i_2}(x) \right], \left[F_{i_1}(x), F_{i_2}(x) \right], p_i(x) \]
and
\[A_2 = \left[T_{j_1}(x), T_{j_2}(x) \right], \left[I_{j_1}(x), I_{j_2}(x) \right], \left[F_{j_1}(x), F_{j_2}(x) \right], p_j(x) \]
be two IVBFN-numbers.

Then the operations for IVBFN-numbers are defined as below:

i. \[A \times \lambda = \left[T_{i_1}(x), T_{i_2}(x) \right], \left[I_{i_1}(x), I_{i_2}(x) \right], \left[F_{i_1}(x), F_{i_2}(x) \right], p_i(x) \]

ii. \[A + A_2 = \left[T_{i_1} + T_{j_1}, T_{i_2} + T_{j_2}, T_{i_3} + T_{j_3}, T_{i_4} + T_{j_4} \right], \left[I_{i_1} + I_{j_1}, I_{i_2} + I_{j_2}, I_{i_3} + I_{j_3}, I_{i_4} + I_{j_4} \right], \left[F_{i_1} + F_{j_1}, F_{i_2} + F_{j_2}, F_{i_3} + F_{j_3}, F_{i_4} + F_{j_4} \right] \]

iii. \[A \times A_2 = \left[T_{i_1} + T_{j_1}, T_{i_2} + T_{j_2}, T_{i_3} + T_{j_3}, T_{i_4} + T_{j_4} \right], \left[I_{i_1} + I_{j_1}, I_{i_2} + I_{j_2}, I_{i_3} + I_{j_3}, I_{i_4} + I_{j_4} \right], \left[F_{i_1} + F_{j_1}, F_{i_2} + F_{j_2}, F_{i_3} + F_{j_3}, F_{i_4} + F_{j_4} \right] \]

where \(\lambda > 0 \).

Definition 3.7. Let
\[\tilde{a} = \left[T_1, T_2, T_3, T_4 \right], \left[I_1, I_2, I_3, I_4 \right], \left[F_1, F_2, F_3, F_4 \right] \]
be a IVBFN-number. Then, the score function \(S(\tilde{a}) \) accuracy function \(A(\tilde{a}) \) and certainty function \(C(\tilde{a}) \) of an NBN are defined as follows:

\[S(\tilde{a}) = \frac{p(x)}{12} \left(T_1 + T_2 + T_3 + T_4 + I_1 + I_2 + I_3 + I_4 + F_1 + F_2 + F_3 + F_4 \right) \]
\[A(\tilde{a}) = p(x) \left(T_1 + T_2 + T_3 + T_4 + I_1 + I_2 + I_3 + I_4 + F_1 + F_2 + F_3 + F_4 \right) \]
\[C(\tilde{a}) = p(x) \left(T_1 + T_2 + T_3 + T_4 + I_1 + I_2 + I_3 + I_4 + F_1 + F_2 + F_3 + F_4 \right) \]

The comparison method can be defined as follows:

i. If \(S(\tilde{a}_1) > S(\tilde{a}_2) \), then \(\tilde{a}_1 \) is greater than \(\tilde{a}_2 \), that is, \(\tilde{a}_1 \) is superior to \(\tilde{a}_2 \), denoted by \(\tilde{a}_1 > \tilde{a}_2 \);

ii. If \(S(\tilde{a}_1) = S(\tilde{a}_2) \), and \(A(\tilde{a}_1) > A(\tilde{a}_2) \), then \(\tilde{a}_1 \) is greater than \(\tilde{a}_2 \), that is, \(\tilde{a}_1 \) is superior to \(\tilde{a}_2 \), denoted by \(\tilde{a}_1 > \tilde{a}_2 \);

iii. If \(S(\tilde{a}_1) = S(\tilde{a}_2) \), \(A(\tilde{a}_1) = A(\tilde{a}_2) \), and \(C(\tilde{a}_1) > C(\tilde{a}_2) \), then \(\tilde{a}_1 \) is greater than \(\tilde{a}_2 \), that is, \(\tilde{a}_1 \) is superior to \(\tilde{a}_2 \), denoted by \(\tilde{a}_1 > \tilde{a}_2 \);

iv. If \(S(\tilde{a}_1) = S(\tilde{a}_2) \), \(A(\tilde{a}_1) > A(\tilde{a}_2) \), and \(C(\tilde{a}_1) = C(\tilde{a}_2) \), then \(\tilde{a}_1 \) is equal to \(\tilde{a}_2 \), that is, \(\tilde{a}_1 \) is indifferent to \(\tilde{a}_2 \), denoted by \(\tilde{a}_1 \cong \tilde{a}_2 \);

Definition 3.8. Let
\[\tilde{a}_j = \left[T_{i_j}, T_{j_j}, I_{i_j}, I_{j_j}, F_{i_j}, F_{j_j} \right] \]
be a family of IVBFN-numbers. A mapping \(A_p : \mathcal{I} \rightarrow \mathcal{I} \) is called IVBFN-weighted average operator if it satisfies

\[A_p(\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) = \sum_{j=1}^{n} p_j \tilde{a}_j \]

\[= \left\{ 1 - \prod_{j=1}^{n} \left(1 - T_{i_j} \right)^{p_j} \right\}, \left\{ 1 - \prod_{j=1}^{n} \left(1 - T_{j_j} \right)^{p_j} \right\} \]
where \(w_j \) is the weight of \(\tilde{a}_j (j = 1, 2, \ldots, n) \), \(w_j \in [0, 1] \) and \(\sum_{j=1}^{n} w_j = 1 \).

Theorem 3.9.

Let

\[
\tilde{a}_j = \left[\frac{T_{j1}^+}{T_{jk}}, T_{jk}^+ \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right], \left[T_{j1}, T_{jk} \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right] \quad (j = 1, 2, \ldots, n)
\]

be a family of IVBFWN-numbers. Then,

i. If \(\tilde{a}_j = \tilde{a} \) for all \(j = 1, 2, \ldots, n \) then,

\[A_w (\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) = \tilde{a} \]

ii. \(\min_{j=1,2,\ldots,n} \tilde{a}_j \leq A_w (\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) \leq \max_{j=1,2,\ldots,n} \tilde{a}_j \)

iii. If \(\tilde{a}_j = \tilde{a}_j^* \) for all \(j = 1, 2, \ldots, n \) then,

\[A_w (\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) = A_w (\tilde{a}_1^*, \tilde{a}_2^*, \ldots, \tilde{a}_n^*) \]

Definition 3.10.

Let

\[
\tilde{a}_j = \left[\frac{T_{j1}^+}{T_{jk}}, T_{jk}^+ \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right], \left[T_{j1}, T_{jk} \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right] \quad (j = 1, 2, \ldots, n)
\]

be a family of IVBFWN-numbers. A mapping \(G_w : \mathbb{A} \rightarrow \mathbb{A} \) is called IVBFWN-weighted geometric operator if it satisfies

\[G_w (\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) = \prod_{j=1}^{n} \tilde{a}_j^w \]

where \(\tilde{a}_j^w = \tilde{a}_j \) for all \(j = 1, 2, \ldots, n \) and \(\sum_{j=1}^{n} w_j = 1 \).

Theorem 3.11.

Let

\[
\tilde{a}_j = \left[\frac{T_{j1}^+}{T_{jk}}, T_{jk}^+ \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right], \left[T_{j1}, T_{jk} \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right] \quad (j = 1, 2, \ldots, n)
\]

be a family of IVBFWN-numbers. Then,

i. If \(\tilde{a}_j = \tilde{a} \) for all \(j = 1, 2, \ldots, n \) then,

\[G_w (\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) = \tilde{a} \]

ii. \(\min_{j=1,2,\ldots,n} \tilde{a}_j \leq G_w (\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) \leq \max_{j=1,2,\ldots,n} \tilde{a}_j \)

iii. If \(\tilde{a}_j = \tilde{a}_j^* \) for all \(j = 1, 2, \ldots, n \) then,

\[G_w (\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n) = G_w (\tilde{a}_1^*, \tilde{a}_2^*, \ldots, \tilde{a}_n^*) \]

Note that the aggregation results are still NBNs.

IV. NBN-DECISION MAKING METHOD

In this section, we develop an approach based on the \(A_w \) (or \(G_w \)) operator and the above ranking method to deal with multiple criteria decision making problems with IVBFWN-information.

Suppose that \(A = \{A_1, A_2, \ldots, A_m\} \) and \(C = \{C_1, C_2, \ldots, C_n\} \) is the set of alternatives and criterions or attributes, respectively. Let \(w = (w_1, w_2, \ldots, w_n) \) be the weight vector of attributes, such that \(\sum_{j=1}^{n} w_j = 1 \), \(w_j \geq 0 (j = 1, 2, \ldots, n) \) and \(w_j \) refers to the weight of attribute \(C_j \). An alternative on criterions is evaluated by the decision maker, and the evaluation values are represented by the form of IVBFWN-numbers. Assume that

\[\tilde{a}_j \] is the evaluation value of alternative \(A_j \) with respect to criterion \(C_j \), then

\[\tilde{a}_j = \left[\frac{T_{j1}^+}{T_{jk}}, T_{jk}^+ \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right], \left[T_{j1}, T_{jk} \right], \left[I_{j1}^-, I_{jk}^- \right], \left[F_{j1}^+, F_{jk}^+ \right] \quad (j = 1, 2, \ldots, n)
\]

where \(\tilde{a}_j \in \mathbb{NBN} \).
is the decision matrix provided by the decision maker; \(\bar{a}_y \) is an IVBFWN-number for alternative \(A_i \), associated with the criterions \(C_j \). We have the conditions
\[
T_{ij}^+, T_{ij}^-, I_{ij}^+, I_{ij}^-, F_{ij}^+, F_{ij}^- \in [0, 1]
\]
such that
\[
0 \leq T_{ij}^+ + T_{ij}^- + I_{ij}^+ + I_{ij}^- + F_{ij}^+ + F_{ij}^- - T_{ij}^+ - T_{ij}^- - I_{ij}^+ - I_{ij}^- - F_{ij}^+ - F_{ij}^- \leq 12
\]
for \((i = 1, 2, \ldots, m) \) and \((j = 1, 2, \ldots, n) \).

Now, we can develop an algorithm as follows;

Algorithm

Step 1. Construct the decision matrix provided by the decision maker as;
\[
(\bar{a}_y)_{mn} = \left(\left(T_{ij}^+, T_{ij}^-, I_{ij}^+, I_{ij}^-, F_{ij}^+, F_{ij}^- \right) \right)_{mn}
\]

Step 2. Compute \(\bar{a}_{i} = A_y \left(\bar{a}_{i1}, \bar{a}_{i2}, \ldots, \bar{a}_{im} \right) \) (or \(G_y \left(\bar{a}_{i1}, \bar{a}_{i2}, \ldots, \bar{a}_{im} \right) \)) for each \(\bar{a}_i (i = 1, 2, \ldots, m) \)

Step 3. Calculate the score values of \(S(\bar{a}_i) \) for the \((i = 1, 2, \ldots, m) \) collective overall IVBFWN-number of \(\bar{a}_i (i = 1, 2, \ldots, m) \)

Step 4. Rank all the software systems of \(\bar{a}_i (i = 1, 2, \ldots, m) \) according to the score values

Now, we give a numerical example as follows;

Example 4.1. Let us consider decision making problem adapted from Ye [16]. There is an investment company, which wants to invest a sum of money in the best option. There is a panel with the set of the four alternatives is denoted by \(C_i \) = car company \(C_2 \) = food company, \(C_3 \) = computer company, \(C_4 \) = arms company to invest the money. The investment company must take a decision according to the set of the four attributes is denoted by \(A_i \) = risk, \(A_2 \) = growth, \(A_3 \) = environmental impact, \(A_4 \) = performance. Also, the weight vector of the attributes \(C_j (j = 1, 2, 3, 4) \) is
\(w = (0.24, 0.26, 0.26, 0.024) \). Then the according to this algorithm, we have,

Step1. Construct the decision matrix provided by the customer as;

Step 2. Compute \(\bar{a}_i = A_y \left(\bar{a}_{i1}, \bar{a}_{i2}, \bar{a}_{i3}, \bar{a}_{i4} \right) \) for each \(\bar{a}_i (i = 1, 2, 3, 4) \) as;
\[
\bar{a}_1 = \{0.4, 0.8, 0.2, 0.6, 0.1, 0.3, 0.5, 0.2, 0.4, 0.6, 0.2, 0.5\}
\]
\(\bar{a}_2 = \{0.3, 0.8, 0.1, 0.4, 0.2, 0.6, 0.3, 0.2, 0.5, 0.4, 0.6, 0.3\} \)
\(\bar{a}_3 = \{0.4, 0.8, 0.2, 0.7, 0.3, 0.6, 0.3, 0.4, 0.5, 0.6, 0.3, 0.4\} \)
\(\bar{a}_4 = \{0.3, 0.7, 0.4, 0.7, 0.3, 0.6, 0.4, 0.7, 0.5, 0.6, 0.5, 0.7\} \)

Step 3. Calculate the score values of \(S(\bar{a}_i) (i = 1, 2, 3, 4) \) for the collective overall IVBFWN-number of \(\bar{a}_i (i = 1, 2, \ldots, m) \) as;
\[
S(\bar{a}_1) = 0.56 \quad S(\bar{a}_2) = 0.59 \quad S(\bar{a}_3) = 0.57 \quad S(\bar{a}_4) = 0.47
\]

Step 4. Rank all the software systems of \(\bar{a}_i (i = 1, 2, 3, 4) \) according to the score values as;

<table>
<thead>
<tr>
<th>(A_i)</th>
<th>Decision matrix given by customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>{0.5, 0.6, 0.2, 0.5, 0.1, 0.7, 0.2, 0.1, 0.6, 0.2, 0.4, 0.3}</td>
</tr>
<tr>
<td>(A_2)</td>
<td>{0.1, 0.2, 0.3, 0.8, 0.2, 0.4, 0.5, 0.1, 0.7, 0.5, 0.4, 0.6}</td>
</tr>
<tr>
<td>(A_3)</td>
<td>{0.4, 0.8, 0.2, 0.6, 0.3, 0.4, 0.7, 0.4, 0.6, 0.4, 0.5, 0.6}</td>
</tr>
<tr>
<td>(A_4)</td>
<td>{0.6, 0.9, 0.3, 0.8, 0.5, 0.6, 0.8, 0.5, 0.6, 0.9, 0.5, 0.6}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C_i)</th>
<th>Decision matrix given by customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>{0.0, 0.6, 0.2, 0.5, 0.1, 0.7, 0.2, 0.1, 0.6, 0.2, 0.4, 0.3}</td>
</tr>
<tr>
<td>(C_2)</td>
<td>{0.1, 0.2, 0.3, 0.8, 0.2, 0.4, 0.5, 0.1, 0.7, 0.5, 0.4, 0.6}</td>
</tr>
<tr>
<td>(C_3)</td>
<td>{0.4, 0.8, 0.2, 0.6, 0.3, 0.4, 0.7, 0.4, 0.6, 0.4, 0.5, 0.6}</td>
</tr>
<tr>
<td>(C_4)</td>
<td>{0.6, 0.9, 0.3, 0.8, 0.5, 0.6, 0.8, 0.5, 0.6, 0.9, 0.5, 0.6}</td>
</tr>
</tbody>
</table>
$A_2 > A_3 > A_4 > A_1$

and thus A_2 is the most desirable alternative.

Conclusion

This paper presented an interval-valued bipolar neutrosophic set and its score, certainty and accuracy functions. In the future, we shall further study more aggregation operators for interval-valued bipolar neutrosophic set and apply them to solve practical applications in group decision making, expert system, information fusion system, game theory, and so on.

References

