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Preface

Maps as a mathematical topic arose probably from the four color

problem[Bir1, Ore1] and the more general map coloring problem[HiC1,

Rin1, Liu11] in the mid of nineteenth century although maps as poly-

hedra which go back to the Platonic age. I could not list references

in detail on them because it is well known for a large range of readers

and beyond the scope of this book. Here, I only intend to present

a comprehensive theory of maps as a rigorous mathematical concept

which has been developed mostly in the last half a century.

However, as described in the book[Liu15] maps can be seen as

graphs in development from partition to permutation and as a basis

extended to Smarandache geometry shown in [Mao3–4]. This is why

maps are much concerned with abstraction in the present stage.

In the beginning, maps as polyhedra were as a topological, or ge-

ometric object even with geographical consideration[Kem1]. The first

formal definition of a map was done by Heffter from [Hef1] in the 19th

century. However, it was not paid an attention by mathematicians

until 1960 when Edmonds published a note in the AMS Notices with

the dual form of Heffter’s in [Edm1,Liu3].

Although this concept was widely used in literature as [Liu1–2,

Liu4–6, Rin1–3, Sta1–2, et al], its disadvantage for the nonorientable

case involved does not bring with some convenience for clarifying some

related mathematical thinking.

Since Tutte described the nonorientability in a new way [Tut1–

3], a number of authors begin to develop it in combinatorization of

continuous objects as in [Lit1, Liu7–10, Vin1–2, et al].

The above representations are all with complication in construct-

ing an embedding, or all distinct embeddings of a graph on a surface.
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However, the joint tree model of an embedding completed in recent

years and initiated from the early articles at the end of seventies in

the last century by the present author as shown in [Liu1–2] enables us

to make the complication much simpler.

Because of the generality that an asymmetric object can always

be seen with some local symmetry in certain extent, the concepts of

graphs and maps are just put in such a rule. In fact, the former is

corresponding to that a group of two elements sticks on an edge and

the later is that a group of four elements sticks on an edge such that

a graph without symmetry at all is in company with local symmetry.

This treatment will bring more advantages for observing the structure

of a graph. Of course, the later is with restriction of the former because

of the later as a permutation and the former as a partition.

The joint tree representation of an embedding of a graph on

two dimensional manifolds, particularly surfaces(compact 2-manifolds

without boundary in our case), is described in Chapter I for simplifying

a number of results old and new.

This book contains the following chapters in company with re-

lated subjects.

In Chapter I, the embedding of a graph on surfaces are much

concerned because they are motivated to building up the theory of

abstract maps related with Smarandache geometry.

The second chapter is for the formal definition of abstract maps.

One can see that this matter is a natural generalization of graph em-

bedding on surfaces.

The third chapter is on the duality not only for maps themselves

but also for operations on maps from one surface to another. One

can see how the duality is naturally deduced from the abstract maps

described in the second chapter.

The fourth chapter is on the orientability. One can see how the

orientability is formally designed as a combinatorial invariant. The

fifth chapter concentrates on the classification of orientable maps. The

sixth chapter is for the classification of nonorientable maps.

From the two chapters: Chapter V and Chapter VI, one can see
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how the procedure is simplified for these classifications.

The seventh chapter is on the isomorphisms of maps and pro-

vides an efficient algorithm for the justification and recognition of the

isomorphism of two maps, which has been shown to be useful for de-

termining the automorphism group of a map in the eighth chapter.

Moreover, it enables us to access an automorphism of a graph.

The ninth and the tenth chapters observe the number of distinct

asymmetric maps with the size as a parameter. In the former, only

one vertex maps are counted by favorite formulas and in the latter,

general maps are counted from differential equations. More progresses

about this kind of counting are referred to read the recent book[Liu7]

and many further articles[Bax1, BeG1, CaL1–2, ReL1–3, etc].

The next chapter, Chapter XI, only presents some ideas for ac-

cessing the symmetric census of maps and further, of graphs. This

topic is being developed in some other directions[KwL1–2] and left as

a subject written in the near future.

From Chapter XII through Chapter XV, extensions from basic

theory are much concerned with further applications.

Chapter XII discusses in brief on genus polynomial of a graph

and all its super maps rooted and unrooted on the basis of the joint

tree model. Recent progresses on this aspect are referred to read the

articles [Liu13–15, LiP1, WaL1–2, ZhL1–2, ZuL1, etc].

Chapter XIII is on the census of maps with vertex or face par-

titions. Although such census involves with much complication and

difficulty, because of the recent progress on a basic topic about trees

via an elementary method firstly used by the author himself we are

able to do a number of types of such census in very simple way. This

chapter reflects on such aspects around.

Chapter XIV is on graphs that their super maps are particularly

considered for asymmetrical and symmetrical census via their semi-

automorphism and automorphism groups or via embeddings of graphs

given [Liu19, MaL1, MaT1, MaW1, etc].

Chapter XV, is on functional equations discovered in the census

of a variety of maps on sphere and general surfaces. Although their
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well definedness has been done, almost all of them have not yet been

solved up to now.

Three appendices are compliment to the context. One provides

the clarification of the concepts of polyhedra, surfaces, embeddings,

and maps and their relationship. The other two are for exhaustively

calculating numerical results and listing all rooted and unrooted maps

for small graphs with more calculating results compared with those

appearing in [Liu14], [Liu17] and [Liu19].

From a large amount of materials, more than hundred observa-

tions for beginners probably senior undergraduates, more than hun-

dred exercises for mainly graduates of master degree and more than

hundred research problems for mainly graduates of doctoral degree are

carefully designed at the end of each chapter in adapting the needs of

such a wide range of readers for mastering, extending and investigat-

ing a number of ways to get further development on the basic theory

of abstract maps.

Although I have been trying to design this book self contained as

much as possible, some books such as [DiM1], [Mss1] and [GaJ1] might

be helpful to those not familiar with basic knowledge of permutation

groups, topology and computing complexity as background.

Since early nineties of the last century, a number of my former

and present graduates were or are engaged with topics related to this

book. Among them, I have to mention Dr. Ying Liu[LpL1], Dr. Yuan-

qiu Huang[HuL1], Dr. Junliang Cai[CaL1–2], Dr. Deming Li[LiL1],

Dr. Han Ren[ReL1–3], Dr. Rongxia Hao[HaC1, HaL1], Dr. Zhaox-

iang Li[LiQ1–2], Dr. Linfan Mao[MaL1, MaT1, MaW1], Dr. Er-

ling Wei[WiL1–2], Dr. Weili He[HeL1], Dr. Liangxia Wan[WaL1–2],

Dr. Yichao Chen[CnL1, CnR1], Dr. Yan Xu[XuL1–2], Dr. Wen-

zhong Liu[LwL1–2], Dr. Zeling Shao[ShL1], Dr. Yan Yang[YaL1–2],

Dr. Guanghua Dong[DoL1], Ms. Ximei Zhao[ZhL1–2], Mr. Lifeng

Li[LiP1], Ms. Huiyan Wang[WgL1], Ms. Zhao Chai[CiL1], Mr. Zi-

long Zhu[ZuL1], et al for their successful work related to this book.

On this occasion, I should express my heartiest appreciation of

the financial support by KOSEF of Korea from the Com2MaC (Com-



Preface vii

binatorial and Computational Mathematics Research Center) of the

Pohang University of Science and Technology in the summer of 2001.

In that period, the intention of this book was established. Moreover,

I should be also appreciated to the Natural Science Foundation of

China for the research development reflected in this book under its

Grants(60373030, 10571013, 10871021).

Y.P. Liu

Beijing, China

Jan., 2010
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Chapter I

Abstract Embeddings

• A graph is considered as a partition on the union of sets obtained

from each element of a given set the binary group B = {0, 1} sticks

on.

• A surface, i.e., a compact 2-manifold without boundary in topol-

ogy, is seen as a polygon of even edges pairwise identified.

• An embedding of a graph on a surface is represented by a joint

tree of the graph. A joint of a graph consists of a plane extended

tree with labelled cotree semi-edges. Two semi-edges of a cotree

edge has the same label as the cotree edge with a binary index.

An extended tree is compounded of a spanning tree with cotree

semi-edges.

• Combinatorial properties of an embedding in abstraction are par-

ticularly discussed for the formal definition of a map.

I.1 Graphs and networks

LetX be a finite set. For any x ∈ X, the binary group B = {0, 1}
sticks on x to obtain Bx = {x(0), x(1)}. x(0) and x(1) are called the

ends of x, or Bx. If Bx is seen as an ordered set 〈x(0), x(1)〉, then
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x(0) and x(1) are, respectively,initial and terminal ends of x. Let

X =
∑

x∈X
Bx, (1.1)

i.e., the disjoint union of all Bx, x ∈ X. X is called the ground set.

A (directed) pregraph is a partition Par= {P1, P2, · · ·} of the

ground set X ,i.e.,

X =
∑

i≥1

Pi. (1.2)

Bx (or 〈x(0), x(1)〉), or simply denoted by x itself, x ∈ X, is called an

(arc) edge and Pi, i ≥ 1, a node or vertex.

A (directed) pregraph is written as G = (V,E) where V =Par

and

E = B(X) = {Bx|x ∈ X}

(= {〈x(0), x(1)〉|x ∈ X}).

If X is a finite set, the (directed) pregraph is called finite; otherwise,

infinite. In this book, (directed) pregraphs are all finite.

If X = ∅, then the (directed) pregraph is said to be empty as

well.

An edge (arc) is considered to have two semiedges each of them

is incident with only one end (semiarcs with directions of one from

the end and the other to the end). An edge (arc) is with two ends

identified is called a selfloop (di-selfloop); otherwise, a link (di-link). If

t edges (arcs) have same ends (same direction) are called a multiedge

(multiarc), or t-edge (t-arc).

Example 1.1 There are two directed pregraphs on X = {x},
i.e.,

Par1 = {{x(0)}, {x(1)}};

Par2 = {{x(0), x(1)}}.

They are all distinct pregraphs as well as shown in Fig.1.1.
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x +x

Par1 Par2

Fig.1.1 Directed pregraphs of 1 edge

Further, pregraphs of size 2 are observed.

Example 1.2 On X = {x1, x2}, the 15 directed pregraphs are

as follows:

Par1 = {{x1(0)}, {x1(1)}, {x2(0)}, {x2(1)}};
Par2 = {{x1(0), x1(1)}, {x2(0)}, {x2(1)}};
Par3 = {{x1(0), x2(0)}, {x1(1)}, {x2(1)}};
Par4 = {{x1(0), x2(1)}, {x1(1)}, {x2(0)}};
Par5 = {{x1(0)}, {x1(1), x2(0)}, {x2(1)}};
Par6 = {{x1(0)}, {x1(1), x2(1)}, {x2(0)}};
Par7 = {{x1(0)}, {x1(1)}, {x2(1), x2(0)}};
Par8 = {{x1(0), x1(1), x2(0)}, {x2(1)}};
Par9 = {{x1(0), x1(1), x2(1)}, {x2(0)}};
Par10 = {{x1(0), x2(0), x2(1)}, {x1(1)}};
Par11 = {{x1(0)}, {x1(1), x2(0), x2(1)}};
Par12 = {{x1(0), x1(1), x2(0), x2(1)}};
Par13 = {{x1(0), x1(1)}, {x2(0), x2(1)}};
Par14 = {{x1(0), x2(0)}, {x1(1), x2(1)}};
Par15 = {{x1(0), x2(1)}, {x1(1), x2(0)}}.

Among the 15 directed pregraphs, Par3, Par4, Par5 and Par6

are 1 pregraph; Par8 and Par9 are 1 pregraph; Par10 and Par11 are 1

pregraph; Par14 and Par15 are 1 pregraph; and others are 1 pregraph

each. Thus, there are 9 pregraphs in all(as shown in Fig.1.2).
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x2

Par10 Par11 Par12? 	x1
x2 -6x1

x2

-�x1

x2

Par13 Par14 Par15

Fig.1.2 Directed pregraphs of 2 edges

Now, Par= {P1, P2, · · ·} and B are, respectively, seen as a map-

ping z 7→ Pi, z ∈ Pi, i ≥ 1 and a mapping z 7→ z̄, z̄ 6= z, {z, z̄} ∈
B(X). The composition of two mappings α and β on a set Z is defined
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to be the mapping

(αβ)z =
⋃

y∈βz

αy, z ∈ Z. (1.3)

Let Ψ{Par,B} be the semigroup generated by Par=Par(X) and B =

B(X). Since the mappings α =Par and B have the property that

y ∈ αz ⇔ z ∈ αy, it can be checked that for any z, y ∈ B(X), what is

determined by

∃γ ∈ Ψ{Par,B}, z ∈ γy
is an equivalence. If B(X) itself is a equivalent class, then the semi-

group Ψ{Par,B} is called transitive on X = B(X). A (directed)pregraph

with Ψ{Par,B} transitive on X is called a (directed )graph .

A (directed)pregraph G = (V,E) that for any two vertices u, v ∈
V , there exists a sequence of edges e1, e2, · · · , es for the two ends of ei,

i = 2, 3, · · · , s−1, are in common with those of respective ei−1 and ei+1

where u and v are, respectively, the other ends of e1 and es, is called

connected . Such a sequence of edges is called a trail between u and

v. A trail without edge repetition is a walk. A walk without vertex

repetition is a path. A trail, walk, or path with u = v is, respectively,

a travel, tour, or circuit.

Theorem 1.1 A (directed)pregraph is a (directed)graph if, and

only if, it is connected.

Proof Necessity. Since Park = Par, k ≥ 1, and Bk = B, k ≥ 1,

by the transitivity, for any two elements y, z ∈ X , there exists γ such

that z ∈ γy and there exists an integer n ≥ 0 such that

γ = (BPar)nB = (BPar) · · · (BPar)︸ ︷︷ ︸
n

B, (1.4)

where BPar appears for n times. Therefore, the (directed)pregraph is

connected.

Sufficiency. If a (directed)pregraph is connected, i.e., for any

two elements x, y ∈ X , their incident vertices u, v ∈ V , have edges

e1, e2, · · · , es, such that ei, i = 2, 3, · · · , s− 1, is in common with ei−1
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and ei+1. Of course, u and v are, respectively, the ends of e1 and es.

Thus, y ∈ γz whereγ = (ParB)sB. This implies that the semigroup

Ψ{Par,B} is transitive on X . Therefore, the (directed)pregraph is a

(directed)graph. �

It is seen from the theorem that (directed) graphs here are, in

fact, connected (directed) graphs in most textbooks. Because discon-

nectedness is rarely necessary to consider, for convenience all graphs,

embeddings and then maps in what follows are defined within con-

nectedness in this book.

A network N is such a graph G = (V,E) with a real function

w(e) ∈ R, e ∈ E on E, and hence write N = (G;w). Usually, a

network N is denoted by the graph G itself if no confusion occurs.

Finite recursion principle On a finite set A, choose a0 ∈ A
as the initial element at the 0th step. Assume ai is chosen at the ith,

i ≥ 0, step with a given rule. If not all elements available from ai are

not yet chosen, choose one of them as ai+1 at the i + 1st step by the

rule, then a chosen element will be encountered in finite steps unless

all elements of A are chosen.

Finite restrict recursion principle On a finite set A, choose

a0 ∈ A as the initial element at the 0th step. Assume ai is chosen at

the ith, i ≥ 0, step with a given rule. If a0 is not available from ai,

choose one of elements available from ai as ai+1 at the i+ 1st step by

the rule, then a0 will be encountered in finite steps unless all elements

of A are chosen.

The two principles above are very useful in finite sets, graphs and

networks, even in a wide range of combinatorial optimizations.

A G = (V,E) with V = V1 + V2 of both V1 and V2 independent,

i.e., its vertex set is partitioned into two parts with each part having

no pair of vertices adjacent, is called bipartite.

Theorem 1.2 A graph G = (V,E) is bipartite if, and only if,

G has no circuit with odd number of edges.

Proof Necessity. Since G is bipartite, start from v0 ∈ V ini-
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tially chosen and then by the rule from the vertex just chosen to one

of its adjacent vertices via an edge unused and then marked by used,

according to the finite recursion principle, an even circuit (from bipar-

tite), or no circuit at all, can be found. From the arbitrariness of v0

and the way going on, no circuit of G is with odd number of edges.

Sufficiency. Since all circuits are even, start from marking an

arbitrary vertex by 0 and then by the rule from a vertex marked

by b ∈ B = {0, 1} to mark all its adjacent vertices by b = 1 − b,

according to the finite recursion principle the vertex set is partitioned

into V0 = {v ∈ V | marked by 0} and V1 = {v ∈ V | marked by 1}. By

the rule, V0 and V1 are both independent and hence G is bipartite. �

From this theorem, a graph without circuit is bipartite. In fact,

from the transitivity, any graph without circuit is a tree.

On a pregraph, the number of elements incident to a vertex is

called the degree of the vertex. A pregraph of all vertices with even

degree is said to be even . If an even pregraph is a graph, then it is

called a Euler graph.

Theorem 1.3 A pregraph G = (V,E) is even if, and only if,

there exist circuits C1, C2, · · · , Cn, on G such that

E = C1 + C2 + · · ·+ Cn, (1.5)

where n is a nonnegative integer.

Proof Necessity. Since all the degrees of vertices on G are even,

any pregraph obtained by deleting the edges of a circuit from G is still

even. From the finite recursion principle, there exist a nonnegative

integer n and circuits C1, C2, · · · , Cn, on G such that (1.5) is satisfied.

Sufficiency. Because a circuit contributes 2 to the degree of each

of its incident vertices, (1.5) guarantees each of vertices on G has even

degree. Hence, G is even. �

The set of circuits {Ci|1 ≤ i ≤ n} of G in (1.5) is called a

circuit partition, or written as Cir=Cir(G). Two direct conclusions of

Theorem 1.3 are very useful . One is the case that G is a graph. The
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other is for G is a directed pregraph. Their forms and proofs are left

for the reader.

Let N = (G;w) be a network where G = (V,E) and w(e) =

−w(e) ∈ Zn = {0, 1, · · · , n − 1}, i.e., mod n, n ≥ 1, integer group.

For examples, Z1 = {0}, Z2 = B = {0, 1} etc. Suppose xv = −xv ∈
Zn, v ∈ V , are variables. Let us discuss the system of equations

xu + xv = w(e) (mod n), e = (u, v) ∈ E (1.6)

on Zn.

Theorem 1.4 System of equations(1.6) has a solution on Zn

if, and only if, there is no circuit C such that

∑

e∈C
w(e) 6= 0 (mod n) (1.7)

on N .

Proof Necessity. Assume C is a circuit satisfying (1.7) on N .

Because the restricted part of (1.6) on C has no solution, the whole

system of equations (1.6) has to be no solution either. Therefore, N

has no such circuit. This is a contradiction to the assumption

Sufficiency. Let x0 = a ∈ Zn, start from v0 ∈ V reached. Assume

vi ∈ V reached and xi = ai at step i. Choose one of ei = (vi, vi+1) ∈ E
without used(otherwise, backward 1 step as the step i). Choose vi+1

reached and ei used with ai+1 = ai + w(ei) at step i + 1. If a circuit

as {e0, e1, · · · , el}, ej = (vj, vj+1), 0 ≤ j ≤ l, vl+1 = v0, occurs within a

permutation of indices, then from (1.7)

al+1 = al + w(el)

= al−1 + w(el−1) + w(el)

· · · · · ·

= a0 +

l∑

j=0

w(ej)

= a0.
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Because the system of equations obtained by deleting all the equations

for all the edges on the circuit from (1.6) is equivalent to the original

system of equations (1.6), in virtue of the finite recursion principle a

solution of (1.6) can always be extracted . �

When n = 2, this theorem has a variety of applications. In [Liu5],

some applications can be seen. Further, its extension on a nonAbelian

group can also be done while the system of equations are not yet linear

but quadratic.

I.2 Surfaces

In topology, a surface is a compact 2-dimensional manifold with-

out boundary. In fact, it can be seen as what is obtained by identifying

each pair of edges on a polygon of even edges pairwise.

For example, in Fig.1.3, two ends of each dot line are the same

point. The left is a sphere, or the plane when the infinity is seen as

a point. The right is the projective plane. From the symmetry of the

sphere, a surface can also seen as a sphere cutting off a polygon with

pairwise edges identified.

The two surfaces in Fig.1.3 are formed by a polygon of two edges

pairwise as a.

�R
a

a

I Ra

a

Sphere(Plane) Projective plane

Fig.1.3 Sphere and projective plane
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Surface closed curve axiom A closed curve on a surface has

one of the two possibilities: one side and two sides.

A curve with two sides is called a double side curve ; otherwise, a

single side curve . As shown in Fig.1.3, any closed curve on a sphere is

a double side curve(In fact, this is the Jordan curve axiom). However,

it is different from the sphere for the projective plane. there are both

a single(shown by a dot line) and a double side curve.

How do we justify whether a closed curve on a surface is of single

side, or not?

In order to answer this question, the concept of contractibility

of a curve has to be clarified. If a closed curve on a surface can be

continuously contracted along one side into a point, then it is said to

be contractible, or homotopic to 0.6 6-
---

a

a

b b

6 -
?�

a

a

b

b

Torus Klein bottle

Fig.1.4 Torus and Klein bottle

It is seen that a single side curve is never homotopic to 0 and

a double side curve is not always homotopic to 0. For example, in

Fig.1.4, the left, i.e., the torus, each of the dot lines is of double side

but not contractible. The right, i.e., the Klein bottle, all the dot lines

are of single side , and hence, none of them is contractible.

A surface with all closed curves of double side is called orientable;

otherwise, nonorientable .

For example, in Fig.1.3, the sphere is orientable and the projec-
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tive plane is nonorientable. In Fig.1.4, the torus is orientable and the

Klein bottle is nonorientable.

The maximum number of closed curves cutting along without

destroying the continuity on a surface is called the pregenus of the

surface.

In view of Jordan curve axiom, there is no such closed curve on

the sphere. Thus, the pregenus of sphere is 0. On the projective plane,

only one such curve is available (each of dot lines is such a closed curve

in Fig.1.3) and hence the pregenus of projective plane is 1.

Similarly, the pregenera of torus and Klein bottle are both 2 as

shown in Fig.1.4.

Theorem 1.5 The pregenus of an orientable surface is a non-

negative even number.

A formal proof can not be done until Chapter 5. Based on this

theorem, the genus of an orientable surface can be defined to be half

its pregenus, called the orientable genus. The genus of a nonorientable

surface, called nonorientable genus, is its pregenus itself.

The sphere is written as aa−1 where a−1 is with the opposite

direction of a on the boundary of the polygon. Thus, the projective

plane, torus and Klein bottle are, respectively, aa, aba−1b−1 and aabb.

In general,

Op =

p∏

i=1

aibia
−1
i b−1

i

= a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · apbpa
−1
p b−1

p

(1.8)

and

Qq =

q∏

i=1

aiai = a1a1a2a2 · · · aqaq (1.9)

denote, respectively, a surface of orientable genus p and a surface of

nonorientable genus q. Of course, O0, Q1, O1 and Q2 are, respectively,

the sphere, projective plane, torus and Klein bottle.

It is easily checked that whenever an even polygon is with a pair

of its edges in the same direction, the polygon represents a nonori-
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entable surface. Thus, all Op, p ≥ 0, orientable and all Qq, q ≥ 1, are

nonorientable.

Forms (1.8) and (1.9) are said to be standard.

If the form of a surface is defined by its orientability and its genus,

then the operations 1–3 and their inverses shown as in Fig.1.5–7, do

not change the surface form.

........
........
........
........
.............................................................................................................................................................

.......
.......

.......
.......

......o	 A

a

a
� .............................................................................................................

...............................................................................

A /
Fig.1.5 Operation 1: Aaa−1 ⇐⇒ A

...................................................................................................................
................

......
......
......
.......
......
......
......
...............

................ ℄i
N ja

a

b

b
A

B

...............................................

................
................

......
......
......
......

}
R

c

c

A

B

Fig.1.6 Operation 2: AabBab⇐⇒ AcBc

................................

....................................................................................................................................................

.......................................

B

A

R
℄

................................

....................................................................................................................................................

.......................................

B

AK R
℄ a

Fig.1.7 Operation 3: AB ⇐⇒ (Aa)(a−1B)

In fact, what is determined under these operations is just a topo-

logical equivalence, denoted by ∼top.

Notice that A and B are all linear order of letters and permitted



I.2 Surfaces 13

to be empty as degenerate case in these operations.

The parentheses stand for cyclic order when more than one cyclic

orders occur for distinguishing from one to another.

Relation 0 On a surface (A,B), if A is a surface itself then

(A,B) = ((A)x(B)x−1) = ((A)(B)).

Relation 1 (AxByCx−1Dy−1) ∼top ((ADCB)(xyx−1y−1)).

Relation 2 (AxBx) ∼top ((AB−1)(xx)).

Relation 3 (Axxyzy−1z−1) ∼top ((A)(xx)(yy)(zz)).

In the four relations, A, B, C, and D are permitted to be empty.

B−1 = b−1
s · · · b−1

3 b−1
2 b−1

1 is also called the inverse of B = b1b2b3 · · · bs,
s ≥ 1. Parentheses are always omitted when unnecessary to distin-

guish cyclic or linear order.

On a surface S, the operation of cutting off a quadrangle aba−1b−1

and then identifying each pair of edges with the same letter is called

a handle as shown in the left of Fig.1.8.

If the quadrangle aba−1b−1 is replaced by aa, then such an oper-

ation is called a crosscap as shown in the right of Fig.1.8.-?? -a

a

b b

S RY a

a

S

Handle Crosscap

Fig.1.8 Handle and crosscap

The following theorem shows the result of doing a handle on an

orientable surface.

Theorem 1.6 What is obtained by doing a handle on an ori-

entable surface is still orientable with its genus 1 added.
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Proof Suppose S is the surface obtained, then

S ∼top

p∏

i=1

aibia
−1
i b−1

i xap+1bp+1a
−1
p+1b

−1
p+1x

−1 ( Relation 0)

∼top

p∏

i=1

aibia
−1
i b−1

i xx−1ap+1bp+1a
−1
p+1b

−1
p+1 (Relation 1)

∼top

p∏

i=1

aibia
−1
i b−1

i ap+1bp+1a
−1
p+1b

−1
p+1 (Operation 1)

=

p+1∏

i=1

aibia
−1
i b−1

i .

This is the theorem. �

In the above proof, x and x−1 are a line connecting the two

boundaries to represent the surface as a polygon shown in Fig.1.8.

This procedure can be seen as the degenerate case of operation 3.

In what follows, observe the result by doing a crosscap on an

orientable surface.

Theorem 1.7 On an orientable surface of genus p, p ≥ 0, what

is obtained by doing a crosscap is nonorientable with its genus 2p+ 1.

Proof Suppose N is the surface obtained, then

N ∼top

p∏

i=1

aibia
−1
i b−1

i xaax−1 (Relation 0)

∼top

p∏

i=1

aibia
−1
i b−1

i xx−1c1c1 (Relation 2)

∼top

p∏

i=2

aibia
−1
i b−1

i xx−1c1c1c2c2c3c3 (Relation 3)

∼top

2p+1∏

i=1

cici. (Relation 3 by p− 1 times).
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This is the theorem. �

By doing a handle on a nonorientable surface, 2 more genus

should be added with the same nonorientability.

Theorem 1.8 On a nonorientable surface, what is obtained by

doing a handle is nonorientable with its genus 2 added.

Proof Suppose N is the obtained surface, then

N ∼top

q∏

i=1

aiaixaba
−1b−1x−1 (Relation 0)

∼top

q∏

i=1

aiaixx
−1aba−1b−1 (Relation 1)

∼top

q∏

i=1

aiaiaba
−1b−1 (Operation 1)

∼top

q+2∏

i=1

cici. (Relation 3).

This is the theorem. �

By doing a crosscap on a nonorientable surface, 1 more genus

produced with the same nonorientability

Theorem 1.9 On a nonorientable surface, what is obtained by

doing a crosscap is nonorientable with its genus 1 added.
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Proof Suppose N is the obtained surface, then

N ∼top

q∏

i=1

aiaixaax
−1 (Relation 0)

∼top

q∏

i=1

aiaixx
−1aa (Relation 2)

∼top

q∏

i=1

aiaiaa (Operation 1)

∼top

q+1∏

i=1

aiai. (Relation 3).

This is the theorem. �

I.3 Embedding

Let G = (V,E), V = {v1, v2, · · · , vn}, be a graph. A point in the

3-dimensional space is represented by a real number t as the parame-

ter, e.g., (x, y, z) = (t, t2, t3). Write the vertices as

vi = (xi, yi, zi) = (ti, t
2
i , t

3
i )

such that ti 6= tj , i 6= j, 1 ≤ i, j ≤ n, and an edge as

(u, v) = u+ λv, 1 ≤ λ ≤ 1,

i.e., the straight line segment between u and v. Because for any four

vertices vi, vj, vl and vk,

det

(
xi − xj xi − xl xi − xk

yi − yj yi − yl yi − yk

zi − zj zi − zl zi − zk

)

= det




ti − tj ti − tl ti − tk
t2i − t2j t2i − t2l t2i − t2k
t3i − t3j t3i − t3l t3i − t3k
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= (ti − tj)(ti − tl)(ti − tk)(tk − tl)(tk − tj)(tj − tl) 6= 0, i.e., the four

points are not coplanar, any two edges in G has no intersection inner

point.

A representation of a graph on a space with vertices as points

and edges as curves pairwise no intersection inner point is called an

embedding of the graph in the space. If all edges are straight line

segments in an embedding, then it is called a straight line embedding.

Thus, any graph has a straight line embedding in the 3-dimensional

space. Similarly, A surface embedding of graph G is a continuous

injection µG of an embedding of G on the 3-dimensional space to a

surface S such that each connected component of S−µG is homotopic

to 0. The connected component is called a face of the embedding. In

early books, a surface embedding is also called a cellular embedding.

Because only a surface embedding is concerned with in what follows,

an embedding is always meant a surface embedding if not necessary

to specify.

A graph without circuit is called a tree. A spanning tree of a

graph is such a subgraph that is a tree with the same order as the

graph. Usually, a spanning tree of a graph is in short called a tree on

the graph. For a tree on a graph, the numbers of edges on the tree

and not on the tree are only dependent on the order of the graph.

They are, respectively, called the rank and the corank of the graph.

The corank is also called the Betti number, or cyclic number by some

authors.

The following procedure can be used for finding an embedding

on a surface.

First, given a cyclic order of all semiedges at each vertex of G,

called a rotation. Find a tree(spanning, of course) T on G and distin-

guish all the edges not on T by letters. Then, replace each edge not

of T by two articulate edges with the same letter.

From this procedure, G is transformed into G̃ without changing

the rotation at each vertex except for new vertices that are all ar-

ticulate. Because G̃ is a tree, according to the rotation, all lettered

articulate edges of G̃ form a polygon with β pairs of edges, and hence



18 Chapter I Abstract Embeddings

a surface in correspondence with a choice of indices on each pair of

the same letter. For convenience, G̃ with a choice of indices of pair in

the same letter is called a joint tree of G.

Theorem 1.10 A graph G = (V,E) can always embedded into

a surface of orientable genus at most ⌊β/2⌋, or of nonorientable genus

at most β, where β is the Betti number of G.

Proof It is seen that any joint tree of G is an embedding of G

on the surface determined by its associate polygon. From (1.8) for

the orientable case, the surface has its genus at most ⌊2β/4⌋ = ⌊β/2⌋.
From (1.9) for the nonorientable case, the surface has its genus at most

2β/2 = β. �

In Fig.1.9, graph G and one of its joint tree are shown. Here, the

spanning tree T is represented by edges without letter. a, b and c are

edges not on T . Because the polygon is

abcacb ∼top c
−1b−1cbaa (Relation 2)

∼top aabbcc (Theorem 1.7),

the joint tree is, in fact, an embedding of G on a nonorientable surface

of genus 3.

a

b c

a a

b

b

c

c

G G̃

Fig.1.9 Graph and its joint tree

Because any graph with given rotation can always immersed in

the plane in agreement with the rotation, each edge has two sides. As

known, embeddings of a graph on surfaces are distinguished by the

rotation of semiedges at each vertex and the choice of indices of the

two semiedges on each edge of the graph whenever edges are labelled
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by letters. Different indices of the two semiedges of an edge stand

for from one side of the edge to the other on a face boundary in an

embedding.

Theorem 1.11 A tree can only be embedded on the sphere.

Any graph G except tree can be embedded on a nonorientable surface.

Any graph G can always be embedded on an orientable surface. Let

nO(G) be the number of distinct embeddings on orientable surfaces,

then the number of embeddings on all surfaces is

2β(G)nO(G), nO(G) =
∏

i≥2

((i− 1)!)ni, (1.10)

where β(G) is the Betti number and ni is the number of vertices of

degree i in G.

Proof On a surface of genus not 0, only a graph with at least

a circuit is possible to have an embedding. Because a tree has no

circuit, it can only embedded on the sphere. Because a graph not

a tree has at least one circuit, from Theorem 1.10 the second and

the third statements are true. Since distinct planar embeddings of a

joint tree of G with the indices of each letter different correspond to

distinct embeddings of G on orientable surfaces and the number of

distinct planar embeddings of joint trees is

nO(G) =
∏

i≥2

((i− 1)!)ni.

Further, since the indices of letters on the β(G) edges has 2β(G) of

choices for a given orientable embedding and among them only one

choice corresponds to an orientable embedding, the fourth statement

is true. �

For an embedding µ(G) of G on a surface, let ν(µG), ǫ(µG) and

φ(µG) are, respectively, its vertex number, or order, edge number, or

size and face number, or coorder.

Theorem 1.12 For a surface S, all embeddings µ(G) of a graph

G have Eul(µG) = ν(µG)− ǫ(µG) + φ(µG) the same, only dependent
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on S and independent of G. Further,

Eul(µG) =





2− 2p, p ≥ 0,

when S has orientable genus p;

2− q, q ≥ 1,

when S has nonorientable genus q.

(1.11)

Proof For an embedding µ(G) on S, if it has at least 2 faces,

then by connectedness it has 2 faces with a common edge. From the

finite recursion principle, by the inverse of Operation 3 an embedding

µ(G1) of G1 on S with only 1 face on S is found. It is easy to check

that Eul(µG) =Eul(µG1). Similarly, by the inverse of Operation 2 an

embedding µ(G0) of G0 on S with only 1 vertex is found. It is also

easy to check that Eul(µG) =Eul(µG′). Further, by Operation 1 and

Relations 1–3, it is seen that Eul(µG0) =Eul(Op), p ≥ 0; or Eul(Qq),

q ≥ 1 according as S is an orientable surface in (1.8); or not in (1.9).

From the arbitrariness of G, the first statement is proved.

By calculating the order, size and coorder of Op, p ≥ 0; or Qq,

q ≥ 1, (1.11) is soon obtained. So, the second statement is proved. �

According to this theorem, for an embedding µ(G) of graph G,

Eul(µG) is called its Euler characteristic, or of the surface it is on.

Further, g(µG) is the genus of the surface µ(G) is on.

If a graph G is with the minimum length of circuits σ, then

from Theorem 1.12 the genus γ(G) of an orientable surface G can be

embedded on satisfies the inequality

1− ν(G)− ǫ(1− 2
σ)

2
≤ γ(G) ≤ ⌊β

2
⌋ (1.12)

and the genus γ̃(G) of a nonorientable surface G can be embedded on

satisfies the inequality

2− (ν(G)− ǫ(1− 2

σ
)) ≤ γ̃(G) ≤ β. (1.13)

If a graph has an embedding with its genus attaining the lower(upper)

bound in (1.12) and (1.13), then it is called down(up)-embeddable. In
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fact, a graph is up-embeddable on nonorientable, or orientable sur-

faces according as it has an embedding with only 1 face, or at most 2

faces.

Theorem 1.13 All graphs but trees are up-embeddable on

nonorientable surfaces.

Further, if a graph has an embedding of nonorientable genus l

and an embedding of nonorientable genus k, l < k, then for any i,

l < i < k, it has an embedding of nonorientable genus i.

Proof For an arbitrary embedding of a graph G on a nonori-

entable surface, let T be its corresponding joint tree. From the nonori-

entability, the associate 2β(G)-gon P has at least 1 letter with different

indices(or same power of its two occurrences!). If P = Qq, q = β(G),

then the embedding is an up-embedding in its own right. Otherwise,

by Relation 2, or Relation 3 if necessary, whenever s−1s or stst oc-

curs, it is, respectively, replaced by ss or sts−1t. In virtue of no letter

missed in the procedure, from the finite recursion principle, P ′ = Qq,

q = β(G), is obtained. This is the first statement.

From the arbitrariness of starting embedding in the procedure

of proving the first statement by only using Relation 2 instead of

Relation 3 (AststB ∼top Ass
−1Btt by Relation 2), because the genus

of the surface is increased 1 by 1, the the second statement is true. �

The second statement of this theorem is also called the inter-

polation theorem. The orientable form of interpolation theorem is

firstly given by Duke[Duk1]. The maximum(minimum) of the genus

of surfaces (orientable or nonorientable) a graph can be embedded

on is call the maximum genus(minimum genus) of the graph. The-

orem 1.13 shows that graphs but trees are all have their maximum

genus on nonorientable surfaces the Betti number with the interpola-

tion theorem. The proof would be the simplest one. However, for the

orientable case, it is far from simple. many results have been obtained

since 1978(see [Liu1–2], [LiuL1], [HuanL1] and [LidL1]) in this aspect.

On the determination of minimum genus of a graph, only a few of

graphs with certain symmetry are done(see Chapter 12 in [Liu5–6]).



22 Chapter I Abstract Embeddings

I.4 Abstract representation

Let G = (V,X), V = {v1, v2, · · · , vn},

X = {x1, x2, · · · , xm} ⊆ V {×}V = {{u, v}|∀u, v ∈ V },

be a graph. For an embedding µ(G) of G on a surface, each edge has

not only two ends as in G but also two sides. Let α be the operation

from one side to the other and β be the operation from one end to

the other. From the symmetry between the two ends and between the

two sides,

α2 = β2 = 1 (1.14)

where 1 is the identity. By considering that the result from one side

to the other and then to the other end and the result from one end to

the other and then to the other side are the same, i.e.,

βα = αβ. (1.15)

Further, it can be seen that K = {1, α, β, γ}, γ = αβ, is a group,

called the Klein group where

(αβ)2 = (αβ)(αβ) = (αβα)β

= (ααβ)β = (αα)(ββ) = 1.
(1.16)

Thus, an edge x ∈ X of G in an embedding µ(G) of G becomes

Kx = {x, αx, βx, γx}, as shown in Fig.1.10.-- ���x βx

αx αβx

Fig.1.10 An edge sticking on K

In fact, let

X =

m∑

i=1

Kxi (1.17)
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where summation stands for the disjoint union, then α and β can both

be seen as a permutation on X , i.e.,

α =
m∏

i=1

(xi, αxi)(βxi, γxi), β =
m∏

i=1

(xi, βxi)(αxi, γxi).

The vertex x is on deals with the rotation as

{(x,Px,P2x, · · ·), (αx, αP−1x, αP−2x, · · ·)}, (1.18)

as shown in Fig.1.11(when its degree is 4).

��--
x

αx

βx

αβx -- ��P2x

αP2x

βP2x

αβP2x

66??Px αPx

βPx αβP2x

??66P3xαP3x

βP3xαβP3x

v

Fig.1.11 The rotation at a vertex

It is seen that P is also a permutation on X . The set of elements

in each cycle of this permutation is called an orbit of an element in

the cycle. For example, the orbit of element x under permutation P
is denoted by (x)P. From (1.18),

(x)P
⋂

(αx)P = ∅, x ∈ X . (1.19)

The two cycles at a vertex in an embedding have a relation as

(αx,Pαx,P2αx, · · ·)
=(αx, αP−1x, αP−2x, · · ·)
=α(x,P−1x,P−2x, · · ·).

(1.20)

For convenience, one of the two cycles is chosen to represent the vertex,

i.e.,

(x,Px,P2x, · · ·),



24 Chapter I Abstract Embeddings

or

(αx, αP−1x, αP−2x, · · ·).

Theorem 1.14 αP = P−1α.

Proof By multiplying the two sides of (1.20) by α from the left

and then comparing the second terms on the two sides,

αPα = P−1.

By multiplying its two sides by α from the right, the theorem is soon

obtained. �

Since α and β are both permutations on X , γ = αβ and P∗ = Pγ
are permutations on X as well. Let

(x,P∗x,P∗2x, · · ·)

be the cycle of P∗ involving x. From the symmetry between βx and

x, the cycle of P∗ involving βx is

(βx,P∗βx,P∗2βx, · · ·)

which has the same number of elements as that involving x does.

Because P∗(βx) = Pαβ(βx) = Pαx and from Theorem 1.14

Pαx = αP−1x = αγ(γP−1)x

= αγP∗−1x

= βP∗−1x,

we have

P∗(βx) = βP∗−1x. (1.21)

Furthermore, because P∗2(βx) = P∗(P∗(βx)) and from (1.21)

P∗(P∗(βx)) = P∗(βP∗−1x),

by (1.21) for P∗−1x instead of x, we have

P∗2(βx) = β(P∗−1(P∗−1x)) = β(P∗−2x).
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On the basis of the finite restrict recursion principle, a cycle is found.

Therefore,

(βx,P∗βx,P∗2βx, · · ·) = β(x,P∗−1x,P∗−2x, · · ·). (1.22)

This implies

(x)P∗

⋂
(βx)P∗ = ∅, (1.23)

for x ∈ X .

Theorem 1.15 βP∗ = P∗−1β.

Proof A direct result of (1.22). �

Based on (1.22), it is seen that the face involving x of the em-

bedding represented by P is

{(x,P∗x,P∗2x, · · ·), (βx,P∗−1βx,P∗−2βx, · · ·)}. (1.24)

Similarly to vertices, based on (1.22) and (1.23), the face can be

represented by one of the two cycles in (1.24).

Example 1.3 Let G = K4, i.e. , the complete set of order 4.

Given its rotation

{(x, y, z), (βz, l, γw), (γl, u, βy), (βx, w, γu)},
as shown in Fig 1.12. Its two faces are (x, βu, βl, γz) and

(y, αu, αw, αl, γy, z, βw, γx).

-w 	x ?y Rz

Iu 	l

v4

v1

v2

v3

Fig.1.12 A rotation of K4
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Thus, it is an embedding of K4 on the torus

O1 = (ABA−1B−1)

as shown in Fig.1.13.

w�
A A

	αx

6y B6

B

Rαz

Iαu

	αl

v4

v1

v2

v3

Fig.1.13 Embedding determined by rotation

Further, another rotation of K4 is chosen for getting another

embedding of K4.

Example 1.4(Continuous to Example 1.3) Another embedding

of K4 is shown as in Fig.1.14. Its rotation is

{(x, y, z), (βz, l, γw), (u, γy, γl), (βx,w, γu)}.

Its two faces are

(x, βu, βl, γz)

and

(αx, w, βz, αy, αu, αw, αl, βy).

This is an embedding of K4 on the Klein bottle

N2 = (ABA−1B) ∼top= (AABB)
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as shown in Fig.1.14.

w�
A A

	αx

6y B6

B ?βy

Rαz

Iαu

	αl

v4

v1

v2

v3

Fig.1.14 Embedding distinguished by rotation

Such an idea is preferable to deal with combinatorial maps via

algebraic but neither geometric nor topological approaches.

I.5 Smarandache 2-manifolds with map geometry

Smarandache system The embedding of a graph on surface

enables one to construct finitely Smarandache 2-manifolds, i.e., map

geometries on surfaces.

A rule in a mathematical system (Σ;R) is said to be Smaran-

dachely denied if it behaves in at least two different ways within the

same set Σ, i.e., validated and invalided, or only invalided but in mul-

tiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which

has at least one Smarandachely denied rule in R (see [Mao4] for de-

tails). Particularly, if (Σ;R) is nothing but a metric space (M ; ρ),

then such a Smarandache system is called a Smarandache geometry,

seeing references [Mao1]–[Mao4] and [Sma1]–[Sma2].

Example 1.5(Smarandache geometry) Let R
2 be a Euclidean

plane, points A,B ∈ R2 and l a straight line, where each straight
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line passes through A will turn 30o degree to the upper and passes

through B will turn 30o degree to the down such as those shown in

Fig.1.15. Then each line passing through A in F1 will intersect with

l, lines passing through B in F2 will not intersect with l and there is

only one line passing through other points does not intersect with l.-- A

B

l

30o

30o

30o

30o

..............

...........

......
............

..............

...........

........

..........

.............

F1

F2

Fig.1.15

Then such a geometry space R
2 with queer points A and B is

a Smarandache geometry since the axiom given a line and a point

exterior this line, there is one line parallel to this line is now replaced

by none line, one line and infinite lines.

A more general way for constructing Smarandache geometries

is by Smarandache multi-spaces ([Mao3]). For an integer m ≥ 2, let

(Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) be m mathematical systems different

two by two. A Smarandache multi-space is a pair (Σ̃; R̃) with

Σ̃ =
m⋃

i=1

Σi, and R̃ =
m⋃

i=1

Ri.

Such a multi-space naturally induce a graph structure with

V (G) = {Σ1,Σ2, · · · ,Σm},
E(G) = { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.

Example 1.16([Mao5]) Let n be an integer, Z1 = ({0, 1, 2, · · · , n−
1},+) an additive group (modn) and P = (0, 1, 2, · · · , n− 1) a permu-

tation. For any integer i, 0 ≤ i ≤ n− 1, define

Zi+1 = P i(Z1)

such that P i(k) +i P
i(l) = P i(m) in Zi+1 if k+ l = m in Z1, where +i
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denotes the binary operation +i : (P i(k), P i(l)) → P i(m). Then we

know that

(
n⋃

i=1

Zi;O

)

withO = {+i, 0 ≤ i ≤ n−1} is a Smarandache multi-space underlying

a graph Kn, where Zi = Z1 for integers 1 ≤ i ≤ n.

Map geometry A nice model on Smarandache geometries,

namely s-manifolds on the plane was found by Iseri in [Ise1] defined

as follows, which is in fact a case of map geometry.

An s-manifold is any collection C(T, n) of these equilateral trian-

gular disks Ti, 1 ≤ i ≤ n satisfying the following conditions:

(i) each edge e is the identification of at most two edges ei, ej in

two distinct triangular disks Ti, Tj, 1 ≤ i, j ≤ n and i 6= j;

(ii) each vertex v is the identification of one vertex in each of

five, six or seven distinct triangular disks.

These vertices are classified by the number of the disks around

them. A vertex around five, six or seven triangular disks is called an

elliptic vertex, an Euclidean vertex or a hyperbolic vertex, respectively.

* jA A

O

L1 * *
P

L2

63B B

Q

Q

L3

(a) (b) (c)

Fig.1.16

In a plane, an elliptic vertex O, a Euclidean vertex P and a

hyperbolic vertex Q and an s-line L1, L2 or L3 passes through points

O, P or Q are shown in Fig.1.16(a), (b), (c), respectively.

The map geometry is gotten by endowing an angular function

µ : V (M)→ [0, 4π) on an embedding M for generalizing Iseri’s model
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on surfaces following, which was first introduced in [Mao2].

Map geometry without boundary Let M be a combinato-

rial map on a surface S with each vertex valency≥ 3 and µ : V (M)→
[0, 4π), i.e., endow each vertex u, u ∈ V (M) with a real number µ(u), 0 <

µ(u) < 4π
ρM (u)

. The pair (M,µ) is called a map geometry without bound-

ary, µ(u) an angle factor on u and orientable or non-orientable if M

is orientable or not.

Map geometry with boundary Let (M,µ) be a map geom-

etry without boundary, faces f1, f2, · · · , fl ∈ F (M), 1 ≤ l ≤ φ(M) −
1. If S(M) \ {f1, f2, · · · , fl} is connected, then (M,µ)−l = (S(M) \
{f1, f2, · · · , fl}, µ) is called a map geometry with boundary f1, f2, · · · , fl,

and orientable or not if (M,µ) is orientable or not, where S(M) de-

notes the underlying surface of M .

u

u

u

ρM (u)µ(u) < 2π ρM (u)µ(u) = 2π ρM (u)µ(u) > 2π

Fig.1.17

Certainly, a vertex u ∈ V (M) with ρM(u)µ(u) < 2π, = 2π or

> 2π can be also realized in a Euclidean space R3, such as those

shown in Fig.1.17.

A point u in a map geometry (M,µ) is said to be elliptic, Eu-

clidean or hyperbolic if ρM(u)µ(u) < 2π, ρM (u)µ(u) = 2π or ρM(u)µ(u) >

2π. If µ(u) = 60o, we find these elliptic, Euclidean or hyperbolic ver-

tices are just the same in Iseri’s model, which means that these s-

manifolds are a special map geometry. If a line passes through a point

u, it must has an angle ρM (u)µ(u)
2 with the entering ray and equal to

180o only when u is Euclidean. For convenience, we always assume

that a line passing through an elliptic point turn to the left and a hy-

perbolic point to the right on the plane. Then we know the following
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results.

Theorem 1.16 Let M be an embedding on a locally orientable

surface with |M | ≥ 3 and ρM(u) ≥ 3 for ∀u ∈ V (M). Then there exists

an angle factor µ : V (M)→ [0, 4π) such that (M,µ) is a Smarandache

geometry by denial the axiom (E5) with axioms (E5) for Euclidean,

(L5) for hyperbolic and (R5) for elliptic.

Theorem 1.17 Let M be an embedding on a locally orientable

surface with order≥ 3, vertex valency≥ 3 and a face f ∈ F (M). Then

there is an angle factor µ : V (M) → [0, 4π) such that (M,µ)−1 is a

Smarandache geometry by denial the axiom (E5) with axioms (E5)

for Euclidean, (L5) for hyperbolic and (R5) for elliptic.

A complete proof of Theorems 1.16–1.17 can be found in refer-

ences in [Mao2–4]. It should be noted that the map geometry with

boundary is in fact a generalization of Klein model for hyperbolic

geometry, which uses a boundary circle and lines are straight line seg-

ment in this circle, such as those shown in Fig.1.18.

L1

L2

L3

Fig.1.18



Activities on Chapter I

I.6 Observations

O1.1 Let X be a finite set and B be a binary set. Is {Bx|x ∈
X} a pregraph or a graph? If unnecessary, what condition does a

pregraph, or a graph satisfy?

O1.2 Let X be a finite set, B be a binary set and

X =
∑

x∈X
Bx.

For a permutation ψ on X such that ψ2 = 1, is {{x, ψx}|x ∈ X} a

graph? If unnecessary, when is it a graph?

O1.3 How many orientable, or nonorientable surfaces can a

hexagon represent? List all of them.

O1.4 How many orientable, or nonorientable surfaces can a 2k-

gon represent? How to List them all.

O1.5 In [Liu1], an embedding of a graph G on the nonori-

entable surface of genus β(G) is constructed in a way from a specific

tree on G. Now, how to get such an embedding from any tree on G.

O1.6 Suppose G has an embedding on an orientable surface

of genus k. If k is not the maximum genus of G, how to find an

embedding of G on an orientable surface of genus k + 1.

O1.7 Any embedding of a graph G = (V,X) is a permutation

on {1, α, β, αβ}X = X as shown by (1.17). However, α, β and γ = αβ

are each a permutation on X , but not an embedding of G in general.

When does each of them determine an embedding of G.
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O1.8 If permutation P on X is an embedding of a graph, to

show that for any x ∈ X , there does not exist an integer m such that

αx = Pmx.

O1.9 If permutation P on X is an embedding of a graph, to

show

PαP = α.

O1.10 Observe that permutation β as P satisfies both O1.8

and O1.9. However, permutation α as P satisfies O1.9 but not O1.8.

O1.11 Let S be a set of permutations on X and ΨS be the

group generated by S. If for any x, y ∈ X , there exists a ψ ∈ ΨS such

that x = ψy, then the group ΨS is said to be transitive on X . Observe

that if permutation P on X is an embedding of a graph, then group

ΨI , I = {P , α, β}, is transitive on X .

An embedding of a graph G = (V,E) can be combinatorially

represented by a rotation system σ(V ) on the vertex set V of G and

a function on the edge set as λ : E −→ B, B = {0, 1}, denoted by

Gσ(λ).

In order to determine the faces of an embedding, an immersion

of the graph and a rule should be established.

An immersion of a graph is such a representation of the graph in

the plane that vertices injects into the plane on an imaged circle and

edges are straight line segments between their two ends.

Travel and traverse rule From a point on one side of an edge,

travel as long as on the same side until at the middle of a edge with

λ = 1, then traverse to the other side.

O1.12 By the TT-rule(i.e., the travel and traverse rule) on

an immersion, the initial side the starting point is on can always be

encountered to get a travel as a set of edges met on the way.

O1.13 By the TT-rule on an immersion of a graph, a set of

travels can always be found for any edge occurs exactly twice.
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On a graph G = (V,E), a subset of edges C ⊆ E that V has a

2-partition V = V1 + V2 with the property:

C = {(u, v) ∈ E|u ∈ V1, v ∈ V2} (1.25)

is called a cocycle of G.

O1.14 For an immersion Gσ(λ) of graph G = (V,E), the em-

bedding of G determined by Gσ(λ) is orientable if, and only if, the set

{e|∀e ∈ E,≤ (e) = 1} is a cocycle of G.

I.7 Exercises

E1.1 For a graph G, prove that G has no odd circuit(a circuit

with odd number of edges) if, and only if, for a tree on G, G has no

odd fundamental circuit.

E1.2 Prove that a graph G = (V,E) has no odd fundamental

circuit if, and only if, E itself is a cocycle.

Let Γ be a nonAbelian group. The identity is denoted by 1.

Write Γ0 = {ξ|ξ2 = 1, ξ ∈ Γ}, i.e., the set of all elements of order 2.

For a pregraph G = (V,E), let xv ∈ Γ0, v ∈ V , be variables on the

vertex set V and w(e) ∈ Γ0, e ∈ E be a weight function on the edge

set E. On the network N = (G;w), its incidence equation is

xuxv = w(e), e ∈ E. (1.26)

E1.3 Prove that if the incidence equation has a solution, then

it has at least |Γ0|, i.e. , the number of elements in Γ0, solutions.

E1.4 Prove that the incidence equation has a solution if, and

only if, G has no circuit C such that

w(C) =
∏

e∈C
w(e) 6= 1.

E1.5 Let σ(G) be the number of connected components on pre-

graph G. Prove that if the incidence equation has a solution, then it
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has

|Γ0|σ(G)

solutions.

E1.6 For an orientable surface, provide a procedure for deter-

mining its orientable genus and then estimate an upper bound of the

operations necessary.

E1.7 For a nonorientable surface, provide a procedure for de-

termining its nonorientable genus and then estimate an upper bound

of the number of operations necessarily used.

E1.8 Let G be a graph of order 2 with all its edges selfloops but

only one. Prove that G is not up-embeddable on orientable surfaces

if, and only if, each vertex is incident with odd number of selfloops.

E1.9 According to the orientable and nonorientable genera, list

all embeddings of K4, the complete graph of order 4.

A graph is called i-separable if it has i, i ≥ 1, vertices such that

it is not connected anymore when the i vertices with their incident

edges are deleted. A set of i vertices separable without a proper subset

separable for a graph is called an i-cut of the graph. A graph which

has an i-cut without (i− 1)-cut is said to be i-connected.

E1.10 Prove that if a 3-connected graph G is planar (embed-

dable on the sphere), then it has exact 2 embeddings on the sphere.

For a planar graph G = (V,E), and u, v ∈ V , if G has the form

as

G =

{
G1

⋃
G2, � (u, v) ∈ E;

G1

⋃
G2 − {(u, v)}, � (u, v) 6∈ E

(1.27)

and

G1

⋂
G2 = (u, v) (1.28)

such that G1 and G2 are both with at least 2 edges, then {u, v} is

called a splitting pair of G, and G1 and G2, its splitting block. If a

splitting block at a splitting pair has no proper subgraph is still a

splitting block, then it is said to be standard[Mac1].
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E1.11 Prove the following three statements.

(i) Let A and B be two standard splitting blocks of a splitting

pair, then they are no edge in common;

(ii) For a splitting pair of a 2-connected planar graphG = (V,E),

the standard splitting block decomposition of the edge set E, i.e.,

E = E1

⋃
E2

⋃
· · ·
⋃
Es

such that Ei ∩ Ej = ∅, 1 ≤ i 6= j ≤ s, and the induced subgraphs of

Ei, 1 ≤ i ≤ s, are all standard splitting blocks of the splitting pair, is

unique.

(iii) Let bi be the number of standard splitting blocks of the

ith splitting pair, i = 1, 2, · · · , m, m be the number of splitting pairs,

then the number of embeddings of a 2-connected planar graph on the

sphere is

2b1+b2+···+bm

m∏

i=1

(bi − 1)!.

For a graph G, let Π(G) be the set of rotation systems of inner

vertices on a joint tree and ωπ(i), π ∈ Π, be the boundary polygon

with its β(G) pairs of letters whose indices are determined by a binary

number i with β(G) digits by the rule: the two indices of the lth letter

are same or different according as the lth digit of i is 0 or 1. Define

ξ(ωπ(i)) =

⌊β(G)
2 ⌋∑

k=−β(G)

akx
k (1.29)

where x is an undeterminate and

ak =

{
1, if ωπ(i) ∼top Ok, or Q−k;

0, otherwise.
(1.30)

Now, let

Ωπ = {ωπ(i)| 0 ≤ i ≤ 2β(G) − 1} (1.31)

and

ξ(Ωπ) =

2β(G)−1∑

i=0

ξ(ωπ(i)). (1.32)
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E1.12 Prove that the coefficient of xk in

ξ(G) =
∑

π∈Π(G)

ξ(Ωπ)

is the number of embeddings of G on the surface of relative genus k,

−β(G) ≤ k ≤ ⌊β(G)
2 ⌋.

A graph of order 2 without selfloop is called a link bundle.

E1.13 Let Lm be the link bundle of size m ≥ 1. Determine

ξ(Lm).

A graph of order 1 is also called a bouquet, or a loop bundle.

E1.14 Let Bm be a bouquet of size m, m ≥ 1. Determine

ξ(Bm).

A graph of order 2 is called a bipole. Of course, a link bundle is

a bipole which has no selfloop.

E1.15 Let Pm be a bipole of size m, m ≥ 1. Determine ξ(Pm).

I.8 Researches

The set(repetition at most twice of elements permitted) of edges

appearing on a travel can be shown to have a partition of each subset

forming still a subtravel except probably the travel itself. Such a

partition is called a decomposition of a travel into subtravels. However,

it is not yet known if any travel can be decomposed into tours except

only the case that its induced graph has a cut-edge.

R1.1 Prove, or disprove, the conjecture that a travel with at

most twice occurrences of an edge in a graph has a decomposition

into tours if, and only if, the induced subgraph of the travel is without

cut-edge.

Because a circuit is restricted from a tour by no repetition of a

vertex, the following conjecture would look stronger the last one.

R1.2 Prove, or disprove, the conjecture that a travel with at



38 Activities on Chapter I

most twice occurrences of an edge in a graph has a decomposition into

circuits if, and only if, the induced subgraph of the travel is without

cut-edge.

However, it can be shown from Theorem 1.3 that any tour has

a decomposition into circuits. The above two conjectures are, in fact,

equivalent. Because a cut-edge is never on a circuit, the necessity

is always true. A travel with three occurrences of an edge permitted

does not have a decomposition into circuits in general. For example, on

the graph determined by Par= {{x(0), y(0)}, {x(1), y(1)}}, the travel

xx−1xy−1 where x = 〈x(0), x(1)〉 and y = 〈y(0), y(1)〉 has no circuit

decomposition.

Furthermore, the two conjectures are apparently right when the

graph is planar because each face boundary of its planar embedding

is generally a tour whenever without cut-edge.

R1.3 For a given graph G and an integer p, p ≥ 0, find the

number np(G) of embeddings of G on the orientable surface of genus

p.

The aim is at the genus distribution of embeddings of G on ori-

entable surfaces, i.e., the polynomial

PO(G) =

⌊σ/2⌋∑

p=0

np(G)xp,

where σ is the Betti number of G.

For p = 0, n0(G) can be done based on [Liu6]. If G is planar,

O1.11 provides the result for 2-connected case. Others can also be

derived. As to justify if a graph is planar, a theory can be seen from

Chapters 3,5 and 7 in [Liu5].

Generally speaking, not easy to get the complete answer in a

short period of time. However, the following approach would be avail-

able to access this problem. Choose a special type of graphs, for

instance, a wheel(a circuit Cn all of whose vertices are adjacent to an

extra vertex), a generalized Halin graph(a circuit with a disjoint tree
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except for all articulate vertices forming the vertex set of the circuit)

and so forth.

Of course, the technique and theoretical results in 1.3 can be

employed to calculate the number of distinct embeddings of a graph

by hand and by computer.

R1.4 Orientable single peak conjecture. The coefficients of the

polynomial in R1.3 are of single peak , i.e., they are from increase to

decrease as p runs from 0 to ⌊σ/2⌋(≥ 3), np(G).

The purpose here is to prove, or disprove the conjecture not nec-

essary to get all np(G), 0 ≤ p ≤ ⌊σ/2⌋(≥ 3).

R1.5 Determine the number of distinct embeddings, which have

one, or two faces, of a graph on orientable surfaces.

R1.6 For a given graphG and an integer q, q ≥ 1, find the num-

ber ñq(G) of distinct embeddings on nonorientable surfaces of genus

q.

The aim is at the genus polynomial of embeddings ofG on nonori-

entable surfaces:

PN(G) =
σ∑

q=1

ñq(G)xq,

where σ is the Betti number of G.

Some pre-investigations for G is that a wheel, or a generalized

Halin graph can firstly be done.

R1.7 For a graphG, justify if it is embeddable on the projective

plane, and then determine ñ1(G) according to the connectivity of G.

R1.8 For a graph embeddable on the projective plane, determine

how many sets of circuits such that for each, all of its circuits are

essential if, and only if, one of them is essential in an embedding of G

on the projective plane.

R1.9 Nonorientable single peak conjecture. The coefficients of

the polynomial in R1.6 are of single peak in the interval [o, σ] where

σ is the Betti number of G.
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R1.10 For a given type of graphs G and an integer p, find the

number of distinct embeddings of graphs in G on the orientable surface

of genus p. Further, determine the polynomial

PO(G) =

⌊σ(G)/2⌋∑

p=0

np(G)xp

where σ(G) = max{σ(G)|G ∈ G}.
R1.11 For a given type of graphs G and an integer q, q ≥ 1,

find the number of embeddings of graphs in G on the nonorientable

surface of genus q. Further, determine the polynomial

PN (G) =

σ(G)∑

q=1

ñq(G)xq

where σ(G) = max{σ(G)|G ∈ G}.
R1.12 For a set of graphs with some fixed invariants, extract

sharp bounds(lower or upper) of the orientable minimum genus and

sharp bounds(lower or upper) of orientable maximum genus.

Here, invariants are chosen from the order (vertex number), size(edge

number), chromatic number (the minimum number of colors by which

vertices of a graph can be colored such that adjacent vertices have

distinct colors), crossing number(the minimum number of crossing in-

ner points among all planar immersions of a graph), thickness (the

minimum number of subsets among all partitions of the edge set such

that each of the subsets induces a planar graph), and so forth.

R1.13 For a set of graphs and a set of invariants fixed, pro-

vide sharp bounds(lower or upper) of minimum nonorientable genus

of embeddings of graphs in the set.
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Abstract Maps

• A ground set is formed by the Klein group K = {1, α, β, αβ} stick-

ing on a finite set X.

• A basic permutation is such a permutation on the ground set that

no element x is in the same cycle with αx.

• The conjugate axiom on a map is determined by each vertex con-

sisting of two conjugate cycles for α, as well as by each face con-

sisting of two conjugate cycles for β.

• The transitive axiom on a map is from the connectedness of its

underlying graph.

• An included angle is determined by either a vertex with one of its

incident faces, or a face with one of its incident vertices.

II.1 Ground sets

Given a finite set X = {x1, x2, · · · , xm}, called the basic set, its

elements are distinct. Two operations α and β on X are defined

as for any x ∈ X, αx 6= βx, αx, βx 6∈ X and α2x = α(αx) = x,

β2x = β(βx) = x. Further, define αβ = βα = γ such that for any

x ∈ X, γx 6= αx, βx and γx 6∈ X.
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Let αX = {αx|∀x ∈ X}, βX = {βx|∀x ∈ X} and γX =

{γx|∀x ∈ X}, then α, β and γ determine a bijection between X and,

respectively, αX, βX and γX. By a bijection is meant a one to one

correspondence between two sets of the same cardinality. In other

words,

X
⋂

αX = X
⋂

βX = X
⋂

γX = ∅;
αX

⋂
βX = βX

⋂
γX = γX

⋂
αX = ∅;

|αX| = |βX| = |γX| = |X|.
(2.1)

The set X∪αX ∪βX∪γX, or briefly X = X (X), is called the ground

set.

Now, observe set K = {1, α, β, γ}. Its elements are seen as

permutations on the ground set X . Here, 1 is the identity. From

α2 = β2 = 1 and αβ = βα, γ2 = (αβ)(αβ) = α(ββ)α = α2 = 1, and

hence

α =
m∏

i=1

(xi, αxi)
m∏

i=1

(βxi, γxi);

β =
m∏

i=1

(xi, βxi)
m∏

i=1

(αxi, γxi);

γ =

m∏

i=1

(xi, γxi)

m∏

i=1

(βxi, αxi).

(2.2)

It is easily seen that K is a group, called Klein group because it is

isomorphic to the group of four elements discovered by Klein in geom-

etry.

For any x ∈ X , let Kx = {x, αx, βx, γx}, called a quadricell.

Theorem 2.1 For any basic set X, its ground set is

X =
∑

x∈X
Kx, (2.3)

where the summation represents the disjoint union of sets.

Proof From (2.1), for any x, y ∈ X and x 6= y,

Kx
⋂
Ky = {x, αxβx, γx}

⋂
{y, αy, βy, γy} = ∅.
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From (2.1) again,

⋃

x∈X
Kx = X + αX + βX + γX = X .

Therefore, (2.3) is true. �

Furthermore, since for any x ∈ X,

K(αx) = K(βx) = K(γx) = Kx, (2.4)

we have

X =
∑

y∈αX

Ky =
∑

z∈βX

Kz =
∑

t∈γX

Kt.

This implies that the four elements in a quadricell are with symmetry.

II.2 Basic permutations

Let Per(X ), or briefly Per, be a permutation on the ground set X .

Because of bijection, according to the finite strict recursion principle,

for any x ∈ X , there exists a minimum positive integer k(x) such that

Perk(x)x = x,

i.e., Per contains the cyclic permutation , or in short cycle,

(x)Per = (x,Per2x, · · · ,Perk(x)−1x).

Write {x}Per as the set of all elements in the cycle (x)Per. Such a set is

called the orbit of x under permutation Per. The integer k(x) is called

the order of x under permutation Per.

If for any x ∈ X ,

αx 6∈ {x}Per, (2.5)

then the permutation Per is said to be basic to α.

Example 2.1 From (2.2), for permutations α and β on the

ground set, α is not basic, but β is basic.
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Let Par= {X1, X2, · · · , Xs} be a partition on the ground set X ,

then

Per =

s∏

i=1

(Xi) (2.6)

determines a permutation on X , called induced from the partition Par.

Here, (Xi), 1 ≤ i ≤ s, stands for a cyclic order arranged on Xi. This

shows that a partition {Xi|1 ≤ i ≤ s} has

s∏

s=1

(|Xi| − 1)! =
∏

i≥3

((i− 1)!)ni (2.7)

induced permutations. In (2.7), ni, i ≥ 3, is the number of subsets in

Par with i elements.

Theorem 2.2 Let Par= {Xi|1 ≤ i ≤ s} be a partition on the

ground set X (X). If Par has an induced permutation basic, then all

of its induced permutations are basic. Further, a partition Par has its

induced permutation basic if, and only if, for x ∈ X , there does not

exist Y ∈ Par such that

{x, αx} or {βx, γx} ⊆ Y
⋂

Kx. (2.8)

Proof Because the basicness of a permutation is independent of

the order on cycles, the first statement is proved.

Assume an induced permutation Per of a partition Par is basic.

From (2.5), for any x ∈ X, in virtue of

Kx = {x, αx}+ {βx, γx},
no Y ∈Par exists such that (2.8) is satisfied. This is the necessity of

the second statement.

Conversely, because for any x ∈ X , no Y ∈ Par exists such that

(2.8) is satisfied, it is only possible that x and αx are in distinct subsets

of partition Par. Therefore, αx 6∈ {x}Per. Based on (2.5), this is the

sufficiency of the second statement. �

On the basis of this theorem, induced basic permutations can be

easily extracted from a partition of the ground set.
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Example 2.2 Let X = {x, αx, βx, γx} = Kx. There are 15

partitions on X as

Par1 = {{x}, {αx}, {βx}, {γx}};
Par2 = {{x, αx}, {βx}, {γx}};
Par3 = {{x, βx}, {αx}, {γx}};
Par4 = {{x, γx}, {αx}, {βx}};
Par5 = {{βx, αx}, {x}, {γx}};
Par6 = {{x}, {αx, γx}, {βx}};
Par7 = {{x}, {αx}, {βx, γx}};
Par8 = {{x, αx, βx}, {γx}};
Par9 = {{x, βx, γx}, {βx}};
Par10 = {{x, αx, γx}, {αx}};
Par11 = {{x}, {αx, βx, γx}};
Par12 = {{x, αx, βx, γx}};
Par13 = {{x, αx}, {βx, γx}};
Par14 = {{x, βx}, {αx, γx}};
Par15 = {{x, γx}, {αx, βx}}.

From Theorem 2.2, induced basic permutations can only be extracted

from Par1, Par3, Par4, Par5, Par6, Par14 and Par15 among them. Since

each of these partitions has no subset with at least 3 elements, from

(2.7) it only induces 1 basic permutation. Hence, 7 basic permutations

are induced in all.

Based on Theorem 2.2, a partition that induces a basic permu-

tation is called basic as well.

For a partition Par on X , if every pair of x and αx, x ∈ X , deals

with the element x in Par, then this partition determines a pregraph

if any. For example, in Example 2, there are only

Par1 = Par2 = Par7 = Par13 = {{x}, {βx}};
Par12 = Par14 = Par15 = {{x, βx}}

form 2 premaps of size 1 and others meaningless among the 15 par-
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titions. Further, each of the 2 premaps is a graph. The result is the

same as in Example 1.1.

II.3 Conjugate axiom

Let Per1 and Per2 be two permutations on the ground set X . If

for x ∈ X ,

(Per2x)Per1
= Per2(x)Per

−1

1

= Per2(x)
−1

Per1
, (2.9)

then the two orbits (x)Per1 and (Per2x)Per1 of Per1 are said to be con-

jugate.

For a permutation P on the ground set X , if

αP = P−1α, (2.10)

then (P , α)(or for the sake of brevity, P) is called satisfying the con-

jugate axiom.

Theorem 2.3 For a basic permutation P on the ground set X ,

the two orbits (x)P and (αx)P for any x ∈ X are conjugate if, and

only if, (P , α) satisfies the conjugate axiom.

Proof Necessity. Because of orbits (x)P and (αx)P conjugate,

from (2.9), (αx)P = α(x)−1
P . Hence, Pαx = αP−1x, i.e., Pα = αP−1.

This implies (2.10).

Sufficiency. Since P satisfies (2.10),

P(αx) = P(αP)P−1x = P(P−1α)P−1x

= (PP−1)αP−1x = αP−1x.

By induction, assume that P l(αx) = αP−lx, l ≥ 1, then we have

P l+1(αx) = PP l(αx) = PP−lx

= P(αPP−1)P−lx ( then by (2.10))

= (PP−1)αP−(l+1)x

= αP−(l+1)x.
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Hence, (αx)P = α(x)−1
P . From (2.9), orbits (x)P and (αx)P are conju-

gate. This is the sufficiency. �

Unlike Theorem 2.2, for a partition on the ground set X , from

one of its induced permutations satisfying the conjugate axiom, it can

not be deduced to others.

A premap, denoted by (Xα,β,P), is such a basic permutation P
on the ground set X that the conjugate axiom is satisfied for (P , α).

Example 2.3 By no means any basic partition is in companion

with a basic permutation. Among the 7 basic partitions as shown in

Example 2.2, only the induced permutations of Par1, Par14 and Par15

are premaps.

Because (P , β) is not necessary to satisfy the conjugate axiom

on a premap (X ,P), α is called the first operation and β, the second

. Thus, X should be precisely written as Xα,β if necessary.

Based on the basicness and Theorem 2.3, any premap P has the

form as ∏

x∈XP

(x)P(x)
∗
P, (2.11)

where XP is the set of distinct representatives for the conjugate pairs

{{x}P , {x}∗P} of cycles in P . And further,

X =
∑

x∈XP

{x}P{x}∗P . (2.12)

For convenience, one of two conjugate orbits in {{x}P , {x}∗P} is chosen

to stand for the pair itself as a vertex of the premap.

Example 2.4 Let X = {x1, x2}, then

X = {x1, αx1, βx1, γx1, x2, αx2, βx2, γx2}.
Choose

P1 = (x1, βx1)(αx1, γx1)(x2)(αx2)(βx2)(γx2)

and

P2 = (x1, βx1, x2)(αx1, αx2, γx1)(βx2)(γx2).
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The former has 3 vertices (x1, βx1), (x2) and (βx2). The latter has 2

vertices (x1, βx1, x2) and (βx2).

Lemma 2.1 If permutation P on Xα,β is a premap, then

P∗β = βP∗−1, (2.13)

where P∗ = Pγ, γ = αβ.

Proof Because P∗β = Pαββ = Pα, from the conjugate axiom,

P∗β = αP−1

= ββαP−1 (� β2 = 1)

= β((Pαβ)−1)

= βP∗−1.

Therefore, the lemma holds. �

This lemma tells us that although β does not satisfy the conju-

gate axiom for permutation P in general, β does satisfy the conjugate

axiom for permutation P∗.

Lemma 2.2 If permutation P on Xα,β is a premap, then per-

mutation P∗ = Pγ is basic for β.

Proof Because the 4 elements in a quadricell are distinct, x 6=
βx.

Case 1 P∗x 6= βx. Otherwise, from P∗x = βx, Pα(βx) =

P∗x = βx. A contradiction to that P is basic for α.

Case 2 (P∗)2x 6= βx. Otherwise, P∗x = P∗−1βx. From Lemma

2.1, P∗x = βP∗x. A contradiction to that P∗x and βP∗x are in the

same quadricell.

In general, assume by induction that Case l: (P∗)lx 6= βx, 1 ≤
l ≤ k, k ≥ 2, is proved. To prove

Case k + 1 (P∗)k+1x 6= βx. Otherwise, P∗kx = P∗−1βx. From

Lemma 2.1, P∗k−1(P∗x) = β(P∗x). A contradiction to the induction

hypothesis.
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In all, the lemma is proved. �

Theorem 2.4 Permutation P on X is a premap (Xα,β,P) if,

and only if, permutation P∗ = Pγ is a premap (Xβ,α,P∗).
Proof Necessity. Since permutation P is a premap (Xα,β,P),

P is basic for α and satisfies the conjugate axiom. From Lemma 2.2

and Lemma 2.1, P∗ is basic for β and satisfies the conjugate axiom.

Hence, P∗ is a premap (Xβ,α,P∗).
Sufficiency. Because P∗∗ = P∗γ = P , the sufficiency is right. �

On the basis of Theorem 2.4, the vertices of premap P∗ are de-

fined to be the faces of premap P . The former is called the dual of

the latter. Since P∗∗ = P , the latter is also the dual of the former.

Example 2.5 For the two premaps P1 and P2 as shown in

Example 2.4, we have

P∗1 = (x1, αx1)(βx1, γx1)(x2, γx2)(βx2, αx2)

and

P∗2 = (x1, αx1, x2, γx2)(βx1, αx2, βx2, γx1).

Because P∗1 has 2 vertices (x1, αx1) and (x2, γx2) and P∗2 has 1 vertex

(x1, αx1, x2, γx2), we seen that premaps P1 and P2 have, respectively,

2 faces and 1 face.

II.4 Transitive axiom

For a set of permutations T = {τi|1 ≤ i ≤ k}, k ≥ 1 on X , let

ΨT = {ψ|ψ =
s∏

l=1

k∏

j=1

τ
ij(πl)

πl(j)
, ij(πl) ∈ Z, πl ∈ Π, s ≥ 1}, (2.14)

where Z is the set of integers and Π is the set of all permutations on

{1, 2, · · · , k}, k ≥ 1.
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Since all elements in ΨT are permutations on X , they are closed

for composition(or in other word, multiplication) with the associative

law but without the commutative law.

Further, it is seen that a permutation in ΨT if, and only if, its

inverse is in Ψ. The identity is the element in ΨT when all ij(π) = 0,

π ∈ Π in (2.14). Therefore, ΨT is a group in its own right, called the

generated group of T .

Let Ψ be a permutation group on X . If for any x, y ∈ X , there

exists an element ψ ∈ Ψ such that x = ψy, then the group Ψ is said

to be transitive , or in other words, the group Ψ satisfies the transitive

axiom.

Now, consider a binary relation on X , denoted by ∼Ψ, that for

any x, y ∈ X ,

x ∼Ψ y ⇐⇒ ∃ ψ ∈ Ψ, x = ψy. (2.15)

Because the relation ∼Ψ determined by (2.15) for a permutation

group Ψ on X is a equivalence, X is classified into classes as X /∼Ψ.

Theorem 2.5 A permutation group Ψ on X is transitive if, and

only if, for the equivalence ∼Ψ determined by (2.15), |X / ∼Ψ | = 1.

Proof Necessity. From the transitivity, for any x, y ∈ X , there

exists ψ ∈ Ψ such that x = ψy. In view of (2.15), for any x, y ∈ X ,

x ∼Ψ y. Hence, for ∼Ψ, |X / ∼Ψ | = 1.

Sufficiency. Because |X / ∼Ψ | = 1, for any x, y ∈ X , exists

ψ ∈ Ψ such that x = ψy. Therefore, the permutation group Ψ on X
is transitive. �

For a premap, the pregraph with the same vertices and edges as

the premap is is called its under pregraph. Conversely, the premap is

a super premap of its under pregraph.

Let (Xα,β,P) be a premap. If permutation group ΨJ , J =

{α, β,P}, on the ground set Xα,β is transitive, i.e., with the transitive

axiom, then the premap is called a map .

Lemma 2.3 Let M = (Xα,β,P) be a premap. For any x, y ∈
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Xα,β, exists ψ ∈ ΨJ , J = {α, β,P}, such that x = ψy if, and only if,

there is a path from the vertex vx x is with to the vertex vy y is with

in the under pregraph of M .

Proof Necessity. In view of (2.14) with the conjugate axiom,

write

ψ = αδ1P l1ασ1βαδ2P l2ασ2β · · ·βαδsP lsασs,

where δi, σi ∈ {0, 1}, 1 ≤ i ≤ s, and li ∈ Z, 1 ≤ i ≤ s. Because

αδsP lsασs and αδ1P l1ασ1 are, respectively, acting on vertices vy and vx,

ψ determines a trail from vy to vx of s− 1 edges. Since there is a trail

between two vertices if, and only if, there is a path between them, the

necessity is done.

Sufficiency. let 〈vs, vs−1, · · · , v1〉,vs = vy, v1 = vx, be a path from

vy to vx in the under pregraph of M . Then, there exist δi, σi ∈ {0, 1},
1 ≤ i ≤ s, and li ∈ Z, 1 ≤ i ≤ s, such that

ψ = αδ1P l1ασ1β · · · βαδsP lsασs

and x = ψy. From (2.14), the sufficiency is done . �

Theorem 2.6 A premap is a map if, and only if, its under

pregraph is a graph.

Proof From the transitive axiom and Lemma 2.3, its under pre-

graph is a graph. This is the necessity.

Conversely, from the connectedness and Lemma 2,3 , the premap

satisfies the transitive axiom and hence its under pregraph is a graph.

This is the sufficiency. �

Example 2.6 In Fig.1.2, the pregraph determined by Par7 has

2 super premaps:

P1 = (x1)(αx1)(γx1)(βx1)(x2, γx2)(αx2, βx2)

and

P1 = (x1)(αx1)(γx1)(βx1)(x2, βx2)(αx2, γx2)

as shown in Fig.2.1.
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Æx1

γx1 ��x2

γx2

(γx1)

(x1)

�
(x2, γx2)

Æx1

γx1 ��x2

βx2

(γx1)

(x1)

�
(x2, βx2)

P1 P2

Fig.2.1 Two super premaps

From Theorem 2.6, none of the two super premaps is a map in

Fig.2.1.

However, the pregraph determined by Par12 is a graph in Fig.1.2.

From Theorem 2.6, each of its super premaps is a map as shown in

the following example.

Example 2.7 In Fig.2.2, there are 223! = 24 distinct embed-

dings of the graph determined by Par12 in Fig.1.2. On the associate(or

boundary) polygon of the joint tree, the pair of a letter is defined to be

of distinct powers when x and γx appear; the same power otherwise.

I
v
�R	x1

γx1

x2
γx2

I
v
�R	x1

γx1

γx2
x2

I
v
�R	x1

x2

γx1
γx2

(a) O0 (b) O0 (c) O1
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I
v
�R	x1

x2

γx2
γx1

I
v
�R	x1

γx2

γx1
x2

I
v
�R	x1

γx2

x2
γx1

(d) O0 (e) O1 (f) O0

I
v
�R	x1

βx1

x2
γx2

I
v
�R	x1

βx1

γx2
x2

I
v
�R	x1

x2

βx1
γx2

(g) N1 (h) N1 (i) N2

I
v
�R	x1

x2

γx2
βx1

I
v
�R	x1

γx2

βx1
x2

I
v
�R	x1

γx2

x2
βx1

(j) N1 (k) N2 (l) N1

I
v
�R	x1

γx1

x2
βx2

I
v
�R	x1

γx1

βx2
x2

I
v
�R	x1

x2

γx1
βx2

(m) N1 (n) N1 (o) N2
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I
v
�R	x1

x2

βx2
γx1

I
v
�R	x1

βx2

γx1
x2

I
v
�R	x1

βx2

x2
γx1

(p) N1 (q) N2 (r) N1

I
v
�R	x1

βx1

x2
βx2

I
v
�R	x1

βx1

βx2
x2

I
v
�R	x1

x2

βx1
βx2

(s) N2 (t) N2 (u) N1

I
v
�R	x1

x2

βx2
βx1

I
v
�R	x1

βx2

βx1
x2

I
v
�R	x1

βx2

x2
βx2

(v) N2 (w) N1 (x) N2

Fig.2.2 All embeddings of a graph

In Fig.2.2, the graph determined by Par12(Fig.1.2) has 6 ori-

entable embeddings (a—f). Here, (a), (b), (d) and (f) are the same

map on the sphere O0 ∼top (x1x
−1
1 ). And, (c) and (e) are the same map

on the torus O1 ∼top (x1x2x
−1
1 x−1

2 ). Hence, such 6 distinct embeddings

are, in fact, 2 maps.

Among the 18 nonorientable embeddings, 10 are on the projective

plane and 8 are on the Klein bottle. On the projective plane, (g), (h),

(j), (l), (m), (n), (p) and (r) are the same map (N1 ∼top (x1x
−1
1 x2x2)).
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And, (u) and (w) are another map (N1 = (x1x2x1x2)). On the Klein

bottle, (i), (k), (o) and (q) are the same map (N2 = (x1x2x
−1
1 x2)).

And, (s), (t), (v) and (x) are another map (N2 ∼top (x1x1x2x2)).

Therefore, there are only 4 maps among the 18 embeddings.

II.5 Included angles

Let M = (Xα,β(X),P) be a premap. Write k = |Xα,β(X)/ ∼ΨJ
|,

J = {α, β,P}, and

Xα,β(X) =
k∑

i=1

Xαi,βi
(Xi), X =

k∑

i=1

Xi,

where Xαi,βi
(X) ∈ Xα,β/ ∼ΨJ

, αi and βi are, respectively, α and β

restricted on Xαi,βi
(Xi), i = 1, 2, · · · , k. Further,

M =
k∑

i=1

Mi, Mi = (Xαi,βi
(Xi),Pi), (2.16)

where Mi is a map and Pi is P restricted on Xαi,βi
(Xi), i = 1, 2, · · · , k.

This enables us only to discuss maps without loss of generality.

Lemma 2.4 Any map (X ,P) has that (Pα)2 = 1.

Proof From the conjugate axiom,

(Pα)2 = (Pα)(Pα) = P(αP)α

= (PP−1)(αα) = 1.

This is the conclusion of the lemma. �

Lemma 2.5 Any map (X ,P) has that (P∗β)2 = 1.

Proof Because P∗β = Pγβ = Pα(ββ) = Pα, from Lemma 2.4,

the conclusion is obtained. �

On the basis of the above two lemmas, on a map M = (Xα,β,P),

any x ∈ Xα,β has that

(x,Pαx) = (P∗βx, x). (2.17)
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Thus, 〈x,Pαx〉, or 〈P∗βx, x〉, is called an included angle of the map.

For an edge Kx = {x, αx, βx, γx} of M , {x, αx} and {βx, γx} are its

two ends , or semiedges. And, {x, βx} and {αx, γx} are its two sides,

or cosemiedges.

Theorem 2.7 For a (X (X),P), let V = {v|v = {x}P ∪{αx}P ,
∀x ∈ X} and F = {f |f = {x}P∗ ∪ {βx}P∗, ∀x ∈ X}. If xv and xf

are, respectively, in v and f as representatives, then

X =
∑

v∈V
({xv, αP−1xv}+ {Pxv, αxv}+ · · ·

+ {P−1xv, αP−2xv})
=
∑

f∈F
({xf , βP∗−1xf}+ {P∗xf , βxf}+ · · ·

+ {P∗−1xf , βP∗−2xf}).

(2.18)

Proof From X =
∑

v∈V v and the conjugate axiom,

v = {xv,Pαxv}+ {Pxv,PαPxv}+ · · ·
+ {P−1xv,PαP−1xv}

= {xv, αP−1xv}+ {Pxv, αxv}+ · · ·
+ {P−1xv, αP−2xv}.

This is the first equality.

The second equality can similarly be derived from X =
∑

f∈F f
and Lemma 2.1(the conjugate axiom for P∗ with β). �

It is seen from the theorem that the numbers of included angles,

semiedges and co-semiedges are, each, equal to the sum of degrees of

vertices. Since every edge has exactly 2 semiedges, this number is 2

times the size of the map.
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II.6 Observations

O2.1 For a set of 4k elements, observe how many ground sets

can be produced.

O2.2 By a set of 12 elements as an example, observe how many

basic permutations satisfy the conjugate axiom.

O2.3 In Example 2, observe which nonbasic partition has a

permutation with the conjugate axiom.

O2.4 Provide two embeddings with the same under graph.

O2.5 For an embedding, observe if its mirror image is the same

as itself. How about for a map?

O2.6 For a map (Xα,β,P), observe the orbits of permutations

Pα and αP . Whether, or not, they are a map.

O2.7 For a map (Xα,β,P), observe the orbits of permutations

Pβ and βP . Whether, or not, they are a map.

O2.8 On a map (Xα,β,P), whether, or not, the permutation

Pαβ is a map on the same ground set.

A map with each of its face a quadrangle is called a quadrangu-

lation. A map with only triangular faces is a triangulation.

In general, a map with all vertices of the same degree is said to

be vertex regular, or primal regular. If all faces are of the same degree,

the the map is said to be face regular , or dual regular. A primal

regular map with its vertex degree i, i ≥ 1, is called an i-map. A
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dual regular map with its face degree j, j ≥ 1, is called a j∗-map. A

triangulation and a quadrangulation are, respectively, a 3∗-map and a

4∗-map in their own right.

O2.9 Whether, or not, the under graph of a 4∗-map is always

bipartite. Furthermore, whether, or not, the under graph of a (2k)∗-
map, k ≥ 3, is always bipartite.

O2.10 Observe that for any integer i, i ≥ 1, whether, or not,

there always exists an i-map and an i∗-map.

If the degree of any vertex(or face) of a map is only an integer

i, or j, j 6= i, i, j ≥ 1, then the map is called a (i, j)-map (or (i∗, j∗)-
map). Similarly, the meanings of a (i, j∗)-map and a (i∗, j)-map are

known.

O2.11 For any i, j, i 6= j ≥ 1, whether, or not, there is a

(i, j)-map, a (i∗, j∗)-map, or a (i, j∗)-map.

II.7 Exercises

E2.1 For two permutations Per1 and Per2 on a set of 4 elements

with Per1
2 = Per2

2 = 1, list all the generated groups Ψ{Per1,Per2}.
Show if each of them is isomorphic to the Klein group.

E2.2 Let λ and µ be permutations on the set A and λ2 = µ2 =

1. Prove that if the generated group Ψ{λ,µ} is isomorphic to the Klein

group, then A is a ground set if, and only if, A = A1 +A2 + · · ·+Ak,

k ≥ 1, such that λ|Ai
and µ|Ai

are both have two orbits, and λ|Ai
6=

µ|Ai
, 1 ≤ i ≤ k.

E2.3 For a map (Xα,β,P), prove that α(x)γP = (αx)−1
Pγ.

E2.4 For a map (Xα,β,P), prove that (x)γP and (βx)γP are

conjugate.

E2.5 To prove that all planar embeddings of K4, i.e., the com-

plete graph of order 4, are the same map.

A map is said to be nonseparable if its under graph is nonsepa-
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rable, i.e. , no cut-vertex(its deletion with incident edges destroys the

connectedness in a graph).

E2.6 List all nonseparable maps of size 4.

A map with all vertices of even degree is called a Euler map. If

the face set of a map can be partitioned into two parts each of which

no two faces have an edge in common, then the face partition is called

a edge independent 2-partition .

E2.7 Provide and prove a condition for the face set of a Euler

map having an edge independent 2-partition.

E2.8 Prove the following statements:

(i) The permutation β on the ground set X is a map if, and only

if, X = Kx;

(ii) The permutation α on the ground set X is a map if, and

only if,

X = K∗x = {x, βx, αx, γx},
i.e., β is the first operation.

E2.9 For a map M = (Xα,β,P),

(i) Provide a map M and an integer i, i ≥ 2, such that P i is not

a map;

(ii) For i, i ≥ 2, provide the condition such that P i is still a

map.

E2.10 Let C and D be, respectively, the sets of 3-maps and

3∗-maps. For the size given, provide a 1–to–1 correspondence between

them.

II.8 Researches

From Theorem 1.10 in Chapter I, any graph has an embedding on

a surface (orientable or nonorientable). However, if an embedding is

restricted to a particular property, then the existence is still necessary

to investigate. If a map has each of its faces partitionable into circuits,
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then it is called a favorable map. If a graph has an embedding which is

a favorable map, then the embedding is also said to be favorable[Liu12].

R2.1 Conjecture. Any graph without cut-edge has a favorable

embedding.

It is easily checked and proved that a graph with a cut-edge does

not have a favorable embedding. However, no graph without cut-

edge is exploded to have no favorable embedding yet. Some types of

graphs have be shown to satisfy this conjecture such as Kn, n ≥ 3;

Km,n, m,n ≥ 2, Qn, n ≥ 2, planar graphs without cut-edge etc.

A map which has no face itself with a common edge is said to

be preproper . It can be shown that all preproper maps are favorable.

However, the converse case is unnecessary to be true.

R2.2 Conjecture. Any graph without cut-edge has a preproper

embedding.

Similarly, it is also known that any graph with a cut-edge does

not have a preproper embedding. And, Kn, n ≥ 3; Km,n, m,n ≥ 2,

Qn, n ≥ 2, planar graphs without cut-edge etc are shown to satisfy

the conjecture as well.

Furthermore, if a map has each of its faces a circuit itself, then it

is called a proper map, or strong map. Likewise, proper embedding, or

strong embedding . It can be shown that all proper maps are preproper.

However, the converse case is unnecessary to be true.

R2.3 Conjecture. Any graph without cut-edge has a proper

embedding.

For proper embeddings as well, it is known that any graph with

a cut-edge does not have a proper embedding. And, Kn, n ≥ 3; Km,n,

m,n ≥ 2, Qn, n ≥ 2, planar graphs without cut-edge etc are all shown

to satisfy this conjecture.

Although conjectures R2.1—R2.3 are stronger to stronger, be-

cause R2.3 has not yet shown to be true, or not, the the two formers

are still meaningful.

If a favorable(proper) embedding of a graph of order n has at
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most n− 1 faces, then it said to be of small face .

Now, it is known that triangulations on the sphere have a small

face proper embedding. Because triangulations of order n have exactly

3n − 6 edges and 2n− 4 faces, all the small face embeddings are not

yet on the sphere for n ≥ 4.

R2.4 Conjecture. Any graph of order at least six without cut-

edge has a small face proper embedding.

Because it is proved that K5 has a proper embedding only on the

surfaces of orientable genus 1(torus) and nonorientable genus at most

2(Klein bottle)[WeL1], they have at least 5 faces and hence are not of

small face.

R2.5 Conjecture. Any nonseparable graph of order n has a

proper embedding with at most n faces.

If a map only has i-faces and i+ 1-faces, 3 ≤ i ≤ n − 1, then it

is said to be semi-regular.

R2.6 Conjecture. Any nonseparable graph of order n, n ≥ 7,

has a semi-regular proper embedding.

In fact, if a graph without cut-edge has a cut-vertex, then it can

be decomposed into nonseparable blocks none of which is a link itself.

If this conjecture is proved, then it is also right for a graph without

cut-edge. Some relationships among these conjectures and more with

new developments can be seen in [Liu12].

R2.7 For an integer i ≥ 3, provide a necessary and sufficient

condition for a graph having an i-embedding, or i∗-embedding. Par-

ticularly, when i = 3, 4 and 5.

First, start from i = 3 with a given type of graphs. For instance,

choose G = Kn, the complete graph of order n. For 3∗-embedding, on

the basis of Theorem 1.12( called Euler formula), a necessary condition

for Kn, n ≥ 3, having an 3∗-embedding is

n− n(n− 1)

2
+ φ = 2− 2p and 3φ = n(n− 1),

where φ and p are, respectively, the face number of an 3∗-embedding
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and the genus of the orientable surface the embedding is on. It is

known that the condition is still sufficient.

If nonorientable surfaces are considered, the necessary condition

n− n(n− 1)

2
+ φ = 2− q and 3φ = n(n− 1),

i.e.,

q =
(n− 3)(n− 4)

6
,

where q is the nonorientable genus of the surface an 3∗-embedding

is on is not sufficient anymore for q ≥ 1. because when n = 7, K7

would have an 3∗-embedding on the surface of nonorientable genus

q = 2. However, it is shown that K7 is not embeddable on the Klein

bottle([Lemma 4.1 in [Liu11]). It has been proved that except only

for this case, the necessary condition is also sufficient.

More other types of graphs, such as the complete bipartite graph

Km,n, n-cube Qn and so forth can also be seen in [Liu11].

R2.8 For 3 ≤ i, j ≤ 6, recognize if a graph has an (i, j)-

embedding ( or (i∗, j∗)-embedding).

More generally, investigate the upper or/and the lower bounds

of i and j such that for a given type of graphs having an (i∗, j∗)-
embedding.

R2.9 Given two integers i, j not less than 7, justify if a graph

has an (i, j)-embedding(or (i∗, j∗)-embedding).

If a proper map has any pair of its faces with at most 1 edge in

common, then it is called a polygonal map .

R2.10 Conjecture. Any 3-connected graph has an embedding

which is a polygonal map.

From (a) and (b) in Fig.2.3, this conjecture is not valid for non-

separable graphs. The two graphs are nonseparable. The graph in (a)

has a multi-edge, but that in (b) does not. It can be checked that,

none of them has a polygonal embedding.
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(a) (b)

Fig.2.3 Two graphs without polygonal embedding

If an embedding of a graph has its genus(orientable or nonori-

entable) minimum among all the embeddings of the graph, then it

is called a minimum (orientable or nonorientable) genus embedding.

Based on the Euler formula, a minimum genus embedding has its face

number maximum. So, a minimum (orientable or nonorientable)genus

embedding is also called a maximum (orientable or nonorientable) face

number embedding. Maximum face number implies that the average

length of faces is smaller, and hence the possibility of faces being

circuits is greater. This once caused to guess that minimum genus

embeddings were all proper. However, a nonproper minimum genus

embedding of a specific graph can be constructed by making 1 face

as greater as possible with all other faces as less as possible. In fact,

for torus and projective plane, all maximum face number embeddings

are shown to be proper. For surfaces of big genus, a specific type of

graphs were provided for all of their maximum face number embed-

dings nonproper[Zha1].

R2.11 Conjecture. Any nonseparable regular graph has a max-

imum face number embedding which is a proper map.

A further suggestion is to find an embedding the lengths of all

faces are nearly equal. The difference between the maximum length
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and the minimum length of faces in a map is call the equilibrium of

the map. An embedding of a graph with its equilibrium minimum is

called an equilibrious embedding of the graph.

R2.12 Conjecture. Any 3-connected graph has an equilibrious

embedding which is proper.

An approach to access the conjecture is still for some types of

graphs, e.g., planar graphs, Halin graphs, Hamiltonian graphs, further

graphs embeddable to a surface with given genus etc.



Chapter III

Duality

• The dual of a map (Xα,β,P) is the map (Xβ,α,Pαβ) and vice versa.

• The deletion of an edge in a map is the contraction of the corre-

sponding edge in the dual map and vice versa.

• The addition of an edge to, the inverse of deleting an edge in, a map

is splitting off its corresponding edge on, the inverse of contracting

an edge in, the dual map and vice versa.

• The deletion of an edge with its inverse, the addition, and the

dual of deletion, the contraction of an edge with its inverse, split-

ting off an edge are restricted on the same surface to form basic

transformations.

III.1 Dual maps

On the basis of II.2, for a basic permutation P on the ground

set Xα,β, (Xα,β,P) is a premap if, and only if, (Xβ,α,P∗) is a premap

where P∗ = Pγ, γ = αβ( Theorem 2.4). The latter is called the dual

of the former. Since

P∗∗ = P∗βα = (Pαβ)βα = P(αββα) = P ,

the former is also the dual of the latter.
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Because the transitivity of two elements in the ground set Xα,β

on a premap (Xα,β,P) under the group ΨJ , J = {P , α, β}, determine

an equivalence, denoted by ∼ΨJ
, the restriction of P on a class

Xα,β/ ∼ΨJ

is called a transitive block.

Theorem 3.1 Premap M2 = (X ,Per2) is the dual of premap

M1 = (X ,Per1) if, and only if,

X / ∼ΨJ2
= X / ∼ΨJ1

, (3.1)

where

J2 = {Per2, α, β}, J1 = {Per1, α, β},
and

Per2 = Per1γ = Per1
∗, γ = αβ.

Proof Necessity. Since M2 is the dual of M1, Per2 = Per1αβ.

From Per2 = Per1αβ ∈ ΨJ1
, ΨJ2

= ΨJ1
. Hence, (3.1) holds. This is

the necessity.

Sufficiency. Since M1 is a premap and Per2 = Per1αβ, M2 is also

a premap, and then the dual of M1 by considering Theorem 2.4. This

is the sufficiency. �

From this theorem, the duality between M1 and M2 induces a

1–to–1 correspondence between their transitive blocks in dual pair.

Because each transitive block is a map, it leads what the dual map of

a map is. The representation of a premap by its transitive blocks is

called its transitive decomposition.

Example 3.1 Map

L̃1 = ({x, αx, βx, γx}, (x, βx)), γ = αβ,

and its dual

L̃∗1 = ({x, βx, αx, γx}, (x, αx)).
Or, in the form as
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L̃1 = (e, v) and L̃∗1 = (e∗, f),

where v = (x, βx), f = (x, αx),

e = {x, αx, βx, γx}, γ = αβ,

and

e∗ = {x, βx, αx, γx},

as shown in Fig.3.1.

In the following figure, two As and two Bs are, respectively, iden-

tified on the surface.

	
B

B

βx

��αx

x x R
A

A

αx

IIβx

v f

Fig.3.1 Map and its dual

This figure shows what a dual pair of maps looks like. It is a

generalization of a dual pair of maps on the plane.

A map with its under pregraph a selfloop is called a loop map.

It is seen that L̃1 and its dual L̃∗1 in Fig.3.1 are both loop maps.

In a premap M = (X ,P), if a vertex v = {(x)P, (αx)P} is

transformed into two vertices

v1 = {(x, Px, · · · ,Pjx), (αx, αPjx, · · · , αPx)}
= {(x)P ′, (αx)P ′}
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and

v2 = {(Pj+1x,Pj+2x, · · · , xP−1x), (αPj+1x, αP−1x, · · · , αPj+2x)}
= {(Pj+1x)P ′, (αPj+1x)P ′}, j ≥ 0,

with other vertices unchanged for permutation P becoming permuta-

tion P ′. It is seen that permutation P ′ is basic and with the conjugate

axiom as well. Hence, M ′ = (X ,P ′) is also a premap. Such an op-

eration is called cutting a vertex. If elements at v1 are not transitive

with elements at v2 in M ′, then elements at v1 and elements at v2 are

said to be cuttable in M . The vertex v is called a cutting vertex in M ;

otherwise, noncuttable .

If there are two elements cuttable in a map, the the map is said

to be cuttable in its own right.

In virtue of Theorem 3.1, cuttability and noncuttability are con-

cerned with only maps without loss of the generality of premaps.

Lemma 3.1 A map M is cuttable if, and only if, its dual M∗

is cuttable.

Proof Necessity. From M = (X ,P) cuttable, vertex

v = (x, Px, · · · ,P−1x)

is assumed to cut into two vertices as

v1 = (x, Px, · · · ,Pjx)

and

v2 = (Pj+1x,Pj+2x, · · · ,P−1x)

for obtaining premap M ′ = (X ,P ′) = M1 + M2 where vi is on Mi =

(Xi,Pi), X = X1 +X2, Pi is the restriction of P ′ on Xi,i = 1, 2. It can

be checked that M1 and M2 are both maps. Thus, on M∗ = (X ,P∗),
vertex

v∗ = (x,A, γPjx,Pj+1x,B, γP−1x)

can be cut into two vertices

v∗1 = (x,A, γPjx)
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and

v∗2 = (Pj+1x,B, γP−1x)

where A and B are, respectively, linear orders of elements in X1 and

X2. This attains the premap M∗′ = (X ,P∗′) = M∗
1 + M∗

2 where

X = X1 +X2, P∗i is the restriction of P∗′ on Xi,i = 1, 2. The necessity

is obtained.

Sufficiency. From the duality, it is deduced from the necessity.�

If two elements in the ground set of a map M are not transitive

in M ′ obtained by cutting a vertex on M , they are said to be cuttable;

otherwise, noncuttable. It can be checked that the noncuttability de-

termines an equivalence, denoted by ∼nc on the ground set of M . The

restriction of M on each

Xα,β/ ∼nc

is called a noncuttable block.

If all noncuttable blocks and all cutting vertices of a map deal

with vertices such that two vertices are adjacent if, and only if, one is

a noncuttable block and the other is a cutting vertex incident to the

block, then the graph obtained in this way is called a cutting graph of

the map. It is easily shown that the cutting graph of a map is always

a tree.

For a face f = (x)Pγ of a premap M = (X ,P), if there has, and

only has, an integer l ≥ 0 for transforming f into

f1 = (x, · · · , (Pγ)lx)

and

f2 = ((Pγ)l+1x, · · · , (Pγ)−lx)

such that x and (Pγ)l+1x are not transitive at all, then f is called a

cutting face of M . From the procedure in the proof of Lemma 3.1, For

a cutting vertex of a premap, there has, and only has, a corresponding

cutting face in the dual of the premap.

Theorem 3.2 Two maps M and N are mutually dual if, and

only if, their cutting graph are the same and the corresponding non-
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cuttable blocks are mutually dual such that a cutting vertex of one

corresponds to a cutting face of the other.

Proof Necessity. Because maps M and N are mutually dual,

from the procedure in the proof of Lemma 3.1, there is a 1–to–1 corre-

spondence between their noncuttable blocks such that two correspond-

ing blocks are mutually dual. There is also a 1–to–1 correspondence

between their cutting vertices such that the cyclic orders of their blocks

at two corresponding cutting vertices are in correspondence. There-

fore, their cutting graphs are the same. This is the necessity.

Sufficiency. Because maps M and N have the same cutting

graph, a tree of course, in virtue of the correspondence between cut-

ting vertices and cutting faces, the sufficiency is deduced from Lemma

3.1. �

Note 3.1 Tow trees are said to be the same in the theorem

when trees as maps(planar of course) are the same but not the iso-

morphism of trees as graphs(the latter can be deduced from the former

but unnecessary to be true from the latter to the former).

On a premap M = (X ,P), if an edge Kx is incident with two

faces, i.e.,

γx 6∈ {x}Pγ ∪ {βx}Pγ,

then it is said to be single ; otherwise, i.e.,

γx ∈ {x}Pγ ∪ {βx}Pγ

(with only one face), double. An edge with distinct ends is called a

link; otherwise, a loop . Clearly, single link, single loop, double link

and double loop. Further, a double link is called a harmonic link, or

singular link according as γx ∈ (x)Pγ, or not. Similarly, a single loop

is called a harmonic loop, or singular loop according as γx ∈ (x)Pγ, or

not.

Theorem 3.3 For an edge ex = {x, αx, βx, γx} of premap

M = (Xα,β,P) and its corresponding edge e∗x = {x, βx, αx, γx} of the

dual M∗ = (Xβ,α,P∗), P∗ = Pγ,
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(i) ex is a single link if, and only if, e∗ is a single link;

(ii) ex is a harmonic link if, and only if, e∗ is a harmonic loop;

(iii) ex is a singular link if, and only if, e∗ is a singular loop;

(iv) ex is a double loop if, and only if, e∗ is a double loop.

Proof Necessity. (i) Because ex is a link, (x)P and (γx)P belong

to distinct vertices. And because ex is a single edge, (x)Pγ and (γx)Pγ

belong to distinct face. By the duality, e∗x is a single link as well.

(ii) Because ex is a double link, in spite of (x)P and (γx)P belong-

ing to distinct vertices, γx, or αx ∈ (x)P∗. And because of harmonic

link, the only opportunity is γx ∈ (x)P∗. From the duality, e∗x is a

harmonic loop.

(iii) Because ex is a singular link, in spite of (x)P and (γx)P
belonging to distinct vertices, αx ∈ (x)P∗. In virtue of α as the second

operation of M∗, e∗x is a singular loop.

(iv) Because ex is a double loop, βx ∈ (x)P and αx ∈ (x)P∗.

From the symmetry between α and β, M and M∗, e∗x is a double loop

as well.

Sufficiency. From the symmetry in duality, i.e., M = (M∗)∗, it

is obtained from the necessity. �

On the basis of this theorem, the classification and the dual re-

lationship among edges are shown in Table 3.1.
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Table 3.1 Duality between edges

In the table above, harmonic links will be classified into segmen-

tation edges and terminal links and harmonic loops into shearing loops

and terminal loops in III.2 to have additional two dual pairs of edges:

segmentation edges and shearing loops, terminal links and terminal

loops.

III.2 Deletion of an edge

Let M = (Xα,β(X),P)be a premap and ex = Kx = {x, αx, βx,
γx}, x ∈ X, an edge.

What is obtained by deleting the edge ex from M is denoted by

M − ex = (Xα,β(X)−Kx,P−x) (3.2)

where P−x is the permutation restricted from P on Xα,β(X)−Kx.

Lemma 3.2 Permutation P−x is determined in the following
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way as when ex is not a selfloop,

P−xy =





Px(and αP−1x),

if y = P−1x(and αPx);
Pγx(� αP−1γx),

if y = P−1γx(and αPγx);
Py, otherwise,

(3.3)

and when ex is a selfloop with γx ∈ (x)P,

P−xy =





Px(and αP−1x),

if y = P−1x(and αPx);
Pγx(and αP−1γx),

if y = P−1x(and αPγx);
Py, otherwise,

(3.4)

otherwise, i.e., γx 6∈ (x)P , γx is replaced by βx in (3.4).

Proof When ex is not a selfloop. Because only vertices (x)P and

(γx)P are, respectively, changed in M − ex from M as

(P−1x)P−x
= (P−1x,P2x, · · · ,P−2x)

and

(P−1γx)P−x
= (P−1γx,Pγx, · · · ,P−2γx)

(Fig.3.2(a)⇒(b)). This implies (3.3).

When ex is a selfloop with γx ∈ (x)P . Because only vertex (x)P
is changed in M − ex from M as

(P−1x)P−x
= (P−1x,Px, · · · ,P−1γx,Pγx, · · · ,P−2x)

(Fig.3.2(c)→(d)), or

(P−1x)P−x
= (P−1x,Px, · · · ,P−1βx,Pβx, · · · ,P−2x)

(Fig.3.2(c)→(d) in parentheses) according as γx ∈ (x)P, or not.

The former is (3.4). The latter is what is obtained from (3.4)

with γx is replaced by βx. �
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In Fig.3.2, the left two figures are parts of the original map and

the right two figures, the results by deleting the edge Kx.

Further, Fig.3.3–9 are all like this without specification.

I6� j3x

Pγx

P
−1γx

P
−1x

Px

I� j3Pγx

P
−1γx

P
−1x

Px

(a) (b)

� -� j Pγx
(Pβx)

γx(βx)3
x

Px

P
−1γx

(P−1βx)I �I j Pγx
(Pβx)

3
Px

P
−1γx

(P−1βx)

P
−1xP

−1x

(c) (d)

Fig.3.2 Deletion of an edge

Lemma 3.3 For a premap M = (X ,P), M − ex = (X −
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Kx,P−x) is also a premap. And, the number of transitive blocks

in M − ex is not less than that in M .

Proof Because P is basic for α, from Lemma 3.2 P−x is also

basic for α. Because P satisfies the conjugate axiom for α, from

Lemma 3.2 and Theorem 2.3 P−x is also satisfies the conjugate axiom

for α. The first statement is done.

Because any nontransitive pair of elements in M is never transi-

tive in M − ex, the second statement is done. �

If ex is an edge of a premap M such that M − ex has more

transitive blocks than M does, then ex is called a segmentation edge. If

an edge has its one end formed by only one semiedge of the edge itself,

then it is called an terminal link. From the symmetry of elements in a

quadricell, (x) can be assumed as the 1-vertex incident with a terminal

link without loss of generality. Since (Pγ)γx = Px = x, γx ∈ (x)Pγ.

Hence, a terminal link is always a harmonic link. However, a harmonic

link is unnecessary to be a terminal link. This point can be seen in

the following theorem.

Theorem 3.4 For a mapM = (X ,P), M−ex = (X−Kx,P−x)

is a map if, and only if, ex is not a harmonic link of M except for

terminal link.

Proof When 〈x, γx〉 ⊆ (x)Pγ, i.e., ex is a terminal link, Because

no isolated vertex in any premap, from Lemma 3.3, M − ex = (X −
Kx,P−x) is a map. In what follows, this case is not considered again.

Necessity. Suppose M − ex is a map, but ex is a harmonic link of

M . Because Pγ−1x and Pγ−1γx 6= x(〈x, γx〉 6⊆ (x)Pγ) for group ΨJ ′,

J ′ = {P−x, α, β}, are not transitive on the set X −Kx, M − ex is not

a map. This is a contradiction to the assumption.

Sufficiency. Because M is a map, P−x is basic. From Theorem

2.3, P−x satisfies the conjugate axiom. Then, based on Table 3.1, two

cases should be discussed for the transitivity.

(i) When ex is a single edge(including single loops!) or singular

link of M . Because ex is not a cut-edge of its under graph G(M),
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G(M − ex) is connected. From Theorem 2.6, P−x for group ΨJ ′ is

transitive on the set X −Kx. Thus, M − ex is a map.

(ii) When ex is a double loop of M . Because

((Pγ)−1x)P−x
= ((Pγ)−1x,Pαx, · · · ,

βPβx,Pγx, · · · , (Pγ)−2)αx),

we have Px = β(Pγ)x with (Pγ)−1αx and Pβx = β(βPβx) are

transitive in M − ex. Hence, M − ex is a map as well. �

From the proof of the theorem, a much fundamental conclusion

is soon deduced.

Corollary 3.1 In a map M , an edge ex is a segmentation edge

if, and only if, ex is a harmonic link except for terminal links. And,

ex is a harmonic link if, and only if, it is a cut-edge of graph G(M).

Proof To prove the first statement.

Necessity. Because ex is a segmentation edge, G(M − ex) is not

connected. ex is only a link. On the basis of Table 3.1, ex is also a

double edge. And, because ex is not singular, ex is only harmonic.

Clearly, a terminal link is not a segmentation edge in its own right.

Sufficiency. Because ex is not a terminal link, Px is distinct form

x and γx is distinct from Pγx. And, because ex is a harmonic link,

Px and Pγx are not transitive in M − ex. Thus, ex is a segmentation

edge.

To prove the second statement. Because it can be shown that ex

is a terminal link of M if, and only if, ex is an articulate edge of graph

G(M), a cut-edge as well. This statement is deduced from the first

statement. �

Let M = (Xα,β(X),P) be a pregraph and ex = Kx = {x, αx, βx,
γx}, x ∈ X, be an edge. The contraction of ex from M , denoted by

M • ex = (Xα,β(X)−Kx,P•x),
is defined to be the dual of M∗ − e∗x where e∗x = {x, βx, αx, γx}, the

corresponding edge of ex in the dual M∗ of M . In other words, P•x =

P∗−xγ.
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Lemma 3.4 P•x is determined by the following (i–iii):

(i) When ex is a link. For y ∈ Xα,β(X)−Kx,

P•xy =





Pγx(and αP−1x), if y = P−1x(and αPγx);
Px(and αP−1γx), if y = P−1γx(and αPx);
Py, otherwise,

(3.5)

shown as in Fig.3.3(a)=⇒(b).

(ii) When ex is a harmonic loop. For y ∈ Xα,β(X)−Kx,

P•xy =





Pγx(and αP−1x), if y = P−1x(and αPγx);
Px(and αP−1γx), if y = P−1γx(and αPx);
Py, otherwise,

(3.6)

shown as in Fig.3.3(c)=⇒(d).

(iii) When ex is a singular , or double loop. For y ∈ Xα,β(X)−
Kx,

P•xy =





αP−1βx(and αP−1x),

if y = P−1x(and P−1βx);

Pβx(and Px),
if y = αPx(and αPβx);
Py, otherwise,

(3.7)

shown as in Fig.3.3(e)=⇒(f).

Proof (i) When ex is a link. In the dual M∗ of M , from the

duality,

(x)P∗ = (x,Pγx, (Pγ)2x, · · · , (Pγ)−1x)

and

(γx)P∗ = (γx,Px, (Pγ)2γx, · · · , (Pγ)−1γx),

or

(x)P∗ = (x,Pγx, · · · , (Pγ)−1γx, γx,Px, · · · , (Pγ)−1x),

and hence P∗−x is only different from P∗ = Pγ at vertices

(Pγx)P∗
−x

= (Pγx, (Pγ)2x, · · · , (Pγ)−1x)
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and

(Px)P∗
−x

= (Px, (Pγ)2γx, · · · , (Pγ)−1γx)

or at vertex

(Px)P∗
−x

= (Pγx, · · · , (Pγ)−1γx,Px, · · · , (Pγ)−1x)

with their conjugations according as ex is single, or double. By con-

sidering P•x = P∗−xγ,

P•x(y) = P•x(P−1γx) = P∗−xγ(P−1γx)

= P∗−x(Pγ−1γx) = Px

for y = P−1γx and

P•x(y) = P•x(P−1x) = P∗−xγ(P−1x)

= P∗−x(Pγ)−1x = Pγx

for y = P−1x. From the conjugate axiom, the cases for y = αP−1x

and y = α(Pγx) in the parentheses of (3.5) are also obtained. Then,

for other y,

P•x(y) = P∗−xγy = (Pγ)γy = Py
in the both cases. Therefore, (3.5) is true.

(ii) When ex is a harmonic loop. In a similar way to (3.5) for ex

single, (3.6) is also obtained.

iii) When ex is a singular, or double loop. In the dual M∗ of M ,

(x)P∗ = (x,Pγx, (Pγ)2x, · · · , (Pγ)−1x)

and

(αx)P∗ = (αx,Pγαx, (Pγ)2αx, · · · , (Pγ)−1αx),

or

(x)P∗ = (x,Pγx, · · · , (Pγ)−1αx, αx,Pγαx, · · · , (Pγ)−1x),

and hence

(x)P∗
−x

= (Pγx, (Pγ)2x, · · · , (Pγ)−1x)
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and

(αx)P∗
−x

= (Pγαx, (Pγ)2αx, · · · , (Pγ)−1αx)

or

(x)P∗
−x

= (Pγx, · · · , (Pγ)−1αx,Pγαx, · · · , (Pγ)−1x)

with their conjugations according as ex is singular, or double. By

considering P•x = P∗−xγ,

P•x(y) = P•x(αPx) = P∗−xγ(αPx)
= P∗−xγ(P−1αx) = P∗−x((Pγ)−1αx)

= Pγαx = Pβx
for y = αPx and

P•x(y) = P•x(P−1x) = P∗−xγ(P−1x)

= P∗−x((Pγ)−1x) = Pγx
= Pαβx = αP−1βx

for y = P−1x. From the conjugate axiom, the cases for y = Pβx and

αPβx are also obtained. Then, for all other y,

P•x(y) = P∗−xγy = (Pγ)γy = Py.
This is (3.7). �

I6� j
3

x

Pγx

P
−1γx

P
−1x

Px

I� j3Pγx

P
−1γx

P
−1x

Px

(a) (b)
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Fig.3.3 Contraction of an edge
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From Lemma 3.4, it is seen that in the constriction of edge ex on

a premap only if ex is not a selfloop, two vertices (x)P and (γx)P are

composed of one vertex

(P−1x)P•x
= (P−1x,Pγx, · · · ,P−1γx,Px, · · · ,P−2x)

(Fig.3.3(a)⇒(b)); if ex is a harmonic loop, vertex (x)P is divided into

two vertices

(P−1x)P•x
= (P−1x,Pγx, · · · ,P−2x)

and

(P−1γx)P•x
= (P−1γx,Px, · · · ,P−2γx)

(Fig.3.2(c)⇒(d)); and if ex is a singular, or double loop, vertex (x)P
becomes vertex

(Px)P•x
= (Px, · · · ,P−1βx, αP−1x, · · · , αPβx)

(Fig.3.3(e)⇒(f)).

Lemma 3.5 For a premap M , M •ex is always a premap. And,

the number of transitive blocks in M • ex is not less than that in M .

Proof From Lemma 3.3 and the duality, the first statement is

true. Because any nontransitive pair of elements in M is never tran-

sitive in M • ex from Lemma 3.4, the second statement is true. �

If a harmonic loop ex has (x)Pγ = (x), or (γx)Pγ = (γx), then it

is called a terminal loop. If the two elements of a co-semiedge appear

in a vertex in succession, then the edge is called a twist loop.

Lemma 3.6 For an edge ex of a map M , ex is a terminal loop

if, and only if, e∗x is an terminal link in M∗. And, ex is a twist loop if,

and only if, e∗x is a twist loop.

Proof A direct result deduced from the duality. �

Theorem 3.5 For an edge ex of a map M = (Xα,β(X),P),

M • ex is a map if, and only if, ex is not a harmonic loop but terminal

loop.
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Proof Because for a terminal loop ex, M • ex is always a map.

In what follows, this case is excluded.

Necessity. Suppose M • ex is a map but ex is a harmonic loop.

Since e∗x is a harmonic link in M∗(Table 3.1), from Theorem 3.4 and

Lemma 3.1, P−1x and Px are, respectively, belonging to two distinct

transitive blocks of M . From Lemma 3.4(ii), M •ex has two transitive

blocks. This contradicts to that M • ex is a map.

Sufficiency. Since ex is not a harmonic loop, only two cases should

be considered as ex is not a loop or ex is a singular loop. For the former,

in spite of a single or double edge, from Lemma 3.4(i), M •ex is a map.

For the latter, from Lemma 3.4(iii), M • ex = M − ex is also a map.

Therefore, the theorem is done. �

If a loop ex has that P−1x and Px are in distinct noncuttable

blocks, then it is called a shearing loop . From Theorem 3.5, all shear-

ing loops are harmonic. However, the converse case is unnecessarily

true.

Corollary 3.2 In a map M , an edge ex is a shearing loop if,

and only if, e∗x is a harmonic, but not terminal loop in M∗.

Proof A direct result of Theorem 3.5. �

Theorem 3.6 The dual of premapM−ex is the premapM∗•e∗x,
where M∗ is the dual of M and e∗x in M∗ is the corresponding edge of

ex in M .

Proof(1) Because M∗ • e∗x is the dual of (M∗)∗− e∗∗x = M − ex,

by the symmetry of the duality the theorem holds. �

However, if the contraction of ex on M is defined by (3.5–7), then

the theorem can also be proved.

Proof(2) Based on Table 3.1, four cases should be discussed.

(i) In M , ex is a single link, and hence e∗x is a single link in M∗.
Since

(Pγx)P−xγ = (Pγx)P∗
•x
, (Px)P−x

= (Px)P∗
•xγ
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and (Pγx)P−x
= (Pγx)P∗

•xγ,

(M − ex)
∗ = M∗ • e∗x.

(ii) In M , ex is a harmonic link, and hence e∗x is a harmonic loop

in M∗(Dually, in M , ex is a harmonic loop, and hence e∗x is a harmonic

link in M∗). Now, (x)Pγ = (x)P∗. According as ex is a terminal link

or not, a transitive block of M becomes one or two transitive blocks

in M − ex. Meanwhile, According as e∗x is a terminal loop or not, a

transitive block of M∗ becomes one or two transitive blocks of M∗•e∗x.
By considering the changes in vertices and faces, (M − ex)

∗ = M∗ • e∗x
is found.

(iii) In M , ex is a singular link, and hence e∗x is a singular loop

in M∗(Dually, In M , ex is a singular loop, and hence e∗x is a singular

link in M∗). Since

(P−1x)P−x
= (P−1x)P∗

•xγ

and

(P−1γx)P−x
= (P−1γx)P∗

•xγ,

in view of (Pγx)P−xγ = (Pγx)P∗
•x

we have (M − ex)
∗ = M∗ • e∗x.

(iv) In M , ex is a double loop, and hence e∗x is a double loop in

M∗. Since

(Px)P−x
= (Px)P∗

•xγ

and

(Px)P−xγ = (Px)P∗
•x
,

we have (M − ex)
∗ = M∗ • e∗x. �

Corollary 3.3 In a map, an edge is a harmonic link if, and

only if, the corresponding edge in its dual is a harmonic loop. And,

an edge is a segmentation edge if, and only if, the corresponding edge

in its dual is a shearing loop.

Proof A direct result of Theorem 3.6. �
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Example 3.2 Map M = (Kx+Ky +Kz,P) where

P = (x, βy, γz)(y, z, γx)

and its dual M∗ = (K∗x+K∗y +K∗z,P∗) where

P∗ = Pγ = (x, y, αx, αz, γy, z),

are, respectively, shown in Fig.3.4(a) and (b). Here, K = {1, α, β, γ}
and K∗ = {1, β, α, γ} are used to distinguish α and β.

Map M − ex = (Ky +Kz,P−x) where P−x = (βy, γz)(y, z) and

its dual (M − ex)
∗ = (K∗y + K∗z, (P−x)

∗), where (P−x)
∗ = P−xγ =

(y, βz, αy, γz), are, respectively, shown in Fig.3.4(c) and (d). It is

easily seen that (M − ex)
∗ = M∗ • e∗x.

--�℄ �̂ YY 6 3j?+x x

αx

βy

γz
y

z

βx

y

αx

αz

γy

z

(a) M (b) M∗
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-�� �� 6 -?�z

γz

βy

y

y

βz

γz

αy

(c) M − ex (d) (M − ex)∗

Fig.3.4 Duality between deletion and contraction

III.3 Addition of an edge

Let M = (Xα,β,P) be a premap, ex = Kx = {x, αx, βx, γx}, and

x 6∈ Xα,β. Write as

M + ex = (Xα,β +Kx,P+x),

where P+x is determined from P in the following manner. For any

y ∈ Xα,β and two given angles 〈l,Pαl〉 and 〈t,Pαt〉, if l and t are

not at the same vertex, or at the same vertex and ex as a harmonic

loop(assume t ∈ (l)P without loss of generality), then

P+xy =





t(and αx), if y = x(and αt);

Pαt(and x), if y = αx(and αPαt);
l(and βx), if y = γx(and αl);

Pαl(and γx), if y = βx(and αPαl);
Py, otherwise,

(3.8)
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Fig.3.5 Appending an edge

shown in Fig.3.5(a), otherwise, i.e., ex is a double, or singular loop

(assume t ∈ (l)P without loss of generality),

P+xy =





t(and αx), if y = x(and αt);

Pαt(and x), if y = αx(andαPαt);
l(andβx), if y = γx(and αl);

Pαl(and βx), if y = γx(and αPαl);
Py, otherwise,

(3.9)

as shown in Fig.3.5(b).

Such a transformation from M into M + ex is called appending

an edge ex.

Lemma 3.7 For a premap M = (X ,P), M + ex = (X +

Kx,P+x) is also a premap. And, the number of transitive blocks

in M + ex is not greater than that in M .

Proof From (3.8) and (3.9), P+x is basic. In virtue of Theorem

2.3, it suffices to show that the orbits of P+x are partitioned into

conjugate pairs for the conjugate axiom. In fact, if l and t are at

distinct vertices, then P+x is obtained from P in replacing two vertices
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(t)P and (l)P by respective

(t)P+x
= (t,Pt, · · · , αPαt, x)

and

(l)P+x
= (l,Pl, · · · , αPαl, γx),

or βx is substituted for γx. If l and t are at the same vertex, then

P+x is obtained from P in replacing the vertex (l)P by

(l)P+x
= (l,Pl, · · · , αPαt, x, t,Pt, · · · , αPαl, γx)

or

(l)P+x
= (l,Pl, · · · , αPαt, x, t,Pt, · · · , αPαl, βx)

according as ex is a harmonic loop or not. This shows that the orbits

of P+x are partitioned into conjugate pairs for α. �

Note 3.2 On the degenerate case t = l, if ex is a harmonic

loop, then

(l)P+x
= (l,Pl, · · · , αPαl, γx, x);

otherwise, i.e., ex is a twist loop,

(l)P+x
= (l,Pl, · · · , αPαl, βx, x).

Theorem 3.7 For a premap, not a map, M = (Xα,β,P), the

number of transitive blocks of M + ex is less than that of M if, and

only if, ex ia a segmentation edge. If M is a map, then M + ex is also

a map.

Proof Since the number of components of graph G(M + ex) is

less than that of G(M) if, and only if, ex is a cut-edge which is not

articulate, the first statement is deduced from Corollary 3.1.

Because the transitivity between two elements in the ground set

of M under appending an edge is unchanged, the second statement is

valid. �

Note 3.3 Let M ′ = (X + Kx,P ′) = M + ex for M = (X ,P).

Because P ′−x = P , M is obtained by the deletion of the edge ex from
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M ′, i.e., M = M ′−ex. Therefore, the operation of appending an edge

on a premap is the inverse of the corresponding edge deletion.

Now, another operation for increasing by an edge on a premap

is considered. This is the splitting an edge seen as the inverse of edge

contraction.

Let M = (Xα,β,P) be a premap. Suppose 〈l,Pαl〉 and 〈t,Pαt〉
are two angles. For x 6∈ Xα,β , let M ◦ ex = (Xα,β + Kx, P◦x), where

P◦x is determined by P in the following manner. The transformation

from M into M ◦ ex is called splitting an edge ex and ex, the splitting

edge of M .

Lemma 3.8 Let l ∈ {t}P ∪ {αt}P . If l 6∈ (t)Pγ ∪ (βt)Pγ, then

P◦xy =





Pαt(or αx), if y = x(or αPαt);
l(or x), if y = αx(or αl),

Pαl(or βx), if y = γx(or αPαl);
t(or γx), if y = βx(or αt);

Py, otherwise.

(3.10)

The edge ex is a single link as shown in Fig.3.6; Otherwise, i.e., l ∈
(t)Pγ ∪ (βt)Pγ, then

P◦xy =





Pαt(or αx), if y = x(or αPαt);
l(or x), if y = αx(or αl);

t(or βx), if y = βx(or αt);

Pαl(or βx), if y = γx(or αPαl);
Py, otherwise,

(3.11)

or γx replaced by βx to attain, respectively, ex as a singular or har-

monic link shown in Fig.3.7.
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Proof Since l ∈ {t}P ∪ {αt}P , l and t are at the same vertex.

Thus, ex is a link. If l 6∈ (t)Pγ ∪ (βt)Pγ, i.e., l is in a face different

from that t is in, or in other words, ex is single, then by the reason as

(P◦x)•x is different from only the vertex

(P◦xx)(P◦x)•x
= (Pαt, · · · , αl,Pαl, · · · , αt)

where P◦xx = Pαt shown in Fig.3.6, from Lemma 3.4(i), (P◦x)•x = P .

Otherwise, according as ex is singular or harmonic, (P◦x)•x is different

from only the vertex

(P◦xx)(P◦x)•x
= (Pαt, · · · , αl,Pαl, · · · , αt)

or

(Pαt, · · · , αl, t, · · · , αPαl)
shown in Fig.3.7. From Lemma 3.4(i) again, (P◦x)•x = P . �

Lemma 3.9 Let l 6∈ {t}P ∪ {αt}P . If t and l are not transitive

on M , then

P◦xy =






Pαl(or αx), if y = x(or αPαl);
t(or x), if y = αx(or αt);

Pαt(or βx), if y = γx(or αPαt);
l(or γx), if y = βx(or αl);

Py, otherwise

(3.12)

as shown in Fig.3.8 where ex is a harmonic loop.

Otherwise, i.e., t and l are transitive on M , then

P◦xy =





Pαl(or αx), if y = x(or αPαl);
Pαt(or x), if y = αx(or αPαt);
l(or βx), if y = γx(or αl);

t(or γx), if y = βx(or αt);

Py, otherwise,

(3.13)

as shown in Fig.3.9 where ex is a singular, or harmonic loop according

as it is incident with two faces, or one face.
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Fig.3.9 t and l transitive

Proof Since l ∈ {t}P ∪ {αt}P , l and t are at the same vertex.

Thus, ex is a link. If l 6∈ (t)Pγ ∪ (βt)Pγ, i.e., l is in a face different

from that t is in, or in other words, ex is single, then by the reason as
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(P◦x)•x is different from only the vertex

(P◦xx)(P◦x)•x
= (Pαt, · · · , αl,Pαl, · · · , αt)

where P◦xx = Pαt shown in Fig.3.6, from Lemma 3.4(i), (P◦x)•x = P .

Otherwise, according as ex is singular or harmonic, (P◦x)•x is different

from only the vertex

(P◦xx)(P◦x)•x
= (Pαt, · · · , αl,Pαl, · · · , αt)

or

(Pαt, · · · , αl, t, · · · , αPαl)
shown in Fig.3.7. From Lemma 3.4(i) again, (P◦x)•x = P . �

Lemma 3.10 If M = (X ,P) is a premap, then for any x ∈ X ,

M ◦ex = (X +Kx,P◦x) is also a premap. And, M ◦ex has the number

of its transitive blocks not greater than M does.

Proof From Lemmas 3.8–9, permutation P◦x is basic and parti-

tioned into conjugate pairs for α. Then by Theorem 2.3, M ◦ x is also

a premap. This is the first statement. Because splitting an edge does

not changing the transitivity of any pair of elements in X , the second

statement holds. �

Lemma 3.11 Edge ex is a harmonic loop on M ◦ex if, and only

if, P◦xx and P◦xγx are not transitive on M .

Proof Necessity. Because the splitting edge ex is a harmonic

loop on M , it is in the case (3.12). As shown in Fig. 3.8, P◦xβx(= l)

and P◦xαx(= t) are not transitive on M . Hence, by the symmetry

among elements inKx, P◦xx and P◦xγx are not transitive onM either.

Sufficiency. Because P◦xβx(= l) and P◦xαx(= t) are not tran-

sitive on M , only l 6∈ {t}P ∪ {αt}P is possible. This is the case for

(3.12). Thus, ex is a harmonic loop. �

Theorem 3.8 For a premap M = (Xα,β,P) not a map, the

number of transitive blocks in M ◦ ex is less than that in M if, and

only if, ex is a harmonic loop. If M is a map, then M ◦ ex is also a

map.
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Proof From Lemma 3.11, the number of transitive blocks in

M ◦ ex is less than that in M if, and only if, ex is a segmentation

edge in M + ex. This is the first statement. Because splitting an edge

in a map does not changing the transitivity, the second statement is

obtained. �

Lemma 3.12 Edge ex = {x, αx, βx, γx} is appended in premap

M if, and only if, edge e∗x = {x, βx, αx, γx} is split to in premap M∗.

Proof Necessity. (1) If ex is a single edge of M + ex, i.e., γx 6∈
(x)P+xγ ∪ (βx)P+xγ, then (x)P∗

+x
and (γx)P∗

+x
are two vertices on (M +

ex)
∗. Hence, from (3.10–11), e∗x is the splitting edge from the vertex

(P∗+xx)P∗ = (P∗+xx, · · · , (P∗+x)
−1x,P∗+xγx, · · · , (P∗+x)

−1γx)

on M∗.
(2) Otherwise, i.e., ex is a double edge on M + ex. Thus, γx ∈

(x)P+xγ ∪ (βx)P+xγ. Two cases should be considered.

(i) If γx ∈ (x)P+xγ, then ex is a segmentation edge on M +

ex. From Corollary 3.1, P∗+xx and P∗+xγx are not transitive on M .

Furthermore, from (3.12), e∗x is a splitting edge(a harmonic loop) on

M∗.

(ii) If γx ∈ (βx)P+xγ, then from (3.13), e∗x is a splitting edge on

M∗.

Sufficiency. (1) If e∗x is not a loop onM∗◦e∗x, then from (3.10–11),

M has a face

(P∗◦xx)Pγ = (P∗◦xx, · · · , (P∗◦x)−1x,P∗◦xγx, · · · , (P∗◦x)−1γx).

From (3.6), ex is an appending edge between

angle 〈αP∗◦x−1x,P∗◦xγx〉 and angle 〈αP∗◦x−1γx,P∗◦xx〉
in a face of M , as shown in (3.8–9).

(2) Otherwise, i.e., e∗x is a loop. From (3.12–13), there are two

faces on M with an angle each. Such two angles determine the ap-

pending edge ex on M . �
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Theorem 3.9 The dual of a premap M + ex is the premap

M∗ ◦ e∗x where M∗ is the dual of M and e∗x is the dual edge in M∗ ◦ e∗x
corresponding to ex in M + ex.

Proof A directed result of Lemma 3.4. �

From what has been discussed above, both the following diagrams

(Xα,β,P)
−ex−−−−−−−−→ (Xα,β −Kx,P−ex

)
∗
xy ∗

xy

(X ∗,P∗) ◦e∗x←−−−−−−−− (X ∗ −K∗x,P∗•e∗x)
(3.14)

and
(Xα,β,P) ←−−−−−−−−

+ex

(Xα,β −Kx,P−ex
)

∗
xy ∗

xy
(X ∗,P∗) −−−−−−−−→

•e∗x
(X ∗ −K∗x,P∗•e∗x)

(3.15)

are commutative.

Example 3.3 Map M = (Kx+Ky,P), P = (x, y)(γy, γx) and

its dual M∗ = (K∗x+K∗y,P∗),

P∗ = Pγ = (x, y, αx, γy)(y, γx),

are, respectively, shown in (a) and (b) of Fig.3.10. Notice that α and

β have distinguished roles in K = {1, α, β, γ} and K∗ = {1, β, α, γ}.
Map M + ez = (Kx+Ky +Kz,P+z),

P+z = (x, y, z)(γx, βz, γy)

and its dual (M + ez)
∗ = (K∗x+K∗y +K∗z, (P+z)

∗),

(P+z)
∗ = P+zγ = (x, βz, γy, γz)(γx, βy),

are, respectively, shown in (c) and (d) of Fig.3.10. According to (3.13),

e∗z is the splitting edge at the pair of angles 〈x, αy〉 and 〈γy, βx〉 in

M∗. Therefore,

M∗ ◦ e∗z = (K∗x+K∗y +K∗z, (z, βx, αz, γy)(y, γx)).
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If βy is seen as y, then M∗ ◦ e∗z = (M + ez)
∗.
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(c) M + ez (d) (M + ez)
∗

Fig.3.10 Duality between appending and splitting an edge

Based on Theorem 3.9, in a premap M = (X ,P), splitting an

edge ex attains M ◦ ex which is just M∗ + e∗x obtained by appending

the edge e∗x in its dual M∗ = (X ∗,P∗).
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III.4 Basic transformation

In a premap M = (Xα,β,P), the deletion of a single edge ex

is called basic deleting an edge and its result is denoted by M −b

ex. The contraction of a link ex is called basic contracting an edge,

and its result is denoted by M •b ex. The two operations are, in all,

called basic subtracting an edge. Similarly, appending a single edge

is called basic appending an edge, and splitting a link is called basic

splitting an edge. Such two operations are, in all, called basic adding

an edge. Apparently, M +b ex and M ◦b ex are the results of basic

adding an edge ex on M in their own right. Basic subtracting and

basic adding an edge are in all called basic transformation. From what

we have known above, A premap becomes another premap under basic

transformation.

Theorem 3.10 Suppose M ′ is a premap obtained by basic

transformation from premap M , then M ′ is a map if, and only if,

M is a map.

Proof Because a single edge is never a harmonic link, from The-

orem 3.4 the theorem holds for basic deleting an edge. Because a link

is never a harmonic loop, from Theorem 3.5, the theorem holds for

basic contracting an edge. Then, from Theorem 3.7–8, the theorem

holds for basic adding an edge. �

Furthermore, for basic transformation, the following conclusion

can also be done.

Theorem 3.11 Let M = (X ,P) be a map and M∗ = (X ∗,P∗),
its dual. Then, for any single edge ex in M , (M −b ex)

∗ = M∗ •b e∗x
and for a single edge ex not in M , (M +b ex)

∗ = M∗ ◦b e∗x. Conversely,

for any link ex in M , M •b ex = M∗ −b e
∗
x and for a link ex not in M ,

M ◦b ex = M∗ +b e
∗
x.

Proof Based on the duality between edges as shown in Table

3.1, the statements are meaningful. From Theorem 3.6 and Theorem

3.9, the fist statement is true. In virtue of the duality, the second
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statement is true. �

From this theorem, the following two diagrams are seen to be

commutative:

(Xα,β,P)
−bex−−−−−−−−→ (Xα,β −Kx,P−bex

)
∗
xy ∗

xy

(X ∗,P∗) ◦be∗x←−−−−−−−− (X ∗ −K∗x,P∗•be∗x)
(3.16)

and
(Xα,β,P) ←−−−−−−−−

+bex

(Xα,β −Kx,P−bex
)

∗
xy ∗

xy
(X ∗,P∗) −−−−−−−−→

•be∗x
(X ∗ −K∗x,P∗•be∗x)

(3.17)

On the basis of basic transformation, an equivalence can be es-

tablished for classifying maps in agreement with the classification of

surfaces.
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III.5 Observations

O3.1 Observe the condition for two permutations Per1 and Per2

satisfying (3.1) on the same ground set.

O3.2 Given a tree(e.g., the star of 5 edges), observe how many

maps are there for their dual maps all having the tree as under graph.

O3.3 Write the dual of map M = (Kx, (x, βx)). If a map has

its dual with the same under graph, then it is said to be self-dual for

the graph. Observe if M is self-dual for its under graph.

O3.4 Provide a map which is cuttable and its under graph with

a cut-vertex.

O3.5 How to distinguish the cuttability of a map and the sep-

arability of its under graph?

O3.6 Is the under graph of the dual of a Eulerian map bipar-

tite? If yes, explain the why; otherwise, by an example.

O3.7 Is the dual of a preproper map(no double edge) always a

preproper map? If yes, explain the why; otherwise, by an example.

O3.8 Is the dual of a proper map(each face formed by a circuit

in its under graph) always a proper map? If yes, explain the why;

otherwise, by an example.

O3.9 Is the dual of a polygonal map(two face with at most one

edge in common) always a polygonal map? If yes, explain the why;
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otherwise, by an example.

O3.10 Is the under graph of the dual of a map with 3-connected

under graph still 3-connected? If yes, explain the why; otherwise, by

an example.

III.6 Exercises

E3.1 Prove that the under graph of a map M = (X ,P) is a

tree if, and only if, its dual M∗ has the following three properties:

(i) M∗ has only one vertex;

(ii) For any x ∈ X , x and γx are in the same orbit of P∗;
(iii) For any y ∈ (x)P∗, there is no subsequence x, y, γx, γy or

x, γy, γx, y in its cycle.

For a mapM = (X (X),P) and S ⊆ X, letM [KS] = (KS,P [KS])

where P [KS] is the restriction of P on KS = KS, and M [KS] is said

to be induced on KS from M . Generally speaking, M [KS] is not a

map, but always a premap. A cocircuit of a graph with all of its edges

incident to the same vertex is called a proper cocircuit .

E3.2 Let M − ES = M [X − KS], ES = {ex|∀x ∈ S}. Prove

that M − ES, S ⊆ X, is a map if, and only if, there is no proper

cocircuit of G[M ] on graph G(M [KS]).

A proper circuit of a map M is such a set C of edges that C∗ =

{e∗|∀e ∈ C} is a proper cocircuit of G[M∗].

E3.3 Let H = G[M ] and MH be the set of all maps whose

under graphs are H. Prove that if C is a proper circuit of a map M ,

then it is a proper circuit of all N ∈MH .

E3.4 Let M • ES = (M∗ − E∗S)∗ where M∗ is the dual of M

and E∗S = {e∗x|∀x ∈ S}. Prove that M • ES is a map if, and only if,

ES is a proper circuit of M .

E3.5 Prove that a map M is on the sphere if, and only if, each

face of its dual M∗ corresponds to a proper cocircuit of M .
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If a map has its dual Eulerian, then it is called a dual Eulerian

map.

E3.6 Prove that a map is a dual Eulerian map if, and only if,

each of its faces is incident with even number of edges.

If a preproper dual Eulerian map has each of its faces partition-

able into circuits, then it is called a even assigned map . A map is

called bipartite when its under graph is bipartite.

E3.7 Prove that a dual Eulerian map is bipartite if, and only

if, it is even assigned.

E3.8 Prove that a quadrangulation is bipartite if, and only if,

it is without loop.

For a loopless quadrangulation Q = (Xα,β,Q), from E3.8, its

vertex set V can be partitioned into two subsets V1 and V2 such that

the two ends of each edge are never in the same subset. Such a subset

of vertices is called an independent set. X (1)
α1,β1

and X (2)
α2,β2

stand for

the sets of elements in Xα,β incident to, respectively, V1 and V2[Deh1,

Gau1, MuS1].

E3.9 Let σ = βQγ, γ = αβ. Prove that (σx, σQαx), x ∈ Xα,β,

is an angle.

Angles (σx, σQαx) and (x,Qαx) as shown in E3.9 are called an

independent pair . Thus, each face in a quadrangulation has exactly

two independent pairs of angles.

E3.10 Let K1 = {1, α1, β1, γ1}, γ1 = α1β1. And, α1 = Q and

β1 = βQγ(= σ as shown in E3.9). Prove

(i) K1 is the Klein group of four elements;

(ii) X (1)
α1,β1

=
∑

vx∈V1

∑

y∈{x}Q
K1y;

(iii) Q1 = (X (1)
α1,β1

,Q−1
1 ) is a map, where Q1 is the restriction of

Q on X (1)
α1,β1

.

Similarly to E3.10, from V2, another map Q2 can be deduced. Q1

and Q2 are called the incident pair of the quadrangulation.
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E3.11 Prove that the two maps in the incident pair of a quad-

rangulation are mutually dual.

E3.12 Prove that any planar quadrangulation is loopless.

E3.13 Let A and B be the sets of, respective all planar quad-

rangulations and all dual pairs of planar maps. Establish a 1–to–1

correspondence between A and B(i.e., bijection).

III.7 Researches

For a map, if the basic deletion of an edge can not be done

anymore, then the map is said to be basic deleting edge irreducible.

Similarly, if the basic contraction of an edge can not be done on a

map anymore, then the map is said to be basic contracting irreducible.

R3.1 Given the size, determine the number of self-dual maps

as an integral function of the size, or provide a way to list all the self-

dual maps of the same size and deduce a relation among the numbers

of different sizes.

R3.2 Given the size, determine the number of maps all basic

deleting irreducible as an integral function of the size, or provide a

way to list all such maps with the same size and deduce a relation

among the numbers of different sizes.

R3.3 Given the size, determine the number of maps all basic

contracting irreducible as an integral function of the size, or provide

a way to list all such maps with the same size and deduce a relation

among the numbers of different sizes.

R3.4 For any given graph, determine the number of maps all

basic deleting irreducible with the same under graph, or provide a way

to list all such maps with the same size and deduce a relation among

the numbers of different sizes.

R3.5 For any given map, determine the number of all basic

deleting irreducible maps obtained from the map by basic deletion, or
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provide a way to list all such maps with the same size and deduce a

relation among the numbers of different sizes.

R3.6 For a given graph, determine the number of maps all basic

contracting irreducible with the same under graph, or provide a way to

list such maps and deduce a relation among the numbers of different

sizes.

R3.7 For a given map, determine the number of all basic con-

tracting irreducible maps obtained from the map by basic contraction,

or provide a way to list such maps and deduce a relation among the

numbers of different sizes.

If a map is basic both deleting and contracting irreducible, then

it is said to be basic subtracting irreducible.

R3.8 Given the size, determine the number of basic subtracting

irreducible maps as an integral function of the size, or provide a way

to list all such maps with the same size and deduce a relation among

the numbers of different sizes.

R3.9 For a given graph, determine the number of maps all basic

subtracting irreducible with the same under graph, or provide a way

to list such maps and deduce a relation among the numbers of different

sizes.

R3.10 Find a relation between triangulations and quadrangu-

lations.

If a map has each of its faces pentagon, then it is called a quin-

quangulation. Similarly, the meaning of a hexagonalization.

R3.11 Justify whether or not a triangulation has a spanning

quinquangulation or hexagonalization. If do, determine its number.

R3.12 Even assigned conjecture: A bipartite graph without

cut-edge has a super map even assigned.
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Orientability

• The orientability is determined by the orientation for each edge

with two sides; otherwise, nonorientability.

• The basic equivalence is defined via basic transformations to show

that the orientability is an invariant in an equivalent class. This

equivalence is, in fact, the elementary equivalence on surfaces.

• The Euler characteristic is also shown to be an invariant in an

equivalent class.

• Two examples show that none of the orientability(nonorientability

as well) and the Euler characteristic can determine the equivalent

class.

IV.1 Orientation

Let M = (Xα,β,P) be a map(from Theorem 2.6, without loss of

generality for a premap), and ΨI , I = {γ,P}, γ = αβ = βα, be the

group generated by the set of permutations I. Now, it is known that

the number of orbits of P on Xα,β is double the number of vertices on

M and the number of orbits of Pγ on Xα,β is double the number of

faces on M . Because P ,Pγ ∈ ΨI , the number of orbits of the group

ΨI on Xα,β is not greater than any of their both.
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Lemma 4.1 The number of orbits of the group ΨI on Xα,β is

not greater than 2.

Proof Because Pγ ∈ ΨI , for any x ∈ Xα,β, {x}Pγ ⊆ {x}ΨI
.

Here, {x}Pγ and {x}ΨI
are the orbits of, respectively, the permutation

Pγ and the group ΨI on Xα,β. For any chosen element x ∈ Xα,β, from

P ∈ Ψ, for any y ∈ {x}Pγ, {y}Pγ ⊆ {x}ΨI
, and from γ ∈ Ψ,

{γy}Pγ ⊆ {γy}ΨI
⊆ {x}ΨI

.

In view of Theorem 2.6, at least half of elements at each vertex belong

to {x}ΨI
. Therefore, {x}ΨI

contains at least half of elements in Xα,β .

Similarly, {αx}ΨI
contains at least half of elements in Xα,β.

In consequence, based on the basicness of P for α, ΨI has at

most 2 orbits on Xα,β. �

According to this lemma, a map M = (Xα,β,P) has only two

possibilities: group ΨI is with two, or one, orbits on Xα,β. The former

is called orientable, and the later, nonorientable .

From the proof of the lemma, an efficient algorithm can be es-

tablished for determining all the orbits of group ΨI on the ground

set.

Actually, in an orientable map, because ΨI has two orbits for α,

the ground set is partitioned into two parts of equal size. It is seen

from Lemma 4.1 that each quadricell (i.e., edge) is distinguished by

two elements in each of the two orbits. And, the two elements of an

edge in the same orbit have to be with different ends of the edge.

Thus, each of the two orbits determines the under graph of the map.

Example 4.1 Consider map M = (X ,P) where

X = Kx+Ky +Kz +Ku+Kv +Kw

and

P = (x, y, z)(γz, u, v)(γv, γy, w)(γw, γu, γx)

as shown in Fig.4.1(a). Its two faces are

(x, γw, γv, γz)
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and

(γx, y, w, γu, v, γy, z, u).

In fact, for this map, group ΨI has two orbits. One is

{x, γw, γv, γz, γx, y, w, γu, v, γy, z, u}.

The other is what is obtained from it by multiplying α to each of all

its elements. Thus, M is orientable. Fig.4.1(b) shows that M is an

embedding of the complete graph of order 4 on the torus (yuy−1u−1).

� -�?� 6 -� -?6 - ?� - � 6?-�6 -?γx

γx

x
x

y
z u

v

w

γy

y

z
u

v

γy

w

γu
γu

(a) (b)

Fig.4.1 An embedding of K4

Corollary 4.1 If ΨI , I = {P , αβ}, has two orbits on Xα,β, then

they are conjugate for both α and β.

Proof It is known from Lemma 4.1 that the two obits have the

same number of elements, i.e., half of Xα,β. Because y ∈ {x}ΨI
if, and

only if, αy ∈ {αx}ΨI
and for any Kx, αx and βx are always in the

same orbit of ΨI , this implies that {αx}ΨI
= {βx}ΨI

different from

{x}ΨI
and hence the conclusion. �

Example 4.2 Consider map N = (X ,Q) where

X = Kx+Ky +Kz +Ku+Kv +Kw

and

Q = (x, y, z)(γz, u, v)(γv, βy, w)(γw, γu, γx)
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as shown in Fig.4.2(a).

That is obtained from the mapM in Fig.4.1(a) in the replacement

of cycle (γv, γy, w) by cycle (γv, βy, w). Here, N has also two faces

(x, γw, γv, γz)

and

(γx, y, βv, αu, βw, γy, z, u).

Because βy ∈ {y}Qγ ⊆ {y}Ψ{γ,Q}
, from the corollary group Ψ{γ,Q} has

only one orbit, i.e.,

{x}Ψ{γ,Q}
= X .

Therefore, N is nonorientable. It is seen from Fig.4.2(b) that N is an

embedding of the complete graph of order 4 on the surface

(yuyu−1) ∼top (yyuu),

i.e., Klein bottle .

� -�?� 6 -� -?6 - ?� - � 6?-�6 -?γx
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v
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z
u

v

βy

w

γu
γu

(a) (b)

Fig.4.2 An embedding of K4 on the Klein bottle

Theorem 4.1 A map M = (X ,P) is nonorientable if, and only

if, there exists an element x ∈ X such that βx ∈ {x}ΨI
, or αx ∈ {x}ΨI

where I = {γ,P}.
Proof Necessity. Suppose αx 6∈ {x}ΨI

, then ΨI has at least two

orbits. However from Lemma 4.1, it has exactly two orbits . Thus, M

is never nonorientable. The necessity holds
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Sufficiency. Because βx ∈ {x}ΨI
, from Corollary 4.1 it is only

possible to have {x} = X , i.e., ΨI has only one orbit. Hence, M is

nonorientable. This is the sufficiency. �

This theorem enables us to justify the nonorientability and hence

the orientability of a map much simple. If there exists a face (x)Pγ,

denoted by Sx, such that αx ∈ Sx, or there exists a vertex (x)P ,
denoted by Sx, such that βx ∈ Sx on M , then M is nonorientable(as

shown in Example 2). Otherwise, From y ∈ Sx via acting P , or γ, for

getting z 6∈ Sx, Sx is extended into

Sx ∪ {z}Pγ ∪ {z}P

which is seen as a new S to see if y, αy ∈ S, or y, βy ∈ S. If it does,

thenM is nonorientable; otherwise, do the extension until |S| = |X |/2,

or S = X .

Theorem 4.2 A map M = (X ,P) is orientable if, and only if,

its dual M∗ = (X ∗,P∗) is orientable.

Proof Because P∗ = Pγ ∈ Ψ{γ,P}(γ = αβ = βα), Ψ{γ,P} =

Ψ{γ,P∗}. So, for any x ∈ X = X ∗, {x}Ψ{γ,P}
= {x}Ψ{γ,P∗}

. This is the

conclusion of the theorem. �

IV.2 Basic equivalence

First, observe the effect for the orientability of a map via basic

transformation.

For a map M = (X ,P) and its edge ex, let M −b ex and M •b ex

be, respectively, obtained by basic deleting and basic contracting the

edge ex on M . From Theorem 3.10, M −b ex and M •b ex are both a

map .
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Fig.4.3 Basic deleting an edge

Lemma 4.2 If M ′ is the map obtained by basic subtracting an

edge from M , then M ′ is orientable if, and only if, M is orientable.

Proof First, to prove the theorem for M ′ = M −b ex.

Necessity. From M ′ = M − ex = (X ′,P ′) orientable, group

Ψ′ = Ψ{γ,P ′} has two orbits onX ′ = X−Kx, i.e., {Px}Ψ′ and {Pαx}Ψ′.

Because ex is single, Pγx ∈ {Px}Ψ′ and Pβx ∈ {Pαx}Ψ′. So, group

Ψ = Ψ{γ,P} has two orbits

{x}Ψ = {Px}Ψ′ ∪ {x, γx}

and

{αx}Ψ = {Pαx}Ψ′ ∪ {αx, βx}
on X , i.e., M is orientable.

Sufficiency. Because ex is a single link (Fig.4.3(a)), or single loop

(Fig.4.3(b)), in virtue of that group Ψ has two orbits {x}Ψ and {αx}Ψ
on X , group Ψ′ has two orbits

{Px}Ψ′ = {x}Ψ − {x, γx}

and

{Pαx}Ψ′ = {αx}Ψ − {αx, βx}
on X ′, i.e., M ′ is orientable.

Then, to prove the theorem for M ′ = M •b ex. On the basis

of Theorem 3.11, the result is directly deduced from that for M ′ =

M −b ex. �
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Whenever that two new angles occur in the deletion of an edge

with 4 angles lost is noticed, the edge appending as the inverse of

deletion is done between the two angles. And then the same case

comes for basic deleting and basic appending an edge. In this sense,

Lemma 4.3 in what follows is seen as a direct result of Lemma 4.2.

However, it is still proved in an independent way.

For basic appending an edge, since the edge is only permitted

to be a single link or a single loop, this operation is, in fact, done by

putting the edge in the same face.

Let map M = (X ,P) have a face

(y)Pγ = (y0, y1, · · · , ys)

where y0 = y, y1 = (Pγ)y, · · ·, ys = (Pγ)−1y. Denote

M +i ex = M +b ex

when appending the edge ex in between angles 〈y,Pαy〉 and 〈yi,Pαyi〉,
0 ≤ i ≤ s. From (3.10), M +i ex = M +b ex, 0 ≤ i ≤ s, are all

maps(Fig.4.4).

y � �
- 	y1

yl+1

o
Rx

yl

yl−1

ys

y � �
- 	y1

yl+1

�o Rx

γx

yl

yl−1

ys

Y�
γx

i
(a) M +0 ex (b) M +1 ex
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y � �
- 	y1

yl+1

o
R yl

yl−1

ys

y � �
- 	y1

yl+1

� - o
Rx

γx

yl

yl−1

ys

� jx

γx

(c) M +l ex (d) M +l+1 ex

Fig.4.4 Basic appending an edge

Lemma 4.3 Maps M+iex = M+bex, 0 ≤ i ≤ s, are orientable

if, and only if, M is orientable.

Proof necessity. Since M ′ = M +i ex = (X ′,P ′), 0 ≤ i ≤ s,

are all orientable, group Ψ′ = Ψ{γ,P ′} has two orbits {x}Ψ′ and {αx}Ψ′

on X ′ = X +Kx. Because ex is a single link (Fig.4.4(a) and (c)), or

single loop (Fig.4.4(b) and (d)),

P ′x ∈ {x}Ψ′ and P ′αx ∈ {αx}Ψ′.

Hence, group Ψ = Ψ{γ,P} has two orbits

{P ′x}Ψ = {x}Ψ′ − {x, γx}

and

{P ′αx}Ψ = {αx}Ψ′ − {αx, βx}
on X . This implies that M is orientable.

Sufficiency. Since ex is a single link (Fig.4.4(a) and (c)), or single

loop (Fig.4.4(b) and (d)), the two orbits

{x}Ψ′ = {y}Ψ + {x, γx}

and

{αx}Ψ′ = {αy}Ψ + {αx, βx}
of group Ψ′ on X ′ are deduced from the two orbits {y}Ψ and {αy}Ψ
of group Ψ on X . Therefore, M ′ is orientable. �
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As for basic splitting an edge, whenever that two new angles

occur in the contraction of an edge with 4 angles lost is noticed, the

edge splitting seen as the inverse of contraction is done between the

two angles.

Next, consider how to list all possibilities for basic splitting from

a given angle.

For a map M = (X ,P), let

(y)P = (y0, y1, · · · , yl−1, yl, · · · , ys),

y0 = y, s ≥ 0, be a vertex. Denote by M ◦i ex the result obtained from

M by basic splitting an edge between angles 〈y,Pαy〉 and 〈yi, αyi−1〉
where y = y0 and Pαy = αys. From Theorem 3.10, M ◦iex = M+bex,

0 ≤ i ≤ s, are all maps (Fig.4.5).I M *s+y
y1

ylys

yl−1 M *s+y
y1

ylys

yl−1�-
x

γx RII x

γx

(a) M ◦0 ex (b) M ◦1 ex

αys

I M *sy
y1

yl

yl−1

I M *s+y
y1

ylys

yl−1?6xγx + *γx

(c) M ◦l ex (d) M ◦s ex

Fig.4.5 Basic splitting an edge

Lemma 4.4 For a map M = (X ,P) and x 6∈ X , map M ◦iex =

M +b ex, 0 ≤ i ≤ s, is orientable if, and only if, M is orientable.

Proof Necessity. Because M ′ = M ◦i ex = (X ′,P ′), 0 ≤ i ≤ s,

is orientable, group Ψ′ = Ψ{γ,P ′} has two obits {x}Ψ′ and {αx}Ψ′ on
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X ′ = X +Kx. Since ex is a single link (Fig.4.5(b), (c) and (d)), or a

double link (Fig.4.5(a) and (c)),

P ′x ∈ {x}Ψ′ and P ′αx ∈ {αx}Ψ′.

Therefore, group Ψ = Ψ{γ,P} has two orbits

{P ′x}Ψ = {x}Ψ′ − {x, γx} and {P ′αx}Ψ = {αx}Ψ′ − {αx, βx}
on X . This implies that M is orientable.

Sufficiency. Because ex is a single link (Fig.4.5(b), (c) and (d)),

or a double link (Fig.4.5(a) and (c)), the two orbits {x}Ψ′ = {y}Ψ +

{x, γx} and {αx}Ψ′ = {αy}Ψ+{αx, βx} of group Ψ′ on X ′ are deduced

from the two orbits {y}Ψ and {αy}Ψ of group Ψ on X . Therefore, M ′

is orientable . �

Corollary 4.2 If M ′ is the map obtained by basic adding an

edge from mapM , thenM ′ is orientable if, and only if,M is orientable.

Proof A direct result of Lemma 4.3 and Lemma 4.4. �

The operation of basic appending an edge between two successive

angles of a face in a map is also called increasing duplition (Fig.4.4(b)

and (d)), and its inverse operation, decreasing duplition. And du-

ally, the operation of basic splitting an edge is also called increasing

subdivision(Fig.4.5(b) and (d)), and its inverse operation, decreasing

subdivision.

Corollary 4.3 A premap M ′ obtained by increasing duplition,

increasing subdivision, decreasing duplition, or decreasing subdivision

from a map M is still a map with the same orientability of M .

Proof The results for decreasing duplition and decreasing sub-

division are derived from Lemma 4.2. Those for increasing duplition

and increasing subdivision are from Corollary 4.2. �

If map M1 can be obtained from map M2 via a series of basic

adding and/or basic subtracting an edge, then they are called mutually

basic equivalence, denoted by M1 ∼bc M2.
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Theorem 4.3 If maps M1 ∼bc M2, then M1 is orientable if,

and only if, M2 is orientable.

Proof A direct result of Lemma 4.2 and Corollary 4.2. �

Since ∼bc is an equivalent relation, maps are partitioned into

classes of basic equivalence, in short equivalent class. Theorem 4.3

shows that the orientability of maps is an invariant in the same equiv-

alent class.

IV.3 Euler characteristic

For a map M = (X ,P), let ν = ν(M), ǫ = ǫ(M) and φ = φ(M)

are, respectively, the order(vertex number), size(edge number) and

co-order(face number) of M , then

χ(M) = ν − ǫ+ φ (4.1)

is called the Euler characteristic of M .

Theorem 4.4 Let M∗ be the dual of a map M , then

χ(M∗) = χ(M). (4.2)

Proof Because ν(M∗) = φ(M), ǫ(M∗) = ǫ(M) and φ(M∗) =

ν(M), (4.2) is obtained from (4.1). �

Lemma 4.5 For a map M = (X ,P) and an edge ex, x ∈ X ,

let M − ex and M • ex be, respectively, obtained from M by deleting

and contracting the edge ex, then

χ(M) =

{
χ(M − ex), if ex is single;

χ(M • ex), if ex is a link.
(4.3)

Proof From Theorem 3.11 and Theorem 4.4, only necessary to

consider for one of M − ex and M • ex. Here, the former is chosen. To

prove χ(M − ex) = χ(M) for ex single.
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Because ex is single, ν(M − ex) = ν(M), ǫ(M − ex) = ǫ(M)− 1

and φ(M − ex) = φ(M)− 1. From (4.1),

χ(M − ex) = ν(M)− (ǫ(M)− 1) + (φ(M)− 1)

= ν(M)− ǫ(M) + φ(M)

= χ(M).

This is just what is wanted to get. �

Corollary 4.4 For any map M , χ(M) ≤ 2.

Proof By induction on the co-order φ(M). If M has only one

face, i.e., φ(M) = 1, then

χ(M) = ν(M)− ǫ(M) + 1.

In view of the connectedness,

ǫ(M) ≥ ν(M)− 1.

In consequence,

χ(M) ≤ ν(M)− (ν(M)− 1) + 1 = 2.

Thus, the conclusion is true for φ(M) = 1.

In general, i.e., φ(M) ≥ 2. Because of the transitivity on a map,

there exists a single edge ex on M . From Lemma 4.5, M ′ = M−ex has

χ(M ′) = χ(M). Since φ(M ′) = φ(M)−1, by the induction hypothesis

χ(M ′) ≤ 2. That is χ(M) ≤ 2, the conclusion. �

For an indifferent reception, because the order, size and co-order

of a map can be much greater as the map is much enlarged. The con-

clusion would be unimaginable. In fact, since the deletion od a single

edge does not change the connectivity with the Euler characteristic

unchange and the size of a connected graph is never less than its order

minus one, this conclusion becomes reasonable.

Corollary 4.5 For basic subtracting an edge ex on a map M ,

χ(M −b ex) = χ(M) and χ(M •b ex) = χ(M).
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Proof A direct result of Lemma 4.5. �

Lemma 4.6 For a map M = (X ,P) and an edge ex, x 6∈ X , let

M + ex and M ◦ ex be obtained from M via, respectively, appending

and splitting the edge ex, then

χ(M) =

{
χ(M + ex), if ex is single;

χ(M ◦ ex), if ex is a link.
(4.4)

Proof From Theorem 3.11 and Theorem 4.4, only necessary to

consider for one of M+ex and M ◦ex. The former is chosen. To prove

χ(M + ex) = χ(M).

Because ex is single, then ν(M + ex) = ν(M), ǫ(M + ex) =

ǫ(M) + 1 and φ(M + ex) = φ(M) + 1. From (4.1),

χ(M + ex) = ν(M)− (ǫ(M) + 1) + (φ(M) + 1)

= ν(M)− ǫ(M) + φ(M)

= χ(M).

Therefore, the lemma is true. �

Corollary 4.6 For basic adding an edge ex on a mapM , χ(M+b

ex) = χ(M) and χ(M ◦b ex) = χ(M).

Proof A direct result of Lemma 4.6. �

For a map M = (X ,P) and an edge ex, x ∈ X , let M[◦x] and

M[+x] be obtained from M by, respectively, increasing subdivision and

increasing duplition for edge ex, and M[•x] and M[−x], by, respectively,

decreasing subdivision and decreasing duplition for edge ex. From

Corollary 4.3, they are all maps.

Corollary 4.7 For increasing subdivision and increasing dupli-

tion,

χ(M[◦x]) = χ(M); χ(M[+x]) = χ(M) (4.5)

and for decreasing subdivision and decreasing duplition,

χ(M[•x]) = χ(M); χ(M[−x]) = χ(M). (4.6)
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Proof Because increasing subdivision and increasing duplition

are a special type of basic adding an edge, from Corollary 4.5, (4.5)

holds. Because decreasing subdivision and decreasing duplition are

a special type of basic subtracting an edge, from Corollary 4.6, (4.6)

holds. The corollary is obtained. �

The following theorem shows that the Euler characteristic is an

invariant in the basic equivalent classes of maps.

Theorem 4.5 If maps M1 ∼bc M2, then

χ(M1) = χ(M2). (4.7)

Proof Because the basic transformation consists of basic sub-

tracting and basic adding an edge, from Corollary 4,5 and Corollary

4.6, (4.7) is obtained. �

IV.4 Pattern examples

Pattern 4.1 Consider the map M = (X ,P) where X = Kx+

Ky +Kz +Ku+Kw +Kl and

P = (x, y, z)(αl, γz, βw)(βl, γy, αu)(w, γu, βx),

shown in Fig.1.13.

By deleting the single edge ex onM , letM1 = (X1,P1) = M−bex,

then X1 = Ky +Kz +Ku+Kw +Kl and

P1 = (y, z)(αl, γz, βw)(βl, γy, αu)(w, γu).

By contracting the double link ez on M1, let M2 = (X2,P2) =

M1 •b ez, then X2 = Ky +Ku+Kw +Kl and

P2 = (y, βw, αl)(βl, γy, αu)(w, γu).

By contracting the double link el on M2, let M3 = (X3,P3) =

M2 •b el, then X3 = Ky +Ku+Kw and P3 = (y, βw, γy, αu)(w, γu).
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By contracting the double link eu on M3, let M4 = (X4,P4) =

M3 •b eu, then X4 = Ky +Kw and P4 = (y, βw, γy, αw).

Now, M4 has only one vertex and only one face and hence any

basic transformation for subtracting an edge can not be done. It is a

map on the torus (Fig.4.6).

w�
A A

6y

B

B

v

Fig.4.6 A map basic equivalent to M

Pattern 4.2 Again, consider the map N = (X ,Q) where X =

Kx+Ky +Kz +Ku+Kw +Kl and

Q = (x, y, z)(αl, γz, βw)(βl, βy, αu)(w, γu, βx),

as shown in Fig.1.14.

By deleting the single edge ex on M , let N1 = (X1,Q1) = N−bex,

then X1 = Ky +Kz +Ku+Kw +Kl and

Q1 = (y, z)(αl, γz, βw)(βl, βy, αu)(w, γu).

By contracting the double link ez on N1, let N2 = (X2,Q2) =

N1 •b ez, then X2 = Ky +Ku+Kw +Kl and

Q2 = (y, βw, αl)(βl, βy, αu)(w, γu).

By contracting the double link el on N2, let N3 = (X3,Q3) =

N2 •b el, then X3 = Ky +Ku+Kw and

Q3 = (y, βw, βy, αu)(w, γu).
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Finally, By contracting the double link eu on N3, let N4 =

(X4,Q4) = N3 •b eu, then X4 = Ky +Kw and Q4 = (y, βw, βy, αw).

Now, the basic transformation can not be done anymore on N4.

N4 is a map on the Klein bottle, as shown in Fig.4.7.

w�
A A

6y

B

?βy

B

v

Fig.4.7 A map basic equivalent to N

From the two patterns, it is seen that M4 6∼bc N4, and hence

M 6∼bc N . Although their Euler characteristic are the same, i.e.,

χ(M) = χ(M4) = 1− 2 + 1 = χ(N4) = χ(N),

their orientability are different.
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IV.5 Observations

O4.1 For a map M = (Xα,β,P), observe how many orbits does

the group Ψ{α,P} have on the ground set Xα,β? What condition is it

for its transitivity.

O4.2 For a map M = (Xα,β,P), observe how many orbits does

the group Ψ{β,Pγ}, γ = αβ, have on the ground set Xα,β? What

condition is it for its transitivity.

O4.3 For a map M = (Xα,β,P), observe how many orbits does

the group Ψ{β,P} have on the ground set Xα,β? What condition is it

for its transitivity.

O4.4 For a map M = (Xα,β,P), observe how many orbits does

the group Ψ{α,Pγ}, γ = αβ, have on the ground set Xα,β? What

condition is it for its transitivity.

O4.5 If map M = (X ,P) is orientable, is M − ex always ori-

entable for any ex, x ∈ X ? If yes, explain the reason; otherwise, by

an example.

O4.6 If map M = (X ,P) is nonorientable, is M − ex always

nonorientable for any ex, x ∈ X ? If yes, explain the reason; otherwise,

by an example.

O4.7 If map M = (X ,P) is orientable, is M • ex always ori-

entable for any ex, x ∈ X ? If yes, explain the reason; otherwise, by

an example.

O4.8 If map M = (X ,P) is nonorientable, is M • ex always
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nonorientable for any ex, x ∈ X ? If yes, explain the reason; otherwise,

by an example.

O4.9 If map M = (X ,P) is orientable, is M + ex always ori-

entable for any ex, x 6∈ X ? If yes, explain the reason; otherwise, by

an example.

O4.10 If map M = (X ,P) is nonorientable, is M + ex always

nonorientable for any ex, x 6∈ X ? If yes, explain the reason; otherwise,

by an example.

O4.11 If map M = (X ,P) is orientable, is M ◦ ex always ori-

entable for any ex, x 6∈ X ? If yes, explain the reason; otherwise, by

an example.

O4.12 If map M = (X ,P) is nonorientable, is M ◦ ex always

nonorientable for any ex, x 6∈ X ? If yes, explain the reason; otherwise,

by an example.

O4.13 Show by example that a face of an orientable map M

does not correspond to a cocycle on its dualM∗.

IV.6 Exercises

E4.1 Try to prove Lemma4.1 in three different manners.

E4.2 For a map M , prove that there exists a nonnegative inte-

ger n and basic transformations π1, π2, · · · , πn such that

M∗ =
n∏

i=1

πiM (4.8)

where M∗ is the dual of M .

E4.3 For a map M = (Xα,β,P), the group Ψ{γ,P}, γ = αβ, with

two orbits on Xα,β is known. Prove that

χ(M) = 0 (mod 2). (4.9)

E4.4 Prove that a mapM = (Xα,β,P) is nonorientable if, and
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only if, there exist x, y ∈ X such that

|Ky ∩ {x}Ψ{αβ,P}
| > 2.

E4.5 Try to prove Corollary 4.4 in two different manners.

E4.6 If a map M = (Xα,β,P) has only one face, prove that

M is nonorientable if, and only if, there exists an x ∈ X such that

αx ∈ {x}Pγ where γ = αβ.

For a map M = (Xα,β,P), let A be the set of all orbits of P on

Xα,β. Graph GM = (V,E) where V = A and

E = {(A,B)|∃ x ∈ X , x ∈ A and γx ∈ B}.
And, GM is called the subsidiary graph of M .

E4.7 For a map M = (Xα,β,P), prove that the group Ψ{αβ,P}
has two orbits on Xα,β if, and only if, the subsidiary graph GM of M

has two connected components.

For a map M = (Xα,β,P), γ = αβ, let fi = {(xi)Pγ, (βxi)Pγ},
i = 1, 2, · · · , φ, be all the faces of M . If a set S = {si|1 ≤ i ≤ φ} of

orbits of permutation Pγ on Xα,β satisfies |S ∩ fi| = 1,i = 1, 2, · · · , φ,

then S ia called a face representative of M .

Let graph GS = (V,E) be with V = S as a face representative

of M and e = (s, t) ∈ E as a pair of faces s and t with an edge in

common. On E, define a weight function

w(e) =

{
0, there exists x ∈ s such that γx ∈ t;
1, otherwise

for e = (s, t) ∈ E. And, (GS, w) is called an associate net of M .

On an associate net (GS, w), GS = (V,E), of a map M , if there

exists a label l(v) ∈ {0, 1} for vertex v ∈ V such that for any e =

(u, v) ∈ E,

l(u) + l(v) = w(e) (mod 2),

then the associate net (GS, w) is said to be balanced.

E4.8 For a map M , prove that if one of its associate nets is

balanced, then all of its associate net are balanced.
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E4.9 Prove that a map is orientable if, and only if, the map

has an associate net balanced.

For a graph G = (V,E), A ⊆ E, if V has a 2-partition, i.e.,

V = V1 ∪ V2 and V1 ∩ V2 = ∅, such that

A = {(u, v) ∈ E|u ∈ V1, v ∈ V2},

then A is called a cocycle of G.

E4.10 Prove that a map M is orientable if, and only if, for a

face representative S ofM , its associate net (GS, w) has {e ∈ E|w(e) =

1} as a cocycle.

E4.11 Prove that a map M has its Euler characteristic 2 �
if, and only if, each of its faces corresponds to a cocycle of the under

graph of its dual M∗.

IV.7 Researches

R4.1 Characterize that the under graph of a map has an super

map with its Euler characteristic 1.

R4.2 Characterize that the under graph of a map has an super

map with its Euler characteristic 0.

R4.3 For any orientable map, characterize that the under graph

of the map has an super orientable map with its Euler characteristic

0.

R4.4 For a vertex regular map and a given integer g ≤ 1, char-

acterize that the under graph of the map has a super map with its

Euler characteristic g.

R4.5 For a vertex regular orientable map and a given integer

g ≤ 0, characterize that the under graph of the map has a super map

with its Euler characteristic 2g.

A graph which has a spanning circuit ia called a Hamiltonian

graph. Such a spanning circuit is called a Hamiltonian circuit of the
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graph. If a map has its under graph Hamiltonian, then it is called a

Hamiltonian map.

R4.6 For a Hamiltonian map and a given integer g ≤ 1, char-

acterize that the under graph of the map has a super nonorientable

map with its Euler characteristic g.

R4.7 For a Hamiltonian map and a given integer g ≤ 0, char-

acterize that the under graph of the map has a super orientable map

with its Euler characteristic 2g.

For a vertex 3-map(or cubic map), if it has only i-face and j-face,

i 6= j, i, j ≥ 3, then it is called an (i, j)f-map.

R4.8 For a given integer g ≤ 1, determine the number of

(3, 4)f-map of order n(n ≥ 1) with Euler characteristic g.

R4.9 For a given integer g ≤ 1, determine the number of

(4, 5)f-map of order n(n ≥ 1) with Euler characteristic g.

R4.10 For a given integer g ≤ 1, determine the number of

(5, 6)f-map of order n(n ≥ 1) with Euler characteristic g.

R4.11 Given a graph G of order n(n ≥ 4), determine the con-

dition for G have a super (n− 1, n)f-map.

On a (n− 1, n)f-map of order n(n ≥ 4), let φ1 be the number of

(n− 1)-faces. If its Euler characteristic is g ≤ 1, then n and φ1 should

satisfy the following condition:

(n− 1)|(n(n− g) + φ1), (4.10)

i.e., n− 1 is a facer of n(n− g) + φ1.

R4.12 Given an integer g ≤ 1, for any positive numbers n and

φ1 satisfying (4.10), determine if there exists a (n − 1, n)f-map with

its Euler characteristic g.



Chapter V

Orientable Maps

• Any irreducible orientable map under basic subtracting edges is

defined to be a butterfly. However, an equivalent class may have

more than 1 butterflies.

• The simplified butterflies are for the standard orientable maps to

show that each equivalent class has at most 1 simplified butterfly.

• Reduced rules are for transforming a map(unnecessary to be ori-

entable) into another butterfly, if orientable, in the same equivalent

class. A basic rule is extracted for deriving all other rules.

• Principles only for orientable maps are clarified to transform any

map to a simplified butterfly in the same equivalent class. Hence,

each equivalent class has at least 1 simplified butterfly.

• Orientable genus instead of the Euler characteristic is an invariant

in an equivalent class to show that orientable genus itself determine

the equivalent class.

V.1 Butterflies

On the basis of Chapter IV, this chapter discusses orientable

maps with a standard form in each of basic equivalent classes. If an
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orientable map has only one vertex and only one face, then it is called

a butterfly.

Lemma 5.1 In each of basic equivalent classes, there exists a

map with only one vertex.

Proof For a map M = (Xα,β,P), if M has at least two vertices,

from the transitive axiom, there exists an x ∈ Xα,β such that (x)P and

(γx)P, γ = αβ, determine two distinct vertices. Because ex is a link,

by basic contracting ex, M
′ = M •b ex ∼bc M . Then, M ′ has one

vertex less than M does. In view of Theorem 3.10, M ′ is also a map.

If M ′ does not have only one vertex, the procedure is permitted to go

on with M ′ instead of M . By the finite recursion principle a map M ′

with only one vertex can be found such that M ′ ∼bc M . This is the

lemma. �

A map with only one vertex is also called a single vertex map ,

or in brief, a petal bundle .

Lemma 5.2 In a basic equivalent class of maps, there exists a

map with only one face.

Proof For a map M = (Xα,β,P), if M has at least two faces,

from the transitive axiom, there exists an x ∈ Xα,β such that (x)Pγ and

(γx)Pγ, γ = αβ, determine two distinct faces. Because ex is single,

by basic deleting ex, M
′ = M −b ex ∼bc M . Now, M ′ has one face

less than M does. From Theorem 3.10, M ′ is still a map . Thus, if

M ′ is not with only one face, this procedure is allowed to go on with

M ′ instead of M . By the finite recursion principle, a map M ′ with

only one face can be finally found such that M ′ ∼bc M . The lemma

is proved. �

In fact, on the basis of Theorem 3.6, Lemma 5.1 and Lemma

5.2 are mutually dual. Furthermore, what should be noticed is the

independence of the orientability for the two lemmas.
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Theorem 5.1 For any orientable map M , there exists a but-

terfly H such that H ∼bc M .

Proof If M has at least two vertices, from Lemma 5.1, there

exists a single vertex map L ∼bc M . In virtue of Theorem 4.3, L is

still orientable. if L has at least two faces, from Lemma 5.2, there

exists a single face map H ∼bc L. In virtue of Theorem 4.3, H is still

orientable. Since H has, finally, both one vertex and one face, H is a

butterfly. Therefore, H ∼bc L ∼bc M . This is the theorem. �

This theorem enables us only to discuss butterflies for the Basic

equivalence classes of maps without loss of generality.

V.2 Simplified butterflies

Let Ok = (Xk,Jk), k ≥ 0, where

Xk =





∅, � k = 0;
k∑

i=1

(Kxi +Kyi), � k ≥ 1
(5.1)

and

Jk =





(∅), � k = 0;

(

k∏

i=1

〈xi, yi, γxi, γyi〉), � k ≥ 1.
(5.2)

It is east to check that all Ok, k ≥ 0, are maps. And, they are called

O-standard maps. When k = 1 and 2, O1 and O2 are, respectively

given in (a) and (b) of Fig.5.1.
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Fig.5.1 Two O-standard maps

Note 5.1 When k = 0, O0 = (∅, ∅) is seen as the degenerate

case of a map with no edge. For example, what is obtained by basic

deleting an edge on L̂0 = (Kx, (x, γx)) is just O0. Usually, it is seen

as the map with only one vertex without edge, or called the trivial

map.

Lemma 5.3 For any k ≥ 0, O-standard map Ok is orientable.

Proof When k = 0, from O0 = (Kx, (x, γx))−b ex,

O0 ∼bc (Kx, (x, γx)).

Because {x}Ψ{(x,γx),γ}
= {x, γx} and {αx}Ψ{(x,γx),γ}

= {αx, βx} are two

orbits, (Kx, (x, γx)) is orientable. In view of Theorem 4.3, O0 is ori-

entable.

For k ≥ 1, assume, by induction, that Ok−1 = (Xk−1,Jk−1) is

orientable. From (5.1) and (5.2), group Ψ{Jk−1,γ} has two orbits as

{x1}Ψ{Jk−1,γ} = {xi, γxi|1 ≤ i ≤ k − 1}
and

{αx1}Ψ{Jk−1,γ} = {αxi, βxi|1 ≤ i ≤ k − 1}.
For Ok = (Xk,Jk), from (5.2), Jk = (〈Jk−1〉, xk, yk, γxk, γyk). Group

Ψ{Jk,γ} has only two orbits as

{x1}Ψ{Jk,γ} = {x1}Ψ{Jk−1,γ} ∪ {xk, yk, γxk, γyk}
= {xi, γxi|1 ≤ i ≤ k − 1} ∪ {xk, yk, γxk, γyk}
= {xi, γxi|1 ≤ i ≤ k}
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and

{αx1}Ψ{Jk,γ} = {αx1}Ψ{Jk−1,γ} ∪ {αxk, αyk, βxk, βyk}
= {αxi, βxi|1 ≤ i ≤ k − 1} ∪ {αxk, αyk, βxk, βyk}
= {αxi, βxi|1 ≤ i ≤ k}.

Therefore, Ok, k ≥ 1, are all orientable. �

Lemma 5.4 For any k ≥ 0, O-standard map Ok has only one

face.

Proof When k = 0, since O0 = (Kx, (x, γx))−b ex, O0 should

have one face which is composed from the two faces (x) and (αx) of

(Kx, (x, γx)). Therefore, O0 has only one face(seen as a degenerate

case because of no edge).

For any Ok = (Xk,Jk), k ≥ 1, from (5.1) and (5.2),

(x1)Jkγ = (x1, γy1, γx1, y1, · · · , xk, γyk, γxk, yk)

is a face of Ok. However, since

|{x1}Jkγ| =
1

2
|Xk|,

Ok has only this face. �

From (5.2), each O-standard map has only one vertex (O0 is the

degenerate case of no incident edge). Based on the above two lemmas,

any O-standard map is a butterfly. Because of the simplicity in form

for them, they are called simplified butterflies . Since for any k ≥ 0,

simplified butterfly Ok has 2k edges, one vertex and one face, its Euler

characteristic is

χ(Ok) = 2− 2k. (5.3)

Lemma 5.5 For any two simplified butterfliesOi and Oj , i, j ≥
0, Oi ∼bc Oj if, and only if, i = j.

Proof Because the sufficiency, i.e., the former Oi ∼el Oj is de-

rived from the latter i = j, is natural, only necessary to prove the

necessity.
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By contradiction. Suppose i 6= j, but Oi ∼bc Oj . Because of the

basic equivalence, from Theorem 4.5,

χ(Oi) = χ(Oj).

However, from (5.3) and the condition i 6= j,

χ(Oi) = 2− 2i 6= 2− 2j = χ(Oj).

This is a contradiction. �

Theorem 5.2 In each of the basic equivalent classes of ori-

entable maps, there is at most one map which is a simplified butterfly.

Proof By contradiction. Suppose simplified butterflies Oi and

Oj , i 6= j, i, j ≥ 0, are in the same class. However, this is a contradic-

tion to Lemma 5.5. �

In the next two sections of this chapter, it will be seen that in

each basic equivalent class of orientable maps, there is at least one

map which is a simplified butterfly.

On the basis of Theorem 4.5, two butterflies of the same size

have the same Euler characteristic. Do they all simplified butterflies?

However, the answer is negative!

Example 5.1 Observe map M = (X ,J ) where

X = Kx1 +Ky1 +Kx2 +Ky2

and

J = (x1, y1, x2, y2, γx1, γy1, γx2, γy2).

Because the face

(x1)J γ = (x1, γy1, x2, γy2, γx1, y1, γx2, y2)

has 8 elements, half the elements of ground set, M has only one face.

Hence, M is a butterfly, but not a simplified butterfly. Actually, the

simplified butterfly with the sane Euler characteristic of M is O2.
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V.3 Reduced rules

Although butterflies are necessary to find a representative for

each basic equivalent class of orientable maps, single vertex maps are

restricted in this section for such a classification based on Lemma 5.1.

For convenience, the basic equivalence between two maps are not

distinguished from that between their basic permutations. In other

words, (X1,P1) ∼bc (X2,P2) stands for P1 ∼bc P2.

Lemma 5.6 For a single vertex map M = (X ,J ), if

J = (R, x, γx, S)

where R and S are two linear orders on X , then

J ∼bc (R, S), (5.4)

as shown from (a) to (b) in Fig.5.2.

Proof Because J = (R, x, γx, S), (J γ)γx = J x = γx, i.e.,

(γx)Jγ = (γx) is a face. Because ex is a single edge, by basic deleting

ex on M , M ′ = M −b ex = (X −Kx,J ′), J ′ = (R, S). From M ∼bc

M ′, J ∼bc J ′ = (R, S). �

This lemma enables us to transform a single vertex map into

another single vertex map with one face less in a basic equivalent

class.

+I
x

γx

S

R

S

R

(a) (b)

Fig.5.2 Reduced rule (5.4)
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x1

y1

γx1

γy16 -?� I�x1

y1

γx1

γy1

A

B

C
D

E i K A

D

C

B

E

(a) (b)

Fig.5.3 Reduced rule (5.5)

Lemma 5.7 For (Xα,β,J ), if J = (A, x,B, y, C, γx,D, γy, E)

where A, B, C, D and E are all linear orders on X , then

J ∼bc (A,D,C,B,E, x, y, γx, γy), (5.5)

as shown from (a) to (b) in Fig.5.3.

Proof Four steps are considered for each step as a claim.

Claim 1 J ∼bc (E,A, x, z,D, C, γx, γz, B).

Proof For the angle pair (αx,J x) and (βx,J γx) of

J = (A, x,B, y, C, γx,D, γy, E),

by basic splitting ez(a link), get

J ∼bc J1 = (D, γy, E,A, x, z)(γz, B, y, C, γx).

Then, since ey is a link, by basic contracting ey on J1, get

J1 ∼bc J2 = (E,A, x, z,D, C, γx, γz, B).

This is the conclusion of Claim 1. Here, J1 and J2 are, respectively,

shown in (a) and (b) of Fig.5.4.

Claim 2 J2 ∼bc (y, A, x, B, E, γy,D, C, γx).

Proof For the pair of angle 〈αz,J2z〉 and angle between E and

A on J2 = (E,A, x, z,D, C, γx, γz, B), by basic splitting ey(a link),

get J2 ∼bc J3 = (A, x, z, y)(γy,D, C, γx, γz, B,E). Then, since ez is

a link, by basic contracting ez on J3, get

J3 ∼bc J4 = (y, A, x, B, E, γy,D, C, γx).
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This is the conclusion of Claim 2. Here, J3 and J4 are, respectively,

shown in (a) and (b) of Fig.5.5.

Claim 3 J4 ∼bc (B,E, z, A, y, γz, γy,D, C).O 1^9 ?6z
γz

y

γx

γy

x

B
C

D

E

A

�i 1-
x

z
γx

γz

D
C

B

E

A

(a) (b)

Fig.5.4 For Claim 1>1?6? y

γy

x

z

γx

γz
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Fig.5.5 For Claim 2
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z
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y

γy

(a) (b)

Fig.5.6 For Claim 3

Proof For the angle pair (αy,J4y) and (αJ −1
4 γy, γy) on J4 =
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(y, A, x, B, E, γy,D, C, γx), by basic splitting ez(a link), get

J4 ∼bc J5 = (A, x,B,E, z)(γz, γy,D, C, γx, y).

Then, since ex is a link, by basic contracting ex on J3, get

J5 ∼bc J6 = (B,E, z, A, y, γz, γy,D, C).

This is the conclusion of Claim 3. Here, J5 and J6 are, respectively,

shown in (a) and (b) of Fig.5.6.

Claim 4 J6 ∼bc (A,D,C,B,E, z, x, γz, γx).

Proof For the angle pair (αz,J6z) and (αy, γz) of

J6 = (B,E, z, A, y, γz, γy,D, C),

by basic splitting ex (a link), get

J6 ∼bc J7 = (A, y, x)(γx, γz, γy,D, C,B,E, z).

Then, since ey is a link, by basic contracting ey on J7, get

J7 ∼bc J8 = (A,D,C,B,E, z, x, γz, γx).

This is the conclusion of Claim 4. Here, J7 and J8 are, respectively,

shown in (a) and (b) of Fig.5.7.*1z� 6� �*A

D

C B

E

A

D

C
B

E

?6x

γx

y

γz

γyz

y γz
γy

z

(g) (h)

Fig.5.7 Claim 4

On the basis of the four claims above,

J ∼bc J2 ∼bc J4 ∼bc J6 ∼bc J8

= (A,D,C,B,E, x, y, γx, γy).
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This is (5.5). �

An attention should be paid to that Lemma 5.6 and Lemma 5.7

are both valid for orientable and nonorientable maps. They are called

reduced rules for maps. More precisely, They are explained as in the

following.

Reduced rule 1 A map with its basic permutation J is basic

equivalent to what is obtained by leaving off such a successive elements

〈x, γx〉, x ∈ X , on J .

Reduced rule 2 A map with its basic permutation J in the

form as (A, x.B, y, C, γx,D, γy, E) is basic equivalent to what is ob-

tained by interchanging the linear order B between x and y and the

linear order D between γx and γy, and then leaving off x, y, γx and

γy and putting 〈x, y, γx, γy〉 behind E on J .

V.4 Orientable principles

This section is centralized on discussing the basic equivalent

classes of orientable maps. The main purpose is to extract that there

is at least one simplified butterfly in each class. From the first sec-

tion of this chapter, it is known that each class is considered for only

butterflies without loss of generality.

Theorem 5.3 For a butterfly M = (Xα,β,J ), γ = αβ, if no

x, y ∈ X exist such that J = (A, x,B, y, C, γx,D, γy, E) where A, B,

C, D and E are all linear orders on Xα,β, then

M ∼bc O0, (5.6)

i.e., the trivial map(the degenerate simplified butterfly without edge).

Proof For convenience, in a cyclic permutation J on Xα,β, if two

elements x, y ∈ Xα,β are in the form as J = (A, x,B, y, C, γx,D, γy, E),

then they are said to be interlaced; otherwise, parallel.
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Claim If any two elements are parallel on J , then there is an

element x ∈ Xα,β such that 〈x, γx〉 ⊆ J , i.e., 〈x, γx〉 is a segment of

J itself.

Proof By contradiction. If no such an elements exists on Xα,be,

then for any x1 ∈ X , there is a nonempty linear order B1 on X such

that J = (A1, x, B1, γx, C1) where A1 and C1 are some linear orders

on Xα,β . Because B1 6= ∅, for any x2 ∈ B1, on the basis of orientability

and x2 and x1 parallel, the only possibility is γx2 ∈ B1. From the

known condition, there is also a linear order B2 6= ∅ on Xα,β such that

B1 = 〈A2, x2, B2, γx2, C2〉 where A2 and C2 are segments on B1, i.e.,

some linear orders on X . Such a procedure can only go on to the

infinity. This is a contradiction to the finiteness of Xα,β. Hence, the

claim is true.

If J 6= ∅, then from the claim, there exists an element x in J
such that J = (A, x, γx, B). However, because (γx)Jγ = (γx) is a

face in its own right, J has to be with at least two faces. This is

a contradiction to that M = (X ,J ) is a butterfly. Hence, the only

possibility is J = ∅, i.e., (5.6) holds. �

Actually, this theorem including the claim in its proof is valid for

any orientable single vertex map. Therefore, it can be seen that the

reduced rule(Lemma 5.6) and the following corollary are valid for any

map (orientable or nonorientable) as well.

Corollary 5.1 Let S = 〈A, x, γx, B〉 be a segment on a vertex

of a map M . And let M ′ be obtained from M by substituting 〈A,B〉
for S and afterward deleting Kx from the ground set. Then, M ′ is a

map. And, M ′ ∼bc M .

Proof Because it is easy to check that M ′ = M −b M , from

Theorem 3.10, M ′ is a map. This is the first statement. In view of

basic deletion of an edge as a basic transformation, M ′ ∼bc M . �

Corollary 5.2 Let S be a segment at a vertex of a map M .

If for each element x in S, γx is also in S and any two elements in



136 Chapter V Orientable Maps

S are not interlaced, then there exists an element y in S such that

S = 〈A, y, γy, B〉.
Proof In the same way of proving Theorem 5.3, the conclusion

is soon obtained. �

Theorem 5.4 In a butterfly M = (Xα,β,J ), if there are x, y ∈
Xα,β such that J = (A, x,B, y, C, γx,D, γy, E), then there is an inte-

ger k ≥ 1 such that

M ∼bc Ok, (5.7)

i.e., the simplified butterfly with 2k edges.

Proof Based on Reduced rule 2(Lemma 5.7),

J ∼bc (A,D,C,B,E, x, y, γx, γy).

Let H = 〈A,D,C,B,E〉. From Corollary 5.1, assume H is not in the

form as S without loss of generality. From Corollary 5.2 and Theorem

5.3, H has two possibilities: H = ∅, or there exist two elements x1

and y1 interlaced in H.

If the former, then J ∼bc (x, y, γx, γy), i.e. , M ∼el O1. Oth-

erwise, i.e., the latter, then J = (A1, x1, B1, y1, C1, γx1, D1, γy1, E1).

An attention should be paid to that E1 = 〈F1, x, y, γx, γy〉. In this

case, from Lemma 5.7,

J ∼bc (A1, D1, C1, B1, E1, x1, y1, γx1, γy1)

= (A1, D1, C1, B1, F1, x, y, γx, γy, x1, y1, γx1, γy1).

Let H1 = 〈A1, D1, C1, B1, F1〉, then for H1 instead of H, go on

the procedure. According to the principle of finite recursion, it is only

possible to exists an integer k ≥ 1 such that (5.7) holds. �

This theorem shows that each basic equivalent class of orientable

maps has at least one map which is a simplified butterfly.

By considering Theorem 5.2, each basic equivalent class of ori-

entable maps has, and only has, an integer k ≥ 0 such that the sim-

plified butterfly of size k is in the class



V.5 Orientable genus 137

V.5 Orientable genus

Although Euler characteristic of a map is an invariant for basic

transformation, a basic equivalent class of maps can not be determined

by itself. This is shown from the map M in Example 4.1 of section

IV.4 and the map N in Example 4.2 of section IV.4. They both

have the same Euler characteristic. However, they are not in the

same basic equivalent class of maps because M is orientable and N is

nonorientable.

Now, a further invariant should be considered for a class of ori-

entable maps under the basic equivalence.

Theorem 5.5 For any orientable map M = (X ,P), there has,

and only has, an integer k ≥ 0, such that its Euler characteristic is

χ(M) = 2− 2k. (5.8)

Proof From Theorem 5.1 and Theorem 4.5, only necessary to

discuss butterflies. From Theorem 5.2 and Theorem 5.4, M has, and

only has, an integer k ≥ 0, such that M ∼bc Ok. Therefore, from

(5.3),

χ(M) = 2− 2k.

This is (5.8). �

Corollary 5.3 The Euler characteristic of an orientable map

M = (X ,P) is always an even number, i.e.,

χ(M) = 0 (mod 2). (5.9)

Proof A direct result of Theorem 5.5. �

Since Euler characteristic is an invariant of a basic equivalent

class, the integer k in (5.8) is an invariant as well. From Theorem 5.5,

k determines a basic equivalent class for orientable maps. Since each

orientable map in the basic equivalent class determined by k can be

seen as an embedding of its under graph on the orientable surface of
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genus k, k is also called the genus, or more precisely, orientable genus

of the map. Of course, only an orientable map has the orientable

genus.

From what has been discussed above, it is seen that although

Euler characteristic can not determine the basic equivalent class for

all maps, the Euler characteristic can certainly determine the basic

equivalent class for orientable maps.



Activities on Chapter V

V.6 Observations

O5.1 Think, is there a butterfly which has 3 edges? Further,

is there a butterfly with some odd number of edges? If yes, provide

an example. Otherwise, explain the reason.

O5.2 Observe that any butterfly with 2 edges is a simplified

butterfly. Explain the reason.

O5.3 Provide a butterfly of at most 5 edges , which is not a

simplified butterfly.

O5.4 Observe that is there a superfluous operation among the

four operations: basic deleting, basic appending, basic contracting

and basic splitting an edge in the basic transformation for the basic

equivalence? If no, indicate the role of each of them. If yes, indicate

the superfluous operation with the why.

O5.5 Think, do some three of the four operations: basic delet-

ing, basic appending, basic contracting and basic splitting an edge in

the basic transformation determine an equivalence? If do, provide an

example. Otherwise, explain the reason.

O5.6 Among the eight operations of the above four with in-

creasing duplition, decreasing duplition, increasing subdivision and

decreasing subdivision, how many groups of these operations are there

for determining the basic equivalence.

O5.7 Can an equivalence be determined by basic deleting and

basic appending an edge? If yes, observe some of invariants under the
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equivalence. Otherwise, explain the reason.

O5.8 Can an equivalence be determined by basic contracting

and basic splitting an edge? If yes, observe some of invariants under

the equivalence. Otherwise, explain the reason.

O5.9 Can an equivalence be determined by basic increasing

duplition and decreasing duplition of an edge? If yes, observe some of

invariants under the equivalence. Otherwise, explain the reason.

O5.10 Can an equivalence be determined by basic increasing

subdivision and decreasing subdivision of an edge? If yes, observe

some of invariants under the equivalence. Otherwise, explain the rea-

son.

O5.11 Can the procedure of proving Lemma 5.7 by four steps

be improved to that by three steps? If yes, provide a proof of three

steps. Otherwise, explain the why.

V.7 Exercises

E5.1 By basic deleting and basic appending an edge only, prove

(A, x,B, y, C, γx,D, γy, E)∼bc (A,D,C,B,E, x, y, γx, γy).

E5.2 Prove that a map has its orientable genus 1 if, and only

if,

M ∼bc (x, y, z, γy)(βz, βt, βx, αt).

E5.3 Provide two maps of order 3 with orientable genus 1. And,

explain they are distinct.

For a set of operations A and a set of maps B not necessary to

be closed under A, if for a map M ∈ B there is no such a map N ∈ B
of size less than the size of M that N can be obtained from M by

operations in A, then M is called irreducible under A.

E5.4 For an integer k ≥ 0, determine all the irreducible sin-

gle vertex maps of orientable genus k under basic deleting and basic

appending an edge.
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E5.5 For an integer n ≥ 1, determine all the irreducible ori-

entable single vertex maps of size k under basic deleting and basic

appending an edge.

E5.6 For an integer n ≥ 1, determine all the irreducible ori-

entable single vertex maps of size k under basic contracting and basic

splitting an edge.

E5.7 For an integer k ≥ 0, determine all the irreducible single

vertex maps of orientable genus k under basic contracting and basic

splitting an edge.

E5.8 Prove that a complete graph Kn of order n ≥ 3 has an

orientable single face embedding if and only if,
(
n−1

2

)
is even.

E5.9 Prove that a complete graph Kn of order n ≥ 3 has an

orientable two face embedding if and only if,
(
n−1

2

)
is odd.

E5.10 Prove that a complete bipartite graph Km,n of order n+

m ≥ 3 has an orientable single face embedding if, and only if, (m −
1)(n− 1) is even.

E5.11 Prove that a complete bipartite graph Km,n of order n+

m ≥ 3 has an orientable two face embedding if, and only if, (m −
1)(n− 1) is odd.

An n-cube is the graph formed by the skeleton of the n-dimensional

cuboid. The order of an n-cube is 2n and the size, n2n−1.

E5.12 Prove that any n-cube, n ≥ 2, has an two face embed-

ding.

A map of orientable genus 0 is also said to be planar.

E5.13 Prove that a map M is planar if, and only if, each face

of M corresponds to a cocycle(See 1.6) in the under graph G(M∗) of

its dual M∗.

E5.14 Prove that a map M = (Xα,β,P) is orientable if, and
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only if, P can be transformed into cyclic permutation J such that

J = (
k∏

i=1

〈xi, yi〉,
k∏

i=1

〈γxi, γyi〉). (5.10)

V.8 Researches

If the travel formed by a face in a map can be partitioned into

tours (travel without edge repetition), then the face is said to be pan-

tour. A map with all of its faces pan-tour is called a pan-tour map .

Because any tour can be partitioned into circuits, a pan-tour map is,

in fact, a favorable map as mentioned in 2.8. A pre-proper embedding

corresponds to what is called a tour map because each face forms a

tour in its under graph.

R5.1 Characterize and recognize that a graph has a super map

which is an orientable pan-tour map.

R5.2 Characterize and recognize that a graph has a super map

which is an orientable tour map.

R5.3 Orientable pan-tour conjecture. Prove, or improve, that

any nonseparable graph has a super map which is an orientable pan-

tour map.

R5.4 Orientable tour conjecture. Prove, or improve, that any

nonseparable graph has a super map which is an orientable tour map.

R5.5 Characterize and recognize that a graph has a super map

which is an orientable pre-proper map.

R5.6 Orientable proper map conjecture. Prove, or improve,

that any nonseparable graph has a super map which is an orientable

proper map.

The orientable minimum pan-tour genus , usually called ori-

entable pan-tour genus, of a graph is the minimum among all orientable

genera of its super pan-tour maps. Similarly, the orientable pan-tour
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maximum genus of a graph is the maximum among all orientable gen-

era of its super pan-tour maps.

R5.7 Determine the orientable maximum pan-tour genus of a

graph.

R5.8 Determine the orientable maximum tour genus of a graph.

R5.9 Determine the orientable pan-tour genus of a graph.

R5.10 Determine the orientable tour genus of a graph.

Although many progresses has been made on determining the

orientable maximum genus of a graph, the study on determining ori-

entable (maximum) pan-tour genus, or orientable (maximum) tour

genus of a graph does not lead to any notable result yet. This sug-

gests to investigate their bounds(upper or lower) for some class of

graphs.

R5.11 Characterize the class of graphs in which each graph

has its orientable maximum pan-tour genus equal to its orientable

maximum genus. Find the least upper bound of the absolute difference

between the orientable maximum pan-tour genus and the orientable

maximum genus for a class of graphs with the two genera not equal.

R5.12 Characterize the class of graphs in which each graph has

its orientable maximum tour genus equal to its orientable maximum

genus. Find the least upper bound of the absolute difference between

the orientable maximum pan-tour genus and the orientable maximum

genus for a class of graphs with the two genera not equal.

R5.13 Characterize the class of graphs in which each graph has

its orientable pan-tour genus equal to its orientable genus. Find the

least upper bound of the absolute difference between the orientable

pan-tour genus and the orientable genus for a class of graphs with the

two genera not equal.

R5.14 Characterize the class of graphs in which each graph

has its orientable tour genus equal to its orientable genus. Find the

least upper bound of the absolute difference between the orientable
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tour genus and the orientable genus for a class of graphs with the two

genera not equal.



Chapter VI

Nonorientable Maps

• Any irreducible nonorientable map under basic subtraction of an

edge is defined to be a barfly. However, an equivalent class may

have more than 1 barflies.

• The simplified barflies are for standard nonorientable maps to show

that each equivalent class has at most 1 simplified barfly.

• Nonorientable rules are for transforming a barfly into another barfly

in the same equivalent class. A basic rule is extracted for deriving

from one to all others.

• Principles only for nonorientable maps are clarified to transform

any nonorientable map to a simplified barfly in the same equivalent

class. Hence, each equivalent class has at least 1 simplified barfly.

• Nonorientable genus instead of the Euler characteristic is an invari-

ant in an equivalent class to show that nonorientable genus itself

determines the equivalent class.

VI.1 Barflies

This chapter concentrate on discussing the basic equivalent classes

of nonorientable maps by extracting a representative for each class.

On the basis of Lemma 5.1 and Lemma 5.2, Only maps with a single
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vertex and a single face are considered for this purpose without loss

of generality. A nonorientable map with both a single vertex and a

single face is called a barfly. The barfly with only one edge is the map

consisted of a single twist loop, i.e., N (1) = (Kx, (x, βx)).

6 -?� x

y

γx

βy

6 -?� x

βx

y

βy

(a) N
(2)
1 (b) N

(2)
2

Fig.6.1 Barflies with two edges

Example 6.1 Two barflies of size two. Let N
(2)
1 = (Kx +

Ky, I1) and N
(2)
2 = (Kx+Ky, I2)(shown, respectively, in (a) and (b)

of Fig.6.1) where

I1 = (, x, y, γx, βy), I2 = (x, βx, y, βy).

Because of

(x)I1γ = (x, βy, αx, αy)

and

(x)I2γ = (x, αx, y, αy),

each of N
(2)
1 and N

(2)
2 has exactly one face. And, since

(x)Ψ{I1,γ}
= (x)Ψ{I2,γ}

= Kx+Ky,

they are both nonorientable.

As mentioned in the last section, for convenience, the scope of

maps considered here for the specific purpose should be enlarged to

all nonorientable one vertex maps from barflies.
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Lemma 6.1 For a single vertex map M = (Xα,.be,P), M is

nonorientable if, and only if, there exists an x ∈ Xα,β such that βx ∈
{x}P .

Proof Necessity. By contradiction. Assume that for any x ∈
Xα,β, there always has γx ∈ {x}P , γ = αβ, then αx 6∈ {x}Ψ{P,γ}

. From

4.1, M is not nonorientable.

Sufficiency. Since x ∈ Xα,β and βx ∈ {x}P , from Corollary 4.1

and only one vertex, Ψ{P ,γ} has only one orbit on X . Hence, M is

nonorientable. �

This lemma can easily be employed for checking the nonori-

entability of a one vertex map.

Example 6.2 Six barflies of three edges. Let N
(3)
i = (Kx +

Ky + Kz, Ii), i = 1, 2, · · · , 6(shown, respectively, in (a,b,· · ·,f) of

Fig.6.2) where
I1 = (x, βx, y, βy, z, βz),

I2 = (x, y, z, βy, βx, βz),

I3 = (x, y, z, βz, γx, βy),

I4 = (x, βx, y, z, βz, βy),

I5 = (x, y, βx, z, βy, βz),

I6 = (x, y, z, βx, γy, γz).

Because βx ∈ {x}Ii
⊆ {x}Ψ{Ii,γ}

, γ = αβ, i = 1, 2, · · · , 6, from Lemma

6.1, they are all nonorientable. Since

(x)I1γ = (x, αx, y, αy, z, αz),

(x)I2γ = (x, γy, z, γx, y, αz),

(x)I3γ = (x, βy, αx, γz, βz, αy),

(x)I4γ = (x, αx, y, γz, βz, αy),

(x)I5γ = (x, αy, βz, , γx, y, αz),

(x)I6γ = (x, αz, βy, αx, γy, z),

the maps (Kx + Ky + Kz, Ii), i = 1, 2, · · · , 6, are all with only one

face. Therefore, they are all barflies.
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Theorem 6.1 For any nonorientable map M , there exists a

barfly N such that

M ∼bc N. (6.1)6 *j?�Y 6 *j?�Yx

βx

y

βy

z

βz

x

y

z

βy

βx

βz

(a) N
(3)
1 (b) N

(3)
26 *j?�Y 6 *j?�Y

x

y

z

βz

γx

βy

x

βx

y

z

βz

βy

(c) N
(3)
3 (d) N

(3)
46 *j?�Y 6 *j?�Yx

y

βx

z

βy

βz

x

y

z

βx

γy

γz

(e) N
(3)
5 (f) N

(3)
6

Fig.6.2 Barflies of three edges

Proof From Lemma 5.1, by basic transformation M can be

transformed into a single vertex map. From Theorem 4.3, in view of
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the nonorientability of M , the single vertex map is also nonorientable.

Then from Lemma 5.2, by basic transformation the single vertex can

be transformed into a single face map. From Theorem 4.3, this map

is also nonorientable and hence a barfly N which satisfies(6.1). �

This theorem enables us to restrict ourselves only to transform a

barfly into another barfly under the basic equivalence.

VI.2 Simplified barflies

Let Ql = (Xl, Il), l ≥ 1, where

Xl =
l∑

i=1

Kxi, (6.2)

and

Il = (
l∏

i=1

〈xi, βxi〉), (6.3)

they are called N -standard map . When k = 1, 2, 3 and 4, Q1 = N (1),

Q2 = N
(2)
2 , Q3 = N

(3)
1 and Q4 are, respectively, shown in (a), (b), (c)

and (d) of Fig.6.3.

Lemma 6.2 For any l ≥ 1, N -standard maps Ql are all nonori-

entable.

Proof Because all Ql, l ≥ 1, are single vertex map and βx1 ∈
{x1}Il

, l ≥ 1, from Lemma 6.1, they are all nonorientable. �

Lemma 6.3 For any l ≥ 1, N -standard maps Ql are all with

only one face.

Proof Because Q1 = N (1), Q2 = N
(2)
2 and Q3 = N

(3)
1 , from

the two examples above, they are all with only one face. Their faces

are (x1)I1γ = (x1, αx1), (x1)I2γ = (〈x1〉I1γ, x2, αx2) = (x1, αx1, x2, αx2)

and (x1)I3γ = (〈x1〉I2γ, x3, αx3) = (x1, αx1, x2, αx2, x3, αx3).
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Assume, by induction, that

(x1)Il−1γ = (x1, αx1, x2, αx2, · · · , xl−1, αxl−1),

for l ≥ 4. Since Il = (〈x1〉Il−1
, xl, βxl),

(x1)Ilγ = (〈x1〉Il−1γ, (Ilγ)αxl−1, · · ·).

And since (Ilγ)αxl−1 = Ilβxl−1 = xl, (Ilγ)xl = Ilα(βxl) = αxl and

(Ilγ)αxl = Ilβxl = x1,

(x1)Ilγ = (〈x1〉Il−1γ, xl, αxl)

= (x1, αx1, · · · , xl−1, αxl−1, xl, αxl).

Therefore, all N -standard maps are with only one face. �

6?x1

βx1

6 -?� x1

βx1

x2

βx2

(a) N1 (b) N2

6? I 6 �-R?	�x1 *βx1j x1

βx1

x2

βx2

x3

βx3

x4

βx4+i x2

βx2

x3

βx3

(c) N3 (d) N4

Fig.6.3 Simplified barfly
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Because each N -standard map has only one face, from the two

lemmas above, it is known that for any N -standard map is a barfly.

And because each of such barflies has a simpler form, it is called a

simplified barfly.

Since for any l ≥ 1, the simplified barfly Ql is with l edges, 1

vertex and 1 face, its Euler characteristic is

χ(Ql) = 2− l. (6.4)

Theorem 6.2 For any basic equivalent class of nonorientable

maps, there exists at most one map which is a simplified barfly.

Proof By contradiction. Assume that there are two simplified

barflies Qi and Qj, i 6= j, i, j ≥ 1, in a basic equivalent class of

nonorientable maps. From Theorem 4.5 and (6.4),

χ(Qi) = 2− i = 2− j = χ(Qj).

This implies i = j. A contradiction to the assumption. �

In the following sections, it will be shown that there exists at

least one map which is a simplified barfly in each basic equivalent

class of nonorientable maps.

VI.3 Nonorientable rules

As mentioned above, this section is for establishing two basic

rules of transforming a nonorientable single vertex map into another

nonorientable single vertex map within basic equivalence.

Lemma 6.4 For a nonorientable single vertex mapM = (Xα,β, I),
if I = (A, x,B, βx, C) where A, B and C are segments of linear order

in the cycle I on Xα,β, then

I ∼bc (A, αB−1, C, x, βx). (6.5)

Note 6.1 For a segment B = 〈Ix, I2x, · · ·, Isx〉, βx = Is+1x,
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of linear order in the cycle of I on Iα,β, from Theorem 2.3,

〈αIsx, I(αIsx), · · · , Is−1(αIsx)〉
= 〈αIsx, αIs−1x, · · · , αIx〉
= αB−1.

(6.6)

Proof Two steps expressed by claims are considered for trans-

forming a nonorientable single vertex map into another nonorientable

single vertex map under the basic equivalence.

Claim 1 (A, x,B, βx, C) ∼bc (A, αB−1, βy, αC−1, y).

Proof By basic splitting an edge ey between the two angles

〈αx, Ix〉 and 〈C,A〉(i.e., the angle between C and A) on I = (A, x,B,

βx, C),
I ∼bc (A, x, y)(γy, B, βx, C)

= (A, x, y)(βy, αC−1, γx, αB−1)

= (y, A, x)(γx, αB−1, βy, αC−1),

as shown in (a) and (b) of Fig.6.4.

Because ex is a link in I1 = (y, A, x)(γx, αB−1, βy, αC−1), by

basic contracting ex,

I1 ∼bc (y, A, αB−1, βy, αC−1)

= (A, αB−1, βy, αC−1, y),

as shown in (c) of Fig.6.4.

Claim 2 I2 ∼bc (A, αB−1, C, βx, x) where

I2 = (A, αB−1, βy, αC−1, y).

Proof By basic splitting ex between the two angles (γy, I2βy)

and (αy, I2y) on (A, αB−1, βy, αC−1, y),

I2 ∼bc (A, αB−1, βy, x)(γx, αC−1, y)

= (A, αB−1, βy, x)(αy, C, βx)

= (x,A, αB−1, βy)(αy, C, βx),
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as shown in (d) and (e) of Fig.6.4.

Because ey is a link in I3 = (x,A, αB−1, βy)(αy, C, βx), by basic

contracting ey,

I3 ∼bc (x,A, αB−1, C, βx)

= (A, αB−1, C, βx, x),

as shown in (f) of Fig.6.4.

From Claim 1 and Claim 2,

I ∼bc I1 ∼bc I2 ∼bc I3

∼bc (A, αB−1, C, βx, x).

This is (6.5). �

On the basis of the procedure in the proof of the lemma, the two

claims show the following rules as basic equivalent transformations.

Nonorientable rule 1 On a nonorientable mapM = (Xα,β,P)

unnecessary to have a single vertex, if βx ∈ (x)P, then the map M ′

obtained by translating x and βx in a direction via, respectively, seg-

ments C and D, and then by substituting αC−1 and αD−1 for, respec-

tively, C(without βx) and D(without x) on (x)P is basic equivalent to

M , i.e., M ′ ∼bc M . -?6?
A

BC

?� 6?
A

αB−1αC−1

x

yγy

βx

x
y

γx

βy

(a) (b)
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Fig.6.4 Claim 1 and Claim 2

This is, in fact, the Claim 1 above. However, from the proof of

Claim 2 a much simpler rule can be extracted.

Nonorientable rule 2 On a nonorientable map M = (X ,P)

unnecessary to have a single vertex, if βx ∈ (x)P, then the map M ′

obtained by translating x(or βx) via a segment C, and then by sub-

stituting αC−1 for C without βx(or x) on (x)P is basic equivalent to

M , i.e., M ′ ∼bc M .

It is seen that Nonorientable rule 1 can be done by employing

Nonorientable rule 2 twice. Therefore, Nonorientable rule 2 is funda-

mental. From this point of view, the proof of Lemma 6.4 can be done

only by Nonorientable rule 2.

Lemma 6.5 For a nonorientable single vertex map (Xα,β, I),
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γ = αβ, if

I = (A, x, βx, y, z, γy, γz)

where A is a segment of linear order on Xα,β, then

I ∼ (A, x, βx, y, βy, z, βz). (6.7)

Proof By basic splitting et between the two angles (αx, βx) and

(αz, γy) on (A, x, βx, y, z, γy, γz),

I = (A, x, βx, y, z, γy, γz)

∼bc (γy, γz, A, x, t)(γt, βx, y, z)

= (γy, γz, A, x, t)(γx, βt, αz, αy)

= (t, γy, γz, A, x)(γx, βt, αz, αy).

Because ex is a link in I1 = (t, γy, γz, A, x)(γx, βt, αz, αy), by con-

tracting ex,
I1 ∼bc (t, γy, γz, A, βt, αz, αy)

= (A, βt, αz, αy, t, γy, γz).

By substituting 〈A, βt〉, 〈αy, t, γy〉 and 〈∅〉 for , respectively, A, B and

C in (6.5),

I1 ∼bc (A, βt, βy, αt, y, z, βz).

Further, by substituting 〈A, βt〉, 〈αt〉 and 〈z, βz〉 for, respectively, A,

B and C in (6.5),

I1 ∼bc (A, t, βt, y, βy, z, βz)

= (A, x, βx, y, βy, z, βz).

This is (6.7). �

This lemma shows that in a map M = (Xα,β,P), γ = αβ, if

(x)P = (x, βx, y, z, γy, γz, A),

then the map obtained by substituting 〈y, βy, z, βz〉 for 〈y, z, γy, γz〉
on (x)P is basic equivalent to M , i.e., M ′ ∼bc M . This is usually

called nonorientable rule 3.
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Actually, nonorientable rule 3 can be also deduced from Nonori-

entable rule 2. Although Nonorientable rule 2 is fundamental, Nonori-

entable rule 1 and nonorientable rule 3 are more convenient for recur-

sion.

VI.4 Nonorientable principles

In this section, barflies are only considered for this classification

because it has been known that there is no loss of generality for general

nonorientable maps.

Lemma 6.6 In a barfly N = (Xα,β, I), there exists an element

x ∈ Xα,β such that

I = (A, x,B, βx, C), (6.8)

where A, B and C are segments of I on Xα,β.

Proof By contradiction. Since A, B and C are permitted to

be empty, if no x ∈ X such that I satisfies (6.8), then from only one

vertex, for any x ∈ X , it is only possible that γx ∈ (x)I and βx 6∈ (x)I.
Therefore, (x)Ψ{I,γ}

and (βx)Ψ{I,γ}
are the two orbits of Ψ{I,γ} on Xα,β.

Thus, M is orientable. This is a contradiction to the nonorientability

of a barfly. �

Theorem 6.3 For any barfly N = (Xα,β, I), there exists an

integer l ≥ 1 such that

I ∼bc Ql. (6.9)

Proof From Lemma 6.6 and Lemma 6.4, it can assumed that

I ∼bc (A,
i∏

j=1

〈xj, βxj〉),

where i is as great as possible in this form. Naturally, i ≥ 1.

From the maximality of i and only one vertex, x ∈ A if, and only

if, γx ∈ A.
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Two cases have to be discussed.

Case 1 If no element in A is interlaced, then from Corollary

5.2 and Corollary 5.1, (6.9) holds. Here, l = i.

Case 2 Otherwise, by Lemma 5.7(the reduced rule). it can be

assumed that

I ∼bc (B,

i∏

j=1

〈xj, βxj〉
t∏

j=1

〈yj , zj, γyj, γzj〉),

where t is as great as possible in this form. Naturally, t ≥ 1. From

the maximality of t, no element in B is interlaced. By Corollary 5.2

and Corollary 5.1,

I ∼bc (
i∏

j=1

〈xj, βxj〉
t∏

j=1

〈yj , zj, γyj, γzj〉).

By nonorientable rule 3,

I ∼bc (
2t+i∏

j=1

〈xj, βxj〉) = Il.

From (6.2) and (6.3), this is (6.9) where l = 2t+ i. �

On the basis of Theorem 6.1 and Theorem 6.3, it is know that

there is at least one simplified barfly in each of basic equivalent classes

for nonorientable maps.

VI.5 Nonorientable genus

Now, let us go back to general nonorientable maps for the in-

variants of determining the basic equivalent classes for nonorientable

maps.

Theorem 6.4 For any nonorientable map N = (X ,P) in a

basic equivalent class, there has, and only has, an integer l ≥ 1 such

that the Euler characteristic

χ(N) = 2− l. (6.10)
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Proof From Theorem 6.3, there is a simplified barfly in a basic

equivalent class of barflies. From Theorem 6.1, in each basic equivalent

class of nonorientable maps, there has an integer l ≥ 1 such that Ql is

in this class. On the other hand, from Theorem 6.2, only Ql is in this

class. Therefore, from (6.4) and Theorem 4.5, (6.10) is obtained. �

This integer l = 2− χ(N) ≥ 1 is called the nonorientable genus

of the class N is in, or of N .

Now, it is seen from Chapters IV, V and VI that if the orientabil-

ity of a map is defined to be 1, when the map is orientable; −1, when

the map is nonorientable, then the relative genus of a map is the prod-

uct of its orientability and its absolute genus (orientable genus, if the

map is orientable; nonorientable genus, if the map is nonorientable).

Thus, a basic equivalent class of maps(orientable and nonorientable)

is determined by only its relative genus.



Activities on Chapter VI

V.6 Observations

O6.1 Think, is the map obtained by deleting an edge on a

nonorientable map still nonorientable? If yes, explain the reason. Oth-

erwise, provide an example.

O6.2 Think, the absolute genus of a map obtained via deleting

an edge on a map(orientable and nonorientable) is at most 1 less than

that of the original map. Explain the why.

O6.3 Think, is the map obtained by contracting an edge on

a nonorientable map still nonorientable? If yes, explain the reason.

Otherwise, provide an example.

O6.4 Think, the absolute genus of the map obtained via con-

tracting an edge on a map(orientable and nonorientable) is at most 1

less than that of the original map. Explain the why.

O6.5 Observe if a nonorientable map can always be trans-

formed into a barfly via only basic deleting and basic appending an

edge. If it can, explain the reason. Otherwise, discuss what type of

nonorientable maps can be done.

O6.6 Observe if a nonorientable map can always be trans-

formed into a barfly via only basic contracting and basic splitting

an edge. If it can, explain the reason. Otherwise, discuss what type

of nonorientable maps can be done.

O6.7 Observe if there are other standard maps than simpli-

fied barflies for the classification of nonorientable maps under basic
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equivalence.

O6.8 Consider how to derive the nonorientable rule 3 only from

the nonorientable rule 2.

O6.9 For a map M = (Xα,β,P), if the linear order

〈A, x,B, βx, C〉 ⊆ (x)P

is replaced by 〈A, αB−1, C, x, βx〉 to transform the permutation P on

Xα,β into permutation P ′ on Xα,β, then M ′ = (X ,P ′) is also a map.

Is M ′ basic equivalent to M? If yes, explain the reason. Otherwise,

provide an example.

O6.10 Observe that all the nonorientable rules 1–3 are valid

for any nonorientable map not necessary to be of single vertex.

VI.7 Exercises

E6.1 By basic deleting and basic appending edge, prove that

(A, x,B, αx, C) ∼bc (A, x,B, βC−1, αx).

E6.2 For a given nonorientable map M = (Xα,β,P) and an

element x ∈ Xα,β, the linear order 〈x, y, γ, γy〉 ⊆ (x)P is replaced

by 〈x, βx, y, βy〉 ⊆ (x)P ′ for obtaining M ′ = (X ,P ′). Prove that

M ′ ∼bc M .

E6.3 By basic deleting and basic appending an edge, prove

(A, x, y, γx, γy, z, αz) ∼bc (A, x, αx, y, αy, z, αz).

E6.4 List all barflies of three edges rather than those in Exam-

ple 2.

E6.5 Prove that for any two barflies, one can always be trans-

formed into another only by the nonorientable rule 2.

The irreducibility appearing in what follows is in agreement with

that in section V.7.
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E6.6 Determine all irreducible barflies under the basic deleting

and basic appending an edge.

E6.7 For a given integer l ≥ 1, determine all the irreducible

maps of absolute genus l under the basic deleting and basic appending

an edge.

E6.8 Determine all irreducible barflies under the basic con-

tracting and basic splitting an edge.

E6.9 For a given integer l ≥ 1, determine all the irreducible

maps of absolute genus l under the basic contracting and basic split-

ting an edge.

E6.10 Prove that for any nonorientable map M = (Xα,β,P),

there has, and only has, an integer l ≥ 1 such that

P ∼bc





(
s∏

i=1

〈xi, yi, βxi, γyi〉, xs+1, βxs+1),� l = 2s+ 1, s ≥ 0;

(

s∏

i=1

〈xi, yi, βxi, γyi〉),� l = 2s, s ≥ 1.

(6.11)

Here, when s = 0,
s∏

i=1

〈xi, yi, βxi, γyi〉 = ∅.

E6.11 Prove that for any nonorientable map M = (Xα,β,P),

there has, and only has, an integer l ≥ 1 such that

P ∼bc (x1, x2, · · · , xk, βxk, · · · , βx2, βx1)

= (
k∏

i=1

xi,
1∏

i=k

βxi)

by the nonorientable rules instead of Lemma 6.4.

E6.12 Prove that for any graph G, but a tree, G has its maxi-

mum nonorientable genus

lM(G) = ǫ(G)− ν(G) + 1 (6.12)
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where ǫ(G) and ν(G) are, respectively, the size(edge number) and the

order(vertex number) of G.

VI.8 Researches

Similarly to Chapter V, among all nonorientable embeddings of

a graph, the one with minimum (maximum) of absolute genus is called

a minimum (maximum) genus embedding.

The genus of a minimum(maximum) genus embedding on nonori-

entable surfaces for a graph is called the minimum (maximum) nonori-

entable genus of the graph.

The minimum nonorientable genus of a graph is also called the

nonorientable genus of the graph. If the minimum genus embedding is

a nonorientable pan-tour(favorable) map, the the genus is called the

nonorientable pan-tour(favorable) genus.

And the likes, nonorientable pan-tour maximum genus, nonori-

entable tour genus (or nonorientable preproper genus), nonorientable

tour maximum genus, etc.

R6.1 Justify and recognize if a graph has a nonorientable em-

bedding which is a pan-tour map.

R6.2 Justify and recognize if a graph has a nonorientable em-

bedding which is a tour map.

R6.3 Determine the least upper bound and the greatest lower

bound of the nonorientable pan-tour genus(or genera) for a graph(or

a set of graphs).

R6.4 Determine the least upper bound and the greatest lower

bound of the nonorientable tour genus(or genera) for a graph(or a set

of graphs).

R6.5 Determine the least upper bound and the greatest lower

bound of the nonorientable proper genus(or genera) for a graph(or a

set of graphs).

Because it looks no much possibility to get a result simple as
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shown in (6.12) for determining the nonorientable pan-tour maximum

genus, nonorientable tour maximum genus and nonorientable proper

maximum genus of a graph in general, only some types of graphs are

available to be considered for such kind of result.

R6.6 Determine the least upper bound and the greatest lower

bound of the nonorientable pan-tour maximum genus(or genera) for a

graph(or a set of graphs).

R6.7 Determine the least upper bound and the greatest lower

bound of the nonorientable tour maximum genus(or genera) for a

graph(or a set of graphs).

R6.8 Determine the least upper bound and the greatest lower

bound of the nonorientable proper maximum genus(or genera) for a

graph(or a set of graphs).

R6.9 Nonorientable pan-tour conjecture (prove, or disprove).

Any nonseparable graph has a nonorientable embedding which is a

pan-tour map.

R6.10 Nonorientable tour map conjecture (prove, or disprove).

Any nonseparable graph has a nonorientable embedding which is a

tour map.

R6.11 Nonorientable proper map conjecture (prove,or disprove).

Any nonseparable graph has a nonorientable embedding which is a

proper map.

R6.12 Nonorientable Small face proper map conjecture(prove,

or disprove). A nonseparable graph of order n has a nonorientable

embedding which is a proper map with n− 1 faces.



Chapter VII

Isomorphisms of Maps

• An isomorphism is defined for the classification of maps. A map is

dealt with an isomorphic class of embeddings of the under graph

of the map.

• Two maps are isomorphic if, and only if, their dual maps are iso-

morphic with the same isomorphism.

• Two types of efficient algorithms are designed for recognizing if

two maps are isomorphic.

• Primal trail codes, or dual trail codes are used for justifying the

isomorphism of two maps.

• Two pattern examples show how to to recognize and justify if two

maps are isomorphic.

VII.1 Commutativity

In view of topology, the basic equivalent classes of maps are, in

fact, a type of topological equivalent classes of 2-dimensional closed

compact manifolds without boundary, or in brief surfaces.

Two embeddings of a graph explained in Chapter I are distinct

if they are treated as 1-dimensional complexes to be non-equivalent

under a topological equivalence.



VII.1 Commutativity 165

If a map is dealt with an embedding of a graph on a surface, then

two distinct maps are, of course, distinct embeddings of their under

graph. However, the conversed case is not necessary to be true.

This Chapter is intended to introduce a type of combinatorial

equivalence which is still seen as a type of topological equivalence but

different from that for embeddings of a graph.

In general, the equivalence between two maps can be deduced

from that between two embeddings of their under graph. However,

the coversed case is not necessary to be true.

For two maps M1 = (Xα,β(X1),P1) and M2 = (Xα,β(X2),P2), if

there exists a 1–to–1 correspondence (i.e., bijection)

τ : Xα,β(X1) −→ Xα,β(X2)

between Xα,β(X1) and Xα,β(X2) such that for any x ∈ Xα,β(X1),

τ(αx) = ατ(x), τ(βx) = βτ(x), τ(P1x) = P2τ(x), (7.1)

then τ is called an isomorphism from M1 to M2.

Lemma 7.1 If τ is an isomorphism from M1 to M2, then its

inverse τ−1 exists, and τ−1 is an isomorphism from M2 to M1.

Proof Sinceτ is a bijection, τ−1 exists. And, τ−1 is also a 1–to–1

correspondence from M2 to M1. For any y ∈ Xα,β(X2), let x = τ−1y ∈
Xα,β(X1). Because y = τx and τ is an isomorphism for M1 to M2,

from (7.1),

τ(αx) = αy, τ(βx) = βy, τ(P1x) = P2y.

Further, because τ−1 exists, then

τ−1(αy) = αx = α(τ−1y),

τ−1(βy) = βx = β(τ−1y),

τ−1(P2y) = P1x = P1(τ
−1y).

This implies τ−1 is an isomorphism from M2 to M1. �

Based on this lemma, τ , or τ−1 can be called an isomorphism

between M1 and M2.
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Examle 7.1 Let M1 = (X1,P1) where

X1 = Kx1 +Ky1 +Kz1 +Ku1

and

P1 = (x1, y1, z1)(u1, γz1)(βu1, γx1)(γy1),

and M2 = (X2,P2) where

X2 = Kx2 +Ky2 +Kz1 +Ku2

and

P2 = (y2, z2, x2)(γu2, βx2)(αu2, βz2)(βy2)

as shown in Fig.7.1.

First, let τ(x1) = x2. from the first two relations in (7.1) and the

property of Klein group, if τ is an isomorphism between M1 and M2,

then
τ(αx1) = α(τx1) = αx2,

τ(βx1) = β(τx1) = βx2,

τ(γx1) = γ(τx1) = γx2,

i.e., τ(Kx1) = Kx2.

Then, from the third relation of (7.1),

τ(y1) = τ(P1x1) = P2τ(x1) = P2x2 = y2.

Thus, τ(Ky1) = Ky2. Similarly, from

τ(z1) = τ(P1y1) = P2τ(y1) = P2y2 = z2,

τ(Kz1) = Kz2, and from

τ(u1) = τ(P1γz1) = P2τ(γz1) = P2γz2 = u2,

τ(Ku1) = Ku2.

Finally, check that if the 1–to–1 correspondence τ from X1 to

X2 satisfies τP1 = P2. In fact, from the conjugate axiom, it is only

necessary to have

τP1 = (τx1, τy1, τz1)(τu1, τγz1)(τβu1, τγx1)(τγy1)

= (x2, y2, z2)(u2, γz2)(βu2, γx2)(γy2)

= (y2, z2, x2)(γu2, βx2)(αu2, βz2)(βy2)

= P2.
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Therefore, τ is an isomorphism between M1 and M1.�
� O � W�- � -

-
x1

y1

z1

βu1

u1

αy2

αx2

γu2

αu2

αz2

(a) M1 (b) M2

Fig.7.1 Two isomorphic maps

Note 7.1 If the two maps M1 and M2 in Example 1 are, re-

spectively, seen as embeddings of their under graphs G1 and G2, then

they are distinct. If Kx is represented by x = (x+1, x−1) where

x+1 = {x, αx} and x−1 = {βx, γx}, then the vertices µG1 have their

rotation as

(x+1
1 , y+1

1 , z+1
1 ), (z+−1

1 , u+1
1 ), (x−1

1 , u+−1
1 ), (y−1

1 ),

and hence µG1 is on the projective plane (u1, u1). And the vertices of

µG2 have their rotation as

(x+1
2 , z+1

2 , y+1
2 ), (z+−1

1 , u+1
1 ), (x−1

1 , u+−1
1 ), (y−1

1 ),

and hence µG2 is on the projective plane (u1, u1) as well.

However, the induced 1–to–1 correspondence τ |µ(τ |µ(s1) = s2,

s = x, y, z, u) from µ(G1) to µ(G2) has

τ |µ(x+1
1 , y+1

1 , z+1
1 ) = (x+1

2 , y+1
2 , z+1

2 ) 6= (x+1
2 , z+1

2 , y+1
2 ).

This implies that µG1 and µG2 are distinct.

Theorem 7.1 LetM1 = (Xα,β(X1),P1) andM2 = (Xα,β(X2),P2)

be two maps. For a bijection τ : Xα,β(X1) −→ Xα,β(X2), τ is an iso-
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morphism if, and only if, the diagrams

Xα,β(X1)
τ−−−−−−−−→ Xα,β(X2)

η1

y η2

y
Xα,β(X1)

τ−−−−−−−−→ Xα,β(X2)

(7.2)

for η1 = η2 = α, η1 = η2 = β, and for η1 = P1 and η2 = P2, are all

commutative , i.e., all paths with the same initial object and the same

terminal object have the same effect.

Proof Necessity. From the first relation in (7.1), for any x ∈
Xα,β(X1), τ(αx) = α(τx). That is to say the result of composing the

mappings on the direct path

Xα,β(X1)
α−→Xα,β(X1)

τ−→Xα,β(X2)

is the same as the result of composing the mappings on the direct path

Xα,β(X1)
τ−→Xα,β(X2)

α−→Xα,β(X2).

Therefore, (7.2) is commutative for η1 = η2 = α.

Similarly, from the second and the third relations in (7.1), the

commutativity for η1 = η2 = β, and for η1 = P1 and η2 = P2 are

obtained.

Sufficiency. On the basis of (7.2), the three relations in (7.1) can

be induced from the commutativity for η1 = η2 = α, for η1 = η2 = β,

and for η1 = P1 and η2 = P2. This is the sufficiency �

VII.2 Isomorphism theorem

Because the isomorphism between two maps determines an equiv-

alent relation, what has to be considered for the equivalence is the

equivalent classes, called isomorphic classes of maps. Two maps are

said to be different if they are in different isomorphic classes. In order

to clarify the isomorphic classes of maps, invariants should be inves-

tigated. In this and the next sections, a sequence of elements with
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its length half the cardinality of the ground set. In fact, this implies

that the isomorphic class can be determined by a polynomial of degree

as a linear function of half the cardinality of the ground set for both

orientable and nonorientable maps.

Lemma 7.2 If two maps M1 and M2 are isomorphic, then M1

is orientable if, and only if, M2 is orientable.

Proof Let Mi = (Xi,Pi), i = 1, 2. Assume τ is an isomorphism

from M1 to M2. From (7.2), τα = ατ ,τβ = βτ and τP1 = P2τ , i.e.,

τατ−1 = α, τβτ−1 = β and τP1τ
−1 = P2.

Necessity. SinceM1 is orientable, from Theorem 4.1, permutation

group Ψ1 = Ψ{P1,γ} has two orbits (x1)Ψ1
and (αx1)Ψ1

, x1 ∈ X1 on X1.

And, since τατ−1 = α and τβτ−1 = β,

τγτ−1 = τ(αβ)τ−1 = τ(ατ−1τβ)τ−1

= (τατ−1)(τβτ−1) = αβ

= γ.

By considering τP1τ
−1 = P2, for any ψ1 ∈ Ψ1,

τψ1τ
−1 = ψ2 ∈ Ψ2.

Therefore, Ψ2 also has two orbits on X2, i.e., (x2)Ψ2
and (αx2)Ψ2

, where

x2 = τx1 ∈ X2. This implies that M2 is orientable as well.

Sufficiency. Because of the symmetry of τ between M1 and M2,

the sufficiency is deduced from the necessity. �

For a map M = (X ,P) where ν(M), ǫ(M) and φ(M) stand for,

respectively, the order(vertex number), the size(edge number) and the

coorder(face number) of M .

Lemma 7.3 If two maps M1 and M2 are isomorphic, then

ν(M1) = ν(M2), ǫ(M1) = ǫ(M2), φ(M1) = φ(M2). (7.3)

Proof Let Mi = (Xi,Pi), i = 1, 2. Assume τ is an isomorphism

from M1 to M2. From the commutativity for η1 = P1 and η2 = P2 in
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(7.2), τP1τ
−1 = P2. Then, for any integer n ≥ 1 by induction,

τ(P1)
nτ−1 = τ((P1)

n−1P1)τ
−1

= τ((P1)
n−1τ−1τP1)τ

−1

= (τ(P1)
n−1τ−1)(τP1)τ

−1)

= (τ(P1)
n−1τ−1)(τP1)τ

−1)

= (P2)
n−1P2

= Pn
2 .

Therefore, for any x1 ∈ X1, τx1 = x2,

τ(x1)P1
= (τx1)τP1τ−1 = (x2)P2

.

Because a 1–to–1 correspondence on vertices between M1 and M2 is

induced from this, ν(M) = ν(M).

Similarly, from τγτ−1 = γ and τ(P1)
nτ−1 = (P2)

n,

τ(P1γ)τ−1 = P2γ.

Further, for any integer n ≥ 1, τ(P1γ)nτ−1 = (P2γ)n. This provides

τ(x1)P1γ = (τx1)τ(P1γ)τ−1 = (x2)P2γ

as a 1–to–1 correspondence on faces between M1 and M2. Therefore,

φ(M1) = φ(M2).

Finally, from τατ−1 = α and τβτ−1 = β and hence τγτ−1 = γ,

for any x1 ∈ X1, x2 = τx1 implies τKx1 = Kx2. This provides

a 1–to–1 correspondence on edges between M1 and M2. therefore,

ǫ(M1) = ǫ(M2). �

For a map M = (X ,P), the Euler characteristic given by (4.1)

is χ(M) = ν(M) − ǫ(M) + φ(M) where ν(M), ǫ(M) and φ(M) are,

respectively, the order, the size and the co-order of M .

Corollary 7.1 If two maps M1 and M2 are isomorphic, then

χ(M1) = χ(M2). (7.4)
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Proof A direct result of Lemma 7.3. �

For a map M = (Xα,β,P), let M∗ = (X ∗α,β,P∗) be the dual of M .

It is, from Chapter III, known that M∗ = (Xβ,α,Pγ).

Theorem 7.2 Maps M1 and M2 are isomorphic if, and only if,

their duals M∗
1 and M∗

2 are isomorphic.

Proof Let Mi = (X (i)
α,β,Pi), i = 1, 2, then M∗

i = (X (i)
α,β

∗
,P∗i ),

i = 1, 2, where X (i)
α,β

∗
= X (i)

β,α and P∗i = Piγ, i = 1, 2.

Necessity. Suppose τ is an isomorphic between M1 and M2, then

from Theorem 7.1,

τατ−1 = α, τβτ−1 = β, τP1τ
−1 = P2.

On the basis of this, for any x1 ∈ X (1)
α,β

∗
= X (1)

β,α and x2 = τx1 ∈ X (2)
α,β

∗
=

X (2)
β,α,

τK∗x1 = τ{x1, βx1, αx1, γx1} = {τx1, τβx1, ταx1, τγx1}
= {x2, βx2, αx2, γx2} = K∗x2,

and
τP∗1τ−1 = τ(P1γ)τ−1 = τ(P1τ

−1τγ)τ−1

= (τP1τ
−1)(τγτ−1) = P2γ

= P∗2 .
This implies that the diagram

X (1)
α,β

∗ τ−−−−−−−−→ X (2)
α,β

∗

η1

y
yη2

X (1)
α,β

∗ τ−−−−−−−−→ X (2)
α,β

∗
(7.5)

are all commutative for η1 = η2 = β, for η1 = η2 = α, and for η1 = P∗1
and η2 = P∗2 . therefore, from Theorem 7.1, τ is an isomorphism

between M∗
1 and M∗

2 in its own right.

Sufficiency. from the symmetry of duality, the sufficiency is de-

duced form the necessity. �
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Let Mi = (X (i)
α,β,Pi), and M∗

i = (X (i)
α,β

∗
,P∗i ) where X (i)

α,β

∗
= X (i)

β,α

and P∗i = Piγ, i = 1, 2.

Corollary 7.2 A bijection τ : X (1)
α,β −→ X

(2)
α,β is an isomorphism

between maps M1 and M2 if, and only if, τ is an isomorphism between

maps M∗
1 and M∗

2 .

Proof A direct result in the proof of Theorem 7.2. �

VII.3 Recognition

Although some invariants are provided, they are still far from

determining an isomorphism between two maps in the last section.

In fact, it will be shown in this section that an isomorphism

between two maps can be determined by the number of invariants

dependent on their size, i.e., a sequence of invariants in a number as

a function of their size.

In order to do this, algorithms are established for justifying and

recognizing if two maps are isomorphic. In other words, an isomor-

phism can be found between two maps if any; or no isomorphism exits

at all otherwise.

Generally speaking, since the ground set of a map is finite, i.e.,

its cardinality is 4ǫ, ǫ is the size of the map, in a theoretical point of

view, there exists a permutation which corresponds to an isomorphism

among all the (4ǫ)! permutations if any, or no isomorphism at all

between two maps otherwise. However, this is a impractical way even

on a modern computer.

Our purpose is to establish an algorithm directly with the amount

of computation as small as possible without counting all the permu-

tations.

Here, two types of algorithms are presented. One is called vertex-

algorithm based on (7.2). Another is called face-algorithm based on

(7.5).

Their clue is as follows. For two maps M1 = (X1,P1) and M2 =
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(X2,P2), from Lemma 7.3�only necessary to consider |X1| = |X2|
because the cardinality is an invariant under an isomorphism.

First, choose x1 ∈ X1 and y1 ∈ X2 (a trick should be noticed

here!).

Then, start, respectively, from x1 and y1 on M1 and M2 by a

certain rule (algorithms are distinguished by rules ). Arrange the

orbits {x1}Ψ{P1,γ}
and {y1}Ψ{P2,γ}

as cycles. If

τ(x1)Ψ{P1,γ}
= (y1)Ψ{P2,γ}

, (7.6)

can be induced from y1 = τ(x1), then stop. Otherwise, choose another

y1(a trick!). Go no the procedure on M2 until every possible y1 has be

chosen.

Finally, if stops at the latter, then it is shown thatM1 andM2 are

not isomorphic, and denoted by M1 6= M2; otherwise, an isomorphism

between M1 and M2 is done from (7.6), denoted by M1 = M2.

Algorithm 7.1 Based on vertices, determine if two maps are

isomorphic.

Given two maps P = (X ,P) and Q = (Y ,Q), and their order,

size and co-order are all equal(otherwise, not isomorphic!). In conve-

nience, for any x ∈ X , let |x| = |{x}P |, i.e. , the valency of vertex

(x)P.

Initiation Given x ∈ X , choose y ∈ Y . Let τ(x) = y and

τKx = Ky. Label both x and y by 1. Naturally, Kx = Ky = K1 =

{1, α1, β1, γ1} (Here, the number 1 deals with a symbol!). Label (x)P
by 0, then x = 1 is the first element coming to vertex 0. By (v, tv)

denote that tv is the first element coming to vertex v.

Let S be a sequence of symbols storing numbers and symbols and

l, the maximum of labels on all the edges with a label. Here, S = ∅,
l = 1 and the minimum of labels among all labelled but not passed

vertices n = 0. If vertex (γ1)P = (1)P, the maximum vertex label

m = 0; otherwise, label vertex (γ1)P by 1�m = 1.

Proceeding When all vertices are labelled as used, then go to

Halt (1).



174 Chapter VII Automorphisms of Maps

For n, let sP and sQ be, respectively, the number of edges without

label on (γtn)P and (γtn)Q.

If sP 6= sQ, when no y can be chosen, then goto Halt (2); other-

wise, choose another y and then goto Initiation.

In the direction starting from γtn, label those edges by l+1, · · · , l+
s,s = sP = sQ ≥ 0 in order. Thus, two linear orders of elements with

numbers labelled

〈γtn,Pγtn, · · · ,P−1γtn〉

and

〈γtn,Qγtn, · · · ,Q−1γtn〉

are obtained.

If the two are not equal, when no y is available to choose, then

goto Halt (2); otherwise, choose another y and then goto Initiation.

Put this linear order into S as last part and then substitute the

extended sequence for S. In the meantime, label K(l + 1), K(l + 2),

· · ·, K(l + s) on P and Q. Substitute l + s for l. Mark vertex n as

used. Substitute n+ 1 for n. Let r be the number of vertices without

label in

(γ(l+ 1))P, · · · , (γ(l+ s))P ,

and label them as m + 1,· · ·,m + r in order. Substitute m + r for m.

Go on the Proceeding.

Halt (1) Output S. (2) P and Q are not isomorphic.

About Algorithm 7.1, from the way of choosing y, each element

in the ground set is passed through at most once. So there exists

a constant c such that the amount of computation is at most c|X |.
Since the worst case is for y chooses all over the ground set Y ,the

total amount of computation is at most c|X |2. Because of |X | = 4ǫ

where ǫ is the size of the map, this amount is with its order as the size

squared, i.e., O(ǫ2).

As described above, if checking all possibilities of |Y|!, by Stirling
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formula,

|Y|! ∼
√

2πe−|Y||Y||Y|− 1
2

>> O(e|Y|) >> O(ǫǫ)

>> O(ǫ2)

when |Y| = |X | = 4ǫ is large enough. Thus, this algorithm is much

efficient.

Algorithm 7.2 Based on faces, determine if two maps are iso-

morphic.

Given two maps P = (Xα,β,P) and Q = (Yα,β,Q), and their

order, size and co-order are all equal(otherwise, not isomorphic!). For

convenience, let X = Xα,β, Y = Yα,β and for any x ∈ X , let |x| =

|{x}Pγ|, i.e., the valency of face (x)Pγ where γ = αβ.

Initiation Given x ∈ X , choose y ∈ Y . Let τ(x) = y and

τKx = Ky. Label both x and y by 1. Naturally, Kx = Ky =

K1 = {1, α1, β1, γ1} (Here, the number 1 deals with a symbol!). Label

(x)P|ga by 0, then x = 1 is the first element coming to face 0. By (f, tf)

denote that tf is the first element coming to face f .

Let T be a sequence of symbols storing numbers and symbols

and l, the maximum of labels over all the edges with a label. Here,

T = ∅, l = 1 and the minimum of labels among all labelled but not

passed faces n = 0. If face (γ1)Pγ = (1)Pγ, the maximum face label

m = 0; otherwise, label face (γ1)Pγ by 1�m = 1.

Proceeding When all faces are labelled as used, then go to Halt

(1).

For n, let sP and sQ be, respectively, the number of edges without

label on (γtn)Pγ and (γtn)Qγ.

If sP 6= sQ, when no y can be chosen, then goto Halt (2); other-

wise, choose another y and then goto Initiation.

In the direction starting from γtn, label those edges by l+1, · · · , l+
s,s = sP = sQ ≥ 0 in order. Thus, two linear orders of elements with

numbers labelled

〈γtn,Pγγtn, · · · ,Pγ−1γtn〉
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and

〈γtn,Qγγtn, · · · ,Qγ−1γtn〉
are obtained.

If the two are not equal, when no y is available to choose, then

goto Halt (2); otherwise, choose another y and then goto Initiation.

Put this linear order into S as last part and then substitute the

extended sequence for S. In the meantime, label K(l + 1), K(l + 1),

· · ·, K(l + s) on P and Q. Substitute l + s for l. Mark n as used.

Substitute n+ 1 for n. Let r be the number of vertices without label

in

(γ(l+ 1))P, · · · , (γ(l+ s))P ,

and label them as m + 1,· · ·,m + r in order. Substitute m + r for m.

Go on the Proceeding.

Put this linear order into T as last part and then substitute the

extended sequence for T . In the meantime, label K(l + 1), K(l + 2),

· · ·, K(l+ s) on P and Q. Substitute l+ s for l. Mark face n as used.

Substitute n+ 1 for n. Let r be the number of faces without label in

(γ(l+ 1))P, · · · , (γ(l+ s))P ,

and label them as m + 1,· · ·,m + r in order. Substitute m + r for m.

Go on the Proceeding.

Halt (1) Output T . (2) P and Q are not isomorphic.

About Algorithm 7.2, it can be seen as the dual of Algorithm

7.1. The amount of its computation is also estimated as O(ǫ2).

Note 7.2 This two algorithms suggest us that whenever a cyclic

order of edges at each vertex is given, an efficient algorithm for justi-

fying and recognizing if two graphs are isomorphic within the cyclic

order at each vertex can be established. By saying an algorithm effi-

cient, it is meant that there exists an constant c such that the amount

of its computation is about O(ǫc), ǫ is the size of the graphs.

If without considering the limitation of a cyclic order at each ver-

tex, no efficient algorithm for an isomorphism of two graphs has been
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found yet up to now. However, a new approach is, from what has been

discussed here, provided for further investigation of an isomorphism

between two graphs.

VII.4 Justification

In this section, it is shown that the two algorithms described in

the last section can be used for justifying and recognizing whether, or

not, two maps are isomorphic.

Lemma 7.4 Let S and T are, respectively, the outputs of Al-

gorithm 7.1 and Algorithm 7.2 at Halt (1), then

(i) Elements in S and T are all in the same orbit of group Ψ{P ,γ}
on X .

(ii) S forms an orbit of group Ψ{P ,γ} on X if, and only if, T

forms an orbit of group Ψ{P ,γ} on X ;

(iii) S forms an orbit of group Ψ{P ,γ} on X if, and only if, for

any x ∈ S, γx ∈ S.

Proof (i) From the proceedings of the two algorithms, it is seen

that from an element only passes through γ and P( Algorithm 7.1), or

γ and Pγ(Algorithm 7.2) for getting an element in S, or T . Because

γ,P ,Pγ ∈ Ψ{P ,γ} and γ2 = 1 , elements in S and T are all in the same

orbit of group Ψ{P ,γ} on X .

(ii) Necessity. Because S forms an orbit of group Ψ{P ,γ} on X ,

and from Algorithm 7.1, S contains half the elements of X , by Lemma

4.1, group Ψ{P ,γ} has two orbits on X . This implies in the orientable

case. Thus, from (i), T forms an orbit of group Ψ{P ,γ} on X as well.

Sufficiency. On the basis of duality, it is deduced from the neces-

sity.

(iii) Necessity. Since S forms an orbit of group Ψ{P ,γ} on X and

S contains only half the elements of X , by Lemma 4.1, group Ψ{P ,γ}
has two orbits on X . From the orientability, for any x ∈ S, γx ∈ S.

Sufficiency. Since for any x ∈ S, γx ∈ S, and S only contains
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half the elements of X , by Corollary 4.1, it is only possible that S

itself forms an orbit of group Ψ{P ,γ} on X . �

For nonorientable maps, such two algorithms have their outputs

S and T also containing half the elements of X but not forming an

orbit of group Ψ{P ,γ}.

Lemma 7.5 Let S and T are, respectively, the outputs of Al-

gorithm 7.1 and Algorithm 7.2 at Halt (1). And , let GS and GT

be, respectively, the graphs induced by elements in S and T , then

GS = GT = G(P ).

Proof From Lemma 7.4(i), by the procedures of the two algo-

rithms, because the intersection of each of S and T with any quadricell

consists of two elements incident the two ends of the edge, S, T as

well, is incident to all edges with two ends of each edge in map P .

Therefore, GS = GT = G(P ). �

Theorem 7.3 The output S of Algorithm 7.1 at Halt (1) in-

duces an isomorphism between maps P and Q. Halt (2) shows that

maps P and Q are not isomorphic.

Proof Let τ be a mapping from X to Y such that the image

and the co-image are with the same label. From the transitivity of a

map, τ is a bijection. Because τKx = Kτx, x ∈ X , then τατ−1 = α

and τβτ−1 = β. And in the Proceeding, for labelling a vertex (x)P ,
τ(x)P = (τx)Q. From Lemma 7.5, this implies that τPτ−1 = Q.

Based on Theorem 7.1, τ is an isomorphism between P and Q. This

is the first statement.

By contradiction to prove the second statement. Assume that

there is an isomorphism τ between P and Q. If τ(x) = y, then by

Algorithm 7.1 the procedure should terminate at Halt (1). However,

a termination at Halt (2) shows that for any x ∈ X , there is no

elements in Y corresponding to x in an isomorphism between maps P

and Q, and hence it is impossible to terminate at Halt (1). This is a

contradiction.
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Therefore, the theorem is true. �

Although the theorem below has its proof with a similar reason-

ing, in order to understand the precise differences the proof is still in

a detailed explanation.

Theorem 7.4 The output T of Algorithm 7.2 at Halt (1) in-

duces an isomorphism between maps P and Q. Halt (2) shows that

maps P and Q are not isomorphic.

Proof Let τ be a mapping from X to Y such that the image

and the co-image are with the same label. From the transitivity of a

map, τ is a bijection. Because τKx = Kτx, x ∈ X , then τατ−1 = α

and τβτ−1 = β. And in the Proceeding, for labelling a face (x)Pγ,

τ(x)Pγ = (τx)Qγ. From Lemma 7.5, this implies that τPγτ−1 = Qγ.

Based on Theorem 7.2, τ is an isomorphism between P and Q. This

is the first statement.

By contradiction to prove the second statement. Assume that

there is an isomorphism τ between P and Q. If τ(x) = y, then by

Algorithm 7.2 the procedure should terminate at Halt (1). However,

a termination at Halt (2) shows that for any x ∈ X , there is no

elements in Y corresponding to x in an isomorphism between maps P

and Q, and hence it is impossible to terminate at Halt (1). This is a

contradiction.

Therefore, the theorem is true. �

If missing what is related to y in Algorithm 7.1 and Algorithm

7.2, then for any map M = (X ,P), the procedures will always termi-

nate at Halt (1). Thus, their outputs S and T are, respectively, called

a primal trail code and a dual trail code of M . When an element x and

a map P should be indicated, they are denoted by respective Sx(P )

and Tx(P ).

Theorem 7.5 Let P = (X ,P) and Q = (Y ,Q) be two given

maps. Then, they are isomorphic if, and only if, for any x ∈ X
chosen, there exists an element y ∈ Y such that Sx(P ) = Sy(Q), or
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Tx(P ) = Ty(Q).

Proof Necessity. Suppose τ is an isomorphism between maps

P = (X ,P) and Q = (Y ,Q). For the given element x ∈ X , let

y = τ(x). From Theorem 7.3, or Theorem 7.4, Sx(P ) = Sy(Q), or

Tx(P ) = Ty(Q).

Sufficiency. From Theorem 7.3, or Theorem 7.4, it is known

that by Algorithm 7.1, or Algorithm 7.2, their outputs induces an

isomorphism between P = (X ,P) and Q = (Y ,Q). �

Note 7.3 In justifying whether, or not, two maps are isomor-

phic, the initial element x can be chosen arbitrarily in one of the

two maps to see if there is an element y in the other such that

Sx(P ) = Sy(Q), or Tx(P ) = Ty(Q). This enables us to do for some

convenience.

In addition, based on Theorem 7.5, all isomorphisms between

two maps can be found if any.

VII.5 Pattern examples

Here, two pattern examples are provided for further understand-

ing the procedures of the two algorithms described in the last section.

Pattern 7.1 Justify whether, or not, two maps M1 = (X1,P1)

and M2 = (X2,P2) are isomorphic where

X1 = Kx1 +Ky1, P1 = (x1, y1, βy1)(γx1)

and

X2 = Kx2 +Ky2, P2 = (y2, x2, βy2)(γx2).

First, for M1, choose x = x1. By Algorithm 7.1, find Sx(M1).

Let

P1 = (x1, y1, βy1)(γx1) = uv.
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Initiation

x1 = 1, Kx1 = {1, α1, β1, γ1}, u = 0, v = 1,

S = ∅, l = 0, m = 1.

Proceeding

Step 1 P1 = (1, y1, βy1)(γ1).

y1 = 2, Ky1 = {2, α2, β2, γ2}, u = 0, v = 1,

S = 〈1, 2, β2〉, l = 2, n = 1, m = 1.

Step 2 P1 = (1, 2, β2)(γ1).

u = 0, v = 1,

S = 〈1, 2, β2, γ1〉, l = 2, n = 1, m = 1.

Halt (1) Output: Sx(M1) = S = 〈1, 2, β2, γ1〉.

Then, for M2, because a link should correspond to a link and

a vertex should correspond to a vertex with the same valency, y has

only two possibilities for choice, i.e., x2 and αx2. Choose y = x2. By

Algorithm 7.1, find Sy(M2). Let

P2 = (y2, x2, βy2)(γx2) = uv.

Initiation

x2 = 1, Kx2 = {1, α1, β1, γ1}, u = 0, v = 1,

S = ∅, l = 0, m = 1.

Proceeding

Step 1 P2 = (y1, 1, βy2)(γ1).

βy2 = 2, Kβy2 = {2, α2, β2, γ2}, u = 0, v = 1,

S = 〈1, 2, β2〉, l = 2, n = 1, m = 1.

Step 2 P2 = (2, 1, β2)(γ1).

u = 0, v = 1,

S = 〈1, 2, β2, γ1〉, l = 2, n = 1, m = 1.
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Halt (1) Output: Sy(M2) = S = 〈1, 2, β2, γ1〉.

Since Sx(M1) = Sy(M2) and y = x2, an isomorphism from M1 to

M2 is found as τ1:

τ1Kx1 = Kx2, τ1Ky1 = Ky2.

Then, choose y = αx2. By Algorithm 7.1, find Sy(M2). Let

P2 = (αx2, αy2, γy2)(βx2) = uv.

Initiation

αx2 = 1, Kαx2 = {1, α1, β1, γ1}, u = 0, v = 1,

S = ∅, l = 0, m = 1.

Proceeding

Step 1 P2 = (1, αy2, γy2)(γ1).

αy2 = 2, Kαy2 = {2, α2, β2, γ2}, u = 0, v = 1,

S = 〈1, 2, β2〉, l = 2, n = 1, m = 1.

Step 2 P2 = (1, 2, β2)(γ1).

u = 0, v = 1,

S = 〈1, 2, β2, γ1〉, l = 2, n = 1, m = 1.

Halt (1) Output: Sy(M2) = S = 〈1, 2, β2, γ1〉.

Since Sx(M1) = Sy(M2) and y = αx2, an isomorphism from M1

to M2 is found as τ2:

τ2Kx1 = Kαx2, τ2Ky1 = Kαy2.

In consequence, there are two isomorphisms between M1 and M2

above in all. Since 2 ∈ Sx(M1) but γ2 6∈ Sx(M1), by Lemma 7.4(iii),

M1, M2 as well, is nonorientable.

Pattern 7.2 Justify whether, or not, M1 = (X1,P1) and M2 =

(X2,P2) are isomorphic where

X1 = Kx1 +Ky1, P1 = (x1, y1, γy1)(γx1)
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and

X2 = Kx2 +Ky2, P2 = (y2, x2, γy2)(γx2).

First, for M1, choose x = x1. By Algorithm 7.2, find Tx(M1).

Let

P1γ = (x1, γx1, y1)(γy1) = fg.

Initiation

x1 = 1, Kx1 = {1, α1, β1, γ1}, f = 0, g = 1,

T = ∅, l = 0, m = 0.

Proceeding

Step 1 P1γ = (1, γ1, y1)(γy1).

y1 = 2, Ky1 = {2, α2, β2, γ2}, f = 0, g = 1,

T = 〈1, γ1, 2〉, l = 2, n = 1, m = 1.

Step 2 P1γ = (1, γ1, 2)(γ2).

f = 0, g = 1,

T = 〈1, γ1, 2, γ2〉, l = 2, n = 1, m = 1.

Halt (1) Output: Tx(M1) = T = 〈1, γ1, 2, γ2〉.

Then, for M2, because a link should be corresponding to a link

and a vertex should be corresponding to a vertex with the same va-

lency, y only has two possibilities for choosing, i.e. , x2 and αx2.

Choose y = x2. By Algorithm 7.2, find Ty(M2). Let

P2γ = (x2, γx2, γy2)(y2) = fg.

Initiation

x2 = 1, Kx2 = {1, α1, β1, γ1}, f = 0, g = 1,

T = ∅, l = 0, m = 0.

Proceeding

Step 1 P2γ = (1, γ1, γy2)(y2).

γy2 = 2, Kγy2 = {2, α2, β2, γ2}, f = 0, g = 1,

T = 〈1, γ1, 2〉, l = 2, n = 1, m = 1.
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Step 2 P2γ = (1, γ1, 2)(γ2).

f = 0, g = 1,

T = 〈1, γ1, 2, γ2〉, l = 2, n = 1, m = 1.

Halt (1) Output: Ty(M2) = T = 〈1, γ1, 2, γ2〉.

Since Tx(M1) = Ty(M2) and y = x2, an isomorphism from M1 to

M2 is found as τ1:

τ1Kx1 = Kx2, τ1Ky1 = Kγy2.

Then, choose y = αx2. By Algorithm 7.2, find Ty(M2). Let

P2γ = (αx2, βx2, αy2)(βy2) = fg.

Initiation

αx2 = 1, Kαx2 = {1, α1, β1, γ1}, f = 0, g = 1,

T = ∅, l = 0, m = 0.

Proceeding

Step 1 P2γ = (1, γ1, αy2)(βy2).

αy2 = 2, Kγy2 = {2, α2, β2, γ2}, f = 0, g = 1,

T = 〈1, γ1, 2〉, l = 2, n = 1, m = 1.

Step 2 P2γ = (1, γ1, 2)(γ2).

f = 0, g = 1,

T = 〈1, γ1, 2, γ2〉, l = 2, n = 1, m = 1.

Halt (1) Output: Ty(M2) = T = 〈1, γ1, 2, γ2〉.

Since Tx(M1) = Ty(M2) and y = αx2, an isomorphism from M1

to M2 is found as τ2:

τ2Kx1 = Kαx2, τ2Ky1 = Kαy2.

In consequence, there are two isomorphisms between M1 and M2

in all. By Lemma 7.4(iii), M1, M2 as well, is orientable.
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VII.6 Observations

O7.1 Observe that whether, or not, an isomorphism between

two maps is always mapping a link to a link and a loop to a loop. If

it is, describe the reason. Otherwise, by an example.

O7.2 Observe that whether, or not, an isomorphism between

two maps is always mapping an element incident with a vertex of

valency i to an element incident with a vertex of valency i. If it is,

describe the reason. Otherwise, by an example.

O7.3 If missing τατ−1 = α or τβτ−1 = β in (7.2), whether, or

not, τ is still an isomorphism. If it is, describe the reason. Otherwise,

by an example.

O7.4 Provide two distinct embeddings of a graph which are

two isomorphic maps.

O7.5 Observe that how many non-isomorphic maps among all

embeddings of the complete graph of order 4.

O7.6 List all non-isomorphic maps of size 3 and find the dis-

tribution by relative genus.

O7.7 Explain the differences between non-isomorphic maps with

the same under graph and distinct embeddings of the graph by exam-

ples.

O7.8 Explain the differences between non-isomorphic graphs

and distinct embeddings of these graphs by examples.
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O7.9 Let τ1 and τ2 are two isomorphisms between two maps.

Observe whether, or not, their composition τ1τ
−1
2 τ1 is also an isomor-

phism. If it is, describe the reason. Otherwise, by an example.

O7.10 Observe some algebraic properties on the set of all iso-

morphisms between two maps.

O7.11 Observe that for two maps M1 = (X1,P1) and M2 =

(X1,P2), is the composition of two permutations P1 and P2 a map? If

it is, describe the reason. Otherwise, by an example.

O7.12 Observe some algebraic properties of the sets of all maps

and premaps on the same ground set under the composition of per-

mutations.

VII.7 Exercises

If an edge is with its two ends of valencies i and j, then it is called

a (i, j)-edge, 0 ≤ i, j ≤ 2ǫ. If its two incident faces are of valencies l

and s, then it is called a (l, s)∗-edge, 0 ≤ s, t ≤ 2ǫ. Here, ǫ is the size

of a map.

E7.1 Let mij(M) and nij(M) are, respectively, the numbers of

(i, j)-edge and (i, j)∗-edge in map M . Prove that if maps M1 and M2

are isomorphic, then for any i and j, 0 ≤ i, j ≤ 2ǫ, mij(M1) = mij(M2)

and nij(M1) = nij(M2).

E7.2 Prove that a bijection between the basic sets of two maps

is an isomorphism of the two maps if, and only if, it induces both the

correspondences between their vertices and between their faces.

E7.3 Design an algorithm which is different from Algorithm 7.1

and Algorithm 7.2 for justifying an isomorphism between two maps

such that its computation amount is in the same order as their’s.

E7.4 Prove that Algorithm 7.1 and Algorithm 7.2 are with the

computation order O(ǫ) in justifying an isomorphism of two maps

which have a triangular face, or a vertex of valency 3 where ǫ is the
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size of the maps.

E7.5 Prove that Algorithm 7.1 and Algorithm 7.2 are with the

computation order O(ǫ) in justifying an isomorphism of two maps

which have only one —articulate vertex(a vertex of valency 1), or only

one loop where ǫ is the size of the maps.

E7.6 Determine the number of non-isomorphic butterflies of

size m ≥ 1, or establish a method to list them.

E7.7 Determine the number of non-isomorphic barflies of size

m ≥ 1, or establish a method to list them.

E7.8 On the basis of Algorithm 7.1, design an algorithm for

justifying an isomorphism between two planar graphs(not maps!), and

estimate its computation order.

E7.9 On the basis of Algorithm 7.2, design an algorithm for

justifying an isomorphism between two planar graphs(not maps!), and

estimate its computation order.

For any map M , let T be a spanning tree of its under graph

G(M). Each co-tree edge is partitioned into two semi-edges seen as

edges. Because what is obtained is just a tree when each of such

semi-edges is seen with a new articulate vertex, it is a joint tree cor-

responding to an embedding of its under graph G(M), also called an

joint tree of M .

If x and βx are in the same direction for an edge X = Kx

partitioned along the joint tree, then it is said to be with the same

sign, denoted by X and X; otherwise, different signs, denoted by X

and X−1, or X−1 and X. The cyclic order of letters with signs of such

semi-edges partitioned into is called an joint sequence of the map.

E7.10 Prove that a graph G is planar if, and only if, there

exists an joint sequence of maps whose under graph is G such that

each letter is with different signs and no two letters are interlaced.

E7.11 Prove that for any complete graph Kn, n ≥ 1, there

is no joint tree for all maps whose under graph are Kn such that it

corresponds to a simplified butterfly.
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VII.8 Researches

R7.1 Discuss whether, or not, there exits a number, indepen-

dent on the size of a map considered, of invariants within isomorphism

of maps for justifying and recognizing an isomorphism between two

maps.

R7.2 For a given graph G and an integer g, determine the

number of distinct embeddings of G on the surface of relative genus

g, and the number of non-isomorphic maps among them.

R7.3 For a given type of graphs G and an integer g, find the

number of distinct embeddings of graphs in G on the surface of relative

genus g, and the number of non-isomorphic maps among them.

R7.4 Determine the number of non-isomorphic triangulations

of size m ≥ 3.

R7.5 Determine the number of non-isomorphic quadrangula-

tions of size m ≥ 4.

R7.6 For an integral vector (n2, n4, · · · , n2i, · · ·), find the num-

ber of non-isomorphic Euler planar maps each of which has n2i vertices

of valency 2i, i ≥ 1.

Because it can be shown that two graphs G1 and G2 are isomor-

phic if, and only if, for a surface they can be embedded into, there

exist embeddings µ1(G1) and µ2(G2) isomorphic, this enables us to

investigate the isomorphism between two graphs. The aim is at an

efficient algorithm if any.

R7.7 Suppose map M1 is an embedding of G1 on an orientable

surface of genus g, justify whether, or not, there is an embedding M2

of graph G2 such that M2 and M1 are isomorphic.

R7.8 Suppose mapM1 is an embedding ofG1 on a non-orientable

surface of genus g, justify whether, or not, there is an embedding M2

of graph G2 such that M2 and M1 are isomorphic.

R7.9 According to [Liu1], any graph with at least a circuit has

a non-orientable embedding with only one face. Justify whether, or
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not, two graphs G1 and G2 have two respective single face embeddings

which are isomorphic.

R7.10 Justify whether, or not, a graph has two distinct single

face embeddings which are isomorphic maps.

A graph is called up-embeddable if it has an orientable embedding

of genus which is the integral part of half the Betti number of the

graph. Because of the result in [Liu1], unnecessary to consider the

up-embeddability for non-orientable case.

R7.11 Determine the up-embeddability and the maximum ori-

entable genus of a graph via its joint sequences.

R7.12 For a given graph G and an integer g, justify whether,

or not, the graph G has an embedding of relative genus g.
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Asymmetrization

• An automorphism of a map is an isomorphism from the map to

itself. All automorphisms of a map form a group called its au-

tomorphism group. of a map is, in fact, the trivialization of its

automorphism group.

• A number of sharp upper bounds of automorphism group orders

for a variety of maps are provided.

• The automorphism groups of simplified butterflies and those of

simplified barflies are determined.

• The realization of of a map is from rooting an element of the ground

set.

VIII.1 Automorphisms

An isomorphism of a map to itself is called an automorphism .

Let τ be an automorphism of map M = (X ,P). If for x ∈ X , τ(x) = y

and x 6= y, then two elements x and y play the same role on M , or

say, they are symmetric. Hence, an automorphism of a map reflects

the symmetry among elements in the ground set of the map.

Lemma 8.1 Suppose τ1 and τ2 are two automorphisms of map

M , then their composition τ1τ2 is also an automorphism of map M .
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Proof Because τ1 is an automorphism of M = (Xα,β,P), from

(7.2)

τ1ατ
−1
1 = α, τ1βτ

−1
1 = β, τ1Pτ−1

1 = P .
Similarly, for τ2,

τ2ατ
−1
2 = α, τ2βτ

−1
2 = β, τ2Pτ−1

2 = P .

Therefore, for τ1τ2,

(τ1τ2)α(τ1τ2)
−1 = (τ1τ2)α(τ−1

2 τ−1
1 )

= τ1(τ2ατ
−1
2 )τ−1

1

= τ1ατ1 = α,

(τ1τ2)β(τ1τ2)
−1 = (τ1τ2)β(τ−1

2 τ−1
1 )

= τ1(τ2βτ
−1
2 )τ−1

1

= τ1βτ1 = β,

and
(τ1τ2)P(τ1τ2)

−1 = (τ1τ2)P(τ−1
2 τ−1

1 )

= τ1(τ2Pτ−1
2 )τ−1

1

= τ1Pτ1 = P .
This implies that for τ1τ2, (7.2) is commutative. From Theorem 7.1,

τ1τ2 is an automorphism of M as well. �

On the basis of the property on permutation composition, auto-

morphisms satisfy the associate law for composition.

Because an automorphism τ is a bijection, it has a unique inverse

denoted by τ−1. Because

τ−1ατ = τ−1(τατ−1)τ = (τ−1τ)α(τ−1τ) = α,

and similarly,

τ−1βτ = β, τ−1Pτ = P ,
from Theorem 7.1, τ−1 is also an automorphism.

If an element x ∈ X has τ(x) = x for a mapping(particularly, an

automorphism) τ , then x is called a fixed point of τ . If every element
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is a fixed point of τ , then τ is called an identity . Easy to see that an

identity on X is, of course, an automorphism of M , usually said to be

trivial . By the property of a permutation, an identity is the unity of

automorphisms, always denoted by 1.

In summary, the set of all automorphisms of a map M forms

a group, called the automorphism group of M , denoted by Aut(M).

Its order is the cardinality of the set aut(M) = |Aut(M)|, i.e., the

number of elements in Aut(M) because of the finiteness.

Theorem 8.1 Let τ be an automorphism of map M = (X ,P).

If τ has a fixed point, the τ = 1, i.e., the identity.

Proof Suppose x is the fixed point, i.e. , τ(x) = x. Because τ

is an isomorphism, From (7.1),

τ(αx) = ατ(x) = αx,

τ(βx) = βτ(x) = βx

τ(Px) = P(τ(x)) = Px,
i.e., αx, βx and Px are all fixed points.

Then for any ψ ∈ Ψ{α,β,P},

τ(ψ(x)) = ψ(τ(x)) = ψ(x).

Therefore, from transitive axiom, every element on X is a fixed

point of τ . This means that τ is the identity. �

In virtue of this theorem, the automorphism induced from τ(x) =

y can be represented by τ = (x→ y).

Example 8.1 Let us go back to the automorphisms of the maps

described in Pattern 7.1 and Pattern 7.2.

If M1 and M2 in Pattern 7.1 are taken to be

M = (Kx+Ky, (x, y, βy)(γx)) = M1,

then it is seen that only one nontrivial automorphism τ = (x → αx)

exists. Thus, its automorphism group is

Aut(M) = {1, (x→ αx)},
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i.e., a group of order 2.

Then, maps M1 and M2 in Pattern 7.2 are taken to be

M = (Kx+Ky, (x, y, γy)(γx)) = M2,

it has also only one nontrivial automorphism τ = (x → αx). So, its

automorphism group is

Aut(M) = {1, (x→ αx)},
a group of order 2, as well.

However, maps M1 and M2 here are not isomorphic. In fact, it

is seen that M1 is nonorientable with relative genus −1. and M2 is

orientable of relative genus 1.

VIII.2 Upper bounds of group order

Because the automorphism group of a combinatorial structure

with finite elements is an finite permutation group in its own right, its

order must be bounded by an finite number. And, because there are

n! permutations on a combinatorial structure of n elements, the order

of its automorphism group is bounded by n!.

However, n! is an exponential function of n according to the

Stirling approximate formula, it is too large for determining the auto-

morphism group in general.

Now, it is asked that is there an constant c such that the order of

automorphism group is bounded by nc, or denoted by O(nc), if there

is, then such a result would be much hopeful for the determination of

the group efficiently.

In matter of fact, if the order of automorphism group is O(nc), c

is independent of n for a structure with n elements, then an efficient

algorithm can be designed for justifying and recognizing if two of them

are isomorphic in a theoretical point of view.

Lemma 8.2 For any map M = (X ,P), the order of its auto-

morphism group is

aut(M) ≤ |X | = 4ǫ(M) (8.1)
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where ǫ(M) = 1
4|X | is the size of M .

Proof From Theorem 8.1, M has at most |X | = 4ǫ(M) auto-

morphism, i.e., (8.1). �

The bound presented by this lemma is sharp, i.e., it can not be

reduced any more. For an example, the link map L = (Kx, (x)(γx)).

The order of its automorphism group is 4 = |Kx| = ǫ(L).

Lemma 8.3 For an integer i ≥ 1, let νi(M) be the number of

i-vertices(vertex incident with i semi-edges) in map M = (X ,P), then

aut(M) | 2iνi(M), (8.2)

i.e., aut(M) is a factor of 2iνi(M).

Proof Let τ ∈ Aut(M) be an automorphism of M . For x ∈ X ,

(x)P is an i-vertex, assume τ(x) = y. From the third relation of

(7.1), (y)P is also an i-vertex. Then, the elements of Xi = {x|∀x ∈
X , |{x}P| = i} can be classified by the equivalent relation

x ∼Aut y ⇐⇒ ∃τ ∈ Aut(M)x = τy

induced from the group Aut(M).

From Theorem 8.1, Aut(G) has a bijection with every equivalent

class. This implies that each class has aut(M) elements. Therefore,

aut(M) | |Xi|.

Because |Xi| = 2iνi(M), (8.2) is soon obtained. �

This lemma allows to improve, even apparently improve the bound

presented by Lemma 8.1 for a map not vertex-regular(each vertex has

the same valency).

Lemma 8.4 For an integer j ≥ 1, let φj(M) be the number of

j-faces of map M = (X ,P), then

aut(M) | 2jφj(M), (8.3)



VIII.2 Upper bound of group order 195

i.e., aut(M) is a factor of 2jφj(M).

Proof Let τ ∈ Aut(M) be an automorphism of M . For x ∈ X ,

(x)Pγ is a j-face, assume τ(x) = y. From the first two relations of

(7.1), τ(γx) = γy. Then from this and the third relations, τ((Pγ)x) =

(Pγ)y. Thus, (y)Pγ is also a j-face. And, the elements of Xj = {x|∀x ∈
X , |{x}Pγ| = j} can be classified by the equivalence

x ∼Aut y ⇐⇒ ∃τ ∈ Aut(M)x = τy

induced from the group Aut(M).

Further, from Theorem 8.1, Aut(G) has a bijection with every

equivalent class. This leads that each class has aut(M) elements.

Therefore,

aut(M) | |Xj|.
Because |Xj| = 2jφj(M), (8.3) is soon obtained. �

This lemma allows also to improve, even apparently improve the

bound presented by Lemma 8.1 for a map not face-regular(each face

has the same valency).

Theorem 8.2 Let νi(M) and φj(M) be, respectively, the num-

bers of i-vertices and j-faces in map M = (X ,P), i, j ≥ 1, then

aut(M) | (2iνi, 2jφj | ∀i, i ≥ 1, ∀j, j ≥ 1), (8.4)

where (2iνi, 2jφj | ∀i, i ≥ 1, ∀j, j ≥ 1) represents the greatest

common divisor of all the numbers in the parentheses.

Proof From Lemma 8.3, for any integer i ≥ 1,

aut(M) | 2iνi(M).

From Lemma 8.4, for any integer j ≥ 1,

aut(M) | 2iφj(M).

By combining the two relations above, (8.4) is soon found. �
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Based on this theorem, the following corollary is naturally de-

duced.

Corollary 8.1 Let νi(M) and φj(M) be, respectively, the num-

bers of i-vertices and j-faces in map M = (X ,P), i, j ≥ 1, then

aut(M) ≤ (2iνi, 2jφj | ∀i, i ≥ 1, ∀j, j ≥ 1). (8.5)

Proof A direct result of (8.4). �

Corollary 8.2 For map M = (X ,P), ǫ(M) is its size, then

aut(M) | 4ǫ(M). (8.6)

Proof Because

4ǫ(M) = 2
∑

i≥1

iνi(M) = 2
∑

j≥1

jφj(M)

=
∑

i≥1

2iνi(M) =
∑

j≥1

2jφj(M),

we have

(2iνi, 2jφj | ∀i, i ≥ 1, ∀j, j ≥ 1) | 4ǫ(M).

Hence, from Theorem 8.2, (8.6) is soon derived. �

VIII.3 Determination of the group

In this section, the automorphism groups of standard maps, i.e.,

simplified butterflies and simplified barflies, are discussed.

First, observe the orientable case. For

O1 = (X1,J1) = (Kx1 +Ky1, (x1, y1, γx1, γy1)),
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by Algorithm 7.1,

Sx1
(O1) = 1, y1, γ1, γy1 = 1, 2, γ1, γ2;

Sαx1
(O1) = 1, βy1, γ1, αy1 = 1, 2, γ1, γ2;

Sβx1
(O1) = 1, αy1, γ1, βy1 = 1, 2, γ1, γ2;

Sγx1(O1) = 1, γy1, γ1, y1 = 1, 2, γ1, γ2;

Sy1
(O1) = 1, γx1, γ1, x1 = 1, 2, γ1, γ2;

Sαy1
(O1) = 1, αx1, γ1, βx1 = 1, 2, γ1, γ2;

Sβy1
(O1) = 1, βx1, γ1, αx1 = 1, 2, γ1, γ2;

Sγy1
(O1) = 1, x1, γ1, γx1 = 1, 2, γ1, γ2,

i.e.,

Sx1
(O1) = Sαx1

(O1) = Sβx1
(O1) = Sγx1

(O1) = Sy1
(O1)

= Sαy1
(O1) = Sβy1

(O1) = Sγy1
(O1)

= 1, 2, γ1, γ2.

Thus, O1 has its automorphism group of order 8, i.e.,

aut(O1) = 4× (2× 1) = 8.

A map with a non-trivial automorphism group is said to be sym-

metrical. If a map with its automorphism group of order 4 times its

size, the it is said to be completely symmetrical. It can be seen that O1

is completely symmetrical. However, none of Ok, k ≥ 2, is completely

symmetrical although they are all symmetrical.

Theorem 8.3 For simplified butterflies(orientable standard maps)

Ok = (Xk,Jk), k ≥ 1, where

Xk =
k∑

i=1

(Kxi +Kyi)

and

Jk = (

k∏

i=1

〈xi, yi, γxi, γyi〉),
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we have

aut(Ok) =

{
2k, if k ≥ 2;

8, if k = 1.
(8.7)

Proof From the symmetry between 〈xi, yi, γxi, γyi〉, i ≥ 2, and

〈x1, y1, γx1, γy1〉 in Jk, k ≥ 2, only necessary to calculate Sx1
(Ok),

Sγx1
(Ok), Sy1

(Ok), Sγy1
(Ok), Sαx1

(Ok), Sβx1
(Ok), Sαy1

(Ok), and

Sβy1
(Ok) by Algorithm 7.1.

From Algorithm 7.1,

Sx1
(Ok) = 1, y1, γ1, γy1,

k∏

i=1

〈xi, yi, γxi, γyi〉

= 1, 2, γ1, γ2,

k∏

i=2

〈(2i− 1), 2i, γ(2i− 1), γ2i〉

=
k∏

i=1

〈(2i− 1), 2i, γ(2i− 1), γ2i〉,

Sαx1
(Ok) = 1, α(

k∏

i=1

〈xi, yi, γxi, γyi〉)−1, βy1, γ1, αy1

6= Sx1
(Ok),

Sγx1
(Ok) = 1, γy1,

k∏

i=1

〈xi, yi, γxi, γyi〉, γ1, y1

6= Sx1
(Ok),

Sβx1
(Ok) = 1, αy1, γ1, α(

k∏

i=1

〈xi, yi, γxi, γyi〉)−1, βy1

6= Sx1
(Ok),

Sy1
(Ok) = 1, γx1, γ1,

k∏

i=1

〈xi, yi, γxi, γyi〉, x1

6= Sx1
(Ok),
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Sαy1
(Ok) = 1, αx1, α(

k∏

i=1

〈xi, yi, γxi, γyi〉)−1, γ1, βx1

6= Sx1
(Ok),

Sγy1
(Ok) = 1,

k∏

i=1

〈xi, yi, γxi, γyi〉, x1, γ1, γx1

6= Sx1
(Ok),

Sβy1
(Ok) = 1, βx1, α1, αx1, α(

k∏

i=1

〈xi, yi, γxi, γyi〉)−1

= 1, 2.γ1, γ2,

k∏

i=2

〈(2i− 1), 2i, γ(2i− 1), γ2i〉

= Sx1
(Ok).

Because two automorphisms are from Sβy1
(Ok) = Sx1

(Ok), Ok

have 2× k = 2k automorphisms altogether. Hence, when k ≥ 2,

aut(Ok) = 2k.

When k = 1, aut(O1) = 8 is known. �

Then, observe the nonorientable case. for

Q1 = (X1, I1) = (Kx1, (x1, βx1)),

by Algorithm 7.1,

Sx1
(Q1) = 1, β1; Sαx1

(Q1) = 1, β1;

Sβx1
(Q1) = 1, β1; Sγx1

(Q1) = 1, β1,

i.e., aut(Q1) = 4.

Theorem 8.4 For simplified barfliesQl = (Xl, Il), l ≥ 1, where

Xl =

l∑

i=1

Kxi
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and

Il =
l∏

i=1

〈xi, βxi〉,

we have

aut(Ql) =

{
2l, � l ≥ 2;

4, � l = 1.
(8.8)

Proof From the symmetry of 〈xi, βxi〉, i ≥ 2, and 〈x1, βx1〉 in

Il, l ≥ 2, only necessary to calculate

Sx1
(Ql), Sαx1

(Ql), Sβx1
(Ql) and Sγx1

(Ql)

by employing Algorithm 7.1.

From Algorithm 7.1,

Sx1
(Ql) = 1, β1,

l∏

i=2

〈xi, βxi〉

= 1, β1, 2, β2,
l∏

i=3

〈xi, βxi〉

=
l∏

i=1

〈i, βi〉,

Sαx1
(Ql) = 1, α(

l∏

i=2

〈xi, βxi〉)−1, β1

6= Sx1
(Ql),

Sβx1
(Ql) = 1,

l∏

i=2

〈xi, βxi〉, β1

6= Sx1
(Ql),
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Sγx1
(Ql) = 1, β1, α(

l∏

i=2

〈xi, βxi〉)−1

= 1, β1, l, βl,
2∏

i=l−1

〈γxi, αxi〉

=

l∏

i=1

〈i, βi〉

= Sx1
(Ql).

Because two automorphisms are from Sγx1
(Ql) = Sx1

(Ql), Ql has

2× l = 2l automorphisms altogether. Hence, when l ≥ 2,

aut(Ql) = 2l.

When l = 1, aut(Q1) = 4 is known. �

Similarly, the two theorems can also be proved by employing

Algorithm 7.2.

VIII.4 Rootings

For a given map M = (X ,P), if a subset R ⊆ X is chosen such

that an automorphism of M with R fixed, i.e., an element of R does

only correspond to an element of R, then M is called a set rooted map.

The subset R is called the rooted set of M , and an element of R is

called a rooted element .

Theorem 8.5 For a set rooted map MR = (X ,P), R is the

rooted set,

aut(MR) | |R|. (8.9)

Proof Assume that all elements in R are partitioned into equiv-

alent classes under the group Aut(MR). From Theorem 8.1, each class

has aut(MR) elements. Therefore, (8.9) is satisfied. �
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Corollary 8.3 For a set rooted map MR = (X ,P), R is the

rooted set,

aut(MR) ≤ |R|. (8.10)

Proof A direct result of (8.9). �

For a given mapM = (X ,P), if a vertex vx, x ∈ X , is chosen such

that an automorphism of M has to be with vx fixed, i.e., an element

incident with vx has to correspond to an element incident with vx, then

M is called a vertex rooted map. The vertex vx is called the rooted

vertex of M , and an element incident with vx, rooted element .

Corollary 8.4 For a vertex rooted map Mvr = (X ,P), vx is

the rooted vertex,

aut(Mvr) | 2|{x}P |. (8.11)

Proof This is (8.9) when R = {x}P ∪ {αx}P . �

For a given map M = (X ,P), if face fx, x ∈ X , is chosen such

that an automorphism of M has fx fixed, i.e. , an element incident

with fx should be corresponding to an element incident with fx, then

M is said to be a face rooted map. The face fx is called the rooted

face of M . An element in rooted face is called an rooted element.

Corollary 8.5 For a face rooted mapM fr = (X ,P) with rooted

face fx,

aut(M fr) | 2|{x}Pγ|. (8.12)

Proof This is (8.9) when R = {x}Pγ ∪ {αx}Pγ. �

For given map M = (X ,P), if edge ex, x ∈ X , is chosen such

that an automorphism of M is with ex fixed, i.e., an element in ex is

always corresponding to an element in ex, then M is called an edge

rooted map. Edge ex is the rooted edge of M . An element in the rooted

edge is also called a rooted element.



VIII.4 Rootings 203

Corollary 8.6 For an edge rooted map M er = (X ,P) with the

rooted edge ex,

aut(M er) | |Kx|. (8.13)

Proof The case of (8.9) when R = Kx. �

For a given map M = (X ,P), an element x ∈ X is chosen such

that an automorphism of M is with x as a fixed point, then M is

called a rooted map . The element x is the root of M . The vertex, the

edge and the face incident to the root are, respectively, called the root

vertex, the root edge and the root face.

Corollary 8.7 For a rooted map M r = (X ,P) with its root x,

aut(M r) = 1. (8.14)

Proof The case of (8.9) when R = {x}. �

This tells us that a rooted map does not have the symmetry at all.

The way mentioned above shows such a general clue for transforming

a problem with symmetry to a problem without symmetry and then

doing the reversion.

Example 8.2 Map

M1 = (Kx+Ky, (x)(γx, y, γy))

has 4 distinct ways for choosing the root. BecauseM1 has the following

4 primal trail codes

Sx = 10, γ1, 2, γ2
1

= Sαx, Sγx = 1, 2, γ2
0
, γ1

1
= Sβx

Sy = 1, γ1, 2
0
, γ2

1
= Sβy, Sγy = 1, 2, γ1

0
γ2

1
= Sαy,

the 4 ways of rooting are shown in Fig.8.1(a–d) where the root is

marked at its tail.

Example 8.3 Map M2 = (Kx+Ky, (x)(γx, y, βy)) has 4 dis-

tinct ways for choosing the root. Because M2 has the following 4
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primal trail codes

Sx = 10, γ1, 2, β2
1

= Sαx, Sγx = 1, 2, β2
0
, γ1

1
= Sβx

Sy = 1, β1, 2
0
, γ2

1
= Sγy, Sβy = 1, 2, β1

0
γ2

1
= Sαy,

the 4 ways of rooting are shown in Fig.8.2(a–d) where the root is

marked at its tail.

} 6 6} ?
r = x

r = γx

y 3 3γy γy

y

x

(a) (b)

} 6 6} r = γy

x

r = y 3 3γy

y

x

(c) (d)

Fig.8.1 Rootings in Example 1



VIII.4 Rootings 205

} 6 6} ?
r = x

r = γx

y 3 3βy βy

y

x

(a) (b)

} 6 6} r = βy

x

r = y 3 3βy

y

x

(c) (d)

Fig.8.2 Rootings in Example 2



Activities on Chapter VIII

VIII.5 Observations

O8.1 Observe that how many embeddings the complete graph

K4 of order 4 has. How many non-isomorphic maps are there among

them?.

O8.2 Consider the automorphism of the cube. Observe that

what happens to the automorphism of those obtained by deleting,

contracting, splitting and appending an edge on the cube.

O8.3 Consider the automorphism of the octahedron. Observe

that what happens to the automorphism of those obtained by deleting,

contracting, splitting and appending an edge on the octahedron.

O8.4 Consider the automorphism of the dodecahedron. Ob-

serve that what happens to the automorphism of those obtained by

deleting, contracting, splitting and appending an edge on the dodeca-

hedron.

O8.5 Consider the automorphism of the icosahedron. Observe

that what happens to the automorphism of those obtained by deleting,

contracting, splitting and appending an edge on the icosahedron.

O8.6 Observe the duality between O8.2 and O8.3 and between

O8.4 and O8.5.

O8.7 Consider how to justify is there an edge in a map so that

the order of the automorphism group of what is obtained by deleting

the edge on the map does not change.

O8.8 Consider how to justify is there an edge in a map so
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that the order of the automorphism group of what is obtained by

contracting the edge on the map does not change.

O8.9 Consider how to justify is there an edge in a map so that

the order of the automorphism group of what is obtained by splitting

the edge on the map does not change.

O8.10 Consider how to justify is there an edge in a map so that

the order of the automorphism group of what is obtained by appending

the edge on the map does not change.

O8.11 Provide a map whose automorphism group is the cyclic

group.

O8.12 List all maps of size 3 with their automorphisms of order

2.

VIII.6 Exercises

From the last two chapters, it is seen that the automorphism

of a map provides a foundation for justifying is the map isomorphic

to another. This is an pattern example for the automorphism of a

general combinatorial structure. For instance, a graph, a network, a

combinatorial design, a lattice, a group, a ring, a field etc.

E8.1 Observe whether, or not, an automorphism of a map in-

duces an automorphism of its under graph.

E8.2 Determine the automorphism group of the map (X ,P)

where

X =

k∑

i=1

(Kxi +Kyi)

and

P = (

k∏

i=1

〈xi, yi〉,
k∏

i=1

〈γxi, γyi〉)

for k ≥ 2.
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E8.3 Determine the automorphism group of the map (X ,P)

where

X =
k∑

i=1

Kxi

and

P = (x1, x2, · · · , xk, βxk, · · · , βx2, βx1)

for k ≥ 2.

A primal matching of a map is defined to be such a set of edges

that any pair of its edges have no common end. If a primal matching is

incident to all the vertices on the map, then it is said to be perfect . A

dual matching of a map is such a set of edges that any pair of its edges

have no incident face in common. If a dual matching is incident to all

the faces on the map, then it is said to be perfect as well. By no means

any map has a perfect primal matching. One having a prefect primal

matching is called a primal matching map. By no means any map has

a perfect dual matching either. One having a prefect dual matching is

called a dual matching map. A map which is both of primal matching

and of dual matching is said to be of bi-matching.

E8.4 Suppose M is a primal matching map and P , a perfect

primal matching of M . Let ni,j(P ) be the number of (i, j)-edges in P .

Prove that for any i, j, ni,j(P ) 6= 0,

aut(M) | 2(i+ j)ni,j(P ).

E8.5 Suppose M is a dual matching map and P ∗, a perfect dual

matching. Let n∗i,j(P
∗) be the number of (i, j)∗-edges in P ∗. Prove that

for any i, j, n∗i,j(P
∗) 6= 0,

aut(M) | 2(i+ j)n∗i,j(P
∗).

E8.6 Design an algorithm for justifying does a primal matching

map, a dual matching map, or a bi-matching map have an non-trivial

automorphism. Explain their efficiency. Provide a condition for the
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automorphism group of a primal matching map, a dual matching map,

or a bi-matching map with, respectively, a primal matching, a dual

matching, or a bi-matching rooted as the same as without rooting.

For a map M , if a set of its faces is pairwise without common

edge, then it is said to be independent. If an independent face set is

pairwise without common vertex, it is called a cavity . If a cavity is

spanning, i.e., all vertices of M are incident with the cavity, then it is

called a full cavity .

E8.7 Recognize if a vertex 3-regular(i.e., cubic) map has a full

cavity.

E8.8 For a vertex 3-regular map M with a full cavity H, let

hi(H) be the number of i∗-faces, i ≥ 1, in this cavity. Prove that for

any integer i ≥ 1, hi(H) > 0,

aut(M) | 6ihi(H).

E8.9 Recognize whether, or not, a map has a full cavity.

For a face f in a cavity H, its H-valency is the number of its

incident primal semi-edges except for those in the boundary.

E8.10 For a map M , let hi(H; j) be the number of j-faces of

H-valency i. Prove that

aut(M) | 2(i+ 2j)hi(H; j).

E8.11 For a given integer k, find the number of non-isomorphic

butterflies of relative genus k(k ≥ 0), or of barflies of relative genus

k(k < 0).

VIII.7 Researches

R8.1 Given 3 integers m ≥ 1, g and s ≥ 1, determine the
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number of primal matching maps of relative genus g with size m and

the order s of their automorphism groups.

R8.2 Given 3 integers m ≥ 1, g and s ≥ 1, determine the

number of dual matching maps of relative genus g with size m and the

order s of their automorphism groups.

R8.3 Given 3 integers m ≥ 1, g and s ≥ 1, determine the

number of bi-matching maps of relative genus g with size m and the

order s of their automorphism groups.

The first three problems should be considered for starting from

g = 0, 1, and then −1. Particularly, the three problems for self-dual

maps should be firstly studied before the general cases.

R8.4 Find the cubic maps of size m ≥ 7 with a given relative

genus and the maximum order of their automorphism groups

R8.5 Find the maps of size m ≥ 1 with a given relative genus

and the order 1 of their automorphism groups.

R8.6 Prove, or disprove, the conjecture that for a given relative

genus, almost all maps have their automorphism groups of order 1.

R8.7 Given three integers m ≥ 1, g and s ≥ 1, determine the

full cavity maps of size m with relative genus g and the order of their

automorphism groups s.

If a map has a set of edges inducing a Hamiltonian circuit on its

under graph, then it is called a primal H-map . If a map has e set of

edges inducing a Hamiltonian circuit on the under graph of its dual,

then it is called a dual H-map . If a map is both a primal H-map and

a dual H-map, then it is called a double H-map.

R8.8 Given three integers m ≥ 1, g and s ≥ 1, determine the

primal H-maps of size m with relative genus g and their automorphism

group of order s.

R8.9 Given three integers m ≥ 1, g and s ≥ 1, determine the
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dual H-maps of size m with relative genus g and their automorphism

group of order s.

R8.10 Given three integers m ≥ 1, g and s ≥ 1, determine the

double H-maps of size m with relative genus g and their automorphism

group of order s.



Chapter IX

Rooted Petal Bundles

• A petal bundle is a map which has only one vertex, or in other

words, each edge of self-loop.

• From decomposing the set of rooted orientable petal bundles, a lin-

ear differential equation satisfied by the enumerating function with

size as the parameter is discovered and then an explicit expression

of the function is extracted.

• A quadratic equation of the enumerating function for rooted petal

bundles on the surface of orientable genus 0 is discovered and then

an explicit expression is extracted.

• From decomposing the set of rooted nonorientable petal bundles,

a linear differential equation satisfied by the enumerating function

with size as the parameter is discovered in company with the ori-

entable case and then a favorable explicit expression of the function

is also extracted.

• The numbers of orientable, nonorientable and total petal bundles

with given size are, separately, obtained and then calculated for

size not greater than 10.

IX.1 Orientable petal bundles
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A single vertex map is also called a petal bundle, its under graph

is a bouquet. In this section, the orientable rooted petal bundles are

investigated for determining their enumerating function with size as a

parameter by a simple form.

Let D be the set of all non-isomorphic orientable rooted petal

bundles. For convenience, the trivial map ϑ is assumed to be in D.

Now, D is divided into two classes: DI and DII, i.e.,

D = DI +DII (9.1)

where (D)I = {ϑ} and DII, of course, consists of all petal bundles in

D other than ϑ.

Lemma 9.1 Let D〈II〉 = {D − a|∀D ∈ DII}. Then,

D〈II〉 = D. (9.2)

Proof For anyD = (X ,P) ∈ D〈II〉, there exists aD′ = (X ′,P ′) ∈
DII such thatD = D′−a′. BecauseD′ is orientable, group Ψ′ = Ψ{γ,P ′}
has two orbits

{r′}P ′ and {αr′}P ′

on X ′. Because γr′ ∈ {r′}P ′, D has also two orbits

{r}P = {r′}P ′ − {r′, γr′} and {αr}P = {αr′}P ′ − {αr′, βr′},

and hence D is orientable as well. From Theorem 3.4, petal bundle

D′ leads thatD is a petal bundle. This implies that D〈II〉 ⊆ D.

Conversely, for any D = (X ,P) ∈ D, P = (r,Pr, · · · ,P−1r),

D′ = (X +Kr′,P ′) where

P ′ = (r′, γr′, r,Pr, · · · ,P−1r).

Because D is orientable, group Ψ = Ψ{γ,P} has two orbits {r}Ψ and

{αr}Ψ on X . Thus, group Ψ′ = Ψ{γ,P ′} has two orbits

{r′}Ψ′ = {r}Ψ + {r′, γr′} and {αr′}Ψ′ = {αr}Ψ + {αr′, βr′}
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on X ′. This means that D′ is also orientable. Because D′ has only one

vertex, D′ ∈ D. And, from D′ 6= ϑ, it is only possible that D′ ∈ DII.

Therefore, in view of D = D′ − a′, D ⊆ D〈II〉. �

From the last part in the proof of this lemma, for anyD = (r)J ∈
D, D′ has 2m(D)+1 distinct choices such thatD′ = Di = D+ei ∈ DII,

0 ≤ i ≤ 2m(D), and hence D = D′ − a′ where ei = Kr′ and




D0 = (r′, γr′, r,J r, · · · ,J 2m(D)−1r), i = 0;

Di = (r′, r, · · · ,J i−1r, γr′,J ir, · · · ,J 2m(D)−1),

1 ≤ i ≤ 2m(D)− 1;

D2m(D) = (r′, r,J r, · · · ,J 2m(D)−1r, γr′), i = 2m(D),

for γ = αβ.

Lemma 9.2 Let H(D) = {Di|i = 0, 1, 2, · · · , 2m(D)} for D ∈
D. Then,

DII =
∑

D∈D
H(D). (9.3)

Proof Because of Lemma 9.1, it is easily seen that the set on

the left hand side of (9.3) is a subset of the set on the right.

Conversely, from H(D) ⊆ DII, for any D ∈ D, the set on the

right hand side of (9.3) is also a subset on the left. �

The importance of Lemma 9.2 is that (9.3) provides a 1–to–1

correspondence between the sets on its two sides. This is seen from

the fact that for any two non-isomorphic petal bundles D1 and D2,

H(D1) ∩H(D2) = ∅.
On the basis of Lemmas 9.1–2, the enumerating functions of sets

DI and DII can be evaluated as a function of D’s as

fD(x) =
∑

D∈D
xm(D) (9.4)

where m(D) is the size of D.

Because DI only consists of the trivial map ϑ and ϑ has no edge,

fDI
(x) = 1. (9.5)
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Lemma 9.3 For DII,

fDII
(x) = xfD + 2x2dfD

dx
. (9.6)

Proof From Lemma 9.2,

fDII(x) =
∑

D∈DII

xm(D)

= x

(
∑

D∈D
(2m(D) + 1)xm(D)

)

= x
∑

D∈D
xm(D) + 2x

∑

D∈D
m(D)xm(D)

= xfD + 2x2dfD
dx

where fD = fD(x). This is (9.6). �

Theorem 9.1 The differential equation about h
{

2x2dh

dx
= −1 + (1− x)h;

h0 = h|x=0 = 1
(9.7)

is well defined in the ring of infinite series with integral coefficients and

finite terms of negative exponents. And, the solution is h = fD(x).

Proof Suppose h = H0 + H1x + H2x
2 + · · · + Hmx

m + · · ·, for

Hi ∈ Z+, i ≥ 0. According to the first relation of (9.7), via equating

the coefficients of the terms with the same power of x on its two sides,

the recursion 



−1 +H0 = 0;

H1 −H0 = 0;

Hm = (2m− 1)Hm−1, m ≥ 2

(9.8)

is soon found. From this, H0 = 1(the initial condition!), H1 = 1, · · ·,
and hence all the coefficients of h can be determined. Because only

addition and multiplication are used in the evaluation, all Hm, m ≥ 1,

are integers from integrality of H0. This is the first statement.
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As for the last statement, from (9.1) and (9.5–6), it is seen that

h = fD(x) satisfies the first relation of (9.7). And from the initial

condition h0 = fD(0) = 1, we only have that h = fD(x) by the first

statement. �

In fact, from (9.8),

Hm =

m∏

i=1

(2i− 1) =
(2m)!

2mm!
,

where m ≥ 0.

Further, from Theorem 9.2,

fD(x) = 1 +
∑

m≥1

(2m− 1)!

2m−1(m− 1)!
xm. (9.9)

Example 9.1 From (9.9), there are 3 orientable rooted petal

bundles of size 2.

However, there are 2 orientable non-rooted petal bundles as shown

in (a) and (b) of Fig.9.1.

In (a), based on primal trail code(or dual trail code), only 1

rooted(r1 as the root) element. In (b), 2 rooted(r2 and r3 as the

roots) elements.

6 -?� 6 -?�r1 = x r2 = x

y

γx

γy

r3 = γx

y

γy

(a) (b)

Fig.9.1 Petal bundles of size 2
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IX.2 Planar pedal bundles

Petal bundles are here restricted to those of genus 0, i.e., planar

pedal bundle. Rooted is still considered. Because orientable petal

bundles can be partitioned into classes by genus as

D =
∑

k≥0

Dk (9.10)

where Dk is the set of rooted petal bundles with orientable genus k.

What is discussed in this section is D0. For convenience, the trivial

map ϑ is included in D0.

For this, D0 should be partitioned by the valency of root-face

into classes as

D0 =
∑

s≥0

Fs (9.11)

where Fs, s ≥ 0, is planar rooted petal bundles with the root-face of

valency s.

Lemma 9.4 Let S(the trivial map ϑ is included) and T (ϑ is

excluded) be two set of rooted maps. If for any S = (X ,P) ∈ S − ϑ,

there exist an integer k ≥ 1 and maps Si = (Xi,Pi) ∈ T , 1 ≤ i ≤ k,

such that

X =

k∑

i=1

Xi, (9.12)

and P is different from Pi, 1 ≤ i ≤ k, only at vertex

(r)P = (〈r1〉P1
, 〈r2〉P2

, · · · , 〈rk〉Pk
) (9.13)

where r = r1. Then,

fS(x) =
1

1− fT (x)
(9.14)

where fS(x) and fT (x) are the enumerating functions of, respectively,

S and T .

Proof First, S is classified based on k mentioned above, k ≥ 0,

i.e.,

S =
∑

k≥0

Sk.
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Naturally, S0 = {ϑ}. Then, because any Mk = (Yk,Qk) ∈ Sk, k ≥ 1,

has the form as shown in (9.12) and (9.13)(X and P are, respectively,

replaced by Yk and Qk), we have

fSk
(x) =

∑

Mk∈Sk

xm(Mk)

=
∑

(S1,S2,···,Sk)
Si∈T , 1≤i≤k

xm(S1)+m(S2)+···+m(Sk)

= (fT (x))
k
.

Therefore, by considering fS0
(x) = 1,

fS(x) =
∑

k≥0

fSk
(x)

= 1 +
∑

k≥1

(fT (x))
k

=
1

1− fT (x)
.

Notice that since x is an undeterminate, it can be considered for the

values satisfying |fT (x)| < 1. This lemma is proved. �

If S and T are, respectively, seen as D0 and F1, it can be checked

that the condition of Lemma 9.4 is satisfied, then

fD0
(x) =

1

1− fF1
(x)

. (9.15)

Further, another relation between fD0
(x) and fF1

(x) has to be

found.

Lemma 9.5 Let F〈1〉 = {D − a|∀D ∈ F1}. Then,

F〈1〉 = D0. (9.16)

Proof Because ϑ 6∈ F1, for any D ∈ F1, from the planarity of

D, D′ = D− a is planar and from D with a single vertex, D′ = D− a
is with a single vertex. Hence, D′ ∈ D0. This implies thatF〈1〉 ⊆ D0.
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Conversely, for any D′ = (X ′,P ′) ∈ D0, in view of a single vertex,

P ′ = (r′)P ′. Let

D = D′ + a = (X ′ +Kr,P)

where P = (r, 〈r′〉P ′, γr). Naturally, D is of single vertex. Because

D is obtained from D′ by appending an edge, from Corollary 4.2 and

Lemma 4.6, the planarity of D′ leads that D is planar. And, from

(r)Pγ = (r), D ∈ F1. Since D′ = D − a, D′ ∈ F〈1〉. This implies that

D0 ⊆ F〈1〉. �

Because this lemma provides a 1–to–1 correspondence between

F1 and D0, it is soon obtained that

fF1
(x) =

∑

D∈F1

xm(M)

= x
∑

D∈D0

xm(D)

= xfD0
(x).

(9.17)

In virtue of (9.17) and (9.15),

fD0(x) =
1

1− xfD0(x)
. (9.18)

Theorem 9.2 Let h(0) = fD0
(x) be the enumerating function

of planar rooted petal bundles with the size as the parameter, then

h(0) =
∑

m≥0

(2m)!

m!(m+ 1)!
. (9.19)

Proof From (9.18), it is seen that h(0) satisfies the quadratic

equation about h as

xh2 − h+ 1 = 0.

It can be checked that only one of its two solutions is in a power series

with all coefficients non-negative integers. That is

h(0) =
1−
√

1− 4x

2x
.
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By expanding
√

1− 4x into a power series, (9.19) is soon found via

rearrangement. �

From the quadratic equation, a non-linear recursion can be de-

rived for determining the coefficients of h. However, a linear recursion

can be extracted for getting a simple result. This is far from an uni-

versal way.

Example 9.2 From known by (9.19), the number of planar

rooted petal bundles of size 3 is 5. However, there are 2 planar non-

rooted petal bundles altogether, shown in (a) and (b) of Fig.9.2. In

(a), by primal trail codes(or dual trail codes), 3. Their roots are r1,

r2 and r3. In (b), 2. Their roots are r4 and r5.6 3j?+Y 6 3j?+Yr1 = x

r2 = γx

r3 = y

γy

z

γz

r4 = x

r5 = γx

y

γy

z

γz

(a) (b)

Fig.9.2 Planar petal bundles of size 3

IX.3 Nonorientable pedal bundles

The central task of this section is to determine the enumerat-

ing function of nonorientable rooted petal bundles with size as the

parameter.

Let U be the set of all nonorientable rooted petal bundles. Be-

cause the trivial map is orientable, ϑ is never in U . In other words,

any map in U does have at least one edge. Now, U is partitioned into
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two classes: UI = {M |∀M ∈ U ,M − a orientable} and

UII = {M |∀M ∈ U ,M − a nonorientable},
i.e.,

U = UI + UII. (9.20)

First, the decomposition of the two sets UI and UII should be

investigated.

Lemma 9.6 Let U〈I〉 = {M − a|∀M ∈ UI}. Then,

U〈I〉 = D (9.21)

where D is the set of all orientable rooted petal bundles given by (9.1).

Proof For M = (X ,P) ∈ U〈I〉, if M 6= ϑ, then M ′ = (X ′,P ′)
where X ′ = X +Kr′ and P ′ is different from P only at the vertex

(r′)P ′ = (r′, βr′, r,Pr,P2r, · · · ,P−1r)

such that M = M ′ − a′. From M ′ ∈MI, M ∈M. If M = ϑ, then

M ′ = (Kr′, (r′, βr′)) ∈ UI

such that M = M ′ − a′. Meanwhile, M ∈ D. Hence, U〈I〉 ⊆ D.

Conversely, for M = (X ,P) ∈ D, let M ′ = (X ′,P ′) such that

X ′ = X +Kr′. Because M has a single vertex,

P ′ = (r′)P ′ = (r′, βr′, r,Pr,P2r, · · · ,P−1r).

Therefore, M ′ has a single vertex as well. And, since r′, βr′ ∈ {r′}Ψ′,

M ′ ∈ U . By reminding that M = M ′ − a′ is orientable, M ′ ∈ UI.

Thus, M ∈ U〈I〉. This implies that D ⊆ U〈I〉. �

Lemma 9.7 For any D = (X ,F) ∈ D, r = r(D), let B(D) =

{Bi|0 ≤ i ≤ 2m(D)} where m(D) is the size of D, and

Bi(D) =





(r′, βr′, 〈r〉F), i = 0;

(r′, r, · · · , βr′,F ir, · · ·),
1 ≤ i ≤ 2m(D)− 1;

(r′, r, · · · ,F ir, · · · , βr′), i = 2m(D).

(9.22)
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Then,

UI =
∑

D∈D
B(D). (9.23)

Proof For any M = (Z,P) ∈ UI, because

D = M − a ∈ D,
M is only some Bi, 1 ≤ i ≤ 2m(D) in (9.22) such that Pr′ = r,

or P2r′ = r(Here, r′ and r are, respectively, the roots of M and D).

Therefore, M is also an element of the set on the right hand side of

(9.23).

Conversely, for an element M in the set on the right of (9.23),

from Lemma 9.6, M ∈ UI. This is to say that M is also an element of

the set on the left hand side of (9.23). �

Example 9.3 Let D = (Kx, (x, γx)) ∈ D. Then, D is of size

1�i.e., m(D) = 1.

Three rooted petal bundles B0(D), B1(D), and B2(D) ∈ UI are

produced from D and shown as, respectively in (a), (b), and (c) of

Fig.9.4 where r′ = y and r = x.

?� 6 - ?� 6 - ?� 6 -
x x x

y

y yβy

βy

βy

γx γx

γx

(a) (b) (c)

Fig.9.3 Nonorientable petal bundles from orientable ones

Lemma 9.8 Let U〈II〉 = {M − a|∀M ∈ UII}. Then,

U〈II〉 = U . (9.24)

Proof For M = (X ,P) ∈ U〈II〉, let M ′ ∈ UII such that M =

M ′−a′. Because M ′ is a nonorientable petal bundle and M ′ ∈ UII, M

is a nonorientable petal bundle as well, i.e., M ∈ U .
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Conversely, for anyM = (X ,P) ∈ U , there existsM ′ = (X ′,P ′) ∈
UII such that M = M ′ − a′, e.g., X ′ = X + Kr′, P ′ = (r′, γr′, 〈r〉P).
Therefore, M ∈ U〈II〉. �

Further, observe that for a mapM ∈ U , how many non-isomorphic

maps M ′ ∈ UIIare there such that M = M ′ − a′. Two cases should be

considered: (1) r′, γr′ and r are in the same orbit of P ′; (2) r′, βr′

and r are in the same orbit of P ′.
(1) Based on the rule of rooting, because γr′ only has 2m(M)+1

possible positions, i.e.,

γr′ = P ′r′,P ′r,P ′(Pr), · · · ,P ′(P2m(M)−1r),

then

Ii(M) =





(r′, γr′, 〈r〉P), i = 0;

(r′, r, · · · , γr′,P ir, · · ·),
1 ≤ i ≤ 2m(M)− 1;

(r′, 〈r〉P , γr′), i = 2m(M).

(9.25)

(2) Based on the rule of rooting, because βr′ also has 2m(M) +

1possible positions, i.e.,

βr′ = P ′r′,P ′r,P ′(Pr), · · · ,P ′(P2m(M)−1r),

then

Ji(M) =





(r′, βr′, 〈r〉P), i = 0;

(r′, r, · · · , βr′,P ir, · · ·),
1 ≤ i ≤ 2m(M)− 1;

(r′, 〈r〉P , βr′), i = 2m(M).

(9.26)

Example 9.4 Let M = (Kx, (x, βx)) ∈ U . The map M has

only one edge, i.e., m(M) = 1.

Six nonorientable petal bundles I0(M), I1(M), and I2(M), with

J0(M), J1(M), and J2(M) ∈ UII are produced for M and shown as,

respectively, in (a), (b), and (c), with (d), (e), and (f) of Fig.9.4 where

r′ = y and r = x.
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?� 6 - ?� 6 - ?� 6 -
x x x

βx βx

βxy

y yγy

γy

γy

(a) (b) (c)

?� 6 - ?� 6 - ?� 6 -
x x x

y

y yβy

βy

βy

βx βx

βx

(d) (e) (f)

Fig.9.4 Nonorientable petal bundles from nonorientable ones

Lemma 9.9 For any M ∈ U , let
{ I(M) = {Ii(M)|0 ≤ i ≤ 2m(M)};
J (M) = {Jj(M)|0 ≤ j ≤ 2m(M)}. (9.27)

Then,

UII =
∑

M∈U
(I(M) + J (M)). (9.28)

Proof For any M ′ = (X ′,P ′) ∈ UII, because M = M ′ − a′ ∈ U ,

M ′ is only some Ii, 0 ≤ i ≤ 2m(M) − 1 in (9.25), or some Jj, 0 ≤
j ≤ 2m(M)− 1 in (9.26) such that Pr′ = r, or P2r′ = r(Here, r′ and

r are, respectively, the roots of M ′ and M). Therefore, M is also an

element of the set on the right hand side of (9.28).

Conversely, for an element M in the set on the right of (9.28),

from Lemma 9.8, M ∈ UII. This is to say that M is also an element

of the set on the left hand side of (9.28). �

Lemma 9.10 Let S and T be two sets of maps. If for any

T ∈ T , there exists a set L(T ) ⊆ S such that
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(i) for any T ∈ T , |L(T )| = am(T ) + b and for S ∈ S, m(T ) =

m(S) − c, where a b and c are constants and m(T ) is an isomorphic

invariant, e.g., the size; and

(ii) S =
∑

T∈T
L(T ),

then

fS(x) = xc(bfT + ax
dfT
dx

). (9.29)

Proof Because L(T ) provides a mapping from a map in T to a

subset of S and the cardinality of the subset is only dependent on the

parameter of the enumerating function(by (i)), and (ii) means that

the mapping provides a partition on S, then

x−cfS(x) =
∑

T∈T
(am(T ) + b)xm(T )

= b
∑

T∈T
xm(T ) + ax

∑

T∈T
m(T )xm(T )−1

= bfT + ax
dfT
dx

.

This is (9.29) by multiplying xc to the two sides. �

Theorem 9.3 The enumerating function g = fU(x) of nonori-

entable rooted petal bundles in the set U with size as the parameter

satisfies the equation as




4x2dg

dx
= (1− 2x)g − x(h+ 2x

dh

dx
);

dg

dx
|x=0 = 1,

(9.30)

where h = fD(x) is the enumerating function of orientable rooted petal

bundles given by (9.9).

Proof Because (9.23) and (9.28) provides the mappings from

maps D ∈ D and U ∈ U to, respectively, a subset of UI with 2m(U)+1

elements and a subset of UII with 2(2m(U)+1) = 4m(U)+4 elements,



226 Chapter IX Rooted Petal Bundles

where D and U are 1 edge less than their images, from Lemma 9.10,

fUI
(x) = x(h+ 2x

dh

dx
) = xh+ 2x2dh

dx

and

fUII
(x) = x(2g + 4x

dg

dx
) = 2xg + 4x2dg

dx
.

By (9.20) again,

g = xh+ 2x2dh

dx
+ 2xg + 4x2dg

dx
.

Via rearrangement, (9.30) is soon obtained. �

IX.4 The number of pedal bundles

Because (9.9) provides the number of orientable rooted petal bun-

dles with size m, m ≥ 0, i.e.,

Hm =
(2m− 1)!

2m−1(m− 1)!
, (9.31)

for m ≥ 1. Of curse, H0 = 1.

Here, the number of nonorientable rooted petal bundles with size

m is evaluated only by the equation shown in (9.30). Let Gm be the

number of nonorientable rooted petal bundles with size m, m ≥ 1.

In fact, Gm, m ≥ 1, are determined by the recursion as
{
Gm = (4m− 2)Gm−1 +Hm, m ≥ 2;

G1 = 1.
(9.32)

The solution of the recursion (9.32) is obtained, i.e.,

Gm =
(2m− 1)!

2m−1(m− 1)!
+

m∏

i=2

(4i− 2)

+

m−1∑

i=2

(2i− 1)!

2i−1(i− 1)!

m∏

j=i+1

(4j − 2).

(9.33)



IX.4 The number of pedal bundles 227

Example 9.5 When m = 1, there are one orientable rooted

petal bundle of 1 edge, i.e., M = (Kx, (x, γx)) and one nonorientable

rooted petal bundle of 1 edge, i.e., N = (Kx, (x, βx)) ∈ U .

By appending an edge Ky on M , 3 non-isomorphic nonorientable

rooted petal bundles of 2 edges are produced and shown in (a–c) of

Fig.9.3.

By appending an edge Ky on N , 6 non-isomorphic nonorientable

rooted petal bundles of 2 edges are produced and shown in (a–f) of

Fig.9.4. Then, G2 = 9 which is in agreement with that provided by

(9.32), or (9.33).

Now, Hm, Gm, and H
(0)
m for m ≤ 10 are listed in Table 9.1.

m Hm Gm H
(0)
m

1 1 1 1
2 3 9 2
3 15 105 5
4 105 1575 14
5 945 29295 42
6 10395 654885 132
7 135135 17162145 429
8 2027025 516891375 1430
9 34459425 17608766175 4862

10 654729075 669787843725 16796

Table 9.1 Numbers of rooted petal bundles in 10 edges

Lemma 9.11 For an integerm ≥ 1, the number of non-isomorphic

nonorientable rooted petal bundles with size m is

Gm = (2m − 1)Hm (9.34)

where Hm is given by (9.31).

Proof By induction. When m = 1, from H1 = 1, G1 = 1. (9.34)

is true.

Assume Gk satisfies (9.34) for any 1 ≤ k ≤ m− 1, m ≥ 2. Then,
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from (9.32),

Gm = (4m− 2)Gm−1 +Hm

= (4m− 2)((2m−1 − 1)Hm−1) +Hm.

Since it can, from (9.31), be seen that

Hm = (2m− 1)Hm−1,

we have

Gm = (4m− 2)(2m−1 − 1)
Hm

2m− 1
+Hm

=

(
4m− 2

2m− 1
(2m−1 − 1) + 1

)
Hm

= (2(2m−1 − 1) + 1)Hm

= (2m − 1)Hm.

This is (9.34). �

Theorem 9.4 For an integer m ≥ 1, the number of non-

isomorphic rooted petal bundles with size m is

2m(2m− 1)!! (9.35)

where

(2m− 1)!! =
m∏

i=1

(2i− 1). (9.36)

Proof Because of (9.34), the number of non-isomorphic petal

bundles with m edges is

Hm +Gm = 2mHm. (9.37)

By substituting (9.31) into (9.37), we have

2mHm = 2m × (2m− 1)!

2m−1(m− 1)!

= 2× (2m− 1)!

(m− 1)!

= 2m(2m− 1)!!.
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This is (9.35). �

The theorem above reminds the number of embeddings of the

bouquet of size m

2m(2m− 1)!

derived from (1.10) as a special case. This is (m−1)! times the number

of rooted petal bundles with m edges.



Activities on Chapter IX

IX.5 Observations

A map with only one face is called a unisheet.

O9.1 Observe that there is a 1–to–1 correspondence between

the set of petal bundles and the set of unisheets.

O9.2 Think that what types of graphs can be as the under

graph of a unisheet and what type of graphs are not as the under

graph of a unisheet.

O9.3 Is any planar graph a under graph of a planar unisheet?

O9.4 Think about three ways to justify a map which is a planar

petal bundle.

O9.5 Discuss how to determine that a petal bundle is on the

projective plane.

O9.6 Discuss how to determine that a petal bundle is on the

torus.

O9.7 Discuss how to determine that a petal bundle is on the

Klein bottle.

O9.8 Discuss how to determine that a unisheet is on the plane.

O9.9 Discuss how to determine that a unisheet is on the pro-

jective plane.

O9.10 Discuss how to determine that a unisheet is on the torus.

O9.11 Discuss how to determine that a unisheet is on the Klein
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bottle.

IX.6 Exercises

E9.1 Show that for any graph G, there exists a unisheet U such

that G is the under graph of U .

E9.2 Prove that the number of rooted unisheet with size m is

(2m− 1)!! =

m∏

i=1

(2i− 1).

E9.3 Prove that a unisheet is planar if, and only if, its under

graph is a tree.

E9.4 For an integer m ≥ 1, determine the number of rooted

petal bundles of size m on the torus.

E9.5 For an integer m ≥ 1, determine the number of rooted

petal bundles of size m on the projective plane.

A graph is said to be unicyclic if it has only one cycle.

E9.6 Prove that a unisheet is on the projective plane if, and

only if, its under graph is unicyclic.

A graph is said to be eves-cyclic if it has two fundamental circuits

incident.

E9.7 Prove that a unisheet is on the torus if, and only if, its

under graph is eves-cyclic.

E9.8 For an integer m ≥ 1, determine the number of non-

isomor- phic rooted petal bundles with size m on the projective plane.

E9.9 For an integer m ≥ 1, determine the number of non-

isomor- phic rooted petal bundles with size m on the torus.

E9.10 For an integer m ≥ 1, determine the number of non-

isomorphic rooted petal bundles with size m on the Klein bottle.
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E9.11 For an integer m ≥ 1, determine the number of non-

isomorphic rooted unisheets with size m on the projective plane.

E9.12 For an integer m ≥ 1, determine the number of non-

isomorphic rooted unisheets with size m on the Klein bottle.

A map of order 3 is also called tri-pole map.

E9.13 For a given integer m ≥ 1, determine the number of all

non-isomorphic rooted tri-pole maps with size m in the plane.

IX.7 Researches

R9.1 For two integers m ≥ 1 and p ≥ 2, determine the number

of rooted petal bundles with size m on the surface of orientable genus

p.

R9.2 For two integers m ≥ 1 and q ≥ 3, determine the number

of rooted petal bundles with size m on the surface of nonorientable

genus q.

R9.3 For two integers m ≥ 1 and p ≥ 2, determine the number

of rooted unisheets with size m on the surface of orientable genus p.

R9.4 For two integers m ≥ 1 and q ≥ 3, determine the number

of rooted unisheets with size m on the surface of nonorientable genus

q.

A map of order 2 is also called bi-pole map.

R9.5 For a given integer m ≥ 1, determine the number of all

non-isomorphic orientable rooted bi-pole maps with size m

R9.6 For a given integer m ≥ 1, determine the number of all

non-isomorphic nonorientable rooted bi-pole maps with size m

R9.7 For two integers m ≥ 1 and p ≥ 0, determine the number

of all non-isomorphic orientable rooted bi-pole maps with size m of
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the surface of genus p.

R9.8 For two integers m ≥ 1 and q ≥ 1, determine the number

of all non-isomorphic nonorientable rooted bi-pole maps with size m

on the surface of genus q.

R9.9 For a given integer m ≥ 1, determine the number of all

non-isomorphic orientable rooted tri-pole maps with size m

R9.10 For a given integer m ≥ 1, determine the number of all

non-isomorphic nonorientable rooted tri-pole maps with size m

R9.11 For two integers m ≥ 1 and p ≥ 1, determine the num-

ber of all non-isomorphic orientable rooted tri-pole maps with size m

of the surface of genus p.

R9.12 For two integers m ≥ 1 and q ≥ 1, determine the num-

ber of all non-isomorphic nonorientable rooted tri-pole maps with size

m on the surface of genus q.

R9.13 For two integers n ≥ 5 and p ≥ s(n) where

s(n) = ⌈(n− 3)(n− 4)

12
⌉,

i.e., the least integer not less than the fractional (n− 3)(n− 4)/12(or

called the up-integer of the fractional), determine the number of rooted

maps whose under graph is the complete graph of order n with ori-

entable genus p.

R9.14 For two integers n ≥ 5 and p ≥ t(n) where

t(n) = ⌈(n− 3)(n− 4)

6
⌉,

determine the number of rooted maps whose under graph is the com-

plete graph of order n with nonorientable genus q.

R9.15 For two integers n ≥ 3 and p ≥ c(n) where

c(n) = (n− 4)2n−3 + 1,

determine the number of rooted maps whose under graph is the n-cube

with orientable genus p.
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R9.16 For two integers n ≥ 3 and q ≥ d(n) where

d(n) = (n− 4)2n−2 + 2,

determine the number of rooted maps whose under graph is the n-cube

with nonorientable genus q.

R9.17 For three integers m,n ≥ 3 and p ≥ r(n) where

r(n) = ⌈(m− 2)(n− 2)

4
⌉,

determine the number of rooted maps whose under graph is the com-

plete bipartite graph of order m+ n with orientable genus p.

R9.18 For three integers m,n ≥ 3 and q ≥ l(n) where

l(n) = ⌈(m− 2)(n− 2)

2
⌉,

determine the number of rooted maps whose under graph is the com-

plete bipartite graph of order m+ n with nonorientable genus q.



Chapter X

Asymmetrized Maps

• From decomposing the set of rooted orientable maps, a quadratic

differential equation satisfied by the enumerating function with

size as the parameter is discovered and then a recursion formula is

extracted for determining the function.

• A quadratic equation of the enumerating function in company with

its partial values for rooted maps on the surface of orientable genus

0 is discovered with an extra parameter and then an explicit ex-

pression of the function with only size as a parameter is via char-

acteristic parameters extracted for each term summation free.

• From decomposing the set of rooted nonorientable maps, a nonlin-

ear differential equation satisfied by the enumerating function with

size as the parameter is discovered in company with the orientable

case and then a recursion formula is extracted for determining the

function.

• The numbers of orientable, nonorientable and total maps with

given size are, in all, obtained and then calculated for size not

greater than 10.

X.1 Orientable equation

It is from Corollary 8.7 shown that a map with symmetry be-
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comes a map without symmetry whenever an element is chosen as the

root. Such a map with a root is called a rooted map.

Rooting is, in fact, a kind of simplification in mathematics, par-

ticularly in recognizing distinct combinatorial configurations for re-

ducing the complexity.

As soon as the rooted case is done, the general case can be re-

covered by considering the symmetry in a suitable way.

For maps, the estimation of the order of the automorphism group

of a map in the last chapter and the efficient algorithm for justifying

and recognizing if two maps are isomorphic in Chapter VII provide a

theoretical foundation for transforming rooted maps into non-rooted

maps. This will be seen in the next chapter.

The main purpose of this chapter is to present some methods for

investigating non-planar rooted maps as appendix to the monograph

Enumerative Theory of Maps[Liu7] in which most pages are for planar

maps, particularly rooted.

Let M be the set of all orientable rooted maps. For M =

(X ,P) ∈M, let

vx = (x)P = (x,Px, · · · ,P−1x) (10.1)

be the vertex incident with x ∈ X . The root is always denoted by r.

The rooted edge which is incident with r is denoted by a = Kr. The

rooting of M − a is taking Pδr as its root where

δ = min{i|P ir 6∈ Kr, i ≥ 1}. (10.2)

In fact,

δ =

{
1, if Pr 6= γr;

2, othewise.
(10.3)

In virtue of Theorem 3.4, M − a is a map if, and only if, a is not

a harmonic loop except terminal link (or segmentation edge) of M .

Now, let us partition M into three parts: MI, MII and MIII,

i.e.,

M =MI +MII +MIII (10.4)
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whereMI = {ϑ}, i.e., consisted of the trivial map,MII andMIII are,

respectively, consisted of those with a as a segmentation edge and not.

Lemma 10.1 LetM〈II〉 = {M − a|∀M ∈MII}. Then,

M〈II〉 =M×M (10.5)

where × stands for the Cartesian product of two sets.

Proof For any M = (X ,P) ∈ M ×M, let M = M1 + M2,

Mi = (Xi,Pi), i = 1, 2. Assume M ′ = (X ′,P ′) such that X ′ = X+Kr′

and P ′ is different from P2 or P1 only at, respectively,

vr′ = (r′)P ′ = (r′, r2,P2r2, · · · ,P−1
2 r2)

or

vβr′ = (βr′)P ′ = (αβr′, r1,P1r1, · · · ,P−1
1 r1).

Since M ′ ∈ M and its rooted edge a′ = Kr′ is a segmentation

edge, M ′ ∈ MII. It is checked that M = M ′ − a′. Therefore, M ∈
M〈II〉.

Conversely, for any M ∈ M〈II〉, we have M ′ ∈ MII such that

M = M ′ − a′ where a′ = Kr′. From M ′ ∈ MII, M = M1 +M2 where

M1,M2 ∈M. This implies that M ∈M×M. �

It is seen from this lemma that there is a 1–to–1 correspondence

between M(∈M〈II〉, orM×M) and M ′(∈MII). Hence,

|MII| = |M×M|. (10.6)

For M = (X ,P) ∈MIII, because M −a is a map (Theorem 3.4),

from (10.3), the root r(M − a) of M − a has two possibilities: when

Pr(M) 6= γr(M), r(M − a) = Pr(M); otherwise,

r(M − a) = P2r(M).

Let M̃ = (X̃ , P̃) = M−a where X̃ = X −Kr and P̃ are different

from P only at

(r̃)P̃ = (Pr,P2r, · · · ,P−1r),

(Pγr)P̃ = (Pγr,P2γr, · · · ,P−1γr)

}
if a is not a loop;
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otherwise, i.e., when a is a loop,

(r̃)P̃ =






(P2r,P3r, · · · ,P−1r), � γr = Pr;
(Pr, · · · ,Ps−1r,Ps+1r, · · · ,P−1r),

if γr = Psr, s ≥ 2.

Since M(X ,P) is orientable, group Ψ = Ψ{γ,P} has two orbits

{r}Ψ and {αr}Ψ on X . For M̃ = (X̃ , P̃) = M − a, group Ψ̃ = Ψ{γ,P̃}
also has two orbits

{r̃}Ψ̃ = {r}Ψ − {r, γr}
and

{αr̃}Ψ̃ = {αr}Ψ − {αr, βr}.
So, M̃ is also orientable.

Furthermore, for every element y ∈ {r̃}Ψ̃, is there exactly one

position of a = Kr, i.e., γr is in the angle 〈αy, P̃〉, for M ∈MIII such

that M̃ = M − a. This means that inMIII, there are

|{r̃}Ψ̃| =
1

2
|X̃ | = 2m(M̃),

where m(M̃) is the size of M̃ , non-isomorphic maps for producing M̃ .

By considering for the case Pr = γr, in MIII, there are 2m(M̃) + 1

non-isomorphic maps for M̃ altogether.

Example 10.1 Let

M̃ = (Kx+Ky +Kz, (x, y, γz)(z, γx, γy))

where r̃ = x is the root shown in Fig.10.1(a). Since it is orientable, the

orbit of group Ψ̃ which r̃ is in can be written as a cyclic permutation

as

(r̃)Ψ̃ = (x, y, γz, z, γx, γy).

Then, Fig.10.1(b–h) presents all the 2m(M̃)+1 = 2 × 3+1 = 7 maps

in MIII, obtained by appending a = Kr on map M̃ where (b) is for

Pr = γr and (c–h) are for those obtained by appending a = Kr in

the order of (r̃)Ψ̃ from M̃ .
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Fig.10.1 New maps obtained by appending an edge

Lemma 10.2 LetM〈III〉 = {M − a|∀M ∈MIII}. Then,

M〈III〉 =M. (10.7)

Proof Because for anyM ∈MIII, M−a is also a map (Theorem

3.4), thenM〈III〉 ⊆M.

Conversely, for any M ∈M, any one, e.g., M ′ of the 2m(M) +1

maps obtained by appending a′ from M in the above way is with

M ′ ∈MIII. Because M = M ′ − a′, then M ∈M〈III〉. �

For convenience, let H(M) be the set of all the 2m(M̃) +1 maps

in MIII, obtained from M by appending an edge in the above way.

From Theorem 8.1, they are all mutually nonisomorphic in the sense

of rooting.

Lemma 10.3 ForMIII,

MIII =
∑

M∈M
H(M). (10.8)

Proof For any M = (X ,P) ∈ MIII, let M̃ = (X̃ , P̃) = M − a.
Because a is not a segmentation edge, from Theorem 3.4 and Corollary

3.1, M̃ ∈ M. By orientability, because r ∈ {r̃}Ψ̃ where Ψ̃ = Ψ{γ,P̃},
there exists y ∈ {r̃}Ψ̃ such that Py = γr, or Pr = γr. Because

|{r̃}Ψ̃| = 2mM̃ , the former has 2m(M̃) possibilities and the latter,

only one. This is the 2m(M̃) + 1 possibilities in H(M̃). Further,
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because M̃ ∈M, M is an element of the set on the right hand side of

(10.8).

Conversely, for any M ∈ H(M̃), M̃ ∈ M, Since M̃ = M − a ∈
M, by Theorem 3.4 and Corollary 3.1�a is not a segmentation edge.

Therefore, M ∈MIII. �

Furthermore, (10.8) provides a 1–to–1 correspondence between

the sets on its two sides. This enables us to construct all orientable

maps with the rooted edge not a segmentation edge from general ori-

entable maps with smaller size.

In order to determine the number of non-isomorphic orientable

rooted maps in M with size m ≥ 0, the enumerating function of set

M
fM(x) =

∑

M∈M
xm(M) (10.9)

has to be investigated for a simpler form in infinite power series where

m(M) is the size of M . In the series form of (10.9), the coefficient

of the term with xm, m ≥ 0, is just the number of non-isomorphic

orientable rooted maps with size m.

From (10.4),

fM(x) = fMI
(x) + fMII

(x) + fMIII
(x). (10.10)

Lemmas above enable us to evaluate fMI
(x), fMII

(x) and fMIII
(x)

as functions of f = fM(x).

First, becauseMI contains only one map ϑ andm(ϑ) = 0, fMI
(x)

contributes the constant term 1 of f , i.e.,

fMI
(x) = 1. (10.11)

Lemma 10.4 ForMII,

fMII
(x) = xf 2. (10.12)

Proof According to the 1–to–1 correspondence between MII

andM〈II〉 and that the former is with its size 1 greater than the latter
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in the correspondence, by (10.6),

fMII
(x) = x

∑

M∈M〈II〉

xm(M)

= x
∑

M∈M×M
xm(M)

= x(
∑

M∈M
xm(M))

2

= xf 2.

This is (10.12). �

Lemma 10.5 ForMIII,

fMIII
(x) = xf + 2x2df

dx
. (10.13)

Proof From the 1–to–1 correspondence betweenMII andM〈II〉

and that the former is with its size 1 greater than the latter in the

correspondence, and then by Lemma 10.3 and Lemma 9.10,

fMIII
(x) = x

∑

M∈M〈III〉

xm(M)

= x(f + 2x
df

dx
)

= xf + 2x2df

dx
.

This is (10.13). �

Theorem 10.1 The differential equation about f
{

2x2df

dx
= −1 + (1− x)f − xf 2;

f0 = f |x=0 = 1
(10.14)

is well defined in the ring of infinite power series with all coefficients

nonnegative integers and the terms of negative powers finite. And,

the solution is f = fM(x).
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Proof Suppose f = F0 + F1x + F2x
2 + · · · + Fmx

m + · · ·, Fi ∈
Z+, i ≥ 0. Based on the first relation of (10.14), by equating the

coefficients on the two sits with the same power of x, the recursion




−1 + F0 = 0;

F1 − F0 − F 2
0 = 0;

Fm = (2m− 1)Fm−1 +
m−1∑

i=0

FiFm−1−i,

m ≥ 2

(10.15)

is soon extracted. Then, F0 = 1(the initial condition), F1 = 2, · · ·, all

the coefficients of f can uniquely found from this recursion. Because

only addition and multiplication are used for evaluating all the coef-

ficients from the initial condition that F0 is an integer, Fm, m ≥ 1,

must all be integers. This is the first statement.

For the last statement, from (10.10) and (10.11–13), it is seen

that f = fM(x) satisfies the first relation of (10.14). And, f0 =

fM(0) = 1 is just the initial condition. By the uniqueness in the first

statement, the only possibility is f = fM(x). �

Although the form of the equation in Theorem 10.1 is rather

simple, because of the occurrence of f 2, it is far from getting the

solution directly. In fact, it is an equation in the Riccati’s type. It has

no analytic solution in general.

X.2 Planar rooted maps

Let T be the set of all planar rooted maps. Because it looks hard

to decompose T into some classes so that each class can be produced

by T with only size as the parameter. Now, another parameter for

a map M , i.e., the valency of the rooted vertex n(M), is introduced.

The enumerating function of T is

t(x, y) = fT (x, y) =
∑

M∈T
xm(M)yn(M) (10.16)
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where m(M) is still the size of M .

Assume that T is partitioned into three classes: T0, T1 and T2,

i.e.,

T = T0 + T1 + T2 (10.17)

where T0 = {ϑ}, T1 and T1 are the sets of planar rooted maps with

the rooted edge, respective a loop and a link(not loop).

For M ∈ T , let a = Kr be the rooted edge of M with the root

r = r(M). For maps Mi ∈ T (i=1 and 2), let ai = Kri be the rooted

edge of Mi with the root ri = r(Mi).

The 1-addition of two maps M1 = (X1,P1) and M2 = (X2,P2)

is to produce the map M1 + · M2 = M1 ∪M2 with the root r = r1
provided M1 ∩M2 = {vr} where vr = (〈r1〉P1

, 〈r2〉P2
).

Lemma 10.6 Let T〈1〉 = {M − a|∀M ∈ T1}, then

T〈1〉 = T ×· T (10.18)

where T ×· T = {M1 +M2|∀M1,M2 ∈ T } is called the 1-product of T
with itself.

Proof For any M = (X ,P) ∈ T〈1〉, let M ′ = (X ′,P ′) ∈ T1 such

that M ′ − a′ = M . Because a′ = Kr′ is a loop,

(r′)P ′ = (r′,P ′r′, · · · , γr′, · · · ,P ′−1
r′).

From the planarity, M ′−a′ = M1+·M2, Mi = (Xi,Pi), i = 1, 2, where

X = X1 +X2 = X ′−Kr′, P1 and P2 are different from P only at (r)P
becoming, respectively,

(r1)P1
= (P ′r′,P(P ′r′), · · · ,P ′−1

γr′)

where γ = αβ and

(r2)P2
= (P ′γr′,P(P ′γr′), · · · ,P ′−1

r′).

This implies M ∈ T ×· T .

Conversely, for M ∈ T ×· T , because M = M1 + M2, let M ′ =
M + a′, a′ = Kr′, such that

(r′)P ′ = (r′, 〈r1〉P1
, γr′, 〈r2〉P2

),
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then M ′ ∈ T and M = M ′− a′. Since a′ is a loop, M ′ ∈ T1 and hence

M ∈ T〈1〉. �

Because this lemma presents a 1–to–1 correspondenceM = M1+

M2 between M ∈ T〈1〉 and M1,M2 ∈ T with m(M) = m(M1)+m(M2)

and n(M) = n(M1) + n(M2), the enumerating function of T〈1〉

fT〈1〉(x, y) =
∑

M∈T ×· T
xm(M)yn(M)

=
∑

M1,M2∈T
xm(M1)+m(M2)yn(M1)+n(M2)

= (
∑

M∈T
xm(M)yn(M))

2

= t2(x, y).

(10.19)

Then, from the 1–to–1 correspondence between T1 and T〈1〉 with

the former of size 1 greater than the latter and the former of the rooted

vertex valency 2 greater than the latter, the enumerating function of

T1 is

fT1(x, y) = xy2fT〈1〉(x, y) = xy2t2(x, y). (10.20)

However, for T2, the correspondence between T2 and T〈2〉 = {M •
a|∀M ∈ T2} with the former of size 1 greater than the latter is not of

1–to–1 where M • a is the contraction of the rooted edge a on map

M . The root on M • a is defined to be Pγr when Pγr 6= γr; or

(Pγ)2r otherwise. Because a is a link, this is a basic transformation.

According to Chapter V, M − a is planar if, and only if M is. Hence,

T〈2〉 = T . (10.21)

Further, observe what a correspondence between T2 and T is.

For M = (X ,P) ∈ T , let (r)P = (r,Pr, · · · ,Pn(M)−1r) where

n(M) is the valency of the rooted vertex vr on M . By splitting a link

at vr, all those obtained are still planar because this operation is a

basic transformation. For doing this, there are n(M) + 1 possibilities

altogether.
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Let Mi = (Xi,Pi), 0 ≤ i ≤ n(M) be all the n(M) + 1 maps

obtained from M by splitting an edge at the rooted vertex vr = (r)P
as

vri
=






(r0, 〈r〉P), while vβr0
= (γr0);

(r1,Pr, · · · ,Pn(M)−1r),while vβr1
= (γr1, r);

(r2,P2r, · · · ,Pn(M)−1r),while vβr2
= (γr2, r,Pr);

· · · · · ·
(rn(M)−1,Pn(M)−1r),

while vβrn(M)−1
= (γrn(M)−1, r, · · · ,Pn(M)−2r);

(rn(M)),while vβrn(M)
= (γrn(M), 〈r〉P).

(10.22)

Lemma 10.7 For a map M ∈ T , let

K(M) = {Mi|i = 0, 1, 2, · · · , n(M)}

where Mi, 0 ≤ i ≤ n(M), are given by (10.22). Then,

T2 =
∑

M∈T
K(M). (10.23)

Proof For any M ∈ T2, because a = Kr is a link, from (10.21),

M • a ∈ T and from (10.22), M ∈ K(M • a). Therefore M is an

element of the set on the right hand side of (10.23).

Conversely, for M is an element of the set on the right of (10.23),

there exists a map M ′ ∈ T such that M ∈ K(M ′). Because all maps

in K(M) are planar if, and only if, M ′ is planar, M ∈ T as well.

Moreover, from (10.22), the rooted edge a is a link, M ∈ T2. This

meas that M an element of the set on the left hand side of (10.23).�

Because (10.23) presents a 1–to–1 correspondence between maps

with the same size on its two sides and the valency of rooted vertex

of Mi(0 ≤ i ≤ n(M)) is n(M) − i for any M ∈ T , the enumerating
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function of T2 is

fT2(x, y) =
∑

M∈T2
xm(M)yn(M)

= xy
∑

M∈T
(

n(M)∑

i=0

yi)xm(M)

= xy
∑

M∈T

1− yn(M)+1

1− y xm(M)

=
xy

1− y (t0 − yt)

(10.24)

where t = t(x, y) and t0 = t(x, 1).

Theorem 10.2 The enumerating function t = t(x, y) of planar

rooted maps satisfies the equation as

xy2(1− y)t2 − (1− y + xy2)t+ xyt0 + (1− y) = 0 (10.25)

where t0 = t(x, 1).

Proof From (10.17),

t = fT0(x, y) + fT1(x, y) + fT2(x, y).

Because T0 = {ϑ} and ϑ has no edge, fT0(x, y) = 1. From (10.20) an

(10.24),

t = 1 + xy2t2 +
xy

1− y (t0 − yt).

Via rearrangement of terms, (10.25) is soon found. �

Although (10.25) is a quadratic equation, because the occurrence

of t0 which is also unknown and the equation becomes an identity when

y = 1, complication occurs in solving the equation directly.

The discriminant of the equation (10.25), denoted by D(x, y), is

D(x, y) = (xy2 − y + 1)2 − 4(y − 1)xy2(y − 1− xyt0)

= 1− 2y + (1− 2x)y2 + (x2 + 2x
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−H(x))y3 +H(x)y4 (10.26)

where

H(x) = 4x2t0 + x2 − 4x. (10.27)

Assume that D(x, y) has the form as

D(x, y) = (1− θy)2(1 + ay + by2)

= 1− (2θ − a)y + (θ2 − 2aθ + b)y2

+θ(aθ − 2b)y3 + θ2by4. (10.28)

By comparing with (10.26),

θ = 1 +
a

2
, (10.29)

and 



1− 2x = θ(4− 3θ) + b;

x2 + 2x−H(x) = θ(2(θ − 1)θ − 2b);

H(x) = θ2b.

(10.30)

Then, an equation about b with θ as the parameter is found as

1

4
(1− 4θ + 3θ2 − b)2

+ 1− 4θ + 3θ2 − b− θ2b

= 2(θ − 1)θ2 − 2θb.

By rearrangement, it becomes

b2 − (10θ2 − 16θ + 6)b+ (9θ4 − 32θ3

+42θ2 − 24θ + 5) = 0. (10.31)

The discriminant of (10.31) is

(10θ2 − 16θ + 6)2 − 4(9θ4 − 32θ3 + 42θ2 − 24θ + 5)

= 64θ4 − 192θ3 + 208θ2 − 96θ + 16

= (8θ2 − 12θ + 4)2.

Therefore,

b = (θ − 1)2, or 9θ2 − 14θ + 5 = (9θ − 5)(θ − 1).
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The latter has to be chosen in our case. By the last relation of

(10.30),

H(x) = θ2(9θ − 5)(θ − 1).

From the first relation of (10.30) and (10.27), the expressions for

x and b0 with parameter θ are extracted as




x = (3θ − 2)(1− θ);
b0 =

4θ − 3

(3θ − 2)2
.

(10.32)

This enables us to get b0 as a power series of x as

b0(x) =
∑

m≥0

2× 3m(2m)!

m!(m+ 2)!
xm. (10.33)

by eliminating the parameter θ via Lagrangian inversion. More about

this method can be seen in the monograph[Liu8].

Example 10.2 For m = 2, it is known from (10.33) that the

number of non-isomorphic planar rooted maps is the coefficient of x2.

That is 9.

Because there are 4 non-isomorphic planar maps of size 2 as

shown in Fig.10.2. The arrows on the same map represent the roots

of non-isomorphic rooted ones. Such as there are, respectively, 2, 2, 1

and 4 non-isomorphic rooted maps in (a), (b), (c) and (d) of Fig.10.2

to get 9 altogether.

 U 6? K K M?6
(a) (b) (c) (d)

Fig.10.2 Planar rooted maps of two edges
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X.3 Nonorientable equation

Let Nm be the set of nonorientable rooted maps of size m. Of

course, m ≥ 1. And, let Nm be partitioned into N (I)
m and N (II)

m , i.e.,

Nm = N (I)
m +N (II)

m (10.34)

where N (I)
m = {N |N ∈ Nm, N − a orientable} and

N (II)
m = Nm −N (I)

m = {N |N ∈ Nm, N − a nonorientable},
a = er(N) is still the rooted edge.

Lemma 10.8 Let N 〈I〉m = {N − a|∀N ∈ N (I)
m }, then

N 〈I〉m =Mm−1 (10.35)

whereMm−1 is the set of orientable rooted maps of size m−1, m ≥ 1.

Proof Because of the nonorientability of N ∈ N (I)
m and the ori-

entability of N − a, from Corollary 3.1, a is not a segmentation edge.

Based on Theorem 3.4, N − a is always an orientable map. So, for

any N ∈ N 〈I〉m , N ∈Mm−1, m ≥ 1. This implies N 〈I〉m ⊆Mm−1.

Conversely, for any N = (X ,P) ∈Mm−1, by appending an edge

a′ on N , N ′ = (X ′,P ′) is obtained where X ′ = X + Kr′ and P ′ is

different from P only at the vertex

(r′)P ′ = (r′, βr′, 〈r〉P).
Since Kr′ is not a segmentation edge, from Theorem 3.7, N ′ is a

map. And since βr′ ∈ {r′}Ψ′,Ψ′ = Ψ{P ′,γ}, from Theorem 4.1, N ′

is nonorientable. Further, because N = N ′ − a′ is orientable and

m(N) + 1 = m(N ′) = m, N ∈ N 〈I〉m . This impliesMm−1 ⊆ N 〈I〉m . �

For any M = (X ,P) ∈Mm, since M is orientable, assume

{r}Ψ = {r, ψ1r, · · · , ψ2m−1r},
ψi ∈ Ψ = Ψ{γ,P}, i = 1, 2, · · · , 2m(M) − 1 = 2m − 1. By appending

the edge r′,

A(M) = {A0(M), A1(M), · · · , A2m(M)}
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is obtained where Ai(M) = M+eri
= (Xi,Pi) such that Xi = X +Kri

and Pi is determined in the following manner:




βr0 in the angle 〈αP−1r, r〉
βri(i = 1, 2, · · · , 2m(M)− 1) in the angle 〈αP−1ψir, ψir〉,
βr2m(M) in the angle 〈r, αP−1r〉.

Because βri ∈ {ri}Ψi
where Ψi = Ψ{γ,Pi}, i = 0, 1, · · · , 2m(M),

from Theorem 4.1, Ai are all nonorientable. Because Ai(M) − eri
∈

Mm, Ai(M) ∈ N (I)
m+1, 0 ≤ i ≤ 2m(M). From Lemma 10.8,

N (I)
m+1 =

∑

M∈Mm

A(M) (10.36)

m ≥ 0. Of course,M0 consists of only the trivial map.

For N (II)
m , two cases should be considered: N (N)

m and N (T)
m , i.e.,

N (II)
m = N (N)

m +N (T)
m (10.37)

where
N (N)

m = {N |∀N ∈ N (II)
m , a = er is a terminal,

or segmentation edge}
and

N (T)
m = {N |∀N ∈ N (II)

m , a is neither terminal

nor segmentation edge}.
Of course, N (T)

m = N (II)
m −N (N)

m .

Lemma 10.9 Let N 〈N〉m = {N − a|∀N ∈ N (N)
m }. Then,

N 〈N〉m =
∑

n1+n2=m−1
n1,n2≥0

Mn1
×Nn2

+
∑

n1+n2=m−1
n1,n2≥0

Nn1
×Mn2

+
∑

n1+n2=m−1
n1,n2≥0

Nn1
×Nn2

(10.38)

where × represents the Cartesian product of sets.

Proof Easy to see except for noticing that N−a has a transitive

block which is the trivial map when a is a terminal edge. �
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Lemma 10.10 Let N 〈T〉m = {N − a|∀N ∈ N (T)
m }. Then,

N 〈T〉m = Nm−1 (10.39)

where m ≥ 2.

Proof Because a = er is neither terminal nor segmentation edge,

from Theorem 3.4, N ∈ N 〈T〉m . By the nonorientability and the size

m− 1, N ∈ Nm−1, i.e.,

N 〈T〉m ⊆ Nm−1.

On the other hand, for any N = (X ,P) ∈ Nm−1, we have N ′ =
(X ′,P ′) such that X ′ = X + Kr′ and P ′ is different from P only

at the vertex (r′)P ′ = (r′, γr′, 〈r〉P). Since N is nonorientable and

a′ = Kr′ is neither terminal nor segmentation edge, N ′ ∈ N (T)
m . Thus,

N = N ′ − a′ ∈ N 〈T〉m . This implies

Nm−1 ⊆ N 〈T〉m .

In consequence, the lemma is proved. �

One attention should be paid to is that whenm = 1, there is only

one nonorientable map (Kr, (r, βr)), and (Kr, (r, βr)) ∈ N (I). Thus,

(10.39) is meaningful only for m ≥ 2.

On the basis of this lemma, it is necessary to see how many

N ′ ∈ N (T)
m+1 can be produced from one N ∈ Nm such that N = N ′−a′.

Because N is nonorientable, let I = {r, ψ1r, ψ2r, · · · , ψ2m−1r} be

consists of half the elements in {r}Ψ = X , Ψ = Ψ{γ,P}, such that for

any x ∈ I, Kx ∩ I = {x, γx}. Two cases are now considered.

Case 1 For any N = (X ,P) ∈ Nm, let

B(N) = {B0(N), B1(N), B2(N), · · · , B2m(N)}

where Bj(N) = (Xj,Pj) = N + erj
, j = 0, 1, 2, · · · , 2m, have





βr0 in the angle 〈αP−1r, r〉,
βrj(j = 1, 2, · · · , 2m− 1) in the angle 〈αP−1ψjr, jr〉,
βr2m in the angle 〈r, αP−1r〉.
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Case 2 For any N = (X ,P) ∈ Nm, let

C(N) = {C0(N), C1(N), C2(N), · · · , C2m(N)}

where Cj(N) = (Yj,Qj) = N + erj
, j = 0, 1, 2, · · · , 2m, have






γr0 in the angle 〈αP−1r, r〉,
γrj(j = 1, 2, · · · , 2m− 1) in the angle 〈αP−1ψjr, jr〉,
γr2m in the angle 〈r, αP−1r〉.

On the basis of Lemma 10.10, from the conjugate axiom,

N (T)
m+1 =

∑

N∈Nm

(B(N) + C(N)) (10.40)

for m ≥ 1.

Because N = N1 +N2 + · · ·, the enumerating function

fN (x) =
∑

m≥1

(
∑

N∈Nm

1)xm = fN (I)(x) + fN (II)(x)

= fN (I)(x) + fN (N)(x) + fN (T)(x).

(10.41)

Lemma 10.11 For N (I) = N (I)
1 +N (I)

2 + · · ·,

fN (I)(x) = xfM + 2x2dfM
dx

(10.42)

where fM = fM(x) is the enumerating function of orientable rooted

maps determined by equation (10.14).

Proof On the basis of (10.35–36), from Lemma 9.10, the lemma

is obtained . �

Lemma 10.12 For N (N) = N (N)
1 +N (N)

2 + · · ·,

fN (N)(x) = 2xfMfN + xf 2
N (10.43)

where fM = fM(x) as in (10.10) and fN = fN (x) as in (10.41).

Proof A direct result of Lemma 10.9. �
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Lemma 10.13 For N (T) = N (T)
1 +N (T)

2 + · · ·,

fN (T)(x) = 2xfN + 4x2dfN
dx

. (10.44)

Proof On the basis of Lemma 10.10 with its extension (10.40),

from Lemma 10.11, (10.44) is soon obtained. �

Theorem 10.3 The following equation aboutf




4x2df

dx
= a(x)f − xf 2 − 2xb(x);

df

dx

∣∣∣
x=0

= 1

(10.45)

where {
a(x) = 1− 2x− 2xfM;

b(x) = fM − 2x
dfM
dx

is well defined in the ring of power series with all coefficients non-

negative integers and negative powers finite. And, the solution is

f = fN (x).

Proof Let f = N1x +N2x
2 +N3x

3 + · · ·, then from (10.45) all

the coefficients can be determined by the recursion





Nm = (4m− 2)Nm−1 + (2m− 1)Fm−1

+2

m−1∑

i=1

NiFm−1−i +

m−2∑

i=1

NiNm−1−i,

m ≥ 2;

N1 = 1,

(10.46)

where Fm, m ≥ 0, are known in (10.15). Because all Nm, m ≥ 1,

determined by (10.46) are positive integers, the former statement is

true. The latter is directly deduced from (10.41–44). �
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X.4 Gross equation

LetRm be the set of general(orientable and nonorientable) rooted

maps with size m, m ≥ 0. Of course, R0 consists of only the trivial

map.

For m ≥ 1, Rm is partitioned into two subsets R(N)
m and R(T)

m ,

i.e.,

Rm = R(N)
m +R(T)

m (10.47)

where
R(N)

m = {R|∀R ∈ Rm, er(R) is a terminal link

or segmentation edge}
and

R(T)
m = {R|∀R ∈ Rm, er(R) is neither terminal

nor segmentation edge}.

Of course, R(T)
m = Rm −R(N)

m .

Lemma 10.14 Let R〈N〉m = {R − a|∀R ∈ R(N)
m }, then

R〈N〉m =
∑

n1+n2=m−1
n1,n2≥0

Rn1
×Rn1

, (10.48)

m ≥ 1.

Proof For any R ∈ R(N)
M , because a = er(R) is a terminal link

or a segmentation edge, R − a has two transitive block (when a is a

terminal link, the trivial map is seen as a transitive block in its own

right), R− a = R1 +R2 and R1 ∈ Rn1
, R2 ∈ Rn2

. In other words, the

set on the left hand side of (10.48) is a subset of the set of its right.

Conversely, for any R1 = (X1,P1) ∈ Rn1
and R2 = (X2,P2) ∈

Rn2
, by appending a = er, R = (X ,P) is obtained where X = X1 +

X2 +Kr and P is different from P1 and P2 only at the vertices (r)P =

(r, 〈r1〉P1
) and (γr)P = (γr, 〈r2〉P2

). It is easily checked that R ∈ Rm,

m = n1 + n2 + 1. In other words, the set on the right hand side of

(10.48) is a subset of the set on the left. �
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Since R = R0 +R1 +R2 + · · ·, the enumerating function

fR(x) =
∑

m≥0

(
∑

R∈Rm

1)xm

= fR0
(x) + fR(N)(x) + fR(T)(x),

(10.49)

where R(N) = R(N)
1 +R(N)

2 + · · · and R(T) = R(T)
1 +R(T)

2 + · · ·.
First, because R0 consists of only the trivial map,

fR0
(x) = 1. (10.50)

Then, from Lemma 10.14,

fR(N)(x) = xf 2
R, (10.51)

where fR = fR(x).

In order to evaluate fR(T)(x), R(T) has to be decomposed.

Lemma 10.15 Let R〈T〉m = {R − a|∀R ∈ R(T)
m }, then

R〈T〉m = Rm−1, (10.52)

where m ≥ 1.

Proof For any R′ ∈ R(T)
m , because a′ = er′ is neither terminal

link nor segmentation edge, from Theorem 3.4, R = R′ − a′ ∈ Rm−1.

This implies

R〈T〉m ⊆ Rm−1.

Conversely, for any R = (X ,P) ∈ Rm−1, by appending the edge

a′ = Kr′, R′ = (X ′,P ′) is obtained where X ′ = X +Kr′ and P ′ is dif-

ferent from P only at the vertex (r′)P ′ = (r′, γr′, 〈r〉P). From Theorem

3.7, R′ ∈ Rm. Because a′ is neither terminal link nor segmentation

edge and R = R′ − a′, R ∈ R〈T〉m . This implies

Rm−1 ⊆ R〈T〉m .

The lemma is proved. �

Based on this, what should be further considered for is how many

R′ ∈ R(T)
m+1 can be produced from one R ∈ Rm such that R = R′− a′.
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Because R is a map(orientable, or nonorientable), let

I = {r, ψ1r, ψ2r, · · · , ψ2m−1r}

be the set of elements in correspondence with a primal trail code, or

dual trail code. For any x ∈ I, Kx∩ I = {x, γx} has two possibilities

as cases.

Case 1 For any R = (X ,P) ∈ Rm, let

D(R) = {D0(R), D1(R), D2(R), · · · , D2m(R)}

where Dj(R) = (Xj,Pj) = R+ erj , j = 0, 1, 2, · · · , 2m, have





βr0 in the angle 〈αP−1r, r〉,
βrj(j = 1, 2, · · · , 2m− 1) in the angle 〈αP−1ψjr, jr〉,
βr2m in the angle 〈r, αP−1r〉.

Cases 2 For any R = (X ,P) ∈ Rm, let

E(R) = {E0(R), E1(R), E2(R), · · · , E2m(R)}

where Ej(R) = (Yj,Qj) = R + erj
, j = 0, 1, 2, · · · , 2m, have





γr0 in the angle 〈αP−1r, r〉,
γrj(j = 1, 2, · · · , 2m− 1) in the angle 〈αP−1ψjr, jr〉,
γr2m in the angle 〈r, αP−1r〉.

Based on Lemma 10.15, from the conjugate axiom,

R(T)
m+1 =

∑

R∈Rm

(D(R) +E(R)) (10.53)

for m ≥ 1.

Because R(T) = R(T)
1 + R(T)

2 + · · ·, from Lemma 10.15 with its

extension (10.53) and Lemma 9.10, the enumerating function

fR(T)(x) = 2xfR + 4x2dfR
dx

(10.54)
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Theorem 10.4 The equation about f
{

4x2df

dx
= −1 + (1− 2x)f − xf 2;

f0 = f(0) = 1
(10.55)

is well defined in the ring of power series with coefficients all nonneg-

ative integers and terms of negative power finite. And, the solution is

f = fR(x).

Proof In virtue of the initial condition of equation (10.55), as-

sume f = R0 + R1x + R2x
2 + · · ·. Of course, R0 = f0 = 1. Further,

from equation (10.55), the recursion




Rm = (4m− 2)Rm−1 +

m−1∑

i=0

RiRm−1−i,

m ≥ 1;

R0 = 1

(10.56)

is soon found for determine all the coefficients Rm, m ≥ 0. It is easily

checked that all of them are positive integers and hence the former

statement is true.

The latter is a direct result of (10.50–51) and (10.53). �

X.5 The number of rooted maps

First, let σm = (F0, F1, · · · , Fm), m ≥ 0, be the m+1 dimensional

vector where Fm, m ≥ 0, are the number of non-isomorphic orientable

rooted maps with size m. And, σR
M = (Fm, Fm−1, · · · , F0) called the

reversed vector of the vector σm. Easy to check that

σTR
m = ((σm)T)R = ((σm)R)T = σRT

m (10.57)

where T the transposition of a matrix.

The recursion (10.15) for determining Fm, m ≥ 0, becomes




Fm = (2m− 1)Fm−1 + σm−1σ
TR
m−1,

m ≥ 1;

F0 = 1.

(10.58)
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By (10.58), the number of non-isomorphic orientable rooted maps

with size m, m ≥ 1, can be calculated. In the first column of Table

10.1, Fm, m ≤ 10, are listed.

Then, let δm = (N1, N2, · · · , N1) where Nm is the number of non-

isomorphic nonorientable rooted maps with size m for m ≥ 1.

The recursion (10.46) for determining Nm, m ≥ 1, becomes






Nm = (4m− 2)Nm−1 + (2m− 1)Fm−1

+2δm−1σ
TR
m−2 + δm−2δ

TR
m−2,

m ≥ 2;

N1 = 1

(10.59)

where σm−2 is given in (10.58).

By (10.59), the number Nm can be calculated for m ≥ 1. In the

second column of Table 10.1, Nm, m ≤ 10, are listed.

Finally, let ρm = (R0, R1, · · · , Rm) where Rm is the number of

non-isomorphic general maps with size m for m ≥ 0.

The recursion (10.56) becomes





Rm = (4m− 2)Rm−1 + ρm−1ρ
TR
m−1,

m ≥ 1;

R0 = 1.

(10.60)

By (10.60), the number Rm can be calculated for m ≥ 0. In the

third column of Table 10.1, Rm, m ≤ 10, are listed.

From those numbers in Table 10.1, it is also checked that the

enumerating functions fM(x), fN (x) and fR(x) of, respectively, non-

isomorphic orientable, nonorientable and general(orientable and nonori-

entable) rooted maps with size as the parameter satisfy the relation

as

fR(x) = fM(x) + fN (x). (10.61)



260 Chapter X Asymmetrized Maps

m Fm Nm Rm

0 1 0 1
1 2 1 3
2 10 14 24
3 74 223 297
4 706 4190 4896
5 8162 92116 100278
6 110410 2339894 2450304
7 1708394 67825003 69533397
8 29752066 2217740030 2247492096
9 576037442 80952028936 81528066378

10 12277827850 3268104785654 3280382613504

Table 10.1 Numbers of rooted maps with size less than 11



Activities on Chapter X

X.6 Observations

O10.1 Because a surface can be seen as a polygon with even

edges pairwise identified in the plane, think that whether, or not, a

map on a surface rather than plane can always represented by a planar

one. If it can, explain the reason, or provide an example otherwise.

O10.2 For a rooted map M , let m(M) and l(M) be, respec-

tively, the size and the valency of root-face in M , observe the numbers

of non-isomorphic planar rooted maps for m(M), l(M) ≤ 3.

Similarly, do the same with the valency of root-vertex s(M) in-

stead of l(M).

A map with all its faces of 3-valent except for the root-face is

called a near triangulation.

O10.3 For a near triangulation T , letm(T ) and l(T ) be, respec-

tively, the size and the root-face valency of T . Observe the numbers

of non-isomorphic planar rooted near triangulations for m, l ≤ 4.

Similarly, do the same with the valency of root-vertex s instead

of l.

A map with all its faces of valency 4 except for the root-face is

called a near quadrangulation.

O10.4 For a near triangulation Q, let m(Q) and l(Q) be,

respectively, the size and the root-face valency of TQ. Observe the

numbers of non-isomorphic planar rooted near quadrangulation for m,

l ≤ 5.
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Similarly, do the same with the valency of root-vertex s instead

of l.

A planar map from which the result of deleting all the edges on

a face is a tree is called a Halin map. The face is said to be specific.

O10.5 Evaluate the number of non-isomorphic rooted Halin

maps with the root on the specific face by the parameters: the size m

and the valency l of the specific face for m ≥ 6 and l ≥ 3.

O10.6 Try, by edge contraction, to determine the enumerating

function of general rooted maps with the size as the parameter.

O10.7 Try, by edge contraction, to determine the enumerating

function of rooted petal bundles with the size an the root-face valency

as the two parameters.

O10.8 Try, by directly solving the equation (9.7), to determine

the enumerating function of orientable rooted petal bundles h.

O10.9 Try, by directly solving the equation (9.30), to deter-

mine the enumerating function of nonorientable rooted petal bundles

g.

O10.10 Observe the numbers of general Eulerian rooted maps

with the size smaller.

X.7 Exercises

For a map, if the result of deleting all inner vertices(not articulate

vertex, i.e., a vertex of valency 1, or a terminal) of a spanning tree is,

itself, a travel with only one vertex of valency probably greater than

2, then it is called a pan-Halin map. Because this travel is still a map

and becomes a petal bundle via decreasing subdivision, such a petal

bundle is called the base map of the pan-Halin map.

A pan-Halin map of which the base map is of size 2p and ori-

entable genus p ≥ 0, or of size q and nonorientable genus q ≥ 1, is

said to be pre-standard . If a pre-standard pan-Halin map has its base
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map with each edge incident with at least one terminal of the tree,

then it is said to be standard.

Let HpsH be the set of all pre-standard pan-Halin rooted maps.

The root rH for H ∈ HpsH is chosen be an element incident with the

vertex and the face of the base map of H.

For any H = (X ,P) ∈ HpsH, the tree T on H is seen as a

planted tree(a plane tree with the root-vertex of valency 1) with its

root rT = P(Pγ)trH where

t = min{s|(Pγ)srH incident with a terminal of T}.

E10.1 Given the partition of vertices according to their va-

lencies on a planted tree j = (j1, j2, · · · , ), i.e., ji, i ≥ 1, is the

number of unrooted vertices of valency i, prove that the number of

non-isomorphic planted trees with the partition is

(n− 1)!

j!

where

n = 1 +
∑

i≥1

ji,

i.e., the order, and j! =
∏

i≥1 ji!.

E10.2 Given the vertex partition s = (s2, s3, · · ·), prove that

the number of non-isomorphic pre-standard pan-Halin rooted maps

with the partition and their base maps of size m on a surface of ori-

entable genus p is

2m

(
m+ 2p− 1

2p− 1

)(
s3

m

)
n!m

s!

where

n+ 2 =
∑

i≥2

si, and s! =
∏

s≥2

si!.

E10.3 Given the vertex partition s = (s2, s3, · · ·), Prove that

the number of non-isomorphic pre-standard pan-Halin rooted maps
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with the partition and their base maps of sizem on a surface of nonori-

entable genus q is

2m

(
m+ q − 1

q − 1

)(
s3

m

)
n!m

s!

where

n+ 2 =
∑

i≥2

si, and s! =
∏

s≥2

si!.

E10.4 Given the vertex partition s = (s2, s3, · · ·), prove that

the number of non-isomorphic standard pan-Halin rooted maps with

the partition and their base maps of size m on a surface of orientable

genus p is

2m

(
m− 1

2p− 1

)(
s3

m

)
n!m

s!

where

n+ 2 =
∑

i≥2

si,

and s ≥ 0, s 6= 0, m ≥ 2p ≥ 1.

E10.5 Given the vertex partition s = (s2, s3, · · ·), prove that

the number of non-isomorphic standard pan-Halin rooted maps with

the partition and their base maps of size m on a surface of nonori-

entable genus q is

2m

(
m− 1

q − 1

)(
s3

m

)
n!m

s!

where

n+ 2 =
∑

i≥2

si,

and s ≥ 0, s 6= 0, m ≥ q ≥ 1.

E10.6 Evaluate the number of near triangulations of size m on

the projective plane.

E10.7 Evaluate the number of near triangulations of size m on

the Klein bottle.
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E10.8 Evaluate the number of rooted quadrangulations of size

m on the projective plane.

E10.9 Evaluate the number of near quadrangulations of size m

on the Klein bottle.

E10.10 Determine the enumerating function of rooted petal

bundles with the size as the parameter on the torus.

E10.11 Determine the enumerating function of rooted petal

bundles with the size as the parameter on the projective plane.

E10.12 Determine the enumerating function of orientable two

vertex rooted maps with size as the parameter.

E10.13 Determine the enumerating function of nonorientable

two vertex rooted maps with size as the parameter.

E10.14 Establish an equation satisfied by the enumerating func-

tion of general non-separable rooted maps.

E10.15 Establish an equation satisfied by the enumerating func-

tion of general Eulerian rooted maps.

A map is said to be loopless if its under graph has no self-loop.

E10.16 Establish an equation satisfied by the enumerating func-

tion of general loopless rooted maps.

A map is said to be simple if its under graph has neither self-loop

nor multi-edge.

E10.17 Establish an equation satisfied by the enumerating func-

tion of general simple rooted maps.

X.8 Researches

R10.1 Given a relative genus g 6= 0(the case g = 0 is solved),

determine the number of rooted near triangulations of size m ≥ |g| on
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a surface of genus g.

A rooted map with all vertices of the same valency except for

probably one vertex is said to be near regular. Among them, near

3-regular and near 4-regular are often encountered in literature.

Although near triangulations or near quadrangulations are, re-

spectively, the dual maps of rear 3-regular, or near 4- regular maps,

they are still considered for most convenience from a different point

of view.

R10.2 Given a relative genus g 6= 0(the case g = 0 is solved),

determine the number of rooted near 3-regular maps of size m ≥ |g|
on a surface of genus g.

R10.3 Given a relative genus g 6= 0(the case g = 0 is solved),

determine the number of rooted near quadrangulations of size m ≥ |g|
on a surface of genus g.

R10.4 Given a relative genus g 6= 0(the case g = 0 is solved),

determine the number of rooted near 4-regular maps of size m ≥ |g|
on a surface of genus g.

R10.5 Given a relative genus g 6= 0(the case g = 0 is solved),

determine the number of non-separable rooted maps of size m ≥ |g|
on a surface of genus g.

R10.6 Given a relative genus g 6= 0(the case g = 0 is solved),

determine the number of Eulerian rooted maps of size m ≥ |g| on a

surface of genus g.

R10.7 Given a relative genus g 6= 0(the case g = 0 ia solved),

determine the number of non-separable Eulerian rooted maps of size

m ≥ |g| on a surface of genus g.

For the problems above, another parameter l ≥ 1 is absolutely

necessary in almost all cases. it is the valency of the extra vertex, or

face according as the regularity is for vertices, or faces.

R10.8 Given a relative genus g 6= 0(the case g = 0 is known),
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find a relation between general maps and quadrangulations on a sur-

face of genus g.

R10.9 Given a relative genus g 6= 0(the case g = 0 is known),

find a relation between general maps and triangulations on a surface

of genus g.

R10.10 Given a relative genus g 6= 0(the case g = 0, a 1–to–

1 correspondence between loopless planar rooted maps of size m −
1 and 2-connected planar rooted triangulations of 2m − 1 unrooted

faces should be found, but now unknown yet), find a relation between

loopless rooted maps and triangulations on a surface of genus g.

R10.11 Present an expression of the solution for equation (10.14)

by special functions, particularly the hyperbolic geometric function.



Chapter XI

Maps with Symmetry

• A relation between the number of rooted maps and the order of

the automorphism group of a map is established.

• A general procedure is shown for determining the group order dis-

tribution of maps with given size via an example as an application

of the relation.

• A principle for counting unrooted maps from rooted ones is pro-

vided.

• Based on the principle, a general procedure is shown for determin-

ing the genus distribution of unrooted maps with given size via two

examples.

• Conversely, rooted maps can be also determined via unrooted maps.

XI.1 Symmetric relation

First, observe how to derive the number of non-isomorphic un-

rooted maps from that of non-isomorphic rooted maps when the auto-

morphism group is known, or in other words, how to transform results

without symmetry to those with symmetry.
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Theorem 11.1 Let n0(U ; I) be the number of non-isomorphic

rooted maps with a given set of invariants including the size in the

set of maps U considered. If the order of automorphism group of each

map M in U is independent of the map M itself, but only dependent

on U and I, denoted by aut(U ; I), then the number of non-isomorphic

unrooted maps with I in U is

n1(U ; I) =
aut(U ; I)n0(U ; I)

4ǫ
(11.1)

where ǫ ∈ I is the size.

Proof Let map M = (X ,P) ∈ U . From Theorem 8.1, for any

x ∈ X ,

|Xx| = |{y| ∃τ ∈ Aut(M), y = τx}| = aut(M). (11.2)

In view of Corollary 8.2, M itself produce

n0(M) =
|X |
|Xx|

=
4ǫ

aut(M)
(11.3)

non-isomorphic rooted maps. Therefore, there are

n0(U ; I) =
∑

M∈U

4ǫ

aut(M)

=
4ǫ

aut(U ; I)
n1(U ; I)

non-isomorphic rooted maps in U . Via rearrangement, (11.1) is soon

obtained. �

In chapter VIII, efficient algorithms are established for finding

the automorphism group of a map, this enables us to get how many

non-isomorphic rooted maps from a unrooted map by (11.1).

However, from Chapter IX and Chapter X, it is unnecessary to

know the automorphism group for counting rooted maps. This en-

ables us to enumerate unrooted maps via automorphism groups by

employing (11.1).
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Problem of type 1 For a set of mapsM known the number

of non-isomorphic rooted maps with a given size, determine the num-

ber of non-isomorphic unrooted maps with the given size according

to the orders of their automorphism groups, or in other words, the

distribution of unrooted maps on the orders of their automorphism

groups.

Although this problem does not yet have general progress in

present, a great amount of results for rooted case have already pro-

vided reachable conditions for the problem.

XI.2 An application

In what follows, provide a general procedure for solving the prob-

lem of type 1 via the determination of the distribution of rooted petal

bundles on the orders of the automorphism groups of corresponding

unrooted maps on the basis of Chapter IX.

From Table 9.1 at the end of Chapter IX, the number of non-

isomorphic planar rooted petal bundles with size 4 is H
(0)
4 = 14, shown

in (a–n) of Fig.11.1.

In virtue of Corollary 8.2, the orders of their automorphism

groups are possibly 1, 2, 4, 8 and 16 only 5 cases.

Case 1 aut(M) = 1, M = (Kx+Ky +Kz +Kt,J ). None.

Case 2 aut(M) = 2. 8 planar rooted petal bundles:

J1 = (x, y, γy, γx, z, γz, t, γt);J2 = (x, γx, y, z, γz, t, γt, γy);

J3 = (x, y, z, γz, t, γt, γy, γx); J4 = (x, y, γy, z, γz, γx, t, γt);

J5 = (x, y, z, γz, γy, t, γt, γx); J6 = (x, γx, y, z, γz, γy, t, γt);

J7 = (x, y, γy, z, t, γz, γt, γx); J8 = (x, γx, y, γy, z, t, γt, γz),

shown in (a–h) of Fig.11.1.
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Case 3 aut(M) = 4. 4 planar rooted petal bundles:

J9 = (x, y, γy, γx, z, t, γt, γz);J10 = (x, γx, y, z, t, γt, γz, γy);

J11 = (x, y, z, t, γt, γz, γy, γx); J12 = (x, y, z, γz, γy, γx, t, γt),

shown in (i–l) of Fig.11.1.

Case 4 aut(M) = 8. 2 planar rooted petal bundles:

J13 = (x, γx, y, γy, z, γz, t, γt); J14 = (x, y, γy, z, γz, t, γt, γx).

shown in (m, n) of Fig.11.1.

Case 5 aut(M) = 16. None.

This procedure can be done for determining the automorphism

groups of a unrooted maps via their primal trail codes, or dual trail

codes, by computers and then via the collection of the same class of

them according to the orders of the groups.

?� 6 - ?� 6 - ?� 6 -
x x x

I �R	 	I �R I �R	
y

γy

γx

z γz

t

γt

γx

y

z

γz
t

γt

γy

y

z

γz

t
γt

γy

γx

(a) (b) (c)

?� 6 - ?� 6 - ?� 6 -
x x x

I �R	 	I �R I �R	
y

γy

z

γz
γx

t

γt

y

z

γz

γy
t

γt

γx

γx

y

z

γz
γy

t

γt

(d) (e) (f)
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x x x
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y
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y
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z
t
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y
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z t
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(g) (h) (i)
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y
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Fig.11.1 Planar petal bundles of size 4

XI.3 Symmetric Principle

Whenever the distribution of rooted maps on the orders of au-

tomorphism groups is given for a set of maps, the number of non-

isomorphic unrooted maps can be soon extracted

Theorem 11.2 Let n0i(M; I) be the number of non-isomorphic

rooted maps with the set of invariants I and the order of their auto-

morphism groups i in a set of mapsM for i|4ǫ, 1 ≤ i ≤ 4ǫ, where ǫ is
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the size, then the number of non-isomorphic unrooted maps inM is

n1(M; I) =
∑

i|4ǫ
1≤i≤4ǫ

in0i(M; I)

4ǫ
. (11.4)

Proof Let n1i(M; I) be the number of non-isomorphic unrooted

maps with the set of invariants I and the order of their automorphism

groups i in the set of mapsM for i|4ǫ, 1 ≤ i ≤ 4ǫ, where ǫ is the size,

then

n1(M; I) =
∑

i|4ǫ
1≤i≤4ǫ

n1i(M; I). (11.5)

From Theorem 11.1, each unrooted map M ∈ M, Aut(M) = i,

produces
4ǫ

i
non-isomorphic rooted maps. Therefore,

n1i(M; I) =
in0i(M; I)

4ǫ
. (11.6)

By substituting (11.6) into (11.5), (11.4) is soon obtained. �

On the choice of the set of invariants I, two types should be

mentioned. One is that the set I consists of only the size and the

genus for determining the genus distribution of non-isomorphic maps

in a set of maps M. The other is that the set I consists of only the

size and the orders of automorphisms for determining the symmetric

distribution of non-isomorphic maps in a set of mapsM.

Problem of type 2 For a set of mapsM with the number of

non-isomorphic maps given, determine the number of non-isomorphic

under graphs of maps inM.

Although the justification of whether, or not, two graphs are

isomorphic is much far from easy, a feasible approach to it is presented

from the above discussion. Because the under graphs are isomorphic
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if the two maps are isomorphic, the only thing we have to do is to

classify non-isomorphic maps by their isomorphic under graphs.

On the other hand, for a graph, it is also possible to discuss how

many non-isomorphic rooted maps are with the graph as their under

graph, and then to discuss how many non-isomorphic unrooted maps

are with the graph as their under graphs, and finally to classify maps

according to the isomorphism of their under graphs.

XI.4 General examples

On the basis of the 15 orientable rooted petal bundles of size 3

and the 9 nonorientable rooted petal bundles of size 2(in Table 9.1 at

the end of Chapter IX), a general procedure is established for deter-

mining the genus distribution of them.

Orientable case Let M = (Kx+Ky +Kz,Ji), 1 ≤ i ≤ 15.

genus 0 5 orientable rooted petal bundles shown in (a–e) of

Fig.11.2. Here,

J1 = (x, γx, y, γy, z, γz); J2 = (x, y, γy, z, γz, γx)

with the order of its automorphism group aut(M) = 6 are one un-

rooted map;

J3 = (x, γx, y, z, γz, γy); J4 = (x, y, γy, γx, z, γz);

J5 = (x, y, z, γz, γy, γx)

with the order of its automorphism group aut(M) = 4 are one un-

rooted map.

Genus 1 10 orientable petal bundles shown in (f–o) of Fig.11.2.

Here,

J6 = (x, y, γx, z, γz, γy); J7 = (x, y, z, γz, γx, γy);

J8 = (x, y, γy, z, γx, γz); J9 = (x, γx, y, z, γy, γz);

J10 = (x, y, z, γy, γz, γx); J11 = (x, y, γx, γy, z, γz)
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with the order of its automorphism group aut(M) = 2 are one un-

rooted map;

J12 = (x, , y, z, γy, γx, γz); J13 = (x, y, γx, z, γy, γz);

J14 = (x, y, z, γx, γz, γy)

with the order of its automorphism group aut(M) = 4 are one un-

rooted map; and

J15 = (x, y, z, γx, γy, γz)

with the order of its automorphism group aut(M) = 12 is one unrooted

map itself.

All are listed in Table 11.1 shown the genus distribution, group

order distribution as well, of orientable unrooted maps.

Genus

aut(M)

1 2 3 4 6 12
Dist.

0
1

0 0 0 1 1 0
0 1 0 1 0 1

2
3

Dist. 0 1 0 2 1 1 5

Table 11.1 Distributions of orientable petal bundles
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Fig.11.2 Orientable petal bundles of size 3

Nonorientable case Let N = (Kx+Ky,Ji), 1 ≤ i ≤ 9.

Genus 1̃ 5 nonorientable rooted petal bundles shown in Fig.9.4(e,

a,c) and in Fig.9.3(a,c). Here,

J1 = (x, βy, βx, y)

with the order of its automorphism group aut(N) = 8 is one unrooted

map itself;
J2 = (x, βx, y, γy); J3 = (x, βx, γy, y);

J4 = (x, γx, y, βy); J5 = (x, γx, βy, y)
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with the order of its automorphism group aut(N) = 2 are one unrooted

map.

Genus 2̃ 4 nonorientable rooted petal bundles shown in Fig.9.3(b)

and Fig.9.4(b,d,f). Here,

J6 = (x, βy, γx, y); J7 = (x, γy, βx, y);

J8 = (x, βx, y, βy); J9 = (x, βx, βy, y)

with the order of its automorphism group aut(N) = 4 are 2 unrooted

maps.

All are listed in Table 11.2 shown the genus distribution, group

order distribution as well, of nonorientable unrooted maps.

Genus

aut(M)

1 2 4 8
Dist.

1̃
2̃

0 1 0 1
0 0 2 0

2
2

Dist. 0 1 2 1 4

Table 11.2 Distributions of nonorientable petal bundles
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XI.5 Observations

O11.1 Given all the 54 planar rooted maps of size 3, find their

distribution according to the orders of automorphism groups.

O11.2 Given all the 40 outerplanar rooted maps(the root inci-

dent with the outer face) of size 3, find their distribution according to

the orders of automorphism groups.

O11.3 Observe how many non-isomorphic rooted maps whose

under graph is K4, i.e., the complete graph of order 4.

O11.4 Observe the distribution of all the rooted maps whose

under graph is K4 according to the orders of their automorphism

groups.

O11.5 Observe the genus distribution of all orientable maps

whose under graph is K4.

O11.6 Observe the genus distribution of all nonorientable maps

whose under graph is K4.

O11.7 Given all the 56 planar Euler rooted maps of size 4, find

how many non-isomorphic unrooted maps among them.

O11.8 Given all the 27 planar 4-regular rooted maps of co-

order 4, find how many non-isomorphic unrooted maps among them.

O11.9 For m ≥ 5, try to determine the number of planar un-

rooted petal bundles of size m.

O11.10 For m ≥ 4, try to determine the number of orientable
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unrooted petal bundles of size m.

O11.11 For m ≥ 3, try to determine the number of nonori-

entable unrooted petal bundles of size m.

XI.6 Exercises

E11.1 Prove that the number of non-isomorphic outerplanar

rooted maps(the root is on the outer face) of size m is

2m(2m)!

(m+ 1)!m!

for m ≥ 1.

E11.2 Prove that the number of planar 4-regular rooted maps

of co-order n+ 1 is

3n−1 2(2n− 2)!

(n+ 1)!(n− 1)!

for n ≥ 1.

E11.3 Prove that the number of non-isomorphic planar rooted

maps of size m is
2× 3m

(n+ 1)(n+ 2)

(
2m

m

)

for m ≥ 0.

E11.4 Prove that the number of planar loopless rooted trian-

gulations of size 3m is
2m+1(3m)!

m!(2m+ 2)!

for m ≥ 1.

E11.5 Prove that the number of non-isomorphic planar Euler

rooted maps of size m is

3× 2m−1(2m)!

m!(m+ 2)!

for m ≥ 1.
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E11.6 Prove that the number of non-isomorphic planar non-

separable rooted maps of order p and co-order q is

(2p+ q − 5)!(2q + p− 5)!

(p− 1)!(q − 1)!(2p− 3)!(2q − 3)!

where p, q ≥ 2.

E11.7 Prove that the number of non-isomorphic planar simple

rooted maps of size m is

m−2∑

i=0

4(2m+ 1)!(2m− i− 4)!

i!(m− i− 2)!(2m− i+ 1)!m!

where m ≥ 2.

E11.8 Prove that the number of non-isomorphic planar

3-connected rooted maps of size m ≥ 6 is

(−1)m2 + Rm−1

where Rm, m ≥ 2, are determined by the recursion

Rm =
(7m− 22)Rm−1 + 2(2m− 1)Rm−2

2m
, m ≥ 3

with the initial conditions R1 = −1 and R2 = 2.

E11.9 For m ≥ 4, determine the genus distribution of ori-

entable rooted petal bundles with size m.

E11.10 For m ≥ 5, determine the genus distribution of nonori-

entable rooted petal bundles with size m.

E11.11 For m ≥ 4, determine the number of non-isomorphic

outerplanar unrooted maps with size m.

XI.7 Researches

R11.1 Determine the number of non-isomorphic planar 4-regular

unrooted maps of co-order n+ 1 for n ≥ 1.
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R11.2 Determine the number of non-isomorphic planar loop-

less unrooted triangulations of size 3m, m ≥ 2.

R11.3 Determine the number of non-isomorphic planar Euler

unrooted maps of size m ≥ 2.

R11.4 Determine the number of non-isomorphic planar non-

separable unrooted maps of size m ≥ 2.

R11.5 Prove, or disprove, the conjecture that almost all trees

have the order of their automorphism group 1 when the size is greater

enough.

R11.6 Prove, or disprove, the conjecture that almost all maps

with a given relative genus have the order of their automorphism group

1 when the size is large enough.

R11.7 Prove , or disprove, the conjecture that for a positive

integer g|ǫ, g ≥ 2, almost no orientable map is with the order of

automorphism group g when ǫ is large enough.

R11.8 Prove , or disprove, the conjecture that for a positive

integer g|ǫ, g ≥ 2, almost no nonorientable map is with the order of

automorphism group g when ǫ is large enough.

R11.9 Determine the genus distribution of 4-regular rooted

maps of co-order n+ 1, n ≥ 1.

R11.10 Determine the genus distribution of loopless rooted tri-

angulations of size 3m, m ≥ 2.

R11.11 Determine the genus distribution of Euler rooted map

with size m ≥ 2.

R11.12 Determine the genus distribution of nonseparable rooted

map with size m ≥ 2.

Although corresponding problems about genus distribution can

also posed for unrooted case, they would be only suitable after the

solution of rooted case in general.

Moreover, the genus distributions of maps with under graphs in

some chosen classes can also be investigated.



Chapter XII

Genus Polynomials

• The set of associate surfaces of a graph are constructed to deter-

mine all of its distinct embeddings, or its super maps as well.

• A layer division of an associate surface of a graph is defined for

establishing an operation to transform this surface into another

associate surface. A procedure can be constructed for listing all

other associate surfaces from an associate surface by this operation

without repetition.

• A principle of determining the genus polynomial, called handle

polynomial, of a graph is provided for the orientable case.

• The genus polynomial of a graph for nonorientable case, also called

crosscap polynomial, is derived from the handle polynomial of the

graph.

XII.1 Associate surfaces

Given a graph G = (V,E) and a spanning tree T , the edge set

E is partitioned into ET (tree edge) and ĒT (cotree edge), i.e., E =

ET + ĒT . Let ĒT = {i|i = 1, 2, · · · , β}, β = β(G) be the Betti

number(or cyclic number) of G. If i = (u[i], v[i]), then iu and iv are,

respectively, meant the semi-edges of i incident with u[i] and v[i].
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Write G′ = (V + V1, ET + E1), where V1 = {vi, v̄i|1 ≤ i ≤ β} and

E1 = {(u[i], vi), (v[i], v̄i)|1 ≤ i ≤ β}. Because G′ is a tree itself, G′ is

called an expanded tree of T on G, and denoted by T̂G, or T̂ in general

case[Liu13–14].

Let δ = (δ1, δ2, · · · , δβ) be a binary vector, or as a binary number

of β digits. Denoted by T̂ δ that T̂ , edges (u[i], vi) and (v[i], v̄i) are

labelled by i with indices: +(always omitted) or −, 1 ≤ i ≤ β, where

δi = 0 means that the two indices are the same; otherwise, different.

Then, δ is called an assignment of indices on T̂ .

For v ∈ V , let σv be a rotation at v and σG = {σv|∀v ∈ V }, the

rotation of G, then T̂σ determine an embedding of T̂ on the plane.

Theorem 12.1 For any σ as a rotation and δ as an assignment

of indices, T̂ δ
σ determines a joint tree.

Proof By the definition of a joint tree, it is soon seen. �

According to the theory described in Chapter 1, the orientabil-

ity and genus are naturally defined to be that of its corresponding

embedding.

Lemma 12.1 Joint tree T̂ δ
σ is orientable if, and only if, δ = 0.

Proof Because δ = 0 implies each label with its two occurrences

of different indices, the lemma is true. �

On a joint tree T̂ δ
σ , the surface determined by the boundary of

the infinite face on the planar embedding of T̂σ with δ on label indices

is said to be an associate.

Lemma 12.2 The genus of a joint tree T̂ δ
σ is that of its associate

surface.

Proof Only from the definition of orientability of a joint tree.�

Two associate surfaces are the same is meant that they have the

same assignment with the same cyclic order. Otherwise, distinct. Let
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F(β) be the set of distinct surfaces on Iβ = {1, 2, · · · , β} .

For a surface F ∈ F(β) and a tree T on a graph G, if there exists

an joint tree T̂ δ
σ such that F is its associate surface, then F is said to

be admissible . Let FT (β) be the set of all distinct associate surfaces.

Given two integers p, p ≥ 0, and q, q ≥ 1, let FT (β; p)(or

FT (β; q), q ≥ 1), p ≥ 0, be all distinct admissible surfaces of ori-

entable genus p(or nonorientable genus q).

Theorem 12.2 For any integer p ≥ 0( or q ≥ 1), the cardinal-

ity |FT (β; p)|(or |FT (β; q)|) is independent of the choice of tree T on

G. Further, it is the number of distinct embeddings of G on a surfaces

of orientable genus p(or nonorientable genus q).

Proof According to O1.14, a 1-to-1 correspondence between two

sets of embeddings generated by two distinct spanning trees can be

found such that same embeddings are in correspondence. This implies

the theorem. �

Because of

|FT (β)| =
∑

p≥0

|FT (β; p)|+
∑

q≥1

|FT (β; q)|,

the following conclusion is found from the theorem.

Corollary 12.1 The cardinality |FT (β)| is independent of the

choice of tree T on G. Further, it is the number of distinct embeddings

of G.

From Lemma 12.1, the nonorientability of an associate surface

can be easily justified by only checking if it has a label i with the

same index, i.e., δ(i) = 1.

Theorem 12.3 There is a 1-to-1 correspondence between as-

sociate surfaces and embeddings of a graph.

Proof First, we can easily seen that each embedding determines

an associate surface. Then, we show that each associate surface is
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determined by an embedding. Because of Theorem 12, this statement

is derived. �

From what is mentioned above, it is soon seen that the problem

of determining the genus distribution of all embeddings for a graph is

transformed into that of finding the number of all distinct admissible

associate surfaces in each elementary equivalent class and the prob-

lem on minimum and maximum genus of a graph is that among all

admissible associate surfaces of the graph. All of them are done on a

polygon.

XII.2 Layer division of a surface

Given a surface S = (A). it is divided into segments layer by

layer as in the following.

The 0th layer contains only one segment, i.e., A(= A0).

The 1st layer is obtained by dividing the segment A0 into l1
segments, i.e., S = (A1, A2, · · · , Al1), where A1, A2, · · ·, Al1 are called

the 1st layer segments.

Suppose that on k − 1st layer, the k − 1st layer segments are

An(k−1)
where n(k−1) is an integral k − 1-vector satisfied by

1(k−1) ≤ (n1, n2, · · · , nk−1) ≤ N (k−1)

with 1(k−1) = (1, 1, · · · , 1),

N (k−1) = (N1, N2, · · · , Nk−1),

N1 = l1 = N(1), N2 = lAN(1)
, N3 = lAN(2)

, · · ·, Nk−1 = lAN(k−2)
, then the

kth layer segments are obtained by dividing each k−1st layer segment

as

An(k−1),1, An(k−1),2, · · · , An(k−1),lAn(k−1)
(12.1)

where

1(k) = (1(k−1), 1) ≤ (n(k−1), i) ≤ N (k) = (N (k−1), Nk)



286 Chapter XII Genus Polynomials

and Nk = lAN(k−1)
, 1 ≤ i ≤ Nk. Segments in (I.1) are called sons of

An(k−1)
. Conversely, An(k−1)

is the father of any one in (12.1).

A layer segment which has only one element is called an end

segment and others, principle segments.

For an example, let

S = (1,−7, 2,−5, 3,−1, 4,−6, 5,−2, 6, 7,−3,−4).

Fig.12.1 shows a layer division of S and Tab.12.1, the principle seg-

ments in each layer.

Layers Principle segments

0th layer A = 〈1,−7, 2− 5; 3,−1, 4,−6, 5;−2, 6, 7,−3− 4〉
1st layer B = 〈1;−7, 2;−5〉, C = 〈3,−1; 4,−6; 5〉,

D = 〈−2, 6; 7;−3,−4〉
2nd layer E = 〈−7; 2〉, F = 〈3;−1〉, G = 〈4;−6〉,

H = 〈−2; 6〉, I = 〈−3;−4〉

Tab.12.1 Layers and principle segments

〈1,−7, 2 − 5; 3,−1, 4,−6, 5;−2, 6, 7,−3 − 4〉

〈1;−7, 2;−5〉 〈3,−1; 4,−6; 5〉 〈−2, 6; 7;−3,−4〉

〈1〉 〈−7; 2〉 〈−5〉 〈3;−1〉 〈4;−6〉 〈5〉 〈−2; 6〉 〈7〉 〈−3;−4〉

〈−7〉 〈2〉 〈3〉 〈−1〉 〈4〉 〈−6〉 〈−2〉 〈6〉 〈−3〉 〈−4〉

Fig.12.1 A layer division of S

For a layer division of a surface, if principle segments are dealt

with vertices and edges are with the relationship between father and

son, then what is obtained is a tree denoted by T . On T , by adding

cotree edges as end segments, a graph G = (V,E) is induced. For

example, the graph induced from the layer division shown in Fig.12.1

is as

V = {A,B,C,D,E, F,G,H, I} (12.2)
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and

E = {a, b, c, d, e, f, g, h, 1, 2, 3, 4, 5, 6, 7}, (12.3)

where
a = (A,B), b = (A,C), c = (A,D), d = (B,E),

e = (C, F ), f = (C,G), g = (D,H), h = (D, I),

and
1 = (B, F ), 2 = (E,H), 3 = (F, I), 4 = (G, I),

5 = (B,C), 6 = (G,H), 7 = (D,E).

By considering ET = {a, b, c, d, e, f, g, h}, ĒT = {1, 2, 3, 4, 5, 6, 7}, δi =

0, i = 1, 2, · · · , 7, and the rotation σ implied in the layer division, a

joint tree T̂ δ
σ is produced.

Theorem 12.4 A layer division of a surface determines a joint

tree. Conversely, a joint tree determines a layer division of its associate

surface.

Proof From the procedure of constructing a layer division, a

joint tree is determined. Conversely, it is natural. �

Then, an operation on a layer division is discussed for trans-

forming an associate surface into another in order to visit all associate

surfaces without repetition.

A layer segment with all its successors is called a branch in the

layer division. The operation of interchanging the positions of two

layer segments with the same father in a layer division is called an

exchanger.

Lemma 12.3 A layer division of an associate surface of a graph

under an exchanger is still a layer division of another associate surface.

Conversely, the later under the same exchanger becomes the former.

Proof From the correspondence between layer divisions and as-

sociate surfaces, the lemma can be obtained. �

On the basis of this lemma, exchanger can be seen as an operation

on the set of all associate surfaces of a graph.
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Lemma 12.4 The exchanger is closed in the set of all associate

surfaces of a graph.

Proof From the correspondence between joint trees and layer

divisions, the conclusion of the lemma is seen. �

Lemma 12.5 Let A(G) be the set of all associate surfaces of

a graph G, then for any S1, S2 ∈ A(G), there exist a sequence of

exchangers on the set such that S1 can be transformed into S2.

Proof By considering the joint trees and layer divisions, the

lemma is right. �

If A(G) is dealt as the vertex set and an edge as an exchanger,

then what is obtained is called the associate surface graph of G, and

denoted by H(G). From Theorem 12.3, it is also called the surface

embedding graph of G.

Theorem 12.5 In H(G), there is a Hamilton path. Further,

for any two vertices, H(G) has a Hamilton path with the two vertices

as ends.

Proof By arranging an order, an Hamiltonian path can be ex-

tracted based on the procedure of the layer division. �

First, starting from a surface in A(G), by doing exchangers at

each principle in one layer to another, a Hamilton path can always be

found in considering Theorem 12.3. This implies the first statement.

Further, for chosen S1, S2 ∈ A(G) = V (H(G)) adjective, starting

from from S1, by doing exchangers avoid S2 except the final step, on

the basis of the strongly finite recursion principle, a Hamilton path

between S1 and S2 can be obtained. This implies that H(G) has a

Hamilton circuit and hence the last statement.

This theorem tells us that the problem of determining the mini-

mum, or maximum genus of graph G has an algorithm in time linear

on H(G).
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XII.3 Handle polynomials

Let S(G) be the set of associate surfaces of a graph G and Sg(G),

the subset of S(G) with genus g. The the enumerating function

γ(G; z) =

gmax∑

g=gmin

|Sg(G)|zg (12.4)

is called the genus polynomial of G where gmin and gmax are, respec-

tively, the minimum and maximum genus of G for orientable, or

nonorientable case. In orientable case, µ(G; x) = γ(G; x) is called

the handle polynomial. In nonorientable case, ν(G; y) = γ(G; y) is the

crosscap polynomial.

On the basis of the theory described in 12.1 and 12.2, (12.4)

is in fact the genus distribution of embeddings of G. Because the

enumerating function of super rooted maps of G is a constant times

the genus polynomial γ(G; z), for the enumeration of naps by genus it

is enough only to discuss γ(G; z).

Lemma 12.6 An orientable associate surface of a graph with-

out two letters interlaced has a letter x such that xx−1 is a segment

of the surface.

Proof Let 〈x, x−1〉 be a segment of the surface with minimum of

letters. If it does not contain only the letter x, then there is another

letter y in it. Because of x and y noninterlaced, the segment 〈y, y−1〉,
or 〈y−1, y〉, is a subsegment of 〈x, x−1〉. However, it has at least one

letter less than the minimum. �

Lemma 12.7 An orientable associate surface of a graph is with

genus 0 if, and only if, no two letters are interlaced.

Proof On the basis of Lemma 12.6, by the finite recursion prin-

ciple the lemma can soon be found. �

Theorem 12.6 If an orientable associate surface of a graph

has two letters interlaced, i.e., in form as AxByCx−1Dy−1E, then its
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genus is k, k ≥ 1, if, and only if, the orientable genus of ADCBE is

k − 1.

Proof On the basis of Relation 1 in I.2, the theorem is soon

found. �

According this theorem, a linear time algorithm can be designed

for classifying the orientable associate surfaces of a graph G by their

genus. Let Ni(G) be the number of orientable associate surfaces of G

with genus i, i ≥ 0

Theorem 12.7 The handle polynomial of G is

µ(G; x) =
∑

0≤i≤⌊β
2 ⌋

Ni(G)xi (12.5)

where β is the Betti number of G.

Proof From (12.4), the theorem follows. �

XII.4 Crosscap polynomials

Let F i
2β = {Si

2β,j|1 ≤ j ≤ si} where si is the number of orientable

2β-gons (surfaces) with genus i, then

F2β =
∑

0≤i≤si

F i
2β. (12.6)

Given a surface S ∈ F2β, S induces 22β−1 nonorientable surfaces.

Let NS be the set of all nonorientable surfaces induced by S. then the

polynomial

δS(y) =
∑

1≤j≤β

|Nj(S)|yj (12.7)

is called the nonorientable form of S where Nj(S) is the subset of NS,

1 ≤ j ≤ β.

For a graph G with Betti number β, the set of all associate ori-

entable surfaces of determined by joint trees of G is denoted by S(G).
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Let Sδ(G) for δ ∈ ∆S be the subset of S(G) with nonorientable form

δ where ∆S is the set of all nonorientable forms of surfaces in S(G).

Theorem 12.8 The crosscap polynomial of a graph G is

ν(G; y) =
∑

δ∈∆S

|Sδ(G)|δ(y). (12.8)

Proof From (12.4) and (12.7), the theorem is deduced. �

Theorem 12.9 If a nonorientable associate surface of a graph

is in form as AxBxC, then its genus is k, k ≥ 1, if, and only if, the

genus of AB−1C is{
k − 1, if AB−1C is nonorientable;
k − 1

2
, otherwise.

(12.9)

Proof From Relation 2 in I.2, the theorem is soon found. �

According to Theorem 12.9, a linear time algorithm can also

be designed for determining the genus of a surface and then classify

nonorientable associate surfaces of a graph by genus. Hence, the cross-

cap polynomial expressed by (12.8) can soon be found.
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XII.5 Observations

O12.1 For the bouquet of size 3, list all its associate surfaces

and then classify them by genus, orientable and nonorientable.

O12.2 For K4, list all of its associate surfaces and then classify

them by genus, orientable and nonorientable.

O12.3 Compare the two sets of associate surfaces obtained in

O12.1 and O12.2.

O12.4 Observe how many layer divisions of the surface

(aa−1bb−1cc−1).

O12.5 List all orientable surfaces of 4-gons.

O12.6 For each orientable surface obtained in O12.5, find its

nonorientable form.

O12.7 List all orientable surfaces of 6-gons.

O12.8 For each orientable surface obtained in O12.7, find its

nonorientable form.

O12.9 Find the nonorientable form of surface (aa−1bb−1cc−1).

O12.10 Find the nonorientable form of surface (abca−1b−1c−1).

O12.11 Find the nonorientable form of surface (abcc−1b−1a−1).
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XII.6 Exercises

A graph is called a necklace if it is Hamiltonian and the result of

deleting all 2-edges is a perfect matching.

E12.1 Find the handle polynomial of a necklace with order 2n,

n ≥ 2.

E12.2 Find the crosscap polynomial of a necklace with order

2n, n ≥ 2.

E12.3 Show that the nonorientable form of surface

(a1b1 · · · anbna
−1
1 b−1

1 · · · a−1
n b−1

n )

for n ≥ 1 is

x((1 + x)2n − x2n).

E12.4 Show that the nonorientable form of surface

(a1a2 · · · ana
−1
1 a−1

2 · · · a−1
n )

for n ≥ 1 is

x((1 + x)n − xn).

E12.5 Show that the nonorientable form of surface

(a1a
−1
1 a2a

−1
2 · · · ana

−1
n )

for n ≥ 4 is

(1 + x)n − 1.

E12.6 For all surfaces of 2β-gons, β ≥ 4, with genus 0, Show

that their nonorientable forms are

(1 + x)β − 1.

A graph is called a ladder if it has a Hamiltonian circuit and all

edges not on the circuit are geometrically parallel.

E12.7 Find the handle polynomial of a ladder with m edges

not on the Hamiltonian circuit.
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E12.8 Find the crosscap polynomial of a ladder with m edges

not on the Hamiltonian circuit.

A graph is called a Ringel ladder if it is cubic without multi-

edge and consists of a ladder with the two 2-edges each of which is

subdivided into 3 edges by two vertices and the other two edges are

interlaced on the hamiltonian circuit

E12.9 Find the handle polynomial of a ladder with m edges

not on the Hamiltonian circuit.

E12.10 Find the crosscap polynomial of a ladder with m edges

not on the Hamiltonian circuit.

XII.7 Researches

R12.1 Find the handle polynomial of the bouquet Bn of size

m, m ≥ 1 by joint tree model.

R12.2 Find the crosscap polynomial of the bouquet of size m,

m ≥ 1 by joint tree model.

R12.3 Find the handle polynomial of the wheel Wn of order n,

n ≥ 4 by joint tree model.

R12.4 Find the crosscap polynomial of the wheel Wn of order

n, n ≥ 4 by joint tree model.

R12.5 Find the handle polynomial of the complete graph Kn

of order n, n ≥ 4 by joint tree model.

R12.6 Find the crosscap polynomial of the complete graph Kn

of order n, n ≥ 4 by joint tree model.

R12.7 Find the handle polynomial of the complete bipartite

graph Km,n of order m+ n, m,n ≥ 3 by joint tree model.

R12.8 Find the crosscap polynomial of the complete bipartite

graph Km,n of order m+ n, m,n ≥ 3 by joint tree model.

R12.9 Find the handle polynomial of the n-cube of order n,
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n ≥ 3 by joint tree model.

R12.10 Find the crosscap polynomial of the n-cube of order n,

n ≥ 3 by joint tree model.

R12.11 For the n-cube Qn, n ≥ 3, prove that the minimum

genus γn = gmin(Qn) with γn−1 satisfies the relation

gmin(Qn) = 2n−4(n− 3) + gmin(Qn−1)

from an associate surface of Qn−1 with genus γn−1 to get an associate

surface of Qn with genus γn.

R12.12 For the complete bipartite graph Km,n, m ≥ n ≥ 4,

prove that the minimum genus γm,n = gmin(Km,n) with γm,n−1 satisfies

the relation

gmin(Km,n) = 〈m− 2

4
〉+ gmin(Km,n−1)− 1

where

〈m− 2

4
〉 =





⌈m− 2

4
⌉, m = 0(2 6 |n), 1(2 6 |n; 2|n, 2|⌊n/2⌋),
3(2 6 |n, 2 6 |⌊n/2⌋; 2|n, 2|⌊n/2⌋);

m− 2

4
, m = 2(mod 4);

⌊m− 2

4
⌋, m = 0(2|n), 1(2|n, 2 6 |⌊n/2⌋),
3(2 6 |n, 2|⌊n/2⌋; 2|n, 2 6 |⌊n/2⌋)

from an associate surface of Km,n−1 with genus γm,n−1 to get an asso-

ciate surface of Km,n with genus γm,n.

R12.13 For the complete graph Kn, n ≥ 5, prove that the

minimum genus γn = gmin(Kn) with γn−1 satisfies the relation

gmin(Kn) = 〈n− 4

6
〉 + gmin(Kn−1)
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where

〈n− 4

6
〉 =





⌈n− 4

6
⌉, n = 2, 1(2 6 |⌊n/6⌋), 3(2|⌊n/6⌋), 5(2 6 |⌊n/6⌋);

n− 4

6
, n = 4(mod 6);

⌊n− 4

6
⌋, n = 0, 1(2|⌊n/6⌋), 3(2 6 |⌊n/6⌋), 5(2|⌊n/6⌋)

from an associate surface of Kn−1 with genus γn−1 to get an associate

surface of Kn with genus γn.
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Census with Partitions

• The planted trees are enumerated with vertex partition vector in

an elementary way instead as those methods used before.

• A summation free form of the number of outerplanar rooted maps

is derived from the result on planted trees.

• On the basis of the result for planted outerplanar maps, the num-

bers of Hamilton cubic rooted maps is determined.

• The number of Halin rooted maps with vertex partition is gotten

as a form without summation.

• Biboundary inner rooted maps on the sphere are counted by, an

explicit formula with vertex partitions.

• On the basis of joint tree model, the number of general rooted

maps with vertex partition can also expressed via planted trees in

an indirected way.

• The pan-flowers which have pan-Halin maps as a special case are

classified according to vertex partition and genus given.

XIII.1 Planted trees

A plane tree is such a super planar rooted map of a tree. A

planted tree is a plane tree of root-vertex valency 1. In Fig.13.1, (a)

shows a plane tree and (b), a planted tree.
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Let T be a planted tree of order n with vertices v0, v1, v2, · · ·,
vn, n ≥ 1, where v0 is the rooted vertex. The segment recorded as

travelling along the face boundary of T from v0 bach to itself and

then v0 left off is called a V -code of T when vi is replaced by i for

i = 1, 2, · · · , n as shown in Fig.13.2 and Fig.13.3.

6r

vr >r

vr

(a) A plane tree (b) A planted tree

Fig.13.1 Plane tree and planted tree

A sequence of numbers is said to be polyhedral if each adjacent

pair of numbers occurs twice. It is easily seen that a V -code of a

planted tree is a polyhedral segment.

The vector n = (n1, n2, · · · , ni, · · ·), where ni(i ≥ 1) is the number

of unrooted vertices of valency i, is called the vertex partition of a

planted tree.

For a sequence of nonnegative integers n1, n2, · · ·, ni, · · · denoted

by a vector n = (n1, n2, · · · , ni, · · ·), if

∑

i≥1

(2− i)ni = 1, (13.1)

then n is said to be feasible. Let

n′ = (n′1, n
′
2, · · · , n′i, · · ·)
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where

n′i =





n1 − 1, when i = 1;

nk−1 + 1, when i = k − 1;

nk − 1, when i = k;

ni, otherwise

(13.2)

for a k ≥ 2 and n1, nk > 0, then n′ is called a reduction of n.

Lemma 13.1 A reduction n′ of a sequence of nonnegative in-

tegers n is feasible if, and only if n is feasible.

Proof By considering (13.2), we have the eqaulity as
∑

i≥1

(2− i)n′i −
∑

i≥1

(2− i)ni = −1− (2− k) + (2− k + 1) = 0.

This leads to the lemma. �

The sequence n0 = (1, 1) is feasible but no reduction can be done.

So, it is called irreducible.

Lemma 13.2 Any feasible sequence n has n1 > 0.

Proof By contradiction. Suppose n is feasible but n1 = 0. Be-

cause of ∑

i≥1

(2− i)ni =
∑

i≥2

(2− i)ni ≤ 0.

This contradicts to (13.1), the feasibility. �

Lemma 13.3 Any feasible sequence n 6= n0 can always be

transformed into n0 only by reductions.

Proof Because of n 6= n0, Lemma 13.2 enables us to get a reduc-

tion. Whenever the reduction is not n0, another reduction can also be

done from Lemma 13.1. By the finite recursion principle, the lemma

is done. �

Theorem 13.1 For a nonnegative integer sequence n = (n1, n2,

· · ·, ni, · · ·), there exists such a planted tree that ni unrooted vertices

are of valency i(i ≥ 1) if, and only if, n is feasible.
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Proof Necessity. Suppose T is such a planted tree. Because ni

is the number of unrooted vertices with valency i, i ≥ 1 in T , the size

of T is ∑

i≥1

ni

and hence

1 +
∑

i≥1

ini = 2
∑

i≥1

ni.

This means that n satisfies (13.1), i.e., n is feasible.

Sufficiency. First, it is seen that the irreducible sequence is the

vertex partition of the planted tree whose under graph is a path of two

edges. Then, by following the inversion of the procedure in the proof

of Lemma 13.3, a planted tree with a given feasible sequence can be

found. �

For a polyhedral segment L with 1 as both starting and ending

numbers on the set N = {1, 2, 3, · · · , n}, n ≥ 1, let the vector be the

point partition of L where ni be the number of occurrences of i in L,

i ≥ 1.

In a polyhedral segment L, if vuv is a subsegment of L, then u is

said to be contractible. The operation of deleting u and then identify-

ing v, or in other words vuv is replaced by v, is called contraction. If L

can be transformed into a single point, then L is called a celluliform.

If the point partition of L satisfies (13.1), then L is said to be

feasible as well.

It can be seen that any celluliform is a feasible segment but con-

versely not necessary to be true.

In what follows, the notation bellow is adopted as
(
n

n

)
=

(
n

n1, n2, · · · , ns

)
=

s−2∏

i=1

(
n− σi−1

ni

)
(13.3)

where s ≥ 2, ni ≥ 0 are all integers and

n =

s∑

i=1

ni, σi−1 =

i−1∑

j=1

nj.
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Notice that when s = 2, it becomes the combination of choosing

n1 from n.

Example 13.1 In Fig.13.2, two distinct planted trees of order

5 are with vertex partition n = (3, 0, 2) satisfying (13.1). (a) is with

sequence 123242151 and (b), 121343531. Here,

1

5

(
5

3, 0, 2

)
=

1

5

5!

3!0!2!
= 2.

61

2

3
4

5

61

2

3

4 5

(a) 123242151 (b) 121343531

Fig.13.2 Trees with n = (3, 0, 2)

In Fig.13.3, six distinct planted trees of order 5 shown by (a–f)

are with vertex partition n = (2, 2, 1) satisfying (13.1). Here,

1

5

(
5

2, 2, 1

)
=

1

5

5!

2!2!1!
= 6.

For a feasible segment of numbers on N , the occurrences of i ∈ N
divides the segment into sections in number equal to that of times of

its occurrences. Each of the sections is called an i-section.

If a feasible segment on N is with the property that all numbers

less than i have occurred before the first occurrence of i, 1 ≤ i ≤ n,

then it is called favorable. Denote by 1⇔1 a 1-to-1 correspondence

between two sets.

Lemma 13.4 Let Tn be the set of all planted trees of order n+1

with vertex partition n and Ln, the set of all favorable celluliforms on

N with point partition n, then Tn 1⇔1Ln.
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Proof Necessity. For T ∈ Tn, it is easy to check that its V -code

µ(T ) is uniquely a favorable celluliform, i.e., µ(T ) ∈ Ln.

Sufficiency. Let µ ∈ Ln. Because of the uniqueness of the great-

est point which is contractible, a point can be done by successfully

contracting the greatest points. By reversing the procedure, a tree

T (µ) ∈ Tn is done. �

Theorem 13.2 The number of nonisomorphic planted trees of

order n+ 1 with vertex partition n is

1

n

(
n

n

)
=

(n− 1)!

n!
(13.4)

where

n! =
∏

i≥1

ni!. (13.5)
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4 5

(a) 123432521 (b) 1232345421 (c) 123435321
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(d) 123214541 (e) 121345431 (f) 123432151

Fig.13.3 Trees with n = (2, 2, 1)
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Proof On the basis of Lemma 13.4, it suffices to discuss the set

of all favorable celluliforms Ln. Since each favorable celluliform has

n possibilities to choose the minimum point and different possibilities

correspond to different ways of choosing n from n elements, the set of

all ways is partitioned into
1

n

(
n

n

)

classes. A way is represented by number sequence of length n with

repetition as occurrence in the natural order. Two ways A and B

are equivalent if, and only if, there exists a number i ∈ N such that

A + i(mod n) is B in cyclic order. A way starting from 1 is said to

be standard. Because of each class with n ways in which only the

standard way enables us to form the V -code of a planted tree, the

theorem is soon obtained. �

In Example 13.1, Fig.13.2 and Fig.13.3 show two cases of (13.4).

Only take n = (3, 0, 2) as an example. There are 10 ways of combina-

tions of choosing 2 points with 3 occurrences each and 3 points with

1 occurrence each from 5 points numbered by 1, 2, 3, 4 and 5 as

(1) 111222345; (2) 111233345; (3) 111234445;

(4) 111234555; (5) 122233345; (6) 122234445;

(7) 122234555; (8) 123334445; (9) 123334555;

(10) 123444555

in which 2 classes are divided as C1 = {(1), (5), (8), (10), (4)} and C2 =

{(2), (6), (9), (3), (7)} because of (5) = 222333451, (8) = 333444512,

(10) = 444555123 and (4) = 555111234 as (1) = 111222345 for C1,

and the like for C2.

For a general outerplanar rooted map M = (Xα,β(X),P) with

(r)Pγ on the specific circuit where r is the root and γ = αβ and its

dualM∗ = (Xβ,α(X),Pγ) with root r as well without loss of generality,

letHM be the map obtained fromM∗ by transforming the vertex (r)Pγ

of M∗ into vertices (r), ((Pγ)r), · · ·, ((Pγ)−1r). Such an operation

is called articulation. The root rH of HM is taken r as shown in
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Fig.13.4 in which bold lines are on M and dashed lines, on HM . Here,

multiedges are permitted. ?-r r

Fig.13.4 M andHM

Further, it is easily checked that HM is a planted tree of size

which is equal to the size of M .

Lemma 13.5 An outerplanar rooted map M of order n + 1

with face partition s is 1–to–1 corresponding to a planted tree HM

with vertex partition t = s+ n11.

Proof By the procedure of getting HM from M , it is seen that

the number of i-faces in M is the same as that in HM for i > 1.

For i = 1, HM has n − 1 articulate vertices greater than s1. In

virtue of the nonseparability of M , s1 = 0.

Conversely, it is still true and hence the lemma. �

An attention which should be paid to is that all articulate edges

in HM are 1–to–1 corresponding to all edges on the root-face boundary

of M .

Theorem 13.3 The number of nonisomorphic outerplanar rooted

maps of order n with face partition s is

1

n+ s− 1

(
n+ s− 1

s+ (n− 1)11

)
(13.6)

where s1 +n = n, i.e., s1 = 0, because of no articulate vertex and s is

the number of unrooted faces.

Proof On the basis of Lemma 13.5, the theorem is obtained

from Theorem 13.2. �
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Since a bipartite map has all of its faces of even valency, its face

partition s is of all si = 0 when i is even.

Corollary 13.1 The number of nonisomorphic outerplanar rooted

bipartite maps of order 2m with face partition s is

1

2m+ s− 1

(
n+ s− 1

s+ (2m− 1)11

)
(13.7)

where s1 +n = n, i.e., s1 = 0, because of no articulate vertex and s is

the number of unrooted faces. �

A map is said to be simple if it has neither selfloop nor multiedge.

Corollary 13.2 The number of nonisomorphic outerplanar rooted

simple maps of order n with face partition s is

1

n+ s− 1

(
n+ s− 1

s+ (n− 1)11

)
(13.8)

where s1 +n = n, i.e., s1 = 0, because of no articulate vertex and s is

the number of unrooted faces. �

Corollary 13.3 The number of nonisomorphic outerplanar rooted

bipartite maps of order 2m with face partition s is

1

2m+ s− 1

(
n+ s− 1

s+ (2m− 1)11

)
(13.9)

where s1 +n = n, i.e., s1 = 0, because of no articulate vertex and s is

the number of unrooted faces. �

XIII.2 Hamiltonian cubic map

For saving the space occupied, this section concentrate to discuss

on Hamiltonian planar rooted quadregular maps as super maps of a

Hamiltonian planar graph, and then provide a main idea for general
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such maps. A map is said to be quadregular if each of its vertices is of

valency 4.

A Hamiltonian planar rooted quadregular map with the two

edges not on the Hamiltonian circuit not success in the rotation at

each vertex is called a quaternity.

LetM1 = (Xα,be(X1),J1) andM2 = (Xα,be(X2),J2) be two rooted

maps with their roots, respectively, r1 and r2. Assume (r1)J1γ and

(r2)J2γ are with the same length.

The map obtained by identifying r1 and αr2 with Kr1 = Kαr2
as well as (J1γ)ir1 and (αJ2γ)ir2 for i ≥ 1 is called the boundary

identification of M1 and M2, denoted by I(M1,M2). The operation

from M1 and M2 to I(M1,M2) is called boundary identifier.

A boundary identification of two outerplanar cubic rooted maps

is a quaternity because of M1 and M2 both outerplanar and cubic with

its root r1 = r2.

Lemma 13.6 Let Qn and In be the sets of all, respectively,

quaternities and boundary identifiers with face partition s, then there

is a 1–to–1 correspondence between Qs and Is.

Proof By considering the inverse of a boundary identifier, a qua-

ternity becomes two cubic outerplanar maps whose boundary identi-

fication is just the quaternity with the same face partition s. This is

the lemma. �

From the proof of this lemma, it is seen the identity

Qs = Is. (13.10)

Lemma 13.7 The number of nonisomorphic outerplanar cubic

rooted maps of order n with face partition s is

1

n+ s− 1

(
n+ s− 1

s+ (n− 1)11

)
(13.11)

for s ∈ Scub, the set of all the vectors available as the face partition of

an outerplanar cubic map.
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Proof From Theorem 13.3, the conclusion is true. �

Theorem 13.4 The number of nonisomorphic quaternities of

order n with face partition s is

∑

s1,s2∈Scub
s=s1+s2

(
n+ a1 − 1

s1 + (n− 1)11

)(
n+ a2 − 1

s2 + (n− 1)11

)

(n+ a1 − 1)(n+ a2 − 1)
(13.12)

where ai = |si|, called the absolute norm of si, i.e., the sum of all the

absolute values of entries in si for i = 1, 2.

Proof Since the set of all quaternities of order n is the Cartesian

product of the set of all cubic outerplanar rooted maps and itself, the

formula (13.12) is soon obtained. �

This method can be also employed for the case when the bound-

ary is cubic and further for others with observing boundary combina-

torics.

XIII.3 Halin maps

If a graph can be partitioned into a tree and a circuit whose

vertex set consists of all articulate vertices of the tree, then it is called

a Halin graph. A planar Halin map is a super map of a Halin graph

on the surface of genus 0 such that the circuit forms a face boundary.

Let H = (Xα,β(X),J ) be a planar Halin rooted map with (r)J γ,

γ = αβ, as the face formed by the specific circuit where r is the root.

The associate planted tree denoted by TH is obtained by deleting all

the edges Kr, K(J γ)r, · · ·, K(J γ)−1r on the circuit.

Lemma 13.8 A planar Halin rooted map with vertex partition

u of the specific circuit with length n is 1–to–1 corresponding to a

planted tree with vertex partition v = u+ (n− 1)(11 − 13).

Proof By considering the procedure from a Halin map H to a tree
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TH , carefully counting the numbers of vertices with the same valency

and comparing them of H with those of TH , the lemma is found. �

Theorem 13.5 The number of nonisomorphic planar Halin

rooted map with vertex partition u of the specific circuit with length

n is

A(Hu
n) =

1

|u|+ n− 1

( |u|+ n− 1

u+ (n− 1)(11 − 13)

)
(13.13)

where |u| is the absolute norm of u.

Proof On the basis of Lemma 13.8, by Theorem 13.2, the con-

clusion of the theorem is done. �

Let H1 = (Xα,β(X1),J1) and H2 = (Xα,β(X2),J2) be two planar

Halin rooted maps with |{r1}J1γ| = |{r2}J2γ|, the boundary identifica-

tion of H1 and H2 is called a double leaf.

A graph with a specific circuit of all vertices of valency 4 is called

a quadcircularity. A super map of a quadcircularity is a quadcircula-

tion.

Lemma 13.9 A planar rooted quadcirculation M is a double

leaf if, and only if, the map obtained from M by deleting all edges on

the specific circuit can be partitioned into two trees such that each of

vertices on the circuit is articulate of both the trees.

Proof Since a double leaf is obtained by boundary identifier

from two Halin maps, the conclusion is directly deduced. �

Lemma 13.10 A planar rooted quadcirculation with vertex

partition u of the specific circuit of length n is 1–to–1 corresponding

to a pair of planar Halin rooted mapsH1 andH2 with vertex partitions,

respectively, s and t such that

u = s+ t− (n− 1)(213 − 14). (13.14)

where 1i is the vector of all entries 0 but the i-th 1 for i = 3, 4.

Proof By considering that u does not involve n − 1 unrooted
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3-vertices in s and t each and involves n − 1 unrooted 4-vertices, the

formula (13.14) holds. �

Theorem 13.6 The number of nonisomorphic double leafs with

vertex partition u of the specific circuit of valency n is

∑

s+t=u−(n−1)(213−14)
s,t∈Sdl

A(Hs
n)A(Ht

n) (13.15)

where Sdl is the set of vectors available as vertex partitions of planar

Halin maps.

Proof On account of Lemma 13.10, the theorem is soon derived

from Theorem 13.2 for the Cartesian product of two sets. �

Given a nonseparable graph G with a cocircuit C∗ of an orien-

tation defined, if G is planar in companion with such a orientation

then G is said to have the C∗-oriented planarity, or cocircuit oriented

planarity. A planar super map of such a graph is called a cocircuit

oriented map. If each edge on the cocircuit is bisectioned and then

snip off each new 2-valent vertex as two articulate vertices in a cocir-

cuit oriented map M so that what obtained is two disjoint plane trees,

then M is called a cocircular map. The root is always chosen to be an

element in an edge on the cocircuit in a cocircular map.

Lemma 13.11 A cocircular map with the oriented cocircuit

of n + 1 edges and the vertex partition u is 1–to–1 corresponding to

a pair of planted trees 〈T1, T2〉 with vertex partitions u1 and u2 such

that u11 = u21 = n.

Proof By considering the uniqueness of a cocircular map com-

posed from two planted trees, the coclusion is directly deduced. �

Let Un be the set of all integer vectors feasible to a planted tree

with n unrooted articulate vertices.

Theorem 13.8 The number of nonisomorphic cocircular maps
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with the oriented cocircuit of n edges and given vertex partition u is

∑

u1,u2∈Un
u1+u2=u

(|u1|
u1

)(|u2|
u2

)

|u1||u2|
(13.16)

Proof Based on Lemma 13.11, the formula (13.16) is derived

from Theorem 13.2. �

A cocirculation is such a planar rooted map which has a cocircuit

oriented. For this type of planar maps, the number of nonsepsrable

ones can be determined from maps with cubic boundary of root-face.

More interestingly, maps with cubic boundary of root-face can

be transformed into maps with root-vertex valency as a parameter.

In view of this, many types of planar maps with cubic boundary

can be known from what have been done for counting maps with size

and root-vertex valency as two parameters.

XIII.4 Biboundary inner rooted maps

A map is said to be biboundary if it has a circuit C that two

trees are obtained by deleting all the edges on C. In view of this, a

Hamilton cubic map is a uniboundary map because it is not necessary

to have two connected components as all the edges on the Hamiltonian

circuit are deleted. Here, only planar case is considered.

LetM = (X ,J )be a biboundary map, r = r(M) is its root. The

length of boundary is m and the vertex partition vector of nonbound-

ary vertices is n = (n1, n2, · · ·), ni, i ≥ 1, the number of i-vertices not

on the boundary.

Assume M1 = (X1,J1) and M2 = (X2,J2) are two submaps of

M . Denote byC = (Kr,Kϕr, · · · , Kϕm−1r) the boundary circuit of

M where

ϕxi =

{J γxi, if γxi not incident with an inner edge of M2;

αJ βxi, otherwise.
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x0 = xm = r and xi = ϕir, i = 1, 2, · · · , m− 1.

Let r1 = r(M1) = r and r2 = r(M2) = αϕm−1r. This means the

root-vertex of M1 adjacent to that of M2 in M . Such a root is said to

be inner rooted.

First, denoted by Bm, m ≥ 6, the set of all biboundary rooted

maps with the boundary lengthm.

Lemma 13.12 Let Wm1
and Wm1

are, respectively, unibound-

ary maps of boundary lengths m1 ≥ 3 and m2 ≥ 3, then a pair of

{W1,W2}, W1 ∈ Wm1
and W2 ∈ Wm2

, m = m1 +m2, composes of

sm2
(m1) =

[
m2

m1

]
(13.17)

biboundary maps in Bm. And, this combinatorial number is deter-

mined by the recursion as




[
m2

m1

]
=

m1∑

i=0

[
m2 − 1

i

]
, m2 ≥ 2

[
m2

0

]
= 1, m2 ≥ 1;

[
1
m1

]
= 1, m1 ≥ 0.

. (13.18)

Proof By induction on m2, m2 ≥ 2, for any m1 ≥ 1.

First, check the case of m2 = 2, for m1 ≥ 1, that
[

2
m1

]
=

[
2
0

]
+

[
2
1

]
+ · · ·+

[
2
m1

]
= m1 + 1.

From the fact that if o vertices in the first segment, then the second

segment has to have m1 vertices; if 1 vertex in the first segment, then

the second segment has to have m1 − 1 vertices; · · ·; if m1 vertices in

the first segment, then the second segment has to have 0 verticesm1.

They are all together m1 + 1. Thus, (13.18) is true for m2 = 2.

Then, assume tm2−1(m1), m2 ≥ 3, have been determined by

(13.18). To prove tm2(m1) is determined by (13.18). Because of

m1 + 1 occurrences for putting m1 vertices in to m2 segments as
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when m1 vertices in the first segment, then no vertex in all other

m2 − 1 segments and hence sm2−1(0) ways; when m1 − 1 vertices in

the first segment, then i vertex in all other m2−1 segments and hence

sm2−1(1) ways; · · ·; when 0 vertices in the first segment, then m1 ver-

tices in all other m2 − 1 segments and hence sm2−1(m1) ways. They

are sm2
(m1) =

∑m1

i=0 sm2−1(i) ways all together. That is

[
m2

m1

]
=

m1∑

i=0

[
m2 − 1

i

]
, m2 ≥ 2.

By the induction hypothesis, sm2
(m1) is determined. The lemma is

true. �

Then, denote by Dm, m ≥ 6, the set of all biboundary rooted

maps with the boundary length m.

Lemma 13.13 LetMm1
andMm1

be the uniboundary rooted

maps of boundary lengths, respectively, m1 ≥ 3 and m2 ≥ 3, then a

pair {M1,M2}, M1 ∈Mm1 and M2 ∈Mm2, composes

tm2
(m1) =

〈
m2

m1

〉
(13.19)

biboundary rooted maps inDm, m = m1+m2. And, this combinatorial

number is determined by

〈
m2

m1

〉
=

m1−1∑

i=0

[
m2 − 1

i

]
, (13.20)

where the terms on the right hand side of (13.19) are given in Lemma

13.12.

Proof By induction on m2 for any m1 ≥ 1.

First, when m2 = 2, By considering for assigning m1 vertices in

M2 edges on the boundary in the order determined that when 1, 2,

· · ·, m1 vertices in the first edge(incident with the root), the second

edge has to have, respectively, m1− 1, m1− 2, · · ·, 0 vertices, we have

t2(m1) = s1(0) + s1(1) + · · ·+ s1(m1 − 1) = m1.
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Then, assume tm2−1(m1), m2 ≥ 3, have been determined by

(13.20). To prove that

tm2
(m1) = sm2−1(0) + sm2−1(1) + · · ·+ sm2−1(m1 − 1),

is determined by (13.20) as well. Because of the first edge in M2 edges

allowed to have m1, m1− 1, · · ·, 1 vertex, the other m2− 1 edges only

allowed to have, respectively, 0, 1, · · ·, m1 − 1 vertex. This implies
[
m2 − 1

0

]
+

[
m2 − 1

1

]
+ · · ·+

[
m2 − 1
m1 − 1

]
.

Hence, (13.20) is right. �

Denote by Qi, 1 ≤ i ≤ tm2
(m1) the tm2

(m1) biboundary inner

rooted maps mentioned in this lemma withM(M1,M2) = {Q1, Q2, · · ·,
Qtm2

(m1)}.

Lemma 13.14 Let Hm = {M(M1,M2)|∀(M1,M2) ∈ Mm1
×

Mm2, m1 +m2 = m}, then

Dm =
∑

H∈H
H, (13.21)

i.e., Hm is a partition of Dm.

Proof For any D ∈ Dm, it is known from biboundary maps that

there exist m1 and m2, m1 + m2 = m, such that M1 ∈ Mm1
and

M2 ∈Mm2
compose of D. Thus, D = (M1,M2) ∈ Hm.

Conversely, for any Q ∈ H, H ∈ Hm, because of Q composed

from two uniboundary maps M1 ∈ Mm1
and M2 ∈ Mm2

, m1 +m2 =

m, there exist D ∈ Dm such that D = Q.

In summary, the lemma is obtained. �

In what follows, observe how many nonisomorphic uniboundary

maps of boundary length m with vertex partition vector n.

Lemma 13.15 The number of uniboundary rooted maps of

boundary length m, m ≥ 3, and nonboundary vertex partition vector



314 Chapter XIII Census with Partitions

n is

η(m,n) =
(m+ n− 1)!

(m− 1)!n!
, (13.22)

where n = |n| = n1 + n2 + · · ·.
Proof LetM = (X ,J ) be a uniboundary rooted maps of bound-

ary length m, m ≥ 3, and nonboundary vertex partition vector n. Its

root is r. Because of cubicness on the boundary, J r is incident with

an articulate vertex of the tree. Let J r be the root to make the tree

planted. Because of all 1-vertices of the planted tree on the boundary,

its vertex partition vector is n+(m−1)11, where 11 is the vector of all

entries 0 but the first entry 1. Since a planted tree with vertex parti-

tion is 1-to-1 corresponding to a uniboundary rooted map of boundary

length m, m ≥ 3, and vertex partition vector n, from Theorem 13.2,

the number of nonisomorphic uniboundary rooted maps f boundary

length m, m ≥ 3, and vertex partition vector n is

η(m,n) =
(m+ n− 1)!

(m+ n1 − 1)!(n− n111)!
,

where n = |n| = n1 + n2 + · · ·. By considering that n1 = 0 in n, the

lemma is done. �

On the basis of the above tree lemmas, the main result of this

section can be gotten.

Theorem 13.9 The number of biboundary inner rooted maps

of boundary length m ≥ 6 and nonboundary vertex partition is

∑

(m1,m2,n1,n2)∈L

〈
m2

m1

〉
(n1 +m1 − 1)!

(m1 − 1)!n1!

×(n2 +m2 − 1)!

(m2 − 1)!n2!

(13.23)

where L = {(m1, m2, n
1, n2)|m1 +m2 = m,n1 + n2 = n,m1, m2 ≥ 3}.

Proof For any given m1 and m2, m1 +m2 = m, with n1 and n2,
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n1 + n2 = n, from Lemma 13.14–15, Dm can be classified into

∑

(m1,m2,n1,n2)∈L

(n1 +m1 − 1)!

(m1 − 1)!n1!

(n2 +m2 − 1)!

(m2 − 1)!n2!

classes. From Lemma 13.13, each class has
〈
m2

m1

〉

nonisomorphic biboundary inner rooted maps of boundary length m

and nonboundary vertex partition vector n. Thus, the theorem is

proved. �

XIII.5 General maps

Based on the joint tree model shown in Chapter XII, it looks

general maps on surfaces in a closed relation with joint trees. In this

section, only orientable case is considered as an instance.

Because of the independence with a tree chosen, general maps

with a cotree marked are particularly investigated.

For the convenience for description, all maps are assumed to have

no articulate edge.

Let M = (X ,J ) be a map with cotree edges a1 = Kx1, a2 =

Kx2, · · ·, al = Kxl marked where l = β(M) is the Betti number of

M . The root of M is chosen on a cotree edge, assume r = r(M) = x1.

Another map HM = (XH ,JH) is constructed as

XH = X +
l∑

i=1

(Ksi +Kti − ai) (13.24)

where Ksi = {xi, αxi, βsi, γsi}and Kti = {γxi, βxi, βti, γti}, 1 ≤ i ≤
l, ; JH is defined as

(x)JH
=

{
(x)J , when x ∈ X ;

(x), when x 6∈ X . (13.25)
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Lemma 13.16 For any rooted map M with a cotree marked,

the map HM is a planted tree with the number of articulate vertices

two times the Betti number of M .

Proof Because of connected without circuit on HM , HM is a

tree in its own right. Since the number of cotree edges is the Betti

number of M , from the construction of HM and no articulate edge on

M , the number of articulate vertices on HM is two times the Betti

number of M . �

LetM(l;n) be the set of all general rooted maps with a cotree of

size l marked and vertex partition n including the root-vertex. And,

let H(n) be the set of all planted trees with articulate vertices two

times the number of cotree edges and vertex partition n excluding the

root-vertex.

Lemma 13.17 There is a 1-to-1 correspondence betweenM(l;

n) and H(n+ (2l − 1)11) as the set of joint trees.

Proof For M ∈M(l;n), it is easily seen that the corresponding

HM is just a joint tree of M and hence HM ∈ H(n+ (2l − 1)11).

Conversely, forH ∈ H(n+(2l−1)11), in virtue of a joint tree with

its articulate vertices are pairwise marked as cotree edges of the cor-

responding map M as H = HM , by counting the valencies of vertices,

it is checked that M ∈M(l;n).

Therefore, the lemma is true. �

This lemma enables us to determine the number of general rooted

maps with a cotree marked with vertex partition given.

Theorem 13.10 The number of rooted general maps with a

cotree marked for a vertex(root-vertex included) partition n given is

|M(l;n)| = (n+ 2l − 2)!

(2l − 1)!n!
, (13.26)

where l is the Betti number(the size of cotree) and n = |n|.
Proof A direct result of Lemma 13.17 and Theorem 13.2. �
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XIII.6 Pan-flowers

A map is called a pan-flower if it can be seen as a standard petal

bundle added a tree such that only all vertices are in the inner parts of

edges on the petal bundle. The petal bundle is seen as the boundary

of a pan-flower. Because of not a circuit for the base graph of a petal

bundle in general, a pan-flower is reasonably seen as a generalization

of a map with a boundary, or a boundary map. A pan-Halin map is

only a special case when the petal bundle is asymmetric.

For convenience, the petal bundle in a pan-flower is called the

base map. If a edge of a fundamental circuit on the underlying graph

of base graph is allowed to have no articulate vertex of the tree, then

the pan-flower is said to be pre-standard. If the edge has at least one

articulate vertex of the tree, then the pan-flower is standard.

This section is concerned with pan-flowers in the two classes foe

a vertex partition vector given.

Let HpsH be the set of all rooted pre-standard pan-flowers, where

the root is chosen to be an element incident to the vertex of base

map. For any H = (X ,J ) ∈ HpsH, the tree TH is always seen as a

planted tree whose root is first encountered on the rooted face of H

starting from the root of H. Otherwise, the first encountered at the

root- vertex of H from the root.

Lemma 13.18 Let HpsH(p; s) be the set of all rooted pre-

standard pan-flowers with vertex partition vector s = (s2, s3, · · ·) on a

surfaces of orientable genus p, then

|HpsH(p; s)| = 2j1−δp,1+2

(
j1 + 2p

2p− 1

)
|T1(j)|, (13.27)

where T1(j) is the set of planted trees with vertex partition vector

j = (j1, j2, · · ·), such that si = ji, i 6= 3; s3 = j1 + j3 + 1, p ≥ 1, s ≥ 0,

j ≥ 0, but s 6= 0 and j 6= 0. Further, δp,1 is the Kronecker symbol,

i.e., δp,1 = 1, when p = 1; δp,1 = 0, otherwise.

Proof On the basis of pre-standardness, it is from the defini-

tion of pan-flowers seen that an element in the set on the left hand
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side of (13.27) has an element in the set on the right hand side in

correspondence.

In what follows, to prove that each T = (X ,J ) ∈ T1(j), produces

2j1−δp,1+2

(
j1 + 2p

2p− 1

)
maps in HpsH(p; s).

Denoted by (r), (x1), (x2), · · ·, (xj1) all the articulate vertices

of T , where 0 < l1 < l2 < · · · < lj1, such that xi = (Jαβ)lir, i =

1, , 2, · · · , j1, r = r(T ) is the root of T .

First, by considering that the underlying graph of base map has

2p loops, only one vertex, its embedding on the orientable surface of

genus 2p has exactly one face. Because of the order of its automor-

phism group 8 when p = 1, only one possible way; 2p when p ≥ 2, two

possible ways.

Then, the assignment of the j1 + 1 articulate vertices, (r), (xi),

i = 1, 2, · · · , j1, of T on the base map has the number of ways as

choosing 2p− 1 from j1 + 2 intervals with repetition allowable. That

is (
j1 + 2 + (2p− 1)− 1

2p− 1

)
=

(
j1 + 2p

2p− 1

)
.

Finally, since each of elements r, xi, i = 1, 2, · · · , j1, has 2 ways:

one side {αx, αβx}, or the other {x, βx}, they have

2j1+1

ways altogether.

In summary of the three cases, The aim reaches at. �

On the basis of this lemma, by employing a result in §13.1, the

following theorem can be deduced.

Theorem 13.11 The number of pre-standard rooted pan-flowers

with vertex partition vector s = (s2, s3, · · ·) and its base involving m

missing vertices on an orientable surface of genus p, p ≥ 1, is

2m−δp,1+1

(
m+ 2p− 1

2p− 1

)(
s3

m

)
n!m

s!
, (13.28)

where s! =
∏

i≥2 si! = s2!s3! · · · and n+ 2 =
∑

i≥2 si.
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Proof From Lemma 13.18, this number is

2m−δp,1+1

(
m+ 2p− 1

2p− 1

)
τ1(j),

where j = (j1, j2, j3, · · ·) such that j1 +1 = m, j3 = s3−m and ji = si,

i 6= 3, i ≥ 2. Then from Theorem 13.2, we have

τ(j) =
(n′ − 1)!

j!
=

n!

(m− 1)!s2!(s3 −m)!s4! · · ·

=

(
s3

m

)
n!m

s!
,

where n = n′ − 1 =
∑

i≥1 ji − 1 =
∑

i≥2 si − 2. By substituting this

into the last, (13.28) is obtained. �

Let H̃psH(q; s) be the set of all pre-standard rooted pan-flowers

with vertex partition vector s = (s2, s3, · · ·) on a nonorientable surface

of genus q, s ≥ 0, but s 6= 0.

Lemma 13.19 For H̃psH(q; s), q > 0, s ≥ 0, but s 6= 0, we have

|H̃psH(q; s)| = 2m−δq,1+1

(
m+ q − 1

q − 1

)
|T1(j)|, (13.29)

where j = (m−1, s2, s3−m, s4, s5, · · ·) andm is the number of trivalent

vertices(i.e., missing vertices on its base).

Proof � Similarly to the proof of Lemma 13.18. However, an

attention should be paid to that the size of the base is q, q ≥ 1, instead

of 2p, p ≥ 1 and the order of automorphism group of the base is 2q

when q ≥ 2; 4 when q = 1. �

Similarly to Theorem 13.11, we have

Theorem 13.12 The number of pre-standard rooted pan-flowers

with vertex partition vector s = (s2, s3, · · ·) and its base involving m

missing vertices on a nonorientable surface of genus q, q ≥ 1, is

2m−δq,1+1

(
m+ q − 1

q − 1

)(
s3

m

)
n!m

s!
, (13.30)
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where n+ 2 =
∑

i≥2 si and s! =
∏

i≥2 si!.

Proof Similarly to the proof of Theorem 13.11, from Lemma

13.19 and Theorem 13.2, the theorem is done. �

For standard pan-flowers�let HsH be the set of all such maps.

From the definition, if the base map has m missing vertices, then it is

not possible on an orientable surface of genus greater then m/2, or on

a nonorientable surface of genus greater than m.

Lemma 13.20 Let HsH(p; s) be the set of all standard rooted

pan-flowers with vertex partition vector s = (s2, s3, · · ·) on an ori-

entable surface of genus p. If maps in HsH(p; s) have its base with

m ≥ 2p missing vertices, then we have

|HsH(p; s)| = 2m−δp,1+1

(
m− 1

2p− 1

)
|T1(j)|, (13.31)

where T1(j), as above, is the set of panted trees with vertex partition

vector j = (j1, j2, j3, · · ·) for j1 = m − 1, j3 = s3 −m, ji = si, i 6= 3,

i ≥ 2.

Proof For any H ∈ HsH(p; s), from the definitions of standard-

ness and pan-flowers, it is seen that there exists a planted tree in T1(j)

corresponding to H. Thus, it suffices to prove that any planted tree

in T = (X ,J ) ∈ T1(j) produces

2m−δp,1+1

(
m− 1

2p− 1

)

maps in HsH(p; s).

First, an attention should be paid to that maps in HsH(p; s) are

with their base of size 2p on an orientable surface of genus p. Since

the order of automorphism group of the base is 4p when p ≥ 2; 8 when

p = 1, the base has, respectively, 2 ways when p ≥ 2; 1 way to choose

its root.

Second, since the number of missing vertices on the base is m, T

must have m − 1 unrooted articulate vertices. Let them be incident

with (x1), · · ·, (xm−1). From the standardness again, there are m −
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1 intervals for choice in the linear order 〈(r), (x1), (x2), · · · , (xm−1)〉.
Thus, any 2p − 1 points insertion divides the linear order into 2p

nonempty segments. This has
(
m− 1

2p− 1

)

distinct ways.

Third, notice that each of the m articulate edges including the

root-edge in T has 2 choices, and hence

2m

distinct choices altogether.

In summary rom the three cases, the lemma is soon found. �

Based on this, we have

Theorem 13.13 The number of standard rooted pan-flowers

with vertex partition vector s = (s2, s3, · · ·) and their base map of m,

m ≥ 2p, unrooted vertices on an orientable surface Sp of genus p ≥ 1,

is

2m−δq,1+1

(
m− 1

2p− 1

)(
s3

m

)
n!m

s!
, (13.32)

where n+ 2 =
∑

i≥2 si.

Proof Similarly to the proof of Theorem 13.11. However, by

Lemma 13.20 instead of Lemma 13.8. �

At a look again for the nonorientable case.

Lemma 13.21 Let H̃sH(q; s) be the set of standard rooted pan-

flowers with vertex partition vector s = (s2, s3, · · ·) on a nonorientable

surface of genus q ≥ 1. If each map in H̃sH(q; s) has its base map of

m unrooted vertices, then we have

|H̃sH(q; s)| = 2m−δq,1+1

(
m− 1

q − 1

)
τ(j), (13.33)

where τ1(j) = |T1(j)|, j = (j1, j2, j3, · · ·), j1 = m − 1, j3 = s3 − m,

ji = si, i 6= 3, i ≥ 2.
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Proof Similarly to the proof of Lemma XII.2.3. However, what

an attention should be paid to is the base of size q instead of 2p for a

surface of genus q. �

Thus, we can also have

Theorem 13.14 The number of standard rooted pan-flowers

with vertex partition vector s = (s2, s3, · · ·) and their bases of m un-

rooted vertices on a nonorientable surface of genus q, q ≥ 1, is

2m−δq,1+1

(
m− 1

q − 1

)(
s3

m

)
n!m

s!
, (13.34)

where s ≥ 0, s 6= 0, m ≥ q ≥ 1 and n+ 2 =
∑

i≥2 si.

Proof Similarly to the proof of Theorem 13.13. However, by

Lemma 13.21 instead of by Lemma 13.20. �



Activities on Chapter XIII

XIII.7 Observations

O13.1 Observe the number of plane rooted trees of size n ≥ 0

given.

O13.2 Observe the number of outerplanar rooted maps of size

n ≥ 0 given.

O13.3 Observe the number of wintersweets of size n ≥ 0.

O13.4 To show a relationship between outer planar maps and

trees.

O13.5 Observe how to evaluate the number of plane rooted

trees with the number of articulate vertices m ≥ 2 and size n ≥ 1

given.

O13.6 Consider what relation have the enufunction with the

number of nonrooted vertices, nonrooted faces and the enufunction of

vertex partition and genus as parameters.

O13.7 Observe the number of rooted plane tree with root-

vertex valency and vertex partition.

O13.8 Observe the number of rooted plane trees with the num-

ber of articulate vertices and vertex partition of other vertices.

O13.9 Observe the difference between boundary maps and non-

boundary maps.

O13.10 observe the automorphism groups of a map and one of

its boundary map by .
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XIII.8 Exercises

E13.1 Determine the enufunction of planted trees with vertex

partition as parameters by establishing and solving a equation.

A wintersweet is a rooted map with the property that it becomes

a tree if missing circuits only at nonrooted terminal vertices of the

tree.

E13.2 Establish an equation satisfied by the vertex partition

function of Wintersweets and then try to solve the equation.

A rooted map is called unicyclic if it has only one circuit.

E13.3 Establish an equation satisfied by the vertex partition

function of unicyclic maps when the root is on a circuit and then try

to solve the equation.

E13.4 Establish an equation satisfied by the vertex partition

function of Halin rooted maps and then try to solve the equation.

E13.5 Establish an equation satisfied by the vertex partition

function of outerplanar rooted maps and then try to solve the equation.

E13.6 Establish an equation satisfied by the face partition func-

tion of outerplanar rooted maps when the root is not on the circuit

and then try to solve the equation.

E13.7 Establish an equation satisfied by the face partition func-

tion of planar rooted petal bundles and then try to solve the equation.

E13.8 Establish an equation satisfied by the face partition func-

tion of outerplanar rooted maps when the root is on the circuit and

then try to solve the equation.

E13.9 Establish an equation satisfied by the vertex partition

function of unicyclic maps when the root is not on a circuit and then

try to solve the equation.

E13.10 Establish an equation satisfied by the face partition

function of planar rooted supermaps of bouquets and then try to solve
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the equation.

E13.11 Establish an equation satisfied by the vertex partition

function of planar rooted maps with two vertex disjoint circuits and

then try to solve the equation.

XIII.9 Researches

R13.1 Determine the vertex partition function of general rooted

maps on the sphere.

R13.2 Determine the vertex partition function of general rooted

maps on all surfaces.

R13.3 Determine the vertex partition function of general Eu-

lerian rooted maps on all surfaces.

R13.4 Determine the vertex partition function of 2-edge con-

nected rooted maps on the sphere.

R13.5 Determine the vertex partition function of 2-edge con-

nected rooted maps on all surfaces.

R13.6 Determine the vertex partition function of nonseparable

rooted maps on the sphere.

R13.7 Determine the vertex partition function of nonseparable

rooted maps on all surfaces.

R13.8 Determine the vertex partition function of loopless rooted

maps on the sphere.

R13.9 Determine the vertex partition function of loopless rooted

maps on all surfaces.

R13.10 Determine the vertex partition function of rooted tri-

angulations on all surfaces.



Chapter XIV

Super Maps of a Graph

• A semi-automorphism of a graph is a bijection from its semiedge

set to itself generated by the binary group sticking on all edges

such that the partitions in correspondence.

• An automorphism of a graph is a bijection from the edge set to

itself such that the adjacency on edges in correspondence.

• The semi-automorphism group of a graph is different from its au-

tomorphism group if, and only if, a loop occurs.

• Nonisomorphic super rooted and unrooted maps of a graph can

be done from the embeddings of the graph via its automorphism

group or semi-automorphism group of the graph.

XIV.1 Semi-automorphisms on a graph

A pregraph is considered as a partition on the set of all semiedges

as shown in Chapter I. Let G = (X , δ; π) be a pregraph where X ,

δ and π are, respectively, the set of all semiedges, the permutation

determined by edges and the partition on X .

Two regraphs G1 = (X1, δ1; π1) and G2 = (X2, δ2; π2) are said to
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be seme-isomorphic if there is a bijection τ : X1 −→ X2 such that

X1
τ−−−−−−−−→ X2

γ1

y
yγ2

γ1(X1)
τγ1−−−−−−−−→ γ2(X2)

(14.1)

are commutative for γ = δ and π where τγ1
is induced from τ on

γ1(X1). The bijection τ is called a semi-automorphism between G1

and G2.

Example 14.1 Given two pregraphs G = (X , δ1; π1) where



X =

8∑

i=1

{xi(0), xi(1)}, δ1 =
8∏

i=1

(xi(0), xi(1));

π1 = {Xi| 1 ≤ i ≤ 8}
with




X1 = {x1(0), x6(0), x6(1)}, X2 = {x1(1), x2(0), x3(0)},
X3 = {x2(1), x5(0), x7(0)}, X4 = {x4(0), x5(1), x7(1), x8(0)},
X5 = {x4(1), x5(1), x8(1)}

and H = (Y , δ2; π2) where



Y =

8∑

i=1

{yi(0), yi(1)}, δ2 =

8∏

i=1

(yi(0), yi(1));

π2 = {Yi| 1 ≤ i ≤ 8}
with






Y1 = {y4(0), y6(0), y7(0)}, Y2 = {y5(0), y6(1), y7(1), y8(0)},
Y3 = {y3(0), y5(1), y8(1)}, Y4 = {y2(0), y3(1), y4(1)},
Y5 = {y1(0), y1(1), y2(1)}.

Let τ : X −→ Y be a bijection with (14.1) commutative for γi = δi,

i = 1 and 2, as
(

x1 x2 x3 x4 x5 x6 x7 x8

δ2y2 δ2y4 y3 y8 y6 y1 y7 y5

)
.
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Because of




τX1 = {τx1(0), τx6(0), τx6(1)} = {y2(1), y1(0), y1(1)} = Y5,

τX2 = {τx1(1), τx2(0), τx3(0)} = {y2(0), y4(1), y3(1)} = Y4,

τX3 = {τx2(1), τx5(0), τx7(0)} = {y4(0), y6(0), y7(0)} = Y1,

τX4 = τ{x4(0), x5(1), x7(1), x8(0)}
= {y6(1), y7(1), y5(0), y8(0)} = Y2,

τX5 = {τx3(1), τx4(1), τx8(1)} = {y3(0), y8(1), y5(1)} = Y3,

we have τπ1
π1 = π2τ , i.e., (14.1) is commutative for γi = πi, i = 1 and

2 . Therefore, τ is a semi-isomorphism between G and H.

Lemma 14.1 If two pregraphs G and H are semi-isomorphic,

then they have the same number of connected components provided

omission of isolated vertex.

Proof By contradiction. Suppose G and H are semi-isomorphic

with a semi-isomorphism τ : G → H but G = G1 + G2 with two

components: G1 and G2 and H, a component itself. From the the

commutativity of (14.1), H has two components as well. This contra-

dicts to the assumption that H is a component itself. �

If G = H, then a semi-isomorphism between G and H is called

a semi-automorphism of G. Lemma 14.1 enables us to discuss semi-

automorphism of only a graph instead of a pregraph without loss gen-

erality.

Lemma 14.1 allows us to consider only graphs instead of pre-

graphs for semi-automorphisms.

Moreover for the sake of brevity, only graphs of order greater

than 4 are considered as the general case in what follows.

Theorem 14.1 The set of all semi-automorphisms of a graph

forms a group.

Proof Because of all semi-automorphisms as permutations act-

ing on the set of semi-edges, the commutativity leads to the closedness

in the set of all semi-automorphisms under composition with the as-
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sociate law. Moreover, easy to check that the identity permutation is

a semi-automorphisms and the inverse of a semi-automorphism is still

a semi-automorphism. This theorem holds. �

This group in Theorem 14.1 is called the semi-automorphism

group of the graph.

Example 14.2 In Example 14.1, the pregraph G = (X , δ1; π1)

is a graph. It is easily checked that

τ1 =

(
x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 δ1x6 x7 x8

)
= (x6(0), x6(1))

is a semi-automorphism on G. It can also be checked that the semi-

automorphism group of G is Authf(G) = {τi|0 ≤ i ≤ 11} where





τ0 = 1, the identity;

τ1 = (x5, x7);

τ2 = (x4, x8);

τ3 = (x5, x7)(x4, x8);

τ4 = (x2, x3)(x4, δ1x5)(x7, δ1x8);

τ5 = (x2, x3)(x5, δ1x8)(x7, δ1x4);

τi = (x6(0), x6(1))τi−6, 6 ≤ i ≤ 11.

XIV.2 Automorphisms on a graph

Now, let us be back to the usual form of a graph G = (V,E)

where V and E are, respectively, the vertex and edge sets. In fact, if

Xi as described in §XIV.1 is denoted by vi, then V = {v0|i = 0.1.2. · · ·}
and E = {xj|j = 0, 1, 2, · · ·}.

An edge-isomorphism of two pregraphs Gi = (Vi, Ei), i = 1 and
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2, is defined as a bijection τ : E1 −→ E2 with diagram

E1
τ−−−−−−−−→ E2

η1

y
yη2

V1

τη1−−−−−−−−→ V2

(14.2)

commutative where ηi, i = 1 and 2, are seen a mapping 2Ei −→ Vi.

When G = G1 = G2, an edge-isomorphism between G1 and G2

becomes an edge-automorphism on G.

Lemma 14.2 If two pregraphs G and H are edge-isomorphic,

then they have the same number of components provided omission of

isolated vertex.

Proof Similar to the proof of Lemma 14.1. �

This lemma enables us to discuss only graphs instead of pre-

graphs for edge-isomorphisms or edge-automorphisms.

Theorem 14.2 All edge-automorphisms of a graph G forms a

group, denoted by Autee(G).

Proof Similar to the proof of Theorem 14.1. �

Example 14.3 The graphG In Example 14.2 has its Autee(G) =

{τi|0 ≤ i ≤ 5} where




τ0 = 1, the identity;

τ1 = (x5, x7);

τ2 = (x4, x8);

τ3 = (x5, x7)(x4, x8);

τ4 = (x2, x3)(x4, x5)(x7, x8);

τ5 = (x2, x3)(x5, x8)(x7, x4).

An isomorphism, or in the sense above vertex-isomorphism, be-

tween two pregraphsGi = (Vi, Ei), i = 1 and 2, is defined as a bijection
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τ : V1 −→ V2 which satisfies that the diagram

V1
τ−−−−−−−−→ V2

ξ1

y
yξ2

E1 ⊆ V1 × V1

τξ1−−−−−−−−→ E2 ⊆ V2 × V2

(14.3)

is commutative where ξi(vi) = Eivi
for vi ∈ Vi, i = 1 and 2.

When G = G1 = G2, a isomorphism between G1 and G2 is called

an automorphism of G.

Lemma 14.3 If two pregraphs G and H are isomorphic, then

they have the same number of components.

Proof Similar to the proof of Lemma 14.2. �

This lemma enables us to discuss only graphs instead of pre-

graphs for isomorphisms or automorphisms.

Theorem 14.3 all automorphisms of a graph G form a group,

denoted by Aut(G).

Proof Similar to the proof of Theorem 14.2. �

The group mentioned in this theorem is called the automorphism

group of G.

Example 14.4 The graphG In Example 14.2 has its Aut(G) =

{τi|0 ≤ i ≤ 1} where
{
τ0 = 1, the identity;

τ1 = (X3, X5).

Because of no influence on the automorphism group of a graph when

deleting loops, or replacing multiedge by a single edge, τi, i = 1, 2 and

3 in Example 14.3 are to the identity τ0 and τ4 and τ5 in Example 14.3

to τ1 here.
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XIV.3 Relationships

Fundamental relationships among those groups mentioned in the

last section are then explained for the coming usages.

Theorem 14.4 Authf(G) ∼ Autee(G) if, and only if, G is loop-

less.

Proof Necessity. By contradiction. Suppose Authf(G) ∼ Autee(G)

with an edge-automorphism τ but G has a loop denoted by z =

(z(0), z(1)). Assume τ(l) = l without loss of generality. However,

both the semi-automorphisms: τ1 and τ2 corresponding to τ are found

as

τ1(x) =





τ(x), when x 6= z;

z(0), when x = z(0);

z(1), when x = z(1)

and

τ2(x) =





τ(x), when x 6= z;

z(0), when x = z(1);

z(1), when x = z(0).

This implies Authf(G) 6∼ Autee(G), a contradiction.

Sufficiency. Because of no loop in G, the symmetry between two

ends of a link leads to Authf(G) ∼ Autee(G). �

From the proof of Theorem 14.4, the following corollary can be

done.

Corollary 14.1 Let l be the number of loops in G, then

Authf(G) ∼ Sl
2 ×Autee(G)

where S2 is the symmetric group of order 2.

Proof Because of exact two semi-automorphisms deduced from

an edge-automorphism and a loop, the conclusion is done. �

From this corollary, we can soon find

authf(G) = 2l × autee(G). (14.4)
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Because of no contribution of a loop to the automorphism group

of G, the graph G has its automorphism group Aut(G) always for that

obtained by deleting all loops on G.

Theorem 14.5 Autee(G) ∼ Aut(G) if, and only if, G is simple.

Proof Because of no contribution of either loops or multiedges

to the automorphism group Aut(G), the theorem holds. �

In virtue of the proof of Theorem 12.5, a graph with multi-edges

G has its automorphism group Aut(G) always for its underlying simple

graph, i.e., one obtained by substituting a link for each multi-edge on

G.

Lemma 14.4 Let G be a graph with i-edges of number mi,

i ≥ 2. Then, its edge-automorphism group

Autee(G) =
∑

i≥2

miSi ×Aut(G)

where Si is the symmetric group of order i, i ≥ 2.

Proof In virtue of Sm as the edge-automorphism group of link

bundle Pm of size m, m ≥ 2, the lemma is done. �

On the basis of Lemma 14.4, we can obtain

Corollary 14.2 Let l and mi be, respectively, the number of

loops and i-edges, l ≥ 1, i ≥ 2 in G, then

authf(G) = 2lnmeaut(G) (14.5)

where

nme ≡ nme(G) =
∑

i≥1

i!mi

which is called the multiplicity of G.

Proof By considering Corollary 14.1, the conclusion is done. �
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XIV.4 Nonisomorphic super maps

For map M = (Xα,δ,P), its automorphisms are discussed with

asymmetrization in Chapter VIII. LetM(G) be the set of all noniso-

morphic maps with underlying graph G.

Lemma 14.5 For an automorphism ζ on mapM = (Xα,δ(X),P),

we have exhaustively

ζ|δ(X) ∈ Authf(G) and ζα|δ(X) ∈ Authf(G)

where G = G(M), the under graph of M , and δ(X) = X + δX.

Proof Because Xα,δ(X) = (X + δX) + (αX + αδX) = δ(X) +

αδ(X), by Conjugate Axiom each ζ ∈ Aut(M) has exhaustively two

possibilities: ζ|δ(X) ∈ Authf(G) and ζα|δ(X) ∈ Authf(G). �

On the basis of Lemma 14.5, we can find

Theorem 14.6 Let Eg(G) be the set of all embeddings of a

graph G on a surface of genus g(orientable or nonorientable), then the

number of nonisomorphic maps in Eg(G) is

mg(G) =
1

2× authf(G)

∑

τ∈Authf (G)

|Φ(τ)| (14.6)

where Φ(τ) = {M ∈ Eg(G)|τ(M) = M or τα(M) = M}.
Proof Suppose X1, X2, · · ·, Xm are all the equivalent classes of

X = Eg(G) under the group Authf(G)× 〈α〉, then m = mg(G). Let

S(x) = {τ ∈ Authf(G)× 〈α〉| τ(x) = x}
be the stabilizer at x, a subgroup of Authf(G)× 〈α〉. Because

|Authf(G)× 〈α〉| = |S(xi)||Xi|,
xi ∈ Xi, i = 1, 2, · · · , m, we have

m|Authf(G)× 〈α〉| =
m∑

i=1

|S(xi)||Xi|. (1)
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By observing |S(xi)| independent of the choice of xi in the class Xi,

the right hand side of (1) is

∑

x∈X
|S(x)| =

∑

x∈X

∑

τ∈S(x)

1

=
∑

τ∈Authf(G)×〈α〉

∑

x=τ(x)

1

=
∑

τ∈Authf(G)×〈α〉
|Φ(τ)|.

(2)

From (1) and (2), the theorem can be soon derived. �

The theorem above shows how to find nonisomorphic super maps

of a graph when the semi-automorphism group of the graph is known.

Theorem 14.7 Let G be a graph with l loops and mi multi-

edges of multiplier i and Eg(G), the set of all embeddings of G on a

surface of genus g(orientable or nonorientable), then the number of

nonisomorphic maps in Eg(G) is

mg(G) =
1

2l+1nmeaut(G)

∑

τ∈Authf (G)

|Φ(τ)| (14.7)

where Φ(τ) = {M ∈ Eg(G)|τ(M) = M or τα(M) = M} and nme is

the multiplicity of G.

Proof On the basis of Theorem 14.6, the conclusion is soon de-

rived from Corollary 14.2. �

Corollary 14.3 Let G be a simple graph. Then, the number

of nonisomorphic maps in Eg(G) is

mg(G) =
1

2aut(G)

∑

τ∈Authf (G)

|Φ(τ)| (14.8)

where Φ(τ) = {M ∈ Eg(G)|τ(M) = M or τα(M) = M} and nme is

the multiplicity of G.
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Proof A direct result of Theorem 14.7 via considering G with

neither loop nor multi-edge. �

XIV.5 Via rooted super maps

Another approach for determining nonisomorphic super maps of

a graph is via rooted ones whenever its distinct embeddings are known.

Theorem 14.8 For a graph G, letRg(G) and Eg(G) be, respec-

tively, the sets of all nonisomorphic rooted super maps and all distinct

embeddings of G with size ǫ(G) on a surface of genus g(orientable or

nonorientable). Then,

|Rg(G)| = 2ǫ(G)

authf(G)
|Eg(G)|. (14.9)

Proof Let Mg(G) be the set of all nonisomorphic super maps

of G. By (11.3), we have

|Rg(G)| =
∑

M∈Mg(G)

4ǫ(G)

aut(M)

i.e.,
4ǫ(G)

2× authf(G)

∑

M∈Mg(G)

2× authf(G)

aut(M)
.

By considering that 2× authf(G) = |Authf(G)× 〈α〉| is
|(Authf(G)× 〈α〉)|M| × |Authf(G)× 〈α〉(M)|

and (Authf(G)×〈α〉)|M = Aut(M) from Lemma 14.5, we have |Rg(G)|
is

4ǫ(G)

|Authf(G)× 〈α〉|
∑

M∈Mg(G)

|Authf(G)× 〈α〉(M)|

=
2ǫ(G)

authf(G)
|Eg(G)|.
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This is (14.9). �

This theorem enables us to determine all the super rooted maps

of a graph when the semi-automorphism group of the graph is known.

Theorem 14.9 For a graph G with l, l ≥ 1, loops and mi

multi-edges of multiplier i, i ≥ 2, let Rg(G) and Eg(G) be, respec-

tively, the sets of all nonisomorphic rooted super maps and all distinct

embeddings of G with size ǫ(G) on a surface of genus g(orientable or

nonorientable). Then,

|Rg(G)| = ǫ(G)

2l−1nmeaut(G)
|Eg(G)| (14.10)

where nme is the multiplicity of G.

Proof A direct result of Theorem 14.8 from Lemma 12.2. �

Corollary 14.4 For a simple graph G, let Rg(G) and Eg(G)

be, respectively, the sets of all nonisomorphic rooted super maps and

all distinct embeddings of G with size ǫ(G) on a surface of genus

g(orientable or nonorientable). Then,

|Rg(G)| = 2ǫ(G)

aut(G)
|Eg(G)|. (14.11)

Proof The case of l = 0 and mi = 0, i ≥ 2, of Theorem 14.9. �

Corollary 14.5 The number of rooted super maps of a simple

graph G with ni vertices of valency i, i ≥ 1, on orientable surfaces is

2ǫ

aut(G)

∏

i≥2

((i− 1)!)ni (14.12)

where ǫ is the size of G.

Proof Because of the number of distinct embeddings on ori-

entable surfaces ∑

g≥0

Eg(G) =
∏

i≥2

((i− 1)!)ni (14.13)
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known, Corollary 14.4 leads to the conclusion. �

Corollary 14.6 The number of rooted super maps of bouquet

Bm, m ≥ 1, on orientable surfaces is

(2m)!

2mm!
. (14.14)

Proof Because of the number of all distinct embeddings of Bm

on orientable surfaces (2m1)! and the order of its semi-automorphism

group 2mm! known, the conclusion is deduced from Theorem 14.8. �

In virtue of petal bundles all super maps of bouquets, (14.14) is

in coincidence with (9.9).

The number of nonisomorphic super maps of a graph can also be

derived from rooted ones.

Theorem 14.10 For a given graph G, let Ek(G) be the set of all

its nonequivalent embeddings with automorphism group order k. Then

we have the number of all nonisomorphic unrooted supper maps of G

is

nur(G) =
1

2l(G)+1aut(G)
(
∑

i|4ǫ
1≤i≤4ǫ

i|Ei(G)|) (14.15)

where ǫ = ǫ(G) is the size of G and l(G) is the number of loops in G.

Proof On the basis of Theorem 14.8, we have

|Ri(G)| = 2ǫ(G)

aut1/2(G)
|Ei(G)|

where Ri(G) is rooted super maps of G with automorphism group

order i. By Theorem 14.4 and Corollary 14.1,

|Ri(G)| = ǫ(G)

2l(G)−1aut(G)
|Ei(G)|.

Because of 4ǫ(G)/i rooted maps produced by an unrooted map
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in Ri(G) as known in the proof of Theorem 11.1, we have

i

4ǫ(G)
|Ri(G)| = i

4ǫ(G)

ǫ(G)

2l(G)−1aut(G)
|Ei(G)|

=
i

2l(G)+1aut(G)
|Ei(G)|.

Overall possible i|4ǫ(G) is the conclusion of the theorem. �

Further, this theorem can be generalized for any types a set of

graphs.

Theorem 14.11 For a set of graphs G, the number of noniso-

morphic unrooted super maps of all graphs in G is

nur(G) =
∑

G∈G

1

2l(G)+1aut(G)

∑

i|4ǫ(G)
1≤i≤4ǫ(G)

i|Ei(G)|. (14.16)

Proof From Theorem 14.10 overall G ∈ G, the theorem is soon

done. �

For a given genus g of an orientable or nonorientable surface, let

Ek(G; g) be the set of all nonequivalent embeddings of a graph G on

the surface with automorphism group order k.

Theorem 14.12 For a given genus g of an orientable or nonori-

entable surface, the number of all nonisomorphic unrooted supper maps

of a G on the surface is

nur(G; g) =
1

2l(G)+1aut(G)
(
∑

i|4ǫ
1≤i≤4ǫ

i|Ei(G; g)|) (14.17)

where ǫ = ǫ(G) is the size of G.

Proof By classification of maps and embeddings as well with

genus, from Theorem 14.11 the theorem is done. �

Furthermore, this theorem can also generalized for any types a

set of graphs.
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Theorem 14.13 For a given genus g of an orientable or nonori-

entable surface, the number of nonisomorphic unrooted super maps of

all graphs in a set of graphs GP with a given property P is

nur(G; g) =
∑

G∈GP

1

4ǫ(G)

∑

i|4ǫ(G)
1≤i≤4ǫ(G)

i|Ei(G; g)|. (14.18)

Proof A particular case of Theorem 14.11. �



Activities on Chapter XIV

XIV.6 Observations

Let Bn be the bouquet of n loops for n ≥ 1.

O14.1 Find the semi-automorphism group of Bn for n ≥ 1.

O14.2 Find the edge-automorphism group of Bn for n ≥ 1.

O14.3 Find the automorphism group of Bn for n ≥ 1.

Let Dm be the dipole which is of order two and size m for m ≥ 1

without loop.

O14.4 Show Authf(Dm) ∼ Autee(Dm) ∼ Sm where Sm is the

symmetric group of order m for m ≥ 1.

O14.5 Find a condition for Aut(Dm) ∼ Authf(Dm), m ≥ 1.

O14.6 Determine the number of super maps of K4.

O14.7 Determine the number of rooted super maps of K5.

O14.8 Determine the number of super maps of K3,3 rooted and

unrooted.

O14.9 Determine the number of super maps of K4,4 rooted and

unrooted.

O14.10 Suppose Al,p be the number of distinct embeddings of

Bl, l ≥ 1, on the orientable surface of genus p ≥ 0, determine the

number of rooted and unrooted super maps of Bl on the orientable
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surface of genus p ≥ 0.

XIV.7 Exercises

E14.1 Show that the number of rooted super maps of Kn, the

complete graph of order n, n ≥ 4, is

(n− 2)n−1.

E14.2 Show that the number of rooted super maps of Km,n,

the complete bipartite graph of order m+ n, m,n ≥ 3, is

2(m− 1)!n−1(n− 1)!m−1.

E14.3 Let Tn be the set of non-isomorphic trees of order n,

n ≥ 2. Show that

∑

T∈Tn

∏
i≥1(i− 1)!ni

|Aut(T)| =
(2n− 1)!

n!(n+ 1)!
,

the number of rooted plane trees of order n =
∑

i≥1 ni, where ni is the

number of vertices of valency i, i ≥ 1.

E14.4 Determine the distribution of rooted super maps of the

complete graph Kn, n ≥ 4, by automorphism group orders.

E14.5 Determine the distribution of rooted super maps of the

complete bipartite graphs K(m,n), m,n ≥ 3, by automorphism group

orders.

E14.6 Determine the distribution of rooted super maps of su-

per cube Qn, n ≥ 4, by automorphism group orders.

E14.7 Determine the distribution of rooted super maps of the

complete tripartite graph Kl, m, n, l, m, n ≥ 2, by automorphism

group orders.

E14.8 Determine the distribution of rooted super maps of the

complete equi-bipartite Kn,n, n ≥ 3, by automorphism group orders.
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E14.9 Determine the distribution of rooted super maps of the

complete equi-tripartite K(n, n, n), n ≥ 2, by automorphism group

orders.

E14.10 Determine the distribution of rooted super maps of the

complete quadpartite graph Kk,l,m,n, k, l,m, n ≥ 2, by automorphism

group orders.

E14.11 Determine the distribution of rooted super maps of the

complete equi-quadpartite graph Kn,n,n,n, n ≥ 2, by automorphism

group orders.

E14.12 Determine the distribution of rooted super maps of su-

per wheel Wn, n ≥ 4, by automorphism group orders.

XIV.8 Researches

R14.1 For given integer n ≥ 1, determine the distribution of

outer planar graphs of order n by the order of their semi-automorphism

groups.

R14.2 For given integer n ≥ 1, determine the distribution of

Eulerian planar graphs of order n by the order of their semi-automorphism

groups.

R14.3 For given integer n ≥ 1, determine the distribution of

general planar graphs of order n by the order of their semi-automorphism

groups.

R14.4 For given integer n ≥ 1, determine the distribution of

nonseparable planar graphs of order n by the order of their semi-

automorphism groups.

R14.5 For given integer n ≥ 1, determine the distribution of

cubic planar graphs of order n by the order of their semi-automorphism

groups.

R14.6 For given integer n ≥ 1, determine the distribution
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of 4-regular planar graphs of order n by the order of their semi-

automorphism groups.

R14.7 For given integer n ≥ 1, determine the distribution of

nonseparable graphs of order n by the order of their semi-automorphism

groups.

R14.8 For given integer n ≥ 1, determine the distribution of

general graphs of order n by the order of their semi-automorphism

groups.

R14.9 For given integer n ≥ 1, determine the distribution of

Elerian graphs of order n by the order of their semi-automorphism

groups.

R14.10 For given integer n ≥ 1, determine the distribution of

general graphs of order n by the order of their semi-automorphism

groups.

R14.11 For given integer n ≥ 1, determine the distribution

of cubic graphs of order n by the order of their semi-automorphism

groups.

R14.12 For given integer n ≥ 1, determine the distribution of

4-regular graphs of order n by the order of their semi-automorphism

groups.

R14.13 For given integer n ≥ 1, determine the distribution of

5-regular graphs of order n by the order of their semi-automorphism

groups.



Chapter XV

Equations with Partitions

• The meson functional is used for describing equations discovered

from census of maps via vertex, or face, partition as parameters.

• Functional equations are extracted form the census of general maps

and nonseparable maps with the root-vertex valency and the vertex

partition vector on the sphere.

• By observing maps without cut-edge on general surfaces, a func-

tional equation has also be found with vertex partition.

• Functional equations satisfied by the vertex partition functions of

Eulerian maps on the sphere and general surfaces are derived from

suitable decompositions of related sets of maps.

• All these equations can be shown to be well definedness. However,

they are not yet solved in any way.

XV.1 The meson functional

Let f(y) ∈ R{y}, where y = (y1, y2, · · ·), be a function, and

V (f, yi) ≥ 0, i = 1, 2, · · · .

A transformation is established as

∫

y

: yi 7→ yi, i = 1, , 2, · · ·,
convinced y0 = 1 7→ y0.
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Since

∫

y

is a function from the function space F with basis

{1, y, y2, · · ·} to the vector space V with basis {y0, y1, y2, · · ·}, it is

called the meson functional. i.e., the Blissard operator. For any

vi =
∑

j≥0

aijy
j , i = 1, 2,

it is easy to check that
∫

y

(v1 + v2) =
∑

j≥0

(a1j + a2j)

∫

y

yj

=
∑

j≥0

a1jyj +
∑

j≥0

a2jyj

=

∫

y

v1 +

∫

y

v2.

Hence, the meson functional is linear.

The inverse of the meson functional

∫

y

is denoted by

∫ −1

y

: yj 7→

yj, i = 1, 2, · · ·, convinced

∫ −1

y

y0 = 1, or simply y0 = 1. However, 1

is seen as a vector in V .

Two linear operators called left an dright projection, denoted

by, respectively, ℑy and ℜy, are defined in the space V as: let v =∑
j≥0 ajyj ∈ V , then





ℑyv =
∑

j≥0

(j + 1)aj+1yj;

ℜyv =
∑

j≥1

1

j
aj−1yj.

(15.1)

In other words, if yi is considered as the vector with all entries 0 but

only the i-th 1, then the matrices corresponding to ℑy and ℜy are,

respectively, as

L = (lT1 , l
T
2 , l

T
3 , · · ·) (15.2a)
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where

lj =

{
0, when j = 1;

(j − 1)1j−1, when j ≥ 2

for 1j being the infinite vector of all entries 0 but only the (j − 1)-st

1 and

RT = (rT
1 , r

T
2 , r

T
3 , · · ·) (15.2b)

where

rj =

{
0, when j = 1;

1

j − 1
1j−1, when j ≥ 2

for the super index ‘T’ as the transpose.

Easy to check that

LR =

(
I 0T

0 0

)
, RL =

(
0 0
0T I

)
, (15.3)

where I is the identity.

Theorem 15.1 For v = v(y0, y1, · · ·) ∈ V , let f(y) =

∫ −1

y

v,

then
d

dy
f(y) =

∫ −1

y

ℑyv;

∫
f(y)dy =

∫ −1

y

ℜyv. (15.4)

Proof By equating the coefficients of terms in same type on the

two sides, the theorem is done. �

If f(x, y) is a function with two types of unknowns, and assume

f(x, y) ∈ V(x, y), a bilinear space, then it is easily checked that

∫ −1

x

∫ −1

y

f(x, y) =

∫ −1

y

∫ −1

x

f(x, y). (15.5)

Denoted by F (x, y) the function in (15.5). Conversely, for F (x, y)

∈ R(x, y), we have

f(x, y) =

∫

x

∫

y

F (x, y) (15.6)

because of interchangeable between

∫

x

and

∫

y

.
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Let f(z) ∈ R{z}. The following two operators on f as

δx,yf =
f(x)− f(y)

x− y , (15.7)

and

∂x,yf =
yf(x)− xf(y)

x− y . (15.8)

are, respectively, called the (x, y)-difference and 〈x, y〉-difference of f

with respect to z.

Lemma 15.1 For any function f(z) ∈ R{x}, let f = f(z),

then

∂x,y(zf) = xyδx,yf. (15.9)

Proof Because of the linearity of the two operators ∂x,y and δx,y,

this enables us only to discuss f(z) = zn, n > 0. Then, it is seen

∂x,yzf = ∂x,yz
n+1

=
yxn+1 − xyn+1

x− y
= xy

xn − yn

x− y
= xyδx,yz

n

= xyδx,yf.

This is what we want to prove. �

Theorem 15.2 For any f ∈ R{z}, we have

x2y2δ2
x2,y2(zf)− ∂2

x2,y2(zf) = x2y2δx2,y2(zf 2). (15.10)

Proof From (15.7) and (15.8), the left hand side of (15.10) is

x2y2((x2f(x2)− y2f(y2))2 − x2y2(f(x2)− f(y2))2)

x2 − y2

=
x2y2(x2f 2(x2)− y2f 2(y2))

x2 − y2
.

From (15.7), this is the right hand side of (15.10). �
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For a set of maps A, let

fA(x, y) =
∑

A∈A
xm(A)yn(A) (15.11)

where m(A) and n(A) are, respectively, the invariant parameter and

vector on A. Let FA(x, y) be such a function of two unknowns that

fA(x, y) =

∫

y

FA(x, y). (15.12)

The powers of x and y in FA(x, y) are, respectively, called the

first parameter and the second parameter.

Theorem 15.3 Let S and T be two sets of maps. If there is a

mapping λ(T ) = {S1, S2, · · · , Sm(T )+1} such that Si and {i,m(T )+2−
i} are with a 1–1 correspondence from T to S for any T ∈ T , where i

and m(T ) + 2 − i are the contributions to, respectively, the first and

the second parameters, i = 1, 2, · · · , m(T ) + 1, with the condition as

S =
∑

T∈T
〈(T ),

then

FS(x, y) = xyδx,y(zfT ) (15.13)

where fT = fT (z) = fT (z, y).

Proof From the definition of λ, we have

FS(x, y) =
∑

T∈T

m(T )+1∑

i=1

xiym(T )−i+2yn(T )

= xy
∑

T∈T

xm(T )+1 − ym(T )+1

x− y yn(T )

= xyδx,y(zfT ).

This is (15.13). �

Theorem 15.4 Let S and T be two sets of maps. If there exists

a mapping λ(T ) = {S1, S2, · · · , Sm(T )−1} such that Si and {i,m(T )−i}
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are in a 1–1 correspondence for T ∈ T , where i and m(T ) + 2− i are

the contributions to, respectively, the first and the second parameters,

i = 1, 2, · · · , m(T )− 1, with the condition

S =
∑

T∈T
〈(T ),

then

FS(x, y) = ∂x,y(fT ) (15.14)

where fT = fT (z) = fT (z, y).

Proof From the definition of λ, we have

FS(x, y) =
∑

T∈T

m(T )−1∑

i=1

xiym(T )−iyn(T )

= xy
∑

T∈T

yxm(T ) − xym(T )

x− y yn(T )

= ∂x,y(fT ).

This is (15.14). �

XV.2 General maps on the sphere

A map is said to be general if both loops and multi-edges are

allowed. Of course, the vertex map ϑ is also treated as degenerate. Let

Mgep be the set of all rooted general planar maps. For any M ∈Mgep,

let a = er(M) be the root-edge. Then,Mgep can be divided into three

classes: Mgep0
,Mgep1

, andMgep2
, i.e.,

Mgep =Mgep0
+Mgep1

+Mgep2
(15.15)

such thatMgep0
consists of a single map ϑ,

Mgep1
= {M |∀M ∈Mgep, a is a loop}.

Of course,

Mgep2
= {M |∀M ∈Mgep, a is a link}
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in its own right.

Lemma 15.2 Let M〈gep〉1 = {M − a|∀M ∈ Mgep1
}. Then, we

have

M〈gep〉1 =Mgep

⊙Mgep (15.16)

where ⊙ is the 1-production as defined in §2.1.

Proof For a map M ∈ M〈gep〉1, because there is a map M̃ ∈
M〈gep〉1, such that M = M̃ − ã, ã = er(M̃), the root-edge of M̃ , by

considering the root-edge ã as a loop we see that M = M1+̇M2, pro-

vided M1 ∩M2 = o, the common root-vertex of M and M̃ . Since M1

and M2 are allowed to be any maps inMgep including the vertex map

ϑ, this implies that M ∈Mgep ⊙Mgep.

Conversely, for any M ∈ Mgep ⊙Mgep, since M = M1+̇M2, M1,

M2 ∈ Mgep, we may always construct a map M̃ by adding a loop ã

at the common vertex of M1 and M2 as the root-edge of M̃ such that

M1 and M2 are in different domains of the loop. Of course, M̃ is a

general map. Because the root-edge of M̃ is a loop added, M̃ ∈Mgep1
.

However, it is easily seen that M = M̃ − ã. Therefore, M ∈M〈gep〉1.

In consequence, the lemma is proved. �

For Mgep2
, because the root-edges are all links we consider the

setM(gep)2 = {M •a|∀M ∈Mgep2
}, a = er(M), the root-edge as usual.

The smallest map in Mgep2
is the link map L = (Kr, (r)(αβr)) and

it is seen that L • a = ϑ. Thus, ϑ ∈ M(gep)2
. For any M ∈ Mgep2

,

because the root-edge of M is not a loop we know that M • a ∈
Mgep. Conversely, for any M ∈Mgep we may always construct a map

M̃ ∈ Mgep2
by splitting the root-vertex of M̃ into two vertices with

a new edge ã as the root-edge connecting them. This implies that

M̃ • ã = M ∈M(gep)2
. Therefore we have

M(gep)2
=Mgep. (15.17)
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Lemma 15.3 ForMgep2
we have

Mgep2
=

∑

M∈Mgep

{∇iM | 0 ≤ i ≤ m(M)} (15.18)

where m(M) is the valency of the root-vertex of M and ∇i is the

operator defined in §7.1.

Proof For any M ∈Mgep2
, because the root-edge a is a link, we

may assume a = (o1, o2) such that

o1 = (r, S) and o2 = (αβr, T ).

Let M̃ be the map obtained by contracting the root-edge a into a

vertex õ = (T, S) as the root-vertex of M̃ . It is easily checked that

M̃ ∈Mgep from (15.17) and that

M = ∇|S|M̃, 0 ≤ |S| ≤ m(M̃)

where m(M̃) = |S| + |T |, and |Z|, Z = S or T , stands for the cardi-

nality of Z. That implies M is a member of the set on the right hand

side of (15.18).

Conversely, for any M in the set on the right, because there

exist a map M̃ ∈ Mgep and an integer i, 0 ≤ i ≤ m(M̃), such that

M = ∇iM̃ , we may soon find that M ∈Mgep2
by considering that the

root-edge of M is always a link and that M ∈ Mgep as well. Thus,

M ∈Mgep2
.

Therefore the lemma follows. �

From the two Lemmas above we are now allowed to determine

the contributions ofMgepi
, i = 0, 1, 2, to the enufunction

gMgep(x, y) =
∑

M∈Mgep

xm(M)yn(M) (15.19)

where n(M) = (n1(M), n2(M), · · · , ni(M), · · ·), ni(m) is the number

of vertices of valency i in M and m(M), the valency of the root-vertex

of M .
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First, since ϑ has neither non-rooted vertex nor edge we soon see

that

gMgep0
= 1. (15.20)

Then, by Lemma 15.3,

gMgep1
= x2g2 (15.21)

where g = gMgep(x, y) defined by (15.19).

Further, from Lemma 15.3

gMgep2
=

∫

y

∑

M∈Mgep




m(M)+1∑

i=1

xiym(M)−i+2


 yn(M).

By Theorem 15.3,

gMgep2
= x

∫

y

(yδx,y(zg)). (15.22)

Theorem 15.5 The enufunction g defined by (15..5) satisfies

the following functional equation:

g = 1 + x2g2 + x

∫

y

(yδx,y(zg)). (15.23)

Proof According to (15.15), from (15.20–22) the theorem is soon

obtained. �

XV.3 Nonseparable maps on the sphere

LetMns be the set of all rooted nonseparable planar maps with

the convention that the loop map L1 = (Kr, (r, αβr)) is included but

the link map L = (Kr, (r)(αβr)) is not for convenience.

Then,Mns is divided into two partsMns0 andMns1, i.e.,

Mns =Mns0 +Mns1 (15.24)

such thatMns0 consists of only the loop map L1.
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Lemma 15.4 A map M ∈ Mns, M 6= L1 if, and only if, its

dual M∗ ∈Mns.

Proof By contradiction. Assume M = (Xα,β,P) ∈ Mns, M 6=
L1 and its dual M∗ = (Xβ,α,Pαβ) 6∈ Mns. Let

v∗ = (x,Pαβx, · · · , (Pαβ)mx)

be a cut-vertex of M∗. Then we have a face f ∗ = (x,Px, · · · ,Pnx)

on M∗ such that there exists an integer j, 1 ≤ j ≤ n, on f ∗ satisfying

Pjx = (Pαβ)ix for some i, 1 ≤ i ≤ m, i.e., v∗x = v∗Pjx = v∗. However,

f ∗ is a vertex of M which has the face v∗ having the symmetry and

hence f ∗ is a cut-vertex of M . A contradiction to the assumption

appears. The necessity is true.

Conversely, from the duality the sufficiency is true as well. �

For any M ∈ Mns, let m(M) be the valency of the root-vertex

and n(M) = (n1(M), n2(M), · · ·), ni(M) be the number of nonrooted

vertices of valency i, i ≥ 1.

From the nonimputability, the root-edge a = (v1, vβr) of any map

M in Mns1 is always a link. The map M • a obtained by contracting

the root-edge a in M has the same number of faces as M does.

Lemma 15.5 For any M ∈Mns1 there is an integer k ≥ 1 with

M • a =

k∑

i=1

·Mi (15.25)

such that all Mi are allowed to be any map in Mns and that Mi, i =

1, 2, · · · , k, does not have the form (15.25) for k > 1.

Proof In fact, from what were mentioned in §6.2, we see that

k is the root-index of M and that all Mi, 1 ≤ i ≤ k, do not have the

form (15.2) for k > 1. From the nonseparability of M , by considering

that all vertices of Mi except for the root-vertex are the same as those

of M for i = 1, 2, · · · , k, since Mi does not have the form (15.2) for
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k > 1, the root-vertex is not a cut-vertex for i = 1, 2, · · · , k. That

implies all Mi, 1 ≤ i ≤ k, are allowed to be any map inMns including

the loop map. The lemma follows. �

Now let us write

Mk = {
k∑

i=1

·Mi| ∀Mi ∈Mns, 1 ≤ i ≤ k}, (15.26)

and

M(ns)1 = {M • a|∀M ∈Mns1}, (15.27)

where a = er, the root-edge of M .

Lemma 15.6 ForMns1, we have

M(ns)1 =
∑

k≥1

Mk;

Mk =M×·k
ns (15.28)

where ×· is the inner 1v-production.

Proof By the definition of inner 1v-product, the last form of

(15.28) is easily seen.

From Lemma 15.5 we can find that

M(ns)1 =
⋃

k≥1

Mk.

Moreover, for any i, j, i 6= j, we always have

Mi

⋂
Mj = ∅.

Therefore, the first form of (15.28) is true. �

Based on the two lemmas above, we are allowed to evaluate the

contributions of Mns0 and Mns1 to the enufunction fMns of Mns with

vertex partition, i.e.,

f = fMns =
∑

M∈Mns

xm(M)yn(M), (15.29)
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where m(M) is the valency of root-vertex and

n(M) = (n1(M), n2(M), · · · )
with ni(M) being the number of nonroot-vertices of valency i, i ≥ 1.

Since Mns0 consists of only the loop map, which has the root-

vertex of valency 2 without nonrooted vertex, we have

fMns0
= x2. (15.30)

ForMns1, we have to evaluate the function

f̃(x, z) =
∑

M∈Mns1

xm(M)zs(M)yn(M) (15.31)

where s(M) is the valency of the nonrooted vertex vβr incident with

the root-edge er of M .

By considering that for M ∈ Mns1, m(M • a) = (m(M) − 1) +

(s(M)− 1), we soon find

f̃(x, z) = xz
∑

M̃∈Mns1

xm(M̃)−s(M̃)zs(M̃)yn(M̃)

where s(M̃) is the contribution of the valency of the nonrooted end of

the root-edge ofM to the valency of the root-vertex of M̃ = M•a,M ∈
Mns1. Because s(M̃) is allowed to be any number between 1 and

m(M̃)− 1, from Lemma 15.2 we have

f̃(x, z) = xz
∑

k≥1



∑

M∈Mns

xm(M)

m(M)−1∑

i=1

(
z

x
)
i
yn(M)




k

.

By Theorem 15.4,

f̃(x, z) = xz
∑

k≥1

(∂x,zf)k

=
xz∂x,zf

1− ∂x,zf
,

where f = f(u) = fMns(u, y), and hence

fMns1
=

∫

y

f̃(x, y)



XV.4 Maps without cut-edge on surfaces 357

= x

∫

y

y∂x,yf

1− ∂x,yf
. (15.32)

Theorem 15.6 The enufunction ofMns defined by (15.29) sat-

isfies the following functional equation:

f = x2 + x

∫

y

y∂x,yf

1− ∂x,yf
. (15.33)

Proof Since fMns = fMns0
+ fMns1

, from (15.30) and (15.32) the

theorem is obtained. �

XV.4 Maps without cut-edge on surfaces

In this section, only maps without cut-edge(or, 2-connected)are

considered. Let M be the set of all(including both orientable and

nonorientable) rooted maps without cut-edge. Classify M into three

classes as

M =M0 +M1 +M2 (15.34)

where M0 consists of only the vertex map ϑ, M1 is of all with the

root-edge self-loop and, of course,M2 is of all with the root-edge not

self-loop.

Lemma 15.7 The contribution of the set M0 to f = fM(x.y)

is

f0 = 1, (15.35)

where f0 = fM0(x, y).

Proof Because of ϑ neither cut-edge nor nonrooted vertex,m(ϑ) =

0 and n(ϑ) = 0. Thus, the lemma is obtained. �

In order to determine the enufunction ofM1, how to decompose

M1 should first be considered.

Lemma 15.8 ForM1, we have

M〈1〉 =M, (15.36)
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whereM〈1〉 = {M − a|∀M ∈M1}, a = Kr(M).

Proof Because of L1 = (r, γr) ∈M1, γ = αβ, we have L1−a =

ϑ ∈M.

For any S ∈ M〈1〉, since there exists M ∈ M such that S =

M − a, by considering the root-edge of M not cut-edge, it is seen

S ∈M. Thus,M〈1〉 ⊆M.

Conversely, for any M = (X ,J ) ∈ M, a new edge a′ = Kr′ is

added to the root-vertex (r)J for getting Si, whose root-vertex is

(r′r, · · · ,J ir, γr′,J i+1r, · · · ,J m(M)−1r),

where 0 ≤ i ≤ m(M)− 1. Because of Si − a′ = M , we have Si ∈M1.

Hence,M⊆M〈1〉. �

From this lemma, it is seen that each map M = (X ,J ) in M
not only produces Si ∈ M1, 0 ≤ i ≤ m(M) − 1 but also Sm ∈ M1

nonisomorphic to them. Its root-vertex is (r′, 〈r〉J , γr′). For M ∈M,

let

SM = {Si|0 ≤ i ≤ m(M)}. (15.37)

Lemma 15.9 The setM1 has a decomposition as

M1 =
∑

M∈M
SM , (15.38)

where SM is given from (15.37).

Proof First, for M ∈ M1, because of M ′ = M − a ∈ M〈1〉,
Lemma 15.8 enables us to have M ′ ∈ M. Via (15.37), M ∈ SM ′ is

obtained. Thus, what on the left hand side of (7.4.5) is a subset of

that on the right hand side.

Conversely, for a map M on the left hand side of (15.38), because

of the root-edge a self-loop,we have M ∈ M1. Thus, the set on the

left hand side of (15.38) is a subset of that on the right hand side. �

On the basis of this lemma, we have

Lemma 15.10 For g1 = gM1(x.y) = fM1(x2, y), we have

f1 = x2(f +
∂f

∂x
), (15.39)
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where f = fM(x, y).

Proof From Lemma 15.9,

f1 =
∑

M∈M
(m(M) + 1)xm(M)yn.

By Lemma 9.10, we get

f1 = x2(f + x
∂f

∂x
).

This is the conclusion of the lemma. �

In what follows,M2 is considered.

Lemma 15.11 ForM2, letM(2) = {M • a|∀M ∈M2}, then

M(2) =M− ϑ, (15.40)

where ϑ is the vertex map.

Proof For any M ∈ M(2), there is a map M ′ ∈ M2 such that

M = M ′ • a′. Because of a′ neither cut-edge nor self-loop, M ∈ M.

And, sice the link map L0 = (Kr, (r)(γr)) 6∈ M2,M(2) ⊆M− ϑ.

Conversely, for anyM = (X ,J ) ∈M−ϑ, let Ui+1 be obtained by

splitting the root-vertex (r)J of M with an additional edge a′ = Kr′

whose two ends are (r′, r, · · · ,J ir) and

(γr′,J i+1r, · · · ,J m(M)−1r), 1 ≤ i ≤ m(M).

Because of a′ not cut-edge, Ui ∈ M2, 1 ≤ i ≤ m(M). And, because

of M = Ui • a′, M ∈M(2). Thus,M⊆ ϑ ⊆M(2). �

For any M = (X ,J ) ∈M− ϑ, let

UM = {Ui|1 ≤ i ≤ m(M)}, (15.41)

where Ui is appeared in the proof of Lemma 15.11.

Lemma 15.12 The setM2 has the following decomposition:

M2 =
∑

M∈M−ϑ

UM , (15.42)
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where UM is given from (15.41).

Proof First, for any M ∈M2, from Lemma 15.5, M ′ = M •a ∈
M− ϑ and further M ∈ UM ′. This implies that

M2 =
⋃

M∈M−ϑ

UM .

Then, for any bM1,M2 ∈M− ϑ, because of M1 not isomorphic

to M2,

UM1

⋂
UM2

= ∅.
Thus, (15.42) is right. The lemma is obtained. �

This lemma enables us to determine the contribution of M2 to

fM(x, y).

Lemma 15.13 For f2 = fM2
(x, y), we have

f2 = x

∫

y

y∂x,yf (15.43)

where f = f(z) = fM(z, y).

Proof From Lemma 15.12�
f2 =

∫

y

∑

M∈M−ϑ

(

m(M)∑

i=1

xi+1ym(M)+2−i)yn(M).

By employing Theorem 15.4, (15.43) is obtained. �

On the basis of those having been done, the main result can be

deduced in what follows.

Theorem 15.7 The functional equation about f

x2∂f

∂x
= −1 + (1− x2)f − x

∫

y

y∂x,yf (15.44)

is well defined on the field L{ℜ; x, y}. And, its solution is f = f(x) =

fM(x, y).
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Proof The first statement can be proved in a usual way except

for involving a certain complication.

The second statement is derived from (15.34) in companion with

(15.35), (15.39), and (15.43). �

XV.5 Eulerian maps on the sphere

A map is called Eulerian if all the valencies of its vertices are

even (or say, all vertices are even). Let U be the set of all the rooted

planar Eulerian maps with the convention that the vertex map ϑ is in

U for convenience.

Further, U is divided into 3 classes: U0, U1 and U2, i.e.,

U = U0 + U1 + U2 (15.45)

such that U0 = {ϑ}, or simply write {ϑ} = ϑ, and

U1 = {U |∀U ∈ U with a = er(U) being a loop}.

Lemma 15.14 Any Eulerian map (not necessarily planar) has

no cut-edge.

Proof By contradiction. Assume that a Eulerian map M has a

cut-edge e = (u, v) such that M = M1 ∪ e ∪M2, M1 ∩M2 = ∅, where

M1 and M2 are submaps of M with the property that M1 is incident

to u and M2, to v. From the Eulerianity of M , u and v are the unique

odd vertex in M1 and M2, respectively. This contradicts to that both

M1 and M2 are a submap of M because the number of odd vertices in

a map is even. �

Lemma 15.15 Let U〈1〉 = {U − a|∀U ∈ U1} where a = er(U)

is the root-edge. Then, we have

U〈1〉 = U⊙U (15.46)

where ⊙ is the 1v-production.
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Proof Because for U ∈ U1, the root-edge a is a loop, we see that

U −a = U1+̇U2 where U1 and U2 are in the inner and outer domain of

a respectively. Of course, it can be checked that both U1 and U2 are

maps in U . Thus, the set on the left hand side of (15.46) is a subset

of that on the right.

On the other hand, for any U = U1+̇U2, U1, U2 ∈ U , we may

uniquely construct a map U ′ by adding a loop at the common vertex

of U1 and U2. The root-edge of U ′ is chosen to be the loop such that

U1 and U2 are respectively in its inner and outer domains. It is easily

checked that U ′ is a Eulerian map and hence U ′ ∈ U1. However,

U = U ′ − a ∈ U〈1〉. That implies the set on the right hand side of

(15.46) is a subset of that on the left as well. �

For any map U ∈ U2, we see that the root-edge a of U has to be

a link. From Lemma 15.14, if U •a = U1+̇U2 such that the root-vertex

is the common vertex, then the valencies of the vertices in both U1 and

U2 are odd. Further for any U ∈ U , if U = U1+̇U2, then the valencies

of the common vertex between U1 and U2 are both even as well.

Lemma 15.16 Let U(2) = {U • a|∀U ∈ U2} where a is the

root-edge of U . Then, we have

U(2) = U − ϑ (15.47)

where ϑ = U0 for simplicity.

Proof From what has just been discussed, the set on the left

hand side of (15.47) is a subset of that on the right.

Conversely for any U ∈ U − ϑ, we may always construct a map

U ′ by splitting the root-vertex into o1 and o2 with the new edge a′ =
(o1, o2) as the root-edge of U ′ such that the valencies of o1 and o2 in

U ′ are both even. However, U = U ′ • a′ ∈ U(2). That implies the set

on the right hand side of (15.47) is a subset of that on the left. �

For a map U ∈ U − ϑ, assume the valency of the root-vertex

o is 2k, k ≥ 1,without loss of generality. The map U ′ obtained by
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splitting the root-vertex into o1 and o2 with the new edge a′ = (o1, o2)

such that the valency ρ(o1;U
′) = 2i and hence ρ(o2;U

′) = 2k − 2i+ 2

is denoted by U[2i], i = 1, 2, · · · , k.
From Lemma 15.14, we see that the procedure works and that

all the resultant maps U[2i] are also Eulerian maps.

Lemma 15.17 For U2, we have

|U2| =
∑

U∈U−ϑ

|{U[2i]| i = 1, 2, · · · , m(U)}| (15.48)

where 2m(U) is the valency of the root-vertex of U .

Proof First, we show that for any U ∈ U2, it appears in the set

on the right hand side of (15.48) only once. Assume that a = (o, v) is

the root-edge of U and that ρ(o) = 2s and ρ(v) = 2t. Let U ′ be the

map obtained by contracting the root-edge a, i.e., U ′ = U • a. Then,

there is the only possibility that U = U ′[2s] in the set on the right hand

side of (15.48).

Then, we show that for any map U in the set on the right hand

side of (15.48), it appears also only once in U2. This is obvious from

Lemma 15.16 because all elements are distinguished and they are all

maps in U2 by considering the Eulerianity with the root-edges being

links. �

In what follows, we see what kind of equation should be satis-

fied by the enufunction u of rooted planar Eulerian maps with vertex

partition. Write

u =
∑

U∈U
x2m(U)yn(U) (15.49)

where 2m(U) is the valency of the root-vertex as mentioned above and

n(U) = (n2(U), · · · , n2i(U), · · ·), n2i(U) is the number of nonrooted

vertices of valency 2i, i ≥ 1.

Theorem 15.8 The function u defined in (15.5) satisfies the
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following functional equation:

u = 1 + x2u2 + x2

∫

y

(
y2δx2,y2(u(

√
z))
)

(15.50)

where u(z) = u|x=z = u(z, y).

Proof The contribution of U0 to u is

u0 = 1 (15.51)

since 2m(ϑ) = 0 and n(ϑ) = 0.

From Lemma 15.15, the contribution of U1 to u is

u1 = x2
∑

U∈U〈1〉
x2m(U)yn(U)

= x2u2. (15.52)

The contribution of U2 to u is denoted by u2. Let

ũ(z) =
∑

U∈U2

x2m(U)z2j(U)yñ(U)

where 2j(U) is the valency of the nonrooted end of the root-edge

and ñ(U) = (ñ2(U), ñ4(U), · · · , ñ2i(U), · · ·), ñ2i(U) is the number of

vertices of valency 2i except for the two ends of the root-edge. It is

easily seen that

ñ(U) = n(U)− e2j(U)

where e2j(U) is the vector with all the components 0 except only for

the j(U)-th which is 1. In addition, it can be verified that

u2 =

∫

y

ũ(y). (15.53)

From Lemma 15.17, we have

ũ(z) =
∑

U∈U−ϑ




m(U)∑

i=1

x2iz2m(U)−2i+2


 yn(U).
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By Theorem 15.3,

ũ(z) = x2z2δz2,x2(u(
√
t)).

Then by (15.53), we find that

u2 = x2

∫

y

y2δy2,x2(u(
√
t)). (15.54)

From (15.51), (15.52) and (15.54), the theorem is obtained. �

XV.6 Eulerian maps on the surfaces

Let MEul be the set of all orientable Euler rooted maps on sur-

faces. Because of no cut-edge for any Eulerian map, Eulerian maps

are classified into three classes as M0
Eul, M1

Eul and M2
Eul such that

M0
Eul consists of only the vertex map ϑ, M1

Eul has all its maps with

the root-edge self-loop and

M2
Eul =MEul −M0

Eul −M1
Eul. (15.55)

Naturally,M2
Eul has all maps with the root-edge a link.

The enufunction g = fMEul
(x, y) is of the powers 2m and n =

(n2, n4, · · ·) of, respectively, x and y as the valency of root-vertex and

the the vertex partition operator.

Lemma 15.18 ForM0
Eul, we have

g0 = 1, (15.56)

where g0 = fM0
Eul

(x2, y).

Proof Because of ϑ with neither root-edge nor nonrooted vertex,

m(ϑ) = 0 and n(ϑ) = 0. The lemma is done. �

In order to determine the enufunction ofM1
Eul, a suitable decom-

position ofM1
Eul should be first considered.

Lemma 15.19 ForM1
Eul, we have

M〈1〉
Eul =MEul, (15.57)
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whereM〈1〉
Eul = {M − a|∀M ∈M1

Eul}, a = Kr(M), the root-edge.

Proof Because of L1 = (r, γr) ∈M1
Eul, γαβ, L1−a = ϑ ∈MEul

is seen.

For any S ∈ M〈
Eul1〉, since there is a map M ∈ MEul such that

S = M − a, from M as a Eulerian map, S ∈ MEul is known. Thus,

M〈1〉
Eul ⊆MEul.

Conversely, for any M = (X ,J ) ∈ MEul, By adding a new

root-edge a′ = Kr′ at the vertex (r)J to get Si, whose root-vertex is

(r′r, · · · ,J ir, γr′, J i+1r, · · · ,J 2m(M)−1r), 0 ≤ i ≤ 2m(M) − 1. From

Si − a′ = M , Si ∈M1
Eul. Thus,MEul ⊆M〈1〉

Eul. �

In the proof of this lemma, it is seen that each map M = (X ,J )

in MEul produces not only Si ∈ M1
Eul, 0 ≤ i ≤ 2m(M) − 1, but also

S2m ∈M1
Eul nonisomorphic to them. Its root-vertex is (r′, 〈r〉J , γr′).

For M ∈MEul, let

SM = {Si|0 ≤ i ≤ 2m(M)}. (15.58)

Lemma 15.20 SetM1
Eul has the following decomposition:

M1
Eul =

∑

M∈MEul

SM , (15.59)

where SM is given from (15.58).

Proof First, for any M ∈ M1
Eul, from Lemma 15.19, M ′ =

M − a ∈MEul, and hence M ∈ SM ′. Thus,

M1
Eul =

⋃

M∈MEul

SM .

Then, for any M1, M2 ∈ MEul, because of nonisomorphic be-

tween them,

SM1

⋂
SM2

= ∅.
Therefore, the conclusion of the lemma is true. �

On the basis of this lemma, the following lemma can be seen.
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Lemma 15.21 For g1 = gM1
Eul(x.y) = fM1

Eul
(x2, y), we have

g1 = x2(g + 2x2 ∂g

∂x2
), (15.60)

where g = gMEul
(x, y) = fMEul

(x2, y).

Proof From (15.59),

g1 =
∑

M∈MEul

(2m(M) + 1)xm(M)yn.

By employing Lemma 9.10, (15.60) is obtained. �

In what follows,M2
Eul is investigated.

Lemma 15.22 For M2
Eul, let M(2)

Eul = {M • a|∀M ∈ M2
Eul},

then

M(2)
Eul =MEul − ϑ, (15.61)

where ϑ is the vertex map.

Proof Because of L1 6∈ M2
Eul, ϑ 6∈ M

(
Eul(2)). Then, M2

Eul ⊆
MEul − ϑ.

Conversely, for any M = (X ,P) ∈ MEul − ϑ, since M2j = (X +

Kr2j,P2j) ∈ M2
Eul where the two ends of a2j = Kr2j is obtained by

splitting the root-vertex (r)P of M , i.e.,

(r2j)P2j
= (r2j, r,Pr, · · · , (P)2j−2)

and

(γr2j)P2j = (γr2j,P)2j−1r, · · · , (P)2m−1),

1 ≤ i ≤ m − 1. Because of M = M2j • a2j, M2j ∈ M2
Eul. Thus,

MEul − ϑ ⊆M2
Eul. �

For any M = (X ,J ) ∈MEul − ϑ, let

MM = {M2j|1 ≤ j ≤ m(M)}, (15.62)

where M2j, 1 ≤ j ≤ m(M)− 1, have appeared in the proof of Lemma

15.22.
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Lemma 15.23 SetMEul
2 has the following decomposition:

MEul
2 =

∑

M∈MEul−ϑ

MM (15.63)

whereMM is given from (15.62).

Proof First, for any M ∈ M2
Eul, because of M ′ = M • a ∈

MEul − ϑ, Lemma 15.22 tells us that M ∈M(M). Thus,

MEul
2 =

⋃

M∈MEul−ϑ

MM .

Then, for any M1,M2 ∈ MEul − ϑ, because of nonisomorphic

between M1 and M2,

MM1

⋂
MM2

6= ∅.

This implies (15.63). �

On the basis of this lemma, the following conclusion can be seen.

Lemma 15.24 For g2 = fM2
Eul

(x, y), we have

g2 = x2

∫

y

y2δx2,y2g(
√
z) (15.64)

where g = g(x) = fMEul
(x2, y).

Proof From Lemma 15.23,

g2 =
∑

M∈MEul−ϑ

∫

y

(

m(M)∑

j=1

x2jy2m(M)+2−2j)yn.

By employing Theorem 15.3,

g2 = x2

∫

y

y2δx2,y2g(
√
z).

This is the lemma. �

Now, the main result of this section can be described.
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Theorem 15.9 The functional equation about g

2x4 ∂g

∂x2
= −1 + (1− x2)g − x2

∫

y

δx2,y2g(
√
z) (15.65)

is well defined on the field L{ℜ; x, y}. Further, its solution is g =

gMEul
(x, y) = fMEul

(x, y).

Proof The last conclusion is deduced from (15.55), in compan-

ion with (15.56), (15.60), and (15.64).

The former conclusion is a result of the well definedness for the

equation system obtained by equating the coefficients on the two sides

of (15.65). �



Activities on Chapter XV

XV.7 Observations

O15.1 Let f = fU(x.y) be the vertex partition function of a

set U of maps. Suppose U+ = {U + a′|∀U ∈ U} where a′ = Kr′ is the

root-edge of U ′ = U + a′. To evaluate f+ = fU+
(x, y) from f .

O15.2 LetA be the set of supermaps ofK4, the complete graph

of order 4. To evaluate fA(x, y).

O15.3 Let B1 be the set of all bipartite rooted maps with the

root-edge a cut-edge and B〈1〉 = {B − a|∀B ∈ B1}. Suppose the

vertex partition function f of all bipartite rooted maps on surfaces is

known. To evaluate fB1
(x, y) from f .

O15.4 For a set of mapsM, observe the relationship between

vertex partition function fM(x, y) and the enufunction fM(x, y) of two

parameters: the valency of root-vertex and the size.

O15.5 For a set of mapsM, observe the relationship between

vertex partition function fM(x, y) and the enufunction fM(x, y) of two

parameters: the valency of root-vertex and the order.

O15.6 For a set of mapsM, observe the relationship between

vertex partition function fM(x, y) and the enufunction fM(x, y) of two

parameters: the valency of root-vertex and the coorder.

O15.7 Consider the conditions satisfied by the face partition

of petal bundle with size n ≥ 1.

O15.8 Consider the conditions satisfied by the face partition

of a supermap of the complete graph Kn with order n ≥ 4.
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O15.9 Show a 1-to-1 correspondence between the two sets U ′
and M where U ′ = {U − a|∀U = (X ,J ) ∈ U , a = Kr(U), γr ∈
(r)J , r = r(U)}, U consists of all rooted maps on the projective plane

andM is of all rooted planar maps.

O15.10 Observe the relationship between the vertex partition

function of plane rooted trees and the face partition function of out-

erplanar rooted maps.

O15.11 Observe the existence of a tree for a given vector n as

its vertex partition.

XV.8 Exercises

E15.1 Prove that the vertex partition function of planted trees

satisfies the functional equation about f as

y1 = (1−
∫

y

y2

1− yf )f. (15.66)

E15.2 Solve the functional equation (15.66) in a direct way.

E15.3 If the vertex partition function of Halin rooted maps is

taken to have the root-face valency instead of root-vertex valency, then

show that the function satisfies the functional equation about f as

f = x2y3 +
x

f

∫

y

y2f 2
y

x− yfy
(15.67)

where f = f(x) = f(x, y) and fy = f(y).

E15.4 Provide a method for solving the functional equation

shown in (15.67).

E15.5 Prove that the vertex partition function of Wintersweets

with root not on a circuit satisfies the following functional equation

about f as

(1− xy3

1− y2
)f = 1 + x

∫

y

yδx,y(zfz). (15.68)
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E15.6 Find a way for solving the functional equation shown in

(15.68).

E15.7 Prove that the vertex partition function of unicyclic

maps with root not on the circuit satisfies the functional equation

about f as

f = x2τ1 + x

∫

y

y∂x,yfz (15.69)

where τ1 is the vertex partition function of planted trees, which is

known in E15.1.

E15.8 Solve the functional equation shown in (15.69).

E15.9 Show that the following functional equation about f is

satisfied by the vertex partition function of outerplanar rooted maps

as

(1− x2ϕ)f = 1 + x

∫

y

yδx,y(zfz) (15.70)

where

ϕ =
1

2x2
(1−

√
1− 4x2).

E15.10 Solve the functional equation shown in (15.70).

E15.11 Find a functional equation satisfied by the vertex par-

tition function of general planar rooted maps.

XV.9 Researches

R15.1 For given orientable genus p 6= 0, determine a functional

equation satisfied by the vertex function of a set of maps on the surface

of genus p.

R15.2 For given nonorientable genus q ≥ 1, determine a func-

tional equation satisfied by the vertex function of a set of maps on the

surface of genus q.

R15.3 Determine a functional equation satisfied by the vertex

partition function of nonseparable rooted maps on the Klein bottle.
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R15.4 Determine a functional equation satisfied by the vertex

partition function of nonseparable rooted maps on the torus.

R15.5 Determine a functional equation satisfied by the vertex

partition function of bipartite rooted maps on the torus.

R15.6 Solve the functional equation about f as

(1− x2f)f = 1 + x

∫

y

yδx,y(zfz). (15.71)

R15.7 Solve the functional equation about f as

(xf +

∫

y

fy).f =

∫

y

(fy + y2δx2, y2f√z). (15.72)

R15.8 Solve the functional equation about f as

(

∫

y

(1 + xy)fy − x2f)f =

∫

y

(fy + xyδx,y(zfz)). (15.73)

R15.9 Solve the functional equation about f as

f =

∫

y

1

1− ∂x,y(z2)fz
. (15.74)

.

R15.10 Solve the functional equation about f as

f =

∫

y

1− ∂x2,y2(zf√z)

1− 2∂x2,y2(zf√z)− x2y2δx2,y2(zf 2√
z
)
. (15.75)

R15.11 Solve the functional equation about f as

f = x2 + x

∫

y

y∂x,yfz

1− ∂x,yfz
. (15.76)

R15.12 Solve the functional equation about f as

f = x2 + x2

∫

y

y2δx2,y2f√z

(1− ∂x2,y2f√z)2 − (xyδx2,y2f√z)2
. (15.77)

R15.13 Solve the functional equation about f as

(1− x2f)f = 1 + x2

∫

y

y2δx2,y2f√z. (15.78)



Appendix I

Concepts of Polyhedra, Surfaces,
Embeddings and Maps

This appendix provides a fundamental of basic concepts of poly-

hedra, surfaces, embeddings and maps from original to developed as a

compensation for Chapters I–II. Only those available in the usage from

combinatorization to algebraication are particularly concentrated on.

Ax.I.1 Polyhedra

A polyhedron P is a set {Ci|1 ≤ i ≤ k}, k ≥ 1, of cycles of letters

such that each letter occurs exactly twice with the same power (or

index) or different powers: 1(always omitted) and −1 and denoted by

P = ({Ci|1 ≤ i ≤ k}). It is seen as a set of all the cycles in any cyclic

order.

This is a general statement of Heffter’s[Hef1] (and more than half

a century later Edmonds’[Edm1] as dual case) which has the minimal-

ity of no proper subset as a polyhedron for the convenience usages.

A polyhedron is orientable if there is an orientation of each cycle,

clockwise or anticlockwise, such that the two occurrences of each letter

with different powers; nonorientable, otherwise.

The support of polyhedron P = ({Ci|1 ≤ i ≤ k}) is the graph

G = (VP , EP ) with a weight w on EP where VP = {Ci|1 ≤ i ≤ k},
(Ci, Cj) ∈ EP if, and only if, Ci and Cj, 1 ≤ i, j ≤ k, have a common

letter, and

w(e) =

{
0, when two powers are different;

1, otherwise
(I.1)
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for e ∈ EP .

The set of all the edges with weight 1 is called the 1-set of the

polyhedron.

Theorem I.1 A polyhedron P = ({Ci|1 ≤ i ≤ k}) is orientable

if, and only if, one of the following statements is satisfied:

(1) What obtained by contracting all edges of weight 0 on the

support is a bipartite graph;

(2) No odd weight fundamental circuit is on the support;

(3) No odd weight circuit is on the support;

(4) The 1-set forms a cocycle;

(5) The equation system about xi = xCi
, Ci ∈ VP , on GF(2)

xi + xj = w(Ci, Cj) (I.2)

for (Ci, Cj) ∈ EP has a solution.

Proof Because P is orientable, the two occurrences of each let-

ter are with different powers. Since the weights of all edges are the

constant 0, the equation system (I.2) has a solution of xi = 0 for all

Ci ∈ VP , 1 ≤ i ≤ k. Further, by considering that the consistency of

equation system (I.2) is not changed from switching the orientation

of a cycle between ce clockwise and anticlockwise while interchanging

the weights between 0 and 1 of all the edges incident with the cycle on

the support, statement (5) is satisfied for any orientable polyhedron.

On the basis of statement (5), from a solution of equation system

(I.2) the vertices of GP are classified into two classes by xi = 1 or 0:

1-class or 0-class respectively. According to equation (I.2), each edge

with weight 1 has its two ends in different classes and hence the 1-set

is a cocycle. This is statement (4).

On the basis of statement (4), since any circuit meets even num-

ber of edges with a cocycle, all circuits are with even weight. This

means no odd weight circuit. Therefore, statement (3) is satisfied.

On the basis of statement (3), the statement (2) is naturally

deduced because a fundamental circuit is a circuit in its own right.
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On the basis of statement (2), by contracting all edges of weight

0 in each fundamental circuit on the support, (1) is satisfied.

On the basis of statement (1),the vertices are partitioned into two

classes by the equivalence that two vertices are joined by even weight

path. By switching the orientation of all vertices in one of the two

classes and those in the other class unchanged, a polyhedron without

weight 1 edge is found. This implies that P is orientable.

In summary, the theorem is proved. �

On the support GP = (VP , EP ) of a polyhedron P , the operation

of switching the orientations of all vertices in a subset of VP between

clockwise and anticlockwise and the weights of all edges incident with

just one end in the subset interchanged between 0 and 1 is called a

switch on P .

Theorem I.2 The orientability of a polyhedron does not change

under switches.

Proof From the definition of orientability, the conclusion of this

theorem is true. �

Let T be a minimal set of edges having an edge in common with

all cocycles in the support of a polyhedron. In fact, it can seen that

T is a spanning tree.

All the polyhedra obtained by switching on a polyhedron P are

seen to be the same as P ; different, otherwise. From Theorem I.2, in

order to discuss all different polyhedra it enables us only to consider

all such polyhedra of the support with weight 0 on all tree edge for

a spanning tree chosen independently in any convenient way. Such a

polyhedron is said to be classic.

Theorem I.3 A classic polyhedron is orientable if, and only if,

all edges as letters have their two occurrences with different powers. A

classic polyhedron is nonorientable if, and only if, the set of letters each

of which has its two occurrences with same power does not contain a

cocycle.
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Proof The first statement is deduced from Theorem I.1(3). The

second statement is by contradiction derived from Theorem I.1 and

Theorem I.2. �

Now, a polyhedron(always summed to be classic below) P is con-

sidered as a permutation formed by its cycles. Let δ be the permuta-

tion with each cycle only consists of the two occurrences of each letter

in P . Then, the dual, denoted by P ∗, of P is defined to be P ∗ = Pδ

such that their supports are with the same weight. The cycles in P

are called faces and those in P ∗ are vertices. Cycles in δ are edges. Let

ν(P ), ǫ(P ) and φ(P ) be, respectively, the number of vertices, edges

and faces on P , then ν(P )−ǫ(P )+φ(P ) is the Eulerian characteristic

of P . The graph which is formed by vertices and edges of P is called

a skeleton of P . Of course, the skeleton of P is the support of P ∗.

Theorem I.4 P ∗ is a polyhedron and P ∗∗ = P . P ∗ is orientable

if, and only if, so is P with the same Eulerian characteristic.

Proof It is easily checked that P ∗ is a polyhedron from P as a

polyhedron. Since δ2 = 1, the identity, we have

P ∗∗ = P ∗δ = (Pδ)δ = P (δ2) = P.

This is the first statement. From Theorem I.3, the second statement

is obtained. �

Ax.I.2 Surfaces

Surfaces seen as polyhedral polygons can be topologically classi-

fied by a type of equivalence. Let P be the set of all such polygons.

For P = ({(Ai)|i ≥ 1}) ∈ P, the following three operations

including their inverses are called elementary transformation:

Operation 0: For (Ai) = (Xaa−1Y ), (Ai) ⇔ (XY ) where at

least one of X and Y is not empty;

Operation 1: For (Ai) = (XabY ab)(or (XabY b−1a−1)), (Ai)⇔
(XaY a)(or XaY a−1);
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Operation 2: For (Ai) = (Xa) and (Aj) = (a−1Y ), i 6= j,

({(Ai), (Aj)}) ⇔ (XY ) where at least one of X and Y is not empty.

Particularly, ({(Ai), (Aj)})⇔ (XaY a−1) when both (X) and (Y ) are

polyhedra.

If a polyhedron P can be obtained by elementary transformation

into another polyhedron Q, then they are called elementary equiva-

lence, denoted by P ∼el Q. In topology, the elementary equivalence is

topological in 2-dimensional sense.

Lemma I.1 For P ∈ P, there exists a polyhedron Q = (X) ∈
P where X is a linear order such that P ∼el Q.

Proof Let P = ({(Ai)|1 ≤ i ≤ k}). If k = 1, P is in the form

as Q itself. If k ≥ 2, by employing Operation 2 step by step to reduce

the number of cycles 1 by 1 if any, the form Q can be found. �

Lemma I.2 For P ∈ P, if P = ((A)(B)) with both (A) and

(B) as polyhedra, then for any x 6∈ A ∪B, P ∼el ((A)x(B)x−1).

Proof It is seen that

P = (AB) ∼el (Axx−1B) (by Operation 0)

∼el ((Ax)(x−1B)) (by Operation 2)

= ((A)x(B)x−1).
�

From Lemmas I.1–2, for classifying P it suffices to only discuss

polygons as Q.

Lemma I.3 Let Q = (AxByCx−1Dy−1), then

Q ∼el (ADxyBx−1Cy−1). (I.3)

Proof It is seen that

Q ∼el ((Axz)(z−1ByCx−1Dy−1)) (by Operation 2)

∼el (zADy−1z−1ByC) (by Operation 2)

= (ADxyBx−1Cy−1). �
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Lemma I.4 Let Q = (AxByCx−1Dy−1), then

Q ∼el (BAxyx−1DCy−1). (I.4)

Proof It is seen that

Q ∼el ((x−1Dy−1Axz)(ByCz−1)) (by Operation 2)

∼el (BAxzx−1DCz−1) (by Operation 2)

= (BAxyx−1DCy−1). �

Lemma I.5 Let Q = (AxByCx−1Dy−1), then

Q ∼el (ADCBxyx−1y−1). (I.5)

Proof From Lemma I.4 and then Lemma I.3, the lemma is soon

done. �

According to Lemma I.5, if A is replaced by EA in polyhedron

(ADCB), then the relation is soon derived as

Relation 1: (AxByCx−1Dy−1E) ∼el (ADCBExyx−1y−1).

Lemma I.6 Let Q = (AxBx) ∈ P, then Q ∼el (AB−1xx).

Proof It is seen that

Q ∼el ((Axz)(z−1Bx)) = ((zAx)(x−1B−1z)) (by Operation 2)

∼el (zAB−1z) = (AB−1xx) (by Operation 2). �

According to Lemma I.6, if A is replaced by CA in polyhedron

(AB−1), then the relation is soon derived as

Relation 2: (AxBxC) ∼el (AB−1Cxx).

Lemma I.7 LetQ = (Axyx−1y−1zz) ∈ P, thenQ ∼el (Axyzyxz).
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Proof It is seen that

Q ∼el ((zAxyt)(t−1x−1y−1z)) (by Operation 2)

∼el (Axytyxt) (by Operation 2)

= (Axyzyxz). �

According to Lemma I.7, then by Relation 2 twice for x and y,

the relation is soon derived as

Relation 3: (Axyx−1y−1zz) ∼el (Axxyyzz).

Lemma I.8 If Q ∈ P orientable not as (AxByCx−1Dy−1E),

then Q ∼el (xx−1)(= O0).

Proof Because Q is not in the above form, Q has to be in form as

(Axx−1B). If both A and B are empty, them Q ∼el (xx−1); otherwise,

Q ∼el (AB). Because (AB) still satisfies the given condition, by the

finite recursion principle, (xx−1) can be found. �

Theorem I.5 For any Q ∈ P orientable, if Q 6∼el (xx−1), then

there exists an integer p ≥ 1 such that

Q ∼el (

p∏

i=1

xiyix
−1
i y−1

i )(= Op). (I.5)

Proof Because Q ∼el (Ax1By1Cx
−1
1 Dy−1

1 E), by Relation 1 we

have

Q ∼el (ADCBEx1y1x
−1
1 y−1

1 ).

If (ADCBE) ∼el (xx−1), the Q ∼el (x1y1x
−1
1 y−1

1 ). That is the case

p = 1. Otherwise (ADCBE) = (A1x2B1y2C1x
−1
2 D1y

−1
2 E1). Because

(ADCBEx1y1x
−1
1 y−1

1 ) = (A1x2B1y2C1x
−1
2 D1y

−1
2 E1)x1y1x

−1
1 y−1

1

is still in the given condition. By the finite recursion principle, (I.5)

is found. �
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Theorem I.6 For any Q ∈ P nonorientable, there exists an

integer q ≥ 1 such that

Q ∼el (

q∏

i=1

xixi)(= Qq). (I.6)

Proof Because Q is nonorientable, there is a letter x1 in Q

such that Q = (Ax1Bx1C). By Relation 2, D ∼el (AB−1Cx1x1).

If (AB−1C) ∼el (xx−1), then by Operation 0 we have Q ∼el (x1x1).

This is the case of q = 1. Otherwise, there exits an integer k ≥ 1 such

that

Q ∼el (A

k∏

i=1

xixi)(= Qq)

and (A) 6∼el (xx−1) is orientable. By Theorem I.5, there exists an

integer s ≥ 1 such that

(A) ∼el (

s∏

i=1

xiyix
−1
i y−1

i )(= Op).

Thus, by Relation 3 for s times, we have

Q ∼el (

2s+k∏

i=1

xixi)(= Qq).

This is q = 2s+ k ≥ 1. �

On the basis of Lemma I.8 and Theorems I.5–6, surfaces in topol-

ogy are in fact the classes of polyhedra under the elementary equiv-

alence. Surfaces O0, Op, p ≥ 1, are, respectively, orientable standard

surfaces of genus 0, p, p ≥ 1. Surfaces Qq, q ≥ 1, are nonorientable

standard surfaces of genus q.

Ax.I.3 Embeddings

An embedding(i.e., cellular embedding in early references particu-

larly in topology and geometry) of a graph is such a polyhedron whose

skeleton is the graph.
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The distinction of embeddings are the same as polyhedra. Pre-

cisely speaking, two distinct embeddings on a 2-dimensional manifold

are not equivalent topologically in 1-dimensional sense.

According to Ax.I.1, all embeddings always imply to be classic.

For a graph G = (V,E), Heffter-Edmonds’ model of an embed-

ding of G by rotation system at vertices, in fact, only for orientable

case [Hef1] and [Edm1].

Let σ = {σv|v ∈ V } be the rotation system on G where σv is the

cyclic order of semi-edges at v ∈ V . Then, by the following procedure

to find an embedding of G:

Procedure I.1 First, put different vertices in different position

marked by a hole circle or a bold point on the plane. Draw lines for

edges such that no interior point passes through a vertex and σv is in

clockwise when v is a hole circle; in anticlockwise, otherwise.

Then, by travelling along an edge in the rule: passing through

on the same side when the two ends of the edges are in same type;

crossing to the other side, otherwise. Find all cycles such that each

edge occurs just twice. The set of cycles is denoted by PG.

Lemma I.9 PG is a polyhedron.

Proof Because it is easily checked from the definition of a poly-

hedron. �

Lemma I.10 PG is orientable.

Proof Because the dual is orientable, from Theorem I.4, the

lemma is true. �

Theorem I.7 The dual of PG is an orientable embedding of G.

Proof Because the support of the dual of PG is G itself, the

theorem is deduced. �

However, PG in general is not classic except for all vertices are of

same type.
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Theorem I.8 For a given rotation system σ of a graph G, let

PG(σ; 0) be the polyhedron obtained by the procedure above for all

vertices of same type, then PG(σ; 0) is unique.

Proof From the uniqueness of classic polyhedron in this case,

the theorem is done. �

On the basis of Theorem I.8, it suffices only to make all vertices

with the same type, e.g., in clockwise. Further, in order to extend

to nonorientable case, on account of Theorem I.3, edges in a set not

containing cocycle are marked for crossing one side to the other in

the Heffter-Edmonds’ model. The marked edges are called twist. This

model as well as the Procedure I.1 here is called an expansion.

Theorem I.9 The dual of what is obtained in an expansion is

a unique nonorientable embedding of G for twist edges fixed.

Proof Because one obtained in an expansion is a classic poly-

hedron, from the uniqueness of the dual of a polyhedron, the theorem

deduced. �

Theorem I.10 All embeddings of a graph G obtained by ex-

pansions for all possible rotation system and twist edges in a subset

of the cotree T̄ of a given spanning tree T on G are distinct.

Proof As a result of Theorem I.9. �

This theorem enables us to choose a spanning tree T on a graph

G for discussing all embeddings of G on surfaces.

Let T1 and T2 be two spanning trees of a graph G. The sets

of all embeddings of G as shown in Theorem I.10 for T1 and T2 are,

respectively, denoted by E1 and E2.

Theorem I.11 Let Eg
1 and Eg

2 be, respectively, the subsets of E1
and E2 on surfaces of genus g(orientable g = p ≥ 0, or nonorientable

g = q ≥ 1). Then Eg
1 = Eg

2 .
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Proof Because of Theorem I.10, it suffices only to discuss ex-

pansions for T1 and T2. Since |T̄1| = |T̄2|, Theorems I.8–9 implies the

theorem. �

For an embedding P ∈ Eg
1 , if P 6∈ Eg

2 , then there exits a twist

edge e in T2. By doing a switch with the fundamental cocircuit con-

taining e for T2, an embedding P ′ in the same distinct class with P is

found. If no twit edge is in T̄2, then P ′ is the classic embedding in Eg
2

corresponding to P . Otherwise, by the finite recursion, a classic em-

bedding Q ∈ Eg
2 in the same distinct class with P is finally found. In

this way, the 1-to-1 correspondence between Eg
1 and Eg

2 is established.

The last two theorems form the foundation of the joint tree model

shown in [Liu13–14]. Related topics are referred to [Sta1–2].

Ax.I.4 Maps

Maps as polyhedra or embeddings of its underlying graph had

been being no specific meaning until 1979 when Tutte(William T.,

1917–2002) clarified that a map is a particular type of permutation

on a set formed as a union of quadricells[Tut1–3]. All quadricells are

with similar construction that four elements have the symmetry as a

straight line segment with two ends and two sides.

This idea would go back to Klein(Felix, 1849–1925) who consid-

ered a triangulation of an embedding on a surface by inserting a vertex

in the interior of each face and each edge and then connecting all line

segments from a vertex in the interior of a face to all vertices on the

boundary of the face. It is seen that each edge is adjacent to four

triangles called flags as a quadricell. So, such a pattern of map used

in this course can be named as Klein–Tutte’s model. Related topics

are referred to [Vin1–2].

Now, we have seen that a surfaces is determined by an elementary

class of polyhedra, an embedding is by a distinct class of polyhedra and

a map is by an isomorphic class of embeddings. The distinction of em-

beddings is based on edges labelled by letters, or numbers. This is also
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a kind of asymmetrization. But edges on a map are without labelling.

Isomorphic maps are combinatorially considered with symmetry. So,

a map is an isomorphic class of embeddings of its underlying graph.

Let G = (V,E) be a graph. As shown in Sect. 1.1, V = Par(X)

and E = {Bx|x ∈ X} where Par(X) is a partition on B(X) =

∪x∈XBx, Bx = {x(0), x(1)} for a set X. Two graphs G1 = (V1, E1)

andG2 = (V2, E2) are isomorphic if, and only if, there exists a bijection

ι: X1 → X2 such that the diagrams

X1
ι−−−−−−−−→ X2

σ1

y
yσ2

X1 −−−−−−−−→
ι

X2

(I.7)

for σi = Bi,Pari, i = 1, 2, are commutative. Let Aut(G) be the

automorphism group of G.

On the other hand, a semi-arc isomorphism between two graphs

G1 = (V1, E1) and G2 = (V2, E2) is defined to be such a bijection τ :

B1(X1)→ B2(X2) that

B1(X1)
τ−−−−−−−−→ B2(X2)

σ1

y
yσ2

B1(X1) −−−−−−−−→
τ

B2(X2)

(I.8)

for σi = Bi,Pari, i = 1, 2, are commutative. Let Aut1/2(G) be the

semi-arc automorphism group of G.

Theorem I.12 If Aut(G) and Aut1/2(G) are, resp., the auto-

morphism and semi-arc automorphism groups of graph G, then

Aut1/2(G) = Aut(G)× Sl
2 (I.9)

where l is the number of self-loops on G and S2 is the symmetric group

of degree 2.

Proof Because each automorphism of G just induces two semi-

arc isomorphisms of G for a self-loop, the theorem is true. �
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For map M = (Xα,β,P), its automorphisms are discussed with

asymmetrization in Chapter VIII. LetM(G) be the set of all noniso-

morphic maps with underlying graph G.

Lemma I.11 For an automorphism ζ on mapM = (Xα,β(X),P),

we have exhaustively ζ|B(X) ∈ Aut1/2(G) and ζα|B(X) ∈ Aut1/2(G)

where G = G(M), the underlying graph of M , and B(X) = X + βX.

Proof Because Xα,β(X) = (X + βX) + (αX +αβX) = B(X) +

αB(X), by Conjugate Axiom each ζ ∈ Aut(M) has exhaustively two

possibilities: ζ|B(X) ∈ Aut1/2(G) and ζα|B(X) ∈ Aut1/2(G). �

Theorem I.13 Let Eg(G) be the set of all embeddings of a

graph G on a surface of genus g(orientable or nonorientable), then the

number of nonisomorphic maps in Eg(G) is

mg(G) =
1

2× aut1/2(G)

∑

τ∈Aut1/2(G)

|Φ(τ)| (I.10)

where Φ(τ) = {M ∈ Eg(G)|τ(M) = M or τα(M) = M}.

Proof Suppose X1, X2, · · ·, Xm are all the equivalent classes of

X = Eg(G) under the group Aut1/2(G)× 〈α〉, then m = mg(G). Let

S(x) = {τ ∈ Aut1/2(G)× 〈α〉| τ(x) = x}

be the stabilizer at x, a subgroup of Aut1/2(G)×〈α〉. Because |Aut1/2(G)×
〈α〉| = |S(xi)||Xi|, xi ∈ Xi, i = 1, 2, · · · , m, we have

m|Aut1/2(G)× 〈α〉| =
m∑

i=1

|S(xi)||Xi|. (1)

By observing |S(xi)| independent of the choice of xi in the class Xi,
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the right hand side of (1) is
∑

x∈X
|S(x)| =

∑

x∈X

∑

τ∈S(x)

1

=
∑

τ∈Aut1/2(G)×〈α〉

∑

x=τ(x)

1

=
∑

τ∈Aut1/2(G)×〈α〉
|Φ(τ)|.

(2)

From (1) and (2), the theorem can be soon derived. �

The theorem above shows how to find nonisomorphic super maps

of a graph when the automorphism group of the graph is known.

Theorem I.14 For a graph G, let Rg(G) and Eg(G) be, respec-

tively, the sets of all nonisomorphic rooted super maps and all distinct

embeddings of G with size ǫ(G) on a surface of genus g(orientable or

nonorientable). Then,

|Rg(G)| = 2ǫ(G)

aut1/2(G)
|Eg(G)|. (I.11)

Proof Let Mg(G) be the set of all nonisomorphic super maps

of G. By (11.3),

|Rg(G)| = 4ǫ(G)

2× aut1/2(G)

∑

M∈Mg(G)

2× aut1/2(G)

aut(M)
.

By considering that

2× aut1/2(G) = |Aut1/2(G)× 〈α〉|
= |(Aut1/2(G)× 〈α〉)|M | × |Aut1/2(G)× 〈α〉(M)|

and (Aut1/2(G)× 〈α〉)|M = Aut(M), we have

|Rg(G)| = 4ǫ(G)

|Aut1/2(G)× 〈α〉|
∑

M∈Mg(G)

|Aut1/2(G)× 〈α〉(M)|

=
2ǫ(G)

aut1/2(G)
|Eg(G)|.
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This is (I.11). �

This theorem enables us to determine all the super rooted maps

of a graph when the automorphism group of the graph is known. How-

ever, the problem of finding an automorphism of a graph is much more

difficult than that of finding an automorphism of a map on the basis

of Chapter VIII in general. For asymmetric graphs the two theo-

rems above provide results much simpler. More results are referred to

[MLW1].



Appendix II

Table of Genus Polynomials for
Embeddings and Maps of

Small Size

For a graph G, let pG(x), µG(x) and µr
G(x) be, respectively, the

orientable genus distributions of embeddings, super maps and rooted

super maps of G, or called orientable genus polynomials. Similarly,

let qG(x−1), νG(x−1) and νr
G(x−1) be, respectively, the nonorientable

genus distributions of embeddings, super maps and rooted super maps

of G, or called nonorientable genus polynomials.

Ax.II.1 Triconnected cubic graphs

First, list all nonisomorphic 3-connected cubic graphs from size

6 through 15.

Size 6

C6,1
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Size 9

C9,1 C9,2

Size 12

C12,1 C12,2

C12.3 C12,4

Size 15

C15,1 C15,2 C15,3

C15,4 C15,5 C15,6
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C15,7 C15,8 C15,9

C15,10 C15,11 C15,12

C15,13 C15,14

In what follows, the orientable and nonorientable genus poly-

nomials of embeddings, super maps and rooted super maps of 3-

connected cubic graphs shown above are provided.

Case of size 6:

Orientable

pC6,1
(x) = 2 + 14x,

µC6,1
(x) = 1 + 2x,

µr
C6,1

(x) = 1 + 7x.

Nonorientable

qC6,1
(x−1) = 14x+ 42x2 + 56x3,

νC6,1
(x−1) = 2x+ 3x2 + 3x3,

νr
C6,1

(x−1) = 7x+ 21x2 + 28x3.
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Case of size 9:

Orientable

pC9,1
(x) = 2 + 38x+ 24x2,

µC9,1
(x) = 1 + 5x+ 2x2,

µr
C9,1

(x) = 3 + 57x+ 36x2;

pC9,2
(x) = 40x+ 24x2,

µC9,2
(x) = 2x+ x2,

µr
C9,2

(x) = 10x+ 6x2.

Nonorientable

qC9,1
(x−1) = 22x+ 122x2 + 424x3 + 392x4,

νC9,1
(x−1) = 3x+ 12x2 + 28x3 + 23x4,

νr
C9,1

(x−1) = 33x+ 183x2 + 636x3 + 588x4;

qC9,2
(x−1) = 12x+ 108x2 + 432x3 + 408x4,

νC9,2
(x−1) = x+ 2x2 + 6x3 + 6x4;

νr
C9,2

(x−1) = 3x+ 27x2 + 108x3 + 102x4.

Case of size 12:

Orientable

pC12,1
(x) = 2 + 70x+ 184x2,

µC12,1
(x) = 1 + 15x+ 28x2,

µr
C12,1

(x) = 12 + 420x+ 1104x2;
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pC12,2
(x) = 64x+ 192x2,

µC12,2
(x) = 4x+ 12x2,

µr
C12,2

(x) = 128x+ 384x2;

pC12,3
(x) = 56x+ 200x2,

µC12,3
(x) = 5x+ 13x2,

µr
C12,3

(x) = 84x+ 300x2;

pC12,4
(x) = 2 + 54x+ 200x2,

µC12,4
(x) = 1 + 5x+ 8x2,

µr
C12,4

(x) = 1 + 27x+ 100x2.

Nonorientable

qC12,1(x
−1) = 30x+ 242x2 + 1448x3 + 3272x4 + 2944x5,

νC12,1
(x−1) = 7x+ 44x2 + 217x3 + 452x4 + 38x5,

νr
C12,1

(x−1) = 180x+ 1452x2 + 8688x3 + 19632x4 + 17664x5;

qC12,2
(x−1) = 12x+ 180x2 + 1360x3 + 3312x4 + 3072x5,

νC12,2
(x−1) = x+ 9x2 + 64x3 + 149x4 + 137x5,

νr
C12,2

(x−1) = 24x+ 360x2 + 2720x3 + 6624x4 + 6144x5;

qC12,3
(x−1) = 10x+ 158x2 + 1272x3 + 3296x4 + 3200x5,

νC12,3(x
−1) = 2x+ 11x2 + 57x3 + 133x4 + 118x5;

νr
C12,3

(x−1) = 15x+ 237x2 + 1908x3 + 2944x4 + 4800x5;

qC12,4
(x−1) = 24x+ 192x2 + 1288x3 + 3264x4 + 3168x5,

νC12,4
(x−1) = x+ 7x2 + 24x3 + 58x4 + 40x5;

νr
C12,4

(x−1) = 12x+ 96x2 + 644x3 + 1632x4 + 1584x5.
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Case of size 15:

Orientable

pC15,1
(x) = 2 + 102x+ 664x2 + 256x3,

µC15,1
(x) = 1 + 27x+ 176x2 + 68x3,

µr
C15,1

(x) = 30 + 1530x+ 9960x2 + 3840x3;

pC15,2
(x) = 72x+ 664x2 + 288x3,

µC15,2
(x) = 20x+ 180x2 + 672x3,

µr
C15,2

(x) = 1080x+ 9960x2 + 4320x3;

pC15,3
(x) = 56x+ 648x2 + 320x3,

µC15,3
(x) = 12x+ 96x2 + 44x3,

µr
C15,3

(x) = 420x+ 4860x2 + 2400x3;

pC15,4(x) = 80x+ 688x2 + 256x3,

µC15,4
(x) = 11x+ 93x2 + 32x3,

µr
C15,4

(x) = 600x+ 5160x2 + 1920x3;

pC15,5
(x) = 2 + 118x+ 648x2 + 256x3,

µC15,5
(x) = 1 + 27x+ 88x2 + 36x3,

µr
C15,5

(x) = 15 + 885x+ 4860x2 + 1920x3;

pC15,6
(x) = 2 + 110x+ 688x2 + 224x3,

µC15,6
(x) = 1 + 14x+ 69x2 + 20x3,

µr
C15,6

(x) = 10 + 550x+ 3440x2 + 1120x3;

pC15,7
(x) = 2 + 78x+ 656x2 + 288x3,

µC15,7
(x) = 1 + 14x+ 81x2 + 24x3,

µr
C15,7

(x) = 10 + 390x+ 3280x2 + 1440x3;

pC15,8
(x) = 96x+ 672x2 + 256x3,

µC15,8
(x) = 9x+ 49x2 + 18x3,

µr
C15,8

(x) = 360x+ 2520x2 + 960x3;
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pC15,9
(x) = 48x+ 656x2 + 320x3,

µC15,9
(x) = 8x+ 59x2 + 25x3,

µr
C15,9

(x) = 180x+ 2460x2 + 1200x3;

pC15,10
(x) = 88x+ 648x2 + 288x3,

µC15,10(x) = 5x+ 31x2 + 16x3,

µr
C15,10

(x) = 220x+ 1620x2 + 720x3;

pC15,11
(x) = 2 + 70x+ 632x2 + 320x3,

µC15,11
(x) = 1 + 5x+ 28x2 + 10x3,

µr
C15,11

(x) = 3 + 105x+ 948x2 + 480x3;

pC15,12
(x) = 72x+ 632x2 + 320x3,

µC15,12
(x) = 6x+ 24x2 + 14x3,

µr
C15,12

(x) = 108x+ 948x2 + 480x3;

pC15,13
(x) = 48x+ 720x2 + 256x3,

µC15,13
(x) = 2x+ 15x2 + 6x3,

µr
C15,13

(x) = 30x+ 450x2 + 160x3;

pC15,14
(x) = 40x+ 664x2 + 320x3,

µC15,14
(x) = x+ 7x2 + 2x3,

µr
C15,14

(x) = 10x+ 166x2 + 80x3.

Nonorientable

qC15,1(x
−1) = 38x+ 394x2 + 3336x3 + 12744x4 + 27008x5

+ 20992x6,

νC15,1
(x−1) = 10x+ 104x2 + 838x3 + 3220x4 + 6768x5 + 5300x6;

νr
C15,1

(x−1) = 570x+ 5910x2 + 50040x3 + 191160x4 + 405120x5

+ 314880x6;
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qC15,2
(x−1) = 10x+ 214x2 + 2576x3 + 11664x4 + 27424x5

+ 22624x6,

νC15,2
(x−1) = 4x+ 60x2 + 676x3 + 2988x4 + 6952x5 + 5688x6;

νr
C15,2

(x−1) = 150x+ 3210x2 + 38640x3 + 174960x4 + 411360x5

+ 339360x6;

qC15,3
(x−1) = 6x+ 158x2 + 2188x3 + 10912x4 + 27504x5

+ 23744x6,

νC15,3
(x−1) = 2x+ 27x2 + 313x3 + 1466x4 + 3572x5 + 3044x6;

νr
C15,3

(x−1) = 45x+ 1185x2 + 16410x3 + 81840x4 + 206280x5

+ 178080x6;

qC15,4
(x−1) = 12x+ 244x2 + 2816x3 + 12224x4 + 27456x5

+ 21760x6,

νC15,4
(x−1) = 2x+ 33x2 + 368x3 + 1565x4 + 3480x5 + 2736x6;

νr
C15,4

(x−1) = 90x+ 1830x2 + 21120x3 + 91680x4 + 205920x5

+ 163200x6;

qC15,5
(x−1) = 38x+ 410x2 + 3496x3 + 12952x4 + 26880x5

+ 20736x6,

νC15,5
(x−1) = 8x+ 76x2 + 524x3 + 1768x4 + 3460x5 + 2652x6;

νr
C15,5

(x−1) = 385x+ 3075x2 + 26220x3 + 97140x4 + 201600x5

+ 155520x6;

qC15,6
(x−1) = 38x+ 402x2 + 3448x3 + 13040x4 + 27072x5

+ 20512x6,

νC15,6
(x−1) = 6x+ 44x2 + 319x3 + 1157x4 + 2354x5 + 1744x6;

νr
C15,6

(x−1) = 190x+ 2010x2 + 17240x3 + 65200x4 + 135360x5

+ 102560x6;
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qC15,7
(x−1) = 32x+ 312x2 + 2800x3 + 11800x4 + 27200x5

+ 22368x6,

νC15,7
(x−1) = 5x+ 35x2 + 267x3 + 1077x4 + 2358x5 + 1866x6;

νr
C15,7

(x−1) = 160x+ 1560x2 + 14000x3 + 59000x4 + 136000x5

+ 111840x6;

qC15,8
(x−1) = 12x+ 260x2 + 2976x3 + 12432x4 + 27328x5

+ 21504x6,

νC15,8
(x−1) = 2x+ 21x2 + 207x3 + 828x4 + 1772x5 + 1382x6;

νr
C15,8

(x−1) = 45x+ 975x2 + 11160x3 + 26620x4 + 192480x5

+ 80640x6;

qC15,9
(x−1) = 4x+ 132x2 + 2049x3 + 10720x4 + 27616x5

+ 24000x6,

νC15,9
(x−1) = x+ 16x2 + 152x3 + 753x4 + 1811x5 + 1559x6;

νr
C15,9

(x−1) = 15x+ 495x2 + 7650x3 + 40200x4 + 103560x5

+ 90000x6;

qC15,10
(x−1) = 12x+ 252x2 + 2864x3 + 12136x4 + 27264x5

+ 21984x6,

νC15,10
(x−1) = x+ 11x2 + 124x3 + 517x4 + 1154x5 + 941x6;

νr
C15,10

(x−1) = 30x+ 630x2 + 7160x3 + 30340x4 + 681560x5

+ 54960x6;

qC15,11
(x−1) = 30x+ 282x2 + 2560x3 + 11240x4 + 27168x5

+ 23232x6,

νC15,11
(x−1) = 2x+ 17x2 + 92x3 + 351x4 + 754x5 + 624x6;

νr
C15,11

(x−1) = 45x+ 423x2 + 3840x3 + 16860x4 + 40752x5

+ 34848x6;
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qC15,12
(x−1) = 12x+ 220x2 + 2480x3 + 11240x4 + 27264x5

+ 23296x6,

νC15,12
(x−1) = 2x+ 11x2 + 90x3 + 343x4 + 756x5 + 638x6;

νr
C15,12

(x−1) = 18x+ 330x2 + 3720x3 + 16860x4 + 40896x5

+ 34944x6;

qC15,13
(x−1) = 120x2 + 2232x3 + 11568x4 + 27936x5

+ 22656x6,

νC15,13
(x−1) = 4x2 + 28x3 + 144x4 + 307x5 + 259x6;

νr
C15,13

(x−1) = 75x2 + 1395x3 + 7230x4 + 17460x5

+ 14160x6;

qC15,14
(x−1) = 4x+ 120x2 + 1900x3 + 10440x4 + 27664x5

+ 24384x6,

νC15,14
(x−1) = x+ 2x2 + 16x3 + 62x4 + 142x5 + 111x6;

νr
C15,14

(x−1) = x+ 30x2 + 474x3 + 2610x4 + 6916x5

+ 6039x6.

Ax.II.2 Bouquets

Let Bm be the bouquet of size m, m ≥ 1.

Case of m = 1:

Orientable

pB1
(x) = 1,

µB1
(x) = 1,

µr
B1

(x) = 1.
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Nonorientable

qB1
(x−1) = x,

νB1
(x−1) = x,

νr
B1

(x−1) = x.

Case of m = 2:

Orientable

pB2
(x) = 4 + 2x,

µB2
(x) = 1 + x,

µr
B2

(x) = 2 + x.

Nonorientable

qB2
(x−1) = 10x+ 8x2,

νB2
(x−1) = 2x+ 2x2,

νr
B2

(x−1) = 5x+ 4x2.

Case of m = 3:

Orientable

pB3
(x) = 40 + 80x,

µB3
(x) = 2 + 3x,

µr
B3

(x) = 5 + 10x.

Nonorientable

qB3
(x−1) = 176x+ 336x2 + 328x3,
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νB3
(x−1) = 5x+ 8x2 + 8x3,

νr
B3

(x−1) = 22x+ 42x2 + 41x3.

Case of m = 4:

Orientable

pB4
(x) = 672 + 3360x+ 1008x2,

µB4
(x) = 3 + 10x+ 4x2,

µr
B4

(x) = 14 + 70x+ 21x2.

Nonorientable

qB4
(x−1) = 4464x+ 14592x2 + 33120x3 + 23424x4,

νB4
(x−1) = 12x+ 33x2 + 64x3 + 47x4,

νr
B4

(x−1) = 93x+ 304x2 + 690x3 + 488x4.

Case of m = 5:

Orientable

pB5
(x) = 16128 + 161280x+ 185472x2,

µB5
(x) = 6 + 35x+ 38x2,

µr
B5

(x) = 42 + 420x+ 483x2.

Nonorientable

qB5(x
−1) = 148224x+ 718080x2 + 2745600x3 + 4477440x4

+ 3159936x5,

νB5
(x−1) = 33x+ 131x2 + 442x3 + 686x4 + 473x5,

νr
B5

(x−1) = 386x+ 1870x2 + 7150x3 + 11660x4 + 8229x5.
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Case of m = 6:

Orientable

pB6
(x) = 506880 + 8870400x+ 24837120x2 + 5702400x3,

µB6
(x) = 12 + 132x+ 328x2 + 82x3,

µr
B6

(x) = 132 + 2310x+ 6468x2 + 1485x3.

Ax.II.3 Wheels

Let Wn be the wheel of order n, n ≥ 4, i.e., all vertices are of

valency (or degree) 3 but one and all 3-valent vertices form a circuit.

Case of n = 4:

Orientable

pW4
(x) = 2 + 14x,

µW4
(x) = 1 + 2x,

µr
W4

(x) = 1 + 7x.

Nonorientable

qW4
(x−1) = 14x+ 42x2 + 56x3,

νW4
(x−1) = 2x+ 3x2 + 3x3,

νr
W4

(x−1) = 7x+ 21x2 + 28x3.

Case of n = 5:

Orientable

pW5
(x) = 2 + 58x+ 36x2,

µW5
(x) = 1 + 8x+ 4x2,

µr
W5

(x) = 4 + 116x+ 72x2.
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Nonorientable

qW5
(x−1) = 28x+ 176x2 + 640x3 + 596x4,

νW5
(x−1) = 4x+ 18x2 + 52x3 + 48x4,

νr
W5

(x−1) = 56x+ 352x2 + 1280x3 + 1192x4.

Case of n = 6:

Orientable

pW6
(x) = 2 + 190x+ 576x2,

µW6
(x) = 1 + 14x+ 41x2,

µr
W6

(x) = 4 + 380x+ 1152x2.

Nonorientable

qW6
(x−1) = 52x+ 580x2 + 4080x3 + 9880x4 + 9216x5,

νW6
(x−1) = 6x+ 38x2 + 227x3 + 539x4 + 494x5,

νr
W6

(x−1) = 104x+ 1160x2 + 8160x3 + 19760x4 + 18432x5.

Case of n = 7:

Orientable

pW7(x) = 2 + 550x+ 4968x2 + 2160x3,

µW7
(x) = 1 + 34x+ 240x2 + 106x3,

µr
W7

(x) = 4 + 1100x+ 9936x2 + 4320x3.

Nonorientable

qW7
(x−1) = 94x+ 1680x2 + 19482x3 + 87536x4 + 205496x5

+ 169552x6,
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νW7
(x−1) = 8x+ 89x2 + 878x3 + 3829x4 + 8788x5 + 7241x6,

νr
W7

(x−1) = 188x+ 3360x2 + 38964x3 + 175072x4 + 410992x5

+ 339104x6.

Case of order n = 8:

Orientable

pW8
(x) = 2 + 1484x+ 31178x2 + 59496x3,

µW8
(x) = 1 + 63x+ 1176x2 + 2246x3,

µr
W8

(x) = 4 + 2968x+ 62356x2 + 118992x3.

Ax.II.4 Link bundles

Let Lm be the link bundle of size m, m ≥ 3. A link bundle is a

graph of order 2 without loop.

Case of size m = 3:

Orientable

pL3
(x) = 2 + 2x,

µL3(x) = 1 + x,

µr
L3

(x) = 1 + 1x.

Nonorientable

qL3
(x−1) = 6x+ 6x2,

νL3
(x−1) = 1x+ 2x2,

νr
L3

(x−1) = 3x+ 3x2.



404 Appendix II� Table of Genus Polynomials for Embeddings and Maps

Case of size m = 4:

Orientable

pL4
(x) = 6 + 30x,

µL4
(x) = 1 + 2x,

µr
L4

(x) = 1 + 5x.

Nonorientable

qL4
(x−1) = 36x+ 96x2 + 120x3,

νL4
(x−1) = 2x+ 4x2 + 3x3,

νr
L4

(x−1) = 6x+ 16x2 + 20x3.

Case of size m = 5:

Orientable

pL5
(x) = 24 + 360x+ 192x2,

µL5
(x) = 1 + 3x+ 3x2,

µr
L5

(x) = 1 + 15x+ 8x2.

Nonorientable

qL5
(x−1) = 240x+ 1200x2 + 3840x3 + 3360x4,

νL5
(x−1) = 2x+ 7x2 + 14x3 + 14x4,

νr
L5

(x−1) = 10x+ 50x2 + 160x3 + 140x4.

Case of size m = 6:

Orientable

pL6
(x) = 120 + 4200x+ 10080x2,

µL6
(x) = 1 + 6x+ 10x2,

µr
L6

(x) = 1 + 35x+ 84x2.



Ax.II.5 Complete bipartite graphs 405

Nonorientable

qL6
(x−1) = 1800x+ 14400x2 + 84120x3 + 184320x4 + 161760x5,

νL6
(x−1) = 3x+ 14x2 + 48x3 + 96x4 + 72x5,

νr
L6

(x−1) = 15x+ 120x2 + 701x3 + 1536x4 + 1348x5.

Case of size m = 7:

Orientable

pL7
(x) = 720 + 50400x+ 337680x2 + 129600x3,

µL7(x) = 1 + 8x+ 31x2 + 16x3,

µr
L7

(x) = 1 + 70x+ 469x2 + 180x3.

Ax.II.5 Complete bipartite graphs

Let Km,n be the complete bipartite graph of order m+n, m,n ≥
3.

Case of order m+ n = 6:

Orientable

pK3,3
(x) = 40x+ 24x2,

µK3,3
(x) = 2x+ x2,

µr
K3,3

(x) = 10x+ 6x2.

Nonorientable

qK3,3
(x−1) = 12x+ 108x2 + 432x3 + 408x4,

νK3,3
(x−1) = x+ 2x2 + 6x3 + 6x4,

νr
K3,3

(x−1) = 3x+ 27x2 + 108x3 + 102x4.



406 Appendix II� Table of Genus Polynomials for Embeddings and Maps

Case of order m+ n = 7:

Orientable

pK3,4
(x) = 156x+ 2244x2 + 1056x3,

µK3,4
(x) = 3x+ 16x2 + 10x3,

µr
K3,4

(x) = 26x+ 374x2 + 176x3.

Nonorientable

qK3,4
(x−1) = 12x+ 432x2 + 6852x3 + 36288x4 + 93360x5

+ 80784x6,

νK3,4
(x−1) = x + 4x2 + 33x3 + 156x4 + 358x5 + 317x6,

νr
K3,4

(x−1) = 2x+ 72x2 + 1142x3 + 6048x4 + 15560x5

+ +13464x6.

Case of order m+ n = 8:

Orientable

pK4,4
(x) = 108x+ 24984x2 + 565020x3 + 1089504x4,

µK4,4
(x) = 2x+ 25x2 + 318x3 + 530x4,

µr
K4,4

(x) = 3x+ 694x2 + 15695x3 + 30264x4.

pK3,5
(x) = 240x+ 37584x2 + 290880x3 + 113664x4,

µK3,5
(x) = x+ 33x2 + 225x3 + 105x4,

µr
K3,5

(x) = 10x+ 1566x2 + 12120x3 + 4736x4.
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Ax.II.6 Complete graphs

Let Kn be the complete graph of order n, n ≥ 4.

Case of order n = 4:

Because of K4 = W4, seen from Case of order n = 4 in Ax.II.3.

Case of order n = 5:

Orientable

pK5
(x) = 462x+ 4974x2 + 3240x3,

µK5
(x) = 6x+ 31x2 + 13x3,

µr
K5

(x) = 77x+ 829x2 + 390x3.

Nonorientable

qK5
(x−1) = 54x+ 1320x2 + 17490x3 + 84660x4

+ +208776x5 + 177588x6,

νK5
(x−1) = 2x+ 11x2 + 99x3 + 417x4 + 955x5 + 796x6,

νr
K5

(x−1) = 9x+ 220x2 + 2915x3 + 14110x4 + 34796x5

+ +29598x6.

Case of order n = 6:

Orientable

pK6
(x) = 1800x+ 654576x2 + 24613800X3

+ +124250208x4 + 41582592x5.
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Nonorientable

qK6
(x−1) = 24x+ 4560x2 + 370920x3 + 10828440x4

+ 192264576x5 + 1927543032x6 + 11905560960x7

+ 42386101920x8 + 79831388160x9

+ 59244281856x10.



Appendix III

Atlas of Rooted and Unrooted Maps
for Small Graphs

In the symbol X : a, b, c for a map appearing under a figure

below, X is the under graph of the map, a = oy or qy are, respectively,

orientable or nonorientable genus y, b is the series number with two

digits and c is the number of ways to assign a root. And, x̄ on a

surface is for x−1, or −x, x = 1, 2, · · ·.

Ax.III.1 Bouquets Bm of size 4 ≥ m ≥ 1

Case m = 1:

Orientable genus 0 R�
1̄

16
B1 : o0− 01− 01

Nonorientable genus 1

R1 �
1

6
B1 : q1− 01− 01



410 Appendix III� Atlas of Rooted and Unrooted Maps

Case m = 2:

Orientable genus 0 -6
�?

1

1̄

2

2̄ 6-
B2 : o0− 01− 02

Orientable genus 1 -66
-

1

2

1̄

2̄ 6
B2 : o1− 01− 01

Nonorientable genus 1-
?

6
-

1

2

2̄

1 6-?� -
?

6
-

1

2

1

2 6
B2 : q1− 01− 04 B2 : q1− 02− 01
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Nonorientable genus 2-
?

6
�

1

1

2

2 6- -
?

6
-

1

2

1̄

2 6-
B2 : q2− 01− 02 B2 : q2− 02− 02

Case m = 3:

Orientable genus 0

1

1̄

2

2̄

3

3̄ 6* 1

2

2̄

1̄

3

3̄ 6*s
B3 : o0− 01− 02 B3 : o0 − 02− 03

Orientable genus 1

1

2

1̄

2̄

3

3̄ 6*j? 1

3

2

3̄

1̄

2̄ 6*j 1

2

3

1̄

2̄

3̄ 6*j
B3 : o1 − 01− 04 B3 : o1− 02− 03 B3 : o1− 03− 03
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Nonorientable genus 1

16*j 1

2

2̄

3

3̄ ?+i 16�j 1̄

2

3

2

3 ?	i 16�j 1

2

3

3̄

2̄ ?	i
B3 : q1− 01− 06 B3 : q1− 02− 06 B3 : q1− 03− 06

16�j 1̄

2

3

3̄

2

16 2

3

1

2

3

B3 : q1− 04− 03 B3 : q1− 05− 01

Nonorientable genus 2

16�j 1

2

2

3

3̄ ?+i 1

1̄

2

3

2

3̄

16�j 1

2

3

2

3 ?	i
B3 : q2− 01− 06 B3 : q2− 02− 12 B3 : q2− 03− 06

16�j 2

3

3̄

2

1 ?	i 16�j 1

2

3

3

2̄

16�j 2

1̄

3

2

3̄

B3 : q2− 04− 06 B3 : q2− 05− 03 B3 : q2− 06− 03
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16*j 2

1

3

2̄

3

16�j 2

3

1

2

3̄

B3 : q2− 07− 03 B3 : q2− 08− 03

Nonorientable genus 3

16� 1

2

2

3

3

16*j 1

2

3

2̄

3̄ ?	i 1

1

2

3

2

3̄

B3 : q3− 01− 02 B3 : q3− 02− 06 B3 : q3− 03− 12

1

1

2

3

3

2 6�j 16 2

1

3

2̄

3̄ �j?	Y 16�j 2

1

3

2

3̄ ?�Y
B3 : q3− 04− 03 B3 : q3− 05− 06 B3 : q3− 06− 06

16�j 2

1

3

2

3

16�j 2

3

1

2̄

3̄

B3 : q3− 07− 03 B3 : q3− 08− 03
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Case m = 4:

Orientable genus 0

1

1̄

2

2̄

3

3̄

4

4̄ 6� 1

1̄

2

2̄

3

4

4̄

3̄ 66�*--R̂ 1

1̄

2

3

4

4̄

3̄

2̄ 6�-s
B4 : o0 − 01− 02 B4 : o0− 02− 08 B4 : o0− 03− 04

Orientable genus 1
1

1̄

2

2̄

3

4

3̄

4̄ ��Y℄66�* 1

1̄

2

3

2̄

4

3̄

4̄ �+��Y℄66 1

1̄

2

3

2̄

4

4̄

3̄ I66�*--R
B4 : o1− 01− 08 B4 : o1− 02− 08 B4 : o1 − 03− 08

1

1̄

2

3

4

2̄

3̄

4̄ 66IY��+� 1

1̄

2

3

4

2̄

4̄

3̄

1

1̄

2

3

4

3̄

4̄

2̄ 66℄Y��+�
B4 : o1− 04− 08 B4 : o1− 05− 16 B4 : o1 − 06− 08

1

1̄

2

3

4

2̄

4̄

3̄ 66IY 1

2

1̄

3

4

2̄

4̄

3̄ 66IY 1

2

3

1̄

4

2̄

3̄

4̄ 66IY
B4 : o1− 07− 04 B4 : o1− 08− 04 B4 : o1 − 09− 04
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1

2

3

1̄

4

3̄

2̄

4̄ 66
B4 : o1− 10− 02

Orientable genus 2

1

2

1̄

2̄

3

4

3̄

4̄ 66�* 1

2

1̄

3̄

2̄

4

3̄

4̄ 66�*-RU- 1

2

1̄

3

4

2̄

3̄

4̄ ��Y℄66��
B4 : o2− 01− 04 B4 : o2− 02− 08 B4 : o2 − 03− 08

61 2

3

4

1̄

2̄

3̄

4̄

B4 : o2− 04− 01

Ax.III.2 Link bundles Lm, 6 ≥ m ≥ 3

Case m = 3:

Orientable genus 0
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�? �

1

1̄2

2̄

L3 : o0 − 01− 01

Orientable genus 1 -6
�? �

1

1̄

2 2̄

L3 : o1 − 01− 01

Nonorientable genus 1 -6
�? �

1

2

1

2U?
L3 : q1− 01− 03

Nonorientable genus 2
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�? �

1

2 N�
1

2̄

L3 : q2− 01− 03

Case m = 4:

Orientable genus 0

1

2

3
63̄

2̄

1̄

L4 : o0 − 01− 01

Orientable genus 1

1

2

3
61̄

2̄

3̄

1

2

3
66??1̄

3̄

2̄

L4 : o1− 01− 01 L4 : o1 − 02− 04
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Nonorientable genus 1

1

2

3
662

3

1̄

1

2

3
6*-?

1

2

3

L4 : q1− 01− 02 L4 : q1− 02− 04

Nonorientable genus 2

1

2

3 661̄

3

2

1

2

3 661-??i�1

3̄

2̄

1

2

3 611

2̄

3

L4 : q2− 01− 02 L4 : q2− 02− 08 L4 : q2− 03− 02

1

2

3
661-1

2̄

3̄

L4 : q2− 04− 04

Nonorientable genus 3
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1

2

3

)�??661-1

3̄

2

1

2

3 661-??�i1̄

3̄

2

1

2

3 661�1

2̄

3̄

L4 : q3− 01− 08 L4 : q3− 02− 08 L4 : q3− 03− 04

Case m = 5:

Orientable genus 0

1

2

3

4 Æ4̄

3̄

2̄

1̄

L5 : o0 − 01− 01

Orientable genus 1

1

2

3

4 ÆNUjj
2̄

1̄

4̄

3̄

1

2

3

4 Æ�̂N�
1̄

4̄

3̄

2̄

1

2

3

4 Æ�j��1̄

2̄

4̄

3̄

L5 : o1− 01− 05 L5 : o1− 02− 05 L5 : o1 − 03− 05

Orientable genus 2
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1

2

3

4 Æ2̄

4̄

1̄

3̄


1

2

3

4 Æ�jĵ1̄

3̄

4̄

2̄

1

2

3

4 Æ1̄

2̄

3̄

4̄

L5 : o2− 01− 02 L5 : o2− 02− 05 L5 : o2 − 03− 01

Nonorientable genus 1

1

2

3

4 Æ�̂N�
2

3

4

1̄

1

2

3

4 Æjj��1
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1

2̄

3

1

2

3

4 ÆY �-j4

1

2

3̄

L5 : q3− 13− 05 L5 : q3− 14− 05

Nonorientable genus 4

1

2

3

4 Æ�iqY -iM js2

4̄

1

3̄

1

2

3

4 Æ�-j�� iiM62̄

4̄

1

3̄

1

2

3

4 Æ�-ĵU��YY
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1

3

4̄

2̄

sM M**
L5 : q4− 04− 10 L5 : q4− 05− 10 L5 : q4− 06− 10



Ax.III.2 Link bundles Lm, 7 ≥ m ≥ 3 423

1

2

3

4 Æ�-ĵ1̄
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Ax.III.3 Complete bipartite graphs Km,n, 4 ≥ m,n ≥ 3
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Case n = 4(i.e., the complete graph K4 of order 4):
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Ax.III.5 Complete graphs of order 5 ≥ n ≥ 4

Size 4: (K4 = W4, W4 is known in Ax.III.4).

Size 5:
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Ax.III.6 Triconnected cubic graphs of size in [6, 15]

Size 6: (C6,1 = K4 = W4, W4 is known above).
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Terminology

(i, j)-edge, 186

(i, j)-map, 58

(i, j)f-map, 123

(i∗, j∗)-map, 58

(l, s)∗-edge, 186

(x, y)-difference, 348

〈x, y〉-difference, 348

1-addition, 244

1-product, 244

C∗-oriented planarity, 309

H-valency, 209

i-connected, 35

i-cut, 35

i-map, 57

i-section, 301

i-vertex, 194

j-face, 194

j∗-map, 58

n-cube, 141

N -standard map, 149

O-standard map, 126

s-manifold, 29

V -code, 298

1-set, 375

1st level segment, 285

2-partition, 34, 122

3-map, 123

absolute genus, 158

absolute norm, 307

admissible, 284

appending an edge, 86

arc, 2

articulate vertex, 187, 262

articulation, 303

assignment, 283

associate net, 121

associate surface, 283

associate surface graph, 288

automorphism, 190, 331

automorphism group, 192, 331

balanced, 121

barfly, 146

Base map, 317

base map, 262

basic adding, 96

basic appending, 96

basic contracting, 96

basic contracting irreducible, 101

basic deleting, 96

basic deleting edge irreducible, 101

basic equivalence, 112

basic partition, 45

basic permutation, 43

basic set, 41

basic splitting, 96

basic subtracting, 96

basic subtracting irreducible, 102

basic transformation, 96

Betti number, 17

bi-matching map, 208

bi-pole map, 232

biboundary, 310

480



Terminology 481

bijection, 42, 101

bipartite, 100

bipartite graph, 6

bipole, 37

Blissard operator, 346

boundary identification, 306

boundary identifier, 306

bouquet, 37, 213

branch, 287

butterfly, 125

cavity, 209

cellular embedding, 381

celluliform, 300

chromatic number, 40

circuit, 5

circuit partition, 7

class of basic equivalence, 113

co-order, 113

cocircuit oriented map, 309

cocircuit oriented planarity, 309

cocircular map, 309

cocirculation, 310

cocycle, 34, 122

commutative, 168

completely symmetrical, 197

composition, 4

conjugate axiom, 46

conjugate), 46

connected, 5

contractible, 10

contractible point, 300

contracting, 76

contraction, 300

coorder, 19, 169

corank, 17

cosemiedge, 56

crosscap polynomial, 289

crosscap, 13

crossing number, 40

cubic, 209

cut-vertex, 59

cuttable, 68, 69

cutting, 68

cutting face, 69

cutting graph, 69

cutting vertex, 68

cycle, 43

cyclic number, 17

cyclic permutation, 43

decomposition, 37

decreasing duplition, 112

decreasing subdivision, 112

degree, 7

deleting, 72

different indices, 19

different signs, 187

digraph, 5

dipole, 341

directed pregraph, 2

distinct, 283

distinct, 376

double edge, 70

double H-map, 210

double leaf, 308

double link, 70

double loop, 70

double side curve), 10

down-embeddable, 20



482 Terminology

dual, 49, 65, 377

dual Eulerian map), 100

dual H-map, 210

dual map, 66

dual matching, 208

dual matching map, 208

dual regular, 57

dual trail code, 179

edge, 2

edge independent partition), 59

edge rooted, 202

edge-automorphism, 330

edge-isomorphism, 329

efficient, 176

elementary equivalence, 378

elementary transformation, 377

embedding, 381

embedding), 17

empty pregraph, 2

end segment, 286

end, 1, 56

enumerating function, 241

equilibrious embedding, 64

equilibrium, 64

equivalent class, 113

Euler characteristic, 20

Euler characteristic(Euler charac-

teristic), 113

Euler graph, 7

Eulerian, 361

Eulerian characteristic, 377

even, 361

even assigned conjecture, 102

even assigned map, 100

even pregraph, 7

eves-cyclic, 231

exchanger, 287

expanded tree, 283

expansion, 383

face, 17, 49, 377

face regular, 57

face representative, 121

face rooted, 202

face-algorithm, 172

face-regular, 195

fan-flower, 317

father, 286

favorable embedding, 60

favorable map, 60

favorable segment, 301

feasible segment, 300

feasible sequence, 298

finite pregraph), 2

finite recursion principle), 6

finite restrict recursion principle,

6

first operation, 47

first parameter, 349

fixed point, 191

flag, 384

full cavity, 209

general, 350

generalized Halin graph, 38

generated group, 50

genus polynomial, 289

genus, 138

graph, 5
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ground set, 2, 42

Halin graph, 307

Halin map, 262

Hamilton map, 123

Hamiltonian circuit, 122

Hamiltonian graph, 122

handle polynomial, 289

handle, 13

harmonic link, 70

harmonic loop, 70

hexagonalization), 102

homotopic), 10

identity, 192

immersion, 33

incidence equation, 34

incident pair, 100

included angle, 56

increasing duplition, 112

increasing subdivision, 112

independent face set, 209

independent pair, 100

independent set, 100

induced, 44, 99

infinite pregraph, 2

initial end, 2

inner rooted, 311

inner vertex, 262

interlaced, 134

interpolation theorem, 21

irreducible, 140, 299

isomorphic, 385

isomorphic class, 168

isomorphism, 165, 330

joint sequence, 187

joint tree, 18, 187

Klein group, 22

Klein model, 31

ladder, 293

left projection, 346

link, 70

link bundle, 37, 403

link map, 194

loop, 70

loop bundle, 37

loop map, 67

loopless map, 265

map, 50

map geometry, 29

maximum genus, 21

maximum genus embedding, 162

maximum nonorientable face num-

ber embedding, 63

maximum nonorientable genus, 162

maximum orientable face number

embedding, 63

meson functional, 346

minimum genus, 21

minimum genus embedding, 162

minimum nonorientable genus, 162

minimum nonorientable genus em-

bedding, 63

minimum orientable genus embed-

ding, 63

multiplicity, 333

near quadrangulation, 261
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near regular, 266

near triangulation, 261

necklace, 293

network, 6

node, 2

noncuttable, 68, 69

noncuttable block, 69

nonorientable form, 290

nonorientable, 10, 104, 374

nonorientable favorable genus, 162

nonorientable genus, 11, 158, 162

nonorientable pan-tour conjecture,

163

nonorientable pan-tour genus, 162

nonorientable pan-tour maximum

genus, 162

nonorientable preproper genus, 162

nonorientable proper map conjec-

ture, 163

nonorientable rule, 153

nonorientable rule 3, 155

nonorientable single peak conjec-

ture, 39

nonorientable small face proper map

conjecture, 163

nonorientable tour genus, 162

nonorientable tour map conjecture,

163

nonorientable tour maximum genus,

162

nonseparable, 58

odd circuit, 34

orbit, 23, 43

order, 19, 40, 43, 169, 192

orientable genus polynomial, 389

orientable, 10, 104, 374

orientable genus, 11, 138

orientable minimum pan-tour genus,

142

orientable pan-tour conjecture, 142

orientable pan-tour maximum genus,

143

orientable proper map conjecture,

142

orientable single peak conjecture,

39

orientable tour conjecture, 142

pan-Halin map, 262

pan-tour face), 142

pan-tour map, 142

parallel, 134

partition, 2

path, 5

petal bundle, 125, 213

planar graph, 35

planar map, 141

planar pedal bundle, 217

plane tree, 297

planted tree, 263, 297

point partition, 300

polygonal map, 62

polyhedral sequence, 298

polyhedron, 374

pre-standard, 317

pre-standard pan-Halin map), 262

prefect dual matching, 208

prefect primal matching, 208

pregenus, 11
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pregraph, 2

premap, 47

preproper map, 60

primal H-map, 210

primal matching, 208

primal matching map, 208

primal regular, 57

primal trail code, 179

principle segment, 286

problem of type 1, 270

problem of type 2, 273

proper circuit, 99

proper cocircuit, 99

proper embedding, 60

proper map, 60

quadcircularity, 308

quadcirculation, 308

quadrangulation, 57

quadregular map, 306

quadricell, 42

quaternity, 306

quinquangulation, 102

rank, 17

reduced rule, 134

reduction, 299

relative genus, 158

reversed vector, 258

right projection, 346

Ringel ladder, 294

root, 203

root edge, 203

root face, 203

root vertex, 203

rooted edge, 202

rooted element, 201, 202

rooted face, 202

rooted map, 203, 236

rooted set, 201

rooted vertex, 202

rotation, 17

same, 283, 376

same sign, 187

second operation, 47

second parameter, 349

segmentation edge, 75

self-dual, 98

semi-arc isomorphism, 385

semi-automorphism, 328

semi-automorphism group, 329

semi-isomorphic, 327

semi-isomorphism, 327

semi-regular map, 61

semiedge, 56

separable, 35

set rooted), 201

sharp, 194

shearing loop, 82

side, 56

simple map, 265, 305

simplified barfly, 151

simplified butterfly, 128

single edge, 70

single link, 70

single loop, 70

single peak, 39

single side curve, 10

single vertex map, 125
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singular link, 70

singular loop, 70

size, 19, 40, 169

skeleton, 377

small face favorable embedding, 61

small face proper embedding, 61

Smarandache geometry, 29

Smarandache multi-space, 28

son, 286

spanning cavity, 209

spanning tree, 17

specific face, 262

splitting, 88

splitting block, 35

splitting edge, 88

splitting pair, 35

standard, 317

standard, 303

standard form, 12

standard pan-Halin map), 263

standard splitting block, 35

standard splitting block decompo-

sition, 36

standard surface, 381

straight line embedding, 17

strong embedding, 60

strong map, 60

subsidiary graph, 121

super premap, 50

support, 374

surface closed curve axiom, 10

surface embedding graph, 288

surface embedding, 17

switch, 376

symmetric, 190

symmetrical map, 197

terminal, 262

terminal end, 2

terminal link, 75

terminal loop, 81

thickness, 40

tour, 5, 142

tour map, 142

trail, 5

transitive, 5, 33, 50

transitive axiom, 50

transitive block, 66

transitive decomposition, 66

travel and traverse rule, 33

travel, 5

tree, 17

tri-pole map, 232

triangulation, 57

trivial, 192

trivial map, 127

TT-rule, 33

twist, 383

twist loop, 81

under pregraph, 50

uniboundary, 310

unicyclic, 324

unisheet, 230

up-embeddable, 20, 189

up-integer, 233

vertex, 2, 47, 377

vertex partition, 298

vertex regular, 57
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vertex rooted, 202

vertex-algorithm, 172

vertex-isomorphism, 330

vertex-regular, 194

walk, 5

wheel, 38

wintersweet, 324



Abstract: A Smarandache system (Σ;R) is such a mathematical system with at least

one Smarandachely denied rule r in R such that it behaves in at least two different ways

within the same set Σ, i.e., validated and invalided, or only invalided but in multiple dis-

tinct ways. A map is a 2-cell decomposition of surface, which can be seen as a connected

graphs in development from partition to permutation, also a basis for constructing Smaran-

dache systems, particularly, Smarandache 2-manifolds for Smarandache geometry. As an

introductory book, this book contains the elementary materials in map theory, including

embeddings of a graph, abstract maps, duality, orientable and non-orientable maps, iso-

morphisms of maps and the enumeration of rooted or unrooted maps, particularly, the

joint tree representation of an embedding of a graph on two dimensional manifolds, which

enables one to make the complication much simpler on map enumeration. All of these

are valuable for researchers and students in combinatorics, graphs and low dimensional

topology.
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