

Nω–CLOSED SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES

Santhi R.¹ and Udhayarani N.²

¹N.G.M. college, Pollachi, Tamil nadu- 642001, India.E-mail:santhifuzzy@gmail.com
²N.G.M. college, Pollachi, Tamil nadu- 642001, India.E-mail: udhayaranin@gmail.com

Abstract. Neutrosophic set and Neutrosophic Topological spaces has been introduced by Salama[5]. Neutrosophic Closed set and Neutrosophic Continuous Functions were introduced by Salama et. al.. In this paper, we introduce the concept of Nω-closed sets and their properties in Neutrosophic topological spaces.

Keywords: Intuitionistic Fuzzy set, Neutrosophic set, Neutrosophic Topology, Nω-open set, Nω-closed set, Nω-open set and Nω-closure.

1. **Introduction**

Many theories like, Theory of Fuzzy sets[10], Theory of Intuitionistic fuzzy sets[1], Theory of Neutrosophic sets[8] and The Theory of Interval Neutrosophic sets[4] can be considered as tools for dealing with uncertainties. However, all of these theories have their own difficulties which are pointed out in[8].

In 1965, Zadeh[10] introduced fuzzy set theory as a mathematical tool for dealing with uncertainties where each element had a degree of membership. The Intuitionistic fuzzy set was introduced by Atanassov[1] in 1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of nonmembership of each element. The neutrosophic set was introduced by Smarandache[7] and explained, neutrosophic set is a generalization of intuitionistic fuzzy set.

In 2012, Salama, Alblowi[5] introduced the concept of Neutrosophic topological spaces. They introduced neutrosophic topological space as a generalization of intuitionistic fuzzy topological space and a neutrosophic set besides the degree of membership, the degree of indeterminacy and the degree of nonmembership of each element. In 2014 Salama, Smarandache and Valeri [6] were introduced the concept of neutrosophic closed sets and neutrosophic continuous functions. In this paper, we introduce the concept of Nω-closed sets and their properties in neutrosophic topological spaces.

2. **Preliminaries**

In this paper, X denote a topological space (X, τX) on which no separation axioms are assumed unless otherwise explicitly mentioned. We recall the following definitions, which will be used throughout this paper. For a subset A of X, Ncl(A), Nint(A) and A° denote the neutrosophic closure, neutrosophic interior, and the complement of neutrosophic set A respectively.

Definition 2.1.[3] Let X be a non-empty fixed set. A neutrosophic set(NS for short) A is an object having the form $A = \{<x, \mu_A(x), \sigma_A(x), \nu_A(x)> : \text{for all } x \in X\}$. Where $\mu_A(x)$, $\sigma_A(x)$, $\nu_A(x)$ which represent the degree of membership, the degree of indeterminacy and the degree of nonmembership of each element $x \in X$ to the set A.

Definition 2.2.[5] Let A and B be NSs of the form $A = \{<x, \mu_A(x), \sigma_A(x), \nu_A(x)> : \text{for all } x \in X\}$ and $B = \{<x, \mu_B(x), \sigma_B(x), \nu_B(x)> : \text{for all } x \in X\}$. Then

- **i.** $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$, $\sigma_A(x) \geq \sigma_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,
- **ii.** $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$,
- **iii.** $A^c = \{<x, \nu_A(x), 1- \sigma_A(x), \mu_A(x)> : \text{for all } x \in X\}$,
- **iv.** $A \cup B = \{<x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \land \sigma_B(x), \nu_A(x) \land \nu_B(x)> : \text{for all } x \in X\}$,
- **v.** $A \cap B = \{<x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \lor \nu_B(x)> : \text{for all } x \in X\}$.

Definition 2.3.[5] A neutrosophic topology(NT for short) on a non empty set X is a family τ of neutrosophic subsets in X satisfying the following axioms:

- **i)** $0_X, 1_X \in \tau$,
- **ii)** $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$,
- **iii)** $\bigcup G_i \in \tau$, for all $G_i : i \in J \subseteq \tau$

In this pair (X, τ) is called a neutrosophic topological space (NTS for short) for neutrosophic set (NOS for short) τ in X. The elements of τ are called open neutrosophic sets. A neutrosophic set F is called closed if and only if the complement of F(F° for short) is neutrosophic open.

Definition 2.4.[5] Let (X, τ) be a neutrosophic topological space. A neutrosophic set A in (X, τ) is said to be neutrosophic closed(N-closed for short) if $\text{Ncl}(A) \subseteq G$ whenever $A \subseteq G$ and G is neutrosophic open.
Definition 2.5.[5] The complement of N-closed set is N-open set.

Proposition 2.6.[6] In a neutrosophic topological space (X, T), T = Ω (the family of all neutrosophic closed sets) iff every neutrosophic subset of (X, T) is a neutrosophic closed set.

3. \(N_ω \)-closed sets

In this section, we introduce the concept of \(N_ω \)-closed set and some of their properties. Throughout this paper \((X, τ_ω) \) represent a neutrosophic topological spaces.

Definition 3.1. Let \((X, τ_ω) \) be a neutrosophic topological space. Then A is called neutrosophic semi open set(\(N_ω \)-open set for short) if \(A \subseteq \text{Ncl}(\text{Nint}(A)) \).

Definition 3.2. Let \((X, τ_ω) \) be a neutrosophic topological space. Then A is called neutrosophic semi closed set(\(N_ω \)-closed set for short) if \(\text{Nint}(\text{Ncl}(A)) \subseteq A \).

Definition 3.3. Let A be a neutrosophic set of a neutrosophic topological space \((X, τ_ω) \). Then,
 i. The neutrosophic semi closure of A is defined as \(N_ω \text{cl}(A) = \cap \{K: K \text{ is a } N_ω\text{-closed set in } X \text{ and } A \subseteq K\} \)
 ii. The neutrosophic semi interior of A is defined as \(N_ω \text{int}(A) = \cup \{G: G \text{ is a } N_ω\text{-open in } X \text{ and } G \subseteq A\} \).

Definition 3.4. Let \((X, τ_ω) \) be a neutrosophic topological space. Then A is called neutrosophic semi closed set(\(N_ω \)-closed set for short) if \(\text{Ncl}(A) \subseteq G \) whenever \(A \subseteq G \) and G is \(N_ω \)-open set.

Theorem 3.5. Every neutrosophic closed set is \(N_ω \)-closed set, but the converse may not be true.
Proof: If A is any neutrosophic set in X and G is any \(N_ω \)-open set containing A, then \(\text{Ncl}(A) \subseteq G \). Hence A is \(N_ω \)-closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6. Let \(X = \{a,b,c\} \) and \(τ_ω = \{0_ωG_1, 1_ω\} \) is a neutrosophic topological and \(X, τ_ω \) is a neutrosophic topological spaces. Take \(G_1 = <x, (0.5, 0.6, 0.4), (0.4, 0.5, 0.2), (0.7, 0.6, 0.9)> \) and \(A = <x, (0.2, 0.2, 0.1), (0.1, 0.2), (0.8, 0.6, 0.9)> \). Then the set A is \(N_ω \)-closed but A is not a \(N_ω \)-closed set.

Remark 3.9. The concepts of \(N_ω \)-closed sets and \(N_ω \)-closed sets are independent.

Example 3.10. Let \(X = \{a,b,c\} \) and \(τ_ω = \{0_ωG_1, 1_ω\} \) is a neutrosophic topological and \(X, τ_ω \) is a neutrosophic topological spaces. Take \(G_1 = <x, (0.5, 0.6, 0.4), (0.4, 0.5, 0.2), (0.7, 0.6, 0.9)> \) and \(A = <x, (0.2, 0.2, 0.1), (0, 1, 0.2), (0.8, 0.6, 0.9)> \). Then the set A is \(N_ω \)-closed set but A is not a \(N_ω \)-closed set.

Theorem 3.12. If \(A \) and \(B \) are \(N_ω \)-closed sets, then \(A \cup B \) is \(N_ω \)-closed set.
Proof: If \(A \cup B \subseteq G \) and \(G \) is \(N_ω \)-open set, then \(A \subseteq G \) and \(B \subseteq G \). Since \(A \) and \(B \) are \(N_ω \)-closed sets, \(\text{Ncl}(A) \subseteq G \) and \(\text{Ncl}(B) \subseteq G \) and hence \(\text{Ncl}(A) \cup \text{Ncl}(B) \subseteq G \). This implies \(\text{Ncl}(A \cup B) \subseteq G \). Thus \(A \cup B \) is \(N_ω \)-closed set in \(X \).

Theorem 3.13. A neutrosophic set \(A \) is \(N_ω \)-closed set then \(\text{Ncl}(A) - A \) does not contain any non-empty neutrosophic closed sets.
Proof: Suppose that \(A \) is \(N_ω \)-closed set. Let \(F \) be a neutrosophic closed subset of \(\text{Ncl}(A) - A \). Then \(A \subseteq F^c \). But \(A \) is \(N_ω \)-closed set. Therefore \(\text{Ncl}(F) \subseteq F^c \).
Consequently \(F \subseteq (\text{Ncl}(A))^c \). We have \(F \subseteq \text{Ncl}(A) \). Thus \(F \subseteq \text{Ncl}(A) \cap (\text{Ncl}(A))^c \). Hence \(F \) is empty.

The converse of the above theorem need not be true as seen from the following example.

Example 3.14. Let \(X = \{a,b,c\} \) and \(τ_ω = \{0_ωG_1, 1_ω\} \) is a neutrosophic topological and \(X, τ_ω \) is a neutrosophic topological spaces. Take \(G_1 = <x, (0.5, 0.6, 0.4), (0.4, 0.5, 0.2), (0.7, 0.6, 0.9)> \) and \(A = <x, (0.2, 0.2, 0.1), (0.6, 0.6, 0.6), (0.8, 0.9, 0.9)> \). Then the set A is not a \(N_ω \)-closed set and \(\text{Ncl}(A) - A = <x, (0.2, 0.2, 0.1), (0.6, 0.6, 0.6), (0.8, 0.9, 0.9)> \) does not contain non-empty neutrosophic closed sets.

Theorem 3.15. A neutrosophic set \(A \) is \(N_ω \)-closed set if and only if \(\text{Ncl}(A) - A \) contains no non-empty \(N_ω \)-closed set.
Proof: Suppose that A is N_c-closed set. Let S be a N_c-closed subset of $Ncl(A) – A$. Then $A \subseteq S'$. Since A is N_c-closed set, we have $Ncl(A) \subseteq S'$. Consequently $S \subseteq (Ncl(A))'$. Hence $S \subseteq Ncl(A) \cap (Ncl(A))' = \emptyset$. Therefore S is empty.

Conversely, suppose that $Ncl(A) – A$ contains no non-empty N_c-closed set. Let $A \subseteq G$ and that G be N_c-open. If $Ncl(A) \not\subseteq G$, then $Ncl(A) \cap G'$ is a non-empty N_c-closed subset of $Ncl(A) – A$. Hence A is N_c-closed set.

Corollary 3.16. A N_c-closed set A is N_c-closed if and only if $Ncl(A) – A$ is N_c-closed.

Proof: Let A be any N_c-closed set. If A is N_c-closed set, then $Ncl(A) – A = \emptyset$. Therefore $Ncl(A) – A$ is N_c-closed set. Conversely, suppose that $Ncl(A) – A$ is N_c-closed set. But A is N_c-closed set and $Ncl(A) – A$ contains N_c-closed set. By theorem 3.15, $Ncl(A) – A = \emptyset$. Therefore $Ncl(A) = A$. Hence A is N_c-closed set.

Theorem 3.17. Suppose that $B \subseteq A \subseteq X$, B is a N_c-closed set relative to A and A is N_c-closed set in X. Then B is N_c-closed set in X.

Proof: Let $B \subseteq G$, where G is N_c-open in X. We have $B \subseteq A \cap G$ and $A \cap G$ is N_c-open in A. But B is a N_c-closed set relative to A. Hence $Ncl(B) \subseteq A \cap G$. Since $Ncl(B) = A \cap Ncl(B)$. We have $A \cap Ncl(B) \subseteq A \cap G$. It implies $A \subseteq G(U(Ncl(B))^c$ and $G(U(Ncl(B))^c$ is a N_c-closed set in X. Since A is N_c-closed in X, we have $Ncl(A) \subseteq G(U(Ncl(B))^c$. Hence $Ncl(B) \subseteq G(U(Ncl(B))^c$ and $Ncl(B) \subseteq G$. Therefore B is N_c-closed set relative to X.

Theorem 3.18. If A is N_c-closed and $A \subseteq B \subseteq Ncl(A)$, then B is N_c-closed.

Proof: Since $B \subseteq Ncl(A)$, we have $Ncl(B) \subseteq Ncl(A)$ and $Ncl(B) \subseteq Ncl(A) – A$. But A is N_c-closed. Hence $Ncl(A) – A$ has no non-empty N_c-closed subsets, neither does $Ncl(B)$ – B. By theorem 3.15, B is N_c-closed.

Theorem 3.19. Let $A \subseteq Y \subseteq X$ and suppose that A is N_c-closed in X. Then A is N_c-closed relative to Y.

Proof: Let $A \subseteq Y \cap G$ where G is N_c-open in X. Then $A \subseteq G$ and hence $Ncl(A) \subseteq G$. This implies, $Y \cap Ncl(A) \subseteq Y \cap G$. Thus A is N_c-closed relative to Y.

Theorem 3.20. If A is N_c-open and N_c-closed, then $Ncl(A) \subseteq A$. Therefore $Ncl(A) = A$. Hence A is neutrosophic closed.

4. N_c-open sets

In this section, we introduce and study about N_c-open sets and some of their properties.

Definition 4.1. A Neutrosophic set A in X is called N_c-open in X if A^c is N_c-closed in X.

Theorem 4.2. Let (X, τ_N) be a neutrosophic topological space. Then

(i) Every neutrosophic open set is N_c-open but not conversely.

(ii) Every N_c-open set is N-open but not conversely.

The converse part of the above statements are proved by the following example.

Example 4.3. Let $X = \{a, b, c\}$ and $\tau_N = \{\emptyset, G_1, 1_N\}$ is a neutrosophic topology and (X, τ_N) is a neutrosophic topological space. Take $G_1 = \langle x, (0.7, 0.6, 0.9), (0.6, 0.5, 0.8), (0.5, 0.6, 0.4)\rangle$ and $A = \langle x, (0.8, 0.6, 0.9), (1, 0, 0.8), (0.2, 0.2, 0.1)\rangle$. Then the set A is N_c-open set but not a neutrosophic open and $B = \langle x, (0.11, 0.25, 0.2), (0.89, 0.7, 0.9), (0.55, 0.45, 0.6)\rangle$ is N-open but not a N_c-open set.

Theorem 4.4. A neutrosophic set A is N_c-open if and only if $F \subseteq Nint(A)$ where F is N_c-closed and $F \subseteq A$.

Proof: Suppose that $F \subseteq Nint(A)$ where F is N_c-closed and $F \subseteq A$. Let $A^c \subseteq G$ where G is N_c-open. Then $G^c \subseteq A$ and G^c is N_c-closed. Therefore $G^c \subseteq Nint(A)$. Since $G^c \subseteq Nint(A)$, we have $(Nint(A))^c \subseteq G$. This implies $Ncl((A))^c \subseteq G$. Thus A^c is N_c-closed. Hence A is N_c-open.

Conversely, suppose that A is N_c-open, $F \subseteq A$ and F is N_c-closed. Then F^c is N_c-open and $A^c \subseteq F^c$. Therefore $Ncl((A)^c) \subseteq F^c$. But $Ncl((A)^c) = (Nint(A))^c$. Hence $F \subseteq Nint(A)$.

Theorem 4.5. A neutrosophic set A is N_c-open in X if and only if $G = X$ whenever G is N_c-open and $(Nint(A) \cup A^c)^c \subseteq G$.

Proof: Let A be a N_c-open, G be N_c-open and $(Nint(A) \cup A^c)^c \subseteq G$. This implies $G^c \subseteq (Nint(A))^c \cap (A^c)^c = (Nint(A))^c – A^c = Ncl((A)^c) – A^c$. Since A^c is N_c-closed and G^c is N_c-closed, by Theorem 3.15, it follows that $G^c \subseteq \phi$. Therefore $X = G$.

Conversely, suppose that F is N_c-closed and $F \subseteq X$. Then $Nint(A) \cup A^c \subseteq Nint(A) \subseteq F^c$. This implies $Nint(A) \cup F^c = X$ and hence $F \subseteq Nint(A)$. Therefore A is N_c-open.

Theorem 4.6. If $Nint(A) \subseteq B \subseteq A$ and if A is N_c-open, then B is N_c-open.

Proof: Suppose that $Nint(A) \subseteq B \subseteq A$ and A is N_c-open. Then $A^c \subseteq B \subseteq Ncl(A)^c$ and since A^c is N_c-closed, we have by Theorem 3.15, B^c is N_c-closed. Hence B is N_c-open.

Theorem 4.7. A neutrosophic set A is N_c-closed, if and only if $Ncl(A) – A$ is N_c-open.

Proof: Suppose that A is N_c-closed. Let $F \subseteq Ncl(A) – A$ where F is N_c-closed. By Theorem 3.15, $F = \emptyset$. Therefore $F \subseteq Nint(Ncl(A) – A)$ and by Theorem 4.4, we have $Ncl(A) – A$ is N_c-open.
Conversely, let $A \subseteq G$ where G is a N_ω-open set. Then $\text{Ncl}(A) \cap G \subseteq \text{Ncl}(A) \cap A^c = \text{Ncl}(A) - A$. Since $\text{Ncl}(A) \subseteq G^c$ is N_ω-closed and $\text{Ncl}(A) - A$ is N_ω-open. By Theorem 4.4, we have $\text{Ncl}(A) \cap G^c \subseteq \text{Nint}(\text{Ncl}(A) - A) = \phi$. Hence A is N_ω-closed.

Theorem 4.8. For a subset $A \subseteq X$ the following are equivalent:

(i) A is N_ω-closed.

(ii) $\text{Ncl}(A) - A$ contains no non-empty N_ω-closed set.

(iii) $\text{Ncl}(A) - A$ is N_ω-open set.

Proof: Follows from Theorem 3.15 and Theorem 4.7.

5. N_ω-closure and Properties of N_ω-closure

In this section, we introduce the concept of N_ω-closure and some of their properties.

Definition 5.1. The N_ω-closure (briefly $N_\omega\text{cl}(A)$) of a subset A of a neutrosophic topological space (X, τ_N) is defined as follows:

$$N_\omega\text{cl}(A) = \bigcap \{ F \subseteq X / A \subseteq F \text{ and } F \text{ is } N_\omega\text{-closed in } (X, \tau_N) \}.$$

Theorem 5.2. Let A be any subset of (X, τ_N). If A is N_ω-closed in (X, τ_N) then $A = N_\omega\text{cl}(A)$.

Proof: By definition, $N_\omega\text{cl}(A) = \bigcap \{ F \subseteq X / A \subseteq F \text{ and } F \text{ is } N_\omega\text{-closed in } (X, \tau_N) \}$ and we know that $A \subseteq A$. Hence $A = N_\omega\text{cl}(A)$.

Remark 5.3. For a subset A of (X, τ_N), $A \subseteq N_\omega\text{cl}(A) \subseteq \text{Ncl}(A)$.

Theorem 5.4. Let A and B be subsets of (X, τ_N). Then the following statements are true:

i. $N_\omega\text{cl}(A) = \phi$ and $N_\omega\text{cl}(A) = X$.

ii. If $A \subseteq B$, then $N_\omega\text{cl}(A) \subseteq N_\omega\text{cl}(B)$

iii. $N_\omega\text{cl}(A) \cup N_\omega\text{cl}(B) = N_\omega\text{cl}(A \cup B)$

iv. $N_\omega\text{cl}(A \cap B) = N_\omega\text{cl}(A) \cap N_\omega\text{cl}(B)$

References

Received: May 30, 2016. Accepted: July 06, 2016.