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PREFACE  
 
 

In this book authors introduce the new notion of MOD 

rectangular planes. The functions on them behave very 

differently when compared to MOD planes (square). These 

are different from the usual MOD planes. Algebraic 

structures on these MOD rectangular planes are defined and 

developed.  

However we have built only MOD interval natural 

neutrosophic products of the form I[0, m)   I[0, n) where 

m ≠ n and 2 ≤ m, n < . These can be called as planes as 

one can accommodate the mod natural neutrosophic 

numbers in these planes. Further MOD rectangular natural 

neutrosophic numbers I I
n mZ Z ; m ≠ n; 2 ≤ m, n <  are 

also constructed and algebraic structures on them are 

defined and described. They happen to be of finite 

cardinality. On these MOD rectangular numbers, 
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semigroups with respect to + and  (or 0) are defined and 

described. They happen to be of finite MOD rectangular 

natural neutrosophic sets. MOD matrix subsets are 

constructed and under + (or  or n) these collections yield 

only semigroups.  

On similar lines MOD rectangular natural neutrosophic 

subset coefficient polynomials are defined and under + and 

 or 0 they happen to be only semigroups. Study in this 

direction yields nice algebraic structures under a single 

binary operator + or  (or 0) 

 We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 
W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 
FLORENTIN SMARANDACHE 

 



 

Chapter One 

 

 

INTRODUCTION 

 

  In this book authors introduce the new notion of MOD 
rectangular planes [0, n) [0, m)  where m n; 2  m, n < . 
This concept is analogously defined to MOD rectangular modulo 
integers as Zn  Zm, MOD rectangular natural neutrosophic 
modulo integers I

nZ   I
mZ  and MOD rectangular natural 

neutrosophic interval set I[0, n)  I[0, m).  However these are 
not planes but we choose to call them as MOD rectangular 
numbers. Further we cannot define MOD rectangular complex 
plane or dual plane or neutrosophic plane for we need m = n.   
For more about MOD structures please refer [31-41]. 

 Here we give how the usual functions behave in the case 
of MOD rectangular plane [0, n)  [0, m); (m  n). Then we 
proceed onto define algebraic structures on Zn  Z,, I

nZ   I
mZ , 

I[0, n)  I[0, m) and [0, n)  [0, m); m  n.   We see Zn Zm
and 

[0, n)  [0, m) are groups under + modulo pair operation.  For if 
(a, b) and (c, d)  [0, n)  [0, m) then (a, b) + (c, d) = ((a +c) 
(mod n), (b + d) (mod m)). 
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 But I
nZ   I

mZ  and I[0, n)  I[0, m) are only semigroups 
under +.  So we are in a position to give semigroups of finite 
and infinite order which are only semigroups under +.  When 
we extend this concept to matrices and polynomials we get 
matrices such that A + A = A and polynomials p(x) + p(x) = 
p(x) respectively.  

 Except for this structure we would not be in a position to 
get all these. I

nZ  I
mZ  and Zn Zm under product are finite order 

semigroups which enjoy several special features. Likewise 
 I[0, n)  I[0, m) and [0, n)  [0, m) are infinite order semigroups 
which are also only infinite order semigroups under product. 

 All these give examples of non-abstract semigroups of 
either finite or infinite order under + or . Finally we see these 
semigroups have special and distinct features. Certainly these 
finite structures can find applications in several important 
problems related to automaton theory. 

 The authors also mention about matrix and polynomial 
MOD rectangular natural neutrosophic semigroups under + and 
0 (or ).  They are always commutative monoids.  In case of 
square matrices we can have the usual product  and get the 
infinite order non-commutative monoids if [0, n)  [0,m) or 
 I[0, n)  I[0, m) is used and finite non commutative monoids in 
case of Zn  Zm or I

nZ   I
mZ . 

 Several innovative results are obtained.  For more about 
neutrosophic algebraic structures, refer [2-12].  



 

Chapter Two 

 

 

RECTANGULAR MOD PLANES 

 

 In this chapter we introduce the new notion of rectangular 
MOD planes. These are distinctly different from the existing real 
planes. Further these planes will serve a better purpose for one 
need not go for different types of scales only for rectangular 
planes.  In fact rectangular MOD planes are infinitely many. 

 When both the x and y coordinates are real we call them 
as real MOD rectangular planes or MOD rectangular real planes.  

 We will first illustrate this by some examples. 

Example 2.1.   Let us consider the two MOD intervals [0, m) and 
[0, p); p  m, 2  p, m < . 

 Now Rn(m, p) = [0, m)  [0, p) = {(a, b) / a  [0, m) and 
b  [0, p)}.   

 This Rn(m, p) is defined as the MOD rectangular plane, 
which is described by the figure given in the next page. 
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Figure 2.1 

 
Rn(m, p) denotes the MOD rectangular real plane. In fact we 
have infinitely many such rectangular MOD real planes. 

Example 2.2. Let Rn(5, 3) = {(a, b) / a  [0, 5), b  [0, 3)} be 
the rectangular MOD real plane clearly this is an infinite plane. 

Example 2.3.  Let Rn(2, 4) = {(a, b) / a  [0, 2) and b  [0, 4)} 
be the real rectangular MOD plane. It is evident that Rn(2, 4) is 
an infinite real plane which has only one quadrant.   

 In fact we will prove that we can get appropriate 
transformation of R  R = {(a, b) / a, b  R} into Rn(m, p) and 
vice versa. First we describe the transformation for some 
particular values of m and p then for general values say of m 
and p. Further it is important to keep on record when m = p we 
get the real MOD plane Rn(m) [35].  

p 

m 
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 We have also described about MOD functions and 
transformations. 

Example 2.4. Let Rn(5, 6) be the MOD rectangular plane. 

Define map:  : R  R  Rn(5, 6) by   

 (a, b)  =  

if 0 a 5
(a,b)

and 0 b 6
if a 5

(0,b)
and 0 b 6
if b 6

(a,0)
and 0 a 5
if a 5

(0,0)
and b 6

(x,b) if a 5
a xand n ;0 b 6
5 5

(a,y) if 0 a 5, b 6
b yand t
6 6

(x, y) if a 5 and b 6
a x b yn and t
5 5 6 5

(5 x,6 y) if a negative, b is negative
a xand n
5 5

 
 

 

 





   

  

 

 

   

  

 
b y; t
6 6





































 

 

So if (a, b) = (3.7, 2.01) then (a, b)  Rn(5,6).  
If (a, b) = (5, 0.27) then  (a, b) = (0, 0.27).   
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If (a, b) = (2.001, 6) 
then  (a, b) = (2.001, 0). 
If (a, b) = (12.378, 10.615) then  (a, b) = (2.378, 4.615).  
If (a, b) = (–3.21, 6.3) then (a, b) = (1.79, 0.3).  
If (a, b) = (9.32, – 4.73), (a, b) = (4.32, 1.27) 
(–9.32, –10.41) = (0.68, 1.59). 

 This is the way the transformation from the real plane  
R  R is mapped onto the Rn(5, 6), the MOD rectangular plane.   

 The MOD-rectangular plane has only one quadrant but it 
has the capacity to get all 4 quadrants of the R  R real plane 
into it. 

 We will leave it as an exercise for the reader to map,   
: R  R  Rn(m, p); this MOD transformation is akin to the 
MOD transformation carried out in the MOD planes.  For more 
refer [33-35]. 

 Next we proceed onto get the transformation from the 
MOD real rectangular plane to the real plane by making the 
following definition.  

 Just first we describe it by an example.   

 i : Rn(9, 5)  R  R, where i is a map from Rn(9,5) to 
R  R defined by the following way. 

 i (5, 2.001) = (5, 2.001) or (9n + 5, 5n + 2.001). 

 n = 0,  1, 2,  3, ..., . 

 i(0, 0) =  (n9, m5);  n = 0,  1,  2, …,  
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     m = 0,  1,  2, …,  

i(t, s) = (9n + t, 5m +s)  n  = 0,  1,  2, …,  

     m = 0,  1,  2, …, . 

 In fact i does not behave like a classical map. However 
by the special MOD transformation we are in a position to cover 
the entire real plane.  

 Thus special MOD transformations are a specially made 
maps which map periodically every single element of Rn(m, p) 
into an infinite number of elements. Thus with no difficulty we 
retrieve the entire real plane from the MOD rectangular real 
plane.  

 We see each point in Rn(m, p) is mapped by i into a real 
line (–, ) of a specific form. 

 Now our next venture is to define some sort of operations 
on the MOD real plane Rn(m, p) or to be more specific can we 
have some form of well-defined algebraic structures on  
Rn(m, p). 

 We will first describe this by some examples before we 
make the abstract definition of it. 

Example 2.5.  Let Rn(5, 3) be the MOD real plane built using the 
intervals [0, 5) and [0, 3). 

Define + on Rn(5, 3) = {(a, b) / a  [0, 5), b  [0, 3)} as 
follows. 

 For (x,  y) and (t, u)  Rn(5, 3) define + as   



14 MOD Rectangular Natural Neutrosophic Numbers 
 
 
 
 
 
 

 (x, y) + (t, u) = (x + t(mod 5), y + u(mod 5)). 

 In particular if (3.21, 2.114) and (4.378, 0.5667) is in  
Rn(5, 3).  

 (3.21, 2.114) + (4.378, 0.5667) = (4.588, 2.6807)  
Rn (5, 3). 

 Thus + is a closed binary operation on Rn(5, 3).  

 Infact (0, 0)  Rn(5, 3) acts as the additive identity.   
If (x, y)  Rn(5, 3),  (0, 0) + (x, y)  =  (x, y) + (0, 0) = (x, y). 

 Thus + is a commutative binary operation on Rn(m, p) = 
Rn(5, 3).  To every (x, y) Rn(m, p)  there exists unique (s, t)  
Rn(m, p) such that (x, y) + (s, t) = (0, 0) mod (5, 3). 

 Infact we can say {Rn(5, 3), +} is an additive abelian 
group of infinite order. 

 We now make the definition. 

Definition 2.1.  Let Rn(m, p) = {(a, b) / a    [0, m), b  [0, p)} 
be the MOD real rectangular plane.  Define a binary operation 
+ on Rn(m, p) as for (x, y) and (a, b)  Rn(m, p); (x, y) + (a, b) 
= ((x + a) (mod m), (y + b) mod p)  Rn(m, p).  Then {Rn(m, p), 
+} is defined as the MOD real rectangular plane group.   

 It is important to note that there exists infinitely many 
such MOD real rectangular plane groups as m and p can vary,   
2  m <  and 2  p <  which is an infinite interval.  This 
infinite group always contains subgroups of finite order as well 
as of infinite order.   
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 This will be represented by the following examples. 

Example 2.6.  Let Rn(6, 7) ={(a, b) / a  [0, 6) and b  [0, 7)} 
be the MOD real rectangular plane group under +.  

 B = {(a, b) / a  Z6 and b  Z7}   Rn(6, 7) is a subgroup 
of Rn(6, 7) and is of finite order. 

 Let S = {(a, 0) / a  [0, 6)}  Rn(6, 7).   Clearly S is a 
subgroup of infinite order.  

 Similarly T = {(0, b) / b  [0, 7)}  Rn(6, 7) is a 
subgroup of infinite order. 

 In view of this we have the following theorem. 

Theorem 2.1.  Let {Rn(m, p), +} = {(a, b) / a  [0, m),  
b  [0, p), +} be the MOD real rectangular plane group. 

i) Rn(m, p) always has at least 3 subgroups of finite 
order. 

ii) Rn(m, p) has subgroups of infinite order. 

Proof is direct and hence left as an exercise to the reader. 

 However examples to this effect will be provided. 

Example 2.7.  Let Rn(12, 9) = {(a, b) / a  [0, 12), b  [0, 9)} 
be a group of MOD real rectangular plane under +.   

 We see G1={(a, 0) / a  Z12, +},  

G2 ={(a, 0) / a  {0, 2, 4, 6, 8, 10}, +},  
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G3 = {(0, b) / b  Z9, +} and  

G4 ={(a, b) / a  Z12, b  Z9, +} contained in Rn(12, 9) are some 
of the finite order subgroups of Rn(12, 9). 

 We just show how the plane looks like the usual real 
plane or complex plane is given by the following figures. 

The real plane is as follows: 

 

Figure 2.2 

 The complex plane is as follows: 

 

 

–  

– 
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Figure 2.3 

We see the planes on both the axis are equal and not of different 
sizes.   

 We will illustrate this situation by some examples. 

Example 2.8.  Let R(6, 3) be the MOD rectangular plane given 
by the following figure. 

 

 

i 

–  

– 

(3, 4) = 3 + 4i 

–i

 
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Figure 2.4 

Example 2.9.  Let Rn(2, 7) be the MOD  rectangular plane given 
by the following figure. 

 

Figure 2.5 

 Let P(1.2, 5.3) be a point in the MOD rectangular plane.  
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 We see that this MOD rectangular finite planes are much 
more better than the usual planes also to some extent it is better 
than Rn(m) plane. 

 For even in the very simple case like storage if we choose 
Rn(m, t) where t < m then certainly it can save time and space; 
hence ultimately the MOD rectangular plane may be a better 
option in practical situations. 

 Next we proceed onto describe how functions can be 
defined in rectangular MOD planes. We will compare these 
functions in the real plane and MOD planes. 

Example 2.10.  y = x be the function we give in the following 
figures; in the real plane and the MOD rectangular plane, the 
graph is as follows. 

 

Figure 2.6 
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Figure 2.7 

For when x = 4; y = 0, x = 5,  y = 1 and x = 5.999, y = 1.999. 

 So we get in Rn(6, 4) broken graphs but in the real plane 
the function y = x is a  continuous line.  In case of Rn(m) the 
MOD plane we see the graph y = x is as follows. 

 

Figure 2.8 

m 

m 

m 
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 Let us take x = 2 and y = 8, we see the graph y = x in 
Rn(2, 8) plane is as follows. 

 
Figure 2.9 

 We see the graph is continuous.   

Example 2.11.  Let us consider the function y = x2.  The graph 
of y = x2 in the real plane is as follows. 
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Figure 2.10 

 Next we give the graph of y = x2 in the MOD real plane 
Rn(5) by the following figure. 

 
Figure 2.11 
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 We can find the zeros. However in the real plane the only 
zero is x = 0. Now we give the graph of y = x2 in the MOD 
rectangular plane Rn(3, 7). 

 
Figure 2.12 

 Consider the MOD rectangular plane Rn(8, 4) given by the 
following figure. 

 
Figure 2.13 
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 Finding how many branches exist happens to be a 
difficult problem. 

 Now (n  4) if we choose to study y = x3 or any y = xn  

(n > 4) finding number of branches in Rn(m, t), m  t, 2  m,  
t <  will continue to be a open problem. 

 For these curves are not continuous in Rn(m) or Rn(s, t)  
s  t; 2  s, t < . 

 Suppose y = ax + b; a, b integers, we know y = ax + b is 
defined for all values of a, b  R and the graph of the curve  
y = ax + b can be easily plotted.  But if a, b  Z we can define 
for the function y = ax + b in Rn(m) provided 1  a, b < m and 
in case of Rn(s, t); y = ax + b can be defined only if 1  a, b < s 
and t.    

 So using these conditions we will describe the curve  
y = ax + b in R, Rn(m) and Rn(s, t); s and t taking some fixed 
values for a and b by examples. 

Example 2.12.  Let y = 5x + 3 be the function.  

 We trace y = 5x + 3 in R, Rn(6), Rn(9, 7) and Rn(8,12)  in 
the following. Clearly y = 5x + 3 is a continuous curve in the 
real plane.   
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Figure 2.14 

x 0 –1 1 –2 
y 3 –2 8 7 

 

 We find the graph of y = 5x +3 in the MOD Rn(6) plane 
and  it is given in the following figure. 
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Figure 2.15 

x 0 1 2 3 4 5 

y 3 2 1 0 5 4 
 Consider the graph y = 5x +  3 in  the MOD rectangular 
plane Rn(7, 9) given by the following figure. 

 
Figure 2.16 
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 Next we give the graph of y = 5x + 3 in the MOD 
rectangular plane Rn(12, 8) by the following figure. 

Figure 2.17 

 We see the graphs are different in these four planes. 

 So this study is not only innovative and interesting but it 
is very difficult.  Several things are left as open problem / 
conjecture. 

Conjecture 2.1  Let y = ax + b, 2  a, b   s, t <  (s  t); be the 
function. 

 How many branches are there in Rn (s, t) for the function 
y = ax + b? 

i) a / s and b / s. 
ii) a / t and b / t. 
iii) Both (i) and (ii) are true. 
iv) (a, s) = 1, (b,  s) = 1. 
v) (b, t) = 1 (a, t) = 1. 
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vi) (iv) and (v) are true. 

Now we find the graph of y = tx in R, Rn(m) and Rn(s, p) (t  2). 

 We will illustrate this situation by some examples. 

Example 2.13.  Let y = 2x be the given function.  We will find 
the graph of y = 2x in the real plane R, Rn(10), Rn(5, 9) and 
Rn(8, 6). The legend for y = 2x in the real plane R is as follows. 

 
Figure 2.18 

 

x 0 1 2 –1 –2 3 –3 
y 0 2 4 –2 –4 6 –6 

 

 Next we proceed onto give the graph of y = 2x in the 
MOD plane Rn(10). 
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Figure 2.19 

x 0 1 2 3 4 5 6 7 8 

y 0 2 4 4 8 0 2 4 6 
 

 The graph of y = 2x in the MOD rectangular  
Rn(5, 9) plane is given in the following. 

 
Figure 2.20 
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 The table for this diagram is as follows. 

x 0 1 2 3 4 4.5 5 

y 0 2 4 6 8 0 1 
 Next we proceed onto describe the graph of y = 2x in the 
MOD rectangular plane Rn(8, 6); 

 
Figure 2.21 

x 0 1 2 3 4 5 6 7 

y 0 2 4 6 0 2 4 6 
 

 We see all the graphs are distinct. 

 Interested reader can study for various values. However 
we present one more example of this situation. 

Example 2.14.  Let y = 5x be the function.   

To find the graph of y = 5x in R, Rn(7), Rn(7, 8) and Rn(9, 6). 
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Figure 2.22 

x 0 1 –1 2 –2 

y 0 5 –5 10 –10 
 

 Next we proceed onto give the graph of y = 5x in the 
MOD plane Rn(7). 
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Figure 2.23 

x 0 1 2 1.4 2.5 2.8 3 4 4.2 5 
y 0 5 6 0 5.5 0 1 6 0 4 
x 5.4 5.6 6 6.4 6.8      
y 6 0 2 4 6      

 y  = 5x has atleast 5 zeros in Rn(7).   

 Next we proceed onto give the graph of y = 5x in the 
MOD rectangular plane Rn(7, 8). 



Rectangular MOD  Planes 33 
 

 
 
 
 
 

 
Figure 2.24 

 Next we proceed onto describe the graph of y = 5x in the 
MOD rectangular plane Rn(9, 6) in the following.  

 
Figure 2.25 
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x 0 1 1.2 2 2.5 3 3.4 3.6 4 4.4 4.8 5 
y 0 5 0 4 0 3 5 0 2 4 0 1 
x 5.2 5.6 5.8 6 6.4 6.8 7 7.2 7.4 8 8.4 88 
y 2 4 5 0 2 4 5 0 1 4 0 2 

  

We see the function y = 5x has 8 zeros in the MOD rectangular 
plane Rn(9, 6). 

 Further the number of zeros of y = 5x is highly dependent 

on the plane in which it is considered.  So the distinct features 

enjoyed by planes is established for y = 5x and is zero only  

x = 0.  But in case the MOD plane Rn(7) and MOD rectangular 

planes Rn(7, 8) and Rn (9, 6) the function y = 5x has many zeros. 

Example 2.15.  Let y  = x + 1 be the function.  We see the 
graph of y = x + 1 in R, Rn(2), Rn(5), Rn(2, 7) and Rn(5, 3). 

 The graph of y = x +1 in the real plane. 
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Figure 2.26 

 The graph is a straight line infact a continuous curve.  We 
now give the graph of y = x + 1 in the MOD plane Rn(2). 

 
Figure 2.27 

 The MOD graph is not continuous it has two continuous 
branches. Similarly graph in the MOD plane Rn(5) is given. 
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Figure 2.28 

 We see the MOD graph is not a continuous one even in the 
MOD plane Rn(5).  This also has two branches and one zero.   

 Now we give the graph of y = x + 1 in the MOD 
rectangular plane Rn(2, 7). 

 
Figure 2.29 
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 Next we proceed onto describe y = x + 1 in the MOD 
rectangular plane Rn(5, 3). 

 
Figure 2.30 

x 0 1 2 3 4 4.8 

y 1 2 0 1 2 2.8 
 

 We see in R and Rn(2, 7).  The function y = x + 1 is a 
continuous one in the other MOD planes and MOD rectangular 
planes the function y = x + 1 has two branches and one zero.  
However both the branches are also continuous. 

 Next we give one more example of the function in all the 
three types of planes. 

 Let us consider y = x2 + 2x + 1.  This function is defined 
only in Zn; n  3. 
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Example 2.16.  Let y = x2
 + 2x + 1 be the function. Let us find 

the graph of y = x2 + 2x +1 in R, Rn(7), Rn(8), Rn(5, 8) and Rn(9, 
6). 

The graph of y = x2 + 2x +1 in the real plane R is as follows. 

Figure 2.31 

 The graph of y = x2 + 2x +1 in the MOD real plane Rn(7) is 
as follows. 
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Figure 2.32 

x 0 1 2 1.2 1.5 1.6 1.8 2 

y 1 4 2 4.84 6.25 6.76 0.84 2 
 

 It is seen between 1.6 and 1.7 the zero of y lies. 

x 2.5 3 3.4 3.5 3.6 3.8 3.9 4 4.2 4.5 

y 5.25 2 3.36 6.25 0.16 2.04 3.01 4 5.04 2.25 
  

So a zero lies in between 2.5 and 3.  In particular between 2.7 
and 2.8.  Between 3.5 and 3.6 we have again a zero. 
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 Further between 4.2 and 4.3 there is again a zero.  For at 
x = 4.3, y = 0.09.  Now between 4.9 and 4.95 there is again a 
zero.  Consider 5.4 and 5.5 there is a zero. Between 5.95 and 6 
there is a zero.  That is at x = 6, y = 0. 

 Between 6.4 and 6.5 there is a zero. 

 So there are eight zeros in the MOD plane Rn(7). 

 We describe the graph of the function y = x2 + 2x + 1 in 
the MOD rectangular plane Rn(5, 8).  

 
Figure 2.33 
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x 0 1 1.8 1.9 2 2.6 3 3.2 3.5 3.9 

y 1 4 7.84 0.41 1 4.96 0 1.64 4.25 0.01 

x 4 4.5 4.7        

y 1 2.25 0.49        
 

 There are four zeros in the intervals (1.9, 2), 3, (3.8, 3.9) 
and (4.6, 4.7). 

 The graph of y = x2 + 2x + 1 in the MOD rectangular a 
plane Rn(9, 6) is as follows. 

Figure 2.34 

 There is a zero between 1.4 and 1.5.  There is a zero 
between 2.4 and 2.5.  

 There is another zero between 3.2 and 3.3.  There is again 
a zero between 3.8 and 3.9.  
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 There is a zero between 4.4 and 4.5, at x = 5,  y = 0.   
There is a zero between 5.4 and 5.5.   

 Between 5.9 and 5.94 there is a zero. 

 There is a zero between 6.3 and 6.4.  There is a zero 
between 6.7 and 6.8.   

 There is a zero between 7.1 and 7.2. Between 7.4 and 7.5 
there is a zero.  There is a zero between 7.8 and 7.85. 

 There is a zero between 8.1 and 8.2.  Between 8.4 and  
8.5 there is a zero.  Between 8.7 and 8.8 there is a zero. 

 There are 16 zeros for y = x2 + 2x + 1 in the MOD 
rectangular plane Rn(9, 6). 

 So if in Rn(x, y) if x > y we have more zeros and if x < y 
then Rn(x, y) has lesser number of zeros. 

 It is important to record almost all properties related with 
functions on MOD rectangular planes happens to be different and 
new and this study is innovative and interesting. 

 We suggest a few problems in this direction. 

Problems 

1. What are the special features associated with rectangular 
planes Rn(s, t); (s  t)? 

2. Let Rn(8, 7) be the MOD rectangular plane. Draw the 
graph of the following functions.  

 
 a) y = x 

 b) y = 2x 

 c) y = 5x 
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 d) y = 6x 

 e) y = 2x + 3 

 f)  y = 6x + 3 

 g) y = x2 

 h) y = 2x2 + 3 

 i)  y = x2 + 4x + 3 

 j)  y = x3 

 k) y = x4 + 2x + 1 
 Compare these function graphs in the plane R, Rn(7) and 

Rn(7, 8). 

3. Let y = 8x2 + 2x + 1 be the given function. Plot it in the 
following planes; 

 (a) R, Rn(9) and  Rn(9, 12). 

 (b)  R, Rn(17) and Rn(10,11). 

 (c) R, Rn(42) and Rn(20, 14). 

4. Plot the graph y = 5x2 + 3x + 4 in (i) Rn(7) and Rn(7, 8) 
(ii) Rn(14, 9) (iii) Rn(15, 10) and (iv) Rn (6, 9). 

5. Let y = 5x + 3 be the MOD function compare the graphs in 
Rn(6, 14) and Rn(14, 6) which has more number of zeros 
for y = 5x + 3 in Rn(6, 14) or in Rn(14, 6). 

6. Find all the zeros of y = 3x2 + x + 1 in the MOD 
rectangular plane Rn(5, 7) and R(8, 7).   

 Which of the plane gives more zeros? 

7. Find all zeros of the function y = x3 + 3 in the MOD 
rectangular planes Rn(5, 7) and Rn(8, 6). 
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8. Let y = 3x2 + 4x + 3 be the MOD function. Find all zeros 
of y in the MOD rectangular planes; Rn(8, 9) and  
Rn(15, 8). 

10. Let y = 2x2 + 3x + 4 be the MOD function.  Find all zeros 
in the MOD planes. 

 i)  Rn(5, 7), 

 ii) Rn(17, 13),  

 iii) Rn (6, 9) and 

 iv) Rn(10,5). 

11. Give an example of a function y = f(x) which has no 
zeros in the MOD rectangular planes Rn(8, 16) and 
Rn(11,9). 



 

Chapter Three 

 

 

ALGEBRAIC STRUCTURES USING 
RECTANGULAR MOD PLANES 

 
 
 Let Rn(s, t); s  t; 2  s, t <  be a MOD rectangular plane. 
Rn(s, t) = {(a, b) / a  [0, s) and b  [0, t)}.  We define the 
operation + on them. 
 
 We first give some illustrative examples. 
 
Example 3.1. Let Rn(3, 5) = {(a, b) / a  [0, 3) and b  [0,5)} 
be the MOD rectangular plane. Let x = (2.053, 3.0112) and  
y = (1.6571, 2.43005)  Rn(3.5).   
 
We find x + y, x + y = (2.053, 3.0112) + (1.6571, 2.43005) = 
((2.053 + 1.6571) (mod 3), (3.0112 + 2.43005) (mod 5)) = 
(0.7101, 0.44125)  Rn(3, 5). 
 
 Now (0, 0)  Rn(3,5) is such that (x, y) + (0, 0) = (x, y) 
for any (x, y)  Rn(3, 5). 
 
 Let a = (0.37, 1.325)  Rn (3, 5); we have a unique  
b = (2.63, 3.675) in Rn (3, 5) such that a + b = (0.37, 1.325) + 
(2.63, 3.675) = ((0.37 + 2.63) (mod 3), (1.325 + 3.675) (mod 5)) 
= (0, 0).   
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Thus in Rn(3, 5) for every a  Rn (3, 5) there is a unique b  Rn 
(3, 5) such that a + b = (0, 0).   That is every element a  Rn(3, 
5) there is a unique inverse element of a in  
Rn(3, 5).  So {Rn(3, 5), +} is an abelian group of infinite order. 
 
 Clearly {Rn(3, 5), +} has subgroups of finite order as well 
as infinite order. 
 
Example 3.2. Let Rn(7, 6) = {(a, b) / a  [0, 7), b  [0, 6)} be 
the MOD rectangular plane. 
 
 Let P1 = {(a, b) / a  Z7, b  Z6}  Rn(7, 6); P1 is a 
subgroup of Rn(7, 6) of finite order. 
 
 {Rn(7, 6),+} is an infinite abelian group. 
 
 W = {(a, 0) / a  [0, 7)}  Rn(7, 6) is an infinite abelian 
subgroup of Rn(7, 6). 
 
 P2 = {(0, b) / b  Z6}  Rn(7, 6) is a abelian subgroup of 
order 6. 
 
 In view of all these now we make the abstract definition. 
 
Definition 3.1. Let G = {Rn(s, t), +} = {(a, b) / a  [0, s),  
b  [0, t). s  t; +} be the MOD rectangular group of infinite 
order under +. 
 
 We enumerate a few properties associated with them. 
 
Theorem 3.1. Let G = {Rn(s, t), +} = {(a, b) / a  [0, s),  
b  [0, t); s  t, +} be the MOD rectangular group of infinite 
order. 
 

i) G is an abelian group. 

ii) G has subgroups of both finite and infinite order . 
 
 Proof is direct and hence left as an exercise to the reader. 
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 Next we proceed onto describe MOD rectangular 
semigroups under  by some examples. 
 
Example 3.3.  Let S = {Rn(9, 12) = {(a, b) / a  [0, 9) and  
b  [0, 12), } be the MOD rectangular semigroup under . 
 
 Let x  = (3.271, 5.43) and y = (0.32,9.2)  S. 

 x  y  = (3.271, 5.43)  (0.32, 9.2)  

   = (3.271  0.32 (mod 9), 5.43 9.2 (mod 12)) 

   = (1.04672, 1.956)  S. 
 
 This is the way product operation is performed.   
 
 We see o(S) = . Infact S has both finite order MOD 
subsemigroups as well as infinite order subsemigroups.  
 
 S has ideals but always ideals of S are of infinite order. 
 
 P1 = {(a, b) / a  Z9 and b  Z12, }  S is a MOD 
rectangular subsemigroup of S of finite order. 
 
 P2 = {(a, 0) / a  [0, 9), }  S is a MOD rectangular 
subsemigroup of infinite order which is also an ideal of S. 
 
 P3 = {(a, b) / a  Z9, b  [0, 12), } is a MOD rectangular 
subsemigroup of infinite order which is not an ideal. 
 
 Further S has infinite number of zero divisors. 
 
 (a, 0) where a  [0, 9) is a zero divisor in S. 
 
 Also (0, 0)  S is such that (0, 0)  x = (0, 0) for all  
x  S. (1, 1)  S is such that (1, 1)  x = x for all x  S.   
 
 Thus S is an infinite commutative rectangular monoid. 
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 The existence of idempotents and nilpotents are greatly 
dependent on s and t of the MOD rectangular plane,  Rn(s, t);  
2  s, t < , (s  t). 
 
 We see x = (1, 4) and y = (0, 9) are MOD idempotents of S 
for x  x = x and y = y  y. 
 
 But p = (3, 6) and q = (6, 6) in S are such that p  p = (0, 
0) and q  q = (0, 0) are nilpotents of order two. 
 
Example 3.4. Let {P, } = {Rn(11, 7) = {(a, b) / a  [0, 11) and 
b  [0, 7)}, } be the MOD rectangular semigroup under 
product. 
 
 This has no nontrivial idempotents or nilpotents as both 
11 and 7 are primes. But has zero divisors.  
 
For x = (5.5, 3.5) and y = (4, 2)  P is such that x y = (5.5, 
3.5)  (4, 2) = (0, 0) is a non trivial zero divisor. 
 
 We see B1 = {(x, y) / x  Z11 and y  Z7}  P is such that 
B1 is only a MOD rectangular subsemigroup and is not an ideal. 
 
 Infact o(B1) < . 
 
 B2 = {(x, 0) / x  [0, 11), }  P is a MOD rectangular 
subsemigroup of infinite order which is an ideal. 
 
 B3 = {(0, b) / b  [0, 7), }  P is also a MOD rectangular 
subsemigroup which is an ideal of P. 
 
 Clearly o(B2) =  and o(B3) = . 
 
 Consider B4 = {(a, b) / a  [0,11), b  Z7, }  P is a 
MOD rectangular subsemigroup of P of infinite order which is 
not an ideal.  Infact a submonoid of P. 
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Example 3.5.  Let G = {Rn(17, 24), } = {(a, b) / a  [0,17), b 
 [0, 24); } be the MOD rectangular semigroup under product. 
 
 Clearly this has only partly trivial MOD idempotents like 
x1 = (0, 16), x2 = (1, 16), x3 = (0, 9) and x4  = (1, 9), we cannot 
get other types of MOD idempotents as 17 is a prime. 
 
 In view of all these we have the following theorem. 
 
Theorem 3.2.  Let S = {Rn(s ,t) = {(a, b) / a  [0, s) and  
b  [0, t), } be the MOD rectangular semigroup under product 
. 
 

i) o(S) = . 

ii) S is an abelian monoid. 

iii) S has infinite number of zero divisors. 

iv) S has MOD subsemigroups of finite order. 

v) S has MOD rectangular subsemigroups which are 
ideals and all ideals are of infinite order. 

vi) S has MOD rectangular subsemigroups of infinite 
order which are not ideals. 

vii) S has nontrivial MOD idempotents and MOD 
nilpotents only when s and t are not primes and of 
the form s = q

1p q1 and t = q
2p q2 where p1 and p2 

are primes a, b  2, (pi, qi) = 1, i = 1, 2  
(q  1). 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular matrix 
under + first by some examples. 
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Example 3.6.  Let P = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  Rn(8, 6) = {(a, b) /  

 
a  [0, 8) and b  [0, 6) +}; 1  i  5, +} be the MOD 
rectangular matrix group under +. 
 
 Clearly o(P) = . 
 

Let x = 

(3, 5.1)
(0.25, 0.32)
(2.01, 3.02)

(6, 2.15)
(0.3,1.2)

 
 
 
 
 
 
  

 and y = 

(7.2,3)
(1.18,0.31)
(5.01,1.1)
(6.2,4.5)
(0,3.8)

 
 
 
 
 
 
  

  P. 

 

x + y  = 

(3, 5.1)
(0.25, 0.32)
(2.01, 3.02)

(6, 2.15)
(0.3,1.2)

 
 
 
 
 
 
  

+ 

(7.2,3)
(1.18,0.31)
(5.01,1.1)
(6.2,4.5)
(0,3.8)

 
 
 
 
 
 
  

= 

(2.2,2.1)
(1.43,0.63)
(7.04,4.12)
(4.2,0.65)

(0.3,5)

 
 
 
 
 
 
  

  P. 

 
For every x  P we have a unique y  P such that  
 
 

x + y = (0) = 

(0,0)
(0,0)
(0,0)
(0,0)
(0,0)

 
 
 
 
 
 
  

. 
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For x = 

(3.2,2.01)
(4.07,0.57)
(0.31,1.24)

(3.005,0.115)
(0.123,3)

 
 
 
 
 
 
  

  P. 

 
We have a unique  

y = 

(4.8,3.99)
(3.93,5.4)

(7.69,4.76)
(4.995,5.885)

(7.877,3)

 
 
 
 
 
 
  

 in P 

 
such that x + y = (0). 
 
Further for  

(a) = 

(3,5)
(2,4)
(6,2)

(0.31,4.02)
(5.001,2.007)

 
 
 
 
 
 
  

 

 

(a) + (a) = 

(6,4)
(4,2)
(4,4)

(0.62,2.04)
(4.002,4.014)

 
 
 
 
 
 
  

 P. 

 
 Can we say if a  P we will have a finite m > 2 such 
that 

m times

a a a


    = (0). 
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 However the authors leave it as a exercise for the reader 
to prove or disprove this claim. But then in our view such m is 
not always possible.  
 
This property is true if the entries of the matrix are from Z8 and 
Z6 and not from [0, 8) and [0, 6). 
 
 We can say this is a group such that the sum of a term x 
with itself is taken finite number of times is not (0). 
 

Example 3.7.  Let M = { 1 2

3 4

a a
a a
 
 
 

/ ai  Rn (4,12) = {(a, b) /  

 
a  [0, 4) and b  [0, 12)}, 1  i  4, +} be the MOD rectangular 
group under +. 
 

 Let,  x = 
(0.3,4) (2.12,0.3)

(0.7,2.7) (0.15,2)
 
 
 

  M.  

  

x + x = 
(0.3,4) (2.12,0.3)

(0.7,2.7) (0.15,2)
 
 
 

 + 
(0.3,4) (2.12,0.3)

(0.7,2.7) (0.15,2)
 
 
 

 

  

 = 
(0.6,8) (0.24,0.6)

(1.4,5.4) (0.3,4)
 
 
 

  M. 

 

 We see y = 
(3.7,8) (1.88,11.7)

(3.3,9.3) (3.85,10)
 
 
 

  M  

 

 is such that x + y = 
(0,0) (0,0)
(0,0) (0,0)
 
 
 

.   

 
Thus y is the inverse of x and vice versa. 
 



Algebraic Structures using Rectangular MOD Planes 53 
 

 
 
 
 
 
 

 Let T1 = { 1 2

3 4

(a ,0) (a ,0)
(a ,0) (a ,0)
 
 
 

 / ai  [0, 4); 1  i  4, +}  

 
 M is a MOD rectangular matrix subgroup of infinite order. 
 

 T2 = { 1 2

3 4

(0,b ) (0,b )
(0,b ) (0,b )
 
 
 

 / bj  Z12; 1  j  4, +}  M  

 
is a MOD rectangular matrix subgroup of finite order. 
 

 T3 = {
(a,b) (0,0)
(0,0) (0,0)
 
 
 

 / a  [0, 4), b  [0,12), +}  M;  

 
is MOD rectangular matrix subgroup of infinite order. 
 

 T4 = {
(0,0) (a,0)
(0,b) (0,0)
 
 
 

 / a  [0, 4) and b  [0,12), + }  

 
 M is again a MOD rectangular matrix subgroup of infinite 
order. 
 
 We see M has several subgroups some of finite order 
and some are of infinite order. 
 
Example 3.8. Let W = {(a1, a2, a3, a4, a5, a6) / ai  Rn(7, 13)  
= {(a, b) / a  [0, 7), b  [0, 13), +}, 1  i  6, +} be MOD 
rectangular row matrix group under +.  W is of infinite order. 
 
 This has MOD subgroups of both finite and infinite 
order. 
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Example 3.9. Let M = {

1 2

3 4

5 6

7 8

9 10

11 12

a a
a a
a a
a a
a a
a a

 
 
 
 
 
 
 
 
  

/ ai  Rn (12, 10) =P{a, b) /  

 
a  [0, 12), b  [0, 10), +}; 1  i  12, +} be the MOD 
rectangular matrix group under +. 
 
 M has several MOD subgroups of infinite order.  Only a 
few MOD subgroups of finite order. 
 

 P1 = {

(a,b) 0
0 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
 
 
  

 / (a, b)  Rn(12, 10), +}  M  

 
is a MOD rectangular subgroup of infinite order. 
 

 P2 = {

(a,b) 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
  

 / a  Z12 and b  Z10, +}  M  

 
is a MOD rectangular subgroup of finite order. 
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 Let P3 = {

(a,0) 0
0 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
 
 
  

 / a   [0, 12), +}  M  

 
is again a MOD rectangular subgroup of infinite order. 
 

 Let P5 = {

(a,b) 0
0 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
 
 
  

 / a  [0, 12), b  Z10, +}  M  

 
is also a MOD rectangular subgroup of infinite order. 
 
 Thus there are many MOD rectangular subgroups of 
infinite order.  
 
 Interested reader can study the properties related with it. 
 
 

Example 3.10. Let S = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 where ai  Rn(23, 48)  

 
= {(a, b) / a  [0, 23), b  [0, 48), +}, +; 1  i  9} be the MOD 
rectangular matrix group under +. o(S) = . S is a commutative 
group.  S has both finite and infinite order subgroups. 
 
 Next we proceed onto describe MOD rectangular matrix 
semigroups by examples. 
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Example 3.11. Let V = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  Rn(3, 7) = {(a, b) /  

 
a  [0, 3) and b  [0, 7), } n, 1  i  5} be the MOD 
rectangular semigroup. o(V) =  and V is a commutative 
semigroup infact a monoid. 
 

 For ({(1, 1)}) = 

(1,1)
(1,1)
(1,1)
(1,1)
(1,1)

 
 
 
 
 
 
  

 in V is the multiplicative  

 
identity. 
 
 

 {(0, 0)} = 

(0,0)
(0,0)
(0,0)
(0,0)
(0,0)

 
 
 
 
 
 
  

 in V is the zero of V and  

 
 
 [(0, 0)]  A = A  [(0,0)] = [(0, 0)] for all A  V. 
 
 [(1, 1)]  A = A  [(1, 1)] = A for all A  V. 
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 Let A = { 

(0.3,0.25)
(1,1)

(1.2,0)
(0,3.5)
(1,2)

 
 
 
 
 
 
  

and  

 
 

 B = 

(0.5,6)
(0.331,6.21)
(1.6,3.2213)
(1.5234,2)

(0.1115,2.0006)

 
 
 
 
 
 
  

  V; we find  

 
 

 A n B = 

(0.3,0.25)
(1,1)

(1.2,0)
(0,3.5)
(1,2)

 
 
 
 
 
 
  

 n 

(0.5,6)
(0.331,6.21)
(1.6,3.2213)
(1.5234,2)

(0.1115,2.0006)

 
 
 
 
 
 
  

  

 
 

  = 

(0.15,1.5)
(0.331,6.21)

(1.82,0)
(0,0)

(0.1115,4.0012)

 
 
 
 
 
 
  

  V. 

 
 Interested reader can find the MOD idempotents, 
nilpotents and zero divisors of V. 
 
 Next we give some more examples. 
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Example 3.12.  Let W = { 1 2 3

4 5 6

a a a
a a a
 
 
 

/ ai  Rn(16, 12)  =  

 
{(a, b) / a  [0, 6), b  [0, 12), }, n}  be the MOD rectangular 
matrix semigroup. o(W) = . 
 

 P1 = {
a b 0
0 0 0
 
 
 

/ a, b  Rn (16, 12) n}  W  

 
is a MOD rectangular matrix subsemigroup of W which is also 
an ideal of W. 
 

 P2 = {
a 0 0
0 0 b
 
 
 

/ a  Rn (16, 12) and b = {(x, 0) /  

 
x  Z16}, n}  W is a MOD rectangular subsemigroup of 
infinite order but P2 is not an ideal of W. 
 

 Consider P3 = {
0 0 0
a b 0
 
 
 

/ a, b  Z16  Z12 = {(x, y) /  

 
x  Z16, y  Z12},  n}  W is a MOD rectangular subsemigroup 
of finite order. 
 
 Clearly P3 is not an ideal.  It is left as an exercise to the 
reader to prove that if P is an ideal of W then P is of infinite 
order. 
 

 Let  x = 
(8,3) (4,6) (2,9)

(10,4) (12,6) (4,8)
 
 
 

 and  

 
 

  y =  
(2,4) (8,6) (8,4)
(8,3) (4,4) (8,6)
 
 
 

  W. 
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 Clearly x n y = 
(0,0) (0,0) (0,0)
(0,0) (0,0) (0,0)
 
 
 

. 

 
 This MOD rectangular matrix semigroup has zero 
divisors. 
 

 Let a = 
(8,6) (4,0) (12,6)
(0,6) (8,6) (4,0)
 
 
 

  W.   

 

We see a n a = 
(0,0) (0,0) (0,0)
(0,0) (0,0) (0,0)
 
 
 

  

 
so a in W is a MOD nilpotent matrix of order two. 
 
 This W has also MOD rectangular matrix subsemigroups 
which are not ideals. 
 

 S1 = {
(a,b) (0,0) (0,0)
(c,d) (0,0) (0,0)
 
 
 

 / a, c  Z16, b, d  Z12, n}  

 
 W is only MOD rectangular matrix subsemigroup which is not 
an ideal. 
 
 Infact o(S1) <  so is only a MOD rectangular finite 
order matrix subsemigroup. 
 

 Let S2 = {
(a,b) 0 0

0 0 0
 
 
 

/ (a, b)  Rn(16, 12), n}  W.   

 
 Clearly S2 is a MOD rectangular matrix subsemigroup of 
W which is also an ideal of W. 
 
 o(S2) = . 
 
 It is observed that all MOD rectangular matrix ideals of 
W are of infinite order. 
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 Let x = 
(1,9) (1,4) (0,4)
(0,9) (1,9) (1,4)
 
 
 

  W. 

 
 We see x n x = x so x is a MOD rectangular idempotent 
matrix of W. 
 
 In view of all these we have the following theorem. 
 
Theorem 3.3.  Let M = {collection of all s  t matrices with 
entries from Rn (p, q) = {(a, b) / a  [0, p) and b  [0, q), }, 
n} be the MOD rectangular matrix semigroup. 
 

i) o(M) =  

ii) M is infact a commutative monoid. 

iii) M has MOD rectangular matrix subsemigroups 
of finite order. 

iv) M has MOD rectangular matrix ideals all of 
which are of infinite order. 

v) M has MOD rectangular matrix subsemigroups 
of infinite order which are not ideals. 

vi) M has MOD rectangular matrix zero divisors. 

vii) M has nontrivial MOD rectangular matrix 
idempotents and nilpotents only for appropriate 
p and q. 
 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 
 Next we proceed onto describe MOD rectangular matrix  
noncommutative semigroup of infinite order by examples. 
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Example 3.13. Let M = { 1 2

3 4

a a
a a
 
 
 

 / ai  Rn(6, 10); 1  i  4,  

 
} be the MOD rectangular square matrix semigroup. 
 
 

 Let A = 
(3,5) (4,2)
(5,1) (1,0)
 
 
 

and B = 
(0,3) (4,8)
(2,2) (3,4)
 
 
 

  M 

 

A  B = 
(3,5) (4,2)
(5,1) (1,0)
 
 
 

  
(0,3) (4,8)
(2,2) (3,4)
 
 
 

 

 
 

= 

(3,5) (0,3) (3,5) (4,8)
(4,2) (2,2) (4,2) (3,4)
(5,1) (0,3) (5,1) (4,8)
(1,0) (2,2) (1,0) (3,4)

    
   
    
   

 

 
 

= 
(3,5) (2,4) (0,0) (0,8) (5,9) (0,8)
(0,3) (2,0) (2,8) (3,0) (2,3) (5,8)

    
       

 (i) 

 
 

 

B  A = 
(0,3) (4,8)
(2,2) (3,4)
 
 
 

  
(3,5) (4,2)
(5,1) (1,0)
 
 
   

 

= 

(0,3) (3,5) (0,3) (4,2)
(4,8) (5,1) (4,8) (1,0)
(2,2) (3,5) (2,2) (4,2)
(3,4) (5,1) (3,4) (1,0)

    
   
    
   
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= 
(0,5) (2,8) (0,6) (4,0)
(0,0) (3,4) (2,4) 3,0)

  
   

 = 
(2,3) (4,6)
(3,4) (5,4)
 
 
 

 (ii) 

 
(i)  and (ii) are distinct. 
 
 So {M, } is a non commutative MOD rectangular 
semigroup of infinite order. 
 
 Finding MOD rectangular matrix zero divisors, MOD 
rectangular matrix idempotents and nilpotents happens to be a 
difficult problem. 
 
 Similarly M has MOD rectangular matrix right ideals 
which are not MOD rectangular matrix left ideals.   
 
 The reader is left with the task of finding them. 
 
 

Example 3.14. Let D = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

/ ai Rn(11, 7)  

 
= {(a, b) / a  [0, 11), b  [0, 7), }; 1  i  3, } be the MOD 
rectangular square matrix semigroup. D is a noncommutative 
subsemigroup of infinite order. 
 
 The reader is left with the task of finding MOD 
rectangular matrix right ideals, MOD rectangular matrix left 
ideals, MOD rectangular zero divisors (right or left) and so on. 
 
 In view of all these we have the following result. 
 
Theorem 3.4.  Let S = {M = (mij)mn where mij Rn(s, t) = {(a, 
b) / a  [0, s) and b  [0, t); s   t}; 1  i, j  m, } be the MOD 
rectangular square matrix semigroup under . 
 

i) o(S) = . 
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ii) S has both finite and infinite order MOD 
rectangular square matrix subsemigroups. 

iii) S has MOD rectangular square matrix right 
ideals which are not left ideals. 

iv) All MOD rectangular square matrix right ideals 
or left ideals are of infinite order. 

v) S has MOD rectangular square matrix ideals of 
infinite order. 

vi) S  has MOD rectangular square matrix right and 
left zero divisors depending on s and t. 

vii) S has MOD rectangular square matrix nilpotents 
only for particular values of s and t. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto define and describe MOD 
rectangular subsets. 
 
 S(Rn(s, t) = {collection of all subsets from Rn(s, t) = 
{(a, b) / a  [0, s), b  [0, t)}}. 
 
 o(S(Rn(s, t)) = . 
 
Example 3.15.  Let S(Rn(5, 8)) = {collection of all subsets from 
Rn(5, 8) = {(a, b) / a  [0, 5), b  [0, 8)}} be the MOD 
rectangular subsets of Rn (5, 8). 
 
 Let A = {(3, 4.002), (0.3851, 2.118), (4.0007, 2) (3, 
0.00097), (0.345, 2.62), (2, 4)}  S(Rn(5, 8)) and 
 
 B = {(3, 2), (1, 1), (2, 2), (1, 0), (0, 1), (0, 4), (4, 0)}  
S(Rn(5, 8)). 
 
 We next proceed onto describe and define operations on 
S(Rn(s, t)) by examples. 
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Example 3.16.  Let T = {S(Rn(3, 5)), +} be the MOD rectangular 
subset semigroup under +. 
 
 We say T is only a semigroup for if A  T we may not 
be always in a position to find a B such that A + B = {(0, 0)}.  
That is why we can have only a semigroup. 
 
 Consider A = {(0, 3.2), (1, 1), (0.32, 1.5)} and B = {(1, 
0.3), (2.5, 3.7)}  T.   
 
 We find A + B = {(0, 3.2), (1, 1), (0.32, 1.5)} + {(1, 
0.3), (2.5, 3.7)} 
 
 = {(0, 3.2) + (1, 0.3), (1, 1) + (1, 0.3), (0.32, 1.5) + (1, 0.3), (0, 
3.2) + (2.5, 3.7), (1, 1) + (2.5, 3.7), (0.32, 1.5) + (2.5, 3.7)} 
 
 = {(1, 3.5) (2, 1.3), (1.32, 4.5), (2.5, 1.9), (0.5, 4.7), (2.82, 
(0.2)}  T.   
 
 This is the way + operation is performed on T.   
 
 Clearly we see for the given A  T there is no B  T 
such that A + B = {(0, 0)}. 
 
 However it is pertinent to keep on record that for every 
A  T, A + {(0, 0)) = {(0, 0)} + A = A. 
 
 Thus T is a MOD rectangular subset monoid of infinite 
order. 
 
 T has MOD rectangular subset subsemigroups of both of 
finite and infinite order. 
 
 P1 = {S((a, 0)) / a  Z3)}  T is a finite MOD subset 
rectangular subsemigroup of finite order. 
 
 P1 = {{(0, 0)}, {(2, 0), (1, 0)}, {(0, 0), (2,0)}, {(0, 0), 
(1, 0)}, {(0, 0), (1, 0), (2, 0)}, {(1, 0), (2, 0)} and so on}. 
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 P1 is a MOD rectangular subset subsemigroup under + of 
finite order. 
 
We see for 
 
S1 = {(0, 0), (2, 0), (1, 0)} and  S2 = {(2, 0), (0, 0)} in P1. 
 
S1 + S2 = {(0, 0), (2, 0), (1, 0)} + {(2, 0), (0, 0)} = {(0, 0), (1, 0), 
(2, 0)}. 
 
Infact P1 is a MOD rectangular finite subset monoid. 
 
 Let R1 = {collection of all subsets from {0}  Z5} = 
S({(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)} = {{(0,0)}, {(0, 1)}, {(0, 
3)}, …,{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)}}.  R1 under + is a 
MOD rectangular subset submonoid of finite order. 
 
 Study in this direction is interesting and important. 
 
 Let T1 = {collection of all subsets from [0, 3)  {0} = 
{(a, 0) / a  [0, 3)}; T1 under + is a MOD rectangular subset 
commutative submonoid of infinite order. 
 
 If A = {(2.1, 0), (1.32, 0), (1, 0), (1.12, 0)} and  
B = {(0.2, 0), (0.31,0)}  T1 then  
 
A + B = {(2.1, 0), (1.32, 0), (1, 0), (1.12, 0)} + {(0.2,0), 
(0.31,0)} = {(2.2, 0), (1.52, 0), (1.2, 0), (1.32, 0), (2.41, 0), 
(1.63, 0), (1.31, 0), (2.43, 0)}  T1.   
 
 Thus T1 is a MOD rectangular subset submonoid of 
infinite order. 
 
 Interested reader is left with the task of finding all 
related structures with these MOD rectangular subset monoids. 
 
Example 3.17. Let W = {collection of all subsets from Rn(12, 6) 
= {(a, b) / a  [0,12) and b  [0,16)}; +},+} be the MOD 
rectangular subset semigroup. 



66 MOD Rectangular Natural Neutrosophic Numbers 
 
 
 
 
 
 
 

 
 Clearly o(W) =  and W is infact a commutative 
monoid as {(0, 0)} is the additive identity of W.   
 
 We see for every x  W; x + {(0, 0)} = {(0,0)} + x = x. 
 
 Let A = {(3, 2), (4.31, 2.01), (4.1, 0), (1, 0.31), (2.1, 
3.2)} and B = {(0, 3), (1.201, 0), (0.1112,0)}  W. 
 
 A + B  = {(3.2, (4.31, 2.01), (4.12, 0), (1, 0.31), (2.1, 
3.2)} + {(0, 3), (1.201, 0), (0.1112, 0)} = {(3, 5), (4.31, 5.01), 
(4.12, 3), (1, 3.31), (2.1, 0.2), (4.201, 2), (5.511, 2.01), (5.321, 
0), (2.201, 0.31), (3.301, 3.2), (3.112, 2), (4.4212, 2.01), 
(4.2312, 0), (1.1112, 0.31), (2.2112, 3.2)} is in W.   
 
This is the way ‘+’ operation is performed on W. 
 
 Take P1 = {collection of all subsets from [0,12)  {0} = 
{(a, 0) / a  [0,12)}, +}  W is a MOD rectangular subset sub 
semigroup of infinite order. 
 
 P2 = {collection of all subsets from Z12  Z6 = {(a, b) /  
b  Z6, a  Z12}, +}  W is a MOD rectangular subset 
subsemigroup of finite order in W. 
 
 Study in this direction is interesting and important. 
 
 P3 = {collection of all subsets from [0, 12)  Z6 = {(a, b) 
where a  [0, 12), b  Z6}, +}  W is a MOD rectangular subset 
subsemigroup of infinite order. 
 
 For  A = {(4.3, 2) (3.5, 5),(0.11, 4)} and B = {(2.1, 0), 
(6.16, 2), (9.12, 4)} P3.  
 
 A + B = {(4.3, 2), (3.5, 5), (0.11, 4)} + {(2.1, 0), (6.16, 
2), (9.12, 4)} = {(6.4, 2), (5.6, 5), (2.21, 4), (10.46, 4), (9.66, 1), 
(6.27, 0), (1.42, 0), (0.62, 3), (9.23, 2)}  P3. 
 
 This is the way the + operation is performed on P3. 
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 For  A = {(0.334, 2), (1.963, 0), (4.321, 3), (4.0061, 1)} 
 P3; to have a unique B  P3 such that A + B = {(0, 0)} is an 
impossibility. 
 
 That is why we have P3 to be only a MOD rectangular 
subset subsemigroup of infinite order. 
 
Example 3.18. Let M = {collection of all subsets from the MOD 
rectangular plane Rn(3, 15) = {(a, b) / a  [0, 3), b  [0, 15), +}, 
+} be the MOD rectangular subset semigroup. o(M) = , infact 
M is an infinite subset commutative monoid. 
 
 We see M has both MOD rectangular subsemigroups of 
finite as well as infinite order. 
 
 Let B1 = {collection of all subsets from the MOD 
rectangular set {Z3  {0}}, +}  M be a MOD rectangular subset 
subsemigroup of finite order. 
 
 P = {(2, 0), (1,0)} and Q = {(0, 0), (1,0), (2, 0)}  B1. 
  
 We see P + Q = {(2,0), (0, 0), (1, 0)}  B1.  This is the 
way ‘+’ operation is performed on B1. 
 
 Let B2 = {collection of all subsets from MOD 
rectangular set [0, 3)  Z15 = {(a, b) / a  [0, 3), b  Z15, +}, +} 
be the MOD rectangular subset semigroup of infinite order. 
 
 We can find several MOD subset rectangular 
subsemigroups of infinite and finite order in M. 
 
 Next we proceed onto describe MOD subset rectangular 
semigroups under product operational by examples. 
 
Example 3.19. Let S = {Collection of all subsets from Rn(10,8) 
= {(a, b) / a  [0, 10), b  [0, 8), }, } be the MOD rectangular 
subset semigroup under product. 
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 Let A = {(8.2, 6.5), (2, 3.1), (4.72, 6.305), (4.05, 2.53)} 
and B = {(2, 4), (5, 5), (3, 3), (7, 2)}  S. 
 
 A  B = {(8.2, 6.5), (2, 3.1), (4.72, 6.305), (4.05, 
(2.53)}  {2, 4),(5, 5), (3, 3), (7, 2)} 
 
= {(6.4, 2), (4, 4.4), (9.44, 1.22), (8.1, 2.12), (1, 0.5), (0, 7.5), 
(3.6, 7.525), (0.25, 4.65), (4.6, 3.5), (6, 1.3), (4.16, 2.915), 
(2.15, 7.59), (7.4, 5.0), (4, 6.2), (3.04, 2.61), (8.35, 5.06)}  S. 
 
 This is the way product operation is performed on S. 
  
 We see {(0, 0)}  A = A  {(0, 0)} = {(0, 0)} for all  
A  S. 
 Further A  {(1, 1)} = A for all A  S. 
 
Example 3.20.  Let B = {(collection of all subsets from  
Rn(11, 17) = {(a, b) / a  [0, 11), b  [0, 17), }, } be the MOD 
subset rectangular semigroup under .  o(B) =  and B is a 
commutative monoid. 
 
 For every A  B, A  {(1, 1)} = A is the identity  
A {(0, 0)} = {(0, 0)} for all A  B.  Finding products happens 
to be a matter of routine so left as an exercise.  
 
 This B has MOD rectangular subset subsemigroups of 
finite and infinite order. 
 
 Infact all MOD rectangular subset ideals of B are of 
infinite order however this does not imply all MOD rectangular 
subsemigroups of infinite order of B are ideals. 
 
 Consider P1 = {collection of all subsets from [0, 11)  
Z17 = {(0, b) / a  [0, 11), b  Z17, }, }  B, P1 is a MOD 
rectangular subset subsemigroup of infinite order but is not an 
ideal of B.  Hence the claim. 
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 P2 = {collection of all subsets from Z11  Z17 = {(a, b) / 
a  Zn, b  Z11, }, } be the MOD subset rectangular 
subsemigroup of B. Clearly P2 is not an ideal. 
 
 P3 = {collection of all subsets from {0}  [0, 17) =  
{(0, a) / a  [0, 17), }, }  B be the MOD subset rectangular 
subsemigroup of B.  P3 is a infinite order and it is also an ideal 
of B. 
 
 In view of all these we have the following theorem. 
 
Theorem 3.5.  Let S = {collection of all subsets from Rn(s, t) = 
{(a, b) / a  [0, s), b  [0, t), }, } be the MOD rectangular 
subset semigroup under . 

i) o(S) =  and S is a commutative monoid. 

ii) S has MOD rectangular subsemigroups of finite 
or infinite order which are not ideals. 

iii) S has MOD rectangular subset ideals all of 
which are of infinite order. 

iv) S has MOD zero divisors, nilpotents and 
idempotents. 

 
 The presence of nilpotents and idempotents depends 
highly on s and t. 
 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Now we give an example of the MOD rectangular subset 
zero divisors, idempotents and nilpotents. 
 
Example 3.21. Let M = {collection of all subsets from  
Rn(12, 24) = {(a, b) / a  [0, 12) and b  [0, 24), }, } be the 
MOD subset rectangular semigroup. 
 
 Consider P = {(0, 0.3372), (0, 9.57351), (0, 19.310006), 
(0, 10.033132)} and Q = {(10.3115, 0), (2.000732, 0), (5.231, 
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0), (1, 0)} M; clearly P  Q = {(0, 0)} so is a MOD subset zero 
divisor of M. 
 
 Let x = {(6, 12), (6, 0), (0, 12), (0, 0)}  M; we see  
x  x = {(0, 0)}; so x is a MOD nilpotent rectangular subset of 
order two. 
 
 Let y = {(4, 16), (9, 16), (0, 9), (9, 9), (4, 9), (0, 0), (1, 
9), (9, 1), (4, 1), (1, 16) (0, 16)}  M.  We see y  y = y so y is 
a MOD rectangular idempotent subset of M. 
   
 Thus the existence of MOD rectangular subset nilpotents 
and idempotents depends on the s and t of Rn(s, t). 
 
 However A = {(0, 1), (0, 0), (0, 1), (1, 1)} is only a 
trivial MOD subset rectangular idempotent of Rn(s, t). 
 
 Next we proceed onto describe MOD rectangular subset 
matrices by examples. 
 
Example 3.22. Let M = {collection of all matrices A = (a1, a2, 
a3, a4) / ai  S(Rn(7, 9)) = {collection of all subsets from  
Rn(7, 9), +}, +; 1  i  4} be the MOD subset rectangular matrix 
semigroup under +. 
 
 Throughout this book S(Rn(s, t)) = {collection of all 
subsets from Rn(s, t) = {(a, b) / a  [0, s) and b  [0, t)}}. 
 
 Let W = ({(0, 2.1), (1.2, 0), (1.1, 2.53)},{(0, 3), (1, 1), 
(0.337, 1)}, {(1, 2), (0, 3.1)}, {(4, 3), (2, 0.12), (4.3, 2.3)}} 
 
 W + W = ({(0, 2.1), (1.2, 0), (1.1, 2.53)}, {(0, 3), (1, 1), 
(0.337, 1)},{(1, 2), (0, 3.1)}, {(4, 3), (2, 0.12), (4.3, 2.3)}) + 
({(0, 2.1), (1.2, 0), (1.1, 2.53)}, {(0, 3), (1, 1), (0.337, 1)}, {(1, 
2), (0, 3.1)}, {(4.3), (2, 0.12), (4.3, 2.3)})  
 
= {(0, 4.2),  (1.2, 2.1), (1.1, 4.63), (2.4, 0), (2.3, 2.53), (2.2, 
5.06)}, {(0, 6), (1, 4), (0.337, 4), (2, 2), (1.337, 2), (0.674, 
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2)},{(2, 4), (1, 5.1), (0, 6.2)}, {(1, 6), (6, 3.1), (1.3, 5.3), (6.3, 
2.42), (4, 0.24), (1.6, 4.6)})  M. 
 
 This is the way ‘+’ operation is performed on M. 
 
 It is interesting to note M is an infinite semigroup which 
is infact a monoid. ({(0, 0)}) = ({(0, 0)}, {(0, 0)},{(0,0)},{(0, 
0)} in M is such that A + ({(0, 0)}) = ({(0, 0)}) + A = A for all 
A  M. 
 
 We see P1 = {(a1, a2, a3, a4) / ai S(Z7 = 
{collection of all subsets from Z7  Z9= {(a, b) / a  Z7, b  Z9}, 
+}; 1  i  4, +} is a MOD rectangular subset matrix 
subsemigroup of M. 
 
 

Example 3.23. Let V = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

/ ai  S(Rn(3,8)) =  

 
{collection of all subsets from Rn(3, 8) = {(a, b) / a [0, 3); b  
[0, 8)},+}, +}, 1  i  4, +} be the MOD rectangular subset 
matrix semigroup under +.  
 
o(V) =  and V is infact a MOD rectangular subset matrix 
monoid which is commutative. 
 
 

Let A = 

{(2,3.1),(0,4.1),(0.3,2)}
{(2,5.1),(1.32,0),(1,1)}

{(2.01,0),(0,4)}
{(1,342,3.115)}

 
 
 
 
 
 

 and 
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B = 

{(0,3),(0.113,2)}
{(0.31,2),(1.3,1)}
{(2,2),(0.31,4)}

{(1,2),(0.31,0.2),(0.1,5.3)}

 
 
 
 
 
 

  V. 

 
 

A + B = 

{(2,6.1),(0,7.1),(0.3,5),
(2.113,5.1), (0.113,3),

(0.413,4)}
{(2.31,7.1), (1.63,2),(1.31,3),

(0.3,6.1), (2.62,1), (2.3,2)}
{(1.01,2), (2,6), (2.32,4),

(0.31,0)}
{(2.342,5.115),(1.652,3.315),

(1.442,0.415)}





















 
 
 
 
 



  V. 

 
This is the way + operation is performed on V. 
 
 

({(0,0)} = 

{(0,0)}
{(0,0)}
{(0,0)}
{(0,0)}

 
 
 
 
 
 

  V is the identity of V with respect to +. 

 
 
 

 Consider W = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

/ ai  S(Z3  [0, 8)) = {Collection  
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of all subsets of Z3  [0, 8) = {(a, b) / a  Z3, b  [0, 8), +}, +}, 
+ 1  i  4}  V is only a MOD rectangular subset matrix 
subsemigoup of infinite order. 
 
 

 Z = {

1

2

a
a
0
0

 
 
 
 
 
 

/ ai  { S(Z3  Z8) = {collection of all subsets  

 
from Z3  Z8 = {(a, b) / a  Z3, b  Z8, +} +} +, 1  i  2} V is 
a MOD rectangular subset matrix subsemigroup of finite order in 
V. 
 

Example 3.24.  Let B = { 1 2

3 4

a a
a a
 
 
 

where ai S(Rn(8, 6))  

 
= {collection of all subsets from Rn(8, 6) = {(a, b) / a  [0, 8),  
b  [0, 6), +}, +} +, 1  i  4} is a MOD rectangular subset 
matrix semgroup under +. 
 
 o(B) = .  
 

({(0,0)} = 
{(0,0)} {(0,0)}
{(0,0)} {(0,0)}
 
 
   

 
in B is the additive identity of B. 
 
 It is left as an exercise to the reader to find MOD 
rectangular subset matrix subsemigroups of both finite and 
infinite order. 
 
 Infact B is a Smarandache MOD rectangular subset 
matrix semigroup.  This task is also left as an exercise to the 
reader. 
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Example 3.25.  Let S = {

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

 ai S(Rn(11,15))  

 
 
= {collection of all subsets from Rn(11, 15) = {(a, b) / a  [0, 
11), b  [0,15), +}, +}, 1  i  8, +} be the MOD rectangular 
subset matrix semigroup under +.  
 
 Infact S is a commutative monoid of infinite order. 
 
 

Let  A = 

{(0,0)} {(2,1),(0,7)}
{(1,2)} {(0.335,1.226)}

{(0.2,0.5),(7,2.1)} {(1.3,2,5),(4.52,2)}
{(0,3),(1.21,0)} {(1,2)}

 
 
 
 
 
 

 and 

 
 

B = 

{(2.31,0.113),
{(0.32,1.3)}

(1.052,3.005)}
{(1.01,0.332), {(2.73,1),
(0,3.2)} (0,2),(1,3}

{(1,0.5)} {(0.3,6.2)}
{(4,2.1),

{(4,3.2), (1.4,1)}
(3.115,2.55)}

 
 
 
 
 
 
 
 
 
    
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A + B = 

{(2.31,0.113), {(2.32,2.3),
(1.052,3.005)} (0.32,8.3)}

{(0.335,3.226),
{(1,5.32),

(1.335,4.226),
(2.01,2.332)}

(3.065,2.226)}
{(1.6,8.7),

{(1.2,1), (8,26)}
(4.82,8.2)}

{(4,6.2), (1.4,4), {(5,4.1)
(5.21,3.2), (1.61,1)}

,
(4.115,4.55)}

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  S. 

 
This is the way + operation is performed on S. 
 

 Consider W1 = {

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

 /  ai  {Collection of all  

 
subsets from [0,11) {0} = {(a, 0) / a  [0,11), +},+}; 1  i  8, 
+}  S is the MOD rectangular subset semigroup of infinite 
order. 
 

 Let W2 = {

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

 / ai  {Collection of all subsets  

 
from Z11  Z15 = {(a, b) / a  Z11, b  Z15,+}, +}, +, 1  i  8} 
be a MOD rectangular subset subsemigroup of finite order S has 
both subsemigroups of finite and infinite order.  
 
 In view of all these we have the following theorem. 
 
Theorem 3.6.  Let S = {Collection of all t  m matrices with 
entries from S(Rn(p, q)) = {Collection of all subsets from  
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Rn(p, q) = {(a, b) / a  [0, p) and b  [0, q); 2  p, q <    
(p  q) ; +}, +}, +} be the MOD rectangular subset matrix 
monoid. 
 

i) o(S) =  and S is commutative. 

ii) S has both MOD rectangular subset matrix 
subsemigroups of both finite and infinite order. 

iii) S is always a MOD rectangular subset matrix 
Smarandache semigroup. 

 
 The proof is direct and hence left as an exercise to the 
reader. 
 
 We next proceed onto describe the operation of product 
on these MOD rectangular subset matrix semigroups under 
product by examples. 
 
 

Example 3.26. Let M = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

  / ai S(Rn(10,15)) = {Collection 

 
of all subsets from Rn(10, 15) = {(a, b) / a  [0, 10), b  [0, 15), 
}, }, n, 1  i  5} be the MOD rectangular subset semigroup 
under n. 
 
 

Let  A = 

{(3,5.1),(2.5,0),(2,0.4)}
{(0.2,4),(0.5,6.2)}

{(1.0),(8.2,5)}
{(0,2),(6,0)}
{(4,0),(1,1)}

 
 
 
 
 
 
  

 and 
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B = 

{(4,2),(6,8.3)}
{(1,1),(0.2,0)}
{(4,2),(0,2)}
{(1.5), (0.75)}

{(5, 2.5)}

 
 
 
 
 
 
  

  M. 

 
 

A n B = 

{(2,10.2),(0,0), (8,12.381),
(4,0.8), (5,0), (2,3.324)}

{(0.2,4),(0.5,6.2),
(0.04,0),(0.1,0)}

{(4,0),(0,0), (7.8,10),(0,10)}
{(0,10),(5,0),(0,0)}

{(0,0),(5,2.5)}

 
 
 
 
 
 
 
 
 
  

 M. 

 
This is the way natural product operation n is performed. 
 
 

 [{(0,0)}] = 

{(0,0)}
{(0,0)}
{(0,0)}
{(0,0}
{(0,0)}

 
 
 
 
 
 
  

 in M is such that  

A n [{(0,0)} 
 
= [{(0,0)}] n A = [{(0,0)}]. 
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 Let [{(1,l1)}] = 

{(1,1)}
{(1,1)}
{(1,1)}
{(1,1)}
{(1,1)}

 
 
 
 
 
 
  

 M is such that  

 
[{(1,1)}] n A = A for all A M, thus [{(1,1)}] is the identity 
element or subset matrix of the MOD rectangular matrix 
semigroup M has zero divisors; for if  
 
A =  
 
 

{(4.01,10.37),(8.34,2.1107),
(1.223,9.0114)}

{(0,0)}
{(5.732,0.431),(4.37,6.07),
(1.115,9.003)}

{(0,0)}
{(7.232,10.374), (5.315,3.307)}

 
 
 
 
 
 
 
 
 
  

 and 

 
 

B = 

{(0,0)}
{(4.32,7.1), (4.8, 0.711),
(0.315,12.31), (2.4,0)}

{(0,0)}
{(4.37,2.11),(7.35,0.31)}

{(0,0)}

 
 
 
 
 
 
 
 
  

  M. 
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A n B = 

{(0,0)}
{(0,0)}
{(0,0)}
{(0,0)}
{(0,0)}

 
 
 
 
 
 
  

 = [{(0,0)}] is the MOD rectangular subset  

 
zero divisor of M. 
 
 

Let S = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  ([0, 10)  {0} = {Collection of all subsets  

 
from [0, 10)  {0} = {(a, 0) / a  [0, 10), }, n, 1  i  5} and  
 
 

R = {

1

2

3

4

5

b
b
b
b
b

 
 
 
 
 
 
  

 / bi S({0}  [0,15)) = {collection of all subsets  

 
from {0}  [0,15) = {(0, b) / b  [0,15),}, }, n; 1  i  5}  
M be MOD rectangular subset matrix subsemigroup which is 
also ideal of M and they are of infinite order. 
 

 Further S  R = 

{(0,0)}
{(0,0)}
{(0,0)}
{(0,0)}
{(0,0)}

 
 
 
 
 
 
  

 = [{(0,0)}]. 
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P1 = {

1a
0
0
0
0

 
 
 
 
 
 
  

 such that ai  S(Rn(10,15)) is a {collection of all 

subsets 
 
from Rn(10, 15) = {(a, b) / a  [0, 10), b  [0, 15); }, }, n} 
 M be the MOD rectangular subset matrix subsemigroup which 
is also an ideal of M.   
 
 We have several such ideals and this task is left as an 
exercise to the reader. 
 

Example 3.27.  Let W = { 1 2 3

4 5 6

a a a
a a a
 
 
 

/  ai  S(Rn(8, 12)) =  

 
{Collection of all subsets from Rn(8,12) = {(a, b) / a  [0, 8),  
b  [0,12) }, }; n; 1  i  6} be the MOD subset rectangular 
matrix semigroup under the natural product n. 
 

 Clearly [{(0,0)}] = 
{(0,0)} {(0,0)} {(0,0)}
{(0,0)} {(0,0)} {(0,0)}
 
 
 

  W 

be  
 
such that A  [{(0,0)}] = [{(0,0)}]  A = [{(0,0)}] for all A  
W. 
 

 Let [{(1,1)}] = 
{(1,1)} {(1,1)} {(1,1)}
{(1,1)} {(1,1)} {(1,1)}
 
 
 

 W is the  

 
MOD subset rectangular matrix identity of  W;  
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[{(1, 1)}]  A = A  [{(1,1)}] = A for all A  W. 
 
 Infact W is a commutative MOD subset rectangular 
matrix monoid of infinite order. 
 
 We now give a few MOD subsets rectangular matrix 
ideals of W. 
 

 P1 = { 1a {(0,0)} {(0,0}
{(0,0)} {(0,0)} {(0,0)}
 
 
   

/ ai S(Rn(8, 12)) =  

 
{collection of all subsets from Rn(8, 12) = {(a, b) / a  [0, 8), b 
 [0, 12), },}, n} be the MOD rectangular subset matrix 
subsemigroup under natural product and infact an ideal.   
 
 Clearly |P1| = . 
 
 We have several such ideals. 
 
 Study in this direction is considered as the matter of 
routine so left as an exercise to the reader. 
 

Example 3.28. Let S = { 1 2

3 4

a a
a a
 
 
 

/ ai S(Rn(6,10)) =  

 
{Collection of all subsets from Rn(6,10) = {(a, b) / a  [0, 6), b 
 [0,10), }, }, ;  1  i  4} be the MOD subset rectangular 
semigroup under the usual product .   
 
 Clearly S is a non commutative semigroup. 
 

 Now [{(0,0)}] = {
{(0,0)} {(0,0)}
{(0,0)} {(0,0)}
 
 
 

/ ai S is that  

 
A  [{(0,0)}] = [{(0,0)}]  A = [{(0,0)}] for all A  S. 
 
 Further the multiplicative identity of S is  
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 I =  
{(1,1)} {(0,0)}
{(0,0)} {(1,1)}
 
 
 

 S. 

 
 We see A  I = I  A = A for all A  S. 
 

Let A = 

{(1,2),(0.3,5) {(7, 1),(0.5,1),
(1.1, 3.01)} (0,.3.2)}

{(0.3, 2.1) {(1.3,2),
(2, 2), (4.5,3)} (0,0.5)}

 
 
 
 
 
 

 S. 

 
We see  

A  I = 

{(1,2),(0.3,5), {(7,1),(0.5,1),
(1.1,3.01)} (0,3.2)}

{(0.3,2.1),(2,2),
{(1.3,2),(0,0.5)}

(4.5,3)}

 
 
 
 
 
 

 

 

   
{(1, 1)} {(0, 0)}
{(0, 0)} {(1, 1)}
 
 
 

 = A.   

 
 Hence it is left as an exercise to the reader to verify I  
A = A and I is the multiplicative identity with respect to the 
usual product. 
 

 Let A = 

{(3,0.5),(4.1,2), {(5.5,3),(0,1)
(0,1.2)} (2,1.6)}
{(2.5,4),(4,0), {(3.5,2),(0,1),
(1,2)] (1,2)}

 
 
 
 
 
 

 and  
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       B = 

{(0.5,6.5),
{(1,2.5)}

(0.3,0.4)}
{(1.6,1.2), {(4,2),
(5,3)} (0,0.6)}

 
 
 
 
 
 

  S.   

 
We first find  
 

A  B = 

{(3,0.5),(4.1,2) {(5.5,3),(0,1)
(0,1.2)} (2,1.6)}
{(2.5,4),(4,0) {(3.5,2),(0,1)
(1,2)] (1,2)}

 
 
 
 
 
 

 

 
 

   

{(0.5,6.5),
{(1,2.5)}

(0.3,0.4)}
{(1.6,1.2), {(4,2),
(5,3)} (0,0.5)}

 
 
 
 
 
 

  

 

= 

{(1.5,3.25),(0.9,0.2),
(2.05,3), (1.23,0.8), {(3,1.25),(4.1,5),(0,3)}
(0.736),(0,0.48)} {(4,6), (0,1.8), (0,2), (0,0.6),
{(2.8,3.6),(3.5,9),(0,1.2), (2,3.2), (0,0.96)}
(0,3), (4,4.8), (3.2,1.92)}

{(1.25,6.0), (0.75




,1.6),(2,0),
{(2.5,0),(4,0), (1,5)}

(1.2,0), (0.5,3),(0.3,0.8)}
{(2,4),(0,1.2), (0,2),

{(8.8,3.6),(3.5,9),(0,1.2)
(0,0.6), (4,4), (0,1.2)}

(0,3), (1.6,2.4), (5,6)}

 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

. 

 
 The reader is given the task of simplifying them and 
proving in general A  B  B  A. 
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 Further interested persons can prove A  B  A n B.  
That is the operations  and n are different operations on S. 
 
 In the first place S under the usual product  is a 
noncommutative semigroup where as S under n the natural 
product is a commutative semigroup. 
 
 However the identities are also different.  Hence it can 
be easily proved A  B  A n B in general for some A, B  S. 
 
 Next we give one more example. 
 
 

Example 3.29.  Let P = {
1 2

3 4

5 6

a a
a a
a a

 
 
 
  

 / ai  S(Rn(4, 6))  =  

 
{Collection of all subsets from Rn(4, 6) = {(a, b) / a  [0, 4),  
b  [0,6), },}, n;  1  i  6} be the MOD subset rectangular 
matrix semigroup under the natural product n. 
 
 o(P) = .  Infact P is a commutative monoid of infinite 
order. 
 
 

Let  A = 
{(2.5,0),(0,1.6)} {(3,2.5)}

{(1.1.6)} {(2,0.6),(1,5)}
{(1.2,2),(2,0)} {(1.6,2),(0.5,5)}

 
 
 
     

and  

 
  

 B = 
{(3,2),(1,0)} {(0.2,0.4),(2,2)}
{(0,1),(2,3)} {(1,2.5)}

{(3,3)} {(2,2)}

 
 
 
  

  P. 
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A n B = 

{(3.5,0),(0,3.2),
{(0.6,0),(2.5)}

(2.5,0),(0,1.6)}
{(0,1.6),(2,4.8)} {(1,2.5),(2,1.5)}
{(2,0),(3.6,6)} {(3.2,4),(1,0)}

 
 
 
 
 
 
  

 is in P. 

  
 This is the way product n is performed.   
 
  It is a matter of routine to find zero divisors, 
idempotents, nilpotents subsemigroups and ideals of P. 
 
 In view of all these we have the following theorem. 
 
Theorem 3.7.  Let V = {m  q matrix with entries from S(Rn(t, 
s)) = {collection of all subsets from Rn(t,s) = {(a, b) / a  [0,t) 
and b  [0, s),}, }, n} be the MOD rectangular subset matrix 
semigroup under the natural product n. 
 

i) o(V) =  and V is a commutative monoid of 
infinite order. 

ii) V has MOD rectangular subset matrix 
subsemigroups of finite and infinite order which 
are not ideals. 

iii) V has MOD rectangular subset matrix ideals all 
of them are only of infinite order. 

iv) V has nontrivial idempotents and nilpotents 
only for special values of t and s, 2  s, t <   

v) V always has zero divisors which are infinite in 
number. 

vi) V is a S-semigroup if Zt or Zs is a S-semigroup 
under . 

 
 Proof is direct and hence left as an exercise to the 
reader. 
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 Next we proceed onto describe the MOD rectangular 
matrix subset semigroups under + and n or  by some 
examples. 
 
Example 3.30.  Let S(M) = {collection of all subsets from  
 
 

M = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 / ai Rn(7, 6) = {(a, b) / a  [0, 7) , b  [0, 6)}, +;  

 
1  i  4}, +} be the MOD rectangular matrix subsets semigroup 
under +. 
 
 Clearly o(S(m)) = . 
 
 

 A =  {

(2,0.5)
(1.5,0)
(1,2)

(0.2,0.1)

 
 
 
 
 
 

,  

(0,0)
(0,1)

(1,0.2)
(0,0.5)

 
 
 
 
 
 

, 

(1,2)
(1,1)

(0,0.5)
(0.2,0)

 
 
 
 
 
 

 } and  

 

 B = {

(3,2)
(0,1)
(1,0)

(0.5,0)

 
 
 
 
 
 

 

(3,2)
(0,1)
(1,0)

(0.5,0)

 
 
 
 
 
 

 

(0,0)
(0,0.5)
(0.2,0)

(1,1)

 
 
 
 
 
 

}  S(M) 

 

A + B = {

(5,2.5)
(1.5,1)
(2,2)

(0.7,0.1)

 
 
 
 
 
 

, 

(2,0.5)
(1.5,0.5)
(1.2,2)

(1.2,1.1)

 
 
 
 
 
 

, 

(3,2)
(0,2)

(1.2,0.2)
(1,1.5)

 
 
 
 
 
 

, 

(0,0)
(0,1.5)

(1.2,0.2)
(1,1.5)

 
 
 
 
 
 

,  
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(4,4)
(1,2)

(1,0.5)
(0.7,0)

 
 
 
 
 
 

, 

(1,2)
(1,1.5)

(0.2,0.5)
(1.2,1)

 
 
 
 
 
 

} S(M). 

 
This is the way + operation is performed on S(M). 
  

{

(0,0)
(0,0)
(0,0)
(0,0)

 
 
 
 
 
 

} = {[(0,0)]}  

is the zero matrix of the set S(M). 
 
We see A + {[0,0)]} = A for all A  S(M). 
 
 Let S(T) = {collection of matrix subsets from  
 
 

T = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

/ ai  [0, 7)  {0} = {(a, 0) / a  [0, 7)}, +;  

 
1  i  4}, +}  S(M) is a MOD rectangular subset matrix 
subsemigroup of S(M); o(S(T)) = . 
 
 Infact S(M) also has MOD rectangular subset matrix 
subsemigroup of finite order. 
 
 Finding them is a matter of routine so left as an exercise 
to the reader. 
 
Example 3.31.  Let S(S) = {Collection of subsets from  
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S = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

 where ai  Rn(12, 10) = {(a, b) / a  [0,  

 
12), b  [0, 10), +}, +, 1  i  8}+} be the MOD rectangular 
matrix subset semigroup under +. o(S(S)) =  and it is easily 
verified S(S) has subsemigroups of finite and infinite order. 
 

 P = {
(0,3.5) (7.2,0) (1,3.1) (5.6,8.01)
(2.3,0) (1,1) (0,5.71) (2.001,0)
 
 
 

,  

 

 

(0.331,0) (1,0.01) (0.023,1) (1,1)
(1,2.03) (2.3,0.5) (0.7,2.3) (1,0)

 
 
 

 ,  

 

 

(0.9,0) (6.231,1) (1,1) (0,2)
(0.115,0.112) (1,0) (0,3) (7,5)
 
 
 

}  S(S).   

 
This P has three matrices any A  S(S) can also have infinite 
number of elements. 
 
 In view of this we have the following theorem. 
 
Theorem 3.8. Let S(W) = {collection of all subsets from  
W = {collection of all (p  q) matrices with entries from Rn(s, t) 
= {(a,  b) / a  [0, s) and b  [0, t)},+}, +} be the MOD 
rectangular matrix subset semigroup under +. 
 

i) o(S(W)) =  and is infact a commutative 
monoid. 

ii) S(W) has MOD matrix subset subsemigroups of 
both finite and infinite order. 
 

 Proof is direct and hence left as an exercise to the 
reader. 
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 Next we proceed onto describe MOD rectangular matrix 
subset semigroups under . 
 
Example 3.32. Let S(V) = {collection of all subsets from  
 

V = {
1

2

3

a
a
a

 
 
 
  

 / ai  Rn(6, 9) = {(a, b) / a  [0, 6) and b  [0, 9);  

 
1  i  3, n}, n} be the MOD rectangular matrix subset 
semigroup under the natural product n. 
 

 Let A = {
(0,0.3)
(1.5,0)
(1,1.6)

 
 
 
  

, 
(5,2.5)
(3.5,2)

(0.16,0.12)

 
 
 
  

, 
(1,1)

(3,24)
(0.11,0.16)

 
 
 
  

}  

 

and B = {
(1,1)
(2,3)

(0.16,1.6)

 
 
 
  

, 
(0,2)

(0.5,0.6)
(0.2,0.7)

 
 
 
  

}  S(V).   

 

We find A nB = {
(0,0.3)
(1.5,0)
(1,1.6)

 
 
 
  

, 
(5,2.5)
(3.5,2)

(0.16,0.12)

 
 
 
  

, 
(1,1)

(3,24)
(0.11,0.16)

 
 
 
  

} n  

 

{
(1,1)
(2,3)

(0.16,1.6)

 
 
 
  

, 
(0,2)

(0.5,0.6)
(0.2,0.7)

 
 
 
  

} 

 

            = {
(0,0.3)
(3,0)

(1.6,2.56)

 
 
 
  

, 
(5,2.5)
(1,6)

(0.0256,0.192)

 
 
 
  

,  

  



90 MOD Rectangular Natural Neutrosophic Numbers 
 
 
 
 
 
 
 
 

(1,1)
(0,7.2)

(0.0176,0.256)

 
 
 
  

, 
(0,0.6)
(0.75,0)

(0.2,1.12)

 
 
 
  

, 
(0,5)

(1.75,1.2)
(0.032,0.084)

 
 
 
  

,  

 

 

(0,2)
(1.5,1.44)

(0.022,0.112)

 
 
 
  

}  S(V).   

 
Thus we have show how the product is defined on S(V). {(0,0)}  
 

= {
(0,0)
(0,0)
(0,0)

 
 
 
  

} in S(V) is such that for every matrix subsets A in  

 
S(V). 
 

 A n{
(0,0)
(0,0)
(0,0)

 
 
 
  

} = {
(0,0)
(0,0)
(0,0)

 
 
 
  

}. 

 
 

Further we have the matrix subset matrix {
(1,1)
(1,1)
(1,1)

 
 
 
  

}  S(V) is  

 
 

such that A  {
(1,1)
(1,1)
(1,1)

 
 
 
  

} = A for all A  S(V). 

 
 
 Infact S(V) is a commutative MOD rectangular matrix 
subset monoid of infinite order. 
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 S(V) also has zero divisors given by 
 

 A = {
(0.331,0)

(3.2159,0)
(4.032,0)

 
 
 
  

, 
(2.03,0)
(0.36,0)
(4.12,0)

 
 
 
  

 
(4.021,0)

(0.3375,0)
(0.812,0)

 
 
 
  

} and  

 

 B = {
(0,6.84)

(0,2.006)
(0,7.6092)

 
 
 
  

, 
(0,6.079)
(0,2.625)
(0,4.214)

 
 
 
  

, 
(0,2.04)
(0,8.602)
(0,4.704)

 
 
 
  

}  S(V)  

 

is such that A n B = {
(0,0)
(0,0)
(0,0)

 
 
 
  

}. 

 
 Thus S(V) has infinite number of zero divisor. 
 
 However we see only for special values of p and q alone 
we can have MOD rectangular matrix subset idempotents and 
nilpotents.  The cardinality of any A  S(V) can vary from one 
to infinity. 
 
 Interested reader can work with these for this work is 
considered as a matter of routine. 
 
Example 3.33.  Let S(W) = {collection of all subsets from  
W = {(a1, a2, a3, a4) / ai  Rn(8, 12) = {(a, b) / a  [0, 8) and  
b  [0, 12), 1  i  4}, }, } be the MOD rectangular matrix 
subsets semigroup under product.  
 
 o(S(W)) =  and infact S(W) is a commutative monoid 
for {(1, 1), (1, 1), (1, 1), (1, 1))}  S(W) is such  
 
A  {((1, 1), (1, 1), (1, 1), (1, 1))} = A for all A  S(W). 
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 {((0, 0), (0, 0), (0, 0), (0, 0))} S(W) is such that  
A  {((0, 0), (0, 0), (0, 0), (0, 0))} = {((0, 0), (0, 0), (0, 0),  
(0, 0))} for all A  S(W). 
 
 Let A = {((0, 3.1), (0.356, 0), (0, 0), (0, 0)), ((0.15, 0), 
(1.23, 5), (0, 0), (0, 0)), ((6.752, 1.307), (1.8075, 2.555), (0, 0), 
(0, 0))} and 
 
 B = {((0, 0), (0, 0), (4.2, 3.75), (0.752, 0.8217)), ((0, 0) (0, 0), 
(1, 2.777), (0, 5.2222))}  S(W).  
 
 Clearly A  B = B  A = {((0, 0), (0, 0)), (0, 0), (0, 0)} 
is a zero divisor of S(W). 
 
 B = {((0, 1), (1, 4), (1, 1), (0, 9))}  S(W) is such that  
B  B = B is an idempotent of S(W). 
 
 D = {((0, 6), (4, 6), (4, 0), (0, 0))} S(W) is such that  
D  D = {((0, 0), (0, 0), (0, 0), (0, 0))} is a nilpotent of order 
two. 
 
 We can find MOD rectangular matrix subsets 
semigroups and ideals for S(W) which is left as an exercise to 
the reader. 
 
Example 3.34. Let S(B) = {(collection of all matrix subsets  
 

from B = { 1 2

3 4

a a
a a
 
 
 

 / ai  Rn(6,12) = {(a, b) / a  [0, 6),  

 
b [0, 12)  (or n) 1  i  4}, (orn)} be the MOD 
rectangular matrix subset subsemigroup under  (or n). 
 
 Under  S(B) is a non commutative MOD rectangular 
subset matrix monoid of infinite order where as under the 
product n, S(B) is a commutative rectangular subset matrix 
monoid of infinite order. 
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 In case {S(B), } the subset matrix {
(1,1) (0,0)
(0,0) (1,1)
 
 
 

}  

 
 
acts as the multiplicative identity whereas in case {(S(B), n} 
  
 

the subset matrix {
(1,1) (1,1)
(1,1) (1,1)
 
 
 

} acts as the multiplicative 

identity. 
 
 Clearly the identities in both the cases are distinct. 
 

 Let A = {
(0,3) (1.2,0)

(0.2,0.4) (0.8,1.6)
 
 
 

, 
(1,1) (2,0)

(0.3,1) (0.7,0.1)
 
 
 

}  

 

  and B = {
(2,1) (0.1,0.2)
(0,0) (0.4,4)
 
 
 

}  S(B). 

 

A B = {
(0.3) (0.48,0.6)

(0.4,0.4) (0.34,6.48)
 
 
 

, 
(2,1) (0.9,0.2)

(0.6,1) (0.31,0.4)
 
 
 

       I 

 

B  A = {
(2,1) (0.1,0.2)
(0,0) (0.4,4)
 
 
 

} 



{
(0,3) (1.2,0)

(0.2,0.4) (0.8,1.6)
 
 
 

, 
(1,1) (2,0)

(0.3,1) (0.7,0.1)
 
 
 

} = 

 

{
(0.02,3.08) (2.48,0.32)
(0.08,1.6) (0.32,6.4)

 
 
 

, 
(2.03,1.2) (4.07,0.02)
(0.12,4) (0.28,0.4)

 
 
 

}      II 

 
 Clearly I and II are distinct so in general A  B  B  A 
for A, B  S(B). 
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 Consider A n B = {
(0,3) (0.12,0)
(0,0) (0.32,6.4)
 
 
 

, 

 
(2,1) (0.2,0)
(0,0) (0.28,0.4)
 
 
 

}  S(B). 

 
 Clearly A n B  A  B or B  A.  It is easily verified  
A n B = B n A for every A, B  S(B).  
 
 Finding substructures, nilpotents, idempotents and zero 
divisors of S(B) are given as exercise to the reader. 
 
 In view of all these we have the following result. 
 
Theorem 3.9.  Let S(B) = {collection of all matrix subsets from 
B = {collection of all t  s matrices with entries from Rn(p, q) = 
{(a, b) / a  [0, p) and b  [0, q), }, n}, n} be the MOD 
rectangular subset matrix semigroup under natural product n. 
 

i) o(S(B)) is of infinite order and S(B) is a 
commutative monoid. 

ii) S(B) has both finite order subsemigroups and 
infinite order subsemigroups which are not 
ideals. 

iii) All ideals in S(B) are of infinite order. 

iv) S(B) has infinite number of zero divisors. 

v) S(B) has nilpotents and idempotents only for 
appropriate t and s. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular  subset 
coefficient polynomial semigroups with respect to + and  by 
examples. 
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Example 3.35. Let B[x] = {collection of all polynomials with 
coefficients as subsets from S(Rn(3, 8)) = {collection of all 
subsets from Rn(3, 8) = {(a, b) / a  [0, 3) and b  [0, 8)}, +}, 
+} be the MOD rectangular subset coefficient polynomial in the 
indeterminate x. 
 
 B[x] is a semigroup under addition. 
 
 p(x) = {(0, 2), (0.5, 0.1), (0.2, 5)}x2 + {(1.2, 3), (0.8, 
6)} and q(x) = {(0.9, 0.8), (2, 5), (0.5, 0.6)}x + {(2, 0.2), (0.7, 
1.6)}  B[x]. 
 
 We find p(x) + q(x) = {(0, 2), (0.5, 0.1), (0.2, 5)}x2 + 
{(1.2, 3), (0.8, 6)} + {(0.9, 0.8), (2, 5),(0.5, 0.6)}x + {(2, 0.2), 
(0.7, 1.6)} = {(0, 2), (0.5, 0.1), (0.2, 5)}x2 + {(0.9, 0.8), (2, 5), 
(0.5, 0.6)}x + {(0.2, 3.2), (1.9,4.6), (2.8, 6.2), (1.5, 7.6)}  
B[x]. 
 
 This is the way the operation + is performed on B[x]. 
 
 Clearly o(x) = {(0, 0)}xn + {(0,0)}xn–1 + … + {(0, 0)}x 
+ {(0, 0)}  B [x] is such that 0(x) + p(x) = p(x) for all p(x)  
B[x]. 
 We can find subsemigroups under +. 
 

 Consider P[x] = { i
i

i 0
a x




  where ai  {collection of all 

subsets from {0}  [0, 8) = {(0, a) / a  [0, 8)}  B[x] is a MOD 
rectangular subset  coefficient polynomial subsemigroup under 
+ of infinite order. 
 

 R[x] = {
9

i
i

i 0
a x


  / ai  {collection of all subsets from Z3 

 Z8 = {(a, b) / a  Z3, b  Z8}, +}, +}   B[x] is a 
subsemigroup of finite order. 
 
 B[x] has several subsemigroups of finite order. 
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Example 3.36.  Let S[x] = { i
i

i 0
a x




  / ai  {collection of all 

subsets from Rn (11,19) = {(a, b) / a  [0, 11), b  [0, 19)}, +}, 
+} be the MOD rectangular subset coefficient polynomial 
semigroup under +.  S[x] has both finite and infinite order 
subsemigroups. 
 
 We prove the following result. 
 

Theorem 3.10.  Let S[x] = {
0




 i

i
i

a x  / ai  S(Rn(t, s)) = 

{collection of all subsets from the MOD rectangular plane  
Rn(t, s) = {(a, b) / a  [0, t) and b  [0, s)}, +}, +} be the MOD 
rectangular subset coefficient polynomial semigroup under +. 
 
 

i) o(S[x]) is infinite and S[x] is infact  
commutative. 

ii) S[x] has both finite and infinite order 
subsemigroups under +. 
 

 The reader is left with the task of proving this theorem. 
 
 Next we describe MOD rectangular subset coefficients 
polynomials semigroups under  by some examples. 
 

Example 3.37. Let S[x] = { i
i

i 0
a x




  / ai  S(Rn(12, 4)) = 

{collection of all subsets from Rn(12, 4) = {(a, b) / a  [0, 12), b 
 [0, 4)}, }, } be the MOD rectangular subset coefficient 
polynomial semigroup under product. 
 
 Clearly o(S[x]) =  and in fact S[x] is a commutative 
moniod with p(x) = 1 + 0x + … + 0xn as the identity.  
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 For every q(x)  S[x] we have p(x)  q(x) = p(x). Hence the 
claim. 
 
 Let p(x) = {(4, 2), (8, 0), (0, 2)}x3 + {(4, 0), (8, 2)}x + 
{(4, 2), (8, 2)} and q(x) = {(6, 2), (6, 0), (0, 2)}x6 + {(6, 0), (6, 
2)}  S[x].   
 
Clearly p(x)  q(x) = {(0, 0)}.  This S[x] has nontrivial subset 
coefficient polynomial.  However S[x] has no idempotent S[x] 
has nilpotents. 
 
 For p(x) = {(6, 2),(6, 0), (0, 2)}x2 + {(0, 2), (6, 2)}  
S[x] is such that p(x)  p(x) = {(0, 0)} is a nilpotent of order 
two. 

 P[x] = { i
i

i 0
a x




  / ai  S({0}  [0, 4)) = {collection of 

all subsets from {0}  [0, 4) = {(0, a) / a  [0, 4), }, , }  
B[x] be the MOD rectangular subset coefficient polynomial 
subsemigroup of B[x].  Clearly P[x] is also an ideal of B[x]. 
 

            Consider L[x] = { i
i

i 0
a x




 / ai  S(Z12 collection 

of all subsets from Z12  Z4 = {(a, b) / a  Z12, b  Z4, {(a, b) / a  
Z12, b  Z4, },  } be the MOD rectangular subset coefficient 
polynomial subsemigroup of B[x] of infinite order but is not an 
ideal of B[x].
 
 L[x] has zero divisors and nilpotents but has no 
idempotents. 
 
 Study in this direction is a matter of routine so left as an 
exercise to the reader. 
 
 In view of all these we have the following. 
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Theorem 3.11. Let S[x] = {
0




 i

i
i

a x / ai  S(Rn(t, s)) = 

{collection of all subsets from the set Rn(t, s) = {(a, b) / a   
[0, t) and b  [0, s),  be the MOD rectangular subset 
polynomial coefficient semigroup under . 
 
i) o(S[x]) =  and S[x] is a MOD rectangular subset 

coefficient polynomial monoid. 

ii) In S[x] all subsemigroups are of infinite order. 

iii) S[x] has ideals all of which are only of infinite order. 

iv) S[x] has infinite number of zero divisors what ever be t, 
and s 2  t, s < . 

v) S[x] has nilpotents only for special values of t and s. 

vi) S[x] has no idempotents. 
 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto define MOD rectangular 
polynomial subset semigroups under  +  by some examples. 
 
Example 3.38. Let S(P[x]) = {collection of all subsets from P[x] 

= { i
i

i 0
a x




  / ai Rn(3,10) = {(a, b) / a  [0, 3) and b  [0, 10), 

+}, +}, +} be the MOD rectangular polynomial subsets 
semigroup under +. 
 
 Let A = {(0, 0.5)x3 + (2.1, 6) x + (1.2, 0.6), (2.01, 2)x4 
+ (0.331, 0.5)} and B = {(0.2, 1)x2 + (1.6, 2), (0.32, 1)x3 + (0.2, 
0.6)} S(P[x]). 
 
 A + B = {(0, 0.5)x3 + (0.2, 1)x2 + (2.1, 6)x +(2.8, 2.6), 
(0.32, 1.5)x3 + (2.1, 6)x + (1.4, 1.2), (2.01, 2)x4 + (0.2, 1)x2 + 
(1.931, 2.5), (2.01, 2)x4 +(0.32, 1)x3 + (1.4, 1.2)}  S(P[x]). 
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 This is the way + operation is performed on S(P[x]). 
 
 We see {(0, 0) + (0, 0)x + … + (0, 0)xn}  S(P[x]) acts as the 
additive identity of S(P[x]) so S(P[x]) is a MOD rectangular 
polynomial subsets monoid under + of infinite order. 
 
 It is a matter of routine to verify S(P[x]) can have both 
finite order MOD rectangular polynomial subset subsemigroup 
as well as infinite order MOD rectangular polynomial subset 
semigroup. 
 
Example 3.39.  Let S(Q[x]) = {collection of all subsets from 

Q[x] = { i
i

i 0
a x




  / ai  Rn(8, 12) =  {(a, b ) / a  [0, 8), b  [0, 

12), +}, +}, +} be the MOD rectangular polynomial subset 
semigroup under +. o(S(Q[x])) = . 
 
 Study of properties associated with S(Q[x]) is a matter 
of routine so left as an exercise to the reader. 
 
 Next we proceed onto give the related result. 
 
Theorem 3.12. Let S(B[x]) = {collection of all polynomial 

subsets from B[x] = {
0




 i

i
i

a x  / ai Rn(s, t) = {(a, b) / a  [0, s) 

and b  [0, t),+}, +}, +}  be the MOD rectangular polynomial 
subset semigroup under +. 
 
 

i) o(S(B[x])) =  and S(B[x]) is a MOD rectangular 
commutative polynomial subset monoid. 

ii) S(B[x]) has subsemigroups of finite and infinite order. 
 
 Proof is direct and hence left as an exercise to the 
reader. 
 Next we proceed on to describe MOD rectangular subset 
coefficient polynomials of finite degree semigroup under + by 
some examples. 
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Example 3.40. Let Q[x]9 = {
9

i
i

i 0
a x


  / ai  S(Rn(7, 5)) = 

{collection of all subsets from Rn(7, 5) = {(a, b) / a  [0, 7),b  
[0, 5) +}, +}, x10 = 1, +} be the MOD rectangular subset 
coefficient polynomial of finite degree semigroup under +. 
 
 Clearly o(Q[x]9) =  and Q[x]9 is an infinite 
commutative MOD rectangular subset coefficient polynomial of 
finite degree monoid. 
 
 Let r(x) = {(0, 3.2), (0.9, 3.7), (1, 0.63), (2.3,0.8)}x3 + 
{(1, 1.1), (2.24, 0.3), (0.37, 2)}x + {(0.5, 0.3), (3.2, 2.2)} and 
s(x) = {(0.3, 2), (6.32, 0) (1, 5)} + {(0.52, 1), (3.1, 4.2)}x  
Q[x]9. 
 
 r(x) + s(x) = {1, 3.2), (0.9, 3.7), (1, 0.63), (2.3, 0.8)}x3 + 
{(1.52, 2.1), (2.76, 1.3), (0.89, 3), (4.1, 5.3), (5.34, 4.5), (3.47, 
6.2)}x + {(0.8, 2.3), (3.5, 4.2), (6.82, 0.3), (2.5, 2.2), (1.5, 5.3), 
(4.2, 7.2)}  Q[x]9.   
 
 This is the way + operation is performed on Q[x]9. 
 
 Finding subsemigroups of finite and infinite order is a 
matter of routine so left as an exercise to the reader. 
 

Example 3.41. Let P[x]5 = {
5

i
i

i 0
a x


  / ai S (Rn(12, 18)) = 

{collection of all subsets from Rn(12, 18) = {(a, b) / a  [0, 12), 
b  [0, 18),+}, +}, x6 = 1, +} be the MOD rectangular subset 
coefficient finite degree polynomial semigroup. 
 
 Clearly o(P[x]5) = .  All properties associated with 
P[x]5 is left as exercise to the reader. 
 
 In view of all these we have the following theorem. 
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Theorem 3.13.  Let B[x]m = {
0


m
i

i
i

a x  / ai  S(Rn(t, s)) = 

{collection of all subsets with entries from Rn(t, s) = {(a, b) / a 
 [0, t), b  [0, s), +}, +}, xm+1 = 1, +} be the MOD rectangular 
subset coefficient finite degree polynomial semigroup under +. 

i) o(B[x]m) =  and B[x]m is a MOD rectangular subset 
coefficient finite degree polynomial monoid. 

ii) B[x]m has both finite and infinite order subsemigroups. 
 

 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe briefly the MOD 
rectangular subset coefficient finite degree polynomial 
semigroup under  by some examples. 
 

Example 3.42.  Let B[x]12 = {
12

i
i

i 0
a x


  / ai  S(Rn(10, 18) = 

{collection of all subsets from Rn(10, 18) = {(a ,b) / a  [0, 10), 
b  [0, 18), }, }, ,  x13 = 1} be the MOD rectangular subset 
coefficient finite degree polynomial semigroup under .   
 
 Clearly o(B[x]12 = . 
 
 Let p(x) = {(3.6, 0.72), (1.02, 5.37), (4.06, 1.32)}x4 + 
{(0.2, 0.8), (1, 1)} and q(x) = {(0.3, 0.5), (1.2, 0.8)} + {0.6, 
1.2), (0.5, 5)} x2  B[x]12 
 
 p(x)  q(x) =[{(3.6, 0.72), (1.02, 5.37), (4.06, 1.32)}x4 
+ {(0.2, 0.8), (1, 1)}]  {(0.3, 0.5), (1.2, 0.8)} + {(0.6, 1.2), (0.5, 
5)}x2} 
 
 = {(0.108, 0.36), (0.306, 0.2685), (1.218, 0.66), (4.32, 0.576), 
(1.224, 4.296), (4.862, 1.056)}x4 + {(0.12, 0.96), (0.6, 1.2), (0.5, 
5), (0.1, 4)}x2  + {(0.06, 0.4), (0.3, 0.5), (1.2, 0.8), (0.24, 0.64)} 
+ {(2.16, 0.864), (0.612, 6.444), (2.436, 1.584), (1.8, 3.60), 
(0.51, 8.85), (2.03, 6.60)}x6  B[x]12. 
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 This is the way product operation is performed on 
B[x]12. 
 
 Clearly B[x]12 has zero divisors, however has no 
idempotents and nilpotents only conditionally. 
 
 Infact B[x]12 is a MOD rectangular subset coefficient 
finite degree polynomial monoid. 
 
 B[x]12 has finite order subsemigroups.  However all 
ideals of B[x]12  are only of infinite order. 
 
 Reader is left with the task of studying these concepts. 
 

Example 3.43. Let R[x]16 = {
16

i
i

i 0
a x


  / ai S(Rn(20, 9)) = 

{collection of all subsets from Rn(20, 9) = {(a, b) / a  [0, 20), b 
 [0, 9), }, }, x17 = 1, } be the MOD rectangular subset 
coefficient finite degree polynomial semigroup under product. 
 
 o(R[x]16) = . 
 
 Let p(x) = {(10, 3),  (0, 6), (10, 6)}x5 + {(0, 3), (10, 6), 
(0, 6)}x2 + {(10, 6), (10, 3)}  R[x]16.  
 
 Clearly p(x)  p(x) = {(0, 0)}. Thus R[x]16 has 
nilpotents as Z20 and Z9 have nilpotents. However R[x]16 has 
infinite number of zero divisors. 
 
 For if p(x) = {(0, 0.35), (0, 6), (0, 6.32), (0, 8.44), (0, 
5)}x10 + {(0, 3), (0, 0.6), (0, 0.8), (0, 0.7)} and q(x) = {(5, 0), 
(0.39, 0), (0.489, 0), (10.3, 0) (9.25, 0)}x8 + {(3, 0), (0.6, 0), 
(0.7, 0), (10, 0)}x4 + {(8, 0), (3.5, 0), (4.25, 0)} R[x]16.   
 
 Then p(x)  q(x) = {(0, 0)}. Infact R[x]16 has infinite 
number of such type of zero divisors. 
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 R[x]16 can never have idempotents.  All ideals of R[x]16 
are of infinite order but R[x]16 can have subsemigroups of finite 
order. 

 Let S[x]16 = {
16

i
i

i 0
a x


  / ai S(Z20  Z9) = {collection of 

all subsets of Z20 Z9 = {(a, b) / a  Z20 and b  Z9, }, }, x17 
= 1, }  R[x]16.    
 
 Clearly S[x]16 is a MOD rectangular subset coefficient 
finite degree polynomial subsemigroup of finite order which is 
clearly not an ideal.  
 

B[x]16 = {
16

i
i

i 0
a x


  / ai S({0}  [0, 9)) = {collection of all 

subsets from {0}  [0,9) = {(0, b) / b  [0, 9), }, },  x17 = 1, 
}  R[x]16 is a MOD rectangular subset coefficient finite degree 
polynomial subsemigroup which is an ideal of R[x]16. 
 
 Infact o(B[x]16) = . 
 
 In view of all these we have  the following theorem. 
 

Theorem 3.14.  Let B[x]m = {
m

i
i

i=0
a x  / ai S(Rn(s ,t)) = 

{collection of all subsets from Rn(s,t) = {(a, b) / a  [0, s),  
b  [0, t), }, xm+1 = 1, +},  } be the MOD rectangular subset 
coefficient finite degree polynomial semigroup under . 
 
i) oB[x]m) =  and B[x]m is a commutative MOD 

rectangular subset coefficient finite degree polynomial 
monoid. 

ii) B[x]m has both finite order and infinite order 
subsemigroups which are not ideals. 

iii) B[x]m has ideals, all ideals are of infinite order. 

iv) B[x]m has no nontrivial idempotents. 
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v) B[x]m has infinite number of zero divisors what ever be 
s and t. 

vi) Only for special values of s and t, B[x]m has nilpotents. 
 
 The proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular finite 
degree polynomial subset semigroup under product by 
examples. 
 
Example 3.44. Let S(P[x]8) = {Collection of all subsets from 

P[x]8 = {
8

i
i

i 0
a x


  / ai Rn(7, 10) = {(a, b) / a  [0, 7) and  

b  [0, 10), +}, +}, x9 = 1, +}, +} be the MOD rectangular 
polynomial subset semigroup under +. 
 
 o(S(P[x]8) = .  Further {(0,0) + (0,0)x +… + (0,0)xn} 
in S(P[x]8) acts as the additive identity, so S(P[x]8 is a monoid. 
 
 Let A = {(0, 3)x3 +(3.112, 0)x +(6.1, 2.1), (1, 2.1)x5 + 
(3, 1.1)x2 +(1, 1.2)} and B = {(6, 8)x3 + (3.1, 4)x + (0.334, 0.7), 
(0.14, 0) + (1, 1)x5, (0.2, 1)x} S(P[x]).   
 
 We find A + B = {(6, 1)x3 +(6.212, 4)x + (6.434, 2.8), 
(1, 2.1)x5 + (6, 8)x3 +(3, 1.1)x2 +(3.1, 4)x +(1.334, 1.9), (1, 1)x5 
+ (0, 3)x3 + (3.112, 0)x + (6.24, 2.1), (2, 3.1)x5 +(3, 1.1)x2 + 
(1.14, 1.2), (0, 3)x3 + (3.312, 1)x +(6.1, 2.1), (1, 2.1)x5 + (3, 
1.1)x2 + (0.2, 1)x + (1, 1.2)}  S(P[x]). 
 
 This is the way + operation is performed on S(P[x]).  
Infact S(P[x]) has both subsemigroups of finite and infinite 
order. 
 
 This study is considered as a matter of routine so left as 
an exercise to the reader. 
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Example 3.45. Let S(R[x]5) = {collection of all subsets from 

R[x]5 = {
5

i
i

i 0
a x


  / ai Rn(3, 6) = {(a, b) / a  [0, 3) and b  [0, 

6), +}, x6 = 1, +}, +} be the MOD rectangular polynomial subset 
semigroup under +. 
 
 o(S[x]5)) =  and is a monoid with respect to +. 
S(R[x]5) has subsemigroups of both finite and infinite order. 
 
 In view of all these we have the following theorem. 
 
Theorem 3.15.  Let S(B[x]m) = {collection of all subsets from 

B[x]m = {
m

i
i

i=0
a x / ai  Rn(s, t) = {(a, b) / a  [0, s), b  [0, t), 

+}, xm+1 = 1, +},+} be the MOD rectangular finite degree 
polynomial subset semigroup under +. 
 
 
i) o(S(B[x]m) =  and S(B[x]m) is a commutative monoid. 

ii) B[x]m has both finite order subsemigroups as well as 
infinite order subsemigroups. 

 
 The proof is considered as a matter of routine so left as 
an exercise to the reader 
.  
 Next we proceed onto describe MOD rectangular finite 
degree polynomial subset semigroup under product by a few 
examples. 
 
 
Example 3.46. Let S(P[x]4) = {collection of all subsets from 

P[x]4 = {
4

i
i

i 0
a x


  / ai Rn(8, 6) = {(a, b) / a  [0, 8), b  [0, 6), 

}, x5 = 1, }, } be the MOD rectangular subset of finite degree 
polynomial semigroup under . 
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 o(S(P[x]4)) =  and S(P[x]4) is a monoid.  S(P[x]4) has 
infinite number of zero divisors but no idempotents.  The 
existence of nilpotents depends on the value of s, t in Rn(s, t). 
 
 Consider A = {(4, 4), (4, 8), (4, 8), (0, 8)}x3 + {(0, 4), 
(4, 0), (0, 8), (0, 12), (4, 12)}  S([P[x]4).   
 
 Clearly A  A = {(0, 0)}.  This is the way one can get 
nilpotents infact S(P[x]4) has infinite number of nilpotents of 
order two.  However S(P[x]4) has no nontrivial idempotents. 
 
 
Example 3.47.  Let S(V[x]7) = {collection of all subsets from 

V[x]7 = {
7

i
i

i 0
a x


  / ai Rn(6, 10) = {(a, b) / a  [0, 6), b  [0, 

10)}, x8 = 1, }, }; be the MOD rectangular finite degree 
polynomial subset semigroup under . 
 
 S(V[x]7) has no nilpotents but has infinite number of 
zero divisor.  This is so because Z6 and Z10 have no nilpotents in 
them. 
 
 All other properties are realized as a matter of routine 
and left as an exercise to the reader. 
 
 The following results are important. 
 
 
Theorem 3.16.  Let S(B[x]m) = {collection of all subsets from 

B[x]m = {
0


m
i

i
i

a x  / ai Rn(s ,t) = {(a, b) / a  [0, s) and b  [0, 

t), }, xm+1 = 1, }, } be the MOD rectangular finite degree 
polynomial subset semigroup under . 
 
i) S(B[x]m) has nilpotents if and only if Zs and Zt has 

nilpotents. 

ii) If S(B[x]m has nilpotents then they are infinite in 
number. 
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 Proof is direct and hence left as an exercise to the 
reader. 
 
 
Theorem 3.17. Let S(B[x]m) = {collection of all subsets 

fromB[x]n = {
m

i
i

i=0
a x  / ai Rn(s ,t) = {(a ,b) / a  [0, s), b  [0, 

t), }, xm+1 = 1, },} be the MOD rectangular finite degree 
polynomial subset semigroup under . 
 
i) o(S(B[x]m)) =  and S(B[x]m) is infact a commutative 

monoid of infinite order. 

ii) S(B[x]m) has infinite number of zero divisors. 

iii) S(B[x]m_) has no idempotents. 

iv) S(B[x]m) has nilpotents only for special values of s and 
t; 2 s, t < . 

v) S(B[x]m) has subsemigroups of finite order as well as of 
infinite order which are not ideals. 

vi) S(B[x]m) has ideals all of which are of infinite order. 
 
 The proof is considered as a matter of routine so left as 
an exercise to the reader. 
 
 Thus these MOD rectangular structures cannot be 
obtained  in MOD complex panes or MOD dual number planes or 
MOD special dual like number planes or MOD special quasi dual 
number planes.   

This is a special feature enjoyed only by MOD real planes. 

 Here we suggest the following problems. 
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PROBLEMS 

 
1. Let Rn(m, q) = {(a, b) / a  [0, m) and b  [0, q)} be the 

MOD rectangular plane; m  q, 2  m, q < . 

i. Find all special features associated with  
Rn(m, q). 

ii. Compare Rn(m, q) with Rn(m, m) and Rn(q, q) in 
general compare it with Rn(t, t); 2  t < . 

2. Let S = {Rn(5, 3)} and S1 = {Rn(3, 5)} be the MOD 
rectangular planes. Compare S1 and S. 

3. Let S = {Rn(9, 8) = {(a, b) / a  [0, 9), b  [0, 8), +} be 
MOD rectangular plane group under +. 

i. Find o(S). 
ii. Find all finite MOD rectangular plane subgroup under +. 

iii. Find all infinite order MOD rectangular plane subgroup 
under +. 

iv. Enumerate any other special property associated with S. 

4. Let W = {Rn(23,11) = {(a, b) / a  [0, 23), b  [0, 11)}, 
+} be the MOD rectangular group under +. 

i. Study questions (i) to (iii) of problem (3) for this W. 
ii. Compare W with V = {Rn(11, 23), +}. 

5. Let M = {Rn(12, 48) = {(a, b) / a  [0, 12), b  [0, 48)}, 
+}  be the MOD rectangular group under +. 

i. Study questions (i) to (iii) of problem (3) for this M. 
ii. Compare this M with W in problem (4). 

iii. Can we say M has more number finite order MOD 
rectangular subgroups than W in problem (4)? 
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6. Let S = {(a1, a2, a3, a4, a5) / ai {Rn(12, 17) = {(a, b) / a 
 [0,12), b  [0, 17); +}, +} be the MOD rectangular 
matrix group under +. 

i. Prove S has MOD rectangular matrix subgroup of finite 
order. 

ii. Prove S has MOD rectangular matrix subgroup of 
infinite order. 

iii. If in S(Rn(12, 17)) is replaced by Rn(24, 250) has more 
numbers of MOD rectangular matrix subgroups of finite 
order. 

7. R = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

ai Rn(15,9) = {(a, b) / a  [0, 15),  

b  [0, 9), +}, +}, 1  i  5} is a MOD rectangular 
matrix group under +. 

 Study questions (i) to (iii) of problem (6) for this R. 

8. Let M= { 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a
 
 
 

/ ai Rn(8, 19) =  

 

{(a, b) / a  [0, 8), b  [0, 19); +}, 1 i  10; +} be the 
MOD rectangular matrix group under +. 

 Study questions (i) to (iii) of problem (6) for this M. 
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9. Let D = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

/ ai  Rn(12, 42); 1  i   

 16, +} be the MOD rectangular matrix group under +. 

 Study questions (i) to (iii) of problem (6) for this D. 

10. Let S = {

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
 
 
 
 
  

/ ai Rn(10, 15); 1  i  10, n} be  

 the MOD rectangular matrix semigroup under n. 

i. Prove o(S) =  and S is a commutative monoid. 
ii. Prove S has infinite number of zero divisors. 

iii. Find all subsemigroups of S  of finite order. 

iv. Find all subsemigroups of infinite order which are not 
ideals. 

v. Find all ideals of S of infinite order. 

vi. Prove all ideals of S are of infinite order. 

vii. Find all idempotents of S. 

viii. Can S have nilpotents? 

ix. Obtain any other special feature enjoyed by S. 
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11. Let M = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

/ ai  Rn(32, 64), 1  i   

 16, (or n)} be the MOD rectangular matrix semigroup. 

i. Study questions (i) to (ix) of problem (10) for this M 
under  (as well as n). 

ii. Prove M has nilpotent elements. 
iii. Show M under  is a MOD rectangular matrix monoid 

which is noncommutative. 

iv. Find all right ideals of M which are not left ideals under 
. 

v. Find all right zero divisors of M which are not left zero 
divisors of M. 

12. Let W = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

/ ai  Rn(27, 19); 1  i  

8,  

 n} be the MOD rectangular matrix semigroup under n. 

i. Study questions (i) to (ix) of problem (10) for this W. 
ii. Study W when Rn(27, 19) is replaced by Rn (16, 48). 

13. Let P = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 

/ ai Rn(120, 43);  

 1  i  20, n} be the MOD rectangular matrix 
semigroup under n.   



112 MOD Rectangular Natural Neutrosophic Numbers 
 
 
 
 
 
 
 

 Study questions (i) to (ix) of problem (10) for this P. 

14. Let S(M) = {

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
  

 / ai S(Rn(8, 12)) =  

 {collection of all subsets from Rn(8, 12) = {(a, b) / a  
[0, 8), b  [0, 12), +}, +}, +; 1  i  15} be the MOD 
rectangular subset matrix semigroup under +. 

i. Prove o(S(M)) =  and S(M) is a commutative monoid. 
ii. Find all subsemigroups of finite order in S(M). (Are 

they infinite in number). 
iii. Find all subsemigroups of S(M). 

15. Let S(P) = {(a1, a2, a3, a4, a5) / ai  S(Rn(43, 23)) = 
{(collection of all subsets from Rn(43, 23) = {(a, b) / a 
 [0, 43), b  [0, 23),+}, +},1  i  5, +} be the MOD 
rectangular subset matrix semigroup under +. 

i. Study questions (i) to (iii) of problem (14) for this S(P). 
ii. Compare with P where in P; Rn(43, 23) is replaced by 

Rn(24, 64). 

16. Let S(V) = {
1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

a a a a a a
a a a a a a
a a a a a a

 
 
 
  

 / ai  

 S(Rn(8, 25)) = {collection of all subsets from Rn(8, 25) 
= {(a, b) / a  [0, 8), b {0, 25), +}, +},1  i  18, +} 
be the MOD rectangular subset matrix semigroup under 
+.  
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 Study questions (i) to (iii) of problem (14) for this S(V). 

17. Let S(P) = {

1 2

3 4

5 6

7 8

9 10

11 12

13 14

a a
a a
a a
a a
a a
a a
a a

 
 
 
 
 
 
 
 
 
  

 / ai  S(Rn(7, 9) = {collection of  

 all subsets from Rn(7, 9) = {(a, b) / a  [0, 7), b  [0, 
9), , }, 1  i  14, n} be the MOD rectangular subset 
matrix semigroup under n, the natural product. 

i. Prove o(S(P)) = . 
ii. Prove S(P) is a commutative monoid. 

iii. Prove S(P) has infinite number of zero divisors 
whatever be s, t in Rn(s, t). 

iv. Prove S(P) has nontrivial idempotents and nilpotents 
only for special values of s and t. 

v. Prove S(P) has both finite order subsemigroups as well 
as infinite order subsemigroups which are not ideals. 

vi. Prove S(P) has ideals and all of them are of infinite 
order. 

vii. Obtain any other special feature enjoyed by S(P). 

18. Let S(W) = { 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a
 
 
 

 / ai   

 
S(Rn(12, 24)) = {collection of all subsets from  
Rn(12, 24) = {(a, b) / a  [0, 12), b  [0, 24), }, },  
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1  i  10, n} be the MOD rectangular subset matrix 
semigroup under n.   

 Study questions (i) to (vii) of problem (17) for this 
S(W). 

19. Let S(B) = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

 / ai  S(Rn(20,  

 16)) = {collection of all subsets from Rn(20, 16) = {(a, 
b) / a  [0, 20), b  [0, 16), }, }, 1  i  25, n(or )} 
be the MOD rectangular subset matrix semigroup under 
natural product n or usual product . 

i. Study questions (i) to (vii) of problem (17) for this 
S(B). 

ii. Prove in case usual product  on S(B) prove S(B) is a 
non commutative infinite semigroup. 

iii. Prove S(B) has left zero divisors which are not left zero 
divisors. 

iv. Prove S(B) has left ideals which are not right ideals. 

v. Compare and contract the structure of S(B) on  and n. 

20. Let S(P) = { 

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

 / ai S(Rn(9, 27) = {collection of all  
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 subsets from Rn(9, 27) = {(a, b) / a  [0, 9), b  [0,27), 
}, }, 1  i  5, n} be the MOD rectangular subset 
matrix semigroup under natural product n. 

 Study questions (i) to (vii) of problem (17) for this S(P). 

21. Let S(W) = {collection of all matrix subsets from  

 W = {

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
 
 
 
 
  

 / ai  S(19, 11) = {(a, b) / a  [0, 19),  

 b  [0, 11), +}, +, 1  i  10}, +} be the MOD 
rectangular matrix subset semigroup under +. 

i. Prove S(W) is a commutative monoid of infinite order. 
ii. Find all subsemigroups of finite order. 

iii. Find all subsemigroups of infinite order. 

22. Let S(M) = {collection of all matrix subsets from  
 

M = { 1 2 3 4 5 6 7

8 9 10 11 12 13 14

a a a a a a a
a a a a a a a
 
 
 

/ ai   

 
Rn(24, 17), 1  i  14,+},+} be the MOD rectangular 
matrix subset semigroup under +.  

 Study questions (i) to (iii) of problem (21) for this 
S(M). 

23. Let S(B) = {collection of all subsets from  
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B = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

/ ai  Rn(23, 48),  

 
 1  i  25, +}, +} be the MOD rectangular matrix subset 

semigroup under +. 
   
 Study questions (i) to (iii) of problem (21) for this S(B). 

24. Let S(V) = {collection of all matrix subsets from  

 V = 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a
 
 
   

/ ai  Rn(15, 7), {(a, b) /  

 a  [0, 156), b  [0, 7), } 1  i  10}, n},  n} be the 
MOD rectangular matrix subset semigroup under natural 
product n. 

i. Prove S(V) is a commutative monoid of infinite 
order. 

ii. Prove S(V) has infinite number of zero divisors? 
iii. Can S(V) have non trivial idempotents? Justify 

your claim. 
iv. When will S(V) have nontrivial nilpotents? 
v. Prove S(V) has both finite order and infinite order 

subsemigroups which are not ideals. 

vi. Prove S(V) has ideals and all ideals are of infinite 
order. 

vii. Obtain any other interesting feature enjoyed by 
S(V) 
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25. Let S(Q) = {collection of all matrix subsets from  

 

Q = {

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

 
 
 
 
 
 
 
 
  

/ ai  Rn(28, 49),  

 = {(a, b) / a  [0, 28), b  [0, 49) 1  i  36, n, (or )}, 
n (or )} be the MOD rectangular matrix subset 
semigroup under natural product n (or usual product 
). 

i. Study questions (i) to (vii) of problem (24) for this 
S(Q).  

ii. Prove S(Q) under the usual product  is a non 
commutative monoid of infinite order. 

iii. Prove S(Q) has right zero divisors which are not left 
zero divisors. 

iv. Prove S(Q) has right ideals which are not left ideal. 
v. Compare {S(Q), n} with {S(Q), }). 

26. Let S(X) = {Collection of all matrix subsets from  

 

X = {

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

/ ai Rn(7, 17) = {(a, b) / a  [0, 7), b  [0,1  
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 7), 1  i  6, n}, n be the MOD rectangular matrix 
subset semigroup under n. 

 Study questions (i) to (vii) of problem (24) for this 
S(X). 

27. Let P[x] = {
i

i
0

ia x



  / ai  [0, 8), b [0, 12), +}; +} be 

the MOD rectangular polynomial group under +. 

i. Prove P[x] is a commutative group of infinite order. 
ii. Prove P[x] has subgroups of finite order. 

iii. Prove P[x] has subgroups of infinite order. 

28. Let V[x] = {
i

i
0

ia x



  / ai Rn(43, 47) = {(a, b) / a  [0, 

43), b  [0, 47), }, +} be the MOD rectangular 
polynomial group 

i. Study questions (i) to (iii) of problem (27) for this V[x]. 
ii. Compare P[x] of problem (27) with this V[x] and show 

P[x] has more number of finite order subgroups. 

29. Let M[x]5 = {
5

i 0

i
ia x


  / ai  Rn(25, 16) = {(a, b) / a  [0, 

25), b  [0, 16), }, 0  i  5, x6 = 1, } be the MOD 
rectangular finite degree polynomial group under +. 

 Study questions (i) to (iii) of problem (27) for this 
M[x]5. 

30. Let V[x]12 = {
2

i

1
i

i 0
a x


  / ai  Rn(13, 7) = {(a, b) / a  [0, 

13), b  [0, 7), }, x13 = 1, } be the MOD rectangular 
finite degree polynomial group under +.  
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 Study questions (i) to (iii) of problem (27) for this 
V[x]12. 

31. Let M[x] = {
i

i
0

ia x



  / ai Rn(15, 8) = {(a, b) / a  [0, 

15), b  [0, 8), }, } be the MOD rectangular 
polynomial semigroup under . 

i. Prove M[x] is a commutative monoid of infinite 
order. 

ii. Show M[x] has infinite number of zero divisors. 
iii. Prove M[x] can never have nontrivial 

idempotents. 
iv. M[x] can have nilpotents only for special type of 

s and t in Rn (s, t). 
v. Prove M[x] can never have subsemigroup of 

finite order. 
vi. Prove M[x] has subsemigroups of infinite order 

which are not ideals. 
vii. Prove all ideals of M[x] are of infinite order.  

Give at least three ideals of M[x]. 
viii. Obtain any other special feature associated with 

M[x]. 

32. Let B[x] = {
i

i
0

ia x



  / ai  Rn(17, 23) = {(a, b) / a  [0, 

17), b  [0, 23), }, } be the MOD rectangular 
polynomial semigroup under . 

 Study questions (i) to (viii) of problem (31) for this 
B[x]. 

33. Let T[x] = {
i

i
0

ia x



  / ai Rn(18, 49) = {(a, b) / a  [0, 

18), b  [0, 49), }, } be the MOD rectangular 
polynomial semigroup under . 
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i. Study questions (i) to (viii) of problem (31) for this 
T[x]. 

ii. Compare this T[x] with B[x] of problem (32). 

34. Let M[x]20 = {
0

i

2
i

i 0
a x


  / ai Rn(24, 48) = {(a, b) / a  

[0, 24), b  [0, 48), }, x21 = 1, } be the MOD 
rectangular finite degree polynomial group under +. 

i. Prove M[x]20 is a group of infinite order. 
ii. Prove M[x]20 has subgroups of finite order. 

iii. Prove M[x]20 has also subgroups of infinite order. 
iv. Obtain any other special feature associated with M[x]20. 

35. Let W[x]7 = {
7

i 0

i
ia x


  / ai  Rn(14, 19) = {(a, b) / a  [0, 

14), b  [0, 19), }, x8 = 1, } be the MOD rectangular 
finite degree polynomial group under +. 

 Study questions (i) to (iv) of problem (34) for this 
W[x]7. 

36. Let P[x]9 = {
9

i 0

i
ia x


  / ai Rn(12, 9) = {(a, b) / a  [0, 

12), b  [0, 9), }, x10 = 1, } be the MOD rectangular 
finite degree polynomial semigroup under . 

i. Prove P[x]9 is an infinite commutative monoid. 
ii. Show P[x]9 has infinite number of zero divisors. 

iii. Show P[x]9 has no nontrivial idempotents. 
iv. Prove P[x]9 has nilpotents. 
v. Show P[x]9 can have subsemigroups of finite order and 

subsemigroups of infinite order which are not ideals. 
vi. Prove all ideals of P[x]x9 are of infinite order. 

vii. Obtain any other special feature enjoyed by P[x]9. 
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37. Let B[x]12 =  {
2

i

1
i

i 0
a x


  / ai  Rn(6, 241) = {(a, b) / a  

[0, 6), b  [0, 241), }, x13 = 1, } be the MOD 
rectangular finite degree polynomial semigroup under 
. 

 Study questions (i) to (vii) of problem (36) for this 
B[x]12. 

38. Let S[x]9= {
9

i 0

i
ia x


  / ai  Rn(27, 81) = {(a, b) / a  [0, 

27), b  [0, 81), }, x16 = 1, } be the MOD rectangular 
finite degree polynomial semigroup under . 

 Study questions (i) to (vii) of problem (36) for this 
S[x]9. 

39. Let S(P[x]) = {collection of all subsets from P[x] =  

{
i

i
0

ia x



  / ai  Rn(3, 8) = {(a, b) / a  [0, 3), b  [0, 8), 

}, +} be the MOD rectangular polynomial subset 
semigroup under +. 

i. Prove S(P[x]) is a commutative monoid of infinite 
order. 

ii. Prove S(P[x]) can have finite or infinite order 
subsemigroups. 

iii. Prove S(P[x]) also has subsemigroups of infinite order. 

40. Let S(M[x]) = {collection of all subsets from M[x]=  

{
i

i
0

ia x



  / ai  Rn(24, 29) = {(a, b) / a  [0, 24), b  [0, 

29}, }, +} be the MOD rectangular polynomial subset 
semigroup under +. 
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 Study questions (i) to (iii) of problem (39) for this 
S(M[x]). 

41. Let S(V[x]) = {collection of all polynomial subsets 

from V[x] = {
i

i
0

ia x



  / ai  Rn(12, 45) = {(a, b) / a  [0, 

12), b  [0, 45}, }, } be the MOD rectangular 
polynomial subset semigroup under . 

i. Prove S(V[x]) is an infinite commutative monoid. 
ii. Prove S(V[x]) has infinite number of zero divisors. 

iii. Prove S(V[x]) has no idempotents. 
iv. Can S(V[x]) has nilpotents? Justify. 
v. Prove S(V[x]) has only MOD rectangular subsemigroups 

of infinite order which are not ideals. 
vi. Obtain any other special feature associated with 

S(V[x]). 

42. Let S(S[x]) = {collection of all subsets from S[x] =  

{
i

i
0

ia x



  / ai  Rn(3, 7) = {(a, b) / a  [0, 3), b  [0, 7), 

}, } be the MOD rectangular polynomial subset 
semigroup under . 

 Study questions (i) to (vi) of problem (41) for this 
S(S[x]). 

43. Let S(N[x]) = {collection of all subsets from N[x] =  

{
i

i
0

ia x



  / ai  Rn(64, 81) = {(a, b) / a  [0, 64),  

b  [0, 81)}, }, } be the MOD rectangular polynomial 
subset semigroup under . 

 Study questions (i) to (vii) of problem (41) for this 
S(N[x]). 



Algebraic Structures using Rectangular MOD Planes 123 
 

 
 
 
 
 
 

44. Let P[x] = {
i

i
0

ia x



  / ai  S(Rn(2, 12) = {collection of 

all subsets from Rn (2,12) = {(a, b) / a  [0, 2), b  [0, 
12), }, +}, +} be the MOD rectangular subset 
coefficient polynomial semigroup under +. 

i. Prove P[x] is an infinite order commutative monoid. 
ii. Prove P[x] has subsemigroups of finite order. 

iii. Prove P[x] has subsemigroups of infinite order. 
iv. Obtain all other special features associated with P[x]. 

45. Let S[x] = {
i

i
0

ia x



  / ai  S(Rn(12, 81)) = {collection of 

all subsets from Rn(12, 81) = {(a, b) / a  [0, 12),  
b  [0, 81), }, +}, } be the MOD rectangular subset 
coefficient polynomial semigroup. 

 Study questions (i) to (iv) of problem (44) for this S[x]. 

46. Let  V[x] = {
i

i
0

ia x



  / ai  S(Rn(26, 131)) = {collection 

of all subset from Rn(26, 131), = {(a, b) / a  [0, 26),  
b  [0, 131), }, },} be the MOD rectangular subset 
coefficient polynomial semigroup under . 

i. Prove V[x] is an infinite commutative monoid under . 
ii. Prove V[x] has infinite number of zero divisors. 

iii. V[x] cannot have idempotents. Justify. 
iv. Prove V[x] has nilpotent only for certain values of s and 

t of Rn(s, t). 
v. Does this V[x] contain nilpotents? 

vi. Can V[x] have subsemigroups of finite order? 
vii. Give subset subsemigroups of infinite order which are 

not ideals. 

viii. List all ideals of V[x] and prove all ideals are of infinite 
order? 
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ix. Enumerate all special features enjoyed by V[x]. 

47. Let S[x] = {
i

i
0

ia x



  / ai  S(Rn(12, 48)) = {collection of 

all subsets from Rn (12,48) = {(a, b) / a  [0, 12),  
b  [0, 48), }, },} be the MOD rectangular subset 
coefficient polynomial semigroup under . 

 Study questions (i) to (ix) of problem (46) for this S[x]. 

48. Let P[x]m = {
m

i 0

i
ia x


  / ai  S(Rn(9, 12)) = {collection of 

all subsets from Rn (9, 12) = {(a, b) / a  [0, 9),  
b  [0, 12), }, }, xm+1 = 1} be the MOD rectangular 
subset coefficient polynomial semigroup under . 

i. Prove P[x]m is a commutative monoid of infinite order. 
ii. Prove P[x]m has infinite number of zero divisors. 

iii. Can P[x]m have nonzero nilpotents? 
iv. Prove P[x]m can have subsemigroups of finite and 

infinite order which are not ideals. 
v. Prove P[x]m have all ideals to be of infinite order. 

vi. Prove P[x]m can never have idempotents. 
vii. Enumerate all special features associated with P[x]m. 

49. Let B[x]9 = {
9

i 0

i
ia x


  / ai  Rn(21, 200) = {Collection of 

all subsets from Rn(21, 200) = {(a, b) / a  [0, 21), b  
[0, 200), }, }, x10 = 1. } be the MOD rectangular 
subset coefficient polynomial semigroup under .  

 Study questions (i) to (vii) of problem (48sssss) for this 
B[x]9. 
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50. Let V[x]18= {
8

i

1
i

i 0
a x


  / ai  S(Rn(27, 36)) = {collection 

of all subsets from Rn (27, 36) = {(a, b) / a  [0, 27),  
b  [0, 36), }, }, x19 = 1, } be the MOD rectangular 
subset coefficient polynomial semigroup under .  

 Study  questions (i) to (vii) of problem (48) for this 
V[x]18. 

51. Let S(M[x]9) = {collection of all subsets from M[x]9 =  

{
9

i 0

i
ia x


  / ai  Rn(20, 19); x10 = 1, }, } be the MOD 

rectangular finite degree polynomial subset semigroup 
under . 

i. Prove S(M[x]9) is a commutative monoid of infinite 
order. 

ii. Prove S(M[x]9) has infinite number of zero divisors. 
iii. Show S(M[x]9) cannot have nontrivial idempotents. 
iv. Can S(M[x]9) cannot have nontrivial idempotents? 
v. Can S(M[x]9) have nontrivial nilpotents? 

vi. Prove S(M[x]9) has both finite order as well infinite 
order subsemigroups which are not ideals. 

vii. Enumerate all special features enjoyed by S(M[x]9). 

52. Let = S(T[x]21) = {collection of all subsets from T[x]21 

= {
1

i

2
i

i 0
a x


  / ai  Rn(81, 256) = x22 = 1}, }, } be the 

MOD rectangular finite degree polynomial subset 
semigroup under . 

 Study questions (i) to (vii) of problem (51) for this 
S(T[x]21). 
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53. Let S(P[x]5) = {collection of all subsets from P[x]5 =  

{
5

i 0

i
ia x


  / ai  Rn(22,14) = {(a, b) / a  [0, 22),  

b  [0, 14), }, x6 = 1}, } be the MOD rectangular 
finite degree polynomial subset semigroup under .  

 Study questions (i) to (vii) of problem (51) for this 
S(P[x]5). 



 

Chapter Four 

 

 

SEMIGROUPS ON MOD RECTANGULAR 
NATURAL NEUTROSOPHIC NUMBERS  
AND THEIR PROPERTIES 

 
 In this chapter we for the first time introduce MOD 
rectangular natural neutrosophic numbers. 
 
 Suppose we have Z3  Z10 to be the product of two 
modulo integers Z3 and Z10.   
 
 We define MOD Cartesian product of natural neutrosophic 
number pairs of Z3  Z10 as I I

3 10Z Z = {(a, b) /a  I
3Z , b  I

10Z },  
thus I I

3 10Z Z is defined as the MOD rectangular natural 
neutrosophic number pairs. 
 
 We will illustrate this situation by some examples and 
also define the operations + and  on them. 
 
Example 4.1.  Let M = I I

6 2Z Z  = {(a, b) / a  I
6Z , b  I

2Z }, 
(M, +) is only a MOD semigroup. 
  
 For ( 6 2

0 0I , I ) + ( 6 2
0 0I , I ) = ( 6 2

0 0I , I ). Further ( 6 2
3 0I , I ) + ( 6 2

3 0I , I ) 
= ( 6 2

0 0I , I ) so (M,+) is only a semigroup in fact a commutative 
monoid of finite order. 
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 Let a = ( 6 6

3 2I I , 1 + 2
0I ), b = ( 6 6

3 0I I , 2
0I )  M, a + b = 

    
( 6 2

3 2I I , 1 + 2
0I ) + ( 6 6

3 0I I , 2
0I ) = ( 6 6 6

3 2 0I I I  , 1 + 2
0I )  M. 

 
 This is the way + operation is performed on M.  In fact 
o(M) <  and has subsemigroups of finite order. 
 
 P1 = {(a, b) / a  Z6, b  Z2}  M is a subsemigroup of 
M of finite order;  in fact  a subgroup.  
 
 P2 = {(a, 0) / a  Z6}  M is again a subsemigroup of M of 
finite order in fact a subgroup.  
 
 P3 = {(0, a) / a  Z2}  M is a subsemigroup of M of 
finite order which is a subgroup. P6 = {(a, 0) / a  I

6Z }  M is a 
subsemigroup and is not a group under + of M.  
 
 P4 = {(a, b) / a  I

6Z , b  Z2}  M is only a 
subsemigroup of M and not a group.  
 
P5 = {(0, b) / b  I

2Z }  M is a subsemigroup which is not a 
subgroup of M. 
 
 Thus M is a S-MOD rectangular semigroup. 
 
Definition 4.1. Let S = { I I

n mZ × Z , (m  n)}  = {(a, b) / a  I
nZ ,  

b  I
mZ }; S is defined as the MOD rectangular natural 

neutrosophic modulo integer set; (2  m, n < ).  
 (S, +) is defined as the MOD rectangular natural 
neutrosophic modulo integer semigroup under +. In fact (S,+) 
is a commutative finite semigroup. 
 
 We have given examples of them. 
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Example 4.2.  Let M = { I I
20 7Z Z  = {(a, b) / a  I

20Z , b  I
7Z }, 

+} be the MOD rectangular natural neutrosophic modulo integer 
semigroup.  In fact M is a finite commutative monoid and M is 
a Smarandache semigroup as P = {(Z20  Z7) = {(a, b) / a  Z20, 

b  Z7}, +} is a group under +.   
 
So M is a S–MOD rectangular natural neutrosophic modulo 
integer semigroup. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.1.  Let S = { I I

m nZ ×Z  = {(a, b) / a  I
mZ , b  I

nZ }, m 
 n, 2  m, n < , +} be the MOD rectangular natural 
neutrosophic modulo integer semigroup under +. 
 

i) S is a commutative monoid of finite order. 

ii) S is a Smarandache semigroup. 

iii) S has several subsemigroups which are groups. 

iv) S has several subsemigroups which are not groups. 

v) S has several idempotents. 

vi) S has an idempotent subsemigroup. 
 

 Proof is direct and hence left as an exercise to the reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic finite modulo integer semigroup under  by some 
examples. 
 
Example 4.3. Let N = { I I

10 12Z Z = {(a, b) / a  I
10Z , b  I

12Z }, 
0} be the MOD rectangular natural neutrosophic finite modulo 
integer semigroup under . 
 
 Clearly (1, 1)  N is such that (a, b)  (1, 1) = (a, b) for 
all (a, b)  N.  Thus N is a commutative monoid of finite order. 
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 We see we can define two types of products on N. 
 
 We will for sake of difference denote by 0 the zero 
dominated product that is ( 10 12

t sI , I ) 0 (0, 0) = (0, 0); whereas  
the usual product symbol will be used to denote the natural 
neutrosophic number dominated product for  
 
 (0, 0)  ( 10 12

t sI , I ) = ( 10 12
t sI , I ). 

 
 However under both products  (or 0), (a, b)  ( 10 12

t sI , I ) 
= ( 10 12

t sI , I )  (a, b)  (0, 0), i.e. a  0, b  0. 
 
 Clearly N under 0 product has zero divisors, units and 
idempotents. 
 
 In fact (N, 0) has subsemigroups all of which are of 
finite order. 
 
 P1 = {( I

10Z ,0), 0} is a subsemigroup of N. 

 P2 = {(Z10, 0), 0} is again a subsemigroup of N. 

 P3 = {(Z10, Z12), 0} is again a subsemigroup of N and so 
on. 
 
 Only P1 is an ideal and P2 and P3 are not ideals. 
 
 Consider x = (5, 2) and y = (2, 6)  N.   
 
 Clearly x 0 y = (0, 0).  In fact N has several zero divisors 
also. 
 
 Study in this direction is realized as a matter of routine 
for such study has been done in earlier books [37], however 
only in this book the notation 0 is used but even that is not very 
essential as from the very context one knows what type of 
product is used. 
 



Semigroups on MOD Rectangular Natural … 131 
 

 
 
 
 
 
 
 

 However if 0 is replaced by  on N that is the 
neutrosophic zero dominated product we see P1 is not an ideal 
under  only a subsemigroup.  Thus it is clear that both product 
behave differently and they are distinct. 
 
 It is also pertinent to keep on record that 0 is most 
favourable to be used when we use these in MODCMs or 
MODRMs models for otherwise the resultant would in many 
cases will be a natural neutrosophic number which may not be 
always a feasible answer. 
 
 So the product, 0 is essential in the study of MOD 
mathematical models. 
 
 Further authors want to keep on record that we cannot 
build MOD rectangular natural neutrosophic finite complex 
numbers or MOD rectangular natural neutrosophic-neutrosophic 
finite modulo numbers or so on.  
 
For only MOD rectangular natural neutrosophic modulo integers 
alone is capable of extension to MOD rectangular real plane of 
natural neutrosophic numbers as I[0, m)  I[0, n) the rest are 
incapable of such structures, hence the restrictions in our study. 
 
Example 4.4. Let B = {( I I

17 7Z Z ) = {(a, b) / a  I
17Z , b  I

7Z }, 
0 (or )} be MOD rectangular natural neutrosophic number 
semigroup. 
 
 Finding zero divisors of the form (x, y)  (a, b) = (0, 0)  
a, b, x, y none of them equal to 0 or 17

0I or 7
0I  is an impossibility.  

Thus if in I I
n mZ Z , m and n are primes mostly it is difficult to 

find zero divisors. 
 
 However B has subsemigroups and ideals depending on 
0 (or ). 
 
 All these are left as an exercise to the reader.  
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 Now we give the following result. 
 
Theorem 4.2. Let B = {( I I

m nZ Z ) = {(a, b) / a  I
mZ , b  I

nZ }, 
m  n, 2  m, n < , 0 (or )} be the MOD rectangular natural 
neutrosophic modulo integer semigroup under 0 (or ). 
 

i) B is a commutative monoid of finite order. 
ii) B has zero divisors of the form (a, 0)  (0, b) = 

(0, 0) for a  I
nZ and b  I

mZ . 
iii) If m and n are non-primes B has more number of 

zero divisors. 
iv) B has MOD subsemigroups which are not ideals. 
v) B has ideals. 
vi) B has nilpotents and idempotents only for special 

values of m and n. 
vii) B is a S-semigroup if and only if I

nZ  or I
mZ  are  

S-semigroups under 0 or. 
 
 Proof is direct and hence left an exercise to the reader. 
 
Example 4.5.  Let M = { I I

16 24Z Z = {(a, b) / a  I
16Z , b  I

24Z } 
0 (or )} be the MOD rectangular natural neutrosophic 
semigroup under 0 (or ).  
 
Clearly M has nilpotents, zero divisors, subsemigroups, 
idempotents and ideals. 
 
 Finding them is left as a task for the reader. 
 
 Clearly x = ( 16

4I , I
12I ) is such that x  x = ( 16 I

0 12I , I ) is a 
MOD natural neutrosophic nilpotent. 
 
 Next we define MOD rectangular natural neutrosophic 
numbers. 
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Definition 4.2. Let D = {( I[0, m),  I[0, n)) = {(a, b) / a  I[0, 
m) and b  I[0, n)}; m  n, 2  m, n < } be the MOD 
rectangular interval natural neutrosophic pairs. 
 Clearly I[0,m)  I[0, n)  I[0, n)  I[0, m). 
 
 We can using them have both + (or ) defined on them.  
They are only semigroups under + (or  or ). 
 
 We will illustrate this situation by some examples. 
 
Example 4.6. Let S = {I[0, 7) ) = {(a, b) / a  I[0, 7), b 
 I[0, 12)}} be the MOD rectangular natural neutrosophic 
interval set. Clearly o(S) = . 
 
 We can define any one of the operations + or 0 or  on S 
and S under any one of these  operations is only a commutative 
semigroup of infinite order. 
 
Example 4.7.  Let M = {I[0, 5)  I[0, 12) = {(a, b) / a  I[0, 5),  
b  [0, 12)}, +} be the MOD rectangular natural neutrosophic 
interval semigroup of infinite order. 
 
 ( [0,5) [0,12)

0 0I ,I ) + (0, 0) = ( [0,5) [0,12)
0 0I , I )  ( [0,5)

0I  + 0 = [0,5)
0I  

and [0,5)
0I + a = a + [0,5)

0I  for all a  [0,5).  Similar result holds 
good for [0,12)

0I ).   
 
This sort of study is interesting and innovative  
( [0,5) [0,12)

0 6I , I ) + ( [0,5) [0,12)
0 6I ,I ) = ( [0,5) [0,12)

0 0I ,I ) is an idempotent of M.  
Hence M is only a semigroup under + and o(M) = . 
 
 Clearly ( [0,5) [0,12)

0 0I ,I )  + (4.02, 3.001)  (4.02, 3.001), in 
fact the sum is ( [0,5)

0I +4.02, [0,12)
0I +3.001).  Thus the MOD 

natural neutrosophic zero does not behave like the usual zero. 
 
 In fact it adds itself with any value from [0, 5)  [0, 12). 
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 Consider 
  
 A = {[0, 5)  0 = {(a, 0) / a  [0, 5); +}  M is only a 
subsemigroup of infinite order. 
 
 B = {(Z5  Z12) = {(a, b) / a  Z5, b  Z12, +}  M is only 
a subsemigroup of finite order. 
 
 We see C = {(Z5  {0}) = {(a, 0) / a  Z5, +}  M is only 
a subsemigroup of finite order. 
 
 In fact all the three subsemigroups are groups under +.  
Thus it is important to note that M is always a Smarandache 
semigroup under the operation +. 
 
 In fact M also has subsemigroups of finite order which 
are not groups. 
 
 Consider W = {( I

5Z   {0}) = {(a, 0) / a  I
5Z , +}  M is 

a MOD rectangular natural neutrosophic subsemigroup of finite 
order which is not a group. 
 
 Thus M has substructures which can be groups of finite or 
infinite order as well as subsemigroups which can be of finite or 
infinite order. 
 
 M also has idempotents with respect to +. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.3.  Let S = I[0, m)  I[0, n) = {(a, b) / a  I[0, m),  
b  I[0, n); +}; m  n, 2  m,  n < , +} be the MOD 
rectangular natural neutrosophic interval semigroup under +. 
 
i) S is an infinite commutative monoid with (0, 0) as the 

additive identity. 

ii) S has finite subsemigroups which are subgroups. 



Semigroups on MOD Rectangular Natural … 135 
 

 
 
 
 
 
 
 

iii) S has finite subsemigroups which are not subgroups. 

iv) S has infinite subsemigroups which are subgroups. 

v) S has infinite subsemigroups which are only 
`subsemigroups. 

vi) S is a Smarandache semigroup. 

 
 Proof is direct and hence left as an exercise to the reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic interval semigroup under 0 (or ) by some 
examples. 
 
Example 4.8. Let  B = {I[0, 6)  I[0, 42) = {(a, b) / a  I[0, 6), b 
 I[0, 42)}, 0} be the MOD rectangular natural neutrosophic 
interval semigroup under the usual zero dominated product. 
 
 B has MOD zero divisors, idempotents, subsemigroups of 
both finite and infinite order. 
 
 B is a S-semigroup if and only if Z6 and (or) Z42 is a  
S-semigroup under . 
 
Example 4.9.  Let P = {I[0, 17)  I[0, 53) = {(a, b) / a  [0, 17), 
b  [0, 53)}, 0} be the MOD rectangular natural neutrosophic 
interval semigroup under usual zero dominated product 0. 
 
 Let x = (8.5, 2) and y = (2, 26.5)  P, x 0 y = (0, 0).  
Thus P has zero divisors. 
 
 R = {(a, b) / a  Z17 and b  Z53}  P is only a 
subsemigroup of finite order which is not an ideal.   
 
 However P is a MOD rectangular natural neutrosophic 
interval Smarandache semigroup as G = {(a, b) / a  Z17 \ {0}, b 
 Z53 \ {0}}  P is a subgroup hence the claim. 
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 W = {(a, 0) / a  I[0, 17), 0}  P is a subsemigroup 
which is also an ideal of P. 
 
 Studying other properties of P happens to be a matter of 
routine so left as an exercise to the reader. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.4.  Let S = {I[0, m)  I[0, n) = {(a, b) / a  I[0, m), b  
 I[0, n)}, m  n, 2  m, n < , 0} be the MOD rectangular 
natural neutrosophic interval semigroup under usual zero 
dominant product. 
 
i) S is a MOD rectangular natural neutrosophic interval 

commutative monoid of infinite order. 

ii) S has subsemigroups of finite order as well as of infinite 
order which are not ideals. 

iii) S has all ideals to be of infinite order. 

iv) S is a S-semigroup if and only if (Zm, 0) and or {Zn,0)} 
are S-semigroups. 

v) S has zero divisors for all n. 

vi) S has nontrivial idempotents only if Zm and Zn has 
idempotents. 

vii) S has nontrivial nilpotents if and only if Zm and Zn have 
nilpotents. 

 
 Proof is direct and hence left as an exercise to the reader. 
 
 Next we proceed onto describe the MOD rectangular 
natural  neutrosophic interval semigroup under the product in 
which ( m n

t sI ,I ) are dominant. 
 That is 0  m m

0 0I I  and 0  n
sI  = n

sI . 
 
Example 4.10.  Let S = {I[0, 9)  I[0, 8) = {(a, b) / a  I[0, 9),  
b } be the MOD rectangular natural  neutrosophic 
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semigroup under the natural neutrosophic zero, ( [0,9)
0I , [0,8)

0I ) 
product.  S has subsemigroups of both finite and infinite order 
which are not ideals. 
 
 Of course P = {(a, b) / a  I[0, 9) and b = [0,8)

0I , }  S is 
the MOD rectangular natural neutrosophic interval subsemigroup 
which is also an ideal of S. 
 
 S has nilpotents and zero divisors. 
 
Example 4.11.  Let M = {I[0, 42)  I[0, 25) = {(a, b) / a  
I[0,42), b  I[0, 25)}, } be the MOD rectangular natural 
neutrosophic interval semigroup under . 
 
 This M has idempotents, nilpotents, zero divisors, 
subsemigroups of finite and infinite order and ideals which are 
only of infinite order. 
 
 Finding all these is considered as a matter of routine so 
left as an exercise to the reader. 
 
 In view of all these we prove the following theorem. 
 
Theorem 4.5.  Let S = {I[0, m)  I[0, n) = {(a, b) / a  I[0, m),  
b  I[0, n)}, m  n, 2  m, n < , } be the MOD rectangular 
natural neutrosophic interval semigroup. 
 

i) S is a commutative monoid of infinite order. 

ii) S has subsemigroups of both finite and infinite 
order which are not ideals. 

iii) All ideals of S are of infinite order. 

iv) S has MOD natural neutrosophic zero divisors 
as well as zero divisors. 

v) S has idempotents and nilpotents for 
appropriate m and n. 
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 The proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic matrix subsemigroups under + or 0 or  by 
examples. 
 
Example 4.12.  Let W = {(a1, a2, a3, a4) / ai  (I[0, 12)  I[0, 24)) 
= {(a, b) / a  I[0, 12), b  I[0, 24)}, 1  i  4, +} be the MOD 
rectangular natural neutrosophic interval matrix semigroup 
under +. 
 
 P1 = {(a1, 0, 0, 0) / a1 (I[0, 12)  I[0, 24)) = {(a, b) /  
a  I[0,12), b , 24)}, +} is a subsemigroup of infinite order. 
 
 P2 = {(a1, 0, 0, 0) / a1 {Z12  Z24 = (a, b) / a  Z12,  
b  Z24}, +} is a subsemigroup of finite order which is a group 
under +. 
 
 P3 = {(a1, 0, 0, 0) / a1 = (a, 0) where a1  I

12Z , 0  Z24, +} 
is also a subsemigroup of finite order.   
 
 P3 is only a subsemigroup and does not have a group 
structure for 12

6I + 12
6I  = 12

6I in I
12Z . 

 
 Thus we can also make a claim that W is a Smarandache 
semigroup. W has both finite order subsemigroups which are 
groups and finite order subsemigroups which are not groups. 
Likewise W has infinite order subsemigroups which are groups 
as well as infinite order subsemigroups which are not groups. 
 
 P1 is an infinite order subsemigroup which is not a group. 
 
 P4 = {(a1, 0, 0, 0) / a1 = (a, 0) where a  [0,12),+}  W is 
a subsemigroup of W which is also a group. 
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Example 4.13.  Let 

1

2

3

4

5

6

a
a
a

M {
a
a
a

 
 
 
 

  
 
 
 
  

 / ai  I[0,11)  I[0,43) = {(a, b) /  

 
a  

I[0, 11) and b  I[0, 43)}; 1  i  6, +} be the MOD 
rectangular interval natural neutrosophic column matrix 
semigroup under +.   
 
 All associated properties can be studied by any interested 
reader. 
 

Example 4.14.  Let B = {

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
  

 / ai I[0,48)   

 
I[0,105) = {(a, b) / a  I[0, 48).  B  [0, 105)}, 1  i  15, +} be 
the MOD rectangular interval natural neutrosophic matrix 
semigroup under +. 
 
  B has subsemigroups of both finite and infinite order and some 
of them are groups under +. 
 
 In view of all these we have the following result. 
 
Theorem 4.6: Let S = {collection of all t  s matrices with 
entries from I[0,m)  I[0, n) = {(a, b) / a  I[0, m), b  I[0, n)}, 
m  n, 2  m, n < , +} be the MOD rectangular interval natural 
neutrosophic matrix semigroup under +. 
 

i) S is a commutative monoid of infinite order. 
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ii) S has infinite order subsemigroups which are 
groups under +. 

iii) S has finite order subsemigroups which are 
groups under +. 

iv) S has finite order subsemigroups which are not 
groups. 

v) S has infinite subsemigroups which are not 
groups. 

vi) S is always a Smarandache semigroup 
immaterial of m and n. 

vii) S has several matrices which are idempotents 
under +. 

 
 Proof is direct and hence left as an exercise to the reader. 
 
 Now we proceed onto describe MOD rectangular interval 
natural neutrosophic semigroups under n by some examples it 
may be 0 dominated or natural neutrosophic zero dominated 
product. 
 

Example 4.15.  Let M = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  I[0, 4)  I[0, 10) = {(a, b) /  

 
a  I[0, 4) and b  I[0, 10)}, 1  i  5, } be the MOD 
rectangular interval natural neutrosophic matrix semigroup 
under n. 
 
 M has zero divisors, idempotents and subsemigroups of both 
finite and infinite order. 
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(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)

 
 
 
 
 
 
  

  M is the multiplicative identity, so M is a  

 
commutative monoid of infinite order. 
 
 M has ideals all of which are infinite order.  
 
 The reader is left with the task of working with them as it 
is a matter of routine. 
 
 

Example 4.16.  Let B = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

 where ai I[0, 7) 

 
 I[0, 23) = {(a, b) / a  I[0, 7), b  I[0, 23)}, 1  i  8, n} be 
the MOD rectangular interval natural neutrosophic matrix 
semigroup under the natural product n. 
 

(1,1) (1,1) (1,1) (1,1)
(1,1) (1,1) (1,1) (1,1)
 
 
 

 in B acts as the identity in B under  

 
n.  
B has zero divisors but finding nontrivial nilpotents or 
idempotents happens to be a challenging problem. 
 
 Finding substructures etc.; is considered as a matter of 
routine so left as an exercise to the reader. 
 

Example 4.17.  Let B = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

/ ai  I[0,20)  I[0,18) =  
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{(a, b) / a  I[0, 20), b  I[0,18)}, 1  i  9;  or (n)} be the 
MOD rectangular natural neutrosophic interval matrix semigroup 
under usual product (or the natural product  n). 
 
 {B, } is a MOD rectangular natural neutrosophic interval 
matrix monoid which is non commutative and is of infinite 
order. 
 
 

(1,1) (0,0) (0,0)
(0,0) (1,1) (0,0)
(0,0) (0,0) (1,1)

 
 
 
  

 acts as the identity element of B under 

  
the usual product .   
 
 However under the natural product n we see 
 

 
(1,1) (1,1) (1,1)
(1,1) (1,1) (1,1)
(1,1) (1,1) (1,1)

 
 
 
  

 B acts as the identity.  

 
Thus the very identity elements of (B, n) and (B, ) are 
distinct.   
 
 Further (B, n) is a commutative semigroup. The ideals of 
(B, n) are in general not ideals of (B,). 
 
 B has left zero divisors which are not right zero divisors. 
 
 B has left ideals which are not right ideals. 
 B has subsemigroups of both finite and infinite order. 
 
 B has also ideals, right ideals and left ideals all of them 
are only of infinite order. 
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Example 4.18.  Let M = {

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
 
 
 
 
  

/ ai  I[0, 16)  I[0, 23) = 

  
{(a, b) / a  I[0, 16), b  I[0, 23)},1  i  10, n} be the MOD 
rectangular natural neutrosophic interval matrix semigroup 
under n. 
 
 Clearly this has substructures and all related properties 
can be derived without any difficulty hence left as an exercise to 
the reader.   
 
 Thus we have the following result. 
 
Theorem 4.7. Let S = {collection of all t  s matrices with 
entries from I[0, m)  I[0, n) = {(a, b) /  a  I[0, m), b  I[0, n)} 
m  n; 2  m, n < ; n} be the MOD rectangular natural 
neutrosophic interval matrix semigroup under the natural 
product n. 
 

i) S is a commutative monoid of infinite order. 

ii) S has zero divisors whatever be m and n. 

iii) S has nontrivial nilpotents only for certain 
appropriate values of m and n. 

iv) S is a S-semigroup if and only if Zm or Zn is a S-
semigroup. 

v) S contains idempotents comprising of MOD 
natural neutrosophic elements. 

vi) S has subsemigroups of finite order as well as of 
infinite order which are not ideals of S. 

vii) S has ideals and all of them are only of infinite 
order. 

 Proof is direct and hence left as an exercise to the reader. 
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 We now give examples of MOD natural neutrosophic 
rectangular interval polynomial semigroups under +. 
 

Example 4.19. Let P[x] = {
i

i
0

ia x



 / ai  I[0, 20)  I[0, 14) = 

{(a, b) / a  I[0, 20), b I[0, 14)}, +} be the MOD rectangular 
natural neutrosophic interval polynomial under +. 
 
 P[x] has subsemigroups of both finite and infinite order 
P[x] has polynomials which are idempotents. 
 

Example 4.20. Let M[x] = {
i

i
0

ia x



  / ai  I[0, 43)  I[0, 7) = 

{(a, b) / a  I[0, 43), b  I[0, 7)}, +} be the MOD rectangular 
natural neutrosophic interval polynomial semigroup under +. 
 
 p(x) = (3.7, 0.5)x7 + (0.3, 4)x2 + (6.3, 2.01) and  
 
 q(x) = (25.3, 4.6)x2 + (2.3, 1.02)x + (10.6, 5.09)  M[x]. 
 
p(x) + q(x) = (3.7, 0.5)x7 + (25.6, 1.6)x2 + (2.3,1.02)x + (16.9, 
0.1)  M[x]. 
 
This is the way ‘+’ operation is performed on M[x]. 
 
 (0, 0) = (0, 0)  + (0, 0)x + … + (0, 0)xn is the additive 
identity. 
 
 For p(x) + (0, 0) =  p(x) for all p(x)  M[x]. 
 

 N[x] = {
0

i

1
i

i 0
a x


  / ai  {0}  Z7 = {(0, a) / a  Z7}, +}  

M[x] is a subsemigroup of M[x] which is of finite order. 
 
 In fact N[x] is a group under + so M[x] is a Smarandache 
semigroup. 
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 B[x] = {
i

i
0

ia x



  / ai  Z43  {0} = {(a, 0) / a  Z43}, +} 

be the subsemigroup.  Clearly B[x] is a group of infinite order 

p[x] = {
5

i 0

i
ia x


  / ai  {0}  I

7Z  = {(0, b) / b  I
7Z }, +}  M[x] 

is a subsemigroup of finite order but is not a group. 
 

 Let W[x] = {
i

i
0

ia x



 / ai  {0}  I

7Z  = {(0, b) / b  I
7Z }, 

+}  M[x] is a subsemigroup of infinite order which is not a 
group. 
 
 Study in this direction is a matter of routine so left as an 
exercise to the reader.   
 
 We have the following result. 
 

Theorem 4.8.  Let  B[x] = {
0i




 aixi / ai  I[0, m)  I[0, n) = 

{(a, b) a  I[0, m), b  I[0, n)}, +} be the MOD rectangular 
natural neutrosophic interval polynomial semigroup under +. 
 

i) S is a commutative monoid of infinite order. 

ii) S has subsemigroups of finite order which are 
groups. 

iii) S has subsemigroups of infinite order which are 
groups. 

iv) S has subsemigroups of finite order which are 
not groups. 

v) S has subsemigroups of infinite order which are 
not groups. 

vi) S is always a Smarandache semigroup. 
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vii) S has always idempotents which are infinite in 
number. 

 
 The proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic interval polynomial semigroups under product 0 
(or ) by some examples. 
 

Example 4.21.  Let B[x] = {
i

i
0

ia x



  / ai  I[0, 42)  I[0, 16) = 

{(a, b) / a  I[0, 42), b  0} be the MOD rectangular 
natural neutrosophic interval polynomial semigroup under 0. 
 
 Clearly B[x] has zero divisors and idempotents has no 
nontrivial idempotent polynomials. 
 
 Of course finding nilpotent polynomials is dependent on 
the s and t of I[0, t)  I[0, s). 
 

Example 4.22.  Let M[x] = {
i

i
0

ia x



 / ai  I[0, 16)  I[0, 81) = 

{(a, b) / a  I[0, 16), b  I[0, 81)}; 0 (or )} be the MOD 
rectangular natural neutrosophic interval polynomial semigroup 
under 0 (or ). 
 
 M[x] has polynomials p(x) such that (p(x))t =  (0, 0) for 
t  2. 
 
 M[x] has no nontrivial idempotent polynomials.   
 
 All subsemigroups are of infinite order.  Similarly all 
ideals are of infinite order. 
 
 M[x] has infinite number of zero divisors. 
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 B[x]  = {
i

i
0

ia x



 / ai  {0}  I[0, 81) = {(0, a) / a  I[0, 

81)}, 0 (or )}  M[x] is an ideal of M[x]. 
 

 D[x] = {
i

i
0

ia x



 / ai  I[0, 16)  {0} = {(a, 0) / a  I[0, 

16)}, 0 (or )}   M[x] is an ideal of M[x]. 
 
 We see if p(x)  B[x] and q(x)  D[x] then p(x) 0 q(x) 
= (0, 0).   Further B[x]  D[x] = {(0, 0)}. 
 
 Hence the claim, M[x] has infinite number of zero 
divisor polynomials. 
 
 In view of all these we have the following result. 
 

Theorem 4.9. Let B[x] = {
0i

i
ia x




  / ai  I[0, s)  I[0, t) = {(a, 

b) / a  I[0, s), b  I[0, t)}; 0 (or )} be the MOD rectangular 
natural neutrosophic interval coefficient polynomial semigroup 
under 0 (or ). 
 

i) B[x] is a commutative monoid of infinite order. 

ii) B[x] has infinite number of zero divisors. 

iii) B[x] has no nontrivial idempotents for any s, t; 
2  s, t < . 

iv) B[x] has nilpotents only for special values of s 
and t. 

v) All subsemigroups of B[x] are of infinite order 
which are not ideals. 

vi) B[x] has ideals all of which are of infinite 
order. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
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 Next we proceed onto develop the notion of MOD 
rectangular natural neutrosophic interval finite degree 
polynomial semigroup under + by some examples. 
 

Example 4.23. Let M[x]9 = {
9

i 0

i
ia x


  / ai  I[0, 8)  I[0, 18) = 

{(a, b) / a  I[0, 8), and b  I[0, 18); x
 = 1, +} be the MOD 

rectangular natural neutrosophic interval finite degree 
polynomial semigroup under +. 
 
 Clearly o(M[x]9) =  but M[x]9 has both finite order 
subsemigroups as well as infinite order subsemigroups. 
 
 M[x]9 has several idempotents.  
 
 Finding special features associated with M[x]9 is 
considered as a matter of routine and is left as an exercise to the 
reader. 
 

Example 4.24.  Let M[x]20 = {
0

i

2
i

i 0
a x


 / ai  I[0, 20)  I[0, 43) = 

{(a, b) / a  I[0, 20), and b  I[0, 43)}, x21 = 1} be the MOD 
rectangular natural neutrosophic interval finite degree 
polynomial semigroup under +. 
 
 M[x]20 has subsemigroups of both finite and infinite 
order. M[x]20 has idempotents. 
 
 In view of all these we have the following theorem. 
 

Theorem 4.10: Let S[x]m = {
0

m

i

i
ia x


  / ai  I[0, n)  I[0 ,s) = 

{(a, b) / a  I[0, n), b  I[0, s)}, xm+1 = 1; 1  m, n, s < , } be 
the MOD rectangular natural neutrosophic interval finite degree 
polynomial semigroup under +. 
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i) S[x]m is an infinite commutative monoid. 

ii) S[x]m has subsemigroups of both finite and 
infinite order. 

iii) S[x]m has nontrivial idempotents with respect to 
+. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic interval finite degree polynomial semigroup under 
0 (or ) by some examples. 
 

Example 4.25. Let P[x]6 = {
6

i 0

i
ia x


 / ai  I[0, 12)  I[0, 20) = 

{(a, b) / a  I[0, 12), b  I[0, 20)}, x7 = 1, 0 (or )} be the MOD 
rectangular natural neutrosophic interval finite degree 
polynomial semigroup under 0 (or ). 
 
 P[x]6 is of  infinite order. P[x]6 has no nontrivial 
idempotents but has infinite number of zero divisors and 
nilpotents. P[x]6 has subsemigroups of both infinite and finite 
order. 
 
 All these are considered as a matter of routine so left as 
an exercise to the reader. 
 

Example 4.26.  Let M[x]12 = {
2

i

1
i

i 0
a x


 / ai  I[0, 7)  I[0, 13) = 

{(a, b) / a  I[0, 7), b  I[0, 13)}; x = 1, 0 (or )} be the MOD 
rectangular natural neutrosophic interval finite degree 
polynomial semigroup under (0) or .  
 
 We see under both operation 0 (or ); M[x]12 has no 
nontrivial idempotents or nilpotents but has infinite number of 
zero divisors. 
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 Study of substructures is considered as a matter of 
routine and so left as an exercise to the reader. 
 
 In view of all these we have the following result. 
 

Theorem 4.11:  Let B[x]m = {
0

m

i

i
ia x


 aixi / ai  I[0, s)  I[0, t) = 

{(a, b) / a  I[0, s), b  I[0, t)}; xm = 1, 2  s, t < , 0 (or )} 
be the MOD rectangular natural neutrosophic finite degree 
polynomial semigroup under 0 (or). 
 

i) B[x]m is a commutative monoid of infinite 
order. 

ii) B[x]m has infinite number of zero divisors. 

iii) B[x]m has subsemigroups of finite order. 

iv) B[x]m has subsemigroups of infinite order 
which are not ideals. 

v) All ideals of B[x]m are of infinite order. 

vi) B[x]m has no nontrivial idempotents. 

vii) B[x]m has nontrivial nilpotents only if Zs and Zt 
has nontrivial nilpotents. 

viii) B[x]m is a Smarandache semigroup if and only 
if Zs or Zt or both are S-semigroups. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Now we proceed onto describe and develop algebraic 
structures using subsets of I

nZ and I[0, n) by examples. 
 
Example 4.27. S( I I

3 24Z Z ) = {collection of all subsets from 
I
3Z   I

24Z = {(a, b) / a  I
3Z , b  I

24Z }} is the MOD rectangular 
natural neutrosophic subsets of Cartesian product of modulo 
integers I

3Z   I
24Z .  
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 P = {(0.5, 8 + 24

0I ), (2.06, 24
0I  + 24

8I  + 3.2), ( 3
0I  + 2.001, 

1), (1.02 + 3
0I , 24

0I  + 24
3I  + 4.003)}.  

 
 Q = {(0.21 + 3

0I , 2.03), (0, 1.345 + 24
0I ), (1, 2 + 24

8I )} be 
MOD rectangular subsets of I

3Z  I
24Z . 

 
 T = {(0, 24

0I +3.889), (0, 24
6I  + 2), (0, 24

0I + 24
3I  +6.02)} 

and S = {( 3
0I  + 0.2, 0), ( 3

0I  +2.1, 0), ( 3
0I +1, 0), ( 3

0I  +1.226, 0)} 
are also MOD rectangular subsets of I

3Z  I
24Z . 

 
 We can perform either + operation or 0 or  on S( I

3Z  
I
24Z ).    

 
 It is important to keep on record that S( I

3Z  I
24Z ) is 

only a semigroup under any of these operations. 
 
Definition 4.3. Let S( I

mZ  I
nZ ) = {collection of all subsets from 

I
mZ   I

nZ  = {(a, b) / a  I
mZ , b  I

nZ }, +} be the MOD 
rectangular natural neutrosophic modulo integer subset of pairs 
of semigroup under +. 
 
 Clearly (S( I

mZ   I
nZ )) is a finite monoid under +.  

 
  We will first describe this situation by some examples. 
 
Example 4.28.  Let S( I

10Z  I
16Z ) = {collection of all subsets 

from I
10Z  I

16Z  = {(a, b) / a  I
10Z , b  I

16Z }, +} be the MOD 
rectangular natural neutrosophic subsets of modulo integer pairs 
semigroup under +. 
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 Let A = {( 10
5I + 3, 0), (0, 4 + 16

0I ), ( 10
0I +2.05, 16

2I + 16
4I  

+0.5), (1, 2.32)} and B = {( 10
2I , 16

4I + 0.7), ( 10
0I + 10

5I + 10
4I +2, 4)} 

 S ( I
10Z   I

16Z ). 
 
  A + B = {( 10

5I + 10
2I + 3, 16

4I + 0.7), ( 10
2I , 4.7 + 16

0I + 16
4I ), ( 10

2I +
10
0I +2.05, 16

2I + 16
4I  +1.2), ( 10

2I +1,  16
4I +3.02),  

( 10
0I + 10

5I  + 10
4I +5, 4), ( 10

0I + 10
5I + 16

4I + 2, 8 + 16
0I ), ( 10

0I + 10
5I + 10

4I  
+ 4.05, 16

2I + 16
4I + 4.05), (3 + 10

5I + 10
4I + 10

0I , 6.32)} S ( I
10Z  

I
16Z ). 

 
 This has subset subsemigroups of both finite order and 
some of them are infinite order.   
 
Clearly S( I

10Z  I
16Z ) has subsets which are idempotents under 

+. 
 
Example 4.29.  Let {S( I

13Z  I
48Z ), +} = {Collection of all 

subsets from I
13Z  I

48Z , +}, the MOD rectangular natural 
neutrosophic subsets of modulo finite integers under + be the 
semigroup.  S( I

13Z  I
48Z ) has subsemigroups of finite order as 

well as of infinite order. 
 
 S( I

13Z  I
48Z ) has subsets which are idempotents. 

 
 In view of all these we have the following result. 
 
Theorem 4.12.  Let B = {S( I

nZ   I
mZ ), +} = {collection of all 

subsets from I
nZ  I

mZ , +} be the MOD rectangular subset 
natural neutrosophic semigroup under +. 
 

i) B is a finite commutative monoid. 

ii) B has subset subsemigroups of finite order. 

iii) B has subsets which are idempotents. 
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 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto discuss MOD rectangular subset 
natural neutrosophic finite modulo integer semigroup under 0 
(or ) by some examples. 
 
Example 4.30. Let W = {S( I

12Z  I
36Z ), 0 (or )} = {collection 

of all subsets from I
12Z  I

36Z = {(a, b) / a  I
12Z ,  b  I

36Z },0 
(or )} be the MOD rectangular subset natural neutrosophic 
finite modulo integer semigroup under 0 (or ). 
 
P = {( 12

4I  + 12
0I  + 0.5, 0.2 + 36

2I ), (10 + 12
6I , 0.8 + 36

0I ), ( 12
0I , 3)} 

and Q = {( 12
3I + 1.2, 0.6 + 36

0I ), ( 12
6I + 5, 6)}  W. 

 
 P  Q = {( 12

4I + 12
0I  + 12

3I  + 0.6, 0.12 + 36
2I  + 36

0I ), ( 12
3I  + 

12
6I , 36

0I  + 0.48), ( 12
0I ,1.8 + 36

0I ), ( 12
0I + 12

4I + 12
6I +2.5,1.2 + 36

2I ),  
( 12

0I  + 12
0I , 18), ( 12

6I  + 12
0I  + 2, 4.8 + 36

0I )}  W.  This is the way 
product operation is performed on W. 
   
 W has finite number of zero divisors. W is of finite 
order in fact W is a finite commutative monoid.   
 
 W has subsets which are such that A  A = A that is W 
has idempotent subsets.   
 
Similarly W has subsets which are nilpotents W has 
subsemigroups. 
 
Example 4.31.  Let B = {S( I

17Z   I
43Z ) = {Collection of all 

subsets from I
17Z   I

43Z  = {(a, b) / a  I
17Z , b   I

43Z }, 0 (or 
)} be the MOD rectangular subset natural neutrosophic finite 
modulo integer semigroup. 
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 B has no nilpotents or idempotents B has 
subsemigroups.  In fact B is a Smarandache semigroup. 
 
 B has  zero divisors. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.13. Let B = {S( I

nZ  I
mZ ) = {Collection of all 

subsets from I
nZ   I

mZ  = {(a, b) / a  I
nZ , b  I

mZ , m   n, 2  
m, n < }, 0 (or )} be the MOD rectangular subset natural 
neutrosophic finite modulo integer semigroup under 0 (or ). 
 

i) B is a finite commutative monoid. 

ii) B has subset zero divisors. 

iii) B has subsemigroups which are not ideals. 

iv) B is a Smarandache semigroup only if Zn or Zm 
is a Smarandache semigroup. 

v) B has ideals. 

vi) B has idempotents and nilpotents only for some 
appropriate values of m and n. 

 
 The reader is left with the task of proving the above 
theorem. 
 
 Next we proceed onto describe MOD rectangular subset 
natural neutrosophic finite modulo integer matrix semigroups 
under + by the following examples. 
 
 
 

Example 4.32.  Let P = {

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

 /  aiS( I
12Z  I

44Z ) =  
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{Collection of all subsets from I
12Z   I

44Z = {(a, b) / a  I
12Z , b 

 I
44Z }; 1  i  8, +} be the MOD rectangular natural 

neutrosophic subset matrix (with subsets from I
12Z   I

44Z ) 
semigroup under +. 
 
 We just show how the operation + is performed on P. 
 

 Clearly ({(0, 0)}) = 

{(0,0)} {(0,0)}
{(0,0)} {(0,0)}
{(0,0)} {(0,0)}
{(0,0)} {(0,0)}

  
  
         

  acts the  

 
additive identity o(P) < ,  P is in fact a commutative monoid. 
 

 Let A = 

44 44
0 11

12 12
6 0

12 44
0 11

12 44
6 4

{(0, I ),(1,2) {(0, I ), (1,0.3)
(I ,0.5)} (0.32 I ,1)}

{(0,0),(1,0.5) {(I ,0),(0, I )
{(1,2)} {(0.5,0.77)}

{(1,2),(I 4,0)} {(0, I 3),(1,0.3)}

 
  
 
 
 
   

  

 
 

and  B = 

12 44
0 8

44 12
0 2

12 44
0 2

44
3

{(I ,1.2)} {(0, I 3)}
{(1,0.3), (4,I )} {(0,0), (I ,0.2)}
{(4 I ,1 I )} {(1,4.5)}

{(3,4 I )} {(1,3.2)}

 
 
 
  
 

  

, be elements of 

P. 
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 A + B = 

12 44 44 44
0 0 8 11

12 44 12
0 8 0

12 12 44
0 6 8

44 12 44 12 12
0 0 11 2 0

44 12 44
0 2 11

12
0 2

{(I ,1.2 I ), {(0,I I 3),

(1 I ,3.2) (1,3.3 I ),(0.32 I ,

(I I ,1.7)} 4 I )}

{(1,0.3),(4,I ), {(I ,0),(0,I ),(I I ,

(2,0.8),(5,I 0.5)} 0.2),(I ,I 0.2)}
{(5 I ,3 I

  

  

 



 
  44

44 44
3 4

12 44
6 3

)} {(1.5,5.27)}
{(4,6 I ), {(1,6.2 I ,

(2,3.5)}(7 I ,4 I )}

 
 
 
 
 
 
 
 
 
 
   
   

  P.   

 
 This  is the way the operation + is performed on P.   
 
 The task of finding subsemigroups and idempotents is 
left as an exercise to the reader. 
 

Example 4.33. Let S = {
1

2

3

a
a
a

 
 
 
  

/ ai  S( I
5Z  I

8Z ) = {Collection of  

 
all subsets from I

5Z   I
8Z  = {(a, b) / a  I

5Z , b  I
8Z }, 1  i  3, 

+} be the MOD rectangular natural neutrosophic subset matrix 
modulo integer semigroup under +. 
 
Clearly o(S) <  and S is a commutative monoid under +. 
 

({(0, 0)}) = 
{(0,0)}
{(0,0)}
{(0,0)}

 
 
 
  

  S is such that A + ({(0, 0)}) = A for all  

 
A  S.  
 
 We now show how + operation is performed on S. 
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 Let A = 

5 8 8
0 2 6

8
0

8 8 8
4 2 0

5 8
0 0

{(I 3.2,I I 0.3),
(0,6.2),(2.1,I 0.5)}

{0,0.6 I ), (2.5, I I )}
{(4.2 I , 2),(3,I 2)}

   
  
  
 

   

  

 

and  B = 

5 8
0 0

5 8 8
0 6 0

5 8 8
0 6 4

{(3.2 I ,2 I ),(4,2.5)}
{(I 2, I I ),(1,0)}

{(0,0), (I , I I )}

  
   
  

 S. 

 
 

A + B = 

5 8 8 8 5 8
0 0 2 6 0 0

5 8 5 8 8
0 0 0 2 6

8
0

5 8 8 8 5
0 0 6 4 0

8 8 8 8
0 6 2 4

8 8
2 0

5 8
0 0

{(1.4 I ,2.3 I I I ),(3.2 I ,0.2 I ),
(0.3 I , I 2.5), (2.2 I ,2.8 I I ),

(4,0.5), (1.1,3 I )}

{(I 2,0.6 I I I ), (4.5 I ,

I I I ),(1,0.6 I ),
(3.5, I I )}

{(4.2 I ,2), (3, I 2)

     

    



    

  



  5
0

8 8 5 8 8 8
6 4 0 0 6 4

,(I 4.2,

2 I I ),(3 I , I I I 2)}

 
 
 
 
 
 
 
 
 
 
  
      
 
  

.   

 
 This is the way + operation is performed on S. 
 
 Finding subsemigroups is considered as a matter of 
routine so left as exercise to the reader. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.14.   Let M = {collection of all t  s, (2  t, s < ) 
matrices with entries from S( I

mZ  I
nZ ) = {collection of all 

subsets from I
nZ  I

mZ  = {(a, b) / a  I
mZ , b  I

nZ }, m   n,  
2  m, n < }, +} be the MOD rectangular subset natural 
neutrosophic finite modulo integer matrix semigroup under +. 
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i) o(M)<  and M is a commutative monoid. 

ii) M has idempotents with respect to +. 

iii) M is always a Smarandache semigroup. 

iv) M has subsemigroups which are subgroups as 
well as subsemigroups which are not 
subgroups. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic subset matrix semigroup under n natural product 
or usual product  for square matrices by examples. 
 
 

Example 4.34.  Let S = { 1 2 3

4 5 6

a a a
a a a
 
 
 

 where ai  S ( I
12Z  I

8Z )  

 
= {collection of all subsets from I

12Z  I
8Z  = {(a, b) / a  I

12Z , b 
 I

8Z },1  i  6, n} be the MOD rectangular natural 
neutrosophic subset matrix semigroup under the natural product 
n. 
 

Clearly 
{(1,1)} {(1,1)} {(1,1)}
{(1,1)} {(1,1)} {(1,1)}
 
 
 

 S acts as the identity with  

 
 

respect to n. 
  
 

({(0,0)}) 
{(0,0)} {(0,0)} {(0,0)}
{(0,0)} {(0,0)} {(0,0)}
 
 
 

  S is such that  

 
A  ({(0,0)}) = ({(0,0)}) for  all A  S. 
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Let  A = 
12 12 8
0 6 4

8 12 8 12
2 0 6 8

{(I 1,0),(1,5)} {(I ,I )} {(2,3)}
{(1,5 I ),(I ,1)} {(3,I )} {(I ,1)}
 
  

  

 

 B =  
12 8 12
0 4 4

8 8 12
6 2 0

{(3,4)} {(I ,1),(3, I )} {(I 4,0)}
{(5, I )} {(2, I ),(1 I ,2)} {(0,4)}
 
  

 S. 

 
 
A n B =  
 

12 12 8 12 8 12
0 0 4 6 4 4

8 8 12 8 8 12 8
6 2 0 0 4 0 6

{(3 I ,0),(3,2)} {(I , I ),(I , I )} {(8 I ,0)}
{(5,I I ),(I , I )} {(6,I ),(3 I ,I )} {(0,4)}
  
   

  S. 

 
This is the way n is performed on S.  S has matrix zero 
divisors, matrix nilpotents and matrix idempotents. 
 
 However the task of finding ideals and subsemigroups 
is left as an exercise to the reader. 
 
 

Example 4.35. Let M = {

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

 / ai S ( I
20Z  I

15Z ) = {(a, b)  

 
/ a  I

20Z , b  I
15Z },1  i  8, n} be the MOD rectangular 

natural neutrosophic subset matrix semigroup.  
 
 Find all substructures and special elements associated 
with M. 
 

Example 4.36. Let M = { 1 2

3 4

a a
a a
 
 
   

/ ai  S( I
12Z  I

45Z ) =  
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{collection of all subsets from I
12Z   I

45Z  = {(a, b) / a  I
12Z , b 

 I
45Z }, 1  i  4  (or n)} be the MOD rectangular natural 

neutrosophic subset matrix semigroup under . 
 
 Clearly M is a non-commutative semigroup under . 
 
 We will show how  is defined.  
 
 The usual product ‘’ is applicable only when the 
matrix under consideration is only a square matrix and here it is 
0  t

sI  = t
sI . 

 
 

Let A = 

12 45
6 0 45

1045
5

12 45 45
0 3 0

{(I 3, I ),
{(3,4 I )}

(4,3) (0,I )}
{(I 4,I )} {(4,I 3),(0.5,0.1)}

 
 

 
     

 

and  B = 

45 45 12
3 0 0

12
4

{(0, I 4)} {(2, I ), (I 3,6)}
{(1 I ,0),(1,5),

{(0,0)}
(0.2,0.3)}

  
 

 
  

.  

 
 
 We now find A  B. 
 
A  B =  
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12 45 45 12 45 12 12
6 0 3 6 0 6 0

45 45 12 45 45 12 45
15 5 4 0 0 0 0

45 45 12 45
10 0 0 5

12 45 45 12 45
0 9 3 4 0

{(I , I ),(0,12 I ), {(6 I ,I ), (I I
(0,I I )} {(3 I ,0), 6, I ), (8,I ),(I ,18),(0, I ),

(3, 20 I ), (0.6,1.2 I )} (I , I )} {(0,0)}
{(I ,I I ), (4 I ,I ),
(4,15

   

  

  

  12 45
0 0

45 45 12 45
0 0 0 3
45 45
0 0
45
0

{(I 8, I ),
I ),(0.8,0.9 I ), (I , I )}

(4,15 I ),(0.5,0.5),(0.8, {(0, I )
(0,0)}0.9 I ),(0.1,0.03)}

 
 
 
 
 
 
 
  
 

   
  

. 

 
 
The formal form of A  B is obtained after +. 
 
 It is left for the reader to verify that in general A  B  
B  A.   
 
 Further A n B  A  B as both the products behave in a 
very different way. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.15. Let S = {Collection of all s  t matrices with 
entries from S( I

mZ   I
nZ ) = {Collection of all subsets from I

mZ  
I
nZ  = {(a, b) / a   I

mZ , b  
I
nZ , m  n, 2  m, n < }, n} be 

the MOD rectangular natural neutrosophic subset matrix 
semigroup under n. 
 

i) o(S) <  and is a commutative monoid. 

ii) S has zero divisors. 

iii) S has nontrivial idempotents and nilpotents 
only for special values of m and n. 

iv) S has subsemigroups which are not ideals. 

v) S has ideals. 
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 The proof is left as an exercise to the reader. 
 
 Next we introduce the new notion of MOD rectangular 
natural neutrosophic matrix subset semigroups under + by some 
examples. 
 
Example 4.37. Let S(M) = {Collection of all subsets from  
   

M = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 / ai  I
10Z   I

16Z  = {(a, b) / a  I
10Z , b  I

16Z , 1  i  

 
  4, +}, +} be the MOD rectangular natural neutrosophic matrix 
subset semigroup under +. 
 
 

Let A = {
10
5

16
8

(0,0.3)
(I ,1)

(0.5,0.8 I )
(1,5)

 
 
 
 
 
 

 
16
2

16
0

10 16
2 2

(1,0.5)
(1,I )

(0.3,I )
(I ,I )

 
 
 
 
 
 

 

(0,0)
(1,1)

(2,0.3)
(0.5,0.3)

 
 
 
 
 
 

} and  

 

B = { 

16
0

10 16
5 8

1610
80

(0,0.3)(1,I )
(I , I )(0,1)

(0,2)(1,0)
(1, I )(I ,0)

   
   
   
   
   
    

}  M. 

  

A + B = {

16
0
10
5

16
8

10
0

(1, I 0.3)
(I ,2)

(1.5,0.8 I )
(1 I ,5)

 
 
 
 
 

  

, 
10 16
5 8

16
8

16
8

(0,0.6)
(I ,1 I )

(0.5,2.8 I )
(2,5 I )

 
  
 
  

, 

16
0

16
2

16
0

10 10 16
0 2 2

(2,0.5 I )
(1,1 I )
(1.3,I )

(I I , I )

 
  
 
 

  
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10 16 16
5 8 2

16
0

16 16 16
2 2 8

(1,0.8)
(1 I ,I I )

(0.3,2 I )
(I 1,I I )

 
   
 
   

, 

16
0

16
0

(1,I )
(1,2)

(3,0.3)
(0.5 I ,0.3)

 
 
 
 
 

  

, 
10 16
5 8

16
8

(0,0.3)
(1 I ,1 I )

(2,2.3)
(1.5,0.3 I )

 
   
 
  

} M. 

 
 This is the way + operation is performed on M.  M is a 
commutative monoid of finite order. 
 
 In fact M is a Smarandache semigroup. 
 
 M has several subsemigroup some of which are group. 
 
Example 4.38.  Let S(W) = {(collection of all matrix subsets  
 

from W = { 1 2 3

4 5 6

a a a
a a a
 
 
 

 / ai  I
40Z  I

12Z = {(a, b) / a  I
40Z , b 

 
  I

12Z , 1  i  6, +}, +} be the MOD rectangular natural 
neutrosophic matrix subset semigroup under +.  
 

{
(0,0) (0,0) (0,0)
(0,0) (0,0) (0,0)
 
 
 

} = {(0, 0)} in S(W) is such that 

  
A + {(0, 0)} = A for all A  S(W). 
 

We see if A = {
12 40
8 8

12 12
6 6

(0,I 1) (I 5,0.3) (0,2)
(1,I 3) (0,5,0.8) (1.32, I )
  
 

 
,   

 
12 40 40
6 5 10

12 40 40
3 8 0

(1,1) (3,2) (0.4 I , I I 1)
(0,3) (0,0) (1 I ,5 I I )
   
 

   
} and  

 

B = {
40 12
5 0

12 12
6 0

(1,2.5) (I 3, I ) (5,7)
(0,1) (5,I I ) (1,3)

 
 

 
}  S(W). 
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A + B = {
12 40 40 12
8 8 5 0

12 12 12 12
6 6 0 6

(1,3.5 I ) (8 I I ,0.3 I ) (5,9)
(1,4 I ) (5.5, 0.8 I I ) (2.32,3 I )

    
 

    
, 

 
40 12 12 40 40
5 0 6 5 10
12 12 12 40 40
6 0 3 8 0

(2,3.5) (6 I ,2 I ) (5.4 I ,8 I I )
(0,4) (5, I I ) (2 I ,8 I I )

     
 

    
  S(W).   

 
 This is the way ‘+’ operation is performed on S(W). 
 
 The reader is expected to find substructures of S(W). 
 
 In view of all these we have the following theorem. 
 
Theorem 4.16.  Let S(B) = {collection of matrix subsets from B 
= {collection of all s  t matrices with entries from I

mZ  I
nZ  = 

{(a, b) / a  [0, m) and b  [0, n), +, 2  s, t < , m  n; 2  m, 
n < }, +} be the MOD rectangular natural neutrosophic matrix 
subset semigroup under +. 
 

i) S(B) is a finite commutative monoid. 

ii) S(B) has idempotents. 

iii) S(B) has subsemigroups which are groups. 

iv) S(B) has subsemigroups which are not groups. 

v) S(B) is a Smarandache semigroup. 
 

 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic matrix subset semigroup under n (or ) by some 
examples. 
 
Example 4.39. Let S(M) = {Collection of all matrix subsets  
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from M = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 / ai I
10Z  I

6Z  = {(a, b) / a  I
10Z , b  I

6Z , 1  

 
 i  4, n}, n} be the MOD rectangular natural neutrosophic 
matrix subset semigroup under the natural product n. 
 

 Clearly {

(1,1)
(1,1)
(1,1)
(1,1)

 
 
 
 
 
 

} = {((1, 1))} in S(M) acts as the 

 
 multiplicative identity so for all A  S(M).  A  {[(1,1)]} = A. 
 

Let P = {

10
2
6
3
6 6
2 0

(I ,5)
(0, I 2)
(2, I I )

(0,1)

 
  
 
 
  

, 10 6
5 0

(1,1)
(2,2)

(I , I )
(0,1)

 
 
 
 
 
 

 

6
0

10
0

(1,I )
(0,0)
(1,1)

(I ,0)

 
 
 
 
 
  

}  

 

and  Q = {

10 6
2 2

10 6
5 4

(3 I ,4 I )
(0,1)

(4 I ,0.3 I )
(1,0)

  
 
 
  
 
  

, 6
2

10
2

(1,0.2)
(3,0.5)
(0.6,I )

(I 0.2,1)

 
 
 
 
 

 

}  S(M).  

 

P n Q = {

10 10 6
2 4 2

6
3

10 6 6 6
5 2 0 8

(I I ,2 I )
(0,I 2)

(8 I ,I I I )
(0,0)

  
  
   
 
  

, 

10 6
2 2

10 6
5 0

(3 I ,4 I )
(0,2)

(I , I )
(0,0)

  
 
 
 
 
  

,  
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10 6
2 0

10 6
5 4

10
0

(3 I , I )
(0,0)

(4 I ,0.3 I )
(I ,0)

 
 
 
  
 
  

, 

10
2

6
3

6 6
4 0

10
2

(I ,1)
(0,1 I

(1.2, I I )
(I ,1)

 
  
 
 
  

 10 6
5 0
10
2

(1,0.2)
(6,1)

(I , I )
(I ,1)

 
 
 
 
 
 

, 

6
0

6
2

10
0

(1, I )
(0,0)

(0.6, I )
(I ,0)

 
 
 
 
 
  

}   

 
S(M). 
 
 This is the way product operation is performed on 
S(M).  Further S(M) has zero divisor matrix subsets. 
 
S(M) also has idempotent matrix subsets.   
 
 However in this case finding  nontrivial nilpotent matrix 
subsets happens to be a very difficult problem. 
 
 The task of finding subsemigroups and ideals is left as 
an exercise to the reader. 
 
Example 4.40.  Let S(B) = {Collection of all matrix subsets  
 

from B = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

/ ai I
15Z  I

24Z = {(a, b) / a  I
15Z , 

 
 b  I

24Z = {(a, b) / a  I
15Z  I

24Z = {(a, b) / a  I
15Z , b  I

24Z , 
1  i  8}, n} be the MOD rectangular natural neutrosophic 
matrix subset semigroup under the natural product n. 
 
 Clearly o(S(B) <  and S(B) has matrix subset zero 
divisors and matrix subset idempotents. 
 
 The task of finding substructures like ideals and 
subsemigroups is left as an exercise to the reader. 
 
Example 4.41. Let S(V) = {Collection of matrix subsets from  
 



Semigroups on MOD Rectangular Natural … 167 
 

 
 
 
 
 
 
 

V= {
1 2 3

4 5

6

a a a
(0,0) a a
(0,0) (0,0) a

 
 
 
 
 

 / ai  I
4Z   I

7Z = {(a, b) / a  I
4Z ,  

 
b  I

7Z , 1  i  6, }, } be the MOD rectangular natural 
neutrosophic matrix subset semigroup under the usual product 
of .    
 
 Clearly S(V) is a non-commutative monoid of finite 
order. 
 
 The reader is left with the task of finding right zero 
divisors which are not left zero divisors and vice versa.  
 
 Further the reader is expected to find right ideal which 
are not left ideals and vice versa. 
 
 Will S(V) be a Smarandache semigroup? 
 
 In view of all these we have the following theorem. 
 
Theorem 4.17.  Let S(M) = {Collection of all matrix subsets 
from M = {Collection of all s  t matrices (2  s, t < ) with 
entries from I

nZ   I
mZ = {(a, b) / a  I

nZ  and b  I
mZ ; m  n, 2 

 m, n < }; n (or )}, n (or } be the MOD rectangular 
natural neutrosophic matrix subset semigroup under n (or ) 
(the usual product,  is defined only if t = s). 
 

i) o(S(M)) <  and is a commutative monoid. 

ii) S(M) has subset zero divisors for all m, n,  
2  m, n < . 

iii) S(M) has nontrivial nilpotents and idempotents 
only for appropriate m and n. 

iv) S(M) has subsemigroups which are not ideals. 

v) S(M) has ideals. 



168 MOD Rectangular Natural Neutrosophic Numbers 
 
 
 
 
 
 
 
 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic polynomial subsets semigroup under addition +, 
by some examples. 
 
 
Example 4.42. Let S(R[x]) = {collection of all polynomial 

subsets from R[x] = { i
i

i 0
a x




 / ai  ( I

10Z  I
23Z ) = {(a, b) / a 

I
10Z , b  I

23Z , +}, +} be the MOD rectangular natural 
neutrosophic polynomial subset semigroup under 0 (or ). 
 
 Let A = {(0.3, 23

0I + 4)x7 + (5, 3)x4 + ( 10
2I  + 10

5I + 3, 0), 
(6.3 + 10

2I , 23
0I ) + (0, 2)x2} and B = {( 10

5I , 2.4)x2 + (1, 0.5 +  
23
0I )}  S(R[x]). 

 
 A + B = {(0.3, 23

0I +4)x7 + (5, 3)x4 + ( 10
5I , 2.4) x2 + ( 10

2I
+ 10

5I +4, 0.5+ 23
0I ), ( 10

5I , 4.4)x2 + (7.3 + 10
2I , 0.5 + 23

0I )}  
S(R[x]).  This is the way the operation + is performed on 
S(R[x]). 
 
 S(R[x]) has subsemigroups. 
 
In fact S(R[x]) has idempotent polynomial subsets under +. 
 
 Let {(0, 0)}= {(0,0) + (0,0)x + …+ (0, 0)xn} acts as the 
additive identity of every polynomial subset A of S(R[x]). 
Several properties associated with S(R[x]) is a matter of routine 
so left as an exercise to the reader. 
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Example 4.43. Let S(W[x]) = {Collection of all polynomial 

subsets from W[x] = {
i

i
0

ia x



 / ai  I

19Z  I
43Z ) = {(a, b) /  

a  I
19Z , b  I

43Z , +}, +} be the MOD rectangular  polynomial 
subset natural neutrosophic semigroup under +. 
 
 o(S(W[x]) = . In fact S(W[x]) has subsemigroups of 
finite order as well as of infinite order. 
 
 S(P[x]) = {collection of all polynomial subsets from 

P[x] = {
5

i 0

i
ia x


 / ai  ( I

10Z  I
23Z ) = {(a, b) / a  I

10Z , b  I
23Z , 

+}, +}  S(W[x]) is a MOD rectangular natural neutrosophic 
polynomial subset subsemigroup of finite order.  
 
 In fact S(W[x]) has infinitely many subsemigroups of 
finite order.  
 

 Let S(B[x]) = {
i

i
0

ia x



 / ai  {0}  I

43Z ,  +}, +}  

S(W[x]) is a subsemigroup of infinite order. S(W[x]) has 
several such subsemigroups of infinite order. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.18.  Let S(B[x]) = {collection of all polynomial 

subsets from B[x] = {
0i

i
ia x




  / ai  I

mZ  I
nZ ) = {(a, b) / a  

I
mZ , b  I

nZ , m  n, 2  m, n < , +}, +} be the MOD 
rectangular natural neutrosophic polynomial subset semigroup 
under +. 
 

i) S(B[x]) is an infinite commutative monoid 
under +. 

ii) S(B[x]) has subsets which are idempotents 
under +. 
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iii) S(B[x]) has subsemigroups of finite order 
which are infinite in number. 

iv) S(B[x]) has subsemigroups of infinite order. 
 
 Proof is left  as an exercise to the reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic polynomial subset semigroups under  operation 
by some examples. 
 
Example 4.44. Let S(V[x]) = {Collection of all polynomial 

subsets from V[x] = {
i

i
0

ia x



 / ai  I

4Z  I
9Z  = {(a, b) / a  I

4Z ,  

b  I
9Z , +}, +} be the MOD rectangular natural neutrosophic 

polynomial subset semigroup under .  S(V[x]) has infinite 
number of zero divisors.   
 
 No subsemigroup is of finite order.  All subsemigroups 
and ideals are of infinite order.  
  
 Finding nontrivial idempotents is an impossibility. 
 
 However S(V[x]) has nontrivial nilpotents. Finding all 
these is a matter of routine so left as an exercise to the reader. 
 
 Let A= {(0, 3)x3 + ( 4

2I   4
0I , 9

0I ), (0, 6.8) + (0.3, 0)x2 +  
( 4

0I , 9
0I  + 1)x}, +} and B = {(0, 1) + ( 4

0I , 2)x2, (1, 0)x + ( 4
2I  + 2, 

9
3I )}  S(V[x]).   

 
 A  B = {(0, 3)x3 + ( 4

0I + 4
2I , 9

0I ) + ( 4
0I , 6)x5 +  

( 4
0I , 9

0I )x2, (0, 6.8) + ( 4
0I , 9

0I +1) x + ( 4
0I , 4.6)x2 + ( 4

0I , 0)x4 +  
( 4

0I , 9
0I +2)x3, (0, 0)x4 + ( 4

0I  + 4
0I , 9

0I + 2)x3, (0, 0)x4 + ( 4
0I  + 4

0I ,
9
0I )x + ( 4

2I , 9
3I )x3 + ( 4

0I + 4
2I , 9

0I ), (0, 0)x + (0.3, 0)x3 + ( 4
2I , 9

3I ) + (
4
2I + 0.6, 9

3I )x2+ ( 4
0I , 9

0I )x2 + ( 4
0I , 9

3I + 9
0I )x}. 
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 This is the way product operation is performed on 
S(V[x]).    
 
 It is left as an exercise for the reader to prove there are 
infinite number of zero divisors and all subsemigroups are of 
infinite order. 
 
Example 4.45. Let S(B[x]) = {collection of all polynomial 

subsets from B[x] = {
i

i
0

ia x



 / ai  I

12Z  I
7Z  = {(a, b) / a  I

12Z , 

b  I
7Z  = {(a, b) / a  I

12Z , b  I
7Z , }, } be the MOD 

rectangular natural neutrosophic subset polynomial semigroup 
under product .  S(B[x]) has infinite number of polynomial 
subset zero divisors. 
 
 Further S(B[x]) has no finite order subsemigroups all 
subsemigroups of S(B[x]) are of infinite order. In fact S(B[x]) 
has no idempotents.   
 
 Finding special elements and substructures of S(B[x]) is 
a matter of routine so left as an exercise to the reader. 
 
 In view of all these we have the following theorem. 
 
Theorem 4.19.  Let S(B[x]) = {collection of all polynomial 

subsets from B[x] = {
0i

i
ia x




  / ai  I

mZ  I
nZ  = {(a, b) / a  I

mZ , 

b  I
nZ , m  n, 2  m, n < , }, } be the MOD rectangular 

natural neutrosophic polynomial subset semigroup under . 
 

i) S(B[x]) is an infinite commutative monoid. 

ii) S(B[x]) has infinite number of zero divisors. 

iii) S(B[x]) has nilpotents only for appropriate m 
and n. 

iv) SB([x]) has no idempotents. 
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v) All subsemigroups of S(B[x]) are of infinite 
order. 

vi) S(B[x]) has ideals all of which are of infinite 
order. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next consider the MOD rectangular natural neutrosophic 
finite degree polynomial subset semigroup under + given by the 
following example. 
 
Example 4.46.  Let S(P[x]9) = {collection of all polynomial 

subsets from P[x]9 = {
9

i 0

i
ia x


 / ai  I

12Z  I
45Z  = {(a, b) / a  I

12Z

, b  I
45Z , x10 = 1, }, } be the MOD rectangular natural 

neutrosophic finite degree polynomial subset semigroup under 
+. 
 o(S(P[x]9)) <  and is a commutative monoid. 
 
 A = {(3, 0.5 + 45

0I )x6 + (2.5 + 12
6I , 0), (5 + 12

0I  + 12
3I ,1)x2 

+ (0.3, 4.5)} and B = {(2.5 + 12
8I , 3 + 45

5I )x6 + (0.73, 2)x2 + 
(0.89 + 12

2I , 0.5 + 45
40I )}  S(P[x]9).   We find A + B,  

 
 A + B = {(5.5 + 12

8I , 3.5 + 45
0I + 45

5I )x6 + (0.73, 2) x2  + 
(3.39 + 12

6I  + 12
2I , 0.5 + 45

40I ), (2.5 + 12
8I , 3 + 45

5I )x6 + (5.73 + 12
0I  

+ 12
3I , 3)x2 + (1.19 + 12

2I , 5 + 45
40I )}  S(P[x]9).  

 
 This is the way ‘+’ operation is performed on S(P[x]9).   
 
 In fact S(P[x]9) has idempotents with respect to +.    
 
 Further S(P[x]9) has subsemigroups all of which are of 
finite order. 
 
 Finding these are left as an exercise to the reader. 
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Example 4.47.  Let S(V[x]17) = {collection of all polynomial 

subsets from V[x]17 = {
7

i

1
i

i 0
a x


 / ai  I

11Z  I
3Z  = {(a, b) / a  I

11Z , 

b  I
3Z , x18 = 1, }, } be the MOD rectangular natural 

neutrosophic finite degree polynomial subset semigroup under 
+. 
 o(S(V[x]19)) <  and S(V[x]19) has subsemigroups and 
idempotents with respect to +.   
 
 All these is a matter of routine so left as an exercise to 
the reader. 
 
 In view of all these we have the following result. 
 
 
Theorem 4.20.  Let S(B[x]q) = {collection of all polynomial 

subsets from B[x]q = {
0

q

i

i
ia x


  / 0  q < , xq+1 = 1, ai  I

mZ 

I
nZ  = {(a, b) / a  I

mZ , b  I
nZ , m  n, 2  m, n < , }, } be 

MOD rectangular natural neutrosophic finite degree polynomial 
subset semigroup under +. 
 

i) o(S(B[x]q)) <  and S(B[x]q) is a finite 
commutative monoid. 

ii) S(B[x]q) has idempotents with respect to +. 

iii) S(B[x]q) has subsemigroups. 
 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular finite 
degree polynomial natural neutrosophic subset semigroup under 
product by some examples. 
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Example 4.48. Let S(R[x]9) = {collection of all polynomial 

subsets from R[x]9 = {
9

i 0

i
ia x


 / ai  I

8Z  I
16Z  = {(a, b) / a  I

8Z , 

b  I
16Z , x10 = 1, }, } be the MOD rectangular natural 

neutrosophic finite polynomial subset semigroup under . 
 
 Clearly o(S(R[x]9) <  is a commutative monoid 
S(R[x]9 has several zero divisors. In fact S(R[x]9) has no 
idempotents but has nilpotents which are nontrivial. 
 
 S(R[x]9) has subsemigroups which are not ideals.  But 
S(R[x]9) also has ideals.   
 
 Study in this direction is a matter of routine so left as an 
exercise to the reader. 
 
Example 4.49.  Let S(M[x]4) = {collection of all subsets from 

M[x]4 = {
4

i 0

i
ia x


 / ai  ( I

10Z  I
18Z ) = {(a, b) / a  I

10Z , b  I
18Z , 

x5 = 1, }, } be the MOD rectangular natural neutrosophic finite 
degree polynomial subset semigroup under .  This has several 
zero divisors, no nontrivial idempotents or nilpotents. 
 
 S(M[x]4) has both subsemigroups which are not ideals 
as well as which are ideals. 
 
 This study is also a matter of routine so left as an 
exercise to the reader.   
 
 We have the following result. 
 
 
Theorem 4.21. Let S(B[x]q) = {collection of all finite degree 

polynomial subsets from B[x]q = {
0

q

i

i
ia x


  /  ai  ( I

mZ  I
nZ ) = 

{(a, b) / a  I
mZ , b  I

nZ , m   n,  2  m, n < , xq+1 = 1, }, } 
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be the MOD rectangular natural neutrosophic finite degree 
polynomial subset semigroup under . 
 

i) S(B[x]q) is a finite commutative monoid. 

ii) S(B[x]q has zero divisors. 

iii) S(B[x]q) has no nontrivial idempotents. 

iv) S(B[x]q) has nontrivial nilpotent subsets only 
for appropriate m and n. 

v) S(B[x]q) has subsemigroups which are not 
ideals. 

vi) S(B[x]q) has ideals. 
 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic subset coefficient polynomial  semigroup under + 
by some examples. 
 

Example 4.50.  Let P[x] = {
i

i
0

ia x



 / ai  S( I

10Z  I
24Z ) = 

{Collection of all subsets from I I
10 24Z Z , = {(a, b) / a  I

10Z ,   
b  I

24Z , +}, } be the MOD rectangular natural neutrosophic 
subset coefficient polynomial semigroup under +. 
 
 p(x) = {(0, 2),( 10

5I , 2.5), (1, 24
12I )} x2 +{(1, 0), (2, 24

0I )} 
and q(x) = {( 10

2I , 1), (0.5, 5.2)}x2 +{( 10
5I + 4, 3 + 24

2I ) (3, 10)}  
P[x]. 
 p(x) + q(x) = {( 10

2I ,3), ( 10
5I + 10

2I , 3.5), (1 + 10
2I ,1 + 24

12I ), 
(0.5, 7.2), (0.5 + 10

5I , 7.7), (1.5, 24
12I  + 5.2)}x2

 + {(5 + 10
5I , 3 + 

24
2I ), (6 + 10

5I , 24
5I  + 24

2I  + 3), (4,10), (5,10 + 24
0I )}  P[x].  This 

is the way + operation is performed on P[x].   
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{(0, 0)} + {(0, 0)}x + … + {(0, 0)}xn = {(0, 0)} is the additive 
identity in P[x]. 
 
 In fact P[x] has idempotents under + also has 
subsemigroups of both finite and infinite order. 
 

Example 4.51.  Let R[x] = {
i

i
0

ia x



 / ai  S( I

20Z  I
5Z ) = 

{Collection of all subsets from I I
20 5Z Z , = {(a, b) / a  I

20Z ,   
b  I

5Z , +}, } be the MOD rectangular natural neutrosophic 
subset coefficient polynomial semigroup under +. 
 
 R[x] has subsemigroups of both finite and infinite order. 
R[x] has idempotents under +. 
 
 In view of all these we have the following theorem. 
 

Theorem 4.22.  Let V[x] = {
0i

i
ia x




  / ai  S( I

mZ  I
nZ ) = 

{Collection of all subsets from I I
m nZ Z , = {(a, b) / a  I

mZ ,   
b  I

nZ , +; m  n; 2  m, n < }, } be the MOD rectangular 
natural neutrosophic subset coefficient polynomial semigroup 
under +. 
 

i) V[x] is a commutative monoid of infinite order. 

ii) V[x] has nontrivial idempotents. 

iii) V[x] has subsemigroups of finite order which 
are infinite in number. 

iv) V[x] has subsemigroups of infinite order. 
 
 Proof is direct and hence left as an exercise to the 
reader. 
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 Next we proceed onto describe by examples MOD 
rectangular natural neutrosophic subset coefficient polynomial 
semigroups under product 0 (or ) in the following. 
 

Example 4.52.  Let S[x] = {
i

i
0

ia x



 / ai  S( I

12Z  I
7Z ) = 

{Collection of all subsets from I I
12 7Z Z , = {(a, b) / a  I

12Z ,   
b  I

7Z , }, } be the MOD rectangular natural neutrosophic 
subset coefficient polynomial semigroup under product. 
 
 S[x] has infinite number of zero divisors. S[x] has 
subsemigroups which are not ideals.  
 
All subsemigroups and ideals of S[x] are of infinite order.  S[x] 
has no idempotent.   
 
 In this S[x] has nilpotents of the form p(x) = {(6, 0)}xn 
+ {(6, 0)} and nothing other than these.  All coefficients are 
only the subsets from {(6, 0)}. 
 

 M[x] = {
i

i
0

ia x



 / ai  S({0}  I

7Z ) = {Collection of all 

subsets from {0}  I
7Z , = {(0, b) / b  I

7Z }, }, }  S[x] is a 
subsemigroup which is also an ideal of S[x]. 
 
 Clearly o(M[x]) = . 
 

 Let T[x] = {
i

i
0

ia x



 / ai  S( 12Z  7Z ) = {Collection of 

all subsets from Z12  Z7 = {(a, b) / a  Z12,  b Z7, }, },  } 
be the MOD rectangular subset coefficient polynomial 
subsemigroup of S[x]. 
 
 Clearly T[x] is only a subsemigroup and not an ideal of 
S[x]. 
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Example 4.53.  Let M[x] = {
i

i
0

ia x



 / ai  S( I

40Z  I
21Z ) = 

{Collection of all subsets from I I
40 21Z Z , = {(a, b) / a  I

40Z ,  b 
 I

21Z , }, }, } be the MOD rectangular natural neutrosophic 
subset coefficient polynomial semigroup under product. 
 
 This has infinite number of zero divisors no 
idempotents. However both ideals and subsemigroups of M[x] 
are of infinite order only. 
 
 In view of all these we have the following result. 
 

Theorem 4.23.  Let B[x] = {
0i

i
ia x




 / ai  S( I

nZ  I
mZ ) = 

{Collection of all subsets from I I
n mZ Z , = {(a, b) / a  I

nZ ,  b 
 I

mZ , m  n, 2  m, n < },  }} be the MOD rectangular 
natural neutrosophic subset coefficient polynomial semigroup 
under . 
 

i) B[x] is an infinite commutative monoid. 

ii) B[x] has infinite number of zero divisors. 

iii) B[x] has no idempotents. 

iv) Both ideals and subsemigroups which are not 
ideals are of infinite order. 

v) Only for specific values of m and n B[x] has 
nilpotents. 

 
 The proof is left as an exercise to the reader.  
 
 Next we proceed onto describe by examples MOD 
rectangular natural neutrosophic subset coefficient finite degree 
polynomials semigroup under +. 
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Example 4.54.  Let B[x]7 = {
7

i 0

i
ia x


 / ai  S( I

9Z  I
12Z ) = 

{Collection of all subsets from I I
9 12Z Z , = {(a, b) / a  I

9Z ,  b 
 I

12Z , +}, } be the MOD rectangular natural neutrosophic 
subset coefficient finite degree polynomial semigroup under +. 
 
 Let p(x) = {( 9

3I ,0.5), (0, 12
3I  + 4.2), (1, 4.2)}x2 + {(0, 1), 

(1, 25)} and q(x) = {(4, 12
8I ), (3 + 9

6I , 0)}x2 +{(2, 4 + 12
0I ), (0.3, 

0.72)}x +{(4 + 9
3I + 9

0I , 3 + 12
0I  + 12

10I ), (2, 0.3)}  B[x]7.   
 
 We find p(x) + q(x), p(x) + q(x) = {(4 + 9

3I , 0.5 + 12
8I ), 

(3 + 9
6I , 9

3I , 0.5), (4, 12
3I + 12

8I + 4), (3 + 9
6I , 12

3I + 4), (5, 4.2 +  
12
8I ), (4 + 9

6I ,4.2)}x2 +{(2, 4 + 12
0I ), (0.3, 0.72)}x + {(4 + 9

3I + 9
0I ,  

4 + 12
2I  + 12

10I ), (5 + 9
3I  + 9

0I , 5.5 + 12
2I  + 12

10I ), (2, 1.3),  (3, 2.8)} 
 B[x]7. 
 
 This is the way + operation is performed on B[x]7. 
 
 In fact B[x]7 is a finite commutative monoid under +. 
 
 Further B[x]7 is a Smarandache semigroup, B[x]7 has 
idempotents with respect to +. 
 

Example 4.55.  Let F[x]12 = {
12

i
i

i 0
a x


  / ai  S( I

17Z  I
43Z ) = 

{Collection of all subsets from I I
17 43Z Z , = {(a, b) / a  I

17Z ,  b 
 I

43Z , +}, }, +; x13 = 1} be the MOD rectangular natural 
neutrosophic subset coefficient finite degree polynomial 
semigroup under +. 
 
 The task of finding subsemigroups idempotent 
polynomials are left as an exercise to the reader. 
 
 Find o(F[x]12). 
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 It is left as an open conjecture of finding F[x]m. 
 

Conjecture 4.1  Let F[x]m = {
0

m
i

i
i

a x

 / ai  S( I

sZ  I
tZ ) = 

{Collection of all subsets from I I
s tZ Z , = {(a, b) / a  I

sZ ,   
b  I

tZ }, xm+1 , 1  m < , s  t, 2  s, t < } be the MOD 
rectangular natural neutrosophic subset coefficient finite degree 
polynomial set. 
 
 What is the o(F[x]m)?   
 
 We have the following result. 
 

Theorem 4.24.  Let B[x]s = {
0

s
i

i
i

a x

 / ai  S ( I

mZ  I
nZ ) = 

{Collection of all subsets from I I
m nZ Z , = {(a, b) / a  I

mZ ,   
b  I

nZ , +}, }, xs+1 = 1, 1  s < ,  m  n, 2  m, n < , +} be 
the MOD rectangular natural neutrosophic subset coefficient 
finite degree polynomial semigroup under +. 
 
 

i) B[x]s is a commutative monoid of finite order 

ii) B[x]s has idempotent subset polynomials. 

iii) B[x]s is a Smarandache semigroup. 

iv) B[x]s has subsemigroups some of which are 
groups. 

v) B[x]s has subsemigroups which are not groups. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic subset coefficient finite degree polynomial 
semigroup under product 0 (or ) by some examples. 
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Example 4.56. Let T[x]8 = {
8

i
i

i 0
a x


 / ai  S( I

10Z  I
14Z ) = 

{Collection of all subsets from I I
10 14Z Z , = {(a, b) / a  I

10Z ,  b 
 I

14Z , }, }, x9 = 1, } be the MOD rectangular natural 
neutrosophic subset coefficient finite degree polynomial 
semigroup under product. 
 
 T[x]8 is a finite commutative monoid. 
 
 This has zero divisors and has no nontrivial 
idempotents. 
 
 o[T[x]8) < .   Further T[x]8 has subsemigroups which 
are ideals. 
 
 T[x]8 also has subsemigroups which are not ideals. 
 
 However finding nontrivial subgroups under  in T[x]8 
is an impossibility. 
 
 Interested reader can work with substructures and 
special elements in them. 
 

Example 4.57.  Let B[x]18 = {
18

i
i

i 0
a x


  / ai  S( I

27Z  I
32Z ) = 

{Collection of all subsets from I I
27 32Z Z , = {(a, b) / a  I

27Z ,  b 
 I

32Z }, }, x19 = 1, } be the MOD rectangular natural 
neutrosophic subset coefficient finite degree polynomial 
semigroup under . 
  
 This has infinite number of zero divisors. 

 P[x]18 = {
18

i
i

i 0
a x


  / ai  S({0}  I

32Z ) = {Collection of 

all subsets from {0}  I
32Z , = {(0, b) / b  I

32Z , }, },  B[x]18 
is S-subsemigroup of B[x]18. 
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 R[x]18 = {
18

i
i

i 0
a x


 / ai  S( I

27Z (a, 0) / a  I
27Z , 

},  B[x]18 is also a subsemigroup of B[x]18. 
 
 Let p(x)  P[x]18 and q(x)  R[x]18;  
 
clearly p(x)  q(x) = {(0, 0)} is a zero divisor. 
 
 In fact P[x]18  R[x]18 = {(0,0)}. 
 
 B[x]18 has several zero divisors.   If the product is a 
usual zero dominated semigroup then P[x]18 and R[x]18 are 
ideals. 
 
 Otherwise they are not ideal under the natural neutrosophic 
zero dominated product.   
 
 Study in this direction is important and interesting.  
 
 In view of all these we have the following the theorem. 
 

Theorem 4.25.  Let S[x]m = {
0

m
i

i
i

a x

 / ai  S( I

sZ  I
tZ ) = 

{Collection of all subsets from I
sZ  I

tZ , = {(a, b) / a  I
sZ ,  b 

I
tZ }, t  s, 2  t, s < , }, xm+1 = 1, 1  m < , } be the MOD 

rectangular natural neutrosophic subset coefficient finite degree 
polynomial semigroup under product 0 (or ) 
. 

i) S[x]m is a finite order commutative monoid. 

ii) S[x]m has zero divisors. 

iii) S[x]m has no idempotents. 

iv) S[x]m has nilpotents for appropriate values of s 
and t. 

v) S[x]m has subsemigroups which are not ideals. 

vi) S[x]m has subsemigroups which are ideals. 
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 The proof is left as an exercise to the reader. 
 
 Next we proceed onto study algebraic structures using 
the MOD rectangular interval of natural neutrosophic elements. 
 
 I[0, m)  I[0, n) = {(a, b) / a  I[0, m), b  I[0, n); m  n, 2  m, 
n < } by giving some examples. 
 
Example 4.58.  Let S = {I[0, 8)  I[0, 15) = {(a, b) / a  I[0, 8), 
b  I[0, 15)},+} be the MOD rectangular natural neutrosophic 
interval semigroup under +. 
 
 Clearly S is an infinite monoid. S has subsemigroups of 
both finite and infinite order. 
 
 P = {Z8 15, +} is a subsemigroup of finite order 
which is in fact a group under +. 
 
 Thus P is a Smarandache semigroup.  It is left as an 
exercise for the reader to find idempotents of P. 
 
Example 4.59. Let S = {I[0, 7)  I[0, 17) = {(a, b) / a  I[0, 7), b 
 I[0, 17)}, +} be the MOD rectangular natural neutrosophic 
interval semigroup under +. 
 
 S is a Smarandache semigroup of infinite order. 
 
 However S has only very few idempotents under +. 
 
Example 4.60. Let M = {I[0, 28)  I[0, 29) = {(a, b) / a  I[0, 
28), b  I[0, 29)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval semigroup under the product 0 (or ). 
 
 M is of infinite order. 
 
 M has infinitely many zero divisors.  Idempotents and  
nilpotents are dependent on m and n of I[0, m) and I[0, n). S has 
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subsemigroups of both finite and infinite order.  But all ideals of 
M are of infinite order. 
 
 This also has infinite number of natural neutrosophic 
zero divisors.  
 
 So study in this direction is a matter of routine so left as 
an exercise to the reader. 
 
Example 4.61. Let P = {I[0, 24)  I[0, 412) = {(a, b) / a  I[0, 
24), b  I[0, 412)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval semigroup under 0 (or ). 
 
 P is of infinite order and P has subsemigroups of both 
finite and infinite order.  All ideals of P are of infinite order.  
 
  P has infinite number of zero divisors and natural 
neutrosophic zero divisors. 
 However existence of idempotents and nilpotents are 
dependent on 24 and 412 only. 
 
Example 4.62. Let W = {I[0, 17)  I[0, 47) = {(a, b) / a  I[0, 
17), b  I[0, 47)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval semigroup under product 0 (or ). 
 
 W has zero divisors which are infinite in number, 
however finding idempotents and nilpotents happens to be a 
difficult or nontrivial idempotents and nilpotents do not exist. 
 
 This has both finite and infinite subsemigroups and all 
ideals are of infinite order. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic interval matrix semigroups under + and n by 
some examples. 
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Example 4.63. Let W = {

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

 / ai  I[0, 20)  I[0, 32) =  

 
{(a, b) / a  I[0, 20) I[0, 32) = {(a, b) / a  I[0, 20), b  I[0, 
32)} 1  i  6, +} be the MOD rectangular natural neutrosophic 
interval matrix semigroup.  
 
 o(W) =  W has subsemigroups of both finite and 
infinite order. W has matrix idempotent under +. 
 

Example 4.64.  Let M = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 where ai  I[0,23)   

 
I[0, 47) = {(a, b) / a  I[0, 23), b  I[0, 47)} 1  i  9, +} be the 
MOD rectangular natural neutrosophic interval semigroup under 
+. o(M) = . 
 
 M has idempotents with respect to +. 
 
 M is a S-semigroup. 
 
 M has finite order subsemigroups which are groups. M 
also has infinite order subsemigroups which are groups.  These 
semigroups enjoy several special features. In fact these are only 
semigroups of infinite order naturally defined and not abstractly.  
 
 For we have m

tI  + m m
t tI I  for appropriate t in [0, m), 2 

 m < . Thus this new class of infinite order semigroups under 
+ happens to be a very different non abstract structure. 
 
 We have the following result. 
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Theorem 4.26. Let S = {Collection of all s  t matrices with 
entries from I[0, m)  I[0, n) = {(a, b) / a  [0, m), b  [0, n)}, 
+} be the MOD rectangular natural neutrosophic interval matrix 
semigroup under +. 
 

i) S is an infinite order commutative monoid. 

ii) S has subsemigroups of finite order which are 
groups. 

iii) S has subsemigroups of finite order which are 
not groups. 

iv) S has infinite order subsemigroups which are 
groups. 

v) S has infinite order subsemigroups which are 
not groups. 

vi) S is a S-semigroup under +. 

vii) S has idempotent matrices. 
 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we describe by examples the MOD rectangular 
natural neutrosophic interval semigroups under 0 and . 
 
Example 4.65. Let M = {I[0,10)  I[0, 48) = {(a, b) / a  I[0,10), 
b  I[0, 48)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval semigroup under 0 (or ). 
 
 o(M) = , M is a commutative monoid.  M has infinite 
number of zero divisors as well infinite number of natural 
neutrosophic zero divisors under . 
 
 M has subsemigroups of finite order. M is a S-
semigroup if and  only if one of Zm or Zn is a S-semigroup. 
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 Finding nilpotents is also dependent on m and n.  All 
these are a matter of routine so left as an exercise to the reader. 
M has ideals but all ideals of M are of infinite order. 
 
Example 4.66.  Let B = {I[0, 19)  I[0, 43) = {(a, b) / a  
I[0,19), b  I[0, 43)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval semigroup under 0 (or ). 
 
 Finding  nontrivial idempotents and nilpotents is an 
impossibility.  However B has infinite number of zero divisors.  
B is S-semigroups B has subsemigroups of finite order which 
are group. 
 
 Finding substructures is a matter of routine so left as an 
exercise to the reader. 
 
Example 4.67.  Let S = {I[0, 24)  I[0, 7) = {(a, b) / a  I[0, 24), 
b  I[0, 7)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval semigroup under 0 (or ). 
 
 Finding substructures and special elements is left as an 
exercise to the reader.  However S is a S-semigroup. 
 
 In view of all these we have the following theorem. 
 
 
Theorem 4.27.  Let S = {I[0, m)  I[0, n) = {(a, b) / a  I[0, m), 
b  I[0,n)}, m  n, 2  m <  , 0 (or )} be the MOD 
rectangular natural neutrosophic interval semigroup under 0 
(or ). 
 

i) S is an infinite commutative monoid. 

ii) S has subsemigroups of both finite and infinite 
order which are not ideals. 

iii) All ideals of S are of infinite order. 

iv) S has infinite number of zero divisors. 
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v) S has nontrivial nilpotents and idempotents 
only for special values of m and n. 

vi) S is a S-semigroup if and only if Zn or Zm is a S-
semigroup. 

 
 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we describe by examples MOD rectangular natural  
neutrosophic interval matrix semigroups under n or  the 
natural product or the usual product. 
 
 

Example 4.68. Let W = {

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

/ ai  I[0,20)  I[0,16) = {(a, b) /  

 
a  I[0,20), b  I[0, 16)}, 1  i  6, n} be the MOD rectangular 
natural neutrosophic interval matrix semigroup. o(W) =  and 
W is a commutative monoid. 
 
 
  W has infinite number of zero divisor matrices. 
 
 However nontrivial idempotent matrices and nilpotent 
matrices are possible only when Z20 and Z16 have such elements.  
Such study and conclusions are a matter of routine.   
 
 W has both finite order as well as infinite order  
subsemigroups. All ideals of W are of infinite order. 
 
 Study in this direction is a matter of routine so left as an 
exercise to the reader. 
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Example 4.69. Let S = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

 ai  I[0, 47)  I[0,  

 
23) = {(a, b) / a  I[0, 47), b  I[0, 23)}, 1  i  8, n } be the 
MOD rectangular natural neutrosophic interval matrix 
semigroup. 
 
 S has finite and infinite order subsemigroups.  S is as S-
semigroups.   
 
 S has infinite number of zero divisors no nontrivial 
idempotents or nilpotents. 
 
 

Example 4.70. Let P = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

 where ai  I[0,  

 
48)  I[0, 35) = {(a, b) / a  I[0, 48), b  I[0, 35)}, 1  i  16, 
(or n)} be the MOD rectangular natural neutrosophic interval 
matrix semigroup under the usual product  or the natural 
product n. 
 
 {P, } is a noncommutative monoid of infinite order. 
 
 The specialty about this structure is {P, } can have 
right zero divisors which are not left zero divisors and vice 
versa. 
 
 Similarity (P, ) has right ideals which are not left 
ideals and vice versa. 
 
 However {P, n} is a commutative monoid of infinite  
order so such things do not occur. 
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 So we can have idempotents in {P, } which are little 
difficult to be obtained. 
 
 In view of all these we can prove results related to  
{P, } and {P, n} which we view as a matter of routine so 
leave it as an exercise to the reader. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic subset interval semigroup under + and product 0 
(or ) by some examples. 
 
Example 4.71.  Let S = {Collection of all subsets from I[0, 3)  
I[0, 16) = {(a, b) / a  I[0, 3), b  I[0, 16)}, +} be a MOD 
rectangular natural neutrosophic interval subset semigroup 
under +. 
 
 Here S = {S(I[0, 3)  I[0, 16)) = {collection of all 
subsets from I[0, 3) [0,16) = {(a, b) / a [0, 3), b  I[0, 16)}, 
+}.   
 
 Clearly S is an infinite commutative monoid. 
 
 S has finite order subsemigroups which are groups. 
 
 S has also infinite order subsemigroups which are 
groups. 
 
 Let A = {(0.2 + 3

0I , 2), (1, 16
4I ), (0.34, 16

4I + 0.5)} and  
B = {(0.7 + 3

0I , 0.3), ( 3
0I , 4 + 16

0I )}  S.   
 
 We find A + B; A + B = {(0.9 + 3

0I , 2.3), (1.7 + 3
0I , 0.3 

+ 16
4I ), (1.04 + 3

0I , 0.8 + 16
4I ), (0.2 + 3

0I , 6 + 16
0I ), (1 + 3

0I , 4 + 16
4I

+ 16
0I ), ( 3

0I  + 0.34, 4.5 + 16
4I + 16

0I )}  S.   
 
This is the way + operation is performed on S. 
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 Clearly {(0, 0)}  S is such that A + {(0, 0)} = A for all 
A  S.  We can have subsets A in S such that A + A = A. 
 
 Hence S can have idempotents subsets. 
 
Example 4.72. Let B = {S(I[0, 24)  I[0, 45)) = {collection of all 
subsets from I[0, 24) 0, 45) = {(a, b) / a  I[0, 24), b   
I[0, 45)}, +} be the MOD rectangular natural neutrosophic 
interval subset semigroup under +. 
 
 B has nontrivial idempotent subsets and has 
subsemigroups of finite and infinite order. 
 
 A = {( 24

0I , 45
0I ), (0, 0), ( 24

2I , 45
3I ), ( 24

0I  + 24
3I , 45

0I + 45
5I )  

( 24
3I , 45

5I ), ( 24
0I + 24

2I , 45
0I + 45

3I ), ( 24
0I + 24

2I  + 24
3I , 45

0I + 45
3I + 45

5I )} B 
is such that A + A = A. Hence our claim. 
 
 Study in this direction is a matter of routine so left as an 
exercise to the reader. 
 
 Next we describe by an example the notion of MOD 
rectangular natural neutrosophic interval semigroup under 0 (or 
). 
 
Example 4.73. Let M = {S( I[0,14)  I[0, 48)) = {(a, b) / a  I[0, 
14), b  I[0, 48)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval subset semigroup under 0 (or ). 
 
 M has idempotent subsets and has infinite number of 
zero divisors.   
 
However nontrivial nilpotents cannot be found except nilpotents 
got from {(0, 12), (0, 6), (0, 0)} = A. 
 
 In view of all these we have the usual results in case of 
these semigroups also; this task is left as an exercise to the 
reader. 
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 Next we describe MOD rectangular natural neutrosophic 
interval subset matrix semigroups under + and product by the 
following examples. 
 
 

Example 4.74. Let M = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  S(I[0,42)  I[0,24)) =  

 
{collection of all subsets from I[0, 42)  I[0, 24) = {(a, b) / a  
I[0, 42), b  I[0, 24)}, 1  i  5, n} be the MOD rectangular 
natural neutrosophic subset interval matrix semigroup and n. 
 
 M has infinite number of zero divisors, finite number of 
nontrivial idempotents and nilpotents. 
 
 M has both finite order subsemigroups and infinite 
order subsemigroups. 
 
 M has ideals all of which are of infinite order. 
 
 These are all left as exercise to the reader. 
 

Example 4.75.  Let V = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

/ ai  S(I[0, 7)   

 
 
I[0, 41)) = {collection of all subsets from I[0, 7)  I[0, 41) =  
{(a, b) / a  I[0, 7), b  I[0, 41)}, 1  i  8, n} be the MOD 
rectangular natural neutrosophic interval subset matrix 
semigroup under natural product. 
 
 V has no nontrivial nilpotents or idempotents, however 
V has infinite number of zero divisors. 
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Example 4.76.  Let W = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

 /  ai   

 
S (I[0, 48)  I[0,324)) = {collection of all subsets from I[0,48) 
0, 324) = {(a, b) / a  I[0, 48), b  I[0, 324)}, 1  i  5, } be 
the MOD rectangular natural neutrosophic interval subset matrix 
semigroup under usual product.   
 
 Clearly W is a non-commutative monoid of infinite 
order. 
 
 W has both left zero divisors which are not right zero 
divisors and vice versa.  Also W has right ideals which are not 
left ideals and vice versa. 
 
 Study in this direction is a matter of routine so left as an 
exercise to the reader. 
 
 Next we describe MOD rectangular natural neutrosophic 
interval matrix subsets using + (and ) by some examples. 
 
 
Example 4.77. Let S(P) = {Collection of all matrix subsets from 
 

 P = {

1 6

2 7

3 8

4 9

5 10

a a
a a
a a
a a
a a

 
 
 
 
 
 
  

 / ai I[0, 14)  I[0, 9) = {(a, b) / a  I[0, 14),  

 
b  I[0, 9)}, 1  i  70, +} be the MOD rectangular natural 
neutrosophic interval matrix subset semigroup under }. 
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 S(P) is of infinite order has subsemigroups of finite 
order which are groups also subsemigroups of finite and infinite 
order which are not groups. 
 
 All ideals of S(P) are of infinite order S(P) has infinite 
number of zero divisors. 
 
Example 4.78.  Let S(B) = {collection all matrix subsets from B 
= {(a, b, c) / a, b, c ,, ) = {(x, y) / x  I[0, 29),  
y  I[0, 13)}, +} be the MOD rectangular natural neutrosophic 
interval matrix subsets semigroup under +.   
 
 Let A = {((0.5, 1 + 13

0I ), (4.3 + 29
0I , 2), (1, 0)), (0.36 + 

29
0I , 5), (2, 0), (0, 0.331))} and 

 
 D = {((0, 4.3+ 13

0I ), ( 29
0I , 2), ( 29

0I , 13
0I ))}  S(B). 

 
 A + D = {((0.5, 5.3 + 13

0I ), (4.3 + 29
0I , 4), (1 + 29

0I ,  
13
0I )), ((0.36 + 29

0I , 9.3 + 13
0I ), (2 + 29

0I ,2), ( 29
0I , 0.331+ 13

0I ))}  
S(B). 
 This is the way + operation is performed on S(B). S(B) 
is in fact an infinite commutative monoid under +. 
 
 All properties in this case can be derived which is 
considered as  a matter of routine so left as an exercise to the 
reader. 
 
Example 4.79. Let S(M) = {collection of all matrix subsets  
 

from M = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 / ai  I[0, 12) 0, 15) = {(a, b) / a  I[0, 12),  
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b  I[0,15)), 1  i  4, n}, n} be the MOD rectangular natural 
neutrosophic interval matrix subset semigroup under natural 
product n.  
 
 S(M) is an infinite commutative monoid S(M) has 
infinite number of zero divisors.  All ideals of S(M) are of 
infinite order. 
 
 
 

A = {
12
4
12 15
6 0

(0, 3)
(I , 0.5)
(I , I )

(1, 0)

 
 
 
 
 
 

, 

12
0

15
0

15
5

(I , 0)
(0, I )
(1, I )
(0, 0)

 
 
 
 
 
  

} and  

 

B = {

12 15
8 5

12 15
0 0

15
6

(I , 4 I )
(I , I )

(2, 0)
(1, I )

 
 
 
 
 
  

, 12
8

15
0

(1, 2)
(0.3, 1)
(I , 0)
(0, I )

 
 
 
 
 
 

}  S(M).  We find A n B; 

  
 

A n B = {

12 15
8 5

12 15
0 0
12 15
6 0

15
6

(I ,12 I )
(I , I )
(I , I )
(1, I )

 
 
 
 
 
  

, 

12 15
0 5
12 15
0 0

15
5
15
6

(I , I )
(I , I )
(2, I )
(0,I )

 
 
 
 
 
  

, 
12
4
12 15
0 0

15
10

(0,6)
(I ,0.5)
(I , I )
(0,I )

 
 
 
 
 
 

, 

12
0

15
0

12 15
8 5

15
10

(I ,0)
(0,I )

(I , I )
(0,I )

 
 
 
 
 
  

 

 
  S(M).  This is the way n operation is performed on S(M). 
 
 S(M) is an infinite commutative monoid. All ideals of 
S(M) are of infinite order.  
 
However S(M) has subsets subsemigroups of finite order. 
 
 For S(P) = {collection of all matrix subsets from  
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P = {collection of all matrix subsets from P = {

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 /  

 
ai = {(a, b) / a   Z12, b  Z15}, 1  i   4, n}, n}  
S(M) is a subset subsemigroup of S(M) which is of finite order.   
 
 As study in this direction is a matter of routine we leave 
this task to the reader. 
 
 Further all results can be derived with appropriate 
modifications. 
 
 
Example 4.80. Let S(M) = {collection of all matrix subsets  
 

from M = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

 / ai I[0, 48)  I[0, 105) =  

 
{(a, b) / a  I[0, 48), b  I[0, 105)}, 1  i  25,  (or n)}, (or 
n)} be the MOD rectangular natural neutrosophic matrix subset 
semigroup under usual product  or the natural product n.  
 
 {(S(M), } is a MOD rectangular natural neutrosophic 
matrix subset noncommutative monoid of infinite order. 
 
 {S(M), } has right zero divisors which are not left zero  
divisors and vice versa. {S(M), } has right ideals which are not 
left ideals and vice versa. 
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 However {(S(M), } also has MOD rectangular matrix 
subsemigroups of finite order, but all ideals of {S(M), } are 
only of infinite order. 
 
 Clearly {S(M), n} is a MOD rectangular natural 
neutrosophic interval matrix subset commutative monoid of 
infinite order. 
 
 All ideals of {S(M), n} are of infinite order but  
{S(M), n} has both finite order as well as infinite order 
subsemigroups. 
 
 Interested reader can study in this direction. 
 
 Next we proceed onto describe MOD rectangular natural 
neutrosophic interval coefficient polynomial semigroups under 
+ and then under product by some examples. 
 

Example 4.81. Let P[x] = { i
i

i 0
a x




 / ai  I[0,4)  I[0, 35) =  

{(a, b) / a  I[0, 4), b  I[0, 35)}, +} be the MOD rectangular 
natural neutrosophic interval coefficient polynomial semigroup 
under +. 
 
 P[x] has finite order subsemigroups. 
 

 For R[x] = {
20

i
i

i 0
a x


 / ai  Z4  Z35 = {(a, b) / a  Z4, b 

 Z35}, +} is a finite subsemigroup of P[x].  In fact P[x] has 
infinite number of such finite order subsemigroups, however 
there are also infinite order subsemigroups. 
 
 Further P[x] has idempotent polynomials under +. 
 
 P[x] has subsemigroups which are groups under +.  So 
P[x] is a S-semigroup.   
 
 In view of all these we have the following result. 
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Theorem 4.28. Let S[x] = {
0

i
i

i
a x




 / ai  I[0,m)  I[0, n) = 

 {(a, b) / a  I[0, m), b  I[0, n), m  n; 2  m, n <  }, +} be 
the MOD rectangular natural neutrosophic interval coefficient 
polynomial semigroup under +. 
 
 Then the following are true. 
 

i) S[x] is a commutative monoid of infinite order. 

ii) S[x] has idempotent polynomials under +. 

iii) S[x] has finite order subsemigroups which are 
not groups. 

iv) S[x] is a S-semigroup. 

v) S[x] has infinite order subsemigroups which 
are groups. 

vi) S[x] has finite order subsemigroups which are 
groups. 

 
 The proof is direct with appropriate modifications so 
left as an exercise to the reader. 
 
 Next we describe MOD rectangular natural neutrosophic 
interval coefficient polynomial semigroups under product 0 (or 
) by examples. 
 

Example 4.82. Let W[x] = { i
i

i 0
a x




 / ai  I[0, 10)  I[0, 19) = 

{(a, b) / a  I[0, 10), b  I[0, 19)}, 0 (or )} be the MOD 
rectangular natural neutrosophic interval coefficient polynomial 
semigroup under 0 (or ). 
 
 W[x] is of infinite order W[x] has infinite number of 
zero divisors and has no idempotents. Further all subsemigroups 
and ideals of W[x] are only of infinite order.   
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 Study of this can be done as in case of other semigroups 
with appropriate modifications. 
 

Example 4.83.  Let B[x] = { i
i

i 0
a x




 / ai  I[0, 43)  I[0, 53) = 

{(a, b) / a  I[0, 43), b  I[0, 53)},  0 (or )} be the MOD 
rectangular natural neutrosophic interval coefficient semigroup 
under 0 (or ). 
 
 Clearly B[x] has infinite number of zero divisors but no 
idempotents or nilpotents.  All subsemigroups of B[x] are of 
infinite order. 
 
 B[x] also has ideals. 
 
 In view of all these we have the following theorem the 
proof of which is left as an exercise to the reader. 
 

Theorem 4.29.  Let V[x] = {
0

i
i

i
a x




 / ai  I[0, m)  I[0, n) = 

{(a, b) / a  I[0, m), b  I[0, n)}, m  n, 2  m, n < }, 0  
(or )} be the MOD rectangular natural neutrosophic interval 
coefficient semigroup under 0 (or ). 
 
Then 
 

i) V[x] is an infinite commutative monoid. 

ii) V[x] has infinite number of zero divisors. 

iii) V[x] has no idempotents. 

iv) V[x] has nontrivial nilpotents only for 
appropriate values of n and m. 

v) All ideals and subsemigroups of V[x] are of 
infinite order. 

vi) V[x] is S-semigroup if and only if one of Zn or 
Zm is a S-semigroup. 

 



200 MOD Rectangular Natural Neutrosophic Numbers 
 
 
 
 
 
 
 
 

 Proof is direct and hence left as an exercise to the 
reader. 
 
 Next we describe MOD rectangular natural neutrosophic 
interval coefficient polynomials of finite degree semigroups 
under + by some examples. 
 

Example 4.84.  Let P[x]5 = {
5

i
i

i 0
a x


 / ai  I[0, 44)  I[0, 24) = 

{(a, b) / a  I[0, 44) and b  I[0, 24)}, +} be the MOD 
rectangular natural neutrosophic interval coefficient finite 
degree polynomial semigroup under +. 
 
 P[x]5 is an infinite commutative monoid.  P[x]5 has both 
finite order as well as infinite order subsemigroups. 
 
 P[x]5 also has subsemigroups which are groups. 
 
 P[x]5 has nontrivial idempotents under +. 
 
 Study is this direction is innovative and interesting and 
this task is left as an exercise to the reading. 
 

Example 4.85.  Let M[x]10 = {
10

i
i

i 0
a x


 / ai  I[0, 15)  I[0, 17) = 

{(a, b) / a  I[0, 15), b  I[0, 17)}, x11 = 1, 0 (or )} be the MOD 
rectangular natural neutrosophic interval coefficient finite 
degree polynomial semigroup under 0 (or ).  
 
 M[x]10 has finite order subsemigroups as well as infinite 
order subsemigroups.  M[x]10 has infinite number of zero 
divisors. Nilpotents are  possible depending on m and n.  
 
 Clearly M[x]10 has no nontrivial idempotents.   
 
 Such study is interesting and left as an exercise to the 
reader. 
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 All related results can be obtained with appropriate 
modifications. 
 
 Next we proceed onto describe by examples MOD 
rectangular natural neutrosophic interval subset coefficient 
polynomial semigroups under + by examples. 
 

Example 4.86.  Let M[x] = { i
i

i 0
a x




 / ai  S (I[0, 6)  I[0, 11)) = 

{Collection of all interval subsets from I[0, 16)  I[0, 11) =  
(a, b) / a  I[0, 16), b  I[0, 11)}, +} be the MOD rectangular 
natural neutrosophic interval subset coefficient polynomial 
semigroup under +. 
 
 M[x] is a commutative monoid of infinite order. 
 
 M[x] has subsemigroups of finite order as well as 
infinite order. 
 
 Let A = {(0, 11

0I ), ( 16
2I + 1, 0), (1, 5)} +{(4, 11

0I +3), 
(0.331, 2)}x2 +{(3, 2),(1, 11

0I  + 0.5)}x3 and  
 
B = {(5, 0.3), ( 16

4I , 0.5 + 11
0I )} + {(3.3, 2.1) (1.3 + 16

8I , 0)}x +{(2 
+ 16

2I  + 16
10I , 0.32), (1 + 16

0I , 0.33 + 11
0I )}x2  M[x]. 

 
 A + B = {(5, 0.3 + 11

0I ), (6 + 16
2I , 0.3) (6, 5.3), ( 16

4I , 0.5 
+ 11

0I ), (2 + 16
2I  + 16

4I , 0.5 + 11
0I )} + {(3.3, 2.1) (1.3 + 16

8I ,0)}x + 
{(4, 11

0I +3), (0.331, 2)}x2 + {(3, 2), (1, 11
0I +0.5)}x3 + {(6 + 16

2I  + 
16
10I , 3.32 + 11

0I ), (5 + 16
0I , 3.33 + 11

0I ), (2.331 + 16
2I  + 16

10I , 2.32), 
(1.331 + 16

0I , 2.33 + 11
0I )}  M[x].    

 
 This is the way + operation is performed on M[x] has 
nontrivial idempotents with respect to +. 
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Example 4.87. Let B[x] = { i
i

i 0
a x




  / ai  S (I[0, 48)  I[0, 30)) 

= {Collection of all interval subsets from I[0, 48)  I[0, 30) =  
(a, b) / a  I[0, 48), b  I[0, 30)}, 0 (or )} be the MOD 
rectangular natural neutrosophic interval subset coefficient 
polynomial semigroup under 0 (or ).   
 
 B[x] is an infinite commutative monoid.  All 
subsemigroups and ideals of B[x] are of infinite order. B[x] has 
nontrivial idempotents but has infinite number of zero divisors 
or MOD natural neutrosophic zero divisors. Has nilpotents.  
 
 Study in this direction is innovative and interesting and 
left as an exercise to the reader. 
 
 Next we proceed on to give examples of MOD 
rectangular natural neutrosophic interval subset coefficient 
finite degree polynomial semigroups under +. 
 

Example 4.88. Let B[x]7 = {
7

i
i

i 0
a x


  / ai  S (I[0, 12)  I[0, 8)) = 

{Collection of all subsets from I[0, 12)  I[0, 8) = (a, b) /  
a  I[0,12), b  I[0,8)}, x8 = 1, +} be the MOD rectangular 
natural neutrosophic interval subset coefficient finite degree 
polynomial semigroup under +.  
 
B[x]7 is an infinite order commutative monoid. B[x]7 has 
subsemigroups of finite order.  
 
 B[x]7 has infinite subsemigroups also.  Further B[x]7 
has idempotents. 
 

Example 4.89.  Let P[x]12 = {
12

i
i

i 0
a x


 / ai  S (I[0, 49)  I[0, 

125)) = {Collection of all subsets from I[0, 49)  I[0, 125) =  
{(a, b) / a  I[0, 49), b  I[0, 125)}, x13 = 1, 0 (or )} be the 
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MOD rectangular natural neutrosophic interval subset coefficient 
finite degree polynomial semigroup under 0 (or ). 
 
 P[x]12 is an infinite commutative monoid. P[x]12 has 
infinite number of zero divisors (or MOD natural neutrosophic 
zero divisors).   
 
 However P[x]1 has no nontrivial idempotents. P[x]12 has 
both finite and infinite order subsemigroups. P[x]12 has ideals all 
of which are of infinite order.   
 
 This new structure has very many nice properties and 
the reader is expected to analyze them. 
 
Example 4.90. Let S(B[x]) = {collection of all polynomial 

subsets from B[x] = { i
i

i 0
a x




 / ai  I[0, 40)  I[0, 24) = {(a, b) / 

a  I[0, 40), b  I[0, 24)}, +} be the MOD rectangular natural 
neutrosophic interval polynomial subset semigroup under +.  
S(B[x]) is an infinite commutative monoid.  
 
 S(B[x]) has infinite number of finite order 
subsemigroups.  S(B[x]) also has infinite order subsemigroups 
S(B[x]) has no idempotents. 
 
 Study in this direction is a matter of routine. 
 
Example 4.91. Let S(M[x]) = {collection of all polynomial 

subsets from M[x] = { i
i

i 0
a x




 / ai  I[0, 14)  I[0, 41) = {(a, b) / 

a  I[0, 14), b  I[0, 41)}, 0 (or )} be the MOD rectangular 
natural neutrosophic interval polynomial subset semigroup 
under 0 (or ).  S(M[x]) is commutative monoid of infinite 
order. 
 
 All subsemigroups and ideals of S(M[x]) are of infinite 
order S(M[x]) has infinite number of zero divisors. 
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 Let A = {(0.3, 41
0I )x2 + ( 14

7I , 0.5), ( 14
0I +0.3, 2)x3 +  

(2, 3.7)x + (0, 1)} and B = {(0.6, 41
0I + 3)x2 + (0.3 + 14

0I , 0)x + 
(0.3, 2), (4, 5)x + (3, 2 + 41

0I )}  (M[x]).   
 
 A   B = {(0.18, 41

0I ) x4 + ( 14
7I , 41

0I  + 1.5)x2 + (0.09 + 
14
0I , 41

0I )x3 + ( 14
7I + 14

0I ,0)x + (0.09, 41
0I )x2 + ( 14

7I , 1), (1.2, 41
0I )x3 

+ ( 14
7I , 2.5)x + (0.9, 41

0I )x2 + ( 14
7I , 1 + 41

0I ), ( 14
0I +0.18, 6 + 41

0I )x5 
+ (1.2, 41

0I  + 11.1)x3, (0, 41
0I + 3)x2 + ( 14

0I +0.09, 0)x4 + (0.6 + 14
0I

, 0)x2 + ( 14
0I , 0)x + ( 14

0I + 0.09, 4)x3 + (0.6, 7.4)x + (0, 2), ( 14
0I + 

1.2, 10)x4 + (8, 18.5)x2 + (0, 5)x + ( 14
0I + 0.9, 4 + 41

0I )x3 + (6, 7.4 
+ 41

0I )x + (0, 2 + 41
0I )}  S(M[x]).  This is the way  operation 

is performed on S(M[x]).   
 
 Interested reader can find the product. A 0 B and show 
A  B  A 0 B.   
 
 If P = {(0, 3)x3 + (0, 41

0I )x2 + (0,9), (0, 21.5 + 41
0I )x7 + 

(0, 41
0I  + 14.2)} and Q = {(3, 0)x2 + (7, 0)x + (4.327, 0),  

( 14
2I ,0) x9 + ( 14

2I + 14
6I + 3, 0)}  S(M[x]), then P 0 Q = {(0, 0)} 

but P  Q   {(0,0)}.   
 
 This task of verifying the above conditions is left as an 
exercise to the reader. 
 
 
Example 4.92. Let S(B[x]9) = {Collection of all polynomial 

subsets from B[x]9 = {
9

i
i

i 0
a x


 / ai  I[0, 16)  I[0, 12) = {(a, b) / 

a  I[0, 16), b  I[0, 12)}, x10 = 1,  +}, +} be the MOD 
rectangular natural neutrosophic interval polynomial subsets 
semigroup under +. 
 
 S(B[x]9) is an infinite order commutative monoid. 
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 Let A = {( 16

2I , 12
4I )x3 + (0, 4 + 12

6I ), ( 16
8I + 16

0I , 0)x4 + (0, 
12
6I + 12

8I )} and B = {( 16
0I , 12

6I + 3)x3 + (6, 12
6I )x + (4 + 16

2I , 12
0I ), (6 

+ 16
8I , 12

0I ) + (3, 6 12
8I )x5}  S(B[x]9). 

 
 We now find A + B, A + B = {( 16

2I + 16
0I , 12

4I + 12
6I  +3)x3 

+ (6, 12
6I )x + (4 + 16

2I , 4 + 12
6I + 12

0I ), ( 16
8I + 16

0I , 0)x4 +  
( 16

0I , 3+ 12
6I )x3 + (6, 12

6I )x + (4 + 16
2I ,  12

6I + 12
8I + 12

0I ), ( 16
2I , 12

4I )x3 
+ (3, 6 + 12

8I )x5 + (6 + 16
8I , 12

0I  + 12
6I + 4), (3, 6 + 12

8I )x5 +  
( 16

8I + 16
0I ,0)x4

 + (6  + 16
8I , 12

0I + 12
6I + 12

8I )}  S(B[x]9). 
 
 This is the way + operation is performed on S(B[x]9). 
S(B[x]9) has subsemigroups of both finite and infinite order.  
 
 The reader is left with the task of finding idempotents 
polynomial subsets of S(B[x]9). 
 
 
Example 4.93.  Let S(M[x]12) = {collection of all polynomial 

subsets from M[x]12 = {
12

i
i

i 0
a x


 / ai  I[0,15)  I[0, 24) = {(a, b) 

/ a  I[0, 5), b  I[0, 24)}, x13 = 1, 0 (or ) +} 0 (or )} be the 
MOD rectangular natural neutrosophic interval polynomial 
subsets semigroup under 0 (or ). 
 
 Clearly S(M[x]12) is a commutative monoid of infinite 
order S(M[x]12) has infinite number of zero divisors and MOD 
natural neutrosophic zero divisors.  
 
 S(M[x]12) has both finite and infinite order 
subsemigroups, but all ideals of S(M[x]12) are of infinite order. 
S(M[x]12) has no nontrivial idempotents.  
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 Let A = {(0, 4)x3 + (3 + 15
0I , 24

2I ), (4, 2 + 24
2I )x3 +  

(4 + 15
0I , 0)x + (2, 3 + 24

0I )} and B = {(2, 3 + 24
0I )x2 + (4, 5),  

(0.3 + 15
0I , 24

8I )x3 + (3 + 15
5I ,0)}  S(M[x]12).   

 
 A  B = {(0, 12 + 24

0I )x5 + (6 + 15
5I , 24

2I + 24
0I )x2, + (0, 

20)x3 + (12 + 15
5I , 24

2I ),  (8, 6 + 24
0I + 24

12I )x5 + (1, 10 + 24
12I )x3 + (8 

+ 15
0I ,0)x3 + (4, 9 + 24

0I )x2 + (8,15 + 24
0I ) + (1 + 15

0I , 0)x,  
(0, 24

8I )x6 + (0.9 + 15
5I + 15

0I , 24
16I )x3 + (12 + 15

5I , 0)x3 + (9 + 15
10I  + 

15
5I , 0), (1.2 + 15

0I , 24
8I  + 24

12I )x6 + (1.2 + 15
0I , 0)x4 + (0.6 + 15

0I , 24
8I

+ 24
0I )x3 + (12 + 15

5I , 0)x3 + (12 + 15
5I + 15

0I ,0)x + (6 + 15
5I , 0)}  

S(M[x]12).  
 
 This is the way  operation is performed on S(M[x]12). 
 
 The reader is left with the task of finding A 0 B  
M[x]12) and show A  B  A 0 B. 
 
 It is pertinent to keep on record that the usual zero 
divisor dominated product 0 and that of  the MOD natural 
neutrosophic zero dominated product are different, so the zero 
divisors under 0 are different from zero divisors under . 
  
 A 0 B = {(0, 0)} need not in general imply  
A  B = { n

0I , n
0I } and vice versa.  

 
 This can be easily established by examples. 
 
 Further we cannot have nontrivial idempotents in case 
of all four types of polynomial semigroups. 
 
 Finally the nontrivial nilpotents under 0 is different 
from  and vice versa. 
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 Study in this direction can be carried out as in case of 
polynomial subset coefficients from S( I

mZ   I
nZ ), m  n, (2  

m, n < ). 
 
 Only major difference in using S(I[0, m)  I[0, n));  
m  n, (2  m, n < ) instead of S( I

mZ  I
nZ ) at times when we 

use finite degree subset polynomial or polynomial subset the 
semigroups are of finite order.   
 
 Further we see in this we have other types of zero 
divisors which makes the structure over intervals interesting.  
These are infinite in structure. 
 
 However it is recorded we in I[0, m) use only those 
neutrosophic elements arising from Zm and not from [0, m). 
 
 This has be elaborately in discussed in books on MOD 
structure [32-37].  
  
 We proceed on to suggested problems for the reader. 
 
PROBLEMS 

 
1. Let W = { I

nZ   I
mZ = {(a, b) / a  I

nZ , b  I
mZ }, 2  m, 

n < , m  n} be the MOD rectangular natural 
neutrosophic finite modulo number set.    

 Find the order of W. 
 
2. Let S = { I

10Z  I
16Z  = {(a, b) / a  I

10Z , b  I
16Z }, +} be 

the MOD rectangular natural neutrosophic finite modulo 
number semigroup under +. 

 i) Find o(S). 

 ii) Find all idempotents of S under +. 
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 iii) Prove S is a Smarandache semigroup. 

 iv) Find the number of subsemigroups of S which 
are subgroups of S under +. 

v) Find the number of subsemigroups of S which 
are not subgroups of S. 

vi) Find all special features associated with S. 

 

3. Let B = { I
19Z  I

47Z = {(a, b) / a  I
19Z , b  I

47Z , +} be 
the MOD rectangular natural neutrosophic finite modulo 
integer semigroup under +. 

 

 i) Study questions (i) to (vi) of problem (2) for 
this B. 

 ii) Compare S of problem (2) with this B. 

 iii) Which of  the semigroups (S, +) in problem (2) 
or (B, +) has more number of idempotents? 

 

4. Let T = { I
24Z  I

60Z = {(a, b) / a  I
24Z , b  I

60Z },+} be 
the MOD rectangular natural neutrosophic finite modulo 
integer semigroup under +.  

 

 i) Study questions (i) to (vi) of problem (2) for 
this T. 

 ii) Compare T with B and S of problems (3) and 
(2) respectively. 

 iii) Find which of the semigroups T or S or B has 
maximum number of idempotents under +. 

 



Semigroups on MOD Rectangular Natural … 209 
 

 
 
 
 
 
 
 

5. Let W = { I
8Z  I

26Z = {(a, b) / a  I
8Z , b  I

26Z }, } be 
the MOD rectangular natural neutrosophic modulo 
integer semigroup under . 

 

 i) Prove W is a finite commutative monoid. 

 ii) Find all zero divisors of W. 

iii) Find all nontrivial nilpotents of W. 

iv) Does W contain nontrivial idempotents? 

v) Find all subsemigroups of W which are not 
ideals. 

vi) Find all ideals of W. 

vii) Enumerate all special features associated with 
W. 

viii) Study these questions under the zero dominated 
product and the natural neutrosophic zero 
dominated product and compare W under these 
two products. 

 
6. Let V = { I

43Z  I
29Z = {(a, b) / a  I

43Z , b  I
29Z }, } be 

the MOD rectangular natural neutrosophic finite modulo 
integer semigroup under 0 (or ). 

 

 i) Study questions (i) to (viii) of problem (5) for 
this V. 

 ii) Compare this V with W of problem (5). 
 
 
7. Let B = { I

20Z  I
12Z  = {(a, b) / a  I

20Z , b  I
12Z },0, 

()} be the MOD rectangular natural neutrosophic 
modulo integer semigroup under 0 (or ). 
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 i) Study questions (i) to (viii) of problem (5) for 
this B. 

 ii) Compare this B with V of problem 6. 
 
 
8. Let M = {Collection of all subsets from I

20Z  I
42Z , +} 

be the MOD rectangular natural neutrosophic subset 
semigroup under +. 

 

 i) Find o(M). 

 ii) Prove M is a commutative monoid. 

 iii) Is M a S-semigroup? 

 iv) Find all idempotents of M. 

v) Find all subsemigroups of M. 

 vi) Enumerate all special features enjoyed by M. 
 
 
9. Let W = {Collection of all subsets from I

23Z  I
53Z = {(a, 

b) / a  I
23Z , b  I

53Z ,+}, +} be the MOD rectangular 
natural neutrosophic subset semigroup under +. 

 

 i) Study questions (i) to (vi) of problem (8) for 
this W. 

 ii) Compare W with M of problem 8. 
 
 
10. Let P = {Collection of all subsets from I

29Z  I
48Z  = {(a, 

b) / a  I
29Z , b  I

48Z , +}, +} be the MOD rectangular 
natural neutrosophic subset semigroup under +. 
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 i) Study questions (i) to (vi) of problem (8) for 
this D. 

 ii) Compare this P with W of problem 9. 
 
 
11. Let M = {Collection of all subsets from I

24Z  I
7Z = {(a, 

b) / a  I
24Z , b  I

7Z }, 0 (or } be the MOD 
rectangular natural neutrosophic subset semigroup 
under 0 (or ). 

 i) Show M is a finite commutative monoid. 

 ii) Find o(M). 

 iii) Prove M has always zero divisors in case of 0 
and natural neutrosophic zero divisor in case of 
product. 

 iv) Prove M can have nilpotent or natural 
neutrosophic nilpotents for 0 (or ) 
respectively. 

 v) Is M a S-semigroup? 

vi) Can M have nontrivial idempotents? 

vii) Find all subsemigroups which are not ideals of 
M. 

viii) Find all ideals of M. 

ix) Obtain all special features enjoyed by M. 
 
12. Let B = {Collection of all subsets from I

12Z  I
63Z  = {(a, 

b) / a  I
12Z , b  I

63Z ,0 (or )} 0 (or be the MOD 
rectangular natural neutrosophic subset semigroup 
under 0 (or ).  

 
 Study questions (i) to (ix) of problem (11) for this B. 
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13. Let R = {collection of all subsets from I
3Z  I

13Z = {(a, b) 
where a  I

3Z , b  I
13Z , 0 (or )} 0 (or )} be the 

MOD rectangular natural neutrosophic subset semigroup 
under 0 (or ). 

 

 i) Study questions (i) to (ix) of problem (11) for 
this R. 

 ii) Compare B of problem 12 with this R. 
 
14. Let A = {(a1, a2, a3, a4) / ai  I

10Z  I
48Z = {(a, b) / a  

I
10Z , b  I

48Z };1  i  4, +} be the MOD rectangular 
natural neutrosophic finite modulo integer matrix 
semigroup under +. 

 

 i) Prove A is a commutative monoid. 

 ii) Find o(A). 

 iii) Prove A is a S-semigroup. 

 iv) Find all idempotent matrices of A. 

 v) Find all subsemigroups of A. 

 vi) Find all subsemigroups of A which are groups. 

iv) Obtain any other special feature associated with 
A. 
 
 

 

15. Let B = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  I
19Z  I

43Z = {(a, b) / a  I
19Z ,  
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 b  I
43Z , 1  i  5, +} be the MOD rectangular natural 

neutrosophic finite modulo integer matrix  semigroup 
under +.  

 Study questions (i) to (vii) of problem (14) for this B. 
 
 
 

16. Let L = { 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

/ ai  I
12Z  I

135Z  = {(a, b)  

 / a  I
12Z , b  I

135Z , 1  i  12, +} be the MOD 
rectangular natural neutrosophic finite modulo integer 
matrix semigroup under +.  

 Study questions (i) to (vii) of problem (14) for this L. 
 
 

17. Let W = {

1 2

3 4

5 6

7 8

9 10

11 12

13 14

a a
a a
a a
a a
a a
a a
a a

 
 
 
 
 
 
 
 
 
  

 / ai I
24Z  I

47Z  = {(a, b) /  

 

 a  I
24Z , b  I

47Z , 1  i  14, n}; be the MOD 
rectangular natural neutrosophic finite modulo integer 
matrix semigroup under natural product with usual zero 
domination or the MOD natural neutrosophic zero 
domination. 

 i) Find o(W). 
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 ii) Prove W is a commutative monoid. 

iii) Find all zero divisors of W. 

iv) Can W have nontrivial nilpotents? 

v) Can W have nontrivial idempotents? 

vi) Is W a S-semigroup? 

vii) Find all subsemigroups of W which are not 
ideals. 

viii) Find all ideals of W. 

ix) Obtain all special features associated with W. 
 

 

18. Let B = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

/ ai I
48Z   I

3Z = {(a, b) /  

 a  I
48Z , if  I

3Z , 1  i  16, n or } be the MOD 
rectangular natural neutrosophic matrix semigroup 
under n the natural product or usual product . 

i) Prove {B, } is a non-commutative monoid of 
finite order. 

ii) Prove {B, n} is a commutative monoid. 

iii) Prove {B, n} is different from {B, }. 

iv) Find all zero divisors of {B, n}. 

v) Find all left and right zero divisors of {B, }. 

vi) Show a zero divisor in {B, n} need not in 
general be a zero divisor in {B, } and vice 
versa. 

vii) Find all nilpotents in {B, n} and {B, }. 
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viii) Find all idempotents of {B, n} and {B, }. 

ix) Find all subsemigroups of {B, } and {B, n}. 

x) Does their exist semigroups P such that {P, } 
 {B, } and {P, n}  {B, n} are same? 

xi) Find all right ideals and left ideals of {B, }. 

xii) Find all ideals of {B, n}. 

xiii) Distinguish between {B, n} and {B, }. 
 
 

19. Let M = {

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

 
 
 
 
 
 
 
 
  

/  

 

 ai  I
48Z  I

250Z = {(a, b) / a  I
48Z , b  I

250Z , 1  i  36, 
n (or )} be the MOD rectangular natural neutrosophic 
matrix semigroup under natural product n or the usual 
product .  

 

 Study questions (i) to (xii) of problems (18) for this M. 
 
 

20. Let W = {

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a
a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
 
 
  

 / ai I
10Z  I

5Z = {(a, b) /  
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 ai  I
10Z , b  I

5Z , 1  i  18, n}, n} be the MOD 
rectangular natural neutrosophic matrix semigroup 
under natural product n. 

 Study questions (i) to (xii) of problem (18) for this W. 
 
 
21. Let S(B) = {Collection of all matrix subsets from the set 

  

 B = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 / ai  I
25Z  I

38Z = {(a, b) / a  I
25Z  I

38Z =  

 {(a, b) / a  I
25Z , b  I

38Z ; 1  i  5, +} } be the MOD 
rectangular natural neutrosophic matrix subset 
semigroup under +. 

 

 i) Find o(S(B)). 

 ii) Prove S(B) is a finite commutative monoid. 

 iii) Find all idempotents of S(B). 

iv) Find all subsemigroups of S(B) which are 
groups. 

v) Prove S(B) is a S-semigroup. 

vi) Find all subsemigroups of S(B) which are not 
groups. 

vii) Determine any other special feature associated 
with S(B). 
 

 
22. Let S(P) = {collection of all matrix subsets from  
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P = {
1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

a a a a a a
a a a a a a
a a a a a a

 
 
 
  

 / ai  I
45Z  I

23Z = 

 

 {(a, b) / a  I
45Z , b  I

23Z } 1  i  18, +} be the MOD 
rectangular natural neutrosophic matrix subsets 
semigroup under +.    

 Study questions (i) to (vii) of problem (21) for this S(P). 

 

23. Let S(B) = {collection of all matrix subsets from  

 

B = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

/ ai  I
12Z  I

47Z =  

 {(a, b) / ai  I
12Z , b  I

47Z } 1  i  25, +} be the MOD 
rectangular matrix subset semigroup under +.  

 Study questions (i) to (vii) of problem (21) for this 
S(B). 

 
 
24. Let S(W) = {Collection of all matrix subsets from  
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W = {

1 2

3 4

5 6

7 8

9 10

11 12

13 14

a a
a a
a a
a a
a a
a a
a a

 
 
 
 
 
 
 
 
 
  

 where ai I
20Z  I

47Z = {(a, b) /  

 
a  I

20Z , b  I
47Z , 1  i  14,n} n} be the MOD 

rectangular natural neutrosophic matrix subset 
semigroup under natural product n. 

 

 i) Find o(S(W)). 

 ii) Prove S(W) is a commutative monoid. 

 iii) Find all zero divisor matrix subsets of S(W). 

 iv) Can S(W) contain idempotent matrix subsets? 

v) Can S(W) have nontrivial nilpotent matrix 
subsets? 

vi) Find all subsemigroups which are not ideals of 
S(W). 

vii) Find all subsemigroups which are ideals of 
S(W). 

viii) Is S(W) a S-semigroup? 

ix) Enumerate any of the special feature associated 
with S(W). 

 
 
25. Let S(E) = {Collection of all matrix subsets from  
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E = { 1 2 3

4 5 6

a a a
a a a
 
 
 

/ ai { I
40Z  I

37Z = {(a, b) / a  I
40Z ,  

 b  I
37Z }, 1  i  6, n},n} be the MOD rectangular 

natural neutrosophic matrix subsets semigroups under 
natural product n. 

 Study questions (i) to (ix) of problem (24) for this S(E). 
 

 
26. Let S(P) = {Collection of all matrix subsets from P = 

{(a1, a2, a3, a4, a5, a6, a7, a8) / ai  I
13Z  I

47Z = {(a, b) / a 
 I

13Z , b  I
47Z }, 1  i  8, be the MOD 

rectangular natural neutrosophic matrix subset 
semigroup under product .  

 Study questions (i) to (ix) of problem (24) for this S(P).   

 Compare S(P) with S(E) of problem (25). 

 
27. Let S(B) = {Collection of all subsets from 

  

 B = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

where ai  I
24Z  I

45Z = {(a, b) /  

 
a  I

24Z , b  I
45Z }, 1  i  9, n (or )} be the MOD 

rectangular natural neutrosophic matrix subset 
semigroup under natural product n (or usual product 
). 

 

 i) Find o(S(B)). 
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 ii) Prove {S(B), } is a non-commutative monoid. 

iii) Show {S(B), } has left matrix subset zero 
divisors which are not in general right matrix 
subset zero divisors. 

iv) Prove {S(B), } has matrix subset left ideals 
which are not right ideals. 

v) Find all ideals of {S(B), }. 

vi) Can {S(B), } have nontrivial nilpotents? 

vii) Can {S(B), } have nontrivial idempotents? 

viii) Compare {S(B),} with {S(B), n}. 

ix) Study questions (i) to (ix) of problem 24 for 
{S(B), n}. 
 

 
 
28. Let S(S) = {Collection of all matrix subsets from  

 

S = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

 / ai I
42Z  I

56Z  =  

 
{(a, b) / a  I

42Z  I
56Z  = {(a, b) / a  I

42Z , b  I
56Z }, 1 

 i  25,  (or n)},  (or n)} be the MOD rectangular 
natural neutrosophic matrix subset semigroup under  
(or n). 

 

i) Study questions (i) to (ix) of problem (27) for 
this S(S). 

 ii) Compare this S(S) with S(B) in problem 27. 
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29. Let P = {

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a
a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
 
 
  

/ ai  S( I
12Z  I

40Z ) =  

 {Collection of all subsets from I
12Z  I

40Z = {(a, b) / a  
I
12Z , b  I

40Z }}, 1  i  18, +} be the MOD rectangular 
natural neutrosophic subset matrix semigroup under +. 

 

 i) Find o(P). 

 ii) Prove P is a commutative monoid under +. 

 iii) Find all nontrivial idempotents of P. 

 iv) Find all subsemigroups of P which are groups. 

 v) Find all subsemigroups of P which are not 
groups. 

 vi) Prove P is a S-semigroup. 

viii) Obtain any other special feature associated with 
P. 
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30. Let S = {

1

2

3

4

5

6

7

a
a
a
a
a
a
a

 
 
 
 
 
 
 
 
 
  

/ ai  S( I
19Z  I

23Z ) = {Collection of all  

 subsets from S( I
19Z  I

23Z ) = {Collection of all subsets 
from I

19Z  I
23Z  = {(a, b) / a  I

19Z , b  I
23Z }, 1  i  9, 

+} be the MOD rectangular natural neutrosophic subset 
matrix semigroup  under +. 

 

 i) Study questions (i) to (vii) of problem (29) for 
this S. 

 ii) Compare this S with P of problem (29). 
 
 
 

31. Let M = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 

 / ai  S( I
40Z  I

28Z )  

 = {Collection of all subsets from I
40Z  I

28Z = {(a, b) / a 
 I

40Z , b  I
28Z }}, 1  i  20, +} be the MOD 

rectangular natural neutrosophic subset matrix 
semigroup under +.   

 Study questions (i) to (vii) of problem (29) for this M. 
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32. Let L = {

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

/ ai S( I
15Z  I

9Z ) = {Collection of all  

 subsets from I
15Z  I

9Z = {(a, b) / a  I
15Z , b  I

9Z },  
1  i  6, n} be the MOD rectangular natural 
neutrosophic subset matrix semigroup under natural 
product n. 

 

 i) Find o(L). 

 ii) Prove L is a commutative monoid. 

 iii) Find all subset matrix zero divisors of L. 

 iv) Does L contain nontrivial subset matrix 
idempotents? 

v) Does L contain nontrivial subset matrix 
nilpotents? 

vi) Is L a S-semigroup? 

vii) Can L have subsemigroups which are groups? 

viii) Find all subset matrix subsemigroups which are 
not ideals. 

ix) Find all subset matrix subsemigroups which are 
ideals. 

x) Can L contain S-ideals? 

xi) Can L contain S-zero divisors? 

xii) Can L contain S-idempotent? 
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33. Let M = { 1 2 3 4

5 6 7 8

a a a a
a a a a
 
 
 

/ ai  S ( I
12Z  I

25Z ) =  

 

 {Collection of all subsets from I
12Z  I

25Z = {(a, b) /  
a  I

12Z , b  I
25Z }}, 1  i  8, n} be the MOD 

rectangular natural neutrosophic subset matrix 
semigroup under n. 

 Study questions (i) to (xii) of problem (32) for this M. 
 
 
 

34. Let V = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

/ ai  S ( I
36Z  I

49Z )  

 = {Collection of all subsets from I
26Z  I

49Z = {(a, b) / a 
 I

26Z , b  I
49Z } = (a, b) / a  I

26Z , b  I
49Z }, 1  i  

25, (orn) be the MOD rectangular natural 
neutrosophic subset matrix semigroup under  (or n). 

 

 i) Can  questions (i) to (xii) of problem (32) be 
analysed for this V. 

 ii) Study only those questions (i) to (xii) of 
problem (32) which are relevant to (V, ). 

 iii) Find all right ideals of (V, ) which are not left 
ideals of (V,) and vice versa. 
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iv) Find all right zero divisors of (V, ) which are 
not left zero divisors and vice versa. 

v) Compare (V, n) with (V,). 
 
 

35. Let P[x] = {
i

i
0

ia x



 / ai  I

18Z  I
42Z = {(a, b) / a  I

18Z , 

b  I
42Z +}, +} be the MOD rectangular natural 

neutrosophic coefficient polynomial semigroup under +. 

 

 i) Prove P[x] is a commutative monoid of  infinite 
order. 

 ii) Prove P[x] has subsemigroups of finite order 
which are infinite in number. 

 iii) Prove P[x] also has subsemigroups of infinite 
order. 

 iv) Prove P[x] has idempotents. 

v) Enumerate any other special feature associated 
with P[x]. 
 
 

36. Let S[x] = {
i

i
0

ia x



 / ai  I

29Z  I
5Z = {(a, b) / a  I

29Z , b 

 I
5Z }, +} be the MOD rectangular natural neutrosophic 

coefficient polynomial semigroup under +. 

 

 i) Study questions  (i) to (v) of problem (35) for 
this S[x]. 

 ii) Compare S[x] with P[x] of problem 35. 
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37. Let B[x] = {
i

i
0

ia x



  / ai  { I

12Z  I
17Z = {(a, b) / a  I

12Z

, b  I
17Z }, +} be the MOD rectangular natural 

neutrosophic coefficient polynomial semigroup under +. 
 
 Study questions (i) to (v) of problem (35) for this B[x]. 
 
 

38. Let W[x]  = {
i

i
0

ia x



 / ai  I

48Z  I
75Z }, } be the MOD 

rectangular natural neutrosophic coefficient polynomial 
semigroup under . 

 

 i) Find all zero divisors of W[x]. 

 ii) Is W[x] a S-semigroup? 

 iii) Can W[x] have nilpotent polynomials? 

 iv) Prove W[x] has no nontrivial idempotent 
polynomials. 

 v) Prove W[x] is a commutative monoid of infinite 
order. 

 vi) Find all subsemigroups which are not ideals of 
W[x]. 

 vii) Find all ideals of W[x]. 

 viii) Find all S-ideals of W[x]. 

ix) Prove all subsemigroups and ideals are only of 
infinite order. 

x) Obtain any other special feature associated with 
W[x]. 
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39. Let V[x] = {
i

i
0

ia x



  / ai  I

7Z  I
43Z = {(a, b) / a  I

7Z , b 

 I
43Z }, } be the MOD rectangular natural 

neutrosophic coefficient polynomial semigroup. 

 

 i) Study questions (i) to (x) of problem (38) for 
this V[x]. 

 ii) Compare this V[x] with W[x] of problem 38. 
 

40. Let B[x] = {
i

i
0

ia x



 / ai  I

48Z  I
29Z = {(a, b) / a  I

48Z , 

b  I
29Z }, } be the MOD rectangular natural 

neutrosophic coefficient polynomial semigroup under 
product.  

 Study questions (i) to (x) of problem (38) for this B[x]. 
 

41. Let M[x]9 = {
9

i 0

i
ia x


  / ai  I

12Z  I
43Z = {(a, b) / a   

I
12Z , b  I

43Z }, x10 = 1, +} be the MOD rectangular 
natural neutrosophic coefficient finite degree 
polynomial semigroup under +. 

 

 i) Find o(M[x]9). 

 ii) Prove M[x]9 is commutative monoid. 

 iii) Prove M[x]9 is a S-semigroup. 

 iv) Find all subsemigroups which are groups. 

 v) Find all subsemigroups which are not groups. 

 vi) Find all idempotents in M[x]9. 

 vii) Enumerate any other special feature associated 
with M[x]9. 
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42. Let V[x]18 = = {
8

i

1
i

i 0
a x


 / ai  I

23Z  I
11Z = {(a, b) / a  

I
23Z , b  I

11Z }, x19 = 1, +} be the MOD rectangular 
natural neutrosophic coefficient finite degree 
polynomial semigroup under +. 

 

 i) Study questions (i) to (vii) of problem (41) for 
this V[x]18. 

 ii) Compare V[x]18 with M[x]9 in problem 41. 
 

43. Let S[x]27 = {
7

i

2
i

i 0
a x


 / ai  I

48Z  I
210Z = {(a, b) /  

a  I
48Z , b  I

210Z }, x28 = 1, +} be the MOD rectangular 
natural neutrosophic coefficient finite degree 
polynomial semigroup under +.   

 Study questions (i) to (vii) of problem (41) for this 
S[x]27. 

 

44. Let M[x]7 = {
7

i 0

i
ia x


 / ai  I

12Z  I
105Z = {(a, b) / a  I

12Z

, b  I
105Z }, x8 = 1, } be the MOD rectangular natural 

neutrosophic coefficient finite degree polynomial 
semigroup under . 

i) Find o(M[x]7). 
ii) Prove M[x]7 is a commutative monoid. 
iii) Show M[x]7 has zero divisors. 
iv) Prove M[x]7 cannot have nontrivial idempotents. 
v) Prove M[x]7 has nontrivial nilpotents. 
vi) Is M[x]7 a S-semigroup? 
vii) Prove M[x]7 has ideals. 
viii) Prove M[x]7 has subsemigroups which are not 

ideals. 

ix) Can M[x]7 has S–zero divisors? 
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x) Can M[x]7 have S–ideals? 

xi) Enumerate any special feature associated with 
M[x]7. 

 

45. Let B[x]126 = {
i

i
0

ia x



 / ai  I

47Z  I
23Z = {(a, b) /  

a  I
47Z , b  I

23Z }, x127 = 1, } be the MOD rectangular 
natural neutrosophic coefficient finite degree 
polynomial semigroup under .   

 Study questions (i) to (x) of problem 44 for this B[x]126. 
 
 

46. Let S[x]189  = {
189

i

i
i

0
a x


 / ai  I

48Z  I
39Z = {(a, b) / 

 a  I
48Z , b  I

39Z = {(a, b) / a  I
48Z , b  I

39Z }, x190 = 
1, } be the MOD rectangular natural neutrosophic 
coefficient polynomial of finite degree semigroup under 
. 

 Study questions (i) to (x) of problem (44) for  this 
S[x]189. 

 

47. Let B[x] = {
i

i
0

ia x



 / ai  S( I

10Z  I
19Z ) = {Collection of 

all subsets from I
10Z   I

19Z = {(a, b) / a  I
10Z , b   

I
19Z }, +},+} be the MOD rectangular natural 

neutrosophic subset coefficient polynomial semigroup 
under +. 

 

 i) Prove B[x] is a commutative monoid of infinite 
order. 

 ii) Show B[x] idempotents with respect to +. 

 iii) Prove B[x] has subsemigroups of finite order. 
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 iv) Is B[x] a S-semigroup? 

 v) Prove B[x] also has subsemigroups of infinite 
order. 

 

48. Let S[x] = {
i

i
0

ia x



 / ai  S( I

24Z  I
43Z = {Collection of 

all subsets from I
24Z   I

43Z = {(a, b) / a  I
24Z , b  I

43Z
= {(a, b) / a  I

24Z , b  I
43Z }, +},+} be the MOD 

rectangular natural neutrosophic subset coefficient 
polynomial semigroup under +.  

 Study questions (i) to (v) of problem (47) for this S[x]. 
 
 

49. Let W[x] = {
i

i
0

ia x



 / ai  S( I

20Z  I
47Z ) = {Collection 

of all subsets from I
20Z   I

47Z = {(a, b) / a  I
20Z , b   

I
47Z }, }, } be the MOD rectangular natural 

neutrosophic subset coefficient polynomial semigroup 
under . 

 

 i) Prove W[x] is an infinite commutative monoid. 

 ii) Prove W[x] has infinite number of zero 
divisors. 

 iii) Prove W[x] cannot have nontrivial idempotents. 

 iv) Can W[x] have nontrivial nilpotents? 

 v) Is W[x] a S-semigroup? 

vi) Can W[x] have S-zero divisors? 

vii) Can W[x] have S-ideals? 

viii) Prove all ideals and subsemigroups are of 
infinite order. 
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ix) Can W[x] have a S-subsemigroup which is not 
a S-ideal? 

x) Obtain any other special feature associated with 
W[x]. 
 

50. Let V[x] = {
i

i
0

ia x



 / ai  S( I

19Z  I
53Z ) = {Collection of 

all subsets from I
19Z   I

53Z = {(a, b) / a  I
19Z , b   

I
53Z }, }, } be the MOD rectangular natural  

neutrosophic subset coefficient polynomial semigroup 
under . 

 

 i) Study questions (i) to (x) of problem (49) for 
this V[x]. 

 ii) Comparative W[x] of problem 49 with this 
V[x]. 

 
 

51. Let B[x] = {
i

i
0

ia x



 / ai  S( I

24Z  I
45Z ) = {Collection of 

all subsets from I
24Z   I

45Z = {(a, b) / a  I
24Z , b   

I
45Z }, }, } be the MOD rectangular natural 

neutrosophic subset coefficient polynomial semigroup 
under . 

 

 i) Study questions (i) to (x) of problem (49) for 
this B[x]. 

 ii) Compare this B[x] with V[x] and W[x] of 
problems 50 and 49 respectively. 
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52. Let M[x] = {
8

i 0

i
ia x


 / ai  S( I

7Z  I
48Z ) = {Collection of 

all subsets from I
7Z   I

48Z = {(a, b) / a  I
7Z , b  I

48Z }, 
x9 =1; +},+} be MOD rectangular natural neutrosophic 
subset coefficient finite degree polynomial semigroup 
under +. 

 

 i) Find o(M[x]8). 

 ii) Prove M[x]8 is a commutative monoid. 

 iii) Is M[x]8 a S-semigroup? 

 iv) Prove M[x]8 has idempotents. 

 v) Can M[x]8 have S-idempotents? 

 vi) Find all subsemigroups of M[x]8. 

 vii) Can M[x]8 have subsemigroups which are not 
ideals? Justify your claim. 

 viii) Enumerate any other special feature associated 
with M[x]8. 

 

53. Let B[x]18 = {
8

i

1
i

i 0
a x


 / ai  S( I

18Z  I
42Z ) = {Collection 

of all subsets from I
18Z   I

42Z = {(a, b) / a  I
18Z , b  

I
42Z }, +} x19 = 1, +} be the MOD rectangular natural 

neutrosophic subset coefficient finite degree polynomial 
semigroup under +. 

 Study questions (i) to (vii) problem (52) for this B[x]18. 
 

54. Let S[x]7 = {
7

i

2
i

i 0
a x


 / ai  S( I

11Z  I
3Z ) = {Collection of 

all subsets from I
11Z   I

3Z = {(a, b) / a  I
11Z , b  I

3Z }, 
+}, x28 = 1, +} be the MOD rectangular natural 
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neutrosophic subset coefficient polynomials of finite 
degree semigroup under +. 

 

 i) Study questions (i) to (viii) of problem (52) for 
this S[x]27. 

 ii) Compare S[x]27 with B[x]18 in problem 53. 
 
 

55. Let S[x]14 = {
4

i

1
i

i 0
a x


 / ai  S( I

22Z  I
26Z ) = {Collection 

of all subsets from I
22Z   I

26Z = {(a, b) / a  I
22Z , b  

I
26Z }, }, x15 = 1, } be the MOD rectangular natural 

neutrosophic subset coefficient finite degree polynomial 
semigroups under . 

 

 i) Find the order of S[x]14. 

 ii) Prove S[x]14 is a commutative monoid. 

 iii) Prove S[x]14 has both zero divisors as well as 
natural neutrosophic zero divisors. 

 iv) Can S[x]14 have S-zero divisors and (or) S-
natural neutrosophic zero divisors? 

 v) Can S[x]14 have S-ideals? 

 vi) Is S[x]14 a S-semigroups? 

vii) Find all S-subsemigroups of S[x]14 which are 
not S-ideals. 

viii) How many ideals are in S[x]14 which are not S-
ideals? 

ix) Enumerate any other special feature enjoyed by 
S[x]14. 
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56. Let M[x]27 = {
7

i

2
i

i 0
a x


 / ai  S( I

28Z  I
43Z ) = {Collection 

of all subsets from I
28Z   I

43Z = {(a, b) / a  I
28Z ,  

b  I
43Z } } x28 = 1, } be the MOD rectangular natural 

neutrosophic subset coefficient finite degree polynomial 
semigroup under product.  

 
 Study questions (i) to (ix) of problem (55) for this 

M[x]27. 
 

57. Let S[x]32 = {
2

i

3
i

i 0
a x


 / ai  S( I

27Z  I
90Z ) = {Collection 

of all subsets from I
27Z   I

90Z = {(a, b) / a  I
27Z , b  

I
90Z = {(a, b) / a  I

27Z , b  I
90Z }, }, x33= 1, } be the  

MOD rectangular natural neutrosophic subset coefficient 
finite degree polynomial semigroup under .  

 
 Study questions (i) to (ix) of problem 55 for this S[x]32. 
 
 
58. Let S(M[x]) = {collection of all subsets from M[x] =  

{
i

i
0

ia x



 / ai  I

24Z  I
49Z = {(a, b) / a  I

24Z , b  I
49Z , 

+}, +} be the MOD rectangular natural neutrosophic 
polynomial subset semigroup under +. 

 
 

 i) Show S(M[x]) is a commutative monoid of 
infinite order. 

 ii) Prove (M[x]) can have both finite order 
subsemigroups and infinite order 
subsemigroups. 

 iii) Prove S(M[x]) has idempotents. 

 iv) Obtain all special features enjoyed by S(M[x]). 
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vi) Is S(M[x]) a S-semigroup? 
 

 
59. Let S(B[x]) = {collection of all subsets from B[x] =  

{
i

i
0

ia x



 / ai  S( I

24Z  I
43Z ) =  {Collection of all subsets 

from I
43Z   I

3Z = {(a, b) / a  I
43Z , b  I

3Z }, +},+} be 
the MOD rectangular natural neutrosophic polynomial 
subset semigroup under +. 

 
 
 i) Study questions (i) to (v) of problem (58) for 

this S(B[x]). 

 ii) Compare this S(B[x]) with S(M[x]) of problem 
58. 

 iii) Let S(S[x]) = {collection of all polynomial 

subsets from S[x] = {
i 0




 aixi / ai  I

44Z  I
13Z = 

{(a, b) / a  I
44Z , b  I

13Z ,+}, +} be the MOD 
rectangular natural neutrosophic polynomial 
subset semigroup under +. 

  Study questions (i) to (v) of problem (58) for 
this S(S[x]). 

 
60. Let S(P[x]) = {Collection of all polynomial subsets 

from P[x] = {
i

i
0

ia x



 / ai  I

42Z  I
280Z = {(a, b) / a   

I
42Z , b  I

280Z }, }, } be the MOD rectangular natural 
neutrosophic polynomial subset semigroup under . 

 

i) Show S(P[x]) is a commutative monoid of 
infinite order. 

ii) Prove S(P[x]) has infinite number of zero 
divisors. 
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iii) Can S(P[x]) have S-zero divisors? 
iv) Is S(P[x]) a S-semigroup? 
v) Can S(P[x]) have S-ideals? 
vi) Prove S(P[x]) has no idempotents. 

vii) Can S(P[x]) have nilpotents? 

viii) Prove S(P[x]) cannot have subsemigroups of 
finite order. 

ix) Can S(P[x]) have subsemigroups which are not 
S-subsemigroups? 

x) Obtain all special features associated with 
S(P[x]). 
 

61. Let S(X[x]) = {Collection of all polynomial subsets 

from W[x] = {
i

i
0

ia x



 / ai  ( I

43Z  I
7Z ) = {(a, b) / a  

I
43Z , b  I

7Z }, }, } be the MOD rectangular natural 
neutrosophic polynomial subset semigroup under .   

 Study questions (i) to (x) of problem (60) for this 
S(W[x]). 

 
62. Let S(V[x]) = {collection of all polynomial subsets 

from V[x] = {
i

i
0

ia x



 / ai  I

27Z  I
4Z  = {(a, b) / a  I

27Z

, b  I
4Z }, }, } be the MOD rectangular natural 

neutrosophic polynomial subset semigroup under .  

 Study questions (i) to (x) of problem (60) for this 
S(V[x]). 

63. Let S(B[x]9) = {collection of all finite degree 

polynomial subsets from B[x]9 = {
9

i 0

i
ia x


 / ai  I

12Z 
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I
2Z = {(a, b) / a  I

12Z , b  I
2Z }, x10 = 1, +},+} be the 

MOD rectangular finite degree polynomial subset 
semigroup under +. 

 

 i) Find o(S(B[x]9). 

 ii) Prove S(B[x]9) is a commutative monoid under 
+. 

 iii) Find all idempotents of S(B[x]9). 

 iv) Is S(B[x]9) a S-semigroup? 

 v) Find all subsemigroups of S(B[x]9) which are 
groups of S(B[x]9) and those which are not 
groups. 

 vi) Find all subsemigroups of S(B[x]9) which are 
not groups. 

vii) Find all S-subsemigroups of S(B[x]9). 

viii) Find all subsemigroups which are not S-
subsemigroups. 
 

64. Let S(M[x]23) = {collection of all finite degree 

polynomial subsets from M[x]23 = {
3

i

2
i

i 0
a x


  / ai   I

43Z

 I
23Z = {(a, b) / a  I

43Z , b  I
23Z }, x24 = 1, +} be the 

MOD rectangular natural neutrosophic polynomial 
subset semigroup.  

 Study questions (i) to (viii) of problem (63) for this 
S(M[x]23). 

 
 
65. Let S(B[x]10) = {collection of all finite degree 

polynomial subsets from B[x10] = {
0

i

1
i

i 0
a x


 / ai   I

43Z 

I
16Z = {(a, b) / a  I

43Z , b  I
16Z }, x10 = 1}, +} be the 
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MOD rectangular natural neutrosophic finite degree 
polynomial subset semigroup under +. 

 

 i) Study questions (i) to (viii) of problem (63) for 
this S(B[x]10). 

 ii) Compare S(B[x]10) with (M[x]23) of problem 
64. 

 
 
66. Let S(M[x]45) = {collection of all polynomial subsets 

from M[x]45 = {
5

i

4
i

i 0
a x


 / ai  I

12Z  I
45Z = {(a, b) / a  

I
12Z , b  I

45Z }, x46 = 1, } be the MOD rectangular 
natural neutrosophic finite degree polynomial subset 
semigroup under . 

 

 i) Find o(S(M[x]45)). 

 ii) Prove S(M[x]45) is a commutative monoid. 

 iii) Find all zero divisors of S(M[x]45). 

 iv) Can S(M[x]45) have S-zero divisors? 

 v) Prove S(M[x]45) cannot have nontrivial 
idempotents, 

 vi) Show S(M[x]45) has subsemigroups which are 
not ideals. 

vii) Is S(M[x]45) a S-semigroup? 

viii) Find all ideals of S(M[x]45). 

ix) Can S(M[x]45) have S-ideals? 

x) Can S(M[x]45) have nontrivial nilpotents? 

xi) Can S(M[x]45) have S-subsemigroups which are 
not S-ideals? 
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xii) Enumerate all special features associated with 
S(M[x]45). 
 

 
67. Let S(B[x]27) = {collection of all polynomial subsets 

from B[x]27 = {
7

i

2
i

i 0
a x


 / ai  I

19Z  I
43Z = {(a, b) / a  

I
19Z , b  I

43Z }, x28 = 1, }, } be the MOD rectangular 
natural neutrosophic finite degree polynomial subset 
semigroup under . 

 

 i) Study questions (i) to (xii) of problem 66 for 
this S(B[x]27). 

 ii) Compare S(B[x]27) with S(M[x]45) of problem. 
 
 
68. Let S(S[x]45) = {Collection of all finite degree 

polynomial subsets from S[x]45 = {
5

i

4
i

i 0
a x


 / ai  I

16Z 

I
625Z = {(a, b) / a  I

16Z , b  I
625Z }, }, x46 = 1}, } be 

the MOD rectangular natural neutrosophic finite degree 
polynomial subset semigroup under .   

 Study questions (i) to (xii) of problem (66) for this 
(S[x]45)). 

 
 
69. Let S = {collection of all elements from I[0,8)  I[0, 24) 

 = {(a, b) / a  I[0, 8), b  I[0, 24)}, +} be the MOD rectangular 
natural neutrosophic interval semigroup under +. 

 

 i) Prove S is only a commutative monoid of 
infinite order. 
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 ii) Prove S has subsemigroups which are 
subgroups of both finite or infinite order. 

 iii) Prove S is a S-semigroup. 

 iv) Find all idempotents of S. 

 v) Enumerate any other special feature associated 
with S. 

 
70. Let W= {I[0, 19)  I[0, 43) = {(a, b) / a  I[0, 19), b  

I[0,43)}, +} be the MOD rectangular natural 
neutrosophic interval semigroup under  +.  

 Study questions (i) to (v) of problem 69 for this W. 
 
71. Let P = {I[0,41)  I[0, 37) = {{a, b) / a  I[0, 41), b  

I[0, 37)}, 0 (or )} be the MOD rectangular natural 
neutrosophic interval semigroup under 0 (or ). 

 

 i) Prove P is a commutative monoid of infinite 
order. 

 ii) Prove P has infinite number of zero divisors. 

 iii) Prove P has subsemigroups of finite and infinite 
order which are not ideals. 

 iv) Prove all ideals of P are of infinite order. 

 v) Can P have nontrivial idempotents? Justify. 

 vi) Can P have nontrivial nilpotents? Justify. 

vii) Is P a S-semigroup? 

viii) Can P have S-zero divisors? 

ix) Can P have S-ideals? 
 
72. Let M = {I[0,48) I[0,30) = {(a, b) / a  I[0, 48),  

b I[0,30)}  (or 0)} be the MOD rectangular natural 
neutrosophic interval semigroup under (or 0).   
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 Study questions (i) to (ix) of problem (71) for this M. 
 
73. Let S = {S(I[0,48)  I[0,25)) = {(collection of all subsets 

from I[0,48)  = {(a, b) / a  I[0,48), b  I[0,25)}, 
+}, +} be the MOD rectangular natural neutrosophic 
interval subset semigroup under +.  

 Study questions (i) to (v) of problem (69) for this S. 

 
74. Let B = {S (I[0,42)  I[0,20)) = {collection of all subsets 

from I[0,42)  I[0,20) = {(a, b) / a  I[0, 42), b  
I[0,20)}, 0 (or )}, be the MOD rectangular natural 
neutrosophic subset interval semigroup under 0 (or ).  

 Study questions (i) to (ix) of problem (71) for this B. 
 
 

75. Let M = {

1 2

3 4

5 6

7 8

9 10

11 12

a a
a a
a a
a a
a a
a a

 
 
 
 
 
 
 
 
  

 /  ai I[0, 47)  I[0, 31) = {(a, b) /  

 
a  I[0, 47), b  I[0, 31), + ; 1  i  12} be the MOD 
rectangular natural neutrosophic interval matrix 
semigroup under +. 

 

 i) Prove M is a commutative monoid of infinite 
order. 

 ii) Can M has matrix idempotents? 

 iii) Prove M has matrix idempotents. 

 iv) Is M a S-matrix semigroup? 
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 v) Find all subgroups of M which are of finite 
order. 

 vi) Find all infinite order subsemigroups of M. 

vii) Enumerate any other special feature enjoyed by 
M. 
 

 

76. Let B = { 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a
 
 
 

/ ai  I[0, 48)  I[0,16) 

  

 = {(a, b) / a  I[0,48), b  I[0,16)}, +; 1  i  10} be the 
MOD rectangular natural neutrosophic interval matrix 
semigroup under +. 

 

 i) Study questions (i) to (vii) of problem (75) for 
this B. 

 ii) Compare this B with M of problem (75). 
 
 

77. Let W = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a
a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 
  

/ ai  I[0, 44)  I[0,23) =  

 {(a, b) / a  I[0,44), b  I[0,23)}, 1  i  20, n} be the 
MOD rectangular natural neutrosophic interval matrix 
semigroup under natural product n. 

 

 i) Prove W is an infinite order commutative 
monoid. 

 ii) Prove W has infinite number of zero divisors. 

 iii) Can W be a S-semigroup? 
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 iv) Can W have S-zero divisors? 

 v) Can W have matrix idempotents? 

 vi) Can W have nontrivial matrix nilpotents? 

  vii) Can W have matrix S-idempotents? 

viii) Prove all ideals of W are of infinite order. 

ix) Can W have S-ideals? 

x) Can W have units and S-units? 

xi) Obtain any other special features associated 
with W. 
 
 

78. Let B = {

1

2

3

4

5

6

7

8

9

a
a
a
a
a
a
a
a
a

 
 
 
 
 
 
 
 
 
 
 
 
 
 

/ ai  I[0, 48)  I[0,38) = {(a, b) / a   

 I[0,48), b  I[0,38)}, +; 1  i  9, n} be the MOD 
rectangular natural neutrosophic interval matrix 
semigroup under natural product n. 

 Study questions (i) to (xi) of problem 77 for this B. 
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79. Let S = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
  

/ ai  I[0, 49) 

  I[0,28) = {(a, b) / a  I[0,49), b  I[0,28)}, 1  i  25, 
(or n be the MOD rectangular natural neutrosophic 
interval matrix semigroup under the usual product  or 
the natural product n. 

 

 i) Study questions (i) to (xi) of problem 77 in case 
of (S,) and (S, n). 

 ii) Prove (S,) is a non-commutative monoid of 
infinite order. 

 iii) Find all right ideals which are not left ideals 
and vice versa in (S,). 

 iv) Can (S,) contain right zero divisors which are 
not left zero divisors and vice versa? 

 v) Enumerate all special features enjoyed by (S,). 

 vi) Compare (S,) with (S, n). 
 
 
 

80. Let B = {
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

/ ai  I[0, 37)  I[0,29) = {(a, b)  

 / a  I[0,37), b  I[0,29)}, 1  i  9,  (or n)} be the 
MOD rectangular natural neutrosophic interval matrix 
semigroup.  
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 Study questions (i) to (vi) of problem (79) for this 
(W,) and (W, n). 

 

 

81. Let P = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

/ ai  S(I[0, 7)  I[0,48)) = {collection of  

 all subsets from I[0,7)  I[0,48) = {(a, b) / a  I[0,7), b  
I[0,48)}, +; 1  i  5, +} be the MOD rectangular natural 
neutrosophic interval subset matrix semigroup under +.  

 Study questions (i) to (vii) of problem (75) for this P. 
 
 
 

82. Let B = {

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

a a a a a a
a a a a a a
a a a a a a
a a a a a a

 
 
 
 
 
 

/ ai S (I[0,  

 40)  I[0,28) = {collection of all subsets from I[0,40)  
I[0,28) = {(a, b) / a  I[0,40),  b  I[0,28), +}, 1  i  
24, +}be the MOD rectangular natural neutrosophic 
interval matrix subset semigroup under +. 

 

 i) Study questions (i) to (vii) of problem 75 for 
this B. 

 ii) Compare with this B the P of problem 81. 
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83. Let T = {

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

 
 
 
 
 
 
 
 
  

/ ai  S(I[0, 144)   

 I[0,126) = {Collection of all subsets from  I[0,144)  
I[0,126) = {(a, b) / a  I[0,144), b  I[0,126)} n}, n, 1 
 i  13} be the MOD rectangular natural neutrosophic 
subset matrix semigroup under the natural product. 

 

 i) Study questions (i) to (xi) of problem 79 for this 
T. 

 ii) Obtain any other special feature associated with 
T. 

 
 

84. Let B = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

/ ai  S (I[0, 9)  I[0,420)  

 = {(a, b) / a  I[0,9), b  I[0,420)}, } 1  i  16,  (or 
n)} be the MOD rectangular natural neutrosophic 
interval subset matrix semigroup under usual product  
or the natural product n.  

 Study questions (i) to (vi) of problem (79) for this (B, 
) and (B, n). 

 
 
85. Let S(B) = {Collection of all matrix subsets with entries 
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 from B = {

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

/ ai  I[0, 4)  I[0,21) = {(a, b) /  

 a  I[0,4), b  I[0,21)}, 1  i  5, +} be the MOD 
rectangular natural neutrosophic interval matrix subset 
semigroup under +.  

 Study questions (i) to (vii) of problem (75) for this 
S(B). 

 
86. Let S(M) = {Collection of all matrix subsets from  

 

M = {

1

2

3

4

5

6

7

a
a
a
a
a
a
a

 
 
 
 
 
 
 
 
 
  

 where ai  I[0, 19)  I[0, 325) = {(a, b) /  

 
a  I[0, 19), b  I[0, 325)}, 1  i  7, n}, n}  be the 
MOD rectangular natural neutrosophic interval matrix 
subset semigroup and the natural product n. 

 i) Study questions (i) to (xi) of problem (77) for 
this S(M). 

 ii) Obtain all special features enjoyed by S(M). 
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87. Let S(W) = {Collection of all matrix subsets from  

 

W= {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 

/ ai  I[0, 42)  I[0, 12) =  

 {(a, b) / a  I[0, 42), b  I[0, 12)}, 1  i  16,  (or n)}, 
 (or n)} (where  is the usual product on S(W)) be the 
MOD rectangular natural neutrosophic interval matrix 
subset semigroup under (or n).  

 Study questions (i) to (vi) of problem (79) for this 
{S(W), } or (S(W), n). 

 
 

88. Let P[x] = {
i

i
0

ia x



 / ai  I[0, 10)  I[0, 48) = {(a, b) / a 

  I[0, 10),  b  I[0, 48)}, +} be the MOD rectangular 
natural neutrosophic interval coefficient polynomial 
semigroup under +. 

 

 i) Prove P[x] is an infinite order commutative 
monoid. 

 ii) Prove (P[x], +) has idempotent polynomial. 

 iii) Prove (P[x],+) has infinite number finite order 
subsemigroups under +. 

 iv) Is P[x] a S-semigroup? 

 v) Find all subsemigroups of infinite order in P[x]. 

vi) Give any other special feature enjoyed by 
{P[x], +}. 
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89. Let V[x]= {
i

i
0

ia x



 / ai  I[0, 43)  I[0, 23) = {(a, b) /  

a  I[0, 43), b I[0, 23)}, +} be the MOD rectangular 
natural neutrosophic interval coefficient semigroup 
under +.   

 Study questions (i) to (vi) of problem (88) for this V[x]. 
 
 

90. Let S[x] = {
i

i
0

ia x



 / ai  I[0, 40)  I[0, 126) = {(a, b) /  

a   I[0, 40), b   I[0, 126)} 0 (or )}  be the MOD 
rectangular natural neutrosophic interval coefficient 
polynomial semigroup under 0 (or ). 

 

 i) Prove S[x] is an infinite commutative monoid. 

 ii) Prove S[x] has infinite number of zero divisors. 

 iii) Can S[x] have S–zero divisors? 

 iv) Prove all subsemigroups and ideals of S[x] are 
of infinite order. 

 v) Prove S[x] has no polynomial idempotents. 

 vi) Can S[x] have nontrivial nilpotents? 

vii) Can S[x] have S-ideals? 

viii) Obtain any other special feature enjoyed by 
S[x]. 
 

91. Let B[x] = {
i

i
0

ia x



 / ai  I[0, 19)  I[0, 31)) = {(a, b) /  

a  I[0, 19), b  I[0, 31)}, 0 (or )} be the MOD 
rectangular natural neutrosophic interval coefficient 
polynomial semigroup under 0 (or ).  
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 Study questions (i) to (viii) of problem (90) for this 
B[x]. 

 

92. Let S(B[x]) = {
i

i
0

ia x



 / ai  S (I[0, 40)  I[0, 13)) = 

{Collection of all subsets from I[0, 40)  I[0, 13) = (a, b) 
/ a  I[0, 40), b  I[0, 13)}, +}, +} be the MOD 
rectangular natural neutrosophic interval subset 
coefficient polynomial semigroup under +.  

 Study questions (i) to (vi) of problem (88) for this 
S(B[x]). 

 

93. Let S(W[x]) = {
i

i
0

ia x



 / ai  S (I[0, 28)  I[0, 35)) = 

{Collection of all subsets from I[0, 28)  I[0, 35)}, 0 
(or )} 0 (or )} be the MOD rectangular natural 
neutrosophic interval, subset coefficient polynomial 
semigroup under 0 (or ).  

 Study questions (i) to (viii) of problem (90) for this 
S(W[x]). 

 
 
94. Let S(V[x]) = {Collection of all polynomial subsets 

from V[x] {
i 0




 aixi / ai  I[0,43)  I[0, 24) = {(a, b) / a 

  I[0,43), b  I[0,24)}, +},+} be the MOD rectangular 
natural neutrosophic interval polynomial subset 
semigroup under +. 

   

 Study questions (i) to (vi) of problem (88) for this 
S(V[x]). 
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95. Let S(P[x]) = {collection of all polynomial subsets from 

P[x] = {
i 0




 aixi / ai  I[0,25)  I[0, 40) = {(a, b) / a 

I[0,25), b  I[0,40)}, 0 (or )},0 (or )} be the MOD 
rectangular natural neutrosophic interval polynomial 
subset semigroup under 0 (or ).   

 Study questions (i) to (viii) of problem (90) for this 
S(P[x]). 

 

96. Let P[x]20= {
9

i 0

i
ia x


 / ai  I[0, 3)  I[0, 40) = {(a, b) / a 

 I[0, 3), b  I[0, 40)}, +}, +} be the MOD rectangular 
natural  neutrosophic interval coefficient of polynomial 
of degree less than or equal to 9.   

 Study questions (i) to (vi) of problem (88) for this P[x]9. 
 

97. If in problem (96) ‘+’ is replaced by 0 (or ) then for 
{P[x]9, 0 (or )}. 

 
 Study questions (i) to (viii) of problem 90. 
 

98. Let W[x]19 = {
9

i

1
i

i 0
a x


 / ai  S (I[0, 42)  I[0, 89)) = 

{Collection of all subsets from I[0, 42)  I[0, 89) = (a, b) 
where a  I[0, 42), b  I[0, 89)}, +} x20 = 1, +} be the 
MOD rectangular natural neutrosophic interval subset 
coefficient polynomials of degree less than or equal to 
19 semigroup under +. 

 

 i) Study questions (i) to (vi) of problem (88) for 
this W[x]19. 

 ii) Study questions (i) to (viii) of problem (96) for 
{W[x]19, 0(or )}. 
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99. Let S(B[x]18) = {Collection of all polynomial subsets 

from B[x]18 = {
8

i

1
i

i 0
a x


 / ai  I[0, 23)  I[0, 40) = {(a, b) 

/ a  I[0, 23),  b  I[0, 40)}, x19= 1} be the MOD 
rectangular natural neutrosophic interval polynomial 
subset collection. 

 

 i) Study for {S(B[x]18), +} questions (i) to (vi) of 
problem (88). 

 ii) Study questions (i) to (viii) of problem (96) for 
{S(B[x]18), 0(or )}. 
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