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Aims and Scope

Neutrosophic theory and its applications have been expanding in all directions at an
astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets
and Systems”. New theories, techniques, algorithms have been rapidly developed. One of
the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set
with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The
different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough
set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed
in the literature in a short period of time. Neutrosophic set has been an important tool in the
application of various areas such as data mining, decision making, e-learning, engineering,
medicine, social science, and some more.

Florentin Smarandache, Memet Sahin, Derya Bakbak, Vakkas Ulucay & Abdullah Kargin
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Preface

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy.
Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent
information. Neutrosophic set approaches are suitable to modeling problems with
uncertainty, indeterminacy and inconsistent information in which human knowledge is
necessary, and human evaluation is needed.

Neutrosophic set theory firstly proposed in 1998 by Florentin Smarandache, who also
developed the concept of single valued neutrosophic set, oriented towards real world
scientific and engineering applications. Since then, the single valued neutrosophic set theory
has been extensively studied in books and monographs introducing neutrosophic sets and its
applications, by many authors around the world. Also, an international journal -
Neutrosophic Sets and Systems started its journey in 2013.

http://fs.unm.edu/neutrosophy.htm.

This first volume collects original research and applications from different perspectives
covering different areas of neutrosophic studies, such as decision-making, neutroalgebra,
neutro metric, and some theoretical papers.


http://fs.unm.edu/neutrosophy.htm
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Chapter One

History of SuperHyperAlgebra
and
Neutrosophic SuperHyperAlgebra
(revisited again)

Florentin Smarandache
The University of New Mexico
Mathematics, Physics, and Natural Science Division,
705 Gurley Ave., Gallup, NM 87301, USA
E-mail: smarand@unm.edu

ABSTRACT

We recall the topic of the nth-Powerset of a Set, and the concepts built on it such as
SuperHyperOperation, Super-HyperAxiom, SuperHyperAlgebra, and their corresponding
Neutrosophic SuperHyperOperation, Neutrosophic Super-HyperAxiom and Neutrosophic
SuperHyperAlgebra are re-called and then prolonged to the Neutrosophic SuperHy-
perStructures {or more accurately Neutrosophic (m,n)-SuperHyperStructures}.

Keywords: nth-Powerset of a Set, HyperAxiom; HyperOperation; Hy-perAlgebra; SuperHyperAxiom,
SuperHyperOperation; Su-perHyperAlgebra, Neutrosophic SuperHyperAlgebra; Su-perHyperStructure;
Neutrosophic SuperHyperStructure.

1. History of HyperAlgebra and SuperHyperAlgebra

We revisit the SuperHyperAgebra and Neutrosophic SuperHyperAlgebra introduced
and developed by Smarandache [2, 3, 4] between 2016 — 2022.

We recall that F. Marty [1] has introduced in 1934 the

HyperAlgebra that is based on HyperOperations and consequently on HyperAxioms.
More information and the evolution from HyperAlgebra to SuperHyperAlgebra &
Neutrosophic SuperHyperAlgebra are presented below.

2. Definition of classical HyperOperations
Let U be a universe of discourse and H a non-empty set, H c U.

A classical Binary HyperOperation o, is defined as follows:

10
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o, :H> = P.(H)
where H is a discrete or continuous set, and P.(H) is the powerset of H without the empty-
set ¢ or B.(H)=P(H)—{¢}.
A classical m-ary HyperOperation o, is defined as:
o tH™ —> P.(H)
for integer m > 1. For m = 1 one gets a Unary HyperOperation.

The classical HyperStructures are structures endowed with classical HyperOperations
and classical HyperAxioms.

3. Definition of the n™"-Powerset of a Set [2]

The n"-Powerset of a Set was introduced in [2, 3, 4] in the following way:

P™(H), as the n'"-Powerset of the Set H, for integer n > 1, is recursively defined as:

P2(H) = P(P(H)), P3(H) = P(P*(1)) = P (P(P(D))). ...

P™(H) = P(P"*(H)),
where P°(H) & H, and P1(H) & P(H).

The n™"-Powerset of a Set better reflects our complex reality, since a set H (that may
represent a group, a society, a country, a continent, etc.) of elements (such as: people, objects,
and in general any items) is organized onto subsets P(H), and these subsets are again
organized onto subsets of subsets P(P(H)), and so on [Smarandache, 2016].

That’s our world.

4. Neutrosophic HyperOperation and Neutrosophic HyperStructures [1, 2]

In the classical HyperOperation and classical HyperStructures, the empty-set ¢ does
not belong to the power set, or P.(H) =P(H) —{¢}.
However, in the real world we encounter many situations when a HyperOperation o is:
e indeterminate, for example a o b = ¢ (unknown, or undefined),
e or partially indeterminate, for example: c o d = {[0.2,0.3], ¢ }.
In our everyday life, there are many more operations and laws that have some degrees
of indeterminacy (vagueness, unclearness, unknowingness, contradiction, etc.), than those
that are totally determinate.

That’s why in 2016 we have extended the classical HyperOperation to the Neutrosophic
HyperOperation, by taking the whole power P(H) (that includes the empty-set¢ as well),

instead of P.(H) (that does not include the empty-set ¢ ), as follow.

3.1 Definition of Neutrosophic HyperOperation

Let U be a universe of discourse and H a non-empty set, H c U.

A Neutrosophic Binary HyperOperation o, is defined as follows:
0, H?> > P(H)
where H is a discrete or continuous set; P(H) is the powerset of H that includes the empty-
set ¢.

A Neutrosophic m-ary HyperOperation o_ is defined as:

m

11
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o, tH™ > P(H)
for integer m > 1. Similarly, for m = 1 one gets a Neutrosophic Unary HyperOperation.

3.2 Neutrosophic HyperStructures

A Neutrosophic HyperStructure is a structured endowed with Neutrosophic
HyperOperations.

5. Definition of SuperHyperOperations

We recall our 2016 concepts of SuperHyperOperation, SuperHyperAxiom,
SuperHyperAlgebra, and their corresponding Neutrosophic SuperHyperOperation
Neutrosophic SuperHyperAxiom and Neutrosophic SuperHyperAlgebra [2].

Let R"(H) be the n"-powerset of the set H such that none of P(H), P?(H), ..., P"(H)
contain the empty set ¢ .

Also, let P"(H) be the n"-powerset of the set H such that at least one of the P?(H), ...,
P"(H) contain the empty set¢.

The SuperHyperOperations are operations whose codomain is either R."(H) and in this

case one has classical-type SuperHyperOperations, or P*(H) and in this case one has
Neutrosophic SuperHyperOperations, for integer n>2.

5.1 Classical-type Binary SuperHyperOperation

*

(2. 1S defined as follows:

A classical-type Binary SuperHyperOperation o

*

on i H? > P"(H)

where P"(H) is the n-powerset of the set H, with no empty-set.

5.2 Examples of classical-type Binary SuperHyperOperation

1) Let H = {a, b} be a finite discrete set; then its power set, without the empty-set ¢,
is:

P(H) = {a,b,{a, b}}, and:

P2(H) = P(P(H)) = P({a,b,{a,b}}) =
{a, b,{a, b}, {a, {a, b}}, {b, {a, b}}, {a, b,{a, b}} }

o2 i H? = P*(H)

Table 1. Example 1 of classical-type Binary SuperHyperOperation.

°22,2> a b
a {a,{a,b}} {b,{a, b}}
b a {a,b,{a,b}}

12
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2) Let H = [0, 2] be a continuous set.
P(H) = P(]0, 2]) = {A|A < [0,2],A = subset},
P2(H) = P(P([0,2])).
Letc,d € H.

*

o2 i H? = P*(H)

Table 2. Example 2 of classical-type Binary SuperHyperOperation.

022‘2) Cc d
c {[0,0.5],[1,2]} {0.7,0.9,1.8}
d {2.5} {(0.3,0.6),{0.4,1.9},2}

4.3 Classical-type m-ary SuperHyperOperation {or more accurate
denomination (m, n)-SuperHyperOperation}

Let U be a universe of discourse and a non-empty set H, H c U. Then:
(m n) " H " - P (H)

where the integers m,n > 1,
H"=HXHX..XH,

m times

and P"(H)is the n™-powerset of the set H that includes the empty-set.

This SuperHyperOperation is a m-ary operation defined from the set H to the n'"-
powerset of the set H.

4.4 Neutrosophic m-ary SuperHyperOperation {or more accurate denomination
Neutrosophic (m, n)-SuperHyperOperation}

Let U be a universe of discourse and a non-empty set H, H < U. Then:
©(mn) - H™ - P"(H)
where the integers m,n > 1; P"(H) - the n-th powerset of the set H that includes the empty-
set.

6. SuperHyperAxiom

A classical-type SuperHyperAxiom or more accurately a (m, n)-SuperHyperAxiom
is an axiom based on classical-type SuperHyperOperations.
Similarly, a Neutrosophic SuperHyperAxiom {or Neutrosphic (m, n)-
SuperHyperAxiom} is an axiom based on Neutrosophic SuperHyperOperations.
There are:
e Strong SuperHyperAxioms, when the left-hand side is equal to the right-hand
side as in non-hyper axioms,
e and Week SuperHyperAxioms, when the intersection between the left-hand
side and the right-hand side is non-empty.
For examples, one has:

13
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e Strong SuperHyperAssociativity, when (xoy)oz=xo(yoz) , for all
x,y,z € H™, where the law o :H" —>PR"(H);

e and Week SuperHyperAssociativity, when [(xoy)oz]N[xe(yoz)] # ¢,
forall x,y,z € H™.

7. SuperHyperAlgebra and SuperHyperStructure

A SuperHyperAlgebra or more accurately (m-n)-SuperHyperAlgebra is an algebra
dealing with SuperHyperOperations and SuperHyperAxioms.

Again, a Neutrosophic SuperHyperAlgebra {or Neutrosphic (m, n)-
SuperHyperAlgebra} is an algebra dealing with Neutrosophic SuperHyperOperations and
Neutrosophic SuperHyperOperations.

In general, we have SuperHyperStructures {or (m-n)-SuperHyperStructures}, and
corresponding Neutrosophic SuperHyperStructures.

For  example, there are  SuperHyperGrupoid,  SuperHyperSemigroup,
SuperHyperGroup, SuperHyperRing, SuperHyperVectorSpace, etc.

8. Distinction between SuperHyperAlgebra vs. Neutrosophic SuperHyperAlgebra

i.  If none of the power sets PX¥(H), 1 < k < n, do not include the empty set ¢,
then one has a classical-type SuperHyperAlgebra;

ii.  Ifat least one power set, P*(H), 1 < k < n, includes the empty set ¢, then one
has a Neutrosophic SuperHyperAlgebra.

9. Conclusion

A set H (that may represent a group, a society, a country, a continent, etc.) of elements
(such as: people, objects, and in general any items) is organized onto subsets P(H), and these
subsets in their turn are again organized onto subsets of subsets P(P(H)), and so on, the n'"-
PowerSet of a Set [2] was introduced to better reflect our world.

The most general form of algebras, which is based on the n"-Powerset of a Set, called
SuperHyperAlgebra {or more accurate denomination (m, n)-SuperHyperAlgebra} and the
Neutrososophic SuperHyperAlgebra, and their extensions to SuperHyperStructures and
respectively Neutrosophic SuperHyperAlgebra in any field of knowledge are recalled.
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Chapter Two

A Study on the Properties of AntiTopological Space

Bhimraj Basumatary! and Jeevan Krishna Khaklary?
'Department of Mathematical Sciences, Bodoland University, Kokrajhar, 783370, India
2Central Institute of Technology, Kokrajhar, 783370, India
E-mail: brbasumataryl4@gmail.com, jk.khaklary@cit.ac.in

ABSTRACT

In the current study, the properties of Interior, Closure and Boundary points of the antiTopological studies
have been observed and studied by introducing the ideas of Antilnterior, AntiClosure, and AntiBoundary. It
has been found that some of the properties that are valid in general topological spaces are also valid in anti-
topological spaces while some of the properties are found to be not valid, as in the case that the Antilnterior of
a set is not the smallest closed set that contains the set as in the general topological spaces.

Keywords: Antilnterior, AntiClosure, AntiBoundary, AntiTopological space.

INTRODUCTION

General topology is the branch where most of the studies had been done by all the founders of topology
and the various properties that the subsets of the topology have, like continuity, connectedness, compactness,
etc. But, most of the properties that have been accepted to be of the topological spaces are, as put forward by
the ones who defined them, without any actual testing on whether they apply to the real-world situations,
whether they are true for all cases or whether there may exist some cases where those cases are not applicable
in general. That is, where the proposal of a fuzzy set came in 1965 by Lofti A. Zadeh [39], and it is where
elements of a set are assigned degree of membership and degree of non-membership. And, in due course of
time, the case of neutrosophy had to be ushered in by Florentine Smarandache in 1998. The neutrosophic set
encompasses three components, namely the truth (T), the indeterminacy (1), and the falsity (F) of a statement
or a property. Many authors (Sahin et al. [40, 41, 56, 57], Hassan et al. [42], Ulucay et al. [43-45, 48-50],
Broumi et al. [46]) applied the concepts of the neutrosophic set to various field [58-84]. The present study
deals with the falsity component of the neutrosophic set. Anti-topological space was defined along with neutro-
topological space by Sahin et al. [25].

In recent years, there has been a surge in academic interest in neutrosophic set theory. The concept of
neutro-structures and anti-structures was first defined by Florentin Smarandache [30, 31]. Also, a lot of
researchers studied neutroalgebra [51-55]. Sahin et al. [25] discussed the idea of neutro-topological space and
anti-topological space. Smarandache [33] studied NeutroAlgebra as a generalization of partial algebra.
Agboola [1-3] investigated the idea of NeutroRings, NeutroGroups, and finite NeutroGroups of type-NG.
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Smarandache [34] proposed the generalizations and alternatives of Classical Algebraic Structures to
NeutroAlgebraic ~ Structures and AntiAlgebraic  Structures. Al-Tahan et al. [6] studied the
NeutroOrderedAlgebra, NeutroHyper structures, and their properties.

Smarandache [30-31] founded and studied the concept of neutro-structures and anti-structures. From
the concepts of NeutroAlgebra, he showed that if a statement (theorem, lemma, consequence, property, etc.) is
totally true in a classical Algebra, it does not mean that it is also totally true in a NeutroAlgebra or in an
AntiAlgebra. It depends on the operations and axioms (if they are totally true, partially true, totally false, or
partially or totally indeterminate) it is based upon.

For examples:

Q) Let (A4,*) be a NeutroAlgebra (it has NeutroOperations or NeutroAxioms while the others are classical
Operations and classical Axioms, and no AntiOperation and no AntiAxiom).

Statement: If x, y in 4, then x x y in A.
This statement is true for classical Algebra.
But for a NeutroAlgebra we have:

(a) The Statement is true if the operation = is a classical Operation (totally true).
(b) The Statement is true if the operation * is a NeutroAxiom,
but x, y both belong to the partially true subset;
(c) The Statement is false if the operation * is a NeutroAxiom,
and at least one of x or y belongs to the partially false subset.
2 Similarly, for the NeutroGroup.
Let A be a NeutroGroup, and x in A. Then its inverse x~1 is also in A. This is true for the classical Group.
For the NeutroGroup:

@) This is true if the inverse element axiom is totally true;
(b) This is true if the Neutrolnverse element axiom is partially true, and x belongs to the true subset;
(© This is false otherwise.

By observing the above concepts, the properties of Interior, Closure and Boundary points of the
AntiTopological studies have been observed.

BACKGROUND

Definition 2.1: [34] The NeutroSophication of the Law

(i) Let X be a non-empty set and * be binary operation. For some elements (a, b) € (X,X), (a * b) €
X (degree of well defined (T)) and for other elements (x,v),(p,q) € (X,X); [x*y is
indeterminate (degree of indeterminacy (1)), or p * g € X (degree of outer-defined (F)],where (T,
I, F) is different from (1,0,0) that represents the Classical Law, and from (0,0,1) that represents the
AntiLaw.

(i) In NeutroAlgebra, the classical well-defined for * binary operation is divided into three regions:
degree of well-defined (T), degree of indeterminacy (/) and degree of outer-defined (F) similar to
neutrosophic set and neutrosophic logic.

Definition 2.2: [25] Let X be the non-empty set and 7 be a collection of subsets of X. Then t is said to be a
NeutroTopology on X and the pair (X,7) is said to be a NeutroTopological space, if at least one of the
following conditions hold good:
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) [(ByETXyET)or Xy ET,04 €T)] O [y, Xy E- T].

(i) For some n elements a,, a,, ..., a, € 7, N}, a; € T [degree of truth T] and for other n elements
by, by, .., by € T,01, 02, Py €ET; [(N=, b; € T) [degree of falsehood F] or (N;p; is
indeterminate (degree of indeterminacy I)], where n is finite; where (T, I, F) is different from
(1,0,0) that represents the Classical Axiom, and from (0,0,1) that represents the AntiAxiom.)].

(iii) For some n elements a,, a,, ..., a, € 7, U;—, a; € T [degree of truth T] and for other n elements
by, by, .., by € T,01, D2, Pn €ET;[(U;z; b; & T) [degree of falsehood F] or (U;;p; is
indeterminate (degree of indeterminacy I)], where n is finite; where (T, I, F) is different from
(1,0,0) that represents the Classical Axiom, and from (0,0,1) that represents the AntiAxiom.)].

Remark 2.1: [25] The symbol “€_” will be used for situations where it is an unclear appurtenance (not sure if
an element belongs or not to a set). For example, if it is not certain whether “a” is a member of the set P, then
itis denoted bya €_ P.

Theorem 2.1: [25] Let (X, T) be a classical topological space. Then (X, — @) is a NeutroTopological space.
Theorem 2.2: [25] Let (X, 1) be a classical topological space. Then (X, — X) is a NeutroTopological space.
Definition 2.3: [34]: The Anti-sophication of the Law (totally outer-defined)

Let X be a non-empty set and * be a binary operation. For all double elements (x,y) € (X,X),x*y ¢ X
(totally outer-defined).

Definition 2.4: [25]: AntiTopological space: Let X be a non-empty set, the a collection of subsets of X. If the

following conditions {i, ii, iii} are satisfied then, tis called an anti-topology and (X, 7) is called an anti-
topological space.

i) 0,X¢rt

i) For all q1,95,93, .-, 9, €T, N q; & T, Where n is finite.

iii) For all 1,95, 95, ..., 4, € T, Uy q; & T, Where | is an index set.

MAIN FOCUS OF THE CHAPTER

Proposition 3.1: In an AntiTopological space. The following conditions (i), (ii), and (iii) are satisfied.

0] Empty set and X is not AntiOpen.
(i) Union of the AntiOpen sets is not AntiOpen.
(iii) Intersection of the AntiOpen sets is not AntiOpen.

Examples 3.1: Let X = {a,b,c,d} and T = {{a, b}, {c,d}, {b, c}}. Then (X, 7) is antiTopological space.
0) Here @ and X are not AntiOpen.
(i) {a,b}u{c,d} ={a,b,c,d};{a,b}u{b,c} ={a,b,c};{c,d} U {b,c} ={b,c,d} which are all
not AntiOpen in (X, 7).
(iii) Also,{a, b} n{c,d} = @;{a,b} n {b, c} = {b};{c,d} n {b, c} = {c}, which are all not AntiOpen
in (X, 7).

Definition 3.1: Let (X, ) be anAntiTopological space over X and A is subset on X. Then, the Antilnterior of
A isthe union of all AntiOpen subsets of A. Clearly, Antilnterior of A is the biggest AntiOpen set over X which
is contained A.
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That is, Antilnt(A) = U {B,where B is open and B € A}

Proposition 3.2: Let (X, 1) be an AntiTopological space over X and A is subset on X. If A is AntiOpen, then
Antilnt(4) = A.

Proof: By definition, Antilnt(A) = U {B, where B is open and B < A}.

If A is AntiOpen, and B c 4 and B is AntiOpen then A N B = B and it will violate the condition (iii) of the
definition of the AntiTopological Spaces. Hence, B & A. So B = A. Hence, Antilnt(4) = A.

Proposition 3.3: In an AntiTopological space (X, 7), Antilnt(A) ¢ 7 if A is not AntiOpen.
Proof: By definition, Antilnt(A) = U {B,where B is AntiOpen and B € A}.

By Proposition 3.2, if A is AntiOpen, then Antilnt(A) = A. If A is not AntiOpen, then either Antilnt(A) =
@ or, Antilnt(A) = B U C, where B and C are AntiOpen. And B U C cannot be contained in 7 otherwise it will
violate condition (ii) of the Proposition 3.1.

Example 3.2: Let X = {1,2,3,4} and = = {{1,2},{2,3},{3,4}}.

Let A = {1,2,3}, then Antilnt(A) = {1,2} U {2,3} = {1,2,3} ¢ .

And, A = {2,4}, then AntiInt(A) = @ & 7.

Observation: From Example 3.2, it is observed that Antilnt(A) is equal to A even if A is not AntiOpen.

Proposition 3.4: Let (X, 7) be AntiTopological space. Then
0] A € B = Antilnt(A) € Antilnt(B)
(i) Antilnt(A N B) € Antilnt(A) N Antilnt(B)
(iii) Antilnt(A) U Antilnt(B) € Antilnt(AU B)
(iv)  Antilnt(Antilnt(A)) = Antilnt(A) if A is AntiOpen.

Proof:

0] Both A and B cannot be AntiOpen at the same time because in that case A cannot be a subset of
B. Suppose that A is AntiOpen, and B is not. Then, Antilnt(A) = A and Antilnt(B) = {A U C;}
since A € B and A is AntiOpen, where C; are AntiOpen. Hence, Antilnt(A) € Antilnt(B) in
this case. Next, suppose that B is AntiOpen while A is not, then Antilnt(B) = B and
AntiInt(A) =U {C, C is AntiOpen} and C # B. By Proposition 3.3, Antilnt(A) ¢ tand A S
B. The only possibility for this is that Antilnt(4) = @.

(i) ForanyAandB,AnNB < AandANnB S B.

So, we have: Antilnt(A N B) € Antilnt(A) and Antilnt(A N B) € Antilnt(B)
Hence, Antilnt(A N B) € Antilnt(A) N Antilnt(B)

(iii) ForanyAandB, A€ AUuBandB € AUB.

So, we have: Antilnt(A) € Antilnt(A U B) and Antilnt(B) € Antilnt(AU B)
Hence, Antilnt(A) U Antilnt(B) € Antilnt(A U B)

(iv) The proof is direct by Proposition 3.2.

Definition 3.2: Let (X, t) be an AntiTopological space and a subset A of X is said to be 7-AntiClosed set if
and only if its complement A€ is an AntiOpen set.
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Proposition 3.5: In an AntiTopological space. The conditions (i) and (ii) are satisfied.
(1) The intersection of AntiClosed sets isnot AntiClosed.
(i) Union of AntiClosed sets is notAntiClosed.

Definition 3.3: Let (X, 7) be anAntiTopological space over X and A is subset on X. Then, the AntiClosure of
A is the intersection of all AntiClosed super sets of A. Clearly, AntiClosure of A is not the smallest AntiClosed
set over X containing A, which is shown in the Proposition 3.6 (ii) below.

That is, AntiCl(A) =N {G: G 2 A and G is AntiClosed}

Example 3.3: Let X ={1,234,5} and =={{1},{2},{3},{5)}} . Then, the AntiClosed sets are:
{2,3,4,5},{1,3,4,5},{1,245) and {1,234} . Let A ={1,2},then AntiCl(A) = {1,2,4,5} N {1,2,3,4} =
{1,2,4}.

Proposition 3.6: Let (X, t) be an AntiTopological space. Then
0] AntiCI(A) is not the smallest AntiClosed set containing A.
(i) If A is AntiClosed, then A = AntiCI(A).

Proof:

(i) We prove it by a counter example. Let X = {1,2,3,4,5} and = = {{1},{2}, {3}, {5}}. Then, the AntiClosed
sets are: {2,3,4,5},{1,3,4,5},{1,2,4,5} and {1,2,34} . Let A ={1,2},then AntiCl(A) = {1,2,4,5} N
{1,2,3,4} = {1,2,4} which is not AntiClosed.

We may consider another example by considering A as an AntiOpen set, say A = {1}, then AntiCl(A) =
{1,3,4,5}n {1,2,4,5} n {1,2,3,4} = {1,4} which is also not AntiClosed.

Thus, AntiClosure of A is not the smallest AntiClosed set over X containing A.
(i) Proof is obvious from the definition of anti-topology.

Proposition 3.7: Let (X, t) be AntiTopological space and let A, B < X. If B is AntiClosed, then
(i) A € AntiCl(A)
(i) A S B = AntiCl(A) < AntiCl(B)
(iii) AntiCl(A) U AntiCl(B) < AntiCl(A U B)
(iv) AntiCI(A N B) € AntiCI(A) N AntiCl(B)
(v) AntiCl(AntiCl(B)) = AntiCl(B)

Proof:
0) By definition, we have AntiCI(A) is a set containing A. So, A € AntiCl(A)

(i) If B is closed then, AntiCl(B) = B. Thus, A € B = A € AntiCl(B) which give, AntiCI(A) <
AntiCl(B).

(iii) A S AU B = AntiCl(A) € AntiCl(AU B) by (i) above. Also, B € AU B = AntiCl(B) <
AntiCI(A U B) by (i) above. Hence, AntiCl(A) U AntiCl(B) < AntiCl(A U B)

(iv) AN B c A= AntiCl(A N B) € AntiCIl(A) by (i) above. Also, AN B € B = AntiCI(ANB) <
AntiCl(B) by (i) above. Hence, AntiCl(A N B) < AntiCl(A) N AntiCl(B).

(v) Since B is AntiClosed, we have AntiCl(B) = B. So, AntiCl(AntiCI(B)) = AntiCl(B)

Remark 3.1: In Proposition 3.7, if B is not AntiClosed then the results are not generally true. It is because the
AntiClosure of every subset of X will not always exist because X is not AntiClosed.
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Proposition 3.8: Let (X, t) be AntiTopological space and let A € X. Then
()  Antilnt(4) = (AntiCI(A9)) , if A is AntiOpen.
(i)  AntiCI(AS) = (Antilnt(4))", if A is AntiOpen.
(i) AntiCl(A) = (Antilnt(A))", if A is AntiClosed.
(iv)  AntiCl(Antilnt(A)) = AntiCl(A)

Proof:

(i) Let x € Antilnt(A) > x EA=> x ¢ A° = x ¢ AntiCl(A®) > x € (AntiCl(AC))C.
Hence, Antilnt(A) € (AntiC1(AS)) .
Conversely, let x € (AntiCl(AC))C = x & AntiCl(A°) = x ¢ A = x € A.
Hence, x € Antilnt(A). So, (AntiCI(A®))" € Antilnt(A).

(i)  Letx € AntiCl(A°) © x € A° & x € A © x & Antilnt(A)  x € (Antilnt(4))".

Hence, AntiCI(AC) = (Antilnt(4))".

(i)  Letx € AntiCl(A) © x € A © x & AC © x & Antilnt(A°) © x € (Antilnt(A°))".
Hence, AntiCL(A) = (Antilnt(A%))".

(iv) Letx € AntiCl(Antilnt(A)) & x € Antilnt(A) © x € A & x € AntiCl(A).
Hence, AntiCl(Antilnt(A)) = AntiCl(A).

Definition 3.4: Let (X, 7) be an AntiTopological space over X and A is subset on X. Then AntiBoundary of A
is defined as AntiBd(A) = AntiCl(A) N AntiCI(A°).

Example 3.4: Let X = {1,2,3,4} and t = {{2},{3}}. Then, the AntiClosed sets are: {1,3,4} and {1,2,4}.

Let A = {3}, then A° = {1,2,4}. Now, AntiCl(A) = {1,3,4} and AntiCl(A®) = {1,2,4}. So, the AntiBd(A) =
AntiCl(A) N AntiCL(A) = {1,3,4} n {1,2,4} = {1,4}.

Proposition 3.9: Let (X, t) be Anti-Topological space and let A, B € X. Then
0) AntiCl(A) — AntiInt(A) = AntiBd(A)
(i) Antilnt(A) = A — AntiBd(A)
(iii) Antilnt(A) U Antilnt(A®) = [AntiBd(A)]¢
(iv)  AntiBd(Int(4)) = AntiBd(A)
v) AntiBd(AntiCl(A)) € AntiBd(A)
(vi) AntiBd(A U B) € AntiBd(A) U AntiBd(B)
(vi)  Bd(ANB) € Bd(A) U Bd(B).

Proof:

(i) Let x € AntiCl(A) — Antilnt(A)
Now,
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x € AntiCl(A) — Antilnt(A)

< x € AntiCl(A) and x ¢ Antilnt(A)

S x € AntiCl(A) and x € A

& x € AntiCl(A) and x € A©

& x € AntiCl(A) and x € AntiCI(A®)

& x € AntiCl(4) N AntiCI(A®)

& x € AntiBd(4).

Hence, AntiCl(A) — Antilnt(4) = AntiBd(4).

(ii) Let x € Antilnt(A)

Now,

x € Antilnt(A)

S x€eAdand x ¢ AC

< x € Aand x € AntiCl(A) and x & AntiCI(A®)
< x € Aand x ¢ AntiBd(A)

& x € A— Bd(A)

Hence, Antilnt(A) = A — AntiBd(A).

(iii) From definition, we have

AntiBd(A) = AntiCl(A) N AntiCl(A®)

& [AntiBd(A)]€ = [AntiCl(A) N AntiCL(A€)]¢

< [AntiBd(A)]¢ = [AntiCl(A)]C U [AntiCI(AC)]¢

S [AntiBd(A)]¢ = Antilnt(A%) U Antilnt(A), by Proposition 3.8.
Hence, Antilnt(A) U Antilnt(A%) = [AntiBd(A)]¢

(v) AntiBd(Antilnt(A)) = AntiCl(Antilnt(4)) n AntiCl [(Antilnt(4))°| [by Proposition 3.8 (i)]

= AntiCl(Antilnt(A)) N AntiCl [{(AntiCl(AC))C}C] [as (AntiCl(A))" = Antilnt(A)]

= AntiCl(Antilnt(A)) N AntiCl(A®)[as (P€)¢

= P and AntiCl(AntiCl(P)) = AntiCL(P), for any set P

= AntiCl(A) n AntiCl(A®) [by Proposition 3.8 (iv)]
= AntiBd(A) [by definition]

Hence, AntiBd(Antilnt(A)) = AntiBd(A).

(v) AntiBd(AntiCI(A)) = AntiCl(AntiCI(A)) n AntiCl|(AntiCl(4))" ]
Now, A € AntiCI(A) = (AntiCl(A))" < A°
= AntiCl [(AntiCl(A))| € AntiCI(A®) [A € B = AntiCI(A) € AntiCL(B)]

Hence, Antin(AntiCl(A)) C AntiCl(A) N AntiCl(A®) = AntiBd(A)
i.e., AntiBd(AntiCl(A)) € AntiBd(A).

(vi) AntiBd(A U B) = AntiCl(A U B) n AntiCl(A U B)¢
C [AntiCl(A) U AntiCl(B)] n [AntiCl(A®) N AntiCl(B®)]
= [AntiCL(A) N {AntiCL(A®) N AntiCl(B)}] U [AntiCl(B) N {AntiCl(A®) N AntiCl(B¢)}]
= [{AntiCl(A) N AntiClL(A9)} N AntiCl(B)] U [{AntiCL(B) n AntiCL(B¢)} n AntiCI(A%)]
= [AntiBd(A4) n AntiClI(B)] U [AntiBd(B) N AntiCI(A%)]
C AntiBd(A) U AntiBd(B)
Hence, AntiBd(A U B) < AntiBd(A) U AntiBd(B).
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(vii) AntiBd(A N B) = AntiCI(A N B) N AntiCI[(A N B)¢]
C [AntiCl(A) N AntiCl(B)] N AntiCI(AC U B€)
= [AntiCl(A) N AntiCl(B)] N [AntiCl(A®) U AntiCl(B¢)]
= [{AntiCI(A) N AntiCl(B)} N AntiCI(A)] U [{AntiCl(A) n AntiCl(B)} n
AntiCl(B9)]
= [{AntiCI(4) N AntiCL(AS)} N AntiCl(B)] U [AntiCL(A) n {AntiCl(B) N
AntiCl(BC)}
= [AntiBd(A) n AntiCI(B)] U [AntiCl(A) N AntiBd(B)]
C AntiBd(A) U AntiBd(B)
Hence, AntiBd(A N B) € AntiBd(A) U AntiBd(B).
Proposition 3.10: Let (X,7) be AntiTopological space and let A < X. If A is AntiOpen, then AntiCl(A) —
A = AntiBd(4)

Proof: Since A is AntiOpen, therefore Antilnt(A) = A [from Proposition 3.2]
and Antilnt(A) = (AntiCl(AC))C [from Proposition 3.8 (i)]
AntiCl(A) — A = AntiCl(A) — Int(4)

= AntiCI(A) — (AntiCI(A))"

C
= AntiCl(A) n {(Antic1(4%)) }
= AntiCl(A) N AntiCl(A®)
= AntiBd(A).

Hence AntiCl(A) — A = AntiBd(A).

Remark 3.2: If the subset A of X is not AntiOpen, then the equality in Proposition 3.10 may not hold. We will
show it by an example:

Let X = {1,2,3,4,5} andt = {{3},{1,2},{1,4}, {(4,5}}.

The AntiClosed sets are: {1,2,4,5},{3,4,5},{2,3,5},{1,2,3}.

Let A= {1,3}, then A¢ = {2,4,5}.

Now, AntiCl(4) = {1,2,3} and AntiCL(A°) = {1,2,4,5}.

So, AntiBd(A) = AntiCl(A) N AntiCl(A®) = {1,2}.

Now, AntiCI(A) — A = {1,2,3} — {1,3} = {2} # AntiBd(A).

Conclusion

In this study, it is observed that many properties of AntiTopological space are not the same as general
topological space and NeutroTopological Spaces. Then we have investigated the properties of the interior,
closure, and boundary of AntiTopological spaces. Hope our work will help in further study of AntiTopological
space. This may lead to a new beginning for further research on the study of Topological space.

References

[1] Agboola, A. A. A. (2020). Introduction to NeutroGroups. International Journal of Neutrosophic Science
(IINS), 6, 41-47.

[2] Agboola, A. A. A. (2020). Introduction to NeutroRings. International Journal of Neutrosophic Science
(INS), 7(2), 62-73.

[3] Agboola, A. A. A. (2020). On Finite NeutroGroups of Type-NG. International Journal of Neutrosophic
Science (1JNS), 10(2), 84-95.

[4] Al Tahan, M., Hoskova-Mayerova, S., & Davvaz, B. (2019). Some results on (generalized) fuzzy multi-
Hv-ideals of Hv-rings. Symmetry, 11, 1376.

23



Editors: Florentin Smarandache, Memet Sahin, Derya Bakbak, Vakkas Ulugcay & Abdullah Kargin

[5] Al Tahan, M., Hoskova-Mayerova, S., & Dawvaz, B. (2020). Fuzzy multi-polygroups. Journal of
Intelligent & Fuzzy Systems, 38(2), 2337-2345.

[6] Al-Tahan, M. (2021). NeutroOrderedAlgebra: Theory and Examples. 3rd International Workshop on
Advanced Topics in Dynamical Systems, University of Kufa, Irag.

[7] Al-Tahan, M., Dawvaz, B., Smarandache, F., & Anis, O. (2021). On Some NeutroHyperstructures.
Symmetry, 13(535), 1-12.

[8] Al-Tahan, M., Smarandache, F., & Dawvaz, B. (2021). NeutroOrderedAlgebra: Applications to
Semigroups. Neutrosophic Sets and Systems, 39, 133-147.

[9] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20, 87-96.

[10] Bakbak, D., Ulugay, V., & Sahin, M. (2019). Neutrosophic Multigroups and Applications. Mathematics,
7, 95. DOI:10.3390/math 7010095

[11] Basumatary, B. (2016). Towards forming the field of fuzzy closure with reference to fuzzy boundary.
Journal of Process Management. New Technologies, 4(1), 30-40.

[12] Basumatary, B., & Broumi, S. (2020). Interval-Valued Triangular Neutrosophic Linear Programming
Problem. International Journal of Neutrosophic Science, 10(2), 105-115.

[13] Basumatary, B., Wary, N., Mwchahary, D. D. Brahma, A. K., Moshahary, J., Basumatary, U. R. &
Basumatary, J. (2021). A Study on Some Properties of Neutrosophic Multi Topological Group. Symmetry,
13(9), 1689.

[14]Blizard, W. (1989). Multiset theory. Notre Dame J. Form. Logic, 30, 36-66.

[15] Chang, C. L. (1968). Fuzzy Topological Space. J. Math. Anal. Appl., 24, 182-190.

[16] Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systems, 88,
81-89.

[17]Devi, R., Dhavaseelan, R., & Jafari, S. (2017). On Separation Axioms in an Ordered Neutrosophic
Bitopological Space. Neutrosophic Sets and Systems, 18, 27-36.

[18] Dey, A., & Pal, M. (2015). Multi-fuzzy complex numbers and multi-fuzzy complex sets. International
Journal of Fuzzy System Applications, 4(2), 15-27.

[19] Kandil, A., Nouth, A. A., & EI-Sheikh, S. A. (1995). On fuzzy bitopological spaces. Fuzzy sets and
systems, 74, 353-363.

[20] Kelly, J. C. (1963). Bitopological spaces. Proc. Lond. Math. Soc., 3, 71-89.

[21] Miyamoto, S. (2001). Fuzzy Multisets and Their Generalizations. In Multiset Processing; Springer: Berlin,
Germany, pp. 225-235.

[22] Mwchahary, D. D., & Basumatary, B. (2020). A note on Neutrosophic Bitopological Space. Neutrosophic
Sets and Systems, 33, 134-144.

[23] Onasanya, B. O., & Hoskova-Mayerova, S. (2018). Some Topological and Algebraic Properties of alpha-
level Subsets Topology of a Fuzzy Subset. An. St. Univ. Ovidius Constanta, 26, 213-227.

[24] Onasanya, B. O., & Hoskova-Mayerova, S. (2019). Multi-fuzzy group induced by multisets. Ital. J. Pure
Appl. Math, 41, 597-604.

[25] Sahin, M., Kargin, A., & Yiicel, M. (2021). Neutro-Topological Space and Anti-Topological Space.
NeutroAlgebra Theory, Volume I, 16.

[26] Salama, A. A., & Alblowi, S. A. (2012). Neutrosophic Set and Neutrosophic Topological Spaces. IOSR
Journal of Mathematics (IOSR-JM), 3(4), 31-35.

[27]Salama, A. A., Smarandache, F., & Kroumov, V. (2014). Closed sets and Neutrosophic Continuous
Functions. Neutrosophic Sets and Systems, 4, 4-8.

[28] Sebastian, S., & Ramakrishnan, T. V. (2011). Multi-fuzzy sets: An extension of fuzzy sets. Fuzzy
Information and Engineering, 3(1), 35-43.

[29] Smarandache, F. (1998). Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information &
Learning. Ann Arbor, Michigan, USA, 105.

24



Neutrosophic Algebraic Structures and Their Applications

[30] Smarandache, F. (2019). Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures.
Advances of Standard and Nonstandard Neutrosophic Theories, Pons Publishing House Brussels,
Belgium, Ch. 6, 240-265.

[31] Smarandache, F. (2020). Generalizations and Alternatives of Classical Algebraic Structures to
NeutroAlgebraic Structures and AntiAlgebraic Structures. Journal of Fuzzy Extension and Applications,
1(2), 85-87.

[32] Smarandache, F. (2020). Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures
(revisited). Neutrosophic Sets and Systems, 31, 1-16.

[33] Smarandache, F. (2020). NeutroAlgebra is a Generalization of Partial Algebra. International Journal of
Neutrosophic Science, 2, 8-17.

[34] Smarandache, F. (2020). Structure, NeutroStructure, and AntiStructure in Science. International Journal
of Neutrosophic Science (1JNS), 13(1), 28-33.

[35] Sumathi, I. R., & Arockiarani, I. (2015). Fuzzy Neutrosophic Groups. Advanced in Fuzzy Mathematics,
10(2), 117-122.

[36] Sumathi, I. R., & Arockiarani, I. (2016). Topological Group Structure of Neutrosophic set. Journal of
Advanced Studies in Topology, 7(1), 12-20.

[37] Yager, R. R. (1986). On the theory of bags. Int. J. Gen Syst., 13, 23-37.

[38] Yang, Y., Tan, X., & Meng, C. (2013). The multi-fuzzy soft set and its application in decision making.
Applied Mathematical Modelling, 37(7), 4915-4923.

[39] Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8, 338-353.

[40] Sahin M., Olgun N., Ulugay V., Kargin A. and Smarandache, F. (2017), A new similarity measure on
falsity value between single valued neutrosophic sets based on the centroid points of transformed single
valued neutrosophic numbers with applications to pattern recognition, Neutrosophic Sets and Systems, 15,
31-48, doi: 0rg/10.5281/zenod0570934.

[41] Qiuping, N., Yuanxiang, T., Broumi, S., & Ulucay, V. (2022). A parametric neutrosophic model for the
solid transportation problem. Management Decision, (ahead-of-print).

[42] Hassan, N., Ulugay, V., and Sahin, M. (2018), Q-neutrosophic soft expert set and its application in decision
making. International Journal of Fuzzy System Applications (IJFSA), 7(4), 37-61.

[43]Ulucay, V., Sahin, M., and Olgun, N. (2018), Time-Neutrosophic Soft Expert Sets and Its Decision-
Making Problem. Matematika, 34(2), 246-260.

[44]Ulucay, V., Kili¢, A., Yildiz, I. and Sahin, M. (2018). A new approach for multi-attribute decision-making
problems in bipolar neutrosophic sets. Neutrosophic Sets and Systems, 2018, 23(1), 142-159.

[45] Ulucay, V., Kilig, A., Sahin, M., and Deniz, H. (2019). A New Hybrid Distance-Based Similarity Measure
for Refined Neutrosophic sets and its Application in Medical Diagnosis. MATEMATIKA: Malaysian
Journal of Industrial and Applied Mathematics, 35(1), 83-94.

[46] Broumi, S., Bakali, A., Talea, M., Smarandache, F., Singh, P. K., Ulucay, V., and Khan, M. (2019). Bipolar
complex neutrosophic sets and its application in decision making problem. In Fuzzy Multi-criteria
Decision-Making Using Neutrosophic Sets (pp. 677-710). Springer, Cham.

[47] Bakbak, D., Ulugay, V., and Sahin, M. (2019). Neutrosophic soft expert multiset and their application to
multiple criteria decision making. Mathematics, 7(1), 50.

[48] Ulugay, V., and Sahin, M. (2020). Decision-Making Method based on Neutrosophic Soft Expert Graphs.
In Neutrosophic Graph Theory and Algorithms (pp. 33-76). IGI Global.

[49] Ulucay, V., Kilig, A., Yildiz, 1., and Sahin, M. (2019). An Outranking Approach for MCDM-Problems
with Neutrosophic Multi-Sets. Neutrosophic Sets & Systems, 30.

[50] Ulugay, V., Sahin, M., and Hassan, N. (2018). Generalized neutrosophic soft expert set for multiple-criteria
decision-making. Symmetry, 10(10), 437.

[51]Sahin M., Kargin A., and Smarandache, F. (2021). Neutro-G Modules and Anti-G Modules,
NeutroAlgebra Theory 1, 4, 50-71.

[52] Sahin M., and Kargm A. (2021). Neutro-R Modules, NeutroAlgebra Theory 1, 6, 85-101.

[53] Sahin M., Kargin A., and Altun, A. (2021). Neutro-Metric Spaces, NeutroAlgebra Theory 1, 5, 71-85.

25



Editors: Florentin Smarandache, Memet Sahin, Derya Bakbak, Vakkas Ulugcay & Abdullah Kargin

[54] Sahin M., Kargin A. and Uz, M. S. (2021). Neutro-Lie Algebra, NeutroAlgebra Theory 1, 7, 101-120.

[55] Kargm, A., and Sahin, N. M. (2021). Neutro-Law, NeutroAlgebra Theory 1, 13, 198-207.

[56] Aslan, C. Kargin, A. and Sahin, M. (2020). Neutrosophic Modeling of Talcott Parsons’s Action and
Decision-Making Applications for It, Symmetry, 12(7), 1166.

[57]Sahin, S., Kargm A., and Uz, M. S. (2021). Generalized Euclid Measures Based on Generalized Set Valued
Neutrosophic Quadruple Numbers and Multi Criteria Decision Making Applications, Neutrosophic Sets
and Systems, 47, 573-600.

[58] Bakbak, D., & Ulugay, V. (2019). Chapter Eight Multiple Criteria Decision Making in Architecture Based
on Q-Neutrosophic Soft Expert Multiset. Neutrosophic Triplet Structures, 90.

[59] Sahin, M., Alkhazaleh, S., & Ulucay, V. (2015). Neutrosophic soft expert sets. Applied mathematics, 6(1),
116.

[60] Ulugay, V., & Sahin, M. (2019). Neutrosophic multigroups and applications. Mathematics, 7(1), 95.

[61]Ulucay, V. (2021). Some concepts on interval-valued refined neutrosophic sets and their applications.
Journal of Ambient Intelligence and Humanized Computing, 12(7), 7857-7872.

[62] Sahin, M., Deli, 1., & Ulugay, V. (2016). Jaccard vector similarity measure of bipolar neutrosophic set
based on multi-criteria decision making. Infinite Study.

[63] Sahin, M., Ulugay, V., & Menekse, M. (2018). Some New Operations of (a, B, y) Interval Cut Set of
Interval Valued Neutrosophic Sets. Journal of Mathematical & Fundamental Sciences, 50(2).

[64] Sahin, M., Ulugay, V., & Acioglu, H. (2018). Some weighted arithmetic operators and geometric operators
with SVNSs and their application to multi-criteria decision-making problems. Infinite Study.

[65] Sahin, M., Deli, I., & Ulucay, V. (2017). Extension principle based on neutrosophic multi-fuzzy sets and
algebraic operations. Infinite Study.

[66] Ulugay, V., Sahin, M., Olgun, N., & Kilicman, A. (2017). On neutrosophic soft lattices. Afrika
Matematika, 28(3), 379-388.

[67]Deli, 1., Ulugay, V., & Polat, Y. (2021). N-valued neutrosophic trapezoidal numbers with similarity
measures and application to multi-criteria decision-making problems. Journal of Ambient Intelligence and
Humanized Computing, 1-26.

[68] Sahin, M., Ulugay, V., & Broumi, S. (2018). Bipolar neutrosophic soft expert set theory. Infinite Study.

[69] Sahin, M., Ulugay, V., & Yilmaz, F. S. (2019). Chapter twelve improved hybrid vector similarity measures
and their applications on trapezoidal fuzzy multi numbers. Neutrosophic triplet structures, 158.

[70] Ulucay, V., Deli, 1., & Sahin, M. (2018). Similarity measures of bipolar neutrosophic sets and their
application to multiple criteria decisions making. Neural Computing and Applications, 29(3), 739-748.

[71]BAKBAK, D., & ULUCAY, V. (2021). Hierarchical Clustering Methods in Architecture Based On
Refined Q-Single-Valued Neutrosophic Sets. NeutroAlgebra Theory Volume I, 122.

[72]ULUCAY, V. (2020). Cok Kriterli Karar Verme Uzerine Dayali Yamuksal Bulanik Coklu Sayilarin Yeni
Bir Benzerlik Fonksiyonu. Journal of the Institute of Science and Technology, 10(2), 1233-1246.

[73] Qiuping, N., Yuanxiang, T., Broumi, S., & Ulucay, V. (2022). A parametric neutrosophic model for the
solid transportation problem. Management Decision, (ahead-of-print).

[74] Sahin, M., Ulucay, V., & Deniz, H. (2019). Chapter Ten A New Approach Distance Measure of Bipolar
Neutrosophic Sets and Its Application to Multiple Criteria Decision Making. NEUTROSOPHIC TRIPLET
STRUCTURES, 125.

[75] Sahin, M., Kargin A. Uz M. S. (2020) Neutrosophic triplet partial bipolar metric space, Neutrosophic Set

and Systems, 33, 297 — 313

[76] Sahin, M., & Kargin, A. (2020). New similarity measure between single-valued neutrosophic sets and

decision-making applications in professional proficiencies. In Neutrosophic Sets in Decision Analysis and
Operations Research (pp. 129-149). IGI Global.

[77] Sahin, M., Kargin A. Yiicel M. (2020) Neutrosophic triplet partial g — metric space, Neutrosophic Set and
Systems, 33, 116 — 134

[78] Sahin, S., Kargin A., Yiicel, M. (2021) Hausdorff Measures on Generalized Set Valued Neutrosophic
Quadruple Numbers and Decision Making Applications for Adequacy of Online Education, Neutrosophic Sets
and Systems, vol. 40, pp. 86-116

26



Neutrosophic Algebraic Structures and Their Applications

[79] Sahin M., Kargm A. and Yildiz, 1. (2020) Neutrosophic triplet field and neutrosophic triplet vector space
based on set valued neutrosophic quadruple number, Quadruple Neutrosophic Theory and Applications, 4, 52
-61

[80] Sahin M., Kargin A. And Smarandache F. (2018) Generalized Single Valued Triangular Neutrosophic
Numbers and Aggregation Operators for Application to Multi-attribute Group Decision Making, New Trends
in Neutrosophic Theory and Applications, 2, 51-84

[81] Kargin, A., Dayan A., Yildiz, 1., Kilig, A. (2020) Neutrosophic Triplet m — Banach Space, Neutrosophic
Set and Systems, 2020, 38, 383 — 398

[82] Sahin N. M., Uz M. S. (2021) Multi-criteria Decision-making Applications Based on Set Valued
Generalized Neutrosophic Quadruple Sets for Law, International Journal of Neutrosophic Science, Vol. 17
, No. 1, 41-60

[83] Sahin N. M., Dayan A.(2021) Multicriteria Decision-Making Applications Based on Generalized

Hamming Measure for Law, International Journal of Neutrosophic Science, Vol. 17, No. 1, 08- 29

[84] Sahin M., Kargin A. (2020) Smarandache F. Combined classic — neutrosophic sets and numbers, double
neutrosophic set and number, Quadruple Neutrosophic Theory and Applications, 18, 254 -266

27



Editors: Florentin Smarandache, Memet Sahin, Derya Bakbak, Vakkas Ulugcay & Abdullah Kargin

Chapter Three

Some Kinds of y-Irresolute Functions in N-Neutrosophic
Crisp Topological Spaces

A. Vadivel® and C. John Sundar?
'Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002;
PG and Research Department of Mathematics, Government Arts College (A), Karur - 639 005,
India
E-mail: avmaths@gmail.com
’Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India
E-mail: johnphdau@hotmail.com

ABSTRACT

The aim of this article is to introduce a N-neutrosophic crisp ¥-irresolute, completely N-neutrosophic
crisp ¥ -irresolute and completely weakly N -neutrosophic crisp ¥ -irresolute functions in a N-neutrosophic
crisp topological space and also discuss a relation between them in N-neutrosophic crisp topological spaces.
We also investigate some of their properties using these IV-neutrosophic crisp ¥-irresolute functions via -
neutrosophic crisp ¥-continuous function in V-neutrosophic crisp topological spaces. Also, we interact with
separation axioms and open mapping functions using these /V-neutrosophic crisp ¥ -irresolute functions.

Keywords: N-neutrosophic crisp ¥-open set, N-neutrosophic crisp ¥ -irresolute, completely N-neutrosophic
crisp ¥-irresolute, completely weakly N-neutrosophic crisp ¥ -irresolute.

INTRODUCTION

In our daily routine, we have used the crisp sets in most of our life. The concepts of neutrosophy and
neutrosophic set are the recent tools in a topological space. It was first introduced by Smarandache [14, 15] in
the beginning of 20 century. In 2014, Salama, Smarandache and Kroumov [12] has provided the basic
concept of neutrosophic crisp set in a topological space. After that Al-Omeri [1] also investigated some
fundamental properties of neutrosophic crisp topological Spaces. Al-Hamido [9] explore the possibility of
expanding the concept of neutrosophic crisp topological spaces into V-topology and investigate some of their
basic properties in W-terms. By using N-terms of topological spaces, we can define 1, ts, 2,.ts, ... N, ts

In 1996, Andrijevic [2] introduced &-open sets and develop some of their works in general topology.
The notion of ¥-open set (originally called y-sets) in topological spaces was introduced by Min [7] and worked

28


mailto:avmaths@gmail.com
mailto:johnphdau@hotmail.com

Neutrosophic Algebraic Structures and Their Applications
in the field of general topology. Vadivel and John Sundar [24] presented y-open sets in neutrosophic crisp
topological spaces via N-terms of topology.

The strong and weak forms of continuous functions are introduced by Levine in 1960 [6] and also
introduced in strong continuity in topological spaces. In 1967, Naimpally [8] also discussed strongly
continuous functions in a topology. In recent years, the academic community has witnessed growing research
interests in neutrosophic set theory [3-5,10,11,17-23,31-59] and Vadivel et al. [26, 27, 28, 30] introduced some
strongly continuous functions in N, topological spaces.

The chapter is organized as follows: In section 2, introduces some concepts and basic operations are
reviewed. In section 3, we extend the continuous functions into a irresolute functions such as N-neutrosophic
crisp y-irresolute function in V.. £s and investigates their properties. In section 4, presents a completely M-
neutrosophic crisp y-irresolute function in V.. £s. In section 5, study a completely weakly N-neutrosophic crisp
y-irresolute functions in N, . t=. Finally, Conclusions and further research are contained.

BACKGROUND

Definition 1 [13] For any non-empty fixed set X', a neutrosophic crisp set (briefly, ncs) K is an object
having the form K = { K. K., K; )} where K,, K, & K; are subsets of X satisfying any one of the types

MK, NK, =¢nzf& Ui ,K, c X, ¥vn =123
(T K, N K=, n= EQU_ K, = X, v =123
(T3) Mici K, = & U_ Ky = X v =123

Definition 2 [13] Types of ncs's @, and X, in X are as
(i) @y = (B.0.X) or {8.X.X) or (,X,0) or (3,0,0).
(i) Xy ={(X. @ @)or (X.X. @) or (X.@ X)or (X XX

Definition 3 [13] Let X be a non-empty set & the nes's K & M in the form K = (K},, Koo, K3q)
M = (My;, May, My ), then

(VKS MoK, S My K © My & Kgg 2 M 33 0r Kyy © My, Koy 2 Moy & Kay 2 My,
(KN M=(Ky, N My, Ky N Myo, K3y UMgg)or {Kyy MMy, Kop UMsy, Kag U M;g)
(i) K U M= (K UM, Kos UMz, K33 N Mag)or (Kyy UMy, Koo N Moy, K3g N My, ).

Definition 4 [13] Let K = {K,. K.. Kz} ancs on X, then the complement of K (briefly, K*) may be defined in
three different ways:

(C1) K* = (K{.Ef.KS), or
(C2) K* = (Kq. K. Ky), or
(C3) k¥ = (K3 K7, K,).

Definition 5 [9] Let X be a non-empty set. Then ,.I, w:I=, ..., »:Dy are N-arbitrary crisp topologies
defined on X and the collection V.. I is called V,,.-topology on X is
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Np,T={Ac 4= {U‘;';J-=L5m'] U {ﬂ‘;{i‘:LFn_i']'Er;j-Fn_i' € nlj}
and it satisfies the following axioms:
(1) @y, Xy €Ny L

(i) Urs Ky € Ny TV {Hﬂ}m € Ny, T.
i) ", K, eN, Tv{K]) en,I
(i) Ni- Ky e N TV (K, g=1 € Vel

Then (X, N,.I"}is called a N, .-topological space (briefly, N, £s) on X. The N,-open sets (N, 05) are the
elements of W,,.I'" in X and the complement of V,,. 05 is called V,,.-closed sets (V,.c=) in X. The elements of
X are known as IV, .-sets (V,,.5) on X,

Definition 6 [9] Let {X. N, I} be N, .tson X and K be a V.5 on X, then the N, interior of K (briefly,
Ny int(K)) and Ny, closure of K (briefly, N,,.cl{}) are defined as

Ny int(K) =u{d:Ac K&GisalN, os}
No.cllK)} =n{D:K € D&DisaN,.cs}.

Definition 7 [9] Let {(X.N,.I"} be any N,.ts. Let K be a N5 in (X.N,.I"). Then K is said to be a N-
neutrosophic crisp

(i) regular open [24] set (briefly, N, .ros) if K = Ny int (N, cl(K]).

(i) pre open set (briefly, N, Fos) if K S N, inf(N, cl(K)).

(iii) semi open set (briefly, N, Sos) if K S Ny cl(N, int(K)),

(iv) e-open set (briefly, Ny cos) if K = Ny int (N, cl{N, int (K))).

(V) ¥-open [24] set (briefly, N, vos) setif & S N, cl(N, int(K)) U N, int( N, cl(K)).

The complement of a NV, . Fos (resp. N, fos, N, cos, N, ros & N, vos) is called a N, pre (resp.
Ny semi, Ny.ee, Ny -regular & N,.¥) closed set (briefly, N, .Fcs (resp. Ny fes, N ecs, Ny res & Ny ves
))inX.

The family of all N, Pos (resp. N, Pes, N, fos N, fes N, eos N, ecs N, yos & N, yes) of
X is denoted by N, FPOS(X} (resp. Np FCS(X), N, SO5S(X), N, SC5(X), Ny eOS(X) |, Ny al5(X),
N ¥yOS(X) & Ny ¥y CE(X)).

Definition 8 [24] Let (X.N,.I"y be a N,.tson X and K be a N,,.5 on X then
(i) Npoyint(K) =U {D:D € Kand D isa Np.vos}.
(ii) Npeyel(K) =0 {D:K S Dand Disa Ny yesh.

Definition 9 Let (X, NI and (X2, N, 'F) be any two Ny ts's. Amap g = (X, NI — (X2, Ny ) is said
to be

(i) Ny (resp. Ny ¥)-continuous (briefly, NV, Cts [16] (resp. V. ¥Cts [30])) if the inverse image of
every Ny o5 in (X Ny W) isa Ny o5 (resp. Nypvos) in (X Ny D).
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(i) strongly N, continuous (briefly, 5tN,,.Cts [28]) function if the inverse image of every subset in
(X, N, ¥) is N-neutrosophic crisp clopen (i.e both N,,.0 and Ny,.c) (briefly, Ny ele) in (X, N, ).

(iii) completely Ny, continuous (briefly, €N, .Cts [28]) function if the inverse image of every N, os
in (XN, %) is Ny rosin (X, N, I).

Definition 10 [28] A N,.ts (X. NI} is said to be N, .-T if for each pair of distinct points x and ¥ of X,
there exist Ny-ro sets I/, and s suchthatx € Wyandye U, , x e I, and vy & U,.

Definition 11 [28] A N,.ts (X, N,,.I"} is said to be N,,.»-T- for each pair of distinct points x and v of X, there
exist N, ro sets L and M in X suchthatx € Land y € M.

N-Neutrosophic Crisp y-Irresolute Functions

Definition 12 Let (X,.N,.I") and (X;.N,.¥) be any two N, ts's. A map g (X Ny J) — (K. N, ¥ is
said to be IV, ¥ -irresolute function (briefly, N,.¥Irr), if for the inverse image of every NV, ycs in (X, . N, ¥F)
isa N, yesin (X, NI

Theorem 13 Let p & (X, N I} — (X, N, %) be a mapping, if Ny-virr, then g is Ny vCts.

Proof: Let C be Ny cs in Xs, then C is Ny ¥cs in Xa, since every Ny.cs is Ny ves. By hypothesis, g~ (C) is
Ny,-ves. Therefore g is Ny ¥Cts.

Remark 14 The converse of the above theorem need not be true as shown in the following example.

Example 15 Let X ={lymy.n.o.p}=Y ,  pfy ={gy X LM.N} | nn ={@nX\} .
L=(m)iok Upmpo.py, M= ({Ipm}{¢}{npo.p}y, N={{Ip.m.n}.{¢}{or.p}), then we
have 2nel = {@y. Xy LM, N} . ey = {¢y. ¥y.0.P.Q} ) ne¥; = {gy. ¥y}

0= {lpm}t{ghingo.ph, P={{npod{gt{ipmep}), @={{ mpn,0}{¢}{p}), then we
have 2, ¥ = {@y. ¥y.0.F.Q}.

Define p: (X.2,. 1) = (V.2,. W) as p(l)=1;, p(m)=m;, p(n;)=n; , plo))=p &
el =pm then  2,.¥Cts  mapping but  not 2,.¥Irr  mapping, the  set
pH{my 0ppi 3 {0} (L)) = (Impo.p ) {} {I.m})isa 2y vos in ¥ but not 2 vos in X.

Theorem 16 A function p & (X,. N, .I'} = (X.. N, %) is N, virr if and only if for every N, .vos K in X,
pTHE) is Npeyvos in X,

Proof: Follows from the fact that the complement of N,,.yos is N, ¥cs and vice versa.

Theorem 17 If g, = (X Ny ) = (Xo, Ny W) and po @ (X2, Ny W) — (X3, Ny @) are both Ny vIrr, then
Pyt {XL'NMF] = (X N ) is Npvlrr,

Proof: Let K be Nu.¥os in X: . Then p='(K) is Np.vos in X, , since p» is Np.¥Irr and
Pt KY) = (py o p)7H(K) is Npcvos in X, since gy is Nycvlrr. Hence g = py is Nyoylrr,

Theorem 18 (i) If py ¢ (X Ny I = (Ko, Ny W) is NyevIrr and po ¢ (X, N W) = (K, Ny ®) is N vCts
,then o = py : {XJ.'NMF] = (X5 . Ny ®)is Ny yCts,

(ii) If po ¢ {XL'NMF] = (K. Ny #) is NpeyCis and p. .:X:.ng_.r] = (X3 N #) is N Cis
theng. = g, ¢ {XL'NM*FJ = (X3 Ny ®)is Ny yCEs,
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Proof: (i) Let K be Ny.os in X; . Then, p*(K) is N,.vos in X, , since p. is N,.vCts &
prt s KDY = (po o p)7H(K) is Npovos in Xy, since py is Ny vIrr. Hence ps © py is Ny vCts.

(i) Let K be Ny.os in X . Then, pr*(K) is Np.os in X. , since p. is Ny Cts &
Pt (e HEY) = (po = p)™H(K) is Npoyvos in Xy, since py is Ny vCts. Hence ps = py is Ny yCts.

Completely N-neutrosophic crisp y irresolute functions

Definition 19 Let (X,. NI} and (X..N,. %) be any two N, ts's. A map p: (X, N, J) = (X, N, . ¥)is
said to be Completely N-neutrosophic crisp ¥ irresolute (briefly, CN, ¥Irr) if the inverse image of every
Ny.vos of X, is N, rosin X,.

Remark 20 The following implications are true.

[SiN.Cts| — [ON, Ay Irr | — [ Moy Irr

But not converse as shown by the following examples.

Example 21 Let X = {up, viw}, ncli = {F0 X L}, nelz ={F0. 5} L= {{u 3 {#} {ve.wi ]}, then
we have 21" = {#;, X, L}. Define p: (X.2,. 1) — (X.2,.1) as p(uy) = uy, p(vy) = vy & pwy) =wy,
then it is €2 ¥Irr but not 5t2,.Cts, the set p~* ({{u; 1 {2} {vp. wi}) = ({u,}{2}{v.wi})is a 2 05
butnot 2,.c5 in X,

Example 22 Let X ={u, v.wx) nell = {8, X LM NY | nede =18, X1
L= (w {2} ovexd), M= (uon )b 2L wen)), N =({u.vow, ) (#1{x,)), then we have
20l = (#, Xy, LM, N}, Define p: (X, 2,10 = (X,2,.1) as pluy) =uy, p(vy) = v,, piw,) =w, &
plx =2 then it is 2o ¥irr but not C2p¥lrr , the set
P uy v 1 {23 W x 1) = ({un vy} {23 {wy x,}) is a 2y.¥08 but not 2,705 in X,

Theorem 23 Let p: (X, N, .I'} = (X.. N, %" be a function, then statements
(i) pis CNylrr,
(i) o~ (N ¥int(C)) S Ny int (p~*(C)) for every Np.s € of X,
(iii) (N cl(D)) € Ny yel(p(D)) for every Ny.s D of Xy,
(iv) Ny cllp=(C)) € p= (W, ¥el(C)) for every Ny.s € of Xa,
(v) p~H(E) is Nyere in X, for each Ny yes E in X_2,
(vi) p~*(EY) is Ny, 7o in X, for each Ny vos E in X-

are equivalent.

Proof: (i) = (ii): Let C S X; and x € g~ (N ¥vint (L)),

x€ p YN yint(C)) = N, yint(€) € N yO(XKs. p(x))

32



Neutrosophic Algebraic Structures and Their Applications
= (3 Ue N, .RO(X,x))(p(t) € N, yint(C) € C)

= (3 U e N RO, x))(U € p~2(C))
= x € Nyint (p~2(C)).
(ii) = (iii): Let D € X,.
Dc X =pD)cXx =X '\plbcx2
= p~ (Nperint(%, \p(D))) € Npoint (o7 (X; \p(D)))

= X, \o~t (Naevel(p(D))) € X, \Wocel(p™ (2(D)))

= Npecl(D) € Nyeel (p~2(p(D))) € o= (Nyerel(p(D)))

= p(N,.cl(D)) € N, ycl(p(D)).
(iii) = (iv): Let C € X,.
cex,=>ptClck
= p (Npectlp™2(©))) € Nuerel (p(p=1(0))) € Ny yel(C)
= Npcllp=(C)) € p~ (W ¥el(C)).
(iv) = (v): Let E & Ny vC(X )
E e NpyClX.) = E = Npyel(E)
= Nycllp~*(E)) € p~ (N ycl(E)) = p*(E)
= p~UE) = Np.clp~t(E))
= p~HE) e N, C(X).
(v) = (vi): Obvious.
(vi) = (i): Let E € N,,.¥0(X.)and x € p~*(E).
(E € Npev0(X,))(x € p~*(E)) > E € NpvO(X,. p(x))
= (U = p~*(E) € N, RO(X,.x))(p(U) € E).
Theorem 24 Let p = (X,.N,.I'} = (X..N,.%) be a bijective function, then statements
(i) p is CN v,
(ii) Nyeyint(p(0)) € p(N,.int(0)) for every Nycs of X;
are equivalent.
Proof: (i) = (ii): Let 0 = X].

oc X,=X\0ck
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= p(X, W, int(0)) = p(N,.cl(X, \0)) € N, yel(p(X, \O)). g is bijection
= X \p(Npint(0)) € X \N, ¥int(p(0))
= Ny yint(p(0)) € p(N, int(0)).
(i) = (i): Let 0 = X,.
0c X, =X \0c X
= Npyint(p(¥, \0)) € p(N,.int(X, \0)). g is bijection
= X, \Np.vel(p(0)) € X, \p(N,cl(0))
= p(Npcll0)) € Ny yel(p(0)).
Lemma 25 Let K be a N, 05 of a N, £5 (X, N,,.I"). Then the following hold:
(i) If C is Ny 7o in X, then so is € M K in the subspace (K. N, I3,
(i) If D' is Ny.ro in (K, N, I}, then there exists a Ny.ros 5 in X suchthat I = SN K.

Theorem 26 If p:(X,.N,.I'} = (X,. N, ¥} is a CN,.vIrr function and C is any N,.os of X;, then the
restriction g = (C. N, I} — (Mo, N W) is N, vIrr.

Proof: Let F & N, yO{X_2}.

F € Np.y0(X,) = p~t{F) € N, .RO(X,) . Since CekX , by Lemma 25
(pc) *(F) = p~*(F)n € € N,.RO(C).

Lemma 27 Let p: (X, . N,.I"} = (X.. N,..¥) be a function and ¥ be a N,,.FPos of X,. Then K N C is N, roin
X, for each N, .ros C of X,.

Theorem 28 If p: (X, N, I} = (X,.N,.¥) is a CN,.vIrr function and C is N,.Pos of X, , then
pe i (CN, T = (X, N W) is CNy yIrr,

Proof: It is similar to the proof of Theorem 26.

Theorem 29 Letp, : (X, N, .} = (X, N,.%¥) and . : (X, N, %) = (X;.N,.#) be two functions. Then
the following hold. If

(i) pyis CNyvIrrand g is Nyovlrr then g = py is CNpovier,

(i) py is CNp Ctsand po is CN virr, then g © py is CNyvIre,

(i) py is CNyovIrrand po is Ny vCts, then g o py is CN, Cts,
Proof: Straightforward.

Definition 30 A Ny ts (X, N, I} is said to be Ny -T) if for each pair of distinct points [ and m of X, there
exist Ny yos’s Uy and Us such that i e 0y and me U, [ g Usand m g U,

Theorem 31 If p: (X, N,y . T} = (X, N W) is CNy vIrr injection and X is Ny, v -Ty, then X, is Ny r-T.

Proof: Let!,m e X, and [ = m,
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(Ime XM £ m)= p) £ p(m), (X is N,o¥ -Ty)

= (3F € Npey0(X%,. p(1))) B E € NpoyO(Xy, p(m))) (o) & E) (p0m) & F)
= (p7*F) € Ny RO(X,. D) (p~ (F) € Ny RO(K, m)) (L€ p~(B)) (m & p~*(F)).
Since, g is injective and TN, yIrr, then we have X is N, r-T;.

Definition 32 A N, ts (X, N, .I"} is said to be N,,.¥-T- for each pair of distinct points [ and m in X, there exist
disjoint Ny ¥o sets L and M in X suchthatl € L andm € M,

Theorem 33 If g (X, N T = (X2, Np W) is €N, vIrr injection and Xz is Ny 1-Ts, then X, is Npor-Ts,
Proof: Let!,me X, and I = m.
Ime X )0 = m)= pl) £ p(m), (X is Ny v-T2)
= (AL e Ny yO(X.p(1))) (3 M € Npoy 0o p(m))) (L N M = &)
= (p~ (L) e N, RO(X,.[))(p~*(M) € N, RO(X,.,m)) ((p~* (L) N p~ (M) = #).
Since, g is injective and TN, yIrr, then we have X} is Ny r-Tx.
Theorem 34 Let X, be a Ny, v-T: space. If py & po: (X, Ny . T) — (X2, N W) are CNyvIrr, then the set
L=1{lp(D) = p(D} € Np €K
Proof: Letl g L.
te L= p 0 # po(l), (X2 is Nyoy-Tz)
= (30, € N y0(%,.p,0)) (302 € Nuey0(%,. 5 @), (0,11 0, = @)
= (prt0) € N RO(X 1Y) (prt(0.) € N RO(X DI (0, N OL) =€) (p21(0, N 0,) = 2)
2 and . are CN, vIrr
= (v = (pr*0) n p(0,) € NoRO(X, D)) W N L% #)
> [ & Np.cl(L).
Then L isN,. cin X,.

Theorem 35 Let X» be a N, ¥-T. space. If p: (X, N T) — (K. N W) is CNp.vIrr, then the set
M = {l.m)lg() = plm) € N,.CCX, x X)L

Proof: (I.m) & M.
m)e M= pll) # p(m), (X2 is Npoy-To)
= (30, € NpeyO (X p(D))) (3 02 € NpoyO(Xa, p(m))), (0, N O, = &)
= (p~*(0,) € N, RO(X,.1)) (p~*(0,) € N, RO(X,.m)) (p~ (0N p~(0,) =2) pis CN, ¥Irr
= (U= (p~20,) x p7t (0,) € N, RO(X, x X, (Lm)))) (UNM = @)

= (l.m) & Ny cl(M).
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Then M is Npoc in X, x X,.

Completely Weakly N-neutrosophic crisp y irresolute function

Definition 36 A function p: (X,.N, I} = (X..N,. %) is said to be completely weakly N, ¥ -irresolute
(briefly, CW N, ¥Irr) if for each [ € X, and for any N, ¥os C containing p(l}, there exists a N,.o0s D
containing ! such that p(D) < C.

Remark 37 The following implications are true.

But not converse as shown by the following examples.

Example 38 In Example 22, then it is

(i) CW 2y vIrr butnot € 2 vIrr, theset p~ (v} {2}, (w2, 0)) = (fuy. vy} (83 fwy %, ) is
a 2,.¥0s but not 2,15 in X,

(i) 2ne¥Irr but not CW 2, vdrr, the set p (v, w b {#h {u,x ) v L {#h lu w1
Ok {Ph {upw xg})isa 2 v0s and ({vp wik {#} {uy, x B isa 2, 05,
Theorem 39 Let p ¢ (X, N, .I') = (X.. N,.. %) be a function, then statements
(1) pis CWN,  yIrr,
(i) p~*(N,,.¥int(D) ) € N,.int(p~*(D)) for every Np.s D of X,
(iii) p( N cl(C)) © Nyoyel(p(€)) for every Nyos € of X,
(iv) Npocl(p™t(D) € p= (N, ycl(D)) for every N,.s D of X,
(v) p~H(E) is Nyoc in X, for each Ny ves E in Xa,
(vi) 2~ *(E) is Nyoo in X, for each Ny.vos E in X,
are equivalent.
Proof: (i) = (ii): Let D € X and x € g~ (N, ¥int(D)).
xE _ﬂ_L{Nﬂr}’fnt{D]} = Ny vint(D) € Np, yO0 (Ko, p(x))
= (I U e N, 0(x)) (p(U) € N, y¥int(D) C D)
= (AU e N, 0(x)) (U S p~t(D))
= xE Nﬂr:'nt{p_L':D]}.
(ii) = (jii): Let € € X, .
ccx=plClcXx2

= X \plC) € X,
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= p~t (Nuerint(X, \p(€))) € Nyoint (o™ (X \p(€)))

= X, \pt (Woerel(p(€))) € X, \Npecl(p™ (2(C)))
= Npeel(€) € Nl (p72(p(0))) € (N el(p(€)))
= p(N,cl(C)) € N, vel(p(C)).
(iiii) = (iv): Let D € X. .
Dc X, =ptDckx
= p (Nnecl(p=2(D))) € Nuevel (p(p2(D))) € Nperel(D)
= Npcllp=2(D)) & p~ (Np yel(D)).
(iv) = (v): Let 0 € Ny ¥CiX, ).
0 & NpyClX,) =20 = Nyycl(E)
= Npel(p™(E)) € p~ Wy ¥el(E)) = p~*(E)
= p~HE) = Npccl(p™*(E))
= p~E) e N, C(X,).
(v) = (vi): Obvious.
(vi) = (i): Let O € N,.¥O(X) and x € p~*(E).
(0 e Npy0 X%, ))x € p~HE)) = 0 € Ny O(X%. p(x))
= (U = p~(E) e N 0(%,.))(pW) c E).
Theorem 40 Let p: (X, N, .I') — (X..N,.%) be a bijective function, Then statements
(i) p is CW N, ylrr,
(i) Npevint(p(0)) € p(N,, int(0)) for every N s of X,
are equivalent.
Proof: (i) = (ii): Let 0 £ X].
0ckX > X\0E X
= p(X, \Npeint(0)) = p(N,.cl(X,\0)) € Ny yel(p(X,\0)), p \ is bijection
= X \p(Np.int(0)) € X, \N,,.int (p(0))
= Ny vint(p(0)) € p(N, int(0)).
(i) = (i): Let 0 S X,.

ocXx,=Xx\0ck
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= N vint(p(X,\0)) © p(N,.int(X,\0)) (o is bijection)
= Xy \Nporel(p(0)) € X; \p(N,cel(0))
= p(N,,cl(0)) € N, ycl(p(0)).

Theorem 41 Let p,: (X, N, . T} = (X2, N, %) and pn: (Ko, N, %) — (X3, N,..®) be any two functions such
that g» @ gy : (X,. N, I} = (X3.N,.#). Then the following statements hold:

(i) If py is CWN . vIrrand p. is Ny vlrr, then po o py is CWN, v I,
(i) If py isCN,.Cisand po is CWN,  yIrr then p. = gy is ON vlrr,
(iii) If py is 5tN,.Cts and p= IS C Ny ¥irr, then g = gy is CNy ¥l
(iv) If o, and p. are CN, ¥irr, then po o oy is CN ¥irr,
(V) If gy is CN ¥frrand g is CWN,  ylrr, then g = gy is CN vl
(vi) If py is CW N ¥Irrand go is Ny ¥CeEs, then po = py is Ny Cts,
(vii) If gy is Ny ¥Cts and po is CWN, ¥Irr, then g = gy is Ny virr,
(viii) If py is Ny Ctsand po is CWN yirr, then po = py is CWN, yTrr,
Proof: Straightforward.

Definition 42 A mapping g : (X,.N,.[) = (X.. N, %) is N,.-open (briefly, ¥,.0) if the image of every
Noysosin (XL Ny isa Ny o5 in (XN, P,

Definition 43 A function p: (X, N, . I} — (X, N, ¥ is said to be almost Ny,.-open (briefly, AN, 0) if the
image of every N, .rosin (X. N, .isa N, 05 in (X N, %},

Theorem 44 If g, : (X, . Ny ) — (X2, N W) is AN, O surjection and gz : (Xa, N W) — (X3, N #) is any
function such that g = py: (X, N I} = (X3, N ®) is CNpvlrr, then g is CW N yvirr,

Proof: Let 0 & N, .¥O(X3]).
0 & Npey0(X;) = (py o p)7(0) = .":’J._L{.'E"_'_L{G]} € N RO(P), py isa AN, 0
= p, (o7 (e54(0))) = p51(0) € (X, N ¥).

Theorem 45 If p,: (X, . N,,.[) = (X.. N, %) is N,.0 surjection and p.: (X, N, %) = (X;.N,.®) is any
function such that p= = g : (X, N, . I} = (X, N,.®) is CN,.vIrr, then ps is CWN, yIrr,

Proof: Let 0 € N,,.v0(X;).

0 € Npy0(%;) = (g = p,)720) = prt(pt(0)) € (X, Ny T). oy is @ Nye O surjection

= o (o7 (p1(0))) = pr1(0) € (2. N ).
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Conclusions

In this chapter, a new type of N, ¥-irresolute map, completely NV, .¥-irresolute function and completely weakly
N, -¥-irresolute function in N, ts are presented and analyzed the difference between these maps. This can be
improved to IV,,.¥-open mapping function, V... ¥-closed mapping function, N, ¥-homeomorphism functions
of N,.ts are the further research areas can be covered in future tasks. In addition, authors hope that to
investigate further on some fundamental properties between these new notions with separation and covering of
N,-¥-0open set in a N-neutrosophic crisp topological space.

Future Research Directions

Using these N,.¥-irresolute map, completely Ny ¥ -irresolute function and completely weakly Ny ¥ -
irresolute function of V. ¥-open set in N, t=, try to relate and properties to NV,,.¥-open mapping and N, ¥-
closed mapping functions of N,,.¥-open set.
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ABSTRACT

Anti-topological spaces have been defined by Sahin, Kargin and Yiicel in 2021. They investigated some
relationships and connections between these structures and so-called neutro topological spaces which they
introduced in the same paper. Recently, we have extended their research by analyzing the notions of interior,
closure, continuity, doorness, density and nowhere density in anti-topological setting. In the present chapter
we attempt to compile previous information on density and to add some statements on rare sets. Moreover, we
give some new examples of anti-topological spaces. Some other general theorems are presented too.

Keywords: Anti-topological spaces, Neutro-topological spaces, Generalized weak structures, Generalized
topology.

INTRODUCTION

Anti-topological spaces have been introduced by Sahin, Kargin and Yiicel in [12]. The most striking difference
between topologies (or supra and infra topologies, minimal structures or weak structures|) and anti-topologies
is that the former are based on the idea of closure of a family of sets under some operations (like finite
intersections and arbitrary unions) and on the assumption that some special sets (like empty set and the whole
universe) must be considered as open, while the latter concentrate on exclusion. This is clear from their
definition: our family of subsets can be called anti-topology if we have a guarantee that any finite intersection
and any union of its elements is beyond this family. Of course we do not mean trivial intersections and unions,
e.g. those in which a single set is intersected or joined with itself. Moreover, both the empty set and the whole
universe are excluded.

We may investigate many classical topological notions in this new context. We have already examined some
basic properties of (anti-) closure, interior, continuity, doorness, density and nowhere density in [23]. In
general, it is always an interesting question: which of the standard features and properties remain the same
when we replace topology with some other structure (maybe more general or just changed in some way)?
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In this chapter we would like to gather some earlier results on density and nowhere density in anti-topological
spaces. Moreover, we want to define and investigate the notion of rarity in this new setting. Finally, there are
also some additional facts on interior and closure stated.

One should emphasize the fact that Sahin et al. examined anti-topologies together with neutro-topological
spaces. Besides, they are something different than, say, neutrosophic crisp topological spaces defined by
Salama et al. in [14].

Neutrosophy, founded by Smarandache, is a branch of science which extends the idea of fuzzy sets and gives
some new concepts of uncertainty and ambiguity. Clearly, this line of research (namely, the connection between
anti-topologies and neutrosophic sets) should also be studied.

Note that nowadays there are many new trends in neutrosophic studies. Some of them are largely concentrated
on practical applications in multi-criteria decision making (see [4], [5], [13], [15], [17 - 19], [21],[25-52]).
Other papers deal with pattern recognition (see [6]) and even medical diagnosis (see [16]). However, there are
also purely mathematical and theoretical considerations (see [20]).

On the same principle, one can imagine the potential use of anti-topological spaces in decision making or data
clustering. The idea of exclusion outside the family of distinguished sets should be studied in these contexts.
Moreover, even if anti-topologies in their basic form are crisp, then it is still possible to reintroduce them in
fuzzy, vague, neutrosophic or soft environment. Furthermore, one can think about measuring the grade of anti-
openness and exclusion by applying the idea of smooth topological space (as it was presented in, say, [22] and
other articles, starting from the initial research of Badard from 1986).

Finally, we may point out that the general idea of “anti-structures” (that is, various algebraic structures obtained
by the assumption that some traditionally accepted conditions have been rejected) is now studied extensively.
The reader may check papers [7 - 11].

BACKGROUND AND SOME INITIAL NOTIONS

First, let us define anti-topological spaces. The definition below is taken from our paper [23]. In general, it is
based on the definition from [12] but with some small adjustments.

Definition 1. [23] Let X be a non-empty universe and T be a collection of subsets of X . We say that (X, T) is
an anti-topological space if the following conditions are satisfied:

1. 0,X&T.
2. Foranyn € N, ifAy, Ay, ..., A, €T, then ﬂ}LlAi & T. We assume that the sets in question are
not all identical (later we will call such families non-trivial).
3. Foranycollection {A;};c;+p suchthat A; € T foreachi € |, U;e; A; & T. We assume that the sets
in question are not all identical.
The elements of T are called anti-open sets, while their complements are anti-closed sets. The set of all anti-
closed sets (with respect to some particular T ) will be denoted by T¢; .

One can check in [23] (Lemma 2.5, Lemma 2.6, Lemma 2.7) that anti-topology excludes not only finite but, in
fact, arbitrary intersections. Moreover, conditions (2) and (3) from Definition 1 are equivalent. Finally, both
these conditions hold for anti-closed sets too (see Lemma 2.8 and Lemma 2.9 in [23]).
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Let us show some examples of anti-topological spaces. The first one is taken from [12], the rest is our own
invention. The vast majority of them has been already presented in [23] (with some additional reflections which
have been omitted here).

Example 2. (Compare [12] and [23]). The following structures are anti-topological spaces:

=

X =1{1,2 3 4}and T = {{1,2},{2,3}, {3,4}}.
X ={12}and T = {{1},{2}}.

3. X={ab,clandT = {{a,b}, {c}}. Note that adding X and @ to this family transforms it into

topology.

X={a b, cd e f}andT = {{a,b}, {c,d}, {e}}.

X = N*and T}, consists only of these finite subsets of X which have cardinality k , where k is a
fixed positive natural number.

6. X=NtandT = {{1}, {2},{3}, } This is a special case of the anti-topology introduced in the
previous point. Clearly, this is just T; (not to confuse with T; separation axiom).

7. X = Rand T, contains only these closed intervals which have length v , where y is a fixed positive
real number.

8. Xisarbitraryand T = {4, X- A}for some distinguished set A # @ .

9. X=RandT = {R7,R*}.

10. X =Nand T = {{1,2},{2,3},{3,4}, {45}, .. }.

11. Let X = R? with usual Euclidean metric. We may define T, as the set of all these closed balls which
have radiusr > 0 .

12. Let X = R*tand T = {(0,1),{1}, (1,2),{2},(2,3),{3}, ... }.

13. Let X = R and T be the family of all those subsets of R which are of the form A = R — {x}for some
real x . Now assume that A, B € T and they are different. ThatisA = R — {x}, B = R — {y} for
some x,y € Rsuch that x # y . Then:
ANB=R-OPDNR-{OD=RNR)—{x}u{y}) =R—{x,y} & T. We used the

following identity here: (E — F)N(G—H) =(ENG)— (FUH).

n

Now assume that {4; };c;=pis @ non-trivial family of members of T . Consider U;¢; 4;. It is enough
to discuss any two members of our family,say A = R — {x}, B =R —{y}, x # y.Now AU B € U;¢; 4;

and (according to the basic properties of set difference) AUB=(R—-{x})) U(R—{y}) =R —
({x} n{y}) = R— 0 = R. Here we used this identity: (E —F)N(E —G) = E — (FnG).

Hence, AUB = R € U;e;A; = R & T.Clearly, & T . This structure may be called co-singleton

anti-topology. Note that adding X and @ to this family transforms it into strong generalized topology in the
sense of Csaszar.

One can prove that:

Lemma 3. The intersection of two anti-topological spaces on the same universe is an anti-topological space
too.

Proof. Suppose that T, S are two anti-topologies on the same universe X . Consider W =T NS . Let
Aq, A5, ..., A, € W. In particular, it means that each of these sets belongs to T (without loss of generality).
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Clearly, N;—1 A; € T ,hence N{_; A; € T NS = W. Now consider {4; };c;-gsuch that A; € Wforany i €
J . Hence A; € T n Sfor any i € J and (without loss of generality) A; € T. But thenU;¢; A; € T. All the

more it does not belong to T NS = W . Clearly, @, X & W because they do not belong neither to T . Note
that according to our previous mention it was enough to check that W excludes intersections (or unions).

Lemma 4. The union of two anti-topological spaces on the same universe need not to be an anti-topological
space.

Proof.  Consider the following counter-example: X ={a, b, ¢, d, e}, T = {{a},{b},{c}}, S =
{{b, c} {a, e}}. Then let usthink about W = T U S . This s not anti-topology because {a} N {a, e} = {a} €
W. Analogously, {b} U {c} = {b,c} e W.

We would like to recall one lemma from [23] which is simple but, in some sense, important.

Lemma 5. [23] Assume that (X, T) is an anti-topological space, B € T and A € B . Suppose that A # B .
ThenA & T.

Now we may introduce anti-interior and anti-closure.

Definition 6. [23] Assume that (X, T) is an anti-topological space and A € X . Then we define anti-interior
of A (that is, aInt(A)) and its anti-closure (namely, aCl(A)) as follows:

1. aint(A)=U {U;UCcCA UET}

2. aCl(A)=N {F;ACF,FeTy}
The reader can find some examples of anti-interiors and anti-closures in [18]. Besides, some other examples
will be later presented in the present paper. Clearly, it is possible that alnt(A4) € T. In [23] we proposed to
call these sets which have anti-open interior, anti-genuine sets. The idea is taken from [24] where it was applied
to infra topological spaces. Each anti-open set is identical with its anti-interior and thus is anti-genuine too. In
Example 2 (4) we have {a, b, c}which is not anti-open but is anti-genuine.

As for the properties of anti-interior and anti-closure, we may recall the following theorem from [23]:
Theorem 7. [23]

Let (X, T) be an anti-topological space. Let A € X . Then the following statements are true:

1. alnt(4) c A.

2. IfA €T, thenalnt(A) = T. The converse may not be true.

3. IfA € B, thenalnt(A) € aInt(B) and aCl(A) € aCl(B).
4. alnt(aInt(4)) = aInt(4) and aCl(aCl(A)) = aCl(A).

5. A caCl(h).

6. If A € T, then aCl(A) = A. The converse may not be true.

7. —alnt(4) = aCl(-A).

8. alnt(—A) = —aCl(A).

9. x € alnt(A) ifand only if thereis U € T suchthatx € U C A.

10. x € aCl(A) ifand only if for any U € T such thatx € U we havethat U N A #+ @ .
Then we have the following two lemmas:
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Lemma 8. Assume that (X,T) is an anti-topological space and {A;};cj=gis a family of sets. Then
alnt(Nie; Ai) € Nigyalnt(4)).

Proof. The proof is rather typical and, in fact, is true for generalized weak structures too. Generalized weak
structures, introduced by Avila and Molina in [1], are just arbitrary families of subsets. In this general setting
the authors reconstruct some basic topological notions.

Clearly, N;e; A; © Ay for any k € /. Now we use monotonicity of interior to get that aInt(ﬂiE] Al-) c
alnt(A;). But this is true for any k € J and thus we obtain our expected conclusion.

Remark 9. Note that the converse is not true even for binary intersections. The reader may find an appropriate
counter-example in [23]. The converse for binary intersections is true in these spaces which are closed under
finite intersections, while in case of anti-topologies we can say that they are anti-closed under this operation
(and the same with arbitrary unions).

Lemma 10. Assume that (X,T) is an anti-topological space and {Ai}ie]ﬂ, is a family of sets. Then
Uie] aCl(Al) c aCl(Uie]Ai).

Proof. The proof is analogous to the proof of the previous lemma. Again, the converse need not to be true even
for finite unions.

Now let us recall Theorem 7 (2). The fact that the converse may not be true allows us to define pseudo-anti-
open sets:

Definition 11. [23] Let (X, T) be an anti-topological space. Assume that A € X . If aInt(4) = A then we
say that A is pseudo-anti-open.

One can prove that the family of all pseudo-anti-open sets (with respect to a given anti-topology T ) is closed
under arbitrary unions. The same holds for pseudo-open sets in minimal structures. The reader can check [3]
where Bhattacharya calls them open my while the elements of minimal structure are named my open.

RARITY, DENSITY AND NOWHERE DENSITY

In this section we study some properties of (anti-) rare, dense and nowhere dense sets. First, let us define all
these classes.

Definition 12. Let (X, T) be an anti-topological space and A € X . We say that A is:

1. anti-dense ifand only if aCl(4) = X.

2. anti-nowhere dense if and only if aInt(aCl(4)) = @.

3. strongly anti-nowhere dense if and only if it has empty intersection with any anti-open set.

4. anti-rare if and only if alnt(4) = @.
Remark 13. It seems that many topologists identify rare sets with nowhere dense sets. This is not our case.
Our approach is based on the one presented e.g. in [3] (but also in some other papers). Hence, our rare (or
rather anti-rare) sets are analogous to boundary sets.

Example 14. Consider X = {1,2,3,4},T = {{1,2},{2,3},{3,4}}. Then {1,2,3},{2,3,4} are anti-dense.
Moreover, their intersection, namely {2,3}, is anti-dense too. However, this is not always true. Think about
Y={a,b,cd,e},S = {{a, b}, {c,d}, {e}}. Then {a, ¢, e}, {b, d, e}are anti-dense but their intersection {e}
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is not anti-dense. Clearly, Sq; = {{c, d,e},{a,b,e},{ab,c, d}} and aCl({e}) ={c,d, e} n{a, b, e} =
{e}. Note that we may consider {e}as pseudo-anti-closed, per analogiam with pseudo-anti-open sets. It means
that aCl(A) = A.

Example 15. Consider X = {1,2,3,4},T = {{1,2}, {2,3},{3,4}}. Then A = {1,4}is anti-nowhere dense.
One can check that aCl(A) = {1,4} = A and aInt(A) = @ because there are no anti-open sets contained in
A (but not because empty set is contained in A : as we already know, empty set is never anti-open). Besides,

note that the fact that A is anti-nowhere dense does not mean that it is strongly anti-nowhere dense. Just take
B = {1,2}. Clearly, AN B = {1} # Q.

Now take Y ={a,b,c,d,e, f}, T = {{a,b}, {c,d}, {e}}. Clearly, {f}is strongly anti-nowhere dense,
having empty intersection with any anti-open set from T .

Remark 16. One could ask why the definition of strong anti-nowhere density is so strict. For example, in
topological spaces we would say that A is nowhere dense if forany B € T we may find C € T (not necessarily
B itselfl) suchthat C € B, AN C = @ . Of course we could use this approach but it would be irrelevant. Note
that anti-open sets do not have proper anti-open subsets (recall Lemma 5).

Example 17. Let X = {1,2,3,4}, T = {{1,2},{2,3},{3,4}}. Consider {1,3},{1,4}, {2,4}. These sets are
anti-rare. Now take Y = {1,2}and T = {{1}, {2}}. Here there are no non-empty anti-rare sets. Now consider
Z = N*with anti-topology T;. Now every set which has cardinality < k is anti-rare. Analogously, if Z =
R and we have anti-topology T, then any closed interval of the length < y is anti-rare.

Now we may prove some lemmas and theorems about these classes.

Theorem 18. Every strongly anti-nowhere dense set in an anti-topological space is anti-nowhere dense too.

Proof. Assume that A is strongly anti-nowhere dense but alnt(aCI(A)) # @ . Then there is x €
aInt(aCl(A)). Hence, x € aCl(A). But then for any V € T such that x €V , VN A # @ . This is
contradiction because we assumed that A has empty intersection with any anti-open set.

Lemma 19. If A is anti-rare, then forany B € T , B is not contained in A .

Proof. Assume the contrary: that there is some anti-open B contained in A . Then B is contained in the union
of all anti-open sets contained in A , that is in aInt(A). Moreover, B is non-empty as a member of T . Thus
alnt(A) # @ and this is contradiction.

Lemma 20. Any non-empty and proper subset of anti-open set is anti-rare.
Proof. Recall the already mentioned fact that anti-open sets do not have proper anti-open subsets.

Theorem 21. Every anti-nowhere dense set is anti-rare.

Proof. Assume that (X, T)is an anti-topological space and A is anti-nowhere dense. Assume that it is not anti-
rare. Hence, alnt(A) # @. Then there is some x € alnt(A)and some B € T suchthat B € A, x € A . But
B € aCl(A), hence x € aInt(Cl(A)). Contradiction.

Remark 22. Anti-rare sets need not to be anti-nowhere dense. Consider X = {a,b,c,d,e},T =
{{a,b}, {c,d}, {e}}. Then Tg; = {{c, d,e},{a,b,e},{a,b, c,d}}. Take A = {b,c}. On the one hand,
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alnt(4) = @, so A is anti-rare. On the other hand, aCl(4) = {a, b, ¢, d}and aInt(aCl(A)) ={a,b} U
{c.d} ={a,b,c,d} # Q.

Remark 23. Anti-rare sets can be anti-dense. Consider X = {a, b, c,d}, T = {{a, b}, {c, d}}and A ={b,c}.

On the one hand, alnt(A) = @. On the other hand, T;; = T and aCl(A) = N @ = X. Note that A from
Remark 22 was not anti-dense.

Theorem 24. Assume that (X, T)is an anti-topological space and A € X . Then A is anti-rare if and only if
—A is anti-dense.

Proof. From left to right: assume that alnt(A) = @. Assume that —A is not anti-dense. Hence, aCl(—A) #
X.ButaCl(—A) = —alnt(4) = -0 = X.

From right to left: let aCl(—A) = X. But aCl(—A) = —alnt(A). Hence —alnt(A) = X and thus
alnt(4) = —X = @.

Theorem 25. Any intersection of anti-rare sets is anti-rare too.

Proof. Assume that (X, T) is an anti-topological space. Let A = Niej+p Ai, where for any i € |, A;is anti-

rare. Thus, alnt(A;) = @ for any i € J . Now suppose that aInt(A) # @. Hence there is some B € T such
that B € A.Butthen B € A; forany i € J . This is contradiction.

Remark 26. Finite unions of anti-rare sets may not be anti-rare. Again, consider X = {1,2,3,4},T =
{{1,2}, {2,3}, {3,4}}. Now {1,3}, {2,4}are anti-rare but their union, namely {1,2,3,4}, is not anti-rare: its
anti-interior is {1,2,3} # @.

Theorem 24. Any union of anti-dense sets is anti-dense too.

Proof. Assume that (X, T)is an anti-topological space. LetA = Uiej=p A; where for any i € ], A;is anti-
dense, i. e. aCl(A;) = X. Hence for any i € J , the set Z; = {B € T¢;; A; € B}is empty. Assume the
contrary: if it is not empty then X € T; and thus —X = @ € T . But this is not possible by the very definition

of anti-topology. Now assume that aCl(A) # X. Thismeans that Z = {B € T;;; A € B} # @. Hence there
issome C € T¢; suchthat A € Cand C # X . Butthen A; € C € T, forany j € J andthis is contradiction.

Remark 27. We could use different reasoning in this proof. For example: as we know from Lemma 10,
UieyaCl(4;) < aCl(UiE]Ai). Now, if aCl(A;) = X for any j € J, then the union on the left side is just
X . Thus the set on the right side must be X too.

Theorem 28. [23] Let (X, T) be an anti-topological space and A € X . Then A is anti-dense if and only if it
has non-empty intersection with each anti-open set from T .

Remark 29. Recall the proof of Theorem 24. Alternatively, we could think in the following way (using
Theorem 28 and Theorem 7 (10)). Assume that aCl(A) # X where A is some union of anti-dense sets. Then
there is some x € X — aCl(A). Hence there exists certain V € T such thatx € VandV N A = @ . This
means that N U;e; A; = @ . Hence, V has empty intersection with each of the sets 4; in A . But this is not
possible because they are all anti-dense.

Finally, we get:
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Theorem 30. Let (X, T)be an anti-topological space and A € X is anti-dense. Then for any pseudo-anti-open
set G such that A € G we have that G € aCl(A).

Proof. Assume that G is some pseudo-anti-open set such that A € G . Then G € X but X = aCI(A). Note
that the assumption about pseudo-anti-openness of is superfluous. We left it just to compare the whole thing
with Theorem 4.3. in [3] (check Remark 31 below).

Remark 31. What about the converse of Theorem 30? In general, it is not true. Hence the situation is different
than in case of minimal structures studied by Bhattacharya. Take X ={a,b,c,d,e},T =
{{a,b}, {c}, {d}}and think about A = {e}. This singleton is beyond any pseudo-anti-open set. Hence, the
implication “if G is pseudo-anti-open and A € G , then G € aCl(A)* is trivially satisfied. On the other hand,

{e}is not anti-dense: in fact, it has empty intersection with any anti-open set. Thus, it is strongly anti-nowhere
dense.

However, we may prove the following statement:

Theorem 32. Let (X, T) be an anti-topological space and A € X . Assume that for any pseudo-anti-open set
G such that A € G, G € aCl(A). Suppose that the class of such pseudo-anti-open sets is non-empty. Then
A is anti-dense.

Proof. First, it is clear that U T, namely the union of all anti-open sets, is pseudo-anti-open. Let us take some
pseudo-anti-open G suchthat A € G € aCl(A). If x € G , then x € alnt(G)which means that x belongs to
some anti-open set contained in G . Thisimpliesthat G € UT.Hence A €S UT and UT S aCl(A). Assume
now that aCl(A) # X. Hence, if A € Bsuch that B € T¢;, then UT € B. Then—B € —UT. But —B'is

anti-open (because B is anti-closed) so it cannot be contained in the complement of the union of all anti-open
sets. Contradiction.

CONCLUSION AND FUTURE WORK

In this chapter we have analyzed some properties of anti-topological spaces. One can gather them together with
those lemmas and theorems which have been already proved in [12] and [23] to obtain some kind of general
framework for anti-topological spaces. Clearly, some of these results are more general than it seems at first
glance: they are true even for generalized weak structures. However, some of them require specific properties
of anti-topology. The reader is encouraged to continue this line of research. We should study separation axioms,
connectedness and compactness in the context of anti-topological spaces. Moreover, one can imagine that anti-
topologies could serve as models of some very specific non-classical modal logics. In [23] we gave a short
discussion of this issue.
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ABSTRACT

In this paper, first we define the notion neutrosophic h-ideal in INK-Algebra, neutrosophic union and
intersection of neutrosophic h-ideals in INK-algebras. We prove some theorems which show that there is some
relation between these notions. Finally, we define the INK-sub algebra, neutrosophic T-ideals and neutrosophic
p-ideals of INK-algebra and then we give related theorem about complements of neutrosophic h-ideals.

Keywords: INK-Algebra- Neutrosophic ideal, Neutrosophic h-ideals, T-ideal, p-ideal, Union, Intersection.

I. INTRODUCTION

In 1986, Atanassov Introduced the Intuitionistic fuzzy set and later intuitionistic fuzzy set was applied in
BCI/BCK-algebra, Introduced by Imai and Iseki in the 1980s. Following this, various researchers published
articles using the intuitionistic fuzzy set concept. In 2005, Smarandache invented the new notion of the
neutrosophic set in 1998 and it is a common code from the intuitionistic fuzzy set [1-8] and [15-55]. This has
been followed by a lot of researchers publishing various articles over the last few years. In 2018 [44] Establish
the intuitionistic fuzzification of the concept of P-ldeals and H-Ideals In BCI-Algebras and investigate some
of their properties In [9], [10], [11], [13], [14] and [12] Kaviyarasu et. al published an article using the fuzzy
concept set in INK-algebra and later in solve they neutrosophic set in INKalgebra. In this paper we have
introduced a neutrosophic h-ideal of INK-algebra. We are also examining the relationship between
neutrosophic INK- sub algebra and neutrosophic h-ideal, T-ideal, p-ideal and its conditions.

The chapter is organized as follows: In section 2 is devoted to basic definition of BCI.BCK, INK-
Algebras, fuzzy h-ideal, fuzzy p-ideal and intuitionistic fuzzy h-ideal of INK-Algebra. 3, presents a
neutrosophic h-ideal, T-ideal and p-ideal of INK-algebra and investigates their properties. Finally, conclusions
are contained.

II. PRELIMINARY

Definition 1[9] An algebra (X,*, 0) is called a INK-algebra if you meet the ensuing conditions for every
X, Y, 2 eX.
L ((x*y)*(x*2))*(z*y) = 0
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2. (x*7)*(y*2))*(x*y) = 0
3.Xx*0=x
4.x*y=0andy*x =0implyx =y.

Definition 2[9] Let (X,*, 0) be a INK-algebra. A nonempty subset | of X is called an ideal of X if it satisfies
1.0€l
2. x *y €l and yel imply xel for all x, ye X.

Any ideal | has the property that yel and x <y imply x € I.

Definition 3[44] Let (X,*, 0) be a BCl-algebra. A nonempty subset | of X is called an h-ideal of X if it satisfies
1.0€l
2.x * (y*z) €l and yel imply xel for all x, y, ze X.

Definition 4 [45] Let (X,*, 0) be a TM-algebra. A nonempty subset | of X is called an T-ideal of X if it satisfies
1.0€l
2. (x *y)*z €l and yel imply xel for all x, y, ze X.

Definition 5 [9] Let (X,*, 0) be a INK-algebra. A nonempty subset | of X is called an p-ideal of X if it satisfies
1.0€l
2. (x * 2)*(y*z) €l and yel imply xel for all x, y, ze X.

Definition 6 [9] Let I be a non-empty subset S algebra of a INK-algebra X.
1.0€l
2. x*y €l and yel imply xel for all x, y, z € X.

Definition 7 [7] Let X be a non-empty set. A Fuzzy set can be defined as an object of the form p = {(X, n
(X)) : xe X }, where the function 8: X — [0, 1] is the degree of membership.

Definition 8[7] A fuzzy set p in a BCK-algebra X is called fuzzy sub algebra of X if
p (x*y) = min{p(x), w(y)}, for all x, y € X.

Definition 9 [22] Let X be a BCK-algebra. A fuzzy subset p in X is called a fuzzy ideal of X if it satisfies the
following conditions:

1. 1(0) > u(x)
2. u(x) > min{p(x*y)}, for all x, y € X.

Definition 10 [22] Let p be a fuzzy set in BCl-algebra X. i is called a fuzzy h-ideal if it satisfies:
1.0€l

2. w(x) Zmin {p((x * (y * 2)), UY)}, VX, ¥, 2 € X.

Definition 11 [25] Let p be a fuzzy set in BCl-algebra X. p is called a fuzzy T-ideal if it satisfies:
1.0€l

2. w(x) =min {p((x xy) *2)), KV} VX, ¥, Z E X,

Definition 12 [9] Let u be a fuzzy set in BCl-algebra X. p is called a fuzzy p-ideal if it satisfies:
1.0€l

2. w(x) =min {p((x *2) *(y* 2)), WY)} V X, ¥, Z€ X.

Definition 13 [1] An intuitionistic fuzzy set A in a non-empty set X is an object having a form A = {X, p4 (X),
v (X): X € X3}, where the function p,: X — [0, 1] and v,: X — [0, 1] denote the degree of membership and
the degree of non-membership of each element x € X to set A respectively, and 0 < p (X)+ v, (x) < 1, for all
x € X. For the sake of simplicity, symbol A = (X, n,, va) is used for the IFs A = {X, p, (X), v4 (X): X € X}.

Definition 14 [1] An intuitionistic fuzzy set A in X is called an intuitionistic fuzzy sub X if

L pa (x*y) = min{ua (%), ua (v)}
2. v (x*y) < max{vy(x),va(y)} forall x,y € X.
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Definition 15 [1] An intuitionistic fuzzy set 4 in X is called an intuitionistic fuzzy ideal of X if it satisfies

forall x,y € X,

1. pa(0) = pa(x) and vy (0) < va(®)
2. pa(x) = min{pax* y), pa(y)}
3. Vi (x) < max{va(x*y),va(y)}

Definition 16 [44] An intuitionistic fuzzy set A in X is called an intuitionistic fuzzy h- ideal of X if it satisfies
forall x,y,z € X,

1. pa(0) = pa(x)and vy (0) < va(x)
2. pp(x) = minf{us(x* (y *2), 1a ()}
3. va(x) < max{vy(x* (y*2),va(y)}.

Definition 17 [25] An intuitionistic fuzzy set A in X is called an intuitionistic fuzzy T- ideal of X if it satisfies
forall x,y,z € X,

1. pa(0) = pa(x)andvy (0) < va(x)
2. pp(x) = minf{uy(x *y) *2), u5(V)}
3. va(®) <max{va(x*y)*2),va(y)}

Definition 18[ 44] An intuitionistic fuzzy set A in X is called an intuitionistic fuzzy p- ideal of X if it satisfies
forall x,y,z € X,

1 pa(0) = pa(x) and vy (0) < vu(x)
2. pa (®) = minfp,(x = 2) * (v * 2), pa (y)}
3. va(®) <max{vy(x*2) * (y x2),va(¥)}.

II1. NEUTROSOPHIC h-IDEAL

Definition 19 A neutrosophic set p in a nonempty set X is a structure of the form u=
{Xur (X)), 1 X), kg X)|x € X}, Where pur: X— [0,1] is a truth membership function, w;: X—[0,1] is a
indeterminacy membership function and pr: X— [0,1] is a false membership function.

Definition 20 A neutrosophic set win X is called a neutrosophic INK-subalgebra of X if it satisfies the
following condition, for all x, y, z € X.

1 pr(x*y) = minfur (x), pr(y)}

2. wx*y) = minfu(x), w(y)}

3. pr(x *y) < max{pr(x), pr(y)}.

Definition 21 A neutrosophic set u in X is called a neutrosophic ideal of X if it satisfies the following
condition, for all x, y € X

1 pr(0) = pr(x), wi(0)} = wi(x), and pe (0) < pr (X)

2. pr(X) = min{pr(x * y),pr(y)}

3. w(x) = minfu(x * y),u(y)}

4. pr(¥) < max{pe(x * y),ne(y)}

Definition 22 A neutrosophic set p in X is called a neutrosophic INK-algebra of p-ideal X if it satisfies the
following condition, for all x,y,z € X

1 pr(0) = pr(x), u(0)} = i (x), and pe (0) < pr (X)

2. pr(x)=min{ pr (x* 2) * (y *2)) , ur(y)}

3. w(x)zmin {u((x*2) * (y *z)), w ()}

4. pr(x) <max{ pr(X* z) * (y *2)) , pr ()}
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Definition 23 A neutrosophic set p in X is called a neutrosophic INK-algebra of T-ideal X if it satisfies the
following condition, for all x, y,z € X

1 pr(0) = pr(x), u(0)} = wi(x), and pe (0) < pr (x)

2. pr(x) Z2min{ pr (x*y) *z)), pr(y)}

3. w(x)zmin {u((x*y) *z), w ()}

4. pr(x) <max{ pr(xxy) *2)), pr (¥)}

Definition 24 A neutrosophic set p in X is called a neutrosophic INK-algebra of h-ideal X if it satisfies the
following condition, for all x, y,z € X
L wr(0) = pr(x), m(0)} = i (x), and pr (0) < pe (X)
pr(x) =mind pr (x* (y * 2)) , pr(y)}
i (x) = min {p ((x* (y *2), i (Y)}
pr (x) <max{ pe(x* (y *2)), pe (Y)}

Mo

Example 25 Consider a set X= {0, 1, a, b}with the binary operation * which is given in Table 1. Then

Tk O| *
T||([F,| OO
|| OO
ROl |
OOl || T

(X,*, 0) is a INK-algebra. Let p be a neutrosophic set in X defined by Table 2. It is routine to verify that
M is a neutrosophic h-ideal of X.

X 0 1 a b
ur(x) 0.8 0.5 0.4 0.4
i (x) 0.3 0.5 0.6 0.8
tr(x) 0.2 0.3 0.4 0.7

Theorem 26 Every neutrosophic h-ideal is a neutrosophic ideal in INK-Algebra.

Proof. For all x,y,z e X
We have pr (0) > pr (x), i (0) = pu (x) and pr(0) < e (X)
ur () = min{ur(x * (y * 2)), ur (v)}

Putz=0
> min {pr(x * (y * 0)), pr (y)}
ur (X) > min{ purp(x *y), ur(y)},
w (X) = min {pr(x* (y * 2)), ur (y)}
Putz=0
w () > min { p(x* (v * 0)), w (y)}
>min { p;(x *y), i (y)}
and
ue(X) < max{ pe(x * (y *2)), pe (v)}
Putz=0

pe(X) < max{ pg (X * (y * 0)), we (v)}
< max{ pp(x *y), ur (y)}

Theorem 27 Every neutrosophic h-ideal is a neutrosophic T-ideal in INK-Algebra.

Proof. We have pr (0) > pr (X), wi(0) > i (x) and ur(0) < pe(x)
wr (x) = min { pr (xx(y*2)), pr (y)}
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= min{ pr ((x* 0) * (y * 2)), pr (Y)}
pr(X* 0) = min { pr((x* (z * 2)) * (¥ * 2), pr(Y)}
Put0=z
ur (X * z) Zmin{ pr (X* (z * 0) * (y = 0)) , pr (¥)}
= min{ pr (X* z) *y)) , pr(y)}
=min{ pr (X* (y *2)) , pr(y)}
pr (X * z) = min {pur (X*y) * 2) , pr ()},

i (X) >min {p (xx 0) * (y *2)), w ()}
pu (xx 0)= min {p (x* (z *2) * (y *2)) , i (Y)}
Put0=z
w (X*z) > min {p (X* (z * 0) = (y x0)) , w (¥)}
> min {p (x*z) *y)), w ()}
>min {p (Xx (y *2)), w (¥)}
w (X*z) = min {p ((X*y) * 2)) , w (¥)}
and
HE(X) < max{ pe(X* (v *2)) , pe ()}
pe (xx 0) < max{ pe (X* (z *2) = (y *2)) , ur (V)}
Put0=z
ue(X*z) < max{ pr(xx (z * 0) = (y * 0)) , pr (¥)}
< max{ pr((x*z) *xy), ue ()}
< max{ pr(x* (y *2)) , ur ()}
r(x* z) < max{ pe((xx y) * 2)) , e (Y)}

Theorem 28 Every neutrosophic h-ideal is a neutrosophic p-ideal in INK-Algebra.

Proof. We have pr (0) >pr (X), i (0) > i (X) and pr(0)< pr(x)
pr (X) = min{ pr (x*(y*2)), pr(y)}
>min{ pr((x*2)*y)), ur (Y)}
>min{ pr((x*2)* (y* 0)), pr(y)}
pr(X) =min{ pr((x*2)* (y* 2)), pur ()}

i (X) >min {p (X* (y *2)) , w ()}
i (X) = min { ((x*z) *y) , w (V)}
i (X) >min {p ((xxz) * (y * 0)) , w(¥)}
= min {p((x*z) *(y *2)), w(y)}
ue(X) < max{ e ((x* (y * 2)), ur (Y)}
<max{ ur((x*z) * (y * 0)) , ue(¥)}
ue(X) <max{ pur((x*z) * (y x2)) , ue(Y)}

Theorem 29 If pis a neutrosophic h-ideal of INK-algebra X, Then p™ is a neutrosophic h-ideal of INK-
Algebra of X.

Proof. We have ur (0) > pr (X)

{ur (03" ={pr (x) 37
pur(0)™ > pr (X)"
ur(0) = pur™(x)

i (0) =i (X)

{w 03" = {u (3"

w (0)" > ()"
™ (0) = ™ (%)
pe (0) <pr (X)

{ur (03" <{ pe (3"
pe (0)"< pe ()™
pe™ (0) < pe™ (%)

pr(x)= min{ pr (X (y *2)) , pur(y)}

and
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{ur ()} = min{ pr (X (y *2)) , pr(y)}"
pr (X)™ =min{ pr (x* (y *2))", pr(y)™}
urM(X) = min{ ur" (Xx (y *2)) , pr" (Y)}
(%) = min {p ((xx (y *2)) , w ()}
{u ()™ = min {p ((xx (y *z) , w (YF"
()™ = min {p ((xx (y *z))™, w (Y)™}
w™ (x) = min {p" ((x* ((y * 2)) , w™ ()}
Hr(X)< max{ pr (X (y *2)) , pr (V)}
{ur() "< max { pe (X (y *2)) , pe (Y)}"
HE()™ < max { e (xx (y *2))™, pe (V)™
e"(x) <max{ ue" (X* (y *2)) , pe" (V)}-

Theorem 30 Let p; and o are two neutrosophic h-ideal of INK-Algebra, Then p; N p,.is a neutrosophic h-
ideal of INK-Algebra.

Proof. Since ur1(0) > pr (X) and pr2 (0) > pre (X), for all x in X.
We get,
min{pr1(0),ur2(0)} = min {pra(X), pr2(X)}
ur1NT2(0) = prin 2(X)
pri(X) = min {pri(xx (y * 2)), pri(X)}
ur2(X) = min {pra(Xx (y * 2)), pra(X)}
min{ur1(X),ur2(X) } = { min{ura(xx (y * 2)),ura(y)}, mindura(x+ (v * 2)),ura(y)}}
praNT2(X) = {min{pra(xx (y * z)) wr2(x* (y * 2))} min{ pra(y),ura(y) 3}
HnNT2(X) = min{ prNrz (X (y * 2)), uriNm2(Y)},
Since wi(0) > i (X) and pi2 (0) > piz (X),
We get,
min{1(0),12(0)} = min {pua(X),piz(x)}
wiNe(0) = N (x)
i (X) = min{un(xx (y * 2)),u(X)}
wi2(X) = min {pua(X* (y * 2)),p2(X)}
min{ps(X),wi2(x)}={ min {pun(x* (v * 2)),wia(y)}, min{uia(x (y * 2)),mi2(y)}}
uiNi(X) = {min{un(x+ (y * z)), wa(x* (v * 2))}, min{ pu(y),pi(y) 3}
miN(X) = min { paNie (X* (y * 2)), pNi(y)}-
Since pr1(0) = pr (X) and pr2 (0) = pez (%),
We get,
max{ur1(0),ur2(0)} < max {max {pr1(X),pe2(X)}}
prNF2(0)< max {prN r2(X)}
ur(X) < max {pr(X* (y * 2)),pra(X)}
Hr2(X) < max {pra(Xx (y * 2)),ur2(X)}
max{ur(X), ur2(X) } <{ max {pra(X* (y * 2)),pra(y)}, max{ura(xx (y * z)),ur2(y)}}
urNF2(X) < {max {pr(Xx (y * 2)) ,pr2(X* (v * 2))}, max{ pei(y),pea(y)}}
HrNF2(X) < max{ prNrz (X (y * 2)), uraNr2(Y)}

Theorem 20 Let w; and p, are two neutrosophic h-ideal of INK-Algebra, Then p; U p,.is a neutrosophic h-
ideal of INK-Algebra.

Proof. Since pri(0) > pri (X) and prz (0) > prz (X),
We get,
min{pr1(0), ur2(0)}= min {pr1(X), pr2(X)}
ur1U2(0) = priu 12(X)
pra(X) = min {pr(xx (y * 2)),ur(y)}
_ pr2(X) = min {ura(x+ (y * 2)),ur2(y)} _
min{pri(X), pr2(x) 1> max { min {uri(x+ (y * 2)),ura(y)}, min{ura(x* (y * 2)).ur2(y) }
Utz (X)= min{ min {pra(x+ (y * z)) ur2(x* (y * 2))}, min{ pra(y),pr2(v) 3}
HrUT2(X) 2 min{ prUrz (X* (y * 2)), urUra(y)}
since ]J|1(0) = L (X) and L2 (0) ZLi2 (X),
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We get,
min{u1(0), i2(0)} = min {pus(X), pi2(X) }
wUi(0) = eV i2(x)
pn(X)= min {pua X+ (y * 2)),pin(y)}
_ pi2(x) = min {pi (X (y * 2)),u2(y)} _
min{puz(x), pi2(X)}= min { min{pi (x+ (y * 2)),pa(y)}, min{pia(x* (y * 2)),m2(y) }
rinUiz(X) = min { min {pia(X* (y * 2)) ,p2(x* (y * 2))}, min {pua(y),me(y)} 3
uinUi(X) = min{ pnUiz (X (y * 2)), puUr(y)}
Since pri(0) < pr (X) and pr2 (0) < pra (X),
We get,
max{pr1(0),nr2(0)} < max {pra(X), pr2(X)}
1 UF2(0) < HFU F2(X)
pru(X) < max {pr(x* (y * 2)),pur(Y)}
pr2(X) = max {ur2(X* (y * z)),ur2(y)}
max{pr(X), pr2(X)} < max { max {pra(X* (y * 2)),ura(y)}, max{ur2(x* (y * 2)),ur2(y) 3}
prUr2(X) < max{ max {pr (X (y * 2)) ,pe2(X* (y * 2))}, max{ pra(y), uea(y)}}-
HrUrR2(X) < max{ prUr2 (X* (y * 2)), praUr2(Y)}

SUMMARY

The chapter is organized as follows: In section 2, introduces some concepts and basic operations are reviewed.
In section 3, presents a neutrosophic INK-sub algebra, neutrosophic h-ideal, neutrosophic T-ideal and
neutrosophic p-ideal of INK-algebra and investigates their properties. Finally, conclusions are contained.

CONCLUSION

In this paper, we have introduced the notion of a neutrosophic h-ideal in INK-algebras, and investigated several
properties. We have considered relations between a neutrosophic h-ideal and T-ideal, p-ideal and neutrosophic
sub algebra. We have discussed characterizations of a neutrosophic h-ideal. Finaly we discussed some
characterization of neutrosophic set in INK-algebra and union and intersection of neutrosophic h-ideal. These
concepts are illustrated through example.
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ABSTRACT

Modules are one of fundamental and rich algebraic structure with respect to some binary operation in
the study of algebra. The objective of this paper is to introduce the concept of Neutro R — module and
NeutroOrdered R — module . Several interesting results and examples on Neutro R — module,
NeutroOrdered R — module,NeutroOrdered Sub R — module, Neutro R — module Homomorphisms,
the kernel, the image of Neutro R — Module Homomorphism and NeutroOrdered R — module
Homomorphisms are presented.

Keywords: Neutro-Group, Neutro-Ring, Neutro R —module , NeutroOrdered R — module ,
NeutroOrdered Sub R — module, Neutro R — module Homomorphism and NeutroOrdered R —
module Homomorphisms.

INTRODUCTION

Vagueness or uncertainty is a critical issue in the representation of incomplete knowledge in the fields
of Computer Science and artificial intelligence. To deal with the uncertainty, the fuzzy set introduced by Zadeh
[20] allows the uncertainty of a set with a membership degree between 0 and 1. Then, Atanassov [1] introduced
an intuitionistic Fuzzy set (IFS) as a generalization of the Fuzzy set. The IFS represents the uncertainty with
respect to both membership and non-membership. However, it can only handle incomplete information but not
the indeterminate and inconsistent information which exists commonly in real situations. Therefore,
Smarandache [12] proposed a neutrosophic set. It can independently express truth-membership degree T,
indeterminacy-membership degree I, and false membership degree F and deal with incomplete, indeterminate,
and inconsistent information. The indeterminate element I is such that ordinary multiplication . = 12> =1,
171 the inverse of I is not defined and hence does not exist. Moreover I + I + ---1 = nl:n € N.Also, several
generalizations of the set theories made such as fuzzy multi-set theory [15, 16], intuitionistic fuzzy multi-set
theory [10, 11] and refined neutrosophic set theory [3, 4, 6, 8, 13, 18, 27, 28, 39- 41]. Many research treating
imprecision and uncertainty have been developed and studied. Since then, it is applied to various areas, such
as decision-making problems [2, 5, 7, 9, 14, 17, 19, 26, 29, 55-90] machine learning [30, 31], intelligent disease
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diagnosis [32, 33] communication services [34] pattern recognition [35] social network analysis and e-learning
systems [36] physics [37, 38], ... etc.

Smarandache [22] recently introduced new fields of research in neutrosophy called Neutro-Structures
and Anti-Structures respectively. In,[23] Smarandache introduced the concepts of Neutro-Algebras and Anti-
Algebras and in,[21] he revisited the concept of Neutro-Algebras and Anti-Algebras where he studied Partial
Algebras, Universal Algebras, Effect Algebras and Boole’s Partial Algebras and he showed that Neutro-
Algebras are generalization of Partial Algebras. Sahin M et al. studied neutro-R module [44-54]; Agboola [21]
introduced the concept of Neutro-Group. Inspired by NeutroAlgebra and ordered Algebra [43] Introduced
NeutroOrdered Algebra and some related terms such as NeutroOrdered Sub Algebra and NeutroOrdered
Homomorphism.

In continuation of this work the present research is devoted to the presentation of the concept of
Neutro R — module and NeutroOrdered R — module.Several interesting results and examples on Neutro R —
modules , Neutro-Sub R —modules , NeutroOrdered R —module and NeutroOrdered R — module
Homomorphisms are presented.

BACKGROUND

In this section, we will give some definitions, examples and results that will be useful in other sections
of the research.

2.1. Neutrosophic Sets [12]
Let U be a universe. A neutrosophic sets A over U is defined by
A= {< u, (To(w), 14 (w), Fﬂ(u)) >iu €U}

where, T, (w), I;(u) and F,4(w) are called truth-membership function, indeterminacy-membership function
and falsity- membership function, respectively. They are respectively defined by

T,:U-]70,17, [;:U->]70,17[, Fgu:U-]70,17]
suchthat 0~ < T, (w)+1 4, (W) +F4(u) < 37,
2.2. Single Valued Neutrosophic Set [18]

Let U be a universe. A single valued neutrosophic set (SVN-set) over U is a neutrosophic set over U, but the
truth-membership function T, indeterminacy-membership function I and falsity- membership function F are
respectively defined by

T‘A:u _)]_0,1+[, I‘A(U _)]_0,1+[, Fﬂ:'u—>]_0,1+[
Suchthat 0 < T, (w)+14(W)+F4(u) < 3.
2.3. Neutro-Axiom, Anti-Axiom [21]

i- A classical axiom defined on a nonempty set is an axiom that is totally true (i.e., true for all set’s
elements).
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A Neutro-Axiom (or Neutrosophic Axiom) defined on a nonempty set is an axiom that is true
for some set’s elements [degree of truth (T)], indeterminate for other set’s elements. [degree of
indeterminacy (I)], or false for the other set’s elements [degree of falsehood (F)], where
T,I,F € [0,1], with (T,I,F) # (1,0,0) that represents the classical axiom, and (T,I,F) #
(0,0, 1) that represents the Anti-Axiom.

An Anti-Axiom defined on a nonempty set is an axiom that is false for all set’s elements.
Therefore, we have the neutrosophic triplet:

< Axiom, Neutro — Axiom, Anti — Axiom >.

2.4. Neutro-Group [22]

Let G be a nonempty set and let *: G X G — G be a binary operation on G. The couple (G,*) is called a
Neutro-Group if the following conditions are satisfied:

I-

II-

III-

* is Neutro-Associative that is there exists at least one triplet (a, b, c) € G such that

a x (b * c) = (a * b) x c [degree of truth (T)], one triplet (d, e, f) € G such that

dx(exf)or (d=xe)*f are indeterminate[degree of indeterminacy (/)] and there exists at
least one triplet (x,y,z) € G such that x * (y * z) # (x * y) * z [degree of falsehood
(F)]. with (T, I,F) # (1,0,0) that represents the classical axiom, and (T,I,F) # (0,0,1) that
represents the Anti-Axiom.

There exists a Neutro-Neutral element in G that is there exists at least an element a € G that has
a single neutral element that iswe have e € G suchthata * e = e * a = a[degree of truth
(T)], for ¢ € G that has a single neutral element that is we have e € G suchthatc * eorc *
a are indeterminate[degree of indeterminacy (/)] and for b € G there does not existe € G
such thatbh * e = e *x b = b or there existe;,e, € Gsuch thath x e; = e;,x b = b or
b x e, = e, * b = bwithe, # e, [degree of falsehood (F)].

There exists a Neutro-Inverse element that is there exists at least one element a € G that has an
inverse b € G withrespecttoaunitelemente € G thatisa * b =b * a = e [degree of truth
(T)], there exists at least one element ¢ € G thatisa * ¢ or b * a areindeterminate[degree
of indeterminacy (1)] and that has two or more inverses c,d € G with respect to some unit
elementu € Gthatisb x c=c * b=u,b*xd =d*b = u [degree of falsehood (F)].

In addition, if * is Neutro-Commutative that is there exists at least a duplet (a,b) € G such that

axb = b x a, there exists at least a duplet (x,y) € G such that x x yor y *x are
indeterminate and there exists at least a duplet (c,d) € G suchthatc * d # d * c, then (G,*
) is called a Neutro-Commutative Group or a Neutro-Abelian Group.

If only condition | is satisfied, then (G,*) is called a Neutro-Semi Group and if only conditions | and Il are
satisfied, then (G,*) is called a Neutro-Monoid.

2.5. Neutro-Ring [25]

(&) A Neutro-Ring (R, +,.) is aring structure that has at least one Neutro-Operation among

"+ " and or

" " at least one Neutro-Axiom.

(b) Let R be a nonempty set and let +,.: R X R — R be binary operations of ordinary addition and
multiplication on R. The triple (R, +,.) is called a Neutro-Ring if the following conditions are satisfied:
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I- (R,+) is a Neutro-Abelian Group.
11- (R,.) is a Neutro-Semi Group.

I11- " - " is both left and right Neutro-Distributive over " + " that is there exists at least a triplet (a, b,c) € R
and at least a triplet (d, e, f) € R such that

a.(b+c¢)=ab+ac

(b +c¢c)a=ba+ca

d(e+f)+de+df(e+ f)d #ed+ f.d

If" - " is Neutro-Commutative, then (R, +,.) is called a Neutro-Commutative Ring.
2.6. Neutro-R module [45]

Let (G, #) be an abelian neutro-group, (R, +4,.; ) @ commutative neutro-ring and let = : RxG — R be a binary
operation. If at least one of the following conditions {i, ii, iii, iv, v} is satisfied, then (G, #) is called a neutro-
R module.

i) There exists a double (b,n) € (R,G) suchthat b * n € G (degree of truth T) and there exist two doubles

(u,v) and (p,q) € (R,G) suchthat[p * g & R (degree of falsehood F) or u * v €Y V (indeterminacy (1))];
where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).

ii) There exists a triplet (b,n,m) € (R, G, G) such that

b x m#m) =V (b xn)#(b = m) (degree of truth T) and there exist two triplets (p, g,7) and (u,v,w) €
(R,G,G)suchthat[p = (q#71) =Y (p * q)#(p * r) (degree of indeterminacy 1) or [u x (v #w) # (u *
v) # (u * w) (degree of falsehood F)]; where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).

iii) There exists a triplet (b,n,m) € (R,G,G) such that (b 4+, n) * m = (b *m) +; (n * m) (degree of
truth T) and there exist two triplets (p, q,7) and (u, v,w) € (R, R, G) such that

[+,q@) * r=Y (p * r)+, (q* r) (degree of indeterminacy I) or [(u+,v) * w # (u * w) +; (v *
w) (degree of falsehood F)]; where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).

iv) There exists a triplet (b,n, m) € (R, G, G) such that

x(n..m) = (b xn)., m (degree of truth T) and there exist two triplets (p,q,7) and (u,v,w) €
(R,R,G) such that [p * (q.1 ) =Y (p * q) .. r (degree of indeterminacy 1) or u * (v., w) # (u *
v) ., w (degree of falsehood F)]; where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).

V) For a double (a,e) (R, G), there exists an e € G such thata * e = a (degree of truth T) and (for two
doubles (b,e), (c,e) € (R, G), there exists e € G such that b * e # b (degree of falsehood F) or ¢ *
e =U c (degree of indeterminacy 1)); where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).

2.7. Ordered Algebra [42]

Let A be an Algebra with n operations “*;”” and “<” be a partial order relation (reflexive, anti-symmetric, and
transitive) on A. Then (4,*,,*,, ...,*, , <) is an Ordered Algebra if the following conditions hold.
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Ifx <y e Athenz *;x < z*;yandx *;z < yx*;, zforalli = 1,...,nandz € A.

2.8. Neutro Ordered Algebra [43]

Let A be a Neutro Algebra with n (Neutro) operations “i” and “ < ” be a partial order (reflexive, anti-
symmetric, and transitive) on A. Then (4,*;,*,,...,%, , <) iS a NeutroOrdered Algebra if the following
conditions hold.

(1) There existx < y € Awithx # ysuchthatz*;x < zx;yandx*;z < yx*; zforalli = 1,...,n

and z € A (This condition is called degree of truth, “T”).

(2) There exist x <y € Aand z € A such that z x;x £ z*;yand x *;z £ y+; z for some i =

1,...,n. (This condition is called degree of falsity, “F”.)

(3) There existx < y € Aandz € Asuch thatz *; x or z*;y or x*; z or y *; z are indeterminate, or
the relation between that z *; x and z *; y, or the relation between x *; z and y *; z are indeterminate for
some i = 1,...,n.(This condition is called degree of indeterminacy, “I”.) Where (T, I, F) is different from
(1,0,0) that represents the classical Ordered Algebra as well from (0,0,1) that represents the

AntiOrderedAlgebra.
2.9. NeutroTotalOrdered Algebra [43]

Let (A4,%1,%5,...,%, ,<) be a NeutroOrdered Algebra. If “<” is a total order on A then A is called
NeutroTotalOrdered Algebra.

NeutroOrdered R — Module and their properties

In this section, we use the defined notion of NeutroOrdered Algebra and apply it to NeutroOrdered
R — Module. As a result, we define NeutroOrdered R — Module and other related concepts.
Moreover, we study some properties of NeutroOrdered R — Module and, NeutroOrdered R — Module
homomorphism.

3.1. NeutroOrdered R — Module

Let R be a Neutro-Ring and let ( RM,+) be a Neutro abelian group and " - " be a binary operation
such that

“:R X M — M. Then (gxM,+,)is called a Neutro left R — Module on Neutro-Ring (R,+,.) if the
following conditions are satisfied:

1) " +"is left Neutro-Distributive over " - " that is there exists at least some r € R and m,n €
rM suchthatr-(m + n) =r-m+r-n there exists at least ¢ € R and t,v € zM such
that g- (t +v)orq-t+q-v are indeterminate and there exists at least seR,x,ye€
rMsuchthat s-(x+y) # s-x + s-y.

2) "+ "isright Neutro-Distributive over " - " that is there exists at least some r,s € R and m €
rM such that (r +s)-m=r-m+s-m there exists at least x,y € R and z € M such
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that (x +y)-z or x-z+ y-zareindeterminate and there exists at least some t,q eR,n €
M such that
(t+q@) n#t-n+q-n.

3) "-"is Neutro-Associative that is there exists at least some r,s € R and m € M such that
(rs) -m =r-(s-m), there exists at least some x,y € R,z € M such that (x-y)-z or x-
(y - z) are indeterminate and there exists at least some t,q € R,n € M such that (tq) - n #
t-(q-n).

4) There is an element e (Neutro-Neutral element in R) that is there exists at least some meM
such that

e-m =m there exists at least some x € M such that e - x is indeterminate and there
exists at least some n e Msuchthat e-n=+n.

Similarly, the form (Mg,+,) is known as Neutro right R — Module over a Neutro-Ring .
Notes:

1- If we have R as a commutative Neutro-Ring, then every Neutro left R — Module is a Neutro
right R — Module.

2- M is called a finite Neutro R — Module of order n if the number of elements in M is n that is
o(M) = n. If no such n exists, then M is called an infinite Neutro R — Module and we write
o(M) = oo.

3- Anelement x € M is called a Neutroldempotent element if x 2 = x.

4- Anelement x € M is called a NeutroINilpotent element if for the least positive integer n, we
have

x™ = e where e is Neutro-Neutral element in M.

3.2. Example: Let R be a commutative Neutro-Ring. A very important example of an Neutro R —
Module is R Neutro-Ring itself:

3.3. Example: Let X = {m,n,p, q,t} be a universe of discourse and let M = {m, n, p} be a subset of

. let m and = be binary operation defined on M as shown in the Cayely tables below:

* m n p
] m n p

m m m m
m m n norp

n morn p m
n porn|morn p

p m p n
p n p n

68



Neutrosophic Algebraic Structures and Their Applications
It is clear from the table that it (R, m,*) is a Neutro-Commutative Ring with Neutro-Unity and:

1- mx*(nmp) =m*p=m

(mxn)m(m=*p) =mmm =m [degree of truth (T)],
p*(nmm)=porn
(p *n)m(p *m) = nor m are indeterminacy[degree of indeterminacy (/)]
and nx(pmm)=nxn=p
(n *p)m(n *m) = mmm = m[degree of falsehood (F)].
This shows that "m"is both left Neutro-Distributive over " * ".

2- (mmn)*p=n+xp=m
(m = p)m(n *p) =mmm =m [degree of truth (T)],
(nmm)*p=norm
(n * p)m(m = p) = m[degree of indeterminacy (/)]
and (pEmm)*n=nx*n=p

(p *xn)m(m *n) = pmm = n [degree of falsehood (F)].
This shows that "m"is both right Neutro-Distributive over " « .

3- mx(nxp)=m*m=m
(m*n)xp=mx*p=m
(n * m) *» p = m[degree of truth (T)],
n * (m = p) = n or m[degree of indeterminacy (I)]
and px(n*n)=pxp=n
(p *n) *n =p = n = p [degree of falsehood (F)].

This shows that " *" is a Neutro-Associative.

4- p*n=p,m=*n=m [degree of truth (T)],
mx*n=m,n*m=morn [degree of indeterminacy (I)]

n*n = p # n [degree of falsehood (F)].
It follows that (M, m,*) Neutro R — Module over Neutro-Ring (R, m,*).
3.4. Neutro-Sub R — Module

Let M be a Neutro R — Module. A nonempty subset N of M is called a Neutro-Sub R — Module of
M if N is also a Neutro R — Module.
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3.5. Example: Let M be a Neutro R — Module. M is a Neutro-Sub R — Module called a trivial
Neutro-Sub R — Module.

3.6. Theorem: Let M be a Neutro R — Module over a Neutro-Ring R and let N be a nonempty
subset of M.

N is a Neutro-Sub R — Module of M if the following conditions hold:

(1) That is there exists at least some m,ne N suchthat m+ neN.
(2) That is there exists at least some m e N ,r € R suchthat rmeN .

3.7. Corollary: Let M be a Neutro R — Module over a Neutro-Ring R and let N be a nonempty
subset of M.

N is a Neutro-Sub R — Module of M if the following conditions hold:

That is there exists at least some m,n €N ,r,s € R suchthat rm+sneN.
3.8 Example: Let (M, m,x) be a the Neutro R — Module of 3.3. Example and let N = {p,n}:

1- pn€N ,pun=peN but nmn=m
2- pn€N ,pER,pxn=p€eN but nxp=m

It follows that N is Neutro-Sub R — Module of M.

3.9. Theorem: Let M be a Neutro R — Module over a Neutro-Ring R and let {N,,},,c, be a family
of Neutro-Sub R — Module of M .Then n N,, is a Neutro-Sub R — Module.

3.10. Neutro R — Module Homomorphism

Let (M,+,) and (N, m,*) beany two Neutro R — Modules. The mapping ¢ : M — N is called a Neutro
R — Module Homomorphism if the following conditions hold:

for at least a pair (x,y) € M, we have:
px +y) = e()m o)
p(xy) = e(x)* o)

If in addition ¢ is a Neutro-Bijection, then ¢ is called a Neutro R — Module Isomorphism and we
write M = N. Neutro R — Module Epimorphism, Neutro R — Module Monomorphism, Neutro R —
Module Endomorphism and Neutro R — Module Automorphism are defined similarly.

3.11. The kernel and the image of Neutro R — Module Homomorphism
The kernel of ¢ denoted by Kerg is defined as
Kerp = {x: @(x) = ey}where ey € N is Neutro-Neutral element in N.

The image of ¢ denoted by Im is defined as
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Imp = {y € N: y = ¢(x) for at least oney € N}.

3.12. Example: Let (M, m,*) be a the Neutro R — Module of 3.3. Example and let ¢: (M, m,*) >
(M, m,*) be

a mapping defined by:
p(m) =m=*m
It can be shown that ¢ is a Neutro R — Module Homomorphism such that
form,n,p € M, we have:
1- pmmam)=pm)=ms+sm=m
e(m)mp(m) = (m+m)m(m*m) =mmam=m but
p(mmn) = g(n) =n+n=p

pm)mp(n) =(m+m)m(n+n) =mmp =n

2- pm*n)=@p(m)=m*m=m
p(m) * p(n) = m+*p = m but

p(pxn) =) =p*p=n

p(@)xen) =nxp=m
The kernel of @ is Kerp = {x: ¢(x) = ey} = {m,p} where e,, € M is Neutro-Neutral element in M.
The imageof pisIme = {y € N: y = @(x)for at least oney € N} = {m,n,p}

3.13. Theorem: Let (M,,+) and (N, m,*) be any two Neutro R — Modules. Suppose thatgp : M - N is
a Neutro R — Module Homomorphism. Then:

- @(ey) is not necessarily equals ey .

- Kerg is a Neutro-Sub R — Module of M.

- Ime is not necessarily a Neutro-Sub R — Module of N.

V- @ is Neutrolnjective if and only if Kerp = {e,,} for at least one e,, € M.

3.14. The composition of Neutro R — Module Homomorphism:
Let K,M and N be Neutro R — Modules over a Neutro-Ring R and let
p:K->My:M->N
be Neutro R — Module homomorphisms. The composition ¢ : K — N is defined by
v (k) = w(d(k)) for all keK.
3.15. Theorem: Let K,M and N be Neutro R — Modules over a Neutro-Ring R and let

¢:K->M,y:M—>N
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be Neutro R — Module homomorphisms. Then the composition w¢: K — N is a Neutro R — Module
homomorphisms.

3.16. Theorem: Let K,M and N be Neutro R — Modules over a Neutro-Ring R and let
¢: K- M, W M->N
be Neutro R — Module homomorphisms. Then

1- If wgis Monomorphism Neutro R — Module, then ¢ Monomorphism Neutro R — Module.

2- If wgis Neutro R — Module Epimorphism, then y is Neutro R — Module Epimorphism.

3- If wand ¢ are Monomorphism Neutro R — Module, then y¢is Monomorphism Neutro R —
Module.

3.17. Neutro Ordered R — Module

Let M be a Neutro R — Module with n (Neutro) operations “i” and “ < ” be a partial order (reflexive, anti-
symmetric, and transitive) on M. Then (M,*,,*, ,<) is a NeutroOrdered R — Module if the following
conditions hold.

(1) Thereexistx < y € Mwithx # ysuchthatz*,x < z*;yandx*;z < yx; zforalli = 1,2 and

z € M (This condition is called degree of truth, “T”.)

(2) There existx < y € Mandz € Asuchthatz +;x £ zx;yandx *;z £ y+; zfor somei = 1,2.
(This condition is called degree of falsity, “F”.)

(3) There existx < y e Mandz € Asuch thatz*; x or z*;y or x *;z or y *; z are indeterminate, or
the relation between that z *; x and z *; y, or the relation between x *; z and y *; z are indeterminate for
some i = 1,2.(This condition is called degree of indeterminacy, “I”.)

Where (T, 1, F) is different from (1,0,0) that represents the classical Ordered R — Module as well from
(0, 0,1) that represents the AntiOrdered R — Module.

3.18. Neutro Total Ordered R — Module

Let (M,*;,*,,<) be a NeutroOrdered R — Module. If “<” is a total order on A then M is called
NeutroTotalOrdered R — Module.

3.19. Neutro Ordered Sub R — Module

Let (M,*,,*,,<) be a Neutro Ordered R — Module and® # S S M. Then S is a Neutro Ordered Sub R —
Module of S if (S,%,,*,,<) isa Neutro Ordered R — Module and there exist.

a. Example: Let M = {m,n,p} and (M, m,*,) be defined by the following table.
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* m n p
[ ] m n

m m m m
m m n n

n morn p m
n porn | morn p

p m p n
p n p n

As showed (M, m,*,) in 3.3. Example is a Neutro R — Module.
By defining the total order
< ={(m,m),(n,n), (p,p), (m,n), (m, p), (n, p)}
on M, we get that (M, m,*, <) is a NeutroTotalOrdered R — Module. This is easily seen as:
1- m<pimpliesthatm*x <psxandx+m < x*pforallx € M.
And havingn < p but pmn £ pEp.
2- m<nimpliesthatm*x <n=*xandx*m < xxnforallx € M.
And havingn <p butp*nép*p.

3.21. Example: Let (M, m,%, <) be a the Neutro R — Module of 3.3. Example and let N = {p,n}

1- pneN ,pmn=p €N but nmn=m
2- pneN ,peER,pxn=p€eNbut nxp=m

By defining the total order

< = {(m,m),(n,n), (p,p), (m,n), (m, p), (n, p)}

It follows that (N, m,*, <) is Neutro-Sub R — Module of M.
3.22. Neutro Ordered R — Module Homomorphism

Let (M,*,,%,,<;)and (N,m,, m,,<,) be any two Neutro Ordered R — Modules. The mapping ¢ : M —
N is called a Neutro Ordered R — Module Homomorphism if the following conditions hold:

for some (x,y) € M, we have:

@ ol xy) = e)m (y)

¢ e y) = p(x)me(y)
% andthereexista <, b ,a# b, ¢(a) <, pb)
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@ is called Neutro Ordered R — Module Isomorphism if ¢ is a bijective NeutroOrdered R — Module
Homomorphism.

i)There exists a double (p, q) € M such that o(p *; q) = @(p)m,p(q) (degree of truth T) and there exist
two doubles (s, t), (k,m) (F,V) such that [p(s *; t) # @(s) m,¢@(t) (degree of falsehood F) or

@(k *; M) =indeterminacy ©(k) Wy @(m) (degree of indeterminacy I)]; where (T, 1, F) is different from
(1,0,0) and (0,0,1)

ii)There exists a double (p,q) € M such that o(p *, q) = @(p)m,p(q) (degree of truth T) and there exist
two doubles (s, t), (k,m) (F,V) such that [p(s *, t) = @(s) m,p(t) (degree of falsehood F) or

@(k *; M) =ipdeterminacy ®(k) W, @(m) (degree of indeterminacy I)]; where (T, I, F) is different from
(1,0,0) and (0,0, 1).

3.23. Example: Let ¢: (M, m,x, <) - (M, m,x,<) be a mapping defined by:
p(m) =m=*m

It can be shown that ¢ is a Neutro Ordered R — Module Homomorphism such that

form,n,p € M, we have:

1- and 2- it proved in 3.12. Example

3- there exist m < n sush that ¢(m) < p(n)

Conclusions

This paper contributed to the study of Neutro Algebra by introducing, for the first time, Neutro R — module
and Neutro OrderedR — module. Many interesting properties were proved as well illustrative examples were
given on Neutro R — module and Neutro OrderedR — module.
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ABSTRACT

In this manuscript, we introduce the new concept of Neutrosophic double controlled metric-like spaces that
generalize the concept of Neutrosophic metric spaces. We prove and generalize the concept of Banach
contraction principle and fuzzy contractive mappings in the sense of neutrosophic double controlled metric-
like spaces. These results and illustrative examples generalize several comparable results from the current

literature.

Keywords: Fixed point, Controlled metric like space; Double controlled metric like space; Neutrosophic

double controlled metric-like spaces;
INTRODUCTION

In the field of fixed point theory, the notion of metric spaces and the Banach contraction principle play crucial
roles. Many researches are drawn to metric spaces because of its axiomatic clarity. There have been a lot of
generalizations to the metric spaces so far. This demonstrates the allurement and scope of the definition of the

metric spaces.

The notion given by Zadeh [3] is known as fuzzy sets (FSs) acquire an ultra-attraction for researchers. This
concept succeeded in shifting a lot of mathematical structures within itself. In this continuation, Kramosil and
Michalek [9] originate the notion of fuzzy metric spaces and Garbiec [10] gave the fuzzy interpretation of

Banach contraction principle in fuzzy metric spaces. Harandi [22] is credited with coining the term metric like
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spaces (MLS) which elegantly generalises the idea of metric spaces. [25] N. Mlaiki introduced the concept of
controlled metric type spaces and controlled metric-like spaces [24]. Shukla and Abbas [23] reformulated
definition (MLS) in this context, resulting in fuzzy metric like spaces (FMLS). Fuzzy metric spaces discuss
only for memberships functions, so for dealing with membership and non-membership functions intuitionistic
fuzzy metric spaces introduced by J. H. Park [11]. The neutrosophic set and theory are given by Smarandache.
A lot of studies are given based on neutrosophic sets [28-32,40-76]. Also, a lot of studies are given based on
some type of neutrosophic triplet metric space [33-39]. M. Kirisci, N. Simsek [20] tossed the approach of
neutrosophic metric spaces (NMSs) that deals with membership, non-membership and naturalness functions.
N. Simsek, M. Kirisci [19] and S. Sowndrarajan, M. Jeyarama, F. Smarandache [21] prove some fixed point
(FP) results in the setting of NMSs. Recently N. Saleem [7] introduce the notion of fuzzy double controlled
metric spaces (FDCMSs) and generalized the Banach contraction principle. For related articles see [1, 2, 4-6,
8, 12-18, 26,27].

In this manuscript, our aim is to generalize the concept of NMSs by using the approach in [7] and toss the
concept of neutrosophic double controlled metric-like spaces (NDCMLSS). Fixed point (FP) results and non-

trivial examples are imparted in this work

BACKGROUND

Definition 1.1 [1] A binary operation =: [0, 1] = [0, 1] — [0, 1] is called a continuous triangle norm (briefly
CTN)if:

1. wsp=p=+nmpelo1l;

2. = is continuous;

3. w+l=m{v)zeloil

4. (mwsplsp=m=lu=p), (W) mppeloil;

5. fr=pandp=og withmpwpoeld 1l thenm+p=p=a.
Example 1.1 [1, 2] Some fundamental examples of CTNs are: w+ p =m* p.w # p = min {m, p} and
m+ p=max{m +p—1,0%

Definition 1.2 [1] A binary operation @ : [0, 1] = [0, 1] — [0, 1] is called a continuous triangle conorm (briefly
CTCN) if it meets the below assertions:

mop=pom forall mpe [0, 1];

= is continuous;

mo0=0, foral = e [0,1];
(moweop=molpop)forallmppel0.1];

5, fr=zpandpu<owithmupoeldll.thenrop=poo.

> wbh e

Example 1.2 [1] 7 © p = max{m, p} and 7 © p = min{z + p. 1} are examples of CTCNs.

Definition 1.3 [3] Let a set © = @. then a pair (D, P} is named to be fuzzy set, here P is a function from T to
[0,1] i.e. P:D — [0,1] for each @ € D, P () is called the grade of membership of T, in (D, P} and P is called
a membership function of (D, P).
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Definition 1.4 [27] Let a set ™= @ and & € T. A neutrosophic set ¢ in T is categorized by a truth-
membership function, T {8}, an indeterminacy-membership function U;{a8} and a falsity —membership
function ¥ (). The functions T;; (8}, Uz (8} and ¥ (8} are real standard or non-standard subsets of J0~, 1%
thatis T (8): ¥ =107, 1% Uz(8): ¥ =]0~,1*[and ¥V (#): X —=]0~.1*[ So,

0~ < sup T.(8) + sup U.(8) + sup ¥ (8) = 3~.
Definition 1.5 [22] A mapping P:D x D — [1.¢e), where © = @, fulfill the below circumstances:

a. P(3.B) =0implies 8 = §;
b. P(3.8) =P(3.8);
c. P(a.8) =P(8.6)+P(5.8):
forall 8. 8,6 € ©. Then P is called a metric-like and (D, P} is named metric-like space.

Definition 1.6 [24] Let a function : D = © — [1,22) and a mapping P:D =D — R*, where D = &, fulfill
the below circumstances:

a. P(a,8) =0 implies 8 = #;
b. P{a.p) =Pig.a);
c. P@.g) =w(d 6P@, 6 +yw(s 8P, B);
forall 3. 8.5 € ©. Then P is called a controlled metric-like and (D, P} is named controlled metric-like space.

Definition 1.7 [8] Given functions &.n; I = I — [1,ce) are non-comparable. If 8:I = I — [0, co) fulfil:

d. dle.f)=0iffa =4

e. 8la.p)=a8(g.al

f. 8a f) < dla, V(e A) +n1 )o@, g);
for all & 8.1 € I. Then 4 is called a double controlled metric and (T, &} is named double controlled metric
space.

Definition 1.8 [7] Let I = @ and ¢, n: L x I — [1, o2} given non-comparable functions, and = isa CTN. P

bea FSon I x I x (0,) is named fuzzy double controlled metric on I, if for all &, . 1 £ L. the below
circumstances fulfil:

i Pla,p.0) =0;
ii. Pla,p.T)=1forall T = 0,if and only if « = §;
iii. Pla,.T)=P(B.a.T)

: _ T 5
iv, P@aT +8) zP(ab5g) PB4 5o5);
V. Pla,g, -):(0,02) = [0,1] is left continuous.

Then (L, P, Q.=) be named a FDCMS.

Definition 1.9 [4] Take I = @. Let*be a CTN, @ be a CTCN, b = 1and P,Q be FSs on I x I x (0,ca). If
(L. P, Q.* o) verifies the following for all &. § € Fand &, T = 0t

. Plapf.T)+Q@pB.T)=1
. Pla.f.T)=0:
. PapT)=1Sa=4
V.  Pla.f.T)=PB.aT)
V. Pladb(T+8)) = Pla.pT)*P@.AT)
VI.  Pla,f.) isanon-decreasing function of B* and lim Pz, 3.7) =1;

I =z
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VI Qla, 8.7) = 0;
VIl  Qa.B.T)=0a =§;
IX. @la.8.7)=0QF aTh
X Qa.a.b(T +5)) < Qla.B.T)0Q(8.4.T):
Xl.  @Q(a, .) is a non-increasing function of B* and lim Qle.p.T)=0,

then (L, P, @.*, @) is an Intuitionistic fuzzy b-metric space.

Definition 1.10 [20] Let E = @ and = is @ CTN and = be a CTCN. F,@,5 are Neutrosophic sets on
I'= I = (0,0} is named Neutrosophic metric on I, if for all & 8. 1 £ L. the below circumstances fulfil:

1) Pla,f.7)+Qla,8.7) +5(a, 3.T) =3 forall T e R*;
2) Pla..T) =0 forall T = 0;
)

3) P{ﬁ._.‘.?.ﬁ" =1forallT = 0.if and only if & = &;

4) Pla,f,T)=PB.a T)foralT = 0;

5) Pla, 1, T+5)=Pla,B.T)+P(B.4.5) forall 7.5 = 0;

6) Plea, g, -):(0,02) - [0.1] is continuous and GLLan{n._E.:."] =1 forall T > 0;
7 Qla, 3. T) = 1forall T = O;

8) Qa, 3. T)=0forall T = 0,if and only if & =

9) Qe 8.7)= Q(B.a,T) forall T = O;

10) Qle, AT +5) < Q. 8. T) o Q(B,4,5) forall T,5 = 0;

11) Q(e, B, ):(0,00) = [0,1] is continuous and :ILE_ﬂQ{n._E.E"] =0 forall T = 0;
12) S, 8, 7)< 1forall T = 0;

13) S, §,7)=0forall T = 0,if and only if « = §;

14) S, ,7)=5(8, a, T forall T = 0;

15) Sl AT +5) =5, 8.T)o 5(8,4,8) forall T, 5 = 0;

16) Sle, 8, +):(0,c0) — [0,1] is continuous and SLLES{IT._ﬂ-«?_] =0 forallT = 0;

17) T <0.then P(a.8.7)=0,0(c. 8.7) = 1 and 5(a. .T) = 1.
Then (L. P. Q. 5.%2) be called an NMS.

NEUTROSOPHIC DOUBLE CONTROLLED METRIC-LIKE
SPACE

In this section, we introduce the concept of NDCMLSs and prove some FP results.

Definition 2.1 Let L # @ and ¢.n; I % I — [1,ca) given non-comparable functions, and = isa CTN and = be
a CTCN. P. Q. R are Neutrosophic sets on X » I x (0,c2) is named Neutrosophic double controlled metric-
like on I, if for all &, #,.4 € I, the below circumstances fulfil:

(i) Pla.f.7)+Qa.8.T)+R(a. 5. T) = 3forall T = 0;
(ii) Pla,f,7) =0 forall T = 0;

(iii) Pla,f.T)=1forall T = 0,implies « =

(iv)  Pla.g.T)=P(B.a.T)foralT =0;

v)  Pl@iT+s5) = P(n._g.ﬁ] + P(g.2.—=) forall 7.5 > 0,
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(vi) P(a.p. ):(0.0) - [0.1] is continuous and and lim P(e, .7} = 1 for all T = 0;

(i)  Qla,f.T) < 1forallT =0
(viii)  Qla,f.T)=0forall T = 0.implies & = §;
(ixX) Qla.f.T)=QB.a T)foralT = 0;

®) Q@ AT+8) < Q(n.ﬂ.#) o Q(_E.A.ﬁ) forall 7.5 = 0:

(xi)  Qla, B, ):(0,e) — [0,1] is continuous and lim Q{a, §.7) =0 forall T = 0,
(xii)  Rla.f.T7) < lforallT = 0;

(xiii)  Rle,f.T)=0forall T = 0,implies « = &

(xiv) Rla.8.T)=PR(B.a.T)forallT = 0

T &
xv) R@. AT +8) gﬂ(n.ﬂ.m) s R(ﬁ'.;-l.m) forall T,§ = 0;

(xvi)  Rla, B -):(0,00) — [0,1] is continuous and and lim R (e, 8,7} = Oforall T = 0;
Then (L. P. Q. R.+c) be called a NDCMLS.

Example 2.1 Let I = {1,2,3}and &, n: I x I — [1,c2) be two non-comparable functions given by
dla.f)=a+f + land nla. ) = a® + B — 1. Define P, Q. R: Ex L % (0,2) - [0,1] as

Pl T) = e
5o malad)

Qle, f, _sr_|_m;;|x'[n'._g}l

and

R g7 < Bl B
o, .7} = T

Then (X, P, @, R.+c} isan NDCMLS with CTN = + p =z and CTCN & © p = max{m, p}.
Proof: Conditions (i)-(iv), (vi)-(ix), (xi)-(xiv) and (xvi) are easy to examine, here we prove (v), (X) and (xv).

Lete =18 =2and 4 = 3. Then

P(1,3.T+5) 7o
S C T+ 5 4+ max{1,3}
_ T+5
TT4+5+73
On the other hand,
T
P(L T J $(1,2)
:1::-':1.7] H% +max{1,2}

T
__3 _ T
T, ., T+8

++2
and
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psrs) = 2

&
m+ max{2,3}

That is,

T+§ T 5
= . \
T+5+3°T48 5436

Then it satisfies for all T. & = 0. Hence,

Pl AT +5) = P(n.ﬂ.ﬁ] . P(ﬂ.ﬁ.ﬁ].

Now,
max{1,3}
QUAT +8) =
_ 3
T+8+3
On the other hand,
0 (1.2. T :I _ max{1,2}
n(1.2) H% +max{1,2}
2 g
) %+ 2 - j—_+8
and
0 (23. 5 :I _ max{2,3}
n(2.3) HES_ET +max{2,3}
3 36
- %Jr ; 5+36
That is,

3 - I a3 Eﬁ}
T+s+3- "\rye's+3e)

Then it satisfies for all T, & = 0. Hence,

0l 1T +5) = Q(n._ﬂ.ﬁ] o Q(ﬁ.a.ﬁ].

Now,
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R(1.3.7 +8) maxl 3
S
3
T+
On the other hand,
R(l , T J B max{1,2}
T2y _T
nﬁl.Ej
2 3
4
and
( . & J_ max{2,3}
T2y S
nt2.3
_ 3 _36
-5 s
12
That is,
3 - a3 36}
T+s- g s)

Then it satisfies for all T, & = 0. Hence,

R(a, LT +5) ER(n.ﬂ.ﬁ] ° R(ﬁ‘.ﬂ.ﬁ).

On the same lines, one can examine all other cases. Hence, (L, P, Q. R.=o} isa NDCMLS.
Remark 2.1 Above example also satisfied for CTN = = p = min{m, u} and CTCN 7 o p = max{m. p}.

Example 2.2 Let I' = (0,0} and ¢.n: I x I — [1, @) be two non-comparable functions given by
dle.fl=a+pf+landnle.f) = +5° -1

Define P, Q. R: I % I x (0,00) = [0,1] as

C - T ( - max{e, 1 ( ]_max{n'._.[i‘}:
Plabd) = e B = e FeBT)=—F—

Then (I, P, @, R+ o) isa NDCMLS with CTN 7 # u = mp and CTCN 7 © p = max{m, ul.

Remark 2.2 Above example also holds for

1 if a=g
dla. f) = [1 + max{a. g} .
—min{ﬁ.ﬂ} ifa = f

and
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{ 1 if o=4,
nle, f) =41+ maxa® g7} L
—min{n:._{j‘:} if e += f

Remark 2.3 Above example also satisfied for CTN 7 = u = min{mz, u} and CTCN 7 @ u = max{x, pl.

Definition 2.2 Let (T, P, @, R.=.c) isa NDCMLS, then we define an open ball B (g, . T ) with centre «.
radiusr.0 = » =1 and T = 0 as follows:

BlarTl={el:PapT)>=1—r.Qa B8.T)<rRap.T)<rh
Definition 2.3 Let (L, P, @, R.+.c) isan NDCMLS and {e,, } be a sequence in I.then {e,} is named to be:

(i) a convergent, if there exists & £ I' such that
lim Pla,. a.T) =Pla. . T) lim Qla,.a.T) = Qla. a.T), and
T

M=o

lim Rla,, a.T) = Rla.a,T), forallT =0

N—a=

(i) a Cauchy sequence (CS), if and only if for each T = 0, there exists n, € M such that
lim P{nﬂ.nmq.ﬂ'}.?l!i_ﬂ Qe ety T) and lim Qlaty. ety . T ) exists and finite.

(iii) If every Cauchy sequence convergent in I, then (L, P, @, is called complete NDCMLS.
lim Plap ap.q.T) = lim P ey, @ 7) = Pla, .7,

lim Qlatn. ety T) = lim Qlay. a.7) = Qla.a.T),
lim R(ey.ap,,.T) = limR(ay a.7) = Rla, a,T).
M—o= M=o

Theorem 2.1 Suppose (L, P, Q. R} be a complete NDCMLS in the company of
ppIxl— [L%) with 0 < & = 1 and suppose that

lim Pla,f.T) =1, lim Qla, £, T} =0 and lim R{a.8.7) =10 (1)

T e

foralle.f € Zand T = 0. Let #: I — I be a mapping satisfying
P(Wa,¥B,6T) = Pla,f.7), QWa,¥3.6T)=<Q(a.f.T)and R(Wa, ¥3,6T) = R(a,5.T) (2)
forall &, # € Zand T = 0. Then ¥ has a unique FP.

Proof: Let o, be a random integer of I and describe a sequence e, by &, = ¥" &y = Pa,_,, n € M. By
using (1) for all T = 0, we have

T
P{ﬁﬂ.ﬂﬂﬂ_-&:’_] = P{g'r”n—j_-g'r”n'gj—] = P{”n—L'”i’!"T] EP(”“':'”“'L'E]
- .:'_ - - .:'_
> P(nﬂ_g-nn_:-g] z oz P(”n-”rﬁ]-

T
Q{ﬂﬂ-”n+1'e‘?-] = Q{?’nﬂ_L.Wnn.ﬁ'T] = Q{ﬁn_j_-ﬁn'j-] = Q(HH—Z'NH—L'E]

T T
= Q(”n—:-”n—:-?] == Q(”D'”L'Eﬂ—L]

and
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T
Rie,, t,,,.8T)=RWa,_, We,, 8T) =< Rle,_,. 00, T) = R(”n—:*”n—bg]

T

-
< R(a-ptn-2gs) < < R @y crgey)

We obtain

T
P{nﬂ,nﬂﬂ, 8T} = P(NDJHL,F],

T T
Q{nﬂ, Gpyys BT} = Q (n'n., n'l,ﬁ] and R{nﬂ, Gigyys 8T} =R (n'n., 6y F] (3)
for any g € M, using (v}, (x) and (xv), we deduce

P{ j‘} = P( T ] P d
OOy d JZ 0| O o T o [ F 0 By g
menTa et 2{':1:'{”?!*”?!“.]} e z(ﬂ.{ﬁnu:”mq})

T T
=Play. F‘+’—]*P n+l By
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Using (1), for n — o2, we deduce
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M=o
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e

i.e., {z,}isaCS. Since (Z.P, Q. R.=2) be a complete NDCMLS, there exists
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as n — o2, This implies that e = & a FP. Now we show the uniqueness, suppose ¥z = p for some p € I,
then
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by using (i), (viii) and (xiii}). & = p.

Definition 2.4 Let (£, P, @, R.=,2) be a NDCMLS. Amap #¥:I — I is ND-controlled like contraction if there
exists 0 = & = 1, such that
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Now we prove the theorem for ND-controlled like contraction.
Theorem 2.2 Let (L, P, Q. R,+,2) be a complete NDCMLS with ¢, 1; I % I — [1,22) and suppose that

lim Pla,f.7) = 1, lim Q{a,8.T) =0 and lim R{a, 8,71 =0 (7

J =oo J =

forall e, e Tand T = 0. Let ¥: I — I be a ND-controlled like contraction. Further, suppose that for an
arbitrary &, € L. and n.q € M, where o, = ¥" @, = e, _,. Then ¥ has a unique FP.

Proof: Let o be a random integer of I and describe a sequence &, by &, = ¥" &y = ¥a,,_,, n € H. By
using (4}, (5) and (&) for all T = 0, n = g, we have
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a contradiction. Therefore, we must have Ple, p.7) = 1,Qle, p.T) = Oand Rla.p.T) =0, hence o = p.

Example 2.3 Let £ = [0,1] and &.n: £ x I — [1, o) be two non-comparable functions given by
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Hence, all circumstances of theorem 2.1 are fulfilled and @ is a unique fixed point for ¥,

Conclusions

Fixed point technique is used to solve many mathematical problems as it gets involved with differential and
integral equations, integro-differential equation, game theory, economics and more disciplines. The intent of
this manuscript is to present a new space neutrosophic double controlled metric like space. Ultimately, to
illustrate the practical side of the theoretical results. Moreover, we provided a non-trivial example to
demonstrate the viability of the proposed methods. We have supplemented this work with an application that
demonstrates how the built method outperforms those found in the literature. Since our structure is more
general than the class of fuzzy and double controlled metric like spaces, our results and notions expand and

generalize a number of previously published results.

Abbreviations

FS: Fuzzy Set

MLS: Metric-like space

FMLS: Fuzzy metric-like space

NMS: Neutrosophic metric space

NDCMLS: Neutrosophic double controlled metric-like space
FP: Fixed point

CTN: Continuous triangle norm

CTCN: Continuous triangle conorm
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ABSTRACT

Generalized set valued neutrosophic quadruple sets have an important role in neutrosophic quadruple theory
and single valued neutrosophic theory. Thanks to generalized set valued neutrosophic quadruple sets, the
solutions of decision-making problems in which single valued neutrosophic numbers are used can be obtained
more objectively. Also, bipolar single valued neutrosophic sets are more useful in neutrosophic theory,
especially at decision making problems. In this chapter, we obtain bipolar generalized set valued neutrosophic
quadruple sets and numbers. We give some basic properties for bipolar generalized set valued neutrosophic
quadruple sets and numbers. Also, we define some new operations for bipolar generalized set valued
neutrosophic quadruple sets and numbers. Thus, we obtain a new structure based on generalized set valued
neutrosophic quadruple sets and bipolar single valued neutrosophic numbers. In this way, we obtain new results
for generalized set valued neutrosophic quadruple set and bipolar single valued neutrosophic set. Furthermore,
thanks to this new structure; the solutions of decision-making problems in which bipolar neutrosophic numbers

are used will be obtained more objectively.

Keywords: bipolar single valued neutrosophic set, neutrosophic quadruple number, set valued neutrosophic

quadruple set, bipolar generalized set valued neutrosophic quadruple set
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INTRODUCTION

Neutrosophic logic and the concept of neutrosophic set are defined in 1998 by Florentin Smarandache [1]. In
the concept of neutrosophic logic and neutrosophic sets, there is the degree of membership T, degree of
uncertainty | and degree of non-membership F. These degrees are defined independently from each other. It
has the form of a neutrosophic value (T, I, F). In other words, a situation is handled in neutrosophy according
to its accuracy, its falsehood, and its uncertainty. In addition, many researchers have conducted studies on
neutrosophic set theory [2-8]. Recently, Sahin and Kargin obtained neutrosophic triplet normed ring space [9];
Zeng et al. studied a novel similarity measure of single-valued neutrosophic sets based on modified Manhattan
distance [10]; Sahin et al. introduced neutrosophic triplet partial g — metric space [11]; Sahin and Kargin
obtained a new similarity measure based on single valued neutrosophic sets and decision-making applications
in professional proficiencies [12]; Alhasan et al. studied neutrosophic reliability theory [13]; Bordbar et al.

introduced positive implicative ideals of BCK-algebras based on neutrosophic sets and falling shadows [14].

Deli et al. studied bipolar neutrosophic sets and logic in 2015 [15] and Broumi et al. obtained bipolar single
valued neutrosophic set in 2016 [16]. The bipolar single valued neutrosophic sets have an important role in
neutrosophic theory and decision making problems. The use of negative and positive integers (from [-1, 0] and
[0, 1] intervals) as values in bipolar single valued neutrosophic sets makes this set superior to other sets in
many problem situations. Because while it is often difficult to reach a definite judgment in a decision-making
situation, a decision given as an negative and positive integers will be more useful. Hence, many researchers
studied based on bipolar neutrosophic sets and logic [17-19]. Recently, Sugapriya et al. obtained two-
warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand
pattern [20]; Jamil et al. studied multicriteria decision-making methods using bipolar neutrosophic hamacher
geometric aggregation operators [21]; Arulpandy and Pricilla introduced bipolar neutrosophic graded soft sets

and their topological spaces [22].

Smarandache obtained neutrosophic quadruple set and numbers in 2015 [23]. While neutrosophic quadruple
set have T, | and F components as in neutrosophic sets; unlike neutrosophic sets, there is a known part and an
unknown part. Therefore, neutrosophic quadruple sets are a generalization of neutrosophic sets. For this reason,
neutrosophic quadruple sets are widely used in the algebraic and application areas [24-29]. Recently, Li et al.
introduced neutrosophic extended triplet group based on neutrosophic quadruple numbers [30]; Sahin et al.
obtained neutrosophic triplet field and neutrosophic triplet vector space based on set valued neutrosophic
quadruple number [31]; Borzooei et al. studied positive implicative neutrosophic quadruple BCK-algebras and
ideals [32]; Sahin and Kargin introduced neutrosophic triplet metric space based on set valued neutrosophic
quadruple number [33]; Smarandache et al. obtained neutrosophic quadruple groups [34]; Sahin et al.
studied multi-criteri decision-making applications based on set valued generalized neutrosophic quadruple sets
for law [35]. In recent years, the academic community has witnessed growing research interests in neutrosophic
set theory [36-70].
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In this chapter, we obtain bipolar generalized set valued neutrosophic quadruple sets (BgsvNgs) and numbers

(BgsvNgsn) using generalized set valued neutrosophic quadruple sets and bipolar single valued neutrosophic
sets. Thanks to BgsvNgs and BgsvNgsn, generalized set valued neutrosophic quadruple sets and bipolar single
valued neutrosophic sets will more useful together. Also, we obtain some basic properties and some operations
(Ua, Ug, Up,Ng, N, Np/as /o, /p)- In fact, we generalize the some operations in [24] for BgsvNgs. In
Section 2, we introduced some basic definitions for bipolar single valued neutrosophic set [15], neutrosophic
quadruple sets [24], [27].

BACKGROUND
Definition 1. [15] Let A be a universal set. Bipolar set valued neutrosophic set N; is identified as
N ={(a Ty (@), If (), F§ (a), Ty (), Iy (a), Fy (a)): a € A}

Where the functions
TS, If, F¥ : X — [0,1] are the positive degrees of truth functions, uncertainly functions and falsity

functions; respectively.

Ty, Iy, Fy : X — [-1, 0] are the negative degrees of truth functions, uncertainly functions and falsity

functions; respectively.

Definition 2. [15] Let A be a universal set and
N, ={(a, Ty, (@), I3, (@), Fy, (@), Ty, (), Iy, (a), Fy, (a)): a € A}
and
N, ={(a, Ty, (a), I}, (@), Fy, (a), Ty, (@), Iy, (a), Fy, (a)):a € A}
be two bipolar single valued neutrosophic sets.
i) N, is subset of N, if and only if
T n@ 2T @ T ny@ 2T hye
My <y I ve < T vae
Fru.@ < F'yve0 F e < F v

ii) N, is equal to N, if and only if
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+ _ T+ -~ _ - .
Tv@ =T n@r T v@ = T Ny
+ _ 7+ -~ _7- .
M@ = vy Iy =17 vy
+ — — — —
Fony@) = T Fv@ = F -

ii) N, U N, = {(a: maX{T+N1(a), T Ny b min{I+N1(a), I vy}

min{F+N1(a), F+N2(a)}' maX{T_Nl(a), T_Nz(a)}r min{I_Nl(a), I_Nz(a)}1 B min{F_Nl(a), F_Nz(a)})7 aEA}

|V) N1 n NZ = {(a min{T+N1(a),T+N2(a)}, maX{I+N1(a),I+N2(a)},

maX{F+N1(a), F+N2(a)}' min{T_Nl(a)' T_Nz(a)}' maX{I_Nl(a), I_Nz(a)}’ B maX{F_Nl(a), F_Nz(a)})7 aEA}

Definition 3: [27] Let N be a set and P(N) be power set of N. A set valued neutrosophic quadruple set is shown

by the form
(44, A,T, Asl, A,F).

Where, T, | and F are degree of membership, degree of undeterminacy, degree of non-membership in
neutrosophic theory, respectively. Also, A,, 4,, A5, A, € P(N); A, is called the known partand (4,, 4, T, Asl,

A,F) is called the unknown part.

Definition 4: [27] Let A = (4,, 4,T, A5l, A,F) and B = (B, B, T, B;l, B,F) be set valued neutrosophic

quadruple set s. We define the following operations, well known operators in set theory, such that
AUB=(A; UBy, (A, UB,)T, (A3 U B3)l, (A4 U B,)F)

ANB=(A; N By, (A, NB,)T, (A3 N B3)l, (A4 N B,)F)

A\B=(A;\ By, (A,\ B,)T, (A3 \ B3I, (A4 \ B,)F)

A=A, AT, A5l A LF)

Definition 5: [27] Let A= (4,, A,T, A;5l, A,F), B= (B, B,T, B;l, B,F) be set valued neutrosophic quadruple

sets. If
A,c B;,A,c B, and A;c B;, A,C B,,
then it is called that A is subset of B. It is shown by

Ac B.
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Definition 6: [27] Let A= (4,, A,T, 451, A,F), B=(B,, B,T, B;1, B,F) be set valued neutrosophic quadruple

sets. If

Ac Band Bc A4,
then it is called that A is equal to B. It is shown by
A=B.

Definition 7: [24] Let A be a universal set and P(A) be power set of A. A generalized set valued neutrosophic

quadruple set N; is identified as
N = {<K1N11 TNl(a)LlNll Iy, Mlva Fy, @ PlNl;
K25y Ty @)L vy Ing ) MP wy0 Fivya) P2y
KiNi’ TNi(a)LiNi’ I MiNi’ Fyya PiNi <
K"y, L'y, M"y , P"y €P(A);n=1,2,3, ..., 1i}.
Where,
Tn, @y Ingays Enpay @=1,2,3, ..., 1)

have their usual single valued neutrosophic logic means and a generalized set valued neutrosophic quadruple

number N™,; is identified as
NN ={<K'w,, T, @)L nys Inya) M ny s Fuya) PP, >3-
As in neutrosophic quadruple number, for a generalized set valued neutrosophic quadruple number
Kl,\,1
is called known part and
Ty @ L Ny Ing ) M vy Fivgay PPy
is called the unknown part.

Also, we can show that
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N={N" :n=1,2,3,...,i}

BIPOLAR GENERALIZED SET VALUED NEUTROSOPHIC
QUADRUPLE SETS AND NUMBERS

Definition 8: Let A be a universal set and P(A) be power set of A. Bipolar generalized set valued neutrosophic
quadruple set (BgsvNgs) N; is identified as

N={<K'n,, T n,a» T v @) vy U Ny @ I vy @) My (F7ny @y F vy ) Pl

KZNZ: (T_Nz(a)'T+N2(a))L2NZI (I_Nz(a)'I+N2(a)) MZsz (F_Nz(a)'F+N2(a)) PZNZ;

King (T nia T wi@)ling gy T i) Mg F gy F o wyc) Plag >,

K", L'y, MMy, Phy €P(A)n=1,23,...,i}.
Where,

TNy I W@y F W@y T gy I (@) 8N Fo ) 0=1,2,3, 0.0, 1)
have their usual bipolar single valued neutrosophic logic means.
Also, an bipolar generalized neutrosophic quadruple number (BgsvNgn) N™,; is identified as
NN ={<K"y,, (T nyay T ny@) Ly Uy I vy@) My (F 7wy ay F vy @) P, >3
as in neutrosophic quadruple number, for a BgsvNgn,
K'y,
is called known part and
(T vy T @)l vy U vy @y I @) Mg (F7 gy F vy @) Py
is called the unknown part.
Also, we can show that
N={N¥,:n=1,23, .., i}

Example 1: Let A={k, I, m, n, p, r} be a set. Then;

N = {<{k,1,m,n}, (0,0.7){k,1}, (0.5,0.6) {m}, (0.4,0.5) {n};

{k,l,p, 7}, (—0.1,0.9){k,p}, (—0.2,0.3) {1}, (—0.2,0.7) {r} >}
and

R= {<{l,p,m,n,k}, (—0.4,0.8){l, p}, —0,0.3) {p,m}, (—0.2,0.6) {n};
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{m,,p,r}, (—0.3,0.7){p}, (—0.2,0.5) {m, 1}, (—0.1,0.5) {r} >}

are two BgsvNgs.
Also,
NV ={{k,1,m,n}, (0,0.7){k, 1}, (0.5,0.6) {m}, (—0.4,0.5) {n}}
and
NV, = {{k,1,p,7}, (=0.1,0.9){k, p}, (=0.2,0.3) {1}, (=0.2,0.7) {r}}
are two BgsvNgn of N such that
N={NV,,NN,}.
Similarly,
RN, ={{l,p,m,n, k}, (—0.4,0.8){L, p}, —0,0.3) {p, m}, (—0.2,0.6) {n}};

and

RN, = {{m,l,p,r}, (=0.3,0.7){p}, (=0.2,0.5) {m, 1}, (—0.1,0.5) {r}}
are two BgsvNgn of R such that

R={R",,R",}.

Definition 9: Let

N={<K'y,, (T Ny T wy@) L vy U gy I vy @) My (F7 vy F vy a) Py
K25, (T vy T Ny @) L vy (U nyay T @) MPnys (F7 nycay F ¥ wg) PPy
Ko (T nyay T i) L U ngcay I i) Mg (F 7 wyay F ¥ wvyay) Pl >
Khy, L'y, M™y , P"y €P(AY;n=1,2,3, ..., i}.

and

R={<K"g,, (T rycay T ry@) L ry» U Ryay I Rya) M Ry (F 7 Rycay F ¥ Ryca) Py
K2 g, (T rycay T Ry @)L Ry U Ryay I Ry@) MPRyy (F ™ Ryay F ¥ ya) P2 Ry
K rpr (T ryay T ry@) L r (U rycay T Ryc) M rps (F ™ rygays F ¥ rycay) Py >
K", g, MM, P"p €P(A);n=1,2,3,...,i}.

be two BgsvNgss.

i) N is subset of R (NcR) if and only if

n n n n n n n n .
K"y, c K", L'y, c L' My CM"g , Phy C P ;
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T @ S T Rp@) T ip@ S T Ryca)s

Fhp@ 2 Irp@b i@ 2 1Ry

Fn@ 2 Fry@b Fr @ 2 Foryay-

ii) N is equal to R if and only if

K"y =K' IMy =L M"y =M"y Pty =P";
T Nu@ = T raay T p@ = T ry(a;

i@ = M rp@db I ivg@ = 1 rocay)

Fony@ = Fry@bh Fnp@ = Foryca)-

Example 2: From Example 1,

N = {<{k,,m,n}, (0,0.7){k, 1}, (0.5,0.6) {m}, (~0.4,0.5) {n};

{k,l,p,7r}, (—0.1,0.9){k, p}, (—0.2,0.3) {I}, (—0.2,0.7) {r} >}
is a IgsvNgss. Also, it is clear that

Y = {<{k,m,n}, (0,0.5){k}, (—0.6,0.7) {m}, (=0.6,0.8) {n};

{Lpr} (-0.3,0.9){p}, (—0.4,0.5) {I}, (—0.3,0.8) {r} >}
is a BgsvNgss. Thus,

YcN.

Definition 10: Let

N={<K'n,, (T Ny T wy@) L vy U gy I vy @) My (F7 vy F vy a) Py
K2y, (T ny@y T Ny @) L vy (U nyay I @) M2 nys (F 7 nycay F ¥ wg@) PPy
Ky (T wyay T wvy@) vy (U ngay I i) Mg (F 7 iy FHvgay) Piag >,
K, L'y, MMy, Phy €P(AXin=1,23, ... i}.

and

R={<K"g,, (T rycay T Ry@) L ry» U Ry ay I Ryca) M Ry (F " Ryca) F ¥ Ryca) Plgys

K2, (T rycay T Ry@) P Ryr U Ryay I Ryca)) M2 Rys (F 7 Ry F ¥ Rya)) PRy
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KiRL-: (T_Ri(a)'T+Ri(a))LiRil (I ryay I Ry@)) MiRiv (F~ryay F ry(a)) PiRi >,

K", L"g, M™g , P'p €P(A);n=1,2,3, ..., i}
be two BgsvNgss.

i) We define the “average U” operations for N and R such that

N U, R = {&K'ywr + (T ngri@r T vri@) ) Lagr, ( I"nyry@y T Ry @) ) M'y g
(F™ Nyryay F¥Nyry () P1N1R1;

K?n,r,» (T_Nsz(a)'T+N2R2(a))L2N2R21 (™ Nyrycay T Ny Ry(a) M NyRy (F™ Nyryay F ¥ NyRy(a) P?y rys
K'nire (T nirgay T viri@) Lvirg U nirgay I virg@) MEnire F 7 wigay Fvirgc) Pl >
K™y ks yors My gy Py p €P(A)n=1,2,3, ..., i}.

Where,

K" g, =K', UK L'y =L' UL'g MMy o =M™y UM"p Py o =Py UP" |

- _ T Nn@* T Rn@) ot T N@t T Rnca),
NpRp(a) 2 ! NpRp(a) 2 !

I- _ I np@H Re@ 4 _"Np@+ Ry,
NpRn(a)™ 2 ! NpRp(a)™ 2 !

- —FNn@*F Rn@ 4 P N @t Rp@. ‘
N N > = Fo R ()= H, n=1,2,3,...,1).

ii) We define the “average N “ operations for N and R such that

N ng R = {<K'Wgr + (T e T vr@ ) gy o (I ngry@ I vgri@) ) Mingg,
(F™ nyrycay F¥NyRy @) Pl NgRy s

K25 ryr (T Nyrycay T Wyrp @) L Naryr (U Nyrp(ay I Ny Ry @) M2 Nyryr (F ™ Nyry(ays F ¥ Nypry(a)) PPNy
KiNL-RL-l (T~ nryay T+NiRi(a))LiNiRiv (U™ Nryay T viri@) MiNiRi! (F™nriay F¥ Nirica)) PiNiRi >,
K por Dyps MUy o PPy o €P(AXn=1,2,3, .., i}.

Where,

KTLNan :KnNn n Kan, L’H.Nan :LnNn N Lan, MnNan :MnNn N Man, PnNan :PnNn n Pan;

- ~ TN @*T Rn@ e _ T Na@* T Rn@).
NpRp (@)™ 2 ! NpRp (@)~ 2 !

- ~ @t Re@ s _MNp@H Ry,
NpRp (@)™ 2 ! NpRp (@)~ 2 !

- _Fny@*F Rp@) o4 P N @ F R, )
Frnprn@=™ 5 Flnppp@=— 5> @=1,2,3, ..., i).

Example 3: From Example 1,
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N = {<{k,1,m,n}, (0,0.7){k, 1}, (0.5,0.6) {m}, (=0.4,0.5) {n};

{k,l,p, 7}, (—0.1,0.9){k, p}, (—0.2,0.3) {I}, (—0.2,0.7) {r} >}
and

R= {<{l,p,m,n k}, (—0.4,0.8){l,p}, —=0,0.3) {p,m}, (—0.2,0.6) {n};

{m,,p,r}, (-0.3,0.7){p}, (—0.2,0.5) {m, 1}, (—0.1,0.5) {r} >}
are two BgsvNgs. Thus,

i) Nuy R={<{k,l,m,n,p} (—0.2,0.75){k, |, p}, (—0.25,0.45) {p, m}, (—0.3,0.6) {n};

{m,k,l,p,r}, (—0.2,0.8){k, p}, (—0.2,0.4) {m, 1}, (—0.15,0.6) {r} >}

i) N n, R = {<{k, |, m,n}, (=0.2,0.75){1}, (=0.25, 0.45){m}, (—0.3,0.6) {n};

(L,p,7}, (=0.2,0.8){p}, (—0.2,0.4) {1}, (—0.15,0.6) {r} >}

Definition 11: Let

N={<K'y,, (T Ny T wy@) L vy U gy I vy @) M vy (F7 vy F vy a) Py
K25, (T ny@)y T Np@) L vy U nyay T @) MPnys (F 7 nycay F ¥ @) PPy
Kizvi: (T_Ni(a)'T+Ni(a))LiNil (U™ i I i) Mizviv (F™ Ny Fvya) PiNi >,
Khy, L'y, M™y , P"y €P(Ay;n=1,2,3, ..., i}.

and

R={<K"%,, (T rycay T Ry @)L Ry U Ryay It Ry@) M Rys (F7 Rycay F Ry@) PRy
K2, (T rycay T Ry@) P ryr U Ryay I Ryca)) MPRys (F 7 Ry F ¥ Rya)) PRy
K'gi (T rycay T Rya)) L ryr U Rycay I Ryc) Mgy (F Rycay F ¥ Ryca)) Plg, >
K", g, MM, Pmp €P(A);n=1,2,3,...,i}.

be two BgsvNgss.

1) We define the “optimistic U” operations for N and R such that

N U, R = {&<K'wp » ( Tvr@ T vri@ ) gy + (I ngri@y I i@ ) MU wgr, o
(F™NyRry @y F¥NyRy @) P vyry

K25 ryr (T NyRycay T Nypry @) L Nyry (U NyRp(a)r I Ny Ry @) M2 Nyry s (F ™ Nyry(a)r F ¥ NyRy(a)) PP Nyry
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KiNL-RL-l (T~ Niry(ay T+NiRi(a))LiNiRi1 (I~ nriay T viri@) MiNiRi1 (F™n;ryay F*Niri(a) PiNiRi >,
K™ g Lnogys M™ygos Py, € P(A)n=1,2,3, ..., i}

Where,

K"y Ry L Nprys My, g, @Nd P"y g are same as in Definition 10’s (i).

T Nprp(@= Max{T ™ T g @b T wyrp@= max{T ™y T g, @}

I Npry@=min{I ™ I r @b I Ny ry @)= MIn{I™ 0, IR, @b

F~ N ry@)= min{F‘Nn(a), F @b F¥nprp@)= min{F+Nn(a), F+Rn(a)}; n=1,2,3,...,1).

ii) We define the “optimistic N “ operations for N and R such that

N np R = {< K1N1R1 ) (T_NlRl(a)'T+N1R1(a) ) L1N1R1 ) (I_NlRl(a)tI+N1R1(a) ) M1N1R1 ,
(F™ Nyryay F¥NyRry () P1N1R1;

KZNZRZI (T_Nsz(a):T+N2R2(a))L2N2R21 (™ Nyrycay I T WyRy @) MZNZRZ! (F~ Nyryay F ¥ NyRy(a)) PZNZRZ;
KiNiRil (T~ Nryay T+NiRi(a))LiNiRiv (U™ Nriay T viri@) MiNl-Ri! (F™nriay F¥ Nirica)) PiNl-Rl- >,
K"y pos Iyogy MMy p, PPy o €P(A);n=1,2,3, ..., i}.

Where,

K" N ryr L™ Npryy M Ry, and P" .k, are same as in Definition 11’s (ii).

T Nr@= MAX{T ™y 0 T Rp@ b T Wnra@= Max{T* o0, T gy}

17 N @™ MIN{I™ 0 I Ry @ b I Wra@= MIN{IT 0, I Ry @ )

F~ N ry@)= min{F‘Nn(a), Fr, @b F*Nprp@)= min{F+Nn(a),F+Rn(a)}; n=1,2,3,...,1).

Example 4 From Example 1,

N = {<{k,1,m,n}, (0,0.7){k, 1}, (0.5,0.6) {m}, (—0.4,0.5) {n};

{k,l,p, 7}, (—0.1,0.9){k,p}, (—0.2,0.3) {1}, (—0.2,0.7) {r} >}
and

R= {<{l,p,m,n,k}, (—0.4,0.8){L, p}, —0,0.3) {p,m}, (—0.2,0.6) {n};

{m,l,p,7}, (—0.3,0.7){p}, (—0.2,0.5) {m, 1}, (—0.1,0.5) {r} >}
are two BgsvNgs. Thus,

i) NUy R={<{k,[,m,n,p}, (—0.4,0.8){k, L, p}, (0,0.3) {p,m}, (—0.2,0.5) {n};
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{m,k,1,p,r}, (—0.3,0.9){k,p}, (—0.2,0.3) {m, 1}, (—0.1,0.5) {r} >}

i) N n, R = {<{k, I, m,n}, (—0.4,0.8){1}, (0,0.3) {m}, (=0.2,0.5) {n};

{l,p,7}, (=0.3,0.9){p}, (—0.2,0.3) {I}, (—=0.1,0.5) {r} >}

Definition 12: Let

N={<K'y,, (T n,ap T wy@) L vy U wyay I vy @) M vy (F7 vy F vy a) Py
KZNZ: (T_Nz(a)'T+N2(a))L2NZI (I_Nz(a)'I+N2(a)) MZNZ: (F_Nz(a)'F+N2(a)) PZNZ;
King (T ny T wi@) g gy T i) Mg F gy F o wyc) Plag >,
Ky, My, My, PPy €P(A);n=1,2,3,...,i}.

and

R={<K"%,, (T rycap T Ry @)L Ry U Ryay It Ry@) M Rys (F 7 Rycay F Ry@) PRy
K?g,, (T_Rz(a)iT+R2(a))L2Rzl (I rycay I Ry(a)) M?g,, (F~ ryay F TRy (a) P?g.;
KiRL-: (T_Ri(a)'T+Ri(a))LiRil (I ryay I Ry@) MiRiv (F~ryay F " Ryca)) PiRi >,
K'p, g, MM, Pp €P(A);n=1,2,3,...,i}

be two BgsvNgss.

1) We define the “pessimistic U” operations for N and R such that

N u R = {< IlelRl v (T ey T v Ry ) Lvgry, o (I ngryay I wary@) ) M wgr, o
(F~ nyRryay FNyry2) PHNgRy

K25 ry s (T Nyrycay T Wyrp @) L Naryr (U Nyrp(ay I Ny Ry @) M2 Noryr (F ™ Nyry(ays F ¥ Nyry(a)) PPNy
KiNiRi’ (T_NiRi(a)’T+NiRi(a))LiNiRi’ (I_NiRi(a)’I+NiRi(a)) MiNiRi' F™ vy P iri) PiNiRi <
K"Noryr LNy M™ Ny, P agr, € P(A);n=1,2,3, ..., i}.

Where,

K™, Ry L Npry» M™ N, R, @ND P™y are same as in Definition 10’s (i).

T Nrn@= Iy o) T rp@) 3 T k)= My ), T Ry}

I Nprp @™ Max{™ o0 IRy @b T Nprp @™ Max{l™ o0 I r, @b

Fn o)™ max{F'Nn(a), Fr @} Fnry@)= max{F*Nn(a), Ffp @b @=1,2,3,...,i).
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ii) We define the “pessimistic N “ operations for N and R such that

N n, R = {< Iflzlel v (T nr@r T vria) ) Lwvgry o+ (g I vgri@) ) Mingr,
(F™ nyry @y F¥NyR @) PP vgRy s

K2 nyryr (T Nyryay T Ry @) L Wk (U Nyrp(ay I NyRy @) M P gy (F™ Nyryay F ¥ NyRy(a) P?y r,;
KiNiRi’ (T_NiRi(a)' T+NiRi(a))LiNiRi’ (I_NiRi(a)' I+NiRi(a)) MiNiRi! (F_NiRi(a)t FuNiRi(a)) PiNiRi >,
K.z Lnorys My gy Py €P(A)n=1,2,3, .., i}.

Where,

K™y rys L wpryy M w, -, @ Py are same as in Definition 10’s (ii).

T Ny @= MID{T ™y . T @b T g™ MIN{T ™y 0 T R, @)

I nrn@= MAX{ 0 I Ry @b T M@= MAX{ 0 I Ry @}

F~ N R @)= max{F‘Nn(a), F™py@b F¥Npry )= maX{F+Nn(a)’ Ffp @b @m=1,2,3,.. 1)

Example 5: From Example 1,

N = {<{k,1,m,n}, (0,0.7){k, 1}, (0.5, 0.6) {m}, (0.4, 0.5) {n};

{k,l,p, 7}, (—0.1,0.9){k,p}, (—0.2,0.3) {1}, (—0.2,0.7) {r} >}
and

R= {<{l,p,m,n,k}, (—0.4,0.8){L, p}, —0,0.3) {p,m}, (—0.2,0.6) {n};

{m,l,p,7}, (—0.3,0.7){p}, (—0.2,0.5) {m, 1}, (—0.1,0.5) {r} >}
are two BgsvNgs. Thus,

i) NUp R={<{k,[,m,n,p}, (0,0.7){k, L, p}, (—0.5,0.6) {p, m}, (—0.4,0.6) {n};

{m,k,l,p,r}, (—0.1,0.7){k, p}, (—0.2,0.5) {m, I}, (—0.2,0.7) {r} >}

ii) N np R = {<{k, I, m, n}, 0, 0.7){I}, (=0.5,0.6) {m}, (—0.4,0.6) {n};

{I,p,7}, (—0.1,0.7){p}, (—0.2,0.5) {i}, (—0.2,0.7) {r} >}
Definition 13: Let
N={<K'y, (T N,y T wy@) L vy U gy I vy @) MYy (F7 gy F vy a) Py

K25, (T vy T Ny @)L vy (U nyay I vp@) M2 nys (F 7 nycay F Y wg@) PPnys
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Kizvi: (T_Ni(a)'T+Ni(a))LiNil (™ ;0 T i) Mizvi: (F~nyay Fnya) Pizvi >,
Ky, L', My, P"y €P(A);n=1,23, ... ,i}.

and

R={<K"g,, (T rycay T ry@) L ry» U Ry @y I F Rya) MRy (F " Ry(ay F ¥ Ryca) PRy
K2, (T rycay T Ry@) P ryr U Ryay I Rya)) MPRys (F 7 Rya) F ¥ Rya)) PRy
KiRL-: (T_Ri(a)'T+Ri(a))LiRil (I~ Ryay I Ry @) MiRiv (F~ryay F ry(a) PiRi >,
K'p, L', M, P'p €P(AY;n=1,2,3, ...}

be two BgsvNgss.

i) We define the “average /” operations for N and R such that

N /a4 R = {< K'yg . ( T7nyRrya T vyRia) ) L'y, ( I"wyryap I NyRy @) ) M'y g,
(F~ nyry @y F¥NyRry () P1N1R1;

KZNZRZI (T_Nsz(a):T+N2R2(a))L2N2R21 (™ Nyrycay I T Wy Ry @) MZNZRZ! (F~ Nyryay F ¥ NyRy(a)) PZNZRZ;
KiNiRil (T~ Nryay T+NiRi(a))LiNiRiv (U™ niriay T viri@) MiNl-Ri! (F™nriay F¥ Niryca)) PiNl-Rl- >,
K™ s Dy My g, PPy g € P(AXn=1,2,3, ..., i}.

Where,

K"y =K"n, /K" R L gy, = Ly, /L Ry M gy, =M™y, /M g, P™y g, = P™ N, /P R,

Tl ko) T Nprn @) I Ny Ry 2y T Ny Ry a)r F Ry (a) @D F¥y g ay are same as in Definition 10 (i).

ii) We define the “optimistic / “ operations for N and R such that

N /o R = {<K'wr + ( Twri@r T vri@ ) Eare + (I wgryy I vre@ ) Mg,
(F~ nyrycay F¥NyRy @) Pi Ry s

K25 ryr (T Nyrycay T Wypry @) L Nk (U NyRp(a) I Ny Ry @) M2 Noryr (F ™ Nyry(a)r F ¥ NyRy(a)) PPNy
K'nrp (T ngryay T im0 Lwirge (U Nirscay T virg@)) Mgy (F 7 hgrscay F ¥ Nirica)) Pvig, >
K por Dy g MRy o PPy o €P(AXn=1,2,3, .., i}.

Where,

K"y, =K"n, /K" Ry L Npry = LNy /L Ry M gy, =M™y, /M, P™ g, = Py, /PR

Tl Ry TNy rn @) I Ny Ry 2y T Ny Ry 2 F Ry (a) @D Fy g oy are same as in Definition 11 (i).

iii) We define the “pessimistic / *“ operations for N and R such that

118



Neutrosophic Algebraic Structures and Their Applications

N /p R = {<K'%Wir + (Tur@ T vr@ ) Pyg, » (I vgro@p I vri@ ) Miaggr,
(F™ nyryay F¥NyR @) PlNlRl;

K?nory s (T Nyryay T Ny Ry @) L2 Ny (U Ry (a) T WpRoca)) MPNyryr (F 7 Nyry(a) F ¥ NyRy(2)) P2 NyRys
KiNL-RL-l (T~ Niry(a) T+NiRi(a))Li1viRi: (I~ nryay T wiry@) MiNiRi! (F™n;ryay F*Niri(a) PiNiRi >,
K"y gos Iy gy MMy g, Py o €P(A)in=1,2,3,...,i}.

Where,

KnNan = KnNn /Kan: LnNan = LnNn/Lanv MnNan = MnNn/Man, PnNan = PnNn /Pan;

Ty, k@) T Nrn@)r I Ny a)r I NyRy (2 F iRy (a) @D Fy gy are same as in Definition 12 (i).

Example 6: From Example 1,

N = {<{k,1,m,n}, (0,0.7){k, 1}, (0.5, 0.6) {m}, (~0.4,0.5) {n};

{k,l,p,r}, (—0.1,0.9){k, p}, (—0.2,0.3) {1}, (—0.2,0.7) {r} >}
and

R= {<{l,p,m,n k}, (—0.4,0.8){L, p}, —=0,0.3) {p, m}, (—0.2,0.6) {n};

{m,l,p,r}, (—0.3,0.7){p}, (—0.2,0.5) {m, 1}, (—0.1,0.5) {r} >}
are two BgsvNgs. Thus,

i) N/, R={<@, (—0.2,0.75){l}, (—0.25,0.45) @, (—0.3,0.6) @;

(K}, (—0.2,0.8){k}, (—0.2,0.4) @, (—0.15,0.6) @ >}.

ii) N /o R = {<9, (—0.4,0.8){1}, (0,0.3) ®, (—0.2, 0.5) @;

(K}, (—0.3,0.9){k}, (~0.2,0.3)@, (—0.1,0.5)0 >}.

iii) N /p R = {<@, (—0.2,0.75){1}, (=0.25,0.45) @, (=0.3,0.6) &;

{k}, (=0.2,0.8){k}, (—0.2,0.4) @, (—0.15,0.6) @ >}.
Properties 1: Let
N={<K'y., (T Ny T wy@) L vy U gy I vy @) My (F7 vy F vy a) Py
K25, (T ny@y T Np@) Ly (U nyay I vp@) M2 nys (F 7 nycay F Y wg@) PPwys
Ky (T iy T nvy@) vy U ngay I vgay) Mg (F 7wy FHvgay) Piag >,

KnNn’ LnNn’ MnNn‘ PnNn € P(A);l’l: 1, 2, 3, ey 1}.
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and
R={<K"s,, (T ryay T r, @)L Ry U Rycay I Ry@) M Ry (F 7Ry (o) F Ry @) PRy
K2, (T rycay T Ry @)L Ry U Rycay I Ryca)) M2 Ry (F ™ Rya) F ¥ Ry(a)) PRy
K'gio (T ryay T Rya)) L ryr U Rycay I Ryca)) MRy (F ™ Rycay F ¥ Rya)) Plg, >
K, L', M, PP €P(ANin=1,23,....i}.
and
Y ={<K%,, Ty, T v, @)L vy U vy I vya) My, (F v,y F ¥ vya) Py
K2y, Ty, T v@) Ly, U vy @y I vy@) M2y, (F vy F vy@) PPy,
K'ry Ty T vi@) vy U vy Mviay) My (F vy Fhvi@y) Ply, >,
K, g, MM, Php €P(A);n=1,2,3,...,i}.
be three BgsvNgss.
From Definition 8, Definition 9, Definition 10, Definition 11, Definition 12 and Definition 13; it is clear that
)NU, R=RU, N;NU, R=RU, N: NU, R=RUj N.
ii)Nn, R=Rn, N:Nn, R=Rn, N; Nn, R=R n, N.
iiiy)N U, (RU, ¥)=(NU, R) U, Y,
NU, (RU,Y)=(NU,R) U, Y,
NUp (RUpY)=(NUpR) U, Y.
iv) NN, (RN, Y)=(Nn,R)n,Y,
NNy (RNyY)=(NNyR)N, Y,
NNy (RN, Y)=(NNyR)N, Y.
VNN, (RU,Y)=(Nn,R)U, (NN, Y),
NNy (RUyY)=(NNyR)Uy (NNyY),
Nnp(RUpY)=(NNpR)Up (NNpY).
vi) NU;, (RN Y)=(NU,R)N, (NU,Y),
NU, RNy Y)=(NU,R)Ny (NU,Y),
NU,(RNpY)=(NUpR)Np (NUpY).

v) If N = R, then
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Nu,R=NuU,R=NU, R=R
and

Nn,R=Nn,R=Nn,R=R.

Theorem 1: Let

N={<K'y,, (T n,@ap T wy@) L vy U gy I vy @) M vy (F7 vy F vy a) Py
K25, (T vy T Np@) L vy (U nyay T ) MPnys (F7 nycay FH wg) Py
King (T ni T wi@)ling gy T i) Mg F gy F o wyc) Plag >,
Ky, My, MMy, P'y €P(A);n=1,2,3,...,i}.

and

R={<K",, (T_Ri(a)iT+R1(a))L1R11 (I Ry @y I Ry@) My, (F~ Ry F ry(a) Plg;
K2, (T rycay T Ry @)L Ry U Ryay I Ry@) MPRys (F 7 Ryay F ¥ Rya) P2 Ry
K'ris (T rycay T rya))L'ry U Rycay I Ryca)) Mgy (F 7 Ryay F ¥ Ryc@)) Plry >
K'p, L', M, P'p €P(AY;n=1,2,3, ....i}.

be two BgsvNgss. Then,

DINNpR)c(NNn,R)c (NN, R)

ii)(NUpR)c(NU, R)c(NU, R)

ii)(Nn,R)c(NU,R), (NN, R) c (N U, R)and (N np R) c (N UpR).

Proof:

i) From Definition 10, Definition 11 and Definition 12; we obtain that

. _ _ T Np@1T Rp(a) _ -
min{T Nn(a),T Ru(a)) < —r7"= . = < max{T Nn(a),T Rp(a))
@
infT* T+ < T+Nn(a)+T+Rn(a) < T+ T+ 2
min{ Np(a)’ Rn(a)} sS— 5, = max{ Ny ()’ Rn(a)} 2
- I- > Dvn@*t Rn@ o e I- 3
max{ Nn(a)’ Rn(a)} = 2 = mln{ Np(a)’ Rn(a)} ( )
I+ I+ > I+Nn(a)+I+Rn(a) > minfIt I+ 4
max{ Nn(a)’ Rn(a)} = 2 = mln{ Np(a)’ Rn(a)} ( )
- - F Np@tF Ry . _ -
maX{F Nn(a)’ F Rn(a)} 2 n . nie) 2 mln{F Nn(a)' F Rn(a)}
(%)
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Fry,@+F Rp .
max{F*, o F ry@} 2 —"——2>min{F* . F' @)} (6)

Also,
for Np, Ny and Ny,
K"y g, =K"n, K" L'y g, =L"'y, O L"g ,M"y g =M"y NM"g ,P"y p =P"y NP
()
is hold. Thus, from 1-7 and Definition 9; we obtain that

(Nnp,R)c (Nn,R)c (Nn,R).

Proofs of {ii, iii} can be given similarly to proof of i.
Theorem 2: Let
N={<K"n,, (T N,y T vy@) L vy U nyay I g @) Mgy (F7 ey FH vy @) P
K%y, (T Ny TH wp@) LNy U nycay I ) MP g (F " nycay F ¥y (@) PPy
Ko (T nycay T i) Evg U wgay I @) Ming (F7 wyay F ¥ vay) Pivg >
K", L'y, M"y, P"y €P(A);n=1,2,3,...,i}.
and
R={<K"g,, (T rycay T ry@) L ry» U Ryay I F Rya) MRy (F " Rycay F ¥ Ryca) Plgys
K2, (T rycay T Ry@) P ryr U Ryay I Ryca)) MPRys (F 7 Ry F ¥ Rya)) PRy
K g (T rycay T rya)) L' ry U Rycay I Ryca)) Mgy (F 7 Ryay F ¥ Ry@) Plry >
K", L'p,, Mg, P"s €P(A)n=1,2,3,...,i}.
be two BgsvNgss. We assume that N c R. Then,
PNc(Nn;,R)cR,Nc(NnyR)cRandN=(Nn,R)cR.
i)Nc(NU,R)cR_RNc(NU,R)=RandNc (NU, R)cR.
i)(N/,R)ic RR/4N)c R,(N/,R)c R,(R/oN)c R,(N/»,R)c Rand (R/p N) c R.
Proof:
i) From Definition 9; we obtain that
K"y, © K" L'y, € L' ,M"y < M"g ,P"y C P"g ;

T Np@ S T Ry T hp@ S T Rp(a);
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@ 2 I ry@db i@ 2 1 rycas
Fon@ 2 Fry@b Frnp@ 2 Flryc)-
(®)
Thus, we obtain that
KnNan = KnNn n Kan = Kan ’LnNan = LnNn n Lan = Lan’
M"y g =M"y NM"p =M" Py o =P", NP = P .
9)
Also, from Proof of (i) of Theorem 1; conditions 1-7 are hold. Hence, thanks to Definition 10, Definition 11,

Definition 12, 1-7 and 9; we obtain that

Nc(Nn,R)cR Nc(Nn,R)cRandN=(Nn,R)cR.

Proofs of {ii, iii} can be given similarly to proof of i.

Conclusions

In this chapter, we obtain BgsvNgs and BgsvNgsn using generalized set valued neutrosophic
quadruple sets with bipolar single valued neutrosophic sets. Thanks to BgsvNgs and BgsvNgsn, generalized
set valued neutrosophic quadruple sets and bipolar single valued neutrosophic sets will more useful together.
Also, we obtain some basic properties and some operations (U,, Ug, Up,Ny4, N, Np,/ar /o, /p)- ESpecially,
for decision making problems; these operations will more useful. Furthermore, thanks to definitions of
BgsvNgs, BgsvNgsn and operations (U,, Ug, Up,N4, No, Np./as /o, /p); Tesearchers can define similarity
measures, some specific decision making methods (TOPSIS, VIKOR, DEMATEL, AHP, ...), arithmetic
operations, aggregation operations based on BgsvNgs and BgsvNgsn for decision making problems.

Abbreviations

BgsvNgs: Bipolar generalized set valued neutrosophic quadruple set

BgsvNgsn: Bipolar generalized set valued neutrosophic quadruple number
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ABSTRACT

Interval neutrosophic sets are more useful in neutrosophic theory, especially at decision making problems.
Also, generalized set valued neutrosophic quadruple sets have an important role in neutrosophic quadruple
theory and single valued neutrosophic theory. Thanks to generalized set valued neutrosophic quadruple sets,
the solutions of decision-making problems in which single-valued neutrosophic numbers are used can be
obtained more objectively. In this chapter, we obtain interval generalized set valued neutrosophic quadruple
sets and numbers. We give some basic properties for interval generalized set valued neutrosophic quadruple
sets and numbers. Also, we define some new operations for interval generalized set valued neutrosophic
quadruple sets and numbers. Thus, we obtain a new structure based on generalized set valued neutrosophic
quadruple sets and interval neutrosophic numbers. In this way, we obtain new results for generalized set valued
neutrosophic quadruple set and interval neutrosophic set. Furthermore, thanks to this new structure; the
solutions of decision-making problems in which interval neutrosophic numbers are used will be obtained more
objectively.

Keywords: interval neutrosophic set, neutrosophic quadruple number, set valued neutrosophic quadruple set,

interval generalized set valued neutrosophic quadruple set
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INTRODUCTION

Neutrosophic logic and the concept of neutrosophic set are defined in 1998 by Florentin Smarandache [1]. In
the concept of neutrosophic logic and neutrosophic sets, there is the degree of membership T, degree of
uncertainty | and degree of non-membership F. These degrees are defined independently from each other. It
has the form of a neutrosophic value (T, I, F). In other words, a situation is handled in neutrosophy according
to its accuracy, its falsehood, and its uncertainty. In addition, many researchers have conducted studies on
neutrosophic set theory [2-4]. Recently, Hamidi and Smarandache studied single-valued neutro Hyper BCK-
subalgebras [5]; Mohana and Mohanasundari introduced on some similarity measures of single valued
neutrosophic rough sets [6]; Ali et al. obtained neutrosophic triplet ring and neutrosophic triplet field [7]; Sahin
et al. studied generalized Euclid measures on generalized neutrosophic quadruple numbers [8]; Aslan et al.
obtained neutrosophic modeling of Talcott Parsons’s action [9]; Kargmn et al. introduced Hamming similarity
measure on generalized neutrosophic quadruple numbers [10]; Sahin and Dayan studied generalized
neutrosophic quadruple numbers based on Hamming measure for law [11]; Alhasan et al. obtained
neutrosophic reliability theory [12]; Sahin and Uz introduced multi-criteria decision-making applications

based neutrosophic quadruple sets for law [13].

Wang et al. studied interval neutrosophic sets and logic in 2005 [14]. The interval neutrosophic sets have an
important role in neutrosophic theory and decision making problems. The use of intervals as values in interval
neutrosophic sets makes this set superior to other sets in many problem situations. Because while it is often
difficult to reach a definite judgment in a decision-making situation, a decision given as an interval will be
more useful. Hence, many researchers studied based on interval neutrosophic sets and logic [15-17]. Recently,
Chi and Liu studied TOPSIS method based on interval neutrosophic set [18]; Liu and Tang obtained some
power generalized aggregation operators based on the interval neutrosophic sets [19]; Hashim et al. introduced
entropy measures for interval neutrosophic vague sets [20]; Pai and Gaonkar studied the safety assessment in
dynamic conditions using interval neutrosophic sets [21]; Karthikeyan and Karuppaiya obtained reverse

subsystems of interval neutrosophic automata [22].

Smarandache obtained neutrosophic quadruple set and numbers in 2015 [23]. While neutrosophic quadruple
set have T, | and F components as in neutrosophic sets; unlike neutrosophic sets, there is a known part and an
unknown part. Therefore, neutrosophic quadruple sets are a generalization of neutrosophic sets. For this reason,
neutrosophic quadruple sets are widely used in the algebraic and application areas [24-27]. Recently,
Muhiuddin et al. studied implicative neutrosophic quadruple BCK-algebras and ideals [28]; Sahin et al.
obtained generalized set valued neutrosophic quadruple sets and numbers [29]; Li et al. introduced
neutrosophic extended triplet group based on neutrosophic quadruple numbers [30]; Sahin and Kargin obtained
neutrosophic triplet groups based on set valued neutrosophic quadruple numbers [31]; Borzooei et al. studied
positive implicative neutrosophic quadruple BCK-algebras and ideals [32]; Sahin and Kargin introduced single

valued neutrosophic quadruple graphs [33]; Smarandache et al. obtained neutrosophic quadruple groups [33];
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Sahin et al. studied generalized set valued neutrosophic quadruple numbers and decision making applications

[34].

In this chapter, we obtain interval generalized set valued neutrosophic quadruple sets (IgsvNgs) and numbers
(lgsvNgsn) using generalized set valued neutrosophic quadruple sets and interval neutrosophic sets. Thanks to
IgsvNgs and IgsvNgsn, generalized set valued neutrosophic quadruple sets and interval neutrosophic sets will
more useful together. Also, we obtain some basic properties and some operations (U,, Uy, Up,Ng, Ny,
Np,/4 /o, /p)- In fact, we generalize the some operations in [29] for IgsvNgs. In Section 2, we introduced
some basic definitions for interval neutrosophic set [14], neutrosophic quadruple sets [31], [29]. In recent years,

the academic community has witnessed growing research interests in neutrosophic set theory [36-72].

BACKGROUND

Definition 1. [14] Let A be a universal set. Interval neutrosophic set N; is identified as
N = {<a: [T'ney T Nyl [ngy @] [F Ny Fine)s >, €AY

Where the functions
T'y :A—[0,1], T*y :A - [0,1] is truth functions;
I'y :A - [0,1], I*y :A - [0,1] is uncertainly functions;
and F'y :A - [0,1] and F¥,, :A - [0,1] is falsity functions.
Definition 2. [14] Let

Ny ={<a: [T'y, @y T vy @) U vy M v@) [ vy @y F¥ vy @), > 2€AY

and

Ny ={<a: [T'n, @) T my@ ) U wa@ M vp@) [Fi vy F p @] > 2EA}
be two interval neutrosophic sets.
i) N, is subset of N, if and only if
T 2 Ty @y TNy @) = T vy

l l
I Ni(a) =I Nz (a) IuNl(a) S IuNz(a)
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Fly.@ < Fly,a Fhavye < FUhy
ii) N, is equal to N, if and only if
TlNl(a) = levz(a): TN, @ = T"ny)
Ilzvl(a) = Ilzvz(a): "N @) = "Ny
FlNl(a) = FlNZ(a)’ F'y, @ = Fnya)-

i) N, U N, = {<a [ max{T Ny (a)’ T'y, @}, max{T" Ny T ive@) ]

[min{IlNl(a), 'y, @) min{l* @3 [min{F’Nl(a), Fly, @b min{F*, . F¥y, @3] > a€A}.

|V) Nl n NZ = {<a [ min{TlNl(a), TlNz(a)}' min{T”Nl(a), TuNZ(a)} ],

[max{IlNl(a),IlNz(a)}, max{I*, . 1"n,@}]; [max{FlNl(a),FlNz(a)}, max{F*, ., F'n,@}] > a€A}.

Definition 3: [31] Let N be a set and P(N) be power set of N. A set valued neutrosophic quadruple set is shown

by the form
(A1, A, T, Azl ALF).

Where, T, | and F are degree of membership, degree of undeterminacy, degree of non-membership in
neutrosophic theory, respectively. Also, A,, 4,, A5, A, € P(N); A, is called the known partand (4,, 4, T, Asl,

A,F) is called the unknown part.

Definition 4: [31] Let A = (4,, 4,T, A5l, A,F) and B = (B, B, T, B;l, B,F) be set valued neutrosophic

quadruple set s. We define the following operations, well known operators in set theory, such that
AUB= (4, UB,, (4, UB,)T, (45 U By)I, (4, U B,)F)

ANB=(4, NBy, (4, N B,)T, (45 N By, (4, N B,)F)

A\B=(A;\ By, (A, \ B,)T, (43 \ B3)I, (A4 \ B,)F)

A =(A", AT, A5l A LF)

Definition 5: [31] Let A= (4,, A,T, A;3l, A,F), B=(B,, B, T, B;1, B,F) be set valued neutrosophic quadruple
sets. If
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A,c B, A,c B, and A;c B;, A,C B,,

then it is called that A is subset of B. It is shown by
Ac B.

Definition 6: [31] Let A= (4,, 4,T, 451, A,F), B=(B,, B,T, B;l, B,F) be set valued neutrosophic quadruple
sets. If

Ac Band Bc A,
then it is called that A is equal to B. It is shown by
A=B.

Definition 7: [29] Let A be a universal set and P(A) be power set of A. A generalized set valued neutrosophic

quadruple set N; is identified as
N = {<K1N11 TN1(a)L1N1: Iy, @) Mlva Fy, @ PlNl;
KZNZI TNz(a)LZNzl In,(a) MZNZ: Fy, @) PZNZ;
KiNi’ TNi(a)LiNi’ Iy MiNi’ Fyya PiNi <
K"y, L'y, M"y , P"y €P(A);n=1,23, ..., i}.
Where,
Tn, @y Ingcays Fnpay @=1,2,3,...,1)

have their usual single valued neutrosophic logic means and a generalized set valued neutrosophic quadruple

number N™,; is identified as
NN ={<K'w,, T, @)L nys Inya) M ny s Fya) PP, >3-
As in neutrosophic quadruple number, for a generalized set valued neutrosophic quadruple number

1

is called known part and
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TNl(a)LlNl’ INl(a) M1N1’ FN1(3) P1N1
is called the unknown part.
Also, we can show that

N={N" :n=1,2,3,..., i}

INTERVAL GENERALIZED SET VALUED NEUTROSOPHIC
QUADRUPLE SETS AND NUMBERS

Definition 8: Let A be a universal set and P(A) be power set of A. Interval generalized set valued neutrosophic
quadruple set (IgsvNgs) N; is identified as

N={<K'y,, [levl(a),Tuwl(a)]Llwlv [Ilzvl(a)'luzvl(a)] My, [Flzvl(a)'Fuzvl(a)] Py,
KZNZ, [TlNz(a)!TuNz(a)]LZNzl [Ilzvz(a);luzvz(a)] MZsz [FlNz(a)'FuNz(a)] P2N2§
Kizvi: [TlNi(a)'TuNi(a)]LiNil [Ilzvi(a);luzvi(a)] Mizviv [FlNi(a)'FuNi(a)] Pizvl- >,
Ky, [y, My, Phy €P(A);n=1,2,3,...,i}.
Where,
T @y I @y F i@y T Moty " W) A0 Fy (0=1,2,3,..,)

have their usual interval neutrosophic logic means and an interval generalized neutrosophic quadruple number
(lgsvNgn) N™,; is identified as

NV = {<K' v, [T N ) T Ny @)L vy U vy 1wy )] My IF N oy F ¥ vy @] Py >3
As in neutrosophic quadruple number, for a IgsvNgn,
Kl,\,1
is called known part and
[T Ny T Wy @) g Uy @y Ty )] M vy [F vy ) F Ny @] PPy
is called the unknown part.
Also, we can show that
N={N¥ :n=1,23, .., i}
Example 1: Let A={k, I, m, n, p, r} be a set. Then;

N = {<{k,1,m,n}, [0,0.7]{k, 1}, [0.5,0.6] {m}, [0.4,0.5] {n};
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{k,1,p,7}, [0.1,0.9]{k, p}, [0.2,0.3] {1}, [0.2,0.7] {r} >}

and

R= {<{l,p,m,n,k}, [0.4,0.8]{l,p}, [0,0.3] {p, m}, [0.2,0.6] {n};

{m,L,p,7}, [0.3,0.71{p}, [0.2,0.5] {m, 1}, [0.1,0.5] {r} >}

are two IgsvNgs.
Also,

NV ={{k,1,m,n}, [0,0.7]{k, 1}, [0.5,0.6] {m}, [0.4,0.5] {n}}
and

NV, = {{k,1,p,7}, [0.3,0.7]¢k, p}, [0.2,0.5] {13, [0.1,0.5] {r}}
are two IgsvNgn of N such that

N={NN,, NV}
Similarly,
RN, ={{l,p,m,n,k}, [0.4,0.8}{L, p}, [0,0.3] {p,m}, [0.2,0.6] {n}}

and

RN, = {{m,1,p, 7}, [0.1,0.9]{p}, [0.2,0.3] {m, 1},[0.2,0.7] {r}}
are two IgsvNgn of R such that
R={RV,,RV,}.

Definition 9: Let

N= {<K'y,, [T'n@p T N @I Ny Uy @y I Ny @] M ny s IF Ny F Yy @] PR,
K2y, [T vy T Ny 12wy U vpcay Ty @] M2y IF ey F Ny PP,y
K [T vy T v v vy T wid Mgy [F ey F v Pl >
K, L'y, My, Phy €P(AXin=1,23, .., i}

and

R= {<K'%,, [T'%, @y T ry@]L Ry » 'Ry a) 1™ Ry )] M Rys [F' R,y 2y F Ry )] PPy
K2, [T Ry 2y T Ry @)1 L% Ry [ Ry I Rya)] M2 Ry [F Ry (a)s F Ry ()] P2Ry5 ---
K g [T Rycay T Ry L o [T Rycay ™ Ricay] MRy [ Rycays FRyc)] Plg, >

Kanl Lanl Manl Pan € P(A)an: 1’ 29 3: cero 1}
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be two IgsvNgss.

i) N is subset of R (NcR) if and only if

K”Nn [ K”Rn, anvn [ L"Rn, anvn (e M”Rn, P”Nn (] Pani
T @ S Thry@y T Np@ S TRy

Ian(a) = Ian(a)}: "y @ 2 YRy

Fly,@ 2 Flry@b Fiap@ = Flryca):

ii) N is equal to R if and only if

K", =K' L'y =Ll My =My Py =P
T ve@ = T Re@y T Np@ = T Roa;

I'ha@ = ra@b M in@ = 1 Roca;

Flva@ = Flra@b Fva@ = Froca

Example 2: From Example 1,

N = {<{k,1,m,n}, [0,0.7]{k, I}, [0.5,0.6] {m}, [0.4,0.5] {n};

{k,l,p,7},[0.1,0.9]{k, p}, [0.2,0.3] {{}, [0.2,0.7] {r} >}
is a IgsvNgss. Also, it is clear that

Y = {<{k,m,n}, [0,0.5]{k}, [0.6,0.7] {m}, [0.6,0.8] {n};

(L p,7}, [0.3,0.9]{p}, [0.4,0.5] {1}, [0.3,0.8] {r} >}
is a IgsvNgss. Thus,
YcN.
Definition 10: Let
N= {<K'y,, [TlNl(a):TuNl(a)]Llva [IlNl(a)»IuNl(a)] M1N11 [FlNl(a)'FuNl(a)] PlNl;
K2y, [T v, @ T Ny 2wy U gy T Ny @] M2y IF v ey F Ny @] PPy
K [T vy T v v [ wiay T v Mg [F vy F v Pl >
KMy, [y, MMy, Py €P(A);n=1,2,3,...,i}

and
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R= {<K',, [TlRl(a)'TuRl(a)]LlRlv [IlRl(a)'IuRl(a)] My, [FlRl(a)'FuRl(a)] Pl.;

Kszl [Tle(a)'TuRz(a)]Lszl [Ile(a)'IuRz(a)] MZRZ: [Fle(a)'FuRz(a)] P2R2§
KiRL-: [TlRi(a)'TuRi(a)]LiRil [ ryay 1™ Ryca] MiRiv [Frycay FRy@)] PiRi >,
K", L', M, P"p €P(A);n=1,2,3,...,i}
be two IgsvNgss.
i) We define the “average U” operations for N and R such that
Nu,R= {<K1N1R11 [lelel(a),Tuzlel(a)]lelely [Ilzlel(a)' Iy Ry @] M1N1R1! [Flzlel(a)»Fuzlel(a)] P1N1R1;
KZNZRZl [TlNsz(a)'TuNsz(a)]LZNZsz [IlNsz(a)'IuNsz(a)] MZNZRZ! [FlNsz(a)tFuNsz(a)] PZNZRZ;
KiNiRil [TlNiRi(a)'TuNiRi(a)]LiNiRiv [IlNiRi(a)'IuNiRi(a)] MiNiRi! [FlNiRi(a)'FuNiRi(a)] PiN,»R,» >,
K" ks Ly M™n,ry PPar, € P(A)n=1,2,3, ..., i}
Where,

K" g, =K', UK L'y p =L' UL'g MMy p =M™y UM"p Py o =Py UP" |

Tt _ T @t Rn@ _T'N@*T Rnc@),
NpRp () 2 ! NnRp(a) 2 !

T O MO _ M@t Rn@.
NpRp () 2 ! NnRn(a) 2 !

Fly @) +F' Fly oy +FY
1 _ " Np@™" Rn(a) _ " Nn(@ Rn(a). _ :
Fppry @)= — > T T O 5 = (n=1,2,3,...,1)

i1) We define the “average N “ operations for N and R such that

NNy R={<K gz, [T Ny Ry oy T Nyry @)L Wy Ry Uy Ry T s Ry )] M Ry IF N Ry oy F ¥ Nyrya)] PRnRy
K2,k [T Ny oy T Nyrp@)) L2 Npryr [ Ry ) T NoRy )] MP ks IF Ny Ry oy F ™ Wyry )] PPNy, 0
K'nirp [T viryay T Niri@) )L wirp U aricay T wirgay] MEngrys IF wirgcay FENirg@)] Provirg >
K™ ror Dyres My g PPy €P(A)in=1,2,3, ..., i}.

Where,

KTLNan :KnNn n Kan, L’H.Nan :LnNn N Lan, MnNan :MnNn N Man, PnNan :PnNn n Pan;

Tl _ TN @t T Rn@) _ T Np@* T Rua).
NpRp (@)™ 2 ! NpRp(2)™ 2 !

T _ '@t Re@ _ M"Np@t M Rn@).
NpRp (@)™ 2 14 NpRp(a)™ 2 !

Fly, @) +F! Fly )+ FY
1 _ " Np@™" Rn(a _ " Nn(@ Rn(a). _ .
Fiyrp@=— > S A 2 = =1,2,3,...,1).
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Example 3: From Example 1,

N = {<{k,1,m,n}, [0,0.7]{k, 1}, [0.5,0.6] {m}, [0.4,0.5] {n};

{k,l,p, 7}, [0.1,0.9]{k,p}, [0.2,0.3] {1}, [0.2,0.7] {r} >}
and

R= {<{l,p,m,n, k}, [0.4,0.8]{],p}, [0,0.3] {p,m}, [0.2,0.6] {n};

{m,1,p,r}, [0.3,0.7}{p}, [0.2,0.5] {m, 1}, [0.1,0.5] {r} >}
are two IgsvNgs. Thus,

i) Nuy R={<{k,[,m,n,p} [0.2,0.75]{k, [, p}, [0.25, 0.45] {p, m}, [0.3,0.6] {n};

{m, k,1,p,7}, [0.2,0.8]{k, p}, [0.2,0.4] {m, [}, [0.15,0.6] {r} >}

ii) N n, R = {<{k, [, m,n}, [0.2,0.75]{1}, [0.25, 0.45] {m}, [0.3, 0.6] {n};

(L,p,7}, [0.2,0.8]{p}, [0.2,0.4] {1}, [0.15,0.6] {r} >}

Definition 11: Let

N= {<K'y,, [T'n @y T wy@ )L vy U gy Iy @] My IF vy F ™y )] PPy
Kzzvz: [TlNz(a)!TuNz(a)]LZNzl [llzvz(a):luzvz(a)] MZsz [FlNz(a)»FuNz(a)] P2N2§
K v [T ey T v v [ vy T vyl M ngs TF ey F¥ vyl Pl >
Kty L'y, M™y , P"y €P(AY;n=1,2,3, .., i}

and

R= {<K'z,, [T'%, @y T ry@)L Ry » 'Ry 2y 1™ Ry )] M Rys [F' Ry 2y F Ry )] PPy
K2, [T Ry 2y T Ry @)1 L% Ry [ Ry 2y I Ry a)] M2 Ry [F Ry (a)s F Ry (a)] P2,y
K'g [T Rycay T Ry L o [T Rycay ™ Rycay] MRy [ Rycays F ™ Ryc)] Plg, >
K'p, L'p, MMz, Php €P(A;n=1,2,3, ..., i}

be two IgsvNgss.

i) We define the “optimistic U” operations for N and R such that

NUp R={<K"'y r,, [TlNlRl(a): T Nyry @)L Ny Ry [IlNlRl(a)'IuNlRl(a)] My g, [FlNlRl(a)iFuNlRl(a)] PyiRys

K2N2R21 [TlNsz(a)'TuNsz(a)]LzNszv [IlNsz(a)'IuNsz(a)] MZNZRZv [FlNsz(a)iFuNsz(a)] PZNZRZ;
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KiNL-RL-l [TlNiRi(a)'TuNiRi(a)]LiNiRiv [IlNiRi(a)'IuNiRi(a)] MiNiRi1 [FlNiRi(a)'FuNiRi(a)] PiNiRi >,
K™ g Lnogys M™ygos Py, € P(A)n=1,2,3, ..., i}

Where,

K"y Ry L NpRys My, g, @Nd P"y g are same as in Definition 10s (i).

T yrn@=Max{Tly T @} T Nyra@= Max{T™ o T R, @}

I'yrn@=min{l' 3 I @b I = mingl™ 0 1 g, @}

Fly, ro@)= min{Fan(a),Fan(a)}, F¥y ro@)= min{F”Nn(a),F”Rn(a)}; n=1,2,3,...,1).

ii) We define the “optimistic N “ operations for N and R such that

N No R={<K "y, [T"Nyry oy T Nara @)L ary s [Ty Ry oy T e Ry 0] M gy IF gy Gy B Wy Ry )] Pl vy s
KZNszl [TlNsz(a):TuNsz(a)]LZNZsz [IlNsz(a)'IuNZRZ(a)] MZNZRZ! [FlNsz(a)»FuNsz(a)] PZNZRZ;
KiNiRil [TlNiRi(a):TuNiRi(a)]LiNiRiv [IlNiRi(a)'IuNiRi(a)] MiNiRi! [FlNiRi(a)'FuNiRi(a)] PiNiRi >,
K" ks Loy M™nory PPar, € P(A)n=1,2,3, ..., i}

Where,

K" Npryr L Nyryy M Ry and P" ..k, are same as in Definition 11°s (ii).

T npra@= Max{T! 0 T @} T Nyra(™ max{T 0 T g, @}

I prp@= min{l’ 0 1 e @b 1wy @™ MID{IY 0 TR @)

Fly, roca)= min{Fan(a),F’Rn(a)}, F'y ro@)= min{F”Nn(a),F”Rn(a)}; n=1,273,...,1).

Example 4: From Example 1,

N = {<{k,1,m,n}, [0,0.7]{k, I}, [0.5,0.6] {m}, [0.4,0.5] {n};

{k,1,p, 7}, [0.1,0.9]{k,p}, [0.2,0.3] {1}, [0.2,0.7] {r} >}
and

R= {<{l,p,m,n,k}, [0.4,0.8]{,,p}, [0,0.3] {p, m}, [0.2,0.6] {n};

{m,l,p,7r},[0.3,0.7]{p}, [0.2,0.5] {m, I}, [0.1,0.5] {r} >}
are two IgsvNgs. Thus,

i) N Uy R={<{k,[,m,n,p}, [0.4,0.8]{k, 1L p}, [0,0.3] {p,m}, [0.2,0.5] {n};

{m,k,,p, 7}, [0.3,0.9]1{k, p}, [0.2,0.3] {m, 1}, [0.1,0.5] {r} >}
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ii) N Ny R = {<{k, I, m,n}, [0.4,0.8]{1}, [0, 0.3] {m}, [0.2,0.5] {n};

(L,p,7}, [0.3,0.9]{p}, [0.2,0.3] {1}, [0.1,0.5] {r} >}

Definition 12: Let

N= {<K'y,, [levl(a)'Tuwl(a)]Llwly [Ilzvl(a)'luzvl(a)] My, [Flzvl(a)'Fuzvl(a)] Py

KZNZ: [TlNz(a)'TuNz(a)]LzNzl [Ilzvz(a)'luzvz(a)] MZNZ: [FlNz(a)'FuNz(a)] PZNZ;

K v [T iy T i@ v U vy T v] Mg [F vy F i) P >,

K", L'y, M"y, P"y €P(A)n=1,2,3,...,i}

and

R= {<K'g,, [T R ) TRy @)L Ry 'Ry T Ry )] MRy [F Ry 2y F ¥Ry ()] PRy

KZRzl [Tle(a)!TuRz(a)]LZRzl [Ile(a):IuRz(a)] Mszv [Fle(a)'FuRz(a)] P2R2§

KiRi: [TlRi(a)'TuRi(a)]LiRil [IlRi(a):IuRi(a)] MiRiv [FlRi(a)'FuRi(a)] PiRl- >,

K'g,, L', Mg, P'p €P(A);n=1,23,...,i}

be two IgsvNgss.

1) We define the “pessimistic U” operations for N and R such that

N U, R={<K"y r,, [T' N, Ry @y T Nyry @)L Ny Uy Ry oy T s Ry )] M Ry IF N Ry oy F ¥ Nyry )] PPN Ry

Where,

KzNsz’ [TlNsz(a)’TuNsz(a)]LzNsz’ [IlNsz(a)’IuNsz(a)] MZNsz' [FlNsz(a)’FuNsz(a)] PZNZRZ;
KiNiRil [TlNiRi(a)!TuNiRi(a)]LiNiRiv [IlNiRi(a)J IuNiRi(a)] MiNiRil [FlNiRi(a)J FuNiRi(a)] PiNiRi >1

KTLNan, LTLNan, MTLNan’ PnNan € P(A),n: 1,2, 3, cee s 1}

K™, Ry L Npryr M™ N, R, @ND P™y are same as in Definition 10’s (i).

l — : l l — : .
T Ny @= MI{T" o TRy @03 T Ny = MID{T™ ), TRy @) )

l — l l — .
I NpRp (@)™ maX{I Nn(a)’l Rn(a)}’ IuNan(a)_ maX{IuNn(a)’ IuRn(a)}’

FanRn(a): max{Fan(a),Fan(a)}, F'y r.@)= max{F“Nn(a),F“Rn(a)}; n=1,2,3,...,1).

ii) We define the “pessimistic N *“ operations for N and R such that

Nn,R= {<K1N1R1' [TlN1R1(a)’TuN1R1(a)]L1N1R1' [11N1R1(3)’ IuN1R1(a)] M1N1R1’ [FZN1R1(3)’FuN1R1(a)] PlNlRl;

140



Neutrosophic Algebraic Structures and Their Applications

K2N2R21 [TlNsz(a)'TuNsz(a)]LzNszv [IlNsz(a)'IuNsz(a)] M2N2R21 [FlNsz(a)tFuNsz(a)] P2N2R2;
KiNL-RL-l [TlNiRi(a)'TuNiRi(a)]LiNiRiv [IlNiRi(a)'IuNiRi(a)] MiNiRi1 [FlNiRi(a)'FuNiRi(a)] PiNiRi >,
K™ g L'noges Mgy PPy, € P(A)n=1,2,3, ..., i}

where,

K"y Ry LN Ry My, g, @Nd P™y g are same as in Definition 10’s (ii).

T prp = min{T 0 Tl @b T M= MIn{T® 0 T R, @)

I'nprp@= max{l'y oI @b I Nra@™ max{l®y oo 1", @};

Fly, ro@)= max{Fan(a),Fan(a)}, F¥y ro(@)= max{F”Nn(a),F”Rn(a)}; n=1,2,3,...,1).

Example 5: From Example 1,

N = {<{k,,m,n}, [0,0.7]{k, 1}, [0.5,0.6] {m}, [0.4,0.5] {n};

{k,l,p, 7}, [0.1,0.9]{k,p}, [0.2,0.3] {1}, [0.2,0.7] {r} >}
and

R= {<{l,p,m,n, k}, [0.4,0.8]{],p}, [0,0.3] {p,m}, [0.2,0.6] {n};

{m,l,p,r},[0.3,0.7]{p}, [0.2,0.5] {m, I}, [0.1,0.5] {r} >}
are two IgsvNgs. Thus,

i) NUp R={<{k,[,m,n,p}, [0,0.7]{k, L, p}, [0.5, 0.6] {p, m}, [0.4, 0.6] {n};

{m,k,,p, 7}, [0.1,0.71{k, p}, [0.2,0.5] {m, 1}, [0.2,0.7] {r} >}

ii) N np R = {<{k, I, m, n}, [0, 0.7]{1}, [0.5, 0.6] {m}, [0.4,0.6] {n};

{l,p,7},[0.1,0.7]{p}, [0.2,0.5] {I}, [0.2,0.7] {r} >}

Definition 13: Let

N= {<K'y,, [T'n, @) T wy@) Ly vy Iy @] My IF Ny F v, )] PPy
K2y, [T vy @ T Ny 2wy U gy Ty @] M2y [F N ey F Ny @] PP
Ky [T i) TNy I g U gy T nya) ] MEw,s IF vy Fnya)] Ping >

Knan Lnan Mnan PnNn € P(A):n: 17 2) 3’ (R 1}
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and
R= {<K',, [TlRl(a)'TuRl(a)]LlRlv [IlRl(a)'IuRl(a)] My, [FlRl(a)'FuRl(a)] Py,
K2 g, [T Ry cay T  Ry@) ] L% Ry [ Ry I Ry(a)] M2 Ry [F Ry cays F ™ Ryca)] P2Ry5 -
KiRL-: [TlRi(a)lTuRi(a)]LiRil [, cay I Ryca)] MiRiv [Frycay FRy@)] PiRi >,
K", L"p, My, PPy €P(A;n=1,2,3,...,i}
be two IgsvNgss.
i) We define the “average /” operations for N and R such that
N/,sR= {<K1N1R11 [TlNlRl(a)'TuNlRl(a)]LlNlRlv [IlNlRl(a)'IuNlRl(a)] M1N1R1! [FlNlRl(a)tFuNlRl(a)] P1N1R1;
KZNZRZl [TlNsz(a)'TuNsz(a)]LZNZsz [IlNsz(a)'IuNsz(a)] MZNZRZ! [FlNsz(a)tFuNsz(a)] PZNZRZ;
KiNiRil [TlNiRi(a):TuNiRi(a)]LiNiRiv [IlNiRi(a)'IuNiRi(a)] MiNiRi! [FlNiRi(a)'FuNiRi(a)] PiNiRi >,
K™ s LNorys MMyory Pyog, € P(AYN=1,2,3, ..., i}
Where,
K™npry = K" Ny /K" Ry L Nyry = Ly /L Rpys M Ny = MT /MR PNy = PNy /P Ry s
Tl Ry T Nprn)r I Ny R a)r I Ny Ry a)r F Ry (a) @D F%y gy are same as in Definition 10 (i).
ii) We define the “optimistic / “ operations for N and R such that
N /o R={<K"y,r,s [T Ny Ry cay T Mm@ Il Nary s U gy T Nary @] MU yrys IF Ny Ry oy B NaRy )] P U gy s
K2,k [T Ny oy T Nyrp @) L2 Npryr [ Ry ) T NoRy ()] MP ks IF Ny Ry oy F ™ Nyry )] P2 Ny, 0
K nir [T irgcay T viri@) I wirg U wvriay T virg@)] Mgy IF virycay F iricay] Plvirg >
K" ry LNy M Npry P gk, E P(A);n=1,2,3, ..., i}
Where,
K"wor, =K"n, /K" Ry L Npry = LNy /L Ry M gy, =M™y, /M, P™ g, = Py, /PR
T'y, Ry T Nprn @) I Ny Ry a)r T Ny Ry 2 F Ny Ry (a) @D Fy g oy are same as in Definition 117 (i).
iii) We define the “pessimistic / *“ operations for N and R such that
N/pR= {<K1N1R11 [TlNlRl(a)'TuNlRl(a)]LlNlRlv [IlNlRl(a)'IuNlRl(a)] M1N1R1' [FlNlRl(a)'FuN1R1(a)] P1N1R1;
K2 nyrys [T Ny Ry ) T NaRo (@) )L Nar s U s ) T Moo )] M2 Nyrys [F oo () F ¥ NaRo ()] PPNy

KiNiRil [TlNiRi(a)’TuNiRi(a)]LiNiRi' [IlNiRi(a)' IuNiRi(a)] MiNl'Ri' [FlNiRi(a)' FuNiRi(a)] PiNiRi >,
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KnNan: LnNan: MnNanv PnNan EPA);n=1,2,3,...,1i}.

Where,

K"y ry, =K"n, /K" rps " Npry, = LN, /L Ry M g, =M™y /Mg, Py g = P™y, [P

Ty, Ry T Nprn@)r I Ny 2y I NyRy(a) F Ry (ay @D F¥y gy are same as in Definition 12 (i).
Example 6: From Example 1,

N = {<{k,1,m,n}, [0,0.7]{k, 1}, [0.5,0.6] {m}, [0.4, 0.5] {n};

{k,l,p, 7}, [0.1,0.9]{k, p}, [0.2,0.3] {I}, [0.2,0.7] {r} >}
and

R= {<{l,p,m,n, k}, [0.4,0.8]{],p}, [0,0.3] {p,m}, [0.2,0.6] {n};

{m,l,p,r},[0.3,0.7]{p}, [0.2,0.5] {m, I}, [0.1,0.5] {r} >}
are two IgsvNgs. Thus,

i) N/, R={<g, [0.2,0.75]{l}, [0.25, 0.45] @, [0.3,0.6] @;

{k}, [0.2,0.8]{k}, [0.2,0.4] @, [0.15,0.6] @ >}.

ii) N /, R = {<9, [0.4,0.8]{1}, [0,0.3] @, [0.2,0.5] @;

{k}, [0.3,0.9]{k}, [0.2,0.3]9, [0.1,0.5]0 >}.

iii) N /» R = {<@, [0.2,0.75]{1}, [0.25, 0.45] @, [0.3,0.6] @;

{k}, [0.2, 0.8]{k}, [0.2,0.4] @, [0.15,0.6] @ >}.

Properties 1: Let

N= {<K'y,, [T'n, @y T wy@) L vy gy Iy @] My IF Ny F ™y )] PPy
K2y, [T vy T ny@ 2wy U gy Ty @] M2y [F ey F Ny @] PP,
Ky [T i@ TNy I g U gy T wya) ] M, IF vy Fnya)] Plng >
Kiy, L'y, M%  P'y €P(Axn=1,23, .. i},

R={<K'%,, [T'r,cap T*ry@ L ry+ 'Ry 2y 1™ Ry )] M Ry [F Ry F Ry )] PRy
K2, [T Ry 2y T Ry @)1 L% Ry [ Ry I Rya)] M2 Ry [F Ry (a)s F Ry ()] P2Ry5 ---
K'pyy [T Ry T ri@) Il Ry ' Rycay I Rica)] M rps [F Ry F Ry Py >

Kanl Lanl Manl Pan € P(A)an: 1’ 29 3: cero 1}
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and

Y ={<K'y,, [TlYl(a)'Tqu(a)]LlYll [Ilyl(a):luyl(a)] Mty , [Flyl(a):Fuyl(a)] Py ;
K2Y21 [Tle(a)'TuYz(a)]LzYzl [Ilyz(a)'luyz(a)] szz, [Flyz(a)'Fuyz(a)] PZYZ;
Ky, [Ty T yi@lve iy M vi@] My [F vy Fly ] Py, s
K"y, Iy, M, P" €P(A;n=1,2,3,..,i}

be three 1gsvNgss. From Definition 8, Definition 9, Definition 10, Definition 11, Definition 12 and Definition
13; it is clear that

i)NU,R=RU,N;NU, R=RU, N;NU, R=RU, N.
i)Nn,R=RnN,N;Nny,R=Rn,N;Nnp, R=RnpN.
iiy)Nu, Ru,Y)=(Nu,R)uU, Y,
NU, (RU,Y)=(NU,R) U, Y,
NU, (RUpY)=(NUp, R) U, Y.
iVyNn, (Rn,Y)=(Nn,R)N,Y,
Nny,(Rny,Y)=(Nn,R)N, Y,
NN, (RNpY)=(NNpR)Np Y.
VWNN,(RU,Y)=(NN,R)U, (NN, Y),
Nnyg(RU,Y)=(NNyR)Uy (NNyY),
Nnp(RUpY)=(NNpR)Up (NNpY).
Vi) NU, (RN, Y)=(NU,R)N, (NU,Y),
NuU, RNy, Y)=(NU,R) N, (N U, Y),
NUp (RNpY)=(NUpR)Np (N Up Y).
V) If N =R, then
Nu,R=NU,R=NU,R=R
and

NﬂARZNﬂoR:NﬂpRZR.

Theorem 1: Let

N = {<K1N11 [TlNl(a):TuNl(a)]Llva [IlNl(a)'IuNl(a)] MlNll [FlNl(a)'FuNl(a)] PlNl;
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KZNZ: [TlNz(a)'TuNz(a)]LzNzl [Ilzvz(a):luzvz(a)] Mzsz [Flwz(a):Fuzvz(a)] PZNZ;

Kizvi: [TlNi(a)'TuNi(a)]LiNil [Ilzvi(a)'luzvi(a)] Mizvi: [FlNi(a)'FuNi(a)] Pizvi >,
K"y, 'y, M"y , PPy €P(A);n=1,23,...,i}

and

R={<K',, [TlRl(a)'TuRl(a)]LlRll [IlRl(a)'IuRl(a)] Mg, [FlRl(a)'FuRl(a)] Pl;
K2 g, [T Ry cay T  Ry@) L% Ry [ Ry I Ry(a)] M2 Ry [F Ry cays F ™ Ryca)] P2Ry5 -
K rps [T ryay T i) L Ry 'y T ryga)] M s [F mygays F Ry PPy >
Khp, ['p, MMy, P €P(A;n=1,2,3,...,i}

be two IgsvNgss. Then,

i) (NN, R) € (NN, R) < (NN, R)

ii) (N Up R) € (NU, R) € (NU, R)

iii) (NN, R) © (N U, R), (NN R) € (N Up R) and (N np R) < (N UpR).

Proof:

i) From Definition 10, Definition 11 and Definition 12; we obtain that

Tt +T?
. 1 1 Nn(a) Rn(a) l l
min{T Nn(a),T Ry ()} < — - 22 < max{T Nn(a),T Ro(a)) (D)
. TN @*T Rp(a)
min{T* Npy(a)’ T Rn(a)} < It > =< maX{T”Nn(a), T Rn(a)} 2
I +1t
1 1 Nn(a) Rn(a) . 1 1
max{] Ny | Ry(a)) = "f" > min{/ Ny | Ru(a)} (3)
@ Ju > IuNn(3)+IuRn(a) > infIv JU 4
max{l*, o Mry@} 22— 2 min{l*y o e @) (4)
Fl +F
! ! Np@*FRu@ o e !
max{F Nn(a),F Ry(a)) = - = > min{F Nn(a),F Rp(a)} (5)
FuN (a)+FuR (@) .
maX{F”Nn(a), F“Rn(a)} > L > > mln{F“Nn(a), F“Rn(a)} (6)

Also,
for np, Ny and Ny,

KnNan = KnNn n Kan‘ LnNan = LnNn n Lan' MnNan = MnNn n Man' PnNan = PnNn n Pan
()

is hold. Thus, from 1-7 and Definition 9; we obtain that
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(NN, R)c (Nn,R) c (Nn, R).

Theorem 2: Let
N= {<K'y,, [levl(a)'Tuwl(a)]Llwly [Ilzvl(a)'luzvl(a)] My, [Flzvl(a)'Fuzvl(a)] Py
KZNZ: [TlNz(a)'TuNz(a)]LzNzl [Ilzvz(a)'luzvz(a)] MZNZ: [FlNz(a)'FuNz(a)] PZNZ;
Kizvi: [TlNi(a)lTuNi(a)]LiNil [Ilzvi(a)'luzvi(a)] Mizvi: [FlNi(a)'FuNi(a)] Pizvi >,
K", L'y, My, P'y €P(A);n=1,2,3,...,i}
and
R={<K",, [TlRl(a)'TuRl(a)]LlRll [IlRl(a)'IuRl(a)] Mg, [FlRl(a)'FuRl(a)] Plg.;
KZRzl [Tle(a)!TuRz(a)]LZRzl [Ile(a):IuRz(a)] MZRZv [Fle(a)'FuRz(a)] PZRZ;
K'ros [T rygay T i@ Il rpr [ iy I micad] M rgs IF Rycayy FRya)] PPy >
K", L'g., Mg, P' €P(A);n=1,2,3,...,i}
be two IgsvNgss. We assume that N c R. Then,
PNc(Nn;,R)cR_ Nc(NnyR)cRandN=(Nn,R)cR.
i)Nc(NUu,R)cR_RNc(NU,R)=RandNc(NU, R)cR.
i) (N/,R)c R, (R/4N)c R, (N/oR) € R (R/oN)c R, (N/pR)c Rand (R/, N)c R.
Proof:
i) From Definition 9; we obtain that
K"y, € K" L'y, € L' ,M"y CcM"g ,P"y C P"g ;
T @ < T'ro@y T vp@ S T Ruca;
@ Z L' ry@b M@ 2 1Ry

Flya@ 2 Flry@b Fhu@ = FUeyca)-
(8)

Thus, we obtain that
K'ﬂNan :KnNn n Kan :Kan ,LnNan :LnNn ﬂLan = Lan,

©)
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Also, from Proof of (i) of Theorem 1; conditions 1-7 are hold. Hence, thanks to Definition 10, Definition 11,

Definition 12, 1-7 and 9; we obtain that

Nc(Nn,R)cR Nc(Nn,R)cRandN=(Nn,R)cR.

Proofs of {ii, iii} can be given similarly to proof of i.

Conclusions

In this chapter, we define IgsvNgs, 1gsvNgsn using generalized set valued neutrosophic quadruple sets
and interval neutrosophic sets. Thanks to IgsvNgs and IgsvNgsh, generalized set valued neutrosophic
quadruple sets and interval neutrosophic sets will more useful together. Also, we obtain some basic properties
and some operations (Uy, Uy, Up,Ny4, Ng, Np,/4, /o, /p)- Especially, for decision making problems; these
operations will more useful. Furthermore, thanks to definitions of 1gsvNgs, IgsvNgsn and operations
(Ua Yg, Up,Ny4, Ng, Np,/a, /o, /p); researchers can define similarity measures, some specific decision
making methods (TOPSIS, VIKOR, DEMATEL, AHP, ...), arithmetic operations, aggregation operations
based on IgsvNgs and IgsvNgsn for decision making problems.

Abbreviations
IgsvNgs: Interval generalized set valued neutrosophic quadruple set

IgsvNgsn: Interval generalized set valued neutrosophic quadruple number

References

[1] Smarandache F. (1998) Neutrosophy: Neutrosophic Probability, Set and Logic, Rehoboth, Amer. Research
Press

[2] Qiuping, N., Yuanxiang, T., Broumi, S., & Ulucay, V. (2022). A parametric neutrosophic model for the
solid transportation problem. Management Decision, (ahead-of-print).

[3] Sahin M. and Kargin A. (2019) Neutrosophic triplet b — metric space, Neutrosophic Triplet Research, 1
[4] Chatterjee R., Majumdar P., and Samanta S. K. (2019) Similarity Measures in Neutrosophic Sets-1. Fuzzy
Multi-criteria Decision-Making Using Neutrosophic Sets. Springer, Cham. 249-294.

[5] Hamidi, M., & Smarandache, F. (2021). Single-Valued Neutro Hyper BCK-Subalgebras. Journal of
Mathematics, 2021.31.

[6] Mohana K., and Mohanasundari M. (2019) On Some Similarity Measures of Single Valued Neutrosophic
Rough Sets. Neutrosophic Sets and Systems, 10

[7] Ali M., Smarandache F., Khan M. (2018) Study on the development of neutrosophic triplet ring and
neutrosophic triplet field, Mathematics-MDPI, 6(4), 46

147



Editors: Florentin Smarandache, Memet Sahin, Derya Bakbak, Vakkas Ulugcay & Abdullah Kargin

[8] Sahin, M., Kargmn, A., & Uz, M. S. (2021). Generalized Euclid Measures Based on Generalized Set Valued
Neutrosophic Quadruple Numbers and Multi Criteria Decision Making Applications. Neutrosophic Sets and
Systems, 47, 573-600.

[9] Aslan, C., Kargm, A., & Sahin, M. (2020). Neutrosophic modeling of Talcott Parsons’s action and
decision-making applications for it. Symmetry, 12(7), 1166.

[10] Kargmn, A., Dayan, A., & Sahin, N. M. (2021). Generalized Hamming Similarity Measure Based on
Neutrosophic Quadruple Numbers and Its Applications to Law Sciences. Neutrosophic Sets and Systems,
40(1), 4.

[11] Sahin N. M., Dayan A. (2021) Multicriteria Decision-Making Applications Based on Generalized
Hamming Measure for Law, International Journal of Neutrosophic Science, Vol. 17, No. 1, 08- 29

[12] Alhasan, K. F., Salama, A. A., & Smarandache, F. (2021). Introduction to Neutrosophic Reliability
Theory, International Journal of Neutrosophic Science, 15-1, 52-61,

[13] Sahin N. M., Uz M. S. (2021) Multi-criteria Decision-making Applications Based on Set Valued
Generalized Neutrosophic Quadruple Sets for Law, International Journal of Neutrosophic Science, Vol. 17

, No. 1, 41-60

[14] H. Wang, F. Smarandache, Y.Q. Zhang and R. Sunderraman, Interval neutrosophic sets and logic: Theory
and applications in computing, Hexis, Phoenix, AZ, 2005

[15] Ye, J. (2014). Similarity measures between interval neutrosophic sets and their applications in multicriteria
decision-making. Journal of Intelligent & Fuzzy Systems, 26(1), 165-172.

[16] Tian, Z. P., Zhang, H. Y., Wang, J., Wang, J. Q., & Chen, X. H. (2016). Multi-criteria decision-making
method based on a cross-entropy with interval neutrosophic sets. International Journal of Systems
Science, 47(15), 3598-3608.

[17] Jun, Y. B., Kim, S. J., & Smarandache, F. (2018). Interval neutrosophic sets with applications in
BCK/BCl-algebra. Axioms, 7(2), 23.

[18] Chi, P., & Liu, P. (2013). An extended TOPSIS method for the multiple attribute decision making
problems based on interval neutrosophic set. Neutrosophic Sets and Systems, 1(1), 63-70.

[19] Liu, P., & Tang, G. (2016). Some power generalized aggregation operators based on the interval
neutrosophic sets and their application to decision making. Journal of Intelligent & Fuzzy Systems, 30(5),
2517-2528.

[20] Hashim, H., Abdullah, L., Al-Quran, A., & Awang, A. (2021). Entropy Measures for Interval
Neutrosophic Vague Sets and Their Application in Decision Making. Neutrosophic Sets and Systems, 45, 74-
95.

[21] P Pai, S., & Gaonkar, R. S. P. (2021). The safety assessment in dynamic conditions using interval
neutrosophic sets. Neutrosophic Sets and Systems, 40(1), 5.

[22] Karthikeyan, V., & Karuppaiya, R. (2021). Reverse Subsystems of Interval Neutrosophic
Automata. Neutrosophic Sets and Systems, 46, 268-275.

148



Neutrosophic Algebraic Structures and Their Applications
[23] Smarandache F. (2015) Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers,

absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Set and Systems, 10,
96 -98

[24] Sahin, M., Kargmm, A., & Smarandache, F. (2020). Combined Classic—Neutrosophic Sets and Numbers,
Double Neutrosophic Sets and Numbers. Quadruple Neutrosophic Theory And Applications, 1, 254.

[25] Akinleye, S. A., Smarandache, F. (2016) Agboola, A. A. A. On neutrosophic quadruple algebraic
structures. Neutrosophic Sets and Systems, 12, 122-126.

[26] Sahin, M., Kargin, A., & Kilig, A. (2020). Generalized neutrosophic quadruple sets and
numbers. Quadruple Neutrosophic Theory and Applications, 1, 11-22.

[27] Jun, Y., Song, S. Z., Smarandache, F., & Bordbar, H. Neutrosophic quadruple BCK/BCI-
algebras. Axioms, (2018) 7(2), 41.

[28] Muhiuddin, G., Al-Kenani, A. N., Roh, E. H., & Jun, Y. B. (2019) Implicative neutrosophic quadruple BCK-
algebras and ideals. Symmetry, 11(2), 277.

[29] Sahin, M., Kargin, A., & Kilig, A. (2020). Generalized set valued neutrosophic quadruple sets and
numbers. Quadruple Neutrosophic Theory and Applications, 1(2), 23-40.

[30] Li, Q., Ma, Y., Zhang, X., & Zhang, J. (2019) Neutrosophic Extended Triplet Group Based on
Neutrosophic Quadruple Numbers. Symmetry, 11(5), 696.

[31] Sahin, M., Kargin A. (2019), Neutrosophic triplet groups based on set valued neutrosophic quadruple
numbers, Neutrosophic Set and Systems, 30, 122 — 131

[32] Borzooei, R. A., Jun, Y. B., Takallo, M. M., & Ahn, S. S. (2021). Positive Implicative Neutrosophic
Quadruple BCK-Algebras and Ideals. New Mathematics and Natural Computation, 17(02), 403-423.

[33] Sahin, M., Kargin A. (2019), Single valued neutrosophic metric topologys, Asian Journal of Mathematics
[34] Smarandache, F., Rezaei, A., Aghoola, A. A. A, Jun, Y. B., Borzooei, R. A., Dawaz, B., ... & Mirvakili,
S. (2021). On Neutrosophic Quadruple Groups. International Journal of Computational Intelligence
Systems, 14(1), 1-7.

[35] Sahin, S., Kargin, A., & Yiicel, M. (2021). Hausdorff Measures on Generalized Set Valued Neutrosophic
Quadruple Numbers and Decision Making Applications for Adequacy of Online Education. Neutrosophic Sets
and Systems, 40(1), 6

[36] Ulugay, V., Sahin, M., Olgun, N., & Kilicman, A. (2017). On neutrosophic soft lattices. Afrika
Matematika, 28(3), 379-388.

[37] Ulugay, V., Kilig, A., Yildiz, I. and Sahin, M. (2018). A new approach for multi-attribute decision-
making problems in bipolar neutrosophic sets. Neutrosophic Sets and Systems, 2018, 23(1), 142-159.

[38]  Ulugay, V., Sahin, M., & Hassan, N. (2018). Generalized neutrosophic soft expert set for multiple-
criteria decision-making. Symmetry, 10(10), 437.

[39] Bakbak, D., Ulucay, V., & Sahin, M. (2019). Neutrosophic soft expert multiset and their application
to multiple criteria decision making. Mathematics, 7(1), 50.

[40] Sahin M., Olgun N., Ulugay V., Kargin A. and Smarandache, F. (2017), A new similarity measure on

falsity value between single valued neutrosophic sets based on the centroid points of transformed single valued

149



Editors: Florentin Smarandache, Memet Sahin, Derya Bakbak, Vakkas Ulugcay & Abdullah Kargin

neutrosophic numbers with applications to pattern recognition, Neutrosophic Sets and Systems, 15, 31-48, doi:
0rg/10.5281/zenodo570934.

[41] Ulucay, V., Sahin, M., and Olgun, N. (2018), Time-Neutrosophic Soft Expert Sets and Its Decision-
Making Problem. Matematika, 34(2), 246-260

[42] Ulugay, V., Kilig, A., Yildiz, I. and Sahin, M. (2019). An Outranking Approach for MCDM-Problems
with Neutrosophic Multi-Sets, Neutrosophic Sets and Systems, 30, 213-224

[43] Ulucay, V., Kilig, A., Sahin, M., and Deniz, H. (2019). A New Hybrid Distance-Based Similarity
Measure for Refined Neutrosophic sets and its Application in Medical Diagnosis. MATEMATIKA: Malaysian
Journal of Industrial and Applied Mathematics, 35(1), 83-94.

[44] Ulugay, V., & Sahin, M. (2020). Decision-making method based on neutrosophic soft expert graphs.
In Neutrosophic Graph Theory and Algorithms (pp. 33-76). IGI Global.

[45] Hassan, N., Ulugay, V., & Sahin, M. (2018). Q-neutrosophic soft expert set and its application in
decision making. International Journal of Fuzzy System Applications (IJFSA), 7(4), 37-61.

[46] Qiuping, N., Yuanxiang, T., Broumi, S., & Ulugay, V. (2022). A parametric neutrosophic model for
the solid transportation problem. Management Decision, (ahead-of-print).

[47] Broumi, S., Bakali, A., Talea, M., Smarandache, F., Singh, P. K., Ulucay, V., & Khan, M. (2019).
Bipolar complex neutrosophic sets and its application in decision making problem. In Fuzzy Multi-criteria
Decision-Making Using Neutrosophic Sets (pp. 677-710). Springer, Cham.

[48] Ulucay, V., Deli, L., & Sahin, M. (2018). Similarity measures of bipolar neutrosophic sets and their
application to multiple criteria decision making. Neural Computing and Applications, 29(3), 739-748.

[49] Sahin, M., Alkhazaleh, S., & Ulucay, V. (2015). Neutrosophic soft expert sets. Applied mathematics,
6(1), 116.

[50] Bakbak, D., & Ulugay, V. (2019). Chapter Eight Multiple Criteria Decision Making in Architecture
Based on Q-Neutrosophic Soft Expert Multiset. Neutrosophic Triplet Structures, 90.

[51] Ulugay, V., & Sahin, M. (2019). Neutrosophic multigroups and applications. Mathematics, 7(1), 95.
[52] Ulugay, V. (2021). Some concepts on interval-valued refined neutrosophic sets and their applications.
Journal of Ambient Intelligence and Humanized Computing, 12(7), 7857-7872.

[53] Sahin, M., Deli, I., & Ulucay, V. (2016). Jaccard vector similarity measure of bipolar neutrosophic set
based on multi-criteria decision making. Infinite Study.

[54] Sahin, M., Ulugay, V., & Menekse, M. (2018). Some New Operations of (a, B, v) Interval Cut Set of
Interval Valued Neutrosophic Sets. Journal of Mathematical & Fundamental Sciences, 50(2).

[55] Sahin, M., Ulugay, V., & Acioglu, H. (2018). Some weighted arithmetic operators and geometric
operators with SVNSs and their application to multi-criteria decision making problems. Infinite Study.

[56] Sahin, M., Deli, |., & Ulucay, V. (2017). Extension principle based on neutrosophic multi-fuzzy sets
and algebraic operations. Infinite Study.

[57] Deli, ., Ulucay, V., & Polat, Y. (2021). N-valued neutrosophic trapezoidal numbers with similarity
measures and application to multi-criteria decision-making problems. Journal of Ambient Intelligence and

Humanized Computing, 1-26.

150



Neutrosophic Algebraic Structures and Their Applications
[58] Sahin, M., Ulugay, V., & Broumi, S. (2018). Bipolar neutrosophic soft expert set theory. Infinite

Study.

[59] Sahin, M., Ulugay, V., & Yilmaz, F. S. (2019). Chapter twelve improved hybrid vector similarity
measures and their applications on trapezoidal fuzzy multi numbers. Neutrosophic triplet structures, 158.

[60] Broumi, S., Bakali, A., Talea, M., Smarandache, F., & Ulugay, V. (2017, December). Minimum
spanning tree in trapezoidal fuzzy neutrosophic environment. In International Conference on Innovations in
Bio-Inspired Computing and Applications (pp. 25-35). Springer, Cham.

[61] BAKBAK, D., & ULUCAY, V. (2021). Hierarchical Clustering Methods in Architecture Based On
Refined Q-Single-Valued Neutrosophic Sets. NeutroAlgebra Theory Volume I, 122.

[62] ULUCAY, V. (2020). Cok Kriterli Karar Verme Uzerine Dayali Yamuksal Bulanik Coklu Sayilarm
Yeni Bir Benzerlik Fonksiyonu. Journal of the Institute of Science and Technology, 10(2), 1233-1246.

[63] Sahin, M., Ulucay, V., & E,O. B. Cing1 (2019). An outperforming approach for multi-criteria decision-
making problems with interval-valued Bipolar neutrosophic sets. Neutrosophic Triplet Structures, Pons
Editions Brussels, Belgium, EU, 9, 108-124.

[64] Sahin, M., Ulucay, V., & Deniz, H. (2019). Chapter Ten A New Approach Distance Measure of
Bipolar Neutrosophic Sets and Its Application to Multiple Criteria Decision Making. NEUTROSOPHIC
TRIPLET STRUCTURES, 125.

[65] Sahin M. And Kargin A. (2019) Single valued neutrosophic quadruple graps, Asian Journal of
Mathematics and Computer Research, 26(4): 243-250

[66] Sahin M. and Kargin A. (2019) Isomorphism theorems for Neutrosophic triplet g - modules, Neutrosophic
Triplet Structures, 5, 54 -67

[67] Sahin M., Kargm A. and Yildiz, 1. (2020) Neutrosophic triplet field and neutrosophic triplet vector space
based on set valued neutrosophic quadruple number, Quadruple Neutrosophic Theory and Applications, 4, 52
-61

[68] Sahin M., Kargin A. And Smarandache F. (2018) Generalized Single Valued Triangular Neutrosophic
Numbers and Aggregation Operators for Application to Multi-attribute Group Decision Making, New Trends
in Neutrosophic Theory and Applications, 2, 51-84

[69] Kargin, A., Dayan A., Yildiz, 1., Kilig, A. (2020) Neutrosophic Triplet m —Banach Space, Neutrosophic
Set and Systems, 2020, 38, 383 — 398

[70] Sahin N. M., Uz M. S. (2021) Multi-criteria Decision-making Applications Based on Set Valued
Generalized Neutrosophic Quadruple Sets for Law, International Journal of Neutrosophic Science, Vol. 17
, No. 1, 41-60

[71] Sahin N. M., Dayan A. (2021) Multicriteria Decision-Making Applications Based on Generalized

Hamming Measure for Law, International Journal of Neutrosophic Science, Vol. 17, No. 1, 08- 29

[72] Sahin M., Kargin A. (2020) Smarandache F. Combined classic — neutrosophic sets and numbers, double
neutrosophic set and number, Quadruple Neutrosophic Theory and Applications, 18, 254 -266

151



Editors: Florentin Smarandache, Memet Sahin, Derya Bakbak, Vakkas Ulugcay & Abdullah Kargin

Chapter Ten

National Human Rights in the Protection and Promotion
of Human Rights Influence of Institutions: Fuzzy
Method

Enver Bozkurt!, Necmiye Merve Sahin? and Abdullah Kargin®

L 2Faculty of Law, Hasan Kalyoncu University, Gaziantep 27410, Turkey,
*Department of Mathematics, Gaziantep University, Gaziantep27310-Turkey,

E-mail: enver.bozkurt@hku.edu.tr, necmiyemerve.sahin@gmail.com,
abdullahkargin27@gmail.com

ABSTRACT

In this study, we first tried to study the impact of the concept of human rights from a historical perspective
totally to explain the creation of national institutions and organizations. We then tried to explain in detail the
human rights documents and human rights systems found at universal and regional level to complete this
integrity. Finally, in order to explain how important the existence of human rights institutions and organizations
to achieve human rights and freedoms, we analyzed their benefits for states and individuals. In addition, we
created an artificial intelligence application to determine the impact of national human rights in the protection
and promotion of human rights. Thus, we obtained a fuzzy application method in which more objective results

can be obtained compared to previous methods in determining this effect.

Keywords: Human Rights and freedom, National Human Rights, Fuzzy logic, Artificial Intelligence

Application
INTRODUCTION

Human rights has tried to take part in international law from the first era to the present. In this process, many
studies have been done at the universal and national level. The issue of human rights was formally established
by the United Nations on 24 October 1945. The UN requirement and human rights that have been officially
introduced to the international field have been discussed in detail with the Universal Declaration of Human

Rights. IHEB has been a guide in internal law practices and has contributed to the embodiment of abstract

152



Neutrosophic Algebraic Structures and Their Applications
rules. Although human rights have been subject to studies at a universal level, they are also discussed in

different forms of practice at a regional level. The American Human Rights System, the African Human Rights
System, the European Human Rights System are examples of this. And so, as a result of all these studies, the
topic of human rights has developed extendedly.

International documents have been issued so that individuals can reach their rights and freedoms fairly; national
human rights institutions or equality institutions have been established to ensure that the articles in these
documents are best implemented by the states. These institutions and organizations are very important for the
effective implementation of human rights. We tried to reach certain conclusions by trying to study the
beneficial consequences of human rights institutions and equality institutions in artificial intelligence with our
own interests.

There are many uncertainties in our daily life. Many times, classical logic is insufficient to describe these
uncertainties. Because in classical logic, an element is either an element of a set or it is not. That is, the
membership value of an element belongs to the set {0, 1}. For example, according to classical logic, the color
of an apple is either red or not. But it cannot explain the tones of red in classical logic. Due to such situations,
classical logic is insufficient to explain the uncertainties. Fuzzy set and logic are defined by Zadeh in 1965 to
explain uncertainties more precisely mathematically [1]. In fuzzy logic, the membership degree of each element
of a set takes a value in the range of [0, 1]. Thus, unlike classical logic, the membership of each element is
graded. For example, the speed of a vehicle is too fast, too fast, too slow, too slow, etc. It can be specified with
expressions such as and with different membership degrees. Thus, a more sensitive type of logic including
classical logic has been obtained in explaining uncertainties. Fuzzy logic is one of the most used logic types in
almost every field of science, especially in artificial intelligence applications and decision-making applications,

from the date it was defined to the present.

In this study, we obtained eight criteria determine the impact of national human rights in the protection and
promotion of human rights. We have gathered these eight items under three headings as International Human
Rights Influence, Government Influence and Legislative-Judicial Influence. With these three criteria, we
obtained a fuzzy matlab algorithm to calculate the rate of this effect for countries. Thus, we have obtained a
decision-making algorithm using artificial intelligence, which can be applied and objective results can be
obtained. For researchers who want to use or improve this algorithm, we have created an example of decision
making with imaginary data.

BACKGROUND

Although human rights do not change and have no common definition, it encompasses all human rights, in a
broad sense resulting from being an individual. These rights are universal libertarian, peaceful, responsible and
based on ethical foundations aiming material and spiritual development of human being. they are fundamental
rights. In the historical process, human rights were considered as human rights in an abstract foundation before
the establishment of states, and accepted as the rights and freedoms that man have had from the birth. And then

because of the individual’ living in society, it is based on positive law and bounding certain legal assurances it
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became materialized [2]. From here, it would be beneficial to briefly mention the development of human rights
from an abstract concept to concrete one and what stages have passed in the historical process to understand

the effects of human rights on international and national levels.

In the first era, the idea of the rights and freedoms of individual were firstly mentioned in Greek and Roman
civilization The first examples of human rights implementation were seen in these civilizations. The "citizens"
,which are actually a minority group, participated in state government and made laws and decided to war and
peace. The rest of the site were created by slaves, who had no rights, who were considered property or an
animal legally , who manufactured tools. The important point here in terms of human rights is that the minority
group of the people was involved in the management of the site. In the ancient Roman law system, they could
only bring government art and management further than the old Greek [3]. Unlike the ancient Greek, the
concept of citizenship was expanded. The people in the Roman Empire were given citizenship right except

women, children, and slaves [4].

In Indian civilization, individual with his birth lived according to the rules of certain caste . The persons were
subjected to a standard system, depending on the status of the class within the caste. In this civilization, no one
had ever embraced the notion that they had certain rights because they were just human. The word right
corresponded to the person's status within the class in this system. The individual must have done his/her duty
in order to claim and use a right and. For example, in the case of old or disability, individual had the right to
get support, if only he fulfilled his duty [3]. Chinese civilization contributed to the development of human
rights through the teaching of limiting political power. All these minor developments in the early ages were
too inadequate to fill the legal concept of human rights, but they were still the first steps toward embodying

human rights.

In Middle Ages the struggle between the ruled and the rulers, had provided important step toward the
development of human rights. In this age, Magna Carta Libertatum which was the legal development of human
rights in England was signed in 1215 by preventing the king's keyship and indicating people’s having the
security of their property and life. The limitation of the king's keyness and the extension of the rights and

freedoms of the people made it the first and most important document in the field of human rights [5].

Thanks to the natural law which was reshaped in the New Age in the 15st century although human rights were
not discussed as an independent topic, the issues that human rights could not be transferred and were inborn
right were moved to the political area. Human rights began to take part in positive law in this era with the
weakening of the understanding of absolute sovereignty. In the 16 st century, philosophers such as John Locke,
Jean-Jacques Rousseau and Montesquieu, who argued that the individual should be protected from the
pressures of the ruling class, were the pioneers of this argument. Locke, a human rights activist, argued that
people who based the basis of political thought on a human being equipped with natural rights had equal and
same rights because they were born as human beings. Montesquie argued that the only freedom of the state is

the freedom of individuals [6].
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During World War 1. the idea of the League of Nations was suggested by US President Woodrow Wilson in

1917, within the framework of Wilson principles. The idea was brought to life with the support of the Allied
States at the Paris Peace Conference that ended World War I. But among the aims of the society, which was
established for world peace and security, protecting human rights and the human value associated with it were
not included , not even the word human rights had expressed. But some articles have been linked to human
rights rules. The fair and humane operating conditions set out in Article 22. article 5. this is an example of the
idea of prohibiting slave trade, guaranteeing the freedom of conscience and religion of people under the
administration of buffalo, including the people of Central Africa [7].

The League of Nations did not provide the peace and trust and did not prevent World War 1. After World War
I, Germany and Japan were defeated and the victorious states organized conferences to establish an
organization in order to ensure their own security, international stability against other states. One of them is
the San Francisco Conference, which had the signatures of 50 states. The United Nations clout was signed on
October 24, 1945, with the signatures of the states participating in this conference. Under the UN requirement,
human rights have gained an international identity and has become a matter that must be protected

internationally [8].

In general, there is a significant link between the protection of international peace and security and trust which
is the main purpose of the UN and human rights. In order to prevent any disrespect or violation of human rights,
no matter where it is in the world, and to ensure World peace, the UN has encouraged and supported the states
to develop and respect human rights. Although the provisions of human rights were not systematically regulated
under the circumstances, the initial chapter emphasized fundamental human rights, the honor and value of
human personality, the belief in men and women and equality the rights of big and small nations, and stated
creation of conditions for respecting the obligations arising from the agreement. It also included six specific
points of human rights. These are; (md. 1/3), (md. 13/1), (md. 55c), (md. 62/2), (md. 68) and (md. 76c) [3].

Although there were many regulations on human rights under the UN requirement, there were no regulations
related to the content of these rights. Therefore, a human rights catalog had to be created to protect human
rights. The Economic and Social Council had been appointed to work in this area; Human Rights Commission
formed by this council were tasked with preparing a human rights declaration. In response to this, the Universal
Declaration of Human Rights (IHEB) was prepared and the vote submitted to the General Assembly was
adopted. This declaration provided the recognition of the rights within the IHEB of member states in the world
and It was the first step in promoting and raising respect for the fundamental freedoms and human rights of the
UN. Although there had been no binding document since it was published, it had been a fundamental document
in the development and spread of human rights thought and had received the approval of the international
community. The IHEB is the abstract principle of it has been a guide in transforming concrete rules and

transferring human rights to internal law [9].

In the post-Magna Carta UK, documents such as 1628 Petiton of Rights, 1679 Habeas corpus Act, 1689 Bill
of Rights and 1701 Act of settlement hav tried to expand individual rights and freedoms. These documents
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have affected human rights developments in the United States and later France. On June 12, 1776, in the process
of independence for the United States, in the beginning of Virginia Constitution, The Amendment of Rights
(Bill of Rights) stated that the people had equal, irreversible and indispensable rights due to creation, these
fundamental rights were determined as happiness, security rights, life and freedom, property rights. Later,
classical political rights and freedoms, such as freedom of speech, conscience right, freedom of press, freedom
of assembly, individual security, were included in the American Declaration of independence and other state

constitutional [4].

The regional human rights agreements in American States Human Rights Systems were the terms of the United
States organizations (1951), the Declaration on American Human Rights and duties (1948), the Announcement
of American Human Rights (1969/1978). Although the American Declaration of Human Rights and duties is
considered a similar arrangement to the UN Universal Declaration, it has covered different details in terms of
its assignments, including statements, definitions. For example, 26. it contains both the execution of the
sentence and the sentence given in its article, out of cruel, insulting or unusual. In 1969, the American
Convention on Human Rights was accepted and put into force in 1978. The Convention includes a broad range
of rights including legal personality, legislative, human conundrum, nonslave, freedom of thought and
conscience, equality in front of the law, right to sue; these rights have been imposed assignments to the States

in order to take economic, cultural, social measures and are supported by the ban on discrimination [10].

At this point, the French Declaration of Human and citizen Rights, affected by the American Declaration of
independence, will be appropriate to be stated Based on the American Declaration of Rights and the modern
legal concept expressed by 18thcentury philosophers, The French Declaration of Human and citizen Rights
which was written. For a self-sufficient and self-confident person, this document, created by the destruction of
the old regime, had made up of seventeen substances and had been written in French language which makes
human rights and freedoms known by large audiences. It was emphasized that human rights should first be
based on clear and simple principles. According to the introduction text, this declaration would remind them
of the rights that all members of society have. As the title of the declaration states, man won citizenship status
because he had natural rights, preserved them, and behaved with the rights that existed in his nature. The role
of the citizen was to protect the rights making man's development and existence. Although many more
documents were published after this declaration, none were as effective as FIYHB. All the laws adopted in
France have been referred to the FIYHB and have formally accepted all the rights and freedoms listed in the
declaration and declared that they will be bound to them. Universal statements in the declaration have been

effective in legal documents of other countries [11].

Therightto live in daily life in Africa during the pre-colonial period, self-defense, the man of sacrifice, freedom
of expression, freedom of religion, rights such as freedom of organization, freedom of travel were recognized
and used by orf and customs. But in the colonial period, the African people were subjected to discrimination,
intense pressure, human rights violations, and slave trade. These events showed their results in 20.th century

and accelerated the independence process. After 1960 focusing on the achievement of political independence,
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African states established the Organization of the African Union in 1963 for the purpose of establishing

regional unity. One of the objectives of the establishment of this union was to improve international co-
operation in accordance with the UN Convention and the Universal Declaration of Human Rights. The African
states submitted human rights to the UN Universal Declaration on Human Rights and the UN requirement.
However, although they were a party to various regional or international documents and were stated a
comprehensive part for list of rights in their constitution, they were divided by ethnic, religious, racial reasons,
the failure of national integrity, the military’s frequent involvement in politics, economic incompetence in the
hands of the minority class, Human rights violations could not be terminated in practice because they moved
on with a Western imitation system instead of a traditional system [3].

Four years after the UN in 1949. The Council of Europe was established in London to prevent the World War
Il ruins from being repeated. One of the main areas of this council's work had been human rights. In the First
articlel of the status it was stated that The article also stipulates that contracts would be made and joint action
would be taken to protect and carried human rights and their main freedoms to a further level. Again in article
8 It has been stated that in case of human rights and fundamental freedoms not being observed ,membership
would be suspended and the right to representation of the member country might be terminated. The European
Council's most important regulation on human rights has been the European Court of Human Rights and the

European Court of Human Rights [12].

The European Convention on Human Rights was signed in Rome on November 4, 1950, inspired by the EHIB
but kept in a narrower scope. The AIHS, which envisions a powerful mechanism for legal protection of human
rights, had established a highly developed legal basis with its terms and expressions. With the AIHS, each
member state and a signatory state had the obligation to comply with the human rights and fundamental
freedoms listed in the contract. The obligation to grant rights and freedoms to all individuals in the entity states
to the contract is governed by the first article. These obligations have been met in their own method, but they

have been granted the freedom to comply with the agreement [11].

In the historical process, on the definition of national human rights institutions with the framework of
Principles on the Status of National Human Rights institutions(Principles of Paris), at the end of the 1991
seminar realized in UN , minimal definition for national human rights institutions was made [13]. At this point,
it is appropriate to address the points that the Principles of Paris address about human rights institutions. The
Parisian Principle lists various responsibilities for national human rights institutions. Firstly, these institutions
will review every situation in the face of human rights violations and will have enough personnel to monitor
developments anywhere in the country. Secondly, human rights institutions will be able to advise governments,
parliament and other authorized bodies on the implementation of and compliance with international human
rights documents in the event of human rights violations. Therefore, some communication channels officially
and informally between the state bodies concerned with the institution will be formed. Third, these institutions
will be in contact with regional and international organizations, and contribute to reports submitted by the states
to regional or international institutions. Fourth, it will support human rights research and educational human

rights programs and will be involved in the implementation of them in universities, schools and professionally.
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Finally, some human rights institutions will be granted semi-judicial powers. If it doesn't fulfill even one of
them, Principles of Paris are consired not being implemented. In addition, it may be authorized to listen to
individual complaints and evaluate petitions outside of its authority [14].

The UN handbook, published in 1995, it is stated that these institutions are structures established by states ,by
constitution, law or regulatory procedures, and its mandate is to improve and protect human rights in particular.
Also, a book belonging to the UNHCR stated that it is a state body, having constitutional or legal basis, and is
part of a state-funded device, and is established to improve and protect human rights rights for human rights
institutions [13].

National human rights institutions act as a bridge between local practices and international norms. In order to
carry out its organizational functions in terms of preventing rights violations and the development of the human
rights and to make international human right rules more functional in local level , international human rights

rules must be placed in public institutions [15].

The national human rights institutions are defined as responsible structures for the development of human
rights, which are autonomous and independent, created by public authorities. The sole purpose of these
institutions is to gather information/data about the human rights practices of states and to report them to the
public. At this point, human rights activists have embarked on a search for the standards of institutional
structures that can be considered as human rights institutions, which is reflected up to the Paris Principles. The
Parisian Principles have stated that the authority of national human rights institutions for the protection and
development of the rights of the human should be broad, but have not given any insight into the number of
these institutions. However, the Global Elevation of the National Human Rights institutions has indicated that
only one national human rights institution should be available from each state. EU equal treatment Directives
have established the framework of the minimum standards of all equity institutions, and two approaches have
been taken accordingly. Some EU member states have specialized equity institutions in line with obligations
arising from the EU equality directive and are focused solely on discrimination and equality. Other member
states have human rights institutions based on the Parisian Principles, focusing on equality. In some other EU
member states, the Equality institutions and national human rights institutions have established a single

institutional model to fulfill their functions. For example, England, Belgium, France, the Netherlands [15].

Definition 1: [1] Let B be the universal set. A fuzzy set A on B is defined by

A ={a,uq(a))ae B}

Here, u,(a) is membership function such that u_4: B — [0,1].

Definition 2: [16] A triangular fuzzy number 7 = [k,, 1, m,] is a special fuzzy set on the real number set

R, whose membership function is defined as follows
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(a=k1)/(1-k1), if (k1=x<ly)

_ 1, if (a=11)
p1q(a) = (m1-a)/(my—1y), if (li<asmy)
0, if otherwise

v

ky L my

Figure 1. @ =[ky, l;, m,] triangular fuzzy membership function

NATIONAL HUMAN RIGHTS IN THE PROTECTION
AND PROMOTION OF HUMAN RIGHTS
INFLUENCE OF INSTITUTIONS: FUZZY METHOD

Human rights have a place in the field of international law from the First Age to the present. tried to do. In this
process, many studies have been carried out at the global and national level. This As a result of the studies, the
subject of human rights has developed considerably. rights of individuals and international documents have
been drawn up in order for them to reach their freedoms in a just way; In order for the articles in these
documents to be implemented by the states in the best way, national human rights institutions or equality bodies

have been established. We listed these useful results as follows:

1) Exhibiting a holistic collection of human rights

2) Ensure compliance with international human rights standards

3) Ensuring access and improvement to education, health and housing

4) Making a positive contribution to the regulations on personal integrity Rights

5) Contributing to an inclusive demaocratic and political regime

6) Facilitating changes in human rights regulations at the local level

7) Collaboration with judicial authorities in the prevention of human rights Violations

8) Establishing principles regarding process of Impersonal general assemblies and general functioning of

intergovernmental human rights

(i)
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Fuzzy Method

In this section, we will collect the eight criteria in (i) under three headings. These headings: International
Human Rights Influence (1, 2, 3 and 4 in (i)), Government Influence (5 and 8 in (i)) and Legislative-Judicial
Influence (6 and 7 in (i)).

Now we give a fuzzy matlab application for determine the impact of national human rights in the protection
and promotion of human rights. In the fuzzy matlab application, the process is given at Figure 1.

Figure 2. Fuzzy Matlab Algorithm

We give the inputs for this fuzzy matlab application in Table 1 and output for this fuzzy matlab application in
Table 2.

Table 1. Inputs for this fuzzy matlab application

Input Abbreviation
International Human Rights Influence IHRI
Government Influence Gl
Legislative-Judicial Influence LJI

Table 2. Output for this fuzzy matlab application

Output Abbreviation

National Institutions Influence NIl
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4. Fuzzy Logic Designer: Untitled - O X
File Edit View
XX -
-
-~
IHRI =2
ﬂ o
{mamdani)
Gl =
-
-

L

‘ FIS Name: Untitled FIS Type: mamdani

And method — o Current Variable

Or method max o || Mame HRI

implication min o || Tre T

Range [0 100]

Aggregation — o

Defuzzification K Help Close | ‘

Ready ‘

Figure 3. Fuzzy Matlab’s input (IHRI, GI, LJI) and output (NII)

We give the fuzzy membership functions of these inputs and the representation of these functions as
triangular fuzzy numbers in Table 3.

Table 3. Fuzzy Membership Functions of IHR, GI and LJI.

Fuzzy Membership Functions Abbreviation Fuzzy Number
Little L [0, 25, 50]
Medium M [30, 50, 70]
High H [60, 75, 90]
Very High V.H [80, 100, 100]
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4| Membership Function Editor: Untitled — ] >
File Edit View

FIS Variables . Memblershlpfluncﬁcrll plots i plot D"":'S: i 181

[
XX

L M H W

b

L ot n n r n i 1 1 1 1 1
0 20 T o &0 00
inpuit variable *|IHR|*
Current Variable Current Membership Function (click on MF to select)
Name IHRI L L
Type input Type trimf -
Params
02550
Range [0 100] L !
LELTYFETEE [0 100] ‘ Help Close

Selected variable "IHRI

Figure 4. Fuzzy Membership Functions of Fuzzy Matlab for IHR, GI and LJI

We give the fuzzy membership functions of output and the representation of these functions as triangular fuzzy

numbers in Table 4.

Table 4: Fuzzy Membership Functions of NII

Triangular Fuzzy Membership Functions Abbreviation Triangular Fuzzy Number
Very Little VL [0, 0, 25]

Little L [20, 40, 60]
Medium M [40, 60, 80]

High H [60, 80, 90]

Very High VH [85, 100, 100]
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[4] Membership Function Editor: Untitled - O x
File Edit View

FIS Variables _Membersh 'P':"mlﬂ'jl!hhl"'““'“'l"": . 181

WL L M H VH
XA

HE NI

Ll

0 100] [85 100 100]
[0 100] | |

Figure 5. Fuzzy Membership Functions of Fuzzy Matlab for output

4| Rule Editor: Untitled

File Edit View Options
S5, If (IHRI is WH) and (Glis M) and (L)l is H) then (Nllis H) (1)
S5, If (HRI is WH) and (Glis M) and (L)l iz WH) then (Nllis H) (1)
57 If (IHRI i= WH) and (Glis H) and (LJlis L) then (Nllis M) (1)
58 If (IHRIi= WH) and (Glis H) and (LJlis M} then (Nlliz H) (1}
59 If (IHRI is WH) and (Glis H) and (LJIis H) then (Nllis H) (1)
B0. If (HRI is WH} and (Gl is H) and (LIl is VH) then (Nllis VH) (1)
§1. If (IHRI i= WH) and (Glis WVH) and (LJlis L) then (Nllis H) (1)
§2. If (HRI i= WH) and (Glis VH) and (LJlis M) then (Nl is H} (1}
53, If (IHRlis WH) and (Gl is VH) and (L)l is H) then i 1

Figure 6. Representation of Fuzzy Rules in Fuzzy Matlab
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4 Rule Viewer: Untitled — O x

File Edit View Options

IHRI =80 LJi = 90 NIl =76

T
/|

BaaIsaianisome~onsee-
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i

1

BIERNERRER

A

Input:"| [30:65;90) R 101 Move: left | right|duwn| up |

Opened system Untitled, 64 rules Help | Close |

Figure 7. Getting Results with Fuzzy Matlab Rules

Now, let's give the imaginary three inputs ( IHRI, Gl and LJI) values for imaginary five countries (S;, S,, S,

S, and Sg ) in Table 5.

Table 5: Input values for countries (S;, S5, S5, S, and Sg )

States IHRI Gl LJI
S, 75 65 55
S, 85 70 45
S, 50 65 90
S, 70 70 75
Ss 80 65 90

If the data in Table 5 is calculated in the fuzzy matlab algorithm we obtained for each country, Table 6 is
obtained.
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Table 6: Output values for countries (S;, S,, S5, S, and Sg )

States NI
S, 53
S, 58
S, 68
S, 77
Ss 76

Therefore, according to Table 6, the countries with the highest impact of national human rights in the protection
and promotion of human rights are S,, Ss, S5, S, and S, respectively.

Conclusions

Human rights have grown to an important position in international law since first ages. The progress
of human rights in the historical process has come to this point today due to the efforts of individuals,
communities, states. In this study, as detailed in this process, the human rights steps in the first Age, Middle
Ages and New Age have gradually started to sound, and this voice has become the basis for international law.
We have covered international studies, human rights has become defined phenomenon that should be accepted
by all, and this led to a number of studies to reach individuals. These studies, which are the basis of our work,
have focused on the benefits of human rights institutions and equality institutions established by states for
better application of human rights. From this framework the effectiveness of these institution was determined
by using artificial intelligent method. Thanks to this method, we determine the impact of national human rights
in the protection and promotion of human rights. Also, using (or improving) the data and decision-making

method in this study, researchers can conduct new studies on international human rights and law.
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ABSTRACT

VIKOR is a popular strategy for multi-criteria decision making. As an extension of the neutrosophic
trapezoidal numbers, the N-valued neutrosophic trapezoidal numbers, which are special neutrosophic multi-
sets on real number, are used to effectively solve the repetitive uncertainty of decision-makers in multi-criteria
decision-making problems. The aim of the this chapter the VIKOR strategy for MCDM problems in N-valued
neutrosophic trapezoidal numbers. In decision making situation, N-valued neutrosophic trapezoidal humbers
are employed to express the criteria values. Then we develop an extended VIKOR strategy to deal with MCDM
in N-valued neutrosophic trapezoidal numbers environment. To show the advantages of our proposed VIKOR
strategy, a decision-making problem of architecture to illustrate the effectiveness of the developed method is
solved in N-valued neutrosophic trapezoidal numbers environment.

Keywords: Neutrosophic sets, neutrosophic multi-sets, N-valued neutrosophic trapezoidal number,

generalized distance measure, entropy measure, VIKOR method, multi-criteria decision-making.

1. Introduction

Production materials; metal, ceramic and organic materials are divided into three main groups. Each of these
materials has their own advantages and disadvantages. The new material obtained as a result of the process of
combining the superior properties of two or more of them in one material is composite.

The reason why the composite is preferred is; This is because it is resistant to heat and moisture, is lighter than
metal, and has high strength. In addition, it is an economical alternative for every sector with its low cost. Wear
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resistance, thermal expansion feature, stylish appearance are also advantages. For such reasons, composite
material has become more preferred in recent years. Composite materials have found the opportunity to be
used in a wide area. We aim to solve the uncertainty arising from these possibilities by using the decision-
making method. Since decision making problems which contain uncertain are difficult to model and solve, and
it is a need for us to develop some mathematical theories. Recent years, fuzzy set theory by using only one
degree of membership proposed by Zadeh [64] and intuitionistic fuzzy set theory by using two degrees of
membership introduced by Atanassov [2] have been received great attention in solving various decision-
making problems. These theories can better solve the fuzziness of the uncertain decision making therefore the
theories are all very successfully studied in Hu et al. [18], Liu et al. [19], Narayanamoorthy et al. [20] and [32-
44).

By using truth-membership function, indeterminacy-membership function and falsity-membership functions,
in 1998, Smarandache [51] proposed the concept of neutrosophic sets (N-sets). In 2013, Smarandache [52]
generalized the classical neutrosophic logic to neutrosophic refined logic which have more than one with the
possibility of the same or the different membership functions. Moreover, Ye and Ye [62], Chatterjee et al. [11]
and Ye and Smarandache [63] introduced the concept single valued neutrosophic multi sets as a further
generalization of that of neutrosophic sets based on both the neutrosophic refined logic and multi sets of Yager
[61]. The multisets and single valued neutrosophic multisets has received more and more attention since its
appearance in [1,3-10,12,14-17,21-31,45-50,53-59,61,63-72]

In order to use the concept of single valued neutrosophic multi sets to define an uncertain quantity or a quantity
difficult to quantify, in Deli et al. [13] the authors put forward the concept of continuous N-valued neutrosophic
trapezoidal numbers (NVNT-numbers). They developed a TOPSIS method by giving some operational laws
of NVNT-numbers and some aggregation operators of NVNT-numbers.

Distance measure is an important information measure in the study of single valued neutrosophic multi sets
but there are few distance formulas for NVNT-numbers proposed in studies. There, this paper will first propose
some new generalized distance measures for NVNT-numbers then use it to develop a decision-making method
based on a entropy measure which find weight of criterias.

The remainder of this paper is arranged as follows. The “Preliminaries” section gives a brief introduction to
single valued neutrosophic sets, single valued neutrosophic multi sets, N-valued neutrosophic trapezoidal
number. In the “NVNT-numbers VIKOR method” section, a NVNT-numbers -based decision-making
approach is proposed, and in the “Illustrative example” section, an illustrative example is provided to
demonstrate the effectiveness of the above method. Later, we compare the proposed example with different
distance measures and existing methods.

2. Preliminary

This section firstly introduces several the known definitions and propositions that would be helpful for better
study of this paper.

Definition 2.1 [60] Assume that E is the universe. Then, a single valued neutrosophic set (N-set) A in E defined
as

A={<xTa(®), ,(x), Fa(x) >:x € E} €))
where Ta(x), [4(x), Fo(x) € [0,1] for each point x insuch that 0 < To(x) + [L(X) + Fo(x) < 3.
Definition 2.2 [52] Let E be a universe. A; neutrosophic multi-set set A; on E can be defined as follows:

A={<X(TA, (), TZ, (0, ., T&, (), (13, (0, 13, (), -, I3, (), (FA, (%), F}, (), ..., FX, (%)) >:x € E},

where

Ta, ®), T, (%), ..., Tx, (%), I3, ), 13, (%), ., 1};1 (x),Fa,(®),F3,(®), ..., Fx, ®):E—>[0,1]

168



Neutrosophic Algebraic Structures and Their Applications
suchthat 0 < sup Ty (x) +suply (x) +supFy (x) <3 (i=1,2,...,P) for any x € E is the truth-membership
sequence, indeterminacy-membership sequence and falsity-membership sequence of the element x,
respectively.

Definition 2.3 [13] Let 1} , 9} ,64 €[0,1] (i€ {1,2,..,p}) and a,b,c,d € R such thata<b < c<d.
Then, an N-valued neutrosophic trapezoidal number (NVNT-number)

a={([ab,cd;(Mi.nx, - Na,) 4, 9%,.---,9%,), (04,02 ,...,04,)) is a neutrosophic multi-set on the
real number set R, whose truth-membership functions, indeterminacy-membership functions and falsity-

membership functions are defined as, respectively.

(x-a) - (o= -x)+0k (x-a) <
|((b—a)na' asx<b |” ®-a) asx<b
Ti(X)_{n}d' b<x<c Il { }(7(' bsx=<c
& == _ )
8—_3%{, c<x<d |(XC)+'9(Cl X c<x<d
) (d-o
0, otherwise, kl, otherwise,
and
-x)+0\(x—a
I( ) + 6a( )’ A <x<b
| G-
FiL () =4 oL, b<x<c
Xx—C)+6,(d —x
i( ) + 6i( )’ c<x<d
(d -0
kl, otherwise,

Note that the set of all NVNT-numbers on R will be denoted by A.

Definition 2.4 [13] Let A, = ((ay,by, ¢, dy); (A, Ma,0 -4, ) (94, 93,,---, 9%, ), (B4,,03%,,....05,)) €
A. If A; is not normalized NVTN-number(a,, by, ¢;,d; € [0,1]), the normalized NVTN-number of A,
denoted by A, is given by;

A = ([ aq b, Cq dy ]
a,+b;+c¢;+d;’a; +b;+¢;,+d;"a; +b; + ¢, +d;"a; + by + ¢y +d I’

®)
1 2 P 1 2 P
(nxllnxll"'!nxl) (SA )SA e ) (eA ) A ,...,exl)).
Definition 2.5 [65] Let A =
([ay, by, cp,dy 1 (N %), (95, 0%, ..., 0%), (0%, 6%, ..., 6%)) and B =
([az, by, c5,d,); (N5 ME, o mE), (95,0, ..., 0F), (61,62, ..., 6%)) be two normalized NVNT-numbers then,

respectively, the weighted Hamming and Euclidean distance measures between 4 and B are given below;
dY¥(A,B) = 16p (Z [(w (1 + iy — 0 — 01)ay —wz(1+ i — 0k — 01, |) +

(Iwz (1 +ni; — 9 = 85)by — wy(1 4k — 95 — 65)b, )" +
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(Iwz (1 + i = 0% = 85)c; — wg(1 +n5 — 05 — 0)ca ) +
S o 1
(wz(1 +nig = 0% — 01)dy — wx(1 + s — 85 — 05)d, 1)) v ©

For r=1, the equation 3 is given as;

P
dv (A, B) = E.Z[|wﬁ(1 Fai— 0L — 01 )a, — wy(1+ b — oL — 6L)ay| +
i=1
lwz(1+nl; =95 — 02 )b, — wg(1 +nk — 9% — 6L )b, | +
lwz(1+nL — 0% — 0L )c; —wz(1+n5 — 95 — 65)c,| +
g (14— 8 — B2, — w1+ — 0% — 8L)d, @)

For r=2, the equation 3 is given as;

p
_ 1 . . . . . . 2
A (A, B) = @.Z (W@ + iy — 0L — 0L)a, — wg( + i — 0% — 01)a,)” +
i=1

(w(1+ L — 9L — 8L)b, — w(1 +nb — 05 — 6L)b,) " +

(w(1+ b — 9L — 8¢, —wy(1 +nk — 0 — 6b)c,)” +

1
i i i i i i 2]2
(wz (1 + 0 =0 — 8)d; — wg(1 +ng — 95 — 65)d,) ]2 ©)

Theorem 2.6 [65] Let A =
(a1, by, ¢q,d)); (nLmZ D), (95,92, .., 9%), (6, 6%, ..., 6%)),
B =((az by, ¢z, dy); (N3, . %), (0%, 9%, ..., 95), (6%, 62, ...,62)) and
€ ={(as,bs, c3,d3); (N5 3, ..., n%), (0%, 9%, ..., 9F), (6%, 0%, ..., 6%)) be three normalized NVNT- numbers.
Then, d¥ (A, B) satisfies the following properties:
i. 0<d¥(AB) <1,
i. A=B=dY(AB)=0,
iii. dY(A, B) =dY(B,A),
iv. d¥(A,B) <d¥(A,C)+dY(C B).

Definition 2.7 [65] A real-valued function &,.: u — [0,1] is called an entropy on NVNT-numbers if it satisfies
the following properties:

([a,b,c,d]; (1,1,...,1),(0,0,...,0),(0,0,...,0))
([a,b, c,d]; (0,0,...,0), (0,0,...,0), (L,1,...,1))

EP2.E,.(A) = E.(A) for all A € NVNT-numbers, where
A° = ([a,b,c,d]; (8Y,0%,...,08%), (1 —9%,1—9%,...,.1 —9%), (4 n%, . n5))-

EPL.A = { =& (A) = 0;
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EP3.d. (A, A ) =d. (A AY) © E.(A) = 1for all A € NVNT-numbers, where d,.(A,A*) is a distance
from A to At and d,.(A, A~) is a distance from A to A ~;
EP4. For all A, B € NVNT-numbers, if

d,.(A,A) 1

d (A, A +d. (A A") 2

d.(B,B") 1
d.(B,B*)+d.(B,B~) 2

=

(6)

then £(A) < E(B), where d.(B,B*) is a distance from B to B* and d.(B,B~) is a distance from B to B,
where

At ={([a,b,cd]; (1,1,...,1),(0,0,...,0),(0,0,...,0))
and

A~ =([a,Db,cd];(0,0,..,0),(1,1,..,1),(11,..,1)).

Theorem 2.8 [65] Assume that d,. is an distance measure for NVNT-numbers. Then, for any A € NVNT-
numbers,

d, (A, A") 1

&(A) =1-2 d.(A,A) +d.(A,A) 2

)

is entropy of NVNT-numbers based on TOPSIS.

3. NVNT-numbers VIKOR method

In this section, we proposed a normalized NVNT-numbers VIKOR method with entropy-based weights for

solving multi-criteria decision-making problems.

Definition 3.1 Assume that F = {F,,F,, ..., F,} be the set of altenatives and Z = {z,,z,, ..., z,} be the set of

criterias. In Deli et al. [13], the normalized NVNT-numbers decision matrix is given as;

l:'11 l:'12 F1n
l:'21 l:'22 F2n
b : : |
_l : : : |
\le l:m2 an/
such that

Fig = {[ag, big, e dig], (g iy iy, - ). (0 0% 0% 8%, (0, 05,03y, . 0 ), (h=1.2....m) and
(G=1,2,....n).

(ij)mxn

It is carried out the following algorithm to get best choice:
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Algorithm:
Step 1: Create an evaluation matrix (Fy;) mxn, (k=1,2,...,m; j=1,2,...,n)
Step 2: Find of the weights of the criteria vector w = {w,,w,, ..., w,} by using equation in Theorem 2.6 as;
m— XL, &y
Wj = m n ’
mn— X Xy &

(i=12,..,n).

where the entropy matrix (Exj)mxn (k=1,2,...,m; j=1,2,...,n) of the decision matrix (Fy;)mxn and where

d.(Fy, Fii 1
Sk]-=1—2 rE—k] k]) S
dr(ij'Kk]' )"‘ dr(ij'Fki ) 2

k=12..mj=12..,n).

Note that if the entropy matrix (Exj)mxn (k=1,2,...,m; j=1,2,...,n) is not normalized then, the entropy matrix

must be normalized as;

& = :
97 max{€y: €5 € (Ex)mun k = L2, mandj = 1,2,..,n}

Step 3: Determine the positive ideal solution »* and negative ideal solution r~, respectively as;

+ ht o+ A+] (1T w2t 537 p+ 1t g2t o3+ p+ 1+t g2t 3t pt
rr = ([afy b e di ]l (ny " T o) (98T 9% 9%, 08 ). (0" 03, 63", . 80 )

<[m€x{akj} , ml?x{bkj} , mkaX{ij} , mkax{dkj }] ; (mkax{nij}, ml?x{nlzq-} , ml?x{nf(j} ) e, MAX {nﬁj})

(mkin{{)ll(j 1, mkin{{)ﬁj}, mkin{f)f;j}, -, min {Sﬁj}) , (mkin{ell(j} , mkin{elzq-} , mkin{efq-}, ., Min {6%}))

and

rT = ([aﬂj;bﬁ;cﬁ:dfj]F (ntj_'nﬁj_'nij_’ ---,nﬁj_)»(ﬂij_'ﬂﬁj_'ﬂﬁj_' ""‘9%_)'(eij_'eii_'elzi_’ ""eii_))
- <[mkin{akj} ) mkin{bkj} , mkin{ckj} ) mkin{dkj }] ; (mkin{ni,-} ) mkin{nij} , mkin{ni,-}' e mkin {ﬂﬁj}),

(ml?x{ﬁij} , mlflx{ﬁﬁj} , ml?x{f)ﬁj b max {Gﬁj}) , (mkax{eij}, ml?x{elzq-} , ml?x{efq-}, ., Max {6%]))

for all (k=1,2,...,m) and (j=1,2,...,n).
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Step 4: According to Equation (9) positive value of V*(F;) based on positive ideal solution r* and negative

value of V-~ (Fk]-) based on negative ideal solution r~ of alternative Fy (k=1,2,...,m) calculated as follows:

n
1
Vi) = - (R )
=1

n b
1 . . . .+ .+ .o+ r
= 16_n_p.212[(kaj(1+ni<,-—ei<,-—e;(j>ak,-—wr+(1+nf<j - 9}," - 0} a)
]:

k=1
R R . r
+ (W (1 + 1y — )b —w (14" — 0l — 8 Dbyg) +

i i i it _qit_ ity
(WFk]- I+ — Oy — Bl —wr (L +1mjg =iy — B )ij) +

Sk

. . . .+ .+ .+ r
(WFk]- (I +ng =95 — Oi)diy —wr (L + Mg — 9y — By )dkj) ]

and
n
V(R = o) d ()
=1
1 n b

T
n.p Z [ WFk (1 + nk] 1()k] ek])ak] Wy= (1 + T’|k] 19k] ek] )ak])

j=1k=1

(Wij 1+ nfﬂ' - fq' - efq')bki —w-(1+ nfq'_ - 19li<j_ - eliq'_)bkj) +

16.

. . . P - .- T
(Wij (1 +n =9 — Oag —wr- (T + 1y =9y — By )ij) +

RIS

. . . - - .- T
(Wij 1+ nfﬂ' - fq' - efq')dki —w-(1+ nfd - ‘9ll<j - ]l<j )dkj) ]

where w,+ = max{wj:j =1,2, ...,n} andw,- = min{wj:j =1,2, ...,n}.
Step 5: Compute the group utility &, values for the maximum and individual regret o, values for the opponent
7’ (Fy; ")
@—Z( W) G
7’ (Fy;, ")
0, = max —dw(r )

Step 6: Compute the index values 6; as follows;

ona ()0 (55)

where 8% = mind,, 8§~ = maxd,, 0t = ming, and o~ = maxo,. Here p denotes decision-making
mechanism coefficient.

a. 0, isthe minimal if p < 0.5,

b. 6, isthe maximum if p > 0.5,
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C. 0 is both minimal and maximum if p = 0.5.

Step 7: Rank the all alternatives by sorting §, o, 8 values in decreasing order. Thus the result is a set of three
ranking list denoted by &}, ok, Ojx)-

Consider the alternative k, corresponding to 6y, (smallest among 6y, values) as a compromise solution if the
following two conditions are satisfied.

(Al) Feasible benefit:

If top most two alternatives in 6 are [F,] and [F;] then

O(FD - 6((FD = —

where m stands for the cardinality of the set of attributes.
(A2) Acceptable stability:
The choice [F, ] must be top ranked by at least one of p; and oy, If one of the condition is not satisfied then
a set of compromise solution is proposed, which consist of,
a. Ifonly (A1) is met then both alternatives Fi;; and Fi,; will serve as the compromise solution.
b. If (Al) is not met then there will be a series of compromise solutions, which are alternatives
may be located by making use of

O[] —6([F]D = —

for the maximum m.

The minimal value of 8 determines the best alternative.

Example 3.2. In engineering calculations, it is very important to use the material according to its purpose and
according to its properties. As a composite word, it means a material consisting of two or more
parts. Composite materials have found use in every field in parallel with today's technological developments
and are among the indispensable materials of modern technology. Such materials are widely and effectively
used in aerospace, medicine, automobile industry and sports equipment due to their high strength and lightness.
Being light is a great advantage in terms of saving energy and fuel. Therefore, we want to choose the best and
economical composite for the company that prefers composite. That is, the company, using which is the set of
altenatives as

K = {k, = particulate composite, k, = Discontinuous fiber composite, k; = Particle —

reinforced metal matrix composites, k, = short fiber reinforcement metal matrix composites, ks =
polymer matrix Composite} and  according to  three  criteria  determined G={g, =
Combining at least two materials separated by specific interfaces with different chemical

compositions, g, = Combining different materials in three dimensions, g; =

having features that none of the components have on their own. Then, we try to choose and rank all

alternatives Fy for all k=1, 2, ... ,5 by using the following algorithm.
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Algorithm:

Step 1: The evaluation matrix(Fy;)sys i given by an expert as;

k, /{[0.32,0.44,0.51,0.69]; (0.3,0.5,0.7,0.8), (0.1,0.3,0.2,0.3), (0.6,0.3,0.5,0.6))
k, [ ([0.23,0.25,0.41,0.45]; (0.4,0.2,0.3,0.5), (0.2,0.5,0.7,0.6), (0.7,0.5,0.6,0.8))

(Fig)sxs = ks | ([0.66,0.72,0.79,0.83]; (0.7,0.6,0.4,0.8), (0.5,0.5,0.5,0.6), (0.4,0.3,0.4,0.5))
k, | ([0.52,0.63,0.76,0.91]; (0.8,0.7,0.5,0.6), (0.4,0.3,0.7,0.5), (0.1,0.5,0.7,0.7))
ks \([0.13,0.35,0.41,0.58]; (0.7,0.8,0.9,0.9), (0.2,0.7,0.5,0.6), (0.1,0.7,0.8,0.4))

([0.28,0.32,0.38,0.43]; (0.5,0.3,0.4,0.6), (0.2,0.1,0.5,0.4), (0.4,0.6,0.5,0.7))
([0.12,0.15,0.18,0.23]; (0.3,0.7,0.9,0.9), (0.1,0.2,0.3,0.7), (0.3,0.4,0.7,0.5))
([0.65,0.66,0.72,0.75]; (0.6,0.8,0.9,0.8), (0.2,0.5,0.4,0.3), (0.2,0.3,0.6,0.6))
([0.08,0.15,0.27,0.37]; (0.3,0.9,0.8,0.4), (0.8,0.7,0.6,0.5), (0.1,0.1,0.4,0.3))
([0.09,0.13,0.19,0.69]; (0.2,0.5,0.7,0.9), (0.1,0.3,0.5,0.4), (0.6,0.7,0.8,0.8))

([0.12,0.27,0.60,0.65]; (0.2,0.7,0.8,0.9), (0.4,0.3,0.8,0.5), (0.2,0.5,0.6,0.4))

([0.22,0.48,0.43,0.73]; (0.3,0.8,0.9,0.7), (0.5,0.7,0.7,0.6), (0.1,0.4,0.8,0.6))

([0.14,0.33,0.43,0.83]; (0.1,0.6,0.9,0.5), (0.8,0.5,0.6,0.7), (0.1,0.3,0.5,0.8)) |
([0.63,0.73,0.83,0.93]; (0.4,0.5,0.7,0.6), (0.2,0.6,0.8,0.3), (0.3,0.6,0.7,0.2))
([0.41,0.43,0.68,0.74]; (0.5,0.7,0.8,0.3), (0.1,0.2,0.6,0.4), (0.4,0.2,0.9,0.7))

Step 2: Since the normalized entropy matrix is

0.561587
0.621053

(&)... =10.739696
23 | 0.789368
0.609610

we have calculated the weights of the criteria w= (w,, w,,w;) as;

0.869281

0.506173
0.403579

0.714889
0.966851

0.848676\

0.900990
0.936975 |

0.394178
0.760479/ ¢4

5-(& +&1+ & +E&y + &)

Wi

- 15 - (811 + 812 + 813 + 821 + 822 + 823 + 831 + 832 + A + 842 + 843 + 851 + 852 + 853)

5—(0.561587 4 0.621053 + 0.739696 + 0.789368 + 0.609610)

15— (0.561587 + 0.869281 + 0.848676 + 0.621053 + -+ + 0.60961 + 0.966851 + 0.760479)

= 0.383558117

similarly, we have w, = 0.35169353, and w; = 0.264748353.
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Figure 1: Weights of the criteria by normalized NVNT- numbers
Step 3: The positive ideal solution * and negative ideal solution r~, respectively calculated as;
rt = ([0.66,0.73,0.83,0.93]; (0.8,0.9,0.9,0.9), (0.1,0.1,0.2,0.3),(0.1,0.1,0.4,0.2))
and
- =([0.08,0.13,0.18,0.23]; (0.1,0.2,0.3,0.3), (0.8,0.7,0.8,0.7), (0.7,0.7,0.9,0.8)).

Step 4: According to Equation (9) positive value of V*(F;) based on positive ideal solution r* and negative

value of V‘(Fki) based on negative ideal solution r~ of alternative k, (k=1, 2, ..., 5) calculated as follows:
V*(Fy,) = 0.0118, V*(F,,) = 0.0144,V*(F,3) = 0.0131,V*(F,,) = 0.0165,V*(F,,) = 0.0153
V*(F,3) = 0.0136, V*(Fs;) = 0.0312,V*(F3,) = 0.0327,V*(F33) = 0.0441,V*(F,,) = 0.011
V*(F,,) = 0.0151, V*(F,3) = 0.0112,V*(Fs,) = 0.0132,V*(F5,) = 0.0153,V*(Fs3) = 0.011.

d¥(r-,r*) = 0.0745
Step 5: Computed the group utility &, (k=1,2, ... ,5) values for the maximum and individual regret o;, values
for the opponent

Al (Fk])
5, = Z(wm T

VT(Fyy) + VT (Fy5) + V(Fy3)
dw(r-,rt)

= (Wr+)

0.0118 + 0.0144 + 0.0131

= (0.383558117) SO

= 0.2026
Similar to
6, = 0.2334,6; = 0.5560,5, = 0.1918,5; = 0.2077.
4y (Fyj, ™)
oo )
0, = max{0.0118,0.0144,0.0131 } = 0.0144
0, = max{0.0165,0.0153,0.0136 } = 0.0165
03 = max{0.0312,0.0327,0.0441 } = 0.0441
o, = max{0.011,0.0151,0.0112 } = 0.0151
os = max{0.0132,0.0153,0.011 } = 0.0153.

Step 6: Let p = 0.5, compute the index values 8, as follows;

6, — 6~ -0
O = <5i+5>+(1_p)(6++6)
0.2026 — 0.1918 0.0144 — 0.0144
1 = (05). (0.5560 n 0.1918) +A-05) ( 0.441 + 0.0144 )
= 0.01489
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Similar to
6, =0.0922,0; = 1,6, = 0.0122, 65 = 0.03697

Step 7: Based on the index values CC, (k = 1,2,...,5) the ranking of alternatives ky (k = 1,2,...,5) are shown

in Figure 2 and given as;

ks >k, > ks > ky > k,.

Finally the best alternative is k.

(%]
g 1.2
2
>
1
0.8
0.6
0.4
0.2
0
K1 K2 K3 K4 K5
=0O=—qalternatives
Figure 2 The ranking of alternatives Ky (k =1,2,...,5)
=) —
q=0,9 h
C]:O,8 ;
q=0,7 E—
g=0,6 h
q=O,5 h
9=0,4 F—
g=0,3 h
C]:O,2 h
a=0,1
g=0,0 | S
0 0.2 0.4 0.6 0.8 1

mk5 mk4 mk3 mk2 mKl

Figure 3: VIKOR index for all p values
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The results from the different distance measures used to resolve the MCDM problem in section 4 are shown in
Figure 4

1 -
0.9 -
0.8 -
0.7 1 m K1
0.6 - m K2
0.5 1 m K3
0.4 1 m K4
0.3 7 mK5
0.2 A
0.1 -

O .

r=1 r=2 r=3 r=4 r=>5 r=6 r=15

Figure 4: The results from the different distance measures
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ABSTRACT

The aim of this study is to apply a measurement tool designed with fuzzy logic in order to determine the level
of teachers' commitment to the teaching profession. The working group of the study is composed of teachers
from various branches working in the 2021-2022 academic year in Gaziantep province. A percentage value
item related to decision making has been added to each item of the Commitment to the Teaching Profession
scale. Thus, the necessary preparation has been made for the evaluation of the data in fuzzy matlab application.
The data obtained in the study are evaluated in fuzzy matlab application. It has been found that the results
obtained from fuzzy matlab application are more detailed and reflect the individual better in the decision-
making process related to the problem. It has been concluded that the results obtained from the fuzzy
questionnaire are more valid because fuzzy questionnaire and fuzzy matlab provide more accurate and precise
results in decision-making processes.

Keywords: Teaching Profession, Teachers' commitment, Fuzzy Logic, Fuzzy Survey, Fuzzy Matlab
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INTRODUCTION

The professions that people prefer to do have a very important place in their life. This is a result that the job
people prefer affects their private, social, and work lives directly and indirectly. It is thought that both perception,
thoughts, and feelings about the job chosen and the perspective of the people’s live in that society on the job
chosen have very important roles in terms of commitment to the profession. It is believed that the concept of
commitment to the profession which is studied for a long time in very different fields and disciplines has still
importance especially in educational sciences department. A commitment to a profession can cause people to be
more motivated, to work productively by solving the problems more easily while they are doing their jobs.
Through the commitment to the profession, people can work more efficiently and effectively by feeling devoted

to the institution they are on duty.

Some descriptions about commitment to a profession in the literature are as follows: Commitment to profession
is the importance people give to their work or career [1]; commitment to profession means people understand
the importance of their jobs in their lives as a result of the skills and the expertise they have, not to consider
leaving their jobs and to have a positive relationship with their life satisfaction [2]. Bagraim takes attention to
three different components of commitment to profession: emotional commitment which means to keep up with
the profession and to have a strong emotional commitment to the profession, continuance commitment which
means to realize the cost related to leaving the job and normative commitment which means to have a
responsibility for the job and to keep the profession [3]. Commitment to profession is related to adopt the job
you have [4]. Baysal and Paksoy explain that the job has an important and a central place in people’s lives as the
result of the studies people do to have skills and expertise in a specific branch [5]. According to Meyer et al.
professional commitment is an emotional relation between people themselves and their jobs [6]. Lee et al. also
explain professional commitment as psychological relation based on emotional relation between people
themselves and their job [7]. Bienkowska explains professional commitment as a term accompanying study of
people’s motivation [8]. According to him professional commitment is related to desire for career development
and desire to specialize. A sense of identity is given to the people who are devoted to their jobs and this
commitment is redirected by the need for live and work according to the values and rules which manage their
profession groups they belong to. When the descriptions in the literature are examined, professional commitment
is to have positive thoughts and feelings for the chosen job and to be perceived by the people at the level of
consciousness, in other words, to have metacognitive awareness for these positive thoughts and feelings to the
profession. Also, it can be defined as all of the efforts people plan and have to do their professions in a good

way.

Studies about dimensions of professional commitment started many years ago [9]. One of the studies which can
be considered a pioneer of all these studies is “A three-component conceptualization of organizational

commitment” by Meyer and Allen [10]. Meyer et al. defend to examine professional commitment multi-
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dimensionally instead of one-dimensionally and they did a detailed study “Commitment to Organizations and

Occupations: Extension and Test of a Three-Component Conceptualization” which is about commitment to
profession [6]. According to this study, professional commitment has dimensions of emotional, continuance and
normative commitment. Emotional commitment means to keep up with the profession and to have a strong
emotional commitment to the profession, continuance commitment means to realize the cost related to leaving
the job and normative commitment means to have a responsibility for the job and to keep the profession with

ethical values.

It can be expressed that there are many factors that affect the professional commitment. These factors can be
classified as individually and professionally. Each individual has different tendencies, interests, knowledge and
skills which distinguish him/her from others. It causes individuals to interest a particular professional field and
some professions to seem more interesting [11]. Age, gender, marital status, seniority, education from individual
factors are effective in professional commitment. Individual factors such as expectation of a reward is also
effective. Society’s view about the profession, stress level of the job, the responsibilities in the job, economic
and social return in the job, opportunities, people’s wishes, desires and communication and motivation status in
the job can be seen as the other factors that affect the professional commitment [9]. This complex structure of

the professional commitment is also important in terms of teaching profession.

Teacher who is the subject of teaching profession is defined as “the one whose aim is to teach knowledge”
according to Turkish Language Society [12]. In Basic Law of National Education 1739/43, the teaching
profession is defined as a specialized profession that includes government’s educational and administrative tasks
[13]. Shulman mentioned 7 categories while defining teaching profession. These are general pedagogical
knowledge, content knowledge, curriculum knowledge, pedagogical content knowledge, education system
knowledge, students’ characteristics knowledge and knowledge of educational goals, values, historical and
philosophical bases [14]. According to the study of Higher Education Institute and Ministry of Education,
competence of teaching profession is organized as compatible with European Union countries and “personal and
professional values -professional development, get to know the student, teaching and learning process,
monitoring and evaluating learning progress, school, family and community relations, program and content
information” are identified as six main productivity areas [15]. Considering these explanations, teaching
profession; adopting universal and social ethical values and after it has become a part of life; it can be explained
as reflecting these values to other people and at the same time, in a certain area programming learning of general

and special information for this area.

Commitment to the teaching profession is determined as the attitudes of an educator beyond official and
normative expectations hisfher commitment, enthusiasm and passion for regular educational processes and
students. In this sense, from the concept of a teacher who is extremely committed to his profession, it can be
understood that he is physically and spiritually ready to carry out educational activities [16]. The professional
commitment of teachers has an impact on the quality of education in schools and the academic success of

students, ifitis in a broader context as well as their professional competence, skills, knowledge, attitudes and
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values of teachers [17]. In addition, “adherence to the teaching profession is very important in terms of making
a direct and positive contribution to educators' teaching methodology, understanding, personality,

characteristics and attitudes™ [16].

From the classical point of view that its efficiency depends on external factors other than the person himself
then, along with the neo-classical understanding in which other factors are bracketed and the individual is
centered, a perspective that is more humane has been developed. In 20 and 21. Centuries, along with critical
theory, it can be said that the idea that the individual himself, society and other factors are effective in the
choice of profession, the meaning / value of the chosen profession, the way the profession is built is effective.
From this point of view, it is necessary to consider the feelings, thoughts and behaviors that he has while
performing the profession of an individual, the environment in which he lives, and his way of thinking as a
whole. Therefore, it is considered that his commitment to the profession and the way he perceives himself in
this regard are quite important. In this framework, a teacher needs a more sensitive tool rather than a limited
tool to accurately reflect his/her own opinion/decision about his/her commitment to his/her profession. From
the classical point of view, the boundies, framework of a person's assessments about himself or a situation are
specific; the understanding of 0-1/ yes-no prevails; in fuzzy logic [27], the degree of membership of each
element of a set can be the range [0, 1]. Thus, unlike classical logic, the membership of each element is graded
[18]. Therefore, it is considered that it is very important to use measurement tools prepared with fuzzy logic in

order to take healthier data and get more accurate results.

BACKGROUND

2.1 Teachers' Commitment to the Teaching Profession

The issue of commitment to the teaching profession has been studied by many researchers due to the fact that
it is quite important. The following are some of those studies. Yildiz's study titled “Development of the Scale
of Commitment to the Teaching Profession™ was made in order to develop a measurement tool that can provide
to measure the level of commitment of candidates to the teaching profession in a valid and reliable way.
Factors are defined as professional identity, professional value, professional effort and professional dedication.
The validity and reliability evidence obtained as a result of the research was found to be sufficient [19].
Kozikoglu and Senemoglu “Development of the scale of dedication to the teaching profession: The research
titled “Validity and reliability study" was conducted in order to develop a scale aimed at determining the
dedication of teachers to the teaching profession. According to the results of the scale, it is concluded that there

is a valid and reliable scale for determining their dedication to their profession [20].

The study of Kayadelen and Kogak titled “Examining the Relationships between Leadership Capacity in
Schools and Teachers' Dedication to the Profession" was conducted in order to determine the relationships

between the leadership capacities of secondary education institutions and the professional dedication levels of
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teachers working in these schools .The study was conducted with 399 teachers who continue to work in

secondary education institutions. The results of the research showed that there is a weak positive relationship
between school leadership capacity and teachers' dedication to the profession. However, it has been observed
that leadership capacity in schools is a significant predictor of teachers' dedication to the profession [21].

The study titled “Commitment to the Teaching Profession” by Yildiz and Celik was conducted with the aim of
shedding light on teachers who are connected to their profession and the effects of commitment on the learning
and teaching process. As a result of the study, it has been concluded that teachers armed with commitment,

passion and enthusiasm, will be a role model not only for students, but also for his colleagues [16].

In Dalaman's thesis titled ”Examining the attitudes of secondary school teachers towards learning and the
teaching profession”, it was aimed to examine the attitudes of secondary school teachers towards learning and
the teaching profession. As a result of the analysis of the findings, in the attitudes of teachers about learning
and the teaching profession, it has been concluded that the attitudes of male and female teachers are similar in
the sub-dimensions of the nature of learning, expectations about learning, openness to learning, anxiety about
learning, value giving to the teaching profession, professional burnout and disinterest in the teaching
profession. According to the results of this research, it has been seen that the positive attitudes of teachers
towards learning and the teaching profession should be increased and their negative attitudes should be reduced
.In this sense, especially in studies such as seminars, it has been concluded that it will be useful of obtaining
and evaluating teachers' opinions about the teaching profession [22].

In the study of Atag titled “The relationship between teachers' supervision foci and their professional
commitment”, it was aimed to expose whether there is a relationship between the supervision foci and the
professional commitment of teachers in this study conducted on teachers. 400 teachers from various levels in
public schools in Istanbul have participated in the research. As a result of the research, significant differences
have been found between sub-dimensions of professional commitment, accumulated cost and limitation of
alternatives and teachers’ graduation rates. It has been found that as the teachers’ graduation rate rises, the
professional commitment rises. At the end of the study, it has been offered we can rise teachers’ professional

commitment rising their graduation rate [23].

Some part of Sinclair’s study “Initial and changing student teacher motivation and commitment to teaching”
is about how initial teacher education courses and internship affect primary school teacher trainees’ motivation
and their commitment to the teaching profession. As a result of the study, when the students studying in
teaching department take the initial teacher education course, they have the motivation related to the teaching

content and the aim of it and have the commitment to the teaching profession [24].

2.2 Fuzzy Sets

Definition 1: [27] Let L be the universal set. A fuzzy set K on L is defined by
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K = {(Lug(D):L € K},

Here, u, is membership function such that p, : L — [0,1].

Definition 2: [28] A triangular fuzzy number k = [s,;, p;, r,] is a special fuzzy set on the real number set

R, whose membership function is defined as follows

(B-s1)/(1—51), if (5/}5/3<171)
PP Rt if (B=11)
He(B) (1 -B)/(r1—p1),  if (P1<Bsr1)
0,

if otherwise

Hi
X

v

S1 P1 n

Figure 1. k =[s;, p;, ry] triangular fuzzy membership function [28]

CLASSICAL METHOD

3.1 Research Design

This study designed with survey method in order to determine the level of commitment of teachers from
different branches to the teaching profession. The survey method, which is sometimes called method and
sometimes technique by researchers, is the method used in scientific research to determine the thoughts of
individuals [25]

3.2 Sampling

The sample of the study consists of 60 teachers working at pre-school, secondary and high school levels. The
teachers participating in the study were determined by the typical case sampling method, one of the purposeful
sampling methods that are not random. Typical case sampling is based on selecting the element with average

values for the case to be examined [26].
3.3 Data Collection

In order to determine the level of teachers' commitment to the teaching profession, the Teacher's Occupational

Commitment scale developed by Yildiz was used [19]. The scale has four factors; It is a structure consisting
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of 33 items: professional identification (12 items), professional value (6 items), professional effort (8 items),

and professional dedication (7 items). The five-point Likert scale is graded as strongly disagree (1), disagree
(2), undecided (3), agree (4), and strongly disagree (5).

3.4 Data Analysis

The data was analyzed with SPSS 21.0 program. Statistical analyzes were calculated in accordance with the
purpose of the research. The appropriateness, score and arithmetic mean levels used in the interpretation of the

descriptive statistics on teachers' commitment to the teaching profession are given in Table 1.

Table 1. Score Ranges and Classifications Used in Interpretation of Teachers Commitment To The Teaching Profession

Suitability Score Limits (arithmetic mean)
Strongly Disagree 1 1.00-1.79
Disagree 2 1.80-2.59
Partly Agree 3 2.60-3.39
Agree 4 3.40-4.19
Strongly Agree 5 4.20-5.00

3.5 Classical Findings

Table 2. Mean of Teachers' Commitment to the Teaching Profession to Teacher’s Perceptions according to classical survey

Teachers Mean
Physical Education 3,50
Information Technologies 4,17
Biology 3,73
Geography 4,05
Religious  Culture  and Moral
Knowledge 3,68
Philosophy 4,33
Physics 3,83
English 3,57
Chemical 4,12
Math 3,85
Accounting and Finance 4,02
Music 3,22
Pre-school 3,94
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Psychological Counseling and 429
Guidance

History 4,09
Turkish Language and Literature 4,16
Visual arts 4,46
Turkish 4,31

When Table 2 is examined, the levels of commitment to the teaching profession are shown according to the
opinions of teachers in different branches. Accordingly, the average of the music branch (X=3.22) is partially
agree. The averages of Physical educaiton (X=3,50), Information technologies (X=4,17), Biology (X=3,73),
Geography (X=4,05), Religious culture and moral knowledge (X=3,68), Physics (X=3,83), English (X=3,57),
Chemical (X=4,12), Math (X=3,85), Accounting and finance (X=4,02), Pre-school (X=3,94), History (X=4,09)
and Turkish language and literature (X=4,16) branches are concentrated in the agree part. However, the
averages of Philosophy (x=4,33), Psychological counseling and guidance (X=4,29), Visual arts (X=4,46) and
Turkish (X=4,31) branches are, strongly agree.

FUZZY METHOD

In this section, we evaluate the data obtained with the survey using the fuzzy matlab application and examine
teachers' commitment to the teaching profession. The difference of this method from the method in the Section
3 (Classical Method) is that the item answers in the survey are requested as %, and the fuzzy matlab application
is used in the evaluation and comparison part. In both methods, the conceptual classification, sample, frequency
and dimensions of teachers' commitment to the teaching profession are the same. Now, we give some properties

of fuzzy matlab applications.
4.1 Fuzzy Matlab Application

Fuzzy logic controller; fuzzifier, fuzzy inference engine, defuzzifier and knowledge base consists of four main
components. By using linguistic variables, the input information specific to the problem for which the fuzzy
logic model will be established The process of expressing and converting into fuzzy logic information is called
fuzzification. The linguistic variables formed after the fuzzification process are represented by triangular,
trapezoidal, bell-shaped and many more geometric shapes specific to the structure of the problem, taking

membership degrees [29]. In the fuzzy matlab application, the process is given at Figure 2.

190



Neutrosophic Algebraic Structures and Their Applications

[ J [ ] [ ]
] 4 @«

[ ];>| \':%:]
[ ] [ J

Figure 2. Process of Fuzzy Matlab Algorithm

In this chapter, inputs are “Professional Identification, Professional Value, Professional Effort, Professional

Dedication” for fuzzy matlab application in Table 3.

Table 3. Inputs for this fuzzy matlab application

Input Abbreviation

Professional Pl

Identification

Professional Value PV
Professional Effort PE
Professional Dedication PD

We give the triangular fuzzy membership functions of inputs in Table 3 and the representation of these

functions as triangular fuzzy numbers in Table 4 (also, in Figure 3).

Table 4. Triangular Fuzzy Membership Functions for Inputs in Table 3

Triangular Fuzzy Membership Abbreviatio
Functions n Triangular Fuzzy Number
I do not agree N.A [0, 25, 50]
I am indecisive | [25, 55, 85]
I am agree A [55, 100, 100]
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Figure 3. Triangular Fuzzy Membership Functions of Fuzzy Matlab’s Inputs
In this chapter, output is “Commitment to the Teaching Profession ” for fuzzy matlab application in Table 5.

Table 5. Outputs for this fuzzy matlab application

Abbreviatio
Output n
Commitment to the Teaching CTP

Profession

We give the triangular fuzzy membership functions of output in Table 5 and the representation of these

functions as triangular fuzzy numbers in Table 6 (also, in Figure 4).

Table 6. Triangular Fuzzy Membership Functions of Outputs

Triangular Fuzzy Membership Abbreviatio

Functions n Triangular Fuzzy Number
Very Little V.L [0, 0, 40]

Little L [20, 45, 65]
Medium M [45, 70, 90]

High H [75, 100, 100]
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Figure 4. Triangular Fuzzy Membership Functions of Fuzzy Matlab’s Output

Also, in this chapter, “Mandami fuzzy inference engine” was used. The “som method” was used for defuzzifier

(in Figure 5).
4| Fuzzy Logic Designer: Untitled — ] =
File Edit Wiew
United
cte
‘ FIS MName: Untitled FIS Type: mamdani
And method — B Current Wariable
Or method max - Name
T
Implication — o]
Range
Aggregation — -
Defuzzification =T o Help Close | |
Ready |

Figure 5. Fuzzy Logic Designer of Fuzzy Matlab
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In Figure 6, there is the rule editor for our fuzzy matlab application.
4| Rule Editor: Untitled — O bt

File Edit View Opticns

. If (Plis MA) and (PB is NA) and (PE is NA) and (PD is NA) then (CTP is VL) (1) ~
. If (Plis NA) and (PB iz NA) and (PE is NA) and (PD is [} then (CTP is VL) (1)
. If (Plis NA) and (PB is NA) and (PE is 1) and (PD is I} then (CTP is VL) (1)
. If (Plis NA) and (PB iz I) and (PE is [} and (PD is |} then (CTPis L} (1}
If (Plis [y and (PB is 1) and (PE is I} and (PD iz I) then (CTPis M} (1)
. If (Plis [y and (PB is I} and (PE is I) and (PD is NA) then (CTPis L} (1}
If (Plis [y and (FB is 1) and (PE i NA) and (PD is NA) then (CTP is VL) (1)
. If (Plis [} and (PB is NA) and (PE is MA) and (PD is NA) then (CTP is VL) (1)
9. If (Plis NA) and (PB is ) and (PE is NA) and (PD is MA) then (CTP is VL) (1)
10. If (Plis NA) and (PB is NA) and (PE is |p and (PD is NA) then (CTP is VL) (1) v
If and and and
Plis
~

PB iz PE iz PDis
"~ - ~
l | | |
A A A A
none nong nong none
LY w W LY

|:| not |:| not |:| not |:| not |:| not

~ Connection Weight:

) or

(®) and 1 Delete rule | Add rule | Changerule| jﬂ

Ready Help | Close |

FR R —

Figure 6. Representation of Fuzzy Rules in Fuzzy Matlab

4| Rule Viewer: Untitled - O *

File Edit VWiew Options

-

PD = 94.3 CTP =90

Pl=81.3 PE = 100

EEENEREENEE S Elia e nn s e Nom e~

put- (31.3;100;,91.9;94.3] Flolpoints: | g1 ieft | rignt | down| wp |

Opened system Untitled, &1 rules Help | Clozse |
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Figure 6. Getting Results with Fuzzy Matlab Rules

4.3 Fuzzy Findings

In Table 7, we obtain mean of teachers' commitment to the teaching profession to teacher’s perceptions
according to fuzzy survey and fuzzy matlab using the average of the dimensions from the data obtained from

fuzzy survey.

Table 7. Mean of Teachers' Commitment to the Teaching Profession to Teacher’s Perceptions according to fuzzy survey and fuzzy matlab

Mean (out of
Mean (out of 5)

100)
Physical Education 4,35 87
Information Technologies 4,55 91
Biology 4,3 86
Geography 4,3 86
Religious  Culture and  Moral
Knowledge 43 %
Philosophy 4,6 92
Physics 44 88
English 2,95 59
Chemical 4,3 86
Math 4,3 86
Accounting and Finance 4,55 91
Music 1,6 32
Pre-school 4,5 90
Psychological Counseling and
Guidance 485 ¥
History 4,3 86
Turkish Language and Literature 4,55 91
Visual arts 4,5 90
Turkish 4,55 91

When table 7 is examined, teachers in different branches were evaluated according to the opinions of teachers
in the fuzzy survey. Accordingly, the average of the music branch (X=1,6) is strongly disagree. The average
of the English branch (X=2,95) is, partially agree. The averages of Physical education (X=4,35), Information
technologies (X=4,55), Biology (X=4,3), Geography (X=4,3), Religious culture and moral knowledge (X=4,3),
Philosophy (X=4,6), Physics (X=4,4), Chemical (X=4,3), Math (X=4,3), Accounting and finance (X=4,55),
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Pre-school (X=4,5), Psychological counseling and guidance (X=4,85), History (X=4,3), Turkish Language and
literature (X=4,55), Visual arts (X=4,5) and Turkish (X=4,55) branches are, strongly agree. That is, the
majority of the branches are concentrated at the level of strongly agree.

CONCLUSIONS

If we compare the classical survey results obtained in Table 2 in Section 2 with the fuzzy survey

results obtained in Table 7 in Section 3, we obtain Table 8.

Table 8. Comparison of Classical Survey and Fuzzy Survey Results

Mean of Fuzzy Mean of Classical
Teachers Survey Survey

Physical Education 4,35 3,50
Information Technologies 4,55 4,17
Biology 43 3,73
Geography 4,3 4,05
Religious  Culture and  Moral

Knowledge 43 3,08
Philosophy 4,6 4,33
Physics 4,4 3,83
English 2,95 3,57
Chemical 4,3 4,12
Math 4,3 3,85
Accounting and Finance 4,55 4,02
Music 1,6 3,22
Pre-school 4,5 3,94
Psychological Counseling and

Guidance 485 429
History 4,3 4,09
Turkish Language and Literature 4,55 4,16
Visual arts 4,5 4,46
Turkish 4,55 4,31

When Table 9 is examined, it is found that the results obtained from the classical survey and the fuzzy survey
are different. In the classical survey, while the meaning of the value corresponding to the average of the music

branch (X=3,22) is partially agree; meaning of value (X=1,6) in fuzzy survey strongly disagree. Because of
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fuzzy questionnaire and fuzzy matlab provide a more exhaustive and more objective evaluation, the result of

fuzzy questionnaire is more coherent than the result of classical questionnaire. Again in the classical survey,
while the average of the English branch (X=3.57) | agree; | partially agree with the average of the same branch
(X=2,95) in the fuzzy survey. In the classical method, with the value of X=4,46, the highest average was the
Visual arts branch; In the fuzzy method, the Psychological Counseling and Guidance branch has the highest
average with X=4,85. In addition, while the averages of the branches in the classical method are concentrated
at the level of agree; In the fuzzy method, most of the branches are concentrated at the level of strongly agree.
As can be seen, the fuzzy method and the classical method give different results and more accurate results are
obtained with the fuzzy method. Because the classical survey is rated in a five-point Likert type (Strongly
disagree, disagree, partly agree, agree, strongly agree). A value between 0 and 100 was requested for the fuzzy
questionnaire. With another expression, while evaluating with 5 options in the classical method; In the fuzzy
method, evaluation is made with 100 options. For instance, while in the classical survey interval between 2.60-
3.39 is accepted as partly agree, in the fuzzy survey and fuzzy matlab there is a separate membership value for
each real number between 2.60-3.39.

In this study, mean of teachers' commitment to the teaching profession to teacher’s perceptions according to
fuzzy survey and fuzzy matlab using the average of the dimensions was obtained. In addition, each teacher can
be compared with the fuzzy matlab application in separate dimensions. In the fuzzy matlab application, we
used three different triangular fuzzy membership functions for each input, and four different triangular fuzzy
membership functions for the output. As the number of these triangular fuzzy membership functions is
increased, more precise results can be obtained. In addition, the triangular fuzzy membership function was used
for inputs and outputs in the fuzzy matlab application. Researchers can also use other membership functions
(trapezoidal fuzzy membership function, Gaussian fuzzy membership function, etc.) suitable for their
problems. Also, in this chapter, “Mandami fuzzy inference engine” was used and “som method” was used for
defuzzifier. Furthermore, researchers can use other rinse functions (centroid, bisector, mom, lom, etc.) or the

Sugeno method to suit their problem.
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ABSTRACT

While changing in the new world order, it is necessary to design new business models in order to use
existing resources more effectively and effectively. If the Circular Economy, which is a new concept in our
country, is included in government policies in the future, an important step will be achieved in terms of
Sustainable Environmental Management. Reducing waste and making it reusable will lead to the protection of
our natural resources and a serious cost reduction. Therefore, this chapter, N-valued neutrosophic trapezoidal
numbers are used in methods of multi-criteria decision making. Some techniques are used in each method to
use N-valued neutrosophic trapezoidal numbers information. Therefore, crisp methods can be changed to use
N-valued neutrosophic trapezoidal numbers information. The latter are used in TOPSIS and VIKOR based on
entropy measure with N-valued neutrosophic trapezoidal numbers. We apply these methods in circular
economy and we compare them to distinguish differences between used techniques.

Keywords: N-valued neutrosophic trapezoidal number, generalized distance measure, entropy measure,
VIKOR method, TOPSIS mthod, multi-criteria decision-making.

3. Introduction

Ideas about the concept of circular economy began to emerge in the 1960s. In 1966 Kenneth Boulding
began to argue that the economy should be transformed into a circular ecological system. In the 1970s, Walter
Stahel proposed the idea of a self-regenerative economic system based on the spiral loop system. Circular
economy promotes cyclical flows to reduce environmental impacts and maximize resource efficiency instead
of linear flows of materials and products [15]. The circular economy [25] is an economic model in which
planning, sourcing, supply, production and reprocessing are designed and managed as both processes and
outputs to maximize the functioning of the ecosystem and human well-being. Since decision making problems
which contain uncertain are difficult to model and solve, and it is a need for us to develop some mathematical
theories. Recent years, fuzzy set theory by using only one degree of membership proposed by Zadeh [85] and
intuitionistic fuzzy set theory by using two degrees of membership introduced by Atanassov [1] have been
received great attention in solving various decision-making problems. These theories can better solve the
fuzziness of the uncertain decision making therefore the theories are all very successfully studied in
Narayanamoorthy et al. [28], Liu et al. [27] and Hu et al. [26].

By using truth-membership function, indeterminacy-membership function and falsity-membership functions,
in 1998, Smarandache [66] proposed the concept of neutrosophic sets (N-sets), which is a generalization of the
concept of fuzzy set Zadeh [85] and intuitionistic fuzzy sets Atanassov [1]. In 2013, Smarandache [67]
generalized the classical neutrosophic logic to neutrosophic refined logic which have more than one with the
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possibility of the same or the different membership functions. Moreover, Ye and Ye [83], Chatterjee et al. [14]
and Ye and Smarandache [84] introduced the concept single valued neutrosophic multi sets as a further
generalization of that of neutrosophic sets based on both the neutrosophic refined logic and multi sets of Yager
[82]. The multisets and single valued neutrosophic multisets have received more and more attention since its
appearance in [2-7,9-13, 16, 18, 20-24, 29-65, 68-92].

In order to use the concept of single valued neutrosophic multi sets to define an uncertain quantity or a quantity
difficult to quantify, in Deli et al. [17] the authors put forward the concept of continuous N-valued neutrosophic
trapezoidal numbers (NVNT-numbers). They developed a TOPSIS method by giving some operational laws
of NVNT-numbers and some aggregation operators of NVNT-numbers.

4. Preliminary

This section firstly introduces several the known definitions and propositions that would be helpful for better
study of this paper.

Definition 2.1 [81] Assume that E is the universe. Then, a single valued neutrosophic set (N-set) A in E defined
as

A= {< X, TA(X) ) IA(X) ) FA(X) >:x € E} (1)
where Ty (x), [5(x), Fo(x) € [0,1] for each point x in such that 0 < Ty(x) + [L(X) + Fo(x) < 3.

Definition 2.2 [83] Let E be a universe. A; neutrosophic multi-set set A; on E can be defined as follows:

Ay ={<x,( T3, (), T, (), ., TR (), (15, (0, 13, (), ., 1R, (%)), (FA, (), FZ, (), .., FR, (%)) >:x € E},

where
Ta, (0, TZ, (0, .., TR, (), I3, (), 1%, (), ., IR (), F, (%), FX, (), ..., FX, (60: E—[0,1]

such that 0 < sup T,i\1 (x) + sup I}'\1 (x) + sup Fkl x) <3 (i=1,2,...,P) for any x € E is the truth-membership
sequence, indeterminacy-membership sequence and falsity-membership sequence of the element X,
respectively.
Definition 2.3 [17] Let nj, ,9, ,64, €[0,1] (i€ {1,2,..,p}) and a,b,c,d e R such thata<b < c<d.
Then, an N-valued neutrosophic trapezoidal number (NVNT-number)
a=([ab,cd;(Ma, M, ---Nh,) (04, 94,,-.,94,), (B4,,04,,...,63,)) is a neutrosophic multi-set on the
real number set R, whose truth-membership functions, indeterminacy-membership functions and falsity-
membership functions are defined as, respectively.

(x-a) _j (b-x)+9k (x-a)

|(b—a)na' as<x<b |{ ooy a<x<b
I(d c)n:)u c<x<d |(X C)(Zﬁac()d X), c<x<d
0, otherwise, k1, otherwise,

and
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((b—x)+6,(x—a)

, < b
i (b _a) a X <
. L
&(X):{Oa. | b<x<c
| x—c)+04(d —x) cx<d
| @=0 , c<x<
kl, otherwise,

Note that the set of all NVNT-numbers on R will be denoted by A.

Definition 2.4 [17] Let A; = ((a;, by, ¢5,dy); (NA, M2, -4, ), (94, 9%,,---, 9%, ), (B4, 04,,.... 08 )) €
A. If A, is not normalized NVTN-number(a,, by, c;,d; € [0,1]), the normalized NVTN-number of A,,
denoted by A, is given by;

A = ([ Ay by Cy dy ]
a;,+b;+c¢;+d;’a; +b;+¢;,+d;"a; +b; +¢; +d;"a; + by + ¢y +dy )’

3
1 2 P 1 2 P 1 2 P
(”Ki'“zl' . --'“xl) , (‘931'821' . -'Szl) (0% ,02 ..., 08 ).

Definition 2.5 [80] Let A = ([a;, by, ¢;,d;]; (n5nZ, . n5), (0%, 9%, ..., 95), (61,62, ...,02)) and B =
([az, by, c5,d,]; (N5 ME, o nE), (95, 0%, ..., OF), (62,62, ..., B%)) be two normalized NVNT-numbers then,
respectively, the weighted Hamming and Euclidean distance measures between <A and B are given below;
1 14
—_—— i i i i i i r
¥ (A,B) = o (Z [(lw (1 +niy — 0 = 01)a, —wz(1+ i — 0 — 1), |) +
i=1
; i i i i i r
(Iwz(1+nk — 9% —6L)b, —wg(1 +n5 — 95 — 05)b,|) +
: ; ; i i i r
(le(l +n; -9, — 9‘2)(:1 — W§(1 +15 — 95 — 6%)c2|) +
: : ; ; ; ; r], 1
(1wsz(1 +nE — 8 — 65)dy —wi (1 +njs — 95 — 05)d,)) ) v )
For r=1, the equation 3 is given as;
1 14
4y (A,B) = Tor- QW1+ nig =05 — 0)ay —wy(1+ s — 05 — B )a | +
i=1

Iwz (1 +ni; =0 — 6L )b; — wi(1 +np — 85 — 65)b, | +

Iwz (1 +nl =95 — 8% )c; — wg(1 +ng — 95 — 85 )c,| +

lw(1+nL — 8% —0L)d; —wg(1 +nk — 9% — 65)d,|] (4)

For r=2, the equation 3 is given as;

14
_ 1 o o
dy(A,B) = E'Z [(Wz(l +1ip =0 — 8 )a; — wy(1l+ng — 95— 685)a,) +
i=1

(wa(1+ b — 9L — 8L)b, — w(1 +nk — 85 — 6L)b,)" +
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(wz (1 4+l =0 —8L)c; —wg(1 +nj — 95 — 9%)02)2 +
1
(wz (1 +nl; = 05 — 8)dy —wg(1+ng — 85 — 9%)012)2]E ©)
Theorem 2.6 [80] Let A =
((a1,by,c1,dy); (nEnZ my), (95,92, ..., 05), (8%, 0%, ..., 6%)),
B =((az by, ¢5,dy); (N5 MZ, .. M%), (95, 9%, ..., 95), (6%, 62, ..., 6%)) and
€ ={(as,bs,c3,d3); (N5 % ...nE), (95,92, .., 9%), (8%, 0%, ..., BZ)) be three normalized NVNT- numbers.
Then, d¥ (A, B) satisfies the following properties:
V. 0<dY(AB)<1,
Vii. A=B=d¥(A,B)=0,
vii. d¥(A,B) = d¥(B,A),
viii. dY (A4, B) < d¥(4,¢) + dy' (¢, B).

Definition 2.7 [80] A real-valued function &,.: u — [0,1] is called an entropy on NVNT-numbers if it satisfies
the following properties:

([a,b,c,d]; (1,1,...,1),(0,0,...,0), (0,0,...,0))
([a,b,c,d]; (0,0,...,0),(0,0,...,0), (1,1,...,1))

EP2.E,.(A) = E,.(A°) for all A € NVNT-numbers, where
A° =([a,b,c,d]; (6%,0%, ...,0%), (1 = 9%, 1 —9%,...,.1 — 9%), (nLn%, ... n%)).
EP3.d. (A, A ) =d (A AY) & E,.(A) = 1for all A € NVNT-numbers, where d,.(A,A*) is a distance
from A to At and d,.(A, A~) is a distance from A t0 A~;
EP4. For all A, B € NVNT-numbers, if

EPLA= { = E.(A) =0;

d, (A, A) 1
4 (AAD +d (A, A) 2

d.(B,B") 1
d.(B,BY) + d,.(B,B-) 2

v

(6)

then £(A) < E(B), where d.(B,B*) is a distance from B to B* and d.(B,B™) is a distance from B to B,
where

A* =([a,b,c,d]; (1,1,...,1),(0,0,...,0),(0,0,...,0))
and

A~ =([a,b,cd]; (0,0,...,0),(1,1,..,1),(,1,..,1)).

Theorem 2.8 [80] Assume that d,. is an distance measure for NVNT-numbers. Then, for any A4 € NVNT-
numbers,

d, (A, A) 1
dy(A,AT)+d(AA) 2

E(A) =1-2 N
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is entropy of NVNT-numbers based on TOPSIS.

5. Presentation of VIKOR and TOPSIS Methods in NVTN-numbers Version

Assume that D = {D,,D,, ..., D, } be the set of altenatives and Z = {z,, z,, ..., z, } be the set of criterias. In Deli

et al. [17], the normalized NVNT-numbers decision matrix is given as;

D11 D12 Dln
D21 Dzz DZn

| |
(ij)mxn = | : : : |
\Dml DmZ Dmn /
such that
Dk] = ([ak]'bk]' ij’dkj]! (nll(]!nlz(]!n}i]! ,T]E]) 1] (Si], 8%, 8]3;]; ;8%) ) (ei]; 612(]; 613;]; ey eE]))) (kzlszssm) and

(G=1,2,...,n).
It is carried out the following algorithm to get best choice:

3.1 NVNT-numbers VIKOR method [8]
VIKOR Algorithm:
Step 1: Create an evaluation matrix (Dyj) mn, (k=1,2,...,m; j=1,2,...,n)
Step 2: Find of the weights of the criteria vector w = {w, w,, ..., w,} by using equation in Theorem 2.6 as;

m— XL, gkj
W; =
bomin- XL X &g

(G=12,..,n).

where the entropy matrix (Exj)mxn (k=1,2,...,m; j=1,2,...,n) of the decision matrix (Dy;)mxn and Where

d;(Dy;, Dy ") 1

=1-2 N5
d(Dyj, Dig*) + dr (D, Dy ™) 2

k=12,...,m;j=12,..,n).

Note that if the entropy matrix (Exj)mxn (k=1.,2,...,m; j=1,2,...,n) is not normalized then, the entropy matrix

must be normalized as;

&y

E = :
K max{gkj:gkj € (Ex)mxm k=12,..,mandj =12, ...,n}

Step 3: Determine the positive ideal solution »* and negative ideal solution r~, respectively as;
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1+ 2+ 3+

+ ht ot J+]. 3t p+ 1t g2t p+ 1+ g2+ 3t p+t
= laf b et di ] (ny "o o o) (98T 9% 08, 0] ) (0" 03" 6", . 00 )

and

Tr =

([mgx{akj} max{b;}, max{o,}, max{d}|; (max{nk}, max{nz }, max{ng }, ..., max{nf;})

(minfol,}, min{o;}, min{83,),... min {03, }), (minf6},}, min{6f,}, min{e,},... min {6} }))

([aig, big, i, dig s (ﬂij_'nﬁj_'flij_' ""nij_) ) (f’ij_'sij_'sij_' ---"9%_)'(9%_' 0 .0 ""eij_))

) <[“}}n{akj}'“}}n{bkj}' min{c;}, mkin{dkj}] ; (mkin{ni,-},rr}(in{ni,-},rr}(in{ni,-}, ., Min {ﬂij})v

(mkax{ﬂll(j} , mkax{ﬂﬁj} , mkax{{)ij b max {{)ﬁj}) , (mkax{eij}, m]?x{eﬁj} , mkax{eij}, .., max {6%}))

for all (k=1,2,...,m) and (j=1,2,...,n).

Step 4: According to Equation (3) positive value of V*(Dy;) based on positive ideal solution * and negative

value of V‘(ij) based on negative ideal solution r~ of alternative Dy (k=1,2,...,m) calculated as follows:

and

V+(ij) =

V= (Dy) =

n

1

2. 4D r)
j=1

n b

1 ; ; ; — o+ C o+ r

16.n p'zz | (W (1 + kg = 9} = Bigang = wir (1 +mig" = 0l — 8 ayg)
R =r =

i i i it _qit_pit "
+ (WDk]- (I +nyy =9y — Oiydbyg —wer (LM — Iy — By )bkj) +

(wog, (1 + i — 8l — BL)csg —wyr (L mly ™ = 8l — 0"y ) +
WDk]-( N Kj kj)ckj W+ ( Nkj Kj Kj )Cij

R

(W, (1 + iy — 9l — Bi)dg — 1+i+—si+—ei+d)r]
WDk]-( Nkj Kj k)i — Wi+ (1 4 Kj ki )dkj

n

1

= d¥(Dv. 1™
nz r(Dk]'r )
Jj=1

n b
1 . . . - o - r
16. n_p-Z Z [(Wij 1+ mi,- - 191l<j - e]l(j)akj —w.-(1+ n]lq- — 19]1(]- — e;q. )akj)
j=

k=1
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(WDk]- (1 + M — Oy — Bigbig —wr-(L+ 1y — By — ]l;j_)bkj) +

. . . PR PR PR r
(WDk]- I +ng =9y —Oigley —w-(L+ Mg — g — 6By )ij) +

1=

(Wij 1+ Thi(j - Ii(j - ell.(j)dkj —w-(1+ Thiq'_ - ‘91i<j_ - Gij_)dkj) ]r

where w,+ = max{wj: j=12, ...,n} andw,- = min{Wj: j=12, ...,n}.

Step 5: Compute the group utility &, values for the maximum and individual regret g, values for the opponent

n

5= Y we) L)

W(y— 3+

= &y, rt)
dy(ij;TJr)

o, = max —dy(r‘,rﬂ

Step 6: Compute the index values 6; as follows;

o =0 (gis) + -0 (G5e) ?

where 87 = mind,, 6~ = maxdy, 0" = ming, and o~ = maxo,. Here p denotes decision-making
mechanism coefficient.

d. 6, isthe minimal if p < 0.5,

e. 0, isthe maximum ifp > 0.5,

f. 8 is both minimal and maximum if p = 0.5.

Step 7: Rank the all alternatives by sorting &, g, 6 values in decreasing order. Thus the result is a set of three
ranking list denoted by &}, ok, -

Consider the alternative k, corresponding to 6y, (smallest among 6y, values) as a compromise solution if the
following two conditions are satisfied.

(Al) Feasible benefit:

If top most two alternatives in 6y, are [D,] and [D, ] then
6([D.]) —o([D1]) =
where m stands for the cardinality of the set of attributes.

(A2) Acceptable stability:

The choice [D, ] must be top ranked by at least one of &, and oy. If one of the condition is not satisfied then

m—1

a set of compromise solution is proposed, which consist of,
c. If only (A1) is met then both alternatives Dp;; and Dy, will serve as the compromise
solution.
d. If (A1) is not met then there will be a series of compromise solutions, which are alternatives

may be located by making use of
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6([Dy,]) — 6([D,]) =

m-—1
for the maximum m.

The minimal value of 8 determines the best alternative.

3.2 NVNT-numbers TOPSIS [80]

In this section, we give a multi-criteria decision-making method with normalized NVNT-numbers.

Algorithm:
Step 3: Similar to above VIKOR method from Stepl to Step-3.

Step 4: According to Equation (3) positive value of V*(D,) based on positive ideal solution r+ and negative

value of V~(Dy) based on negative ideal solution r~ of alternative Dy (k=1,2,...,m) calculated as follows:
1 n
VT (Dy) = ;Z dy(ij;rJr)
j=1

1
16.n.p’

n b
[( 1 i 8i ei 1 it {)i + ei + )r
wp, (1415 = Bjy = Bj)ag — wp+ (L + iy — iy — By Jay
=1k=1

i i i it _qit_pit "
+ (Wij (I +nyy =9 — Oy —wer (LM =By — By )bkj) +

i i i it _qit_pit "
(Wij (1 +njy =By — By —wrr (T + My =By — B )ij) +

I=

i i i P+ P+ P+ ™r
(WKkj 1+ nfﬂ' - fq' - efq')dki —w+(1+ nfq' - ‘9ll<j - ]l<j )dkj) ]
and
n
V-(Dy) = ;Zdr (Dyj,77)
=1

1
6.M.p°

p

. . . - - - r
Z [(Wij 1+ n]l<j - 191l<j - e]l<j)akj —w-(1+ Tlfq - ‘9]L<j - efq' )akj)
k=1

NgE

[unN

-
Il
fuy

. . . o r
wp, (1 +my5 = Oy = Opdbyg —w-(L+myy =9y — 6y )bkj) +

Sk

. . . R
(WDk]- (1 +mn =g — B —w-(1+ng — Iy — Oy )ij) +

. . . o r
(WDk]- (A +ny =9y = Odig —w,-(L+myy =9y — 0y )dkj) ]

where w,+ = max{wj:j =1,2, ...,n} andw,- = min{wj:j =1,2, ...,n}.

Step 5: Calculate the relative closeness degree CCy, of each alternative Dy (k = 1,2,...,m) as;
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V= (Dy) ©)

CC, = ) k=12,...,m.
KT V=D + V(DY) "

Step 6: Rank all alternatives according to CCy(k = 1,2,...,m) in decreasing order and determine the best
alternatives.
6. Application and Comparision

Example 4.1. The circular economy is defined as an economic approach in which the value of products,
materials and resources is kept in the economy as long as possible and the amount of waste is the lowest. The
circular economy concept is based on a restorative industrial economy, the transition to renewable energy, the
reduction of the use of toxic chemicals and the prevention of waste. This concept aims to redefine the
production and consumption processes. The circular economy is based on three key elements that focus on
both system and resource problems. Depending on the Industrial Revolution, the ever-developing technology
and urban population growth bring along the demand for unplanned urbanization and ready-made consumption,
causing a significant increase in urban waste. This process leads to many negative environmental effects,
especially the depletion of natural resources and climate change Dindar [19]. Therefore, we want to use the
two methods by comparing them to choose the country that does the best among the countries that implement
the circular economy. Based on this, we want to implement it in our own country. That is, using which is the
set of altenatives as D = {k; = TURKEY, k, = ABD,k; = France, k, = Germany, k. = Italy} and
according to three criteria determined Z = {z; = To protect and develop natural capital, z, =
Optimizing resource efficiency, z; = Maintain system efficiency. Then we try to choose and rank all

alternatives Dy for all k=1,2,...,5 by using the following algorithm.

RANKING OF EACH ALTERNATIVE USING VIKOR
Step 1: The evaluation matrix(Dy;)ss is given by an expert as;
k, /¢[0.23,0.25,0.54,0.64]; (0.2,0.6,0.7,0.8), (0.3,0.4,0.5,0.6), (0.2,0.3,0.5,0.6))
k, / ([
(Dij)sxs = K3 | «

0.62,0.72,0.82,0.90]; (0.4,0.2,0.3,0.5), (0.1,0.2,0.3,0.4), (0.7,0.5,0.6,0.8))

[
Ky \([0.17,0.23,0.63,0.92 (0.8,0.7,0.5,0.6), (0.4,0.3,0.7,0.5), (0.1,0.5,0.7,0.7))
ks \([0.63,0.73,0.83,0.98]; (0.7,0.8,0.9,0.9), (0.2,0.7,0.5,0.6), (0.1,0.7,0.8,0.4))
([

0.12,0.32,0.42,062]; (0.5,0.3,0.4,0.6), (0.2,0.1,0.5,0.4), (0.4,0.6,0.5,0.7))

1;
1;
0.62,0.72,0.83,0.85]; (0.3,0.4,0.5,0.8), (0.2,0.3,0.5,0.6), (0.4,0.3,0.4,0.5))
1;
1;

([0.05,0.64,0.77,0.97]; (0.5,0.6,0.8,0.8), (0.1,0.3,0.4,0.7), (0.3,0.4,0.7,0.5))
([0.05,0.06,0.07,0.08]; (0.7,0.6,0.8,0.9), (0.1,0.2,0.5,0.3), (0.4,0.3,0.6,0.6))
([0.01,0.006,0.007,0.58]; (0.2,0.6,0.7,0.9), (0.8,0.7,0.6,0.5), (0.1,0.1,0.4,0.3))
[0.02,0.03,0.04,0.06]; (0.2,0.5,0.7,0.9), (0.1,0.3,0.5,0.4), (0.6,0.7,0.8,0.8))

(
([0.15,0.35,0.45,0.61]; (0.1,0.6,0.8,0.9), (0.2,0.3,0.8,0.5), (0.3,0.5,0.6,0.4))
([0.35,0.43,0.57,0.85]; (0.3,0.6,0.8,0.9), (0.5,0.7,0.7,0.6), (0.4,0.6,0.8,0.6))
((0.07,0.08,0.09,0.11]; (0.2,0.6,0.9,0.5), (0.8,0.5,0.6,0.7), (0.1,0.3,0.5,0.8)) |
([0.63,0.73,0.83,0.93]; (0.2,0.6,0.7,0.9), (0.8,0.7,0.6,0.5), (0.3,0.6,0.7,0.2))
((0.41,0.43,0.68,0.74]; (0.5,0.7,0.8,0.3), (0.1,0.2,0.6,0.4), (0.4,0.2,0.9,0.7))

Step 2: Since the normalized entropy matrix is
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/0.692281 0.803063 0.885496\

0.621053 0.573171 0.870410
(&), =] 0719292 0471153 0.968321 |

0.532164 0.716684 0.394200
0.609610 0.966851 0.760479

5X3

we have calculated the weights of the criteria w= (w,, w,, wj) as;

_ 5—(En+En+E+E&u+Es)
15 - (811 + 812 + 813 + 821 + 822 + 823 + 831 + 832 + -+ 842 + 843 + 851 + 852 + 853)

W

_ 5—(0.803063 + 0.573171 + 0.471153 + 0.716684 + 0.966851)
~ 15— (0.561587 + 0.869281 + 0.848676 + 0.621053 + - + 0.60961 + 0.966851 + 0.760479)

= 0.332727274
similarly we have w; = 0.413354514, and w; = 0.253918212.

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

wl w2 w3
m Values 0.41479572 0.337912129 0.247292152

Figure 1. Weights of the criteria by normalized NVNT- numbers
Step 3: The positive ideal solution »* and negative ideal solution r~, respectively calculated as;
r* = ([0.63,0.73,0.83,0.97]; (0.8,0.9,0.9,0.9), (0.1,0.1,0.2,0.3), (0.1,0.1,0.4,0.2))
and
r~ =([0.01,0.006,0.007,0.11]; (0.1,0.2,0.3,0.3), (0.8,0.7,0.8,0.7), (0.7,0.7,0.9,0.8)).

Step 4: According to Equation (3) positive value of V*(D,;) based on positive ideal solution r* and negative
value of V-~ (Dk]-) based on negative ideal solution r~ of alternative k (k=1,2,...,5) calculated as follows:
V*(Dy;) = 0.0148, V*(D;,) = 0.0157,V+(D;5) = 0.0152,V*(D,,) = 0.0170,V*(D,,) = 0.0118
V*(Dy3) = 0.0176, V*(D3;) = 0.0334,V*(D3,) = 0.1071,V*(D3;3) = 0.0495,V*(D,,) = 0.0127
V*(Dy,) = 0.0151, V*(D,3) = 0.0126,V*(Dg;) = 0.0105,V*(Ds,) = 0.0193,V*(Ds3) = 0.0134.
dW(r-,rt) = 0.0745
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Step 5: Computed the group utility §, (k=1,2,...,5) values for the maximum and individual regret o;, values

for the opponent

V*(Dy1) + V' (Dyz) + V¥ (Dys5)
dy¥(r=,r*)

= (wy+)

0.2137 + 0.0157 + 0.0152
0.0711

= (0.383558117)

= 0.265606
Similar to
6, = 0.252026,5; = 1.105034, 6, = 0.249513, 65 = 0.251712.
dy(ij'TJr)}
dw(r-,rt)
0, = max{0.0148,0.0157,0.0152 } = 0.0157
0, = max{0.0170,0.0118,0.0145 } = 0.0170
03 = max{0.0334,0.1071,0.0495 } = 0.1071
o, = max{0.0127,0.0176,0.0126 } = 0.0176
o5 = max{0.0132,0.0193,0.0199 } = 0.0199.

oy = max{

Step 6: Let p = 0.5, compute the index values 8, as follows;

6}{ - 6 O'k - 0_>

O = p'<6++6‘)+(1_p)'<0+ +07/
0 = (05 (0.265606-—0.249513>+(1 05)(00157-—&0157)
1 =(05). 1.105034 + 0.249513 "~7"\0.1071 + 0.0157

= 0.00941

Similar to
0, =0.088,6; = 1,6, = 0.01072, 65 = 0.02112

Step 7: Ranking the all alternatives NVNT-numbers based on VIKOR method, D, (k = 1,2,...,5) are shown

in Figure 2 and given as;

D, >Dg >D,>D, >D,.

Finally the best alternative is D5.
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Values
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0.8
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0 — qdlternatives
D1 D2 D3 D4 D5

Figure 2 The ranking of alternatives Dy (k = 1,2,...,5)
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Figure 3: VIKOR index for all p values

The results from the different distance measures used to resolve the MCDM problem in section 4 are shown in

Figure 4
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0.8
0.6 -_— —_— r=9
A A A r=5
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0.2 4 A V4 A r=2
0 r 4 a— —_— —_— r=1

D1 D2 D3 D4 D5

Er=] mr=2 mr=3 mr=4 mr=5 mr=9

Figure 4: The results from the different distance measures

RANKING OF EACH ALTERNATIVE USING TOPSIS
Step 3: Similar to above VIKOR method from Stepl to Step-3.
Step 4: According to Equation (3) positive value of V*(Dy) based on positive ideal solution r* and negative
value of V~(D,) based on negative ideal solution r~ of alternative Dy (k=1,2,...,5) calculated as follows:
V*(D,) = 0.2145, V*(D,) = 0.2090,V*(D5) = 0.1457,V*(D,) = 0.2080, V*(Ds) = 0.2089
V=(D,) = 0.0322,V~(D,) = 0.2251,V~(D3) = 0.0410,V~(D,) = 0.0877,V~(Ds) = 0.0517
Step 5: We calculated the relative closeness degree CC, of each alternative Dy (k = 1,2,...,5) as;
CC; = 0.1716, CC, = 0.3650, CC; = 0.3518, CC, = 0.3183, CC; = 0.1749

Step 6: Based on the index values CC, (k = 1,2,...,5) the ranking of alternatives Dy (k = 1,2,...,5) are shown
in Figure 5 and given as;

D, >D, >D; > Dg > D;.
Finally the best alternative is D,.
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Figure 5 The ranking of alternatives D based on CCy (k =1,2,...,5)

The results from the different distance measures used to resolve the MCDM problem in section 4 are shown in

r=1 r=2 r=3 r=4 r=5 r=9
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Figure 6: The results from the different distance measures
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Chapter Fourteen

Similarity Measures on N-Valued Fuzzy Numbers and Application to Multiple
Attribute Decision Making Problems
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Abstract: In this paper, some similarity measures of N-Valued Fuzzy Numbers (NVTF-
numbers) by using a-cut sets/integral vector, values and ambiguities of NVTF-numbers are
developed. Then some desired properties of NVTF-numbers are examined. Also, a multi
attribute decision making method based on the defined similarity measures are developed.
Finally, a medical diagnosis problem is given on NVTF-numbers.

Keywords: Fuzzy sets, N-valued trapezoidal fuzzy numbers, a-cut sets/integral vector,

value and ambiguity of NVTF-numbers, multi attribute decision making method.

1. Introduction

A fuzzy set [28] is defined help of a function from universal set X to [0,1] to handle
ambiguous and incomplete information. Fuzzy sets, especially fuzzy numbers, which are a
fuzzy set on R real numbers, have study by many author in [1,3,22-29]. As a
generalization of a fuzzy set, an N-valued fuzzy set (fuzzy multi-set) which an element
can have more than one value in the range [0,1] was first developed by Yager [27]. After

Yager, many studies have also been proposed many authors in [2,6-17].

Recently, Ulugay et al. [21] gave concept of the N-valued fuzzy numbers and Deli and
Keles [4] introduced their related concepts such as a-cut sets/integral vector, values and
ambiguities. Later, various studies have also been done by many authors in [5,18-21].
Since there is not enough work in the literature on N-valued fuzzy numbers, in this study,
firstly, we presented some basic definitions and operations of fuzzy sets, fuzzy numbers,

N-valued fuzzy sets and N-valued trapezoidal fuzzy numbers (NVTF-numbers). Secondly,

* Corresponding author. Email address: irfandeli@kilis.edu.tr
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some similarity measures of NVTF-numbers by using a-cut sets/integral vector, values and
ambiguities of NVTF-numbers are introduced. Thirdly, a multi attribute decision making
method based on the defined similarity measures is developed. Finally, a multi attribute
decision-making problem on NVTF-numbers are solved. The present expository paper is a

condensation of part of the dissertation Keles [5].

2. Preliminaries

In the section, we give some main definitions and properties which are guide to our work.

Definition 1. [28] Let X be the universe of discourse. A fuzzy set A defined on X is an
object of the form

A ={{(pax)/x):x € X},
where ps: X - [0,1].

Definition 2. . [25] Let a; < b; < ¢; < d; such that a4, by, ¢;,d; € R. A trapezoidal fuzzy
number a =< (a;, by, cq,d;); w, > is a special fuzzy set on the real number set R, whose
membership function u,: R — [0, w,]can generally be defined as

(x—apw
#, a, < x < by,
by —a;
Wa, b; < x <cy,
Ua(X) =
() (dy — x)w,
—, ¢ <x<dj,
di — ¢
kO, otherwise.

where w, € [0,1] is a constant, If wz= 1, then a is a normal trapezoidal fuzzy number;
otherwise, it is said to be a non-normal trapezoidal fuzzy number (or generalized
trapezoidal fuzzy number). Also, if we get b; = c,then a = (a;, by, ¢y, d;; w,) reduced to
triangular fuzzy number a =< (a;, by, dy); wy >.

Definition 3. [29] Let a =< (a4, b1, ;) > ve b =< (a,, by, ¢;) > be two triangular fuzzy

numbers. Then, similarity measures between a and b are given as;

. Zn_lai.bi
i. Si(a,b) = =
1( ’ ) YL, af+¥, b X, aib;
. Z.Zn_lai.bi
ii. S(a,b) =5
Yiz1 af +Xi, b
Y* . apb;
iii. S;(a,b) = =1

WIZ?=1 aizulzznm b?
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Teorem 4. [29] Let a =< (a4, by, ¢1) > and b =< (a,, by, ¢;) > be two triangular fuzzy
numbers. Then, similarity measures S;(a, b) (i = 1,2,3)between a and b hold following

properties;

. 0<Si(ab)<1
ii. Si(a, b) = Si(b, a)
iii. Ifa=Db (ai:bi ; i:1,2,3) then Si(a, b) =1

Definition 5. [6] Let X be the universe of discourse. A multi fuzzy set G defined on X is
an object of the form

G = {(x, pg ), P& (), ..., pE(X)):x € X}
where pk(x): X - [0,1], (i=1,2,...,n).

Definition 6. [21] Let wl€[0,1] (i=1,2,..,n), a <b <c < d suchthata,b,c,d €
R. An N-valued trapezoidal fuzzy number (NVTF-number)

a =<(a,b,c,d);wi,wz,..whk>
is a special fuzzy multi set on the real number set R, whose membership functions pl : R —
[0,wl](i = 1,2, ...,n) can generally be defined as;
(x —a)wg
b—a '’
wi, b<x<c,
(d — x)w§
“d-c
kO, otherwise.

a<x<b,

g (x) =
,c<x<d,

where w, € [0,1] isaconstant, If a,b,c,d € [0,1], thena is a normal NVTF-number.
Also, if we getb = c,thena =< (a,b,c,d);wi,wZ,..wl > reduced to triangular
fuzzy multi number 2 =< (a,b,d);wi, w2, .. wl > .

Definition 7. [5] Leta =< (a,b,c,d);wi, w2, ...,wl > be a NVTF-number and
0=(01,02,...0n) be a vector such that 0 < a; < wi (i=1,2,...,n). Then, a-cut of a, denoted
by a,, is defined as;

dg = {(XerZ' " Xn) Ha(xl) = Ay, Ha(Xz) = o, ..., ua(xn) = O, X € R}

= ([La(ay), Ra(ay)], [Lala), Ra ()], oo, [La o), Ra (o)1)
([(Wa—al)aﬂxlb (wa—al)d+a1c] (w (xz)a+a2b (w —ay)d+oa,c

2
W3

Jeeey

(WB—ap)atanb (wh—op)d+anc
) WLI

wg a

a
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Definition 8. [5] Leta =< (a,b,c,d); wi,w2,...,w2 > be a NVTF-number and

aq = ([Laay), Ra(ay)], [La(az), Ra(az)], .. ..., [La(an), Ra(an)]) be a-cut set of a such
that 0 < a; < wy (i=1,2,...,n). Then,

I. the values vector of a for a-cut set a,, denoted by V(a), is defined as;

1 2
Wa Wa

V@) = f (La(o) + RaCo))fCe)dag, f (La((0))
0 0

n
Wa

+ Ra((az)))f(az)d(az), '.I- (Lé(an) + Ré(an))f(an)dan
0

_ ((a +2b+ 2c+ d)(Wi)? (a+2b+ 2c+ d)(w3)?
6 ] 6 )y
(a+ 2b + 2c + d)(wh)?
6

ii.  the ambiguities vector of the a for a-cut set a,, denoted by A(a), is defined as;

A@ = [ Ra(a) - LaCa)fleaday, [ (Rae)
0 0

~ La(a)) (o) dao, . f (Ra (o) — La () () dacy
0
(d=—a+2c— Zb)(we—ll)2 (d—a+2c— 2b)(W§)2
= ( . , . -
(d —a+ 2c — 2b)(wh)?
6

where f(a,) = a; for 0 < o; < wi (i=1, 2,...,n).

Note that the f can be any function such that monotonic and nondecreasing for a; €
[0, wy}].

Definition 9. [5] Leta =< (ay, by, ¢q,dy); wi , w5, .. wi > bea NVTF-number. Then,
integral vector of a, denoted by 1nta®, is given as;

mta® = ([X}, X{], [X5, X5 ], ..., [X0 X0 D

B f""% (Wi — a)a; + ab, da J‘W% (Wi — a)d; + acq do
[ wi "Jo w3 ’
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[ w2 ((W2-a)a;+ab w3 ((wi-wds+ac
I (S 7 (M58

a a

fwa ((Wa—ogiﬁam) da, fowa (Wa—o‘l/?;ﬁam)da])

0 a
_ ([ +b)w; (c; +dw;| [(@r +bws (c; +d)wF
\ 2 ’ 2 ’ 2 ’ 2 T
[(31 +b)wg (¢ + dl)WgD
2 ' 2

3. Similarity Measures on NVTF-numbers

In this sevtion we introduce some similarity measures of NVTF-numbers by using a-cut
sets/integral vector, value and ambiguity of NVTF-numbers.
Definition 10. Leta; =< (a;, by, ¢q,dy); wi , Wi, .. wi >anda, =<
(az, by, ¢z, dy); Wi, w3 ,...w3 > be two NVTF-numbers having the integral vector,
respectively as;
mntay = ([X3,X7], [X3, X7 ], ..., [Xn, Xa]) =

(ag+b)wh, (c1+d)wi, | [(ar+b)wi, (c1+di)wi,
2 ’ 2 ’ 2 ’ 2 T

(a; + bwz, (¢ +di)wg,
2 ’ 2
and
ntay = ([V,Y{'], [V2, Y7'], ., [Y0, Y2'D
_ q(az + bz)Wzlnz (c; + dZ)W%Zl l(az + bz)Wa‘znz (c; + dz)Wézzl
= , 5 )

2 ’ 2 ’ 2
l(az + by)wg, (¢ + dz)WQZD

2 ’ 2

Then
i. 1. similarity measure between a; and a, based on a — cut sets/integral vector,

denoted by S;(a;,a,), is defined as;

= (X Y+ XY
= [(XD? + (X2 + s ()2 + ()] = Xin, (X Y + XY

51 (51, az) =

ii. 2. similarity measure between a; and a, based on a — cut sets/integral vector,
denoted by S,(a,,a,), is defined as;
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2.0, (XY + XY
= [(X)? + (XD + X ()2 + ()?]
hi. 3. similarity measure between a; and a, based on o — cut sets/integral vector,
denoted by S;(a,,a,), is defined as;

5_'2 (ap C_lz) =

im (X Y+ XY
LX) + (X2 YR + ()

Teorem 11. Let @ =< (ay,by,cq,dy);wi, Wi, ..wi > and 3, =<

53 (6_11, az) =

(az, by, ¢, dy); Wi, w5 ,..wi > be two NVTF-numbers. Then, j. similarity measure
between a; and a, based on a — cut sets/integral vector, denoted by §j(a‘1,c‘12)(j:1,2,3),

hold following properties;

i. 0<S;(a;,ay)<l
. Si(@y,@y) = Si(ay, a;)
“l C_ll = C_lz - gi(dl,dz)zl
Proof. For example; we give proof of S, (a,,a,)

i.S;(a;, a,) = 0 is clear. We show that S; (@, a,) < 1 as;

Since X{ — Y2+ X" —¥/)? 2 0,(X)? —2X{Y) + (¥)* + (X{")? — 2X{'Y{" +
(¥/N? 20, (X)? + (X{)? + (YD + (") = 2X;Y) + 2X]'Y/"

and (X)) + (X{)? + (;)* + ({")* = 2(XY + X;'Y}").

In here we have

n n n

D P+ ) D+ () = ) (KLY XY 2
i i=1

i=1

=1
2X[Y! + 2X(Y{" = (XY, + XY 2 X[V 4 XY
and therefore we have S;(a;,a,) < 1.
ii. Proof of S, (a,,a,)=S,(a,,a,) is clear.
iii. If a; = a, thenX; =Y/ and X; =Y;" (i=1,2,....,n) . Therefore we have
(X0 X] 4 XX
=1 [(X)? + (X)) + XL [(X)? + (X)?] = X, (X Xy + X X))
=1

§1 (6_11: C_lz) =

Proof of S,(a,, a,) and S;(a,,a,) can be similarity made.
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Example 12. Assume that a, =< (0.1,0.2,0.3,0.4); 0.3,0.2,0.5,0.7 >
and a, =< (0.2,0.3,0.3,0.5); 0.5,0.7,0.4,0.1> be two NV TF-numbers. In here values

nta$ ve inta¥ of a; and a, is given, respectively, as;
mta? = ([0.045,0.105],[0.030,0.070], [0.075,0.175], [0.105,0.245])
and

mta¥ = ([0.125,0.200], [0.175,0.280],[0.100,0.160], [0.025,0.040])
Then,

i. 1.similarity measure S, (a,,a,) between 3, and 3, based on o — cut sets/
integral vector is calculated as;
LKLY XY
i [(XD? + (XD + T ()2 + ()] - Tl (XY + XY

51 (6_11' C_lz) =

= 0.4336
ii. 2. similarity measure S,(a,,a,) between a; and a, based on o — cut sets/
integral vector is calculated as;
2.5 (XY + XY
i [(XD? + (X + XD + ()2
= 0.6049

§2 (51: C_lz) =

3. 3. similarity measure S;(a,,a,) between a, and a, based on a — cut sets/
integral vector is calculated as;
= XY+ XY
VELED? + XD VELIO)? + (1))
= 0.6219

53 (6_11' C_lz) =

Definition ~ 13.  Let  a; =< (aj, by, ¢y, dy);wi, wi,..wi > and 3, =<
(az, by, ¢z, dy); Wi, Wi ,..wi > be two NVTF-numbers with values of 3a; and a,

respectively, as;

v(a,) = (Vi,Vz, ... )
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(ay + 2by + 2¢y + dy)(wz,)? (ay + 2by + 2¢; + dy)(WE,)?

B 6 ) 6 ) " )
B (a; + 2b; + 2¢; +dy)(W3)?
\ 6 /
and
V(a,) = (V{", V5, ...V
(az + 2by + 2¢; + dy)(wg,)? (ap + 2by + 2¢; + dy)(W,)?
_ - ) A
(az + 2b, + 2¢, + dy)(Wg,)?
\ : /
Then,

i. 4. similarity measure between a, and a, based on values, denoted by S,(a,,a,), is
defined as;

?:1( Vil' Vi”)
?:1(Vil)2 + Z?=1(Vi”)2 - ?=1(Vil- Vi”)

ii. 5. similarity measure between a, and a, based on values, denoted by Sc(a,,a,), is
defined as;

54(6_11, a,) =

2.5 (Vv
iii. 6. similarity measure between a, and a, based on values, denoted by S¢(a,,a,), is

‘S_‘S (C_lll 62) =

defined as;
n ! n
- = (VLY
Se(ay, az) = - 1,12 l ; oy
\/Zi=1(Vi) '\/Zi=1(Vi )
Teorem 14. Let 51 =< (al, bl, C1) dl);Wél,Wﬁzl, ng > and 52 =<

2

(az,bz,cz,dz);wz-llz,wﬁz,...wg2 > be two NVTF-numbers. Then, j. similarity measure

between @, and a, based on values, denoted by S;(a,,a,)(j=4,5,6), hold following

properties;

i 0<S;(a,, a,)<l1
ii. Si(@y, a,) = S;(a,, a,)

iii. a, = a, - S;(a,,a,)=1
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Proof: For example; we give proof of S,(a,,a,).

i. S,(a;,a,) = 0isclear. We show that S,(a,,a,) < 1as;
Since (V/ —V{")?> =0, (V/)* = 2V/V{" + (V/")? =0 and (V/)* + (V/")* = 2V;V/

we have

n n n
Z(VLI)Z + Z(VLH)Z _ z Vi,. Vi” 2 ZViIViH _ ViIViH 2 ViIViII
i=1 i=1 i=1

and therefore we have S,(a,,a,) < 1.

iii If C_ll = dz then Vl, = Vi”(izl,z,....,n) .

n Iy, !
i=1 Vi Vi _

Z?=1(Vi')2 +Z?=1 (Vi’)z —Z?zl Vi’ Vi’

Finally we have S,(a,,a,) =

Proof of Ss(a,, a,) and S¢(a,,a,) can be similarity made.

Example 15. Assume that a; =< (0.1,0.2,0.3,0.4); 0.3,0.2,0.5,0.7 > and

a, =< (0.2,0.2,0.5,0.6); 0.5,0.4,0.6,0.8> be two NVTF-numbers. In here value of a; and

a, is V(a,) = (0.0225,0.01,0.0625,0.1225) and V(a,) =

(0.0916,0.0586,0.1320,0.2346) . Then,

i. 4. similarity measure S,(a,,a,) between a; and a, based on values is computed as;
i= (V. V)

11'1=1(Vi’)2 + Z?=1(Vi”)2 - ?:1(Vi,- Vi”)

3:4(6_11' a,) =

= 0.6174

ii. 5. similarity measure S(a,,a,) between a, and a, based on values is computed as;

2.5 (V. V)
1= (V)? + X, (V)2

Ss(@y, a,) =

= 0.7634

iii. 6. similarity measure S¢(a,,a,) between a; and a, based on values is computed as;
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iea(Vi Vi)
VI (V)2 VX (V)2
= 09771

‘S_'G (a,,a;) =

Definition ~ 16.  Let 3, =< (aj, by, ¢, dy);wi, w3, ..wli > and @, =<
(az, by, ¢z, dy); Wi, wi ,...w3 > be two NVTF-numbers with ambiguity of a, and a,,
respectively as;

A(ay) = (41,45, ..., A)

(dy—ay+2¢ — 2b1)(w(%1)2 (di—aq +2¢; — 2b1)(chz1)2

_ z : ) s
(dy—aq +2¢ — 2b1)(ng)2
\ ; J
and
A(C_lz) = (AllerIZII 'A;{)
(dy — a; + 2c; — 2b)(W3))* (dy — ap + 2¢;, — 2by)(W3,)?
_ 6 ) 6 )y
(dz — a; + 2¢; — 2by) (Wg,)?
\ ; J
Then,
iv. 7. similarity measure between a; and a, based on ambiguity, denoted by

S,(a,,a,), is defined as;

T EL(AD? + X, (A7 - X (ALAD)
V. 8. similarity measure between a, and a, based on ambiguity, denoted by
Sg(@y,a,), is defined as;

S 2y) = o 2 Za A AD)
i=1(4)% + XL, (A])?
Vi. 9. similarity measure between a, and a, based on ambiguity, denoted by
Sq(ay,a,), is defined as;

i=1(4i-47)
VI (A)? VX (A])?

5_9 (a,,ay) =
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Teorem 17. Let @ =< (ay,by,cq,dy);wi, Wi, ..wi > and a, =<
(az, by, ¢z, dy); Wi, w5 ,..wi > be two NVTF-numbers. Then, j. similarity measure
between a; and a, based on ambiguity, denoted by @(c‘zl,c‘zz)(j:Y,S,Q), hold following
properties;

i.0<S;(ay, a,)<1

. S:(@y, @) = 5;(@y, @)

“l al = az 4 .S_'i(al,dz):].
Proof: For example; we give proof of S,(a,,a,).
i.S,(a,, a,) = 0 is clear. We show that S,(a,,a,) < 1 as;
Since (4] — A7)* = 0, (A)? — 24;A] + (A])? = 0.and (4))? + (A])?* = 24;A}
we have

n n n

z AD? + Z(A;')Z _ Z AL AU 2 24T — LAY > ALAY

i=1 i=1 i=1
and therefore we have S,(a,,a,) < 1.

iii. If @, = a, then A; = A/ (i=1,2,....,n). Finally we have
i1 4idi

S,(@y, ay) = — -=1
T ?=1(A§)2+Z?=1(Ai)2_ ?=1A,iAi

Proof of Sg(a,, a@,) and Sy(a,,a,) can be similarity made.

Example 18. Assume that a; =< (0.1,0.2,0.3,0.4); 0.3,0.2,0.5,0.7 >
and a, =< (0.2,0.3,0.4,0.5); 0.5,0.4,0.6,0.8> be two NVTF-numbers. In here ambiguity of
a, and a,, respectively, is A(a;) = (0.0075,0.0033,0.0208,0.0408)
and A(a,) = (0.0208,0.0133,0.0300,0.0533). Then,
i. 7. similarity measure S,(a,,a,) between a, and a, based on ambiguity is

computed as;

231



Yia (A A
i=1(A4D? + L1 (A4)? — it (A 47
= 0.8528

S;(ay,a;) =

ii. 8. similarity measure Sg(@,,a,) between a; and a, based on ambiguity is
computed as;
2.5, (41 AF)
2ie1 (A% + XL, (47)?
= 0.9206

‘STS(C_lli ('_lZ) =

i, 8. similarity measure Sg(a,,a,) between a, and a, based on ambiguity is

computed as;
i=1(A- A7)

VI (AD? VXL (A)?
= 09771

59 (a,,az) =

4. Application

In this section, inspired by Rajarajeswari and Uma [28,29], an application is given on
how to apply similarity measures in NDYB-numbers based on multi attribute decision
making problem under medical diagnosis. We will use the proposed similarity measures
to diagnose disease by correlating patients’ data based on symptoms and symptom-
generated data for some diseases.
For this; let P = {P,, P,, ..., B.} be the set of patients, {D;, D,,, ..., D;,} the set of diseases,
and S = {Sy,S,, ..., SpJthe set of symptoms. Now we can give the following algorithm;
Algorithm:
Step 1: Give the relation table (xsk)rXp between the Patient and their Symptoms; (The

value of patient P, in the table due to symptom S,
(s =< (@sk Dsk,Csor dspe); Wao W2, oo, wl ) > is  an NDYB  number) (s =

1,2,..,1,k=1.2,..,p)
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Step 2: Give the relation table (n, )mxp between the Disease D; and its Symptoms Sg;
(value in the table depending on the symptom S, of the disease D;(k = 1,2, ...,p,i =
1,2, ...,m) (ny =< (@i, bk, Cir dir); Wiky Whe» -, Wi, > is an NDYB number. )

Step 3: Compute the total similarity measures S;; = S(P,, D;) based on S;(G=1,2,...,n) as;

P
Z Silxspomy) (s =1,2,..,1,i=1,2,...,m)
k=1

gsi =

S| -

Step 4: Rank the possible diseases.(if Sg;is biggest similarity measures then D; is the

best choice )

Example 19. Let's assume that P = {P,, P,, P;, P,} } be set of patients, Let
D = {D, = Blood pressure, D, = Bronchitis, D; = rheumatism, D, = diabetes} be set
of diseases and S = {S; = Sweating, S, = Heartache, S; = bone pain, S, = Hungry} be

set of symptoms.

Step 1 According to the results obtained after patients P;(i=1,2,3,4) was given medication
4 times in a day (08:00, 12:00, 16:00, 20:00) and then analyzed the patient P,(i=1,2,3,4)
and the symptom S;(j=1,2,3,4) the results proposed by Table 1.

Table 1. Situations between the patient and the symptoms

xSk Sl 52
<(0.0,0.1,0.2,0.3);0.3,0.2,0.5,0.4> <(0.2,0.3,0.6,0.8);0.3,0.1,0.4,0.7>
Py
p <(0.4,0.5,0.5,0.7);0.1,0.4,0.3,0.6> <(0.3,0.5,0.5,0.6);0.4,0.5,0.6,0.7>
2
P, | <(0204,0506),0.6,04050.9> <(0.1,0.2.0.3,05):0.1,0.2,0.4,0.6>
P, <(0.3,0.4,0.5,0.6);0.3,0.2,0.6,0.7> <(0.2,0.4,0.4,0.6);0.8,0.2,0.5,0.4>
S3 Sa
<(03,04,05,06).0.2,050.30.6> <(01.01,04,07).04.02,0.7,06>
Py
p <(0.5,0.7,0.9,1.0);0.3,0.7,0.5,0.4> <(0.3,0.5,0.5,0.8)9;0.3,0.1,0.5,0.7>
2
P, | <(0.30507,009)07,020506> <(0.2,0.4.0.5,0.7):0.2,0.6,0.5,0.4>
P, <(0.1,0.4,0.5,0.7);0.8,0.4,0.5,0.7> <(0.1,0.3,0.3,0.6);0.5,0.8,0.3,0.4>
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Step 2: The values of diseases D;(i=1,2,3,4) related to symptoms S, (j=1,2,3,4) based on

previous patients the results given by Table 2. with ()

4x4

Table.2. Situations between the disease and its symptoms

Dy

D,

<(0.5,0.6,0.7,0.8);0.1,0.1,0.1,0.1>

<(0.3,0.4,0.5,0.7);0.6,0.6,0.6,0.6>

<(0.3,0.5,0.6,0.7);0.3,0.3.0.3,0.3>

<(0.2,0.4,0.5,0.6):0.5,0.5,0.5,0.5>

<(0.2,0.5,0.6,0.6);0.4,0.4,0.4,0.4>

<(0.2,0.5,0.6,0.9);0.4,0.4,0.4,0.4>

<(0.4,0.6,0.7,0.7);0.2,0.2,0.2,0.2>

<(0.4,0.7,0.8,0.9);0.7,0.7,0.7,0.7>

D5

D,

<(0.1,0.2,0.5,0.8);0.3,0.3,0.3,0.3>

<(0.1,0.3,0.5,0.6);0.9,0.9,0.9,0.9>

<(0.3,0.4,0.6,0.8);0.4,0.4,0.4,0.4>

<(0.2,0.4,0.5,0.6);0.3,0.3,0.3,0.3>

<(0.2,0.3,0.5,0.7);0.6,0.6,0.6,0.6>

<(0.2,0.3,0.7,0.8);0.5,0.5,0.5,0.5>

<(0.3,0.4,0.7,0.8);0.8,0.8,0.8,0.8>

<(0.5,0.6,0.7,1.0);0.4,0.4,0.4,0.4>

Step 3: We computed the total similarity measures Sg;from Table 1 and Table 2 with

S,(P,, D;) as Tablo 3;

Table 3. S;(P,, D;) for P, and D; (i=1,2,3,4 and s=1,2,3,4)

Si(P,Dy) | Dy D, D; D,
Ranking
P, 0.7207 | 0.5608 | 0.6457 0.5513 D, > D; > D,>D,
P, 0.5599 | 0.7161 |0.7142 0.6829 D, > D; > D,>D,
P, 0.5709 | 0.6833 | 0.6309 0.8022 D, > D, > D;>D,
P, 0.6577 | 0.7376 |0.7152 0.7503 D, > D, > Dy>D;

Step 4: According to the results of Table 3. with S;(P,, D;); P; is blood pressure patient,

P, is bronchitis,, P; diabetes, P, is diabetes.
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Based on S_j(PS, D)) (i=1,2,...,9) the disease diagnoses are as in Table 4

Table 4: The disease diagnoses based on S;(P;, D) (i = 1,2, ...,9)

P, P, Py P,
S1(P;, Dy) D, D, D, D,
Sy (Ps, Dy) D, D, D, D,
S3(Ps, D;) D D, D, D,
S4(Ps, Dy) D3 D, D, D,
Ss(Ps, D;) D D, D, D,
Se(Ps, Dy) D, Dy =D; =Dy Dy = D, = D3 D,
S7(Ps, D;) D, D D, Ds
Sa(Ps, D;) D, D4 D, D,
So(P;, Dy) Dy =D, = D3=D, | Dy = D, = D3=D, D, Dy =D, = D3=D,
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Chapter Fifteen

Direct Sum of Neutrosophic submodules of an R-module
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Abstract

In this chapter, we have introduced the notion of direct sum of neutrosophic submodules
of an R-module M and discuss some related properties. We also analyze the direct sum of
arbitrary family of neutrosophic submodules and derive some results based on support of a
neutrosophic submodule.

Keywords: Module, Neutrosophic set, Neutrosophic submodule, Support, Direct sum

1. Introduction

In classical set theory, the membership grades of elements in a set is assessed in binary
terms 0 and 1. According to the bivalent condition, an element either belongs or does not
belong to the set. As an extension, fuzzy set theory permits the gradual assessment of the
membership of elements in a set. A fuzzy set A in X is characterised by a membership
function which is associated with each element in X, a real number in the interval [0, 1]. In
1965, Lotfi A. Zadeh [14]introduced the concept of vagueness in mathematical modelling.
A number of generalisations of the fundamental concept of set theory have come up. As
a generalization of fuzzy set theory, intuitionistic fuzzy set theory [I] was proposed by At-
tanassov in 1986 in which each element is associated with a degree of membership and non
membership values. Again as a generalization of fuzzy set and intuitionistic fuzzy set, neu-
trosophic set was defined with three different types of membership values by Smarandache
in 1995. In the real world, the practical problems are related to incomplete, indeterminate
and inconsistent information. Neutrosophic set is a powerful tool and the most appropriate
frame work for dealing with incomplete, indeterminate and inconsistent information.

The algebraic structure in pure mathematics cloning with uncertainty has been studied
by some authors. In 1971, Azriel Rosenfield presented a seminal paper on fuzzy subgroup
and W.J. Liu developed the concept of fuzzy normal subgroup and fuzzy sub ring. The
direct sum of fuzzy submodules was introduced by Mordeson and Malik [§]. In 2017, Isaac.P,
P.P.John [6] identified some algebraic nature of intuitionistic fuzzy submodule of a module.
Combining neutrosophic set theory with abstract algebra is an emerging trend in the area
of mathematical research. Neutrosophic algebraic structures and its properties give us a
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strong mathematical background to explain applied mathematical concepts in engineering,
data mining and economics. Neutrosophy is a new branch of philosophy and logic which
studies the origin and features of neutralities in nature. Each proposition in neutrosophic
logic is approximated to have the percentage of truth (T), the percentage of indeterminacy
(I) and the percentage of falsity (F) [3] 12} 2, 13].

2. Preliminaries

Definition 2.1. [8/ Let R be a commutative ring with unity. A set M with a binary operation
+ is said to be an R module or a module over the ring R if

1. (M,+) is an abelian group

2. 3amap Rx M — M i.e. (r,m)— rm (an action of R on M) such that
(a) (r+s) =rm + sm
(b
(¢

(rs)m = r(sm)
(d

)
) (m—l—n) =rm+rn
) Im=m,1€ R, Vr,s€ R and m,n € M.

Definition 2.2. [§] Let M be an R module. A submodule is a subgroup N of M which is
also an R module i.e, rn € N,¥Yr € R,n € N.

Definition 2.3. [5] Let My and My be the R-submodules of R-module M. Then we define

My + My = {m1 +mo:mq € My, mg € MQ}
which is an R-submodule of M containing both My and M.

Definition 2.4. [5] Let My and My be the R-submodules of an R-module M. My + My is
called direct sum, denoted as My ® My if any element in My + My can be written uniquely
as my + mq where my; € My and mqo € Ms.

Theorem 2.1. [J] Let My and M, be the submodules of an R-module M, then My + My is
direct sum < M; N My = {0}

Definition 2.5. [7/ Let u,n and v be fuzzy submodules of M, then w is the direct sum of
n and v if

1. u=n+v
2. nNv = lgy where 1y (x) = {1 r=0 and we write 1 =1n @ v
0 z#0
Definition 2.6. [7] Let i and n be fuzzy submodules of the R-modules M and N respectively.
Consider the direct sum M & N. We extend the definition of i and n to M & N to get w
and 1, fuzzy subsets of M @& N as follows

7 ~Ju(m) n=0 () — nn) m=0
“(m’n)_{o npo 1= {0 m 40



YV (m,n) € M & N. Then w and n are fuzzy submodules of M & N. Moreover

(V) m) = ) A (m, ) = {é .

Therefore p + 1 is a direct sum and we denote it by & n.

Definition 2.7. [11] A Neutrosophic set A on the universal set X is defined as
A= {(z,ta(2),1a(2), fa(z)) 1 2 € X}

where ta,ia, fa: X — (70,17). The three components ta,ia and fa represent membership
value (Percentage of truth), indeterminacy (Percentage of indeterminacy) and non mem-
bership value (Percentage of falsity) respectively. These components are functions of non

standard unit interval (70,17).
Ifta,ia, fa: X — [0,1], then A is known as single valued neutrosophic set(SVNS)[9].

Definition 2.8. [71] Let A and B be two neutrosophic sets of X. Then A is contained in B,
denoted as A C B if and only if A(x) < B(z) Vo € X, this means that

ta(z) <tp(x),ia(r) <ip(x), fa(z) > fp(x)

Definition 2.9. [11] The complement of A = {x,ts(x),ia(x), fa(x) : x € X} is denoted by
AC and defined as A® = {x, fa(x),1 —ia(x),ta(x) : 2} and (A°)° = A

Definition 2.10. [/, [71] Let A and B be two Neutrosophic sets of X
1. The union C of A and B is denoted by C = AU B and defined as

C(z) = A(x) vV B(z)

where C(z) = {x,tc(x),ic(z), fo(x) : x € X} where

to(z) =ta(x) Vig(x)

ic(z) =ia(x) Vig(z)
fo(z) = fa(z) A fo(2)
2. The intersection C of A and B is denoted by C' = AN B and is defined as

C(x) = A(x) N B(x)
where C(z) = {x,tc(x),ic(z), fo(x) : x € X} where

ta(z) Ntg(z)

~
Q
8

~—
I

ic(z) =ia(x) Nip(z)

fo(@) = fa(z) V fo()
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Definition 2.11. [70] Let A and B be neutrosophic sets of a universal set X. Then their
sum A+ B is a neutrosophic set of X, defined as follows

tarp(z) = V{ta(y) Nip(z)lr =y + 29,2 € X}

iavp(®) = V{ia(y) Nip(z)lr =y + 2,4, 2 € X}

farp(@) = Nfay) V [(2)|lr =y +2,y,2 € X}
Definition 2.12. For any neutrosophic subset A = {(x,ta(x),i4(x), fa(z)) : x € X}, the
support A* of the neutrosophic set A can be defined as

A" ={x € X ta(x) > 0,ia(x) >0, fa(z) < 1}

3. Direct Sum

Definition 3.1. Let M be an R module. Let A € UM where UM denotes the neutrosophic
power set of R module M. Then a neutrosophic subset A = (ta(x),ia(z), fa(x)) in M is
called a neutrosophic submodule of M if it satisfies the following

1. ta(0) = 1,i4(0) = 1, f4(0) = 0
2. tA(QZ + y) > tA(x) A tA(y)
ia(z+y) =ialz) Aia(y)
fa@+y) < fa(@) V faly), Yo,y € M

3. ta(rx) > ta(x)
ia(rx) >ia(z)
falrz) < fa(x),Vor € M,Yr € R

Remark 3.1. We denote the set of all neutrosophic submodules of R module M by U(M).

Remark 3.2. If A € U(M), then the neutrosophic components of A can be denoted as

{ta(x),ia(z), fa(z)}.
Theorem 3.1. If A, B € U(M), then A+ B € U(M).

Theorem 3.2. Let A be a neutrosophic set on M. Then A € U(M) if and only if the
following properties are satisfiedV x,y € M ,a,b € R

i) t4(0) = 1,i4(0) = 1, f4(0) = 0.

ii) talaxr +by) > ta(x) Ata(y), ialaxr +by) > ia(x) Nialy), falax +by) < fa(z)V faly)

Theorem 3.3. Let A€ U(M). Then A*is an R submodule of M.
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Proof. A € U(M) and A* = (z € X,ta(x) > 0,ia(x) >0, fa(xz) < 1). Let x,y € A* and
a,b € R. Then

tA(.T) > O,iA(.]Z) > O,fA(.QZ) <1

ta(y) > 0,ialy) > 0, faly) <1

Now

ta(azx) Nta(by)
ta(x) ANta(y)
0

ta(ax + by)

AVARAVARLYS

Similarly i4(ax 4+ by) > 0 and fa(ax + by) < 1, then ax + by € A*. Hence A* is an R
submodule of M.
O]

[The proof of the theorems nd are explained in the paper titled as Some Character-
1zations of Neutrosophic submodules of an R-module which is submitted for the publication
by the same authors |

Definition 3.2. Let X be a non empty set. The neutrosophic point N{O} in X s defined as
Ny = {(xatN{o},iN{O}, fN{O}) cx € X} where

. C[(1.0,0) =0
N{O}(m)_{(o,o,m 240

Theorem 3.4. Let Ac UM). A= N{O} if and only if A* = {0}.

Proof. If A = N{O}, then A* = (x € X,ta(z) > 0,ia(z) >0, fa(z) < 1) ={0}.
Conversely, if A* = {0},= ta(0) > 0,ia(0) > 0, fa(x) < 1 and ta(zx) = 0, ia(x) =
0 and fa(z) =1V x # 0.Therefore

(1,150 x=0 &
A(I)_{(oo 0 O

Hence the proof. n

Definition 3.3. Let A, B and C € U(M), then A is said to be the direct sum of B and C' if

1. A=B+C
2. BQCZN{O}

and we write A= B & C.

Definition 3.4. Let A; € U(M) Vi € J, then we say that A is the direct sum of { A;: i € J}
denoted by ;e ;A if
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Lo A=Y, A

Theorem 3.5. If A, B and C € U(M) such that A= B&® C. Then A* = B* @ C*.

Proof. Let x € A* = z€ (B C)*
= tpac(r) >0, ipac(r) > 0 and fpec(z) <1Vre M

= tB+C(ZL‘) > 0, iB+C(I) > 0 and fB+C(ZE) <1VexeM

Now

tB-FC(x) = v{tB(y> A tc(2)|l’ =y+tzyz€ M} >0
= tp(y) Ntc(z) >0 for some y,z € M, withx =y + 2z
= Jy,z € M such that tg(y) > 0,tc(2) >0

Similarly we can prove that ig(y) > 0,ic(2) > 0 where z = y + z and
fely) <1, fo(z) <1 where z =y + 2
= dy,z € M such that y € B*, z € C* where x =y + 2
= A*CB*+C*...(1)
Nowx € B*+C*=dye B*,z€ C*" such that xt =y + 2
= tp(y) >0, ip(y) >0, fe(y) <1and tc(y) >0, ic(y) >0, fc(y) < 1 which is true for
all ye B*,z € C* such that z =y + 2
=
V{ta(y) Nt(2)lt =y +z,y,2€ M} >0

V{ia(y) Nig(2)lt =y + z,y,2€ M} >0
ANfay)Vfe(R)le=y+zy2ze M} <1

tprc(x) >0, ipic(x) >0 and fpic(z) <1

ta(z) >0, is(z) >0 and fa(x) <1since A=BaC

xr e A*

B*+C* C A*.....(2)

From (1) and (2), we can conclude A* = B* + C*

Now z € B*NC* = z € B*and v € C*

= tp(x) >0, ig(x) >0, fp(zr) <1and tc(z) >0, ic(z) >0, fol(z) <1
= tp(z) ANtc(x) >0, ig(x) Nic(x) >0 and fg(z) A fo(z) < 1

= tpnc(z) =1, ipno(z) =0 and fpno(z) =0 (since A=BaC = BNC = N{O} )
= r=0= B*NC*={0}

Hence A* = B* & C*

=
=
=
=

]

Remark The converse of the above theorem need not be true as we see in the following
example
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Example 3.1. Let M = R? = {(a,b) : a,b € R} where R is any ring. Define
A=Az ta(r),in(), fa(z);z € M} € UM)

B ={x,tg(x),ig(x), fg(x);x € M} € U(M)
C ={z,tc(x),ic(x), fe(x);x € M} € U(M)

where
(1 2 =(0,0) (1 2 =(0,0) (0 2 =(0,0)
ta() =93 2=1(a,0),a#0,ia(z) =43 2=1(a,0),a#0, falx) =931 2=1(a,0),a#0
(3 z=(a,b), b#0 3 z=(a,b), b#0 (3 z=(ab), b#0
(1 = =(0,0) (1 2 =1(0,0) (0 2 =(0,0)
tp(x) =931 2=1(a,0),a#0,ipx)=¢7 z=(a,0),a#0, fp(x)=1S3 x=_(a,0),a#0
(0 2= (a,b), b#0 0 z=(a,b), b#0 1 z=1(a,b), b#0
(1 = =(0,0) (1 2 =1(0,0) 0 z=(0,0)
to(x) =93 x=(0,0),b#0,ic(x)=4¢7 x=(0,0),6#£0, folr)={3 x=/(0,0),b#0
0 2= (a,b), a#0 0 2= (a,b), a#0 1 z=(a,b), a#0

Now A* = {x € R*: ta(x) > 0,ia(x) > 0, fa(z) < 1} = R% Similarly B* = (R,0) and
C*=(0,R) = A*=B*+C*", BPNC*={0} == A*=B"¢ B*
But B+ C ={xz,tgic(z),ipro(x), fpro(z) 1 x € M}

1 2 =(0,0) 1 2=(0,0) 0 x=(0,0)
tpro(x) =93 ©=1(a,0),a#0,ipyc(x) =93 2=1(a,0),a#0,fprolr)={3 x=(a,0),a#(
T x=(ab), b#£0 T x=(ab), b#£0 : z=(ab), b#0

= {tpic(z),iprc(x), fero(x) 1x € M} #{ta(x),ia(z), falx):x e M} = A#B+C
= A#BaC

4. Conclusion

Neutrosophic submodule is one of the generalizations of an algebraic structure, mod-
ule. This chapter has developed a combination of an algebraic structure module with neu-
trosophic set theory. The algebraic property of direct sum of neutrosophic submodules and
its extension to neutrosophic submodules of direct sum are defined.
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Chapter Sixteen

A new distance measure for N-valued Neutrosophic Trapezoidal Numbers based on the
centroid points and Their Application to Multi-Criteria Decision-Making.

Davut KESEN and irfan DELI

Kilis 7 Arahik University, 79000 Kilis, Turkey

kesen66@gmail.com, irfandeli@kilis.edu.tr

ABSTRACT

One of the special form of neutrosophic multi-set on real number set is N-valued
neutrosophic trapezoidal number (NVNT-number). Core of this notion is thatit has a lot of
possibility of the same or the different membership functions which are truth-membership
functions, indeterminacy-membership functions and falsity-membership functions. In this
study, a method for NVNT-numbers based on multi-criteria decision-making problems which
isgiven with NVNT-numbers are proposed. Initially, notion of centroid point of NVNT-
numbers is introduced. Second, some distance measures under centroid point of NVNT-
numbers are proposed. In addition, an algorithm to solve multi-criteria decision-making
problems given with proposed concept of NVNT-numbers is developed. Finally, a numerical
example of multi-criteria decision-making, in which the ratings of alternatives are given with

NVNT-numbers, is proposed to show practicality of the developed algorithm.

Keywords: Neutrosophic sets, N-valued neutrosophic trapezoidal numbers, distance

measures, centroid point, multi-criteria decision-making,

1. Introduction

Many theories put forward to deal with problems involving uncertainty in our daily
life have lost their importance over time and have been replaced by different theories. Some
of the theories are interval mathematic, probability theory, fuzzy set theory [31], intuitionistic
fuzzy set theory [1] and neutrosophic set theory [19].Among these theories, the most up-to-
date and that has the widest application area is the fuzzy set theory developed by Zadeh [31]
in 1965.The theory is constructed with the help of a membership function that takes the values
in the interval [0,1] for elements of a universal set X. Intuitionistic fuzzy set theory was
constructed by Atanassov [1] in 1986 by adding a non-membership membership function to
fuzzy set theory that takes the values in the interval [0,1] for elements of a universal set X.

Inintuitionistic fuzzy set theory, the sum of the values of the membership function and non-
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membership function for each element of the universal set X always remains in the interval
[0,1]. This limitation of the membership function and non-membership function creates
deficiency for problems involving uncertainty. To overcome this situation, in 1998
Smarandache [19] presented a new set theory called neutrosophic set theory, which includes
fuzzy set and intuitionistic fuzzy set theory. Later, single-valued neutrosophic sets, which are
special cases of neutrosophic sets, were developed by Wang et al. [26] in 2010. Recently,
many author have studied on the neutrosophic sets in [6-9,11,16,17].

Fuzzy sets with single membership value between [0,1] have some disadvantages for
solving problems. For instance; as to measurement of amount carbon in weather problem, it is
hard to model the data and make a decision by getting results of 4 measurements in a day
(09:00, 15:00, 18:00, 23:00). Therefore, the multi-fuzzy sets (N-valued fuzzy sets), which is a
different generalization of fuzzy sets, firstly developed on the multi sets of Yager [29] by
Miyamoto [14], [15]. In 2018, to model uncertain problems, trapezoidal fuzzy multi-numbers
with operation laws by using multi fuzzy sets introduced by Ulucay et al [25].The concept of
trapezoidal fuzzy multi-number allows the repeated occurrences of any element on real
numbers set R and it is more general when compared to fuzzy numbers. Later, Sahin et al.
[20-22] proposed new similarity measures on trapezoidal fuzzy multi-numbers and gave two
applications in multi-criteria decision-making problem. Then, Ulucay [24] introduced a
decision-making method by defining a new similarity function and a weighted new similarity
function on trapezoidal fuzzy multi-numbers. In 2021, some new distance measures on
trapezoidal fuzzy multi-numbers and their application to multi-criteria decision-making
problems introduced by Deli and Keles [4]. In fact, the development of the theories is not
perfect, and further research and exploration are still needed. This is the reason why this study

is written.

2. Preliminary
In this section, we present some basic concepts such as fuzzy sets, trapezoidal fuzzy multi-
number, intuitionistic fuzzy multi-sets, intuitionistic fuzzy multi-numbers, neutrosophic sets,

neutrosophic multi-sets, neutrosophic multi-numbers and so on.

Definition 2.1 [31] Let X be the universe of discourse. A fuzzy set M defined on X is an
object of the form

M = {(HM(X)/X):X € X},
where p: X - [0,1].
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Definition 2.2 [2] Let M and N be two fuzzy numbers. Then, some distance measures
between M and N are given as follows;

i. The generalized distance measure d.(M, N) is defined as;

dg(M,N) = jz Iy, () — G 19 L @21,

ii. The Hamming distance measure dy (M, N) is defined as;

A (M.N) = > 1ty (50) = by (0]

iii. The normalized Euclidean distance measure d,z(M,N) is defined as;

n

n
1
A M) = = |y () = iy )2
i=1
iv. Supremum distance measure d, ., (M,N) is defined as;
d+oo(Mr N) = Sup“’lM (Xi) — Uy (Xi)l

Definition 2.3 [27] Let a; < b; < c¢; <d, such that a;,b;,c;,d; € R.A trapezoidal fuzzy
number a =< (ay, by, ¢y, dy); w, >is a special fuzzy set on the real number set R, whose
membership function p_: R — [0, w,]can generally be defined as

(x—ayw
#, a; <x<by,
b; —a;
W (x) = Wa, b; <x<¢y,
a (dl - X)Wa
——, ¢ <x<dj,
di—¢
kO, otherwise.

wherew, € [0,1] is a constant.

Definition 2.4 [5] Let a =< (a;,bq,¢q,d;);w, > be a trapezoidal fuzzy number such
that 0 < o < w,. Then, a-cut set of a, denoted a,, is defined as;

a, = {x p () = o, xR} = [L,(a), Ry ()]
_[wa —w)ag +oby (W, —o)d; +ocy

W, ’ W,
Definition 2.5 [25] Let wl € [0,1](i € {1,2,...,p}) and a,b,c,d € Rsuch thata<b < c <

d. Then, a trapezoidal fuzzy multi-number (TFM-number) a = ([a, b, c,d]; (w%,w%,...,wg))
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is a special fuzzy multi-set on the real number set R, whose membership functions are defined

as,
%wg, as<x<b
W () = wi, b<x<c
a (d=x) _
mwa, c<x<d
0, otherwise,

Definition 2.6 [4] Leta; =< (a;, by, ¢;,dy); Wi, w5, ... w5, >be a trapezoidal fuzzy multi

number. Then, integral vector of a,, denoted by inta$, is given as;
mtaf = ([Xy,X1], [X3, Xz, -, X0, XaD)

wél (W%l — a)al + Otbl Wél (W%1 - (X)dl + acq
= j 1 d(l,f 1 da )
0 Wz, 0 Wz,

2 2 —o)ag+ab 2 2 _o)d,+
[fowm ((Wa1 0‘)231 o 1) da,fowal <(Wa1 Vt)z 1 acl) dOL],...,

Way ag

ngl (wz, —a)a; + oby do ngl (wz, —a)a; + abl)doc
0 6 "Jo wa

a a

<[(31 + bl)W%1 (cp + d1)W%1] [(31 + b1)W%1 (1 + dl)ng] [(31 +bwz, (a+ dl)ngb
2 ’ 2 ’ 2 ’ 2 T 2 ’ 2

Definition 2.7 [4] Leta; =< (a3,by, ¢1,d1); wh , w2, ..wi > and

a, =< (ay, by, cy, dz);wgz,wéz, ...W3, > be two trapezoidal fuzzy multi numbers having the
integral vector  nta? = ([Xy, X1], [X% X5, ) [X XaD) and mtal =
(Y1, Y1), [Y2, Y2 ], -, [Ys, Yal) respectively. Then, generalized distance measure between 3,
and @, based on a-cut sets, denoted by d; _(a;,3,)(r = 1), is defined as;

34

n
- ri 1 , , ., .,
d.(a;,a,) = ZZ((Xi -Y)r+ & —Y)r
i=1

Definition 2.8 [30] Let X be a space of discourse, a trapezoidal neutrosophic set Hin X is
defined as follow:

H={(y, Tu(), la(y), Fu(y) )y € Y }

where Ty(y) € [0,1],15(y) < [0,1] and Fy(y) < [0,1] are three trapezoidal fuzzy numbers
such that
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Tu() = (th ), G, B, thM) )Y [0,1115 () = (W), &), ), i)Y [01]
and Fy(y) = (fA(y), f3(y), f2(y), fi(y)) ;Y = [0,1] with the condition 0<t{(y) + if(y) +
fi(y)<3,y €Y.

For convenience, the three trapezoidal fuzzy numbers are denoted by Ty (y) = (a,b, ¢, d),
Iy(y) = (e, f,g,h) and Fy(y) = (i,j,k 1) . Thus, a trapezoidal neutrosophic numbers is
denoted by m= ((a, b, c,d),(e, f, g, h),(i,j, k,1)).

Definition 2.9 [30] Let Ti = ((a;,azas,a,),(by,by,bs,by) , (cq,¢yc5,¢4)) be a
trapezoidalfuzzyneutrosophicnumber.

i) Centroid point of the truth membership function of trapezoidal fuzzy neutrosophic
number 1 is

oT ( T(7), yT(n)) ([a1 +a, +a; +a, — M} [1 + L]).

(ag+az)—(as+az)l’ (agtaz)—(a;+az)

i) Centroid point of the indeterminacy membership function of trapezoidal fuzzy
neutrosophic number fi is

I — (I vIrs)) =L bsbs—b, b, b3—b,
0" = (X (), y (n)) 73 ([bl +by +bs+by — (by+bsz)— (b1+b2)] [1 (bg+b3)— (b1+b2)])

iii) Centroid point of the falsity membership function of trapezoidal fuzzy neutrosophic number fi is

oF = (XF(ﬁ):yF(ﬁ)) =§ ([Cl +ep+ gty — —a L ] [ GG

(cqtc3)—(cq+cy) (C4+C3) (c1tc2)

Finally, centroid point of trapezoidal fuzzy neutrosophic number T is

oy X L@ +x @ +xF (7)) yT @) +y (@) +yF ()
O(x(R), y(R))= (= Loy Ty

Definition 2.11 [3] Let nkl,skl,ekl € [0,1]G € {1,2,...,p}Pand a,b,c,d € R such that a <

b < ¢ < d. Then, an N-valued neutrosophic trapezoidal number(NVNT-number)

P . .
Ay =([ab,cd; (ym5 -y ), (94, 94, -, 9a,), (04,,03,,...,04,)) is a neutrosophic
multi-set on the real number set R, whose truth-membership functions, indeterminacy-

membership functions and falsity-membership functions are defined as, respectively.
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D b+, (x-a)
(b_a) nAl’ a S X < b (b—a) ) < < b
. i <x< _ i
Tgl(x)z ?;1') b_x_c, i (x) = B4, | b<x<c
Wa=x) i (x—€)+84 , (d—x)
a0y c<x=d COIEN cxzd
0, otherwise, kl, otherwise,

and

(b —x) + 0y, (x — a)

<
b—a) , as<x<b
Fj,(x) = ?Al; . b<x<c
X—C)+ 0, —X
- <
d-0 , c<x<d
k1, otherwise,

Note that the set of all NVNT-numbers onR will be denoted by A.
Definition 2.12 [3] Let A; =
Ty, by, ey, dils (nh 2 o ), (95,92, 95,), (65,63 ..., 05))

K2 = <[a2)b2) CZ) dZ]; (n%zln%zl"'lnﬁz)l (8%21 8%21---;8g2), (9%2, 9%2,---,922)) E A and

v # 0 be any real number. Then,

. A +A;=([a; + a3, by + by, ¢ +¢p,dp +

1 1 2 2 p p
.(n“ﬁ"ﬁz &, A, na*"’_“)
20 1.1 2 2 2t P P
ang g, 1z ng, " kg g
1 o1 2 2 P 4P
( %, %, Ya,%, %4, %, >
_ ]__ _ ]; ) _ ]__ _ 2_ ) ) _ E _ B H
1+(1-9%, )(1-95,) " 1+(1-9%, )(1-9%,) " 1+ (1-9% ) (1-9%,)

1 1 2 2 p p
02,9, 0,9, 0, 9%,

T+ -0k ) (- 05) T+ (105 )(1—08) "1+ (102 ) (1% )

1 1
Na, N4,

b (1-ng) (1)

ii. ALA, = ([a1.a2,by. by, ¢1. ¢, dy. d3];
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%, "%, %, &,
v(1-ng, ) (1nk,) " 1 (1, ) (1, ) )

1+95 9%, 14959, 1+9% 9%

( 9%, +9%, 9% +9%, 9% +9% )

0f, +0%, 05 +05  0f +0% ))

1+ 9%19%2 "1+ e§19§2 U1+ ef—glef—gz

||| 'YKl = ([Yap Ybl; Y€1, le]r

(g )'-(=ng ) (ng Y-(-ng )7 (g )'-(-ng )
(ng P+(-ng Y (g Y7+A-ng T @ YT+A-nG )Y )

2(9% )"

(2 = 9%,)" + (93,)7 (2 =937 + (Ox)"

2(0%,) 2(03)"

"2 -9 )+ (98

2(0%,)"

( 2(9%,)" 2(9%,)"

(2 - eA )Y+(9A (2 - eA )Y+(9A LA

2(ng)"

"(2- 05 )+ (05 )

2(11,%1)Y

)

b

2(ng )"

([a},b],cl,d}]; (

(2—ng, )Y+(nA Rz )+ (g

p
(1-9%

((1 +95) - (1-9%) (1+95)—(1-95) (1+983) -

1+ 9%1)Y +(1- 9,%1)v' (1+ 9,%1)Y +(1- 91%1)Y'

(1+9% )7+ (1 =93 )"

(1+6% )7 — (1—6%)

(1+065)" = (1-03,)" (1+05)" —(1-05)"
(1+065)7+ (1= 03,)" (1+05)+(1-05)""

Definition 2.13 [3] Let

A _<(a]' j» Cj» ]) (nA nA" 'nA)'(S%'Si—j' ""9%)'(911?1’9‘2‘\_1""

] ]

{1,2, ...,n}) be a collection of NVNT-numbers. Then,
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I weighted arithmetic operator of NVNT-numbers, denoted by NVNTNa,, , is

defined as;
NVNTNay (A, A,,...,A,) = Z Wi,
j=1
'n—1(1 + n% = 'n—1(1 - n}—\ )"
ZWHJ,ZW ],ZWC]; . < 1(1+nA)W]+H 1(1 T]A)WJ
p—1(1 + ‘1121 = !1_1(1 - n% )i = (1+ ﬂf—; )i — j=1(1 = 11% )i
e (L )™ T (=)™ T (4 mi)™ 4+ Tl (1 = mg )™ )

( 2[T3: 1(9A )™ 2[5 1(9A )™

i=1(2 - 9A ™+ H 1(9A )Wl 1(2 SA )"+ H 1(9A )W] -

211, (99 Wi ) < 217 1(eA Wi
i=1(2 - Sp )W’ + H 1(9p e =12 - 9A M+ H 1(9A )il

2 H 1(9A )" 2 H 1(9p )" >
1(2 eA )+ H 1(9A s 1(2 - ep )W] + H 1(9p )"

ii. weighted geometric operator of NVNT-numbers, denoted by NVNTNg,, , is

defined as

. _ n —W:
NVNTNg,,(R,,A,,...,A,) = I I , 1AjJ
J:

2[ 1., 0r)"
= ([T T80 T L | o
2[ . )" 2T, 3"

1@ L) TTLe-nt)" + 100"

[T+ -TT.a-9)" TT,a+9)" -TT.a-9)"
[T.a+8)" +T1,,a-9)" T}, @r5)" +]]],a-9)"

H?:1(1+ 9" _H';:l(l—ngj ) H';:l(1+ g:)" —H?Zl(l—é?}\j )"
Hr;:l(1+,9£j ) +H?:l(1—,9£j)wi ’ H?:1(1+6?}\j)wj +Hrj':l(l—¢9§j)w"
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Hj:1(1+ egj)wi —Hj:l(l—eg ) Hj:1(1+ egj)wj —Hj:l(l—egj)wi
Hj:1(1+ 9;_ ) +Hj:1(1—9§j ) Hj:1(1+ .97; )" +H,-:1(1—‘9£,- )
where w = (wy, Wy, Wy, ..., wy)T is the weight vector of 7&,-, (j € {1,2,...,n}) with w; € [0,1]

and Z}‘zl wj = 1.

Definition 2.14 [3] Let

A; = ((a, by, ¢;, dp; (n}\_,nf\_,...,ng_), (94, %, 94.), (04,04, ...,04)) be a collection of
NVTN-numbers and I, = {1,2,...,n}. The positive ideal solution r*tand negative solution r~
of NVNT-numbers are given as;

t = . . . 1) 1 2 P
r* = (max{as), max(bi}, max{ci), max{d); (max {n}, | max {ng, }, .. max {nf, ),
(min{(9},)}, min{(84,)), ., min{($5)}, (min{(0},)}, min{(©3 )} .., min{(0, )
i€l, i€l iel, iely i€l i€ly

and

- . i . i . i . i . . 1 . 2 . P
r <gg;§1{a1}, grelllrfl{bl}, gg;p{cl}, ggllp{dl}), (?QI‘,? {nAi} ,min {nAi} , -+ 1IN {nAi }),

(max{(%},)}, max{(53,), -, max((95)]), (max{(0},)}, max{(63,)}, ., max{(0,)}))

i€ly
respectively.

3. A New Distance Measure for NVNT-Number

In this section, we introduce a new distance measure for N-valued trapezoidal fuzzy
neutrosophic number based on centroid points.

Definition 3.1 Let

Ay = (g, by, ey, dy); (W 2k ), (9h,, 95, 95,), (04,03, 0%, )) be a NVTN-
number.

i) Centroid point of the truth membership functions of A, is;

(0T™, 073, .., 0T™)

() 68 )- 4657 )) ) 75,)

Where
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1
b1 . €1, 1 d1 R "Aj L __R
fal an:Al dx+fb1 X.nAidx+fC1 anl dx IR Y(gnl g5 )dy

xT(nl )= andy" (n) )= :

A1) Pl dx+[TInd dx+ [P TR dx VRN ¥

fal ”}%1 J'bl Na; fCl ni‘h fo l(gLi _gRi )dy
nAl "A1
i i

o= &ma) i R im0 oy oL e txbara) g iy x(dime)
n, (bi—a;) ‘A1’ M (dy-c )nAl gnl i Lo :

Aq 1—ay Aq e A1 a, A1 Ay

inverse functions of fnLi and fnﬂ‘ respectively.
Aq

Aq

i) Centroid points of the indeterminacy membership functions of Al are;

(0'®,0!®, ., 0I®) = ((xl(sih), y'(9,)). (x'(93,).¥'(83,)) -, (x'(94,). yl(sf\l)))

Where

i

b i d Sa
_ St gl dx+fotx 0 dx+ [ 1xfR dx . Sy —eR )dy
1 Sl _ 1 SA1 1 1 Aq d 1 91 _ 9A1 9A1
x!(%,) = SRR dx+[Cloh dx+[ITR dx andy' (9, )= 9 '
a Sh b1 Aq Cq1 Sk fAl(gLi _gR] )dy
1 1 0 9A1 9A1
L= (b1=X)+9, (x—a1) R — (x—c1)+93, (d1—%) and gL_ _ bi—a; 93, —x(bs—ay) gR_ _
%aq (bi-ap) ' %Ay (di=c1) %A 1-93, /¥

d1.93, —c1—x(d;—cq)

i the inverse functions of f% and f} respectively.
9a,—1 A, 7%

iii) Centroid points of the falsify membership functions of Al are;
(OFW, oF®@), . OF(P)) = ((XF(Gil),yF(Gil)) ) (XF(Gﬁl),yF(Gil)), . (xF(e,‘il),yF(ef\l)))

Where

i

- 0
f;llel‘i dx+f§11x.61Aldx+delleRi dx foAly(gLi -gR Hdy
(P (0h,) =~ ths 0y (g, )
A/ T b gy el axe (TR ax Y A )= LR
an o, oy Ol [k g% ay
Oa; 94
fL _ (b1=x)+63, (x—ay) R = (x=c1)+03,(d1=-%) and ok _ by—ay 0y, —x(by-ay) R _
0, (b1-ap) ' O, (d1—c2) Bol, -0, '+ Byl

d1.03, —c1—x(d1—cq)

1 the inverse functions of f% and f} respectively.
0a,—1 0a, 04,

By computing integrals given above, we get following result;

Result 3.1 Let
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A; = ((ay, by, ¢1,dy); (nil,nil,...,nﬁl),(91&1,911,...,9};), (04,,0%,,---,0%, ))be a NVTN-
number.

i)  Centroid points of the truth membership functions of Al are;
(0™™,0™®, .., 0T®

(05, (1)) 7 () 97 (08, (02 7 (2.)

Where for i=1,2,...,P;

nii.(2b1+a1—d1—2c1)

T i (C12+d12—312—b12+C1d1—31b1) T ( i )
X = n =
(nAl) 3(C1 +d1—31 _bl) a d y nAl

3(by+a;—d;—cq)

i)  Centroid points of the indeterminacy membership functions of Al are;

(0!, 01@, . 0l®) = ((Xl(sjh), yI(S}M)), (x‘(Sil),y‘(Sil)), e (XI(SXJ'YI(SE\J))
Where for i=1,2,...,P;

(9, +2)(a12-ds?)+(5a,~1)(arby +b;*—c1—c1dy)

Iai 9%, [a;+2by —2¢;—d;—3(b;—¢1)/Sh, |
X (9A1) = i i
3.[(SA1+1)(31—d1)+(SA1—1)(b1—C1)]

_Z(b:!.—Cl)]
1
Aq

and y'(93, )=

3[al+b1—C1—d1
iii)  Centroid points of the falsify membership functions of Al are;

(OF,OF@_ OF(P)) = ((XF(G}M), y*(04,)), (xF(63,). 57 (63,)), -, (x" (6%,), yF(eil)))
Where for i=1,2,...,P;

_ (9}41 +2)(312—d12)+(9k1—1)(alb1+b12—C12—C1d1)

F(ni 0'a, [a1+2b; —2¢;—d;—3(by —c1) /04, ]
X (9A1) = i i
3.(0h, +1) (ar=d)+(0h, ~1) (b1 —c1)]

3[a1+b1—c1—d1—w]

and y* (0, )=

Definition 3.2 Let

Al = <(a1) bl) C1) dl)l (Tl‘lel; n‘il: reey nil) ) (8}%1) 912§1) RN 91111): (611§1J eil, LR 9K1)> be a NVTN-
number. Centroid point of A, denoted by C(A,), is defined as;

C(Al) = ((rgﬁl' S}A]_)' (r‘il, Sgl)' e (rgl’ Sgl))

Where

)

rh., skl):<XT(A11)+XI(:D+XF(AD yT(Ai1)+yI(:i1)+yF(Ai1)> (i=12....P)

Lemma 3.1 [28] Let x4, X5,...,X, and y4,y5,...,y, be real numbers. Then,

R O R A e e R I A Z i CER e A
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Definition 3.3Let
Ay = ([ay, by, cp,dy]; (ny 2 -], ) (9h,, 93,0084, ), Ok, 02, -, 07,)),
A, = {[ay, by, ¢y, dy]; (niz,niz, ...,ngz) (94,93 ,...,95 ), (64,,0% ,...,0% ) and A,
= ([ag, by, 5, d3l; (n} 2, o], ), (9,95, ) 9,), (Oh, 04, - OF, )
be three NVTN — numbers and C(A;) = ((r}h, 51141); (rﬁl, sﬁl), . (rgl, sgl)) ,C(A,) =
((r}\Z, sa,) (3, s3,) - (rh,, sf\z)) and C(A3) =

((r}h, sa, ) (rZ,. 82, ), - (R, sf\3)) be centroid point of A;, A, and A respectively.
Distance between A; and A, is given as;

P
911 . . . .
da(ArA) = |55 (Irk, =i, "+ Ish, = s, [%)
i=1

By changing value of g, we get some special cases of the distance between A, and A, as
follows;

Case 1: If g=1, we get Hamming distance between A; and A, as follows;

P
di(AnAy) ==Y (|rh, — v | +]sh — sk |)
1(A1,Az) oP I'a, —Ta, SA; T Sa,
i=1

Case 2: If g=2, we get Euclidean distance between A; and A, as follows;

P
1 . . : :
da(AnAr) = |35 ) ((rh, = 1h,)7 + Gsh, —5h,)?)
i=1

Case 3: If g—+oo0, we get 1. Chebyshev distance measure between A; and A, as follows;

[th, — Th,| + Ish, —sh,|
2P

dyos(Ag, Ap) = max{

Teorem 3.1 LetA; =

([ay, by, 1, dyl; (W 3 ,-oomf ), (94, 93,0+, 9%,), (0h,, 0%, 0R,)

Ay = ([az, by, ¢, dy1; (n} m2 ,...onE ), (9h, 9%, 95, ), (O, 04, 0,)) and
As = ([az, b, c5,dsl; (W} m2 -5 ), (84,95, - 95, ), (0K, 04, -, R, )

be three NVTN — numbers and 09 (r} , s} ), 00 (r} s} )and 0O(r} ,sh.)

be centroid point of A;, A, and A5 respectively. Distance  between A, and A, has
following conditions;

) dg(AAy) 20
11) dq(Ali Az) :0 @Al = Az
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iii) dq(A1,Az) = dg(AzAq)
iV) dq(Ali Az) + dq(Az,A3) 2 dq(AlJ A3)

Proof The teorem is proven for g=2.

i) By using basic mathematical laws, we can get ;
(ra, —Th,)? 20, (sh, —sp,)* 20
=(ra, = Ta)? + (sh, —sh,)? 20
=¥0, ((rh, —1h,)* + (sh, —sh,)?) =0
>3, ((rh, —rh,)? + (sh, —sh,)?) 20
= |52, ((Th, —Th)? + (sh, — 5h,)2) =0

=d,(A1,A,) =0

i) dy(Ay,Az) = o3P ((rh, —rh)? + (s, —sh,)?)=0

520 ((ch, —rh,)" + (sh, = sh,)")=0

=3P (@, —ri )%+ (sh, —sk,)?)=0

=(ra, — Ta,)* + (S, — sh,)*=0.
Therefore we get;

(r{&1 — r{kz)2 =0 & r{kl = rgz,
(Sh, —Sa,)> =0 ©&5s) =5} .
That means
A=Ay

iii) d,(A1,Az) = P le ((rhl - rhz)z + (5};1 - 5,142)2)

_ 1 p . . . .
= [E 5P (b, — )2 + (sh, —sh)2)

=d,(Az, Aq)

iv) By using Cauchy-Schwarz inequality given in Lemma 3.1;

. . . . .2 .2 .2 .2 . . . .
(rh, + sk (rh, + 5,022k, ek, )+ (sh, “osh, )42,k sh, + i, sh,)

i 2 i 2 i 2 i 2 i 2 i 2 i 2 i 2
1 1 1 1 1 1 1 1
<(ra, *+ra, )+ (sa, *+sa, )+2'\/rA1 T 1y, JSAl + s,

_ i 2 i 2 i 2 i 2
=\ Ta, TTra, +.[Sa, TSa,
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Taking square roots gives;

. . . . . 2 .2 i 2 i 2
i i 2 i i 2 i i i i
\[(rA1+sA1) + (ra, +5a,) S\[rA1 +1p, +\/SA1 + Sa,

Now we can compute

Therefore we get;

4. An approach to MCDM problems under for N-valued Neutrosophic Trapezoidal

Definition 4.1 [3] Let X = {x4, X3, ..., X1y} be a set of alternatives, U = {uy, u,, ...,u,} be the

set of criteria. Assume that the evaluating value of criteria u;with respect to alternative x;, be

Numbers

ﬁm—%yﬂ%—%y

(=) + G = )+ (5, = 5h) + Gy — i)

4@;¢y+@;ayﬁ@;my+@;ay

d;(A1,Az) +dy (A Az) = dy (A, Ag)

represented by a NVNT-numbers

Aij =

. 1 2 3 P 1 2 3 P 1 2 3 p
<[aij;bij; Cij) dij]l (T]Ai].: T]Ai].: T]Ai].: ey ﬂAi].) , (SA“JSA“J SAi]-; ey SAij) ’ (eAij' eAij' eAij' T eAi]-)>m><n

where 0 < ajj < bij < Cjj < dij <1,0<
1 2 3 P 1 2 3 P 1 2 3 P . —
nAij!nAij)nAij)--.;nAi]_:SAi]'JSAi]-;SAi]-;-.-;SAi]-;eAi].; eAij'eAij' ...,eAij — 1, a.nd (All)mxn
b c:od:) (nt 2 3 P 1 2 3 p 1 2 3 p
((au' byj, cij, djj); (nAu‘ Mg Mayy - Ny ) ’ (SAii' SAij' SAii' " 9Aij) ’ (eAii ’ eAii’ eAii’ v eAii))

(i=1,2,...,m) and (j=1,2,...,n) be the decision matrix given by experts based on Table 1.

Then,

(Aij Jmxn =

A11
A21

Am1
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is called a NVNT-numbers multi-criteria decision matrix of the decision maker.

Table 1 [3]. The linguistic values of the NVNT-numbers for the evaluation matrix

Linguistic values NVNT-number values

Very Poor(vp)\(0-56.0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3),0.7,02,0.3))

Poor( P) ((0.86,0.88,0.90,1.00); (0.9,0.5,02), (0.7,0.6,0.4), (0.3,0.1,0.2))

Medium (M) ((0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3))

Good (G) ((0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4))

Very Good (VG)<(0.00,0.12,0.15,0.20) ;(0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5))

Also, assume that w= (w,, w,, ..., w,) be weight vector of the criteria set U given by experts.
Algorithm

Step 1: Create an evaluation matrix (Aj)mxn based on Table 1.

Step 2:For alli (i= 1,2,...,m) find the aggregation values according to NVNTNa,, operator,
in order to obtain the ultimate performance value corresponding to the alternative A;(i =
1,2,...,m) as;

A; = NVNTNay, (Aj1, Az, ..., Ay) (i=1,2,...,m)

Step 3: Find the centroid points of A; (i =1,2,...,m) for truth, indeterminacy and falsity
memberships according to Result 3.1;

(0"®,07®, .., 07®) = ((x"(aD,y"(AD ), (x"(AD, Y (D), .., (x"(AD).y" (a))))
(0'®,01, .., 0'®) = ((x(a),y'(AD), (x'(AD, y' 4D ), . (x'(a). ' (a)))

(07,07, .., 07®) = ((x"(aD,y"(AD ), (x" (49, y* (4D)), ... (x"(4}),y" (a1)))
Step 4: Find the centroid point of A;(i = 1,2, ..., m)givenin Definition 3.2;

C(Al) = ((rl:]&i' Sljii)' (r12§i' Sgi)' " (rll:\)iJ Sgi))
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Step 5: Find the distances between A; (i = 1,2,...,m) and positive-negative ideal solution
based on Definition 3.3 as;

d,(A;,rt), dy(A,r)(=1,2,...,m)

Where r* and r~ are the positive ideal solution and negative ideal solution of A;
(i=1,2,...,m) respectively. That is,

rt=(omax (o) max (b, max {c} max {d3);

1E{1 2 {1 2 m}

(16{12 {nAl} 1e{12 m} {nAl} ""ie{r1r,12?.)fm} {ngi}),
(mln {(SAI)} min {(912;1)}; ey N {(911;)}):

i€{1,2,... ie{1,2,... "ie{1,2,..
Gmin {0}, _min_ (O} min (OF)D)

and

= ( min fa) min (b, _min {6} _min_ {d});
ie{1,2,..,.m}

i€{1,2,..,m} i€{1,2,..,m} " " i€{1,2,..,m}

. 1 . 2 : P
(ie{{,nz}fl.,m} {nAi} ’ ie{gfl,m} {nAi}’ o ie{{,nzmm} {nAi })’

(maX {(9A b max {9 A} - max {(® )}

ie(1,2,. i€{1,2,.. "ie(1,2,.

(max {03}, max ((03)), .,  max((03)))

i€{1,2,..

Step 6: Calculate the score value s(A;) of the A; (i = 1,2,..., m) defined as;

da(Ajr™)

s(A;) Ty (Aurt)+dg(Ar)

Step 7: Rank all the alternatives A; (i = 1,2,..., m)and select the best one, in accordance with
score of each A; (S(A;)). The smaller the S(A;), the better the alternatives A;

5. Application
In order to show usefulness of proposed method, we give following application adopted from

Kesen [13].

Suppose that a factory administration is aim to hire a technician for newly-established section
of the factory. The administration doesn’t know exactly who is suitable for that position since
there are a lot ofalternatives. After a short consideration, the administration managed to shrink
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the alternatives’ list and five alternatives left for choosing which isX = {x;, X,, X3, X4, X5}. The
administration will choose a technician from alternatives’ list according to four attributes:

1. Work experience (c;)

2. Tendency to team work (c,)
3. Reference (c3)

4. Education backround (c,)

Weight vector of the attributes is w = (0.3,0.2,0.4,0.1). The administration considers the
alternatives in the context of the linguistic terms given in Table 1. The process of finding the
best choice is given as follows:

Step 1: Alternatives and attributes evaluated by the administrationand results of the
evaluation are presented in decision matrix (Aj;)sx4 as;

((0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3))
((0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3))
(Ai)sxa = €(0.86,0.88,0.90,1.00); (0.9,0.5,0.2), (0.7,0.6,0.4), (0.3,0.1,0.2))
((0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4))
((0.00,0.12,0.15,0.20); (0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5))

((0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3))
((0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4))
((0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3))
((0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4))
((0.00,0.12,0.15,0.20); (0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5))

((0.00,0.12,0.15,0.20); (0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5))
((0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4))
((0.86,0.88,0.90,1.00); (0.9,0.5,02), (0.7,0.6,0.4), (0.3,0.1,0.2))
((0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3))
((0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3))

((0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4))
((0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3))
((0.86,0.88,0.90,1.00); (0.9,0.5,0.2), (0.7,0.6,0.4), (0.3,0.1,0.2))
((0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3))
((0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4))

Step 2: For alli (i=1,2,...,5), the aggregation values according to NVNTNa,, operator are
computed, in order to obtain the ultimate performance value corresponding to the alternative
xi(i=1,2,...,5)as;

A; = NVNTNay, (Aq1,A12,A13,A14)
= ((0.312,0.374,0.425,0.469); (0.661,0.554,0.309), (0.357,0.352,0.367),(0.332,0.277,0.294))
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A, = NVNTNay, (Azq,Azz, Azs, Azy)
= (0.542,0.597,0.635,0.683); (0.834,0.703,0.278), (0.279,0.179,0.411), (0.402,0.315,0.357))

Az = NVNTNay, (Az1, Azz, Asz, Azy)
= (0.740,0.768,0.800,0.872); (0.867,0.589,0.379), (0.513,0.514,0.357), (0.432,0.133,0.236))

A, = NVNTNay, (Ay1,Asz, Az, Ass)
= (0.558,0.615,0.650,0.700); (0.845,0.714,0.242), (0.268,0.155,0.432), (0.387,0.328,0.368))

As = NVNTNay, (Asy, Asz, Asz, Ass)
= (0.184,0.282,0.315,0.361); (0.469,0.523,0.302), (0.288,0.352,0.518), (0.291,0.208,0.444))

Step 3:Centroid points of A; (i=1,2,...,5) for truth, indeterminacy and falsity
memberships are computed as;

For A;;

(04,7®,0,,7®, 0, "®)=((0.394,0.274),(0.394,0.230),(0.394,0.128))
(04,"™,0,4,"®,0,,"®) = ((0.388,0.260), (0.388,0.253), (0.388,0.276))
(0a,"™,04,7®,0,,F®) = ((0.388,0.225)(0.387,0.169) (0.387,0.185))
For A,;

(04,"®,0,,7®,0, T®)=((0.614,0.337), (0.614,0.28),(0.614,0.112))
(04,"®,04,"®,0,,'™) = ((0.611,0.190), (0.611,0.102), (0.612,1.376))
(04,7, 0,4,7®,0,,F®) = ((0.612,0.885), (0.6110.245), (0.612,0.361))
For As;

(0a,"™,0,,7®,0,,"®)=( (0.797,0.346),(0.797,0.235),(0.797,0.151))
(04,"®,04,"®,0,,'®) = ((0.810,0.038), (0.810,0.039), (0.812,0.572))
(0a,7®,0,,7®,0,,F®) = ((0.811,-0.236), (0.816,0.073), (0.814,0.155))
For A,;

(0a,"™,0,,7®,0,,"®)=( (0.630,0.337),(0.630,0.285),(0.630,0.097))
(0a,"®,04,'@,0,,'®) = ((0.628,0.190), (0.627,0.088), (0.628, —0.300))

(0a,7™,0,,7®,0,,F3) = ((0.628,1.922), (0.628,0.323), (0.628,0.672))
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For As;

(04, ™0, 7,0, "®)=((0.283,0.181),(0.283,0.202),(0.283,0.116))
(04,',04,'@,0,.'®) = ((0.265,0.511), (0.266,—0.196), (0.268,0.109))
(04, ,0,.F®,0,.F®) = ((0.265,0.554), (0.264,0.151), (0.268,0.048))

Step 4: Centroid point of A; (i = 1,2,...,5) is computed as;
C(A;) = ((0.390,0.253),(0.390,0.217), (0.390,0.196))
C(A,) = ((0.612,0.471),(0.612,0.210), (0.612,0.616))
C(A3) = ((0.806,0.049), (0.808,0.116), (0.808,0.293))
C(A,) = ((0.629,0.816), (0.629,0.232), (0.629,0.156))
C(As) = ((0.271,0.415),(0.271,0.052), (0.273,0.091))
Step 5: Distances between A; (i = 1,2, ...,5)and positive ideal-negative ideal computed as;
d,(A,,r*)=0.300, d,(A,,r™)=0.187
d,(A,,r*)=0.212, d,(A,,r~)=0.385
d,(A;,r*)=0.086, d, (A5, r~)=0.403
d,(A,,r*)=0.269 d,(A, r™)=0.415
d,(As,rt)=0.396, d, (As, r~)=0.151
Step 6: Score value (s(A;)) of the A; (i = 1,2,...,5) is computed as;
s(A;) =0.383, s(A,) =0.645, s(A; ) =0.824, s(A, ) =0,606, s(As ) =0.275

Step 7: Ranking of all the alternatives A; (i = 1,2, ...,5) is given as following;

Xg > X1 > X4 > Xp > X3

6. Conclusion

Neutrosophic numbers can be applied to many more areas to model and solve
problems containing many uncertainties. For example, studies can be applied on computer
science, decision-making problems, business and economics problems, which contain
ambiguous statements by their nature. For this reason, neutrosophic numbers and their
operations can be extended by using different applications and techniques. As for multi-
valued neutrosophic numbers, it can be applied in solving problems with uncertain, imprecise,

incomplete and inconsistent information that exist in scientific and engineering situations.
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