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1. Introduction 

Smarandache’s neutrosophic system have wide range of real time applications for the fields of 

Computer Science ,Information Systems, Applied Mathematics , Artificial Intelligence, Mechanics, 

decision making. Medicine, Electrical & Electronic, and Management Science etc. [20-25]. Topology 

is a classical subject, as a generalization topological spaces many type of topological spaces 

introduced over the year. Smarandache [9] defined the Neutrosophic set on three component 

Neutrosophic sets (T Truth, F -Falsehood, I- Indeterminacy). Neutrosophic topological spaces (N-T-

S) introduced by Salama [17] et al., R.Dhavaseelan [6], Saied Jafari are introduced Neutrosophic 

generalized closed sets. Neutrosophic b closed sets are introduced C. Maheswari[14] et al.Aim of this 

paper is we introduce and study about Neutrosophic generalized b closed sets and Neutrosophic 

generalized b continuity in Neutrosophic topological spaces and its properties and Characterization 

are discussed with details. 

 

2. Preliminaries  

In this section, we recall needed basic definition and operation of Neutrosophic sets and its 

fundamental Results 

Definition 2.1 [9] Let X be a non-empty fixed set. A Neutrosophic set P is an object having the form 

 P = {< 𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}, 

μP(x)-represents the degree of membership function 

σP(x)-represents degree indeterminacy and then 

γP(x)-represents the degree of non-membership function 
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Definition 2.2 [9]. Neutrosophic set P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}, on X and  ∀x ∈ X then 

complement of P is PC  = {<  𝑥, γP(x), 1 − σP(x), μP(x) >: 𝑥 ∈ 𝑋} 

Definition 2.3 [9]. Let P and Q are two Neutrosophic sets, ∀x ∈ X 

P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋} 

Q = {<  𝑥, μQ(x), σQ(x), γQ(x) >: 𝑥 ∈ 𝑋} 

Then P ⊆ Q ⇔ μP(x) ≤ μQ(x), σP(x) ≤ σQ(x)& γP(x) ≥ γQ(x)} 

Definition 2.4 [9]. Let X be a non-empty set, and Let P and Q be two Neutrosophic sets are 

P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}, Q = {<  𝑥, μQ(x), σQ(x), γQ(x) >: 𝑥 ∈ 𝑋}Then 

1. P ∩ Q = {<  𝑥, μP(x) ∩ μQ(x), σP(x) ∩ σQ(x), γP(x) ∪ γQ(x) >: 𝑥 ∈ 𝑋} 

2. P ∪ Q = {<  𝑥, μP(x) ∪ μQ(x), σP(x) ∪ σQ(x), γP(x) ∩ γQ(x) >: 𝑥 ∈ 𝑋} 

Definition 2.5 [17]. Let X be non-empty set and τN be the collection of Neutrosophic subsets of X 

satisfying the following properties: 

1.0N, 1N ∈ τN 

2. T1 ∩ T2 ∈ τN for any T1, T2 ∈ τN 

3. ∪ Ti ∈ τN for every {Ti: i ∈ j} ⊆ τN 

Then the space  (X, τN) is called a Neutrosophic topological space(N-T-S). 

The element of τN are called Neu-OS (Neutrosophic open set) 

and its complement is Neu-CS(Neutrosophic closed set) 

Example 2.6.  Let X ={x} and ∀x ∈ X 

A1 = 〈x,
6

10
,

6

10
,

5

10
〉,  A2 = 〈x,

5

10
,

7

10
,

9

10
〉 

A3 = 〈x,
6

10
,

7

10
,

5

10
〉  ,A4 = 〈x,

5

10
,

6

10
,

9

10
〉 

Then the collection τN = {0N, A1, A2, A3, A4,1N} is called a N-T-S on X. 

Definition 2.7. Let (X, τN)be a N-T-S and P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋} be a Neutrosophic 

set in X. Then P is said to be 

1. Neutrosophic b closed set [14] (Neu-bCS in short) if Neu-cl(Neu-int(P))∩Neu-int(Neu-cl(P))⊆P, 

2. Neutrosophic α-closed set [2] (Neu- αCS in short) if Neu-cl(Neu-int(Neu-cl(P)))⊆P, 

3. Neutrosophic pre-closed set [20] (Neu-Pre-CS in short) if Neu-cl(Neu-int(P))⊆P, 

4. Neutrosophic regular closed set [9] (Neu-RCS in short) if Neu-cl(Neu-int(P)) = P, 

5. Neutrosophic semi closed set [11] (Neu-SCS in short) if Neu-int(Neu-cl(P))⊆P, 

6. Neutrosophic generalized closed set [6] (Neu-GCS in short) if Neu-cl(P⊆H whenever P⊆H and H  

   is an Neu-OS, 

7. Neutrosophic generalized pre closed set [13] (Neu-GPCS in short) if Neu-Pcl(P) ⊆ H whenever P  

  ⊆ H and H is an Neu-OS, 

8. Neutrosophic α generalized closed set [12] (Neu- αGCS in short) if Neu α-cl(P)⊆H whenever P  

   ⊆ H and H is an Neu-OS, 

9. Neutrosophic generalized semi closed set [19](Neu-GSCS in short) if Neu-Scl(P)⊆H whenever  

   P⊆H and H is an Neu-OS. 

Definition 2.8 [9] (X, τN)be a N-T-S and P = {< 𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋} be a Neutrosophic set 

in X.Then  



Neutrosophic Sets and Systems, Vol. 29, 2019 91  

 

 

C.Maheswari, S. Chandrasekar , Neutrosophic gb-closed Sets and Neutrosophic gb-Continuity 

 

 

Neutrosophic closure of P is Neu-Cl(P)=∩{H:H is a Neu-CS in X and P⊆H} 

Neutrosophic interior of P is Neu-Int(P)=∪{M:M is a Neu-OS in X and M⊆P}. 

Definition 2.9 [14]Let (X, τN) be a N-T-S and P = {< 𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}  be a 

Neutrosophic set in X. Then the Neutrosophic b closure of P ( Neu-bcl(P)in short) and  Neutrosophic 

b interior of P (Neu-bint(P) in short) are defined as Neu-bint(P)= ∪{ G/G is a Neu-bOS in X and G⊆P},  

Neu-bcl(P)= ∩{ K/K is a Neu-bCS in X and P⊆K }. 

Proposition 2.10 Let (X, τN)  be any N-T-S. Let P and Q be any two Neutrosophic sets in 

(X, τN).Then the Neutrosophic generalized b closure operator satisfies the following properties. 

1. Neu-bcl(0N)=0N and Neu-bcl(1N) = 1N, 

2. P⊆Neu-bcl(P), 

3. Neu-bint(P)⊆P, 

4. If P is a Neu-bCS then P=Neu-bcl(Neu-bcl(P)), 

5. P⊆Q⇒Neu-bcl(P) ⊆Neu-bcl(Q), 

6. P⊆Q⇒Neu-bint(P)⊆Neu-bint(Q). 

 

3. Neutrosophic Generalized b Closed Sets 

Definition 3.1. A Neutrosophic set P in a N-T-S (X, τN) is said to be a Neutrosophic generalized b 

closed set(Neu-GbCS in short) if Neu-bcl(P) ⊆H whenever P⊆H and H is a Neu-OS in (X, τN).The 

family of all Neu-GbCSs of a N-T-S (X, τN) is denoted by Neu-gbC(X). 

Example 3.2. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X where 

E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉. Then the Neutrosophic set P = 〈x, (

7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉is a Neu-

GbCS in X. 

Example 3.3. Let X = {p1, p2}  τN = {0N, E1, 1N}  isbe a N.T.on X. where E1 =

〈x, (
6

10
,

5

10
,

3

10
) , (

8

10
,

5

10
,

2

10
)〉 . Then the Neutrosophic set P = 〈x, (

6

10
,

5

10
,

4

10
) , (

3

10
,

5

10
,

7

10
)〉 is not a Neu-

GbCS in X. 

Theorem 3.4. Every Neu-CS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-CS and Neu-bcl(P) ⊆Neu-cl(P), Neu-

bcl(P) ⊆Neu-cl(P)=P⊆H. Therefore P is a Neu-GbCS in X. 

Example 3.5. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T. on X .where E1 =

〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)〉. Then the Neutrosophic set P = 〈x, (

5

10
,

5

10
,

4

10
) , (

6

10
,

5

10
,

3

10
)〉 is a Neu-GbCS 

but not a Neu-CS in X, since Neu-cl(P)=E1≠P 

Theorem 3.6. Every Neu-αCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-αCS, Neu-αcl(P)= P. Therefore Neu-

bcl(P) ⊆Neu-αcl(P)=P⊆H. Hence P is a Neu-GbCS in X. 

Example 3.7. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T. on X .where E1 =

〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉. Then the Neutrosophic set P = 〈x, (

5

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

3

10
)〉 is a Neu-GbCS 

but not a Neu-αCS in X, since Neu-cl(Neu-int(Neu-cl(P)))= E1
C ⊈ P. 
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Theorem 3.8. Every Neu-Pre-CS is a Neu-GbCS but not conversely. 

Proof. Let P ⊆ H and H is a Neu-OS in (X, τN) .Since P is a Neu-Pre-CS,Neu-cl(Neu-int(P))  ⊆ P. 

Therefore Neucl(Neu-int(P))∩Neu-int(Neu-cl(P)  ⊆Neu-cl(P)∩Neu-cl(Neu-int(P)  ⊆ P. This implies 

Neu-bcl(P) 

 ⊆H. Hence P is a Neu-GbCS in X. 

Example 3.9.Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X.where E1 =

〈x, (
9

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉. Then the Neutrosophic set P = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbCS 

but not a Neu-pre closed set in X, since Neu-cl(Neu-int(P))= E1
C ⊈ P. 

Theorem 3.10. Every Neu-bCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-bCS,Neu-bcl(P)=P. Therefore Neu-

bcl(P)=P ⊆ H. Hence P is a Neu-GbCS in X. 

Example 3.11 Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X .where E1 =

〈x, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

8

10
,

5

10
,

2

10
) , (

9

10
,

5

10
,

1

10
)〉 is a Neu-GbCS 

but not a Neu-bCS in X, since Neu-cl (Neu-int(P))∩ Neu-int(Neu-cl(P))=1N⊈ P. 

Theorem 3.12. Every Neu-RCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-RCS , Neu-cl(Neu-int(P))=P. This 

implies Neu-cl(P)=Neu-cl(Neu-int(P)). Therefore Neu-cl(P)=P. Hence P is a Neu-CS in X. By theorem 

3.4, P is a Neu-GbCS in X. 

Example 3.13.Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

7

10
,

5

10
,

3

10
) , (

5

10
,

5

10
,

5

10
)〉 is a 

Neu-GbCS but not a Neu-RCS in X, since Neu-cl(Neu-int(P))=E1C≠ P. 

Theorem 3.14.  Every Neu-GCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-GCS, Neu-cl(P) ⊆H. Therefore Neu-

bcl(P) ⊆Neu-cl(P), Neu-bcl(P)⊆H. Hence P is a Neu-GbCS in X. 

Example 3.15 Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X. where E1 =

〈x, (
2

10
,

5

10
,

8

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

1

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 is a Neu-GbCS 

but not a Neu-GCS in X, since Neu-cl(P)= E1
C ⊈ E1. 

Theorem 3.16. Every Neu-αGCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN).Since P is a Neu-αGCS, Neu-αcl(P)⊆H.Therefore 

Neubcl(P) ⊆ Neu-αcl(P), Neu-bcl(P)⊆H. Hence P is a Neu-GbCS in X. 

Example 3.17.Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X. where E1 =

〈x, (
5

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉.Then the Neutrosophic set P = 〈x, (

5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉 is a Neu-GbCS 

but not a Neu-αGCS in X, since Neu-cl(Neu-int(Neu-cl(A)))= 1N ⊈ E1 

Theorem 3.18. Every Neu-GPCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-GPCS, Neu-Pcl(P)⊆H. Therefore 

Neubcl(P) ⊆ Neu-Pcl(P), Neu-bcl(P) ⊆ H. Hence P is a Neu-GbCS in X. 
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Example 3.19. Let X = {p1, p2}  τN = {0N, E1, E2, 1N}  is be a N.T.on X.where E1 =

〈x, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 ,  E2 = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 Then the Neutrosophic set P =

〈x, (
4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbCS but not a Neu-Gp closed set in X, since Neu-Pcl(P)= E2

C ⊈

E2. 

Theorem 3.20. Every Neu-SCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN).Since P is a Neu-SCS, Neu-bcl(P) ⊆ Neu-Scl(P) ⊆ H. 

Therefore P is a Neu-GbCS in X. 

Example 3.21. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
9

10
,

5

10
,

1

10
) , (

7

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉 is a 

Neu-GbCS but not a Neu-SCS in X, since Neu-int(Neu-cl(P))=1N ⊈ P 

Theorem 3.22. Every Neu-GSCS is a Neu-GbCS but not conversely. 

Proof. Obivious 

Example 3.23.Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
8

10
,

5

10
,

6

10
) , (

0

10
,

5

10
,

1

10
)〉.Then the Neutrosophic set P = 〈x, (

6

10
,

5

10
,

5

10
) , (

2

10
,

5

10
,

3

10
)〉 is a 

Neu-GbCS but not a Neu-GSCS in X, since Neu-int(Neu-cl(P))=1N ⊈ P The following implications 

are true: 

 

Theorem 3.24. The union of any two Neu-GbCSs need not be a Neu-GbCS in general as seen from 

the following example. 

Example 3.25. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

1

10
,

5

10
,

9

10
) , (

8

10
,

5

10
,

2

10
)〉, 

Q = 〈x, (
6

10
,

5

10
,

4

10
) , (

7

10
,

5

10
,

3

10
)〉 is a are Neu-GbCSs but P∩Q is not a Neu-GbCS in X, since Neu-

bcl(P∩Q) =1N ⊈ E1 
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Theorem 3.26. `If P is a Neu-GbCS in (X, τN).such that P⊆Q⊆Neu-bcl(P) then Q is a Neu-GbCS in 

(X, τN). 

Proof. Let Q be a Neutrosophic set in a N-T-S (X, τN).such that Q⊆H and H is a Neu-OS in X. This 

implies P ⊆ H. Since P is a Neu-GbCS, Neu-bcl(P)⊆H. By hypothesis, we have Neu-bcl(Q)⊆Neu-

bcl(Neu-bcl(P))= Neu-bcl(P)⊆H. Hence Q is a Neu-GbCS in X. 

Theorem 3.27. If P is Neutrosophic b open and Neutrosophic generalized b closed in a N-T-S 

(X, τN).then P is Neutrosophic b closed in (X, τN). 

Proof. Since P is Neutrosophic b open and Neutrosophic generalized b closed in (X, τN)., Neu-

bcl(P)⊆P. but P ⊆ Neu-bcl(P). Thus Neu-bcl(P)=P and hence P is Neutrosophic b closed in (X, τN). 

 

4. Neutrosophic generalized b open sets 

In this section, we introduce Neutrosophic generalized b open sets in Neutrosophic topological 

space and study some of their properties. 

Definition 4.1. A Neutrosophic set P is said to be a Neutrosophic generalized b open set (Neu-GbOS 

in short)in (X, τN).if the complement PC is a Neu-GbCS in X. The family of all Neu-GbOSs of a N-T-S 

(X, τN) is denoted by Neu-GbO (X). 

Example 4.2.Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X ,where E1 =

〈x, (
3

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbOS in 

X. 

Theorem 4.3. For any N-T-S (X, τN)., we have the following: 

1. Every Neu-OS is a Neu-GbOS. 

2. Every Neu-bOS is a Neu-GbOS. 

3. Every Neu-αOS is a Neu-GbOS. 

4. Every Neu-GOS is a Neu-GbOS. 

5. Every Neu-GPOS is a Neu-GbOS. 

Proof. Straight forward. 

The converse part of the above results need not be correct in common as seen from using following 

examples. 

Example 4.4. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
4

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

4

10
)〉.Then the Neutrosophic set P = 〈x, (

4

10
,

6

10
,

6

10
) , (

4

10
,

5

10
,

5

10
)〉 is a Neu-GbOS 

but not a Neu-OS in X. 

Example 4.5. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

2

10
,

5

10
,

8

10
) , (

1

10
,

5

10
,

9

10
)〉 is a Neu-GbOS 

but not a Neu-bOS in X. 

Example 4.6. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉.Then the Neutrosophic set P = 〈x, (

3

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

6

10
)〉 is a 

Neu-GbOS but not a Neu-bOS in X. 
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Example 4.7. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
2

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

8

10
,

5

10
,

0

10
) , (

7

10
,

5

10
,

3

10
)〉 is a 

Neu-GbOS but not a Neu-GOS in X. 

Example 4.8.Let X = {p1, p2} τN = {0N, E1, E2, 1N} is be a N.T.on X where  

E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 , E2 = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 .Then the Neutrosophic set P =

〈x, (
6

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbOS but not a Neu-GPOS in X. 

The intersection of any two Neu-GbOSs need not be a Neu-GbOS in general 

Example 4.9. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
6

10
,

5

10
,

3

10
) , (

8

10
,

5

10
,

2

10
)〉, .Then the Neutrosophic sets P = 〈x, (

6

10
,

5

10
,

3

10
) , (

9

10
,

5

10
,

1

10
)〉 

and  Q = 〈x, (
7

10
,

5

10
,

2

10
) , (

8

10
,

5

10
,

2

10
)〉are Neu-GbOSs but P∩Q is not a Neu-GbOS in X. 

Theorem 4.10. A Neutrosophic set P of a N-T-S (X, τN)., is a Neu-GbOS if and only if H⊆Neu-bint(P) 

whenever H is a Neu-CS and H⊆P. 

Proof. Necessity: Suppose P is a Neu-GbOS in X. Let G be a Neu-CS and H⊆P. Then FC is a Neu-OS 

in X such that PC⊆HC. Since PC is a Neu-GbCS, Neu-bcl(PC) ⊆HC.Hence (Neu-bint(P))C ⊆HC . This 

implies H⊆Neu-bint(P). 

Sufficiency: Let P be any Neutrosophic set of X and let H⊆Neu-bint(P) whenever H is a Neu-CS and 

H⊆P.Then P⊆HC and HC is a Neu-OS. By hypothesis, (Neu-bint(P))C⊆HC . Hence Neu-bcl(PC) ⊆HC . 

Hence P is a Neu-GbOS in X. 

Theorem 4.11. If P is a Neu-GbOS in (X, τN)., such that Neu-bint(P) ⊆Q⊆P then Q is a Neu-GbOS in 

(X, τN) 

Proof. By hypothesis, we have Neu-bint(P)⊆Q⊆P. This implies PC⊆QC⊆(Neu-bint(P)) C. That is, 

PC⊆QC⊆Neubcl(PC). Since PC is a Neu-GbCS, by theorem 3.26, QC is a Neu-GbCS. Hence Q is a Neu-

GbOS in X. 

 

5. Applications of Neutrosophic Generalized b Closed Sets 

In this section, we introduce Neutrosophic bU1 2⁄  spaces, Neutrosophic gbU1 2⁄  spaces and 

Neutrosophic gbUb spaces in Neutrosophic topological space and study some of their properties. 

Definition 5.1. A N-T-S (X, τN).,  is called a Neutrosophic bU1 2⁄  space (Neu- bU1 2⁄ space in short) if 

every Neu-bCS in X is a Neu-CS in X. 

Definition 5.2. A N-T-S (X, τN)., is called a Neutrosophic gbU1 2⁄  space (Neu-gbU1 2⁄  space in short) 

if every Neu-GbCS in X is a Neu-CS in X. 

Definition 5.3. A N-T-S (X, τN)., is called a Neutrosophic gbUb space (Neu- gbUb space in short) if 

every Neu-GbCS in X is a Neu-bCS in X. 

Theorem 5.4. Every Neu-gbU1 2⁄  space is a Neu- gbUb  space. 

Proof. Let (X, τN)be a Neu-gbU1 2⁄  space and let P be a Neu-GbCS in X. By hypothesis, P is a Neu-CS 

in X.Since every Neu-CS is a Neu-bCS, P is a Neu-bCS in X. Hence (X, τN)., is a Neu- gbUb space. 
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The converse of the above theorem need not be true in general as seen from the following example. 

Example 5.5. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
9

10
,

5

10
,

9

10
) , (

1

10
,

5

10
,

1

10
)〉,.Then the Neutrosophic set  

P = 〈x, (
2

10
,

5

10
,

3

10
) , (

8

10
,

5

10
,

7

10
)〉  is a Neu- gbUbspace but not a Neu-gbU1 2⁄ space, 

Theorem 5.6. Let (X, τN) .,  be a N-T-S and (X, τN) .,a Neu- gbU1 2⁄  space. Then the following 

statements hold. 

1. Any union of Neu-GbCS is a Neu-GbCS. 

2. Any intersection of Neu-GbOS is a Neu-GbOS. 

Proof. 1. Let {𝐴𝑖}𝑖∈𝑗  be a collection of Neu-GbCS in a Neu-gbU1 2⁄ space (X, τN)., Therefore every Neu-

GbCS is a Neu-CS. but the union of Neu-CS is a Neu-CS. Hence the union of Neu-GbCS is a Neu-

GbCS in X. 

2. It can be proved by taking complement in (1). 

Theorem 5.7. A N-T-S (X, τN)., is a Neu- gbUb space if and only if Neu-Gb(X)=Neu-bO(X). 

Proof. Necessity: Let P be a Neu-GbOS in X. Then PC is a Neu-GbCS in X. By hypothesis, PC is a Neu-

bCS in X. Therefore P is a Neu-bOS in X. Hence Neu-GbO (X)=Neu-bO(X).  

Sufficiency: Let P be a Neu-GbCS in X. Then PC is a Neu-GbOS in X. By hypothesis, PC is a Neu-bOS 

in X. Therefore P is a Neu-bCS in X. Hence(X, τN)., is a Neu- gbUb space. 

Theorem 5.8. A N-T-S (X, τN) is a Neu-gbU1 2⁄  space if and only if Neu-GbO(X) = Neu-O(X). 

Proof. Necessity: Let P be a Neu-GbOS in X. Then PC is a Neu-GbCS in X. By hypothesis, PC is a Neu-

CS in X. Therefore P is a Neu-OS in X. Hence Neu-GbO(X)=Neu-O(X). 

Sufficiency: Let P be a Neu-GbCS in X.Then PC is a Neu-GbOS in X. By hypothesis, PC is a Neu-OS in 

X. Therefore P is a Neu-CS in X. Hence (X, τN)  is a Neu-gbU1 2⁄ space. 

 

6. Neutrosophic generalized b continuity mapping 

In this section we have introduced Neutrosophic generalized b continuity mapping and studied 

some of its properties. 

Definition 6.1. A mapping f: (X, τN) → (Y, σN)is called a Neutrosophic generalized b continuity (Neu-

Gbcontinuity in short) if f-1(Q) is a Neu-Gb CS in (X, τN)for every Neu-CS Q of (Y, σN). 

Example 6.2. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
2

10
,

5

10
,

4

10
) , (

3

10
,

5

10
,

7

10
)〉  E2 =

〈x, (
3

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .Then f is a Neu-Gb 

continuity mapping. 

Theorem 6.3. Every Neutrosophic continuity mapping is a Neu-Gb continuity mapping but not 

conversely. 

Proof. Let f: (X, τN) → (Y, σN)  be a Neutrosophic continuity mapping. Let P be a Neu-CS in Y. Since 

f is Neutrosophic continuity mapping, f-1(P) is a Neu-CS in X. Since every Neu-CS is a Neu-GbCS, f-

1(P) is a Neu-Gb CS in X. Hence f is a Neu-Gb continuity mapping 
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Example 6.4. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)〉  E2 =

〈x, (
4

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

6

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping f: (X, τN) → (Y, σN) by f(p1)=q1 and f(p2)=q2 .The Neutrosophic set P =

〈x, (
5

10
,

5

10
,

4

10
) , (

6

10
,

5

10
,

3

10
)〉   is Neu-CS in Y. Then f-1(P) is Neu-GbCS in X but not Neu-CS in X. 

Therefore, f is a Neu-Gb continuity mapping but not a Neutrosophic continuity mapping. 

Theorem 6.5. Every Neu-α continuity mapping is a Neu-Gb continuity mapping but not conversely. 

Proof. Let f: (X, τN) → (Y, σN) be a Neu- α continuity mapping. Let P be a Neu-CS in Y. Then f-1(P) is a 

Neu-αCS in X. Since every Neu-αCS is a Neu-GbCS, f-1(P) is a Neu-GbCS in X. Hence, f is a Neu-Gb 

continuity mapping. 

Example 6.6. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉  E2 =

〈x, (
3

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

6

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping 

 f: (X, τN) → (Y, σN) by f(p1)=q1 and f(p2)=q2 .The Neutrosophic set P = 〈x, (
5

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

3

10
)〉  is 

Neu-CS in Y. Then f-1(P) is Neu-Gb CS in X but not Neu- αCS in X. Then f is Neu-Gb continuity 

mapping but not a Neu- α continuity mapping. 

Theorem 6.7. Every Neu-R continuity mapping is a Neu-Gb continuity mapping but not conversely. 

Proof. Let f: (X, τN) → (Y, σN)  be a Neu-R continuity mapping. Let P be a Neu-CS in Y. Then by 

hypothesis f-1(P) is a Neu-RCS in X. Since every Neu-RCS is an Neu-GbCS, f-1(P) is a Neu-Gb CS in X. 

Hence, f is a Neu-Gb continuity mapping. 

Example 6.8. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

4

10
,

5

10
,

6

10
)〉  E2 =

〈x, (
3

10
,

5

10
,

7

10
) , (

5

10
,

5

10
,

5

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping  f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .The Neutrosophic 

set P = 〈x, (
7

10
,

5

10
,

3

10
) , (

5

10
,

5

10
,

5

10
)〉  is Neu-CS in Y. Then f-1(P) is Neu-Gb CS in X but not Neu-RCS in 

X. Then f is Neu-Gb continuity mapping but not a Neu-R continuity mapping 

Theorem 6.9. Every Neu-GS continuity mapping is a Neu-Gb continuity mapping but not conversely. 

Proof. Let f: (X, τN) → (Y, σN) be a Neu-GS continuity mapping. Let P be a Neu-CS in Y. Then by 

hypothesis f-1(P) is a Neu-GCS in X. Since every Neu-GSCS is a Neu-Gb CS, f-1(P) is a Neu-GbCS in 

X. Hence f is a Neu-Gb continuity mapping 

Example 6.10. Let X = {p1, p2}, Y = {q1, q2}, E1 = 〈x, (
5

10
,

5

10
,

2

10
) , (

6

10
,

5

10
,

2

10
)〉  E2 =

〈x, (
6

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

2

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 
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respectively. Define a mapping  f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .The Neutrosophic 

set P = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

6

10
)〉  is Neu-CS in Y. Then f-1(P) is Neu-Gb CS in X but not Neu-GSCS 

in X. Then f is Neu-Gb continuity mapping but not a Neu-GS continuity mapping. 

Theorem 6.11.  Every Neu-αG continuity mapping is a Neu-Gb continuity mapping but not 

conversely. 

Proof. Let f: (X, τN) → (Y, σN)  be anNeu-αG continuity mapping. Let P be a Neu-CS in Y. Then, by 

hypothesis f-1(P) is a Neu- αgcs in X. Since, every Neu- αGCS is a Neu-GSCS and every Neu-GSCS is 

a Neu-GbCS, f-1(P) is a Neu-Gb CS in X. Hence f is a Neu-Gb continuity mapping. 

Example 6.12. Let X = {p1, p2}, Y = {q1, q2}, E1 = 〈x, (
5

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉  E2 =

〈x, (
5

10
,

5

10
,

5

10
) , (

7

10
,

5

10
,

3

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping  f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .The Neutrosophic 

set P = 〈x, (
5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉  is Neu-CSin Y. Then f-1(P) is Neu-Gb CS in X but not Neu-αGCS 

in X. Then f is Neu-Gb continuity mapping but not an Neu-αG continuity mapping. 

The following implications are true: 

 

 

 

Theorem 6.13. A mapping f: X → Y is Neu-Gb continuity then the inverse image of each Neu-OS in 

Y is a Neu-αGOS in X. 

Proof. Let P be a Neu-OS in Y. This implies PC is Neu-CS in Y. Since f is Neu-Gb continuity, f-1(PC ) is 

Neu-Gb CS in X. Since f-1(PC )=(f-1(P))C, f-1(P) is a Neu-Gb OS in X. 

Theorem 6.14. Let f: (X, τN) → (Y, σN) be a Neu-Gb continuity mapping, then f is a Neutrosophic 

continuity mapping if X is a Neu-bU1 2⁄  space. 

Proof. Let P be a Neu-CS in Y. Then f-1(P) is a Neu-Gb CS in X, since f is a Neu-Gb Continuity. Since 

X is a Neu-bU1 2⁄  space, f-1(P) is a Neu-CS in X. Hence f is a Neutrosophic continuity mapping. 
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Theorem 6.15. Let f: (X, τN) → (Y, σN) be a Neu-Gb continuity function, then f is a Neu-G continuity 

mapping if X is a Neu-gbU1 2⁄ space 

Proof. Let P be a Neu-CS in Y. Then f-1(P) is a Neu-GbCS in X, by hypothesis. Since X is a Neu-

gbU1 2⁄  space, f-1(P) is a Neu-GCS in X. Hence f is a Neu-G continuity mapping. 

Theorem 6.16. Let f: (X, τN) → (Y, σN) be a Neu-Gb continuity mapping and g: (X, τN) → (Z, ρN) is 

Neutrosophic continuity, then  gof: (X, τN) → (Z, ρN)is a Neu-Gb continuity. 

Proof. Let P be a Neu-CS in Z. Then, g-1(P) is a Neu-CS in Y, by hypothesis. Since, f is a Neu-Gb 

continuity mapping, f-1(g-1(P)) is a Neu-Gb CS in X. Hence, g of is a Neu-Gb continuity mapping. 

 

7 .Conclusion 

Many different forms of closed sets have been introduced over the years. Various interesting 

problems arise when one considers openness. Its importance is significant in various areas of 

mathematics and related sciences, in this paper we have introduced Neutrosophic generalized b 

closed sets in Neutrosophic Topological Spaces and then we presented Neutrosophic generalized b 

continuity mapping and studied some of its properties. Also we investigate the relationships between 

the other existing Neutrosophic continuity functions. This shall be extended in the future Research 

with some applications 
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