
Generalized Partitions and New Ideas On 
Number Theory and Smarandache 

Sequences 
 
 
 
 
 

Editor’s Note 
 
 This book arose out of a collection of papers written by Amarnath Murthy. The papers 
deal with mathematical ideas derived from the work of Florentin Smarandache, a man 
who seems to have no end of ideas. Most of the papers were published in Smarandache 
Notions Journal and there was a great deal of overlap. My intent in transforming the 
papers into a coherent book was to remove the duplications, organize the material based 
on topic and clean up some of the most obvious errors. However, I made no attempt to 
verify every statement, so the mathematical work is almost exclusively that of Murthy.  
 
 I would also like to thank Tyler Brogla, who created the image that appears on the front 
cover. 
 
 
                                                                                          Charles Ashbacher 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Smarandache Repeatable Reciprocal Partition of Unity 
{2, 3, 10, 15} 

1/2 + 1/3 + 1/10 + 1/15 = 1  

 
 

Amarnath Murthy / Charles Ashbacher  
 



 1

 
AMARNATH MURTHY 

S.E.(E&T) 
WELL LOGGING SERVICES 

OIL AND NATURAL GAS CORPORATION LTD 
CHANDKHEDA 
AHMEDABAD 

GUJARAT- 380005 
INDIA 

 
CHARLES ASHBACHER 

MOUNT MERCY COLLEGE 
1330 ELMHURST DRIVE NE 

CEDAR RAPIDS, IOWA 42402 
USA 

 
 
 

GENERALIZED PARTITIONS AND SOME 
NEW IDEAS ON NUMBER THEORY AND 

SMARANDACHE SEQUENCES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hexis 
Phoenix 

2005 
 



 2

This book can be ordered in a paper bound reprint from: 
 
   Books on Demand  
   ProQuest Information & Learning 
   (University of Microfilm International) 
   300 N. Zeeb Road 
   P.O. Box 1346, Ann Arbor 
   MI 48106-1346, USA 
   Tel.: 1-800-521-0600 (Customer Service) 

 http://wwwlib.umi.com/bod/search/basic   
 

 
 
Peer Reviewers:  
1) Eng. Marian Popescu, Str. Spaniei, Bl. O8, Sc. 1, Ap. 14, Craiova, Jud. Dolj, Romania. 
2) Dr. Sukanto Bhattacharya, Department of Business Administration, Alaska Pacific 
University, U.S.A. 
3) Dr. M. Khoshnevisan, School of Accounting and Finance, Griffith University, Gold 
Coast, Queensland 9726, Australia.  
 
 
 
 
 
 
Copyright 2005 by Hexis., Amarnath Murthy and Charles Ashbacher 
 
 
Many books can be downloaded from the following  
E-Library of Science: 
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm    
 
 
 
 
 
Front cover image © Tyler Brogla and Charles Ashbacher  
 
 
 
 
 
ISBN: 1-931233-34-9 
Standard Address Number: 297-5092 
Printed in the United States of America 
 



 3

 
 

Editor’s Note 
 
 This book arose out of a collection of papers written by Amarnath Murthy. The papers 
deal with mathematical ideas derived from the work of Florentin Smarandache, a man 
who seems to have no end of ideas. Most of the papers were published in Smarandache 
Notions Journal and there was a great deal of overlap. My intent in transforming the 
papers into a coherent book was to remove the duplications, organize the material based 
on topic and clean up some of the most obvious errors. However, I made no attempt to 
verify every statement, so the mathematical work is almost exclusively that of Murthy.  
 
 I would also like to thank Tyler Brogla, who created the image that appears on the front 
cover. 
 
 
                                                                                          Charles Ashbacher 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4

 
 

Table of Contents 
 
Editor’s Note ………………….. …………………… 3 
Table of Contents …………………. …………………… 4 
Chapter 1  Smarandache 

Partition Functions 
………………. 11 

1.1 Smarandache 
Partition Sets, 
Sequences and 
Functions 

………………. 11 

1.2 A Program to 
Determine the 
Number of 
Smarandache 
Distinct Reciprocal 
Partitions of Unity 
of a Given Length 

………………. 16 

1.3 A Note On Maohua 
Le’s Proof of 
Murthy’s 
Conjecture On 
Reciprocal Partition 
Theory 

………………. 18 

1.4 Generalization of 
Partition Functions, 
Introduction of the 
Smarandache 
Partition Function 

………………. 19 

1.5 Open Problems and 
Conjectures On the 
Factor/Reciprocal 
Partition Theory 

………………. 28 

1.6 A General Result on 
the Smarandache 
Star Function 

………………. 30 

1.7 More Results and 
Applications of the 
Generalized 
Smarandache Star 
Function 

………………. 40 

1.8 Properties of the 
Smarandache Star 
Triangle 

……………….. 47 

1.9 Smarandache Factor ……………….. 50 



 5

Partitions Of A 
Typical Canonical 
Form 

1.10 Length/Extent of 
Smarandache Factor 
Partitions 

……………….. 55 

1.11 More Ideas On 
Smarandache Factor 
Partitions 

………………… 58 

1.12 A Note On the 
Smarandache 
Divisor Sequences 

………………… 61 

1.13 An Algorithm for 
Listing the 
Smarandache Factor 
Partitions 

………………… 62 

1.14 A Program For 
Determining the 
Number of SFPs 

………………… 64 

1.15 Chapter References ………………… 70 
    
Chapter 2 Smarandache 

Sequences 
………………… 72 

2.1 On the Largest Balu 
Number and Some 
SFP Equations 

………………… 72 

2.2 Smarandache Pascal 
Derived Sequences 

………………… 75 

2.3 Depascalization of 
Smarandache Pascal 
Derived Sequences 
and Backward 
Extended Fibonacci 
Sequence 

………………… 81 

2.4 Proof the the 
Depascalization 
Theorem 

………………… 83 

2.5 Smarandache 
Friendly Numbers 
and A Few More 
Sequences 

………………… 86 

2.6 Some New 
Smarandache 
Sequences, 
Functions and 
Partitions 

………………… 89 



 6

2.7 Smarandache 
Reverse Auto 
Correlated 
Sequences and 
Some Fibonacci 
Derived 
Smarandache 
Sequences 

………………… 94 

2.8 Smarandache Star 
(Stirling) Derived 
Sequences 

………………… 98 

2.9 Smarandache 
Strictly Staircase 
Sequence 

………………… 100 

2.10 The Sum of the 
Reciprocals of the 
Smarandache 
Multiplicative 
Sequence 

………………… 101 

2.11 Decomposition of 
the Divisors of A 
Natural Number 
Into Pairwise Co-
Prime Sets 

………………… 103 

2.12 On the Divisors of 
the Smarandache 
Unary Sequence 

………………… 106 

2.13 Smarandache Dual 
Symmetric 
Functions and 
Corresponding 
Numbers of the 
Type of Stirling 
Numbers of the First 
Kind 

………………… 108 

2.14 On the Infinitude of 
the Smarandache 
Additive Square 
Sequence 

………………… 110 

2.15 On the Infinitude of 
the Smarandache 
Multiplicative 
Square Sequence 

………………… 111 

2.16 Another 
Classification of the 
Ocean of 

………………… 113 



 7

Smarandache 
Sequences 

2.17 Pouring a Few 
Drops in the Ocean 
of Smarandache 
Sequences and 
Series 

………………… 114 

2.18 Smarandache 
Pythagoras Additive 
Square Sequence 

…………………. 118 

2.19 The Number of 
Elements the 
Smarandache 
Multiplicative 
Square Sequence 
and the 
Smarandache 
Additive Square 
Sequence Have in 
Common 

…………………. 120 

2.20 Smarandache 
Patterned Perfect 
Cube Sequences 

………………… 121 

2.21 The Smarandache 
Additive Cube 
Sequence is Infinite 

………………… 122 

2.22 More Examples and 
Results On the 
Infinitude of Certain 
Smarandache 
Sequences 

………………… 123 

2.23 Smarandache 
Symmetric 
(Palindromic) 
Perfect Power 
Sequences 

………………… 124 

2.24 Some Propositions 
On the 
Smarandache n2n 
Sequence 

………………… 126 

2.25 The Smarandache 
Fermat Additive 
Cube Sequence 

………………… 128 

2.26 The Smarandache 
nn2 Sequence 
Contains No Perfect 

………………… 130 



 8

Squares 
2.27 Primes in the 

Smarandache nnm 
Sequence 

………………… 132 

2.28 Some Ideas On the 
Smarandache nkn 
Sequence 

………………….. 133 

2.29 Some Notions On 
Least Common 
Multiples 

………………….. 134 

2.30 An Application of 
the Smarandache 
LCM Sequence and 
the Largest Number 
Divisible by All the 
Integers Not 
Exceeding Its rth 
Root 

………………….. 137 

2.31 The Number of 
Primes In the 
Smarandache 
Multiple Sequence 

………………….. 138 

2.32 More On the 
Smarandache 
Square and Higher 
Power Bases 

………………….. 139 

2.33 Smarandache Fourth 
and Higher 
Patterned/Additive 
Perfect Power 
Sequences 

………………….. 140 

2.34 The Smarandache 
Multiplicative Cubic 
Sequence and More 
Ideas on Digit Sums 

………………….. 142 

2.35 Smarandache Prime 
Generator Sequence 

………………….. 143 

2.36 Chapter References  145 
    
Chapter 3 Miscellaneous 

Topics 
…………………. 147 

3.1 Exploring Some 
New Ideas On 
Smarandache Type 
Sets, Functions and 
Sequences 

…………………. 147 



 9

3.2 Fabricating Perfect 
Squares With a 
Given Valid Digit 
Sum 

………………….. 155 

3.3 Fabricating Perfect 
Cubes With a Given 
Valid Digit Sum 

…………………… 157 

3.4 Smarandache 
Perfect Powers With 
Given Valid Digit 
Sum 

…………………… 161 

3.5 Numbers That Are a 
Multiple of the 
Product of Their 
Digits and Related 
Ideas 

…………………… 164 

3.6 The Largest and 
Smallest mth Power 
Whose Digit 
Sum/Product Is It’s 
mth Root 

………………….. 166 

3.7 A Conjecture on 
d(N), the Divisor 
Function Itself As A 
Divisor With 
Required 
Justification 

…………………. 168 

3.8 Smarandache 
Fitorial and 
Supplementary 
Fitorial Functions 

…………………. 171 

3.9 Some More 
Conjectures On 
Primes and Divisors 

…………………. 174 

3.10 Smarandache 
Reciprocal Function 
and An Elementary 
Inequality 

 176 

3.11 Smarandache 
Maximum 
Reciprocal 
Representation 
Function 

…………………. 178 

3.12 Smarandache 
Determinant 
Sequence 

…………………. 179 



 10

3.13 Expansion of xn in 
Smarandache Terms 
of Permutations 

…………………. 182 

3.14 Miscellaneous 
Results and 
Theorems on 
Smarandache Terms 
and Factor 
Partitions  

…………………. 187 

3.15 Smarandache-
Murthy’s Figures of 
Periodic Symmetry 
of Rotation Specific 
to an Angle 

………………… 192 

3.16 Smarandache Route 
Sequences 

…………………. 198 

3.17 Smarandache 
Geometrical 
Partitions and 
Sequences 

…………………. 200 

3.18 Smarandache Lucky 
Methods in Algebra, 
Trigonometry and 
Calculus 

…………………. 207 

3.19 Chapter References …………………. 210 
    
Index   212 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 11

Chapter 1 
Smarandache Partition Functions 

 
Section 1 

Smarandache Partition Sets, Sequences and Functions 
 
 Unit fractions are fractions where the numerator is 1 and the denominator is a natural 
number. Our first point of interest is in determining all sets of unit fractions of a certain 
size where the sum of the elements in the set is 1.  
 
Definition: For n > 0, the Smarandache Repeatable Reciprocal partition of unity for n 
(SRRPS(n)) is the set of all sets of n natural numbers such that the sum of the reciprocals 
is 1. More formally, 
                                                                     n 
SRRPS(n) = { x | x =(a1, a2, . . . ,an) where Σ 1/ar = 1 }. 
                                                                    r=1 
 
fRP(n) = order of the set SRRPS(n). 
 
For example,  
 
SRRPS(1) = { (1) }, fRP(1) = 1. 
SRRPS(2) = { (2,2)}, fRP(2) = 1.  (1/2 + 1/2  = 1). 
SRRPS(3) = { (3,3,3), (2,3,6), (2,4,4)}, fRP(3) = 3.   
SRRPS(4) = { (4,4,4,4), (2,4,6,12),(2,3,7,42),(2,4,5,20),(2,6,6,6),(2,4,8,8), 
                        (2,3,12,12),(4,4,3,6),(3,3,6,6),(2,3,10,15),(2,3,9,18)}, fRP(4) = 14. 
 
Definition: The Smarandache Repeatable Reciprocal Partition of Unity Sequence is the 
sequence of numbers 
 
SRRPS(1), SRRPS(2), SRRPS(3), SRRPS(4), SRRPS(5), . . .  
 
Definition: For n > 0, the Smarandache Distinct Reciprocal Partition of Unity Set 
(SDRPS(n)) is SRRPS(n) where the elements of each set of size n must be unique. More 
formally,  
                                                                     n 
SRRPS(n) = { x | x =(a1, a2, . . . ,an) where Σ 1/ar = 1  and ai = aj <=> i = j }. 
                                                                    r=1 
fDP(n) = order of SDRPS(n). 
 
For example: 
 
SRRPS(1) = { (1) }, fRP(1) = 1. 
SRRPS(2) = { }, fRP(2) = 0.   
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SRRPS(3) = { (2,3,6)}, fRP(3) = 1.   
SRRPS(4) = { (2,4,6,12),(2,3,7,42),(2,4,5,20), (2,3,10,15),(2,3,9,18)}, fRP(4) = 5. 
  
Definition: The Smarandache Distinct Reciprocal partition of unity sequence is the 
sequence of numbers fDP(n). 
 
Theorem:  
                n-1    
  fDP(n) ≥ ∑ fDP(k)  + (n2 – 5n +8)/2,   n > 3. 
               k=3   
 
Proof: 
The inequality will be established in two steps. 
 
Proposition A 
For every n, there exists a set of n distinct natural numbers, the sum of whose reciprocals 
is 1. 
 
Proof of proposition A: 
The proof is by induction on n. 
 
Basis step:  
n = 1, 1/1 = 1. 
 
Inductive step:  
Assume that the proposition is true for r. Then there is a set of distinct natural numbers 
 
a1 < a2 < . . . < ar 
 
such that 
 
1/a1 + 1/a2 + . . . + 1/ar = 1. 
 
Since   1/k = 1/(k+1) + 1/(k(k+1)), we can modify the original sequence to get 
 
a1 < a2 < . . . < ar-1 < ar-1 + 1 < ar-1(ar-1 + 1) = ar+1 
 
where the sum of the reciprocals is still one. Therefore, the proposition is also true for 
r+1. 
 
Therefore, by the principle of mathematical induction, the expression is true for all n. 
 
Note: If a1, a2, . . . , an-1 are n-1 distinct natural numbers given by the relation 
 
a1 = 2 
a2 = a1 + 1 
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a3 = a1a2 + 1 
. 
. 
. 
at = a1a2 . . . at-1 + 1 = at-1(at-1 – 1) + 1 
. 
. 
. 
an-2 = a1a2 . . . an-3 + 1 
an-1 = a1a2 . . . an-2 
 
then the numbers form a set of (n-1) distinct natural numbers such that the sum of the 
reciprocals is one.  
 
Definition: A set of numbers defined in the manner of the sequence above is called a 
Principle Reciprocal Partition. 
 
Note: It is easy to prove that the elements of a Principle Reciprocal Partition satisfy the 
congruences 
 
a2t ≡ 3 mod(10) and a2t+1 ≡ 7 mod(10), for t ≥ 1. 
 
 Consider the principle reciprocal partition for n-1 numbers. Each at contributes one to  
fDP (n) if broken into at + 1, at (at + 1)  except for  t = 1. (since 2, if broken into 3 and 6, 
yields 1/2 =1/3 + 1/6, the number 3 is repeated  and  the condition of all numbers being 
distinct is not fulfilled). There is a contribution of n - 2 from the principle set to fDP (n). 
The remaining fDP (n- 1) -1 members  (excluding the principle partition) of SDRPS(n-1) 
would contribute at least one  each to fDP (n) (breaking the largest number  in each such 
set into two parts) . The contribution to fDP (n) is therefore at least 
 
n-2 + fDP(n-1) – 1 = fDP(n-1) + n –3 
 
    fDP(n) ≥ fDP(n-1) + n - 3. 
 
Also for each member (b1 , b2 , . . . , bn-1 ) of SDRPS(n-1)  there exists  a member of 
SDRPS(n)  i.e. (2, 2b1 , 2b2 , . . . ,2bn-1 ) as we can see that  
 
1 = (1/2)(1+ 1/b1   + 1/b2   + . . .+ 1/bn-1) = 1/2  +1/2b1  +.  .  . +  1/2bn-1. 
 
In this way, there is a contribution of fDP(n-1) to fDP(n).  
 
 Taking into account all these contributions to fDP(n), we get  
 
fDP (n) ≥   fDP (n-1) + n - 3  + fDP (n-1) 
 
fDP (n) ≥  2fDP (n-1) + n - 3  
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fDP (n) – fDP (n-1) ≥   fDP (n-1) + n – 3. 
 
 Replacing n in the last formula by n-1, n-2 and so forth, we get 
 
fDP (n-1) – fDP (n-2) ≥  fDP (n-2) + n - 4 
 
fDP (n-2) – fDP (n-3) ≥   fDP (n-3) + n - 5 
. 
. 
. 
fDP (4) – fDP (3) ≥  fDP (3) + 1. 
 
Summing up all the above inequalities, we have 
 
                            n-1             n-1 
fDP(n) – fDP(3) ≥  ∑ fDP(k) + ∑ r 
                           k=3             r=1 
 
                n-1              
fDP(n)  ≥  ∑ fDP(k) + ((n-3)(n-2))/2 + 1 
               k=3              
 
                n-1              
fDP(n)  ≥  ∑ fDP(k) + (n2 – 5n + 8)/2, n > 3. 
               k=3              
 
Remark: It should be possible to come up with a stronger result, as I believe that there 
should be more terms on the right. The reason for this belief will be clear from the 
following theorem. 
 
Theorem: Let m be a member of an element of SRRPS(n), say m = ak, from  
(a1, a2, . . . , an) and by definition 
             n 
            ∑ 1/ak = 1. 
           k=1 
 
The m contributes [(d(m) + 1)/2] elements to SRRPS(n+1), where [ ] represents the 
integer value and d(m) the number of divisors of m. 
 
Proof: For each divisor d of m, there is a corresponding divisor m/d = d’.  
 
Case-I:  m is not a perfect square. Then d(m) is even and there are d(m)/2 pairs of the 
type (d,d') such that  dd' = m.   
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Consider the following identity  
 
1/(p*q)  = 1/(p(p +q))   + 1/(q(p+q))   
 
for each divisor pair  (d,d')  of m we have the following breakup 
 
1/(d*d')   =  1/(d(d+d'))  +  1/(d'(d+d')). 
 
 Hence, the contribution of m to SRRPS(n+1) is d(m)/2. As d(m) is even  
d(m)/2 = [(d(m)+1)/2] as well. 
 
Case-II  m is a perfect square. In this case d(m) is odd  and there is a divisor pair    
d=d' = m1/2 . This will contribute one to SRRPS(n+1).The remaining (d(m) –1)/2 pairs of 
distinct divisors would each contribute one, making the total contribution  
((d(m) –1)/2). Therefore, the total number in this case would be 
  
(d(m) –1)/2  +  1  =  (d(m) +1)/2  =[ (d(m) +1)/2]. 
 
Hence m contributes [(d(m) + 1)/2 ] elements to SRRPS(n+1) and the proof is complete. 
 
Remarks: 
 

1) The total contribution to SRRPS(n+1) by any element of SRRPS(n) is 
 
∑ [(d(ak) + 1)/2] 
 
where each ak is considered only once irrespective of its repeated occurrence. 
 

2) For SDRPS(n+1), the contribution by any element of SDRPS(n) is given by 
 
∑ [d(ak)/2] 
 
because the divisor pair d = d’ = ak does not contribute. 
 
 Hence, the total contribution of SDRP(n) to generate SDRPS(n+1) is the summation 
over all the elements of SDRPS(n). 
              n 
  ∑   [ ∑ (d(ak)/2)]. 
fDP(n)   k=1 
 
Generalization: 
It is possible to generalize these results by considering the following identity 
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   1                              1                     1                         1 
              =                               +                      + 
pqr                       pq(p+q+r)      qr(p+q+r)            rp(p+q+r) 
 
which also suggests 
 
       1                             r           r                r 
                           =       ∑ [ (    П    bt ) ( ∑ bs ) ]-1    
b1b2 . . . br                   k=1   t=1,t≠k         s=1 
 
 
It is easy to establish this identity by summing up the elements on the right side. From 
this formula, the contribution of the elements of SDRPS(n) to SDRPS(n+r) can be 
evaluated if answers to the following open problems can be found. 
 
Open problems: 
(1) In how many ways can a number be expressed as the product of 3 of its divisors? 
 
(2) In general in how many ways can a number be expressed as the product of r of its' 
divisors?  
 
(3) In how many ways can a number be expressed as the product of its divisors?  
 
Any attempt to find answers to the above questions leads to the need for the 
generalization of the theory of the partition function.  
 

Section 2 
 

A Program to Determine the Number of Smarandache Distinct 
Reciprocal Partitions of Unity of a Given Length 

 
 The previous section introduced the Smarandache distinct reciprocal partition of unity 
and demonstrated some properties. In this section, a computer program written in the C 
language will be presented.  
 
/* This is a program for finding number of distinct reciprocal partitions of unity of a 
given length written by  K Suresh, Software expert, IKOS , NOIDA , INDIA. */ 
 
#include<stdio.h> 
#include<math.h> 
unsigned long TOTAL; 
 
FILE* f; 
long double array[100]; 
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unsigned long count = 0; 
 
void try(long double prod, long double sum, unsigned long pos) 
{ 
  if( pos == TOTAL - 1 ) 
  { 
  // last element.. 
  long double diff = prod - sum; 
  if( diff == 0 ) return; 
 
  array[pos] = floorl(prod / diff); 
  if( array[pos] > array[pos-1] && array[pos] * diff == prod ) 
  { 
     fprintf(f, "(%ld) %ld", ++count,(unsigned long)array[0]); 
     int i; 
     for(i = 1; i < TOTAL; i++) fprintf(f,", %ld", (unsigned long)array[i]); 
     fprintf(f, "\n"); 
     fflush(f); 
  } 
  return; 
  } 
  long double i; 
  if( pos == 0) 
    i = 1; 
  else 
    i = array[pos-1]; 
 
  while(1) { 
   i++; 
   long double new_prod = prod * pow(i, TOTAL-pos); 
   long double new_sum = (TOTAL-pos) * (new_prod / i); 
   unsigned long j; 
   for(j = 0; j < pos; j++) new_sum += new_prod / array[j]; 
   if( new_sum < new_prod ) 
   break; 
 
   new_prod = prod * i; 
   array[pos] = i; 
   new_sum = prod + sum * i; 
   if( new_sum >= new_prod ) continue; 
 
   try(new_prod, new_sum, pos+1); 
  } 
  return; 
} 
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main() 
{ 
 printf("Enter no of elements ?"); 
 scanf("%ld", &TOTAL); 
 char fname[256]; 
 sprintf(fname, "rec%ld.out", TOTAL); 
 f = fopen(fname, "w"); 
 fprintf(f, "No of elements = %ld.\n", TOTAL); 
 
 try(1, 0, 0); 
 fflush(f); 
 fclose(f); 
 printf("Total %ld solutions found.\n", count); 
 
 return 0; 
}  
 
 Using this program, the following table of data was accumulated. 
 
Length Number of Distinct Reciprocal Primes 
1 1 
2 0 
3 1 
4 6 
5 72 
6 2320 
7 245765 
 
 

Section 3 
 

A Note On Maohua Le’s Proof Of Murthy’s Conjecture On Reciprocal 
Partition Theory 

 
 In [4], Maohua Le attempted to prove the conjecture that there are infinitely many 
disjoint sets of positive integers the sum of whose reciprocals is equal to one. He 
misunderstood the conjecture, perhaps due to inadequate wording. What he actually 
proved was the proposition that for every n there exists a set of n distinct natural numbers 
the sum of whose reciprocals is one.  
 
 I would like to clarify and restate the conjecture using the following example.  
 
Let A = { a1, a2, . . . , ar } and B = { b1, b2, . . . , bs } be two sets such that  
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    r                         s 
   ∑  1/ak   =  1 =  ∑ 1/bk 
  k=1                     k=1     
 
with A ∩ B = ø. 
 
The conjecture is that there are infinitely many disjoint sets of the type A or B.  
 
Example: 
 
A = { 2, 3, 7, 42 },  B = { 4, 5, 6, 8, 9, 12, 20, 72}. 
 

Section 4 
 
Generalization of Partition Function, Introduction of the Smarandache 

Factor Partition 
 
 The partition function P(n) is defined as the number of ways that a positive integer can 
be expressed as the sum of positive integers. Two partitions are not considered different 
if they differ only in the order of their summands. Many results concerning the partition 
function were discovered using analytic functions by Euler, Jacobi, Hardy, Ramanujan 
and others. Other properties of the function involving congruences are also known. 
 
 In the previous sections, the concept of the Smarandache Reciprocal Partitions of unity 
was introduced. One of the problems considered was the number of ways in which a 
number can be expressed as the product of its divisors. In this section, we will examine 
some generalizations of the concept of partitioning a number. 
 
Definition: Let α1, α2, . . . , αr be a set of natural numbers and p1, p2, . . . ,pr a set of 
arbitrary primes. The Smarandache Factor Partition (SFP) of (α1, α2, . . . , αr) ,  
F(α1, α2, . . . , αr) is defined as the number of ways in which the number 
 
N =  p1

α1  p2
α2 . . . pr

αr 
 
can be expressed as the product of its’ divisors. 
 
Example: With the set of primes, (2,3), F(1,2) = 4 , as 
 
N = 21 * 32 = 18 
 
(1) N = 18   (2) N = 2*9  (3) N = 3*6   (4) N = 2*3*3. 
 
 It is a consequence of the definition of SFP and factors that F(α1,α2) =  F(α2,α1) and in 
general the order of the αi in  (α1, α2, . . . , αr) is immaterial. Also, the primes  p1, p2, . . . 
,pr can be chosen arbitrarily.  
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Theorem: F(m) = P(m), where P(m) is the number of addition partitions of m. 
 
Proof: Let p be any prime, N = pm and m = x1 + x2 + . . . + xn be an addition partition of 
m. Then,  
 
N = (px1)(px2) . . . (pxn) is a SFP of N, i.e. each partition of m contributes one SFP.  
 
Also, let one of the SFP of N be 
 
N = (N1)(N2) . .  . (Nk). Each Ni has to be of the form Ni = pai. 
 
Let N1 = pa1, N2 = pa2,  . . . , pak. Then  
 
N = (pa1)(pa2) . . . (pak) = p(a1+a2+…+ak)  => m = a1 + a2 + . . . + ak 
 
which gives a partition of m. Obviously, each SFP of N gives one unique partition of m. 
Therefore, since each approach yields one SFP,  
     
  F(m) = P(m).     
                                   α    
Theorem:   F(α,1) =  Σ P(k) 
                                  k=0 
 
Proof: Let N = p1

α p2, where p1, p2 are arbitrarily chosen primes.  
 
Case 1: Writing N = (p2) p1

α, keeping p2 as a separate entity, (one of the factors in the 
factor partition of N), by the previous theorem would yield P(α) Smarandache factor 
partitions.  
 
Case 2: Writing N = (p1p2)p1

α-1 keeping (p1p2) as a separate entity (one of the factors of 
SFP of N) would yield P(α-1) SFPs. 
 
. 
 
. 
 
. 
 
Case r: In general, writing N = (p1

r p2)pα-r and keeping (p1
r p2) as a separate entity would 

yield P(α-r) SFPs.  
 
Contributions towards F(N) in each of the cases are mutually disjoint as p1

rp2 is unique 
for a given r, which ranges from 0 to α, which is exhaustive.  
 
Therefore,  
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                α    
F(α,1) =  Σ P(α-r) 
              r=0 
 
Let α – r = k, r = 0 => k = α,  r = α => k = 0. 
               0 
F(α,1) = Σ  P(k) 
             k=α 
 
 
               α 
F(α,1) = Σ  P(k) 
             k=0 
 
which completes the proof. 
 
Examples: 

I. F(3) = P(3) = 3, Let p = 2, N = 23 = 8. 
 

(1) N = 8, (2) N = 4*2, (3) N = 2*2*2. 
 
                                 4 

II. F(4,1) = Σ P(k) = P(0) + P(1) + P(2) + P(3) + P(4) 
                         k=0 

 
                             = 1 + 1 + 2 + 3 + 5 = 12. 
 
Let N = 24 * 3 = 48, where p1 = 2, p2 = 3. 
 
The Smarandache factor partitions of 48 are 
 
(1) N = 48 
(2) N = 24 * 2 
(3) N = 16 * 3 
(4) N = 12 * 4 
(5) N = 12 * 2 * 2 
(6) N = 8 * 6 
(7) N = 8 * 3 * 2 
(8) N = 6 * 4 * 2 
(9) N = 6 * 2 * 2 * 2  
(10) N = 4 * 4 * 3  
(11) N = 4 * 3 * 2 * 2  
(12) N = 3 * 2 * 2 * 2 * 2 
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Definitions: For simplicity, we will use the following abbreviations: 
 

1) F(α1, α2, . . . , αr) = F’(N), where 
 
N = p1

α1p2
α2 . . . pr

αr . . . pn
αn 

 
and pr is the rth prime. In other words, p1 = 2, p2 = 3, and so forth. 
 

2) For the case where N is a square-free number,  
 
F(1, 1, 1, . . . , 1) = F(1#n). 
          n ones 
 
Examples: 
F(1#2) = F(1,1) = F’(6) = 2, 6 = 2*3 = p1*p2. 
F(1#3) = F(1,1,1) = F’(2*3*5) = F’(30) = 5. 
 
Definition: The Smarandache Star Function F’*(N) is defined as 
      
F’*(N) =  Σ F’(dr), where dr | N.  
               d|N 
 
In other words, F’* = sum of F’(dr) over all the divisors of N.  
 
Example: N = 12, the divisors are 1, 2, 3, 4,  6 and 12.  
 
F’*(12) = F’(1) + F’(2) + F’(3) + F’(4) + F’(6) + F’(12) = 1 + 1 + 1 + 2 + 2 + 4 =11. 
 
Theorem:  
                         F’*(N) = F’(Np), (p,N) = 1, p is prime. 
 
Proof: By definition 
 
            F’*(N) = Σ F’(dr), where dr | N. 
                          d|N 
 
Consider dr, a divisor of N, clearly Np = dr(Np/dr). Let (Np/dr) = g(dr), then  
N = dr*g(dr) for any divisor dr of N, g(dr) is unique, i. e.  
 
di = dj  <=> g(di) = g(dj). 
 
Considering g(dr) as a single term (an entity, not further split into factors) in the SFP of 
N*p, one gets F’(dr) SFPs. Each g(dr) contributes F’(dr) factor partitions.  
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The condition p does not divide N implies that g(di) ≠ dj for any divisor, because p 
divides g(di) and p does not divide dj. 
 
This ensures that the contribution towards F’(Np) from each g(dr) is distinct and there is 
no repetition. Summing over all g(dr)’s we get 
 
          F’(Np) = ∑ F’(dr) 
                         d|N 
 
or 
 
               F’*(N) = F’(Np) 
 
which completes the proof of the theorem.  
 
 The result that  F’*(N) = F’(Np), (p,N) = 1, p is prime can be used to prove that  
               α 
F(α,1) = Σ  P(k). 
             k=0 
 
To see this, start with N = pαp1 then F(α,1) = F’(pα * p1) and from the previous theorem 
 
   F’(pα * p1) = F’*(pα) = Σ F’(dr). 
                                       d|pα 
 
The divisors of pα are p0, p1, . . . ,pα , so 
 
F’(pα p1) = F’(p0) + F’(p1)  + . . . + F’(pα) = 
 
                   P(0) + P(1) + P(2) + . . . + P(α-1) + P(α)  or 
                α 
 F(α,1) = Σ  P(k).       
              k=0 
                                         n 
Theorem: F(1#(n+1)) = Σ  nCr F(1#r) 
                                       r=0 
 
where nCr is the number of ways r objects can be selected from a set of n objects without 
regard to order. 
 
Proof: By the previous theorem, F’(Np) = F’*(N), where p does not divide N. Consider 
the case N = p1p2 . . . pn. We have F’(N) = F(1#n) and F’(Np) = F(1#(n+1)) as p does not 
divide N. Combining these expressions, we have 
 
 F(1#(n+1)) = F’*(N).  (*) 
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The number of divisors of N of the form p1p2 . . . pr, (containing exactly r primes) is nCr. 
Each of the nCr divisors of the type p1p2 . . . pr has the same number of SFPs, namely 
F(1#r). Hence 
                   n 
   F’*(N) = Σ  nCr F(1#r)  (**) 
                r=0 
 
From (*) and (**), we have 
                          n 
   F(1#(n+1)) = Σ  nCr F(1#r)  and the proof is complete.  
                        r=0 
 
Note that F(1#n) is the nth Bell number. 
 
Examples:    
F(1#0) = F’(1) = 1 
F(1#1) = F’(p1) = 1 
F(1#2) = F’(p1p2) = 2 
F(1#3) = F’(p1p2p3) = 5 
 
(i)    p1 p2 p3 
(ii)  (p1 p2) *p3 
(iii) (p1p3) * p2 
(iv) (p2p3) * p1 
(v) p1 * p2 * p3  
 
 Applying the previous theorem to F(1#4) 
                3 
F(1#4) = Σ  nCr F(1#r)                 
             r=0 
 
F(1#4) =  3C0 F(1#0) +  3C1 F(1#1) + 3C2 F(1#2) + 3C3 F(1#3) 
 
            = 1*1 + 3 * 1 + 1 * 5  = 15 
 
F(1#4) = F’ (2*3*5*7) = F’(210) = 15. 
 
(i) 210 
(ii) 105 * 2 
(iii) 70 * 3 
(iv) 42 * 5 
(v) 35 * 6  
(vi)  35 * 3 * 2 
(vii) 30 * 7 
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(viii) 21 * 10  
(ix) 21 * 5 * 2 
(x) 15 * 14  
(xi) 15 * 7 * 2 
(xii) 14 * 5 * 3 
(xiii) 10 * 7 * 3 
(ixv) 7 * 6 * 5  
(xv)     7 * 5 * 3 * 2. 
 
Along similar lines, one can obtain  
 
F(1#5) = 52, F(1#6) = 203, F(1#7) = 877, F(1#8) = 4140, F(1#9) = 21,147. 
 
Definition:  
 
           F’**(N) = Σ F’*(dr) 
                          dr|N 
 
where dr ranges over all the divisors of N. 
 
 If N is a square-free number with n prime factors, we will use the notation 
 
            F’**(N) = F**(1#N). 
 
Examples: 
                     F’**(p1p2p3) = F**(1#3) = Σ F’(dr) 
                                                            dr|N 
 
= 3C0 F’*(1) + 3C1 F’*(p1) + 3C2 F’*(p1p2) + 3C3 F’*(p1p2p3) 
 
F**(1#3) = 1 + [3F’(1) + F’(p1)] + 3[F’(1) + 2F’(p1) + F’(p1p2)] + 
                 [F’(1) + 3F’(p1) 3F’(p1p2) + F’(p1p2p3)] 
 
F**(1#3) = 1 + 6 + 15 + 15 = 37. 
 
An interesting observation is 
 
(1)   F**(1#0)   + F(1#1)   =  F(1#2) 
or         
 F**(1#0)   + F*(1#0) =  F(1#2) 
 
(2) F**(1#1)   + F(1#2)   =  F(1#3) 
or 
 F**(1#1)   + F*(1#1)  =  F(1#3) 
 
(3)  F**(1#5)   + F(1#6)   =  F(1#7) 
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or  
 F**(1#5)   + F*(1#5)   =  F(1#7). 
 
which suggests the possibility that  
 
F**(1#n) + F*(1#n) = F(1#(n+2)). 
 
A stronger proposition 
 
F’(Np1p2) = F’*(N)  + F’**(N) 
 
is established in the next theorem. 
 
Definition:  
 
                F’n*(N) = Σ  F’(n-1)*(dr)     n > 1   
                              dr|N 
 
where F’*(N) = Σ  F’(dr) 
                        dr|N 
 
and dr ranges over all the divisors of N. 
 
Theorem:  
 
       F’(Np1p2) = F’(N) + F’**(N). 
 
Proof: By previous theorem, we know that 
 
 F’(Np1p2) = F’*(Np1). 
 
Let d1, d2, d3, . . . , dn be all the divisors of N. The divisors of Np1 would be  
 
d1, d2, d3, . . . , dn 
d1p1, d2p1, d3p1, . . . , dnp1  
 
F’*(Np1) = [F’(d1) + F’(d2) + . . . F’(dn)] +[ F’(d1p1) + F’(d2p1) + . . . + F’(dnp1)] 
 
= F’*(N) + [F’*(d1) + F’*(d2) + . . . + F’*(dn)]. 
 
F’*(Np1) = F’*(N) + F’**(N)  (by definition) 
 
               = F’*(N) + F’2*(N).  
 
Which completes the proof. 
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Theorem:  
 
  F’(Np1p2p3) = F’*(N) + 3F’2*(N) + F’3*(N). 
 
Proof: By a previous theorem, we have F'(Np1p2p3) = F'*(Np1p2). 
Let d1, d2, d3, . . . , dn be all the divisors of N. The divisors of Np1p2 would be  
 
d1, d2, d3, . . . , dn 
d1p1, d2p1, d3p1, . . . , dnp1  
d1p2, d2p2, d3p2, . . . , dnp2 
d1p1p2, d2p1p2, d3p1p2, . . . , dnp1p2. 
 
Therefore,  
 
F’*(Np1p2) = [F’(d1) + F’(d2) + F’(d3) + . . . + F’(dn)] + 
                     [F’(d1p1) + F’(d2p1) + . . . + F’(dnp1) ] + 
 
                     [F’(d1p2) + F’(d2p2) + . . . + F’(dnp2) ] + 
 
                     [F’(d1p1p2) + F’(d2p1p2) + . . . + F’(dnp1p2) ] 
 
 = F’*(N) + 2[F’*(d1) + F’*(d2) + . . . + F’*(dn)] + S 
 
where S = [F’(d1p1p2) + F’(d2p1p2) + . . . + F’(dnp1p2) ]. 
 
Applying the previous theorem, we get 
 
 F’(d1p1p2) = F’*(d1) + F’**(d1) 
 F’(d2p1p2) = F’*(d2) + F’**(d2) 
 . 
 . 
 . 
F’(dnp1p2) = F’*(dn) + F’**(dn).  
 
Summing up these expressions, we have 
 
S = F’2*(N) + F’3*(N). 
 
Substituting this value of S and also taking 
 
F’*(d1) + F’*(d2) + . . . + F’*(dn) = F’2*(N) 
 
we get, 
 
F’(Np1p2p3) = F’*(N) + 2F’2*(N) + F’2*(N) + F’3*(N)    
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F’(Np1p2p3) = F’*(N) + 3F’2*(N) + F’3*(n).  
 
This completes the proof. 
 
 This result, which is a beautiful pattern, can be further generalized.  
 

Section 5 
 

Open Problems and Conjectures On the Factor/Reciprocal Partition 
Theory 

 
In this chapter, we present some open problems and conjectures related to the 
Smarandache Factor Partition function. 
 
Problems:  
 
1) To derive a formula for SFPs of  a given length   m  for N = pa qa  for   
 
any value of  a.   
 
2) To derive a formula for  SFPs of  
 
          N  =  p1

2 p2
2 p3

2   . . .   pr
2 

 
3) To derive a formula for  SFPs of  a given length   m  of 
      
  N  =  p1

a p2
a p3

a   . . .   pr
a . 

 
4) To derive a reduction formula for pa qa  as a linear  
 
combination of pa-r qa-r  for  r =0  to  a-1. 
 
Derive similar reduction formulae for   (2) and  (3) as well. 
 
5) In general, in how many ways can a number be expressed as the product of its 
divisors? 
 
6) Every positive integer can be expressed as the sum of the reciprocal of a finite number 
of distinct natural numbers. (in infinitely many ways.). 
 
 Define a function Rm(n) as the minimum number of natural numbers required for such an 
expression.  
 
7) Determine if every natural number can be expressed as the sum of the reciprocals of a 
set of natural numbers that are in Arithmetic Progression. 
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(8). Let Σ 1/r   ≤   n  ≤  ∑   1/(r+1)   
 
 where  ∑ 1/r  stands for the sum of the reciprocals of the first r natural numbers and let    
 
S1  =    ∑   1/r 
 
S2  =  S1  + 1/(r+k1)  such that S2  + 1/(r+k1+1)  >  n  ≥  S2  
 
S3  =  S2 + 1/(r+k2)   such that S3  + 1/(r+k2+1)  >  n  ≥  S3 
 
and so on.   
 
Continuing this sequence, after a finite number of iterations m,    
 
Sm+1   + 1/(r+km)  = n. 
 
Remark: The validity of problem (6)  is deducible from problem (8) . 
 
9). (a) There are infinitely many disjoint sets of natural numbers the sum of whose 
reciprocals is unity. 
 
(b) Among the sets mentioned in (a), there are sets which can be organized in an order 
such that  the largest element of any set is smaller than the smallest element of  the next 
set.  
 
Definition: The Smarandache Factor Partition Sequence is defined in the following way: 
 
Tn  =  factor partition of  n = F'(n).  
 
For example, 
 
T1  = 1, T8 = 3,   T12 = 4 etc. 
 
SFPS is given by  
 
1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5, 1,4,1,4,2,2,1,7,2, . . .,  
 
Definition: For n a natural number, let S be the smallest number such that F'(S) =  n. 
These numbers will be called Vedam Numbers and the sequence formed by the Vedam 
numbers is the Smarandache Vedam Sequence. 
 
The Smarandache Vedam Sequence is given as follows:Tn  = F'(S) 
 
1, 4, 8, 12, 16, -?- , 24 , .  . . 
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Note: There is no number whose factor partition is 6, hence the question mark in that 
position. We will call such numbers Dull numbers. The reader is encouraged to explore 
the distribution, frequency and other properties of Dull numbers. 
 
Definition: A number is said to be a Balu number if it satisfies the relation  
d(n) = F’(n) = r and is the smallest such number.  
 
Examples: 1, 16, 36 are all Balu numbers.  
 
d(1) = F’(1) = 1, d(16) = F’(16) = 5, d(36) = F’(36) = 9.  
 
Each Balu number ≥ 16, generates a Balu Class CB(n) of numbers having the same 
canonical form satisfying the equation 
 
d(m) = F'(m).  
 
For example: 
 
CB(16) = { x | x = p4 , p is a prime.} = { 16, 81, 256, . . .}. Similarly   
CB(36) = { x | x = p2 q2 , p and q are primes.}   
 
Conjecture: 
10):  There are only a finite number of Balu Classes. If this is true, find the largest Balu 
number. 
 

Section 6 
 

A General Result on the Smarandache Star Function 
 
Theorem:  
                                                       n 
 F’(N@1#n) = F’(Np1p2 . . .pn) = ∑ [a(n,m) F’m*(N)] 
                                                    m=0 
where 
                          m 
   a(m,n) = (1/m!) ∑  (-1)m-k  mCk kn 
                         k=1 
 
Proof:  
Let the divisors of N be d1, d2, . . . ,dk. Take the divisors of (Np1p2…pn) and arrange them 
as follows: 
 
d1, d2, . . . ,dk  call these type 0 
d1pi, d2pi, . . . ,dkpi  call these type 1 
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d1pipj, d2pipj, d3pipj, . . . , dkpipj call these type 2 
 . . . .  
d1pi  pj, d2pi  pj, d3pi  pj, . . . , dkpi  pj  where each term has t primes. Call these type t. 
. . . .  
d1p1 . . . pn, d2p1 . . . pn, . . . , dkp1 . . . pn, call these type n. 
 
There are nC0 divisors of type 0. 
There are nC1 divisors of type 1. 
. . .  
There are nCt divisors of type t. 
… 
There are nCn divisors of type n. 
 
Let Np1p2 . . .pn = M. Then  
 
F*(M) = nC0[Sum of the factor partitions of all the divisors of row 0] + 
                     nC1[Sum of the factor partitions of all the divisors of row 1] + 
                     nC2[Sum of the factor partitions of all the divisors of row 2] + 
              . . . + 
              nCt[Sum of the factor partitions of all the divisors of row t] + 
                . . . + 
                    nCn[Sum of the factor partitions of all the divisors of row n]. 
 
Consider the contributions of the divisor sets one by one.  
 
Row 0 contributes 
 
F’(d1) + F’(d2) + . . . + F’(dn) = F’*(N). 
 
Row 1 contributes 
 
     [F’(d1p1) + F’(d2p1) + F’(d3p1) + . . . + F’(dkp1) ] 
 
=  [F’*(d1) + F’*(d2) + F’*(d3) + . . . + F’*(dk) ] 
 
= F’2*(N). 
 
Row 2 contributes 
 
 [ F’(d1p1p2) + F’(d2p1p2) + . . .+ F’(dkp1p2) ]. 
 
Applying the theorem F’(Np1p2p3) = F’*(N) + 3F’2*(N) + F’3*(N) on each of the terms, 
 
 F’(d1p1p2) = F’*(d1) + F’**(d1)  
 F’(d2p1p2) = F’*(d2) + F’**(d2) 
  . . .  
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 F’(dkp1p2) = F’*(dk) + F’**(dk). 
 
After summing these rows, we have 
 
  F’2*(N) + F’3*(N). 
 
At this point, we will write the coefficients in the form a(n,r), for example 
 
F’(N@1#r) = a(r,1)F’*(N) + a(r,2)F’2*(N) + . . . + a(r,t)F’t*(N) + . . . + a(r,r)F’r*(N). 
 
Consider row t, one divisor set 
 
d1p1p2…pt, d2p1p2…pt, . . . , dkp1p2…pt  
 
and we have  
 
F’(d1@1#t) = a(t,1)F’*(d1) + a(t,2)F’2*(d1) + . . . + a(t,t)F’t*(d1) 
 
F’(d2@1#t) = a(t,1)F’*(d2) + a(t,2)F’2*(d2) + . . . + a(t,t)F’t*(d2) 
. . .  
F’(dk@1#t) = a(t,1)F’*(dk) + a(t,2)F’2*(dk) + . . . + a(t,t)F’t*(dk). 
 
Summing up both sides column wise, we get for row t or divisors of type t one of the nCt 
divisor sets contributes 
 
a(t,1)F’2*(N) + a(t,2)F’3*(N) + . . . + a(t,t)F’(t+1)*(N). 
 
Similarly for row n we have 
 
 a(n,1)F’2*(N) + a(n,2)F’3*(N) + . . . + a(n,n)F’(t+1)*(N).  
 
 All the divisor sets of type 0 contribute 
 
      nC0 a(0,0) F’*(N) factor partitions. 
 
All the divisor sets of type 1 contribute 
 
      nC1 a(1,1) F’*(N) factor partitions. 
 
All the divisor sets of type 2 contribute 
 
      nC2 [ a(2,1) F’2*(N) + a(2,2) F’3*(N)]    factor partitions. 
 
All the divisor sets of type 3 contribute  
 
nC3 [a(3,1) F’2*(N) + a(3,2) F’3*(N) + . . . + a(3,3) F’4*(N) ] 
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All of the divisor sets of type t contribute 
 
nCt [a(t,1) F'2*(N)  +  a(t,2) F'3*(N)  +. . . +  a(t,t) F'(t+1)*(N)] 
 
All of the divisor sets of type n contribute 
 
nCn [a(n,1) F'2*(N)  +  a(n,2) F'3*(N)  +. . . +  a(n,n) F'(n+1)*(N)] 
 
 Summing up the contributions from the divisor sets of all types and considering the 
coefficient of F’m*(N) for m=1 to (n+1), we get the coefficient of  
 
F’*(N) = a(0,0) = a(n+1,1). 
 
The coefficient of F’2*(N) 
 
=  nC1 a(1,1) + nC2 a(2,1)  + nC3 a(3,1) + . . .  nCt a(t,1)  + . . . + nCn a(n,1) 
 
=  a(n+1,2). 
 
The coefficient of F’3*(N) is 
 
=  nC2 a(2,2) + nC3 a(3,2)  + nC4 a(4,2) + . . .  nCt a(t,2)  + . . . + nCn a(n,2) 
 
= a(n+1,3). 
 
The coefficient of F’m*(N) is 
 
a(n+1,m) =  nCm-1 a(m-1,m-1) + nCm a(m,m-1)  + nC4 a(4,2) +. . . + nCn a(n,m-1). 
 
The coefficient of F’n+1*(N) is 
 
a(n+1,m+1) =  nCn a(n,n) = nCn * n-1Cn-1 a(n-1,n-1) =  nCn * n-1Cn-1 . . . 2C2 a(1,1) =  
 
1. 
 
Consider  a(n+1,2) =  
                  
  =  nC1a(1,1)  + nC2a(2,1)  + . . . + nCta(t,1)  + . . . + nCna(n,1)   
 
   = nC1 + 

nC2 + . . . + nCn  
 
  = 2n –1 = (2n+1 – 2)/2. 
 
Consider  a(n+1,3) = 
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  =  nC2a(2,2)  + nC3a(3,2)  + . . . + nCta(t,2)  + . . . + nCna(n,2)  
 
 =  nC2(21 – 1) + nC3(22 – 1) + nC4(23 – 1) + . . . + nCn(2n-1 – 1) 
 
 =  nC2(21) + nC3(22) + . . . + nCn(2n-1) – [ nC2 + nC3 + . . . + nCn] 
                                                                      n 
 = (1/2)[ nC2(22) + nC3(23) + . . . + nCn(2n) - ∑  nCr  - nC1 - nC0 
                                                                    r=0 
                 n 
 = (1/2) [ ∑ nCr 2r - nC1 21 - nC0 20 ] – [ 2n – n –1] 
               r=0 
 
 = (1/2) [ 3n – 2n – 1] – 2n + n + 1 
 
 = (1/2) [3n – 2n+1 – 1] 
 
 = (1/3!)[ 1*3n+1 – 3*2n+1 + 3*1n+1 – (1) 0n+1 ]. 
 
Evaluating a(n+1,4) 
 
a(n+1,4) = nC3a(3,3)  + nC4a(4,3) + . . . + nCna(n,3)  
 
= nC3(32 + 1 – 23)/2  + nC4(33 + 1 – 24)/2 + . . . + nCn(3n-1 + 1 – 2n)/2 
 
= (1/2)[ 32 * nC3 + 33 * nC4 + . . . + 3n-1 * nCn] + ( nC3 + nC4 + . . .+ nCn) 
 

- (nC3 23 + nC424 + . . . + nCn2n] 
                          n 
= (1/2) [(1/3) [ ∑ nCr * 3r – 32 * nC2 – 3 nC1 - nC0] +  
                        r=0 
   n 
( ∑ nCr - nC2  -  nC1 - nC0 ) -  ( ∑ nCr * 2r – 22 * nC2 – 2 nC1 - nC0 ) ] 
  r=0 
 
= (1/2) [ (1/3) (4n – 9n(n-1)/2 – 3n – 1) + (2n – n(n-1)/2 – n – 1) – 
 
              (3n – 4n(n-1)/2 – 2n – 1) ] 
 
a(n+1,4) = (1/4!) [ (1) 4n+1 – (4) 3n+1 + (6) 2n+1 – (4) 1n+1 + 1(0)n+1]. 
 
 From the pattern that we observe, it appears that the general formula is 
                        r 
  a(n,r) = (1/r!) ∑ (-1)r-k * rCk kn 
                      k=0 
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which we will proceed to establish by induction. 
 
Assume that the following expression is true for r and all n > r 
 
                      r+1 
  a(n,r) = (1/r!) ∑ (-1)r-k * rCk kn+1. 
                     k=1 
 
From this, the goal is to derive 
 
                                    r 
  a(n+1,r+1) = (1/(r+1)!) ∑ (-1)r+1-k * r+1Ck kn+1. 
                                 k=0 
 
We have 
 
  a(n+1,r+1) =  nCr a(r,r) + nCr+1 a(r+1,r) + nCr a(r+2,r) + . . . + nCn a(n,r)  
 
                        r                                                     r 
  =  nCr [(1/r!) ∑ (-1)r-k  rCk * kr ] + nCr+1 [(1/r!) ∑ (-1)r-k  rCk kr+1 ]+ . . .  
                      k=0                                                k=0 
                         r 
 +  nCn [ (1/r!) ∑ (-1)r-k  rCk kn ] 
                      k=0 
              r 
= (1/r!) ∑  [ (-1)r-k * rCk (  nCr kr +  nCr+1 kr+1 + . . . + (  nCn kn )] 
           k=0 
              r                           n                  r-1 
= (1/r!) ∑ [ (-1)r-k * rCk ( ∑ nCq * kq  - ∑ nCq * kq ) ] 
            k=0                     q=0                q=0 
 
              r                                                   n                     r-1 
= (1/r!) ∑ [ (-1)r-k * rCk (1+k)n ]  -  (1/r!) ∑ [(-1)r-k  rCk (∑  nCq kq )]. 
           k=0                                                k=0                   q=0 
 
If we denote the first and second term as T1 and T2, we have 
 
  a(n+1,r+1) = T1 – T2. 
 
Consider  
                   r 
T1 = (1/r!) ∑ [(-1)r-k *  rCk (1+k)n] 
                 k=0 
  



 36

 
              r 
= (1/r!) ∑ [(-1)r-k (r!/((k!)(r-k)!)) (1+k)n ] 
           k=0 
 
                     r 
= (1/(r+1)!) ∑ [(-1)r-k ((r+1)!/((k+1)!(r-k)!)) (1+k)n+1 ] 
                   k=0 
 
                     r 
= (1/(r+1)!) ∑ [(-1)r-k *  r+1Ck+1 (1+k)n+1] 
                  k=0 
 
                     r 
= (1/(r+1)!) ∑ [(-1)(r+1)-(k+1)  *  r+1Ck+1 (1+k)n+1 ] 
                  k=0 
 
Let k+1 = s, we get for s= 1 and k=0 and s = r+1 at k = r 
 
                    r+1 
= (1/(r+1)!) ∑ (-1)(r+1)-2 *  r+1Cs (s)n+1 ]. 
                   s=1 
 
Replacing s by k, we get 
 
                               r+1 
            = (1/(r+1)!) ∑ [(-1)(r+1)-k *  r+1Ck (k)n+1 ]. 
                               k=1 
 
If we include the k = 0 case, we get 
                         r+1 
T1 = (1/(r+1)!) ∑ [(-1)(r+1)-k *  r+1Ck (k)n+1] 
                        k=0 
 
T1 is the right hand side of the r+1 formula that we need to derive from the inductive 
hypothesis. To complete the formula, we need to show that  
 
a(n+1,r+1) = T1 .  
 
From the expression 
 
  a(n+1,r+1) = T1 – T2 
 
we have to prove that T2 = 0. 
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                   r                      r-1 
T2 = (1/r!) ∑ [(-1)r-k  rCk (∑  nCq kq )]. 
                k=0                   q=0 
 
 
                   r                       
 =     (1/r!) ∑ [(-1)r-k  rCk ( nC0 k0 + nC1 k1 + nC2 k2 + . . . + nCr-1 kr-1) ]. 
                k=0                   
 
                   r                                             r 
 =     (1/r!) ∑ [(-1)r-k  rCk ] + nC1 [(1/r!) ∑ ((-1)r-k *  rCk k)] +  
                 k=0                                        k=0 
 
                    r                                                              r 
  nC2 [(1/r!) ∑ ((-1)r-k  rCk k2 )] + … +  nCr-1 [(1/r!) ∑ ((-1)r-k  rCk kr-1 )] 
                  k=0                                                         k=0 
 
              r                                                r 
= (1/r!) ∑ [(-1)r-k *  rCk ] +  nC1 [(1/r!) ∑ ((-1)r-k *  rCk k)] + 
           k=0                                            k=0 
 
[ nC2 * a(2,r) + nC3 * a(3,r) + . . . + nCr-1 * a(r-1,r) ]  
 
= X + Y + Z, where 
                  r                                                 
X = (1/r!) ∑ [(-1)r-k *  rCk ]            
                k=0 
 
                          r 
Y =  nC1 [(1/r!) ∑ ((-1)r-k *  rCk k)]  
                        k=0 
 
Z = [ nC2 * a(2,r) + nC3 * a(3,r) + . . . + nCr-1 * a(r-1,r) ]. 
 
We shall prove that X = 0, Y = 0 and Z = 0.  
 
                  r                                                 
X = (1/r!) ∑ [(-1)r-k *  rCk ]            
                k=0 
 
                  r                                                 
    = (1/r!) ∑ [(-1)r-k *  rCr-k ].            
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                k=0 
 
With the change of variables r – k = w, we get k = 0, w = r and k = r, w = 0.  
 
                  0                                                 
    = (1/r!) ∑ [(-1)w *  rCw ]            
               w=r 
 
                  r                                                 
    = (1/r!) ∑ [(-1)w *  rCw ]            
               w=0 
 
  
    = (1 – 1)r/r! = 0. 
 
Therefore, X = 0. 
 
                          r 
Y =  nC1 [(1/r!) ∑ ((-1)r-k *  rCk k)]  
                        k=0 
 
                               r 
  =  nC1 [(1/(r-1)!) ∑ ((-1)r-1-(k-1) *  r-1Ck-1 )]  
                            k=1 
 
                             r-1 
  =  nC1 [(1/(r-1)!) ∑  ((-1)r-1-(k-1) *  r-1Ck-1 )]  
                          k -1=0 
 
  =  nC1[ 1/(r-1)!)(1-1)r-1 
 
  = 0. 
 
Therefore, we have proven that Y = 0. 
 
To prove that Z = 0 we begin with 
 
Z = [ nC2 * a(2,r) + nC3 * a(3,r) + . . . + nCr-1 * a(r-1,r) ] 
 
and consider the matrix 
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a(1,1)  a(1,2)  a(1,3)  a(1,4)  . . .  a(1,r)  
 
a(2,1)  a(2,2)  a(2,3)  a(2,4)  . . .  a(2,r)  
 
a(3,1)  a(3,2)  a(3,3)  a(3,4)  . . .  a(3,r)  
 
a(4,1)  a(4,2)  a(4,3)  a(4,4)  a(4,5) ... a(4,r)  
       ..... 
. . .  . . .  . . .  . . .  a(r-1,r-1)           a(r-1,r) . . .  
 
a(r,1)  a(r,2)  a(r,3)  . . .              a(r,r-1)             a(r,r)   
 
The diagonal elements are underlined and the elements above the main diagonal are in 
bold.  
 
We have 
                        r 
a(1,r) = [ (1/r!) ∑ ((-1)r-k *  rCk * k)] = Y/  nC1 = 0 for r > 1. 
                     k=0 
  
All of the elements of the first row other than a(1,1) are zero. Also,  
 
           a(n+1,r) = a(n,r-1) + r * a(n,r)   
 
which can easily be established by simplifying the right hand side.  
 
This gives us 
 
           a(2,r) = a(1,r-1) + r * a(1,r)  = 0 for r > 2,  
 

i.e. a(2,r) can be expressed as a linear combination of two elements of the first row, 
(other than the one on the main diagonal). This implies that 

 
           a(2,r) = 0 for r > 2. 
 
Similarly, a(3,r) can be expressed as a linear combination of two elements of the second 
row of the type a(2,r) with r > 3. This implies that 
 
   a(3,r) = 0 for r > 3. 
 
Repeating this process, we get  
 
     a(r-1,r) = 0. 
 
Since each of the coefficients a(i,j) in the formula for Z are zero, it follows that Z = 0. 
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Therefore, with X = Y = Z = 0, giving T2 = 0. 
 
From this, 
 
a(n+1,r+1) = T1 – T2 = T1 
 
Since 
 
                         r+1 
T1 = (1/(r+1)!) ∑ [(-1)(r+1)-k *  r+1Ck (k)n+1] 
                        k=0 
 
it follows that 
 
                                 r+1 
a(n+1,r+1)  = (1/(r+1)!) ∑ [(-1)(r+1)-k *  r+1Ck (k)n+1] 
                                k=0 
 
which is the r+1 expression of the inductive hypothesis. Therefore, the proof of the 
theorem is complete.  
 
Remark: This proof is very lengthy and involves a great deal of algebra. Readers are 
encouraged to search for a more concise approach. 
 

Section 7 
 

More Results and Applications of the Generalized Smarandache Star 
Function 

 
 
 Theorem:  
                                α 
             F’n*(pα) =  Σ  n+k+1Cn-1 P(α – k) 
                             k=0 
 
The following identity will be used in the proof. 
 
  α 
 Σ  r+k-1Cr-1 =  α+rCr.    (*) 
k=0 
  
Proof: By induction. 
 
Basis step 
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The case where n = 1 has already been proven. 
 
                               α 
             F’1*(pα) =  Σ  1+k+1C1-1 P(α – k) 
                             k=0 
 
Inductive step: 
Assume that the formula is true for all n ≤ r. 
 
                               α 
             F’r*(pα) =  Σ  r+k-1Cr-1 P(α – k). 
                             k=0 
 
Starting with  
                                  α 
             F’r+1*(pα) =  Σ   F’r*  (pt) 
                                k=0 
 
RHS = F’r*(pα) + F’r*(pα-1) + F’r*(pα-2) +. . .+ F’r*(p)  +  F’r*(1). 
 
From the inductive hypothesis, we have 
 
                               α 
             F’r*(pα) =  Σ  r+k+1Cr-1 P(α – k). 
                             k=0 
 
Expanding the RHS from k=0 to α 
 
F’r*(pα) = r+ α-1Cr-1 P(0) + r+ α-2Cr-1 P(1) + . . . + r-1Cr-1 P(α) 
 
F’r*(pα-1) = r+ α-2Cr-1 P(0) + r+ α-3Cr-1 P(1) + . . . + r-1Cr-1 P(α-1) 
 
F’r*(pα-2) = r+ α-3Cr-1 P(0) + r+ α-4Cr-1 P(1) + . . . + r-1Cr-1 P(α-2) 
 
. . .  
 
F’r*(p) = rCr-1 P(0) + r-1Cr-1 P(1) 
 
F’r*(1) = r-1Cr-1 P(0). 
 
Summing up the left and right sides separately, we find that  
 
LHS = F’(r+1)* (pα). 
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The RHS contains α + 1 terms in which P(0) occurs, α terms in which P(1) occurs and so 
on. Expressing this as a series of summations: 
    
    α             α-1               1 
RHS = [ ∑ r+k-1Cr-1 ]* P(0) + ∑ r+k-1Cr-1 P(1) + . . .+ ∑ r+k-1Cr-1 P(α-1) 
  k=0            k=0              k=0 
 
 
 
       0 
  +  ∑ r+k-1Cr-1 P(α) 
     k=0 
 
Applying the (*) identity to each of the summations, we have 
 
RHS = r+αCr P(0) +  r+α-1Cr P(1) + r+α-2Cr P(2) +. . . +  rCr P(α) 
    α 
= Σ  r+kCr P(α). 
  k=0 
 
Or,  
                       α 
F’(r+1)*(pα)  = Σ  r+kCr P(α). 
                     k=0 
 
The proposition is true for n = r+1, as we have 
 
        α        α   α  
F’*(pα)  =  ∑ P(α-k)   =  ∑  kC0 P(α-k)   =  ∑  k+1-1C1-1 P(α-k). 
       k=0               k=0             k=0 
 
Hence by induction the proposition is true for all n, and the proof is complete. 
 
Theorem:  
 
             n-r 
  ∑    nCr+k r+kCr mk   = nCr (1+m)(n-r). 
 k=0 
 
Proof: 
                n-r 
  LHS  =   ∑    nCr+k r+kCr mk 
    k=0 
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      n-r 
 =   ∑  (n!)/((r+k)!*(n-r-k)!)  * (r+k)!/((k)!*(r)!) * mk  
     k=0 
 
                 n-r 
 =   ∑  (n!)/((r)!*(n-r)!)  * (n-r)!/((k)!*(n-r-k)!) * mk  
     k=0 
 
            n-r 
            =  nCr  ∑   n-rCk mk 
          k=0 
 
 = nCr (1+m)(n-r). 
 
Which completes the proof of the theorem. 
 
Theorem: 
                       n 
  Fm*(1#n) =  ∑  nCr mn-r F(1#r) 
                     r=0  
 
Proof: By induction. 
 
Basis step. 
From section four, we have 
 
             n                        n  
 F*(1#n) = F ( 1# (n+1)) =  ∑ nCr F(1#r) =  ∑  nCr (1)n-r  F(1#r) 
                                            r=0                    r=0  
 
so the formula is true for m=1. 
 
Inductive step. 
Assume that the formula is true for m=s, which is  
 
                                  n 
             Fs*(1#n) =   ∑ nCr sn-r F(1#r). 
                                r=0 
Or 
 
    0        1 
      Fs*(1#0) =  ∑ nC0 s0-r F(1#0)                   Fs*(1#1) =  ∑ nC1 s1-r F(1#1) 
  r=0       r=0 
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   2        3 
     Fs*(1#2) =  ∑ nC2 s2-r F(1#1)                            Fs*(1#3)   =  ∑ nC1 s3-r F(1#3) 
  r=0       r=0 
    
Fs*(1#0)= 0C0 F(1#0)                        ----(0) 
 
Fs*(1#1) = 1C0 s1 F(1#0) + 1C1 s0F(1#1)                                     ----(1) 
 
Fs*(1#2) = 2C0 s2 F(1#0) + 2C1 s1F(1#1) + 2C2 s0F(1#2)            ----(2) 
. 
. 
. 
Fs*(1#r) = rC0 sr F(1#0) + rC1 s1F(1#1) + . . .+ rCr s0F(1#r)       ----(r) 
. 
. 
. 
Fs*(1#n) = nC0 sr F(1#0) + nC1 s1F(1#1) + . . .+ nCn s0F(1#r)    ----(n) 
 
Multiplying the rth equation by  nCr and then summing, the RHS side becomes 
 
[nC0

0C0 s0 +nC1
1C0 s1 + nC2

2C0 s2 +... + nCk
kC0 sk +... + nCn

nC0 sn]F(1#0) 
 
[nC1

1C1 s0 +nC2
2C1 s1 + nC3

3C1 s2 +... + nCk
kC1 sk +... + nCn

nC1 sn]F(1#1) 
. . . 
 
[nCr

rCr s0 +nCr+1
r+1Cr s1 + ... + nCr+k

r+kCr sk +... + nCn
nCr sn]F(1#r) 

 
+[nCn

nCn s0]F(1#n) 
 
      n n-r 
 =  ∑ { ∑    nCr+k r+kCr sk } F(1#r) 
    r=0 k=0 
 
          n 
   =  ∑ nCr (1+s)n-r F(1#n) by the previous theorem. 
      r=0 
     
             n 
LHS =  ∑  nCr Fs*(1#r) 
           r=0 
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Let N = p1p2p3. . . pn . Then there are nCr
 divisors of N containing exactly r primes. Then 

LHS = the sum of the sth Smarandache star functions of all the divisors of N, or  
F’(s+1)*(N) = F(s+1)*(1#n). 
 
Therefore, we have 
                                 n 
     F(s+1)*(1#n)  =    ∑ nCr (1+s)n-r F(1#n)  
         r=0 
 
which is the induction expression for s+1. Therefore, the formula is true for all n and the 
proof is complete.  
 
Note: From the previous section, we have  
 
                                                       n 
 F’(N@1#n) = F’(Np1p2 . . .pn) = ∑ [a(n,m) F’m*(N)] 
                                                    m=0 
where 
                          m 
   a(m,n) = (1/m!) ∑  (-1)m-k  mCk kn. 
                         k=1 
 
If N = p1p2. . .pk , we have 
 
       n                k     
    F(1#(k+n)  =    ∑  [ a(n,m)   ∑ kCt mk-t F(1#t) ].   
     m=0           t=0 
 
This formula provides a way to express Bn in terms of smaller Bell numbers. In a way, it 
is a generalization of the theorem  
 
                       n 
 F(1#(n+1) = Σ  nCr F(1#r) 
                     r=0 
 
that was proven in section 4. 
 
Theorem:  
            α     n 
        F(α,1#(n+1))  = ∑   ∑ nCr F(k,1#r) 
         k=0  r=0 
 
Proof:  
LHS = F(α,1#(n+1)) = F’(pα p1p2p3. . .pn+1 ) = 
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F’*(pαp1p2p3. . .pn ) + ∑F’ ( all the divisors containing only p0) + 
 
ΣF' ( all the divisors containing only p1) +  
 
ΣF' ( all the divisors containing only p2) +. .  
. 
ΣF' ( all the divisors containing only pr) +. . . 
 
ΣF' ( all the divisors containing only pα). 
 
 
     n                           n                  n            n 
 = ∑ nCr F(0,1#r) +  ∑ nCr F(1,1#r)    + ∑ nCr F(2,1#r)  +  ∑ nCr F(3,1#r)  
   r=0                       r=0                          r=0            r=0 
 
                 n                                          n 
   + . . .  + ∑  nCr F(k,1#r)   +  . . .   + ∑  nCr F(α,1#r) 
                r=0                                      r=0 
 
                α     n 
 = ∑    ∑ nCr F(k,1#r). 
  k=0   r=0 
 
This is a reduction formula for F(α,1#(n+1)). 
 
A Result of Significance 
From the first theorem of section 4 
                                                                           n 
F’(pα@1#(n+1))    =     F(α,1#(n+1)) =     ∑    a(n+1,m) F’m*(N)  
                                                                         m=0 
where  
                                        m 
           a(n+1,m)  =  (1/m!)  ∑ (-1)m-k *mCk * kn+1 
                                      k=1 
 
and  
             α 

 F’m*(pα) = ∑ m+k-1Cm-1 P(α-k).  
                            k=0 
 
This is the first result of some substance, giving a formula for evaluating the number of 
Smarandache Factor Partitions of numbers that can be represented in a (one of the most 
simple) particular canonical form. The complexity is evident. The challenging task posed 
to the reader is to derive similar expressions for other canonical forms. 
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Section 8 
 

Properties of the Smarandache Star Triangle 
 
 Definition: The following expression was established in section 6. 
 
                              m 
  a(n,m)  =  (1/m!)    ∑ (-1)m-k *mCk *kn   
                             k=1 
 
we have  a(n,n)  = a(n,1)  =  1 and a(n,m)  =  0  for  m > n.  
 
Now if the terms are arranged in the following way 
 
a(1,1) 
 
a(2,1)  a(2,2) 
 
a(3,1)  a(3,2)  a(3,3) 
. 
. 
. 
a(n,1)  a(n,2) ... a(n,n-1)   a(n,n) 
 
we get a triangle of numbers that we will call the Smarandache Star Triangle (SST).  
 
 The first few rows of the SST are 
 
1 
 
1        1 
 
1        3         1 
 
1        7         6         1 
 
1        15     25        10       1 
 
Some properties of the SST. 
 

1) The first and last element of each row is 1.  
2) The elements of the second column are 2n-1 – 1, where n is the row number. 
3) The sum of all the elements in the nth row is the nth Bell number. 
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Justification of property 3: 
From section 6, we have the formula 
 
                                                       n 
 F’(N@1#n) = F’(Np1p2 . . .pn) = ∑ [a(n,m) F’m*(N)]. 
                                                    m=0 
 
If N = 1, we have F’m*(1) = F’(m-1)*(1) = F’(m-2)*(1)  =. . .= F’(1) =  1. Therefore,  
 
                              n 
 F'(p1 p2. . .pn) =   Σ  a(n,m)      
                            r=0   
 

4) The elements of a row can be obtained by the following reduction formula 
 
          a(n+1,m+1)  =  a(n,m)  +  (m+1) * a(n+1,m+1). 
 

5) If N = p in the theorem of section 6, we have F’m*(p) = m + 1. Therefore,  
 
                                   n 
       F’(pp1p2. . .pn) = ∑ a(n,m) F’m*(N) 
                                m=1 
                      n 
or   Bn+1  =   ∑  (m+1)  a(n,m). 
                    m=1      
 

6) The elements of the second leading diagonal are triangular numbers in their 
natural order. 

7) If p is a prime, p divides all the elements of the pth row except the first and the 
last, which are unity. This is established in the following theorem. 

 
Theorem:  
 
       a(p,r) ≡  0  ( mod p) if  p is a prime and  1 < r < p. 
 
Proof:  
By definition 
                           r 
    a(p,r)  =  (1/r!) ∑ (-1)r-k *rCk *kp 
                         k=1 
which by rearrangement, is equivalent to 
 
                               r-1 
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    a(p,r) = (1/(r-1)!)  ∑ (-1)r-1-k *r-1Ck *(k+1)p-1 
                              k=0 
 
                      r-1 
  =  (1/(r-1)!) ∑ [(-1)r-1-k .r-1Ck *((k+1)p-1 – 1)]  + 
                     k=0  
 
               r-1 
(1/(r-1)!) ∑ (-1)r-1-k * r-1Ck. 
              k=0 
 
Applying Fermat’s Little Theorem, we get 
 
      a(p,r)  = a multiple of p + 0  =>  a(p,r)  ≡ 0(mod p) 
 
and the proof is complete.  
 
Corollary:  
 
          F(1#p) ≡ 2 (mod p) 
 
Proof:  
                 a(p,1)  =      a(p,p)  = 1 
 
                  p              p-1 
F(1#p)   = ∑  a(p,k)    = ∑  a(p,k)   + 2 
                k=0           k=2 
 
F(1#p) ≡  2 (mod p),  
 
since the summation is evenly divisible by p. 
 

8) The coefficient of the rth term, b(n,r) in the expansion of xn in the form 
 
xn       =  b(n,1) x  + b(n,2) x(x-1) + b(n,3) x(x-1)(x-2)+...+  b(n,r) xPr  +...+ b(n,n) xPn 
 
is equal to a(n,r). 
 
Theorem: B3n+2 is even and all other Bk is odd. 
 
Proof: From section 4, we have 
 
F’(Nq1q2)  =  F’*(N)  + F’**(N) when q1 and q2 are prime 
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and (N,q1) = (N,q2)  = 1. 
 
With N = p1p2p3. . .pn, one can write 
 
F’( p1p2p3. . .pnq1q2)   = F’*( p1p2p3. . .pn) + F’**( p1p2p3. . .pn)   
 
or  
 
F(1#(n+2))   =    F(1#(n+1))   +     F**(1#n) 
 
However,  
                                   n 
              F**(1#n) =  ∑  nCr 2n-r F(1#r) 
                                 r=0 
 
                       n-1 
    F**(1#n) = ∑  ( nCr 2n-r F(1#r))   +   F(1#n). 
                      r=0 
 
The first term is an even number and we will call it E. This gives us 
 
F(1#(n+2))  - F(1#(n+1)) - F(1#n)  = E.   
 
Case 1: F(1#n) is even and F(1#(n+1)) is also even ⇒ F(1#(n+2))  is even. 
 
Case II: F(1#n) is even and F(1#(n+1)) is odd ⇒ F(1#(n+2)) is odd. 
 
 By the previous theorem, 
 
 F(1#(n+3))  - F(1#(n+2)) - F(1#(n+1))  = E , =>  F(1#(n+3)) is even.     
 
Finally we get 
 
F(1#n) is even <=>  F(1#(n+3)) is even. 
 
We know that F(1#2) = 2 Þ F(1#2),  F(1#5) ,  F(1#8) , . . .are even  
 
=> B3n+2 is even otherwise Bk is odd.  
 

Section 9 
 

Smarandache Factor Partitions Of a Typical Canonical Form 
 
 In previous sections, some of the properties of the Smarandache Factor Partition function 
were demonstrated. In this section, we will derive a formula for the case where  
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N = p1
α1 p2

α2. 
 
 
 
Theorem:  
                                     α                r     α-2j           
F’(p1

αp2
2)  = F(α,2) =  ∑ P(k)  + ∑    ∑  P(i)  

                                    k=0           j=0   i=0  
 
where r = [α/2], α = 2r or α = 2r + 1. 
 
Proof: The proof will be by examining a set of mutually exclusive and exhaustive cases. 
Only the numbers in the brackets [ ] are to be further decomposed. 
 
Case I:  
 
                  α 
           (p2) [p1

αp2
2 ]  gives F’*( p1

α) = ∑ P(i).  
      i=0  
  
Case II: 
{A1}→  (p2

2 ) [p1
α]  ------→ P(α)  

{A2}→  (p2
2 p1 ) [p1

α-1] ------→ P(α-1)  
  . 
  . 
                        . 
{Aα}→  (p2

2 p1
α ) [p1

α-α] ------→ P(α-α) =P(0 ). 
 
Therefore, case II contributes  
     α 
    Σ  P(i). 
   i=0 
 
Case III: 
 
{B1}→ (p1p2)(p1p2 ) [p1

α-2] ------→ P(α-2) 
{B2}→ (p1p2) (p1

2 p2 ) [p1
α-3] ------→ P(α-3)  

  . 
  . 
  . 
{Bα-2}→ (p1p2)(p1

α-1 p2 ) [p1
α-α] ------→ P(α-α) =P(0). 

 
Therefore, case III contributes 
 
    α-2 
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    Σ  P(i). 
   i=0 
 
Case IV: 
 
{C1}→(p1

2
 p2) (p1

2
 p2 ) [p1

α-4]       ------→ P(α-4) 
{C2}→(p1

2
 p2)(p1

3
 p2 ) [p1

α-5]        ------→ P(α-5) 
                    . 
                    . 
                    . 
{Cα-4}→(p1

2
 p2)(p1

α-2 p2 ) [p1
α-α]  ------→ P(α-α) =P(0) 

 
Therefore, case IV contributes 
 
    α-4 
    Σ  P(i). 
   i=0 
 
Note: The factor partition (p1

2
 p2) (p1 p2 ) [p1

α-3] was covered in case III. Therefore, it 
does not appear in case IV.  
 
Case V: 
 
{D1}→(p1

3
 p2) (p1

3
 p2 ) [p1

α-6]         ------→ P(α-4) 
{D2}→(p1

3
 p2)(p1

4
 p2 ) [p1

α-7]          ------→ P(α-5) 
               . 
               . 
               . 
{Dα-4}→(p1

3
 p2)(p1

α-3 p2 ) [p1
α-α]     ------→  P(α-α) =P(0) 

 
Therefore, case V contributes 
 
    α-6 
    Σ  P(i).. 
   i=0 
 
 Using a similar line of reasoning, case VI contributes 
 
    α-8 
    Σ  P(i). 
   i=0 
 
and we get contributions up to 
 
    α-2r 
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    Σ  P(i). 
   i=0 
 
where 2r < α < 2r + 1 or r = [α/2]. 
 
Summing up all the cases, the total is 
 
                                      α               r     α-2j  
F’(p1

αp2
2)  = F(α,2) =  ∑ P(k)  +  ∑    ∑  P(i)  

                                    k=0            j=0  i=0  
 
where r = [α/2], α = 2r or α = 2r + 1. This completes the proof. 
 
Corollary:  
                      r 
F’(p1

αp2
2) = ∑ (k+2) [ P(α-2k) + P(α-2k-1)]. 

                   k=0 
 
Proof: In the previous theorem, consider the case where α = 2r.  
 
                                       2r             r     α-2j 
F’(p1

2rp2
2)  = F(α,2) =   ∑ P(k) + ∑    ∑  P(i). 

                                     k=0          j=0   i=0  
 
The second term on the RHS can be expanded in the following way 
 
P(α) + P(α-1) + P(α-2) + P(α-3) +. . .+      P(2) +   P(1) + P(0) 
 
               P(α-2) + P(α-3) +. . .+      P(2) +  P(1)  + P(0) 
       
.      P(α-4) +. . . P(2) + P(1) +  P(0) 
. 
. 
        P(2) + P(1)   +  P(0) 
 
                   P(0). 
 
Summing the terms column by column,  
 
= [P(α) + P(α-1)] +2 [P(α-2) + P(α-3)]+ 3 [ P(α-4) + P(α-5)]+. . . 
 
 + (r-1) [P(2) + P(1)] + r P(0). 
    r 
= ∑  (k+1) [ P(α-2k) + P(α-2k-1)]. 
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  k=0 
 
Note that P(-1) has been defined to be zero. 
 
Therefore,  
                      r                r 
F’(p1

αp2
2)  = ∑  P(k) + ∑  (k+1) [ P(α-2k) + P(α-2k-1)] 

                    k=0          k=0 
 
or 
 
                     r 
F’(p1

αp2
2)=  ∑  (k+2) [ P(α-2k) + P(α-2k-1)]. 

                   k=0 
 
 In the case where α = 2r+1, the second term in the expression of the corollary can be 
expanded as 
 
P(α) + P(α-1) + P(α-2) + P(α-3) +. . .+      P(2) +   P(1) + P(0) 
                           P(α-2) + P(α-3) +. . .+      P(2) +  P(1)  + P(0) 
       
.      P(α-4) +. . . P(2) + P(1) +  P(0) 
. 
. 
            P(3)+    P(2) +  P(1) + P(0) 
 
           P(1)+ P(0) 
 
Summing the terms on a column-by-column basis, we have 
 
[P(α) + P(α-1)] +2 [P(α-2) + P(α-3)]+ 3 [ P(α-4) + P(α-5)]+. . . 
 
+ (r-1) [P(3) + P(2)] + r[ P(1) +  P(0)] 
 
     r 
=  ∑  (k+1) [ P(α-2k) + P(α-2k-1)] , α =2r+1.  
   k=0 
 
Adding on the first term, we get 
      r 
     F’(p1

αp2
2)  =  ∑  (k+2) [ P(α-2k) + P(α-2k-1)] 

    k=0 
 
 Therefore, for all values of α, we have 



 55

 
                        [α/2] 
    F’(p1

αp2
2)  =  ∑  (k+2) [ P(α-2k) + P(α-2k-1)] 

                         k=0 
 
and the proof of the corollary is complete. 
 

Section 10 
 

Length/Extent of Smarandache Factor Partitions 
 
Definition: If we denote each Smaradanche Factor Partition (SFP) of N, say F1, F2, . . ., 
Fr arbitrarily and the Fk be the SFP representation of N as the product of its divisors in the 
following way: 
 
Fk ----  N = (h1)(h2) (h3)(h4). . .(ht) ,  where  each hi   ( 1< i < t ) is  
an entity in the SFP   ‘ Fk ‘   of  N. 
 
Then, T(Fk) = t is defined as the length of the factor partition Fk. 
 
For example, 60 = 15 x 2 x 2 is a factor partition (Fk) of 60. Then T(Fk) = 3.  
 
T(Fk) can also be defined as one more than the number of multiplication signs in the 
factor partition. 
 
Definition: The extent of a number is defined as the sum of the lengths of all the SFP’s 
of the number.  
 
Example: 
Consider F(1#3) 
 
N = p1p2p3 = 2 x 3 x 5 = 30. 
 
with the table of partitions 
 
SN Factor Partition Length 

 
1 30 1 
2 15 * 2 2 
3 10 * 3 2 
4 6 * 5 2 
5 5 * 3 * 2 3 
 
The extent of 30 is 1 + 2 + 2 + 2 + 3 = 10. 
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 We observe that 
 
F(1#4) – F(1#3) = 10 = Extent{F(1#14)}. 
 
 Consider F(1#4) 
 
N = 2 x 3 x 5 x 7 = 210 
with the table of partitions 

 
 

SN Factor Partition Length 
1 210 1 
2 105 * 2 2 
3 70 * 3 2 
4 42 * 5 2 
5 35 * 6 2 
6 35 * 3 * 2 3 
7 30 * 7 2 
8 21 * 10 2 
9 21 * 5 * 2 3 

10 15 * 14 2 
11 15 * 7 * 2 3 
12 14 * 5 * 2 3 
13 10 * 7 * 3 3 
14 7 * 6 * 5 3 
15 7 * 5 * 3 * 2 4 

 
Extent(210) = Σ length = 37. 
 
 We observe that 
 
F(1#5) – F(1#4) = 37 = Extent{F(1#4)}. 
 
Furthermore, it has been verified that  
 
F(1#6) – F(1#5) = Extent{F(1#5)} 
 
which leads to the following conjectures. 
 
Conjecture 1: 
 
F(1#(n+1))  - F(1#n)   = Extent { F(1#n)} 
 
Conjecture 2: 
                            n 
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     F(1#(n+1)) = ∑  Extent {F(1#r) 
                          r=0 
 
 If conjecture 1 is true, then we would have 
 
F(1#2)  - F(1#1)   = Extent { F(1#1)} 
 
F(1#3)  - F(1#2)   = Extent { F(1#2)} 
 
F(1#4)  - F(1#3)   = Extent { F(1#3)} 
. 
. 
. 
F(1#(n+1))  - F(1#n)   = Extent { F(1#n)} 
 
 Summing up the terms, we would have 
                                         n                                        
F(1#(n+1)) - F(1#1)   =   ∑  Extent {F(1#r)}. 
                                        r=1 
 
F(1#1) = 1 = Extent{F(1#0)} can be taken, hence we have 
 
                       n 
F(1#(n+1)) = ∑ Extent {F(1#r)}. 
                     r=0 
 
An Interesting Observation 
 
 The following entries form a chart of r versus w, where w is the number of SFPs having 
the length r. 
 
F(1#0)  = 1  , ∑ r * w = 1 
 
r 1 
w 1 
 
F(1#1)  = 1  , ∑ r *w = 1 
 
r 1 
w 1 
 
F(1#2)  = 2  , ∑ r * w = 3 
 

R 1 2 
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w 1 1 
 
F(1#3)  = 5  , ∑ r *w = 10 
 
 
 

R 1 2 3 
w 1 3 1 
 
F(1#4)  = 15  , ∑ r * w = 37 
 
r 1 2 3 4 
w 1 7 6 1 
 
F(1#5)  = 52,  ∑ r *w = 151 
 
r 1 2 3 4 5 
w 1 15 25 10 1 
 
The interesting observation is that the entries of row w are the same as those of the nth 
row of the Smarandache Star Triangle introduced in section 8.  
 
Conjecture 3:  
                                               r 
             wr  =  a(n,r)   = (1/r!)  ∑ (-1)r-k .rCk .kn 
                                             k=0 

where wr is the number of SFPs of F(1#n) having length r. 
 
Further study: Readers are encouraged to the length and contents of other cases and 
search for any interesting patterns. 
 

Section 11 
 

More Ideas On Smarandache Factor Partitions 
 
 Let  
                       α1    α2    α3            αr   
           N  =  p1    p2    p3    .  .  .    pr 
 
Definition:  
1) L(N) is the length of the factor partition of N which has the maximum number of 
terms. In the case of the prime factorization above,  
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                                      r 
                       L(N)  =  ∑ αi. 
 
2) AL(N)  =  A set of L(N) distinct primes. 
 
3) B(N) = { p: p | N , p is a prime }, 

 
    B(N) = { p1 , p2 , . . . pr }. 
 
4) Ψ[ N, AL(N)]  =  { x | d(x) = N and  B(x)  ⊆ AL(N) }, where  d(x) is the  
number of divisors of  x. 
 
 Our next step will be to derive an expression for the order of the set Ψ[ N, AL(N)] defined 
above. 
 
There are F’(N)  factor partitions of  N. Let F1 be one of them. Then 
 
F1  -----→ N = s1  * s2  * s3  * . . .* st.. 
 
If 
 
θ = p1

s1-1 p2
s2-1  p3

s3-1    . . .pt
st-1

  pt+1
0

 pt+2
0 . . . pL(N)

0 
 
where pt  ∈ AL(N) , then θ ∈ Ψ[ N, AL(N)] for   
 
d(θ) = s1  * s2 *  s3 * . . .* st * 1 * 1 * 1 . . .   = N. 
 
Therefore, each factor partition of N generates a few elements of Ψ. 
 
 Let E(F1) denote the number of elements generated by  F1 
 
              F1 → N =  s1  * s2 *  s3 * . . .* st.. 
 
Multiplying the right side by one as many times as is required to make the number of 
terms in the product equal to L(N). 
 
                 L(N) 
        N =    Π  sk 
                  k=1 
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where st+1  = st+2 = st+3  = . . .= sL(N)  = 1. 
 
Let   x1 s’s are equal 
        x2 s’s are equal 
         . 
         . 
         . 
        xm s’s are equal 
 
such that x1 + x2 + x3 + . . . + xm  = L(N). 
 
Then we have 
 
E(F1)  =   {L(N)}! / {(x1)!( x2)!( x3)! . . . (xm)!}. 
 
 Summing over all the factor partitions, we have 
 
                               F’(N) 
O(Ψ[ N, AL(N)])  =  ∑   E(Fk) . 
                               k=1 
 
Example: 
 
               N = 12 = 22*3, L(N) = 3 , F’(N)  = 4 
 
Let AL(N) = { 2,3,5} 
 
F1 -----→ N = 12  = 12 * 1 * 1, x1 = 2, x2 = 1 
 
E(F1)  =  3! / {(2!)(1!)} = 3 
 
F2 -----→ N = 12  = 6 * 2 * 1, x1 = 1, x2 = 1, x3 = 1 
 
E(F2)  =  3! / {(1!) (1!)(1!)} = 6 
 
F3 -----→ N = 12  = 4 * 3 * 1, x1 = 1, x2 = 1, x3 = 1 
 
E(F3)  =  3! / {(1!) (1!)(1!)} = 6 
 
F4 -----→ N = 12  = 3 * 2 * 2, x1 = 1, x2 = 2 
 
E(F4)  =  3! / {(2!)(1!)} = 3 
 
                            F’(N) 
O(Ψ[ N, AL(N)]) =  ∑  E(Fk) = 3 + 6 + 6 + 3 = 18. 
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                              k=1 
 
 To verify, we have 
 
Ψ[ N, AL(N)]  = { 211, 311, 511, 25 * 3 , 25 * 3 , 35 * 2 , 35 * 5 , 55 * 2 ,  
 
55 * 3, 23 * 32, 23  * 52, 33  * 22, 33 * 52, 53 * 22, 53 * 32, 22  * 3 * 5, 
 
32  * 2 * 5, 52  * 2 * 3}. 
 

Section 12 
 

A Note On the Smarandache Divisor Sequences 
 
Definition: The Smarandache Divisor Sequences are defined in the following way: 
Pn ={ x | d(x) = n }, d(x) = number of divisors of  n. 
 
Examples: 
 
P1 = {1} 
P2 = { x |  x is a prime }  
P3 = { x |  x = p2 ,  p is a prime }  
P4 = { x |  x = p3  or x = p1p2,  p ,p1 , p2  are primes }. 
 
 Let F1 be an SFP of N. Let ΨF1 = {y| d(y) = N }, generated by the SFP F1 of N. It has 
been shown in that each SFP  generates elements of  Y or Pn.  Here each SFP generates 
infinitely many elements of Pn. Similarly,  ΨF1, ΨF2, ΨF3,. . . ΨF'(N), are defined. It is 
evident that all these Fk's  are disjoint and also PN  = ∪ ΨFk    1 ≤ k ≤ F'(N) . 
 
Theorem: There are F’(N) disjoint and exhaustive subsets into which PN can be 
decomposed. 
 
Proof: Let θ ∈ PN  and express it in canonical form 
 
θ =      p1

α1
    p2

α2  p3
α3

   . . .      pr
αr. 

 
Then d(θ) = (α1+1)(α2+1)(α3+1) . . .(αr+1) and it follows that θ ∈ ΨFk for some  k where 
Fk  is  given by  
 
N   =    (α1+1)(α2+1)(α3+1) . . .(αr+1). 
 
Finally, if θ ∈ ΨFs ,  and  θ ∈ ΨFt  then from unique factorization theorem Fs and  Ft  are 
identical SFPs of  N. This completes the proof. 
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Section 13 
 

An Algorithm for Listing the Smarandache Factor Partitions 
 
 Definition: Fx’(y) is the number of the Smarandache Factor Partitions (SFPs) of y which 
involve terms not greater than x. 
 
If F1 is a factor partition of y: 
 
F1 → x1 * x2 * x3 * . . . xr  , then F1 is included in Fx

’(y)  iff  xi  ≤  x    for  1 ≤  i ≤ r. 
 
Clearly, F’x(y) ≤ F’(y) , and equality holds iff x  ≥  y. 
 
Example:  F’8(24)  =  5. Out of 7 only the last 5 are included in F’8(24). 
 
(1) 24 
(2) 12 * 2  
(3) 8 * 3 
(4) 6 * 4 
(5) 6 * 2 * 2 
(6) 4 * 3 * 2 
(7) 3 * 2 * 2 * 2. 
 
ALGORITHM:  Let d1, d2, d3, . . . dr be the divisors of N in descending order. To list the 
factor partitions of N, execute the following sequence of steps: 
 
(A) (1) Start with d1 = N as the first partition.  
 
(2) For index i = 2 to r 
(2 )(a) Write all the factor partitions involving di . 
 
 Note: When listing the factor partitions, care should be taken that the terms from left to 
right are written in descending order. 
 
At dk ≥ N1/2 ≥ dk+1, and above, this will ensure that there is no repetition. 
 
Example:  N = 36, Divisors are 36, 18, 12, 9, 6, 4, 3, 2, 1. 
 
36 →36 
18 → 18 * 2  
12 → 12 * 3  



 63

9   → 9 * 4 
  9 * 2 * 2 
6   → 6 * 6 
6   → 6 * 3 * 2 
---------------------------------dk = N1/2  
4   → 4 * 3 * 3 
3   →3 * 3 * 2 * 2 
2   → NIL 
1   → NIL 
 
Formula for F’(N) 
 
                           F’(N)  = ∑   F’dr(N/dr).  
                  dr/N 
Example: 
  N = 216 = 2333  
 
(1) 216   → F216(1)  = 1 
(2) 108 * 2  →F108(2) = 1 
(3) 72 * 3   →F72(3) = 1 
(4) 54 * 4   →F54(4) = 2 
(5) 54 * 2 * 2      
(6) 36 * 6   →F36(6) = 2 
(7) 36 * 3 * 2        
(8) 27 * 8   →F27(8) = 3 
(9) 27 * 4 * 2        
(10) 27 * 2 * 2 * 2        
(11) 24 * 9   →F24(9) = 2 
(12) 24 * 3 * 3 
(13) 18 *12   →F18(12) = 4 
(14) 18 * 6 * 2 
(15) 18 * 4 * 3        
(16) 18 * 3 * 2 * 2  
(17) 12 * 9 * 2  →F12(18) = 3 
(18) 12 * 6 * 3 
(19) 12 * 3 * 3 * 2        
(20) 9 * 8 * 3  →F9(24) = 5 
(21) 9 * 6 * 4 
(22) 9 * 6 * 2 * 2        
(23) 9 * 4 * 3 * 2 
(24) 9 * 3 * 2 * 2    
(25) 8 * 3 * 3 * 3  →F8(27) = 1  
(26) 6 * 6 * 6   →F6(36) = 4 
(27) 6 * 6 * 3 * 2     
(28) 6 * 4 * 3 * 3  
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(29) 6 * 3 * 3 * 2 * 2  
(30) 4 * 3 * 3 * 3 * 2 * 2  →F4(54) = 1 
(31) 3 * 3 * 3 * 2 * 2 * 2  →F3(72) = 1 
       →F2(108) = 0 
      →F1(216) = 0. 
 
F’(216)   = ∑  F’dr(216/dr)  = 31. 
                  dr/N 
 
Remarks: This algorithm would be quite helpful in the development of a computer 
program for the listing of SFPs. 
 

Section 14 
 

A Program For Determining the Number of SFPs 
 
 Section 13 ended with a comment about how the algorithm would be helpful in 
constructing a computer program to list the SFP’s. In this section, such a program in the 
‘C’ language that lists the SFPs will be presented.  
 
#include<stdio.h> 
/*This is a program for finding the number of factor partitions of a given number written 
by K.Suresh, Software expert, IKOS, NOIDA , INDIA. */ 
FILE* f; 
unsigned long np = 0; 
unsigned long try_arr[1000]; 
unsigned long n = 0; 
unsigned long num_div = 0; 
unsigned long div_arr[10000]; 
unsigned long max_length = 0; 
unsigned long width_arr[1000]; 
unsigned long extent = 0; 
 
void find_partitions(unsigned long pos, unsigned long div_idx, unsigned long prod) 
{ 
 unsigned long i; 
 for(i = div_idx; i < num_div; i++) 
 { 
  try_arr[pos] = div_arr[i]; 
  unsigned long new_prod = prod * div_arr[i]; 
  if( new_prod == n ) 
  { 
   if( max_length < pos + 1 ) 
    max_length = pos + 1; 
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   width_arr[pos+1]++; 
   extent += pos + 1; 
 
   fprintf(f, "(%ld)\t%ld = %ld ", ++np, n, try_arr[0]); 
   unsigned long k; 
   for(k = 1;k <= pos;k++) 
   { 
      fprintf(f, "X %ld ", try_arr[k]); 
   } 
 
   //printf(".\n"); 
   fprintf(f, ".\n"); 
   break; 
  } 
  else if( new_prod < n ) 
   find_partitions(pos+1, i, new_prod); 
 } 
 return; 
} 
 
main() 
{ 
 f = fopen("fp.out", "w"); 
 while(1) 
 { 
 // initialize.. 
 n = 0; 
 np = 0; 
 num_div = 0; 
 unsigned long i; 
 for(i = 0; i < 1000; i++) width_arr[i] = 0; 
 
 // take input.. 
 printf("Enter number..:\n"); 
 
 scanf("%ld", &n); 
 if( n == 0 ) break; 
 fprintf(f, "-----------------------------------------------------------------\n"); 
 fprintf(f, "Number = %ld\n", n); 
 
 // populate divisor array. 
 for(i = 2; i <= n; i++) 
 { 
  if( n == i * (n / i) ) 
  { 
   div_arr[num_div++] = i; 
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  } 
 } 
 // start recursion.. 
 find_partitions(0,0,1); 
 
 // output.. 
 printf("Total number of factor partitions = %ld.\n", np); 
 printf("-----------------------------------------------\n"); 
 printf("\tr\t\tw\n"); 
 printf("-----------------------------------------------\n"); 
 for(i = 1;i <= max_length; i++) 
  printf("\t%ld\t\t%ld\n", i, width_arr[i]); 
 printf("-----------------------------------------------\n"); 
 printf("Extent = %ld\n", extent); 
 
 fprintf(f,"Total number of factor partitions = %ld.\n", np); 
 fprintf(f,"   --------------------------------------------------------\n"); 
 fprintf(f,"\tr\t\tw\n"); 
 fprintf(f,"   --------------------------------------------------------\n"); 
 for(i = 1;i <= max_length; i++) 
  fprintf(f,"\t%ld\t\t%ld\n", i, width_arr[i]); 
 fprintf(f,"   --------------------------------------------------------\n"); 
 fprintf(f,"Extent = %ld\n", extent); 
 fprintf(f, "--------------------------------------------------------------------------------\n"); 
 
 } 
 fflush(f); 
 fclose(f); 
 return 0; 
} 
 
Based on this program, tables for several different canonical forms are given. 
 
Table -I 

Canonical form Number SFPs 

p2  22   =    4 2 

p2q2 2232  = 36 9 

p2q2r2 223252 = 900 66 

p2q2r2s2t2 22325272 =44100 712 

p2q2r2s2t2u2 22325272112 =5336100 10457 
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Table -II 
Canonical form Number SFPs 

p2 32 =9 1 

Pq2 2  .32 =18 4 

p2q2 2 232 = 36 9 

p3q2 2332 =72 16 

p4q2 2432 = 144 29 

p5q2 2532= 288 47 

p6q2 2632 = 576 77 

p7q2 2732 =1152 118 

p8q2 2832 = 2304  181 

p9q2 2932 = 4608 267 

p10q2 21032 = 9216 392 

p11q2 21132 = 18432 560 

p12q2 21232 =36864 797 

p13q2  21332 =73728 1111 

p14q2 21432 =147456 1541 
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Table-III 
Canonical Form Number SFPs 

p3 33= 27 3 

p3 q 33 2 = 54 7 

p3 q2 3322 = 108 16 

p3q3 33 23 = 216 31 

p3q4 3324 = 432 57 

p3 q5 3325 = 864 97 

p3q6 3326 = 1728 162 

p3q7 3327 = 3456 257 

p3q8 3328  = 6912 401 

p3q9 3329 = 13824 608 

p3q10 33210 = 27648 907 

p3q11 33211 =55296 1325 

p3q12 33213 = 110592 1914 

p3q13 33213 = 221184 2719 
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Table-IV 

Canonical Form Number SFPs 

p4 34 = 81 5 

p4q 34.2 = 162 12 

p4 q2 34 22 = 324 29 

p4 q3 34 23 = 648 57 

p4 q4 34 24 = 1296 109 

p4 q5 3425 = 2592 189 

p4 q6 34 26 = 5184 323 

p4 q7 34 27 = 10368 522 

p4 q8 34 28 = 20736 831 

p4 q9  3429 = 41472 1279 

p4 q10 34 210 = 82944 1941 

p4 q11 34 211 = 165888 2876 

p4 q12 34 212 = 331776 4215 

 
Table –V 

 P0 P1 P2 P3 P4 P5      P6 P7 P8 

Q0 1 1 2 3 5 7 11 15 22 

Q1 1 2 4 7 12 19 30 45 67 

Q2 2 4 9 16 29 47 77 118 181 

Q3 3 7 16 31 57 97 162 257 401 

Q4 5 12 29 57 109 189 323 522 831 

Q5 7 19 47 97 189 339 589 975 1576 

Q6 11 30 77 162 323 589 1043 1752 2876 

Q7 15 45 118 257 522 975 1752 2998 4987 

Q8 22 67 181 401 831 1576 2876 4987 8406 
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 In Table V, the SFPs have been arranged for qi pj   as the number in the ith   row and jth 
column, as can be seen for p4 q7, where the number of SFPs is 522. This obviously forms 
a symmetric matrix. 
 
Readers are encouraged to look for any interesting patterns in this data. 
 

Section 15 
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Chapter 2 
 

Smarandache Sequences 
 

Section 1 
 

On The Largest Balu Number And Some SFP Equations 
 
 Definition: For a positive integer N let d(N)  and F’(N) be the number of distinct 
divisors and the Smarandache Factor Partitions (SFP) respectively. If N is the smallest 
number satisfying d(N) = F’(N) = r for some  r , then  N is called a Balu number.  
 
 In [1] Maohua Le proves Murthy’s conjecture that there are only a finite number of Balu 
numbers. In this section, it will be proved that 36 is the largest Balu number.  
 
 It is well-known that if N =  p1 a1 * p2

a2  . . . * pk
ak , then   

     d(N)  =  ( a1 +1 )(a2 + 1 ) ( a3 + 1 ) . . . (ak +1). 
 
Proposition 1:  
 
F’(N) > P(a1) P(a2) Pa3) .  . . P(ak) ,    
 
for k > 1 and where P(ai) is the additive partition of ai. 
 
Proof:      
From [2] we have that F’(pa) = P (a)  for  k  = 1.    
 
We proceed by induction on k. 
 
Basis step: 
For k = 2, let   N = p1

a1 p2
a2 . 

 
Consider those SFPs of N in which no element is a multiple of p1 p2. In other words the 
SFPs in which the factors of p1

a1 and p2
a2 are isolated. It is quite evident that each SFP of 

p1
a1, when combined with  each  SFP of  p2

a2 gives one  SFP of  N (=p1
a1 p2

a2) .  
Therefore, they contribute P(a1) P(a2)  SFPs  of N. There are more SFPs like   
(p1 *p2) * ( N/ p1 * p2 ) which are not counted. Hence we have F'(N) > P(a1) P(a2). The 
proposition has been established for k =2. 
 
Inductive step:     

Let the proposition be true for k = m. Then we have    
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F’(N) > P(a1) P(a2) Pa3) .  . . P(am). 
 
Let M = N * pm+1

 am+1 . Then, with F’ ( pm+1
 am+1 ) = P (pm+1

 am+1 )  and applying similar  
arguments it is evident that  
 
F’(M) > P(a1) P(a2) Pa3) .  . . P(am) P(am+1).   
 
Therefore, by the principle of mathematical induction, the proof is complete. 
 
 We also have  
 
P(1 ) = 1, P(2 ) = 2  and  P(3 )  = 3. P(4) = 5 , P (5) = 7 
 
and we have  P(a) > a + 1  for    a  > 4. This gives us  
 
P(a1) P(a2) Pa3) .  . . P(ak)  >   ( a1 +1 )(a2 + 1 ) ( a3 + 1 ) . . . (ak +1)  =  d(N)    
 
for ai > 4. 
 
From the proposition, we have 
 
F’(N) > ( a1 +1 )(a2 + 1 ) ( a3 + 1 ) . . . (ak +1)  =  d(N)   for  ai  > 4.     
 
 The next step will be to prove a stronger proposition. 
 
Proposition 2:  
 
F(a , b)  >  F(a)  * F(b)   for  a  >  2 and b > 2 

or in other words  

   F’ (p1
a p2

b )   >     F’ (p1
a ) *F’( p2

b )       
 
Proof: The proof is similar to that for the first proposition. 
 
Proposition 3:  If N  = p1

a1 p2
a2 p3, then F’(N) > d (N).  

 
Proof: Let   M = p1

a1 p2
a2.  Then, from [2] we have 

 
F’(N) = F’( Mp3)  = F’*( M) =  ∑ F’(dr)          
      d/M 
where  dr⏐M. This equals 
 
  F’ (p1

a1 p2
a2)  + F’ (p1

a1 p2
a2 - 1)  + F’ (p1

a1-1 p2
a2)  +  {d(p1

a1 p2
a2) -  3 }  

 
where each term in the expression is more than one. 
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 From proposition 2, this is greater than 
 
F’ (p1

a1 ) F’(p2
a2)  + F’ (p1

a1 ).F’(p2
a2 - 1)  + F’ (p1

a1-1 ).F’(p2
a2)  +  {d(p1

a1 p2
a2) -  3 } 

 
where each term is more than one. This is greater than 
 
P (p1

a1 ) P(p2
a2)  + P (p1

a1 ).P(p2
a2 - 1) + P (p1

a1-1 ).P(p2
a2)  + {d(p1

a1 p2
a2) -  3 } 

 
where each term is more than one. 
 
We have P(a)  >  ( a +1)  for    a > 4  , from which it follows that this is greater than 

 (a1 + 1) (a2+ 1) + a1(a2 + 1) + a2 ( a1 + 1)  + (a1 + 1) (a2+ 1)  - 3. 
 
> 2(a1 + 1) (a2+ 1), a1 ,  a2    > 4 
 
>  2d(M) = d (M p3)  = d(N).   
 

 Therefore, we have proven that  

F(‘p1
a1 p2

a2 p3.) > d (p1
a1 p2

a2 p3.) for   a1 , a2   > 4     

and to determine the largest Balu number, we need to examine only the cases where  
k < 4.   
 
When these cases are examined, it is easy to see that 1, 16, 36 is the complete list of Balu 
numbers.  
 
 We also note that 
 

1) The equation d(N) = F’(N) + 1 has five solutions: 2, 4, 8, 24 and 60. 
2) The equation F’(N) = 2*F’(M) has three solutions 

 
F’(6480) = 2* F’(2160)=  424 , F’(360) = 2* F’(180) = 52,  

F’(72) = 2* F’(30) =16.   

Readers are also invited to find solutions to:  

 (a).  F’(N) = k* F’(M), for different values of k. 

(b) F’(N) /F’M)  = N/M, (one solution is N=360. M = 180.), another is  N= 210 ,  

       M = 70  F’(N) =15. and F’(M) = 5. 

  The following table contains some solutions, which are highlighted in bold. 
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Canonical form Number SFP  F’(N) d(N) 

p4q4r 24345 = 6480 424 50 

p4q3r 24335 = 2160 212 40 

p4q2r 24325 = 720 98 30 

p4qr 24 *3* 5 = 240 38 20 

p4q 24*3 = 144 29 10 

p3q3r 23 *33 *5 = 1080 109 32 

p3q2r 23*32*5 = 360 52 24 

p3qr 23*3*5=  120 21 16 

p3q 23*3 =24 7 8 

p2q2r 22*32*5 =180 26 18 

p2qr 22*3*5 = 60 11 12 

p2q 22*3 = 12 4 6 

Pqr 2*3*5 = 30 5 8 

p2q2 22*32 = 36 9 9 

pq 2*3 =6 2 4 

p4 24 = 16 5 5 

p3 23 = 8 3 4 

p2 22 = 4 2 3 

p 2 1 2 

p0 1 1 1 

 

Section 2 
 

Smarandache Pascal Derived Sequences 
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Definition: Start with any sequence Sb, which we will call the base sequence. A 
Smarandache Pascal derived sequence Sd is defined as follows: 
 

            n 
Tn+1 = Σ   rCk * tk+1, where tk is the kth term of the base sequence. 

                      k=0 
 
 Let the terms of the base sequence Sb be 
 
b1, b2 , b3 , b4 , . . . 
 
Then the Smarandache Pascal derived sequence Sd: d1, d2, d3, d4, . . . is defined as follows: 
 
d1 = b1 
d2 = b1 + b2  
d3 = b1 + 2b2 + b3  
d4 = b1 + 3b2 + 3b3 + b4 
 
… 
           n 
dn+1 = Σ  nCk bk+1 
         k=0 
 
These derived sequences exhibit interesting properties for some base sequences. 
 
Examples: 
1) Sb : 1, 2, 3, 4, . . . (natural numbers). 
 
Sd : 1, 3, 8, 20, 48, . . .  
 
which can be written in the form 
 
 2x2-1, 3x20, 4x21, 5x22, 6x23, . . .  
 
It is also easy to prove that  
 
Tn = 4(Tn-1 - Tn-2 ) for n > 2 
 
and 
 
Tn = (n+1) *2n-2. 
 
2) Sb : 1, 3, 5, 7, . . .  (odd numbers). 
Sd : 1, 4, 12, 32, 80, . . .  
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The first differences are 1, 3, 8, 20, 48, . . . , which is the same as the Sd sequence for the 
natural numbers. The Sd sequence can also be written in the form 
 
1x20, 2x21, 3x22, 4x23, 5x24, . . .  
 
Again, it is easy to prove that  
 
Tn = 4( Tn-1 - Tn-2 ) for n > 2 and Tn = n *2n-1. 
 
3) Smarandache Pascal Derived Bell Sequence 
Start with the Smarandache Factor Partitions (SFP) sequence for the square-free numbers, 
which is the same as the Bell number sequence. 
 
Sb: 1, 1, 2, 5, 15, 52, 203, 877, 4140, . . .  
 
The derived sequence is 
 
Sd: 1, 1, 2, 5, 15, 52, 203, 877, 4140, . . .  
 
which is the same sequence. Because of this property, we will call it the Pascal Self 
Derived Sequence. 
 
4) Start with the Fibonacci sequence as the base sequence 
 
Sb: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, 233, . . .  
 
The derived sequence is 
 
Sd: 1, 2, 5, 13, 34, 89, 233, . . .  
 
which is every other element of the Fibonacci sequence. From this, it follows that 
 

 n 
F2n =    Σ nCk *Fk , where Fk is the kth term of the base Fibonacci sequence. 
           k=0 
 
If we take the previous derived sequence as the base sequence we get the following 
derived sequence Sdd  
 
Sdd: 1, 3, 10, 35, 125, 450, 1625, 5875, 21250, . . . 
 
 It is interesting to note that the first two terms are divisible by 50, the next two terms by 
51, the next two by 52, the next two by 53 and so forth. Expressed as a formula 
 
             T2n ≡ T2n-1 ≡ 0 ( mod 5n ). 
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 If we carry out the division, we have 
 
1, 3, 2, 7, 5, 18, 13, 47, 34, 123, 89, . . . (*) 
 
and the sequence formed by the odd numbered terms is 
 
1, 2, 5, 13, 34, 89, . . 
 
which is the original sequence Sd that was used as the base. 
 
 Another interesting characteristic of the (*) sequence is that every even numbered term is 
the sum of the two adjacent odd numbered terms.  
 
(3 = 1+2, 7 = 2 +5, 18 = 5 + 13 etc.). 
 
Conjecture: Fn is the nth Fibonacci number. 
  
                           2m+1              r  
      F2m+1 = (1/5m) Σ  { 2m+1Cr ( Σ  rCk Fk ) }. 
                            r =0               k=0 
 
which would be yet another beautiful result involving the Fibonacci numbers if it could 
be proven. 
 
Note: A companion formula where the Fibonacci numbers are replaced with the Lucas 
numbers could also be considered. 
 
 The next operation with be the Pascalisation of the Fibonacci sequence with the indexes 
in arithmetic progression. 
 
 Consider the following sequence formed by the Fibonacci numbers whose indexes are in 
arithmetic progression. 
 
 F1 , Fd+1 , F2d+1 , F3d+1 , . . . on Pascalisation gives the following sequence 
  
1, d *F2 , d2 *F4 , d3 *F6 , d4 *F8 , . . ., dn *F2n , . . . 
 
 For d = 5, we have the sequences 
 
Base sequence: F1, F6 , F11, F16, . . . 
 
1, 13, 233, 4181, 46368, . . . 
 
Derived sequence:  
 
1, 14, 260, 4920, 93200, . . . 
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in which we notice that  
 
260= 20 *(14- 1), 4920 = 20 *(260 - 14) , 93200 = 4920 - 260 ),  
 
which suggests the following conjecture. 
 
Conjecture: The terms of the Pascal derived sequence for d = 5 are given by  
 
         Tn = 20.( Tn-1 - Tn-2 )  for  n > 2. 
 
For d = 8 we have 
 
Base sequence: F1, F9, F17, F25, . . . 
 
Sb ---- 1, 34, 1597, 75025, . . . 
Sd ---- 1, 35, 1666, 79919, . . . 
 
= 1, 35, (35-1) * 72, (1666 - 35) * 72, . . . etc.  
 
which suggests the following conjecture. 
 
Conjecture: The terms of the Pascal derived sequence for d = 8 are given by  
 
Tn = 49 * ( Tn-1 - Tn-2 ) ,  n > 2. 
 
We also put forward the following similar conjectures. 
 
For d = 10, Tn = 90 *( Tn-1 - Tn-2 ) , (n > 2). 
For d = 12, Tn = 182 *( Tn-1 - Tn-2 ) , (n > 2). 
 
Note: There seems to be a direct relation between d and the coefficient of  
( Tn-1 - Tn-2 ) (or the common factor) of each term. 
 
5) Smarandache Pascal Derived Square Sequence 
Start with the sequence of perfect squares 
 
Sb: 1, 4, 9, 16, 25, . . .  
 
Sd: 1, 5, 18, 56, 160, 432, . . . 
 
Which can be expressed in the form 
 
1, 5 *1, 6 * 3, 7 * 8, 8 *20, 9 *48 , . . . , ( Tn = (n+3)tn-1 ) ,  
 
where tr is the rth term of Pascal derived natural number sequence. 
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 It is also possible to derive Tn = 2n-2 * ( n+3)(n)/ 2. 
 
6) Smarandache Pascal Derived Cube Sequence 
Start with the sequence of perfect squares 
Sb: 1, 8, 27, 64, 125, . . .  
 
Sd: 1, 9, 44, 170, 576, 1792, . . . 
 
 In this case, we have Tn ≡ 0(mod (n+1)). 
 
Similarly we can derive sequences for higher powers, which can be analyzed for patterns. 
 
7) Smarandache Pascal Derived Triangular Number Sequence 
Start with the sequence of triangular numbers 
 
Sb: 1, 3, 6, 10, 15, 21, . . .  
 
Sd: 1, 4, 13, 38, 104, 272, . . . 
 
8) Smarandache Pascal Derived Factorial Sequence 
Start with the sequence of factorial numbers 
 
Sb: 1, 2, 6, 24, 120, 720, 5040, . . .  
 
Sd: 1, 3, 11, 49, 261, 1631, . . .  
 
We can verify that Tn = n *Tn-1 + Tn-2 + 1. 
 
Open problem: Are there infinitely many primes in the previous Sd sequence? 
 
 Start with the natural number sequence again 
 
Sb: 1, 2, 3, 4, 5, . . .  
 
The corresponding derived sequence is 
 
Sd: 2 *2-1, 3 *20, 4 *21, 5 *22, 6 *23, . . . 
 
 Using this as the base sequence, we can get another derived sequence, which we denote 
by 
 
Sdd or Sd2: 1, 4, 15, 54, 189, 648, . . . 
 
Which can be rewritten as 
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1, 4 *30 , 5 *31, 6 *32 , 7 *33 . . . 
 
Similarly, we can use this as the base sequence to get the new derived sequence 
 
Sd3: 1, 5 *40, 6 *41, 7 *42 , 8 *43 , . . . 
 
 The pattern of the first few derived sequences suggests the pattern 
 
Sdk: 1, (k+2)  *(k+1)0, (k+3) *(k+1)1 , (k+4) *(k+1)2, . . ., (k+r) *(k+1)r-2 
 
which can be proven by induction. 
 
Generalization: 
 
 We can take any arithmetic progression with the first term a and the common difference 
b as the base sequence and get the derived kth order sequences to generalize the above 
results. 
 

Section 3 
 

Depascalization of Smarandache Pascal Derived Sequences and 
Backward Extended Fibonacci Sequence 

 
 In the previous sequence, we started with a base sequence Sb 
 
b1, b2, b3, . . .  
 
and then used the base sequence to create the derived sequence Sd. 
 
d1 = b1 
d2 = b1 + b2 
d3 = b1 + 2b2 + b3 
d4 = b1 + 3b2 +3 b3 + b4 
… 
            n 
dn+1 =  Σ  nCk bk+1 
          k=0 
 
Definition: Given a derived sequence Sd, the process of extracting the base sequence Sb 
will be called Depascalization. The interesting observation is that this will involve 
Pascal’s triangle, although with a difference. 
 
 It is clear that 
 
b1 = d1 



 82

b2 = -d1 + d2  
b3 = d1 - 2d2 + d3  
b4 = -d1 + 3d2 - 3d3 + d4 

. . . 
Which suggests the general formula 
           n 

bn+1 = Σ  (-1)n+k * nCk *dk+1 

         k=0 
 which can be established by induction. 
 
 In the examples to be given, we will see that depascalized sequences exhibit some 
interesting patterns. 
 
To begin with we define the Backward Extended Fibonacci Sequence  (BEFS) in the 
following way. 
 
We start with the Fibonacci sequence 
 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . 
 
where F1 = 1 , F2 = 1 ,  and Fn-2

   =  Fn - Fn-1, n  >  2. 
 
 If we allow n to take negative values 0, -1, -2, . . . and we subtract the terms,  
 
F0 = F2 - F1 = 0 , F-1 = F1 - F0 = 1 , F-2 = F0 - F-1 =  -1 , . . . 
 
the Fibonacci sequence can be extended backwards    
 
  .  .  . F-6  F-5, F-4,  F-3, F-2,   F-1,   F0,   F1,  F2,  F3,   F4, F5, F6,    F7,   F8,   F9, .  .  . 
 
  .  .  .  -8,   5,   -3,   2 ,  -1,    1      0,    1,    1,    2  ,  3,   5    8,    13,  21,  34, .  .  . 
 
This sequence will be called the Fibonacci Extended Backwards Sequence (FEBS). 
 
Depascalization of the Fibonacci Sequence 
 
The Fibonacci sequence is  
 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . 
 
The corresponding depascalised sequence Sd(-1)  comes out to be 
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Sd(-1)  ----     1, 0, 1, -1, 2, -3, 5, -8, . . . 
 
Note that this sequence is nothing more than the extended Fibonacci sequence rotated 
1800 about F1 and then the left terms omitted.  
 
 If we depascalize one more time to get the sequence Sd(-2)    
 
     1,  -1, 2, -5, 13,  -34, 89, -233, … 
 
 This sequence can be obtained from the Fibonacci sequence by: 
 

1) Removing even numbered terms. 
2) Multiplying the alternate terms by –1. 

 
Conjecture 1: If the first  r terms of the Fibonacci Sequence are removed  and the 
remaining sequence is Pascalised , the resulting derived sequence  is   
 
F2r+2 , F2r+4 , F2r+6 , F2r+8 , .  .  .  
 
where Fr is the rth  term of the Fibonacci Sequence. 
 
Conjecture 2: In the FEBS, if we take Tr as the first term and depascalize the right side 
of it, then we get the resulting sequence as the left side of it (looking rightwards) with Tr 
as the first term.  
 
 As an example, let r = 7, T7 = 13 
 
.  .  . T-6  T-5, T-4,   T-3,  T-2 , T-1 ,   T0,   T1,  T2,  T3,  T4, T5,   T6,   T7,  T8,  T9, .  .  . 
  .  . . -8,   5,  -3,    2 ,  -1,    1     0,    1,    1,    2 ,  3,   5    8,      13,  21,  34,  55, 89,  .  .  . 

                                                                                                      →→→→→→→→→→ 
                                                                                                          depascalisation 
  The depascalized sequence is 
 
13,  8,  5,  3,  2,  1,  1,  0,  1,  -1,  2,  -3,  5,  -8  .  .   
 
which is obtained by rotating the FEBS around  13 (T7) by  180  and then removing the 
terms on the left side of  13.   
 
 Readers are encouraged to search for more fascinating results. 
 
 

Section 4 
 

Proof of the Depascalization Theorem 
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 In the previous section, the operation of extracting a base sequence from a derived 
sequence was defined. Known as depascalization, it was stated that the general term of 
the base sequence (bi) was given by the formula 
 
                            n 

                 bn+1 = Σ  (-1)n+k * nCk *dk+1. 
                           k=0 
 
 In this section, it will be proven that this is indeed the case. 
Theorem: Given the terms of the derived sequence  
d1 = b1 
d2 = b1 + b2 
d3 = b1 + 2b2 + b3 
d4 = b1 + 3b2 +3 b3 + b4 
… 
            n 
dn+1 =  Σ  nCk bk+1 
          k=0 
 
The value of the elements of the base sequence can be computed using the formula 
                            n 

                 bn+1 = Σ  (-1)n+k * nCk *dk+1. 
                           k=0 
 
Proof: By induction on the subscript of b. 
 
Basis step: If n = 0, then (-1)0 = 1, 0C0 = 1, so b1 = d1. 
 
Inductive step: Let the formula be true for all subscripts less than or equal to k+1. Then 
we have 
 
    bk+1 = kC0 (-1)k+2 d1 + kC1 (-1)k+1 d2 +. . . + kCk (-1)2. 
 
We also have 
 
dk+2 = k+1C0 b1 + k+1C1 b2 + . . . + k+1Cr br+1 + . . . + k+1Ck+1 bk+2   
 
which gives 
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bk+2 = (-1) k+1C0 b1 - k+1C1 b2 - . . . - k+1Cr br+1 - . . . + dk+2 . 
 
 Substituting the values of b1, b2, . . . in terms of d1, d2, . . . , the coefficient of d1 is 
 
 
(-1) k+1C0 + (-k+1C1)(-1C0) +(-k+1C2)( 2C0) +. . .+ (-1)r * k+1Cr)(rC0) +. . .+  
 
(-1) k+1(k+1Ck)(kC0) - k+1C0 + k+1C1. 1C0 - k+1C2  * 2C0 +. . .+ (-1)r * k+1Cr * rC0  
 
+. . .+ (-1)k+1* k+1Ck  * 

kC0. 
 
 Similarly, the coefficient of d2 is 
 
k+1C1 *1C1 + k+1C2  * 2C1 +. . .+ (-1)r+1 * k+1Cr  * rC1 +. . .+ (-1) k+1 * k+1Ck  * 

kC1. 
 
 Repeating the process, the coefficient of dm+1 is 
 

k+1Cm * 
mCm + k+1Cm+1 * m+1Cm - . . .+ (-1)r+m * k+1Cr+m * r+mCm +. . .+  

 
(-1) k+m * k+1Ck  * 

kCm 

           k-m 

=    Σ  (-1)h+1 k+1Cm+h * m+hCm . 
           h=0 
Which is equal to 

(k+1)-m 

   Σ   (-1)h+1 k+1Cm+h * m+hCm  + (-1) k+m
 * k+1Ck+1 * k+1Cm .     

 h=0 
By a theorem in section 7 of chapter 1,  
             n-r 
  ∑    nCr+k r+kCr mk   = nCr (1+m)(n-r). 
 k=0 
Applying this theorem, we have 
 

= k+1Cm { 1 + (-1)}k+1-m
 + (-1)k+m * k+1Cm  

= (-1)k+m . k+1Cm. 
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which shows that the proposition is true for (k+2) as well. The proposition has already 
been verified for the index equal to 1, hence by induction the proof is complete. 
In matrix notation if we write 

[ b1, b2 , . . bn ]1xn * [pi,j ]'
nxn = [ d1, d2 , . . dn ]1xn 

where [pi,j ]'
nxn = the transpose of [pi,j ]nxn and [pi,j ]nxn is given by pi,j = i-1Cj-1  if i ≤ j     

else    pi,j = 0. 
 Then, we get the result 
If [qi,j]nxn is the transpose of the inverse of [pi,j ]nxn, then  
 

qi,j = (-1)j+i  *i-1Cj-1. 
 
We also have 

[ b1, b2 , . . bn ] * [qi,j ]'
nxn = [ d1, d2 , . . dn ] 

 
where [qi,j ]'

nxn = the transpose of [qi,j ]nxn. 
 

Section 5 
Smarandache Friendly Numbers and A Few More Sequences 

 
Definition: If the sum of any set of consecutive terms of a sequence equals the product of 
the first and the last number of the set, then this pair is called a Smarandache Friendly 
Pair with respect to the sequence. 
1) Smarandache Friendly Natural Number Pairs: 
Consider the natural number sequence 
1, 2, 3, 4, 5, 6, 7, . . . 
then the Smarandache friendly pairs are 
(1,1), (3, 6), ( 15,35) , (85, 204), . . . 
as 3 + 4 + 5 +6 = 18 = 3 * 6 
15 + 16 + 17 + . . . + 33 + 34 + 35 = 525 = 15 * 35. 
There exist infinitely many such pairs. This is evident from the fact that if  
(m, n) is a friendly pair then so is the pair (2n+m, 5n +2m -1). 
2) Smarandache Friendly Prime Pairs: 
Starting with the sequence of prime numbers 
2, 3, 5, 7, 11, 13, 17, 23, 29, . . .  
we have 2 +3 + 5 = 10 = 2 * 5. Therefore, ( 2, 5) is a friendly prime pair. 
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3 + 5 + 7 + 11 + 13 = 39 = 3 * 13, so (3,13) is a friendly prime pair. 
5 + 7 + 11 + . . .+ 23 + 29 + 31 = 155 = 5 * 31, so (5, 31) is a friendly prime pair. 
Similarly (7, 53 ) is also a Smarandache friendly prime pair. In a friendly prime pair  
(p, q) we define q as the big brother of p. 
Open problem: Are there infinitely many friendly prime pairs? 
Open problem: Are there big brothers for every prime p? 
3) Smarandache Under-Friendly Pair: 
If the sum of any set of consecutive terms of a sequence is a divisor of the product of the 
first and the last number of the set then this pair is called a Smarandache Under- Friendly 
Pair with respect to the sequence. 
4) Smarandache Over-friendly Pair: 
 If the sum of any set of consecutive terms of a sequence is a multiple of the product of 
the first and the last number of the set then this pair is called a Smarndache Over- 
Friendly Pair with respect to the sequence. 
5) Smarandache Sigma Divisor Prime Sequence: 
The sequence of primes pn, which satisfy the congruence 
n-1 
Σ   pr  ≡ 0(mod pn). 
r=1 
 The first few terms of the sequence are  
 
2, 5, 71, … 
 
since 5 divides 10, and 71 divides 568 = 2 + 3 + 5 + . . . + 67. 
 
Open problem: Is the Smarandache Sigma Prime Sequence infinite? 
 
Conjecture: Every prime divides at least one cumulative sum. 
 
6) Smarandache Smallest Number With ‘n’ Divisors Sequence 
 
1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, . . . 
d(1) = 1, d(2) = 2, d( 4) = 3, d(6) = 4, d(16) = 5, d(12) = 6  , . . .  
d(Tn) = n, where Tn is the smallest number having n divisors. It is clear that Tp = 2p-1, if p 
is prime. The sequence Tn + 1 is 
 
2, 3, 5, 7, 17, 13, 65, 25, 37, 49, 1025, . . . 
 
Conjecture: The Tn + 1 sequence contains infinitely many primes.  
 
Conjecture: Seven is the only Mersenne prime in the Tn + 1 sequence. 
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Conjecture: The Tn + 1 sequence contains infinitely many perfect squares. 
 
7) Smarandache Integer Part kn Sequences (SIPS) 
 
(i) Smarandache Integer Part πn Sequence 
 
[π1], [π2], [π3], . . .  
 
where [ ] means the integer part of the expression. The first few terms of the sequence are 
 
3, 9, 31, 97, . . . 
 
(ii) Smarandache Integer Part en Sequence 

 
[e1], [e2], [e3], . . .  
 
2, 7, 20, 54, 148, 403, . . .  
 
Conjecture: Every SIPS contains infinitely many primes. 
 
8) Smarandache Summable Divisor Pairs (SSDP) 
This is a set of ordered pairs (m,n), where d(m) + d(n) = d(m+n), where d(n) is the 
number of divisors of n.  
For example, we have d(2) + d(10) = d(12) ,  
d(3) + d(5) = d(8),  
d(4) + d(256) = d(260), 
d(8) + d(22) = d(30) , etc.  
hence (2, 10) , (3,5) , (4, 256) , (8, 22) are SSPDs. 
Conjecture: There are infinitely many SSPDs. 
 
Conjecture: For every integer m there exists and integer m such that (m,n) is an SSDP. 
 
9) Smarandache Product of Digits Sequence 
The nth term of this sequence Tn is defined as the product of the digits of n.  
 
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, . . . 
 
10) Smarandache Sigma Product Of Digits Natural Sequence 
The nth term of this sequence is defined as the sum of the products of all the numbers 
from 1 to n.  
 
1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90, 92, 96, . . . 
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 Here we consider the terms of the sequence for some values of n. 
For n = 9 we have Tn = 45.  
For n = 99 we have Tn = 2070 = 452 + 45.. 
Similarly we have  
T999 = ( T9)3 + ( T9)2 + T9

 = 453 + 452 + 45 = (454 - 1) / (45- 1) = (454 -1) /44 
The pattern suggested by the previous sequence can easily be proved. 
 This can be further generalized for a number system other than base 10. 
For a number system with base b the (br -1) th term in the Smarandache sigma product of 
digits sequence is  
 
2[{b(b-1)/2}r+1 - 1] /{ b2 - b -2}  
 
Further exploration: The task ahead is to find the nth term in the above sequence for an 
arbitrary value of n. 
11) Smarandache Sigma Product of Digits Odd Sequence 
 
1, 4, 9, 16, 25, 26, 29, 34, 41, 50, 52, 58, 68, 82, 100, 103, 112, 127, 148, . . .   
 
It can be proved that for  n = 10r -1 ,  Tn  is the sum of the r terms of  the Geometric 
progression  with  the first term as 25  and the common  ratio as  45. 
 
12) Smarandache Sigma Product Of Digits Even Sequence 
 
2, 6, 12, 20, 20, 22, 26, 32, 40, 40, 44, 52, 62, 78, 78, 84, 96, 114, 138, . . . 
 
 It can again be proven that for n = 10r -1 ,  Tn  is the sum of the r terms of  the Geometric 
progression  with  the first term as 20  and the common  ratio as  45. 
Open Problem: Are there infinitely many common members in sequences {11} and 
{12}? 

Section 6 
 

Some New Smarandache Sequences, Functions and Partitions 
 

1) Smarandache LCM Sequence (SLS) 
L(n) is the Least Common Multiple (LCM) of the natural numbers from 1 through n. 
The first few numbers are 
 

SLS → 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520,  . . . 
Smarandache LCM Odd Sequence (SLOS) 
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LO(n) is the Least Common Multiple (LCM) of the first n odd natural numbers.  
 
SLOS →  1, 3, 15, 105, 415, 4565, . . .  
 
The Smarandache LCM Even Sequence (SLES) can be defined in a similar way 
 
SLES → 2, 4, 12, 24, 240, 240 . . . 
 
 It is easy to see that 
 
T2n+1 (SLES) =  2n Tn (SLOS) ,  
 
which is a direct consequence of the definition . 
 
 Additional ideas for exploration: 
 
A) If each term of the SLS is incremented by 1, we get the new sequence. 
 
2 ,3 ,7, 13, 61, 421, 841. 2521, . . .  
 
Does this sequence contain infinitely many primes? 
 
B) Does 
                  ∞ 
                  Σ  L(n)/n! exist? If it does, determine the value.  
                 n=1 
 
C) Does  
                  ∞ 
                  Σ  1/L(n) exist? If it does, determine the value.  
                 n=1 
 
2) Divisor Sequences 
Define An = { x | d(x) = n}. 
 
Then 
  A1 =  {1} 
   
  A2 = { p | p is a prime } 
   
  A3 = { x | x = p2  , p is a prime } 
   
  A4 = { x | x = p3 or x = p1p2 , p , p1 ,p2  are primes } . 
 
A4  → 6 , 8 , 10 , 14 , 15 , 21 , 22 , 26 , 27 , . . . 
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We have  
  ∑  1/ Tn =1 for A1 
  
and the limit does not exist for  A2. 
 
                        ∞ 
                  Σ  1/L(n) exists and is less than п2/6 for A3 as   
                       n=1 
 
                  ∞   
                  Σ  1/n2 = п2/6.   
                 n=1 
 
 The above limit exists for Ap, where p is a prime. It is a point for further exploration to 
determine if the limits exist for A4, A6 and so forth.  
 
Divisor Multiple Sequence 
 
SDMS = {n | n = k* d(n) }. 
 
SDMS  →  1, 2, 8 ,9, 12 , . . . 

3) Quad Prime Sequence Generator 
 
SQPSG = { r | 90r+11 ,  90r+13 ,  90r+17,  90r+ 19  are all primes } 
 
SQPSG →  0 , 1, 2 , . . . 
 
Open problem: Are there infinitely many terms in this sequence? 

4) Prime Location Sequences 

Definition  
                        P0 = sequence of primes . 
 
  P1 = sequence of primeth primes 
 
  P1 → 3, 5, 11, 17, . . . 
 
  P2 = sequence of primeth , primeth prime . 
                        . . .  
   
  Pr = sequence of primeth , primeth , . . .  r  times ,primes 
 
Open problem: If Tn is the nth term of Pr, then what is the minimum value of r for which 
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                     ∞ 
                     ∑  1/Tn  exists ? 
                    n=1 

5) Partition Sequences 

(i) Prime partition 

The number of partitions of n into prime parts  

Spp(n)  →  0, 1, 1, 1 ,1 2, 2, 3, . . . 
   
(ii) The number of partitions of n into composite parts 
 
Spc(n)  → 1, 1, 1, 2, 1, 3, . . . 
 
(iii) Divisor partitions 
The number of partitions into numbers that are divisors of n. 
 
 SPd(n)  →  1, ,1 ,1 ,2 ,1, … 
 
(iv) Co-prime Partitions (SPcp(n)) 
The number of ways n can be partitioned into co-prime parts. 
 
(v) Non-Co-prime Partitions (SPncp(n)) 
The number of ways n can be partitioned into non co-prime parts. 
 
(vi) Prime Square Partitions 
The number of ways n can be partitioned into prime square parts. 
 
 These ideas could be generalized to define many more such sequences. 
 
6) Combinatorial Sequences 
Define a sequence in the following way 
  
 T1 = 1,  T2 = 2,  Tn = sum of all the products of the previous terms taken two at a time 
                                     (n>2). 
 
This sequence will be abbreviated SCS(2) and the first few terms are 
 
SCS(2) = 1, 2, 2, 8 ,48, . . . 
 
 This definition can be generalized in the following way: 
Start out with the explicit values of Tj = j  being assigned to the first r terms, then define 
all subsequent terms  
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Tn = sum of all the products of the previous terms taken r at a time, n >r.  
 
This sequence will be abbreviated SCS(r). 
 
Another, similar sequence can be defined by 
 
Let   Tk = k for k = 1 to n. 
 
Tr = sum of all products of (r-1) terms of the sequence taken  
 
 (r-2) at a time  ( r  > n) .  This sequence will be abbreviated SCvS.  
 
For n = 2, the first few elements of the sequence are   
 
T1 = 1, T2 = 2, T3  = 3, T4 = 17, . . .  
 
Open problem: How many of the consecutive terms of SCS(r) are pairwise coprime? 
 
Open problem:  How many of the terms of SCvS are primes? 
 
(ii) Prime product sequences 
 
SPPS(n)  
 
Tn = sum of all the products of primes chosen from the first n primes taking (n-1) primes 
at a time. The first few terms are 
 
SPPS(n) → 1, 5, 31, 247, 2927, . . . 
 
T1 =1 , T2 = 2 + 3 , T3 = 2*3 + 2*5 + 3*5  = 31. 
 
T4 = 2*3*5 + 2*3*7 + 2*5*7 + 3*5*7 = 247   etc. 
 
Open problem: How many of the numbers in this sequence are prime? 
 
7) φ -SEQUENCE      
 
(SφS)  = {n | n = k *φ(n)} 
 
SφS → 1, 2, 4, 6, 8, 12, . . . 
 
8) Prime Divisibility Sequence 
 
 
SPDS  =  {n | n divides pn +1, pn is the nth prime} 
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SPDS→ 1, 2, 3, 4, 10, . . . 
 
9) Divisor Product Sequence 
 
Tn =     Πdk  where  dk  is a divisor of n . 
 
The first few terms of this sequence are 
 
1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, . . .  
 

Section 7 
 

Smarandache Reverse Auto Correlated Sequences and Some Fibonacci 
Derived Smarandache Sequences 

 
Definition: Let   a1, a2, a3, . . ,  be a sequence. We define a Smarandache Reverse Auto-
Correlated Sequence  (SRACS) b1, b2, b3, . . . in the following way: 
b1  = a2

1 ,  b2  =  2a1a2 ,  b3  = a2
2   +  2a1a 3  ,   

 
Or by applying the formula 
             n  

bn   =    Σ   ak * an-k+1. 
            k=1 
 
Such a transformation will be called the Smarandache Reverse Auto Correlation 
Transformation (SRACT). 
 
Example 1: 
Starting with the base sequence 
 
1, 2, 3, 4, 5, . .  . 
 
or, expressed another way 
 
1C1 ,  2C1 ,   3C1 ,   4C1 ,    5C1 ,  .  .  . 
 
The SRACS is  
 
       1, 4, 10, 20, 35,    .  .  .,  which can be rewritten as 
  3C3 ,   4C3 ,     5C3 ,    6C3 ,      7C3 ,  .  .  .   
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We will call this sequence SRACS(1) 
Taking this as the base sequence, we can compute SRACS(2) 
1, 8, 36, 120, 330,    .  , which can be rewritten as 
 
7C7, 8C7, 9C7, 10C7, 11C7,  .  .  .   
  
Taking this as the base sequence, we have SRACS(3) 
 
1, 16, 136, 816, 3876,  .  .  . or, expressed another way 
 
15C15 ,    16C15 ,     17C15 ,      18C15 ,        19C15 ,  .  .  .  , 
 
The expressions of the sequences using the nCr notation suggests the following 
conjecture. 
 
Conjecture: The sequence obtained by performing the Smarandache Reverse Auto 
Correlation Transformation   (SRACT)  n times starting with  the set of natural numbers 
is given by the following: 
SRACS(n) 
 
 h-1Ch-1 ,    hCh-1 ,     h+1Ch-1 ,      h+2Ch-1 ,        h+3Ch-1 ,  .  .  . where   h = 2n+1. 
 
Example 2: Using the triangular numbers as the base sequence 
1, 3, 6, 10, 15,  .  .  . 
or expressed another way 
 
 2C2 ,  3C2 ,   4C2 ,   5C2 ,   6C2 ,  .  .  . 
  
 The SRACS is 
 
1, 6, 21, 56, 126,    .  .  .  
which can be rewritten as 
 
   5C5 ,    6C5 ,     7C5 ,    8C5 ,      9C5 ,  .  .  .   
 
 and we can call it SRACS(1). 
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 Using this as the base sequence, we compute SRACS(2) 
 
  1, 12 , 78 , 364 , 1365,    .  .  .   
 
    11C11 , 12C11 , 13C11 , 14C11 , 15C11 ,  .  .  .   
 
Taking this as the base sequence we get the elements of SRACS(3)   
1, 24, 300, 2600, 17550,  .  .  .   
 
  23C23 , 24C23 , 25C23 ,  26C23 ,  27C23 ,  .  .  .  , 
 
This pattern suggests the following conjecture. 
Conjecture: The sequence obtained by performing the Smarandache Reverse Auto 
Correlation transformation (SRACT) n times starting with the set of Triangular numbers 
is given by SRACS(n). 
 
    h-1Ch-1 ,   hCh-1 ,     h+1Ch-1 ,     h+2Ch-1 ,    h+3Ch-1 ,  .  .  . where h =  3 *2n. 
 
Conjecture: Given the base sequence as   nCn ,  n+1Cn ,  n+2Cn ,  n+3Cn ,  n+4Cn    , . . . 
The set of elements of the sequence SRACS(n) is given by  
 
h-1Ch-1 ,  hCh-1 ,   h+1Ch-1 ,    h+2Ch-1 ,   h+3Ch-1 ,  .  .  .  where h =  (n+1)*2n. 
 
Some Fibonacci Derived Smarandache Sequences 
1. Smarandache Fibonacci Binary Sequence (SFBS) 
 
In the Fibonacci Rabbit problem we start with an immature pair ' I ', which matures after 
one season to 'M'. In the second season, this mature pair breeds a new immature pair, in 
the third season the first mature pair breeds another immature pair and the immature pair 
becomes mature. In the fourth season, the immature pair reach maturity and both mature 
pairs breed an immature pair. This continues, where for any season, all immature pairs 
become mature and all mature pairs breed an immature pair.  When this is repeated, we 
get the sequence  
 
 
I, M, MI, MIM, MIMMI, MIMMIMIM, MIMMIMIMMIMMI,  
 
If we replace I by 0 and M by 1, we get the following binary sequence 
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0, 1, 10, 101, 10110, 10110101, 1011010110110, … 
 
When this sequence is converted into the equivalent decimal form, we have 
 
0, 1, 2, 5, 22, 181, 5814, . . .  
 
We will call this sequence the SFBS and we will derive a reduction formula for the 
general terms of the sequence.  
 
From the binary pattern, we observe 
 
Tn = Tn-1 Tn-2 {the digits of the Tn-2 placed to the left of the digits of Tn-1.}.  
 
Also the number of digits in Tr is nothing but the rth Fibonacci number by definition . 
Hence we have  
 
                  Tn = Tn-1 *2F(n-2) + Tn-2 . 
 
Open problem: How many elements of this sequence are prime? 
Open problem: How many elements of this sequence are Fibonacci numbers? 
2. Smarandache Fibonacci Product Sequence 
 The Fibonacci sequence is 1, 1, 2, 3, 5, 8, . . . 
Starting with T1 = 2, and T2 = 3 and then using the general formula, Tn = Tn-1 * Tn-2 we 
get the following sequence 
2, 3, 6, 18, 108, 1944, 209952, … (*) 
 In this sequence, which is determined by the first two terms, you can find the entire 
Fibonacci sequence. This is clear if you write the sequence in the following way: 
 21, 31, 21 31, 21 32, 22 33, 23 35, 25 38, . . . 
From this, it can be seen that Tn = 2Fn-1 * 3Fn. 
 This idea can be extended by choosing r terms instead of only two and changing the 
recursive term to  
 
                Tn = Tn-1 Tn-2 Tn-3. . . Tn-r for n > r. 
 
Conjecture: The sequence obtained by incrementing the elements of (*) by one contains 
infinitely many primes. 
 
Conjecture: The sequence obtained by incrementing the elements of (*) by one does not 
contain any Fibonacci numbers. 
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Section 8 
Smarandache Star (Stirling) Derived Sequences 

Definition: Let b1, b2, b3, . . . be a sequence of numbers Sb, that will be the base 
sequence. Then the Smarandache Star Derived Sequence Sd is defined by using the star 
triangle 
 
1         

1 1       

1 3 1     

1 7 6 1   

1 15 25 10 1 

in the following way. 
 
d1 = b1 

d2 = b1 + b2  
d3 = b1 + 3b2 + b3  
d4 = b1 + 7b2 + 6b3 + b4 

. . . 
             n 

dn+1 =   Σ  a(m,r) * bk+1  
           k=0 
 
where a(m,r) is given by  
                      r 

a(m,r) = (1/r!) Σ (-1)r-k *  rCk * kn 
                    k=1 
 
For example: 
(1) If the base sequence Sb is 1, 1, 1, . . . then the derived sequence Sd is  
 
1, 2, 5, 15, 52, . . . ,    
in other words the sequence of Bell numbers. Tn = Bn. 
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(2) If Sb - 1, 2, 3, 4, . . . then 
Sd - 1, 3, 10, 37, . . . 
we have Tn = Bn+1 -Bn 
  
 The Significance of the above transformation will be clear when we consider the inverse 
transformation. It is clear that the star triangle is nothing but the Stirling Numbers of the 
Second kind. 
 
 Consider the inverse transformation. Given the Smarandache Star Derived Sequence Sd , 
we wish to retrieve the original base sequence Sb . We get bk for k  = 1, 2, 3, 4,… in the 
following way : 
 
b1 = d1 

b2 = -d1 + d2  
b3 = 2d1 - 3d2 + d3  
b4 = -6d1 + 11d2 - 6d3 + d4 

b5 = 24d1 - 50d2 + 35d3 - 10d4 + d5 

 
 The triangle of coefficients 

1         

-1 1       

2 -3 1     

-6 11 -6 1   

24 -50 35 -10 1 

is made up of the Stirling numbers of the first kind. 
 
Some of the properties of this triangle are: 

1) The first column numbers are (-1) r-1 *(r-1)! , where r is the row number. 
2) The sum of the numbers in each row is zero. 
3) Sum of the absolute values of the terms in the rth row is r!. 

Additional properties of the triangle can be found in the book by Krishnamurthy. 
 
This provides us with a relationship between the Stirling numbers of the first kind and 
those of the second kind, which can be better expressed in the form of a matrix. 
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Let [b1,k]1xn be the row matrix of the base sequence. 
Let [d1,k]1xn be the row matrix of the derived sequence. 
Let [Sj,k]nxn be a square matrix of order n in which sj,k is the kth number in the jth row of 
the star triangle ( array of the Stirling numbers of the second kind). 
Then we have 
[Tj,k]nxn is a square matrix of order n in which tj,k is the kth number in the jth row of the 
array of the Stirling numbers of the first kind.  
From this, we have 
[b1,k]1xn * [Sj,k]'

nxn = [d1,k]1xn 

[d1,k]1xn * [Tj,k]'
nxn = [b1,k]1xn. 

Which suggests that [Tj,k]'
nxn is the transpose of the inverse of the transpose of the matrix 

[Sj,k]'
nxn .  

Readers are encouraged to construct alternate proofs by using a combinatorial approach 
or other techniques. 
 

Section 9 
Smarandache Strictly Staircase Sequence 

 
Definition: Starting with a number system in the base b, we will define a sequence using 
the following postulate. 

1) Numbers are listed in increasing order. 
2) In any number, the kth digit is less than the (k+1)st digit.  

For example, if b = 6, we have the sequence 
1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 123, 124, 125, 134, 135, 145, 234,  … 
For convenience, we write the terms row wise with the rth row containing numbers with r 
digits.  

(1) 1, 2, 3, 4, 5.       { 5C1 = 5 numbers } 
(2) 12, 13, 14, 15, 23, 24, 25, 34, 35, 45.         { 5C2 = 10 numbers } 
(3) 123, 124, 125, 134,135,145, 234, 235,245, 345.         { 5C3 = 10 numbers } 
(4) 1234, 1235, 1245, 1345, 2345.         { 5C4 = 5 numbers } 
(5) 12345.               { 5C5 = 1 number } 

The following properties are quite evident and are easy to prove. 
** The space is considered a number with zero digits. 
(1) There are b-1Cr ( 5Cr in this case ) numbers having exactly r digits. 
(2) There are 2b-1 (25 =32, in this case) numbers in the finite sequence including the space 
which is considered as the lone number with zero digits. 
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3. The sum of the product of the digits of the numbers having exactly r digits is the 
absolute value of the rth term in the bth row of the array of the Stirling numbers of the first 
kind. 
4. The sum of all the sums considered in (3) = b! - 1 ( 6! - 1 = 719 in this case) . 
Open problem: Derive an expression for the sum of all the r digit numbers and therefore 
for the sum of the whole sequence. 
Open problem: If the nth number in the sequence has index n, derive a formula to 
determine the index of any number in the sequence.  
 

Section 10 
 

The Sum of the Reciprocals Of the Smarandache Multiplicative 
Sequence 

Definition: The kth term (k > 2) of a multiplicative sequence with initial terms m1 and 
m2 is the smallest number equal to the product of two previous terms.  
 
For example, with m1 = 2 and m2 = 3, the sequence is 
 
2, 3, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144,   .  .  . 
 
 In this section, it will be proved that the limit of the sum of the reciprocals of the terms 
of the multiplicative sequence exists for all initial terms m1 and m2. 
Theorem: The sum of the reciprocals of the multiplicative sequence with initial terms m1 
and m2. The sum is 
S =    1 / { ( m1 – 1 )  ( m2 – 1 ) }  + 1/m1    +   1/m2. 
 
Discussion:  
Consider the sequence 

2, 3, 6,  12, 18, 24, 36, 48, 54, 72, 96 , 108, 144,   .  .  .  

It can be written as  

 2, 3, 2*3, 22*3, 2*32, 23*3, 22*32,  24*3, 2*33 , 23*32,    .  .  .  

 Or, for every n > 2, Tn = 2r 3s for some r and s pair. Also, for every   u ∈ N and v ∈ N 
there exists some k  > 2   for which 2u*3v  = Tk . In a nutshell, every term of the form 
2x*3y appears in the sequence for all values of x and y. On similar lines considering the 
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general multiplicative sequence with m1 and m2 as the first two terms of the sequence we 
have all the terms of the type m1

r * m2
s occurring in the sequence with  r + s >  1,  

(r ∈ N ,  s  ∈ N ). 
Proof of theorem: Let 

                 ∞ 
      S  =    ∑       1/ Tn .       
              n = 1 
Consider the product  
P  =  ( 1/m1  + 1/m1

2 + 1/ m1
3 +.  .  . ) (1/m2 + 1/m2

2 +1/m2
3 + .  .  .  ). 

We have the sums of the geometric series with common ratio < 1 
 
 P =  { (1/m1)/ ( 1 – 1/m1 ) }{  (1/m2)/ ( 1 – 1/m2) } 
 P = { 1/ ( m1 – 1 ) }{ 1/ ( m2 – 1 ) } 
 P =  1 / { ( m1 – 1 )  ( m2 – 1 ) }. 
 
These sums can be written  
 
           ∞ 
  P =   ∑    1/ ( m1

r*m2
s ) 

        r, s = 1 
 
or 
 
              ∞ 
    P =    ∑     1/ Tn  -  1/T1  - 1/T2 
            n = 1 
 
or   
              ∞ 
    P =    ∑   1/ Tn  -  1/m1  - 1/m2. 
            n = 1 
 
Replacing the summation by S 

 

P  =   S  -  1/m1  - 1/m2 

and then rewriting 
 
 S  =  P  +  1/m1   +  1/m2, 
 
which gives  
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S = 1 / { ( m1 – 1 )  ( m2 – 1 ) }  + 1/m1    +   1/m2. 
 
 For the case where m1 = 2 and m2 = 3, we have S = 4/3. 
Generalization:  The idea of the multiplicative sequence can be generalized by taking 
the first r terms as m1, m2, m3, .  .  . mr , with  the (r+1)th   term defined as the smallest 
number equal to the product of  r  previous distinct terms.  It can be proved using 
reasoning similar to that used previously that the limit of the sum of the reciprocals of the 
terms of the generalized multiplicative sequence also exists and is given by  

     r                               r 

        S =  Π {1/ (mk – 1 ) } -  ∑   1/ mk 

               k=1                          k=1 
 

Section 11 
 

Decomposition of the Divisors of A Natural Number Into Pairwise Co-
Prime Sets 

 
 With n a natural number, let d1, d2, d3, d4, d5, . . . be the divisors of n. Given this, we 
could ask the question:  
In how many ways can we choose a pair of divisors which are co-prime to each other? 
 Similarly, in how many ways can one choose a triplet, quadruplet and so forth of divisors 
of n which are pairwise co-prime? 
Examples:  
Let N = 48 = 24 * 3. The ten divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48. The set 
of co-prime pairs will be represented by D2(48) and the set of co-prime triplets by D3(48). 
D2 (48) = {(1,2), (1, 3), (1, 4), (1, 6), (1,8), (1, 12), (1,16), (1, 24), (1, 48), (2, 3), (4,3),  
(8, 3), (16, 3)}. 
 
The order of D2 (48) = 13. 
 
D3 (48) = {(1,2, 3), (1, 3, 4), (1, 3, 8), (1,3, 16)}. 
 
The order of D3 (48) = 4. 
 
D4 (48) = {} = D5 (48) = . . . .= D9 (48) = D10 (48) . 
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As another example, consider n = 30 = 2 x 3 x 5 (a square free number). The 8 divisors of 
30 are 
1, 2, 3, 5, 6, 10, 15, 30. 
 
D2 (30) = {(1,2), (1, 3), (1, 5), (1, 6), (1, 10), (1, 15), (1, 30), (2, 3), (2, 5), (2, 15), (3, 5), 
(3, 10),  (5, 6)}. 
 
The order of D2 (30) = 13.  
Note that this is easily generalized to O[D2( p1p2p3)] = 13, where the primes are distinct.  
 
D3 (30) = {(1,2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1,2, 15)}. 
 
The order of D3 (30) = 7. 
 
D4 (30) = {(1,2, 3, 5)}.  
 
The order of D4 (30) = 1. 
  
Open problem: Determine the order of Dr(N). 
 
 In this section, we consider the simple case of n being a square-free number for r = 2, 3 
and so forth. 
 
(A) r = 2. 
 A reduction formula will be derived, followed by a direct formula.  
Let N = p1p2p3. . .pn where pk is a prime for k = 1 to n. We denote D2 (N) = D2 ( 1#n) for 
convenience. We will derive a reduction formula for 
D2(1 # (n+1)). 
 
Let q be a prime such that (q, N) = 1. Then D2(Nq) = D2( 1#(n+1)) and by definition  
D2( 1#n) is contained in D2( 1#(n+1)). This provides us with O [D2( 1#n) ] elements of 
D2( 1#(n+1)).  
 Consider an arbitrarily chosen element (dk, ds) of D2(1#n). This element when combined 
with q yields exactly two elements of D2(1#(n+1)). i.e. (qdk , ds

 ) and (dk , qds
 ). 

Hence every element of the set D2(1#n) contributes two additional elements when 
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combined with the prime q. 
 The element (1, q) has not been considered in the previously mentioned cases, therefore 
the total number of elements of D2(1#(n+1)) is 3 times the order of D2( 1#n) + 1. 
And so it follows that, 
O[D2( 1#(n+1))] = 3 * O[ D2( 1#n)] + 1. (*) 
 Applying this formula for the evaluation of O[D2( 1#4)]. 
 We know that O[D2( p1p2p3)] = O[D2( 1#3)] = 13, hence O[D2( 1#4)] = 3 *13+ 1 = 40. 
Example: 
This can be verified by considering N = 2 *3 *5 *7 = 210, where the divisors are 
1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. 
D2(210) = { (1,2) , (1, 3) , (1, 5) , (1, 6) , (1, 7 ) , (1, 10), ( 1, 14) ,(1 ,15 ), ( 1,21), 
(1, 30), (1, 35), (1, 42), (1, 70), (1, 105), (1, 210), (2, 3), (2, 5), (2, 7), (2, 15), (2, 21),  
(2, 35), (2, 105), (3, 5), (3, 7), (3, 10), (3, 14), (3, 35), (3, 70), (5, 6), (5, 7), (5, 14),  
(5, 21), (5, 42), (7, 6), (7, 10), (7, 15), (7, 30), (6, 35), (10, 21), (14, 15)}. 
Therefore, O[D2(210)] = 40. 
 The formula (*) can be reduced to a direct formula by applying simple induction to get 
O[D2( 1#n)] = (3n - 1) /2. 
 
(B) r = 3. 
For r=3, we derive a reduction formula.  
 We have D3(1#n) is contained in D3 ( 1#(n+1)) hence this contributes O[D3(1#n)] 
elements to D3 ( 1#(n+1)). 
  Let us choose an arbitrary element of D3(1#n) say (a , b , c ). The additional prime q 
yields (qa, b, c), (a, qb, c), (a, b, qc) or three additional elements. In this way we get  
3 * O[D3(1#n)] elements. 
Let the product of the n primes be N and let (d1 , d2, d3 , . . . dd(N) ) be all the divisors of N. 
 Consider D2 (1#n) which contains d(N) - 1 elements in which one member is unity = d1. 
In other words, (1, d2), (1, d3), . . ., (1, dd(N) ) . 
If q is placed as the third element with these as the third element we get d(N) - 1 elements 
of D3 ( 1#(n+1)). The remaining elements of D2 (1#n) yield elements that are already 
covered in the previous paragraph. 
 Considering the exhaustive contributions from all three cases above we get 
O[D3 ( 1#(n+1))] = 4 * O[D3(1#n)] + d(N) - 1 
O[D3 ( 1#(n+1))] = 4 * O[D3(1#n)] + 2n - 1  
O[D3(210) ] = 4 * O [ D3 (30) ] 8 -1 
O[D3(210) ] = 4 * 7 + 8 -1 = 35. 
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 To verify, the elements are listed here.  
D3(210) = {(1,2, 3 ) , (1, 2 , 5) , (1, 3, 5) , (1, 2, 7), (1, 3, 7), (1 ,5 , 7), (1, 2 , 15), 
(1, 2, 21), (1, 2, 35), (1, 2, 105), (1, 3, 10), (1, 3, 14), (1, 3, 35), (1, 3, 70), (1, 5, 6),  
(1, 5, 14), (1, 5, 21), (1, 5, 42), (1,7, 6), (1,7, 10), (1, 7, 15), (1, 7, 30), (2, 3, 5),  
(2, 3, 7), (2, 5, 7), (2, 3, 35), (2, 5, 21), (2, 7,15), (3, 5, 7), (3, 5, 14), (3, 7, 10), (5, 7, 6), 
(1, 6, 35), (1, 10, 21), (1, 14, 15)}. 
Open problem: To obtain a direct formula from the reduction formula  
O[D3 ( 1#(n+1))] = 4 * O[D3(1#n)] + 2n – 1. 
Regarding the general case, O [Dr (1#n)], we derive an inequality. 
Let (d1, d2, d3, . . . dr) be an element of O [Dr (1#n)]. 
Introducing a new prime q other than the prime factors of N we see that this element in 
conjunction with q gives r elements of Dr (1#(n+1)). In other words, 
(qd1 , d2, d3 , . . . dr ), ( d1 , qd2, d3 , . . . dr ), . . . ,(d1, d2, d3 , . . . qdr) . 
Furthermore, Dr (1#n) is contained in Dr (1#(n+1)). Hence we get 
O[Dr ( 1#(n+1))] > (r+1) * O[Dr ( 1#n)]. 
 Finding a precise formula is a difficult task that is left as a challenge for the reader. The 
general case is an additional challenge. 
 

Section 12 
 

On the Divisors of the Smarandache Unary Sequence 
 
Definition: The Smarandache Unary Sequence is defined as  
u(n) = 11 . . . 1, or the digit ‘1’ repeated pn times, where pn is the nth prime.  
It is not known if this sequence contains an infinite number of primes.  
 
Let I(m) = 11   . . .  1 = (10m – 1)/9. 
                     m times 
Then u(n) = I(pn) and the following proposition will be proven. 
 
Proposition: I(p-1) ≡ 0(mod p). 

Proof: Clearly, 9 divides 10p-1 – 1. From Fermat’s little theorem  if   p ≥ 7 is a prime  
then  p divides  (10p-1  -1) /9 as (p, 9) = (p , 10 ) = 1. Therefore, p divides I(p-1). 
 This proposition will be used to prove the main result of this section. 
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Theorem: If d is a divisor of u(n) then  d ≡ 1 (mod pn ), for all n > 3. 
Proof: Let d be a divisor of u(n) and let d = paqbrc. .,where p, q, and r are prime factors of  
d .  
 If p divides d, then p divides u(n). Also, p divides I(p-1) from the proposition. In other 
words,  
p divides  (10p-1  -1) /9  and p divides  (10p  - 1) / 9 
 
p divides  (10 A(p-1)  -1) /9  and p divides  (10B.p   - 1) / 9 
 
p divides  (10(A(p-1) - B.p  )/9 
 
p divides  10B.p { ( 10A(p-1) - B.p  -  1) / 9} 
 
p divides  ( 10A(p-1) - B.p  -  1) / 9.   
 
There exist A and B such that  
 
A(p - 1) - B *pn = ( p - 1 , pn ) . As pn is a prime there are two possibilities: 
 
(i).        ( p - 1 , pn ) = 1   or          (ii).    ( p - 1 , pn ) = pn . 
 
In the first case, from  (3) we get p divides  (10 - 1)/9 or p divides I, which is absurd as  
p > I. Therefore, (p-1,pn) = pn or pn divides p-1.  
 
  p   ≡ 1 ( mod pn ) 
 
⇒  pa  ≡ 1 ( mod pn ). 
 
Along similar lines 
 
  qb  ≡ 1 ( mod pn ) 
 
hence d  = paqbrc. . .   ≡ 1 ( mod pn ). 
 
Which completes the proof. 
 
Corollary: For every prime p, there exists at least one prime q such that  
          q ≡ 1(mod p). 
 
Proof: Since u(n) ≡ 1(mod pn ) , and every divisor of u(n) is  ≡ 1 ( mod pn) , the corollary 
holds.  
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Section  13 
 

Smarandache Dual Symmetric Functions and Corresponding Numbers 
of the Type of Stirling Numbers of the First Kind 

 
 It is known that the rising factorial (x+1) (x+2)(x+3). . . (x+n), the coefficients of 
different powers of x are the absolute values of the Stirling numbers of the first kind. 
Let x1, x2 , x3 , . . . xn be the roots of the equation  
(x+1) (x+2)(x+3). . . (x+n) = 0. 
Then the elementary symmetric functions are 

x1 + x2 + x3 + , . . ., + xn = Σ x1, (sum of all the roots taken one at a time) 

x1x2 + x1x3 + . . . xn-1xn = Σ x1x2. (sum of all the products of the roots taking two at a 
time)  

Σ x1x2x3…xr = ( sum of all the products of the roots taking r at a time) . 
  
 In the previous expressions, we have summed products. In the following definition, the 
dual of these expressions will be defined, where the roles of addition and multiplication 
are interchanged.  
Definition: The Smarandache Dual Symmetric functions are formed by taking the 
product of the sums instead of the sum of the products. As an example, the following is a 
chart for the four variables x1, x2, x3, x4. 

Elementry symmetric funcions 
(sum of  the products) 

Smarandache Dual Symmetric functions 
(Product of the sums) 

x1 + x2 + x3 + x4 x1x2x3x4 

x1x2 + x1x3 + x1x4 +x2x3 + x2x4 + x3x4 (x1 + x2 ) ( x1+ x3 )( x1 + x4 )(x2+ x3 )( x2 + x4 ) 
( x3+ x4 ) 

x1x2 x3 + x1x2x4+ x1x3 x4 + x2x3x4 (x1 + x2 +x3)( x1+ x2 + x4)( x1 +x3 + x4 )(x2+ x3 +x4) 

x1x2x3x4 x1 + x2 + x3 + x4 

For convenience, the vacuous case of taking the product of zero sums at a time is defined 
to be one. 
Now if we take xr = r in the above we get the absolute values of the Stirling numbers of 
the first kind. For the first column: 24, 50, 35, 10, 1. 
The corresponding numbers for the second column are 10, 3026, 12600, 24, 1.  
The triangle of the absolute values of the Stirling numbers of the first kind is 
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1         

1 1       

2 3 1     

6 11 6 1   

24 50 35 10 1 

  
The corresponding Smarandache dual symmetric triangle is  

1         

1 1       

3 2 1   

6 60 6 1   

10 3026 12600 24 1 

 The next row  (5th) numbers are  
15, 240240, 2874009600, 4233600, 120, 1. 
The following properties of the above triangle are evident. 
(1) The leading diagonal contains unity. 
(2) The rth  row element of the  second leading diagonal contains r!. 
(3) The first column entries are the corresponding triangular numbers.   
Readers are encouraged to find additional relationships between the two triangles. 
 
Application: The Smarandache Dual Symmetric functions give us another way of 
generalizing the Arithmetic-Geometric Mean Inequality. One can easily prove that:  
 
(x1x2x3x4)1/4 ≤ [{ (x1 + x2 ) ( x1+ x3 )( x1 + x4 )(x2+ x3 )( x2 + x4 )( x3+ x4 )}1/6 ] / 2  
≤ [{(x1 + x2 +x3)(x1+ x2 + x4)(x1 +x3 + x4)(x2+ x3 +x4)}1/4 ] / 3  
≤ {x1 + x2 + x3 + x4}/ 4. 
 
The generalization of the above inequality can also be easily established. 
 

Section 14 
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On the Infinitude of the Smarandache Additive Square Sequence 
 
Definition: The Smarandache additive square sequence consists of all numbers that are 
perfect squares and the sum of the digits is also a perfect square. The first few terms are 
1, 4, 9, 36, 81, 100, 121, 144, 169, 196, 225, 324, 529, . . .   
 The question whether this sequence is infinite has been open and our next task is to 
prove that it is in fact infinite. 
 
Theorem: The sum of the digits of the square of the number  ‘one followed by n three’s’ 
is a perfect square if n = 60t2  + 76t + 24, for some t and is equal to (30t+ 19)2. 
Proof: Consider the Smarandache Patterned Perfect Square sequence 
169, 17689, 1776889, 177768889, .  .  .     

whose root sequence is  

13, 133, 1333, 13333  .  .  .                  

It is clear that this sequence follows a pattern. 

Proposition I: 
The square of one followed by n three’s is equal to one followed by (n-1) seven’s, 
followed by six, followed by (n-1) eight’s followed by a nine. 
 
Proof of proposition I: 
The general term of the previous square sequence is Tn = 10n  + 3*(11… n times)  

   Tn = 10n  + 3* (10n –1) /9 = (1/3) (4*10n  -1) 

 (Tn)2  = (1/9) ( 16*102n -  8*10n  + 1).     

The general term of the root sequence is Tn  = 1 777. . .6 888… 9 

= 102n + 7 *10n+1 * (111, (n-1) times)  + 6*10n  + 80* (111, (n-1) times) + 9 

= 102n + 7 *10n+1 * (10n-1  -1)/9  + 6*10n  + 80* (10n-1 –1)/9   + 9 

=  (1+ 7/9) * 102n   +  (-70/9  + 6 + 8/9) *10n   + (-80/9 + 9)  

= (1/9) (16*102n - 8*10n  + 1)   

which is the same as (Tn)2. 

This completes the proof of proposition I. 

The sum of the digits of this type of square number is   
1 + 6 + 9 +  (n-1) (7 + 8)  = 15n + 1.  
 
The only thing that remains is to prove that the Diophantine equation 15n + 1 = k2   has 
infinitely many solutions. 
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Proposition II:  
If n = 60t2 + 76t + 24 then 15n + 1 is a perfect square for all values of t. 
Proof of proposition II: 
Consider the Diophantine equation   15n + 1 = k2 
or equivalently 15n   =  ( k-1 ) ( k+1) .  
 
Let   k –1 = 3 r    
        k+1  = 5s    
 and n  =  r*s.    
 
Subtracting the first from the second, we have  
5s  = 3r + 2. 
 
Let   r  = 10t + 6, then s = 6t  + 4 
and n  = r*s  = (10t + 6 ) ( 6t + 4) =  60t2  + 76t + 24. 
 
This gives the value of k2 = (30t + 19) 2.  
The combination of proposition I and proposition II proves the theorem.  
 By examining additional formulas, it may be possible to find additional infinite families 
of numbers in the Smarandache Patterned Perfect Square sequence. 
 

Section 15 
On the Infinitude of the Smarandache Multiplicative Square Sequence 
  
 In section 14, the infinitude of the Smarandache Additive Square sequence as proven. In 
this section, the similar sequence with multiplication replacing addition is examined and 
it is proven that it contains an infinite number of terms. 
 
Definition: The Smarandache multiplicative square sequence are all perfect squares 
where the product of the digits is also a perfect square.  The first few terms of this 
sequence are 
1, 4, 9, 144, 289, . . . 
 
Theorem: The square of the number 8 followed by n three’s is a member of the 
Smarandache multiplicative square sequence if n is an odd number ≥ 3. The product of 
the digits of the square is equal to  {2(5r+1)*33}2, where  r = (n-1)/2. 
Proof:  
Start with the sequence 
693889, 69438889, 6944388889, 694443888889,.  .  .     
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which has the root sequence   
 
833, 8333, 83333, 833333,  .  .  .                  
where the  pattern is obvious.  
Proposition I: 
The square of 8 followed by n three’s is 69 followed by (n-2) 4’s, followed by 3, 
followed by (n-2) 8’s followed by 889. 
Proof of proposition I: 
The general term of the root sequence is given by Tn = 8*10n + 3* ( 111… (n) times) 
Tn = 8*10n+1 + 3*(10n+1 – 1)/9  =  (1/3) (25*10n  - 1). 
Upon squaring, we have 
(Tn)2  =  (1/9){ 625*102n- 50*10n   + 1}.  
 The general term of the sequence of squares is 
Tn = 69 444… 3 888… 889 

=69*102n + 4*10n+2  (111… n-2 times) + 3*10n+1  + 8000* (111… n-2 times) + 889 

= 69*102n + 4*10n+2 *(10n-2 -1)/9 + 3*10n+1  + 8000*(10n-2 -1)/9   + 889 

= (69 + 4/9)*102n  +  (-400/9 + 30 + 80/9)* 10n   + (-8000/9 + 889) 

=  (1/9){625*102n- 50*10n   + 1}. 

Which is the same as the square of the root sequence, therefore the proof of the 
proposition is complete.  
Proof of the theorem:  
Returning to the theorem, the product of the digits of the number  
 
(1/9){625*102n- 50*10n   + 1}  is 
 
P = 6* 9* 4n-2* 3* 8n-2* 8*8*9 = 2(5n-3)*36. 
 
P   is a perfect square when 5n-3 is even or when n is odd. For example, n = 2r+1, in 
which case P = 2(10r+2)* 36  = {2(5r+1)*33}2. 
 
This completes the proof of the main theorem. Readers are encouraged to find additional 
infinite families of numbers in the Smarandache Multiplicative Square sequence. 
 

Section 16 
 

Another Classification of the Ocean of Smarandache Sequences 
 
Definition: If a sequence of natural numbers can be used to express every natural number 
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as a sum of distinct numbers in the sequence, then it is said to be a Smarandache 
Accomodative Sequence (SAS).  
 
Example: The set of powers of 2: 1, 2 , 22, 23, 24,  . . . , 2n,  .  .  . is an SAS sequence. This 
is the sequence used to represent numbers in digital computers. In general, n = ∑ aktk, 
where ak = 0 or 1 and tk is a power of 2.  
 A second example of an SAS sequence is the sequence of Fibonacci numbers. Readers 
are encouraged to analyze the ocean of Smarandache sequences for additional examples.  
Conjecture I: The following sequences from the Smarandache inventory compiled by 
Henry Ibstedt in [1] are Smarandache Accomodative.  
Sequences numbered 6, 9, 10, 11, 14, 15, 93, 94, 95 and 123.  
The validity of the conjecture is obvious for sequences 93, 94, 95 and 123.  
Definition: If all natural numbers can be expressed as the sum or difference to terms of a 
sequence, then the sequence is said to be Smarandache Semi-Accomodative.  
Example: The set of powers of 3: 1, 3, 32, 33 , .  .  .  ,3n , .  .  . is Smarandache Semi-
Accomodative.  
In general, the formula is n = ∑ aktk, where ak = -1, 0 or 1 and tk is a power of 3.  
Example: The set of triangular numbers 1, 3, 6, 10, 15, .  .  . , m*(m+1)/2, … is  

Smarandache Semi-Accomodative, as n = tn+1 – tn.  
Conjecture II: Prime numbers are Smarandache Semi-Accomodative with ak = -1 for at 

most only one value of k.  

2, 3, 5, 7,11, 13, 17, .  .  .  

1 = 3-2, 4 = 7- 3, 6 = 13 - 7 = 17 – 11, 8 = 3 + 5 = 13 – 5 = 19 – 11,  … 

Further Generalization: Given a sequence T, if a finite set of numbers    
A =  { a1 , a2  .  .  . ar } exists such that every natural number n could be expressed as   
n  = ∑ ak tk      , ak ∈ A, tk є T,  then  the sequence T is defined to be accommodative w. r. 
t. A. ( the term accommodative is used in the sense that the sequence accommodates all 
natural numbers as the linear combination of  its terms  with a finite set  of coefficients.) 
 

As an example, for SAS, A = {1, 0} and for SSAS, A  = {1, 0, -1}. 

Note: A large number of Smarandache sequences for which t1 = 2 are accommodative 
with the exception of 1. 
 
Open Problem: It is an open problem to find sequences for which the set A exists, and in 
the event that it exists to find the smallest one. 
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Section 17 
 

Pouring a Few More Drops in the Ocean of Smarandache Sequences 
and Series 

 
In this section, some fresh ideas on Smarandache sequences and conjectures are 
presented. 
1) Smarandache Forward Reverse Sum Sequence.  
T1 = 1 
Tn+1 = Tn + R ( Tn ),  where R (Tn)  is the digits  of Tn reversed. 
  
The first few terms of this sequence are: 
1, 2, 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160165, 661166, 
1322332, 3654563, 7309126, 13528163, 49710694, . .  . 
  77 = 16 + 61, 605 = 154 + 451, etc. 
  
Conjecture: There are infinitely many palindromes in this sequence. 
Conjecture: 16 is the only square in this sequence. 
 
2) Smarandache Reverse Multiple Sequence. 
The sequence of numbers that are multiples of their reversals, palindromes are considered 
trivial and are not included.  
The first few terms of this sequence are 
 
8712, 9801, 87912, 98901, 879912,  .  .  .  
 
8712 = 2178 *4. 
 
Points of note about this sequence. 

1) The sequence is infinite. 
2) There are two families of numbers, one derived from 8712 and the other from 

9801. Each family is constructed by placing 9’s in the middle. 
3) The concatenation of two terms of this sequence derived from the same family is 

also a member of that family. 
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3) Smarandache Factorial Prime Generator. 
T1 = 1 
  n 

 Π Tk   + 1    is a prime, where Tn is the smallest such number. 
k=1 
 
The first few terms of this sequence are: 
1, 2, 3, 5, 7, .  .  . 
4) Smarandache Prime-Prime Sequence. 
 If the primes are placed in sequence 2, 3, 5, 7, 11, 13, 17, 19, . . .  
 
T1 = 2,  Tn+1 = prime number Tn  
The first few terms are  
2, 3, 5, 11, 31, . . .  
Since T1 = 2, T2 = 3 the second prime, T3 = 5 the third prime, T4 = 11 the fifth prime. 
 
5) Smarandache Triangular-Triangular Number Sequence. 
Using the sequence of triangular numbers 1, 3, 6, 10, 15, 21, 28, 36, 45, . . .  
 
T1 = 3,  Tn+1 = triangular number Tn  
 
The first few terms are 
 
3, 6, 21, 231, 26796, . . .  
 
Since T1 = 3, T2 = 6 the third triangular, T3 = 21 the sixth triangular, T4 = 231 the twenty-
first triangular. 
 
6) Smarandache Divisors of Divisors Sequence. 
T1 = 3, and Tn-1 = d( Tn) , the number of divisors of Tn, where Tn is smallest such number. 
 
The first few terms of the sequence are 
 
3, 4, 6, 12, 72, 28.37, 22186  * 3255, .  .  .    {where 37-1  = 2186  and  28-1  = 255} 

3, 4, 6, 12, 72, 559872, 22186  * 3255, .  .  . 

  The sequence obtained by incrementing each term in the above sequence by 1 is 
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4, 5, 7, 13, 73, 559873, 22186  * 3255   + 1, . . . 

Conjecture: All of the terms in the previous sequence beyond the first term are prime. 
 
 The motivation behind this conjecture: As the neighboring number is highly composite 
(the smallest number having such a given large number of divisors), the chances of it 
being a prime are very high. 
 
7) Smarandache Divisor Sum-divisor Sum Sequences (SDSDS). 
 Consider the following sequences in which each term is the sum of the divisors of the 
previous term: 
 

a) 1, 1, 1, 1, 1, 1, . . . 

b) 2, 3, 4, 7, 8, 15, 23, 24, 52, . . . 

c) 5, 6, 12, 28, 56, 120, 240, 744, 1920, . . . 

d) 9, 13, 14, 24, . . . 

e) 10, 18, 39, 56, . . .  

f) 11, 12, 28, . . . 

g) 16, 31, 32, 63, 104, . . . 

h) 17, 18, . . . 

i) 19, 20, 42, . . . 

 In the above sequences Tn = σ (Tn-1) , with T1 as the generator of the sequence. A 
number which appears in a previous sequence is not to be used as a generator. 
 
Open problem: How many of the numbers like 12, 18, 24, 28, 56 … are members of two 
or more sequences? 
 
Open problem: Are there numbers that are members of more than two sequences? 
 
Definition: We define the Smarandache Divisor Sum Generator Sequence (SDSGS) as 
the sequence formed by (the generators) the first terms of each of the above sequences. 
 
1, 2, 5, 9, 10, 11, 16, 17, 19, . . . 
 
Open problem: Is SDSGS finite or infinite? 
 
 8) Smarandache Reduced Divisor Sum Periodicity Sequences. 
In the following sequences the sum of the proper divisors only is taken till the sequence 
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terminates at 'one ' or repeats itself. 

a) 1, 1, 1, . . . 

b) 2, 1, . . . 

c) 3, 1, . . . 

d) 4, 3, 1, . . . 

e) 5, 1,. . . 

f) 6, 6, 6, . . .  

g) 7, 1, . . . 

h) 12, 16, 15, 8, 7, 1 , … 

For 220, which is the first of a pair of amicable numbers:     

 220, 284, 220, 284,  . . . 

We define the life of a number as the number of terms in the corresponding sequence till 

a 'one' is arrived at. For example,  the life of 2 is 2 and that of 12 is 6. The life of a perfect 

number like 6 or 28 or that of a amicable number pair like (220, 284) is infinite. The 

same is true for a sociable number like the five number chain 12496, 14288, 15472, 

14536, 14264. We can call them immortal numbers. 

Open problem: If n is any arbitrary number, is there another number k whose life is n? 
 
9) Tn = smallest prime of the form n*k + 1, k ≥ 1. 
 
 The first terms of this sequence are 
 
2, 3, 7, 5, 11, 13, 29, 17,  19, 11, 23,  13, 53,  29, 31, 17, … 
 
Conjecture: For every n there exists a number k < n such that n*k +1 is a prime. 

Conjectures: Given any number N, there exists 
a) A perfect square in which N appears in some position. 
b) A prime in which N appears in some position. 
c) A cube in which N appears in some position. 
d) A power in which N appears in some position. 
 
Proposition: If N is a perfect square with 2n digits, then there exists at least one perfect 
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square of 2n or 2n+1 digits and infinitely many other perfect squares in which the first n 
digits are the same as that of N.  
Proof: Let   N = r2.  Then the number of digits in r are n, and let s be the ten’s 
complement of r. Then r + s  = 10n.   

We have | r2   - s2 |  = | r – s | * | r + s |  = | r – s | * 10n. Therefore, the first n digits of s2 
are the same as that of r2  = N.  
Also, all the numbers of the type k = 10 x  + r, are of the required type for  
x > 4n +1 . This completes the proof. 
 
Example:  N = 12439729  = 35272 , ten’s complement of  3527 = 6473.  

64732 = 41899729.  

Conjecture: Let N be an n digit number.  For every r, there exists a number k such that 
10n divides kr  - N, if there is an rth  power ≡ N ( mod 10). This is a generalization of the 
proposition. 
 

Section 18 
Smarandache Pythagoras Additive Square Sequence 

 
1) The Smarandache Pythagoras Additive Square Sequence. 
The Smarandache Pythagoras Additive Square sequence is the set of numbers that are 
perfect squares and where the sum of the digits is also a perfect square. The first few 
terms of this sequence are 

          1, 4, 9, 100, . . .  

 This sequence is infinite, as can be seen from the following theorem. 
Theorem: The square of the number 6 *(10n - 1) /9, is a member of the Smarandache 
Pythagoras Additive Square Sequence if n is given by 41r2 -4r, and the sum of the square 
of the digits is (4r -2)2. 
Proof: Consider the following sequence 
   6, 66, 666, 6666, 66666, 666666, .  .  .  (*)    
the squares of the terms in this sequence are  
 36, 4356, 443556, 44435556, 4444355556, . .  (**) 
Proposition: The square of the number formed from n sixes is equal to the number  (n-1)   
'4's, followed by a '3' followed by  (n-1)  '5' s followed by 6. 
Proof of the proposition: 
The general term of the (*) sequence is given by Tn = 6 *(10n – 1) /9, which, when 
squared, gives (Tn)2 = (4/9)( 102n  -2*10n  + 1).    
 The general term of the (**) sequence is given by  
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4*10n+1 (111. . . n-1 , times) +  3*10n   +50 ( 111. . . n-1 , times)   +  6 
= 4*10n+1 (10n-1 – 1)/9 + 3*10n   +50 (10n-1 – 1)/9 + 6 
= (4/9) *102n +  (-40/9  + 3 + 5/9)* 10n  +  (-50/9 + 6) 
= (4/9)(102n -2*10n  + 1). 
This is the same as that derived by squaring the terms in the (*) sequence, so the proof of 
the proposition is complete. 
Let S be the sum of the squares of the digits of the general term of the (**) sequence. 
Then we have  
S = (n-1)* (42 + 52)  + 32  + 62  = 41*n + 4. 
This will be a member of the Smarandache Pythagoras Additive Square Sequence if 41n 
+ 4  =k2 or equivalently, 41n  = (k –2)(k+2). 
Let 41r = k+2, n = r (k-2), then we have k = 41r - 2 and  
n = 41r2 - 4r. This completes the proof of the theorem. 
 
For r = 1, we have n = 37 and for r = 2, we have n = 148.  
Note: It is easy to see that the sum of the digits of the general term is 9n.  
 Using similar reasoning, it is possible to find additional infinite families of elements of 
the Smarandache Pythagoras Additive Square Sequence. 
Additional sequences: 
1) Smarandache  ( mth ) Power  Additive Square Sequence    

It is defined as a sequence in which the term and the sum of the mth  power of the digits 

are both  perfect squares.  

(For m = 1  and  m =2  we get  the Smarandache additive square sequence and 

Smarandache Pythagoras Additive Square Sequence respectively.) 

2) Smarandache  ( mth ) Power  Additive   mth  power  Sequence 

When m = 3, we get the Smarandache additive cubic sequence.      

1, 8, 125, 512, 1000, 1331, … 

3) Smarandache (mth) Power Additive nth power Sequence: 
When m=2 and n=3 we get   
 
1, 27, 216, 1000, . . ., 798005999, . . . 10973607685048, . . .  
 
A large number of open questions can be formulated by expanding on these results. 

 
Section 19 

The Number of Elements the Smarandache Multiplicative Square 
Sequence and the Smarandache Additive Square Sequence have in 

Common 
 

 In the previous section, the Smarandache Multiplicative Square sequence 
1, 4, 9, 144, 289, . . .       
and the Smarandache Additive Square sequence 
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1, 4, 9, 36, 81, 100, 121, 144, 169, 196, 225, 324, 529, . . . 
were defined. A natural question to ask is, “How many elements do these two sequences 
have in common?” In this section, we will prove that the sequences have an infinite 
number of terms in common. 
 
Theorem: If n = 4m2 – 3, the square of the number ‘9’ followed by n ‘6’s followed by ‘9’ 
is a member of the Smarandache Multiplicative Square sequence and the Smarandache 
Additive Square sequence.  The sum of the digits of this number is ‘36m2’ and the 
product of the digits is 1082*20p where p = 4m2.  
 
Proof: Consider the sequence 
 
969, 9669, 96669, 966669, .  .  .    (*) 
 
If we square the terms of this sequence, we get  
 
93896, 93489561, 9344895561, 934448955561, .  .  . (**)    
 
Proposition: The square of the number '9' followed by n  '6' s followed by '9', is equal to 
93 followed by  (n-1)  '4's followed by '89' followed by (n-1) '5's followed by '61'. 
 
Proof: Consider the numbers of the (*) sequence. The number 9 followed by n 6’s 
followed by a 9. 
 
Tn = 9*10n+1 + 60*111…+ 9 = 9*10n+1 + 60*(10n –1)/9   + 9  =  (1/3) (290*10n   + 7). 
 
N = (1/3) (29*10n+1 + 7)   
 
N2 = (1/9) (841*10(2n+2)  + 406* 10n+1  + 49). (***) 
 
 Consider the numbers of the (**) sequence, 93 followed by (n-1) 4’s, followed by (n-1) 
5’s followed by 61. 
 
Tn = 93*10(2n+2)  + 4* 10n+3 *(111… (n-1) times ) +  89* 10n+1 +   
                                                  500* ( 111… (n-1) times ) + 61. 
 
= 93*10(2n+2) + 4* 10n+3 (10n-1 – 1)/9  + 89* 10n+1 + 500*(10n-1 – 1)/9  + 61 
 
= (93 + 4/9) *102n+2  + (-400/9 + 89 + 5/9) *10n+1 + (-500/9 + 61) 
 
= (1/9) (841*10(2n+2)  + 406* 10n+1  + 49). 
    
This is the same as the element of the (***) sequence, which completes the proof. 
 
 The next step is to complete the proof of the theorem. 
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 Consider the general term of the (**) sequence 
 
Tn  =93  444…89 555…61.  
 
Letting S represent the sum of the digits of  Tn 
S = 9 + 3 + 4(n-1) + 8 + 9 + 5(n-1) + 6 + 1  
 =  9(n+3).    
 
 Letting P represent the product of the digits of Tn 
 
P = 9*3*4n-1*8*9*5n-1*6*1  
  = 1082 *20n-1. 
 
 From this formula, if n is odd, then P is a perfect square. Using the formula for the sum 
of the digits, if S  = 9(n+3) =k2 then 9 divides k2, k = 3r, 9(n+3) = k2 = 9r2 or n+3 = r2. 
Since n is odd, r is even, so letting r = 2m, we have n = 4m2 – 3, which completes the 
proof of the theorem. 

 
Section 20 

 
Smarandache Patterned Perfect Cube Sequences 

 
 Consider the sequences 
 
10011, 100011, 1000011, 1000011,  .  .   .          
 
where tn =  1 followed by  ‘n’ zeros followed by 11, or 10n+3  + 11. 
 
The sequence formed by the cubes of the numbers in this sequence is 
 
1003303631331, 1000330036301331, 1000033000363001331, 
                             1000003300003630001331,   .  .  .   
 
Theorem: The two sequences above form a Smarandache patterned perfect cube 
sequence. 
 
Proof: The nth term of  (1) is given by Tn  =10n+3 + 11. 
Hence the nth term of corresponding cube sequence is  
 
Tn

3  = 103n+9  + 33 * 103n+6 + 363* 10n+3  + 1331. 
  
Which has the pattern, 1 followed by (n+1) zeros, followed by 33, followed by (n) zeros, 
followed by 363, followed by (n-1) zeros, followed by 1331. 
 
This completes the proof. 
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 The following sequences are examples of additional cubic root sequences 
 
9, 99, 999, 999, . . .  
 
729, 970299, 997002999, 999700029999, .  .  . 
 
97, 997, 9997,.   .   . 
  
912673, 991026973, 999100269973, 999910002699973, … 
     
98, 998, 9998, 99998, .  .  . 
   
941192, 994011992, 999400119992, 999940001199992,  .   .   . 
 
The proof that these sequences are also Smarandache Patterned Perfect Cube sequences is 
similar to the one given so they are omitted. 
 

Section 21 
 

The Smarandache Additive Cubic Sequence Is Infinite 
 
 Definition: The sequence of numbers that are perfect cubes and where the sum of the 
digits is also a perfect cube is called the Smarandache additive cubic sequence. The first 
few numbers in this sequence are 
 
1, 8, 125, 512, 1000, 1331, 8000, 19683, 35937, . . .   
 
Theorem: The cube of the number A(n)  given by A(n) = 10n –1 , is a member of    
The Smarandache additive cubic sequence when n = 12k3. Furthermore, the sum of the 
digits of  {A(n)}3 is equal to 216k3 = (6k)3. 
 
Proof: Consider the Smarandache patterned perfect cube along with its root sequence 
 
9, 99, 999, 9999, 99999,  . . .  

729, 970299, 997002999, 999700029999,     .  .  .  

The general formulas for the elements of these sequences are 
  
Tn  = 10n  - 1, Tn

3  = 103n  -3*102n + 3*10n  -1.  
 
The cube sequence is then 
 
tn  =  102n+1* (10n-1 –1) + 7*102n  +  2*10n  + (10n – 1). 
 
Which, on simplification gives  
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tn  =  103n  -3*102n + 3*10n  -1 =  Tn

3. 
 
The sum of the digits for tn  = 9(n-1) + 7 + 2  + 9n =18n. 
 
If n = 12k3, then, sum of digits for tn  = 216k3  = (6k)3. 
 
This completes the proof of the theorem. 
 

Section 22 
 

More Examples and Results On the Infinitude of Certain Smarandache 
Sequences 

 
1) Maohua Le has given some examples that prove that the reduced Smarandache 
Square-Digital subsequence is infinite. Here, we give another example. 
   
 The square of the numbers A(n) = (10n – 3) for all values of n yields terms of a reduced 
Smarandache Square-Digital subsequence.  
 
A(n): 7 , 97 , 997 , 9997 , 99997 , .  .  . 
(A(n))2 : 49,  9409,  994009,  99940009, 9999400009,  .   .   .   
 
2) The Smarandache multiplicative square sequence was defined in section 15 and it was 
proven that the sequence is infinite. The following is another infinite family of members 
of this sequence. 
 
A(n): 38, 338, 3338, 33338, . . .   
(A(n))2: 1444, 114244 , 11142244 , 1111422244 ,  .  . 
 
 The general formulas for the elements of these sequences are 
 
A(n) = 10*(10n  - 1)/3   + 8    
 
{A(n)}2

  = 10n+2* (10n –1)/9 + 4*10n+1 + (200/9)(10n-1 –1)  + 44  = {10*(10n -1)/3  + 8)2. 
 
The product of the digits of (A(n))2

  = 2n+5  , which is a perfect square for  odd n   

(n = 2k+1).  

Note 1: It is interesting to see that the reverse of the elements of A(n) exhibits the same 
property.  
 
83, 833, 8333, 83333,.  .  . 
6889, 693889, 69438889, 6944388889, 694443888889 .  .  . 
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Note 2: The sum of the digits of (A(n))2 is given by 12 + n + 2 (n-1) =  3n + 10. 
 
 If we look for values of n which make 3n + 10 a perfect square r2, we will get an infinite 
additive square sequence. In other words, if n = (3k2 ± 2k –3) then 3n + 10 = 9k2 ± 6k+1  
= (3k ± 1)2, is a perfect square. Therefore, for n = (3k2 ± 2k –3), we get an infinite 
Smarandache additive square sequence. Moreover, if we also have k = 2m, an even 
number, then these numbers are also members of a multiplicative square sequence. We 
have finally arrived at an infinite sequence of numbers that are simultaneously members 
of both the Smarandache additive square sequence and the Smarandache Multiplicative 
square sequence.  
 
 The members of the sequence 
 
{A(n)}2 = {10*(10n  - 1)/3   + 8)}2    
 
are simultaneously members of both the Smarandache additive square sequence as well 
as Smarandache  Multiplicative square sequence for  n =  5 , 13 , 37 , 53 , 93, 117 , .  .  .  
 

Section 23 
 

Smarandache Symmetric (Palindromic) Perfect Power Sequences 
 
Definition: The Smarandache Symmetric Perfect mth Power sequence is the set of 
numbers which are simultaneously mth powers and palindromic.  
 
The first few terms of the Smarandache symmetric perfect square sequence are: 
 
1, 4, 9, 121, 484, 14641,  .  .  .   
 
The first few terms of the Smarandache Symmetric Perfect cube sequence are: 
 
  1, 8, 343, 1331,  .  .  . 1367631,   . . .  
 
 In this section, we will verify that the sequence is infinite for some values of m. 
 
Theorem: The Smarandache symmetric perfect mth power sequence has infinitely many 
terms for m = 1, 2, 3 and 4. 
 
Proof: We will start with m = 2. 
 Consider the following sequences, where the second is the squares of the first. 
 
11, 101, 1001, 10001, 100001, .  .  .    
121, 10201, 1002001, 100020001,  .  .  . 
 
 The formulas for the general terms of the sequences are Tn = 10n +1,and  
Tn

2  = 102n  + 2*10n  + 1.  This verifies the theorem for m = 2. 



 125

 
 Consider the following sequences, where the second is the cubes of the elements of the 
first. 
 
11, 101, 1001, 10001, 100001, .  .  .    
1331, 1030301, 1003003001, 1000300030001, .  .  .     
 
This verifies the theorem for m = 3. 
 
 Consider the following sequences, where the second is made up of the fourth powers of 
the first 
 
11, 101, 1001, 10001, 100001, .  .  .    
14641, 104060401, 1004006004001, .  .  .        
   
This verifies the theorem for m = 4. 
 
Note 1: The three sequences of squares, cubes and fourth powers in the previous theorem 
are also examples of infinite additive square, cubic and fourth power sequences. 
 
Note 2: The general term of the root sequence can also be expressed in the form 
Tn = 2(10n + 1). 
 
Note 3: The root sequence can be taken as 102n +10n  +1    or  
103n + 102n +10n  +1, for m = 2. 
 
Conjecture:  The Smarandache Symmetric Perfect mth   power sequence has infinitely 
many terms for all values of m. 
 

Section 24 
 

Some Propositions On the Smarandache n2n Sequence 
 
Definition: The elements of the Smarandache n2n sequence are created by concatenating 
n and 2n together. The first few terms of the sequence are 
 
12, 24, 36, 48, 510, 612, 714, 816,  .  .  .  , 1224, 1326,1428, . . .  
 
The nth term is given by   the formula a(n) = 2*n  + n*10r , where r = d(2n), the number of 
digits of n.  
 
 It has been conjectured by Russo that the sequence contains infinitely many primes. 
However, it has been proven that it contains no primes. In this section, some properties of 
the sequence will be presented.  
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 To compute the final digit sum of a number the digits are summed. If that sum is greater 
than ten, the digits of the sum are added and this process is repeated until a single digit 
number is computed.  
 
 Consider the final sum of the digits of the elements of the Smarandache n2n sequence. 
The pattern that we get is 
 
3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9,  .  .  .  
 
 By definition, the following properties are evident. 
 
(i) The sum of digits is divisible by three and hence each term of the sequence is divisible 
by 3. 
(ii) The only valid digits sum occurring is 9, a necessary condition for a perfect square. 
(iii) The digit sequence {3, 6, 9}, is repeated periodically. 
(iv) The nth term is divisible by 2n. 
 
 The final sum of the digits for the nth term is given by 
 
d =  3  , 6 or 9  accordingly as n = 3r+1 , 3r+2 , or 3r. 
 
Let the sequence obtained by dividing the terms of the Smarandache n2n sequence by 3 
be called the Smarandache n2n by three sequence, which is 
  
4, 8, 12, 16, 170, 204, 238, 272,  .  .  . 
 
  Our next step will be to prove that this sequence contains infinitely many perfect 
squares.  
 
Theorem: The n th term of  the above sequence is  a  perfect square equal to n2 itself, if  n 
is given by  n = {10k+2}/3. 
 
Proof: We have n = {10k+2}/3 , which has exactly k digits. We get the corresponding 
term of the Smarandache n2n sequence by 
 
a(n) = 2*n  + n*10r =  2* {10k+2}/3 +  [{10k+2}/3]*{ 10k}. 
 
Therefore, the corresponding term of the Smarandache n2n by three sequence is given by    
 
b(n) = a(n)/3 = (1/3)* [ 2* {10k+2}/3 +  {(10k+2)/3}*( 10k) ] 
b(n)  = (1/9)*{  102k + 4*10k + 4 } = { (10k+2)/3}2 = n2. 
 
This completes the proof. 
 
 The sequence of numbers is 
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34, 334, 3334, 3334, .  .  . 
 
and the corresponding  terms of the Smarandache n2n by three sequence  are  
 
1156, 111556, 11115556, 1111155556, .  .  . 
 
(Another sequence of patterned perfect squares.) 
 The corresponding terms of the Smarandache n2n sequence are 
 
3468, 334668, 33346668, 3333466668, .  .  . 
 
Note: It follows directly from this theorem that the Smarandache n2n sequence contains 
infinitely many terms of the form 3*n2. 
 
 It is that term a(n) of the Smarandache n2n sequence is divisible by 6n. We will define 
the Smarandache n2n by 6n sequence by c(n) = a(n)} /(6n). The first few terms of the 
sequence are 
 
2, 2, 2, 2, 17, 17, 17,.  .  .  17, 167, 167, .  .  . 1667, 1667, . . 
 
And for some specific terms 
 
c(5) = 510/30 =  17,   c(49) = 4998/294 = 17, c(50) = 50100/300 = 167 ,   
c(499)  = 499998/(6*499) = 167  , c(500) = 5001000/3000 = 1667. 
 
Conjecture: The sequence c(n) contains infinitely many primes. 
 

Section 25 
 

The Smarandache Fermat Additive Cubic Sequence 
 
Definition: The Smarandache Fermat Additive Cubic Sequence is constructed from the 
numbers that are perfect cubes and the sum of the cubes of their digits is also a perfect 
cube. The name of Fermat is included in the description to relate it with the fact that 
though the sum of two cubes can not yield a third cube, the sum of more than two cubes 
can be a third cube (33 + 43 + 53 = 63).  
 
The first few terms of the sequence are 
 
1, 8, 474552, 27818127, .  .  . 
 
where   
 
474552 = 783, and 43 + 73 + 43 + 53 + 53 + 23  = 729 = 93 
27818127 = 3033, sum of cubes of digits = 1728 =123. 
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Theorem: The Smarandache Fermat Additive Cubic sequence contains an infinite 
number of terms. 
 
Proof: Consider the following sequence  
 
3033, 30033, 300033, .  .  . 
 
27818127, 27081081027, 27008100810027, .  .  . 
 
The general term is given by  
 
 Tn = 27*(10n+1 +1)3 =  27* (103(n+1)  + 3* 102(n+1)  + 3*10(n+1)  + 1).  
 
The sum of the cubes of the digits for every term is   
 
2* (13 + 23 + 73  + 83) = 1728 =123 

 
and the proof is complete. 
 
Note 1: It is interesting to note that the digits 1, 2, 7, 8 are used twice in every term with 
the rest of the digits being zero. The sum of the cubes of the digits also is made from the 
same digits. 
 
Note 2: A permutation of the four digits 2178 has the property that 4* 2178  = 8712, the 
number obtained by reversing the digits. In fact the numbers obtained by placing it 
adjacent to itself any number of times also have the same property. 
 
 In other words, 4* 21782178 = 87128712. This also holds if any number of nines are 
placed in the center, 4*21978 =87912, 4*219978 = 879912. The only other such number 
is 1089. (9*1089 = 9801). 
 
 In the previous paragraphs, we have described a sequence in which the sum of cubes of 
the digits is the same for each term. We will now describe a sequence in which the sum 
of the cubes of the digits gives different cubes for different terms. 
 
Theorem: If k is a positive integer then the number (10n+2  - 4)3 is a member of   the 
Smarandache Fermat Additive Cubic Sequence   when n is can be expressed in the form  
[4* {(103k –1)/27} – 1]. The sum of the cubes of the digits will then equal (6*10k)3. 
 
Proof:  
Consider the following patterned perfect cube sequence 
 
 9963, 99963, 999963,  .  .  . 
 
where the sequence of cubes is 
 



 129

988047936, 998800479936, 999880004799936, .  .   
 
The general term of the original sequence is given by (10n+2 – 4), which upon being 

cubed, becomes 

 Tn
  = (10n+2 – 4)3 = 103(n+2) -12*102(n+2) + 48*10(n+2) – 64.    

The nth term of the sequence of cubes is given by  

   (10n-1)*102n+6 + 88*102n+4  + 47*10n+2  +(10n-1)*102 +36. 

Which can be reduced to the sequence Tn. 
 
 The sum of the cubes of the digits of Tn is 
 
s(d)  = 2n*93 + 2*83 + 43 +73 + 33

  + 63= 1458n + 1674.  

If s(d) is a cube say  r3,  then we have  
 
  r3 = 1458n + 1674   or  r3

   = 27 (54n + 62). 
 
If r = 3s then we have 27s3  = 27 (54n + 62) or 
 
s3  = ( 54n + 62 )  = 54(n+1) + 8, as  s is even. 
 
Let s = 2u, then  
 
8u3 = 54(n+1) +8 or 8(u3 – 1) = 54(n+1) or n = 4(u3 –1)/27  - 1 
 
and n would be an integer if  27 divides u3-1.  
 
We have 999 = 27*37 = 103  - 1 and (103  - 1) divides (103k – 1).  
 
Therefore, 27 divides  (10k )3 – 1, giving   u  = 10k for all values of k. 
 
Expressed another way, n = [4* {(103k –1)/27} – 1]. 
 
Now   
 
r3  = 1458n + 1674  = 1458 [ 4(103k –1)/27  -1]  +1674   =   
                                                   216*103k = {6*10k}3.  
 
This completes the proof. 
 
 Exploring similar sequences for higher powers can extend this idea. 
 
Open problem: Is the sequence of additive fourth powers infinite? 
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Open problem: Is the sequence where the terms as well as the fourth powers of the digits 
are fourth powers finite or infinite? 
 

Section 26 
 

The Smarandache nn2 Sequence Contains No Perfect Squares 
 
 Definition: The Smarandache nn2 sequence is the set of numbers formed by 
concatenating n and n2.  
 
 The first few terms of this sequence are 
 
11, 24, 39, 416, 525, 636, 749, 864, 981, 10100, 11121, 12144, .   
 
and it is clear that the general term of the sequence is given by 
 
a(n) = n*10r + n2, where  r = d(n2) , the number of digits of n2. 
 
 It has been conjectured in that there are no perfect squares in this sequence. In this 
section, we prove a theorem verifying that conjecture. 
 
Theorem: The necessary condition on n that gives a perfect square term of the 
Smarandache nn2 sequence is 
 
a) n ≡  8 or  0 ( mod 9). 
b) In the case where n =9m, m is not a square free number. 
 
Proof of (a):  
 
Definition: A number d is said to be a valid digits sum if  
 
d ≡ 1(mod 3) ,  or  d ≡ 0(mod 9).       
 
Proposition: The digits sum of a perfect square is necessarily a valid digits sum. 
 
Proof of proposition: Consider the squares of numbers 1 through 9, 1,4, 9, 16, 25, 36, 
49, 64, 81, where the digits sums are 1, 4, 9, 7, 7, 9, 4, 1, 9, all of which are a valid digits 
sum. It can also proved using the properties of congruence that the digits sum of the 
product of two numbers is the product of the digits sums. Therefore, the proof of the 
proposition is complete. 
 
 The following sequence is constructed from the final digit sum of the elements of the 
Smarandache nn2 sequence. 
 
2, 6, 3, 2, 3, 3, 2, 9, 9, 2, 6, 3, 2, 3, 3, 2, 9, 9, 2,  6, 3, 2, 3, 3, 2,  9, 9, 2. 
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The following two properties are easy to verify. 
 

i) The sequence of digits {6, 3, 2, 3, 3, 2, 9, 9, 2} repeats periodically. 
ii) The only valid digit sum is 9 and it occurs only for n ≡ 8 or  0 ( mod 9). 

  
Proof of (b): Let a(n) = k2 be a perfect square in the sequence. Then we have  
a(n) =  k2  = n*10r + n2. If n = 9m, where m is a square free number, then   
 
k2 – n2 = n*10r   or  (k+9m)(k-9m) = 9m*10r  = m*32 * 2r * 5r.  
Now, it is evident that a prime divisor of m divides either k+9m or k-9m, and in either 
case m must divide k. 
If k = p *m, then the expression can be written as 
  
(p *m+9m)(p *m-9m) = 9m*10r  = m*32 * 2r * 5r, or 
  
(p+9)(p-9) = 9*10r  = *32 * 2r * 5r. 
 
On similar lines 3 divides p giving that p can be expressed in the form p = 3 *q, giving us 
  
(3q +9)( 3q-9) = 32 * 2r * 5r  or (q +3)( q-3) = 3 * 2r * 5r. 
  
If we also have that q = 3 *s, we have (s+1)(s-1) = 2r * 5r, or s2  = 10r  +1. 
   
The digit sum of the right member is 2, which is not a valid digit sum for a perfect 
square. Therefore the expression has no solution in integers. Also, for even r  = 2t, the 
two consecutive numbers 102t and 102t+1 cannot both be perfect squares. 
 
This completes the proof of part (b) of the theorem. 
 
Definition: The Reduced Smarandache nn2 sequence is given by b(n) = a(n)/n. The first 
few terms of the sequence are 
 
11, 12, 13, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, .  .  . 
 
Conjecture: There are infinitely many primes in the reduced Smarandache sequence. 
 

Section 27 
 

Primes In the Smarandache nnm Sequence 
 
 Definition: For m >0, the Smarandache nnm sequence is formed by concatenating n with 
the mth power of m.  
 
For m = 3, the first few numbers of the sequence are 
 
11, 28, 327, 464, 5125, 6216, 7343, 8512, 9729, 101000, 111331, 121728, . . . 
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 A natural question to ask is to determine how many primes are in the sequence for 
specific values of m. The following theorem answers the general question for any value 
of m. 
 
Theorem: The only prime that occurs in the Smarandache nnm sequence for any value of 
m is 11. 
 
Proof: It is clear that the general term a(n) of the Smarandache nnm  generalized 
sequence is given by  a(n)  =  n *10k  + nm  where  k = d(nm),  the number of digits of nm. 
It follows that a(n)  =  n{ 10k + nm-1). 
  
For n = 1, a(n) =11  (independent of  m.) and is a prime. If n>1, obviously a(n) is 
divisible by n and therefore is composite. 
 
Definition: The Reduced Smarandache nnm sequence is the set of numbers b(n) = a(n)/n, 
where a(n) is the element of the Smarandache nnm  generalized sequence. In this case, we 
have b(n)  = 10k + nm-1  where  k = d(nm) is the number of digits of nm. 
 
 For m = 3, we have 
 
a(n):  11, 28 ,327,  464,  5125 ,  6216,  7343, 8512 , 9729, 101000, 111331, 121728, . . .  

b(n):  11, 14, 109, 116, 1025, 1036, 1049, 1064, 1081, 10100, 10121, .  .  .  

 
Open problem: How many terms in this sequence are prime? 
 
Open problem: How many terms in the general b(n) sequence are prime? 
 

Section 28 
 

Some Ideas On the Smarandache nkn Sequence 
 
Definition: Let k > 0 be a fixed integer. The elements of the Smarandache nkn 
Generalized Sequence are formed by concatenating n and k*n. The nth term of the 
sequence is given by a(n) = k*n + n*10r, where r = d(k*n), the number of digits of k*n. 
 
Example:  
For k = 2, the first few terms of the sequence are 
 
12, 24, 36, 48, 510, 612, 714, 816,  .  .  .  1224, 1326, 1428,.  .   
 
where each term is formed by concatenating n and 2n. The nth  term is given by    
a(n) = 2*n  + n*10r , where r = d(2n), the number of digits of 2n. 
 
It has been conjectured that the number of perfect squares in the previous sequence  
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(for k =2) is finite. In this chapter, we analyze the sequence for k = 8 and prove that there 
are infinitely many perfect squares in the sequence. 
 
 For k = 8, the first terms of the sequence are 
 
18, 216, 324, 432, 540, 648, 756, 864, 972, 1080, 1188, 1296, 13104, 14112, … 
 
The general term is given by a(n) = 8*n  + n*10r, where r = d(8*n), the number of digits 
of  8 *n.  
 
Proposition: a(n) is a perfect square if n = (10k + 8)/9. 
 
Proof: Let n = (10k  +8)/9, which has exactly k digits and a(n) is given by  

a(n)  =  8*{ 10k + 8 }/9  +  [{ 10k + 8 }/9 ]*10k   

a(n) =   {(10k + 8)/9} * {  8  +  10k}  

a(n) =   9*{(10k + 8)/9} * { ( 8  +  10k)/9}  

a(n) =   9*{(10k + 8)/9}2  

a(n)  = (3n)2  = a perfect square. 

This completes the proof. 

 The sequence of   numbers defined by the formula  (10k  +8)/9 is  
 
12, 112, 1112, 11112,  . . . .  
 
and the corresponding  n8n sequence is  
 
1296 , 112896, 11128896 , 1111288896,   .  .  .   
 
Which is the same as  
 
362 ,  3362 ,  33362  ,  333362  . . .      
 
Open problem: Other than those defined by this formula, how many perfect squares are 
in the sequence? An example is 324 =182, which does not match the pattern. 
 

Section 29 
 

Some Notions On Least Common Multiples 
 
Definition: The Smarandache LCM sequence (SLS) is defined by 
 
Tn = least common multiple of all integers 1 through n. 
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The first few numbers of this sequence are 
 
1, 2, 6, 60, 60, 420, 840, 2520, 2520, . . . 
 
 It is well known that n! divides the product of any set of n consecutive numbers. We will 
use this idea in combination with the SLS to define another sequence. 
 
Definition: The terms of the Smarandache LCM Ratio sequence of the rth kind 
(SLRS(r)) are given by 
 
  rTn =LCM (n , n+1, n+2, . . .n+r-1 ) /LCM ( 1, 2, 3, 4, . . . r ) 
 
Examples: 
SLRS(1) 
 
1, 2, 3, 4, 5, . . . , 1Tn (=n). 
 
SLRS(2) 
 
1, 3, 6, 10, . . . 2Tn = n(n+1)/2 ( triangular numbers). 
 
SLRS(3) 
 
LCM (1, 2, 3)/ LCM (1, 2, 3), LCM (2, 3, 4)/ LCM (1, 2, 3), 
LCM (3, 4, 5)/ LCM (1, 2, 3), LCM (4, 5, 6)/ LCM (1, 2, 3), 
LCM (5, 6, 7)/ LCM (1, 2, 3) 
 or 
1, 2, 10, 10, 35 . . .  
 
SLRS(4) 
 
1, 5, 5, 35, 70, 42, 210, . . . 
Note: It appears that for r > 2, the sequences do not follow a pattern. 
Open problem: Search for patterns in the SLRS(r) sequences and find reduction 
formulas for the elements rTn. 
Definition: For n ≥ r  
 nLr = LCM (n, n-1, n-2, . . . n-r+1) / LCM (1, 2, 3, . . .r) 
where the numerator is the least common multiple of the last r numbers up to n and the 
denominator is the least common multiple of the first r number. By definition, we will 
have  0L0 = 1. 
 Starting at the beginning, we have 
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0L0  = 1 1L0 =1, 1L1 =1, 2L0 =1, 2L1 =2, 2L2 =2. 
Which can be used to form the triangle 

1 

1, 1 

1, 2, 1  

1, 3, 3, 1 

1, 4, 6, 2, 1 

1, 5, 10, 10, 5, 1 

1, 6, 15, 10, 5, 1, 1 

1, 7, 21, 35, 35, 7, 7, 1  

1, 8, 28, 28, 70, 14, 14, 2, 1 

 1, 9, 36, 84, 42, 42, 42, 6, 3, 1 
 1, 10, 45, 60, 210, 42, 42, 6, 3, 1, 1  
 
Definition: The triangle formed from the nLr numbers is called the Smarandache AMAR 
LCM triangle. 
Note: As r! divides the product of r consecutive integers so does the  
LCM (1, 2, 3, … r) divide the LCM of any r consecutive numbers Therefore, the 
elements of the Smarandache AMAR LCM Triangle are all integers. 
 
 The following properties of the Smarandache AMAR LCM Triangle are easy to see. 

1. The first column and the leading diagonal elements are all unity. 
2. The kth column are the elements of SLRS(k). 
3. The first four rows are the same as that of the Pascal's Triangle. 
4. The second column is the set of natural numbers. 
5. The third column is the set of the triangular numbers. 
6. If p is a prime then p divides all the terms of the pth row except the first and the last 
which are unity. In other words Σ pth row ≡ 2 (mod p). 

By careful observation, additional problems present themselves. For example, in the ninth 
row, 42 appears in three consecutive places.  
 
Open problem: Do sequences of equal values of arbitrary length appear in the 
Smarandache AMAR LCM triangle? 
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Open problem: Find a formula for the sum of the rows. 
Open problem: Search for congruence properties when n is composite. 
 The Smarandache function S(n) = k, is defined as the smallest integer such that n divides 
k!. The following function is defined in a similar way. 
Definition: The Smarandache LCM function SL(n) = k, is defined as the smallest integer 
k such that n divides LCM(1, 2, 3, . . . , k). 
Let n = p1

a1 p2
a2 p3

a3 . . .pr
ar be the prime factorization of n and let pm

am be the largest 
divisor of n with only one prime factor, then it follows that SL(n) = pm

am. 
If n =k! then S(n) = k and SL( n) > k. 
If n is a prime then we have SL(n) = S(n) = n. 
Clearly SL(n) ≥ S(n) the equality holding for n a prime or n = 4, n=12. 
Also SL(n) = n if n is a prime power. (n = pa ). 
Open problem: Are there numbers n >12 for which SL( n) = S(n)? 
Open problem: Are there numbers n for which SL( n) = S(n) ≤ n? 
 
 

Section 30 
An Application of the Smarandache LCM Sequence and the Largest 

Number Divisible By All the Integers Not Exceeding Its rth Root 
 
Definition: The numbers which are divisible by all numbers not exceeding their square 
root are 2, 4, 6, 8, 12 and 24. These numbers will be called the Smarandache Murty 
numbers of order 2. The largest number will be called the Smarandache Pati number of 
order 2.  
 The numbers which are divisible by all whole numbers not exceeding their cube root are 

2,3, 4,5, 6,7, all even numbers from 8 to 26, 36, 48, 60, 72,  …120, 180, 240, 300, 420. 
We have six consecutive numbers from 2 to 7, ten consecutive even numbers from 8 to 
26, eight consecutive multiples of 12 from 36 to 120, four consecutive multiples of 60 
from 120 to 300 and finally 420, which is the Smarandache Pati number of order 3. 
 If we add these consecutive properties together, we have 
  6 + 10 + 8 + 4 + 1 = 29. 
Note: As 73  = 343 <420 < 512 = 83 and 840 > 729 = 93 and furthermore 
 2520 >1331 = 113, it is evident that 420 is the largest number which is divisible by all 
the whole numbers not exceeding its cube root.   
 Let m = [n1/3], where  [ ]  stands for the  greatest integer function. Then n will be a 
Smarandache Murthy number of order 3 if   the LCM of the numbers from 1 to m divides 
n. 
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 Our next point of consideration will be to find an upper limit for the Smarandache Pati 
number of order r. 
 Consider the case for r=3. Obviously, n is divisible by all the primes less than m. Let 
there be s primes less than m. L(m)  is also divisible by all the primes  p1, p2, .  .  .  ps and 
let L(m)  =  p1

k1 *p2
k2 p3

k3 .  .  . ps
ks . Also, by the choice of the numbers we have the 

inequality pi ki ≤ n1/3  < pi ki +1.   
Multiplying all the inequalities we get  

p1
k1 *p2

k2 p3
k3 .  .  . ps

ks    ≤  {n1/3 }s < p1
k1 +1 *p2

k2 +1 p3
k3 +1 .  .  . ps

ks  +1     

{n1/3 }s  < { p1
k1 p2

k2 p3
k3 .  .  . ps

ks }*{ p1  * p2  * .  .  .  *ps }  <  L(m) *L(m)  = {L(m)}2. 

Also, as L(m)  divides  n we have   p1  * p2  * .  .  .  *ps  <   L(m) < n.    

Therefore, we have {n1/3 }s  < n2 and it follows that  s  < 6. As all the primes p1, to p5 are 
less than n1/3, p6   = 13 > n1/3 or n < 133  = 2197.  On investigating all the numbers smaller 
than 2197 we find that there are 29 Smarandache Murthy numbers of order 3 and 420 is 
the Smarandache Pati number of order 3.  
 Along similar lines we can prove that the Smarandache Pati number of order r  < p2r

r. 
The largest number which is divisible by all the whole numbers not exceeding its rth  root 
is less than  p2r

r . 
Open problem: For large values of r this upper limit may be too big  an estimate.  
Readers are encouraged to try to reduce the upper bound. 
Open problem: For r= 2, there are 6 Smarandache Murthy numbers of order 2. For   
r =3,  there are 29 Smarandache  Murthy numbers of order 3 . The question is to find a 
general result on the total number of  Smarandache Murthy numbers of order r. 
Open problem: Find an expression for the Smarandache Pati number of order r. 
  

Section 31 
The Number of Primes in the Smarandache Multiple Sequence 

 
Definition: The Smarandache nkn Generalized sequence is formed by concatenating all 
of the numbers n, 2n, 3n, . . . , n*n. The first few terms are 
1 ,24 , 369 , 481216 , 510152025 , 61218243036, 7142128354249 , 816243240485664, 
where  510152025 is formed by concatentating 5, 2*5, 3*5, 4*5 and 5*5. 

 The question has been raised regarding how many primes are contained in this sequence, 

so our next step will be to show that there are no primes in the sequence. 

Proposition: n divides a(n), where a(n) is the nth term of the Smarandache nkn sequence. 
Therefore, there are no primes in the sequence. 
 
Proof: Consider the nth term  a(n). Let k*n have dk digits  and let 
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 s(n-k) =  dn + dn-1  + .  .  . +dn-k+1  ,  

 
then by the very definition of the sequence, we have  
 
a(n) =  n2  + n.(n-1).10s(n)  + n.(n-2).10s(n-1)  + n(n-3).10s(n-2) +  .  .  .  n(n-k).10s(n-k)  +  
                  n.2.10s(2)  + n.1.10s(1). 
 
For example, a(4) =   481216  = 42  +4.3.102 + 4.2.104 + 4.1.105   
                             = 16 + 1200 +80000+ 400000. 
 
Therefore, it is clear that n divides a(n), and the proof is complete. 
Definition: The Smarandache Reduced Multiple sequence is formed by dividing the 
terms of the nkn sequence by n.  
 The first few terms of the sequence are 
1, 12, 123, 120304, 102030405, 10203040506, 1020304050607, .  .  .   
 
a(13) = 13263952657891104117130143156169 
b(13) = 1020304050607008009010011012013. 
 
Open problem: How many terms of the Smarandache reduced multiple sequence are 
prime? 
 

Section 32 
 

More on the Smarandache Square and Higher Power Bases 
 
Definition: The Smarandache Square Base is the expression of a number as the sum of 
distinct squares greater than one plus e, where e = 0, 1, 2, or 3. It is known that every 
positive number can be expressed in Smarandache square base form. 
 
 In a similar manner, the Smarandache base cube and higher power bases can be defined. 
 
Definition: The Smarandache Square Part Residue Zero sequence is the set of numbers 
that can be expressed as the sum of two or more perfect squares that are greater than or 
equal to one. 
 
 The first few terms of this sequence are 
 
5, 10, 13, 14, 17, 20, 21, 25, 26, 29, 30, 34, .  .  . 
 
Open problem: How many of the numbers in the Smarandache square part residue zero 
sequence are perfect squares? 
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Note 1: All numbers of the form  (a2+b2)2 { the largest members of  the Pythagorean 
triplets} are members of the sequence. Do all the squares in this sequence have this form? 
  
Note 2: For note 1, it follows that infinitely many fourth powers are members of the 
sequence. 
 
Open problem: How many fifth or higher powers are members of the sequence? 
 
Open problem: How many elements in the sequence can be expressed as the sum of 
squares in two or more ways? 
 
Some examples are 

  45 = 36 + 9  = 25 + 16 + 4 , 125 = 100 + 25 = 121 + 4. 
  
Open problem: Can one find a sequence of consecutive integers of arbitrary length in the 
sequence?    
 Along similar lines the Smarandache Square part residue unity   the Smarandache Square 
part residue two and the Smarandache Square part residue three sequences can also be 
defined. 
 The same ideas can be used to define the Smarandche Cube Part Residue Zero sequence. 
The first few terms in the sequence are 
 
9, 28, 35, 36, 65, 72, 73, 91, 92, 100, .  .  . 
 
Open problem: How many elements in the Smarandche cube part residue zero sequence 
are perfect cubes? 
  Some examples are 216, 3375, 9261.  

216 = 13 + 23 + 33 = 1 + 8 +27, 3375 = 153 = 13 + 23 + 33 + 43 + 63 + 113 + 123 = 1 + 8 + 

27 + 64  +216 + 1331 + 1728, 213 = 9261 = 13 + 33 + 63 +93 +153 + 173 =23 + 63 + 133 + 

143 + 643. 

Open problem: How many elements in the sequence can be expressed as the sum of 
perfect cubes in more than one way?  
Some examples are:  1729  (the Ramanujan number) = 123 +1  = 103 + 93,  

     213 = 9261 = 13 + 33 + 63 +93 +153 + 173 = 23 + 63 + 133 + 143 + 643. 

Open problem: Is it possible to find a sequence of consecutive integers or arbitrary 
length in the above sequence?    
 The square of every triangular number {n*(n+1)/2}2, n > 1  is a member of the above 
sequence. Also, since there are infinitely many square triangular numbers, the above 
sequence contains infinitely many fourth powers. 
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Open problem: How many fifth or higher powers are in the sequence? 
 

Section 33 
Smarandache Fourth and Higher Patterned/ Additive Perfect Power 

Sequences 
 
 Consider the following patterned fourth power sequence 
 
994, 9994, 99994, 999994, . . . 
 
where the fourth powers are 
 
96059601, 996005996001, 9996000599960001, 99996000059999600001,  .  .  .  
Proposition 1: The number  (10n – 1)4 is a member of Smarandache fourth power 
additive sequence  if  n = 24m+3*34k+2  - 1 , for all m and  k. 
Proof: It can be proved that the sum of the digits d(Tn)  of the nth term  Tn  is  given by  
 
 d(Tn)  = 9+6+5+9+6+1 + 18*(n-1)  = 18*(n+1) .= 2*32*(n+1). 
 
 If n+1 = 24m+3*34k+2 then d(Tn)  = 24m+4*34k+4

  
  = {2m+1*3k+1}4 which is a perfect fourth 

power. Since there are no restrictions on the values of m and k, this generates infinitely 
many terms of the Smarandache fourth power additive sequence. 
 
Note: More generally, n can be chosen as r4* 24m+3*34k+2 – 1.   (r, m, k  chosen 
arbitrarily.) 
 The Smarandache  Patterned/Additive fifth power sequence. 

995, 9995 , 99995, 999995 , . . . 

9509900499, 995009990004999, 99950009999000049999, .  .  .  

 In this sequence,  the sum of the digits d(Tn)  of the nth  term Tn  are given by  
Tn

  = 54  + 27(n-1) = 27(n+1). And if n  = r5* 35m+2  - 1, the conditions are satisfied. 
 

Smarandache  Patterned sixth power sequence. 

996, 9996 , 99996, 999996 , . . . 

941480149401, 994014980014994001, 999400149980001499940001, .  .  .  

It can be proved that there is no term in this sequence for which the sum of the digits is a 

perfect sixth power. 

Open problem: Are there infinitely many terms in the Smarandache sixth power additive 
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sequence? 
Smarandache Patterned/ Additive seventh power sequence. 
 
997, 9997, 99997, 999997, . . . 
93206534790699, 993020965034979006999, 9993002099650034997900069999, . . . 
 
d(Tn) = 72 + 36*(n-1) = 36(n+1). For n= r7*97k+3 – 1 we satisfy the conditions for which 
d(Tn) = {r*9(k+1)}7. 
 
Smarandache  Patterned/ Additive eighth power sequence. 
 
998, 9998, 99998, 999998, . . . 
9227446944279201, 992027944069944027992001,  
99920027994400699944002799920001 
 
d(Tn) =  72 + 36(n-1) = 36(n+1) , For  n= r8*98k+5 – 1 we  satisfy the conditions for which 
d(Tn) = {r*9(k+1)}8. 
 
Additional problem to consider:  
1) Determine the values of m for which the sequence (10n – 1)m gives infinitely many 
terms of the Smarandache  mth  power Additive sequence. 
(For m = 6 there is no such term). 
Conjecture: For every m there are infinitely many terms in the Smarandache  mth  power 
additive sequence. 

Section 34 
The Smarandache Multiplicative Cubic Sequence and More Ideas on 

Digit Sums 
 
Definition: The Smarandache multiplicative cube sequence is defined as a sequence of 
perfect cubes in which the product of the digits is also a cube.   
The first few terms of the sequence are: 
1, 8, 24389, 226981,9393931,11239424, 17373979, 36264691, 66923416,  
94818816, .  .  .   
Which are  
1, 23, 293, 613, 2113, 2243, 2593, 3313, 4063, 4563,. .  .   
respectively. 
 
 It is an open problem as to whether this sequence is finite or infinite. To prepare for an 
attack on this problem, two additional problems will be examined first. 
 
Problem 1: Are there infinitely many cubes where no digit is zero? 
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Problem 2: Is there any pattern of numbers that generate perfect cubes with no zero 
digit? 
 
It seems that the answer to both these two questions is no. 
 
 Some additional sequences based on the digit sum will now be given. 
 
Smarandache sequence of numbers  where the digits sum to a perfect square. 
The first few terms are 
1, 4 , 9 , 10, 13, 18, 22, 27, 31, 36, 40, 45, 54  79,  81, 90, 97, 100,103, 108, 112, 117,  
121, 126, 130, 135, 144, 153, 162, 169, 171, 178, 180 ,187,  196,202, 207, 211,  216,  
220, 225, .  .  . 
Smarandache sequence of  the smallest number Tn whose digits sum  to n2,  
d(Tn) = n2, Tn is the smallest such number. 
The first few terms of the sequence are: 
1, 4 , 9 , 79, 799, 9999, 499999, 19999999, 999999999,  199999999999, . . . 
 The Smarandache sequence of the smallest squares Tn whose digits sum to n2 
d(Tn)  = n2, where  d(Tn) = the sum of the digits of the nth term, Tn  is the  smallest such 
number. 
The first few terms of this sequence are: 
1, 4 , 9 , 169 , 4489 ,69696,. . . 
Open problem: Find a formula for the general term of this sequence. 
 The Smarandache sequence of numbers with digits whose first digit sum is a perfect 
cube. 
The first few terms of the sequence are: 
1,8,10, 17, 26, 35, 44,53,62,71,80,100, 107, 116, 125, 134,. .  . 800, 999, 1000, 1007, 
1016, .  .  .1899, 1989,  1998, 2006, 2015, . . . 2799, 2979, 2997, 3005, .  .  .19999999, . . . 
 The Smarandache sequence of the smallest numbers  whose digits sum  to n3. 
The first few terms in this sequence are: 
1 , 8 , 999 , 19999999 ,… 
 The Smarandache sequence of the smallest cubes  whose digits sum  to n3. 
The first few terms of the sequence are: 
1, 8 , 19683, 999400119992, 999998500000749999875, . . . 
1, 23 , 273 , 99983, 999953, 9999999999993 ,.  .  . 
d(999400119992) = 64  , d(999998500000749999875) = 125  
d{(999999999999)3} = d( 999999999997000000000002999999999999)  = 216 
On a similar line, the general questions of the Smarandache sequence of  the smallest 
number  whose digits sum to nm , and the Smarandache sequence of the smallest mth  
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power whose digits sum to nm  can be posed. 
Open problem: For what values of m > 3,  is the Smarandache sequence of the smallest 
mth power whose digits sum  to an mth power, finite? 

 
Section 35 

Smarandache Prime Generator Sequence 
 
 It has been proven that for every prime p, there is a prime of the form kp+1. This is 
evident from the fact that all the divisors of the number  (10p-1)/9  are of the form k*p+1, 
which itself is of the form  k*p+1.  
 Starting from 2, form a sequence of primes in which  
T1 = 2, Tn+1  =k* Tn + 1, where k is the smallest number yielding a prime. 
The first few terms of this sequence are 

2, 3, 7, 29, 59, 709, 2837,.  .  .  

The smallest prime not included in this sequence is 5.  
 Then, starting with   T1  = 5, Tn+1  =k* Tn + 1, where k is again the smallest number 
yielding a prime, we get the sequence, 
   5, 11, 23, 47, 283, 1699, .  .  .  
 The smallest prime not already in a sequence is 13, so starting with 13 and then repeating 
the process using additional primes, we get the following sequences 

13, 53, 107, 643, 7717,. . . 

17, 103, 619, 2477, .  .  . 

19, 191, 383, 769, 7691, .  .  . 

31, 311, 1867, .  .  . 

 The Smarandache Prime Generator sequence will be constructed using the first terms of 
these sequences.  
2, 5, 13, 17, 19, 31, .  .  .      
Conjecture: The Smarandache prime generator sequence is finite. 
 Is there any prime that is a member of more than one of the sequences that generate the 
Smarandache prime generator sequence? Let p be a common member of two sequences 
with the first term as p1 and p2 respectively. Then, for some k1 and k2 we get  

 
P = 2k1*p1 + 1 = 2k2* p2  +1, or   k1*  p1 =  k2 *  p2  , or k1 =  r* p2  and k2  = r*p1. 
Conjecture: All of the sequences that generate the Smarandache prime generator 
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sequence are distinct. 
 Additional open problems that I thought of regarding the Smarandache additive prime 
sequence will close this chapter. 
Open problem: Are there arbitrarily long sequences of consecutive primes having the 
same first sum of digits? 
Open problem: Are there arbitrarily long sequences of consecutive primes having the 
same final sum of digits? 
Open problem: Are there arbitrarily long sequences of consecutive terms of the 
Smarandache additive prime sequence with the same first sum of digits? 
Open problem: Are there arbitrarily long sequences of consecutive terms of the 
Smarandache additive prime sequence with the same final sum of digits? 
 

Section 36 
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 Chapter 3 
Miscellaneous Topics 

 
 In the previous chapters, an underlying similarity or theme was used to group the 
material together. However, not all of the Smarandache notions can be so easily 
categorized. Therefore, this chapter serves as a repository for those topics that are 
considered different enough that placing them in one of the previous chapters is 
considered inappropriate.  
 

Section 1 
 

     Exploring Some New Ideas On Smarandache Type Sets, Functions 
And Sequences 

 
(1)Smarandache Patterned Perfect Square Sequences. Consider the following sequence of 
numbers  
 
13, 133, 1333, 13333, . . .-------- (1) 
 
which is formed by the squares of the numbers  
 
169, 17689, 1776889, 177768889, . . .  ------- (2) 
 
Sequence (1) is called the root sequence of (2) and it is clear that there is a pattern to the 
numbers of both sequences. The root sequence is a one followed by a sequence of n 3’s 
and the elements of the product sequence are a one, followed by (n-1) sevens, a 6, (n-1) 
eights and ending in a nine.  
 
There are a finite number of such patterned perfect square sequences and here is a list of 
the root sequences. 
 
(I)    13, 133, 1333, 13333,  . . . 
(2)   16, 166, 1666, 16666,  . . . 
(3)   19, 199, 1999, 19999,  . . . 
(4)   23, 233, 2333, 23333, . . . 
(5)   26, 266, 2666, 26666, . . . 
(6)   29, 299, 2999, 29999, . . .  
 
Along similar lines, we have root sequences where the first terms are  
 
(7) 33    (8) 36   (9) 39  (10) 43  (11) 46  (12) 49  (13) 53  (14) 66  (15) 73 
(16) 79  (17) 93  (18) 96  (19) 99. 
 
Open Problems:  
 (1) Are there any patterned perfect cube sequences? 
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 (2) Are there any patterned perfect power sequences for a power greater than 3? 
  

Smarandache Breakup Square Sequences 

 The sequence 
 
4, 9, 284, 61209, . . .  
 
is defined by 
 
4 = 22 
49 = 72 
49284 = 2222 
4928461209 = 702032 
 
Tn is the smallest sequence of digits such that the concatenation  
 
T1T2 . . .Tn-1 Tn 
 
is a perfect square. The following limit 
                           
           (T1T2 . . .Tn-1 Tn)1/2 
limit  
n→∞              10k 
 
where k is the number of digits in the numerator, is close to either 2.22 . . .  or 7.0203 . . . 
 
Smarandache Breakup Cube Sequences 

  
Along similar lines, the Smarandache Breakup Cube Sequence, where cubes are used 
instead of squares. By using larger exponents, we can define Smarandache Breakup 
Perfect Power Sequences. 
 
Smarandache Breakup Incremented Perfect Power Sequences 

 
 1, 6, 6375, … 
 
1 = 11, 16 = 42, 166375 = 553, etc.  
 
Tn is the smallest number whose digits concatenated with the previous numbers in the 
sequence 
 
T1T2T3 . . . Tn  yields a perfect nth power. 
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Smarandache Breakup Prime Sequence 

 
 The Smarandache Breakup Prime Sequence is formed by finding the smallest number Tn 
such that if it is concatenated on the right to the concatenation of all previous terms, a 
prime number is formed. In other words,  
 
2, 3, 3, . . . 
 
2, 23, 233 etc. are primes. 
 
T1T2...Tn-1Tn   is a prime  
  
Smarandache Symmetric Perfect Square Sequence 

 
 This sequence is the set of perfect squares that are also palindromic. The first few terms 
are 
 
1, 4,  9,  121,  484,  14641, . . . 
 
Smarandache Symmetric Perfect Cube Sequence 
 
This sequence is the set of perfect cubes that are also palindromic. The first few terms are 
 
1, 8, 343, 1331, . . .  
 
Smarandache Symmetric Perfect Power Sequence 
 
 This is the general sequence, for n ≥ 2, the set of n powers that are also palindromes.  
 
Smarandache Divisible by n Sequence 

 
 The terms of this sequence (Tk) are the smallest numbers such that k divides  
T1T2 . . . Tk. The first few terms of this sequence are 
 
1, 2, 0, 4, 0, 2, . . .  
 
Which is a consequence of the computations 
 
1 | 1, 2 | 12, 3 | 120, 4 | 1204, 5 | 12040, 6 | 120402, . . .  
 
Smarandache Sequence of Numbers Where the Sum of the Digits Is Prime 

 
 2, 3, 5, 7, 11, 12, 14, 16, 20,21,23,25,29, . . .  
 



 149

Smarandache Sequence of Primes Where the Sum of the Digits Is Prime   
 
2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 67, 83, 89, . . .  
 
Smarandache Sequence of Primes p where 2p + 1 is Also Prime 
 
2, 3, 5, 11, 23, 29, 41, 53, . . .  
 
Smarandache Sequence of Primes p where 2p - 1 is Also Prime 
 
3, 7, 19, 31, . . .  
 
Smarandache Sequence of Primes p where p2 + 2 is Also Prime 
 
3, 17, . . .  
 
Smarandache Sequence of the Smallest Primes Which Differs by 2n From the Previous 
Prime 
 
5, 17, 29, 97, . . .  
 
S1 = 5 = 3 + 2, S2 = 17 = 13 + 4, S3 = 29 = 23 + 6, S4 = 97 = 89 + 8. 
 
Smarandache Sequence of Smallest Prime For Which p + 2r is Prime 

 
 Element r is the smallest prime p, such that p + 2r is prime. The first few terms are 
 
3, 13, 23, 89, . . .  
 
Since 3 + 2*1 = 5, 13 + 2*2 = 17, 23 + 2*3 = = 29, 89 + 2*4 = 97. 
 
Smarandache Sequence sn of the Smallest Number Whose Sum of Digits is n 
 
 The first few elements are 
 
1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 299, 399, 499, 599, . . .  
 
This is a sequence of numbers satisfying the property 
 
               k 
         N + 1 =     Π  ( ar +1 ) 
                                               r=1 
where ar is the rth digit of the number. 
 
Proof:  
Let N = arar-1 . . . a1 such that 
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                       k 
      N + 1=     Π ( ar +1 )        (3) 
           r=1 
 
The largest k-digit number is N = 10k - 1, where all the digits are 9. It can be verified that 
this is a solution. Are there other solutions? 
 
 Let the mth digit be changed from 9 to am  (am < 9). Then the right member of (3) 
becomes 10(k-1) (am +1). This amounts to the reduction in value by 10(k-1)(9-am ). The 
value of the k-digit number N goes down by 10(m-1)(9-am). For the new number to be a 
solution these two values have to be equal which occurs only at m = k. This gives 8 more 
solutions. In all there are 9 solutions given by a.10k - 1, for a = 1 to 9. 
For k = 3 the solutions are  
199, 299, 399, 499, 599, 699, 799, 899, 999, … 
 
Question: Are there infinitely many primes in this sequence? 
 
Smarandache Sequence of Numbers Such That the Sum of the Digits Divides n 

 
1, 3, 6, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 72, 80, 81, 84, 
90, 100, 102, 108, 110, 112, 114, 120, 126, 132, 133, 135, 140, 144, 150, . . . 
Smarandache Sequence Of Numbers Such That Each Digit Divides n 

 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 22, 24, 30, 33, 36, 40, 44, 50, 55, 60, 66, . . . 
 
Smarandache Power Stack Sequence For n (SPSS(n)) 

 
SPSS(2) 
 
The nth term is obtained by concatentating the digits of the powers of 2 starting from 20 to 
2n and moving left to right. The first few digits of this sequence are 
 
1, 12, 124, 1248, 12416, 1241632, . . .  
 
SPSS(3) 
 
The nth term is obtained by concatentating the digits of the powers of 3 starting from 30 to 
3n and moving left to right. The first few digits of this sequence are 
 
1, 13, 139, 13927, . . .  
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Question: If n is an odd number not divisible by 5, how many terms in the SPSS(3) 
sequence are prime?  It is clear that n | sn if and only if n ≡ 0(mod 5). 
 
Smarandache Self Power Stack Sequence (SPSS) 
 
 The kth term in the sequence is formed by concatentating the numbers  
 
11, 22, 33, . . ., kk 
 
starting from the left. The first few terms are 
 
1, 14, 1427, 1427256, 14272563125, 142725631257776, . . .  
 
Smarandache Perfect Square Count Partition Sequence (SPSCPS(n)) 
 
The kth term (starting at zero) of this sequence is defined as the number of perfect 
squares m that satisfy the inequality 
 
     nk + 1 ≤ m ≤ nk + n. 
 
For n = 12, the first few terms in the sequence SPSCPS(12) are 
 
3, 1, 2, . . .  
 
since the number of perfect squares less than 12 is 3 and the number of perfect squares 
between 13 and 24 is 1. 
 
Smarandache Perfect Power Count Partition Sequence (SPPCPS(n,k)) 
 
 The rth term (starting at zero) of SPPCPS(n,k) is the number of kth powers m that satisfy 
the inequality  
 
 nr + 1 ≤ m ≤ nr + n. 
 
For example, the first term of SPPCPS(100,3) is 4, as 13, 23, 33, 43 are all less than 100. 
 
Question: Does Σ (Tr/(nr)) converge as n → ∞? 
 
Smarandache Bertrand Prime Sequence 

 
According to Bertrand 's postulate, there exists a prime between n and 2n. Starting from 
2, form a sequence by taking the largest prime less than double the previous prime  in the 
sequence . The first few elements of the sequence are 
 
2, 3, 5, 7, 13, 23, 43, 83, 163, . . . 
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Smarandache Semi-perfect Number Sequence 

 
 A semi-perfect number is one that can be expressed as the sum of a subset of its distinct 
divisors. For example, 
 
12 = 2 + 4 + 6 = 1 + 2 + 3 + 6 
20 = 1 + 4 + 5 + 10 
30 = 2 + 3 + 10 + 15 = 5 + 10 + 15 = 1 + 3 + 5 + 6 + 15. 
 
It is clear that every perfect number is also semi-perfect. 
 
Theorem: There are infinitely many semi-perfect numbers. 
 
Proof: We shall prove that N = 2np, where p is prime less than 2n+1 – 1 is a semi-perfect 
number.  
 
The divisors of N are  
 
1, 2, 22, . . . , 2n 
 
p, 2p, 22p, . . . , 2np. 
 
Summing the second row, we have 
 
                 n-1 
                  ∑    2r p  = p ( 1+ 2+  22  + 23 +. . . 2n-1 )  = p(2n -1) = M. 
      r =0 
 
The difference between N and M is p. It is known that every number is expressible as the 
sum of powers of two and we have selected p so that it is less than the largest power in 
the above list. Therefore, we can express p as the sum of powers of two 
 
                 n 
    p   =     ∑   ar * 2r  ,    where ar  = 0 or ar = 1. 
    r =0 
 
Since none of these factors were used in the previous sum, we can express N as the sum 
of a subset of its’ divisors. 
 
Remark: There are many additional examples of semi-perfect numbers. Readers are 
encouraged to search for additional families of semi-perfect numbers. 
 
Smarandache Co-prime But No Prime Sequence 
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This sequence starts with four and each subsequent term is the smallest number that is 
relatively prime to the previous term and is not prime. More formally, 
 
The nth term Tn is defined as follows 
 
Tn = { x | (Tn-1 , x) =1 , x is not a prime and  (Tn-1 , y ) ≠ 1 for Tn-1 < y< x }. 
 
The first few terms of the sequence are 
 
4, 9, 10, 21, 22, 25, 26, 27, 28, 33, 34, 35 , 36 ,49, 50, 51, 52 , . . . 
 
Open problem: Does the Smarandache Co-prime but no Prime Sequence contain 
arbitrarily long sequences of integers of the form k, k+1, k+2,  
k+3, . . .,k+n? 
 
Definition: We define a prime pr to be a week prime if 
 
pr < (pr-1  + pr+1 ) /2. 
 
It is a balanced prime if 
 
pr = (pr-1  + pr+1 ) /2. 
 
It is a strong prime if 
 
pr > (pr-1  + pr+1) /2. 
 
For example: 
   
3 < (2+5)/2 is weak prime .  
5= (3 + 7)/2   is a balanced prime .    
71 > (67 + 73 )/2 is a strong prime . 
 
Smarandache Weak Prime Sequence 

 
3, 7, 13, 19, 23, 29, 31, 37, . . .  
 
Smarandache Strong Prime Sequence 

 
11, 17, 41, . . .  
 
Smarandache Balanced Prime Sequence 

 
5, . . .  
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It is clear that for a balanced prime > 5, pr = pr-1 + 6k. 
 

Section 2 
 

Fabricating Perfect Squares With a Given Valid Digit Sum 
 
Introduction: 

 While studying the Smarandache additive square sequence [48-1] (sequence of squares 
in which the digits sum is also a square), a question popped into my mind.  Given a 
number d can one get a perfect square whose digit sum is d? In this chapter some results 
pertaining to this question have been established. 
 
Definition: Given any integer anan-1 . . . a0 the digit sum is  
 
an + an-1 + . . . a0. 
 
If this sum has more than one digit, repeatedly take the sum of the digits until the result is 
a one-digit number. 
 
Definition: A number d is called a valid digits sum if 
   
d ≡ 1 (mod 3) ,  or  d ≡ 0 ( mod 9)      ------------ (1) 
 
Proposition I:  The digit sum of a perfect square is a valid digit sum. 
 
Proof:  Consider the squares of numbers 1 through 9  
 
1, 4, 9, 16, 25, 36, 49, 64, 81 
 
the digit sums are    
 
1, 4, 9, 7, 7, 9, 4, 1, 9  
 
which definitely are of type (1) . 
 
 It can also be proved using the properties of congruence that the digits sum of the 
product of two numbers is the product of the digits sums. Since this can be repeated an 
arbitrary number of times, the proof is complete. 
 
Theorem: If d is a valid digit sum then there exist infinitely many perfect squares whose 
digits sum is d. 
 
Proof: 
Consider the following four Smarandache Patterned perfect square sequences [48-2] 
along with their root sequences. 
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(I)   9, 99,  999,  9999 ,  .  .  .   
       81, 9801, 998001, 99980001, .  .  . 
 
We have  
 
 Tn = 10n  -1 , . Tn

2  = 102n -2* 10n   + 1. = 10n+1 (10n-1  - 1) + 8* 10n  + 1.   
   
Hence, the sum of the digits of Tn

2   =  9(n-1)  + 8 + 1  = 9n. 
 
(II) 1, 19, 199, 1999 ,  .  .  .  
       1, 361, 39601, 3996001 , .  .  .   
 
 
Tn  =  2 * 10n-1  - 1 ,  Tn

2 = 4*102(n-1)  - 4* 10n-1  + 1. 
 
Tn

2  = 3*102(n-1) + 10n * ( 10n-2 -1) + 6*10n-1  + 1. 
 
The sum of the digits of Tn

2  = 3 + 9(n-2)  + 6 + 1 = 9(n-1) + 1. 
 
(III)   2 ,  29, 299, 2999,  . . . 
         4, 841, 89401, 8994001,   . . .  
 
Tn  =  3 * 10n-1  - 1 ,  Tn

2 = 9*102(n-1)  - 6* 10n-1  + 1. 
Tn

2  = 8*102(n-1) + 10n * ( 10n-2 -1) + 4*10n-1  + 1. 
 
The sum of the digits of Tn

2  = 8 + 9(n-2)  + 4 + 1 = 9(n-1) + 4. 
 
(IV)    5, 59, 599 , 5999  .  .  . 
         25, 3481, 358801, 35988001,  .  .  .  
 
For n = 1 and n=2, the  sum of the digits of Tn

2   are  7 and 16 respectively.  
 
For  n ≥ 3  Tn  = 6* 10n-1  - 1 , and  Tn

2  = 36*102(n-1)  -12* 10n-1  +1 
 
Tn

2  =  35* 102(n-1) +  10n+1 *( 10n-3 -1) + 88*10n-1   + 1. 
 
The sum of the digits of Tn2  = 3 + 5 + 9(n-3) + 8 + 8 + 1 = 9 ( n-1) + 7. 
 
This pattern also holds for n = 1 and 2 as well. 
 
Since every number of the type 3*r+1 is congruent to 1, 4  or 7 (mod 9) the previous  four 
cases cover all the valid digits sums. 
 
Therefore, we have proved that there exists a perfect square with a given valid digits sum. 
By adding an even number of zeros we get infinitely many such numbers and the proof of 
the theorem is complete. 
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Example:  Let d = 124, so our goal is to find a perfect square N with digits sum =124.   
We have d = 124 ≡ 7( mod 9).   The required number is the member of sequence (IV), for 
which n = 14  , [  124 =  9 ( 14 - 1)  + 7. ] 
 
N = (6 * 1013 - 1)2 = 3599999999999880000000000001. 
 
Conjecture:  For a given valid digits sum d there exists infinitely many nontrivial perfect 
squares whose digits sum is d. (If N is a solution then N*102n is a nontrivial one.) 
 
 Generalizing this result, if we define a valid digit sum for a cube as a number congruent 
to 0, 1 ,or 8  (mod 9), then we can put forward the following conjectures. 
 
Conjecture:  For a given valid digit sum d there exists infinitely many nontrivial perfect 
cubes whose digits sum is d. (If N is a solution then N*103n is a nontrivial one.) 
 
Conjecture:  For a given valid digit sum d there exists infinitely many nontrivial perfect 
mth powers whose digit sum is d. (If N is a solution then N*10m*n is a nontrivial one.) 
 

Section 3 
 

Fabricating Perfect Cubes With a Given Valid Digit Sum 
 

Introduction: 

 In the previous section, given an arbitrary number d, the question to consider was 
whether there was a perfect square with a digit sum equal to d. In this section, we will 
consider the similar problem where square is replaced by cube. 
 
Definition: A number d is called a valid digit sum for a cube is d ≡ 0, 1, or 8 (mod 9). In 
other words, the digit sum is 9k, 9k + 1 or 9k – 1. 
 
Theorem:  For a given valid digit sum for cube d, there exists infinitely many perfect 
cubes whose digit sum is d, when d is of the form 18k, 9k+1 or 9k - 1.  
 
To prove this theorem, we start with the following proposition.  
 
Proposition:  For a perfect cube, the digit sum necessarily is a valid digits sum for a cube 
satisfying condition  (1). 
 
Proof of the proposition:  Examining the cubes of the numbers 1 through 9, we get   1, 
8, 27, 64, 125, 216, 343, 512, and 729. The corresponding digits sums are 1, 8, 9, 10, 8, 9, 
10, 8, 18, all of which reduce down to 1, 8 or 9.  This is consistent with the definition of 
the valid digits sum for a cube. Also, it can be proved using the properties of congruence 
that the digits sum of the product of two numbers is the product of the digits sums. The 
proof is complete.  
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Proof of the theorem: 
Consider the following Smarandache patterned perfect cube sequences with the 
corresponding root sequences 
 
(I) 
991, 9991, 99991, 999991,  .  .  .  
 
973 242 271, 9 973 0 242 9 271, 99 973 00 242 99 271, 999 973 000 242 999 271 
 
we have  Tn  = 10n+2 - 9, for the root sequence , and  
 
Tn

3  = 103n+6  - 27*102n+4 + 243*10n+2  - 729. 
 
The general term of the cube sequence Tn

3 = tn is given by 
  
tn =  102n+7 *( 10n-1 - 1)  + 973*102n+4  + 242*10n+2  + 103 *( 10n-1 - 1)  + 271.  
 
Upon simplification we have 
 
tn = 103n+6  - 27*102n+4 + 243*10n+2  - 729  = Tn

3. 
 
The sum of the digits of  
 
tn  = 9(n-1) + 9+ 7 + 3   + 2 + 4 +2 + 9(n-1) +  2 + 7 + 1 
 
equals  18( n+1) + 1 =  9 ( 2m) + 1 ,  m > 1. 
 
 With 253 = 15625, the sum of the digits is 19, the case where m = 1 is also included. 
 
(II) 
995, 9995, 99995, 999995, .  .  .  
985 074 875, 9 985 0 074 9 875, 99 985 00 074 99 875, 999 985 000 074 999 875. 
 
We have for the root sequence  
 
Tn = 10n+2 - 5, Tn

3 = 103n+6 -15*102n+4 + 75*10n+2 - 125. 
 
For the cube sequence  tn = Tn

3 
 
tn =  102n+7*( 10n-1 – 1)  + 985*102n+4  + 74*10n+2  + 103*( 10n-1 – 1)  + 875. 

 
When this is simplified, we have 
 
tn =  103n+6 –15*102n+4 + 75*10n+2 –125 = Tn

3. 
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The sum of the digits of tn  equals 9(n-1) + 9+ 8 + 5   + 7 + 4 + 9(n-1) + 8 + 7 + 5 

= 18(n-1) + 53  = 9(2m)  - 1, m >2. 

With 173 =4913, the sum of the digits is 17, and 953 =857375, sum of digits = 35, the case 

m = 1 and m = 2 are also included.   

 
(III) 
9, 99, 999, 9999, .  .  . 
729, 970299, 997002999, 999700029999,  .  .  . 
  
 Consider the root sequence  Tn  = 10n  - 1, Tn

3  =  103n  - 3*102n + 3*10n  -1. 
 
For the cube sequence tn = Tn

3 
   
tn  =  102n+1 * (10n-1 -1) + 7*102n  +  2*10n  + (10n - 1). 
 
When this expression is simplified, we have 
  
tn  =  103n  - 3*102n + 3*10n  -1 =  Tn

3. 
 
The sum of the digits for this number equals 
 
9(n-1) +  7 + 2  + 9n  = 18n  =  9 ( 2n) = 9(2m) . 
 
With the above three sequences we have taken care of the digit sums 9k, 9k+1 and  
9k-1, for k even. 
 
 We will now consider the sequences for k odd.  
 
(IV)  
97, 997, 9997, 99997,.  .  .  
912673, 991026973, 999100269973, 999910002699973,  .  .  . 
 
Consider the root sequence 
 
Tn = 10n+1 – 3, Tn

3 = 103n+3 –9*102n+2 + 27*10n+1 –27. 
 
For the cube sequence tn = Tn

3   
 
tn  = 102n+4 ( 10n-1 –1) + 91*102n+2  +   26* 10n+1  + 100*(10n-1 – 1)  + 73. 
 
Which yields the following when simplified 
 
Tn = 103n+3 –9*102n+2 + 27*10n+1 –27 = Tn

3. 
 



 159

 The sum of the digits for   
 
tn  = 9(n-1) + 9 + 1 + 2 + 6 + 9(n-1) + 7 + 3 = 18(n-1) +28 = 9( 2n+1) + 1. 
 
With 73 = 343  , digits sum = 10  , which is the case where n = 0. 
 
(V)  
98, 998, 9998, 99998,.    .    . 
941192, 994011992, 999400119992, 999940001199992, .  .  .   
 
We have the root sequence 
 
Tn = 10n+1 – 2 , Tn

3 = 103n+3 –6*102n+2 + 12*10n+1 – 8. 
 
For the cube sequence tn = Tn

3   
 
tn  = 102n+4 ( 10n-1 –1) + 94*102n+2  +   11* 10n+1  + 100*(10n-1 – 1)  + 92. 
 
Which on simplification gives 
 
Tn =.103n+3 – 6*102n+2 + 12*10n+1 – 8 = Tn

3. 
 
The sum of the digits for   
 
tn  = 9(n-1) + 9 + 4 + 1 + 1 + 9(n-1) + 9 + 2 = 18(n-1) +26 = 9( 2n+1) - 1. 
 
83 = 512, with digit sum 8, is the case where n = 0. 
 
Therefore, the theorem is proven for d = 18k, 9k+1 and 9k-1. 
 
Example: Given d = 118, find a perfect cube N such that the digit sum is equal to d. 
We have d =118 = 9*13 + 1. Hence N is a member of sequence (IV) and   
N =  (1014 - 3)3. 
 
Note:  Readers are encouraged to look for other exhaustive sets of sequences. 
 
Open Problem: Find a sequence of cubes, the sum of whose digits is an odd multiple of 
9. 
 
Consider the following table  
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N N3 Sum of digits of N3 = d   d/ 9 

3 27 9 1 

33 35937 27 3 

333 36926037 36 4 

3333 37025927037 45 5 

33333 37035925937037 63 7 

333333 37036925926037037 72 8 

3333333 37037025925927037037 81 9 

33333333 37037035925925937037037 99 11 

333333333 37037036925925926037037037 108 12 

 
Based on the above table, we make the following conjectures: 

Conjecture I: (a) If   N = (103k – 1) /3 then the sum of the digits of N3 is 9(4k). 

Conjecture I: (b) If   N = (103k-1 – 1) /3 then the sum of the digits of N3 is 9(4k –1). 

Conjecture I: (b) If   N = (103k+1 – 1) /3 then the sum of the digits of N3 is 9(4k +1). 

Conjecture II:  For a given valid digit sum d there exist infinitely many nontrivial 
perfect cubes whose digit sum is d. ( If  N is a solution then  N*103n is a nontrivial one.) 
 
Note:  If conjecture I is true, it will take care of d = 9(2k+1) , an odd multiple of 9.   
 
Together with the theorem I, it would lead to the truth of conjecture II. 
 

Section 4 
 

Smarandache Perfect Powers With Given Valid Digit Sum 
 
 In [2] the Smarandache additive square sequence is defined as the sequence of squares in 
which the digit sum is also a square. The valid digit sum for a square was defined in a 
previous section as a number d such that d ≡ 1(mod 3) or d ≡ 0(mod 9).  
 
 In this section, we define a Smarandache sequence of perfect squares with a given digit 
first sum as the sequence of perfect squares whose digits sum is the same.  
 
Examples: 
If digit sum = 1, there is the sequence 
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1, 100, 10000, . . . , 102n, . . .  
 
For digit sum = 4 
 
1, 4, 121, 10201, . . .  
 
For digit sum = 7 
 
16, 25, 1024, 2401, . . .  
 
For digit sum = 9 
 
9, 36, 81, 144, 225, 324, 441, 900, . . .  
 
For digit sum 10 
 
64, 361, . . .  
 
For digit sum 13 
 
49, 256, 625, 841, . . .  
 
Using the first terms of the above sequences, we can define the Smarandache sequence of 
smallest perfect squares with valid digit first sums 
 
1, 4, 16, 9, 64, 49, 169, 576, 289, . . .  
 
where the digit sums are 
 
1, 4, 7, 9, 10, 13, 16, 18, 19, . . .  
 
Open problem: There are three consecutive terms in increasing order 49, 169, 576. Is it 
possible to have an arbitrary number of terms in increasing or decreasing order? 
 
We define the Smarandache sequence of perfect squares with a given digits final sum 
 
{1} 1, 64, 100, 289, 361, 676, 784, 1225, 1369, .  .  .    
 
where the root sequence is  
 
1, 8, 10, 17, 19, 26, 28, 35, 37, .  .  .  ------------  (a). 
 
Additional sequences are 
 
{4}  4 , 49, 121 , 256, 400, 625 , .  .  .  ------------  (b) 
(7)   16, 25, 169, 196,  484, 529, .  .  . ------------  (c) 
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{9}   9, 36 , 81 , 144 , 225 , . .  .        ------------  (d). 
 
Note that we have Tn = 9*n2 in sequence (d). 
  
Open Problem: To find an expression for the nth term for the sequences  (a) , (b) , and 
(c). 
 
The above idea can be generalized by defining  
 
(A) Smarandache sequence of perfect cubes with a given digit first sum as listed below 
where the number in the braces {} is the digit sum. 
 
{1} 1, 1000, 1000000, .  .  . 103n .  .  .  
{8} 8, 125, 512, 1331, .  .  .  
{9} 27, 216,  27000,   .  .  . 
{10} 64, 343, 64000, .  .  . 
{17} 2744, 4913, 12167,  .  .  .  
{18} 729, 1728, 3375, 5832, 9261, 13824, 91125, .  .  . 
    
 We have similar sequences for 19, 26, 27, 28 and so forth. Note that for all the numbers 
d, d ≡ 0, 1 or 8  (mod 9).  
 
(B) Smarandache sequence of perfect cubes with a given digit final sum.  
  
{1} 1, 64, 343, 1000, 4096, 6859,  .  .  .  
{8} 8, 125, 512, 1331, 2744, 4913, 12167 , .  .  . 
{9} 27, 216, 729, .  .  .    , Tn  = 27*n3. 
 
Open Problem:  To find the general term for the sequences where the sums are 1 and  8. 
 
(C) Smarandache sequence of smallest perfect cubes with valid digit first sums is defined 
in the following way: 
 
1, 8, 27, 64, 2744, 729, 2197,  .  .  .  
 
with the digit sums  
 
1, 8, 9, 10, 17, 18, 19, .  .  .   
 
Open problem: We have five consecutive terms in increasing order: 1, 8, 27, 64, 2744. 
Can we have an arbitrary number of terms in increasing or decreasing order? 
 
Generalization: The Smarandache Sequence of perfect mth powers with a given digit 
first sum, the Smarandache Sequence of perfect mth powers with a given digit final sum 
and   the Smarandache sequence of smallest perfect mth powers with valid digit first sums 
can all be defined on similar lines. 
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Section 5 
 

Numbers That Are a Multiple of the Product of Their Digits And 
Related Ideas 

 
Smarandache Proud Pairs of Numbers 

 
Definition: We say that a pair of integers (m,n) is a Smarandache proud pair if 
n = m = Pd(n), where Pd(n) is the product of the digits of n. 
 
Examples: 
For the single digit numbers 
 
n = 1 * n 
 
36 = 2 * (3 * 6),  15 = 3 *(1 * 5),  24 = 3 * (2 * 4),  175 = 5 * (1 * 7 * 5) 
 
So, (1,1), (2,2), (3,3), . . . , (9,9), (3,15), (3, 24), (5,175) are Smarandache proud pairs.  
 
Conjecture: For every m having no zero digit, there exists a number n such that (m,n) is 
a Smaradache proud pair.  
 
Conjecture: For every m, there exists infinitely many n such that (m,n) is a Smarandache 
proud pair. 
 
Numbers For Which the mth Power of the Sum of the Digits Equals the Sum of the 
Digits of the mth Power 
 
Numbers for Which the Square of the Sum of the Digits Equals the Sum of the Digits of 
the Square 
 
If d(n) is the sum of the digits of n, then these numbers satisfy the formula  
 
d(n2) = [d(n)]2. 
 
Examples: 
 
112 = 121,  (1+1)2 = 1 + 2 + 1 
122 = 144,  212 = 441, (2+1)2 = 4 + 4 + 1 
222  = 484, (2+2)2  =  4 + 8 + 4. 
132 = 169, 312  =961 , (1+3)2  = 1+6+9 
1112 =12321, (1+1+1)2  =  1 +2 + 3 + 2 + 1 
2122  = 44944, (2+1+2)2  =  4 + 4 + 9 + 4 + 4. 
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There are infinitely many such numbers is evident from the fact that  {10k  +1) and  
2{10k  +1) satisfy the conditions for all values of k. If these are to be considered a bit 
trivial, then here are additional, nontrivial patterns. 
 
n = 212, 2102 , 21002 , 210002, . . . 
n2  =   44944,  4418404, 441084004, . . .  
n = 122 , 1022 , 10022, 100022, . . .  
n2 = 14884, 1044484, 100440484, . . . 
 
Numbers For Which the Cube of the Sum of the Digits Equals the Sum Of the Digits of 
the Cube 
 
In this case, we are looking for solutions to d(n3) = [d(n)]3 
 
The family 101, 1001, 10001, can be considered trivial examples. Nontrivial examples 
are 
 
113  = 1331, (1+1)3  =  1+3+3+1 
1113 = 1367631,  (1+1+1)3  = 1 + 3 + 6 + 7 + 6 + 3 + 1. 
 
Numbers of the form 1011, 10011, 100011, . . . and 1101, 11001, 110001, . .  also satisfy  
the expression. 
 
The two additional examples are: 
 
  (1010010001)3 =   1030331606363361603330030001 
  d(1030331606363361603330030001) = 64 
 
    (11010010001)3  = 1334636937969963961633330030001 
d(1334636937969963961633330030001) =125 
  
which suggests the following conjecture. 
 
Conjecture:  For every positive integer m there exists a number n such that  
m3  = d(n3)  =  {d(n)}3. 
 
Numbers For Which the Fourth Power of the Sum of the Digits Equals the Sum of the 
Digits of the Fourth Power 
 
 In this case, we are searching for solutions to the expression d(n4) = [d(n)]4.  
 
Examples: 
114 = 14641, (1+1)4 = 1 + 4 + 6 + 4 + 1 
101, 1001, 10001, . . .  
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Open problem 1: Are there numbers n, such that m4 = d(n4) = [d(n)]4, where m > 2? 
Open problem 2: Are there numbers n, such that d(nk) = [d(n)]k, where k > 4? 
 
Generalization: Additional Smarandache digital sequences can be defined by studying 
relations between a function of the digits and another function of the number itself. 
 
mth powers where permutations of the digits are also mth powers 
 
For m = 2 
 
144 = 122, 441 = 212, 169 = 132, 196 = 142, 961 = 312, 
1296 = 362, 2916 = 542, 9216 = 962, 9261 = 213, 1089 = 332, 9801 = 992. 
1024 =322  = 210, 2401 = 492 = 74, 4761= 692, 1764= 422, 1936 = 442, 1369 = 372 

1782  = 31684, 1912 = 36481, 1962 =38416  =144, 2092  = 43681. 
 
For m = 3 
 
125= 53, 512 = 83 ,  3313 = 36264691, 4063 = 66923416. 
 
For m = 4 
 
256 = 44, 625 = 54. 
 
Open problem: Are there numbers m and n such that the digits of mk are a permutation 
of the digits of nk for all k > 1? 
 

Section 6 
 

The Largest and Smallest mth Power Whose Digit Sum/Product Is Its’ 
mth Root 

 
Introduction: While studying the Smarandache additive square sequence [7] (sequence 
of squares in which the digits also sum to a square), a problem occurred to me. Are there 
perfect squares whose digit sum is the same as the square root? If so, then there must be a 
smallest and a largest such number. A similar question can be asked for higher powers. In 
this section that question is examined. 
 
 We will refer to numbers that are perfect powers of the sum of their digits Smarandache 
Anurag numbers. That such numbers exist can be seen from 92  = 81, and the sum of the 
digits of 81 = 9.  For purposes of this analysis, we will consider one to be a trivial 
solution and ignore it. We will show that 81 is the only nontrivial perfect square with this 
property and we will call it the Smarandache Shikha number for two. By default, 81 is the 
largest perfect square whose digits sum to the square root. It is also the smallest such 
number, so it will also be the Smarandache Anirudh number for 2. 
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 We will now prove that 81 is the only Smarandache Anurag number. As there is no 
perfect square number with this property smaller than 1296 = 362, and 36 being the 
largest possible sum of a 4 digit number it is evident that 81 is the only such perfect 
square. 
 
 Moving on to the cubes, we have   
 
83 = 512  = (5+ 1 + 2)3, 173  = 4913 = ( 4 +9+1+3)3 , 183 = 5832 = ( 5 + 8 + 3 + 2)3,  
263 = 17576 = (1 + 7 + 5 + 7 + 6)3 and 273 = 19683 = ( 1 + 9 + 6 + 8 + 3 )3.  
 
 As 453 = 91125  (a five digit number) and 45 is the largest possible sum of a 5-digit 
number, it is evident that 19683 is the largest cube with this property and is the 
Smarandache Shikha number for 3. Let the smallest such number (8) be called the 
Smarandache Anirudh number for 3. 
 
 Considering the fourth powers we have  
 
74 =2401 = (2 + 4 + 1)4,  224 = 234256, 254 =390625, 284 = 614656,  and 
364 = 1679616. 
 
There is no number between 364 and 724 with 724 = 26873856  (an eight digit number). 
Since 72 is the largest possible sum of an 8- digit number, 364 = 1679616 is the 
Smarandache Shikha number for 4 and 7 is the Smarandache Anirudh number for 4. 
 
 Considering the fifth powers we have  
 
285 =17210368, 355 = 52521875, 365 = 60466176, and 465 = 205962976.   
 
It is to be noted that only numbers with final sum of digits 1, 8 or 9 qualify to be 
Smarandache Anurag numbers for five. 
 
Conjecture: For every m > 2, there exists at least two Smarandache Anurag numbers. In 
other words, the Smarandache Shikha and Smarandache Anirudh numbers are distinct.  
 
Conjecture: The total number of Smarandache Anurag numbers for the mth powers are 
more that that for the (m+1)th power. 
 
Definition: A number (where no digit is zero) divisible by the product of its’ digits is 
called a Smarandache Meenakshi Number.  The sequence obtained by applying this 
property is called the Smarandache Meenakshi Sequence.  
 
The first few terms are 
 
1, 2, . . . ,9, 12, 15, 24, 36, . . .  
 
Let Pd(n) denote the product of the digits of N. With this notation, we have 
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Pd(36) = 18, Pd(144) = 9 
2916 = 542. Pd(2916) = 2*9*1*6 = 108, 2916/108 = 27 
248832 = 125, Pd(248832) = 3072 = 248832/3072 = 81 
429981696 = 1446 , Pd(429981696) = 1679616 ,    429981696/1679616  = 256.  
 
Proposition: There are infinitely many terms in the Smarandache Meenakshi Sequence. 
 
Proof: 
Let N = (10n –1)/9. It is clear that Pd(N) = 1*1 . . . *1 = 1 and is an element of the 
Smarandache Meenakshi Sequence. These numbers will be considered trivial solutions. 
 
Definition: The following will be considered semi-trivial elements of the Smarandache 
Meenakshi Sequence. 
 
12, 112, 1112, 11112, . . .  
15, 115, 1115, 11115, . . .  
 
Additional sequences are 
 
1113, 1111113, 1111111113, . . .  
 
where Tn = 10 * (103n – 1)/9 + 3, 
 
1111117, 1111111111117, 1111111111111111117, . . .  
 
where Tn = 10 * (106n – 1)/9 + 7. 
 
A proof that 7 divides each element of the last sequence is given in [7]. All other terms of 
the Smarandache Meenakshi Sequence will be considered non-trivial. 
 
Conjecture: There are infinitely many non-trivial terms in the Smarandache Meenakshi 
Sequence. 
 
Open problem: Is there any mth power whose mth root equals the product of its’ digits? 
In other words, are there solutions to the equation [Pd(N)]m  = N ? 
 
Note: If N is a solution to [Pd(N)]m  = N  then  it is evident that N takes the canonical 
form , N = 2a *3b *5c *7d, where  a, b , c , d are non negative integers. 
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Section 7 
 

A Conjecture on d(N), the Divisor Function Itself As A Divisor with 
Required Justification 

 
Introduction: The number of divisors of a natural number varies quite irregularly as N 
increases. It is known that d(N) < 2N1/2, but there is no definite relationship as d(N) 
depends on the indices of the canonical form rather than the value of N. In this section, 
the condition where d(N) divides N is considered. 
 
Definition: N is a Smarandache beautiful number if d(N) divides N. If d(N) divides N, 
then I = N/d(N) is the Index of Beauty of N.  
 
Conjecture: For every number I, there is a number N such that I is the index of beauty of 
N. 
 
The conjecture will be established for several cases. 
 
Theorem: If p is prime, then there is a number N such that p = N/d(N). 
 
Proof: 
For I = 2, we have N = 8, d(N) = 4, N/d(N) = 2 = I. 
For I = 3, we have N = 9, d(N) = 3, N/d(N) = 3 = I. 
For I = p ≥ 5 a prime, choose N = 12p = 223p. Then, d(N) = 12, N/d(N) = p = I. 
 
(N = 8p could also have been used when p > 2.) 
 
Theorem:  If I is the index of beauty of M and if 
 
I = n1 * n2 * . . . nr   
 
is the Smarandache factor partition (a breakup of I as the product of its divisors), then 
 
J = p1

(n1-1) * p2
(n2-1) * pr

(nr-1) is the index of beauty of M*J when (M,J) = 1. 
 
Proof: Let N = M*J (1), then d(N) = d(M) * d(J) as (M,J) = 1. 
d(N) = d(M) *  n1 * n2 * . . . nr  
d(N) = d(M) * I 
d(N) = M  (2), as I is the index of beauty for M. From (1) and (2) we get N/d(N) = J. 
 
Therefore, J is the index of beauty of M*J. 
 
Corollary: If I is the index of beauty of M then pI-1 is the index of beauty for M*pI-1 if 
(M,p) = 1. 
 
The following results provide the motivation for this conjecture.  
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Definition: For convenience we use the symbol p[r] for p1 * p2 * p3 * p4, the product of 
four primes.  
 
 When examining the contents of the following table, this list of points should be kept in 
mind.  
 

a) All p’s and q’s are primes. 
b) If N = M * pr then (M,p) = 1. 
c) If N = M * p[r], then (M, p[r]) = 1.  

 
S.N. I N d(N) 

1 p2 24p2 , 18p2, 9p2 24, 18, 9 

2 p3 36p3 36 

3 p4 40p4, 60p4 40,  60 

4 p5 72p5 72 

5 p6 84p6 84 

6 p7 96p7 , 80p7 96 , 80 

7 p8 108p8 108 

8 p9 180p9 180 

9 p10 132p10 132 

10 p11 240p11 240 

11 p[1] 8p, 12p 8, 12 

12 p1p2 = p[2] 36 p[2] 36 

13 p[3] 96 p[3] 96 

14 p[4] 2532 p[4] 2532 

15 p[5] 26 7 p[5] 26 7 

16 p[7] 29 5 p[7] 29 5 

17 p[8] 211 3 p[8] 211 3 

18 p[11] 215p[11],    212.13 p[11]  ,  213 7 p[11] 215 ,    212.13 ,  213 .7 

19 p[12] 214 3*5 p[12] 214 3*5 

20 p[13] 214 5* 32 p[13] 214 5* 32 

21 p[16] 219 5 p[16] 219 5 

22 p[20] 221 11 p[20] 221 11 

23 p[23] 22452 3 p[23] 22452 3 

24 p[p’-2] 2p’-1*p’*p[p’-2] 2p’-1*p’ 
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25 p[p2-2 ] 2p2  -1 p2 3 p[p2-2] 2p2  -1 p2 3 

26 p[p3-3] 2p3 – 1 * p3 p[p3-3] 2p3 – 1 * p3 

27 p[p4-2] 2p4 – 1 p4 5 p[p4-2] 2p4 – 1 p4 5 

28 p[2p-3] 22p-1 *p* p[2p-3] 22p-1 *p 

    
In the rows of the preceding table, I is the index of beauty for the corresponding structure 
of N. 
 
Though the conjecture can be established/ verified for a number of canonical forms, the 
proof for the general case will most likely give mathematicians many more sleepless 
nights. Along similar lines, the following conjectures are put forward. 
 
Conjecture:  For every positive integer k there exists a number N such that  
N / S (N) = k, where S(N) is the Smarandache  function. 
 
Examples: 
For k =2 , N = 6 , 8;  for k = 3, N = 12;  for k = 4,  N = 20; for k =5, N = 50.  
 
Conjecture:  For every positive integer k there exists a number N such that  
N /  φ(N) = k.   (Euler's function.) 
 
Conjecture: For every positive integer k, there exists a number N such that  
σ (N) /N = k.  (For k = 2 we have N, a perfect number). 
 

Section 8 
 

Smarandache Fitorial and Supplementary Fitorial Functions 
 
 The Smarandache Fitorial Function, denoted by FI (N) is defined as the product of all the 
φ (N) numbers relatively prime to and less than N. 
 
Examples: 
 
   FI( 6) = 1*5 = 5 ,  FI(7) = 6! = 720, FI( 12) = 1*5*7*11 =385. 
 
The Smarandache Supplementary Fitorial Function, denoted by SFI (N) is defined as the 
product of all the remaining N - φ (N) numbers less than or equal to N which are not 
relatively prime to N. 
 
Examples:   
 

SFI (6) = 2*3*4*6 =  144, SFI (7) = 7,  SFI(11) = 11, 
SFI(12) = 2*3*4*6*8*9*10*12 = 1244160 . 
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Theorem: FI(N) and SFI(N) satisfy the following properties: 
 
1. FI(N) * SFI(N) = N!. 
2. SFI(p)  = p ,  and   FI(p) = (p-1)!  iff p is a prime. 
3. FI(N)  <  (N/2)φ(N) 
 
Proof:    

1. This formula follows from the definition of the functions.  
2. If p is prime, then every number less than p is relatively prime to p. Therefore, 

FI(p) = (p-1)! And SFI(p) = p. If p is not prime, then there is at least one number k 
less than p that is not relatively prime to p. Therefore, FI(p) < (p-1)! and  

      SFI(p) > p. 
3. The sum of the φ(N) numbers relatively prime to N is given by (Nφ(N))/2. 

Therefore, the arithmetic mean (A. M.) of the numbers in the sum is N/2. Their 
geometric mean is given by 

  
                                      1/φ(N) 

G. M. = {FI(N)} 
 
Using the relationship between these means when the numbers are not all equal 
(A. M. > G. M.), we have 
 
             1/φ(N) 
{FI(N)}            < N/2 
 
and taking both sides to the φ(N) power 
 
                         φ(N) 
{FI(N)} < (N/2)               --------------  (1) 

 
4. N! * (N/2) - φ (N)  < SFI(N)  <  

            (N/2)N - φ (N) *{ 1 + 1/ (N -  φ (N)}N -  φ (N)    -------(A) 

 
Proof:  
We have the sum of the numbers not relatively prime to N,   S2 =  ∑ N  - Nφ (N) /2 

= N(N+1)/2  - Nφ (N) /2. 

Hence the Arithmetic Mean of the numbers relatively prime to N is  

 S2 /( N  - φ (N)) = (N/2)*( 1 + 1/( N  - φ (N) )  ----------- (2). 

Their Geometric Mean is given by  

G2 =  SFI(N) ( N  - φ (N)         -------------- (3). 

From (2) and (3) we have S2  > G2 and finally 
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SFI(N)  <  (N/2) N  -  φ (N)  *{ 1 +  1/  (N -  φ (N)} N -  φ (N)    ------ (4)   

Also by definition we have FI(N)*SFI(N)  = N!, hence SFI(N) =  N! / FI(N) and from (1) 

we get  

N! *   (N/2) - φ (N)  <  SFI(N)       ---------------- (5). 

Combining (4) and (5) we get  (A). 

The following result is a direct consequence of formula (A). 

5.     SFI(N)  <  (N/2) N  -  φ (N)  * e   (where e is base of natural logarithm 2.71828. . .)  

Proposition 1: 

Applying properties (3) and (5) we get the formulas 

      N! = FI(N)*SFI(N)  < (N/2)N *e or   

      N!   < (N/2)N *e     ------ (B). 

Proposition 2:   For large values of   n, SFI(2n)/FI( 2n)  ≈  (π/2)1/2      ------- (C) 

Justification: 

If  N = 2n  then  FI(N) = 1*3*5*7* . . .(2n –3)*(2n –1).  And  

SFI(N) = 2*4*6*.  .  .* (2n –2)*( 2n)  

Then  { SFI(N)/FI(N)}2  =  {2*2*4*4*6*6*8*8.  .  . * (2n –2)* (2n –2)*( 2n)* ( 2n) }/ { 

1*3*3*5*5*7*7.  .  .* . (2n –3)*(2n –3) *(2n –1)*(2n –1)}. 

From the well-known result by John Wallis on the value of π as an infinite product we 

have  

   π/2  = {2*2*4*4*6*6*8*.  .  .}/ {1*3*3*5*5*7*7.  .  .}        ----------- (D) 

and formula (C) is a direct consequence. 

Note: In formula (D), for an approximation close to π/2 the number of terms taken in the 

product in the numerator should be exactly the same as that used in the denominator. 

The following open problems and conjectures are proposed. 

Open Problem-I: For what values of N is, FI(N) < SFI(N)? 

Open Problem-II: For what values of N is, FI(N) > SFI(N)? 

Open Problem-III: If d(n) is the number of divisors, for what values of N is  

d(FI(N)) > d(SFI(N))?  

Open Problem-IV: For what values of N is d(FI(N)) < d(SFI(N))? 

Open Problem-V: For what values of N is σ(FI(N)) < σ(SFI(N))? 
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Open Problem-VI: For what values of N is σ(FI(N))  > σ(SFI(N))? 
Define the sum of the φ (N) relatively prime numbers as A(N)  and that of the remaining  

N - φ (N), numbers as  B(N). 

Then we have  

 A(N) = Nφ (N) /2 

 B(N) = N(N+1)/2  - Nφ (N) /2. 

For example, if N= 12, A(12) = 24 ,  and B(N) = 54 and 

for N = 15  , A(15) = 60 ,  and B(N) = 60. 

Note: A(N) = B(N) , iff   φ (N) = (N+1)/2, provided that N is odd. 

Readers are encouraged to explore this further. 

Open Problem: For what values of N, is it true that A(N))  > B(N))? 

The case where N = 3n is considered below. 

 For N= 3n we get, A(N) =  3n*{3n* ( 1- 1/3)}/2 = 32n-1 

B(N) =  3n*{3n +1}/2  - 32n-1 = {32n + 3n  - 2*32n-1}/2  = {32n-1  +3n}/2  

For n=1  3n  = 32n-1  , for n>1 , 2n-1 > n  and 32n-1 > 3n  , hence  

B(N) < {32n-1 + 32n-1}/2 = 32n-1  = A(N). 

Open Problem: For what values of N is it true that A(N))  < B(N))? 

The case where N=2n is considered below. 

 For N = 2n   we have, A(N) =   2n  { 2n *(  1- ½)}/2 =  22n-2 

and B(N) =  2n{ 2n +1 }/2  - 22n-2  =  22n-2  + 2n-1   =  A(N)  + 2n-1. 

Therefore, we have B(N)  > A(N). 

 
Section 9 

 
Some More Conjectures On Primes and Divisors 

 
 There are an innumerable number of conjectures and unsolved problems in number 
theory based on prime numbers, which have been giving mathematicians sleepless nights 
all over the world for centuries. Here are a few more to add to their troubles: 
 
(1) Every even number can be expressed as the difference of two primes. 
 
(2) Every even number can be expressed as the difference of two consecutive primes. 
i.e. for every m there exists an n such that 2m = pn+1 – pn, where pn is the nth prime. 
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(3) Every number can be expressed as N / d(N) , for some N, where d(N) is the number of 
divisors of N. 
 
If d(N) divides N, we define N / d(N) = I as the index of beauty for N. 
 
Conjecture: For every natural number M there exists a number N such that M is the 
index of beauty for N. In other words M = N/d(N) . 
 
The conjecture is true for primes, which is easily proven. 
 
We have 2 = 12 / d(12) = 12/ 6 , 2 is the index of beauty for 12. 
 
3 = 9 /d(9) = 9 / 3 , 3 is the index of beauty for 9. 
 
For a prime p >3 we have N = 12p, d(N) = 12 and N /d(N) = p .  
 
(N= 8p can also be used). 
 
The conjecture is true for a large number of families of numbers. However the proof of 
the general case is still unsolved. 
 
(4) If p is a prime, then there are infinitely many primes of the form  
 
(A) 2np + 1.  
(B) 2 *an p + 1. 
 
(5) It is a well-known fact that one can have arbitrarily large numbers of consecutive 
composite numbers. For example for any value of r: 
 
 (r+1)! +2, (r+1)! +3, (r+1)! +4, . . .(r+1)! + r-1 , (r+1)! + r  
 
is a list of r consecutive composite numbers. 
 
But this is not necessarily the smallest set of such numbers. Let us consider the smallest 
set of r consecutive composite numbers for the first few values of r. 

 
r Smallest set of composite 

numbers 
R/first composite number 

1 1 1/1 
2 8,9 2/8 
3 14, 15, 16 3/14 
4 24, 25, 26, 27 4/24 
5 24, 25, 26, 27, 28 5/24 
6 90, 91, 92, 93, 94, 95 6/90 
7 90, 91, 92, 93, 94, 95, 96 7/90 
8 114, 115, … 121 8/114 
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Similarly for 9, 10, 11, 12, 13 the first of the composite numbers is 114. 
 
Conjecture: The sum of the ratios in the third column is finite and > e. 
 
(6) Given a number  N, carry out the following steps to get a number N1. 
 
   N – pr1   =  N1  , where   pr1    <   N  <  pr1 +1    , pr1   is the  r1th   prime. 
 
Repeat the previous step to get N2. 
 
N1  - pr2   =  N2,       pr2  <  N1   <  pr2+1 . 
 
Repeat these steps until the result is Nk  =  0  or  1. 
 
The conjecture is   
 
(a) For all N,  k  <  log2 log2 N.    
 
(b) There exists a constant C such that k < C.   
 
Open Problem: If (b) is true, find the value of C. 
 

Section 10 
 

Smarandache Reciprocal Function and An Elementary Inequality 
 
Definition: The Smarandache Reciprocal Function Sc(n) is defined in the following way: 
 
Sc(n) = x, where x + 1 does not divide n! and for every y < x, y | n!. 
 
Theorem: If Sc(n) = x and n ≠ 3, then x+1 is the smallest prime greater than n. 
 
Proof: It is obvious that n! is divisible by all numbers 1, 2, 3, …, n. To prove the 
theorem, it is necessary to show that n! is also divisible by n+1, n+2, . . . , n+m, where 
n+m+1 is the smallest prime greater than n.  
 
 Let r be any of the composite numbers from n+1 through n+m. Since r is not prime, it 
must be possible to factor it into two factors, each of which is ≥ 2. Let r = p*q be that 
factorization. If one of the factors (say q), is ≥ n, then r = p*q ≥ 2n. But, according to 
Bertrand’s postulate, there must be a prime between n and 2n, which yields a 
contradiction of the assumption that all of the numbers n+1 through n+m are composite. 
Therefore, each of the factors must be less than n.  
 
 There are two possibilities: 
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Case 1: p ≠ q. In this case, each factor is less than n so p*q = r divides n!. 
 
Case 2: p = q where they are prime. This means that r = p2 and there are three subcases. 
 
Subcase 1: p = 2. Then r = 4 and n must be 3. Since 4 does not divide 3!, we have the 
special case eliminated in the statement of the theorem. 
 
Subcase 2: p = 3. Then r = 9 and n must be 7 or 8 and 9 divides both of these numbers. 
 
Subcase 3: p ≥ 5. Then r = p2 > 4p => 4p < r < 2n => 2p < n. Therefore, both p and 2p are 
less than n, so p2 divides n!. 
 
Remark: n! is divisible by all composite numbers between n and 2n. 
 
Note: It is well known that S(n) ≤ n for S(n) the Smarandache function. 
 
 From the previous theorem, it is possible to deduce the following inequality.  
 
If pr is the rth prime and pr ≤ n < pr+1, then S(n) ≤ pr, which is a slight improvement on 
S(n) ≤ n.  
 
 Writing out the sequence 
 
S(pr) = pr, S(pr+1) < pr , S(pr+2) < pr, . . . , S(pr+1 - 1) < pr, S S(pr+1) = pr+1. 
 
 Creating the sum for all number pr ≤ n < pr+1, one gets 
             pr+1 – pr -1 

                  Σ     S(pr + t)  ≤ (pr+1 – pr)pr 
                    t=0 
 
 Summing up for all the numbers up to the sth prime, where p0 = 1, we get 
  ps                 s 
 Σ   S(k)  ≤  Σ (pr+1 – pr) pr    (1) 
k=1                  r=0 
 
Smarandache (Inferior) Prime Part Sequence 

 
For any positive real number n, one can define pp(n) as the largest prime number less than 
or equal to n. In [9] Prof. Krassimir T. Atanassov proves that the value of the nth partial 
sum of the sequence 
          n 
Xn =  Σ pp(k)  
        k=1 
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is given by 
 
         π(n) 
Xn =  Σ (pk – pk-1)*pk-1 + (n - pπ(n) + 1)*pπ(n)   (2) 
        k=2 
 
From (1) and (2), we have 
 
 
    n 
   Σ S(k) ≤ Xn. 
  k=1 
 

Section 11 
 

Smarandache Maximum Reciprocal Representation Function 
 
Definition: The Smarandache Maximum Reciprocal Representation Function (SMRR) is 
defined as follows: 
 
fSMRR(n) = t if 
 
   t                         t+1   

 ∑ 1/r   ≤ n ≤  ∑ 1/r 
 r=1                 r=1   
 
Definition: The Smarandache Maximum Reciprocal Representation Sequence (SMRRS) 
is defined as Tn = fSMRR(n) 
 
fSMRR(1) = 1 
fSMRR(2) = 3, (1 + 1/2 + 1/3 < 2 < 1 + 1/2 + 1/3 + ¼) 
fSMRR(3) = 10          10                   11 
                               ∑ 1/r  ≤  3  ≤  ∑ 1/r 
                              r=1                  r=1 
 
The sequence of numbers is 1, 3, 10 , … 
 
Note: The harmonic series  ∑ 1/n satisfies the inequality 
 
log(n+1) < ∑ 1/n < log n + 1  (1). 
 
This inequality can be derived in the following way: 
 
ex > 1+x , x > 0,      (1 + 1/n)(1+1/n) > 1, n > 0,  
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which gives  
 
1/(r+1) < log(1 + 1/r) < 1/r. 
 
Summing up for r = 1 to n+1 and applying some algebraic rearrangement yields (1).  
 
Applying (1), we get the following result for the SMRR function. 
 
 If SMRR(n) = m, then [log(m)] ≈ n-1, where [x ] is the integer value of x. 
 
Conjectures: 

1) Every positive integer can be expressed as the sum of the reciprocal of a finite 
number of distinct natural numbers in infinitely many ways. 

2) Every natural number can be expressed as the sum of the reciprocals of a set of 
natural numbers in arithmetic progression. 

3) Let  ∑ 1/r ≤ n ≤ 1/(r+1)  where ∑ 1/r is the sum of the reciprocals of the first r 
natural numbers. Let 

 
S1 = ∑ 1/r 
S2 = S1 + 1/(r + k1) such that S2 + 1/(r + k1 + 1) > n ≥ S2. 
S3 = S2 + 1/(r+k2) such that S3 + 1/(r+k2 + 1) > n ≥ S3. 
And so on. 
 
Then, there exists a finite m such that  
 
Sm+1 + 1/(r + km) = n. 
 
Remarks: 

a) There are infinitely many disjoint sets of natural numbers the sum of whose 
reciprocals is unity. 

b) Among the sets mentioned in (a), there are sets which can be organized in an 
order such that the largest element of any set is smaller than the smallest element 
of the next set. 

  
Section 12 

 
Smarandache Determinant Sequences 

 
 Definition: The Smarandache Cyclic Determinant Natural Sequence is defined as the 
determinants of the following sequence of matrices 
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  1           1    2            1   2   3                   1    2    3    4       and so on.  
      
               2    1            2   3   1                   2    3    4     1 
 
                                   3   1   2                   3    4     1    2 
 
                                                                  4     1    2    3 
 
The determinants of the first four matrices are 
 
1, -3, -18, and 160. 
 
These initial values suggest the following general formula 
 
Tn = (-1)[n/2] {(n+1)/2} * nn-1  where [x] is the integer part of x.  
 
 This formula will be verified for the case where n = 5, which will demonstrate how the 
general case is handled.  
 
                            1    2    3    4    5 
                            2    3    4    5    1 
            T5   =       3    4    5    1    2 
                            4    5    1    2    3 
                            5    1    2    3    4 
  
By carrying out the following elementary row operations 
 

a) R1 = sum of all the rows. 
b) Taking 15 from the first row. 
c) Replacing Ck, the kth column by Ck – C1, we have 
 

        1   0   0   0   0                  1   2   3  -1 
        2   1   2   3  -1                  1   2  -2  -1  
   =15  3   1   2  -2  –1          = 15    1  -3  -2  -1 
        4   1  -3  -2  -1                 -4  -3  -2  -1 
        5  -4  -3  -2  -1 
  
R1 – R2, R3 – R2, R4 – R2,  
 
             0   0   5   0 
       15    1   2  -2  -1   = 1875, the value suggested by the  
             0  -5   0   0                formula. 
            -5  -5   0   0 
 
Although the proof of the general case is clumsy, it is based on similar lines.  
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Generalization: 
This sequence can be further generalized by using an arithmetic progression with a the 
first term and common difference d. We will define the Smarandache Cyclic Arithmetic 
determinant sequence in the following way: 
 
  a           a      a+d           a         a+d    a + 2d 
             a+d     a             a+d    a+2d      a            and so on.  
                                     a+2d      a        a+d 
   
 
 
Conjecture: 
 
Tn = (-1)[n/2] * Sn * dn-1 * nn-2 = (-1)[n/2] * {a + (n-1)d}*(1/2)*(nd)n-1 
 
where Sn is the sum of the first n terms of the arithmetic progression. 
 
Open problem: Develop a formula for the sum of the first n terms of this sequence. 
 
Definition: The Smarandache bisymmetric determinant natural sequence is the 
determinants of the following sequence of matrices. 
 
  1         1    2                   1    2    3             1    2    3    4    
             2    1                   2    3    2             2    3    4    3  
                                        3    2    1             3    4    3    2 
                                                                   4    3    2    1 
 
where the matrices are symmetric across both main diagonals.  
 
The determinants of these matrices are 
 
1, -2, -12, 40, . . .  
 
The values of these first few terms suggests that the general formula is 
 
Tn = (-1)[n/2] (n(n+1))*2n-3 
 
We will verify that this formula also holds for n =5 and the general case can be dealt with 
using a similar sequence of operations. 
 
                                              1    2     3    4    5 
                                              2    3     4    5    4 
                             T5  =         3    4     5    4    3 
                                              4    5     4    3    2 
                                              5    4     3    2    1 
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Carrying out the following sequence of row operations 
 

a) R1 = sum of all the rows. 
b) Take 15 from the first row to get 

 
                     1     2     3     2 
                     1     2     1     0 
           15      1     0    -1    -2 
                    -1   -2    -3    -4      
 
R1 = R1 + R4 gives 
 
                      0     0     0    -2 
                      1     2     1      0 
            15      1     0    -1    -2     = 120, which is the value predicted from the suggested 
                     -1   -2    -3    -4                  general formula. 
 
The proof of the general case is based on similar operations. 
 
Generalization: This sequence of determinants can be also be generalized using the 
elements of an arithmetic progression. 
 
  a          a     a+d             a         a+d       a+2d 
             a+d   a              a+d      a+2d       a+d 
                                     a+2d     a+d          a 
 
Conjecture: The general term of this sequence of determinants is given by 
 
Tn = (-1)[n/2] * (a + (n+1)d)*2n-3dn-1. 
 

Section 13 
 

Expansion of xn in Smarandache Terms of Permutations 
 
Definition: Given the following expansion of xn  
 
xn  = b(n,1)x + b(n,2)x(x-1) + . . . + b(n,n)

xPn  
 
we define b(n,r)x(x-1)(x-2) . . .(x-r+1)(x-r) as the rth Smarandache term in the expansion.  
 
 In this section, we will examine some of the properties of the coefficients and encounter 
some fascinating coincidences. 
 
We will start by examining the values of some terms for specific values of x.  
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For x = 1, b(n,1) = 1. 
 
For x = 2, b(n,2) = (2n – 2)/2. 
 
For x = 3, b(n,3) = [3n – 3 – 6(2n – 2)/2]/6 
 
                         = (1/3!)*(1*3n – 3*2n + 3*1n – 1*0n). 
 
For x = 4, b(n,4) = (1/4!)*[1*4n – 4*3n + 6*2n – 4*1n + 1*0n]. 
 
These initial values suggest the following theorem. 
 
Theorem:   
                             r 
       b(n,r) = (1/r!) ∑ (-1)r-k * rCk * kn = a(n,r). 
                           k=1 
  
First proof:  
The first step is to prove the proposition 
 
                   b(n+1,r) =  b(n,r-1) + r*b(n,r). 
 
Starting with 
 
xn = b(n,1) x  +  b(n,2) x(x-1)  + b(n,3) x(x-1)(x-2) +. . .+ b(n,n) xPn 

 
replacing x with r, we have 
 
rn = b(n,1) r  +  b(n,2) r(r-1)  + b(n,3) r(r-1)(r-2) +. . .+ b(n,n) rPn .    
 
Multiplying both sides by r 
 
rn+1 = b(n,1) r*r  +  b(n,2) r*r(r-1)  + b(n,3) r*r(r-1)(r-2) +. . .+ b(n,r) r* rPr  + 
 
terms equal to zero. 
 
Using slightly different notation, the expression is equivalent to 
 
rn+1 = b(n,1) r* rP1  +  b(n,2) r * rP2  + b(n,3) r * rP3 +. . .+ b(n,r) r* rPr. 
 
Using the identity r*rPk+1 + k* rPk, the expression can be rewritten as 
 
rn+1 = b(n,1) {rP2 + 1 * rP1} +  b(n,2) {rP3  + 2 * rP2} +. . .+  
 
          b(n,r) { rPr + r *rPr-1 } 
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rn+1 = b(n,1)
 rP1 + { b(n,1) + 2 * b(n,2)} rP2 + { b(n,2) + 3 * b(n,3)} rP3 + . . . + 

 
 { b(n,r-1) + r * b(n,r)} rPr         
 
rn+1  = b(n+1,1) rP1  +  b(n+1,2)  * rP2  + b(n+1,3) * rP3 +. . .+ b(n+1,r)  * rPr . 
 
The coefficients of rPt (t < r) are independent of r, so they can be equated separately, 
giving 
 
          b(n+1,r)  = b(n,r-1)  + r * b(n,r) .  
 
We will proceed by induction. Let 
 
                                  r 
    b(n,r)  =     (1/r!)    ∑ (-1)r-k * rCk *kn 
         k=0 
 
                 r-1 
  b(n,r-1)   =    (1/(r-1)!)  ∑ (-1)r-1-k * r-1Ck * kn 
              k=0 
 
be true as the inductive hypothesis. Then, the sum b(n,r-1) + r*b(n,r) equals 
 
                 r-1                                                   r 
 (1/(r-1)!)  ∑ (-1)r-1-k * r-1Ck * kn + r * (1/r!) ∑ (-1)r-k * rCk *kn 
     k=0                                                k=0 
 
    r-1     
=     ((-1)r-1/r!) [ ∑ (-1)-k r { r-1Ck - rCk}kn ]  + rn+1/r! 
   k=0 
 
     r-1     
=     ((-1)r-1/r!) [  ∑ (-1)-k { -k * rCk}kn ]  + rn+1/r! 
    k=0 
 
    r-1     
 = (1/r!)  ∑ (-1)r-k  rCk kn+1 . 
  k=0 
 
This gives us 
 
             r-1     
     b(n+1,r) =  (1/r!)  ∑ (-1)r-k  rCk kn+1  
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                  k=0 
 
b(n+1,r) also takes the same  form. Hence by induction, the proof is complete. 
 
Second proof: This proof is based on a combinatorial approach.  
 
 If n objects, where no two are alike, are to be distributed in x boxes, no two alike, and 
each box can contain an arbitrary number of objects, the number of ways this can be done 
is xn, since there are n alternatives for disposals of the first object, n alternatives for the 
disposal of the second, and so on. 
 
 Alternately, let us use a different approach. Consider the number of distributions in 
which exactly n objects are to be placed in a given set of r boxes (the rest are empty). Let 
the number of distributions be represented by f(n,r). 
 
 We derive a formula for f(n,r) by  using the inclusion/exclusion principle. The method is 
illustrated by the computation of f(n,5). Consider the total number of arrangements, 5n of 
n objects in 5 boxes. Say that such an arrangement has property 'a'. In case the first box is 
empty, property 'b' in case the second box is empty, and similar property 'c', 'd', and 'e' for 
the other three boxes respectively. To find the number of distributions with no box 
empty, we simply count the number of distributions having none of the properties 'a', 'b', 
'c', . . .etc. 
 
 We can apply the formula 
 
N - rC1.N(a)  + rC2.N(a,b)  - rC3.N(a,b,c)  +. . . 
 
 Here, N = 5n is the total number of distributions. By N(a), we mean the number of 
distributions with the first box empty, so N(a) = 4n. Similarly, N(a,b) is the number of 
distributions where the first two boxes are empty. However, this is the same as the 
number of distributions into 3 boxes and N(a,b) = 3n. Thus, we can write  
 
N = 5n , N(a) = 4n , N(a,b) = 3n  etc. N(a,b,c,d,e) = 0. 
 
 Applying the previous formula, we get 
 
f(n,5) = 5n - 5C1.4n +  5C2.3n - 5C3.2n +  5C4.1n - 5C5.0n . 
 
 By generalizing this and replacing 5 with r, we have 
 
f(n,r) = rn - rC1 *(r-1)n + rC2 *(r-2)n -  rC3 *(r-3)n + . . . 
 
     r  
f(n,r) =   ∑  (-1)k  rCk (r-k)n  
  k=0  
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f(n,r) = r! * a(n,r)    , from theorem (3.1) of ref. [12]. 
 
 Now, these r boxes out of the given x boxes can be chosen in xCr ways. Hence, the total 
number of ways in which n distinct objects can be distributed into x distinct boxes, 
occupying exactly r of them (with x-r boxes empty), defined as d(n,r/x), is given by 
 
d(n,r/x) = r! * a(n,r) xCr 
 
d(n,r/x) = a<n,r) * xPr. 
 
 Summing up all the cases for r=0 to r=x, the total number of ways in which n distinct 
objects can be distributed in x distinct boxes is given by 
 
  x    x 
 ∑ d(n,r/x))  =   ∑ xPr a(n,r)    
           r=0  r=0 
 
Equating the two results obtained by the two different approaches, we get 
 
                         n 
    xn =   ∑ xPr a(n,r). 
            r=0 
 
Remarks: If n distinct objects are to be distributed in x distinct boxes with no box empty, 
then it is necessary for n < x. For example, 5 objects cannot be places in 7 boxes where 
no box is empty. Therefore, we get the following result 
 
  f(n,r) = 0, for n < k. 
 
        r  
  f(n,r) =    ∑  (-1)k rCk (r-k)n  = 0  if  n ≥ r. 
     k=0  
 
 Further generalization: 
1) The expansion of xn can also be expressed in the form 
 
xn = g(n/k,1) x + g(n/k,2) x(x-k) + g(n/k,3) x(x-k)(x-2k) +. . .+  
 
g(n/k,n)  x(x-k)(x- 2k). . .(x-(n-1)k)(x -nk+ k) 
 
g(n/k,r)  =  b(n,r)  = a(n,r)     
 
One can also look for interesting patterns when k = 2, 3, . . .  
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 We can also define g(n/k,r) x(x-k)(x-2k)(x-(n-1)k)(x-rk+k) as the rth Smarandache term of 
the kth kind. 
 
2) Another generalization could be 
 
xT(n) = c(n/k,1) (x-k) + c(n/k,2) (x-k)(x2-k) + c(n/k,3) (x-k)(x2-k)(x3-k) +. . . 
       + c(n/k,n) (x-k) (x2-k)(x3-k)...( xn - k)  
 
where T(n) = n(n+1)/2 is the nth triangular number. 
For k=1, if we denote c(n/k,r) = c<n,r), for simplicity we get  
 
xT(n) = c(n,1) (x-1) + c(n,2) (x-1)(x2-1) + c(n,3) (x-1)(x2-1)(x3-1) +. . . 
        + c(n,n) (x-1) (x2-1)(x3-1)...( xn - 1)  
 
We can define  
 
c(n/k,r) *(x-k) (x2-k)(x3-k)...( xr - k)   
 
as the rth Smarandache factorial term of the kth kind in the expansion of xn!. One can also 
search for interesting patterns in the coefficients c(n/k,r). 
 

Section 14 
  

Miscellaneous Results and Theorems on Smarandache Terms and 
Factor Partitions 

 
 In section 8, b(n,r) x(x-1)(x-2). . .(x-r+1)(x-r) was defined as the rth Smarandache term in 
the expansion of 
 
xn = b(n,1) x + b(n,2) x(x-1) + b(n,3) x(x-1)(x-2) +. . .+ b(n,n) xPn. 
 
In this section, we present some more results depicting how closely the coefficients of the 
Smarandache term and SFPs are related. 
 
 In the previous section, the formula 
 
                                    n 
    xn =   ∑ xPr a(n,r) 
            r=0 
 
was proven. This leads to the beautiful formula 
 
  x   x       k 
  ∑ kn    =      ∑     ∑   kPr a(n,r). 
 k=1             k=1   r=1 
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Writing this in matrix notation where x = 4 = n, we have 
 
1P1     0       0      0               1       1       1       1                          11        12      13     14 
 
2P1     2P2    0      0               0       1       3       7                          21        22      23     24   
                                   *                                               = 
 3P1     3P2   3P3   0               0       0       1       6                          31        32      33     34   
 
4P1     4P2   4P3   4P4             0       0       0       1                          41        42      43     44   
 
 
In general,  
 
P  * A’   = Q where P  =    iPj    . 
                    
                                            n x n 
 
 
A =     a(I,j)     and  Q =      ij 
           nxn                        nxn            
 
(A’ is the transpose of A). 
 
Consider the expansion of xn again 
 
xn = b(n,1) x + b(n,2) x(x-1) + b(n,3) x(x-1)(x-2) +. . .+ b(n,n) xPn. 
 
For x = 3, we have 
 
x3 = b(3,1) x + b(3,2) x(x-1) + b(3,3) x(x-1)(x-2). 
 
Comparing the coefficients of the powers of x on both sides, we have 
 
b(3,1) - b(3,2)

  +  2 b(3,3)  = 0 
 
            b(3,2)

  -  3 b(3,3)  = 0 
        
                            b(3,3)  = 1. 
 
Expressing this in matrix form,  
 
1       -1       2                      b(3,1)                          0 
    
0        1      -3             *       b(3,2)           =             0 
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0        0        1                      b(3,3)                          1 
 
 
C3 * A3 = B3 
 
A3  =  C3

-1   * B3 
 
 
 
 
 
 
 
                             1      -1       2                          1        1       1 
 
  C3

-1    =              0        1      -3         =              0        1       3 
 
                             0        0       1                          0        0       1 
 
 
 
                             1        0       0 
 
  (C3

-1)’    =          1        1        0          . 
 
                             1        3        1 
 
 
Similarly, it has been observed that 
 
 
                             1        0       0        0 
 
                             1        1        0       0     
  (C4

-1)’    =                                                  .   
                             1        3        1       0 
 
                             1        7        6       1  
 
 
This observation leads to a theorem. 
 
Theorem: 
In the expansion of xn as 
 
xn = b(n,1) x + b(n,2) x(x-1) + b(n,3) x(x-1)(x-2) +. . .+ b(n,n) xPn   
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if Cn is the coefficient matrix of equations obtained by equating the coefficient of powers 
of x on both sides, then 
 
                   (Cn

1)’  =    a(I,j)     = star matrix of order n. 
       
                                   n x n 
 
Proof: It is clear that Cpq, the element of the pth row and qth column of Cn is the 
coefficient of xp in xPq. Also, Cpq is independent of n. The coefficient of xp on the RHS is 
the coefficient of  
             n 
   xp  =  ∑  b(n,q) Cpq . 
           q=1 
 
The coefficient of xp  = 1 if p = n and is zero if p ≠ n. 
 
In matrix notation 
 
 
 
                                                n 
Coefficient of  xp   =              ∑  b(n,q) Cpq  
                                             q=1 
 
 
                                               n 
                      =               ∑  b(n,q) C’qp 
                                              q=1 
 
 
                          = inp  where inp  = 1 , if  n = p and  inp = 0, if  n ≠ p. 
 
                          =  In (identity matrix of order n.) 
 
 
                                                     ‘ 
                      b(n,q)            Cp,q           =    In 
 
 
 
                                                       ‘ 
                       a(n,q)           Cp,q             =  In    as b(n,q) = a(n,q). 
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                    An * Cn’ = In 
 
                    An = In    Cn’  -1   
          
          An = In    Cn  ’  -1   
 
This completes the proof of the theorem. 
 
Theorem: If Ck,n is the coefficient of xk in the expansion of  xPn, then 
          n 
          ∑  F(1#k) Ck,n  = 1 
         k=1 
 
Proof: The following property of the Smarandache Star Triangle (lower triangle of the 
matrix array a(I,j)) can be established using the result of section 8 of chapter 1. 
 
                     n 
   F’(1#n) =  ∑ a(n,m)  = Bn . 
                   m=1 
  
In matrix notation for n = 4, it can be expressed in the form 
 
1     1     1     1                  1      1      1      1                    
 
                                         0      1      3      7 
                                                                           =         B1        B2       B3        B4  . 
                                         0      0      1      6 
 
                                         0      0      0      1 
 
In general, 
 
          1            *            a(I,j)   ‘    =          Bi 
                                            
       1 x n                     (cn

-1)’                  1 x n 
                                    n x n 
 
 
          Bi          *                         =            1        . 
                                            
       1 x n                     (cn)                    1 x n 
                                    n x n 
 
In Cn,n , Cp,q  the pth row and qth column is the coefficient of  xp  in xPq. Hence we have 
 
        n                                   n 
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  ∑  F(1#k) Ck,n  = 1  = ∑  Bk Ck,n. 
 k=1                              k=1 

 
Theorem: 
        n                                               n 

 Σ  F(1#(k+1)) Ck,n  = n + 1  = ∑  Bk+1 Ck, 
k=1                                           k=1 

 
Proof: It has already been established that 
 
              n 
  Bn+1 = ∑  (m+1)  a(n,m). 
           m=1       
 
In matrix notation 
 
   j+1     *    a(I,j)   ‘    =     Bj+1   . 
  1 x n         n x n             1 x n 
                    (cn

-1) 
 
 
   j+1    =     Bj+1       =              . 
  1 x n         1 x n           n x n 
                                        (cn)    
 
          n 
          ∑  Bk+1 Ck,n  =  n + 1. 
         k=1 
 
There exists ample scope for deriving many more results. 
 

Section 15 
 

Smarandache-Murthy’s Figures of Periodic Symmetry of Rotation 
Specific to an Angle 

 
Preliminary: Start with a given line segment. If we rotate the line segment about one 
end, starting with an angle x , and continue to do so with angles which are multiples of  
the initial angle, each time alternating the end about which the rotation is executed , we 
get fascinating figures  that are unique to  the value of  x.  In this section, we analyze 
these figures. 
 
The figures in this section are constructed by applying the following sequence of steps. 
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1) Begin with a line segment A0B0, and select an angle x = 360/n, where n is an 
integer.  

2) From the end B0, attach a new segment B0A1 of the same length by rotating x 
degrees in the clockwise direction. The points Bi and Aj alternate.  

3) Repeat step 2 by rotating additional segments through the angles 2x, 3x, 4x, . . .  
 
For example, start with the segment  
 
 
  A0              B0 
 
and use x = 360/4 = 900. 
  
                         A1 
 
 
 
  A0              B0 
 
 
 
 
 
 
                         B1 
                           
 
 
 
                         A1 
 
 
 
  A0              B0 
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              B1 
                                       A2         
 
 
 
                         A1 
 
 
 
  A0              B0 
 
 
 
 
 
                    B2 
 
              B1 
                                       A2         
 
 
 
                         A1 
 
 
 
  A0              B0 
 
 
                    B2 
 
              B1 
                                       A2         
 
 
 
                A3      A1 
 
 
 
  A0              B0 
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                    B2 
 
              B1 
                                       A2         
 
 
 
                A3      A1 
 
 
                           B3 
  A0              B0 
 
 
 
 
 
 
 
                    B2 
 
              B1 
                                       A2         
 
 
 
                A3      A1 
 
  A4 
                           B3 
  A0              B0 
 
The dashed segments represent where the result of the rotation is a segment that occupies 
the same location as a previous segment.  
 
 The final figure represents the Smarandache-Murthy’s figure of rotation of periodic 
symmetry for a right angle.  Different figures are constructed when different initial angles 
are used.  However, each of the figures that are constructed conforms to the following 
rules.  
 

a) Each figure is periodic in nature. 
b) The number of segments (each of length A0B0) in the figure is n, where n=720/x. 
c) They exhibit different symmetries for even and odd values of n. 
d) For n > 9, we get closed segments as part of the figure, with complete triangles for 

n=10. 
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A0       B0                 A0       B0        A1 

        x = 2π                            x = π 
         n=1                               n=2 
 
 
 
                                 A1             B1 
 
                                     x = 2π/3 
                                      n=3        
 
      A0            B0 
 
 
 
 
 
                            B1                A2 
 
 
 
 
                                A1    π/2 
                                       n=4 
 
 
 
 
          A0              B0 
 
 
 
 
 
 
        B2                        A3 
 
 
                                                         A1 
                     A2          B1 
 
 
                                         A0                     B0 
 
                                        π/3    n = 6     
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                                          B2 
           A2 
 
 
 
                B1     
 
 
                                       A1 
 
 
 
 
                 A0                   B0 
 
                          2π/5    n = 5 
 
 
                                                                                           A1 
 
                                                                 B1 
 
                                                                              A0             B0 
 
 
                                                                          A2 
 
 
 
                                                                           B2 
 
 
                                                     π/4   n = 8 
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                                                                         A1 
 
 
                                                        B1 
                                                                             
                                                                     A0          B0 
 
                                                                 A2 
 
                                                                                    B2 
 
 
                                                                              B4        A3 
                                                         A4 
 
 
                                                                             B3 
 
                                                            2π/9    n = 9 
 
 
 
 
 
                        A1 
 
 
 
                        A0                  B0 
                 B1 
 
 
                             A2                                                  A3 
                                                       B2                             
 
                                                                                                   B3 
 
                                                                B4                            A5 
 
 
                                                                                          A4 
 
                                                                     2π/10, n = 10 
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                                                       A4                   B4 
                                                            
 
 
                                                          B5                              A6    
 
                                                B3 
                                                                                A5 
 
 
 
                                               A3 
 
 
               A1                                            π/6, n = 12 
 
                                               B2 
 
       A0                   B0     
 
           B1                    A2 

 
 

Section 16 
 

Smarandache Route Sequences 
 
Consider a rectangular city with a mesh of tracks which are of equal length and which are 
either horizontal or vertical and meeting at nodes. If one row contains m tracks and one 
column contains n tracks then there are (m+1)(n+1) nodes. To begin, let the city be of a 
square shape i.e. m = n. 
 
 Consider the possible number of routes R where a person at one end of the city can take 
from a source S (starting point) to reach the diagonally opposite end D the destination. 
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S                                    A = ( j , k-1)       , B =  ( j-1 , k)  ,  C = ( j , k ) 

          
  B  

   A C  

    
                                         D 
 
(m rows and m columns). 
 
Refer to the previous figure to see the derivation of the following values. 
 
For m = 1, the number of routes R = 1. 
For m = 2, the number of routes R = 2. 
For m = 3, the number of routes R = 12. 
 
 We see that for the shortest routes, one has to travel 2m units of track length. There are 
routes of 2m+2 units in length up to the longest that are 4m+4 units long. 
 
Definition: The Smarandache Route Sequence (SRS) is defined as the number of all 
possible routes for a square m x m city. The routes will be of length 2m up through 
4m+4. 
 
Open problem: Derive a general formula for SRS. 
 
 Our next step here will be to derive a reduction formula, which is a general formula for 
the number of shortest routes.  
 
Reduction formula for the number of shortest routes: 
Let Rj,k = number of shortest routes from S to node (j,k). Node (j,k) can be reached only 
from node (j-1,k) or from node (j,k-1), as only shortest routes are to be considered. It is 
clear that there is only one way of reaching node (j,k) from node (j-1,k). Similarly, there 
is only one way of reaching node (j,k) from node (j,k-1). Hence, the number of shortest 
routes to (j,k) is given by 
 
           Rj,k = 1*Rj-1,k + 1*Rj,k-1 = Rj-1,k + Rj,k-1. 
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This gives the reduction formula for Rj,k. Applying this reduction formula to fill the chart 
we observe that the total number of shortest routes to the destination (the other end of the 
diagonal) is 2nCn. This can be established by induction.  
 
 We can further categorize the routes by the number of turning points (TPs) it is subjected 
to. The following chart contains the number of turning points for a city with nine nodes. 
 
No. of TPs 1 2 3 4 
No. of routes 2 2 2 5 
 
For further investigation: 
 

1) Explore for patterns in the total number of routes, number of turning points and 
develop formulas for square as well as rectangular grids. 

2) To study how many routes pass through a given number/set of nodes. How many 
of them pass through all the nodes? 

 
Section 17 

 
Smarandache Geometrical Partitions and Sequences 

 
1) Smarandache Traceable Geometrical Partition 

 
Consider a chain having identical links (sticks) which can be bent at the hinges to give it 
different shapes. For example, consider the following sets of one through four links.  
 
              (1)                            
 
                                                             (2) 
 
  
 
 
 
 
  
 
 
    (3) 
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              (4) 
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Note that the shapes of the figures satisfy the following rules: 
 

1) The links are either horizontal or vertical. 
2) No figure can be obtained from any other by rotation only. It must also be lifted 

from the horizontal plane. 
3) As the links are connected, there are only two ends and one can travel from one 

end to the other traversing all the links. There are at the most two ends (there can 
be zero ends in case of a closed figure) to each figure.  These are the nodes which  
are connected to only one link. 

 
Definition: For n the number of connected sticks, we define the Smarandache Traceable 
Geometric Partition Sgp(n) to be the number of different figures that can be constructed 
using those hinged, connected sticks. The sequence of numbers is called the Smarandache 
Traceable Geometric Partition Sequence (STGPS). 
 
The first few numbers of STGPS are 
 
1, 2, 6, 15, . . .  
 
Open problem: 
 
To derive a reduction formula for STGPS. 
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Definition: A bend is defined as a point where there is an angle of 900 between the 
connected sticks.  
 
 The following is a table of the number of sticks that have specific numbers of bends in 
them. 
 
                                                 Number of bends 

 
No. of sticks   

0 1 2 3 4 

1 1 0 0 0 0 

2 1 1 0 0 0 

3 1 2 3 0 0 

4 1 3 7 3 1 
 
 Readers are encouraged to extend this table and look for patterns in the number of bends. 
 

2) Smarandache Comprehensive Geometric Partition 
 
 Start with a set of identical sticks and connect them as before. However, in this case, we 
will relax the previous rules to allow: 
 

1) Sticks can have more than one end. 
2) It may not be possible to travel from one end of the figure to the other and 

traverse each stick only one.  
 
With this relaxation of the rules defining the figures, we have the following sets of 
figures. 
 
 
                     (1)                
                                                                   (2) 
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    (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          (4) 
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Definition: The sequence of figures that can be created in this way is called the 
Smarandache Comprehensive Geometric Partition Function (SCGP) and the sequence of 
numbers formed by the number of such figures for n sticks is known as the SCGPS. 
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The first few terms of the SCGPS are 1, 2, 7, 25, . . .  
 
 The following table summarizes the number of figures having a specific number of ends. 
 
                                                      Number of sticks 
  
No. of ends   

1 2 3 4 

0 0 0 0 1 

1 0 0 0 0 

2 1 2 6 14 

3 0 0 1 9 

4 0 0 0 1 
   
 The table can be extended by increasing the number of sticks and readers are encouraged 
to search for patterns in the table. 
 
Open problem: Derive a reduction formula for SCGPS. 
 
Further consideration: This idea can be extended by allowing the bends to be angles other 
than 900. 
  

Section 18 
 

Smarandache Lucky  
Methods in Algebra, Trigonometry and Calculus 

 
Definition: A number is said to be a Smarandache Lucky Number if an incorrect 
calculation leads to a correct result. For example, in the fraction 64 / 16 if the 6's are 
incorrectly canceled (simplified) the result (4) is still correct. More generally a 
Smarandache Lucky Method is said to be any incorrect method that leads to a correct 
result.  In [8], the following question is asked:  
 
(1) Are there infinitely many Smarandache Lucky Numbers?  
 
We claim that the answer is yes. 
  
 Also in this section, we give some fascinating Smarandache Lucky methods in algebra, 
trigonometry and calculus. 
 
The following are some examples of Smarandache Lucky Numbers. 
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 (1) 64 /16  = 4 / 1  = 4.  (Canceling the 6 from numerator and denominator). 
 
 (2) 95 / 19   = 5/ 1 = 5. (Canceling the 9 from numerator and denominator). 
 
 (3) 136 / 34  = 16/ 4 = 4. (Canceling the 3 from numerator and denominator). 
 
The following Smarandache Lucky Numbers can be used to generate many additional 
lucky numbers, although the family could be considered trivial. 
 
4064 /1016, 40064 / 10016, . . . .  In general 
 
4 00000. . .64  / 100000. . . 16   in which both the numerator and denominator  
 
contain the same number (n) of zeroes and the sixes are cancelled. 
 
A Smarandache  Lucky Method In  Trigonometry 

  
Some students who have just been introduced to the concept of function misinterpret f(x) 
as the product of f and  x. In other words, they consider sin(x)  to be the product of sin 
and  x. This gives rise to a funny, lucky method applicable to the following identity. 
 

To prove  
                 sin2(x)  - sin2(y)   =   sin (x + y) sin ( x - y) 
 
LHS =  sin2(x)  - sin2(y) 
 
        = { sin(x)    +  sin(y)  } *{ sin(x)    -  sin(y) }.  (A)    
 
Factoring the "common" sin from all "factors" 
 
       =   { sin(x + y) } * {sin ( x - y) } 
 
      =      RHS. 
 
The correct method from point (A) onwards should have been  
 
      {2 sin((x + y)/2) * cos((x - y)/2)} * {2 cos((x + y)/2) *sin((x - y)/2)}. 
 
=   { 2 sin((x + y)/2) * cos((x + y)/2)} *{2 cos((x - y)/2) * sin((x - y)/2)}. 
 
=    { sin (x + y) } * {sin ( x - y) } 
 
 = RHS. 
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A Smarandache  Lucky Method In  Algebra 

 
 In vector algebra   the dot product of   two  vectors   (a1 i   + a2 j  + a3 k)  and   
  
 (b1 i   + b2 j  + b3 k)  is given by   
 
(a1 i   + a2 j  + a3 k) •  (b1 i   + b2 j  + b3 k)  =   a1 b1  + a2 b2  + a3 b3 
 
If this same idea was applied to ordinary algebra 
 
(a + b) ( c + d )  =  ac  +  bd.   ---------- (B) 
 
This wrong lucky method is applicable in proving the following algebraic identity. 
 
a3   + b3  + c3  - 3 abc  = ( a + b + c ) (  a2   + b2 + c2  - ab -bc  - ca ) 
 
RHS  =  ( a + b + c ) (  a2   + b2 + c2  - ab - bc  - ca ) 
 
          =  ( a + b + c ) { (a2  - bc)   +( b2 -ac )   +  ( c2  - ab ) } 
 
applying the wrong lucky method  (B), one gets  
 
        =  a.(a2  - bc)  + b( b2 -ac )  +  c( c2  - ab ) 
 
        =   a3   - abc    +    b3 -  abc   + c3  -  abc 
 
        = a3   + b3  + c3  - 3 abc  = LHS. 
 
A Smarandache Lucky Method In Calculus 
 
 The fun involved in the following lucky method in calculus is twofold, and it goes like 
this. A student is asked to differentiate the product of two functions. Instead of applying 
the formula for the differentiation of the product of two functions, he applies the method 
of integration of the product of two functions (integration by parts) and gets the correct 
answer.  The height of coincidence is if another student is given the same product of two 
functions and asked to integrate does the reverse of it i.e. he ends up applying the formula 
for differentiation of the product of two functions and yet gets the correct answer. I would 
take the liberty to call such a lucky method to be a Smarandache superlucky method. 
 
Consider the product of two functions x and sin(x)  
 
 f(x)  =  x  and  g(x)   =  sin(x). 
 
d{ f(x)g(x)}/dx  =  f(x) ∫ g(x)dx   -  ∫ [{d(f(x))/dx} ∫ g(x)dx]dx 

d{(x)sin(x)}/dx  =  (x) ∫ sin(x)dx   -  ∫ [{d(x)/dx} ∫ sin(x)dx]dx 
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   =  - (x) ( cos(x))  +  sin(x)   
   =  - x cos(x)  +  sin(x). 
 
The Smarandache lucky method of integration is as follows: 
 
∫ {(f(x)) g(x)}dx.   = f(x)d{g(x)}/dx    + g(x) d{f(x)}/dx. 
 
If we use the same functions used in the previous example, when we apply this lucky 
method we get 
 
∫ {(x)sin(x)}dx  =  (x) { cos(x) }  +  { sin(x) } (1) 
 
or   ∫ {(x)sin(x)}dx  =  x cos(x) +  sin(x). 
 
By applying the correct methods, it can be verified that these are the correct answers. 
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  Florentin Smarandache is an incredible source of ideas, only some of which are 
mathematical in nature. Amarnath Murthy has published a large number of papers in the 
broad area of “Smarandache Notions”, which are math problems whose origin can be 
traced to Smarandache. This book is an edited version of many of those papers, most of 
which appeared in “Smarandache Notions Journal”, and more information about SNJ is 
available at http://www.gallup.unm.edu/~smarandache/ .  
 The topics covered are very broad, although there are two main themes under which 
most of the material can be classified. A Smarandache Partition Function is an operation 
where a set or number is split into pieces and together they make up the original object. 
For example, a Smarandache Repeatable Reciprocal partition of unity is a set of natural 
numbers where the sum of the reciprocals is one. The first chapter of the book deals with 
various types of partitions and their properties and partitions also appear in some of the 
later sections. 
The second main theme is a set of sequences defined using various properties. For 
example, the Smarandache n2n sequence is formed by concatenating a natural number 
and its’ double in that order. Once a sequence is defined, then some properties of the 
sequence are examined. A common exploration is to ask how many primes are in the 
sequence or a slight modification of the sequence.  
 The final chapter is a collection of problems that did not seem to be a precise fit in either 
of the previous two categories. For example, for any number d, is it possible to find a 
perfect square that has digit sum d? While many results are proven, a large number of 
problems are left open, leaving a great deal of room for further exploration. 
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