Neutrosophic Ideal Theory

Neutrosophic Local Function and Generated Neutrosophic Topology

A. A. Salama* & Florentin Smarandache**

Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt
drsalama44@gmail.com

**Department of Mathematics, University of New Mexico Gallup, NM, USA
smarand@unm.edu

ABSTRACT

Abstract In this paper we introduce the notion of ideals on neutrosophic set which is considered as a generalization of fuzzy and fuzzy intuitionistic ideals studies in [9,11], the important neutrosophic ideals has been given in [4]. The concept of neutrosophic local function is also introduced for a neutrosophic topological space. These concepts are discussed with a view to find new neutrosophic topology from the original one in [8]. The basic structure, especially a basis for such generated neutrosophic topologies and several relations between different neutrosophic ideals and neutrosophic topologies are also studied here. Possible application to GIS topology rules are touched upon.

KEYWORDS: Neutrosophic Set, Intuitionistic Fuzzy Ideal, Fuzzy Ideal, Neutrosophic Ideal, Neutrosophic Topology.

1-INTRODUCTION

The neutrosophic set concept was introduced by Smarandache [12, 13]. In 2012 neutrosophic sets have been investigated by Hanafy and Salama at el [4, 5, 6, 7, 8, 9, 10]. The fuzzy set was introduced by Zadeh [14] in 1965, where each element had a degree of membership. In 1983 the intuitionistic fuzzy set was introduced by K. Atanassov [1, 2, 3] as a generalization of fuzzy set, where besides the degree of membership and the degree of non-membership of each element. Salama at el [9] defined intuitionistic fuzzy ideal for a set and generalized the concept of fuzzy ideal concepts, first initiated by Sarker [10]. Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their classical and fuzzy counterparts. In this paper we will introduce the definitions of normal neutrosophic set, convex set, the concept of α-cut and neutrosophic ideals, which can be discussed as generalization of fuzzy and fuzzy intuitionistic studies.

2-TERMINOLOGIES

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [12, 13], and Salama at el. [4, 5, 6, 7, 8, 9, 10].

3- NEUTROSOPHIC IDEALS [4].

Definition 3.1
Let X be non-empty set and L a non-empty family of NSs. We will call L is a neutrosophic ideal (NL for short) on X if

- \(A \in L \) and \(B \subseteq A \implies B \in L \) [heredity].
• \(A \in L \) and \(B \in L \Rightarrow A \lor B \in L \) [Finite additivity].

A neutrosophic ideal \(L \) is called a \(\sigma \)-neutrosophic ideal if \(A_j \mid j \in \mathbb{N} \leq L \), implies \(\lor_j A_j \in L \) (countable additivity).

The smallest and largest neutrosophic ideals on a non-empty set \(X \) are \(0_N \) and \(NS \) on \(X \). Also, \(N.I \), \(N.I_c \) are denoting the neutrosophic ideals (NL for short) of neutrosophic subsets having finite and countable support of \(X \) respectively. Moreover, if \(A \) is a nonempty \(NS \) in \(X \), then \(B \in NS : B \subseteq A \) is an NL on \(X \). This is called the principal NL of all \(NS \)s denoted by \(NL(A) \).

Remark 3.1

• If \(1_N \notin L \), then \(L \) is called neutrosophic proper ideal.

• If \(1_N \in L \), then \(L \) is called neutrosophic improper ideal.

\(O_N \in L \).

Example 3.1

Any Initiationistic fuzzy ideal \(\ell \) on \(X \) in the sense of Salama is obviously and NL in the form
\[L = A : A = \{ x, \mu_A, \sigma_A, v_A \} \in \ell. \]

Example 3.2

Let \(X = a, b, c \ A = \{ x, 0.2, 0.5, 0.6 \}, B = \{ x, 0.5, 0.7, 0.8 \}, \) and \(D = \{ x, 0.5, 0.6, 0.8 \}, \) then the family
\[L = O_N, A, B, D \] of \(NS \)s is an NL on \(X \).

Example 3.3

Let \(X = a, b, c, d, e \) and \(A = \{ x, \mu_A, \sigma_A, v_A \} \) given by:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\mu_A)</th>
<th>(\sigma_A)</th>
<th>(v_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>(b)</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(c)</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>(d)</td>
<td>0.3</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>(e)</td>
<td>0.3</td>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Then the family \(L = O_N, A \) is an NL on \(X \).

Definition 3.3

Let \(L_1 \) and \(L_2 \) be two NL on \(X \). Then \(L_2 \) is said to be finer than \(L_1 \) or \(L_1 \) is coarser than \(L_2 \) if \(L_1 \subseteq L_2 \). If also \(L_1 \neq L_2 \) then \(L_2 \) is said to be strictly finer than \(L_1 \) or \(L_1 \) is strictly coarser than \(L_2 \).

Two NL said to be comparable, if one is finer than the other. The set of all NL on \(X \) is ordered by the relation \(L_1 \) is coarser than \(L_2 \) this relation is induced the inclusion in \(NS \)s.
The next Proposition is considered as one of the useful result in this sequel, whose proof is clear.

Proposition 3.1

Let \(L_j : j \in J \) be any non-empty family of neutrosophic ideals on a set \(X \). Then \(\bigcap_{j \in J} L_j \) and \(\bigcup_{j \in J} L_j \) are neutrosophic ideal on \(X \).

In fact \(L \) is the smallest upper bound of the set of the \(L_j \) in the ordered set of all neutrosophic ideals on \(X \).

Remark 3.2

The neutrosophic ideal by the single neutrosophic set \(O_N \) is the smallest element of the ordered set of all neutrosophic ideals on \(X \).

Proposition 3.3

A neutrosophic set \(A \) in neutrosophic ideal \(L \) on \(X \) is a base of \(L \) iff every member of \(L \) contained in \(A \).

Proof

(Necessity) Suppose \(A \) is a base of \(L \). Then clearly every member of \(L \) contained in \(A \).

(Sufficiency) Suppose the necessary condition holds. Then the set of neutrosophic subset in \(X \) contained in \(A \) coincides with \(L \) by the Definition 4.3.

Proposition 3.4

For a neutrosophic ideal \(L_1 \) with base \(A \), is finer than a fuzzy ideal \(L_2 \) with base \(B \) iff every member of \(B \) contained in \(A \).

Proof

Immediate consequence of Definitions

Corollary 3.1

Two neutrosophic ideals bases \(A, B \), on \(X \) are equivalent iff every member of \(A \), contained in \(B \) and vice versa.

Theorem 3.1

Let \(\eta = \{ \mu_j, \sigma_j, \gamma_j \} : j \in J \) be a non-empty collection of neutrosophic subsets of \(X \). Then there exists a neutrosophic ideal \(L(\eta) = \{ A \in NSs : A \subseteq \bigvee A_j \} \) on \(X \) for some finite collection \(\{ A_j : j = 1, 2, \ldots, n \subseteq \eta \} \).

Proof

Clear.

Remark 3.3

ii) The neutrosophic ideal \(L(\eta) \) defined above is said to be generated by \(\eta \) and \(\eta \) is called sub base of \(L(\eta) \).

Corollary 3.2

Let \(L_1 \) be an neutrosophic ideal on \(X \) and \(A \in NSs \), then there is a neutrosophic ideal \(L_2 \) which is finer than \(L_1 \)
and such that \(A \in L_2 \) iff
\[
A \lor B \in L_2 \text{ for each } B \in L_1.
\]

Corollary 3.3

Let \(A = \langle x, \mu_A \cdot \sigma_A, V_A \rangle \in L_1 \) and \(B = \langle x, \mu_B \cdot \sigma_B, V_B \rangle \in L_2 \), where \(L_1 \) and \(L_2 \) are neutrosophic ideals on the set \(X \).

then the neutrosophic set \(A^*B = \langle x, \mu_{A \cdot B} \cdot \sigma_{A \cdot B}, V_{A \cdot B} \rangle \in L_1 \lor L_2 \) on \(X \) where \(\mu_{A \cdot B} \subseteq \mu_A \cdot \mu_B \cdot \sigma_{A \cdot B} \subseteq x \in X \cdot \sigma_{A \cdot B} \cdot \sigma_{A \cdot B} \), may be \(\sigma_A(x) \land \sigma_B(x) \lor \sigma_A(x) \lor \sigma_B(x) \) and \(V_{A \cdot B} \subseteq V_A \cdot V_B \subseteq x \in X \).

4. Neutrosophic local Functions

Definition 4.1. Let \((X, \mathcal{T})\) be a neutrosophic topological spaces (NTS for short) and \(L \) be neutrosophic ideal (NL, for short) on \(X \). Let \(A \) be any NS of \(X \). Then the neutrosophic local function \(NA^* \) of \(A \) is the union of all neutrosophic points (NP, for short) \(C \in \beta, \gamma \) such that if \(U \subseteq N \in C \beta, \gamma \) and \(NA^*(L, \mathcal{T}) = \sigma(C, \beta, \gamma \in X) : A \cup U \notin L \) for every \(\cup \) of \(C \beta, \gamma \), \(NA^*(L, \mathcal{T}) \) is called a neutrosophic local function of \(A \) with respect to \(\mathcal{T} \) and \(L \) which it will be denoted by \(NA^*(L, \mathcal{T}) \), or simply \(NA^* \).

Example 4.1. One may easily verify that.
If \(L = \{0, 1\} \), then \(NA^*(L, \mathcal{T}) = Ncl(A, \mathcal{T}) \), for any neutrosophic set \(A \subseteq NS \) on \(X \).

If \(L = \) all \(NS \)s on \(X \) then \(NA^*(L, \mathcal{T}) = 0, \) for any \(A \subseteq NS \) on \(X \).

Theorem 4.1. Let \(\mathcal{T} \) be a NTS and \(L_1, L_2 \) be two neutrosophic ideals on \(X \). Then for any neutrosophic sets \(A, B \) of \(X \) then the following statements are verified

i) \(A \subseteq B \) \(\Rightarrow \) \(NA^*(L_1, \mathcal{T}) \subseteq NB^*(L_1, \mathcal{T}) \),

ii) \(L_1 \subseteq L_2 \) \(\Rightarrow \) \(NA^*(L_2, \mathcal{T}) \subseteq NA^*(L_1, \mathcal{T}) \).

iii) \(NA^* = Ncl(A, \mathcal{T}) \subseteq Ncl(A) \).

iv) \(NA^* \subseteq NA \).

v) \(N \cup B \subseteq NB^* \).

vi) \(N(A \cup B) = NA^*(L_2, \mathcal{T}) \subseteq NA^*(L_1, \mathcal{T}) \).

vii) \(L \subseteq L \) \(\Rightarrow \) \(N \cup \subseteq NB^* \).

viii) \(NA^*(L_1, \mathcal{T}) \) is neutrosophic closed set .

Proof.

i) Since \(A \subseteq B \), let \(p = C, \beta, \gamma \subseteq NA^* \) \(\subseteq \) then \(A \cup U \notin L \) for every \(U \subseteq N \). By hypothesis we get \(B \cup U \notin L \), then \(p = C, \beta, \gamma \subseteq NB^* \).

ii) Clearly, \(L_1 \subseteq L_2 \) implies \(NA^*(L_1, \mathcal{T}) \subseteq NA^*(L_2, \mathcal{T}) \) as there may be other \(IFS \)s which belong to \(L_2 \) so that for \(\mathcal{GFP} \) \(p = C, \beta, \gamma \subseteq NA^* \) but \(C, \beta, \gamma \subseteq NB^* \).

iii) Since \(O_N \subseteq L \) for any \(NL \) on \(X \), therefore by (ii) and Example 3.1, \(NA^* \subseteq NA^* \) \(\subseteq \) \(Ncl(A, \mathcal{T}) \) for any \(NA \) on \(X \). Suppose \(p_1 = C, \beta, \gamma \subseteq Ncl(A, \mathcal{T}) \). So for every \(U \subseteq N \) \(\subseteq \), \(NA^* \cup U \notin O_N \), there exists \(p_2 = C, \beta, \gamma \subseteq A \cup U \) such that for every \(nbd \) of \(p_2 \) \(\subseteq N \) \(\subseteq \). Since \(A \cup U \notin L \), therefore \(p_1 = C, \beta, \gamma \subseteq A \cup U \subseteq L \).

and so \(Ncl(A^*) \subseteq NA^* \). While, the other inclusion follows directly. Hence \(NA^* = Ncl(NA^*) \). But the inequality \(NA^* \subseteq Ncl(NA^*) \).

iv) The inclusion \(NA^* \cap NB^* \subseteq N \oplus B \) follows directly by (i). To show the other implication, let \(p = C(\alpha, \beta, \gamma) \in N \oplus B \) for every \(U \in N(p) \), \(\exists B \neq U \subseteq L \), i.e., \(\exists U \sqcap B \neq U \sqcap B \). Then, we have two cases \(A \sqcap U \subseteq L \) and \(B \sqcap U \subseteq L \) or the converse, this means that \(\exists U_1, U_2 \in N \oplus C(\alpha, \beta, \gamma) \) such that \(A \sqcap U_1 \subseteq L \) and \(B \sqcap U_2 \subseteq L \) and \(A \sqcap U_1 \neq U_2 \subseteq L \) and \(B \sqcap U_1 \neq U_2 \subseteq L \). Then the inclusion \(NA^* \subseteq Ncl(NA^*) \).

vi) By (iii), we have \(NA^* = Ncl(NA^*) \subseteq Ncl(NA^*) = NA^* \).

Let \(\tilde{\mathcal{K}}, \tilde{\tau} \) be a GIFS and \(L \) be GIFL on \(X \). Let us define the neutrosophic closure operator \(cl^*(A) = A \cup A^* \) for any GIFS \(A \) of \(X \). Clearly, let \(Ncl^*(A) \) is a neutrosophic operator. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set.

\[\tilde{\tau}^*(A) = A \cup A^* \]

for every \(N \tilde{\tau}^*(L) \) be a neutrosophic set. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set. Let \(N \tilde{\tau}^*(L) \) be a neutrosophic set.

Theorem 4.2. Let \(\tilde{\tau}_1, \tilde{\tau}_2 \) be two neutrosophic topologies on \(X \). Then for any neutrosophic ideal \(L \) on \(X \), \(\tilde{\tau}_1 \leq \tilde{\tau}_2 \) implies \(NA^*(L, \tau_2) \subseteq NA^*(L, \tau_1) \), for every \(A \in L \) then \(N \tilde{\tau}^*_1 \subseteq N \tilde{\tau}^*_2 \).

Proof. Clear.

A basis \(\tilde{\mathcal{B}} \), \(\tilde{\tau}^* \) for \(N \tilde{\tau}^*(L) \) can be described as follows:

\[\tilde{\tau}^*(A) = A \cup B \in L \]

Then we have the following theorem.

Theorem 4.3. \(\tilde{\mathcal{B}} \), \(\tilde{\tau} \) is a neutrosophic ideal \(L \) on \(X \). In particular, we have for two neutrosophic ideals \(\tilde{\tau}_1, \tilde{\tau}_2 \) on \(X \), \(\tilde{\tau}_1 \subseteq \tilde{\tau}_2 \).

Proof. Straight forward.

The relationship between \(\tilde{\tau} \) and \(N \tilde{\tau}^*(L) \) established throughout the following result which have an immediately proof.

Theorem 4.4. Let \(\tilde{\tau}_1, \tilde{\tau}_2 \) be two neutrosophic topologies on \(X \). Then for any neutrosophic ideal \(L \) on \(X \), \(\tilde{\tau}_1 \subseteq \tilde{\tau}_2 \) implies \(N \tilde{\tau}^*_1 \subseteq N \tilde{\tau}^*_2 \).

Theorem 4.5 : Let \(\tilde{\mathcal{F}}, \tilde{\mathcal{T}} \) be a neutrosophic on \(X \) and \(L_1, L_2 \) be two neutrosophic ideals on \(X \). Then for any neutrosophic set \(A \) in \(X \), we have

i) \(NA^*(A) \cup L_2, \tilde{\tau}_2 = NA^*(A) \cup L_1, \tilde{\tau}_1 \)

ii) \(N \tilde{\tau}^*(L_2) \) is a neutrosophic ideal \(L \) on \(X \). In particular, we have for two neutrosophic ideals \(L_1, L_2 \) on \(X \), \(N \tilde{\tau}^*_1 \subseteq N \tilde{\tau}^*_2 \).

Proof. Let \(p = C(\alpha, \beta, \gamma) \in \tilde{\mathcal{F}} \cup L_2, \tilde{\tau}_2 \) this means that there exists \(U_p \in N \tilde{\mathcal{F}} \) such that \(A \cup U_p \in \tilde{\mathcal{F}} \cup L_2 \). There exists \(\ell_2 \in L_1 \) and \(\ell_2 \in L_2 \) such that \(A \cup U_p \in \ell_2 \cap L_2 \). because of the heredity of \(L_1 \) and, assuming \(\ell_1 = \ell_2 \).

Thus we have \(A \cup U_p \subseteq A \cup L_2 \) and \(A \cup U_p \subseteq A \cup L_2 \) therefore \(U_p - \ell_1 \subseteq A \subseteq L_2 \), and \(U_p - \ell_1 \subseteq A \subseteq L_2 \).

Hence \(p = C(\alpha, \beta, \gamma) \in NA^*(A) \cup L_2, \tilde{\tau}_2 \) or \(p = C(\alpha, \beta, \gamma) \in NA^*(A) \cup L_2, \tilde{\tau}_2 \) because \(p \) must belong to either \(\ell_1 \) or \(\ell_2 \) but not to both. This gives \(NA^*(A) \cup L_2, \tilde{\tau}_2 \supseteq NA^*(A) \cup L_2, \tilde{\tau}_1 \).

To show the second inclusion, let us assume \(p = C(\alpha, \beta, \gamma) \in NA^*(A) \cup L_2, \tilde{\tau}_2 \) this implies that \(U_p \subseteq N \tilde{\mathcal{F}} \).

and \(\ell_2 \in L_2 \) such that \(A \cup U_p \subseteq A \subseteq L_1 \). By the heredity of \(L_2 \), if we assume that \(\ell_2 \leq A \) and define \(\ell_1 = U_p - \ell_2 \). Then we have \(A \cup U_p \subseteq \ell_2 \subseteq \ell_1 \cup L_2 \). Thus,
\[N^* A_1 \cup L_2, \tau \leq N^* A_1, \tau^*(L_2) \wedge N^* A_2, \tau^*(L_2) \] and similarly, we can get \[A_1^* \cup L_2, \tau \leq A_1^* , \tau^*(L_2) \]. This gives the other inclusion, which complete the proof.

Corollary 4.1. Let \(\mathfrak{A}, \tau \) be a NTS with neutrosophic ideal \(L \) on \(X \). Then

i) \(N^*(L, \tau) = N^*(L, \tau^*) \) and \(N^*(L) = N(N^*(L))^*(L) \).

ii) \(N^*(L_1 \cup L_2) = \mathfrak{A}^*(L_1) \cap \mathfrak{A}^*(L_2) \)

Proof. Follows by applying the previous statement.

REFERENCES

