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Aims and Scope 

 

Neutrosophic theory and its applications have been expanding in all directions at an 

astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets 

and Systems”. New theories, techniques, algorithms have been rapidly developed. One of 

the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set 

with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The 

different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough 

set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed 

in the literature in a short period of time. Neutrosophic set has been an important tool in the 

application of various areas such as data mining, decision making, e-learning, engineering, 

medicine, social science, and some more.  

Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın 
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Preface 

 

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. 

Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent 

information. Neutrosophic set approaches are suitable to modeling problems with 

uncertainty, indeterminacy and inconsistent information in which human knowledge is 

necessary, and human evaluation is needed.  

Neutrosophic set theory firstly proposed in 1998 by Florentin Smarandache, who also 

developed the concept of single valued neutrosophic set, oriented towards real world 

scientific and engineering applications. Since then, the single valued neutrosophic set theory 

has been extensively studied in books and monographs introducing neutrosophic sets and its 

applications, by many authors around the world. Also, an international journal - 

Neutrosophic Sets and Systems started its journey in 2013.  

http://fs.unm.edu/neutrosophy.htm. 

This first volume collects original research and applications from different perspectives 

covering different areas of neutrosophic studies, such as decision-making, neutroalgebra, 

neutro metric, and some theoretical papers.  

. 

 

 

 

 

 

 

http://fs.unm.edu/neutrosophy.htm
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Chapter One 

   
 

History of SuperHyperAlgebra 

and 

Neutrosophic SuperHyperAlgebra 

(revisited again) 

Florentin Smarandache 

The University of New Mexico 

Mathematics, Physics, and Natural Science Division, 

705 Gurley Ave., Gallup, NM 87301, USA 

E-mail: smarand@unm.edu 

 

ABSTRACT 

 We recall the topic of the nth-Powerset of a Set, and the concepts built on it such as 

SuperHyperOperation, Super-HyperAxiom, SuperHyperAlgebra, and their corresponding 

Neutrosophic SuperHyperOperation, Neutrosophic Super-HyperAxiom and Neutrosophic 

SuperHyperAlgebra are re-called and then prolonged to the Neutrosophic SuperHy-

perStructures {or more accurately Neutrosophic (m,n)-SuperHyperStructures}.  

Keywords: nth-Powerset of a Set, HyperAxiom; HyperOperation; Hy-perAlgebra; SuperHyperAxiom, 

SuperHyperOperation; Su-perHyperAlgebra, Neutrosophic SuperHyperAlgebra; Su-perHyperStructure; 

Neutrosophic SuperHyperStructure. 

1. History of HyperAlgebra and SuperHyperAlgebra 

We revisit the SuperHyperAgebra and Neutrosophic SuperHyperAlgebra introduced 

and developed by Smarandache [2, 3, 4] between 2016 – 2022. 

We recall that F. Marty [1] has introduced in 1934 the  

HyperAlgebra that is based on HyperOperations and consequently on HyperAxioms.  

More information and the evolution from HyperAlgebra to SuperHyperAlgebra & 

Neutrosophic SuperHyperAlgebra are presented below. 

 

2. Definition of classical HyperOperations 

Let 𝑈 be a universe of discourse and 𝐻 a non-empty set, 𝐻 ⊂ 𝑈. 

A classical Binary HyperOperation is defined as follows: 
*

2
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where 𝐻 is a discrete or continuous set, and is the powerset of 𝐻 without the empty-

set  or . 

A classical m-ary HyperOperation is defined as: 

 
for integer m ≥ 1. For m = 1 one gets a Unary HyperOperation. 

The classical HyperStructures are structures endowed with classical HyperOperations 

and classical HyperAxioms. 

3. Definition of the nth-Powerset of a Set [2] 

The nth-Powerset of a Set was introduced in [2, 3, 4] in the following way: 

𝑃𝑛(𝐻), as the nth-Powerset of the Set 𝐻, for integer 𝑛 ≥ 1, is recursively defined as: 

𝑃2(𝐻) = 𝑃(𝑃(𝐻)), 𝑃3(𝐻) = 𝑃(𝑃2(𝐻)) = 𝑃 (𝑃(𝑃(𝐻))), … , 

𝑃𝑛(𝐻) = 𝑃(𝑃𝑛−1(𝐻)), 

where 𝑃∘(𝐻) ≝ 𝐻, and 𝑃1(𝐻) ≝ 𝑃(𝐻). 
The nth-Powerset of a Set better reflects our complex reality, since a set H (that may 

represent a group, a society, a country, a continent, etc.) of elements (such as: people, objects, 

and in general any items) is organized onto subsets P(H), and these subsets are again 

organized onto subsets of subsets P(P(H)), and so on [Smarandache, 2016].  

That’s our world. 

4. Neutrosophic HyperOperation and Neutrosophic HyperStructures [1, 2] 

In the classical HyperOperation and classical HyperStructures, the empty-set  does 

not belong to the power set, or . 

However, in the real world we encounter many situations when a HyperOperation ∘ is:  

 indeterminate, for example 𝑎 ∘  𝑏 =  (unknown, or undefined),  

 or partially indeterminate, for example: 𝑐 ∘  𝑑 = {[0.2, 0.3], }. 

In our everyday life, there are many more operations and laws that have some degrees 

of indeterminacy (vagueness, unclearness, unknowingness, contradiction, etc.), than those 

that are totally determinate. 

That’s why in 2016 we have extended the classical HyperOperation to the Neutrosophic 

HyperOperation, by taking the whole power P(H) (that includes the empty-set  as well), 

instead of  (that does not include the empty-set ), as follow. 

3.1 Definition of Neutrosophic HyperOperation 

Let 𝑈 be a universe of discourse and 𝐻 a non-empty set, 𝐻 ⊂ 𝑈. 

A Neutrosophic Binary HyperOperation  is defined as follows: 

 
where 𝐻 is a discrete or continuous set; P(H) is the powerset of 𝐻 that includes the empty-

set . 

A Neutrosophic m-ary HyperOperation  is defined as: 

* 2

2 *: ( )H P H

*( )P H


*( ) ( ) { }P H P H  

*

m

*

*: ( )m

m H P H



*( ) ( ) { }P H P H  







*( )P H 

2

2

2 : ( )H P H



m
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for integer m ≥ 1. Similarly, for m = 1 one gets a Neutrosophic Unary HyperOperation. 

3.2 Neutrosophic HyperStructures 

A Neutrosophic HyperStructure is a structured endowed with Neutrosophic 

HyperOperations. 

 

5. Definition of SuperHyperOperations 

We recall our 2016 concepts of SuperHyperOperation, SuperHyperAxiom, 

SuperHyperAlgebra, and their corresponding Neutrosophic SuperHyperOperation 

Neutrosophic SuperHyperAxiom and Neutrosophic SuperHyperAlgebra [2]. 

Let  be the nth-powerset of the set H such that none of P(H), P2(H), …, Pn(H) 

contain the empty set . 

Also, let  be the nth-powerset of the set H such that at least one of the P2(H), …, 

Pn(H) contain the empty set . 

The SuperHyperOperations are operations whose codomain is either  and in this 

case one has classical-type SuperHyperOperations, or 𝑃𝑛(𝐻) and in this case one has 

Neutrosophic SuperHyperOperations, for integer . 

5.1 Classical-type Binary SuperHyperOperation 

 A classical-type Binary SuperHyperOperation is defined as follows: 

 
where  is the nth-powerset of the set 𝐻, with no empty-set. 

5.2 Examples of classical-type Binary SuperHyperOperation 

1) Let 𝐻 = {𝑎, 𝑏} be a finite discrete set; then its power set, without the empty-set , 

is:   

𝑃(𝐻) = {𝑎, 𝑏, {𝑎, 𝑏}}, and: 

𝑃2(𝐻) = 𝑃(𝑃(𝐻)) = 𝑃({𝑎, 𝑏, {𝑎, 𝑏}}) =

{𝑎, 𝑏, {𝑎, 𝑏}, {𝑎, {𝑎, 𝑏}}, {𝑏, {𝑎, 𝑏}}, {𝑎, 𝑏, {𝑎, 𝑏}} }. 
 

 

Table 1. Example 1 of classical-type Binary SuperHyperOperation. 

            𝑎 𝑏 

𝑎 {𝑎, {𝑎, 𝑏}} {𝑏, {𝑎, 𝑏}} 

𝑏 𝑎 {𝑎, 𝑏, {𝑎, 𝑏}} 

 

: ( )m

m H P H

* ( )nP H



( )nP H



* ( )nP H

2n 

*

(2, )n

* 2

(2, ) *: ( )n

n H P H

* ( )nP H



* 2 2

(2,2) *: ( )H P H

*

(2,2)
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2) Let 𝐻 = [0, 2] be a continuous set. 

𝑃(𝐻) = 𝑃([0,2]) = {𝐴|𝐴 ⊆ [0, 2], 𝐴 = 𝑠𝑢𝑏𝑠𝑒𝑡}, 

𝑃2(𝐻) = 𝑃(𝑃([0,2])). 

Let 𝑐, 𝑑 ∈ 𝐻. 

 
 

Table 2. Example 2 of classical-type Binary SuperHyperOperation. 

            𝑐 𝑑 

𝑐 {[0, 0.5], [1,2]} {0.7, 0.9, 1.8} 

𝑑 {2.5} {(0.3, 0.6), {0.4, 1.9}, 2} 

4.3 Classical-type m-ary SuperHyperOperation {or more accurate 

denomination (m, n)-SuperHyperOperation} 

Let 𝑈 be a universe of discourse and a non-empty set 𝐻, 𝐻 ⊂ 𝑈. Then: 

 
where the integers 𝑚,𝑛 ≥ 1, 

𝐻𝑚 = 𝐻 × 𝐻 × …× 𝐻⏟          
𝑚 𝑡𝑖𝑚𝑒𝑠

 , 

and is the nth-powerset of the set 𝐻 that includes the empty-set. 

This SuperHyperOperation is a m-ary operation defined from the set H to the nth-

powerset of the set 𝐻. 

4.4 Neutrosophic m-ary SuperHyperOperation {or more accurate denomination 

Neutrosophic (m, n)-SuperHyperOperation} 

Let 𝑈 be a universe of discourse and a non-empty set 𝐻, 𝐻 ⊂ 𝑈. Then: 

 
where the integers 𝑚,𝑛 ≥ 1; - the n-th powerset of the set H that includes the empty-

set. 

6. SuperHyperAxiom 

A classical-type SuperHyperAxiom or more accurately a (m, n)-SuperHyperAxiom 

is an axiom based on classical-type SuperHyperOperations. 

Similarly, a Neutrosophic SuperHyperAxiom {or Neutrosphic (m, n)-

SuperHyperAxiom} is an axiom based on Neutrosophic SuperHyperOperations. 

There are: 

 Strong SuperHyperAxioms, when the left-hand side is equal to the right-hand 

side as in non-hyper axioms, 

 and Week SuperHyperAxioms, when the intersection between the left-hand 

side and the right-hand side is non-empty. 

For examples, one has: 

* 2 2

(2,2) *: ( )H P H

*

(2,2)

*

( , ) *: ( )m n

m n H P H

* ( )nP H

( , ) : ( )m n

m n H P H

( )nP H
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 Strong SuperHyperAssociativity, when (𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘ 𝑧) , for all 

𝑥, 𝑦, 𝑧 ∈ 𝐻𝑚 , where the law  ; 

 and Week SuperHyperAssociativity, when [(𝑥 ∘ 𝑦) ∘ 𝑧] ∩ [𝑥 ∘ (𝑦 ∘ 𝑧)] ≠ , 

for all 𝑥, 𝑦, 𝑧 ∈ 𝐻𝑚 . 

7. SuperHyperAlgebra and SuperHyperStructure 

A SuperHyperAlgebra or more accurately (m-n)-SuperHyperAlgebra is an algebra 

dealing with SuperHyperOperations and SuperHyperAxioms. 

Again, a Neutrosophic SuperHyperAlgebra {or Neutrosphic (m, n)-

SuperHyperAlgebra} is an algebra dealing with Neutrosophic SuperHyperOperations and 

Neutrosophic SuperHyperOperations. 

In general, we have SuperHyperStructures {or (m-n)-SuperHyperStructures}, and 

corresponding Neutrosophic SuperHyperStructures.  

For example, there are SuperHyperGrupoid, SuperHyperSemigroup, 

SuperHyperGroup, SuperHyperRing, SuperHyperVectorSpace, etc. 

8. Distinction between SuperHyperAlgebra vs. Neutrosophic SuperHyperAlgebra 

i. If none of the power sets 𝑃𝑘(𝐻), 1 ≤ 𝑘 ≤ 𝑛, do not include the empty set , 

then one has a classical-type SuperHyperAlgebra; 

ii. If at least one power set, 𝑃𝑘(𝐻), 1 ≤ 𝑘 ≤ 𝑛, includes the empty set , then one 

has a Neutrosophic SuperHyperAlgebra. 

 

9. Conclusion  

A set H (that may represent a group, a society, a country, a continent, etc.) of elements 

(such as: people, objects, and in general any items) is organized onto subsets P(H), and these 

subsets in their turn are again organized onto subsets of subsets P(P(H)), and so on, the nth-

PowerSet of a Set [2] was introduced to better reflect our world. 

The most general form of algebras, which is based on the nth-Powerset of a Set, called 

SuperHyperAlgebra {or more accurate denomination (m, n)-SuperHyperAlgebra} and the 

Neutrososophic SuperHyperAlgebra, and their extensions to SuperHyperStructures and 

respectively Neutrosophic SuperHyperAlgebra in any field of knowledge are recalled.  
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Chapter Two 

 

 
 

A Study on the Properties of AntiTopological Space 

Bhimraj Basumatary1 and Jeevan Krishna Khaklary2 

1Department of Mathematical Sciences, Bodoland University, Kokrajhar, 783370, India 
2Central Institute of Technology, Kokrajhar, 783370, India 
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ABSTRACT 

 In the current study, the properties of Interior, Closure and Boundary points of the antiTopological studies 

have been observed and studied by introducing the ideas of AntiInterior, AntiClosure, and AntiBoundary. It 

has been found that some of the properties that are valid in general topological spaces are also valid in anti-

topological spaces while some of the properties are found to be not valid, as in the case that the AntiInterior of 

a set is not the smallest closed set that contains the set as in the general topological spaces. 

Keywords: AntiInterior, AntiClosure, AntiBoundary, AntiTopological space. 

INTRODUCTION 

General topology is the branch where most of the studies had been done by all the founders of topology 

and the various properties that the subsets of the topology have, like continuity, connectedness, compactness, 

etc. But, most of the properties that have been accepted to be of the topological spaces are, as put forward by 

the ones who defined them, without any actual testing on whether they apply to the real-world situations, 

whether they are true for all cases or whether there may exist some cases where those cases are not applicable 

in general. That is, where the proposal of a fuzzy set came in 1965 by Lofti A. Zadeh [39], and it is where 

elements of a set are assigned degree of membership and degree of non-membership. And, in due course of 

time, the case of neutrosophy had to be ushered in by Florentine Smarandache in 1998. The neutrosophic set 

encompasses three components, namely the truth (T), the indeterminacy (I), and the falsity (F) of a statement 

or a property. Many authors (Sahin et al. [40, 41, 56, 57], Hassan et al. [42], Ulucay et al. [43-45, 48-50], 

Broumi et al. [46]) applied the concepts of the neutrosophic set to various field [58-84]. The present study 

deals with the falsity component of the neutrosophic set. Anti-topological space was defined along with neutro-

topological space by Sahin et al. [25]. 

In recent years, there has been a surge in academic interest in neutrosophic set theory. The concept of 

neutro-structures and anti-structures was first defined by Florentin Smarandache [30, 31]. Also, a lot of 

researchers studied neutroalgebra [51-55].  Şahin et al. [25] discussed the idea of neutro-topological space and 

anti-topological space. Smarandache [33] studied NeutroAlgebra as a generalization of partial algebra. 

Agboola [1-3] investigated the idea of NeutroRings, NeutroGroups, and finite NeutroGroups of type-NG. 
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Smarandache [34] proposed the generalizations and alternatives of Classical Algebraic Structures to 

NeutroAlgebraic Structures and AntiAlgebraic Structures. Al-Tahan et al. [6] studied the 

NeutroOrderedAlgebra, NeutroHyper structures, and their properties.  

Smarandache [30-31] founded and studied the concept of neutro-structures and anti-structures. From 

the concepts of NeutroAlgebra, he showed that if a statement (theorem, lemma, consequence, property, etc.) is 

totally true in a classical Algebra, it does not mean that it is also totally true in a NeutroAlgebra or in an 

AntiAlgebra. It depends on the operations and axioms (if they are totally true, partially true, totally false, or 

partially or totally indeterminate) it is based upon. 

For examples: 

(1) Let (𝐴,∗) be a NeutroAlgebra (it has NeutroOperations or NeutroAxioms while the others are classical 

Operations and classical Axioms, and no AntiOperation and no AntiAxiom). 

Statement: If 𝑥, 𝑦 in 𝐴, then 𝑥 ∗ 𝑦 in 𝐴.  

This statement is true for classical Algebra. 

But for a NeutroAlgebra we have: 

(a) The Statement is true if the operation ∗ is a classical Operation (totally true). 

(b) The Statement is true if the operation ∗ is a NeutroAxiom, 

but x, y both belong to the partially true subset; 

(c) The Statement is false if the operation ∗ is a NeutroAxiom, 

and at least one of x or y belongs to the partially false subset. 

(2) Similarly, for the NeutroGroup. 

Let 𝐴 be a NeutroGroup, and 𝑥 in 𝐴. Then its inverse 𝑥−1 is also in 𝐴. This is true for the classical Group. 

For the NeutroGroup: 

(a) This is true if the inverse element axiom is totally true; 

(b) This is true if the NeutroInverse element axiom is partially true, and x belongs to the true subset; 

(c) This is false otherwise. 

By observing the above concepts, the properties of Interior, Closure and Boundary points of the 

AntiTopological studies have been observed. 

 

BACKGROUND 

 

Definition 2.1: [34] The NeutroSophication of the Law 

(i) Let 𝑋 be a non-empty set and ∗ be binary operation. For some elements (𝑎, 𝑏) ∈ (𝑋, 𝑋), (𝑎 ∗ 𝑏) ∈

𝑋  (degree of well defined (𝑇) ) and for other elements (𝑥, 𝑦), (𝑝, 𝑞) ∈ (𝑋, 𝑋) ; [ 𝑥 ∗ 𝑦  is 

indeterminate (degree of indeterminacy (𝐼)), or 𝑝 ∗ 𝑞 ∉ 𝑋 (degree of outer-defined (𝐹)],where (T, 

I, F) is different from (1,0,0) that represents the Classical Law, and from (0,0,1) that represents the 

AntiLaw. 

(ii) In NeutroAlgebra, the classical well-defined for ∗ binary operation is divided into three regions: 

degree of well-defined (𝑇), degree of indeterminacy (𝐼) and degree of outer-defined (𝐹) similar to 

neutrosophic set and neutrosophic logic. 

Definition 2.2: [25] Let 𝑋 be the non-empty set and 𝜏 be a collection of subsets of 𝑋. Then 𝜏 is said to be a 

NeutroTopology on 𝑋  and the pair (𝑋, 𝜏)  is said to be a NeutroTopological space, if at least one of the 

following conditions hold good: 
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(i) [(∅𝑁 ∈ 𝜏,𝑋𝑁 ∉ 𝜏) 𝑜𝑟 (𝑋𝑁 ∈ 𝜏, ∅𝑁 ∉ 𝜏) ] or [∅𝑁 , 𝑋𝑁 ∈∼ 𝜏]. 

(ii) For some 𝑛 elements 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝜏, ⋂ 𝑎𝑖
𝑛
𝑖=1 ∈ 𝜏 [degree of truth T] and for other 𝑛 elements 

𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝜏, 𝑝1, 𝑝2, … , 𝑝𝑛 ∈ 𝜏; [(⋂ 𝑏𝑖
𝑛
𝑖=1 ∉  𝜏) [degree of falsehood F] or (⋂ 𝑝𝑖

𝑛
𝑖=1  is 

indeterminate (degree of indeterminacy I)], where 𝑛 is finite; where (T, I, F) is different from 

(1,0,0) that represents the Classical Axiom, and from (0,0,1) that represents the AntiAxiom.)]. 

(iii) For some 𝑛 elements 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝜏, ⋃ 𝑎𝑖𝑖=1 ∈ 𝜏 [degree of truth T] and for other 𝑛 elements 

𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝜏, 𝑝1, 𝑝2, … , 𝑝𝑛 ∈ 𝜏; [(⋃ 𝑏𝑖𝑖=𝐼 ∉ 𝜏)  [degree of falsehood F] or (⋃ 𝑝𝑖𝑖=𝐼  is 

indeterminate (degree of indeterminacy I)], where 𝑛 is finite; where (T, I, F) is different from 

(1,0,0) that represents the Classical Axiom, and from (0,0,1) that represents the AntiAxiom.)]. 

 

Remark 2.1: [25] The symbol “∈∼” will be used for situations where it is an unclear appurtenance (not sure if 

an element belongs or not to a set). For example, if it is not certain whether “a” is a member of the set 𝑃, then 

it is denoted by a ∈∼ 𝑃. 

Theorem 2.1: [25] Let (𝑋, 𝜏) be a classical topological space. Then (𝑋, 𝜏 − ∅) is a NeutroTopological space. 

Theorem 2.2: [25] Let (𝑋, 𝜏) be a classical topological space. Then (𝑋, 𝜏 − 𝑋) is a NeutroTopological space. 

Definition 2.3: [34]: The Anti-sophication of the Law (totally outer-defined) 

Let X be a non-empty set and * be a binary operation. For all double elements (𝑥, 𝑦) ∈ (𝑋,𝑋), 𝑥 ∗ 𝑦 ∉ 𝑋 

(totally outer-defined). 

Definition 2.4: [25]: AntiTopological space: Let X be a non-empty set, 𝜏be a collection of subsets of X. If the 

following conditions {i, ii, iii} are satisfied then, 𝜏is called an anti-topology and (X, 𝜏) is called an anti-

topological space. 

i) ∅, 𝑋 ∉ 𝜏 
ii) For all 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛 ∈ 𝜏, ∩𝑖=1

𝑛 𝑞𝑖 ∉ 𝜏, where n is finite. 

iii) For all 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛 ∈ 𝜏, ∪𝑖∈𝐼 𝑞𝑖 ∉ 𝜏, where I is an index set. 

 

MAIN FOCUS OF THE CHAPTER 

Proposition 3.1: In an AntiTopological space. The following conditions (i), (ii), and (iii) are satisfied. 

(i) Empty set and 𝑋 is not AntiOpen. 

(ii) Union of the AntiOpen sets is not AntiOpen. 

(iii) Intersection of the AntiOpen sets is not AntiOpen. 

Examples 3.1: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}  and 𝜏 = {{𝑎, 𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐}}. Then (𝑋, 𝜏) is antiTopological space. 

(i) Here ∅ 𝑎𝑛𝑑 𝑋 are not AntiOpen. 

(ii) {𝑎, 𝑏} ∪ {𝑐, 𝑑} = {𝑎, 𝑏, 𝑐, 𝑑}; {𝑎, 𝑏} ∪ {𝑏, 𝑐} = {𝑎, 𝑏, 𝑐}; {𝑐, 𝑑} ∪ {𝑏, 𝑐} = {𝑏, 𝑐, 𝑑} which are all 

not AntiOpen in (𝑋, 𝜏). 

(iii) Also,{𝑎, 𝑏} ∩ {𝑐, 𝑑} = ∅; {𝑎, 𝑏} ∩ {𝑏, 𝑐} = {𝑏}; {𝑐, 𝑑} ∩ {𝑏, 𝑐} = {𝑐}, which are all not AntiOpen 

in (𝑋, 𝜏). 

Definition 3.1: Let (𝑋, 𝜏) be anAntiTopological space over 𝑋 and 𝐴 is subset on 𝑋. Then, the AntiInterior of 

𝐴 is the union of all AntiOpen subsets of 𝐴. Clearly, AntiInterior of 𝐴 is the biggest AntiOpen set over 𝑋 which 

is contained 𝐴. 
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That is, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = ∪ {𝐵,𝑤ℎ𝑒𝑟𝑒 𝐵 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑎𝑛𝑑 𝐵 ⊆ 𝐴} 

Proposition 3.2: Let (𝑋, 𝜏) be an AntiTopological space over 𝑋 and 𝐴 is subset on 𝑋. If 𝐴 is AntiOpen, then 

𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴. 

Proof: By definition, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = ∪ {𝐵, 𝑤ℎ𝑒𝑟𝑒 𝐵 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑎𝑛𝑑 𝐵 ⊆ 𝐴}.  

If A is AntiOpen, and 𝐵 ⊂ 𝐴 and B is AntiOpen then 𝐴 ∩ 𝐵 = 𝐵 and it will violate the condition (iii) of the 

definition of the AntiTopological Spaces. Hence, 𝐵 ⊄ 𝐴. So 𝐵 = 𝐴. Hence, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴. 

Proposition 3.3: In an AntiTopological space (𝑋, 𝜏), 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∉ 𝜏 if A is not AntiOpen. 

Proof: By definition, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = ∪ {𝐵, 𝑤ℎ𝑒𝑟𝑒 𝐵 𝑖𝑠 𝐴𝑛𝑡𝑖𝑂𝑝𝑒𝑛 𝑎𝑛𝑑 𝐵 ⊆ 𝐴}. 

By Proposition 3.2, if A is AntiOpen, then 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴. If A is not AntiOpen, then either 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) =

∅ or, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐵 ∪ 𝐶, where B and C are AntiOpen. And 𝐵 ∪ 𝐶 cannot be contained in 𝜏 otherwise it will 

violate condition (ii) of the Proposition 3.1. 

Example 3.2: Let 𝑋 = {1,2,3,4}  and 𝜏 = {{1,2}, {2,3}, {3,4}}.  

Let 𝐴 = {1,2,3} , then 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = {1,2} ∪ {2,3} = {1,2,3} ∉ 𝜏. 

And, 𝐴 = {2,4} , then 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = ∅ ∉ 𝜏. 

Observation: From Example 3.2, it is observed that AntiInt(A) is equal to A even if A is not AntiOpen. 

Proposition 3.4: Let (𝑋, 𝜏) be AntiTopological space. Then 

(i) 𝐴 ⊆ 𝐵 ⇒ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) 

(ii) 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) 
(iii) 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∪ 𝐵) 

(iv) 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) = 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) if A is AntiOpen. 

Proof:  

(i) Both A and B cannot be AntiOpen at the same time because in that case A cannot be a subset of 

B. Suppose that A is AntiOpen, and B is not. Then, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴 and 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) = {𝐴 ∪ 𝐶𝑖} 

since 𝐴 ⊆ 𝐵 and A is AntiOpen, where 𝐶𝑖 are AntiOpen. Hence, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) in 

this case. Next, suppose that B is AntiOpen while A is not, then 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) = 𝐵 and 

𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) =∪ {𝐶, 𝐶 is AntiOpen} and 𝐶 ≠ 𝐵 . By Proposition 3.3, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∉ 𝜏 and 𝐴 ⊆

𝐵. The only possibility for this is that 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = ∅. 

(ii) For any A and B, 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵. 

So, we have: 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) and 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) 

Hence, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) 

(iii) For any A and B, 𝐴 ⊆ 𝐴 ∪ 𝐵 and 𝐵 ⊆  𝐴 ∪ 𝐵. 

So, we have: 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∪ 𝐵) and 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∪ 𝐵) 

Hence, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴 ∪ 𝐵) 

(iv) The proof is direct by Proposition 3.2. 

Definition 3.2: Let (𝑋, 𝜏) be an AntiTopological space and a subset 𝐴 of 𝑋 is said to be 𝜏-AntiClosed set if 

and only if its complement 𝐴𝐶  is an AntiOpen set. 
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Proposition 3.5: In an AntiTopological space. The conditions (i) and (ii) are satisfied. 

(i) The intersection of AntiClosed sets isnot AntiClosed. 

(ii) Union of AntiClosed sets is notAntiClosed. 

Definition 3.3: Let (𝑋, 𝜏) be anAntiTopological space over 𝑋 and 𝐴 is subset on 𝑋. Then, the AntiClosure of 

𝐴 is the intersection of all AntiClosed super sets of 𝐴. Clearly, AntiClosure of 𝐴 is not the smallest AntiClosed 

set over 𝑋 containing 𝐴, which is shown in the Proposition 3.6 (ii) below. 

That is, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) =∩ {𝐺: 𝐺 ⊇ 𝐴 and 𝐺 is AntiClosed} 

Example 3.3: Let 𝑋 = {1,2,3,4,5}   and 𝜏 = {{1}, {2}, {3}, {5}} . Then, the AntiClosed sets are: 

{2,3,4,5}, {1,3,4,5}, {1,2,4,5}  and {1,2,3,4} . Let 𝐴 = {1,2}, then 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) = {1,2,4,5} ∩ {1,2,3,4} =

{1,2,4}. 

Proposition 3.6: Let (𝑋, 𝜏) be an AntiTopological space. Then  

(i) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) is not the smallest AntiClosed set containing 𝐴. 

(ii) If 𝐴 is AntiClosed, then 𝐴 = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴). 

Proof: 

(i) We prove it by a counter example. Let 𝑋 = {1,2,3,4,5}  and 𝜏 = {{1}, {2}, {3}, {5}}. Then, the AntiClosed 

sets are: {2,3,4,5}, {1,3,4,5}, {1,2,4,5}  and {1,2,3,4} . Let 𝐴 = {1,2}, then 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) = {1,2,4,5} ∩

{1,2,3,4} = {1,2,4} which is not AntiClosed.  

We may consider another example by considering A as an AntiOpen set, say 𝐴 = {1}, then 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) =

{1,3,4,5} ∩ {1,2,4,5} ∩ {1,2,3,4} = {1,4} which is also not AntiClosed.  

Thus, AntiClosure of 𝐴 is not the smallest AntiClosed set over 𝑋 containing 𝐴. 

(ii) Proof is obvious from the definition of anti-topology. 

Proposition 3.7: Let (𝑋, 𝜏) be AntiTopological space and let 𝐴, 𝐵 ⊆ 𝑋. If B is AntiClosed, then 

(i) 𝐴 ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 

(ii) 𝐴 ⊆ 𝐵 ⟹ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) 
(iii) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∪ 𝐵) 

(iv) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∩ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) 

(v) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) 

Proof:  

(i) By definition, we have 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) is a set containing A. So, 𝐴 ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 

(ii) If 𝐵 is closed then, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) = 𝐵. Thus, 𝐴 ⊆ 𝐵 ⇒ A ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) which give, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ⊆
𝐴𝑛𝑡𝑖𝐶𝑙(𝐵). 

(iii) 𝐴 ⊆ 𝐴 ∪ 𝐵 ⇒ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∪ 𝐵)  by (i) above. Also, 𝐵 ⊆ 𝐴 ∪ 𝐵 ⇒ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) ⊆

𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∪ 𝐵) by (i) above. Hence, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∪ 𝐵) 

(iv) 𝐴 ∩ 𝐵 ⊆ 𝐴 ⇒ AntiCl(A ∩ B) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) by (i) above. Also, 𝐴 ∩ 𝐵 ⊆ 𝐵 ⇒ AntiCl(A ∩ B) ⊆

𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) by (i) above. Hence, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∩ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵). 

(v) Since B is AntiClosed, we have 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) = 𝐵. So, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) 

Remark 3.1: In Proposition 3.7, if B is not AntiClosed then the results are not generally true. It is because the 

AntiClosure of every subset of X will not always exist because X is not AntiClosed. 
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Proposition 3.8: Let (𝑋, 𝜏) be AntiTopological space and let 𝐴 ⊆ 𝑋. Then 

(i) 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
, if A is AntiOpen. 

(ii) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) = (𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴))
𝐶
, if A is AntiOpen. 

(iii) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) = (𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝐶))
𝐶
, if A is AntiClosed. 

(iv) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 

Proof:  

(i) Let 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ⇒ 𝑥 ∈ 𝐴 ⇒ 𝑥 ∉ 𝐴𝐶 ⇒ 𝑥 ∉ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) ⇒ 𝑥 ∈ (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
. 

Hence, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ⊆ (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
. 

Conversely, let 𝑥 ∈ (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
⇒ 𝑥 ∉ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) ⇒ 𝑥 ∉ 𝐴𝐶 ⇒ 𝑥 ∈ 𝐴.  

Hence, 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴). So, (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
⊆ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴). 

(ii) Let 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) ⇔ 𝑥 ∈ 𝐴𝐶 ⇔ 𝑥 ∉ 𝐴 ⇔ 𝑥 ∉ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ⇔ 𝑥 ∈ (𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴))
𝐶
. 

  Hence, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) = (𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴))
𝐶
. 

(iii) Let 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ⇔ 𝑥 ∈ 𝐴 ⇔ 𝑥 ∉ 𝐴𝐶 ⇔ 𝑥 ∉ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝐶) ⇔ 𝑥 ∈ (𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝐶))
𝐶
.  

Hence, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) = (𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝐶))
𝐶
. 

(iv) Let 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) ⟺ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ⟺ 𝑥 ∈ 𝐴⟺ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴). 

Hence, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴). 

Definition 3.4: Let (𝑋, 𝜏) be an AntiTopological space over 𝑋 and 𝐴 is subset on 𝑋. Then AntiBoundary of 𝐴 

is defined as 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶). 

Example 3.4: Let 𝑋 = {1,2,3,4}  and 𝜏 = {{2}, {3}}. Then, the AntiClosed sets are: {1,3,4} and {1,2,4}. 

Let 𝐴 = {3}, then 𝐴𝑐 = {1,2,4}. Now, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) = {1,3,4} and 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) = {1,2,4}. So, the 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) =

𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) = {1,3,4} ∩ {1,2,4} = {1,4}. 

Proposition 3.9: Let (𝑋, 𝜏) be Anti-Topological space and let 𝐴,𝐵 ⊆ 𝑋. Then  

(i) 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) 
(ii) 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴 − 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) 

(iii) 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝐶) = [𝐴𝑛𝑡𝑖𝐵𝑑(𝐴)]𝐶 

(iv) 𝐴𝑛𝑡𝑖𝐵𝑑(𝐼𝑛𝑡(𝐴)) = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) 

(v) 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴)) ⊆ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) 

(vi) 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴 ∪ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐵) 
(vii) 𝐵𝑑(𝐴 ∩ 𝐵) ⊆ 𝐵𝑑(𝐴) ∪ 𝐵𝑑(𝐵). 

 

Proof: 

(i) Let 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) 

Now, 
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𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)   

⇔ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 𝑎𝑛𝑑 𝑥 ∉ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)  

⟺ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 𝑎𝑛𝑑 𝑥 ∉ 𝐴  

⟺ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 𝑎𝑛𝑑 𝑥 ∈ 𝐴𝐶  

⟺ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 𝑎𝑛𝑑 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)  

⟺ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)   

⟺ 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

Hence, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

(ii) Let 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) 

Now,  

𝑥 ∈ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)  

⟺ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐴𝐶   

⟺ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) 𝑎𝑛𝑑  𝑥 ∉ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)  

⟺ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴)  

⟺ 𝑥 ∈ 𝐴 − 𝐵𝑑(𝐴)  

Hence, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴 − 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

(iii) From definition, we have 

𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)  

⟺ [𝐴𝑛𝑡𝑖𝐵𝑑(𝐴)]𝐶 = [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)]𝐶  

⟺ [𝐴𝑛𝑡𝑖𝐵𝑑(𝐴)]𝐶 = [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴)]𝐶 ∪ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)]𝐶  

⟺ [𝐴𝑛𝑡𝑖𝐵𝑑(𝐴)]𝐶 = 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝐶) ∪ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴), by Proposition 3.8. 

Hence, 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴𝐶) = [𝐴𝑛𝑡𝑖𝐵𝑑(𝐴)]𝐶 

(iv) 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙 [(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴))
𝐶
] [by Proposition 3.8 (i)] 

= 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙 [{(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
}
𝐶

] [𝑎𝑠 (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
= 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)] 

= 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)[𝑎𝑠 (𝑃𝐶)𝐶  

= 𝑃 𝑎𝑛𝑑 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐶𝑙(𝑃)) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝑃), for any set P  

= 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) [by Proposition 3.8 (iv)] 

= 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴)   [by definition] 

Hence, 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴)) = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

(v) 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴)) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴)) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙 [(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴))
𝐶
] 

Now, 𝐴 ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ⇒ (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴))
𝐶
⊆ 𝐴𝐶  

⇒ 𝐴𝑛𝑡𝑖𝐶𝑙 [(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴))
𝐶
] ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) [𝐴 ⊆ 𝐵 ⇒ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)] 

Hence, 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴)) ⊆ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) 

i.e., 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴)) ⊆ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

(vi) 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴 ∪ 𝐵) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∪ 𝐵) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∪ 𝐵)𝐶  

 ⊆ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)] ∩ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)]  

= [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ {𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)}] ∪ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) ∩ {𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)}] 

= [{𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)} ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)] ∪ [{𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)} ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)] 

 = [𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)] ∪ [𝐴𝑛𝑡𝑖𝐵𝑑(𝐵) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)]  

 ⊆ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐵)  

Hence, 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴 ∪ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐵). 
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(vii) 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴 ∩ 𝐵) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴 ∩ 𝐵) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙[(𝐴 ∩ 𝐵)𝐶] 

      ⊆ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)] ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶 ∪𝐵𝐶)  

      = [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)] ∩ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶) ∪ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)]  

      = [{𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)} ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)] ∪ [{𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)} ∩

𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)]  

      = [{𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)} ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)] ∪ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ {𝐴𝑛𝑡𝑖𝐶𝑙(𝐵) ∩

𝐴𝑛𝑡𝑖𝐶𝑙(𝐵𝐶)}]  

      = [𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐵)] ∪ [𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐵)]  

      ⊆ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐵)  

Hence, 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴 ∩ 𝐵) ⊆ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) ∪ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐵).  

Proposition 3.10: Let (𝑋, 𝜏) be AntiTopological space and let 𝐴 ⊆ 𝑋. If  𝐴 is AntiOpen, then 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) −

𝐴 = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) 

Proof: Since 𝐴 is AntiOpen, therefore 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = 𝐴 [from Proposition 3.2]  

and 𝐴𝑛𝑡𝑖𝐼𝑛𝑡(𝐴) = (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
 [from Proposition 3.8 (i)] 

𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐴 = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐼𝑛𝑡(𝐴)  

           = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − (𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶

  

          = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ {(𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶))
𝐶
}
𝐶

  

          = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝐶)  

          = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

Hence 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐴 = 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

Remark 3.2: If the subset A of X is not AntiOpen, then the equality in Proposition 3.10 may not hold. We will 

show it by an example:  

Let 𝑋 = {1,2,3,4,5}  and 𝜏 = {{3}, {1,2}, {1,4}, {4,5}}. 

The AntiClosed sets are: {1,2,4,5}, {3,4,5}, {2,3,5}, {1,2,3}. 

Let A= {1,3}, then 𝐴𝑐 = {2,4,5}.  

Now, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) = {1,2,3} and 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑐) = {1,2,4,5}.  

So, 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴) = 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) ∩ 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴𝑐) = {1,2}. 

Now, 𝐴𝑛𝑡𝑖𝐶𝑙(𝐴) − 𝐴 = {1,2,3} − {1,3} = {2} ≠ 𝐴𝑛𝑡𝑖𝐵𝑑(𝐴). 

Conclusion  

In this study, it is observed that many properties of AntiTopological space are not the same as general 

topological space and NeutroTopological Spaces. Then we have investigated the properties of the interior, 

closure, and boundary of AntiTopological spaces. Hope our work will help in further study of AntiTopological 

space. This may lead to a new beginning for further research on the study of Topological space.  
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ABSTRACT 

 The aim of this article is to introduce a -neutrosophic crisp -irresolute, completely -neutrosophic 

crisp -irresolute and completely weakly -neutrosophic crisp -irresolute functions in a -neutrosophic 

crisp topological space and also discuss a relation between them in -neutrosophic crisp topological spaces. 

We also investigate some of their properties using these -neutrosophic crisp -irresolute functions via -

neutrosophic crisp -continuous function in -neutrosophic crisp topological spaces. Also, we interact with 

separation axioms and open mapping functions using these -neutrosophic crisp -irresolute functions. 

Keywords: -neutrosophic crisp -open set, -neutrosophic crisp -irresolute, completely -neutrosophic 

crisp -irresolute, completely weakly -neutrosophic crisp -irresolute. 

INTRODUCTION 

In our daily routine, we have used the crisp sets in most of our life. The concepts of neutrosophy and 

neutrosophic set are the recent tools in a topological space. It was first introduced by Smarandache [14, 15] in 

the beginning of   century. In 2014, Salama, Smarandache and Kroumov [12] has provided the basic 

concept of neutrosophic crisp set in a topological space. After that Al-Omeri [1] also investigated some 

fundamental properties of neutrosophic crisp topological Spaces. Al-Hamido [9] explore the possibility of 

expanding the concept of neutrosophic crisp topological spaces into -topology and investigate some of their 

basic properties in -terms. By using -terms of topological spaces, we can define , ,…, .  

In 1996, Andrijevic [2] introduced -open sets and develop some of their works in general topology. 

The notion of -open set (originally called γ-sets) in topological spaces was introduced by Min [7] and worked 

mailto:avmaths@gmail.com
mailto:johnphdau@hotmail.com
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in the field of general topology. Vadivel and John Sundar [24] presented γ-open sets in neutrosophic crisp 

topological spaces via -terms of topology. 

The strong and weak forms of continuous functions are introduced by Levine in 1960 [6] and also 

introduced in strong continuity in topological spaces. In 1967, Naimpally [8] also discussed strongly 

continuous functions in a topology. In recent years, the academic community has witnessed growing research 

interests in neutrosophic set theory [3-5,10,11,17-23,31-59] and Vadivel et al. [26, 27, 28, 30] introduced some 

strongly continuous functions in  topological spaces.  

The chapter is organized as follows: In section 2, introduces some concepts and basic operations are 

reviewed. In section 3, we extend the continuous functions into a irresolute functions such as -neutrosophic 

crisp γ-irresolute function in  and investigates their properties. In section 4, presents a completely -

neutrosophic crisp γ-irresolute function in . In section 5, study a completely weakly -neutrosophic crisp 

γ-irresolute functions in . Finally, Conclusions and further research are contained. 

BACKGROUND 
 

Definition 1 [13] For any non-empty fixed set , a neutrosophic crisp set (briefly, ) , is an object 

having the form    where ,  &  are subsets of    satisfying any one of the types  

(T1) ,  & ,  , . 

(T2) ,  & ,  , . 

(T3)  & ,  . 

Definition 2 [13] Types of 's  and  in  are as 

(i)  or  or 〈∅,X,∅〉 or 〈∅,∅,∅〉. 

(ii)  or  or  or . 

Definition 3 [13] Let  be a non-empty set & the 's  &  in the form , 

, then 

(i)   ,  &  or ,  & . 

(ii)  =  or    

(iii)  =  or . 

Definition 4 [13] Let  a  on , then the complement of  (briefly, ) may be defined in 

three different ways: 

(C1) , or 

(C2) , or 

(C3) . 

Definition 5 [9] Let  be a non-empty set. Then , , …,  are -arbitrary crisp topologies 

defined on  and the collection  is called -topology on  is 
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and it satisfies the following axioms: 

(i) ,   . 

(ii)    ∀   . 

(iii)    ∀   . 

Then  is called a -topological space (briefly, ) on X. The -open sets ( ) are the 

elements of  in  and the complement of  is called -closed sets ( ) in . The elements of 

 are known as -sets ( ) on . 

Definition 6 [9] Let  be  on  and  be a  on , then the  interior of  (briefly, 

) and  closure of  (briefly, ) are defined as 

   is a  

   is a . 

Definition 7 [9] Let  be any . Let K be a  in . Then  is said to be a -

neutrosophic crisp 

(i) regular open [24] set (briefly, ) if . 

(ii) pre open set (briefly, ) if .  

(iii) semi open set (briefly, ) if . 

(iv) -open set (briefly, ) if . 

(v) -open [24] set (briefly, ) set if . 

 The complement of a  (resp. , ,  & ) is called a  pre (resp. 

 semi, , -regular & ) closed set (briefly,  (resp. , ,  & 

)) in . 

 The family of all  (resp. , , , , ,  & ) of 

 is denoted by  (resp. , , , , , 

 & ). 

Definition 8 [24] Let  be a  on  and  be a  on  then 

(i)    and  is a . 

(ii)    and  is a . 

Definition 9 Let  and  be any two 's. A map  is said 

to be  

(i)  (resp. )-continuous (briefly,  [16] (resp.  [30])) if the inverse image of 

every  in  is a  (resp. ) in . 
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(ii) strongly  continuous (briefly,  [28]) function if the inverse image of every subset in 

 is -neutrosophic crisp clopen (i.e both  and ) (briefly, ) in . 

(iii) completely  continuous (briefly,  [28]) function if the inverse image of every  

in  is  in . 

Definition 10 [28] A   is said to be -  if for each pair of distinct points  and  of , 

there exist  sets  and  such that  and ,  and . 

Definition 11 [28] A   is said to be -  for each pair of distinct points  and  of , there 

exist  sets  and  in  such that  and . 

-Neutrosophic Crisp -Irresolute Functions 

Definition 12 Let  and  be any two 's. A map  is 

said to be -irresolute function (briefly, ), if for the inverse image of every  in  

is a  in .  

Theorem 13 Let  be a mapping, if , then  is .  

Proof: Let  be  in , then  is  in , since every  is . By hypothesis,  is 

. Therefore  is . 

Remark 14 The converse of the above theorem need not be true as shown in the following example. 

Example 15 Let , , . 

, , , then we 

have . , . 

, , , then we 

have . 

 Define  as , , ,  & 

, then  mapping but not  mapping, the set 

 is a  in  but not  in . 

Theorem 16 A function  is  if and only if for every   in , 

 is  in .  

Proof: Follows from the fact that the complement of  is  and vice versa. 

Theorem 17 If  and  are both , then 

 is . 

Proof: Let  be  in . Then  is  in , since  is  and 

 is  in , since  is . Hence  is . 

Theorem 18 (i) If  is  and  is 

, then  is . 

(ii) If  is  and  is , 

then  is . 
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Proof: (i) Let  be  in . Then,  is  in , since  is  & 

 is  in , since  is . Hence  is . 

(ii) Let  be  in . Then,  is  in , since  is  & 

 is  in , since  is . Hence  is . 

 

 

 

Completely -neutrosophic crisp  irresolute functions 

Definition 19 Let  and  be any two 's. A map  is 

said to be Completely -neutrosophic crisp  irresolute (briefly, ) if the inverse image of every 

 of  is  in . 

Remark 20 The following implications are true. 

 

But not converse as shown by the following examples. 

Example 21 Let , , . , then 

we have . Define  as ,  & , 

then it is  but not , the set  is a  

but not  in . 

Example 22 Let , , . 

, , , then we have 

. Define  as , ,  & 

, then it is  but not , the set 

 is a  but not  in . 

Theorem 23 Let  be a function, then statements  

(i)  is , 

 (ii)  for every   of , 

 (iii)  for every   of , 

 (iv)  for every   of , 

 (v)  is  in  for each   in , 

 (vi)  is  in  for each   in  

are equivalent. 

Proof: (i)  (ii): Let  and . 
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 (ii)  (iii): Let .  

   

                                 

                              

 

 

 (iii)  (iv): Let . 

   

    

 

(iv)  (v): Let . 

  

 

 

                    

 (v)  (vi): Obvious. 

(vi)  (i): Let  and . 

  

               

Theorem 24 Let  be a bijective function, then statements 

(i)  is , 

(ii)  for every  of  

are equivalent. 

Proof: (i)  (ii): Let . 
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  is bijection 

  

  

 (ii)  (i): Let . 

   

is bijection 

 

  

Lemma 25 Let  be a  of a  . Then the following hold: 

(i) If  is  in , then so is  in the subspace , 

(ii) If  is  in , then there exists a   in  such that .  

Theorem 26 If  is a  function and  is any  of , then the 

restriction  is .  

Proof: Let .  

. Since , by Lemma 25 

 

Lemma 27 Let  be a function and  be a  of . Then  is  in 

 for each   of . 

Theorem 28 If  is a  function and  is  of , then 

 is .    

Proof: It is similar to the proof of Theorem 26. 

Theorem 29 Let  and  be two functions. Then 

the following hold. If  

(i)   is  and  is , then  is , 

(ii)  is  and  is , then  is , 

(iii)  is  and  is , then  is .  

Proof: Straightforward. 

Definition 30 A   is said to be  -  if for each pair of distinct points  and  of , there 

exist ’s  and  such that  and ,  and . 

Theorem 31 If  is  injection and  is  - , then  is - . 

Proof: Let ,  and .  
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         is  -  

     

 

Since,  is injective and , then we have  is - . 

Definition 32 A   is said to be -  for each pair of distinct points  and  in , there exist 

disjoint  sets  and  in  such that  and . 

Theorem 33 If  is  injection and  is - , then  is - . 

Proof: Let ,  and . 

  ,  is -    

 

  

Since,  is injective and , then we have  is - .  

Theorem 34 Let  be a -  space. If  &  are , then the set 

 

Proof: Let  

 ,  is -   

     ,  

      

 and  are   

      

      

Then  is  in .  

Theorem 35 Let  be a -  space. If  is , then the set 

 

Proof: . 

 ,  is -   

     ,  

      is  
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Then  is  in . 

 

Completely Weakly -neutrosophic crisp  irresolute function 

Definition 36 A function  is said to be completely weakly -irresolute 

(briefly, ) if for each  and for any   containing , there exists a   

containing  such that   

Remark 37 The following implications are true. 

 

But not converse as shown by the following examples. 

Example 38 In Example 22, then it is  

(i)  but not , the set  is 

a  but not  in . 

(ii)  but not , the set  

 is a  and  is a . 

Theorem 39 Let  be a function, then statements 

(i) ρ is , 

(ii)  for every   of , 

(iii)  for every   of , 

(iv)  for every   of , 

(v)  is  in  for each s  in , 

(vi)  is  in  for each   in  

are equivalent. 

Proof: (i)  (ii): Let  and  

   

            

           

           

(ii)  (iii): Let . 
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 (iii)  (iv): Let . 

   

  

  

(iv)  (v): Let . 

   

  

  

  

 (v)  (vi): Obvious.  

(vi)  (i): Let  and  

   

                

Theorem 40 Let  be a bijective function, Then statements  

(i)  is , 

(ii)  for every  of  

are equivalent. 

Proof: (i)  (ii): Let . 

  

,  \ is bijection  

  

      

(ii)  (i): Let . 
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is bijection  

 

 

Theorem 41 Let  and  be any two functions such 

that . Then the following statements hold: 

(i) If  is  and  is , then   is , 

(ii) If  is  and  is , then  is , 

(iii) If  is  and  is , then  is , 

(iv) If  and  are , then  is , 

(v) If  is  and  is , then  is , 

(vi) If  is  and  is , then  is , 

(vii) If  is  and  is , then  is , 

(viii) If  is  and  is , then  is . 

Proof: Straightforward. 

Definition 42 A mapping  is -open (briefly, ) if the image of every 

 in  is a  in . 

Definition 43 A function  is said to be almost -open (briefly, ) if the 

image of every  in  is a  in . 

Theorem 44 If  is  surjection and  is any 

function such that  is , then  is . 

Proof: Let . 

 ,  is a    

 

Theorem 45 If  is  surjection and  is any 

function such that  is , then  is . 

Proof: Let . 

  is a  surjection 
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Conclusions 

In this chapter, a new type of -irresolute map, completely -irresolute function and completely weakly 

-irresolute function in  are presented and analyzed the difference between these maps. This can be 

improved to -open mapping function, -closed mapping function, -homeomorphism functions 

of  are the further research areas can be covered in future tasks. In addition, authors hope that to 

investigate further on some fundamental properties between these new notions with separation and covering of 

-open set in a -neutrosophic crisp topological space.  

Future Research Directions   

Using these -irresolute map, completely -irresolute function and completely weakly -

irresolute function of -open set in , try to relate and properties to -open mapping and -

closed mapping functions of -open set. 
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ABSTRACT 

Anti-topological spaces have been defined by Şahin, Kargın and Yücel in 2021. They investigated some 

relationships and connections between these structures and so-called neutro topological spaces which they 

introduced in the same paper. Recently, we have extended their research by analyzing the notions of interior, 

closure, continuity, doorness, density and nowhere density in anti-topological setting. In the present chapter 

we attempt to compile previous information on density and to add some statements on rare sets. Moreover, we 

give some new examples of anti-topological spaces. Some other general theorems are presented too. 

Keywords: Anti-topological spaces, Neutro-topological spaces, Generalized weak structures, Generalized 

topology.  

INTRODUCTION 

Anti-topological spaces have been introduced by Şahin, Kargın and Yücel in [12]. The most striking difference 

between topologies (or supra and infra topologies, minimal structures or weak structures|) and anti-topologies 

is that the former are based on the idea of closure of a family of sets under some operations (like finite 

intersections and arbitrary unions) and on the assumption that some special sets (like empty set and the whole 

universe) must be considered as open, while the latter concentrate on exclusion. This is clear from their 

definition: our family of subsets can be called anti-topology if we have a guarantee that any finite intersection 

and any union of its elements is beyond this family. Of course we do not mean trivial intersections and unions, 

e.g. those in which a single set is intersected or joined with itself. Moreover, both the empty set and the whole 

universe are excluded.  

We may investigate many classical topological notions in this new context. We have already examined some 

basic properties of (anti-) closure, interior, continuity, doorness, density and nowhere density in [23]. In 

general, it is always an interesting question: which of the standard features and properties remain the same 

when we replace topology with some other structure (maybe more general or just changed in some way)? 
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In this chapter we would like to gather some earlier results on density and nowhere density in anti-topological 

spaces. Moreover, we want to define and investigate the notion of rarity in this new setting. Finally, there are 

also some additional facts on interior and closure stated. 

One should emphasize the fact that Şahin et al. examined anti-topologies together with neutro-topological 

spaces. Besides, they are something different than, say, neutrosophic crisp topological spaces defined by 

Salama et al. in [14].  

Neutrosophy, founded by Smarandache, is a branch of science which extends the idea of fuzzy sets and gives 

some new concepts of uncertainty and ambiguity. Clearly, this line of research (namely, the connection between 

anti-topologies and neutrosophic sets) should also be studied.  

Note that nowadays there are many new trends in neutrosophic studies. Some of them are largely concentrated 

on practical applications in multi-criteria decision making (see [4], [5], [13], [15], [17 - 19], [21],[25-52]). 

Other papers deal with pattern recognition (see [6]) and even medical diagnosis (see [16]). However, there are 

also purely mathematical and theoretical considerations (see [20]).  

On the same principle, one can imagine the potential use of anti-topological spaces in decision making or data 

clustering. The idea of exclusion outside the family of distinguished sets should be studied in these contexts. 

Moreover, even if anti-topologies in their basic form are crisp, then it is still possible to reintroduce them in 

fuzzy, vague, neutrosophic or soft environment. Furthermore, one can think about measuring the grade of anti-

openness and exclusion by applying the idea of smooth topological space (as it was presented in, say, [22] and 

other articles, starting from the initial research of Badard from 1986).  

Finally, we may point out that the general idea of “anti-structures” (that is, various algebraic structures obtained 

by the assumption that some traditionally accepted conditions have been rejected) is now studied extensively. 

The reader may check papers [7 - 11].  

 

BACKGROUND AND SOME INITIAL NOTIONS 

First, let us define anti-topological spaces. The definition below is taken from our paper [23]. In general, it is 

based on the definition from [12] but with some small adjustments.  

Definition 1. [23] Let 𝑋 be a non-empty universe and 𝑇 be a collection of subsets of 𝑋 . We say that (𝑋, 𝑇) is 

an anti-topological space if the following conditions are satisfied: 

1. ∅, 𝑋  ∉  𝑇 . 

2. For any 𝑛 ∈ ℕ , if 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝑇, then ⋂ 𝐴𝑖
𝑛
𝑖=1 ∉ 𝑇. We assume that the sets in question are 

not all identical (later we will call such families non-trivial). 

3. For any collection {𝐴𝑖}𝑖∈𝐽≠∅  such that 𝐴𝑖 ∈ 𝑇 for each 𝑖 ∈ 𝐽 , ⋃ 𝐴𝑖𝑖∈𝐽 ∉ 𝑇. We assume that the sets 

in question are not all identical. 

The elements of 𝑇 are called anti-open sets, while their complements are anti-closed sets. The set of all anti-

closed sets (with respect to some particular 𝑇 ) will be denoted by 𝑇𝐶𝑙  .  

One can check in [23] (Lemma 2.5, Lemma 2.6, Lemma 2.7) that anti-topology excludes not only finite but, in 

fact, arbitrary intersections. Moreover, conditions (2) and (3) from Definition 1 are equivalent. Finally, both 

these conditions hold for anti-closed sets too (see Lemma 2.8 and Lemma 2.9 in [23]).  
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Let us show some examples of anti-topological spaces. The first one is taken from [12], the rest is our own 

invention. The vast majority of them has been already presented in [23] (with some additional reflections which 

have been omitted here).  

Example 2. (Compare [12] and [23]). The following structures are anti-topological spaces:  

1. 𝑋  =  {1,  2,  3,  4} and 𝑇 = {{1,2}, {2,3}, {3,4}}. 

2. 𝑋  = {1,2} and 𝑇 = {{1}, {2}}. 

3. 𝑋 = {𝑎, 𝑏, 𝑐}  and 𝑇 = {{𝑎, 𝑏}, {𝑐}}. Note that adding 𝑋 and ∅ to this family transforms it into 

topology. 

4. 𝑋 = {𝑎,  𝑏,  𝑐,  𝑑,  𝑒,  𝑓} and 𝑇 = {{𝑎, 𝑏}, {𝑐, 𝑑}, {𝑒}}. 

5. 𝑋 = ℕ+and 𝑇𝑘 consists only of these finite subsets of 𝑋  which have cardinality 𝑘 , where 𝑘  is a 

fixed positive natural number. 

6. 𝑋 = ℕ+and 𝑇 = {{1}, {2}, {3}, … }. This is a special case of the anti-topology introduced in the 

previous point. Clearly, this is just 𝑇1 (not to confuse with 𝑇1 separation axiom). 

7. 𝑋 = ℝ and 𝑇𝑦 contains only these closed intervals which have length 𝑦 , where 𝑦  is a fixed positive 

real number. 

8. 𝑋 is arbitrary and 𝑇 = {𝐴, 𝑋- A}for some distinguished set 𝐴 ≠ ∅ . 

9. 𝑋 = ℝ and 𝑇 = {ℝ−, ℝ+}. 

10. 𝑋 = ℕ and 𝑇 = {{1,2}, {2,3}, {3,4}, {4,5}, … }. 

11. Let 𝑋 = ℝ2 with usual Euclidean metric. We may define 𝑇𝑟  as the set of all these closed balls which 

have radius 𝑟 > 0 . 

12. Let 𝑋 = ℝ+and 𝑇 = {(0,1), {1}, (1,2), {2}, (2,3), {3}, … }. 

13. Let 𝑋 = ℝ and 𝑇 be the family of all those subsets of ℝ which are of the form 𝐴 = ℝ− {𝑥}for some 

real 𝑥 . Now assume that 𝐴,  𝐵  ∈ 𝑇 and they are different. That is 𝐴 = ℝ− {𝑥},  𝐵 = ℝ − {𝑦} for 

some 𝑥, 𝑦 ∈ ℝ such that 𝑥 ≠ 𝑦 . Then: 

 𝐴 ∩ 𝐵 = (ℝ − {𝑥}) ∩ (ℝ − {𝑦}) = (ℝ ∩ ℝ) − ({𝑥} ∪ {𝑦}) = ℝ− {𝑥, 𝑦} ∉ 𝑇 . We used the 

following identity here: (𝐸 − 𝐹) ∩ (𝐺 − 𝐻) = (𝐸 ∩ 𝐺) − (𝐹 ∪ 𝐻). 

Now assume that {𝐴𝑖}𝑖∈𝐽≠∅is a non-trivial family of members of 𝑇 . Consider ⋃ 𝐴𝑖𝑖∈𝐽 . It is enough 

to discuss any two members of our family, say 𝐴 = ℝ− {𝑥},  𝐵 = ℝ− {𝑦},  𝑥 ≠ 𝑦. Now 𝐴 ∪ 𝐵 ⊆ ⋃ 𝐴𝑖𝑖∈𝐽  

and (according to the basic properties of set difference) 𝐴 ∪ 𝐵 = (ℝ − {𝑥}) ∪ (ℝ − {𝑦}) = ℝ −

({𝑥} ∩ {𝑦}) = ℝ − ∅ = ℝ. Here we used this identity: (𝐸 − 𝐹) ∩ (𝐸 − 𝐺) = 𝐸 − (𝐹 ∩ 𝐺). 

Hence, 𝐴 ∪ 𝐵 = ℝ ⊆ ⋃ 𝐴𝑖𝑖∈𝐽 = ℝ ∉ 𝑇. Clearly, ∅ ∉ 𝑇 . This structure may be called co-singleton 

anti-topology. Note that adding 𝑋 and ∅ to this family transforms it into strong generalized topology in the 

sense of Császár.  

 

One can prove that: 

Lemma 3. The intersection of two anti-topological spaces on the same universe is an anti-topological space 

too. 

Proof. Suppose that 𝑇, 𝑆 are two anti-topologies on the same universe 𝑋 . Consider 𝑊 = 𝑇 ∩ 𝑆 . Let 

𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝑊. In particular, it means that each of these sets belongs to 𝑇 (without loss of generality). 
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Clearly, ⋂ 𝐴𝑖
𝑛
𝑖=1  ∉ 𝑇 , hence ⋂ 𝐴𝑖

𝑛
𝑖=1 ∉ 𝑇 ∩ 𝑆 = 𝑊. Now consider {𝐴𝑖}𝑖∈𝐽≠∅such that 𝐴𝑖 ∈ 𝑊for any 𝑖 ∈

𝐽 . Hence 𝐴𝑖 ∈ 𝑇 ∩ 𝑆for any 𝑖 ∈ 𝐽 and (without loss of generality) 𝐴𝑖 ∈ 𝑇. But then⋃ 𝐴𝑖𝑖∈𝐽 ∉ 𝑇. All the 

more it does not belong to 𝑇 ∩ 𝑆 = 𝑊 . Clearly, ∅, 𝑋 ∉ 𝑊 because they do not belong neither to 𝑇 . Note 

that according to our previous mention it was enough to check that 𝑊 excludes intersections (or unions). 

Lemma 4. The union of two anti-topological spaces on the same universe need not to be an anti-topological 

space. 

Proof.  Consider the following counter-example: 𝑋 = {𝑎,  𝑏,  𝑐,  𝑑,  𝑒},  𝑇  =  {{𝑎}, {𝑏}, {𝑐}},  𝑆 =

{{𝑏, 𝑐}, {𝑎, 𝑒}}. Then let us think about 𝑊 = 𝑇 ∪ 𝑆 . This is not anti-topology because {𝑎} ∩ {𝑎, 𝑒} = {𝑎} ∈

𝑊. Analogously, {𝑏} ∪ {𝑐} = {𝑏, 𝑐} ∈ 𝑊. 

We would like to recall one lemma from [23] which is simple but, in some sense, important. 

Lemma 5. [23] Assume that (𝑋, 𝑇) is an anti-topological space, 𝐵 ∈ 𝑇  and 𝐴 ⊆ 𝐵 . Suppose that 𝐴 ≠ 𝐵 . 

Then 𝐴 ∉ 𝑇 . 

Now we may introduce anti-interior and anti-closure.  

Definition 6. [23] Assume that (𝑋, 𝑇) is an anti-topological space and 𝐴 ⊆ 𝑋 . Then we define anti-interior 

of 𝐴  (that is, 𝑎𝐼𝑛𝑡(𝐴)) and its anti-closure (namely, 𝑎𝐶𝑙(𝐴)) as follows: 

1. 𝑎𝐼𝑛𝑡(𝐴) = ⋃  {𝑈;  𝑈 ⊆ 𝐴,  𝑈 ∈ 𝑇} 

2. 𝑎𝐶𝑙(𝐴) = ⋂  {𝐹;  𝐴 ⊆ 𝐹,  𝐹 ∈ 𝑇𝐶𝑙} 
The reader can find some examples of anti-interiors and anti-closures in [18]. Besides, some other examples 

will be later presented in the present paper. Clearly, it is possible that 𝑎𝐼𝑛𝑡(𝐴) ∉ 𝑇. In [23] we proposed to 

call these sets which have anti-open interior, anti-genuine sets. The idea is taken from [24] where it was applied 

to infra topological spaces. Each anti-open set is identical with its anti-interior and thus is anti-genuine too. In 

Example 2 (4) we have {𝑎, 𝑏, 𝑐}which is not anti-open but is anti-genuine. 

As for the properties of anti-interior and anti-closure, we may recall the following theorem from [23]: 

Theorem 7. [23] 

Let (𝑋, 𝑇) be an anti-topological space. Let 𝐴 ⊆ 𝑋 . Then the following statements are true: 

1. 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝐴. 

2. If 𝐴 ∈ 𝑇 , then 𝑎𝐼𝑛𝑡(𝐴) = 𝑇. The converse may not be true.  

3. If 𝐴 ⊆ 𝐵 , then 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝑎𝐼𝑛𝑡(𝐵) and 𝑎𝐶𝑙(𝐴) ⊆ 𝑎𝐶𝑙(𝐵). 

4. 𝑎𝐼𝑛𝑡(𝑎𝐼𝑛𝑡(𝐴)) = 𝑎𝐼𝑛𝑡(𝐴) and 𝑎𝐶𝑙(𝑎𝐶𝑙(𝐴)) = 𝑎𝐶𝑙(𝐴). 

5. 𝐴 ⊆ 𝑎𝐶𝑙(𝐴). 

6. If 𝐴 ∈ 𝑇𝐶𝑙 , then 𝑎𝐶𝑙(𝐴) = 𝐴. The converse may not be true. 

7. −𝑎𝐼𝑛𝑡(𝐴) = 𝑎𝐶𝑙(−𝐴). 

8. 𝑎𝐼𝑛𝑡(−𝐴) = −𝑎𝐶𝑙(𝐴). 

9. 𝑥 ∈ 𝑎𝐼𝑛𝑡(𝐴) if and only if there is 𝑈 ∈ 𝑇 such that 𝑥 ∈ 𝑈 ⊆ 𝐴 . 

10. 𝑥 ∈ 𝑎𝐶𝑙(𝐴) if and only if for any 𝑈 ∈ 𝑇 such that 𝑥 ∈ 𝑈 we have that 𝑈 ∩ 𝐴 ≠ ∅ . 
Then we have the following two lemmas: 
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Lemma 8. Assume that (𝑋, 𝑇)  is an anti-topological space and {𝐴𝑖}𝑖∈𝐽≠∅ is a family of sets. Then 

𝑎𝐼𝑛𝑡(⋂ 𝐴𝑖𝑖∈𝐽 ) ⊆ ⋂ 𝑎𝐼𝑛𝑡(𝐴𝑖)𝑖∈𝐽 . 

Proof. The proof is rather typical and, in fact, is true for generalized weak structures too. Generalized weak 

structures, introduced by Avila and Molina in [1], are just arbitrary families of subsets. In this general setting 

the authors reconstruct some basic topological notions. 

Clearly, ⋂ 𝐴𝑖𝑖∈𝐽 ⊆ 𝐴𝑘 for any 𝑘 ∈ 𝐽 . Now we use monotonicity of interior to get that 𝑎𝐼𝑛𝑡(⋂ 𝐴𝑖𝑖∈𝐽 ) ⊆

𝑎𝐼𝑛𝑡(𝐴𝑘). But this is true for any 𝑘 ∈ 𝐽 and thus we obtain our expected conclusion. 

Remark 9. Note that the converse is not true even for binary intersections. The reader may find an appropriate 

counter-example in [23]. The converse for binary intersections is true in these spaces which are closed under 

finite intersections, while in case of anti-topologies we can say that they are anti-closed under this operation 

(and the same with arbitrary unions).  

Lemma 10. Assume that (𝑋, 𝑇)  is an anti-topological space and {𝐴𝑖}𝑖∈𝐽≠∅  is a family of sets. Then 

⋃ 𝑎𝐶𝑙(𝐴𝑖)𝑖∈𝐽 ⊆ 𝑎𝐶𝑙(⋃ 𝐴𝑖𝑖∈𝐽 ). 

Proof. The proof is analogous to the proof of the previous lemma. Again, the converse need not to be true even 

for finite unions.  

Now let us recall Theorem 7 (2). The fact that the converse may not be true allows us to define pseudo-anti-

open sets:  

Definition 11. [23] Let (𝑋, 𝑇) be an anti-topological space. Assume that 𝐴 ⊆ 𝑋 . If 𝑎𝐼𝑛𝑡(𝐴) = 𝐴 then we 

say that 𝐴 is pseudo-anti-open.  

One can prove that the family of all pseudo-anti-open sets (with respect to a given anti-topology 𝑇 ) is closed 

under arbitrary unions. The same holds for pseudo-open sets in minimal structures. The reader can check [3] 

where Bhattacharya calls them open 𝑚𝑋 while the elements of minimal structure are named 𝑚𝑋 open. 

RARITY, DENSITY AND NOWHERE DENSITY 

In this section we study some properties of (anti-) rare, dense and nowhere dense sets. First, let us define all 

these classes.  

Definition 12. Let (𝑋, 𝑇) be an anti-topological space and 𝐴 ⊆ 𝑋 . We say that 𝐴 is: 

1. anti-dense if and only if 𝑎𝐶𝑙(𝐴) = 𝑋. 

2. anti-nowhere dense if and only if 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) = ∅. 

3. strongly anti-nowhere dense if and only if it has empty intersection with any anti-open set. 

4. anti-rare if and only if 𝑎𝐼𝑛𝑡(𝐴) = ∅. 

Remark 13. It seems that many topologists identify rare sets with nowhere dense sets. This is not our case. 

Our approach is based on the one presented e.g. in [3] (but also in some other papers). Hence, our rare (or 

rather anti-rare) sets are analogous to boundary sets. 

Example 14. Consider 𝑋 = {1,2,3,4}, 𝑇 = {{1,2}, {2,3}, {3,4}} . Then {1,2,3}, {2,3,4} are anti-dense. 

Moreover, their intersection, namely {2,3}, is anti-dense too. However, this is not always true. Think about 

𝑌 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑆 = {{𝑎, 𝑏}, {𝑐, 𝑑}, {𝑒}}. Then {𝑎, 𝑐, 𝑒}, {𝑏, 𝑑, 𝑒}are anti-dense but their intersection {𝑒} 
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is not anti-dense. Clearly, 𝑆𝐶𝑙 = {{𝑐, 𝑑, 𝑒}, {𝑎, 𝑏, 𝑒}, {𝑎, 𝑏, 𝑐, 𝑑}}and 𝑎𝐶𝑙({𝑒}) = {𝑐, 𝑑, 𝑒} ∩ {𝑎, 𝑏, 𝑒} =

{𝑒}. Note that we may consider {𝑒}as pseudo-anti-closed, per analogiam with pseudo-anti-open sets. It means 

that 𝑎𝐶𝑙(𝐴) = 𝐴. 

Example 15. Consider 𝑋 = {1,2,3,4}, 𝑇 = {{1,2}, {2,3}, {3,4}}. Then 𝐴 = {1,4}is anti-nowhere dense. 

One can check that 𝑎𝐶𝑙(𝐴) = {1,4} = 𝐴 and 𝑎𝐼𝑛𝑡(𝐴) = ∅ because there are no anti-open sets contained in 

𝐴 (but not because empty set is contained in 𝐴 : as we already know, empty set is never anti-open). Besides, 

note that the fact that 𝐴 is anti-nowhere dense does not mean that it is strongly anti-nowhere dense. Just take 

𝐵 = {1,2}. Clearly, 𝐴 ∩ 𝐵 = {1} ≠ ∅. 

Now take 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓},  𝑇 = {{𝑎, 𝑏}, {𝑐, 𝑑}, {𝑒}} . Clearly, {𝑓} is strongly anti-nowhere dense, 

having empty intersection with any anti-open set from 𝑇 . 

Remark 16. One could ask why the definition of strong anti-nowhere density is so strict. For example, in 

topological spaces we would say that 𝐴 is nowhere dense if for any 𝐵 ∈ 𝑇 we may find 𝐶 ∈ 𝑇 (not necessarily 

𝐵 itself!) such that 𝐶 ⊆ 𝐵,  𝐴 ∩ 𝐶 = ∅ . Of course we could use this approach but it would be irrelevant. Note 

that anti-open sets do not have proper anti-open subsets (recall Lemma 5).  

Example 17. Let 𝑋 = {1,2,3,4}, 𝑇 = {{1,2}, {2,3}, {3,4}}. Consider {1,3}, {1,4}, {2,4} . These sets are 

anti-rare. Now take 𝑌 = {1,2}and 𝑇 = {{1}, {2}}. Here there are no non-empty anti-rare sets. Now consider 

𝑍 = ℕ+with anti-topology 𝑇𝑘. Now every set which has cardinality < 𝑘 is anti-rare. Analogously, if 𝑍 =

ℝ and we have anti-topology 𝑇𝑦 then any closed interval of the length < 𝑦 is anti-rare.  

Now we may prove some lemmas and theorems about these classes.  

Theorem 18. Every strongly anti-nowhere dense set in an anti-topological space is anti-nowhere dense too. 

Proof. Assume that 𝐴 is strongly anti-nowhere dense but 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ≠ ∅ . Then there is 𝑥 ∈

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) . Hence, 𝑥 ∈ 𝑎𝐶𝑙(𝐴) . But then for any 𝑉 ∈ 𝑇 such that 𝑥 ∈ 𝑉 , 𝑉 ∩ 𝐴 ≠ ∅ . This is 

contradiction because we assumed that 𝐴 has empty intersection with any anti-open set. 

Lemma 19. If 𝐴 is anti-rare, then for any 𝐵 ∈ 𝑇 , 𝐵 is not contained in 𝐴 . 

Proof. Assume the contrary: that there is some anti-open 𝐵 contained in 𝐴 . Then 𝐵 is contained in the union 

of all anti-open sets contained in 𝐴 , that is in 𝑎𝐼𝑛𝑡(𝐴). Moreover, 𝐵 is non-empty as a member of 𝑇 . Thus 

𝑎𝐼𝑛𝑡(𝐴) ≠ ∅ and this is contradiction. 

Lemma 20. Any non-empty and proper subset of anti-open set is anti-rare.  

Proof. Recall the already mentioned fact that anti-open sets do not have proper anti-open subsets. 

Theorem 21. Every anti-nowhere dense set is anti-rare.  

Proof. Assume that (𝑋, 𝑇)is an anti-topological space and 𝐴 is anti-nowhere dense. Assume that it is not anti-

rare. Hence, 𝑎𝐼𝑛𝑡(𝐴) ≠ ∅. Then there is some 𝑥 ∈ 𝑎𝐼𝑛𝑡(𝐴)and some 𝐵 ∈ 𝑇 such that 𝐵 ⊆ 𝐴,  𝑥 ∈ 𝐴 . But 

𝐵 ⊆ 𝑎𝐶𝑙(𝐴), hence 𝑥 ∈ 𝑎𝐼𝑛𝑡(𝐶𝑙(𝐴)). Contradiction. 

Remark 22. Anti-rare sets need not to be anti-nowhere dense. Consider 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑇 =

{{𝑎, 𝑏}, {𝑐, 𝑑}, {𝑒}} . Then 𝑇𝐶𝑙 = {{𝑐, 𝑑, 𝑒}, {𝑎, 𝑏, 𝑒}, {𝑎, 𝑏, 𝑐, 𝑑}} . Take 𝐴 = {𝑏, 𝑐} . On the one hand, 
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𝑎𝐼𝑛𝑡(𝐴) = ∅, so 𝐴 is anti-rare. On the other hand, 𝑎𝐶𝑙(𝐴) = {𝑎, 𝑏, 𝑐, 𝑑}and 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) = {𝑎, 𝑏} ∪

{𝑐, 𝑑} = {𝑎, 𝑏, 𝑐, 𝑑} ≠ ∅. 

Remark 23. Anti-rare sets can be anti-dense. Consider 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑇 = {{𝑎, 𝑏}, {𝑐, 𝑑}}and 𝐴 = {𝑏, 𝑐}. 

On the one hand, 𝑎𝐼𝑛𝑡(𝐴) = ∅. On the other hand, 𝑇𝐶𝑙 = 𝑇 and 𝑎𝐶𝑙(𝐴) = ⋂ ∅ = 𝑋. Note that 𝐴 from 

Remark 22 was not anti-dense. 

Theorem 24. Assume that (𝑋, 𝑇)is an anti-topological space and 𝐴 ⊆ 𝑋 . Then 𝐴 is anti-rare if and only if 

−𝐴 is anti-dense.  

Proof. From left to right: assume that 𝑎𝐼𝑛𝑡(𝐴) = ∅. Assume that −𝐴 is not anti-dense. Hence, 𝑎𝐶𝑙(−𝐴) ≠

𝑋. But 𝑎𝐶𝑙(−𝐴) = −𝑎𝐼𝑛𝑡(𝐴) = −∅ = 𝑋. 

From right to left: let 𝑎𝐶𝑙(−𝐴) = 𝑋 . But 𝑎𝐶𝑙(−𝐴) = −𝑎𝐼𝑛𝑡(𝐴) . Hence −𝑎𝐼𝑛𝑡(𝐴) = 𝑋  and thus 

𝑎𝐼𝑛𝑡(𝐴) = −𝑋 = ∅. 

Theorem 25. Any intersection of anti-rare sets is anti-rare too.  

Proof. Assume that (𝑋, 𝑇) is an anti-topological space. Let 𝐴 = ⋂ 𝐴𝑖𝑖∈𝐽≠∅ , where for any 𝑖 ∈ 𝐽 , 𝐴𝑖is anti-

rare. Thus, 𝑎𝐼𝑛𝑡(𝐴𝑖) = ∅ for any 𝑖 ∈ 𝐽 . Now suppose that 𝑎𝐼𝑛𝑡(𝐴) ≠ ∅. Hence there is some 𝐵 ∈ 𝑇 such 

that 𝐵 ⊆ 𝐴 . But then 𝐵 ⊆ 𝐴𝑖  for any 𝑖 ∈ 𝐽 . This is contradiction.  

Remark 26. Finite unions of anti-rare sets may not be anti-rare. Again, consider 𝑋 = {1,2,3,4}, 𝑇 =

{{1,2}, {2,3}, {3,4}}. Now {1,3}, {2,4}are anti-rare but their union, namely {1,2,3,4}, is not anti-rare: its 

anti-interior is {1,2,3} ≠ ∅. 

Theorem 24. Any union of anti-dense sets is anti-dense too. 

Proof. Assume that (𝑋, 𝑇)is an anti-topological space. Let𝐴 = ⋃ 𝐴𝑖𝑖∈𝐽≠∅  where for any 𝑖 ∈ 𝐽 , 𝐴𝑖 is anti-

dense, i. e. 𝑎𝐶𝑙(𝐴𝑖) = 𝑋 . Hence for any 𝑖 ∈ 𝐽 , the set 𝑍𝑖 = {𝐵 ∈ 𝑇𝐶𝑙 ; 𝐴𝑖 ⊆ 𝐵} is empty. Assume the 

contrary: if it is not empty then 𝑋 ∈ 𝑇𝐶𝑙  and thus −𝑋 = ∅ ∈ 𝑇 . But this is not possible by the very definition 

of anti-topology. Now assume that 𝑎𝐶𝑙(𝐴) ≠ 𝑋. This means that 𝑍 = {𝐵 ∈ 𝑇𝐶𝑙; 𝐴 ⊆ 𝐵} ≠ ∅. Hence there 

is some 𝐶 ∈ 𝑇𝐶𝑙  such that 𝐴 ⊆ 𝐶 and 𝐶 ≠ 𝑋 . But then 𝐴𝑖 ⊆ 𝐶 ∈ 𝑇𝐶𝑙  for any 𝑗 ∈ 𝐽 and this is contradiction.  

Remark 27. We could use different reasoning in this proof. For example: as we know from Lemma 10, 

⋃ 𝑎𝐶𝑙(𝐴𝑖)𝑖∈𝐽 ⊆ 𝑎𝐶𝑙(⋃ 𝐴𝑖𝑖∈𝐽 ). Now, if 𝑎𝐶𝑙(𝐴𝑖) = 𝑋 for any 𝑗 ∈ 𝐽 , then the union on the left side is just 

𝑋 . Thus the set on the right side must be 𝑋 too.  

Theorem 28. [23] Let (𝑋, 𝑇) be an anti-topological space and 𝐴 ⊆ 𝑋 . Then 𝐴 is anti-dense if and only if it 

has non-empty intersection with each anti-open set from 𝑇 . 

Remark 29. Recall the proof of Theorem 24. Alternatively, we could think in the following way (using 

Theorem 28 and Theorem 7 (10)). Assume that 𝑎𝐶𝑙(𝐴) ≠ 𝑋 where 𝐴 is some union of anti-dense sets. Then 

there is some 𝑥 ∈ 𝑋 − 𝑎𝐶𝑙(𝐴). Hence there exists certain 𝑉 ∈ 𝑇 such that 𝑥 ∈ 𝑉 and 𝑉 ∩ 𝐴 = ∅ . This 

means that ∩⋃ 𝐴𝑖𝑖∈𝐽 = ∅ . Hence, 𝑉 has empty intersection with each of the sets 𝐴𝑖  in 𝐴 . But this is not 

possible because they are all anti-dense.  

Finally, we get: 
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Theorem 30. Let (𝑋, 𝑇)be an anti-topological space and 𝐴 ⊆ 𝑋 is anti-dense. Then for any pseudo-anti-open 

set 𝐺 such that 𝐴 ⊆ 𝐺 we have that 𝐺 ⊆ 𝑎𝐶𝑙(𝐴).  

Proof. Assume that 𝐺 is some pseudo-anti-open set such that 𝐴 ⊆ 𝐺 . Then 𝐺 ⊆ 𝑋 but 𝑋 = 𝑎𝐶𝑙(𝐴). Note 

that the assumption about pseudo-anti-openness of is superfluous. We left it just to compare the whole thing 

with Theorem 4.3. in [3] (check Remark 31 below). 

Remark 31. What about the converse of Theorem 30? In general, it is not true. Hence the situation is different 

than in case of minimal structures studied by Bhattacharya. Take 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑇 =

{{𝑎, 𝑏}, {𝑐}, {𝑑}}and think about 𝐴 = {𝑒}. This singleton is beyond any pseudo-anti-open set. Hence, the 

implication “if 𝐺 is pseudo-anti-open and 𝐴 ⊆ 𝐺 , then 𝐺 ⊆ 𝑎𝐶𝑙(𝐴)“ is trivially satisfied. On the other hand, 

{𝑒}is not anti-dense: in fact, it has empty intersection with any anti-open set. Thus, it is strongly anti-nowhere 

dense. 

However, we may prove the following statement: 

Theorem 32. Let (𝑋, 𝑇) be an anti-topological space and 𝐴 ⊆ 𝑋 . Assume that for any pseudo-anti-open set 

𝐺 such that 𝐴 ⊆ 𝐺 , 𝐺 ⊆ 𝑎𝐶𝑙(𝐴). Suppose that the class of such pseudo-anti-open sets is non-empty. Then 

𝐴 is anti-dense.  

Proof. First, it is clear that ⋃𝑇, namely the union of all anti-open sets, is pseudo-anti-open. Let us take some 

pseudo-anti-open 𝐺 such that 𝐴 ⊆ 𝐺 ⊆ 𝑎𝐶𝑙(𝐴). If 𝑥 ∈ 𝐺 , then 𝑥 ∈ 𝑎𝐼𝑛𝑡(𝐺)which means that 𝑥 belongs to 

some anti-open set contained in 𝐺 . This implies that 𝐺 ⊆ ⋃𝑇. Hence 𝐴 ⊆ ⋃𝑇 and ⋃𝑇 ⊆ 𝑎𝐶𝑙(𝐴). Assume 

now that 𝑎𝐶𝑙(𝐴) ≠ 𝑋. Hence, if 𝐴 ⊆ 𝐵 such that 𝐵 ∈ 𝑇𝐶𝑙 , then ⋃𝑇 ⊆ 𝐵. Then −𝐵 ⊆ −⋃𝑇. But −𝐵 is 

anti-open (because 𝐵 is anti-closed) so it cannot be contained in the complement of the union of all anti-open 

sets. Contradiction. 

CONCLUSION AND FUTURE WORK 

In this chapter we have analyzed some properties of anti-topological spaces. One can gather them together with 

those lemmas and theorems which have been already proved in [12] and [23] to obtain some kind of general 

framework for anti-topological spaces. Clearly, some of these results are more general than it seems at first 

glance: they are true even for generalized weak structures. However, some of them require specific properties 

of anti-topology. The reader is encouraged to continue this line of research. We should study separation axioms, 

connectedness and compactness in the context of anti-topological spaces. Moreover, one can imagine that anti-

topologies could serve as models of some very specific non-classical modal logics. In [23] we gave a short 

discussion of this issue. 
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ABSTRACT 

In this paper, first we define the “notion neutrosophic h-ideal in INK-Algebra, neutrosophic union and 

intersection of neutrosophic h-ideals in INK-algebras. We prove some theorems which show that there is some 

relation between these notions. Finally, we define the INK-sub algebra, neutrosophic T-ideals and neutrosophic 
p-ideals of INK-algebra and then we give related theorem about complements of neutrosophic h-ideals.

Keywords: INK-Algebra- Neutrosophic ideal, Neutrosophic h-ideals, T-ideal, p-ideal, Union, Intersection. 

İ. INTRODUCTION

In 1986, Atanassov Introduced the Intuitionistic fuzzy set and later intuitionistic fuzzy set was applied in 

BCI/BCK-algebra, Introduced by Imai and Iseki in the 1980s. Following this, various researchers published 

articles using the intuitionistic fuzzy set concept. In 2005, Smarandache invented the new notion of the 

neutrosophic set in 1998 and it is a common code from the intuitionistic fuzzy set [1-8] and [15-55]. This has 

been followed by a lot of researchers publishing various articles over the last few years. In 2018 [44] Establish 

the intuitionistic fuzzification of the concept of  P-Ideals and H-Ideals In BCI-Algebras and investigate some 

of their properties In [9], [10], [11], [13], [14] and [12] Kaviyarasu et. al published  an article using the fuzzy 

concept set in INK-algebra and later in solve they neutrosophic set in INKalgebra. In this paper we have 

introduced a neutrosophic h-ideal of INK-algebra. We are also examining the relationship between 

neutrosophic INK- sub algebra and neutrosophic h-ideal, T-ideal, p-ideal and its conditions. 
The chapter is organized as follows: In section 2 is devoted to basic definition of BCI.BCK, INK-

Algebras, fuzzy h-ideal, fuzzy p-ideal and intuitionistic fuzzy h-ideal of INK-Algebra. 3, presents a 

neutrosophic h-ideal, T-ideal and p-ideal of INK-algebra and investigates their properties. Finally, conclusions 

are contained. 

II. PRELIMINARY

Definition 1[9] An algebra (X,*, 0) is called a INK-algebra if you meet the ensuing conditions for every 

 x, y, z ∈X. 

1. ((x*y)*(x*z))*(z*y) = 0

mailto:avitamilm@gmail.com
mailto:jppreethijaya2392@gmail.com
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 2. ((x*z)*(y*z))*(x*y) = 0 

 3. x * 0 = x 

 4. x * y = 0 and y*x = 0 imply x = y. 

 

Definition 2[9] Let (X,*, 0) be a INK-algebra. A nonempty subset I of X is called an ideal of X if it satisfies 

 1. 0 ∈ I 

 2. x * y ∈I and y∈I imply x∈I for all x, y∈ X.  

 

Any ideal I has the property that y∈I and x ≤ y imply x ∈ I.  
 

Definition 3[44] Let (X,*, 0) be a BCI-algebra. A nonempty subset I of X is called an h-ideal of X if it satisfies 

 1. 0 ∈ I 

 2. x * (y*z) ∈I and y∈I imply x∈I for all x, y, z∈ X.  

 

Definition 4 [45] Let (X,*, 0) be a TM-algebra. A nonempty subset I of X is called an T-ideal of X if it satisfies 

 1. 0 ∈ I 

 2. (x * y)*z ∈I and y∈I imply x∈I for all x, y, z∈ X.  
Definition 5 [9] Let (X,*, 0) be a INK-algebra. A nonempty subset I of X is called an p-ideal of X if it satisfies 

 1. 0 ∈ I 

 2. (x * z)*(y*z) ∈I and y∈I imply x∈I for all x, y, z∈ X.  

 

Definition 6 [9] Let I be a non-empty subset S algebra of a INK-algebra X. 

 1. 0 ∈ I 

 2. x*y ∈I and y∈I imply x∈I for all x, y, z ∈ X. 

 

Definition 7 [7] Let X be a non-empty set.  A Fuzzy set can be defined as an object of the form  μ = {(X, μ 

(x)) : x∈ X },  where the function ϑ: X →  [0,  1] is the degree of membership. 

 

Definition 8[7]  A fuzzy set μ in a BCK-algebra X is called fuzzy sub algebra of X if  

 μ (x*y) ≥ min{μ(x), μ(y)}, for all x, y ∈ X. 

 

Definition 9 [22] Let X be a BCK-algebra. A fuzzy subset μ in X is called a fuzzy ideal of X if it satisfies the 

following conditions: 

 1. μ(0) ≥ μ(x) 

 2. μ(x) ≥ min{μ(x*y)}, for all x, y ∈ X. 
 

Definition 10 [22] Let µ be a fuzzy set in BCI-algebra X. µ is called a fuzzy h-ideal if it satisfies: 

 1. 0 ∈ I 

 2. µ(x) ≥ min {µ((x ∗ (y ∗ z)), µ(y)}, ∀ x, y, z ∈ X. 

 

Definition 11 [25] Let µ be a fuzzy set in BCI-algebra X. µ is called a fuzzy T-ideal if it satisfies: 

 1. 0 ∈ I 

 2. µ(x) ≥ min {µ((x ∗ y ) ∗ z)), µ(y)}, ∀ x, y, z ∈ X. 

 

Definition 12 [9] Let µ be a fuzzy set in BCI-algebra X. µ is called a fuzzy p-ideal if it satisfies: 

 1. 0 ∈ I 

 2. µ(x) ≥ min {µ((x ∗ z ) *(y∗ z)), µ(y)}, ∀ x, y, z ∈ X. 
 

Definition 13 [1]  An intuitionistic fuzzy set A in a non-empty set X is an object haνing a form A = {X, μA (x), 

νA (x): x ∈ X}, where the function μA: X → [0, 1] and   νA: X → [0, 1] denote the degree of membership and 

the degree of non-membership of each element x ∈ X to set A respectiνely, and 0 ≤ μA (x)+ νA (x) ≤ 1, for all 

x ∈ X. For the sake of simplicity, symbol A = (X, μA, νA) is used for the IFS A = {X, μA (x), νA (x): x ∈ X}. 

Definition 14 [1] An intuitionistic fuzzy set 𝐴 in 𝑋 is called an intuitionistic fuzzy sub 𝑋 if 

1. μA (x ∗ y) ≥ min {μA(x), μA(y)} 
2. νA (x ∗ y) ≤ max {νA(x), νA(y)} for all x, y ∈ X. 
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Definition 15 [1] An intuitionistic fuzzy set 𝐴 in 𝑋 is called an intuitionistic fuzzy ideal of 𝑋 if it satisfies  

for all 𝑥, 𝑦 ∈ 𝑋, 

1. μA(0) ≥  μA(x) and νA (0) ≤ νA(x) 
2. μA (x) ≥ min {μA(x ∗ y), μA(y)} 
3. νA (x) ≤ max {νA(x ∗ y), νA(y)} 

Definition 16 [44] An intuitionistic fuzzy set 𝐴 in X is called an intuitionistic fuzzy h- ideal of 𝑋 if it satisfies 

for all x, y, z ∈ 𝑋, 

1. μA(0)  ≥  μA(x) and νA (0) ≤ νA(x) 
2. μA (x) ≥ min {μA(x ∗ (y ∗ z), μA(y)} 
3. νA (x) ≤ max{νA(x ∗ (y ∗ z), νA(y)} . 

Definition 17 [25] An intuitionistic fuzzy set 𝐴 in X is called an intuitionistic fuzzy T- ideal of 𝑋 if it satisfies 

for all x, y, z ∈ 𝑋, 

1. μA(0)  ≥  μA(x) and νA (0) ≤ νA(x) 
2. μA (x) ≥ min {μA(x ∗ y) ∗ z), μA(y)} 
3. νA (x) ≤ max{νA(x ∗ y) ∗ z), νA(y)}.  
 

Definition 18[ 44] An intuitionistic fuzzy set 𝐴 in X is called an intuitionistic fuzzy p- ideal of 𝑋 if it satisfies 

for all x, y, z ∈ 𝑋, 

1. μA(0)  ≥  μA(x) and νA (0) ≤ νA(x) 
2. μA (x) ≥ min {μA(x ∗ z) ∗ (y ∗ z), μA(y)} 
3. νA (x) ≤ max{νA(x ∗ z) ∗ (y ∗ z), νA(y)}. 
 

 

III. NEUTROSOPHIC h-IDEAL   

 

Definition 19 A neutrosophic set μ  in a nonempty set X is a structure of the form μ =
{X, μ𝑇  (x), μ𝐼 (x), μ𝐹  (x)|x ∈ X } , Where μT: X→ [0,1] is a truth membership function, μI: X→ [0,1]  is a 

indeterminacy membership function and μF: X→ [0,1] is a false membership function. 

 

Definition 20 A neutrosophic set μ in X is called a neutrosophic INK-subalgebra of X if it satisfies the 

following condition, for all x, y, z ∈ X. 
1. μT (x ∗ y) ≥ 𝑚𝑖𝑛{μT (x), μT(y)} 

2. μI(x ∗ y) ≥ 𝑚𝑖𝑛{μI(x), μI(y)} 

3. μF(x ∗ y) ≤ 𝑚𝑎𝑥{μF(x), μF(y)}. 

 

Definition 21 A neutrosophic set μ  in X is called a neutrosophic ideal of X if it satisfies the following 

condition, for all x, y ∈ 𝑋 

1. μT(0) ≥ μT(x), μI(0)} ≥ μI (x), and μF (0) ≤ μF (x) 

2. μT(x) ≥ 𝑚𝑖𝑛{μT(x ∗ y),μT(y)} 

3. μI(x) ≥ 𝑚𝑖𝑛{μI(x ∗ y),μI(y)} 

4. μF(x) ≤ 𝑚𝑎𝑥{μF(x ∗ y),μF(y)}  

 

Definition 22  A neutrosophic set μ in X is called a neutrosophic INK-algebra of p-ideal X if it satisfies the 

following condition, for all x, y,z ∈ 𝑋 

1. μT(0) ≥ μT(x), μI(0)} ≥ μI (x), and μF (0) ≤ μF (x) 

2. μT (x) ≥ min{ μT (x ∗ 𝑧) ∗ (y ∗ z)) ,  μT (y)}  

3. μI (x) ≥ min {μI ((x∗ 𝑧) ∗ (y ∗ z)) ,  μI  (y)}   

4. μF (x) ≤ max{ μF (x∗ 𝑧) ∗ (y ∗ z)) ,  μF  (y)} 
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Definition 23  A neutrosophic set μ in X is called a neutrosophic INK-algebra of T-ideal X if it satisfies the 

following condition, for all x, y,z ∈ 𝑋 

1. μT(0) ≥ μT(x), μI(0)} ≥ μI (x), and μF (0) ≤ μF (x) 

2. μT (x) ≥ min{ μT (x ∗ y) ∗ z)) ,  μT (y)}  

3. μI (x) ≥ min {μI ((x∗ y) ∗ z) ,  μI  (y)}   

4. μF (x) ≤ max{ μF (x∗ y) ∗ z)) ,  μF  (y)} 

 

Definition 24  A neutrosophic set μ 𝑖𝑛 X is called a neutrosophic INK-algebra of h-ideal X if it satisfies the 

following condition, for all x, y,z ∈ 𝑋 

1. μT(0) ≥ μT(x), μI(0)} ≥ μI (x), and μF (0) ≤ μF (x) 

2. μT (x) ≥ min{ μT (x ∗ (y ∗ z)) ,  μT (y)}  

3. μI (x) ≥ min {μI ((x∗ (y ∗ z) ,  μI  (y)}   

4. μF (x) ≤ max{ μF (x∗ (y ∗ z)) ,  μF  (y)} 

 

 

Example 25 Consider a set X= {0, 1, a, b}with the binary operation * which is giνen in Table 1. Then 

 

* 0 1 a b 

0 0 0 a a 

1 1 0 a a 

a a a 0 0 

b b a 1 0 

 

(X,*, 0) is a INK-algebra. Let μ be a neutrosophic set in X defined by Table 2. It is routine to νerify that 

Μ is a neutrosophic h-ideal of X. 

 

 

 

 

 

 

Theorem 26 Every neutrosophic h-ideal is a neutrosophic ideal in INK-Algebra. 

 

Proof. For all x, y, z ϵ X 

We haνe μT (0) ≥ μT (x), μI (0) ≥ μI (x) and μF(0) ≤ μF (x) 

                  μT (x)   ≥ min{μ𝑇(x ∗ (y ∗ z)), μT (y)} 

Put z = 0 

           ≥ min {μ𝑇(x ∗ (y ∗ 0)), μT (y)} 

                                 μT (x)  ≥ min{ μ𝑇(x ∗ y), μT (y)}, 

       μI (x) ≥ min {μ𝑇(x ∗ (y ∗ z)), μT (y)} 

Put z = 0          

                                 μI (x)  ≥ min { μ𝐼(x ∗ (y ∗ 0)), μI (y)} 

            ≥ min { μ𝐼(x ∗ y), μI (y)}  

and 

                                 μF(x)  ≤ max{ μ𝐹(x ∗ (y ∗ z)), μF (y)} 

Put z = 0    

                    μF(x) ≤ max{ μ𝐹(x ∗ (y ∗ 0)), μF (y)} 

               ≤ max{ μ𝐹(x ∗ y), μF (y)}  

 

Theorem 27 Eνery neutrosophic h-ideal is a neutrosophic T-ideal in INK-Algebra. 
 

Proof. We haνe μT (0) ≥ μT (x),  μI (0) ≥ μI (x) and μF(0) ≤ μF(x) 

      μT (x) ≥ min{ μT (x∗(y∗z)), μT (y)} 

X 0 1 a b 

μT(x) 0.8 0.5 0.4 0.4 

μI (x) 0.3 0.5 0.6 0.8 

μF(x) 0.2 0.3 0.4 0.7 
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          ≥ min{ μT ((x∗ 0) ∗ (y ∗ z)), μT (y)} 

             μT (x ∗ 0)  ≥ min { μT ((x∗ (𝑧 ∗ 𝑧)) ∗ (𝑦 ∗ 𝑧), μT (y)}   

Put 0 = z  

             μT (x ∗ z) ≥ min{ μT (x∗ (z ∗ 0) ∗ (y ∗ 0)) , μT (y)}            

   ≥ min{ μT (x∗ z) ∗ y)) ,  μT (y)}    

                   ≥ min{ μT (x∗ (y ∗ z)) ,  μT (y)}  

                           μT (x ∗ z) ≥ min{μT (x*y) ∗ 𝑧) ,  μT  (y)},  

 

       μI (x)  ≥ min {μI (x∗ 0) ∗ (y ∗ z)) ,  μI  (y)}    

                             μI (x∗ 0) ≥ min {μI (x∗ (z ∗ z) ∗ (y ∗ z)) ,  μI  (y)}      

Put 0 = z 

                μI (x*z) ≥ min {μI (x∗ (𝑧 ∗ 0) ∗ (𝑦 ∗ 0)) ,  μI  (y)}     

   ≥ min {μI (x∗ z) ∗ y)) ,  μI  (y)}      

   ≥ min {μI (x∗ (y ∗ z)) ,  μI  (y)}      

                μI (x*z)  ≥ min {μI ((x*y) ∗ 𝑧)) ,  μI  (y)}  

and   

              μF(x) ≤ max{ μF (x∗ (y ∗ z)) ,  μF  (y)}     

              μF (x∗ 0) ≤ max{ μF (x∗ (z ∗ z) ∗ (y ∗ z)) ,  μF  (y)}     

Put 0 = z 

                μF(x*z) ≤ max{ μF (x∗ (z ∗ 0) ∗ (y ∗ 0)) ,  μF  (y)}   

   ≤ max{ μF ((x∗ z) ∗ y) , μF  (y)}     

               ≤ max{ μF (x∗ (y ∗ z)) , μF  (y)}     

               μF(x∗ 𝑧)  ≤ max{ μF ((x∗ 𝑦) ∗ 𝑧)) , μF  (y)}   

 

 

Theorem 28 Eνery neutrosophic h-ideal is a neutrosophic p-ideal in INK-Algebra. 

 

Proof. We haνe μT (0) ≥μT (x), μI (0) ≥ μI  (x) and μF(0)≤ μF(x) 

      μT (x)  ≥ min{ μT (x∗(y∗z)), μT (y)} 

   ≥ min{ μT ((x∗z)∗y)), μT (y)} 

   ≥ min{ μT ((x∗z)∗ (y∗ 0)), μT (y)} 

       μT (x)  ≥ min{ μT ((x∗z)∗ (y∗ z)), μT (y)} 

       μI (x)  ≥ min {μI (x∗ (y ∗ z)) ,  μI  (y)}     

      μI (x)  ≥ min {μI ((x∗ z) ∗ y) ,  μI  (y)}      

       μI (x)  ≥ min {μI ((x∗ z) ∗ (y ∗ 0)) ,  μI (y)}      

                         ≥ min {μI ((x ∗ z) ∗ (y ∗ z)) ,  μI (y)}    

        μF(x) ≤ max{ μF ((x∗ (y ∗ z)), μF  (y)}   

               ≤ max{ μF ((x∗ z) ∗ (y ∗ 0)) ,  μF (y)} 

       μF(x)  ≤ max{ μF ((x∗ z) ∗ (y ∗ z)) ,  μF (y)} 

 

Theorem 29  If μ is a neutrosophic h-ideal of INK-algebra X, Then  μm is a neutrosophic h-ideal of INK-

Algebra of X. 

 

Proof. We haνe        μT (0) ≥ μT (x) 

            { μT (0)}m  ≥{μT  (x) }m 
                  μT(0)m  ≥ μT (x)m 

                               μT
m(0) ≥ μT

m(x) 

      μI  (0)  ≥ μI  (x) 

             {μI  (0)}m ≥ {μI  (x)}m 

                  μI  (0)m  ≥ μI  (x)m 

    μI
m

  (0)  ≥ μI 
m

 (x) 

       μF  (0)   ≤ μF  (x) 

                          {μF  (0)}m ≤{ μF  (x)}m 

                              μF  (0)m ≤ μF  (x)m 

                              μF
m

  (0) ≤ μF 
m

 (x) 

and 

                                μT (x ) ≥ min{ μT (x∗ (y ∗ z)) ,  μT (y)}  
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            {μT (x )}m  ≥ min{ μT (x∗ (y ∗ z)) ,  μT (y)}m 

                             μT (x )m ≥ min{ μT (x∗ (y ∗ z))m ,  μT (y)m}   

                              μT 
m(x) ≥ min{ μT

m (x∗ (y ∗ z)) ,  μT
m

 (y)}  

                                 μI (x) ≥ min {μI ((x∗ (y ∗ z)) ,  μI  (y)}      

                          {μI (x)}m ≥ min {μI ((x∗ (y ∗ z) ,  μI  (y)}m
      

                               μI (x)m ≥ min {μI ((x∗ (y ∗ z))m ,  μI  (y)m}      

                               μI
m

 (x) ≥ min {μI
m

 ((x∗ ((y ∗ z)) ,  μI 
m

 (y)}  

                                  μF(x) ≤ max{ μF (x∗ (y ∗ z)) ,  μF  (y)} 

                            {μF(x)}m ≤ max{ μF (x∗ (y ∗ z)) ,  μF  (y)}m 

     μF(x)m ≤ max{ μF (x∗ (y ∗ z))m ,  μF  (y)m} 

     μF
m(x)  ≤ max{ μF

m
 (x∗ (y ∗ z)) ,  μF

m
  (y)}. 

 

Theorem 30 Let μ1 and μ2 are two neutrosophic h-ideal of INK-Algebra, Then μ1 ∩ μ2 .is a neutrosophic h-
ideal of INK-Algebra. 

 

Proof. Since μT1(0) ≥ μT1 (x) and  μT2 (0) ≥ μT2 (x), for all x in X. 

We get, 

           min{μT1(0),μT2(0)} ≥ min{μT1(x),μT2(x)} 

                          μT1∩T2(0) ≥  μT1∩ T2(x) 

                               μT1(x) ≥ min {μT1(x∗ (y ∗ z)), μT1(x)} 

         μT2(x)  ≥ min {μT2(x∗ (y ∗ z)), μT2(x)} 

           min{μT1(x),μT2(x)} ≥{ min{μT1(x∗ (y ∗ z)),μT1(y)}, min{μT2(x∗ (y ∗ z)),μT2(y)}} 

                  μT1∩T2(x) ≥ {min{μT1(x∗ (y ∗ z)) ,μT2(x∗ (y ∗ z))}, min{ μT1(y),μT2(y)}} 

             μT1∩T2(x)  ≥ min{ μT1∩T2 (x∗ (y ∗ z)), μT1∩T2(y)}, 

Since                       μI1(0)  ≥ μI1 (x) and μI2 (0) ≥ μI2 (x),  

We get, 

            min{μI1(0),μI2(0)} ≥ min{μI1(x),μI2(x)} 

                           μI1∩I2(0) ≥  μI1∩ I2(x) 

     μI1(x)   ≥ min{μI1(x∗ (y ∗ z)),μI1(x)} 

      μI2(x) ≥ min{μI2(x∗ (y ∗ z)),μI2(x)} 

             min{μI1(x),μI2(x)} ≥{ min{μI1(x∗ (y ∗ z)),μI1(y)}, min{μI2(x∗ (y ∗ z)),μI2(y)}} 

               μI1∩I2(x) ≥ {min{μI1(x∗ (y ∗ z)), μI2(x∗ (y ∗ z))}, min{ μI1(y),μI2(y)}} 

                            μI1∩I2(x) ≥ min{ μI1∩I2 (x∗ (y ∗ z)), μI1∩I2(y)}. 

Since μF1(0) ≥ μF1 (x) and  μF2 (0) ≥ μF2 (x),  

We get, 

           max{μF1(0),μF2(0)}  ≤ max {max{μF1(x),μF2(x)}} 

                           μF1∩F2(0) ≤ max {μF1∩ F2(x)} 

                   μF1(x)  ≤ max {μF1(x∗ (y ∗ z)),μF1(x)} 

     μF2(x)  ≤ max {μF2(x∗ (y ∗ z)),μF2(x)} 

           max{μF1(x),μF2(x)} ≤{ max{μF1(x∗ (y ∗ z)),μF1(y)}, max{μF1(x∗ (y ∗ z)),μF2(y)}} 

             μF1∩F2(x)  ≤ {max{μF1(x∗ (y ∗ z)) ,μF2(x∗ (y ∗ z))}, max{ μF1(y),μF2(y)}} 

                           μF1∩F2(x)  ≤ max{ μF1∩F2 (x∗ (y ∗ z)), μF1∩F2(Y)} 

 

Theorem 20 Let μ1 and μ2 are two neutrosophic h-ideal of INK-Algebra, Then μ1 ∪ μ2 .is a neutrosophic h-

ideal of INK-Algebra. 
 

Proof. Since μT1(0) ≥ μT1 (x) and μT2 (0) ≥ μT2 (x),  

We get, 

            min{μT1(0),μT2(0)}≥ min{μT1(x),μT2(x)} 

                          μT1∪T2(0) ≥ μT1∪ T2(x) 

     μT1(x)  ≥ min{μT1(x∗ (y ∗ z)),μT1(y)} 

                                μT2(x) ≥ min{μT2(x∗ (y ∗ z)),μT2(y)} 

            min{μT1(x),μT2(x)}≥ max{ min{μT1(x∗ (y ∗ z)),μT1(y)}, min{μT2(x∗ (y ∗ z)),μT2(y)}} 

                          μT1∪T2 (x) ≥ min{ min{μT1(x∗ (y ∗ z)) ,μT2(x∗ (y ∗ z))}, min{ μT1(y),μT2(y)}} 

                         μT1∪T2(x) ≥ min{ μT1∪T2 (x∗ (y ∗ z)), μT1∪T2(y)} 

since     μI1(0) ≥ μI1 (x) and μI2 (0) ≥μI2 (x),  
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We get, 

             min{μI1(0),μI2(0)} ≥ min{μI1(x),μI2(x)} 

                           μI1∪I2(0) ≥  μI1∪ I2(x) 

                                 μI1(x) ≥ min{μI1(x∗ (y ∗ z)),μI1(y)} 

            μI2(x)  ≥ min{μI2(x∗ (y ∗ z)),μI2(y)} 

             min{μI1(x),μI2(x)} ≥ min { min{μI1(x∗ (y ∗ z)),μI1(y)}, min{μI2(x∗ (y ∗ z)),μI2(y)}} 

               μI1∪I2(x) ≥ min{ min{μI1(x∗ (y ∗ z)) ,μI2(x∗ (y ∗ z))}, min{μI1(y),μI2(y)}} 

              μI1∪I2(x)  ≥ min{ μI1∪I2 (x∗ (y ∗ z)), μI1∪I2(y)} 

Since μF1(0) ≤ μF1 (x) and  μF2 (0) ≤ μF2 (x),  

We get, 

           max{μF1(0),μF2(0)} ≤ max{μT1(x),μT2(x)} 

                           μF1∪F2(0)  ≤ μF1∪ F2(x) 

     μF1(x)  ≤ max{μF1(x∗ (y ∗ z)),μF1(y)} 

     μF2(x)  ≥ max{μF2(x∗ (y ∗ z)),μF2(y)} 

           max{μF1(x),μF2(x)} ≤ max{ max{μF1(x∗ (y ∗ z)),μF1(y)}, max{μF2(x∗ (y ∗ z)),μF2(y)}} 

                           μF1∪F2(x) ≤ max{ max{μF1(x∗ (y ∗ z)) ,μF2(x∗ (y ∗ z))}, max{ μF1(y),μF2(y)}}. 

                          μF1∪F2(x) ≤ max{ μF1∪F2 (x∗ (y ∗ z)), μF1∪F2(y)} 

SUMMARY 

The chapter is organized as follows: In section 2, introduces some concepts and basic operations are reviewed. 
In section 3, presents a neutrosophic INK-sub algebra, neutrosophic h-ideal, neutrosophic T-ideal and 

neutrosophic p-ideal of INK-algebra and investigates their properties. Finally, conclusions are contained. 

CONCLUSION  

In this paper, we have introduced the notion of a neutrosophic h-ideal in INK-algebras, and investigated several 

properties. We have considered relations between a neutrosophic h-ideal and T-ideal, p-ideal and neutrosophic 

sub algebra. We have discussed characterizations of a neutrosophic h-ideal”. Finaly we discussed some 

characterization of neutrosophic set in INK-algebra and union and intersection of neutrosophic h-ideal. These 

concepts are illustrated through example. 
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ABSTRACT 

 Modules are one of fundamental and rich algebraic structure with respect to some binary operation in 

the study of algebra. The objective of this paper is to introduce the concept of Neutro 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 and 

NeutroOrdered 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 . Several interesting results and examples on Neutro 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 , 

NeutroOrdered 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒,NeutroOrdered Sub 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒, Neutro 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 Homomorphisms, 

the kernel, the image of Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒  Homomorphism and NeutroOrdered 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 

Homomorphisms are presented. 

Keywords: Neutro-Group, Neutro-Ring, Neutro 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 , NeutroOrdered 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒  , 

NeutroOrdered Sub  𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 ,  Neutro 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒  Homomorphism and NeutroOrdered 𝑅 −

𝑚𝑜𝑑𝑢𝑙𝑒 Homomorphisms. 

 

INTRODUCTION 

Vagueness or uncertainty is a critical issue in the representation of incomplete knowledge in the fields 

of Computer Science and artificial intelligence. To deal with the uncertainty, the fuzzy set introduced by Zadeh 

[20] allows the uncertainty of a set with a membership degree between 0 and 1. Then, Atanassov [1] introduced 

an intuitionistic Fuzzy set (𝐼𝐹𝑆) as a generalization of the Fuzzy set. The 𝐼𝐹𝑆 represents the uncertainty with 

respect to both membership and non-membership. However, it can only handle incomplete information but not 

the indeterminate and inconsistent information which exists commonly in real situations. Therefore, 

Smarandache [12] proposed a neutrosophic set. It can independently express truth-membership degree 𝑇, 

indeterminacy-membership degree 𝐼, and false membership degree 𝐹 and deal with incomplete, indeterminate, 

and inconsistent information. The indeterminate element 𝐼 is such that ordinary multiplication . 𝐼 = 𝐼2 = 𝐼 , 

𝐼−1 the inverse of 𝐼 is not defined and hence does not exist. Moreover 𝐼 + 𝐼 +⋯ 𝐼 = 𝑛𝐼: 𝑛 ∈ 𝑁.Also, several 

generalizations of the set theories made such as fuzzy multi-set theory [15, 16], intuitionistic fuzzy multi-set 

theory [10, 11] and refined neutrosophic set theory [3, 4, 6, 8, 13, 18, 27, 28, 39- 41]. Many research treating 

imprecision and uncertainty have been developed and studied. Since then, it is applied to various areas, such 

as decision-making problems [2, 5, 7, 9, 14, 17, 19, 26, 29, 55-90] machine learning [30, 31], intelligent disease 
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diagnosis [32, 33] communication services [34] pattern recognition [35] social network analysis and e-learning 

systems [36] physics [37, 38], … etc.  

               Smarandache [22] recently introduced new fields of research in neutrosophy called Neutro-Structures 

and Anti-Structures respectively. In,[23] Smarandache introduced the concepts of Neutro-Algebras and Anti-

Algebras and in,[21] he revisited the concept of Neutro-Algebras and Anti-Algebras where he studied Partial 

Algebras, Universal Algebras, Effect Algebras and Boole’s Partial Algebras and he showed that Neutro-

Algebras are generalization of Partial Algebras. Şahin M et al. studied neutro-R module [44-54]; Agboola [21] 

introduced the concept of Neutro-Group. Inspired by NeutroAlgebra and ordered Algebra [43] Introduced 

NeutroOrdered Algebra and some related terms such as NeutroOrdered Sub Algebra and NeutroOrdered 

Homomorphism. 

               In continuation of this work the present research is devoted to the presentation of the concept of 

Neutro 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 and NeutroOrdered 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒.Several interesting results and examples on Neutro 𝑅 −

𝑚𝑜𝑑𝑢𝑙𝑒𝑠 , Neutro-Sub  𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒𝑠 , NeutroOrdered 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒  and NeutroOrdered 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 

Homomorphisms are presented.  

BACKGROUND 

 

In this section, we will give some definitions, examples and results that will be useful in other sections 

of the research. 

2.1. Neutrosophic Sets [12] 

Let 𝒰 be a universe. 𝒜 neutrosophic sets 𝒜 over 𝒰 is defined by  

𝒜 = {≺ 𝑢, (𝑇𝒜(𝑢), 𝐼𝒜(𝑢), 𝐹𝒜(𝑢)) ≻:𝑢 ∈ 𝒰} 

where, 𝑇𝒜(𝑢), 𝐼𝒜(𝑢) and 𝐹𝒜(𝑢) are called truth-membership function, indeterminacy-membership function 

and falsity- membership function, respectively. They are respectively defined by 

𝑇𝒜: 𝒰 →]
−0, 1+[ , 𝐼𝒜:𝒰 →]

−0, 1+[ ,       𝐹𝒜: 𝒰 →]
−0, 1+[  

such that 0− ≤ 𝑇𝒜(𝑢)+𝐼𝒜(𝑢)+𝐹𝒜(𝑢) ≤ 3
+. 

2.2. Single Valued Neutrosophic Set [18]  

Let 𝒰 be a universe. A single valued neutrosophic set (SVN-set) over 𝒰 is a neutrosophic set over 𝒰, but the 

truth-membership function 𝑇, indeterminacy-membership function 𝐼 and falsity- membership function 𝐹 are 

respectively defined by 

𝑇𝒜: 𝒰 →]
−0, 1+[ , 𝐼𝒜:𝒰 →]

−0, 1+[ ,       𝐹𝒜: 𝒰 →]
−0, 1+[  

Such that 0 ≤ 𝑇𝒜(𝑢)+𝐼𝒜(𝑢)+𝐹𝒜(𝑢) ≤ 3. 

2.3. Neutro-Axiom, Anti-Axiom [21] 

i- A classical axiom defined on a nonempty set is an axiom that is totally true (i.e., true for all set’s 

elements).  
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ii-  A Neutro-Axiom (or Neutrosophic Axiom) defined on a nonempty set is an axiom that is true 

for some set’s elements [degree of truth (𝑇)], indeterminate for other set’s elements. [degree of 

indeterminacy (𝐼) ], or false for the other set’s elements [degree of falsehood (𝐹) ], where 

𝑇, 𝐼, 𝐹 ∈  [0, 1], with (𝑇, 𝐼, 𝐹)  ≠  (1, 0, 0) that represents the classical axiom, and (𝑇, 𝐼, 𝐹)  ≠
 (0, 0, 1) that represents the Anti-Axiom. 

iii- An Anti-Axiom defined on a nonempty set is an axiom that is false for all set’s elements. 

Therefore, we have the neutrosophic triplet: 

<  𝐴𝑥𝑖𝑜𝑚, 𝑁𝑒𝑢𝑡𝑟𝑜 − 𝐴𝑥𝑖𝑜𝑚,𝐴𝑛𝑡𝑖 − 𝐴𝑥𝑖𝑜𝑚 >. 

2.4. Neutro-Group [22] 

Let 𝐺 be a nonempty set and let ∗∶  𝐺 ×  𝐺 →  𝐺 be a binary operation on 𝐺. The couple (𝐺,∗) is called a 

Neutro-Group if the following conditions are satisfied:  

I- ∗ is Neutro-Associative that is there exists at least one triplet (𝑎, 𝑏, 𝑐)  ∈  𝐺 such that 

 𝑎 ∗  (𝑏 ∗  𝑐)  =  (𝑎 ∗  𝑏)  ∗  𝑐  [degree of truth (𝑇)], one triplet (𝑑, 𝑒, 𝑓)  ∈  𝐺 such that  

𝑑 ∗ (𝑒 ∗ 𝑓) 𝑜𝑟 (𝑑 ∗ 𝑒) ∗ 𝑓  are indeterminate[degree of indeterminacy (𝐼)] and there exists at 

least one triplet (𝑥, 𝑦, 𝑧)  ∈  𝐺 such that  𝑥 ∗  (𝑦 ∗  𝑧)  ≠  (𝑥 ∗  𝑦)  ∗  𝑧  [degree of falsehood 

(𝐹)]. with (𝑇, 𝐼, 𝐹)  ≠  (1, 0, 0) that represents the classical axiom, and (𝑇, 𝐼, 𝐹)  ≠  (0, 0, 1) that 

represents the Anti-Axiom. 

II- There exists a Neutro-Neutral element in 𝐺 that is there exists at least an element 𝑎 ∈  𝐺 that has 

a single neutral element that is we have 𝑒  ∈  𝐺 such that 𝑎 ∗  𝑒 =  𝑒 ∗  𝑎 =  𝑎[degree of truth 

(𝑇)], for 𝑐 ∈  𝐺 that has a single neutral element that is we have 𝑒  ∈  𝐺 such that 𝑐 ∗  𝑒 𝑜𝑟 𝑐 ∗

 𝑎  are indeterminate[degree of indeterminacy (𝐼)] and for 𝑏 ∈  𝐺 there does not exist 𝑒 ∈  𝐺 

such that 𝑏 ∗  𝑒 =  𝑒 ∗  𝑏 =  𝑏 or there exist 𝑒1, 𝑒2  ∈  𝐺 such that 𝑏 ∗ 𝑒1 = 𝑒1,∗  𝑏 =  𝑏  or 

𝑏 ∗  𝑒2  =   𝑒2  ∗  𝑏 =  𝑏 with 𝑒1 ≠ 𝑒2 [degree of falsehood (𝐹)]. 

III- There exists a Neutro-Inverse element that is there exists at least one element 𝑎 ∈  𝐺 that has an 

inverse 𝑏 ∈  𝐺 with respect to a unit element 𝑒 ∈  𝐺 that is 𝑎 ∗  𝑏 = 𝑏 ∗  𝑎 =  𝑒 [degree of truth 

(𝑇)], there exists at least one element 𝑐 ∈  𝐺 that is 𝑎 ∗  𝑐  𝑜𝑟  𝑏 ∗  𝑎  are indeterminate[degree 

of indeterminacy (𝐼)] and that has two or more inverses 𝑐, 𝑑 ∈  𝐺 with respect to some unit 

element 𝑢 ∈  𝐺 that is 𝑏 ∗  𝑐 = 𝑐 ∗  𝑏 = 𝑢 , 𝑏 ∗ 𝑑 = 𝑑 ∗ 𝑏 =  𝑢 [degree of falsehood (𝐹)]. 

 In addition, if ∗ is Neutro-Commutative that is there exists at least a duplet (𝑎, 𝑏)  ∈  𝐺 such that 

𝑎 ∗  𝑏 =  𝑏 ∗  𝑎  , there exists at least a duplet (𝑥, 𝑦)  ∈  𝐺  such that 𝑥 ∗  𝑦 𝑜𝑟  𝑦 ∗ 𝑥  are 

indeterminate and there exists at least a duplet (𝑐, 𝑑)  ∈  𝐺 such that 𝑐 ∗  𝑑 ≠  𝑑 ∗  𝑐, then (𝐺,∗

) is called a Neutro-Commutative Group or a Neutro-Abelian Group. 

If only condition I is satisfied, then (𝐺,∗) is called a Neutro-Semi Group and if only conditions I and II are 

satisfied, then (𝐺,∗) is called a Neutro-Monoid. 

2.5. Neutro-Ring [25] 

(a) A Neutro-Ring (𝑅,+, . ) is a ring structure that has at least one Neutro-Operation among 

 " + "  and or " ∙ "  at least one Neutro-Axiom.  

(b) Let 𝑅  be a nonempty set and let +, . ∶  𝑅 ×  𝑅 →  𝑅  be binary operations of ordinary addition and 

multiplication on 𝑅. The triple (𝑅, +, . ) is called a Neutro-Ring if the following conditions are satisfied:  
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I-  (𝑅,+) is a Neutro-Abelian Group.   

II- (𝑅, . ) is a Neutro-Semi Group.  

III- " ∙ " is both left and right Neutro-Distributive over " + " that is there exists at least a triplet (𝑎, 𝑏, 𝑐)  ∈  𝑅 

and at least a triplet (𝑑, 𝑒, 𝑓)  ∈  𝑅 such that 

 𝑎. (𝑏 +  𝑐)  =  𝑎. 𝑏 +  𝑎. 𝑐  

(𝑏 +  𝑐). 𝑎 =  𝑏. 𝑎 +  𝑐. 𝑎  

𝑑. (𝑒 +  𝑓)  ≠  𝑑. 𝑒 +  𝑑. 𝑓 (𝑒 +  𝑓). 𝑑 ≠  𝑒. 𝑑 +  𝑓. 𝑑.  

If" ∙ " is Neutro-Commutative, then (𝑅, +, . ) is called a Neutro-Commutative Ring. 

2.6. Neutro-R module [45]  

Let (𝐺, #) be an abelian neutro-group, (𝑅,+1, .1 ) a commutative neutro-ring and let ∗ : 𝑅𝑥𝐺 →  𝑅 be a binary 

operation. If at least one of the following conditions {𝑖, 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣, 𝑣} is satisfied, then (𝐺, #) is called a neutro-

R module.  

i) There exists a double (𝑏, 𝑛)  ∈ (𝑅, 𝐺) such that 𝑏 ∗  𝑛 ∈ 𝐺 (degree of truth T) and there exist two doubles 

(𝑢, 𝑣) and (𝑝, 𝑞)  ∈ (𝑅, 𝐺) such that [𝑝 ∗  𝑞   𝑅 (degree of falsehood F) or 𝑢 ∗  𝑣 ∈𝑈 𝑉 (indeterminacy (I))]; 

where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).  

ii) There exists a triplet (𝑏, 𝑛,𝑚) ∈  (𝑅, 𝐺, 𝐺) such that 

 𝑏 ∗  (𝑛 # 𝑚)  =𝑈  (𝑏 ∗ 𝑛)#(𝑏 ∗  𝑚) (degree of truth T) and there exist two triplets (𝑝, 𝑞, 𝑟) and (𝑢, 𝑣, 𝑤) ∈

 (𝑅, 𝐺, 𝐺) such that [𝑝 ∗ (𝑞 # 𝑟)  =𝑈 (𝑝 ∗  𝑞)#(𝑝 ∗  𝑟) (degree of indeterminacy I) or [𝑢 ∗ (𝑣 # 𝑤)  ≠ (𝑢 ∗

𝑣) # (𝑢 ∗  𝑤) (degree of falsehood F)]; where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).  

iii) There exists a triplet (𝑏, 𝑛,𝑚)  ∈ (𝑅, 𝐺, 𝐺) such that (𝑏 +1 𝑛)  ∗  𝑚 = (𝑏 ∗ 𝑚) +1 (𝑛 ∗  𝑚) (degree of 

truth T) and there exist two triplets (𝑝, 𝑞, 𝑟) and (𝑢, 𝑣,𝑤) ∈  (𝑅, 𝑅, 𝐺) such that  

[(𝑝 +1 𝑞) ∗  𝑟 =
𝑈  (𝑝 ∗  𝑟) +1 (𝑞 ∗  𝑟) (degree of indeterminacy I) or [(𝑢 +1 𝑣)  ∗  𝑤 ≠ (𝑢 ∗  𝑤) +1 (𝑣 ∗

 𝑤) (degree of falsehood F)]; where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).  

iv) There exists a triplet (𝑏, 𝑛, 𝑚)  ∈ (𝑅, 𝐺, 𝐺) such that 

 ∗ (𝑛 .1  𝑚)  =  (𝑏 ∗  𝑛) .1  m (degree of truth T) and there exist two triplets (𝑝, 𝑞, 𝑟)  and (𝑢, 𝑣, 𝑤)  ∈

(𝑅, 𝑅, 𝐺) such that [𝑝 ∗  (𝑞 .1  𝑟)  =
𝑈 (𝑝 ∗  𝑞) .1  𝑟  (degree of indeterminacy I) or 𝑢 ∗  (𝑣 .1  𝑤)  ≠ ( 𝑢 ∗

 𝑣) .1  𝑤 (degree of falsehood F)]; where (T, I, F) is different from (1, 0, 0) and (0, 0, 1).  

v) For a double (𝑎, 𝑒) (𝑅, 𝐺), there exists an 𝑒 ∈ 𝐺 such that 𝑎 ∗  𝑒 =  𝑎 (degree of truth T) and (for two 

doubles (𝑏, 𝑒), (𝑐, 𝑒) ∈  (𝑅, 𝐺), there exists  𝑒 ∈ 𝐺  such that  𝑏 ∗  𝑒 ≠ 𝑏 ( degree of falsehood F) or 𝑐 ∗

 𝑒 =𝑈  𝑐 (degree of indeterminacy I)); where (T, I, F) is different from (1, 0, 0) and (0, 0, 1). 

2.7. Ordered Algebra [42]  

Let 𝐴 be an Algebra with 𝑛 operations “∗𝑖” and “≤” be a partial order relation (reflexive, anti-symmetric, and 

transitive) on 𝐴. Then (𝐴,∗1,∗2,… ,∗𝑛  , ≤) is an Ordered Algebra if the following conditions hold.  
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If 𝑥 ≤  𝑦 ∈  𝐴 then 𝑧 ∗𝑖 𝑥 ≤  𝑧 ∗𝑖 𝑦 𝑎𝑛𝑑 𝑥 ∗𝑖 𝑧 ≤  𝑦 ∗𝑖  𝑧 for all 𝑖 =  1, . . . , 𝑛 and 𝑧 ∈  𝐴. 

 

 

2.8. Neutro Ordered Algebra [43] 

Let A be a Neutro Algebra with 𝑛  (Neutro) operations “𝑖 ” and “ ≤ ” be a partial order (reflexive, anti-

symmetric, and transitive) on 𝐴 . Then (𝐴,∗1,∗2, … ,∗𝑛  , ≤)  is a NeutroOrdered Algebra if the following 

conditions hold.  

(1) There exist 𝑥 ≤  𝑦 ∈ 𝐴 with 𝑥 ≠  𝑦 such that 𝑧 ∗𝑖 𝑥 ≤  𝑧 ∗𝑖 𝑦 𝑎𝑛𝑑 𝑥 ∗𝑖 𝑧 ≤  𝑦 ∗𝑖  𝑧 for all 𝑖 =  1, . . . , 𝑛 

and 𝑧 ∈  𝐴 (This condition is called degree of truth, “𝑇”). 

 (2) There exist 𝑥 ≤  𝑦 ∈  𝐴  and 𝑧 ∈  𝐴  such that 𝑧 ∗𝑖 𝑥   𝑧 ∗𝑖 𝑦 𝑎𝑛𝑑 𝑥 ∗𝑖 𝑧   𝑦 ∗𝑖  𝑧  for some 𝑖 =

 1, . . . , 𝑛. (This condition is called degree of falsity, “𝐹”.)  

(3) There exist 𝑥 ≤  𝑦 ∈ 𝐴 and 𝑧 ∈ 𝐴 such that 𝑧 ∗𝑖 𝑥  𝑜𝑟  𝑧 ∗𝑖 𝑦  𝑜𝑟  𝑥 ∗𝑖 𝑧  𝑜𝑟  𝑦 ∗𝑖 𝑧 are indeterminate, or 

the relation between that 𝑧 ∗𝑖 𝑥   and 𝑧 ∗𝑖 𝑦, or the relation between 𝑥 ∗𝑖 𝑧  and 𝑦 ∗𝑖 𝑧 are indeterminate for 

some      𝑖 =  1, . . . , 𝑛. (This condition is called degree of indeterminacy, “𝐼”.) Where (𝑇, 𝐼, 𝐹) is different from 

(1, 0, 0)  that represents the classical Ordered Algebra as well from (0, 0, 1)  that represents the 

AntiOrderedAlgebra.  

2.9. NeutroTotalOrdered Algebra [43] 

 Let (𝐴,∗1,∗2, … ,∗𝑛  , ≤)   be a NeutroOrdered Algebra. If “ ≤ ”  is a total order on 𝐴  then 𝐴  is called 

NeutroTotalOrdered Algebra.  

 

NeutroOrdered 𝑹 −𝑴𝒐𝒅𝒖𝒍𝒆 and their properties 

In this section, we use the defined notion of NeutroOrdered Algebra and apply it to NeutroOrdered 

𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 . As a result, we define NeutroOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒  and other related concepts. 

Moreover, we study some properties of NeutroOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 and, NeutroOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 

homomorphism. 

3.1. NeutroOrdered 𝑹−𝑴𝒐𝒅𝒖𝒍𝒆   

Let 𝑅  be a Neutro-Ring and let ( 𝑀𝑅 ,+)  be a Neutro abelian group and " ∙ " be a binary operation 

such that 

 ∙ : 𝑅 ×  𝑀 →  𝑀. Then ( 𝑀𝑅 , +,∙) is called a Neutro left 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 on Neutro-Ring (𝑅,+, . )  if the 

following conditions are satisfied: 

1) " + " is left Neutro-Distributive over " ∙ " that is there exists at least some  𝑟 ∈ 𝑅   𝑎𝑛𝑑   𝑚, 𝑛 ∈

𝑀𝑅     such that 𝑟 ∙ (𝑚 +  𝑛) = 𝑟 ∙ 𝑚 + 𝑟 ∙ 𝑛 ,there exists at least 𝑞 ∈ 𝑅   𝑎𝑛𝑑   𝑡, 𝑣 ∈ 𝑀𝑅    such 

that 𝑞 ∙ (𝑡 + 𝑣) 𝑜𝑟 𝑞 ∙ 𝑡 + 𝑞 ∙ 𝑣  are indeterminate and there exists at least   𝑠 ∈ 𝑅 , 𝑥, 𝑦 ∈

𝑀𝑅  such that  𝑠 ∙ (𝑥 + 𝑦)  ≠  𝑠 ∙ 𝑥 +  𝑠 ∙ 𝑦. 

2) " + " is right Neutro-Distributive over " ∙ " that is there exists at least some 𝑟, 𝑠 ∈ 𝑅   𝑎𝑛𝑑   𝑚 ∈

𝑀𝑅     such that (𝑟 + 𝑠) ∙ 𝑚 = 𝑟 ∙ 𝑚 + 𝑠 ∙ 𝑚 ,there exists at least 𝑥, 𝑦 ∈ 𝑅   𝑎𝑛𝑑   𝑧 ∈ 𝑀𝑅   such 
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that  (𝑥 + 𝑦) ∙ 𝑧  𝑜𝑟  𝑥 ∙ 𝑧 + 𝑦 ∙ 𝑧 are indeterminate and there exists at least some  𝑡, 𝑞 ∈ 𝑅 , 𝑛 ∈

𝑀𝑅  such that  

 (𝑡 + 𝑞) ∙ 𝑛 ≠ 𝑡 ∙ 𝑛 + 𝑞 ∙ 𝑛. 

3)  " ∙ " is Neutro-Associative that is there exists at least some 𝑟, 𝑠 ∈ 𝑅 𝑎𝑛𝑑 𝑚 ∈ 𝑀 such that 

(𝑟𝑠) ∙ 𝑚 = 𝑟 ∙ (𝑠 ∙ 𝑚), there exists at least some  𝑥, 𝑦 ∈ 𝑅 , 𝑧 ∈ 𝑀𝑅  such that (𝑥 ∙ 𝑦) ∙ 𝑧  𝑜𝑟  𝑥 ∙

(𝑦 ∙ 𝑧) are indeterminate and there exists at least some  𝑡, 𝑞 ∈ 𝑅 , 𝑛 ∈ 𝑀𝑅  such that (𝑡𝑞) ∙ 𝑛 ≠

𝑡 ∙ (𝑞 ∙ 𝑛). 

4) There is an element 𝑒 (Neutro-Neutral element in 𝑅) that is there exists at least some 𝑚𝜖𝑀 

such that  

   𝑒 ∙ 𝑚 = 𝑚    there exists at least some  𝑥 ∈ 𝑀𝑅  such that 𝑒 ∙ 𝑥 is indeterminate and there 

exists at least some  𝑛 ∈ 𝑀𝑅  such that    𝑒 ∙ 𝑛 ≠ 𝑛. 

 

Similarly, the form  (𝑀𝑅 ,+,∙)  is known as Neutro right 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 over a Neutro-Ring  . 

Notes: 

1- If we have 𝑅 as a commutative Neutro-Ring, then every Neutro left 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 is a Neutro 

right 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. 

2- 𝑀 is called a finite Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of order 𝑛 if the number of elements in 𝑀 is n that is 

𝑜(𝑀)  =  𝑛. If no such 𝑛 exists, then 𝑀 is called an infinite Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 and we write 

𝑜(𝑀)  =  ∞.  

3- An element 𝑥 ∈  𝑀 is called a NeutroIdempotent element if 𝑥 2  =  𝑥.  

4- An element 𝑥 ∈ 𝑀 is called a NeutroINilpotent element if for the least positive integer 𝑛, we 

have 

 𝑥 𝑛  =  𝑒 where 𝑒 is Neutro-Neutral element in 𝑀. 

3.2. Example: Let 𝑅 be a commutative Neutro-Ring. A very important example of an Neutro 𝑅 −

𝑀𝑜𝑑𝑢𝑙𝑒 is  𝑅 Neutro-Ring itself:  

3.3. Example: Let 𝑋 = {𝑚, 𝑛, 𝑝, 𝑞, 𝑡} be a universe of discourse and let 𝑀 = {𝑚,𝑛, 𝑝} be a subset of  

. let ∎ and ∗ be binary operation defined on 𝑀 as shown in the Cayely tables below: 

 

∎ 𝑚 𝑛 𝑝 

𝑚 𝑚 𝑛 𝑛 𝑜𝑟 𝑝 

𝑛 𝑝  𝑜𝑟 𝑛 𝑚 𝑜𝑟 𝑛 𝑝 

𝑝 𝑛 𝑝  𝑛  

 

∗ 𝑚 𝑛 𝑝 

𝑚 𝑚 𝑚 𝑚 

𝑛 𝑚 𝑜𝑟 𝑛 𝑝 𝑚 

𝑝 𝑚  𝑝 𝑛 
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It is clear from the table that it (𝑅,∎,∗) is a Neutro-Commutative Ring with Neutro-Unity and: 

1-            𝑚 ∗ (𝑛∎𝑝) = 𝑚 ∗ 𝑝 = 𝑚 

          (𝑚 ∗ 𝑛)∎(𝑚 ∗ 𝑝) = 𝑚∎𝑚 = 𝑚  [degree of truth (𝑇)],  

                        𝑝 ∗ (𝑛∎𝑚) = 𝑝 𝑜𝑟 𝑛   

                      (𝑝 ∗ 𝑛)∎(𝑝 ∗ 𝑚) = 𝑛 𝑜𝑟 𝑚  𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦[degree of indeterminacy (𝐼)] 

          and   𝑛 ∗ (𝑝∎𝑚) = 𝑛 ∗ 𝑛 = 𝑝 

                      (𝑛 ∗ 𝑝)∎(𝑛 ∗ 𝑚) = 𝑚∎𝑚 = 𝑚[degree of falsehood (𝐹)].  

This shows that "∎"is both left Neutro-Distributive over " ∗ ". 

2-            (𝑚∎𝑛) ∗ 𝑝 = 𝑛 ∗ 𝑝 = 𝑚 

          (𝑚 ∗ 𝑝)∎(𝑛 ∗ 𝑝) = 𝑚∎𝑚 = 𝑚  [degree of truth (𝑇)],  

         (𝑛∎𝑚) ∗ 𝑝 = 𝑛 𝑜𝑟 𝑚 

         (𝑛 ∗ 𝑝)∎(𝑚 ∗ 𝑝) = 𝑚[degree of indeterminacy (𝐼)] 

          and (𝑝∎𝑚) ∗ 𝑛 = 𝑛 ∗ 𝑛 = 𝑝 

         (𝑝 ∗ 𝑛)∎(𝑚 ∗ 𝑛) = 𝑝∎𝑚 = 𝑛 [degree of falsehood (𝐹)]. 

This shows that "∎"is both right Neutro-Distributive over " ∗ ". 

3- 𝑚 ∗ (𝑛 ∗ 𝑝) = 𝑚 ∗𝑚 = 𝑚   

 (𝑚 ∗ 𝑛) ∗ 𝑝 = 𝑚 ∗ 𝑝 = 𝑚   

(𝑛 ∗ 𝑚) ∗ 𝑝 = 𝑚[degree of truth (𝑇)], 

𝑛 ∗ (𝑚 ∗ 𝑝) = 𝑛 𝑜𝑟 𝑚[degree of indeterminacy (𝐼)] 

and  𝑝 ∗ (𝑛 ∗ 𝑛) = 𝑝 ∗ 𝑝 = 𝑛 

       (𝑝 ∗ 𝑛) ∗ 𝑛 = 𝑝 ∗ 𝑛 = 𝑝 [degree of falsehood (𝐹)]. 

This shows that  " ∗ " is a Neutro-Associative. 

4- 𝑝 ∗ 𝑛 = 𝑝 , 𝑚 ∗ 𝑛 = 𝑚  [degree of truth (𝑇)],  

𝑚 ∗ 𝑛 = 𝑚 , 𝑛 ∗ 𝑚 = 𝑚 𝑜𝑟 𝑛  [degree of indeterminacy (𝐼)] 

 𝑛 ∗ 𝑛 = 𝑝 ≠ 𝑛 [degree of falsehood (𝐹)]. 

It follows that (𝑀,∎,∗) Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 over Neutro-Ring (𝑅,∎,∗). 

3.4. Neutro-Sub 𝑹 −𝑴𝒐𝒅𝒖𝒍𝒆  

Let  𝑀  be a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. A nonempty subset 𝑁 of 𝑀 is called a Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 

𝑀 if 𝑁 is also a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. 
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3.5. Example: Let  𝑀  be a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. 𝑀  is a Neutro-Sub 𝑅 − 𝑀𝑜𝑑𝑢𝑙𝑒 called a trivial 

Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. 

3.6. Theorem: Let 𝑀  be a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 over a Neutro-Ring  𝑅  and let  𝑁 be a nonempty 

subset of 𝑀.  

𝑁 is a Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 𝑀 if the following conditions hold:  

(1) That is there exists at least some     𝑚, 𝑛 ∈ 𝑁    such that  𝑚+  𝑛 ∈ 𝑁 . 

(2) That is there exists at least some     𝑚 ∈ 𝑁  , 𝑟 ∈ 𝑅  such that  𝑟𝑚 ∈ 𝑁 . 

3.7. Corollary: Let 𝑀  be a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 over a Neutro-Ring  𝑅  and let  𝑁 be a nonempty 

subset of 𝑀.  

𝑁 is a Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 𝑀 if the following conditions hold:  

That is there exists at least some     𝑚, 𝑛 ∈ 𝑁  , 𝑟, 𝑠 ∈ 𝑅  such that  𝑟𝑚 + 𝑠𝑛 ∈ 𝑁 . 

3.8 Example: Let (𝑀,∎,∗)  be a the Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 3.3. Example and let  𝑁 = {𝑝, 𝑛} : 

1-  𝑝, 𝑛 ∈ 𝑁   , 𝑝∎𝑛 = 𝑝 ∈ 𝑁  but  𝑛∎𝑛 = 𝑚 

2- 𝑝, 𝑛 ∈ 𝑁  , 𝑝 ∈ 𝑅 , 𝑝 ∗ 𝑛 = 𝑝 ∈ 𝑁  but  𝑛 ∗ 𝑝 = 𝑚 

It follows that 𝑁 is Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 𝑀. 

3.9. Theorem: Let 𝑀  be a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 over a Neutro-Ring 𝑅 and let {𝑁𝑛}𝑛∈ be a family 

of Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 𝑀 .Then ∩𝑁𝑛 is a Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. 

3.10. Neutro 𝑹−𝑴𝒐𝒅𝒖𝒍𝒆 Homomorphism  

Let  (𝑀,+,∙)  and  (𝑁, ∎,∗)  be any two Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒𝑠. The mapping 𝜑 ∶  𝑀 →  𝑁 is called a Neutro 

𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Homomorphism if the following conditions hold:  

for at least a pair (𝑥, 𝑦) ∈  𝑀, we have:  

𝜑(𝑥 +  𝑦)  =  𝜑(𝑥)∎ 𝜑(𝑦) 

𝜑(𝑥 ∙ 𝑦)  =  𝜑(𝑥) ∗ 𝜑(𝑦) 

If in addition 𝜑 is a Neutro-Bijection, then 𝜑 is called a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Isomorphism and we 

write  𝑀 ≅ 𝑁. Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Epimorphism, Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Monomorphism, Neutro 𝑅 −

𝑀𝑜𝑑𝑢𝑙𝑒 Endomorphism and Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Automorphism are defined similarly. 

3.11. The kernel and the image of Neutro 𝑹−𝑴𝒐𝒅𝒖𝒍𝒆 Homomorphism  

The kernel of 𝜑 denoted by 𝐾𝑒𝑟𝜑 is defined as 

 𝐾𝑒𝑟𝜑 =  {𝑥 ∶  𝜑(𝑥)  =  𝑒𝑁} where 𝑒𝑁 ∈ 𝑁 is Neutro-Neutral element in 𝑁. 

The image of 𝜑 denoted by 𝐼𝑚𝜑 is defined as 
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 𝐼𝑚𝜑 =  {𝑦 ∈  𝑁 ∶  𝑦 =  𝜑(𝑥) 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑦 ∈  𝑁}.  

3.12. Example: Let (𝑀,∎,∗)  be a the Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 3.3. Example and let 𝜑: (𝑀,∎,∗) →

(𝑀,∎,∗)  be  

a mapping defined by: 

𝜑(𝑚) = 𝑚 ∗ 𝑚 

It can be shown that 𝜑 is a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Homomorphism such that 

for 𝑚,𝑛, 𝑝 ∈  𝑀, we have:  

1- 𝜑(𝑚 ∎ 𝑚) = 𝜑(𝑚) = 𝑚 ∗𝑚 = 𝑚 

        𝜑(𝑚)∎ 𝜑(𝑚) = (𝑚 ∗ 𝑚)∎(𝑚 ∗ 𝑚) = 𝑚∎𝑚 = 𝑚   but  

                𝜑(𝑚∎𝑛) = 𝜑(𝑛) = 𝑛 ∗ 𝑛 = 𝑝  

𝜑(𝑚)∎𝜑(𝑛) = (𝑚 ∗𝑚)∎(𝑛 ∗ 𝑛) = 𝑚∎𝑝 = 𝑛 

 

2- 𝜑(𝑚 ∗ 𝑛) = 𝜑(𝑚) = 𝑚 ∗ 𝑚 = 𝑚 

𝜑(𝑚) ∗ 𝜑(𝑛) = 𝑚 ∗ 𝑝 = 𝑚 but  

               𝜑(𝑝 ∗ 𝑛) = 𝜑(𝑝) = 𝑝 ∗ 𝑝 = 𝑛 

𝜑(𝑝) ∗ 𝜑(𝑛) = 𝑛 ∗ 𝑝 = 𝑚  

The kernel of 𝜑 is 𝐾𝑒𝑟𝜑 =  {𝑥 ∶  𝜑(𝑥) =  𝑒𝑀} = {𝑚, 𝑝} where 𝑒𝑀 ∈ 𝑀 is Neutro-Neutral element in 𝑀. 

The image of 𝜑 is 𝐼𝑚𝜑 =  {𝑦 ∈  𝑁 ∶  𝑦 =  𝜑(𝑥)𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑦 ∈  𝑁} = {𝑚, 𝑛, 𝑝} 

3.13. Theorem: Let  (𝑀,∙, +)  and  (𝑁,∎,∗)  be any two Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒𝑠. Suppose that 𝜑 ∶  𝑀 →  𝑁 is 

a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Homomorphism. Then:  

I- 𝜑(𝑒𝑀) is not necessarily equals 𝑒𝑁.  

II- 𝐾𝑒𝑟𝜑 is a Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 𝑀.  

III- 𝐼𝑚𝜑 is not necessarily a Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 𝑁.  

IV- 𝜑 is NeutroInjective if and only if 𝐾𝑒𝑟𝜑 =  {𝑒𝑀} for at least one 𝑒𝑀 ∈ 𝑀. 

3.14. The composition of Neutro 𝑹−𝑴𝒐𝒅𝒖𝒍𝒆 Homomorphism:  

Let  𝐾,𝑀  and  𝑁  be Neutro 𝑅 − 𝑀𝑜𝑑𝑢𝑙𝑒𝑠 over a Neutro-Ring 𝑅 and let  

 ∶ 𝐾 → 𝑀, ∶ 𝑀 → 𝑁 

be Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 homomorphisms. The composition   ∶ 𝐾 → 𝑁 is defined by  

 (𝑘)  =  ((𝑘)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘𝐾.  

3.15. Theorem: Let  𝐾,𝑀  and  𝑁  be Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒𝑠 over a Neutro-Ring 𝑅 and let   

 ∶ 𝐾 → 𝑀, ∶ 𝑀 → 𝑁 
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be Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 homomorphisms. Then the composition  ∶ 𝐾 → 𝑁 is a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 

homomorphisms. 

3.16. Theorem: Let  𝐾,𝑀  and  𝑁  be Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒𝑠 over a Neutro-Ring 𝑅 and let   

 ∶ 𝐾 → 𝑀, ∶ 𝑀 → 𝑁 

be Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 homomorphisms. Then  

1- If  is Monomorphism Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒, then  Monomorphism Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. 

2- If  is Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Epimorphism, then  is Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Epimorphism. 

3- If  and  are Monomorphism Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒, then  is Monomorphism Neutro 𝑅 −

𝑀𝑜𝑑𝑢𝑙𝑒. 

 

3.17. Neutro Ordered 𝑹−𝑴𝒐𝒅𝒖𝒍𝒆   

Let 𝑀 be a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 with 𝑛 (Neutro) operations “𝑖” and “ ≤ ” be a partial order (reflexive, anti-

symmetric, and transitive) on 𝑀. Then (𝑀,∗1,∗2 , ≤) is a NeutroOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 if the following 

conditions hold.  

(1) There exist 𝑥 ≤  𝑦 ∈ 𝑀 with 𝑥 ≠  𝑦 such that 𝑧 ∗𝑖 𝑥 ≤  𝑧 ∗𝑖 𝑦 𝑎𝑛𝑑 𝑥 ∗𝑖 𝑧 ≤  𝑦 ∗𝑖  𝑧 for all 𝑖 =  1, 2  and 

𝑧 ∈  𝑀 (This condition is called degree of truth, “𝑇”.)  

 (2) There exist 𝑥 ≤  𝑦 ∈  𝑀 and 𝑧 ∈  𝐴 such that 𝑧 ∗𝑖 𝑥   𝑧 ∗𝑖 𝑦 𝑎𝑛𝑑 𝑥 ∗𝑖 𝑧   𝑦 ∗𝑖  𝑧 for some 𝑖 =  1,2. 

(This condition is called degree of falsity, “𝐹”.)  

(3) There exist 𝑥 ≤  𝑦 ∈ 𝑀 and 𝑧 ∈ 𝐴 such that 𝑧 ∗𝑖 𝑥  𝑜𝑟  𝑧 ∗𝑖 𝑦  𝑜𝑟  𝑥 ∗𝑖 𝑧  𝑜𝑟  𝑦 ∗𝑖 𝑧 are indeterminate, or 

the relation between that 𝑧 ∗𝑖 𝑥   and 𝑧 ∗𝑖 𝑦, or the relation between 𝑥 ∗𝑖 𝑧  and 𝑦 ∗𝑖 𝑧 are indeterminate for 

some      𝑖 =  1, 2. (This condition is called degree of indeterminacy, “𝐼”.)  

Where (𝑇, 𝐼, 𝐹) is different from (1, 0, 0)  that represents the classical Ordered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒  as well from 

(0, 0, 1) that represents the AntiOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒.  

3.18. Neutro Total Ordered 𝑹 −𝑴𝒐𝒅𝒖𝒍𝒆    

 Let (𝑀,∗1,∗2 ,≤)   be a NeutroOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 . If “ ≤ ”  is a total order on 𝐴  then 𝑀  is called 

NeutroTotalOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒.  

3.19. Neutro Ordered Sub 𝑹 − 𝑴𝒐𝒅𝒖𝒍𝒆    

Let (𝑀,∗1,∗2 , ≤) be a Neutro Ordered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 and ∅ ≠  𝑆 ⊆  𝑀. Then  𝑆 is a Neutro Ordered Sub 𝑅 −

𝑀𝑜𝑑𝑢𝑙𝑒 of S if (𝑆,∗1,∗2 , ≤) is a Neutro Ordered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 and there exist. 

a. Example: Let 𝑀 = {𝑚, 𝑛, 𝑝} and (𝑀,∎,∗, ) be defined by the following table. 
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∎ 𝑚 𝑛 𝑝 

𝑚 𝑚 𝑛 𝑛 

𝑛 𝑝 𝑜𝑟 𝑛 𝑚 𝑜𝑟 𝑛 𝑝 

𝑝 𝑛 𝑝 𝑛 

 

 

As showed (𝑀,∎,∗, ) in 3.3. Example is a Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. 

By defining the total order 

≤ = {(𝑚,𝑚), (𝑛, 𝑛), (𝑝, 𝑝), (𝑚, 𝑛), (𝑚, 𝑝), (𝑛, 𝑝)} 

on 𝑀, we get that (𝑀,∎,∗,≤)  is a NeutroTotalOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒. This is easily seen as: 

1- 𝑚 ≤ 𝑝 implies that 𝑚 ∗ 𝑥 ≤ 𝑝 ∗ 𝑥 and 𝑥 ∗ 𝑚 ≤ 𝑥 ∗ 𝑝 for all 𝑥 ∈ 𝑀.  

And having 𝑛 ≤ 𝑝 but 𝑝∎𝑛 ≤ 𝑝∎𝑝. 

2- 𝑚 ≤ 𝑛 implies that 𝑚 ∗ 𝑥 ≤ 𝑛 ∗ 𝑥 and 𝑥 ∗ 𝑚 ≤ 𝑥 ∗ 𝑛 for all 𝑥 ∈ 𝑀.  

And having 𝑛 ≤ 𝑝 but 𝑝 ∗ 𝑛 ≤ 𝑝 ∗ 𝑝. 

3.21. Example: Let (𝑀,∎,∗,≤)  be a the Neutro 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 3.3. Example and let  𝑁 = {𝑝, 𝑛} 

: 

1-  𝑝, 𝑛 ∈ 𝑁   , 𝑝∎𝑛 = 𝑝 ∈ 𝑁  but  𝑛∎𝑛 = 𝑚 

2- 𝑝, 𝑛 ∈ 𝑁  , 𝑝 ∈ 𝑅 , 𝑝 ∗ 𝑛 = 𝑝 ∈ 𝑁  but  𝑛 ∗ 𝑝 = 𝑚 

By defining the total order 

≤ = {(𝑚,𝑚), (𝑛, 𝑛), (𝑝, 𝑝), (𝑚, 𝑛), (𝑚, 𝑝), (𝑛, 𝑝)} 

It follows that (𝑁, ∎,∗,≤) is Neutro-Sub 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 of 𝑀. 

3.22. Neutro Ordered 𝑹−𝑴𝒐𝒅𝒖𝒍𝒆 Homomorphism  

Let  (𝑀,∗1,∗2 ,≤1) and  (𝑁,∎1, ∎2 , ≤2) be any two Neutro Ordered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒𝑠. The mapping 𝜑 ∶  𝑀 →

 𝑁 is called a Neutro Ordered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Homomorphism if the following conditions hold:  

for some (𝑥, 𝑦) ∈  𝑀, we have:  

 𝜑(𝑥 ∗1  𝑦)  =  𝜑(𝑥)∎1 𝜑(𝑦) 

 𝜑(𝑥 ∗2  𝑦)  =  𝜑(𝑥)∎2𝜑(𝑦) 

 and there exist 𝑎 ≤1 𝑏  , 𝑎 ≠ 𝑏 , 𝜑(𝑎) ≤2 𝜑(𝑏) 

∗ 𝑚 𝑛 𝑝 

𝑚 𝑚 𝑚 𝑚 

𝑛 𝑚 𝑜𝑟 𝑛 𝑝 𝑚 

𝑝 𝑚 𝑝 𝑛 

/ 

/ 
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𝜑 is called Neutro Ordered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Isomorphism if 𝜑 is a bijective NeutroOrdered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 

Homomorphism. 

i)There exists a double (𝑝, 𝑞) ∈ 𝑀 such that 𝜑(𝑝 ∗1  𝑞)  =  𝜑(𝑝)∎1𝜑(𝑞) (degree of truth 𝑇) and there exist 

two doubles (𝑠, 𝑡), (𝑘,𝑚) (𝐹, 𝑉) such that [𝜑(𝑠 ∗1  𝑡) ≠  𝜑(𝑠) ∎1𝜑(𝑡) (degree of falsehood 𝐹) or 

𝜑(𝑘 ∗1  𝑚) = indeterminacy  𝜑(𝑘) ∎1 𝜑(𝑚) (degree of indeterminacy 𝐼)]; where (𝑇, 𝐼, 𝐹) is different from 

(1, 0, 0) and (0, 0, 1). 

ii)There exists a double (𝑝, 𝑞) ∈ 𝑀 such that 𝜑(𝑝 ∗2  𝑞)  =  𝜑(𝑝)∎2𝜑(𝑞) (degree of truth 𝑇) and there exist 

two doubles (𝑠, 𝑡), (𝑘,𝑚) (𝐹, 𝑉) such that [𝜑(𝑠 ∗2  𝑡) ≠  𝜑(𝑠) ∎2𝜑(𝑡) (degree of falsehood 𝐹) or 

𝜑(𝑘 ∗2  𝑚) = indeterminacy  𝜑(𝑘) ∎2 𝜑(𝑚) (degree of indeterminacy 𝐼)]; where (𝑇, 𝐼, 𝐹) is different from 

(1, 0, 0) and (0, 0, 1). 

3.23. Example: Let 𝜑: (𝑀,∎,∗,≤) → (𝑀,∎,∗,≤)  be a mapping defined by: 

𝜑(𝑚) = 𝑚 ∗ 𝑚 

It can be shown that 𝜑 is a Neutro Ordered 𝑅 −𝑀𝑜𝑑𝑢𝑙𝑒 Homomorphism such that 

for 𝑚,𝑛, 𝑝 ∈  𝑀, we have:  

1- and 2- it proved in 3.12. Example 

3- there exist 𝑚 ≤ 𝑛  sush that  𝜑(𝑚) ≤ 𝜑(𝑛) 

 

Conclusions 

This paper contributed to the study of Neutro Algebra by introducing, for the first time, Neutro 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 

and Neutro Ordered𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒. Many interesting properties were proved as well illustrative examples were 

given on Neutro 𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒 and Neutro Ordered𝑅 −𝑚𝑜𝑑𝑢𝑙𝑒. 
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ABSTRACT 

In this manuscript, we introduce the new concept of Neutrosophic double controlled metric-like spaces that 

generalize the concept of Neutrosophic metric spaces. We prove and generalize the concept of Banach 

contraction principle and fuzzy contractive mappings in the sense of neutrosophic double controlled metric-

like spaces. These results and illustrative examples generalize several comparable results from the current 

literature. 

Keywords: Fixed point, Controlled metric like space; Double controlled metric like space; Neutrosophic 

double controlled metric-like spaces;  

INTRODUCTION 

In the field of fixed point theory, the notion of metric spaces and the Banach contraction principle play crucial 

roles. Many researches are drawn to metric spaces because of its axiomatic clarity. There have been a lot of 

generalizations to the metric spaces so far. This demonstrates the allurement and scope of the definition of the 

metric spaces. 

The notion given by Zadeh [3] is known as fuzzy sets (FSs) acquire an ultra-attraction for researchers. This 

concept succeeded in shifting a lot of mathematical structures within itself. In this continuation, Kramosil and 

Michalek [9] originate the notion of fuzzy metric spaces and Garbiec [10] gave the fuzzy interpretation of 

Banach contraction principle in fuzzy metric spaces. Harandi [22] is credited with coining the term metric like 
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spaces (MLS) which elegantly generalises the idea of metric spaces. [25] N. Mlaiki introduced the concept of 

controlled metric type spaces and controlled metric-like spaces [24]. Shukla and Abbas [23] reformulated 

definition (MLS) in this context, resulting in fuzzy metric like spaces (FMLS).  Fuzzy metric spaces discuss 

only for memberships functions, so for dealing with membership and non-membership functions intuitionistic 

fuzzy metric spaces introduced by J. H. Park [11]. The neutrosophic set and theory are given by Smarandache. 

A lot of studies are given based on neutrosophic sets [28-32,40-76]. Also, a lot of studies are given based on 

some type of neutrosophic triplet metric space [33-39]. M. Kirişci, N. Simsek [20] tossed the approach of 

neutrosophic metric spaces (NMSs) that deals with membership, non-membership and naturalness functions. 

N. Simsek, M. Kirişci [19] and S. Sowndrarajan, M. Jeyarama, F. Smarandache [21] prove some fixed point 

(FP) results in the setting of NMSs. Recently N. Saleem [7] introduce the notion of fuzzy double controlled 

metric spaces (FDCMSs) and generalized the Banach contraction principle. For related articles see [1, 2, 4-6, 

8, 12-18, 26,27]. 

In this manuscript, our aim is to generalize the concept of NMSs by using the approach in [7] and toss the 

concept of neutrosophic double controlled metric-like spaces (NDCMLSs). Fixed point (FP) results and non-

trivial examples are imparted in this work 

BACKGROUND 

Definition 1.1 [1] A binary operation  : [0, 1]  [0, 1]  [0, 1] is called a continuous triangle norm (briefly 

CTN) if: 

1.  

2.  is continuous; 

3.  

4.  

5. If  and  with  then  

Example 1.1 [1, 2] Some fundamental examples of CTNs are:   and 

  

Definition 1.2 [1] A binary operation  : [0, 1]  [0, 1]  [0, 1] is called a continuous triangle conorm (briefly 

CTCN) if it meets the below assertions:  

1.  

2.  is continuous; 

3.  

4.  

5. If  and  with  then   

Example 1.2 [1]  are examples of CTCNs.  

Definition 1.3 [3] Let a set  then a pair  is named to be fuzzy set, here  is a function from  to 

 i.e.  for each ,  is called the grade of membership of  in  and  is called 

a membership function of  
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Definition 1.4 [27] Let a set  and  A neutrosophic set  in  is categorized by a truth-

membership function,  an indeterminacy-membership function  and a falsity –membership 

function  The functions   and  are real standard or non-standard subsets of  

that is    and  So,  

 

Definition 1.5 [22] A mapping  where  fulfill the below circumstances  

a.  

b.  

c.  

for all  Then  is called a metric-like and  is named metric-like space. 

Definition 1.6 [24] Let a function  and a mapping  where  fulfill 

the below circumstances  

a.  

b.  

c.  

for all  Then  is called a controlled metric-like and  is named controlled metric-like space. 

Definition 1.7 [8] Given functions  are non-comparable. If  fulfil: 

d.  

e.  

f.  

for all  Then  is called a double controlled metric and  is named double controlled metric 

space. 

Definition 1.8 [7] Let  and  given non-comparable functions, and  is a CTN.  

be a FS on  is named fuzzy double controlled metric on , if for all  the below 

circumstances fulfil: 

i.  

ii.  

iii.  

iv.  

v.  is left continuous.  

Then  be named a FDCMS. 

Definition 1.9 [4] Take . Let  be a CTN,  be a CTCN, and  be FSs on . If 

 verifies the following for all  

I.  

II.  

III.  

IV.  

V.  

VI.  is a non-decreasing function of ; 
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VII.  

VIII.   

IX.  

X.  

XI.  is a non-increasing function of  and  

then  is an Intuitionistic fuzzy b-metric space. 

Definition 1.10 [20] Let  and  is a CTN and  be a CTCN.  are Neutrosophic sets on 

 is named Neutrosophic metric on , if for all  the below circumstances fulfil: 

1)  

2)  

3)  

4)  

5)  

6)  is continuous and ; 

7)  

8)  

9)  

10)  

11)  is continuous and ; 

12)  

13)  

14)  

15)  

16)  is continuous and  

17) If  then  

Then  be called an NMS. 

 

 

NEUTROSOPHIC DOUBLE CONTROLLED METRIC-LIKE 

SPACE 
In this section, we introduce the concept of NDCMLSs and prove some FP results. 

Definition 2.1 Let  and  given non-comparable functions, and  is a CTN and  be 

a CTCN.  are Neutrosophic sets on  is named Neutrosophic double controlled metric-

like on , if for all  the below circumstances fulfil: 

(i)  

(ii)  

(iii)  

(iv)  

(v)  
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(vi)  is continuous and and ; 

(vii)  

(viii)  

(ix)  

(x)  

(xi)  is continuous and ; 

(xii)  

(xiii)  

(xiv)  

(xv)  

(xvi)  is continuous and and  ; 

Then  be called a NDCMLS. 

Example 2.1 Let  be two non-comparable functions given by 

 Define  as 

 

 

and 

 

Then  is an NDCMLS with CTN  and CTCN  

Proof: Conditions (i)-(iv), (vi)-(ix), (xi)-(xiv) and (xvi) are easy to examine, here we prove (v), (x) and (xv). 

Let  Then 

 

 

On the other hand, 

 

 

and  
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That is, 

 

Then it satisfies for all  Hence, 

 

Now, 

 

 

On the other hand, 

 

 

and  

 

 

That is, 

 

Then it satisfies for all  Hence, 

 

Now, 
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On the other hand, 

 

 

and  

 

 

That is, 

 

Then it satisfies for all  Hence, 

 

On the same lines, one can examine all other cases. Hence,  is a NDCMLS. 

Remark 2.1 Above example also satisfied for CTN  and CTCN  

Example 2.2 Let  be two non-comparable functions given by 

  

Define  as 

 

Then  is a NDCMLS with CTN  and CTCN  

Remark 2.2 Above example also holds for  

 

and 
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Remark 2.3 Above example also satisfied for CTN  and CTCN  

Definition 2.2 Let  is a NDCMLS, then we define an open ball  with centre  

radius  and  as follows: 

 

Definition 2.3 Let  is an NDCMLS and  be a sequence in then  is named to be:  

(i)  a convergent, if there exists  such that  

and 

  

(ii)  a Cauchy sequence (CS), if and only if for each  there exists  such that  

 exists and finite. 

(iii) If every Cauchy sequence convergent in  then  is called complete NDCMLS. 

 

 

 
 

Theorem 2.1 Suppose  be a complete NDCMLS in the company of 

 and suppose that  

 

for all  and . Let  be a mapping satisfying 

 

for all  and  Then  has a unique FP. 

Proof: Let  be a random integer of  and describe a sequence  by ,  By 

using  for all  we have  

 

 

 

 

and 
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We obtain  

 

 

for any , we deduce 
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and  
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Using (3) in the above inequalities, we deduce 
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and  
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Using (1),  we deduce 

 

 

 

 

i.e.,  is a CS. Since  be a complete NDCMLS, there exists  

 

 

 

Now investigate that  is a FP of , using  we obtain 

 

 

 

  

 

 

 

and  

 

 

 

 This implies that  a FP. Now we show the uniqueness, suppose  for some , 

then 



Editors: Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın 

              

 

92 

 

 

 

 

 

and  

 

 

by using  

Definition 2.4 Let  be a NDCMLS. A map  is ND-controlled like contraction if there 

exists , such that  

 

 

and  

 

for all   

Now we prove the theorem for ND-controlled like contraction. 

Theorem 2.2 Let  be a complete NDCMLS with  and suppose that  

 

for all  and . Let  be a ND-controlled like contraction. Further, suppose that for an 

arbitrary  where . Then  has a unique FP. 

Proof: Let  be a random integer of  and describe a sequence  by ,  By 

using  and  for all  we have 
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Continuing in this way, we get 

 

 

We obtain 

 

 

 

and  

 

 

for any  , we deduce  
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Therefore, 

 

 

 

 

i.e.,  is a CS. Since  be a complete NDCMLS, there exists 

 

 

 

Now investigate that  is a FP of , using  we obtain 

 

 

Using above inequality, we obtain 

 

 

 

,  
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and  

 

 

 

 

This implies that  a FP. Now we show the uniqueness, suppose  for some , then 

 

 

a contradiction, 

 

a contradiction, and 

 

a contradiction. Therefore, we must have , hence  

Example 2.3 Let  be two non-comparable functions given by  

 

and 

 

Define  as 

 

Then  is a complete NDCMS with CTN  and CTCN   

Define  and take  then 
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and  

 

 

Hence, all circumstances of theorem 2.1 are fulfilled and  is a unique fixed point for  

 

Conclusions 

Fixed point technique is used to solve many mathematical problems as it gets involved with differential and 

integral equations, integro-differential equation, game theory, economics and more disciplines. The intent of 

this manuscript is to present a new space neutrosophic double controlled metric like space. Ultimately, to 

illustrate the practical side of the theoretical results. Moreover, we provided a non-trivial example to 

demonstrate the viability of the proposed methods. We have supplemented this work with an application that 

demonstrates how the built method outperforms those found in the literature. Since our structure is more 

general than the class of fuzzy and double controlled metric like spaces, our results and notions expand and 

generalize a number of previously published results. 

Abbreviations 

FS: Fuzzy Set 

MLS: Metric-like space 

FMLS: Fuzzy metric-like space 

NMS: Neutrosophic metric space 

NDCMLS: Neutrosophic double controlled metric-like space 

FP: Fixed point 

CTN: Continuous triangle norm 

CTCN: Continuous triangle conorm 
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ABSTRACT 

Generalized set valued neutrosophic quadruple sets have an important role in neutrosophic quadruple theory 

and single valued neutrosophic theory. Thanks to generalized set valued neutrosophic quadruple sets, the 

solutions of decision-making problems in which single valued neutrosophic numbers are used can be obtained 

more objectively.  Also, bipolar single valued neutrosophic sets are more useful in neutrosophic theory, 

especially at decision making problems. In this chapter, we obtain bipolar generalized set valued neutrosophic 

quadruple sets and numbers. We give some basic properties for bipolar generalized set valued neutrosophic 

quadruple sets and numbers. Also, we define some new operations for bipolar generalized set valued 

neutrosophic quadruple sets and numbers. Thus, we obtain a new structure based on generalized set valued 

neutrosophic quadruple sets and bipolar single valued neutrosophic numbers. In this way, we obtain new results 

for generalized set valued neutrosophic quadruple set and bipolar single valued neutrosophic set. Furthermore, 

thanks to this new structure; the solutions of decision-making problems in which bipolar neutrosophic numbers 

are used will be obtained more objectively.  

Keywords: bipolar single valued neutrosophic set, neutrosophic quadruple number, set valued neutrosophic 

quadruple set, bipolar generalized set valued neutrosophic quadruple set 
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INTRODUCTION 

Neutrosophic logic and the concept of neutrosophic set are defined in 1998 by Florentin Smarandache  [1]. In 

the concept of neutrosophic logic and neutrosophic sets, there is the degree of membership T, degree of 

uncertainty I and degree of non-membership F. These degrees are defined independently from each other. It 

has the form of a neutrosophic value (T, I, F). In other words, a situation is handled in neutrosophy according 

to its accuracy, its falsehood, and its uncertainty. In addition, many researchers have conducted studies on 

neutrosophic set theory [2-8]. Recently, Şahin and Kargın obtained neutrosophic triplet normed ring space [9]; 

Zeng et al. studied a novel similarity measure of single-valued neutrosophic sets based on modified Manhattan 

distance [10]; Şahin et al. introduced neutrosophic triplet partial g – metric space [11]; Şahin and Kargın 

obtained a new similarity measure based on single valued neutrosophic sets and decision-making applications 

in professional proficiencies [12]; Alhasan et al. studied neutrosophic reliability theory [13]; Bordbar et al. 

introduced positive implicative ideals of BCK-algebras based on neutrosophic sets and falling shadows [14]. 

Deli et al. studied bipolar neutrosophic sets and logic in 2015 [15] and Broumi et al. obtained bipolar single 

valued neutrosophic set in 2016 [16]. The bipolar single valued neutrosophic sets have an important role in 

neutrosophic theory and decision making problems. The use of negative and positive integers (from [-1, 0] and 

[0, 1] intervals) as values in bipolar single valued neutrosophic sets makes this set superior to other sets in 

many problem situations. Because while it is often difficult to reach a definite judgment in a decision-making 

situation, a decision given as an negative and positive integers will be more useful. Hence, many researchers 

studied based on bipolar neutrosophic sets and logic [17-19]. Recently, Sugapriya et al. obtained two-

warehouse system for trapezoidal bipolar neutrosophic disparate expeditious worsen items with power demand 

pattern [20]; Jamil et al. studied  multicriteria decision-making methods using bipolar neutrosophic hamacher 

geometric aggregation operators [21]; Arulpandy and Pricilla introduced bipolar neutrosophic graded soft sets 

and their topological spaces [22]. 

Smarandache obtained neutrosophic quadruple set and numbers in 2015 [23]. While neutrosophic quadruple 

set have T, I and F components as in neutrosophic sets; unlike neutrosophic sets, there is a known part and an 

unknown part. Therefore, neutrosophic quadruple sets are a generalization of neutrosophic sets. For this reason, 

neutrosophic quadruple sets are widely used in the algebraic and application areas [24-29]. Recently, Li et al. 

introduced neutrosophic extended triplet group based on neutrosophic quadruple numbers [30]; Şahin et al.  

obtained neutrosophic triplet field and neutrosophic triplet vector space based on set valued neutrosophic 

quadruple number [31]; Borzooei et al. studied positive implicative neutrosophic quadruple BCK-algebras and 

ideals [32]; Şahin and Kargın introduced neutrosophic triplet metric space based on set valued neutrosophic 

quadruple number [33]; Smarandache et al. obtained neutrosophic quadruple groups [34]; Şahin et al. 

studied multi-criteri  decision-making applications based on set valued generalized neutrosophic quadruple sets 

for law [35]. In recent years, the academic community has witnessed growing research interests in neutrosophic 

set theory [36-70]. 
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In this chapter, we obtain bipolar generalized set valued neutrosophic quadruple sets (BgsvNqs) and numbers 

(BgsvNqsn) using generalized set valued neutrosophic quadruple sets and bipolar single valued neutrosophic 

sets. Thanks to BgsvNqs and BgsvNqsn, generalized set valued neutrosophic quadruple sets and bipolar single 

valued  neutrosophic sets will more useful together. Also, we obtain some basic properties and some operations 

(∪𝐴, ∪𝑂 ,  ∪𝑃 ,∩𝐴, ∩𝑂, ∩𝑃 ,/𝐴, /𝑂 ,  /𝑃 ). In fact, we generalize the some operations in [24] for BgsvNqs.  In 

Section 2, we introduced some basic definitions for bipolar single valued neutrosophic set [15], neutrosophic 

quadruple sets [24], [27]. 

BACKGROUND 

Definition 1. [15] Let A be a universal set. Bipolar set valued neutrosophic set N; is identified as  

N = {(a, 𝑇𝑁
+(a), 𝐼𝑁

+(a), 𝐹𝑁
+(a), 𝑇𝑁

−(a), 𝐼𝑁
−(a), 𝐹𝑁

−(a)): a ∈ A}. 

Where the functions                                                                                                                                                                  

𝑇𝑁
+, 𝐼𝑁

+ , 𝐹𝑁
+ : 𝑋 → [0,1] are the positive degrees of truth functions, uncertainly functions and falsity 

functions; respectively. 

𝑇𝑁
−, 𝐼𝑁

− , 𝐹𝑁
− : 𝑋 → [-1, 0] are the negative degrees of truth functions, uncertainly functions and falsity 

functions; respectively. 

Definition 2. [15] Let A be a universal set and 

𝑁1 = {( a, 𝑇𝑁1
+ (a), 𝐼𝑁1

+ (a), 𝐹𝑁1
+ (a), 𝑇𝑁1

− (a), 𝐼𝑁1
− (a), 𝐹𝑁1

− (a)): a ∈ A} 

and 

𝑁2 = {( a, 𝑇𝑁2
+ (a), 𝐼𝑁2

+ (a), 𝐹𝑁2
+ (a), 𝑇𝑁2

− (a), 𝐼𝑁2
− (a), 𝐹𝑁2

− (a)):a ∈ A} 

be two bipolar single valued neutrosophic sets.  

i) 𝑁2 is subset of 𝑁1 if and only if   

𝑇+𝑁1(a) ≥ 𝑇
+
𝑁2(a)

, 𝑇−𝑁1(a) ≥ 𝑇
−
𝑁2(a)

 

𝐼+𝑁1(a) ≤ 𝐼
+
𝑁2(a)

, 𝐼−𝑁1(a) ≤ 𝐼
−
𝑁2(a)

 

𝐹+𝑁1(a) ≤ 𝐹
+
𝑁2(a)

, 𝐹−𝑁1(a) ≤ 𝐹
−
𝑁2(a)

 

ii) 𝑁2 is equal to 𝑁1 if and only if   
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𝑇+𝑁1(a) = 𝑇
+
𝑁2(a)

, 𝑇−𝑁1(a) = 𝑇
−
𝑁2(a)

; 

𝐼+𝑁1(a) = 𝐼
+
𝑁2(a)

, 𝐼−𝑁1(a) = 𝐼
−
𝑁2(a)

; 

𝐹+𝑁1(a) = +𝑁2(a), 𝐹
−
𝑁1(a)

= 𝐹−𝑁2(a). 

iii) 𝑁1  ∪  𝑁2  = {(a: max{𝑇+
𝑁1(a)

, 𝑇+𝑁2(a)},min{𝐼
+
𝑁1(a)

, 𝐼+𝑁2(a)},

min{𝐹+
𝑁1(a)

, 𝐹+𝑁2(a)},max{𝑇
−
𝑁1(a)

, 𝑇−𝑁2(a)}, min{𝐼
−
𝑁1(a)

, 𝐼−𝑁2(a)}, , min{𝐹
−
𝑁1(a)

, 𝐹−𝑁2(a)}), a∈A}. 

iv) 𝑁1  ∩  𝑁2  = {(a: min{𝑇+
𝑁1(a)

, 𝑇+𝑁2(a)},max{𝐼
+
𝑁1(a)

, 𝐼+𝑁2(a)},

max{𝐹+
𝑁1(a)

, 𝐹+𝑁2(a)}, min{𝑇
−
𝑁1(a)

, 𝑇−𝑁2(a)}, max{𝐼
−
𝑁1(a)

, 𝐼−𝑁2(a)}, , max{𝐹
−
𝑁1(a)

, 𝐹−𝑁2(a)}), a∈A}. 

Definition 3: [27] Let N be a set and P(N) be power set of N. A set valued neutrosophic quadruple set is shown 

by the form                                               

(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F). 

Where, T, I and F are degree of membership, degree of undeterminacy, degree of non-membership in 

neutrosophic theory, respectively. Also, 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N); 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 

𝐴4F) is called the unknown part. 

Definition 4: [27] Let A = (𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1 , 𝐵2T, 𝐵3 I, 𝐵4F) be set valued neutrosophic 

quadruple set s. We define the following operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪𝐵1 , (𝐴2 ∪𝐵2)T, (𝐴3 ∪𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩𝐵1 , (𝐴2 ∩𝐵2)T, (𝐴3 ∩𝐵3)I, (𝐴4 ∩ 𝐵4)F) 

A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 

𝐴′ = (𝐴′1, 𝐴′2T, 𝐴′3I, 𝐴′4F)  

Definition 5: [27] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) be set valued neutrosophic quadruple 

sets. If 

𝐴1⊂ 𝐵1 , 𝐴2⊂ 𝐵2 and 𝐴3⊂ 𝐵3 , 𝐴4⊂ 𝐵4, 

then it is called that A is subset of B. It is shown by  

A⊂ B. 
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Definition 6: [27] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) be set valued neutrosophic quadruple 

sets. If  

A⊂ B and 𝐵⊂ 𝐴, 

 then it is called that A is equal to B. It is shown by 

A = B. 

Definition 7: [24] Let A be a universal set and P(A) be power set of A. A generalized set valued neutrosophic 

quadruple set N; is identified as  

N = {<𝐾1𝑁1, 𝑇𝑁1(a)𝐿
1
𝑁1

, 𝐼𝑁1(a) 𝑀
1
𝑁1

, 𝐹𝑁1(a) 𝑃
1
𝑁1

;   

         𝐾2𝑁2, 𝑇𝑁2(a)𝐿
2
𝑁2

, 𝐼𝑁2(a) 𝑀
2
𝑁2

, 𝐹𝑁2(a) 𝑃
2
𝑁2

;    

        𝐾𝑖𝑁𝑖, 𝑇𝑁𝑖(a)𝐿
𝑖
𝑁𝑖

, 𝐼𝑁𝑖(a) 𝑀
𝑖
𝑁𝑖

, 𝐹𝑁𝑖(a) 𝑃
𝑖
𝑁𝑖

 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝑇𝑁𝑛(a), 𝐼𝑁𝑛(a), 𝐹𝑁𝑛(a) (n = 1, 2, 3, … , i) 

 have their usual single valued neutrosophic logic means and a generalized set valued neutrosophic quadruple 

number 𝑁𝑛1; is identified as  

𝑁𝑁1= {<𝐾1𝑁1, 𝑇𝑁1(a)𝐿
1
𝑁1

, 𝐼𝑁1(a) 𝑀
1
𝑁1

, 𝐹𝑁1(a) 𝑃
1
𝑁1
>}. 

As in neutrosophic quadruple number, for a generalized set valued neutrosophic quadruple number 

𝐾1𝑁1 

is called known part and  

𝑇𝑁1(a)𝐿
1
𝑁1

, 𝐼𝑁1(a) 𝑀
1
𝑁1

, 𝐹𝑁1(a) 𝑃
1
𝑁1

 

is called the unknown part. 

Also, we can show that  
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N = {𝑁𝑁𝑛: n = 1, 2, 3, …, i}. 

BIPOLAR GENERALIZED SET VALUED NEUTROSOPHIC 

QUADRUPLE SETS AND NUMBERS 

Definition 8: Let A be a universal set and P(A) be power set of A. Bipolar generalized set valued neutrosophic 

quadruple set (BgsvNqs) N; is identified as  

N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝑇−𝑁𝑛(a), 𝐼
−
𝑁𝑛(a)

, 𝐹−𝑁𝑛(a), 𝑇
+
𝑁𝑛(a)

, 𝐼+𝑁𝑛(a) and 𝐹+𝑁𝑛(a) (n = 1, 2, 3, … , i) 

 have their usual bipolar single valued neutrosophic logic means. 

Also, an bipolar generalized neutrosophic quadruple number (BgsvNqn) 𝑁𝑛1; is identified as  

𝑁𝑁1= {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1 >} 

as in neutrosophic quadruple number, for a BgsvNqn, 

𝐾1𝑁1 

is called known part and  

(𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1 

is called the unknown part. 

Also, we can show that  

N = {𝑁𝑁𝑛: n = 1, 2, 3, …, i}. 

Example 1: Let A = {k, l, m, n, p, r} be a set. Then; 

                                        N =  {<{𝑘, 𝑙, 𝑚, 𝑛}, (0, 0.7){𝑘, 𝑙}, (0.5, 0.6) {𝑚}, (−0.4, 0.5) {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑙}, (−0.2, 0.7) {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, (−0.4, 0.8){𝑙, 𝑝}, −0, 0.3) {𝑝,𝑚}, (−0.2, 0.6) {𝑛}; 
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       {𝑚, 𝑙, 𝑝, 𝑟}, (−0.3, 0.7){𝑝}, (−0.2, 0.5) {𝑚, 𝑙}, (−0.1, 0.5) {𝑟} >} 

are two BgsvNqs. 

 Also,  

𝑁𝑁1={{𝑘, 𝑙,𝑚, 𝑛}, (0, 0.7){𝑘, 𝑙}, (0.5, 0.6) {𝑚}, (−0.4, 0.5) {𝑛}} 

and 

𝑁𝑁2 = {{𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑙}, (−0.2, 0.7) {𝑟}} 

are two BgsvNqn of N such that 

N = {𝑁𝑁1, 𝑁
𝑁
2}. 

 Similarly,  

𝑅𝑁1 ={{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, (−0.4, 0.8){𝑙, 𝑝}, −0, 0.3) {𝑝,𝑚}, (−0.2, 0.6) {𝑛}}; 

and  

    𝑅𝑁2 =  {{𝑚, 𝑙, 𝑝, 𝑟}, (−0.3, 0.7){𝑝}, (−0.2, 0.5) {𝑚, 𝑙}, (−0.1, 0.5) {𝑟}} 

are two BgsvNqn of R such that 

R = {𝑅𝑁1, 𝑅
𝑁
2}. 

Definition 9: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be two BgsvNqss.  

i) N is subset of R (N⊂R) if and only if   

𝐾𝑛𝑁𝑛  ⊂ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛 ⊂ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛
⊂ 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛 ⊂ 𝑃𝑛𝑅𝑛;  
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𝑇−𝑁𝑛(a) ≤ 𝑇
−
𝑅𝑛(a)

, 𝑇+𝑁𝑛(a) ≤ 𝑇
+
𝑅𝑛(a)

; 

𝐼−𝑁𝑛(a) ≥ 𝐼
−
𝑅𝑛(a)

}, 𝐼+𝑁𝑛(a) ≥ 𝐼
+
𝑅𝑛(a)

; 

𝐹−𝑁𝑛(a) ≥ 𝐹
−
𝑅𝑛(a)

}, 𝐹+𝑁𝑛(a) ≥ 𝐹
+
𝑅𝑛(a)

. 

ii) 𝑁 is equal to 𝑅 if and only if   

𝐾𝑛𝑁𝑛  = 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛 = 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛
= 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛 = 𝑃𝑛𝑅𝑛;  

𝑇−𝑁𝑛(a) = 𝑇
−
𝑅𝑛(a)

, 𝑇+𝑁𝑛(a) = 𝑇
+
𝑅𝑛(a)

; 

𝐼−𝑁𝑛(a) = 𝐼
−
𝑅𝑛(a)

}, 𝐼+𝑁𝑛(a) = 𝐼
+
𝑅𝑛(a)

; 

𝐹−𝑁𝑛(a) = 𝐹
−
𝑅𝑛(a)

}, 𝐹+𝑁𝑛(a) = 𝐹
+
𝑅𝑛(a)

. 

Example 2: From Example 1,  

N =  {<{𝑘, 𝑙,𝑚, 𝑛}, (0, 0.7){𝑘, 𝑙}, (0.5, 0.6) {𝑚}, (−0.4, 0.5) {𝑛}; 

                 {𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑙}, (−0.2, 0.7) {𝑟} >} 

is a IgsvNqss. Also, it is clear that  

Y =  {<{𝑘,𝑚, 𝑛}, (0, 0.5){𝑘}, (−0.6, 0.7) {𝑚}, (−0.6, 0.8) {𝑛}; 

                                                     {, 𝑙, 𝑝, 𝑟}, (-0.3, 0.9){𝑝}, (−0.4, 0.5) {𝑙}, (−0.3, 0.8) {𝑟} >} 

is a BgsvNqss. Thus, 

Y⊂N. 

 

Definition 10: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    
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        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be two BgsvNqss.  

i) We define the “average ∪” operations for N and R such that  

N  ∪𝐴  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∪ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∪ 𝐿𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛

 ∪𝑀𝑛
𝑅𝑛

, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∪ 𝑃𝑛𝑅𝑛;  

𝑇−𝑁𝑛𝑅𝑛(a)= 
𝑇−𝑁𝑛(a)+𝑇

−
𝑅𝑛(a)

2
, 𝑇+𝑁𝑛𝑅𝑛(a)= 

𝑇+𝑁𝑛(a)+𝑇
+
𝑅𝑛(a)

2
; 

𝐼−𝑁𝑛𝑅𝑛(a)= 
𝐼−𝑁𝑛(a)+𝐼

−
𝑅𝑛(a)

2
, 𝐼+𝑁𝑛𝑅𝑛(a)= 

𝐼+𝑁𝑛(a)+𝐼
+
𝑅𝑛(a)

2
; 

𝐹−𝑁𝑛𝑅𝑛(a)= 
𝐹−𝑁𝑛(a)+𝐹

−
𝑅𝑛(a)

2
, 𝐹+𝑁𝑛𝑅𝑛(a)= 

𝐹+𝑁𝑛(a)+𝐹
+
𝑅𝑛(a)

2
; (n = 1, 2, 3, … , i). 

ii) We define the “average ∩ “ operations for N and R such that  

N  ∩𝐴  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∩ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∩ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
∩𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∩ 𝑃𝑛𝑅𝑛;  

𝑇−𝑁𝑛𝑅𝑛(a)= 
𝑇−𝑁𝑛(a)+𝑇

−
𝑅𝑛(a)

2
, 𝑇+𝑁𝑛𝑅𝑛(a)= 

𝑇+𝑁𝑛(a)+𝑇
+
𝑅𝑛(a)

2
; 

𝐼−𝑁𝑛𝑅𝑛(a)= 
𝐼−𝑁𝑛(a)+𝐼

−
𝑅𝑛(a)

2
, 𝐼+𝑁𝑛𝑅𝑛(a)= 

𝐼+𝑁𝑛(a)+𝐼
+
𝑅𝑛(a)

2
; 

𝐹−𝑁𝑛𝑅𝑛(a)= 
𝐹−𝑁𝑛(a)+𝐹

−
𝑅𝑛(a)

2
, 𝐹+𝑁𝑛𝑅𝑛(a)= 

𝐹+𝑁𝑛(a)+𝐹
+
𝑅𝑛(a)

2
; (n = 1, 2, 3, … , i). 

Example 3: From Example 1,  
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                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, (0, 0.7){𝑘, 𝑙}, (0.5, 0.6) {𝑚}, (−0.4, 0.5) {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑙}, (−0.2, 0.7) {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, (−0.4, 0.8){𝑙, 𝑝}, −0, 0.3) {𝑝,𝑚}, (−0.2, 0.6) {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, (−0.3, 0.7){𝑝}, (−0.2, 0.5) {𝑚, 𝑙}, (−0.1, 0.5) {𝑟} >} 

are two BgsvNqs. Thus, 

i) N ∪𝐴 R = {<{𝑘, 𝑙,𝑚, 𝑛, 𝑝}, (−0.2, 0.75){𝑘, 𝑙, 𝑝}, (−0.25, 0.45) {𝑝,𝑚}, (−0.3, 0.6) {𝑛}; 

                    {𝑚, 𝑘, 𝑙, 𝑝, 𝑟}, (−0.2, 0.8){𝑘, 𝑝}, (−0.2, 0.4) {𝑚, 𝑙}, (−0.15, 0.6) {𝑟} >} 

 

ii) N ∩𝐴 R = {<{𝑘, 𝑙, 𝑚, 𝑛}, (−0.2, 0.75){𝑙}, (−0.25, 0.45){𝑚}, (−0.3, 0.6) {𝑛}; 

                    {𝑙, 𝑝, 𝑟}, (−0.2, 0.8){𝑝}, (−0.2, 0.4) {𝑙}, (−0.15, 0.6) {𝑟} >} 

Definition 11: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be two BgsvNqss.  

i) We define the “optimistic ∪” operations for N and R such that  

N  ∪𝑂  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    
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                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 10’s (i). 

𝑇−𝑁𝑛𝑅𝑛(a)= max{𝑇−
𝑁𝑛(a)

, 𝑇−𝑅𝑛(a)}, 𝑇
+
𝑁𝑛𝑅𝑛(a)

= max{𝑇+
𝑁𝑛(a)

, 𝑇+𝑅𝑛(a)}; 

𝐼−𝑁𝑛𝑅𝑛(a)= min{𝐼−
𝑁𝑛(a)

, 𝐼−𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐼+
𝑁𝑛(a)

, 𝐼+𝑅𝑛(a)}; 

𝐹−𝑁𝑛𝑅𝑛(a)= min{𝐹−
𝑁𝑛(a)

, 𝐹−𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐹+
𝑁𝑛(a)

, 𝐹+𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 

ii) We define the “optimistic ∩ “ operations for N and R such that  

N  ∩𝑂  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 11’s (ii). 

𝑇−𝑁𝑛𝑅𝑛(a)= max{𝑇−
𝑁𝑛(a)

, 𝑇−𝑅𝑛(a)}, 𝑇
+
𝑁𝑛𝑅𝑛(a)

= max{𝑇+
𝑁𝑛(a)

, 𝑇+𝑅𝑛(a)}; 

𝐼−𝑁𝑛𝑅𝑛(a)= min{𝐼−
𝑁𝑛(a)

, 𝐼−𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐼+
𝑁𝑛(a)

, 𝐼+𝑅𝑛(a)}; 

𝐹−𝑁𝑛𝑅𝑛(a)= min{𝐹−
𝑁𝑛(a)

, 𝐹−𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐹+
𝑁𝑛(a)

, 𝐹+𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 

Example 4 From Example 1,  

                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, (0, 0.7){𝑘, 𝑙}, (0.5, 0.6) {𝑚}, (−0.4, 0.5) {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑙}, (−0.2, 0.7) {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, (−0.4, 0.8){𝑙, 𝑝}, −0, 0.3) {𝑝,𝑚}, (−0.2, 0.6) {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, (−0.3, 0.7){𝑝}, (−0.2, 0.5) {𝑚, 𝑙}, (−0.1, 0.5) {𝑟} >} 

are two BgsvNqs. Thus, 

i) N ∪𝑂 R = {<{𝑘, 𝑙, 𝑚, 𝑛, 𝑝}, (−0.4, 0.8){𝑘, 𝑙, 𝑝}, (0, 0.3) {𝑝, 𝑚}, (−0.2, 0.5) {𝑛}; 
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                    {𝑚, 𝑘, 𝑙, 𝑝, 𝑟}, (−0.3, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑚, 𝑙}, (−0.1, 0.5) {𝑟} >} 

 

ii) N ∩𝑂 R = {<{𝑘, 𝑙,𝑚, 𝑛}, (−0.4, 0.8){𝑙}, (0, 0.3) {𝑚}, (−0.2, 0.5) {𝑛}; 

                    {𝑙, 𝑝, 𝑟}, (−0.3, 0.9){𝑝}, (−0.2, 0.3) {𝑙}, (−0.1, 0.5) {𝑟} >} 

Definition 12: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be two BgsvNqss.  

i) We define the “pessimistic ∪” operations for N and R such that  

N  ∪𝑝  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 10’s (i). 

𝑇−𝑁𝑛𝑅𝑛(a)= min{𝑇−
𝑁𝑛(a)

, 𝑇−𝑅𝑛(a)}, 𝑇
+
𝑁𝑛𝑅𝑛(a)

= min{𝑇+
𝑁𝑛(a)

, 𝑇+𝑅𝑛(a)}; 

𝐼−𝑁𝑛𝑅𝑛(a)= max{𝐼−
𝑁𝑛(a)

, 𝐼−𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐼+
𝑁𝑛(a)

, 𝐼+𝑅𝑛(a)}; 

𝐹−𝑁𝑛𝑅𝑛(a)= max{𝐹−
𝑁𝑛(a)

, 𝐹−𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐹+
𝑁𝑛(a)

, 𝐹+𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 
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ii) We define the “pessimistic ∩ “ operations for N and R such that  

N  ∩𝑝  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 10’s (ii). 

𝑇−𝑁𝑛𝑅𝑛(a)= min{𝑇−
𝑁𝑛(a)

, 𝑇−𝑅𝑛(a)}, 𝑇
+
𝑁𝑛𝑅𝑛(a)

= min{𝑇+
𝑁𝑛(a)

, 𝑇+𝑅𝑛(a)}; 

𝐼−𝑁𝑛𝑅𝑛(a)= max{𝐼−
𝑁𝑛(a)

, 𝐼−𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐼+
𝑁𝑛(a)

, 𝐼+𝑅𝑛(a)}; 

𝐹−𝑁𝑛𝑅𝑛(a)= max{𝐹−
𝑁𝑛(a)

, 𝐹−𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐹+
𝑁𝑛(a)

, 𝐹+𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 

Example 5: From Example 1,  

                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, (0, 0.7){𝑘, 𝑙}, (−0.5, 0.6) {𝑚}, (−0.4, 0.5) {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑙}, (−0.2, 0.7) {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, (−0.4, 0.8){𝑙, 𝑝}, −0, 0.3) {𝑝,𝑚}, (−0.2, 0.6) {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, (−0.3, 0.7){𝑝}, (−0.2, 0.5) {𝑚, 𝑙}, (−0.1, 0.5) {𝑟} >} 

are two BgsvNqs. Thus, 

i) N ∪𝑃 R = {<{𝑘, 𝑙,𝑚, 𝑛, 𝑝}, (0, 0.7){𝑘, 𝑙, 𝑝}, (−0.5, 0.6) {𝑝, 𝑚}, (−0.4, 0.6) {𝑛}; 

                    {𝑚, 𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.7){𝑘, 𝑝}, (−0.2, 0.5) {𝑚, 𝑙}, (−0.2, 0.7) {𝑟} >} 

 

ii) N ∩𝑃 R = {<{𝑘, 𝑙, 𝑚, 𝑛}, (0, 0.7){𝑙}, (−0.5, 0.6) {𝑚}, (−0.4, 0.6) {𝑛}; 

                    {𝑙, 𝑝, 𝑟}, (−0.1, 0.7){𝑝}, (−0.2, 0.5) {𝑙}, (−0.2, 0.7) {𝑟} >} 

Definition 13: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    
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        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be two BgsvNqss.  

i) We define the “average /” operations for N and R such that  

N  /𝐴  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  /𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 /𝐿𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
/𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛/𝑃

𝑛
𝑅𝑛

;  

𝑇𝑙𝑁𝑛𝑅𝑛(a), 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐼𝑙𝑁𝑛𝑅𝑛(a), 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐹𝑙𝑁𝑛𝑅𝑛(a) and  𝐹𝑢𝑁𝑛𝑅𝑛(a) are same as in Definition 10’ (i). 

ii) We define the “optimistic / “ operations for N and R such that  

N  /𝑂  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a) , 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  /𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛/𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
/𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 /𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛𝑅𝑛(a), 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐼𝑙𝑁𝑛𝑅𝑛(a), 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐹𝑙𝑁𝑛𝑅𝑛(a) and  𝐹𝑢𝑁𝑛𝑅𝑛(a) are same as in Definition 11’ (i). 

iii) We define the “pessimistic / “ operations for N and R such that  
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N  /𝑃  R  = {< 𝐾1𝑁1𝑅1 , ( 𝑇−𝑁1𝑅1(a), 𝑇
+
𝑁1𝑅1(a)

) 𝐿1𝑁1𝑅1 , ( 𝐼−𝑁1𝑅1(a), 𝐼
+
𝑁1𝑅1(a)

)  𝑀1
𝑁1𝑅1

, 

(𝐹−𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

) 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , (𝑇−𝑁2𝑅2(a), 𝑇
+
𝑁2𝑅2(a)

)𝐿2𝑁2𝑅2, (𝐼−𝑁2𝑅2(a), 𝐼
+
𝑁2𝑅2(a)

) 𝑀2
𝑁2𝑅2

, (𝐹−𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

) 𝑃2𝑁2𝑅2;    

                𝐾𝑖𝑁𝑖𝑅𝑖, (𝑇
−
𝑁𝑖𝑅𝑖(a)

, 𝑇+𝑁𝑖𝑅𝑖(a))𝐿
𝑖
𝑁𝑖𝑅𝑖

, (𝐼−𝑁𝑖𝑅𝑖(a), 𝐼
+
𝑁𝑖𝑅𝑖(a)

) 𝑀𝑖
𝑁𝑖𝑅𝑖

, (𝐹−𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

) 𝑃𝑖𝑁𝑖𝑅𝑖 >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  /𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛/𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
/𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 /𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛𝑅𝑛(a), 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐼𝑙𝑁𝑛𝑅𝑛(a), 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐹𝑙𝑁𝑛𝑅𝑛(a) and  𝐹𝑢𝑁𝑛𝑅𝑛(a) are same as in Definition 12’ (i). 

Example 6: From Example 1,  

                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, (0, 0.7){𝑘, 𝑙}, (−0.5, 0.6) {𝑚}, (−0.4, 0.5) {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, (−0.1, 0.9){𝑘, 𝑝}, (−0.2, 0.3) {𝑙}, (−0.2, 0.7) {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, (−0.4, 0.8){𝑙, 𝑝}, −0, 0.3) {𝑝,𝑚}, (−0.2, 0.6) {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, (−0.3, 0.7){𝑝}, (−0.2, 0.5) {𝑚, 𝑙}, (−0.1, 0.5) {𝑟} >} 

are two BgsvNqs. Thus, 

i) N /𝐴 R = {<∅, (−0.2, 0.75){𝑙}, (−0.25, 0.45) ∅, (−0.3, 0.6) ∅; 

                    {𝑘}, (−0.2, 0.8){𝑘}, (−0.2, 0.4) ∅, (−0.15, 0.6) ∅ >}. 

ii) N /𝑂 R = {<∅, (−0.4, 0.8){𝑙}, (0, 0.3) ∅, (−0.2, 0.5) ∅; 

                    {𝑘}, (−0.3, 0.9){𝑘}, (−0.2, 0.3)∅, (−0.1, 0.5)∅ >}. 

iii) N /𝑃 R = {<∅, (−0.2, 0.75){𝑙}, (−0.25, 0.45) ∅, (−0.3, 0.6) ∅; 

                    {𝑘}, (−0.2, 0.8){𝑘}, (−0.2, 0.4) ∅, (−0.15, 0.6) ∅ >}. 

Properties 1: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 
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and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

Y = {<𝐾1𝑌1, (𝑇−𝑌1(a) , 𝑇
+
𝑌1(a)

)𝐿1𝑌1, (𝐼−𝑌1(a), 𝐼
+
𝑌1(a)

) 𝑀1
𝑌1

, (𝐹−𝑌1(a), 𝐹
+
𝑌1(a)

) 𝑃1𝑌1;   

         𝐾2𝑌2, (𝑇−𝑌1(a), 𝑇
+
𝑌2(a)

)𝐿2𝑌2, (𝐼−𝑌2(a), 𝐼
+
𝑌2(a)

) 𝑀2
𝑌2

, (𝐹−𝑌2(a), 𝐹
+
𝑌2(a)

) 𝑃2𝑌2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑌𝑖(a)

, 𝑇+𝑌𝑖(a))𝐿
𝑖
𝑌𝑖

, (𝐼−𝑌𝑖(a), 𝐼
+
𝑌𝑖(a)

) 𝑀𝑖
𝑌𝑖

, (𝐹−𝑌𝑖(a), 𝐹
+
𝑌𝑖(a)

) 𝑃𝑖𝑌𝑖  >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be three BgsvNqss.  

From Definition 8, Definition 9, Definition 10, Definition 11, Definition 12 and Definition 13; it is clear that 

i) N ∪𝐴 R = R ∪𝐴 N; N ∪𝑂 R = R ∪𝑂 N; N ∪𝑃 R = R ∪𝑃 N.  

ii) N ∩𝐴 R = R ∩𝐴 N; N ∩𝑂 R = R ∩𝑂 N; N ∩𝑃 R = R ∩𝑃 N.  

iii) N ∪𝐴 (R ∪𝐴 𝑌) = (N ∪𝐴 R ) ∪𝐴 Y, 

     N ∪𝑂 (R ∪𝑂 𝑌) = (N ∪𝑂 R ) ∪𝑂 Y, 

     N ∪𝑃 (R ∪𝑃 𝑌) = (N ∪𝑃 R ) ∪𝑃 Y. 

iv) N ∩𝐴 (R ∩𝐴 𝑌) = (N ∩𝐴 R ) ∩𝐴 Y, 

     N ∩𝑂 (R ∩𝑂 𝑌) = (N ∩𝑂 R ) ∩𝑂 Y, 

     N ∩𝑃 (R ∩𝑃 𝑌) = (N ∩𝑃 R) ∩𝑃 Y. 

v) 𝑁 ∩𝐴 (R ∪𝐴 Y) = (N ∩𝐴 R ) ∪𝐴 (𝑁 ∩𝐴 Y ), 

     𝑁 ∩𝑂 (R ∪𝑂 Y) = (N ∩𝑂 R ) ∪𝑂 (𝑁 ∩𝑂 Y ), 

     𝑁 ∩𝑃 (R ∪𝑃 Y) = (N ∩𝑃 R ) ∪𝑃 (𝑁 ∩𝑃 Y ). 

vi)  𝑁 ∪𝐴 (R ∩𝐴 Y) = (N ∪𝐴 R ) ∩𝐴 (𝑁 ∪𝐴 Y ), 

     𝑁 ∪𝑂 (R ∩𝑂 Y) = (N ∪𝑂 R ) ∩𝑂 (𝑁 ∪𝑂 Y ), 

     𝑁 ∪𝑃 (R ∩𝑃 Y) = (N ∪𝑃 R ) ∩𝑃 (𝑁 ∪𝑃 Y ). 

v) If N = R, then 
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N ∪𝐴 R = N ∪𝑂 R= N ∪𝑃 R= R 

and 

N ∩𝐴 R = N ∩𝑂 R = N ∩𝑃 R = R. 

Theorem 1: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be two BgsvNqss. Then, 

i) (N ∩𝑃 R) ⊂ (N ∩𝐴 R) ⊂ (N ∩𝑂 R)  

ii) (N ∪𝑃 R) ⊂ (N ∪𝐴 R) ⊂ (N ∪𝑂 R) 

iii) (N ∩𝐴 R) ⊂ (N ∪𝐴 R), (N ∩𝑂 R) ⊂ (N ∪𝑂 R) and (N ∩𝑃 R) ⊂ (N ∪𝑃R). 

Proof:  

i) From Definition 10, Definition 11 and Definition 12; we obtain that  

                                     min{𝑇−
𝑁𝑛(a)

, 𝑇−𝑅𝑛(a)}  ≤
𝑇−𝑁𝑛(a)+𝑇

−
𝑅𝑛(a)

2
≤ max{𝑇−

𝑁𝑛(a)
, 𝑇−𝑅𝑛(a)}                                          

(1) 

                                     min{𝑇+
𝑁𝑛(a)

, 𝑇+𝑅𝑛(a)} ≤
𝑇+𝑁𝑛(a)+𝑇

+
𝑅𝑛(a)

2
≤ max{𝑇+

𝑁𝑛(a)
, 𝑇+𝑅𝑛(a)}                                 (2) 

                                     max{𝐼−
𝑁𝑛(a)

, 𝐼−𝑅𝑛(a)} ≥
𝐼−𝑁𝑛(a)+𝐼

−
𝑅𝑛(a)

2
≥ min{𝐼−

𝑁𝑛(a)
, 𝐼−𝑅𝑛(a)}                                          (3) 

                                     max{𝐼+
𝑁𝑛(a)

, 𝐼+𝑅𝑛(a)} ≥
𝐼+𝑁𝑛(a)+𝐼

+
𝑅𝑛(a)

2
≥ min{𝐼+

𝑁𝑛(a)
, 𝐼+𝑅𝑛(a)}                                     (4) 

                                    max{𝐹−
𝑁𝑛(a)

, 𝐹−𝑅𝑛(a)}  ≥
𝐹−𝑁𝑛(a)+𝐹

−
𝑅𝑛(a)

2
≥ min{𝐹−

𝑁𝑛(a)
, 𝐹−𝑅𝑛(a)}                                          

(5) 
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                                     max{𝐹+
𝑁𝑛(a)

, 𝐹+𝑅𝑛(a)} ≥
𝐹+𝑁𝑛(a)+𝐹

+
𝑅𝑛(a)

2
≥ min{𝐹+

𝑁𝑛(a)
, 𝐹+𝑅𝑛(a)}                                 (6) 

Also, 

 for ∩𝑃, ∩𝑂 and ∩𝐴,  

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∩ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∩ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
∩𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∩ 𝑃𝑛𝑅𝑛                

(7) 

is hold. Thus, from 1-7 and Definition 9; we obtain that 

(N ∩𝑃 R) ⊂ (N ∩𝐴 R) ⊂ (N ∩𝑂 R). 

Proofs of {ii, iii} can be given similarly to proof of i. 

Theorem 2: Let 

 N = {<𝐾1𝑁1, (𝑇−𝑁1(a), 𝑇
+
𝑁1(a)

)𝐿1𝑁1, (𝐼−𝑁1(a), 𝐼
+
𝑁1(a)

) 𝑀1
𝑁1

, (𝐹−𝑁1(a), 𝐹
+
𝑁1(a)

) 𝑃1𝑁1;   

         𝐾2𝑁2, (𝑇−𝑁2(a), 𝑇
+
𝑁2(a)

)𝐿2𝑁2, (𝐼−𝑁2(a), 𝐼
+
𝑁2(a)

) 𝑀2
𝑁2

, (𝐹−𝑁2(a), 𝐹
+
𝑁2(a)

) 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, (𝑇
−
𝑁𝑖(a)

, 𝑇+𝑁𝑖(a))𝐿
𝑖
𝑁𝑖

, (𝐼−𝑁𝑖(a), 𝐼
+
𝑁𝑖(a)

) 𝑀𝑖
𝑁𝑖

, (𝐹−𝑁𝑖(a), 𝐹
+
𝑁𝑖(a)

) 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

and  

R = {<𝐾1𝑅1, (𝑇−𝑅1(a), 𝑇
+
𝑅1(a)

)𝐿1𝑅1 , (𝐼−𝑅1(a), 𝐼
+
𝑅1(a)

) 𝑀1
𝑅1

, (𝐹−𝑅1(a), 𝐹
+
𝑅1(a)

) 𝑃1𝑅1;   

         𝐾2𝑅2, (𝑇−𝑅2(a), 𝑇
+
𝑅2(a)

)𝐿2𝑅2, (𝐼−𝑅2(a), 𝐼
+
𝑅2(a)

) 𝑀2
𝑅2

, (𝐹−𝑅2(a), 𝐹
+
𝑅2(a)

) 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, (𝑇
−
𝑅𝑖(a)

, 𝑇+𝑅𝑖(a))𝐿
𝑖
𝑅𝑖

, (𝐼−𝑅𝑖(a), 𝐼
+
𝑅𝑖(a)

) 𝑀𝑖
𝑅𝑖

, (𝐹−𝑅𝑖(a), 𝐹
+
𝑅𝑖(a)

) 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

be two BgsvNqss. We assume that N ⊂ R. Then, 

i) N ⊂ (N ∩𝐴 R) ⊂ R, N ⊂ (N ∩𝑂 R) ⊂ R and N = (N ∩𝑃 R) ⊂ R. 

ii) N ⊂ (N ∪𝐴 R) ⊂ R, N ⊂ (N ∪𝑂 R) = R and N ⊂ (N ∪𝑃 R) ⊂ R. 

iii) (N /𝐴 R) ⊂  R, (R /𝐴 N) ⊂  R, (N /𝑂 R) ⊂  R, (R /𝑂 N) ⊂  R, (N /𝑃 R) ⊂  R and (R /𝑃 N) ⊂  R. 

Proof:  

i) From Definition 9; we obtain that  

𝐾𝑛𝑁𝑛  ⊂ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛 ⊂ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛
⊂ 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛 ⊂ 𝑃𝑛𝑅𝑛; 

𝑇−𝑁𝑛(a) ≤ 𝑇
−
𝑅𝑛(a)

, 𝑇+𝑁𝑛(a) ≤ 𝑇
+
𝑅𝑛(a)

; 
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𝐼−𝑁𝑛(a) ≥ 𝐼
−
𝑅𝑛(a)

}, 𝐼+𝑁𝑛(a) ≥ 𝐼
+
𝑅𝑛(a)

; 

                                                          𝐹−𝑁𝑛(a) ≥ 𝐹
−
𝑅𝑛(a)

}, 𝐹+𝑁𝑛(a) ≥ 𝐹
+
𝑅𝑛(a)

.                                                   

(8) 

Thus, we obtain that 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∩ 𝐾𝑛𝑅𝑛 = 𝐾𝑛𝑅𝑛  , 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∩ 𝐿
𝑛
𝑅𝑛
= 𝐿𝑛𝑅𝑛, 

                                    𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
∩𝑀𝑛

𝑅𝑛
= 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∩ 𝑃𝑛𝑅𝑛=  𝑃𝑛𝑅𝑛.                                 

(9) 

Also, from Proof of (i) of Theorem 1; conditions 1-7 are hold. Hence, thanks to Definition 10, Definition 11, 

Definition 12, 1-7 and 9; we obtain that  

                                     N ⊂ (N ∩𝐴 R) ⊂ R, N ⊂ (N ∩𝑂 R) ⊂ R and N = (N ∩𝑃 R) ⊂ R. 

Proofs of {ii, iii} can be given similarly to proof of i. 

Conclusions 

In this chapter, we obtain BgsvNqs and BgsvNqsn using generalized set valued neutrosophic 

quadruple sets with bipolar single valued neutrosophic sets. Thanks to BgsvNqs and BgsvNqsn, generalized 

set valued neutrosophic quadruple sets and bipolar single valued neutrosophic sets will more useful together. 

Also, we obtain some basic properties and some operations (∪𝐴, ∪𝑂 ,  ∪𝑃 ,∩𝐴, ∩𝑂, ∩𝑃 ,/𝐴, /𝑂 ,  /𝑃 ). Especially, 

for decision making problems; these operations will more useful. Furthermore, thanks to definitions of 

BgsvNqs, BgsvNqsn and operations (∪𝐴, ∪𝑂 ,  ∪𝑃 ,∩𝐴, ∩𝑂, ∩𝑃 ,/𝐴, /𝑂 ,  /𝑃 ); researchers can define similarity 

measures, some specific decision making methods (TOPSIS, VIKOR, DEMATEL, AHP, …), arithmetic 

operations, aggregation operations based on BgsvNqs and BgsvNqsn for decision making problems.  

Abbreviations 

BgsvNqs: Bipolar generalized set valued neutrosophic quadruple set 

 BgsvNqsn: Bipolar generalized set valued neutrosophic quadruple number 
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ABSTRACT 

Interval neutrosophic sets are more useful in neutrosophic theory, especially at decision making problems.  

Also, generalized set valued neutrosophic quadruple sets have an important role in neutrosophic quadruple 

theory and single valued neutrosophic theory. Thanks to generalized set valued neutrosophic quadruple sets, 

the solutions of decision-making problems in which single-valued neutrosophic numbers are used can be 

obtained more objectively. In this chapter, we obtain interval generalized set valued neutrosophic quadruple 

sets and numbers. We give some basic properties for interval generalized set valued neutrosophic quadruple 

sets and numbers. Also, we define some new operations for interval generalized set valued neutrosophic 

quadruple sets and numbers. Thus, we obtain a new structure based on generalized set valued neutrosophic 

quadruple sets and interval neutrosophic numbers. In this way, we obtain new results for generalized set valued 

neutrosophic quadruple set and interval neutrosophic set. Furthermore, thanks to this new structure; the 

solutions of decision-making problems in which interval neutrosophic numbers are used will be obtained more 

objectively.  

Keywords: interval neutrosophic set, neutrosophic quadruple number, set valued neutrosophic quadruple set, 

interval generalized set valued neutrosophic quadruple set 
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INTRODUCTION 

Neutrosophic logic and the concept of neutrosophic set are defined in 1998 by Florentin Smarandache  [1]. In 

the concept of neutrosophic logic and neutrosophic sets, there is the degree of membership T, degree of 

uncertainty I and degree of non-membership F. These degrees are defined independently from each other. It 

has the form of a neutrosophic value (T, I, F). In other words, a situation is handled in neutrosophy according 

to its accuracy, its falsehood, and its uncertainty. In addition, many researchers have conducted studies on 

neutrosophic set theory [2-4]. Recently, Hamidi and Smarandache studied single-valued neutro Hyper BCK-

subalgebras [5]; Mohana and Mohanasundari introduced on some similarity measures of single valued 

neutrosophic rough sets [6]; Ali et al. obtained neutrosophic triplet ring and neutrosophic triplet field [7]; Şahin 

et al. studied  generalized Euclid measures on generalized neutrosophic quadruple numbers [8]; Aslan et al. 

obtained neutrosophic modeling of Talcott Parsons’s action [9]; Kargın et al. introduced Hamming similarity 

measure  on generalized neutrosophic quadruple numbers [10]; Şahin and Dayan studied generalized 

neutrosophic quadruple numbers based on  Hamming measure for law [11]; Alhasan et al. obtained  

neutrosophic reliability theory [12];  Şahin and Uz  introduced multi-criteria decision-making applications 

based neutrosophic quadruple sets for law [13]. 

Wang et al. studied interval neutrosophic sets and logic in 2005 [14]. The interval neutrosophic sets have an 

important role in neutrosophic theory and decision making problems. The use of intervals as values in interval 

neutrosophic sets makes this set superior to other sets in many problem situations. Because while it is often 

difficult to reach a definite judgment in a decision-making situation, a decision given as an interval will be 

more useful. Hence, many researchers studied based on interval neutrosophic sets and logic [15-17]. Recently, 

Chi and Liu studied TOPSIS method based on interval neutrosophic set [18]; Liu and Tang obtained some 

power generalized aggregation operators based on the interval neutrosophic sets [19]; Hashim et al. introduced 

entropy measures for interval neutrosophic vague sets [20]; Pai and Gaonkar studied the safety assessment in 

dynamic conditions using interval neutrosophic sets [21]; Karthikeyan and Karuppaiya obtained reverse 

subsystems of interval neutrosophic automata [22]. 

Smarandache obtained neutrosophic quadruple set and numbers in 2015 [23]. While neutrosophic quadruple 

set have T, I and F components as in neutrosophic sets; unlike neutrosophic sets, there is a known part and an 

unknown part. Therefore, neutrosophic quadruple sets are a generalization of neutrosophic sets. For this reason, 

neutrosophic quadruple sets are widely used in the algebraic and application areas [24-27]. Recently, 

Muhiuddin et al. studied implicative neutrosophic quadruple BCK-algebras and ideals [28]; Şahin et al. 

obtained generalized set valued neutrosophic quadruple sets and numbers [29]; Li et al. introduced 

neutrosophic extended triplet group based on neutrosophic quadruple numbers [30]; Şahin and  Kargın obtained 

neutrosophic triplet groups based on set valued neutrosophic quadruple numbers [31]; Borzooei et al. studied 

positive implicative neutrosophic quadruple BCK-algebras and ideals [32]; Şahin and Kargın introduced single 

valued neutrosophic quadruple graphs [33]; Smarandache et al. obtained neutrosophic quadruple groups [33]; 
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Şahin et al. studied generalized set valued neutrosophic quadruple numbers and decision making applications 

[34]. 

In this chapter, we obtain interval generalized set valued neutrosophic quadruple sets (IgsvNqs) and numbers 

(IgsvNqsn) using generalized set valued neutrosophic quadruple sets and interval neutrosophic sets. Thanks to 

IgsvNqs and IgsvNqsn, generalized set valued neutrosophic quadruple sets and interval neutrosophic sets will 

more useful together. Also, we obtain some basic properties and some operations (∪𝐴, ∪𝑂 ,  ∪𝑃 ,∩𝐴 , ∩𝑂 , 

∩𝑃 ,/𝐴, /𝑂 ,  /𝑃 ). In fact, we generalize the some operations in [29] for IgsvNqs.  In Section 2, we introduced 

some basic definitions for interval neutrosophic set [14], neutrosophic quadruple sets [31], [29]. In recent years, 

the academic community has witnessed growing research interests in neutrosophic set theory [36-72]. 

BACKGROUND 

Definition 1. [14] Let A be a universal set. Interval neutrosophic set N; is identified as  

N = {<a: [𝑇𝑙N(a), 𝑇
𝑢
N(a)], [𝐼

𝑙
N(a), 𝐼

𝑢
N(a)], [𝐹

𝑙
N(a), 𝐹

𝑢
N(a)], >, a∈A}. 

Where the functions 

 𝑇𝑙𝑁 :A → [0,1], 𝑇𝑢𝑁 :A → [0,1] is truth functions;  

𝐼𝑙𝑁  :A → [0,1], 𝐼𝑢𝑁 :A → [0,1] is uncertainly functions;  

and 𝐹𝑙𝑁 :A → [0,1] and 𝐹𝑢𝑁 :A → [0,1] is falsity functions. 

Definition 2. [14] Let  

𝑁1 = {<a: [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

], [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

], [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

], >, a∈A} 

and 

𝑁2 = {<a: [𝑇𝑙𝑁2(a), 𝑇
𝑢
𝑁2(a)

], [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

], [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

], >, a∈A} 

be two interval neutrosophic sets.  

i) 𝑁2 is subset of 𝑁1 if and only if   

𝑇𝑙𝑁1(a) ≥ 𝑇
𝑙
𝑁2(a)

, 𝑇𝑢𝑁1(a) ≥ 𝑇
𝑢
𝑁2(a)

 

𝐼𝑙𝑁1(a) ≤ 𝐼
𝑙
𝑁2(a)

, 𝐼𝑢𝑁1(a) ≤ 𝐼
𝑢
𝑁2(a)
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𝐹𝑙𝑁1(a) ≤ 𝐹
𝑙
𝑁2(a)

, 𝐹𝑢𝑁1(a) ≤ 𝐹
𝑢
𝑁2(a)

 

ii) 𝑁2 is equal to 𝑁1 if and only if   

𝑇𝑙𝑁1(a) = 𝑇
𝑙
𝑁2(a)

, 𝑇𝑢𝑁1(a) = 𝑇
𝑢
𝑁2(a)

; 

𝐼𝑙𝑁1(a) = 𝐼
𝑙
𝑁2(a)

, 𝐼𝑢𝑁1(a) = 𝐼
𝑢
𝑁2(a)

; 

𝐹𝑙𝑁1(a) = 𝐹
𝑙
𝑁2(a)

, 𝐹𝑢𝑁1(a) = 𝐹
𝑢
𝑁2(a)

. 

iii) 𝑁1  ∪  𝑁2  = {<a: [ max{𝑇𝑙
𝑁1(a)

, 𝑇𝑙𝑁2(a)}, max{𝑇
𝑢
𝑁1(a)

, 𝑇𝑢𝑁2(a)} ], 

[min{𝐼𝑙
𝑁1(a)

, 𝐼𝑙𝑁2(a)},min{𝐼
𝑢
𝑁1(a)

, 𝐼𝑢𝑁2(a)}], [min{𝐹
𝑙
𝑁1(a)

, 𝐹𝑙𝑁2(a)}, min{𝐹
𝑢
𝑁1(a)

, 𝐹𝑢𝑁2(a)}] >, a∈A}. 

iv) 𝑁1  ∩  𝑁2  = {<a: [ min{𝑇𝑙
𝑁1(a)

, 𝑇𝑙𝑁2(a)}, min{𝑇
𝑢
𝑁1(a)

, 𝑇𝑢𝑁2(a)} ], 

[max{𝐼𝑙
𝑁1(a)

, 𝐼𝑙𝑁2(a)}, max{𝐼
𝑢
𝑁1(a)

, 𝐼𝑢𝑁2(a)}], [max{𝐹
𝑙
𝑁1(a)

, 𝐹𝑙𝑁2(a)}, max{𝐹
𝑢
𝑁1(a)

, 𝐹𝑢𝑁2(a)}] >, a∈A}. 

Definition 3: [31] Let N be a set and P(N) be power set of N. A set valued neutrosophic quadruple set is shown 

by the form                                               

(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F). 

Where, T, I and F are degree of membership, degree of undeterminacy, degree of non-membership in 

neutrosophic theory, respectively. Also, 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N); 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 

𝐴4F) is called the unknown part. 

Definition 4: [31] Let A = (𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1 , 𝐵2T, 𝐵3 I, 𝐵4F) be set valued neutrosophic 

quadruple set s. We define the following operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪𝐵1 , (𝐴2 ∪𝐵2)T, (𝐴3 ∪𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩𝐵1 , (𝐴2 ∩𝐵2)T, (𝐴3 ∩𝐵3)I, (𝐴4 ∩ 𝐵4)F) 

A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 

𝐴′ = (𝐴′1, 𝐴′2T, 𝐴′3I, 𝐴′4F)  

Definition 5: [31] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) be set valued neutrosophic quadruple 

sets. If 
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𝐴1⊂ 𝐵1 , 𝐴2⊂ 𝐵2 and 𝐴3⊂ 𝐵3 , 𝐴4⊂ 𝐵4, 

then it is called that A is subset of B. It is shown by  

A⊂ B. 

Definition 6: [31] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) be set valued neutrosophic quadruple 

sets. If  

A⊂ B and 𝐵⊂ 𝐴, 

 then it is called that A is equal to B. It is shown by 

A = B. 

Definition 7: [29] Let A be a universal set and P(A) be power set of A. A generalized set valued neutrosophic 

quadruple set N; is identified as  

N = {<𝐾1𝑁1, 𝑇𝑁1(a)𝐿
1
𝑁1

, 𝐼𝑁1(a) 𝑀
1
𝑁1

, 𝐹𝑁1(a) 𝑃
1
𝑁1

;   

         𝐾2𝑁2, 𝑇𝑁2(a)𝐿
2
𝑁2

, 𝐼𝑁2(a) 𝑀
2
𝑁2

, 𝐹𝑁2(a) 𝑃
2
𝑁2

;    

        𝐾𝑖𝑁𝑖, 𝑇𝑁𝑖(a)𝐿
𝑖
𝑁𝑖

, 𝐼𝑁𝑖(a) 𝑀
𝑖
𝑁𝑖

, 𝐹𝑁𝑖(a) 𝑃
𝑖
𝑁𝑖

 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝑇𝑁𝑛(a), 𝐼𝑁𝑛(a), 𝐹𝑁𝑛(a) (n = 1, 2, 3, … , i) 

 have their usual single valued neutrosophic logic means and a generalized set valued neutrosophic quadruple 

number 𝑁𝑛1; is identified as  

𝑁𝑁1= {<𝐾1𝑁1, 𝑇𝑁1(a)𝐿
1
𝑁1

, 𝐼𝑁1(a) 𝑀
1
𝑁1

, 𝐹𝑁1(a) 𝑃
1
𝑁1
>}. 

As in neutrosophic quadruple number, for a generalized set valued neutrosophic quadruple number 

𝐾1𝑁1 

is called known part and  
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𝑇𝑁1(a)𝐿
1
𝑁1

, 𝐼𝑁1(a) 𝑀
1
𝑁1

, 𝐹𝑁1(a) 𝑃
1
𝑁1

 

is called the unknown part. 

Also, we can show that  

N = {𝑁𝑁𝑛: n = 1, 2, 3, …, i}. 

INTERVAL GENERALIZED SET VALUED NEUTROSOPHIC 

QUADRUPLE SETS AND NUMBERS 

Definition 8: Let A be a universal set and P(A) be power set of A. Interval generalized set valued neutrosophic 

quadruple set (IgsvNqs) N; is identified as  

N = {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1 , [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝑇𝑙𝑁𝑛(a), 𝐼
𝑙
𝑁𝑛(a)

, 𝐹𝑙𝑁𝑛(a), 𝑇
𝑢
𝑁𝑛(a)

, 𝐼𝑢𝑁𝑛(a) and 𝐹𝑢𝑁𝑛(a) (n = 1, 2, 3, … , i) 

 have their usual interval neutrosophic logic means and an interval generalized neutrosophic quadruple number 

(IgsvNqn) 𝑁𝑛1; is identified as  

𝑁𝑁1= {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1 >} 

As in neutrosophic quadruple number, for a IgsvNqn, 

𝐾1𝑁1 

is called known part and  

[𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1 

is called the unknown part. 

Also, we can show that  

N = {𝑁𝑁𝑛: n = 1, 2, 3, …, i}. 

Example 1: Let A = {k, l, m, n, p, r} be a set. Then; 

                                        N =  {<{𝑘, 𝑙, 𝑚, 𝑛}, [0, 0.7]{𝑘, 𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.5] {𝑛}; 
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       {𝑘, 𝑙, 𝑝, 𝑟}, [0.1, 0.9]{𝑘, 𝑝}, [0.2, 0.3] {𝑙}, [0.2, 0.7] {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, [0.4, 0.8]{𝑙, 𝑝}, [0, 0.3] {𝑝,𝑚}, [0.2, 0.6] {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, [0.3, 0.7]{𝑝}, [0.2, 0.5] {𝑚, 𝑙}, [0.1, 0.5] {𝑟} >} 

are two IgsvNqs. 

 Also,  

𝑁𝑁1={{𝑘, 𝑙,𝑚, 𝑛}, [0, 0.7]{𝑘, 𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.5] {𝑛}} 

and 

𝑁𝑁2 = {{𝑘, 𝑙, 𝑝, 𝑟}, [0.3, 0.7]{𝑘, 𝑝}, [0.2, 0.5] {𝑙}, [0.1, 0.5] {𝑟}} 

are two IgsvNqn of N such that 

N = {𝑁𝑁1, 𝑁
𝑁
2}. 

 Similarly,  

𝑅𝑁1 ={{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, [0.4, 0.8]{𝑙, 𝑝}, [0, 0.3] {𝑝, 𝑚}, [0.2, 0.6] {𝑛}} 

and  

    𝑅𝑁2 =  {{𝑚, 𝑙, 𝑝, 𝑟}, [0.1, 0.9]{𝑝}, [0.2, 0.3] {𝑚, 𝑙}, [0.2, 0.7] {𝑟}} 

are two IgsvNqn of R such that 

R = {𝑅𝑁1, 𝑅
𝑁
2}. 

Definition 9: Let 

 N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

and  

R =  {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1 , [𝐼𝑙𝑅1(a), 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2; …   

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 
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be two IgsvNqss.  

i) N is subset of R (N⊂R) if and only if   

𝐾𝑛𝑁𝑛  ⊂ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛 ⊂ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛
⊂ 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛 ⊂ 𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛(a) ≤ 𝑇
𝑙
𝑅𝑛(a)

, 𝑇𝑢𝑁𝑛(a) ≤ 𝑇
𝑢
𝑅𝑛(a)

; 

𝐼𝑙𝑁𝑛(a) ≥ 𝐼
𝑙
𝑅𝑛(a)

}, 𝐼𝑢𝑁𝑛(a) ≥ 𝐼
𝑢
𝑅𝑛(a)

; 

𝐹𝑙𝑁𝑛(a) ≥ 𝐹
𝑙
𝑅𝑛(a)

}, 𝐹𝑢𝑁𝑛(a) ≥ 𝐹
𝑢
𝑅𝑛(a)

. 

ii) 𝑁 is equal to 𝑅 if and only if   

𝐾𝑛𝑁𝑛  = 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛 = 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛
= 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛 = 𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛(a) = 𝑇
𝑙
𝑅𝑛(a)

, 𝑇𝑢𝑁𝑛(a) = 𝑇
𝑢
𝑅𝑛(a)

; 

𝐼𝑙𝑁𝑛(a) = 𝐼
𝑙
𝑅𝑛(a)

}, 𝐼𝑢𝑁𝑛(a) = 𝐼
𝑢
𝑅𝑛(a)

; 

𝐹𝑙𝑁𝑛(a) = 𝐹
𝑙
𝑅𝑛(a)

}, 𝐹𝑢𝑁𝑛(a) = 𝐹
𝑢
𝑅𝑛(a)

. 

Example 2: From Example 1,  

N =  {<{𝑘, 𝑙,𝑚, 𝑛}, [0, 0.7]{𝑘, 𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.5] {𝑛}; 

           {𝑘, 𝑙, 𝑝, 𝑟}, [0.1, 0.9]{𝑘, 𝑝}, [0.2, 0.3] {𝑙}, [0.2, 0.7] {𝑟} >} 

is a IgsvNqss. Also, it is clear that  

Y =  {<{𝑘,𝑚, 𝑛}, [0, 0.5]{𝑘}, [0.6, 0.7] {𝑚}, [0.6, 0.8] {𝑛}; 

                                                     {, 𝑙, 𝑝, 𝑟}, [0.3, 0.9]{𝑝}, [0.4, 0.5] {𝑙}, [0.3, 0.8] {𝑟} >} 

is a IgsvNqss. Thus, 

Y⊂N. 

Definition 10: Let  

N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

and  
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R =  {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1 , [𝐼𝑙𝑅1(a), 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

be two IgsvNqss. 

i) We define the “average ∪” operations for N and R such that  

N ∪𝐴 R = {<𝐾1𝑁1𝑅1 , [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼
𝑙
𝑁1𝑅1(a)

, 𝐼𝑢𝑁1𝑅1(a)] 𝑀
1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∪ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∪ 𝐿𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛

 ∪𝑀𝑛
𝑅𝑛

, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∪ 𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛𝑅𝑛(a)= 
𝑇𝑙𝑁𝑛(a)+𝑇

𝑙
𝑅𝑛(a)

2
, 𝑇𝑢𝑁𝑛𝑅𝑛(a)= 

𝑇𝑢𝑁𝑛(a)+𝑇
𝑢
𝑅𝑛(a)

2
; 

𝐼𝑙𝑁𝑛𝑅𝑛(a)= 
𝐼𝑙𝑁𝑛(a)+𝐼

𝑙
𝑅𝑛(a)

2
, 𝐼𝑢𝑁𝑛𝑅𝑛(a)= 

𝐼𝑢𝑁𝑛(a)+𝐼
𝑢
𝑅𝑛(a)

2
; 

𝐹𝑙𝑁𝑛𝑅𝑛(a)= 
𝐹𝑙𝑁𝑛(a)+𝐹

𝑙
𝑅𝑛(a)

2
, 𝐹𝑢𝑁𝑛𝑅𝑛(a)= 

𝐹𝑢𝑁𝑛(a)+𝐹
𝑢
𝑅𝑛(a)

2
; (n = 1, 2, 3, … , i). 

ii) We define the “average ∩ “ operations for N and R such that  

N ∩𝐴 R = {<𝐾1𝑁1𝑅1 , [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼
𝑙
𝑁1𝑅1(a)

, 𝐼𝑢𝑁1𝑅1(a)] 𝑀
1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∩ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∩ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
∩𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∩ 𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛𝑅𝑛(a)= 
𝑇𝑙𝑁𝑛(a)+𝑇

𝑙
𝑅𝑛(a)

2
, 𝑇𝑢𝑁𝑛𝑅𝑛(a)= 

𝑇𝑢𝑁𝑛(a)+𝑇
𝑢
𝑅𝑛(a)

2
; 

𝐼𝑙𝑁𝑛𝑅𝑛(a)= 
𝐼𝑙𝑁𝑛(a)+𝐼

𝑙
𝑅𝑛(a)

2
, 𝐼𝑢𝑁𝑛𝑅𝑛(a)= 

𝐼𝑢𝑁𝑛(a)+𝐼
𝑢
𝑅𝑛(a)

2
; 

𝐹𝑙𝑁𝑛𝑅𝑛(a)= 
𝐹𝑙𝑁𝑛(a)+𝐹

𝑙
𝑅𝑛(a)

2
, 𝐹𝑢𝑁𝑛𝑅𝑛(a)= 

𝐹𝑢𝑁𝑛(a)+𝐹
𝑢
𝑅𝑛(a)

2
; (n = 1, 2, 3, … , i). 
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Example 3: From Example 1,  

                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, [0, 0.7]{𝑘, 𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.5] {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, [0.1, 0.9]{𝑘, 𝑝}, [0.2, 0.3] {𝑙}, [0.2, 0.7] {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, [0.4, 0.8]{𝑙, 𝑝}, [0, 0.3] {𝑝,𝑚}, [0.2, 0.6] {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, [0.3, 0.7]{𝑝}, [0.2, 0.5] {𝑚, 𝑙}, [0.1, 0.5] {𝑟} >} 

are two IgsvNqs. Thus, 

i) N ∪𝐴 R = {<{𝑘, 𝑙,𝑚, 𝑛, 𝑝}, [0.2, 0.75]{𝑘, 𝑙, 𝑝}, [0.25, 0.45] {𝑝, 𝑚}, [0.3, 0.6] {𝑛}; 

                    {𝑚, 𝑘, 𝑙, 𝑝, 𝑟}, [0.2, 0.8]{𝑘, 𝑝}, [0.2, 0.4] {𝑚, 𝑙}, [0.15, 0.6] {𝑟} >} 

 

ii) N ∩𝐴 R = {<{𝑘, 𝑙, 𝑚, 𝑛}, [0.2, 0.75]{𝑙}, [0.25, 0.45] {𝑚}, [0.3, 0.6] {𝑛}; 

                    {𝑙, 𝑝, 𝑟}, [0.2, 0.8]{𝑝}, [0.2, 0.4] {𝑙}, [0.15, 0.6] {𝑟} >} 

Definition 11: Let  

N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

and  

R =  {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1 , [𝐼𝑙𝑅1(a), 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

be two IgsvNqss. 

i) We define the “optimistic ∪” operations for N and R such that  

N ∪𝑂 R = {<𝐾1𝑁1𝑅1, [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼𝑙𝑁1𝑅1(a), 𝐼
𝑢
𝑁1𝑅1(a)

] 𝑀1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    
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                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 10’s (i). 

𝑇𝑙𝑁𝑛𝑅𝑛(a)= max{𝑇𝑙
𝑁𝑛(a)

, 𝑇𝑙𝑅𝑛(a)}, 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝑇𝑢
𝑁𝑛(a)

, 𝑇𝑢𝑅𝑛(a)}; 

𝐼𝑙𝑁𝑛𝑅𝑛(a)= min{𝐼𝑙
𝑁𝑛(a)

, 𝐼𝑙𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐼𝑢
𝑁𝑛(a)

, 𝐼𝑢𝑅𝑛(a)}; 

𝐹𝑙𝑁𝑛𝑅𝑛(a)= min{𝐹𝑙
𝑁𝑛(a)

, 𝐹𝑙𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐹𝑢
𝑁𝑛(a)

, 𝐹𝑢𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 

ii) We define the “optimistic ∩ “ operations for N and R such that  

N ∩𝑂 R = {<𝐾1𝑁1𝑅1, [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼𝑙𝑁1𝑅1(a), 𝐼
𝑢
𝑁1𝑅1(a)

] 𝑀1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 11’s (ii). 

𝑇𝑙𝑁𝑛𝑅𝑛(a)= max{𝑇𝑙
𝑁𝑛(a)

, 𝑇𝑙𝑅𝑛(a)}, 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝑇𝑢
𝑁𝑛(a)

, 𝑇𝑢𝑅𝑛(a)}; 

𝐼𝑙𝑁𝑛𝑅𝑛(a)= min{𝐼𝑙
𝑁𝑛(a)

, 𝐼𝑙𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐼𝑢
𝑁𝑛(a)

, 𝐼𝑢𝑅𝑛(a)}; 

𝐹𝑙𝑁𝑛𝑅𝑛(a)= min{𝐹𝑙
𝑁𝑛(a)

, 𝐹𝑙𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝐹𝑢
𝑁𝑛(a)

, 𝐹𝑢𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 

Example 4: From Example 1,  

                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, [0, 0.7]{𝑘, 𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.5] {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, [0.1, 0.9]{𝑘, 𝑝}, [0.2, 0.3] {𝑙}, [0.2, 0.7] {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, [0.4, 0.8]{𝑙, 𝑝}, [0, 0.3] {𝑝,𝑚}, [0.2, 0.6] {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, [0.3, 0.7]{𝑝}, [0.2, 0.5] {𝑚, 𝑙}, [0.1, 0.5] {𝑟} >} 

are two IgsvNqs. Thus, 

i) N ∪𝑂 R = {<{𝑘, 𝑙, 𝑚, 𝑛, 𝑝}, [0.4, 0.8]{𝑘, 𝑙, 𝑝}, [0, 0.3] {𝑝,𝑚}, [0.2, 0.5] {𝑛}; 

                    {𝑚, 𝑘, 𝑙, 𝑝, 𝑟}, [0.3, 0.9]{𝑘, 𝑝}, [0.2, 0.3] {𝑚, 𝑙}, [0.1, 0.5] {𝑟} >} 
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ii) N ∩𝑂 R = {<{𝑘, 𝑙,𝑚, 𝑛}, [0.4, 0.8]{𝑙}, [0, 0.3] {𝑚}, [0.2, 0.5] {𝑛}; 

                    {𝑙, 𝑝, 𝑟}, [0.3, 0.9]{𝑝}, [0.2, 0.3] {𝑙}, [0.1, 0.5] {𝑟} >} 

Definition 12: Let  

N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

and  

R =  {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1 , [𝐼𝑙𝑅1(a), 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2;    

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

be two IgsvNqss. 

i) We define the “pessimistic ∪” operations for N and R such that  

N ∪𝑝 R = {<𝐾1𝑁1𝑅1 , [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼𝑙𝑁1𝑅1(a), 𝐼
𝑢
𝑁1𝑅1(a)

] 𝑀1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 10’s (i). 

𝑇𝑙𝑁𝑛𝑅𝑛(a)= min{𝑇𝑙
𝑁𝑛(a)

, 𝑇𝑙𝑅𝑛(a)}, 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝑇𝑢
𝑁𝑛(a)

, 𝑇𝑢𝑅𝑛(a)}; 

𝐼𝑙𝑁𝑛𝑅𝑛(a)= max{𝐼𝑙
𝑁𝑛(a)

, 𝐼𝑙𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐼𝑢
𝑁𝑛(a)

, 𝐼𝑢𝑅𝑛(a)}; 

𝐹𝑙𝑁𝑛𝑅𝑛(a)= max{𝐹𝑙
𝑁𝑛(a)

, 𝐹𝑙𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐹𝑢
𝑁𝑛(a)

, 𝐹𝑢𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 

ii) We define the “pessimistic ∩ “ operations for N and R such that  

N ∩𝑝 R = {<𝐾1𝑁1𝑅1 , [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼𝑙𝑁1𝑅1(a), 𝐼
𝑢
𝑁1𝑅1(a)

] 𝑀1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1;   
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                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

where, 

𝐾𝑛𝑁𝑛𝑅𝑛 , 𝐿𝑛𝑁𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 and 𝑃𝑛𝑁𝑛𝑅𝑛  are same as in Definition 10’s (ii). 

𝑇𝑙𝑁𝑛𝑅𝑛(a)= min{𝑇𝑙
𝑁𝑛(a)

, 𝑇𝑙𝑅𝑛(a)}, 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

= min{𝑇𝑢
𝑁𝑛(a)

, 𝑇𝑢𝑅𝑛(a)}; 

𝐼𝑙𝑁𝑛𝑅𝑛(a)= max{𝐼𝑙
𝑁𝑛(a)

, 𝐼𝑙𝑅𝑛(a)}, 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐼𝑢
𝑁𝑛(a)

, 𝐼𝑢𝑅𝑛(a)}; 

𝐹𝑙𝑁𝑛𝑅𝑛(a)= max{𝐹𝑙
𝑁𝑛(a)

, 𝐹𝑙𝑅𝑛(a)}, 𝐹
𝑢
𝑁𝑛𝑅𝑛(a)

= max{𝐹𝑢
𝑁𝑛(a)

, 𝐹𝑢𝑅𝑛(a)}; (n = 1, 2, 3, … , i). 

Example 5: From Example 1,  

                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, [0, 0.7]{𝑘, 𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.5] {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, [0.1, 0.9]{𝑘, 𝑝}, [0.2, 0.3] {𝑙}, [0.2, 0.7] {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, [0.4, 0.8]{𝑙, 𝑝}, [0, 0.3] {𝑝,𝑚}, [0.2, 0.6] {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, [0.3, 0.7]{𝑝}, [0.2, 0.5] {𝑚, 𝑙}, [0.1, 0.5] {𝑟} >} 

are two IgsvNqs. Thus, 

i) N ∪𝑃 R = {<{𝑘, 𝑙,𝑚, 𝑛, 𝑝}, [0, 0.7]{𝑘, 𝑙, 𝑝}, [0.5, 0.6] {𝑝, 𝑚}, [0.4, 0.6] {𝑛}; 

                    {𝑚, 𝑘, 𝑙, 𝑝, 𝑟}, [0.1, 0.7]{𝑘, 𝑝}, [0.2, 0.5] {𝑚, 𝑙}, [0.2, 0.7] {𝑟} >} 

 

ii) N ∩𝑃 R = {<{𝑘, 𝑙, 𝑚, 𝑛}, [0, 0.7]{𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.6] {𝑛}; 

                    {𝑙, 𝑝, 𝑟}, [0.1, 0.7]{𝑝}, [0.2, 0.5] {𝑙}, [0.2, 0.7] {𝑟} >} 

 

Definition 13: Let  

N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i} 
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and  

R =  {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1 , [𝐼𝑙𝑅1(a), 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2; …   

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

be two IgsvNqss. 

i) We define the “average /” operations for N and R such that  

N /𝐴 R = {<𝐾1𝑁1𝑅1 , [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼𝑙𝑁1𝑅1(a), 𝐼
𝑢
𝑁1𝑅1(a)

] 𝑀1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  /𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 /𝐿𝑛𝑅𝑛, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
/𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛/𝑃

𝑛
𝑅𝑛

;  

𝑇𝑙𝑁𝑛𝑅𝑛(a), 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐼𝑙𝑁𝑛𝑅𝑛(a), 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐹𝑙𝑁𝑛𝑅𝑛(a) and  𝐹𝑢𝑁𝑛𝑅𝑛(a) are same as in Definition 10’ (i). 

ii) We define the “optimistic / “ operations for N and R such that  

N /𝑂 R = {<𝐾1𝑁1𝑅1 , [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼𝑙𝑁1𝑅1(a), 𝐼
𝑢
𝑁1𝑅1(a)

] 𝑀1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1 ;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  

                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  /𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛/𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
/𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 /𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛𝑅𝑛(a), 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐼𝑙𝑁𝑛𝑅𝑛(a), 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐹𝑙𝑁𝑛𝑅𝑛(a) and  𝐹𝑢𝑁𝑛𝑅𝑛(a) are same as in Definition 11’ (i). 

iii) We define the “pessimistic / “ operations for N and R such that  

N /𝑃 R = {<𝐾1𝑁1𝑅1 , [𝑇𝑙𝑁1𝑅1(a), 𝑇
𝑢
𝑁1𝑅1(a)

]𝐿1𝑁1𝑅1, [𝐼
𝑙
𝑁1𝑅1(a)

, 𝐼𝑢𝑁1𝑅1(a)] 𝑀
1
𝑁1𝑅1

, [𝐹𝑙𝑁1𝑅1(a), 𝐹
𝑢
𝑁1𝑅1(a)

] 𝑃1𝑁1𝑅1;   

                𝐾2𝑁2𝑅2 , [𝑇𝑙𝑁2𝑅2(a), 𝑇
𝑢
𝑁2𝑅2(a)

]𝐿2𝑁2𝑅2, [𝐼𝑙𝑁2𝑅2(a), 𝐼
𝑢
𝑁2𝑅2(a)

] 𝑀2
𝑁2𝑅2

, [𝐹𝑙𝑁2𝑅2(a), 𝐹
𝑢
𝑁2𝑅2(a)

] 𝑃2𝑁2𝑅2 ;    

                𝐾𝑖𝑁𝑖𝑅𝑖, [𝑇
𝑙
𝑁𝑖𝑅𝑖(a)

, 𝑇𝑢𝑁𝑖𝑅𝑖(a)]𝐿
𝑖
𝑁𝑖𝑅𝑖

, [𝐼𝑙𝑁𝑖𝑅𝑖(a), 𝐼
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑀𝑖
𝑁𝑖𝑅𝑖

, [𝐹𝑙𝑁𝑖𝑅𝑖(a), 𝐹
𝑢
𝑁𝑖𝑅𝑖(a)

] 𝑃𝑖𝑁𝑖𝑅𝑖  >,  
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                𝐾𝑛𝑁𝑛𝑅𝑛 ,  𝐿𝑛𝑁𝑛𝑅𝑛 ,  𝑀𝑛
𝑁𝑛𝑅𝑛

,  𝑃𝑛𝑁𝑛𝑅𝑛  ∈ P(A); n = 1, 2, 3, … , i}. 

Where, 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  /𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛/𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
/𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 /𝑃𝑛𝑅𝑛;  

𝑇𝑙𝑁𝑛𝑅𝑛(a), 𝑇
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐼𝑙𝑁𝑛𝑅𝑛(a), 𝐼
𝑢
𝑁𝑛𝑅𝑛(a)

, 𝐹𝑙𝑁𝑛𝑅𝑛(a) and  𝐹𝑢𝑁𝑛𝑅𝑛(a) are same as in Definition 12’ (i). 

Example 6: From Example 1,  

                                       N =  {<{𝑘, 𝑙,𝑚, 𝑛}, [0, 0.7]{𝑘, 𝑙}, [0.5, 0.6] {𝑚}, [0.4, 0.5] {𝑛}; 

       {𝑘, 𝑙, 𝑝, 𝑟}, [0.1, 0.9]{𝑘, 𝑝}, [0.2, 0.3] {𝑙}, [0.2, 0.7] {𝑟} >} 

and  

                                        R =  {<{𝑙, 𝑝,𝑚, 𝑛, 𝑘}, [0.4, 0.8]{𝑙, 𝑝}, [0, 0.3] {𝑝,𝑚}, [0.2, 0.6] {𝑛}; 

       {𝑚, 𝑙, 𝑝, 𝑟}, [0.3, 0.7]{𝑝}, [0.2, 0.5] {𝑚, 𝑙}, [0.1, 0.5] {𝑟} >} 

are two IgsvNqs. Thus, 

i) N /𝐴 R = {<∅, [0.2, 0.75]{𝑙}, [0.25, 0.45] ∅, [0.3, 0.6] ∅; 

                    {𝑘}, [0.2, 0.8]{𝑘}, [0.2, 0.4] ∅, [0.15, 0.6] ∅ >}. 

ii) N /𝑂 R = {<∅, [0.4, 0.8]{𝑙}, [0, 0.3] ∅, [0.2, 0.5] ∅; 

                    {𝑘}, [0.3, 0.9]{𝑘}, [0.2, 0.3]∅, [0.1, 0.5]∅ >}. 

iii) N /𝑃 R = {<∅, [0.2, 0.75]{𝑙}, [0.25, 0.45] ∅, [0.3, 0.6] ∅; 

                    {𝑘}, [0.2, 0.8]{𝑘}, [0.2, 0.4] ∅, [0.15, 0.6] ∅ >}. 

Properties 1: Let  

N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i}, 

R = {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1, [𝐼𝑙𝑅1(a) , 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2; …   

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 
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and  

Y = {<𝐾1𝑌1, [𝑇𝑙𝑌1(a), 𝑇
𝑢
𝑌1(a)

]𝐿1𝑌1, [𝐼𝑙𝑌1(a), 𝐼
𝑢
𝑌1(a)

] 𝑀1
𝑌1

, [𝐹𝑙𝑌1(a), 𝐹
𝑢
𝑌1(a)

] 𝑃1𝑌1;   

         𝐾2𝑌2, [𝑇𝑙𝑌2(a), 𝑇
𝑢
𝑌2(a)

]𝐿2𝑌2, [𝐼𝑙𝑌2(a), 𝐼
𝑢
𝑌2(a)

] 𝑀2
𝑌2

, [𝐹𝑙𝑌2(a), 𝐹
𝑢
𝑌2(a)

] 𝑃2𝑌2; …   

        𝐾𝑖𝑌𝑖, [𝑇
𝑙
𝑌𝑖(a)

, 𝑇𝑢𝑌𝑖(a)]𝐿
𝑖
𝑌𝑖

, [𝐼𝑙𝑌𝑖(a), 𝐼
𝑢
𝑌𝑖(a)

] 𝑀𝑖
𝑌𝑖

, [𝐹𝑙𝑌𝑖(a), 𝐹
𝑢
𝑌𝑖(a)

] 𝑃𝑖𝑌𝑖  >,  

        𝐾𝑛𝑌𝑛,  𝐿𝑛𝑌𝑛,  𝑀𝑛
𝑌𝑛

,  𝑃𝑛𝑌𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

be three IgsvNqss. From Definition 8, Definition 9, Definition 10, Definition 11, Definition 12 and Definition 

13; it is clear that 

i) N ∪𝐴 R = R ∪𝐴 N; N ∪𝑂 R = R ∪𝑂 N; N ∪𝑃 R = R ∪𝑃 N.  

ii) N ∩𝐴 R = R ∩𝐴 N; N ∩𝑂 R = R ∩𝑂 N; N ∩𝑃 R = R ∩𝑃 N.  

iii) N ∪𝐴 (R ∪𝐴 𝑌) = (N ∪𝐴 R ) ∪𝐴 Y, 

     N ∪𝑂 (R ∪𝑂 𝑌) = (N ∪𝑂 R ) ∪𝑂 Y, 

     N ∪𝑃 (R ∪𝑃 𝑌) = (N ∪𝑃 R ) ∪𝑃 Y. 

iv) N ∩𝐴 (R ∩𝐴 𝑌) = (N ∩𝐴 R ) ∩𝐴 Y, 

     N ∩𝑂 (R ∩𝑂 𝑌) = (N ∩𝑂 R ) ∩𝑂 Y, 

     N ∩𝑃 (R ∩𝑃 𝑌) = (N ∩𝑃 R) ∩𝑃 Y. 

v) 𝑁 ∩𝐴 (R ∪𝐴 Y) = (N ∩𝐴 R ) ∪𝐴 (𝑁 ∩𝐴 Y ), 

     𝑁 ∩𝑂 (R ∪𝑂 Y) = (N ∩𝑂 R ) ∪𝑂 (𝑁 ∩𝑂 Y ), 

     𝑁 ∩𝑃 (R ∪𝑃 Y) = (N ∩𝑃 R ) ∪𝑃 (𝑁 ∩𝑃 Y ). 

vi)  𝑁 ∪𝐴 (R ∩𝐴 Y) = (N ∪𝐴 R ) ∩𝐴 (𝑁 ∪𝐴 Y ), 

     𝑁 ∪𝑂 (R ∩𝑂 Y) = (N ∪𝑂 R ) ∩𝑂 (𝑁 ∪𝑂 Y ), 

     𝑁 ∪𝑃 (R ∩𝑃 Y) = (N ∪𝑃 R ) ∩𝑃 (𝑁 ∪𝑃 Y ). 

v) If N = R, then 

N ∪𝐴 R = N ∪𝑂 R= N ∪𝑃 R= R 

and 

N ∩𝐴 R = N ∩𝑂 R = N ∩𝑃 R = R. 

Theorem 1: Let  

N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   
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         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

and 

R = {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1, [𝐼𝑙𝑅1(a) , 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2; …   

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

be two IgsvNqss. Then, 

i) (N ∩𝑃 R) ⊂ (N ∩𝐴 R) ⊂ (N ∩𝑂 R)  

ii) (N ∪𝑃 R) ⊂ (N ∪𝐴 R) ⊂ (N ∪𝑂 R) 

iii) (N ∩𝐴 R) ⊂ (N ∪𝐴 R), (N ∩𝑂 R) ⊂ (N ∪𝑂 R) and (N ∩𝑃 R) ⊂ (N ∪𝑃R). 

Proof:  

i) From Definition 10, Definition 11 and Definition 12; we obtain that  

                                     min{𝑇𝑙
𝑁𝑛(a)

, 𝑇𝑙𝑅𝑛(a)} ≤
𝑇𝑙𝑁𝑛(a)+𝑇

𝑙
𝑅𝑛(a)

2
≤ max{𝑇𝑙

𝑁𝑛(a)
, 𝑇𝑙𝑅𝑛(a)}                                          (1) 

                                     min{𝑇𝑢
𝑁𝑛(a)

, 𝑇𝑢𝑅𝑛(a)} ≤
𝑇𝑢𝑁𝑛(a)+𝑇

𝑢
𝑅𝑛(a)

2
≤ max{𝑇𝑢

𝑁𝑛(a)
, 𝑇𝑢𝑅𝑛(a)}                                 (2) 

                                     max{𝐼𝑙
𝑁𝑛(a)

, 𝐼𝑙𝑅𝑛(a)} ≥
𝐼𝑙𝑁𝑛(a)+𝐼

𝑙
𝑅𝑛(a)

2
≥ min{𝐼𝑙

𝑁𝑛(a)
, 𝐼𝑙𝑅𝑛(a)}                                          (3) 

                                     max{𝐼𝑢
𝑁𝑛(a)

, 𝐼𝑢𝑅𝑛(a)} ≥
𝐼𝑢𝑁𝑛(a)+𝐼

𝑢
𝑅𝑛(a)

2
≥ min{𝐼𝑢

𝑁𝑛(a)
, 𝐼𝑢𝑅𝑛(a)}                                     (4) 

                                    max{𝐹𝑙
𝑁𝑛(a)

, 𝐹𝑙𝑅𝑛(a)} ≥
𝐹𝑙𝑁𝑛(a)+𝐹𝑅𝑛(a)

2
≥ min{𝐹𝑙

𝑁𝑛(a)
, 𝐹𝑙𝑅𝑛(a)}                                          (5) 

                                     max{𝐹𝑢
𝑁𝑛(a)

, 𝐹𝑢𝑅𝑛(a)} ≥
𝐹𝑢𝑁𝑛(a)+𝐹

𝑢
𝑅𝑛(a)

2
≥ min{𝐹𝑢

𝑁𝑛(a)
, 𝐹𝑢𝑅𝑛(a)}                                 (6) 

Also, 

 for ∩𝑃, ∩𝑂 and ∩𝐴,  

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∩ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∩ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
∩𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∩ 𝑃𝑛𝑅𝑛                

(7) 

is hold. Thus, from 1-7 and Definition 9; we obtain that 
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(N ∩𝑃 R) ⊂ (N ∩𝐴 R) ⊂ (N ∩𝑂 R). 

Proofs of {ii, iii} can be given similarly to proof of i. 

Theorem 2: Let  

N =  {<𝐾1𝑁1, [𝑇𝑙𝑁1(a), 𝑇
𝑢
𝑁1(a)

]𝐿1𝑁1, [𝐼𝑙𝑁1(a), 𝐼
𝑢
𝑁1(a)

] 𝑀1
𝑁1

, [𝐹𝑙𝑁1(a), 𝐹
𝑢
𝑁1(a)

] 𝑃1𝑁1;   

         𝐾2𝑁2, [𝑇𝑙𝑁2(a) , 𝑇
𝑢
𝑁2(a)

]𝐿2𝑁2, [𝐼𝑙𝑁2(a), 𝐼
𝑢
𝑁2(a)

] 𝑀2
𝑁2

, [𝐹𝑙𝑁2(a), 𝐹
𝑢
𝑁2(a)

] 𝑃2𝑁2;    

        𝐾𝑖𝑁𝑖, [𝑇
𝑙
𝑁𝑖(a)

, 𝑇𝑢𝑁𝑖(a)]𝐿
𝑖
𝑁𝑖

, [𝐼𝑙𝑁𝑖(a) , 𝐼
𝑢
𝑁𝑖(a)

] 𝑀𝑖
𝑁𝑖

, [𝐹𝑙𝑁𝑖(a), 𝐹
𝑢
𝑁𝑖(a)

] 𝑃𝑖𝑁𝑖 >,  

        𝐾𝑛𝑁𝑛 ,  𝐿𝑛𝑁𝑛,  𝑀𝑛
𝑁𝑛

,  𝑃𝑛𝑁𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

and 

R = {<𝐾1𝑅1, [𝑇𝑙𝑅1(a), 𝑇
𝑢
𝑅1(a)

]𝐿1𝑅1, [𝐼𝑙𝑅1(a) , 𝐼
𝑢
𝑅1(a)

] 𝑀1
𝑅1

, [𝐹𝑙𝑅1(a), 𝐹
𝑢
𝑅1(a)

] 𝑃1𝑅1;   

         𝐾2𝑅2, [𝑇𝑙𝑅2(a), 𝑇
𝑢
𝑅2(a)

]𝐿2𝑅2, [𝐼𝑙𝑅2(a), 𝐼
𝑢
𝑅2(a)

] 𝑀2
𝑅2

, [𝐹𝑙𝑅2(a), 𝐹
𝑢
𝑅2(a)

] 𝑃2𝑅2; …   

        𝐾𝑖𝑅𝑖, [𝑇
𝑙
𝑅𝑖(a)

, 𝑇𝑢𝑅𝑖(a)]𝐿
𝑖
𝑅𝑖

, [𝐼𝑙𝑅𝑖(a), 𝐼
𝑢
𝑅𝑖(a)

] 𝑀𝑖
𝑅𝑖

, [𝐹𝑙𝑅𝑖(a), 𝐹
𝑢
𝑅𝑖(a)

] 𝑃𝑖𝑅𝑖 >,  

        𝐾𝑛𝑅𝑛 ,  𝐿𝑛𝑅𝑛,  𝑀𝑛
𝑅𝑛

,  𝑃𝑛𝑅𝑛 ∈ P(A); n = 1, 2, 3, … , i} 

be two IgsvNqss. We assume that N ⊂ R. Then, 

i) N ⊂ (N ∩𝐴 R) ⊂ R, N ⊂ (N ∩𝑂 R) ⊂ R and N = (N ∩𝑃 R) ⊂ R. 

ii) N ⊂ (N ∪𝐴 R) ⊂ R, N ⊂ (N ∪𝑂 R) = R and N ⊂ (N ∪𝑃 R) ⊂ R. 

iii) (N /𝐴 R) ⊂  R, (R /𝐴 N) ⊂  R, (N /𝑂 R) ⊂  R, (R /𝑂 N) ⊂  R, (N /𝑃 R) ⊂  R and (R /𝑃 N) ⊂  R. 

Proof:  

i) From Definition 9; we obtain that  

𝐾𝑛𝑁𝑛  ⊂ 𝐾𝑛𝑅𝑛, 𝐿𝑛𝑁𝑛 ⊂ 𝐿
𝑛
𝑅𝑛

, 𝑀𝑛
𝑁𝑛
⊂ 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛 ⊂ 𝑃𝑛𝑅𝑛; 

𝑇𝑙𝑁𝑛(a) ≤ 𝑇
𝑙
𝑅𝑛(a)

, 𝑇𝑢𝑁𝑛(a) ≤ 𝑇
𝑢
𝑅𝑛(a)

; 

𝐼𝑙𝑁𝑛(a) ≥ 𝐼
𝑙
𝑅𝑛(a)

}, 𝐼𝑢𝑁𝑛(a) ≥ 𝐼
𝑢
𝑅𝑛(a)

; 

                                                          𝐹𝑙𝑁𝑛(a) ≥ 𝐹
𝑙
𝑅𝑛(a)

}, 𝐹𝑢𝑁𝑛(a) ≥ 𝐹
𝑢
𝑅𝑛(a)

.                                                      

(8) 

Thus, we obtain that 

𝐾𝑛𝑁𝑛𝑅𝑛  = 𝐾𝑛𝑁𝑛  ∩ 𝐾𝑛𝑅𝑛 = 𝐾𝑛𝑅𝑛  , 𝐿𝑛𝑁𝑛𝑅𝑛  = 𝐿𝑛𝑁𝑛 ∩ 𝐿
𝑛
𝑅𝑛
= 𝐿𝑛𝑅𝑛, 

                                    𝑀𝑛
𝑁𝑛𝑅𝑛

 = 𝑀𝑛
𝑁𝑛
∩𝑀𝑛

𝑅𝑛
= 𝑀𝑛

𝑅𝑛
, 𝑃𝑛𝑁𝑛𝑅𝑛  = 𝑃𝑛𝑁𝑛 ∩ 𝑃𝑛𝑅𝑛=  𝑃𝑛𝑅𝑛.                                 

(9) 
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Also, from Proof of (i) of Theorem 1; conditions 1-7 are hold. Hence, thanks to Definition 10, Definition 11, 

Definition 12, 1-7 and 9; we obtain that  

                                     N ⊂ (N ∩𝐴 R) ⊂ R, N ⊂ (N ∩𝑂 R) ⊂ R and N = (N ∩𝑃 R) ⊂ R. 

Proofs of {ii, iii} can be given similarly to proof of i. 

 

Conclusions 

In this chapter, we define IgsvNqs, IgsvNqsn using generalized set valued neutrosophic quadruple sets 

and interval neutrosophic sets. Thanks to IgsvNqs and IgsvNqsn, generalized set valued neutrosophic 

quadruple sets and interval neutrosophic sets will more useful together. Also, we obtain some basic properties 

and some operations (∪𝐴, ∪𝑂 ,  ∪𝑃 ,∩𝐴, ∩𝑂, ∩𝑃 ,/𝐴, /𝑂 ,  /𝑃 ). Especially, for decision making problems; these 

operations will more useful. Furthermore, thanks to definitions of IgsvNqs, IgsvNqsn and operations 

(∪𝐴, ∪𝑂 ,  ∪𝑃 ,∩𝐴 , ∩𝑂 , ∩𝑃 ,/𝐴, /𝑂 ,  /𝑃 ); researchers can define similarity measures, some specific decision 

making methods (TOPSIS, VIKOR, DEMATEL, AHP, …), arithmetic operations, aggregation operations 

based on IgsvNqs and IgsvNqsn for decision making problems.  

Abbreviations 

IgsvNqs: Interval generalized set valued neutrosophic quadruple set 

 IgsvNqsn: Interval generalized set valued neutrosophic quadruple number 
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ABSTRACT 

In this study, we first tried to study the impact of the concept of human rights from a historical perspective 

totally  to explain  the creation of national institutions and organizations. We then tried to explain in detail the 

human rights documents and human rights systems found at universal and regional level to complete this 

integrity. Finally, in order to explain how important the existence of human rights institutions and organizations 

to achieve human rights and freedoms, we analyzed their benefits for states and individuals. In addition, we 

created an artificial intelligence application to determine the impact of national human rights in the protection 

and promotion of human rights. Thus, we obtained a fuzzy application method in which more objective results 

can be obtained compared to previous methods in determining this effect. 

Keywords: Human Rights and freedom, National Human Rights, Fuzzy logic, Artificial Intelligence 

Application   

INTRODUCTION 

Human rights has tried to take part in international law from the first era to the present. In this process, many 

studies have been done at the universal and national level. The issue of human rights was formally established 

by the United Nations on 24 October 1945. The UN requirement and human rights that have been officially 

introduced to the international field have been discussed in detail with the Universal Declaration of Human 

Rights. IHEB has been a guide in internal law practices and has contributed to the embodiment of abstract 
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rules. Although human rights have been subject to studies at a universal level, they are also discussed in 

different forms of practice at a regional level. The American Human Rights System, the African Human Rights 

System, the European Human Rights System are examples of this. And so, as a result of all these studies, the 

topic of human rights has developed extendedly. 

International documents have been issued so that individuals can reach their rights and freedoms fairly; national 

human rights institutions or equality institutions have been established to ensure that the articles in these 

documents are best implemented by the states. These institutions and organizations are very important for the 

effective implementation of human rights. We tried to reach certain conclusions by trying to study the 

beneficial consequences of human rights institutions and equality institutions in artificial intelligence with our 

own interests.  

There are many uncertainties in our daily life. Many times, classical logic is insufficient to describe these 

uncertainties. Because in classical logic, an element is either an element of a set or it is not. That is, the 

membership value of an element belongs to the set {0, 1}. For example, according to classical logic, the color 

of an apple is either red or not. But it cannot explain the tones of red in classical logic. Due to such situations, 

classical logic is insufficient to explain the uncertainties. Fuzzy set and logic are defined by Zadeh in 1965 to 

explain uncertainties more precisely mathematically [1]. In fuzzy logic, the membership degree of each element 

of a set takes a value in the range of [0, 1]. Thus, unlike classical logic, the membership of each element is 

graded. For example, the speed of a vehicle is too fast, too fast, too slow, too slow, etc. It can be specified with 

expressions such as and with different membership degrees. Thus, a more sensitive type of logic including 

classical logic has been obtained in explaining uncertainties. Fuzzy logic is one of the most used logic types in 

almost every field of science, especially in artificial intelligence applications and decision-making applications, 

from the date it was defined to the present. 

In this study, we obtained eight criteria determine the impact of  national human rights in the protection and 

promotion of human rights. We have gathered these eight items under three headings as International Human 

Rights Influence, Government Influence and Legislative-Judicial Influence. With these three criteria, we 

obtained a fuzzy matlab algorithm to calculate the rate of this effect for countries. Thus, we have obtained a 

decision-making algorithm using artificial intelligence, which can be applied and objective results can be 

obtained. For researchers who want to use or improve this algorithm, we have created an example of decision 

making with imaginary data. 

 

BACKGROUND 

Although human rights do not change and have no common definition, it encompasses all human rights, in a 

broad sense resulting from being an individual. These rights are universal libertarian, peaceful, responsible and 

based on ethical foundations aiming material and spiritual development of human being. they are fundamental 

rights. In the historical process, human rights were considered as human rights in an abstract foundation before 

the establishment of states, and accepted as the rights and freedoms that man have had from the birth. And then 

because of the individual’ living in society, it is based on positive law and bounding certain legal assurances it 
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became materialized [2]. From here, it would be beneficial to briefly mention the development of human rights 

from an abstract concept to concrete one and what stages have passed in the historical process to understand 

the effects of human rights on international and national levels. 

In the first era, the idea of the rights and freedoms of individual were firstly mentioned in Greek and Roman 

civilization The first examples of human rights implementation were seen in these civilizations. The "citizens" 

,which are actually a minority group, participated in state government and made laws and decided to war and 

peace. The rest of the site were created by slaves, who had no rights, who were considered property or an 

animal legally , who manufactured tools. The important point here in terms of human rights is that the minority 

group of the people was involved in the management of the site. In the ancient Roman law system, they could 

only bring government art and management further than the old Greek [3]. Unlike the ancient Greek, the 

concept of citizenship was expanded. The people in the Roman Empire were given citizenship right except 

women, children, and slaves [4]. 

In Indian civilization, individual with his birth lived according to the rules of certain caste . The persons were 

subjected to a standard system, depending on the status of the class within the caste. In this civilization, no one 

had ever embraced the notion that they had certain rights because they were just human. The word right 

corresponded to the person's status within the class in this system. The individual must have done his/her duty 

in order to claim and use a right and. For example, in the case of old or disability, individual had the right to 

get support, if only he fulfilled his duty [3]. Chinese civilization contributed to the development of human 

rights through the teaching of limiting political power. All these minor developments in the early ages were 

too inadequate to fill the legal concept of human rights, but they were still the first steps toward embodying 

human rights. 

In Middle Ages the struggle between the ruled and the rulers, had provided important step toward the 

development of human rights. In this age, Magna Carta Libertatum which was the legal development of human 

rights in England was signed in 1215 by preventing the king's keyship and indicating people’s having the 

security of their property and life. The limitation of the king's keyness and the extension of the rights and 

freedoms of the people made it the first and most important document in the field of human rights [5]. 

Thanks to the natural law which was reshaped in the New Age in the 15st century although human rights were 

not discussed as an independent topic, the issues that human rights could not be transferred and were inborn 

right were moved to the political area. Human rights began to take part in positive law in this era with the 

weakening of the understanding of absolute sovereignty. In the 16 st century, philosophers such as John Locke, 

Jean-Jacques Rousseau and Montesquieu, who argued that the individual should be protected from the 

pressures of the ruling class, were the pioneers of this argument. Locke, a human rights activist, argued that 

people who based the basis of political thought on a human being equipped with natural rights had equal and 

same rights because they were born as human beings. Montesquie argued that the only freedom of the state is 

the freedom of individuals [6]. 



                                                   

Neutrosophic Algebraic Structures and Their Applications 

155 

 

During World War I. the idea of the League of Nations was suggested by US President Woodrow Wilson in 

1917, within the framework of Wilson principles. The idea was brought to life with the support of the Allied 

States at the Paris Peace Conference that ended World War I. But among the aims of the society, which was 

established for world peace and security, protecting human rights and the human value associated with it were 

not included , not even the word human rights had expressed. But some articles have been linked to human 

rights rules. The fair and humane operating conditions set out in Article 22. article 5. this is an example of the 

idea of prohibiting slave trade, guaranteeing the freedom of conscience and religion of people under the 

administration of buffalo, including the people of Central Africa [7].  

The League of Nations did not provide the peace and trust and did not prevent World War II. After World War 

II, Germany and Japan were defeated and the victorious states organized conferences to establish an 

organization in order to ensure their own security, international stability against other states. One of them is 

the San Francisco Conference, which had the signatures of 50 states. The United Nations clout was signed on 

October 24, 1945, with the signatures of the states participating in this conference. Under the UN requirement, 

human rights have gained an international identity and has become a matter that must be protected 

internationally [8]. 

In general, there is a significant link between the protection of international peace and security and trust which 

is the main purpose of the UN and human rights. In order to prevent any disrespect or violation of human rights, 

no matter where it is in the world, and to ensure World peace, the UN has encouraged and supported the states 

to develop and respect human rights. Although the provisions of human rights were not systematically regulated 

under the circumstances, the initial chapter emphasized fundamental human rights, the honor and value of 

human personality, the belief in men and women and equality the rights of big and small nations, and stated 

creation of conditions for respecting the obligations arising from the agreement. It also included six specific 

points of human rights. These are; (md. 1/3), (md. 13/1), (md. 55c), (md. 62/2), (md. 68) and (md. 76c) [3]. 

Although there were many regulations on human rights under the UN requirement, there were no regulations 

related to the content of these rights. Therefore, a human rights catalog had to be created to protect human 

rights. The Economic and Social Council had been appointed to work in this area; Human Rights Commission 

formed by this council were tasked with preparing a human rights declaration. In response to this, the Universal 

Declaration of Human Rights (IHEB) was prepared and the vote submitted to the General Assembly was 

adopted. This declaration provided the recognition of the rights within the IHEB of member states in the world 

and It was the first step in promoting and raising respect for the fundamental freedoms and human rights of the 

UN. Although there had been no binding document since it was published, it had been a fundamental document 

in the development and spread of human rights thought and had received the approval of the international 

community. The IHEB is the abstract principle of it has been a guide in transforming concrete rules and 

transferring human rights to internal law [9]. 

In the post-Magna Carta UK, documents such as 1628 Petiton of Rights, 1679 Habeas corpus Act, 1689 Bill 

of Rights and 1701 Act of settlement hav tried to expand individual rights and freedoms. These documents 
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have affected human rights developments in the United States and later France. On June 12, 1776, in the process 

of independence for the United States, in the beginning of Virginia Constitution, The Amendment of Rights 

(Bill of Rights) stated that the people had equal, irreversible and indispensable rights due to creation, these 

fundamental rights were determined as happiness, security rights, life and freedom, property rights. Later, 

classical political rights and freedoms, such as freedom of speech, conscience right, freedom of press, freedom 

of assembly, individual security, were included in the American Declaration of independence and other state 

constitutional [4]. 

The regional human rights agreements in American States Human Rights Systems were the terms of the United 

States organizations (1951), the Declaration on American Human Rights and duties (1948), the Announcement 

of American Human Rights (1969/1978). Although the American Declaration of Human Rights and duties is 

considered a similar arrangement to the UN Universal Declaration, it has covered different details in terms of 

its assignments, including statements, definitions. For example, 26. it contains both the execution of the 

sentence and the sentence given in its article, out of cruel, insulting or unusual. In 1969, the American 

Convention on Human Rights was accepted and put into force in 1978. The Convention includes a broad range 

of rights including legal personality, legislative, human conundrum, nonslave, freedom of thought and 

conscience, equality in front of the law, right to sue; these rights have been imposed assignments to the States 

in order to take economic, cultural, social measures and are supported by the ban on discrimination [10].  

At this point, the French Declaration of Human and citizen Rights, affected by the American Declaration of 

independence, will be appropriate to be stated Based on the American Declaration of Rights and the modern 

legal concept expressed by 18thcentury philosophers, The French Declaration of Human and citizen Rights 

which was written. For a self-sufficient and self-confident person, this document, created by the destruction of 

the old regime, had made up of seventeen substances and had been written in French language which makes 

human rights and freedoms known by large audiences. It was emphasized that human rights should first be 

based on clear and simple principles. According to the introduction text, this declaration would remind them 

of the rights that all members of society have. As the title of the declaration states, man won citizenship status 

because he had natural rights, preserved them, and behaved with the rights that existed in his nature. The role 

of the citizen was to protect the rights making man's development and existence. Although many more 

documents were published after this declaration, none were as effective as FIYHB. All the laws adopted in 

France have been referred to the FIYHB and have formally accepted all the rights and freedoms listed in the 

declaration and declared that they will be bound to them. Universal statements in the declaration have been 

effective in legal documents of other countries [11]. 

The right to live in daily life in Africa during the pre-colonial period, self-defense, the man of sacrifice, freedom 

of expression, freedom of religion, rights such as freedom of organization, freedom of travel were recognized 

and used by orf and customs. But in the colonial period, the African people were subjected to discrimination, 

intense pressure, human rights violations, and slave trade. These events showed their results in 20.th century 

and accelerated the independence process. After 1960 focusing on the achievement of political independence, 
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African states established the Organization of the African Union in 1963 for the purpose of establishing 

regional unity. One of the objectives of the establishment of this union was to improve international co-

operation in accordance with the UN Convention and the Universal Declaration of Human Rights. The African 

states submitted human rights to the UN Universal Declaration on Human Rights and the UN requirement. 

However, although they were a party to various regional or international documents and were stated a 

comprehensive part for list of rights in their constitution, they were divided by ethnic, religious, racial reasons, 

the failure of national integrity, the military's frequent involvement in politics, economic incompetence in the 

hands of the minority class, Human rights violations could not be terminated in practice because they moved 

on with a Western imitation system instead of a traditional system [3]. 

Four years after the UN in 1949. The Council of Europe was established in London to prevent the World War 

II ruins from being repeated. One of the main areas of this council's work had been human rights. In the First 

article1 of the status it was stated that The article also stipulates that contracts would be made and joint action 

would be taken to protect and carried human rights and their main freedoms to a further level. Again in article 

8 It has been stated that in case of human rights and fundamental freedoms not being observed ,membership 

would be suspended and the right to representation of the member country might be terminated. The European 

Council's most important regulation on human rights has been the European Court of Human Rights and the 

European Court of Human Rights [12]. 

The European Convention on Human Rights was signed in Rome on November 4, 1950, inspired by the EHIB 

but kept in a narrower scope. The AIHS, which envisions a powerful mechanism for legal protection of human 

rights, had established a highly developed legal basis with its terms and expressions. With the AIHS, each 

member state and a signatory state had the obligation to comply with the human rights and fundamental 

freedoms listed in the contract. The obligation to grant rights and freedoms to all individuals in the entity states 

to the contract is governed by the first article. These obligations have been met in their own method, but they 

have been granted the freedom to comply with the agreement [11]. 

 In the historical process, on the definition of national human rights institutions with the framework of 

Principles on the Status of National Human Rights institutions(Principles of Paris), at the end of the 1991 

seminar realized in UN , minimal definition for national human rights institutions was made [13]. At this point, 

it is appropriate to address the points that the Principles of Paris address about human rights institutions. The 

Parisian Principle lists various responsibilities for national human rights institutions. Firstly, these institutions 

will review every situation in the face of human rights violations and will have enough personnel to monitor 

developments anywhere in the country. Secondly, human rights institutions will be able to advise governments, 

parliament and other authorized bodies on the implementation of and compliance with international human 

rights documents in the event of human rights violations. Therefore, some communication channels officially 

and informally between the state bodies concerned with the institution will be formed. Third, these institutions 

will be in contact with regional and international organizations, and contribute to reports submitted by the states 

to regional or international institutions. Fourth, it will support human rights research and educational human 

rights programs and will be involved in the implementation of them in universities, schools and professionally. 
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Finally, some human rights institutions will be granted semi-judicial powers. If it doesn't fulfill even one of 

them, Principles of Paris are consired not being implemented. In addition, it may be authorized to listen to 

individual complaints and evaluate petitions outside of its authority [14].  

The UN handbook, published in 1995, it is stated that these institutions are structures established by states ,by 

constitution, law or regulatory procedures, and its mandate is to improve and protect human rights in particular. 

Also, a book belonging to the UNHCR stated that it is a state body, having constitutional or legal basis, and is 

part of a state-funded device, and is established to improve and protect human rights rights for human rights 

institutions [13]. 

National human rights institutions act as a bridge between local practices and international norms. In order to 

carry out its organizational functions in terms of preventing rıghts violations and the development of the human 

rights and to make international human right rules more functional in local level , international human rights 

rules must be placed in public institutions [15].  

The national human rights institutions are defined as responsible structures for the development of human 

rights, which are autonomous and independent, created by public authorities. The sole purpose of these 

institutions is to gather information/data about the human rights practices of states and to report them to the 

public. At this point, human rights activists have embarked on a search for the standards of institutional 

structures that can be considered as human rights institutions, which is reflected up to the Paris Principles. The 

Parisian Principles have stated that the authority of national human rights institutions for the protection and 

development of the rights of the human should be broad, but have not given any insight into the number of 

these institutions. However, the Global Elevation of the National Human Rights institutions has indicated that 

only one national human rights institution should be available from each state. EU equal treatment Directives 

have established the framework of the minimum standards of all equity institutions, and two approaches have 

been taken accordingly. Some EU member states have specialized equity institutions in line with obligations 

arising from the EU equality directive and are focused solely on discrimination and equality. Other member 

states have human rights institutions based on the Parisian Principles, focusing on equality. In some other EU 

member states, the Equality institutions and national human rights institutions have established a single 

institutional model to fulfill their functions. For example, England, Belgium, France, the Netherlands [15].  

Definition 1: [1] Let ℬ be the universal set. A fuzzy set 𝒜 on ℬ is defined by  

𝒜 = {〈𝑎, 𝜇𝒜(𝑎)〉: 𝑎 ∈ ℬ}. 

Here, 𝜇𝐴(𝑎) is membership function such that 𝜇𝒜:ℬ → [0,1]. 

Definition 2: [16] A  triangular fuzzy number �̃� = [𝑘1, 𝑙1, 𝑚1] is a special fuzzy set on the real number set 

ℝ, whose membership function is defined as follows 
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𝜇�̃�(a) =  {

(𝑎−𝑘1)/(𝑙1−𝑘1),          𝑖𝑓 (𝑘1≤𝑥<𝑙1)
1,                                     𝑖𝑓 (𝑎= 𝑙1 )

   (𝑚1−𝑎)/(𝑚1−𝑙1),      𝑖𝑓 (𝑙1<𝑎≤𝑚1)
       0,                                      𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

    𝜇�̃�                           
                  1 

                                                     

 

 

 

 
 

                                                                       

                       

                        𝑘1              𝑙1              𝑚1 
 
      Figure 1.  �̃� = [𝑘1, 𝑙1 , 𝑚1] triangular fuzzy membership function 

NATIONAL HUMAN RIGHTS IN THE PROTECTION 

AND PROMOTION OF HUMAN RIGHTS 

INFLUENCE OF INSTITUTIONS: FUZZY METHOD 

Human rights have a place in the field of international law from the First Age to the present. tried to do. In this 

process, many studies have been carried out at the global and national level. This As a result of the studies, the 

subject of human rights has developed considerably. rights of individuals and international documents have 

been drawn up in order for them to reach their freedoms in a just way; In order for the articles in these 

documents to be implemented by the states in the best way, national human rights institutions or equality bodies 

have been established. We listed these useful results as follows: 

 

1) Exhibiting a holistic collection of human rights 

2) Ensure compliance with international human rights standards 

3) Ensuring access and improvement to education, health and housing 

4) Making a positive contribution to the regulations on personal integrity Rights 

5) Contributing to an inclusive democratic and political regime 

6) Facilitating changes in human rights regulations at the local level 

7) Collaboration with judicial authorities in the prevention of human rights Violations 

8) Establishing principles regarding process of Impersonal general assemblies and general functioning of 

intergovernmental human rights                                                                                                                              

(i) 
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Fuzzy Method 

In this section, we will collect the eight criteria in (i) under three headings. These headings: International 

Human Rights Influence (1, 2, 3 and 4 in (i)), Government Influence (5 and 8 in (i)) and Legislative-Judicial 

Influence (6 and 7 in (i)). 

Now we give a fuzzy matlab application for determine the impact of  national human rights in the protection 

and promotion of human rights. In the fuzzy matlab application, the process is given at Figure 1. 

 

Figure 2. Fuzzy Matlab Algorithm 

We give the inputs for this fuzzy matlab application in Table 1 and output for this fuzzy matlab application in 

Table 2. 

 

Table 1. Inputs for this fuzzy matlab application 

 Input Abbreviation 

International Human Rights Influence IHRI 

Government Influence GI 

Legislative-Judicial Influence LJI 
  

 

Table 2. Output for this fuzzy matlab application 

 Output Abbreviation 

National Institutions Influence  NII 
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Figure 3. Fuzzy Matlab’s input (IHRI, GI, LJI) and output (NII) 

We give the fuzzy membership functions of these inputs and the representation of these functions as 

triangular fuzzy numbers in Table 3. 

 

Table 3. Fuzzy Membership Functions of IHR, GI and LJI. 

Fuzzy Membership Functions Abbreviation Fuzzy Number 

Little L [0, 25, 50] 

Medium M [30, 50, 70] 

High                                            H [60, 75, 90] 

Very High V.H [80, 100, 100] 
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Figure 4. Fuzzy Membership Functions of Fuzzy Matlab for IHR, GI and LJI  

We give the fuzzy membership functions of output and the representation of these functions as triangular fuzzy 

numbers in Table 4. 

 

Table 4: Fuzzy Membership Functions of NII 

Triangular Fuzzy Membership Functions Abbreviation Triangular Fuzzy Number 

Very Little  VL [0, 0, 25] 

Little  L [20, 40, 60] 

Medium  M [40, 60, 80] 

High H [60, 80, 90] 

Very High VH [85, 100, 100] 
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Figure 5. Fuzzy Membership Functions of Fuzzy Matlab for output 

 

 

Figure 6. Representation of Fuzzy Rules in Fuzzy Matlab 
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Figure 7. Getting Results with Fuzzy Matlab Rules 

Now, let's give the imaginary three inputs ( IHRI, GI and LJI) values for  imaginary five countries (𝑆1, 𝑆2, 𝑆3, 

𝑆4 and 𝑆5 ) in Table 5. 

Table 5: Input values for countries (𝑆1, 𝑆2, 𝑆3, 𝑆4 and 𝑆5 ) 

States IHRI GI LJI 

𝑆1 75 65 55 

𝑆2 85 70 45 

𝑆3 50 65 90 

𝑆4 70 70 75 

𝑆5 80 65 90 

If the data in Table 5 is calculated in the fuzzy matlab algorithm we obtained for each country, Table 6 is 

obtained. 
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Table 6: Output values for countries (𝑆1, 𝑆2, 𝑆3, 𝑆4 and 𝑆5 ) 

States NII 

𝑆1 53 

𝑆2 58 

𝑆3 68 

𝑆4 77 

𝑆5 76 

Therefore, according to Table 6, the countries with the highest impact of national human rights in the protection 

and promotion of human rights are 𝑆4, 𝑆5, 𝑆3, 𝑆2 and 𝑆1, respectively. 

Conclusions 

Human rights have grown to an important position in international law since first ages. The progress 

of human rights in the historical process has come to this point today due to the efforts of individuals, 

communities, states. In this study, as detailed in this process, the human rights steps in the first Age, Middle 

Ages and New Age have gradually started to sound, and this voice has become the basis for international law. 

We have covered international studies, human rights has become defined phenomenon that should be accepted 

by all, and this led to a number of studies to reach individuals. These studies, which are the basis of our work, 

have focused on the benefits of human rights institutions and equality institutions established by states for 

better application of human rights. From this framework the effectiveness of these institution was determined 

by using artificial intelligent method. Thanks to this method, we determine the impact of national human rights 

in the protection and promotion of human rights. Also, using (or improving) the data and decision-making 

method in this study, researchers can conduct new studies on international human rights and law. 
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ABSTRACT 

 

 VIKOR is a popular strategy for multi-criteria decision making. As an extension of the neutrosophic 

trapezoidal numbers, the N-valued neutrosophic trapezoidal numbers, which are special neutrosophic multi-

sets on real number, are used to effectively solve the repetitive uncertainty of decision-makers in multi-criteria 

decision-making problems. The aim of the this chapter the VIKOR strategy for MCDM problems in N-valued 

neutrosophic trapezoidal numbers. In decision making situation, N-valued neutrosophic trapezoidal numbers 

are employed to express the criteria values. Then we develop an extended VIKOR strategy to deal with MCDM 

in N-valued neutrosophic trapezoidal numbers environment. To show the advantages of our proposed VIKOR 

strategy, a decision-making problem of architecture to illustrate the effectiveness of the developed method is 
solved in N-valued neutrosophic trapezoidal numbers environment. 

 

Keywords: Neutrosophic sets, neutrosophic multi-sets, N-valued neutrosophic trapezoidal number, 

generalized distance measure, entropy measure, VIKOR method, multi-criteria decision-making. 

 

 

 

 

1. Introduction 

 

Production materials; metal, ceramic and organic materials are divided into three main groups. Each of these 

materials has their own advantages and disadvantages. The new material obtained as a result of the process of 

combining the superior properties of two or more of them in one material is composite. 

 

The reason why the composite is preferred is; This is because it is resistant to heat and moisture, is lighter than 

metal, and has high strength. In addition, it is an economical alternative for every sector with its low cost. Wear 

mailto:derya.bakbak@tbmm.gov.tr
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resistance, thermal expansion feature, stylish appearance are also advantages. For such reasons, composite 

material has become more preferred in recent years. Composite materials have found the opportunity to be 

used in a wide area. We aim to solve the uncertainty arising from these possibilities by using the decision-

making method. Since decision making problems which contain uncertain are difficult to model and solve, and 

it is a need for us to develop some mathematical theories. Recent years, fuzzy set theory by using only one 

degree of membership proposed by Zadeh [64] and intuitionistic fuzzy set theory by using two degrees of 

membership introduced by Atanassov [2] have been received great attention in solving various decision-

making problems. These theories can better solve the fuzziness of the uncertain decision making therefore the 

theories are all very successfully studied in Hu et al. [18], Liu et al. [19], Narayanamoorthy et al. [20] and [32-

44].  

 
By using truth-membership function, indeterminacy-membership function and falsity-membership functions, 

in 1998, Smarandache [51] proposed the concept of neutrosophic sets (N-sets). In 2013, Smarandache [52] 

generalized the classical neutrosophic logic to neutrosophic refined logic which have more than one with the 

possibility of the same or the different membership functions. Moreover, Ye and Ye [62], Chatterjee et al. [11] 

and Ye and Smarandache [63] introduced the concept single valued neutrosophic multi sets as a further 

generalization of that of neutrosophic sets based on both the neutrosophic refined logic and multi sets of Yager 

[61]. The multisets and single valued neutrosophic multisets has received more and more attention since its 

appearance in [1,3-10,12,14-17,21-31,45-50,53-59,61,63-72] 

  

In order to use the concept of single valued neutrosophic multi sets to define an uncertain quantity or a quantity 

difficult to quantify, in Deli et al. [13] the authors put forward the concept of continuous N-valued neutrosophic 
trapezoidal numbers (NVNT-numbers). They developed a TOPSIS method by giving some operational laws 

of NVNT-numbers and some aggregation operators of NVNT-numbers.   

 

Distance measure is an important information measure in the study of single valued neutrosophic multi sets 

but there are few distance formulas for NVNT-numbers proposed in studies. There, this paper will first propose 

some new generalized distance measures for NVNT-numbers then use it to develop a decision-making method 

based on a entropy measure which find weight of criterias. 

 

The remainder of this paper is arranged as follows. The “Preliminaries” section gives a brief introduction to 

single valued neutrosophic sets, single valued neutrosophic multi sets, N-valued neutrosophic trapezoidal 

number. In the “NVNT-numbers VIKOR method” section, a NVNT-numbers -based decision-making 

approach is proposed, and in the “Illustrative example” section, an illustrative example is provided to 
demonstrate the effectiveness of the above method. Later, we compare the proposed example with different 

distance measures and existing methods.  

 

2. Preliminary 

This section firstly introduces several the known definitions and propositions that would be helpful for better 

study of this paper. 

 

Definition 2.1 [60] Assume that E is the universe. Then, a single valued neutrosophic set (N-set) A in E defined 

as 

𝐴 = {< x, TA(x) ,  IA(x) ,  FA(x) > : 𝑥 ∈ 𝐸}                                             (1) 

where  TA(x) ,  IA(x) ,  FA(x) ∈ [0,1]  for each point x in such that  0 ≤ TA(x) +  IA(x) +  FA(x) ≤ 3.   
 

Definition 2.2 [52] Let E be a universe. A1 neutrosophic multi-set set A1 on E can be defined as follows: 

A1={<x,( TA1
1 (x), TA1

2 (x),… , TA1
P (x)), (IA1

1 (x), IA1
2 (x), … , IA1

P (x)), (FA1
1 (x), FA1

2 (x),… , FA1
P (x)) >: x ∈ E}, 

where  

TA1
1 (x), TA1

2 (x),… , TA1
P (x), IA1

1 (x), IA1
2 (x), … , IA1

p (x), FA1
1 (x), FA1

2 (x),… , FA1
P (x): E[0,1]
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such that 0 ≤ supTA1
i (x) + sup IA1

i (x) + sup FA1
i (x) ≤ 3 (i=1,2,…,P) for any x ∈ E is the truth-membership 

sequence, indeterminacy-membership sequence and falsity-membership sequence of the element x, 

respectively.  

Definition 2.3 [13] Let ηA1
i , ϑA1

i , θA1
i ∈ [0,1]  (i ∈ {1,2,… , p}) and a, b, c, d ∈ ℝ  such that a ≤ b ≤ c ≤ d . 

Then, an N-valued neutrosophic trapezoidal number (NVNT-number) 

ã = 〈[a,b, c, d]; (ηA1
1 , ηA1

2 , . . . , ηA1
P ), (ϑA1

1 , ϑA1
2 , . . . , ϑA1

P ), (θA1
1 , θA1

2 , . . . , θA1
P )〉 is a neutrosophic multi-set on the 

real number set ℝ , whose truth-membership functions, indeterminacy-membership functions and falsity-

membership functions are defined as, respectively.  

 Tα̃
i (x) =

{
 
 

 
 
(x−a)

(b−a)
ηα̃
i , a ≤ x < b

ηα̃
i , b ≤ x ≤ c

(d−x)

(d−c)
ηα̃
i , c < x ≤ d

0, otherwise,

,   Iα̃
i (x) =

{
 
 

 
 
(b−x)+ϑα̃

i (x−a )

(b−a )
, a ≤ x < b

ϑα̃
i , b ≤ x ≤ c

(x−c)+ϑα̃
i (d −x)

(d −c)
, c < x ≤ d 

1, otherwise,

 

and 

Fα̃
i (x) =

{
  
 

  
 
(b − x) + θA

i (x − a )

(b − a )
, a ≤ x < b

θα̃
i , b ≤ x ≤ c

(x − c) + θA
i (d − x)

(d − c)
, c < x ≤ d 

1, otherwise,

 

 

Note that the set of all NVNT-numbers on ℝ will be denoted by Λ.  

 

Definition 2.4 [13]  Let A1 = 〈(a1, b1, c1, d1); (ηA1
1 , ηA1

2 , . . . , ηA1
P ), (ϑA1

1 , ϑA1
2 , . . . , ϑA1

P ), (θA1
1 , θA1

2 , . . . , θA1
P )〉 ∈

Λ. If A1 is not normalized NVTN-number(a1, b1, c1, d1 ∉ [0,1]), the normalized NVTN-number of A1, 

denoted by A1 is given by;  

A1 = 〈[
a1

a1 + b1 + c1 + d1
,

b1
a1 + b1 + c1 + d1

,
c1

a1 + b1 + c1 + d1
,

d1
a1 + b1 + c1 + d1

] ; 
(5) 

 (η
A1

1 , η
A1

2 , . . . , η
A1

P ) , (ϑ
A1

1 , ϑ
A1

2 , . . . , ϑ
A1

P ) , (θ
A1

1 , θ
A1

2 , . . . , θ
A1

P )〉. 

 
 

Definition 2.5 [65] Let  𝒜 = 

〈[a1, b1, c1, d1]; (η𝒜
1 , η

𝒜
2 , … , η

𝒜
P ), (ϑ

𝒜
1 , ϑ

𝒜
2 , … , ϑ

𝒜
P ), (θ

𝒜
1 , θ

𝒜
2 , … , θ

𝒜
P )〉  and ℬ =

〈[a2, b2, c2, d2]; (ηℬ
1 , η

ℬ
2 ,… , η

ℬ
P), (ϑ

ℬ
1 , ϑ

ℬ
2 , … , ϑ

ℬ
P), (θ

ℬ
1 , θ

ℬ
2 , … , θ

ℬ
P)〉 be two normalized NVNT-numbers then, 

respectively, the weighted Hamming and Euclidean distance measures between 𝒜 and ℬ are given below;  

d𝑟
w(𝒜,ℬ) = 

1

16𝑝
. (∑[(|𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )a1 −𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )a2|)

𝑟
+

𝑝

𝑖=1

 

 

 (|𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )b1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )b2|)

𝑟
+  
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 (|𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )c1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )c2|)

𝑟
+  

               (|𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )d1 −𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )d2|)

𝑟
]) 

1

r
   (3) 

 For r=1, the equation 3 is given as;  

d1
w(𝒜,ℬ) = 

1

16𝑝
.∑[|𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )a1 −𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )a2| +

𝑝

𝑖=1

 

 

 |𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )b1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )b2| +  

 |𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )c1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )c2| +  

 |𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )d1 −𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )d2|] (4) 

 For r=2, the equation 3 is given as;  

d2
w(𝒜,ℬ) = 

1

16𝑝
.∑[(𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )a1 − 𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )a2)

2
+

𝑝

𝑖=1

 

 

                    (𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )b1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )b2)

2
+  

                   (𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )c1 −𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )c2)

2
+  

 
                  (𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )d1 −𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )d2)

2
]

1

2
 (5) 

 

 

Theorem 2.6 [65] Let  𝒜 = 

〈(a1, b1, c1, d1); (η𝒜
1 , η

𝒜
2 , … , η

𝒜
P ), (ϑ

𝒜
1 , ϑ

𝒜
2 , … , ϑ

𝒜
P ), (θ

𝒜
1 , θ

𝒜
2 , … , θ

𝒜
P )〉, 

 ℬ = 〈(a2, b2, c2, d2); (ηℬ
1 , η

ℬ
2 , … , η

ℬ
P), (ϑ

ℬ
1 , ϑ

ℬ
2 , … , ϑ

ℬ
P), (θ

ℬ
1 , θ

ℬ
2 , … , θ

ℬ
P)〉  and  

𝒞 = 〈(a3, b3, c3, d3); (η𝒞
1 , η

𝒞
2 , … , η

𝒞
P), (ϑ

𝒞
1 , ϑ

𝒞
2 , … , ϑ𝒞

P), (θ
𝒞
1 , θ

𝒞
2 , … , θ

𝒞
P)〉 be three normalized NVNT- numbers. 

Then, d𝑟
w(𝒜,ℬ) satisfies the following properties: 

i. 0 ≤ d𝑟
w(𝒜,ℬ) ≤ 1,  

ii. 𝒜 = ℬ ⇒ d𝑟
w(𝒜, ℬ) = 0,  

iii. d𝑟
w(𝒜, ℬ) = d𝑟

w(ℬ,𝒜), 

iv. d𝑟
w(𝒜,ℬ) ≤ d𝑟

w(𝒜,𝒞) + d𝑟
w(𝒞, ℬ). 

 

Definition 2.7 [65] A real-valued function 𝓔𝒓: 𝜇 → [0,1] is called an entropy on NVNT-numbers if it satisfies 

the following properties: 

𝓔𝓟𝟏. 𝒜 = {
〈[a,b, c, d]; (1,1, . . . ,1), (0,0, . . . ,0), (0,0, . . . ,0)〉

〈[a,b, c, d]; (0,0, . . . ,0), (0,0, . . . ,0), (1,1, . . . ,1)〉
 ⇒ ℰ𝑟(𝒜) = 0; 

𝓔𝓟𝟐. ℰ𝑟(𝒜) = ℰ𝑟(𝒜
𝑐) for all 𝒜 ∈ NVNT-numbers, where 

𝒜𝑐 = 〈[a,b, c, d]; (θ𝒜
1 , θ𝒜

2 , … , θ𝒜
P ), (1 − ϑ𝒜

1 , 1 − ϑ𝒜
2 , … ,1 − ϑ𝒜

P ), (η𝒜
1 , η𝒜

2 , … , η𝒜
P )〉. 
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𝓔𝓟𝟑. dr(𝒜,𝒜
−) = dr(𝒜,𝒜

+) ⇔ ℰ𝑟(𝒜) = 1 for all 𝒜 ∈ NVNT-numbers, where dr(𝒜,𝒜
+) is a distance 

from 𝒜 to 𝒜+ and dr(𝒜,𝒜
−) is a distance from 𝒜 to 𝒜−;   

𝓔𝓟𝟒. For all 𝒜,ℬ ∈ NVNT-numbers, if  

|
dr(𝒜,𝒜

−)

dr(𝒜,𝒜
+) + dr(𝒜,𝒜

−)
−
1

2
| ≥ |

dr(ℬ, ℬ
−)

dr(ℬ,ℬ
+) + dr(ℬ, ℬ

−)
−
1

2
|                    (6) 

then ℰ(𝒜) ≤ ℰ(ℬ), where dr(ℬ,ℬ
+) is a distance from ℬ to ℬ+ and dr(ℬ,ℬ

−) is a distance from ℬ to ℬ−, 

where 

𝒜+ = 〈[a, b, c, d]; (1,1, . . . ,1), (0,0, . . . ,0), (0,0, . . . ,0)〉 

and 

𝒜− = 〈[a, b, c, d]; (0,0,… ,0), (1,1,… ,1), (1,1,… ,1)〉. 

 

Theorem 2.8 [65] Assume that dr is an distance measure for NVNT-numbers. Then, for any 𝒜 ∈ NVNT-

numbers, 

  

ℰ𝑟(𝒜) = 1 − 2 |
dr(𝒜,𝒜

−)

dr(𝒜,𝒜
+) + dr(𝒜,𝒜

−)
−
1

2
|                                             (7) 

 

is entropy of NVNT-numbers based on TOPSIS. 

 

 

3. NVNT-numbers VIKOR method 

         

In this section, we proposed a normalized NVNT-numbers VIKOR method with entropy-based weights for 

solving multi-criteria decision-making problems. 

 

Definition 3.1 Assume that F = {F1, F2,… , Fm} be the set of altenatives and Z = {z1, z2, … , zn} be the set of 

criterias. In Deli et al. [13], the normalized NVNT-numbers decision matrix is given as; 

(Fkj)mxn  =

(

 
 
 

F11 F12
F21 F22
⋮ ⋮
⋮ ⋮
Fm1 Fm2

              ⋯              F1n
⋯ F2n
⋯ ⋮
⋯ ⋮
⋯ Fmn

  

)

 
 
 
   

such that 

Fkj = 〈[akj, bkj, ckj, dkj], (ηkj
1 , ηkj

2 , ηkj
3 , … , ηkj

p
) , (ϑkj

1 , ϑkj
2 , ϑkj

3 , … , ϑkj
p
) , (θkj

1 , θkj
2 , θkj

3 , … , θkj
p
)〉,  (k=1,2,…,m) and 

(j=1,2,…,n). 

 

It is carried out the following algorithm to get best choice: 
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Algorithm: 

Step 1: Create an evaluation matrix (Fkj)mxn, (k=1,2,…,m; j=1,2,…,n) 

Step 2: Find of the weights of the criteria vector w = {w1,w2,… ,wn} by using equation in Theorem 2.6 as; 

wj =
m −∑ ℰkj

m
k=1

m.n−∑ ∑ ℰkj
n
j=1

m
k=1

 ,     (j = 1,2,… , n).  

 

where the entropy matrix (ℰkj)mxn (k=1,2,…,m; j=1,2,…,n) of the decision matrix (Fkj)mxn and where  

ℰkj = 1 − 2 |
dr(Fkj, Fkj

−)

dr(Fkj, Kkj
+) + dr(Fkj, Fkj

−)
−
1

2
| 

(k = 1,2, … ,m;  j = 1,2,… , n) .  

 

Note that if the entropy matrix (ℰkj)mxn (k=1,2,…,m; j=1,2,…,n) is not normalized then, the entropy matrix 

must be normalized as;   

 

ℰ̅kj =
ℰkj

max{ℰkj: ℰkj ∈ (ℰkj)mxn, k = 1,2,… ,m and j = 1,2,… , n}
. 

 

Step 3: Determine the positive ideal solution 𝑟+ and negative ideal solution 𝑟−, respectively as; 

 

 

𝑟+ = 〈[akj
+ , bkj

+ , ckj
+, dkj

+]; (ηkj
1 +, ηkj

2 +, ηkj
3 +, … , ηkj

p +) , (ϑkj
1 +, ϑkj

2 + , ϑkj
3 +, … , ϑkj

p +),(θkj
1 +, θkj

2 +, θkj
3 +, … , θkj

p +)〉 

 

= ⟨[max
k
{akj} ,max

k
{bkj} ,max

k
{ckj} ,max

k
{dkj}] ; (max

k
{ηkj
1 } , max

k
{ηkj
2 } ,max

k
{ηkj
3 } , … ,max

k
{ηkj
p }) 

 (min
k
{ϑkj
1 } ,min

k
{ϑkj
2 } , min

k
{ϑkj
3 },… ,min

k
{ϑkj
p }) , (min

k
{θkj
1 } ,min

k
{θkj
2 } ,min

k
{θkj
3 },… ,min

k
{θkj
p })⟩ 

. 

and 

 

 

𝑟− = 〈[akj
− , bkj

− , ckj
−, dkj

−]; (ηkj
1 −, ηkj

2 −, ηkj
3 −, … , ηkj

p −
) , (ϑkj

1 −, ϑkj
2 − , ϑkj

3 −, … , ϑkj
p −
) , (θkj

1 −, θkj
2 −, θkj

3 −, … , θkj
p −
)〉 

= ⟨[min
k
{akj} ,min

k
{bkj} , min

k
{ckj} , min

k
{dkj}] ; (min

k
{ηkj
1 } ,min

k
{ηkj
2 } ,min

k
{ηkj
3 } , … ,min

k
{ηkj
p
}), 

 

(max
k
{ϑkj
1 } ,max

k
{ϑkj
2 } ,max

k
{ϑkj
3 }, … ,max

k
{ϑkj
p }) , (max

k
{θkj
1 } , max

k
{θkj
2 } , max

k
{θkj
3 },… ,max

k
{θkj
p })⟩ 

 

for all (k=1,2,…,m) and (j=1,2,…,n). 
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Step 4: According to Equation (9) positive value of V+(Fkj)  based on positive ideal solution 𝑟+ and negative 

value of V−(Fkj) based on negative ideal solution 𝑟− of alternative Fk (k=1,2,…,m) calculated as follows: 

V+(Fkj) = 
1

𝑛
∑d𝑟

w(Fkj, 𝑟
+)

𝑛

𝑗=1

 

= 
1

16. 𝑛. 𝑝
.∑∑[(𝑤Fkj(1 + ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )akj −𝑤𝑟+(1 + ηkj
𝑖 + − ϑkj

𝑖 + − θkj
𝑖 +)akj)

𝑟
𝑝

𝑘=1

𝑛

𝑗=1

 

 +(𝑤Fkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )bkj −𝑤𝑟+(1 + ηkj

𝑖 + − ϑkj
𝑖 + − θkj

𝑖 +)bkj)
𝑟

+ 

 (𝑤Fkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )ckj − 𝑤𝑟+(1 + ηkj

𝑖 + − ϑkj
𝑖 + − θkj

𝑖 +)ckj)
𝑟

+ 

 
(𝑤Fkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )dkj − 𝑤𝑟+(1 + ηkj
𝑖 + − ϑkj

𝑖 + − θkj
𝑖 +)dkj)

𝑟

]

1

𝑟
 

 

and  

V−(Fkj) = 
1

𝑛
∑d𝑟

w(Fkj, 𝑟
−)

𝑛

𝑗=1

 

 
1

16. 𝑛. 𝑝
.∑∑[(𝑤Fkj(1 + ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )akj −𝑤𝑟−(1 + ηkj
𝑖 − − ϑkj

𝑖 − − θkj
𝑖 −)akj)

𝑟
𝑝

𝑘=1

𝑛

𝑗=1

 

 (𝑤Fkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )bkj −𝑤𝑟−(1 + ηkj

𝑖 − − ϑkj
𝑖 − − θkj

𝑖 −)bkj)
𝑟

+ 

 (𝑤Fkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )ckj − 𝑤𝑟−(1 + ηkj

𝑖 − − ϑkj
𝑖 − − θkj

𝑖 −)ckj)
𝑟

+ 

 
(𝑤Fkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )dkj − 𝑤𝑟−(1 + ηkj
𝑖 − − ϑkj

𝑖 − − θkj
𝑖 −)dkj)

𝑟

]

1

𝑟
 

 

where 𝑤𝑟+ = max{𝑤j: j = 1,2,… , n} and 𝑤𝑟− = min{𝑤j: j = 1,2, … , n}. 

Step 5:  Compute the group utility  𝛿𝑘 values for the maximum and individual regret 𝜎𝑘 values for the opponent 

𝛿𝑘 =∑(𝑤𝑟+)
d𝑟
w(Fkj, 𝑟

+)

d𝑟
w(𝑟−, 𝑟+)

𝑛

𝑗=1

 

𝜎𝑘 = 𝑚𝑎𝑥 {
d𝑟
w(Fkj, 𝑟

+)

d𝑟
w(𝑟−, 𝑟+)

} 

Step 6:  Compute the index values 𝜃𝑖 as follows; 

           𝜃𝑘  = ρ. (
𝛿𝑘 − δ

−

δ+ + δ−
) + (1 − ρ). (

𝜎𝑘 − σ
−

σ+ + σ−
),             

(14) 

where δ+ = min𝛿𝑘, δ
− = max𝛿𝑘, σ

+ = min𝜎𝑘 and σ− = max𝜎𝑘 .  Here ρ  denotes decision-making 

mechanism coefficient. 

a. 𝜃𝑘 is the minimal if ρ < 0.5, 

b. 𝜃𝑘 is the maximum if ρ > 0.5, 
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c. 𝜃𝑘 is both minimal and maximum if ρ = 0.5. 

Step 7: Rank the all alternatives by sorting 𝛿, 𝜎, 𝜃  values in decreasing order. Thus the result is a set of three 

ranking list denoted by 𝛿[𝑘], 𝜎[𝑘], 𝜃[𝑘].  

Consider the alternative 𝑘, corresponding to 𝜃[𝑘] (smallest among 𝜃[𝑘] values) as a compromise solution if the 

following two conditions are satisfied. 

(A1) Feasible benefit: 

If top most two alternatives in 𝜃[𝑘] are [𝐹2] and [𝐹1] then 

𝜃([𝐹2]) − 𝜃([𝐹1]) ≥
1

𝑚 − 1
 

where m stands for the cardinality of the set of attributes. 

(A2) Acceptable stability: 

The choice [𝐹𝑘] must be top ranked by at least one of 𝛿[𝑘] and 𝜎[𝑘]. If one of the condition is not satisfied then 

a set of compromise solution is proposed, which consist of,  

a. If only (A1) is met then both alternatives  𝐹[1] and 𝐹[2] will serve as the compromise solution.  

b. If (A1) is not met then there will be a series of compromise solutions, which are alternatives 

may be located by making use of 

  

𝜃([𝐹𝑚]) − 𝜃([𝐹1]) ≥
1

𝑚 − 1
 

for the maximum 𝑚. 

The minimal value of 𝜃 determines the best alternative. 

Example 3.2. In engineering calculations, it is very important to use the material according to its purpose and 

according to its properties. As a composite word, it means a material consisting of two or more 

parts. Composite materials have found use in every field in parallel with today's technological developments 

and are among the indispensable materials of modern technology. Such materials are widely and effectively 

used in aerospace, medicine, automobile industry and sports equipment due to their high strength and lightness. 

Being light is a great advantage in terms of saving energy and fuel. Therefore, we want to choose the best and 

economical composite for the company that prefers composite. That is, the company, using which is the set of 

altenatives as  

K = {k1 = particulate composite, k2 = Discontinuous fiber composite, k3 = Particle −

reinforced metal matrix composites,  k4 = short fiber reinforcement metal matrix composites, k5 =

polymer matrix Composite}  and according to three criteria determined G = {g1 =

Combining at least two materials separated by specific interfaces with different chemical  

compositions, g2 =  Combining different materials in three dimensions, g3 =

having features that none of the components have on their own.  Then, we try to choose and rank all 

alternatives Fk for all k=1, 2, … ,5 by using the following algorithm. 
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Algorithm: 

 

Step 1: The evaluation matrix(Fkj)5x3 is given by an expert as; 

 (Fkj)5x3 =

k1
k2
k3
k4
k5(

  
 

⟨[0.32,0.44,0.51,0.69]; (0.3,0.5,0.7,0.8), (0.1,0.3,0.2,0.3), (0.6,0.3,0.5,0.6)⟩

⟨[0.23,0.25,0.41,0.45]; (0.4,0.2,0.3,0.5), (0.2,0.5,0.7,0.6), (0.7,0.5,0.6,0.8)⟩

⟨[0.66,0.72,0.79,0.83]; (0.7,0.6,0.4,0.8), (0.5,0.5,0.5,0.6), (0.4,0.3,0.4,0.5)⟩

⟨[0.52,0.63,0.76,0.91]; (0.8,0.7,0.5,0.6), (0.4,0.3,0.7,0.5), (0.1,0.5,0.7,0.7)⟩

⟨[0.13,0.35,0.41,0.58]; (0.7,0.8,0.9,0.9), (0.2,0.7,0.5,0.6), (0.1,0.7,0.8,0.4)⟩

 

                            

⟨[0.28,0.32,0.38,0.43]; (0.5,0.3,0.4,0.6), (0.2,0.1,0.5,0.4), (0.4,0.6,0.5,0.7)⟩

⟨[0.12,0.15,0.18,0.23]; (0.3,0.7,0.9,0.9), (0.1,0.2,0.3,0.7), (0.3,0.4,0.7,0.5)⟩

⟨[0.65,0.66,0.72,0.75]; (0.6,0.8,0.9,0.8), (0.2,0.5,0.4,0.3), (0.2,0.3,0.6,0.6)⟩

⟨[0.08,0.15,0.27,0.37]; (0.3,0.9,0.8,0.4), (0.8,0.7,0.6,0.5), (0.1,0.1,0.4,0.3)⟩

⟨[0.09,0.13,0.19,0.69]; (0.2,0.5,0.7,0.9), (0.1,0.3,0.5,0.4), (0.6,0.7,0.8,0.8)⟩

 

                              

⟨[0.12,0.27,0.60,0.65]; (0.2,0.7,0.8,0.9), (0.4,0.3,0.8,0.5), (0.2,0.5,0.6,0.4)⟩

⟨[0.22,0.48,0.43,0.73]; (0.3,0.8,0.9,0.7), (0.5,0.7,0.7,0.6), (0.1,0.4,0.8,0.6)⟩

⟨[0.14,0.33,0.43,0.83]; (0.1,0.6,0.9,0.5), (0.8,0.5,0.6,0.7), (0.1,0.3,0.5,0.8)⟩

⟨[0.63,0.73,0.83,0.93]; (0.4,0.5,0.7,0.6), (0.2,0.6,0.8,0.3), (0.3,0.6,0.7,0.2)⟩

⟨[0.41,0.43,0.68,0.74]; (0.5,0.7,0.8,0.3), (0.1,0.2,0.6,0.4), (0.4,0.2,0.9,0.7)⟩)

  
 

 

 

Step 2: Since the normalized entropy matrix is 

(ℰkj)5×3
=

(

 
 

0.561587 0.869281 0.848676
0.621053 0.506173 0.900990
0.739696
0.789368
0.609610

0.403579
0.714889
0.966851

0.936975
0.394178
0.760479)

 
 

5×3

 

we have calculated the weights of the criteria w= (w1,w2,w3) as; 

w1 =
5− (ℰ11 + ℰ21 + ℰ31 + ℰ41 + ℰ51)

15 − (ℰ11 + ℰ12 + ℰ13 + ℰ21 + ℰ22 + ℰ23 + ℰ31 + ℰ32 +⋯+ ℰ42 + ℰ43 + ℰ51 + ℰ52 + ℰ53)
 

 

=
5− (0.561587 + 0.621053 + 0.739696 + 0.789368 + 0.609610)

15 − (0.561587 + 0.869281 + 0.848676 + 0.621053 +⋯+ 0.60961 + 0.966851 + 0.760479)
 

= 0.383558117 

similarly, we have  w2 = 0.35169353, and w3 = 0.264748353. 

 

 

0 0.1 0.2 0.3 0.4

w1

w2

w3

w1 w2 w3

Values 0.383558117 0.35169353 0.264748353



Editors: Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın 

              

 

176 

 

Figure 1: Weights of the criteria by normalized NVNT- numbers  

Step 3: The positive ideal solution 𝑟+ and negative ideal solution 𝑟−, respectively calculated as; 

r+ = ⟨[0.66,0.73,0.83,0.93]; (0.8,0.9,0.9,0.9), (0.1,0.1,0.2,0.3), (0.1,0.1,0.4,0.2)⟩ 

and 

r− = ⟨[0.08,0.13,0.18,0.23]; (0.1,0.2,0.3,0.3), (0.8,0.7,0.8,0.7), (0.7,0.7,0.9,0.8)⟩.
 

 

Step 4:  According to Equation (9) positive value of V+(Fkj)  based on positive ideal solution 𝑟+ and negative 

value of V−(Fkj) based on negative ideal solution 𝑟− of alternative kk (k=1, 2, …, 5) calculated as follows: 

V+(F11) = 0.0118,  V
+(F12) = 0.0144, V

+(F13) = 0.0131, V
+(F21) = 0.0165, V

+(F22) = 0.0153 

V+(F23) = 0.0136,  V
+(F31) = 0.0312, V

+(F32) = 0.0327, V
+(F33) = 0.0441, V

+(F41) = 0.011  

V+(F42) = 0.0151,  V
+(F43) = 0.0112, V

+(F51) = 0.0132, V
+(F52) = 0.0153, V

+(F53) = 0.011.  

d𝑟
w(𝑟−, 𝑟+) = 0.0745 

Step 5: Computed the group utility  𝛿𝑘 (k=1, 2, … ,5) values for the maximum and individual regret 𝜎𝑘 values 

for the opponent 

𝛿1 =∑(𝑤𝑟+)
V+(Fkj)

d𝑟
w(𝑟−, 𝑟+)

𝑛

𝑗=1

 

 

= (𝑤𝑟+)
V+(F11) + V

+(F12) + V
+(F13)

d𝑟
w(𝑟−, 𝑟+)

 

 

           = (0.383558117)
0.0118 + 0.0144 + 0.0131

0.0745
 

= 0.2026                                                         

Similar to 

𝛿2 = 0.2334, 𝛿3 = 0.5560, 𝛿4 = 0.1918, 𝛿5 = 0.2077. 

𝜎𝑘 = 𝑚𝑎𝑥 {
d𝑟
w(Fkj, 𝑟

+)

d𝑟
w(𝑟−, 𝑟+)

} 

𝜎1 = 𝑚𝑎𝑥{0.0118, 0.0144, 0.0131 } = 0.0144 

𝜎2 = 𝑚𝑎𝑥{0.0165, 0.0153, 0.0136 } = 0.0165 

𝜎3 = 𝑚𝑎𝑥{0.0312, 0.0327, 0.0441 } = 0.0441 

𝜎4 = 𝑚𝑎𝑥{0.011 , 0.0151, 0.0112 } = 0.0151 

𝜎5 = 𝑚𝑎𝑥{0.0132, 0.0153, 0.011 } = 0.0153. 

Step 6: Let ρ = 0.5, compute the index values 𝜃𝑘 as follows; 

           𝜃𝑘  = ρ. (
𝛿𝑘 − δ

−

δ+ + δ−
) + (1 − ρ). (

𝜎𝑘 − σ
−

σ+ + σ−
),             

 

                           𝜃1  = (0.5). (
0.2026 − 0.1918

0.5560 + 0.1918
) + (1 − 0.5). (

0.0144 − 0.0144

0.441 + 0.0144
) 

        = 0.01489                                                                      
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Similar to  

𝜃2 = 0.0922, 𝜃3 = 1, 𝜃4 = 0.0122,  𝜃5 = 0.03697 

 

 

Step 7: Based on the index values CCk(k = 1,2, . . . ,5) the ranking of alternatives kk(k = 1,2, . . . ,5) are shown 

in Figure 2 and given as; 

 

k3 > k2 > k5 > k1 > k4. 

Finally the best alternative is k3. 
 

  

  

Figure 2 The ranking of alternatives  Kk (k = 1,2, . . . ,5) 
 

 
Figure 3: VIKOR index for all ρ values 
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The results from the different distance measures used to resolve the MCDM problem in section 4 are shown in 

Figure 4 

  

Figure 4: The results from the different distance measures 
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ABSTRACT 

The aim of this study is to apply a measurement tool designed with fuzzy logic in order to determine the level 

of teachers' commitment to the teaching profession. The working group of the study is composed of teachers 

from various branches working in the 2021-2022 academic year in Gaziantep province. A percentage value 

item related to decision making has been added to each item of the Commitment to the Teaching Profession 

scale. Thus, the necessary preparation has been made for the evaluation of the data in fuzzy matlab application. 

The data obtained in the study are evaluated in fuzzy matlab application. It has been found that the results 

obtained from fuzzy matlab application are more detailed and reflect the individual better in the decision-

making process related to the problem. It has been concluded that the results obtained from the fuzzy 

questionnaire are more valid because fuzzy questionnaire and fuzzy matlab provide more accurate and precise 

results in decision-making processes. 

Keywords: Teaching Profession, Teachers' commitment, Fuzzy Logic, Fuzzy Survey, Fuzzy Matlab  
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INTRODUCTION 

The professions that people prefer to do have a very important place in their life. This is a result that the job 

people prefer affects their private, social, and work lives directly and indirectly. It is thought that both perception, 

thoughts, and feelings about the job chosen and the perspective of the people’s live in that society on the job 

chosen have very important roles in terms of commitment to the profession. It is believed that the concept of 

commitment to the profession which is studied for a long time in very different fields and disciplines has still 

importance especially in educational sciences department. A commitment to a profession can cause people to be 

more motivated, to work productively by solving the problems more easily while they are doing their jobs. 

Through the commitment to the profession, people can work more efficiently and effectively by feeling devoted 

to the institution they are on duty. 

Some descriptions about commitment to a profession in the literature are as follows: Commitment to profession 

is the importance people give to their work or career [1]; commitment to profession means people understand 

the importance of their jobs in their lives as a result of the skills and the expertise they have, not to consider 

leaving their jobs and to have a positive relationship with their life satisfaction [2]. Bagraim takes attention to 

three different components of commitment to profession: emotional commitment which means to keep up with 

the profession and to have a strong emotional commitment to the profession, continuance commitment which 

means to realize the cost related to leaving the job and normative commitment which means to have a 

responsibility for the job and to keep the profession [3]. Commitment to profession is related to adopt the job 

you have [4]. Baysal and Paksoy explain that the job has an important and a central place in people’s lives as the 

result of the studies people do to have skills and expertise in a specific branch [5]. According to Meyer et al. 

professional commitment is an emotional relation between people themselves and their jobs [6]. Lee et al. also 

explain professional commitment as psychological relation based on emotional relation between people 

themselves and their job [7]. Bienkowska explains professional commitment as a term accompanying study of 

people’s motivation [8]. According to him professional commitment is related to desire for career development 

and desire to specialize. A sense of identity is given to the people who are devoted to their jobs and this 

commitment is redirected by the need for live and work according to the values and rules which manage their 

profession groups they belong to. When the descriptions in the literature are examined, professional commitment 

is to have positive thoughts and feelings for the chosen job and to be perceived by the people at the level of 

consciousness, in other words, to have metacognitive awareness for these positive thoughts and feelings to the 

profession. Also, it can be defined as all of the efforts people plan and have to do their professions in a good 

way.  

Studies about dimensions of professional commitment  started many years ago [9]. One of the studies which can 

be considered a pioneer of all these studies is “A three-component conceptualization of organizational 

commitment” by Meyer and Allen [10]. Meyer et al. defend to examine professional commitment multi-
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dimensionally instead of one-dimensionally and they did a detailed study “Commitment to Organizations and 

Occupations: Extension and Test of a Three-Component Conceptualization” which is about commitment to 

profession [6]. According to this study, professional commitment has dimensions of emotional, continuance and 

normative commitment. Emotional commitment means to keep up with the profession and to have a strong 

emotional commitment to the profession, continuance commitment means to realize the cost related to leaving 

the job and normative commitment means to have a responsibility for the job and to keep the profession with 

ethical values. 

It can be expressed that there are many factors that affect the professional commitment. These factors can be 

classified as individually and professionally. Each individual has different tendencies, interests, knowledge and 

skills which distinguish him/her from others. It causes individuals to interest a particular professional field and 

some professions to seem more interesting [11]. Age, gender, marital status, seniority, education from individual 

factors are effective in professional commitment. Individual factors such as expectation of a reward is also 

effective. Society’s view about the profession, stress level of the job, the responsibilities in the job, economic 

and social return in the job, opportunities, people’s wishes, desires and communication and motivation status in 

the job can be seen as the other factors that affect the professional commitment [9]. This complex structure of 

the professional commitment is also important in terms of teaching profession.  

Teacher who is the subject of teaching profession is defined as “the one whose aim is to teach knowledge” 

according to Turkish Language Society [12].   In Basic Law of National Education 1739/43, the teaching 

profession is defined as a specialized profession that includes government’s educational and administrative tasks 

[13]. Shulman mentioned 7 categories while defining teaching profession. These are general pedagogical 

knowledge, content knowledge, curriculum knowledge, pedagogical content knowledge, education system 

knowledge, students’ characteristics knowledge and knowledge of educational goals, values, historical and 

philosophical bases [14]. According to the study of Higher Education Institute and Ministry of Education, 

competence of teaching profession is organized as compatible with European Union countries and “personal and 

professional values -professional development, get to know the student, teaching and learning process, 

monitoring and evaluating learning progress, school, family and community relations, program and content 

information” are identified as six main productivity areas [15]. Considering these explanations, teaching 

profession; adopting universal and social ethical values and after it has become a part of life; it can be explained 

as  reflecting these values to other people and at the same time, in a certain area programming learning of general 

and special information for this area. 

 

Commitment to the teaching profession is determined as the attitudes of an educator beyond official and 

normative expectations his/her commitment, enthusiasm and passion for regular educational processes and 

students. In this sense, from the concept of a teacher who is extremely committed to his profession, it can be 

understood   that he is physically and spiritually ready to carry out educational activities [16]. The professional 

commitment of teachers has an impact on the quality of education in schools and the academic success of 

students, if it is   in a broader context as well as their professional competence, skills, knowledge, attitudes and 
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values of teachers [17]. In addition, “adherence to the teaching profession is very important in terms of making 

a direct and positive contribution to educators' teaching methodology, understanding, personality, 

characteristics and attitudes” [16]. 

 

From the classical point of view that its efficiency depends on external factors other than the person himself 

then, along with the neo-classical understanding in which other factors are bracketed and the individual is 

centered, a perspective that is more humane has been developed. In 20 and 21. Centuries, along with critical 

theory, it can be said that the idea that the individual himself, society and other factors are effective in the 

choice of profession, the meaning / value of the chosen profession, the way the profession is built is effective. 

From this point of view, it is necessary to consider the feelings, thoughts and behaviors that he has while 

performing the profession of an individual, the environment in which he lives, and his way of thinking as a 

whole. Therefore, it is considered that his commitment to the profession and the way he perceives himself in 

this regard are quite important. In this framework, a teacher needs a more sensitive tool rather than a limited 

tool to accurately reflect his/her own opinion/decision about his/her commitment to his/her profession. From 

the classical point of view, the boundies, framework of a person's assessments about himself or a situation are 

specific; the understanding of 0-1/ yes-no prevails; in fuzzy logic [27], the degree of membership of each 

element of a set can be  the range [0, 1]. Thus, unlike classical logic, the membership of each element is graded 

[18]. Therefore, it is considered that it is very important to use measurement tools prepared with fuzzy logic in 

order to take healthier data and get more accurate results. 

BACKGROUND 

2.1 Teachers' Commitment to the Teaching Profession 

The issue of commitment to the teaching profession has been studied by many researchers due to the fact that 

it is quite important. The following are some of those studies. Yıldız's study titled “Development of the Scale 

of Commitment to the Teaching Profession" was made in order to develop a measurement tool that can provide 

to measure the level of commitment of candidates to the teaching profession in a valid and reliable way. 

Factors are defined as professional identity, professional value, professional effort and professional dedication. 

The validity and reliability evidence obtained as a result of the research was found to be sufficient [19].      

Kozikoglu and Senemoglu “Development of the scale of dedication to the teaching profession: The research 

titled “Validity and reliability study" was conducted in order to develop a scale aimed at determining the 

dedication of teachers to the teaching profession. According to the results of the scale, it is concluded that there 

is a valid and reliable scale for determining their dedication to their profession [20]. 

The study of Kayadelen and Koçak titled “Examining the Relationships between Leadership Capacity in 

Schools and Teachers' Dedication to the Profession" was conducted in order to determine the relationships 

between the leadership capacities of secondary education institutions and the professional dedication levels of 
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teachers working in these schools .The study was conducted with 399 teachers who continue to work in 

secondary education institutions. The results of the research showed that there is a weak positive relationship 

between school leadership capacity and teachers' dedication to the profession. However, it has been observed 

that leadership capacity in schools is a significant predictor of teachers' dedication to the profession [21]. 

The study titled “Commitment to the Teaching Profession” by Yıldız and Çelik was conducted with the aim of 

shedding light on teachers who are connected to their profession and the effects of commitment on the learning 

and teaching process. As a result of the study, it has been concluded that teachers armed with commitment, 

passion and enthusiasm, will be a role model not only for students, but also for his colleagues [16]. 

 In Dalaman's thesis titled ”Examining the attitudes of secondary school teachers towards learning and the 

teaching profession", it was aimed to examine the attitudes of secondary school teachers towards learning and 

the teaching profession. As a result of the analysis of the findings, in the attitudes of teachers about learning 

and the teaching profession, it has been concluded that the attitudes of male and female teachers are similar in 

the sub-dimensions of the nature of learning, expectations about learning, openness to learning, anxiety about 

learning, value giving to the teaching profession, professional burnout and disinterest in the teaching 

profession. According to the results of this research, it has been seen that the positive attitudes of teachers 

towards learning and the teaching profession should be increased and their negative attitudes should be reduced 

.In this sense, especially in studies such as seminars, it has been concluded that it will be useful of obtaining 

and evaluating teachers' opinions about the teaching profession [22]. 

     In the study of Ataç titled “The relationship between teachers' supervision foci and their professional 

commitment”, it was aimed to expose whether there is a relationship between the supervision foci and the 

professional commitment of teachers in this study conducted on teachers. 400 teachers from various levels in 

public schools in İstanbul have participated in the research. As a result of the research, significant differences 

have been found between sub-dimensions of professional commitment, accumulated cost and limitation of 

alternatives and teachers’ graduation rates. It has been found that as the teachers’ graduation rate rises, the 

professional commitment rises. At the end of the study, it has been offered we can rise teachers’ professional 

commitment rising their graduation rate [23].  

     Some part of Sinclair’s study “Initial and changing student teacher motivation and commitment to teaching” 

is about how initial teacher education courses and internship affect primary school teacher trainees’ motivation 

and their commitment to the teaching profession. As a result of the study, when the students studying in 

teaching department take the initial teacher education course, they have the motivation related to the teaching 

content and the aim of it and have the commitment to the teaching profession [24]. 

 

2.2 Fuzzy Sets 

Definition 1: [27] Let 𝐿 be the universal set. A fuzzy set 𝐾 on 𝐿 is defined by  
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𝐾 = {〈𝑙, 𝜇𝐾(𝑙)〉: 𝑙 ∈ 𝐾}. 

Here, 𝜇
𝐾

 is membership function such that 𝜇
𝐾
: 𝐿 → [0,1]. 

Definition 2:  [28] A  triangular fuzzy number �̃� = [𝑠1, 𝑝1, 𝑟1] is a special fuzzy set on the real number set 

𝑅, whose membership function is defined as follows 

𝜇�̃�(𝛽) =  {

(𝛽−𝑠1)/(𝑝1−𝑠1),          𝑖𝑓 (𝑠1≤𝛽<𝑝1)
1,                                     𝑖𝑓 (𝛽= 𝑙1 )

   (𝑟1−𝛽)/(𝑟1−𝑝1),      𝑖𝑓 (𝑝1<𝛽≤𝑟1)
       0,                                      𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

               𝜇�̃�                            

                  1 

                                                     

 

 

 

 
 

                                                                       

                       

                        𝑠1              𝑝1              𝑟1  
 
      Figure 1.  �̃� = [𝑠1 , 𝑝1 , 𝑟1]  triangular fuzzy membership function [28] 

CLASSICAL METHOD  

3.1 Research Design 

This study designed with survey method in order to determine the level of commitment of teachers from 

different branches to the teaching profession. The survey method, which is sometimes called method and 

sometimes technique by researchers, is the method used in scientific research to determine the thoughts of 

individuals [25] 

3.2 Sampling 

The sample of the study consists of 60 teachers working at pre-school, secondary and high school levels. The 

teachers participating in the study were determined by the typical case sampling method, one of the purposeful 

sampling methods that are not random. Typical case sampling is based on selecting the element with average 

values for the case to be examined [26]. 

3.3 Data Collection  

In order to determine the level of teachers' commitment to the teaching profession, the Teacher's Occupational 

Commitment scale developed by Yıldız was used [19]. The scale has four factors; It is a structure consisting 
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of 33 items: professional identification (12 items), professional value (6 items), professional effort (8 items), 

and professional dedication (7 items). The five-point Likert scale is graded as strongly disagree (1), disagree 

(2), undecided (3), agree (4), and strongly disagree (5). 

3.4 Data Analysis 

The data was analyzed with SPSS 21.0 program. Statistical analyzes were calculated in accordance with the 

purpose of the research. The appropriateness, score and arithmetic mean levels used in the interpretation of the 

descriptive statistics on teachers' commitment to the teaching profession are given in Table 1. 

 

Table 1. Score Ranges and Classifications Used in İnterpretation of Teachers Commitment To The Teaching Profession 

Suitability Score Limits (arithmetic mean) 

Strongly Disagree 1 1.00-1.79 

Disagree 2 1.80-2.59 

Partly Agree 3 2.60-3.39 

Agree 4 3.40-4.19 

Strongly Agree 5 4.20-5.00 

 

3.5 Classical Findings 

Table 2. Mean of Teachers' Commitment to the Teaching Profession to Teacher’s Perceptions according to classical survey 

 

Teachers Mean 

Physical Education 3,50 

Information Technologies 4,17 

Biology 3,73 

Geography 4,05 

Religious Culture and Moral 

Knowledge 
3,68 

Philosophy 4,33 

Physics 3,83 

English 3,57 

Chemical 4,12 

Math 3,85 

Accounting and Finance 4,02 

Music 3,22 

Pre-school 3,94 
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Psychological Counseling and 

Guidance 
4,29 

History 4,09 

Turkish Language and Literature 4,16 

Visual arts 4,46 

Turkish 4,31 

  

When Table 2 is examined, the levels of commitment to the teaching profession are shown according to the 

opinions of teachers in different branches. Accordingly, the average of the music branch (X=3.22) is partially 

agree. The averages of Physical educaiton (X=3,50), İnformation technologies (X=4,17), Biology (X=3,73), 

Geography (X=4,05), Religious culture and moral knowledge (X=3,68), Physics (X=3,83), English (X=3,57), 

Chemical (X=4,12), Math (X=3,85), Accounting and finance (X=4,02), Pre-school (X=3,94), History (X=4,09) 

and Turkish language and literature (X=4,16)  branches are concentrated in the  agree part. However, the 

averages of Philosophy (x=4,33), Psychological counseling and guidance (X=4,29), Visual arts (X=4,46) and 

Turkish (X=4,31) branches are,  strongly agree. 

FUZZY METHOD  

In this section, we evaluate the data obtained with the survey using the fuzzy matlab application and examine 

teachers' commitment to the teaching profession. The difference of this method from the method in the  Section 

3 (Classical Method) is that the item answers in the survey are requested as %, and the fuzzy matlab application 

is used in the evaluation and comparison part. In both methods, the conceptual classification, sample, frequency 

and dimensions of teachers' commitment to the teaching profession are the same. Now, we give some properties 

of fuzzy matlab applications. 

4.1 Fuzzy Matlab Application 

Fuzzy logic controller; fuzzifier, fuzzy inference engine, defuzzifier and knowledge base consists of four main 

components. By using linguistic variables, the input information specific to the problem for which the fuzzy 

logic model will be established The process of expressing and converting into fuzzy logic information is called 

fuzzification. The linguistic variables formed after the fuzzification process are represented by triangular, 

trapezoidal, bell-shaped and many more geometric shapes specific to the structure of the problem, taking 

membership degrees [29]. In the fuzzy matlab application, the process is given at Figure 2. 
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Figure 2. Process of  Fuzzy Matlab Algorithm 

 

In this chapter, inputs are “Professional Identification, Professional Value, Professional Effort, Professional 

Dedication” for fuzzy matlab application in Table 3. 

 

Table 3. Inputs for this fuzzy matlab application 

 

 Input Abbreviation 

Professional 

Identification 

PI 

Professional Value PV 

Professional Effort PE 

Professional Dedication PD 

 

We give the triangular fuzzy membership functions of inputs in Table 3 and the representation of these 

functions as triangular fuzzy numbers in Table 4 (also, in Figure 3). 

 

Table 4. Triangular Fuzzy Membership Functions for Inputs in Table 3 

Triangular Fuzzy Membership 

Functions 

Abbreviatio

n Triangular Fuzzy Number 

I do not agree N.A [0, 25, 50] 

I am indecisive I [25, 55, 85] 

I am agree A [55, 100, 100] 

 



Editors: Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın 

              

 

192 

 

 

Figure 3. Triangular Fuzzy Membership Functions of Fuzzy Matlab’s Inputs  

In this chapter, output is “Commitment to the Teaching Profession ”  for fuzzy matlab application in Table 5. 

Table 5. Outputs for this fuzzy matlab application 

 Output 

Abbreviatio

n 

Commitment to the Teaching 

Profession  

CTP 

 

We give the triangular fuzzy membership functions of output in Table 5 and the representation of these 

functions as triangular fuzzy numbers in Table 6 (also, in Figure 4). 

 

Table 6. Triangular Fuzzy Membership Functions of Outputs 

Triangular Fuzzy Membership 

Functions 

Abbreviatio

n Triangular Fuzzy Number 

Very Little  V.L [0, 0, 40] 

Little  L [20, 45, 65] 

Medium  M [45, 70, 90] 

High H [75, 100, 100] 
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Figure 4. Triangular Fuzzy Membership Functions of Fuzzy Matlab’s Output 

Also, in this chapter, “Mandami fuzzy inference engine” was used. The “som method” was used for defuzzifier 

(in Figure 5). 

 

                 

 

Figure 5. Fuzzy Logic Designer of Fuzzy Matlab 
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In Figure 6, there is the rule editor for our fuzzy matlab application. 

 

Figure 6. Representation of Fuzzy Rules in Fuzzy Matlab 
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Figure 6. Getting Results with Fuzzy Matlab Rules 

4.3 Fuzzy Findings 

In Table 7, we obtain mean of teachers' commitment to the teaching profession to teacher’s perceptions 

according to fuzzy survey and fuzzy matlab using the average of the dimensions from the data obtained from 

fuzzy survey. 

 

Table 7. Mean of Teachers' Commitment to the Teaching Profession to Teacher’s Perceptions according to fuzzy survey and fuzzy matlab  

  
Mean (out of 5) 

Mean (out of 

100) 

Physical Education 4,35 87 

Information Technologies 4,55 91 

Biology 4,3 86 

Geography 4,3 86 

Religious Culture and Moral 

Knowledge 
4,3 86 

Philosophy 4,6 92 

Physics 4,4 88 

English 2,95 59 

Chemical 4,3 86 

Math 4,3 86 

Accounting and Finance 4,55 91 

Music 1,6 32 

Pre-school 4,5 90 

Psychological Counseling and 

Guidance 
4,85 97 

History 4,3 86 

Turkish Language and Literature 4,55 91 

Visual arts 4,5 90 

Turkish 4,55 91 

 

 

When table 7 is examined, teachers in different branches were evaluated according to the opinions of teachers 

in the fuzzy survey. Accordingly, the average of the music branch (X=1,6) is strongly disagree. The average 

of the English branch (X=2,95) is, partially agree. The averages of Physical education (X=4,35), Information 

technologies (X=4,55), Biology (X=4,3), Geography (X=4,3), Religious culture and moral knowledge (X=4,3), 

Philosophy (X=4,6), Physics (X=4,4), Chemical (X=4,3), Math (X=4,3), Accounting and finance (X=4,55), 
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Pre-school (X=4,5), Psychological counseling and guidance (X=4,85), History (X=4,3), Turkish Language and 

literature (X=4,55), Visual arts (X=4,5) and Turkish (X=4,55) branches are, strongly agree. That is, the 

majority of the branches are concentrated at the level of strongly agree. 

CONCLUSIONS  

If we compare the classical survey results obtained in Table 2 in Section 2 with the fuzzy survey 

results obtained in Table 7 in Section 3, we obtain Table 8. 

 

 

Table 8. Comparison of Classical Survey and Fuzzy Survey Results 

Teachers 

Mean of Fuzzy 

Survey 

Mean of Classical 

Survey 

Physical Education 4,35 3,50 

Information Technologies 4,55 4,17 

Biology 4,3 3,73 

Geography 4,3 4,05 

Religious Culture and Moral 

Knowledge 
4,3 3,68 

Philosophy 4,6 4,33 

Physics 4,4 3,83 

English 2,95 3,57 

Chemical 4,3 4,12 

Math 4,3 3,85 

Accounting and Finance 4,55 4,02 

Music 1,6 3,22 

Pre-school 4,5 3,94 

Psychological Counseling and 

Guidance 
4,85 4,29 

History 4,3 4,09 

Turkish Language and Literature 4,55 4,16 

Visual arts 4,5 4,46 

Turkish 4,55 4,31 

 

When Table 9 is examined, it is found that the results obtained from the classical survey and the fuzzy survey 

are different. In the classical survey, while the meaning of the value corresponding to the average of the music 

branch (X=3,22) is partially agree; meaning of value (X=1,6) in fuzzy survey strongly disagree. Because of 
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fuzzy questionnaire and fuzzy matlab provide a more exhaustive and more objective evaluation, the result of 

fuzzy questionnaire is more coherent than the result of classical questionnaire. Again in the classical survey, 

while the average of the English branch (X=3.57) I agree; I partially agree with the average of the same branch 

(X=2,95) in the fuzzy survey. In the classical method, with the value of X=4,46, the highest average was the 

Visual arts branch; In the fuzzy method, the Psychological Counseling and Guidance branch has the highest 

average with X=4,85. In addition, while the averages of the branches in the classical method are concentrated 

at the level of agree; In the fuzzy method, most of the branches are concentrated at the level of strongly agree. 

As can be seen, the fuzzy method and the classical method give different results and more accurate results are 

obtained with the fuzzy method. Because the classical survey is rated in a five-point Likert type (Strongly 

disagree, disagree, partly agree, agree, strongly agree). A value between 0 and 100 was requested for the fuzzy 

questionnaire. With another expression, while evaluating with 5 options in the classical method; In the fuzzy 

method, evaluation is made with 100 options. For instance, while in the classical survey interval between 2.60-

3.39 is accepted as partly agree, in the fuzzy survey and fuzzy matlab there is a separate membership value for 

each real number between 2.60-3.39.  

In this study, mean of teachers' commitment to the teaching profession to teacher’s perceptions according to 

fuzzy survey and fuzzy matlab using the average of the dimensions was obtained. In addition, each teacher can 

be compared with the fuzzy matlab application in separate dimensions. In the fuzzy matlab application, we 

used three different triangular fuzzy membership functions for each input, and four different triangular fuzzy 

membership functions for the output. As the number of these triangular fuzzy membership functions is 

increased, more precise results can be obtained. In addition, the triangular fuzzy membership function was used 

for inputs and outputs in the fuzzy matlab application. Researchers can also use other membership functions 

(trapezoidal fuzzy membership function, Gaussian fuzzy membership function, etc.) suitable for their 

problems. Also, in this chapter, “Mandami fuzzy inference engine” was used and “som method” was used for 

defuzzifier. Furthermore, researchers can use other rinse functions (centroid, bisector, mom, lom, etc.) or the 

Sugeno method to suit their problem. 
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ABSTRACT 

 

 While changing in the new world order, it is necessary to design new business models in order to use 

existing resources more effectively and effectively. If the Circular Economy, which is a new concept in our 
country, is included in government policies in the future, an important step will be achieved in terms of 

Sustainable Environmental Management. Reducing waste and making it reusable will lead to the protection of 

our natural resources and a serious cost reduction.  Therefore, this chapter, N-valued neutrosophic trapezoidal 

numbers are used in methods of multi-criteria decision making. Some techniques are used in each method to 

use N-valued neutrosophic trapezoidal numbers information. Therefore, crisp methods can be changed to use 

N-valued neutrosophic trapezoidal numbers information. The latter are used in TOPSIS and VIKOR based on 

entropy measure with N-valued neutrosophic trapezoidal numbers. We apply these methods in circular 

economy and we compare them to distinguish differences between used techniques. 

Keywords: N-valued neutrosophic trapezoidal number, generalized distance measure, entropy measure, 

VIKOR method, TOPSIS mthod, multi-criteria decision-making. 

 

3. Introduction 

Ideas about the concept of circular economy began to emerge in the 1960s. In 1966 Kenneth Boulding 

began to argue that the economy should be transformed into a circular ecological system. In the 1970s, Walter 

Stahel proposed the idea of a self-regenerative economic system based on the spiral loop system. Circular 

economy promotes cyclical flows to reduce environmental impacts and maximize resource efficiency instead 

of linear flows of materials and products [15]. The circular economy [25] is an economic model in which 
planning, sourcing, supply, production and reprocessing are designed and managed as both processes and 

outputs to maximize the functioning of the ecosystem and human well-being. Since decision making problems 

which contain uncertain are difficult to model and solve, and it is a need for us to develop some mathematical 

theories. Recent years, fuzzy set theory by using only one degree of membership proposed by Zadeh [85] and 

intuitionistic fuzzy set theory by using two degrees of membership introduced by Atanassov [1] have been 

received great attention in solving various decision-making problems. These theories can better solve the 

fuzziness of the uncertain decision making therefore the theories are all very successfully studied in 

Narayanamoorthy et al. [28], Liu et al. [27] and Hu et al. [26]. 

 

By using truth-membership function, indeterminacy-membership function and falsity-membership functions, 

in 1998, Smarandache [66] proposed the concept of neutrosophic sets (N-sets), which is a generalization of the 
concept of fuzzy set Zadeh [85] and intuitionistic fuzzy sets Atanassov [1]. In 2013, Smarandache [67] 

generalized the classical neutrosophic logic to neutrosophic refined logic which have more than one with the 
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possibility of the same or the different membership functions. Moreover, Ye and Ye [83], Chatterjee et al. [14] 

and Ye and Smarandache [84] introduced the concept single valued neutrosophic multi sets as a further 

generalization of that of neutrosophic sets based on both the neutrosophic refined logic and multi sets of Yager 

[82]. The multisets and single valued neutrosophic multisets have received more and more attention since its 

appearance in [2-7,9-13, 16, 18, 20-24, 29-65, 68-92].    

  

In order to use the concept of single valued neutrosophic multi sets to define an uncertain quantity or a quantity 

difficult to quantify, in Deli et al. [17] the authors put forward the concept of continuous N-valued neutrosophic 

trapezoidal numbers (NVNT-numbers). They developed a TOPSIS method by giving some operational laws 

of NVNT-numbers and some aggregation operators of NVNT-numbers.   

 
 

4. Preliminary 

This section firstly introduces several the known definitions and propositions that would be helpful for better 

study of this paper. 

 

Definition 2.1 [81] Assume that E is the universe. Then, a single valued neutrosophic set (N-set) A in E defined 

as 

𝐴 = {< x, TA(x) ,  IA(x) ,  FA(x) > : 𝑥 ∈ 𝐸}                                             (1) 

where  TA(x) ,  IA(x) ,  FA(x) ∈ [0,1]  for each point x in such that  0 ≤ TA(x) +  IA(x) +  FA(x) ≤ 3.   
 

Definition 2.2 [83] Let E be a universe. A1 neutrosophic multi-set set A1 on E can be defined as follows: 

A1={<x,( TA1
1 (x), TA1

2 (x),… , TA1
P (x)), (IA1

1 (x), IA1
2 (x), … , IA1

P (x)), (FA1
1 (x), FA1

2 (x),… , FA1
P (x)) >: x ∈ E}, 

where  

TA1
1 (x), TA1

2 (x),… , TA1
P (x), IA1

1 (x), IA1
2 (x), … , IA1

p (x), FA1
1 (x), FA1

2 (x),… , FA1
P (x): E[0,1]

 

such that 0 ≤ supTA1
i (x) + sup IA1

i (x) + sup FA1
i (x) ≤ 3 (i=1,2,…,P) for any x ∈ E is the truth-membership 

sequence, indeterminacy-membership sequence and falsity-membership sequence of the element x, 

respectively.  

Definition 2.3 [17] Let ηA1
i , ϑA1

i , θA1
i ∈ [0,1]  (i ∈ {1,2,… , p}) and a, b, c, d ∈ ℝ  such that a ≤ b ≤ c ≤ d . 

Then, an N-valued neutrosophic trapezoidal number (NVNT-number) 

ã = 〈[a,b, c, d]; (ηA1
1 , ηA1

2 , . . . , ηA1
P ), (ϑA1

1 , ϑA1
2 , . . . , ϑA1

P ), (θA1
1 , θA1

2 , . . . , θA1
P )〉 is a neutrosophic multi-set on the 

real number set ℝ , whose truth-membership functions, indeterminacy-membership functions and falsity-

membership functions are defined as, respectively.  

 Tα̃
i (x) =

{
 
 

 
 
(x−a)

(b−a)
ηα̃
i , a ≤ x < b

ηα̃
i , b ≤ x ≤ c

(d−x)

(d−c)
ηα̃
i , c < x ≤ d

0, otherwise,

,   Iα̃
i (x) =

{
 
 

 
 
(b−x)+ϑα̃

i (x−a )

(b−a )
, a ≤ x < b

ϑα̃
i , b ≤ x ≤ c

(x−c)+ϑα̃
i (d −x)

(d −c)
, c < x ≤ d 

1, otherwise,

 

and 
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Fα̃
i (x) =

{
  
 

  
 
(b − x) + θA

i (x − a )

(b − a )
, a ≤ x < b

θα̃
i , b ≤ x ≤ c

(x − c) + θA
i (d − x)

(d − c)
, c < x ≤ d 

1, otherwise,

 

 

Note that the set of all NVNT-numbers on ℝ will be denoted by Λ.  

 

Definition 2.4 [17]  Let A1 = 〈(a1, b1, c1, d1); (ηA1
1 , ηA1

2 , . . . , ηA1
P ), (ϑA1

1 , ϑA1
2 , . . . , ϑA1

P ), (θA1
1 , θA1

2 , . . . , θA1
P )〉 ∈

Λ. If A1 is not normalized NVTN-number(a1, b1, c1, d1 ∉ [0,1]), the normalized NVTN-number of A1, 

denoted by A1 is given by;  

A1 = 〈[
a1

a1 + b1 + c1 + d1
,

b1
a1 + b1 + c1 + d1

,
c1

a1 + b1 + c1 + d1
,

d1
a1 + b1 + c1 + d1

] ; 
(2) 

 (η
A1

1 , η
A1

2 , . . . , η
A1

P ) , (ϑ
A1

1 , ϑ
A1

2 , . . . , ϑ
A1

P ) , (θ
A1

1 , θ
A1

2 , . . . , θ
A1

P )〉. 

 

 

Definition 2.5 [80] Let  𝒜 = 〈[a1, b1, c1, d1]; (η𝒜
1 , η

𝒜
2 , … , η

𝒜
P ), (ϑ

𝒜
1 , ϑ

𝒜
2 , … , ϑ

𝒜
P ), (θ

𝒜
1 , θ

𝒜
2 , … , θ

𝒜
P )〉 and ℬ =

〈[a2, b2, c2, d2]; (ηℬ
1 , η

ℬ
2 ,… , η

ℬ
P), (ϑ

ℬ
1 , ϑ

ℬ
2 , … , ϑ

ℬ
P), (θ

ℬ
1 , θ

ℬ
2 , … , θ

ℬ
P)〉 be two normalized NVNT-numbers then, 

respectively, the weighted Hamming and Euclidean distance measures between 𝒜 and ℬ are given below;  

d𝑟
w(𝒜,ℬ) = 

1

16𝑝
. (∑[(|𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )a1 −𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )a2|)

𝑟
+

𝑝

𝑖=1

 

 

 (|𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )b1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )b2|)

𝑟
+  

 (|𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )c1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )c2|)

𝑟
+  

               (|𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )d1 −𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )d2|)

𝑟
]) 

1

r
   (3) 

 For r=1, the equation 3 is given as;  

d1
w(𝒜,ℬ) = 

1

16𝑝
.∑[|𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )a1 −𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )a2| +

𝑝

𝑖=1

 

 

 |𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )b1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )b2| +  

 |𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )c1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )c2| +  

 |𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )d1 −𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )d2|] (4) 

 For r=2, the equation 3 is given as;  

d2
w(𝒜,ℬ) = 

1

16𝑝
.∑[(𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )a1 − 𝑤ℬ(1+ ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )a2)

2
+

𝑝

𝑖=1

 

 

                    (𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )b1 − 𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )b2)

2
+  
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                   (𝑤𝒜(1 + η𝒜
i − ϑ

𝒜
i − θ

𝒜
i )c1 −𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )c2)

2
+  

 
                  (𝑤𝒜(1 + η𝒜

i − ϑ
𝒜
i − θ

𝒜
i )d1 −𝑤ℬ(1 + ηℬ

i − ϑ
ℬ
i − θ

ℬ
i )d2)

2
]

1

2
 (5) 

Theorem 2.6  [80]  Let  𝒜 = 

〈(a1, b1, c1, d1); (η𝒜
1 , η

𝒜
2 , … , η

𝒜
P ), (ϑ

𝒜
1 , ϑ

𝒜
2 , … , ϑ

𝒜
P ), (θ

𝒜
1 , θ

𝒜
2 , … , θ

𝒜
P )〉, 

 ℬ = 〈(a2, b2, c2, d2); (ηℬ
1 , η

ℬ
2 , … , η

ℬ
P), (ϑ

ℬ
1 , ϑ

ℬ
2 , … , ϑ

ℬ
P), (θ

ℬ
1 , θ

ℬ
2 , … , θ

ℬ
P)〉  and  

𝒞 = 〈(a3, b3, c3, d3); (η𝒞
1 , η

𝒞
2 , … , η

𝒞
P), (ϑ

𝒞
1 , ϑ

𝒞
2 , … , ϑ𝒞

P), (θ
𝒞
1 , θ

𝒞
2 , … , θ

𝒞
P)〉 be three normalized NVNT- numbers. 

Then, d𝑟
w(𝒜,ℬ) satisfies the following properties: 

v. 0 ≤ d𝑟
w(𝒜,ℬ) ≤ 1,  

vi. 𝒜 = ℬ ⇒ d𝑟
w(𝒜, ℬ) = 0,  

vii. d𝑟
w(𝒜, ℬ) = d𝑟

w(ℬ,𝒜), 

viii. d𝑟
w(𝒜,ℬ) ≤ d𝑟

w(𝒜,𝒞) + d𝑟
w(𝒞, ℬ). 

 

Definition 2.7  [80] A real-valued function ℰ𝑟: 𝜇 → [0,1] is called an entropy on NVNT-numbers if it satisfies 

the following properties: 

𝓔𝓟𝟏. 𝒜 = {
〈[a,b, c, d]; (1,1, . . . ,1), (0,0, . . . ,0), (0,0, . . . ,0)〉

〈[a,b, c, d]; (0,0, . . . ,0), (0,0, . . . ,0), (1,1, . . . ,1)〉
 ⇒ ℰ𝑟(𝒜) = 0; 

𝓔𝓟𝟐. ℰ𝑟(𝒜) = ℰ𝑟(𝒜
𝑐) for all 𝒜 ∈ NVNT-numbers, where 

𝒜𝑐 = 〈[a,b, c, d]; (θ𝒜
1 , θ𝒜

2 , … , θ𝒜
P ), (1 − ϑ𝒜

1 , 1 − ϑ𝒜
2 , … ,1 − ϑ𝒜

P ), (η𝒜
1 , η𝒜

2 , … , η𝒜
P )〉. 

𝓔𝓟𝟑. dr(𝒜,𝒜
−) = dr(𝒜,𝒜

+) ⇔ ℰ𝑟(𝒜) = 1 for all 𝒜 ∈ NVNT-numbers, where dr(𝒜,𝒜
+) is a distance 

from 𝒜 to 𝒜+ and dr(𝒜,𝒜
−) is a distance from 𝒜 to 𝒜−;   

𝓔𝓟𝟒. For all 𝒜,ℬ ∈ NVNT-numbers, if  

|
dr(𝒜,𝒜

−)

dr(𝒜,𝒜
+) + dr(𝒜,𝒜

−)
−
1

2
| ≥ |

dr(ℬ, ℬ
−)

dr(ℬ,ℬ
+) + dr(ℬ, ℬ

−)
−
1

2
|                    (6) 

then ℰ(𝒜) ≤ ℰ(ℬ), where dr(ℬ,ℬ
+) is a distance from ℬ to ℬ+ and dr(ℬ,ℬ

−) is a distance from ℬ to ℬ−, 

where 

𝒜+ = 〈[a, b, c, d]; (1,1, . . . ,1), (0,0, . . . ,0), (0,0, . . . ,0)〉 

and 

𝒜− = 〈[a, b, c, d]; (0,0,… ,0), (1,1,… ,1), (1,1,… ,1)〉. 

 

Theorem 2.8  [80]  Assume that dr is an distance measure for NVNT-numbers. Then, for any 𝒜 ∈ NVNT-

numbers, 

  

ℰ𝑟(𝒜) = 1 − 2 |
dr(𝒜,𝒜

−)

dr(𝒜,𝒜
+) + dr(𝒜,𝒜

−)
−
1

2
|                                             (7) 
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is entropy of NVNT-numbers based on TOPSIS. 

 

 

5. Presentation of VIKOR and TOPSIS Methods in NVTN-numbers Version 

         

Assume that D = {D1, D2, … , Dm} be the set of altenatives and Z = {z1, z2, … , zn} be the set of criterias. In Deli 

et al. [17], the normalized NVNT-numbers decision matrix is given as; 

(Dkj)mxn  =

(

 
 
 

D11 D12
D21 D22
⋮ ⋮
⋮ ⋮
Dm1 Dm2

              ⋯              D1n
⋯ D2n
⋯ ⋮
⋯ ⋮
⋯ Dmn

  

)

 
 
 
   

such that 

Dkj = 〈[akj, bkj, ckj, dkj], (ηkj
1 , ηkj

2 , ηkj
3 , … , ηkj

p ) , (ϑkj
1 , ϑkj

2 , ϑkj
3 , … , ϑkj

p ) , (θkj
1 , θkj

2 , θkj
3 , … , θkj

p )〉,  (k=1,2,…,m) and 

(j=1,2,…,n). 

It is carried out the following algorithm to get best choice: 

 

3.1 NVNT-numbers VIKOR method [8]  

VIKOR Algorithm: 

Step 1: Create an evaluation matrix (Dkj)mxn, (k=1,2,…,m; j=1,2,…,n) 

Step 2: Find of the weights of the criteria vector w = {w1,w2,… ,wn} by using equation in Theorem 2.6 as; 

wj =
m −∑ ℰkj

m
k=1

m.n−∑ ∑ ℰkj
n
j=1

m
k=1

 ,     (j = 1,2,… , n).  

 

where the entropy matrix (ℰkj)mxn (k=1,2,…,m; j=1,2,…,n) of the decision matrix (Dkj)mxn and where  

ℰkj = 1− 2 |
dr(Dkj,Dkj

−)

dr(Dkj, Dkj
+) + dr(Dkj, Dkj

−)
−
1

2
| 

(k = 1,2, … ,m;  j = 1,2,… , n) .  

 

Note that if the entropy matrix (ℰkj)mxn (k=1,2,…,m; j=1,2,…,n) is not normalized then, the entropy matrix 

must be normalized as;   

 

ℰ̅kj =
ℰkj

max{ℰkj: ℰkj ∈ (ℰkj)mxn, k = 1,2,… ,m and j = 1,2,… , n}
. 

 

Step 3: Determine the positive ideal solution 𝑟+ and negative ideal solution 𝑟−, respectively as; 
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𝑟+ = 〈[akj
+ , bkj

+ , ckj
+, dkj

+]; (ηkj
1 +, ηkj

2 +, ηkj
3 +, … , ηkj

p +) , (ϑkj
1 +, ϑkj

2 + , ϑkj
3 +, … , ϑkj

p +),(θkj
1 +, θkj

2 +, θkj
3 +, … , θkj

p +)〉 

 

= ⟨[max
k
{akj} ,max

k
{bkj} ,max

k
{ckj} ,max

k
{dkj}] ; (max

k
{ηkj
1 } , max

k
{ηkj
2 } ,max

k
{ηkj
3 } , … ,max

k
{ηkj
p
}) 

 (min
k
{ϑkj
1 } ,min

k
{ϑkj
2 } , min

k
{ϑkj
3 },… ,min

k
{ϑkj
p }) , (min

k
{θkj
1 } ,min

k
{θkj
2 } ,min

k
{θkj
3 },… ,min

k
{θkj
p })⟩ 

. 

and 

 

 

𝑟− = 〈[akj
− , bkj

− , ckj
−, dkj

−]; (ηkj
1 −, ηkj

2 −, ηkj
3 −, … , ηkj

p −
) , (ϑkj

1 −, ϑkj
2 − , ϑkj

3 −, … , ϑkj
p −
) , (θkj

1 −, θkj
2 −, θkj

3 −, … , θkj
p −
)〉 

= ⟨[min
k
{akj} ,min

k
{bkj} , min

k
{ckj} , min

k
{dkj}] ; (min

k
{ηkj
1 } ,min

k
{ηkj
2 } ,min

k
{ηkj
3 } , … ,min

k
{ηkj
p }), 

 

(max
k
{ϑkj
1 } ,max

k
{ϑkj
2 } ,max

k
{ϑkj
3 }, … ,max

k
{ϑkj
p }) , (max

k
{θkj
1 } , max

k
{θkj
2 } , max

k
{θkj
3 },… ,max

k
{θkj
p })⟩ 

 

for all (k=1,2,…,m) and (j=1,2,…,n). 

 

Step 4: According to Equation (3) positive value of V+(Dkj)  based on positive ideal solution 𝑟+ and negative 

value of V−(Dkj) based on negative ideal solution 𝑟− of alternative Dk (k=1,2,…,m) calculated as follows: 

V+(Dkj) = 
1

𝑛
∑d𝑟

w(Dkj, 𝑟
+)

𝑛

𝑗=1

 

= 
1

16. 𝑛. 𝑝
.∑∑[(𝑤𝐷kj(1 + ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )akj −𝑤𝑟+(1 + ηkj
𝑖 + − ϑkj

𝑖 + − θkj
𝑖 +)akj)

𝑟
𝑝

𝑘=1

𝑛

𝑗=1

 

 +(𝑤Dkj(1 + ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )bkj − 𝑤𝑟+(1 + ηkj

𝑖 + − ϑkj
𝑖 + − θkj

𝑖 +)bkj)
𝑟

+ 

 (𝑤Dkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )ckj −𝑤𝑟+(1 + ηkj

𝑖 + − ϑkj
𝑖 + − θkj

𝑖 +)ckj)
𝑟

+ 

 
(𝑤Dkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )dkj − 𝑤𝑟+(1 + ηkj
𝑖 + − ϑkj

𝑖 + − θkj
𝑖 +)dkj)

𝑟

]

1

𝑟
 

 

and  

V−(Dkj) = 
1

𝑛
∑d𝑟

w(Dkj, 𝑟
−)

𝑛

𝑗=1

 

 
1

16. 𝑛. 𝑝
.∑∑[(𝑤Dkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )akj − 𝑤𝑟−(1 + ηkj
𝑖 − − ϑkj

𝑖 − − θkj
𝑖 −)akj)

𝑟
𝑝

𝑘=1

𝑛

𝑗=1
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 (𝑤Dkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )bkj −𝑤𝑟−(1 + ηkj

𝑖 − − ϑkj
𝑖 − − θkj

𝑖 −)bkj)
𝑟

+ 

 (𝑤Dkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )ckj −𝑤𝑟−(1 + ηkj

𝑖 − − ϑkj
𝑖 − − θkj

𝑖 −)ckj)
𝑟

+ 

 
(𝑤Dkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )dkj − 𝑤𝑟−(1 + ηkj
𝑖 − − ϑkj

𝑖 − − θkj
𝑖 −)dkj)

𝑟

]

1

𝑟
 

 

where 𝑤𝑟+ = max{𝑤j: j = 1,2,… , n} and 𝑤𝑟− = min{𝑤j: j = 1,2, … , n}. 

Step 5:  Compute the group utility  𝛿𝑘 values for the maximum and individual regret 𝜎𝑘 values for the opponent 

𝛿𝑘 =∑(𝑤𝑟+)
d𝑟
w(Dkj, 𝑟

+)

d𝑟
w(𝑟−, 𝑟+)

𝑛

𝑗=1

 

𝜎𝑘 = 𝑚𝑎𝑥 {
d𝑟
w(Dkj, 𝑟

+)

d𝑟
w(𝑟−, 𝑟+)

} 

Step 6:  Compute the index values 𝜃𝑖 as follows; 

           𝜃𝑘  = ρ. (
𝛿𝑘 − δ

−

δ+ + δ−
) + (1 − ρ). (

𝜎𝑘 − σ
−

σ+ + σ−
),             

(8) 

where δ+ = min𝛿𝑘, δ
− = max𝛿𝑘, σ

+ = min𝜎𝑘 and σ− = max𝜎𝑘 .  Here ρ  denotes decision-making 

mechanism coefficient. 

d. 𝜃𝑘 is the minimal if ρ < 0.5, 

e. 𝜃𝑘 is the maximum if ρ > 0.5, 

f. 𝜃𝑘 is both minimal and maximum if ρ = 0.5. 

Step 7: Rank the all alternatives by sorting 𝛿, 𝜎, 𝜃  values in decreasing order. Thus the result is a set of three 

ranking list denoted by 𝛿[𝑘], 𝜎[𝑘], 𝜃[𝑘].  

Consider the alternative 𝑘, corresponding to 𝜃[𝑘] (smallest among 𝜃[𝑘] values) as a compromise solution if the 

following two conditions are satisfied. 

(A1) Feasible benefit: 

If top most two alternatives in 𝜃[𝑘] are [𝐷2] and [𝐷1] then 

𝜃([𝐷2]) − 𝜃([𝐷1]) ≥
1

𝑚 − 1
 

where m stands for the cardinality of the set of attributes. 

(A2) Acceptable stability: 

The choice [𝐷𝑘] must be top ranked by at least one of 𝛿[𝑘] and 𝜎[𝑘]. If one of the condition is not satisfied then 

a set of compromise solution is proposed, which consist of,  

c. If only (A1) is met then both alternatives  𝐷[1]  and 𝐷[2]  will serve as the compromise 

solution.  

d. If (A1) is not met then there will be a series of compromise solutions, which are alternatives 

may be located by making use of 
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𝜃([𝐷𝑚]) − 𝜃([𝐷1]) ≥
1

𝑚 − 1
 

for the maximum 𝑚. 

The minimal value of 𝜃 determines the best alternative. 

 

 

3.2  NVNT-numbers TOPSIS [80]         

 In this section, we give a multi-criteria decision-making method with normalized NVNT-numbers. 

 

Algorithm: 

Step 3: Similar to above VIKOR method from Step1 to Step-3. 

 

Step 4: According to Equation (3) positive value of V+(Dk)  based on positive ideal solution 𝑟+ and negative 

value of V−(Dk) based on negative ideal solution 𝑟− of alternative Dk (k=1,2,…,m) calculated as follows: 

V+(Dk) = 
1

𝑛
∑d𝑟

w(Dkj, 𝑟
+)

𝑛

𝑗=1

 

= 
1

16. 𝑛. 𝑝
.∑∑[(𝑤Dkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )akj − 𝑤𝑟+(1 + ηkj
𝑖 + − ϑkj

𝑖 + − θkj
𝑖 +)akj)

𝑟
𝑝

𝑘=1

𝑛

𝑗=1

 

 +(𝑤Dkj(1 + ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )bkj − 𝑤𝑟+(1 + ηkj

𝑖 + − ϑkj
𝑖 + − θkj

𝑖 +)bkj)
𝑟

+ 

 (𝑤Dkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )ckj −𝑤𝑟+(1 + ηkj

𝑖 + − ϑkj
𝑖 + − θkj

𝑖 +)ckj)
𝑟

+ 

 
(𝑤Kkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )dkj − 𝑤𝑟+(1 + ηkj
𝑖 + − ϑkj

𝑖 + − θkj
𝑖 +)dkj)

𝑟

]

1

𝑟
 

 

and  

V−(Dk) = 
1

𝑛
∑d𝑟

w(Dkj, 𝑟
−)

𝑛

𝑗=1

 

 
1

16. 𝑛. 𝑝
.∑∑[(𝑤Dkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )akj − 𝑤𝑟−(1 + ηkj
𝑖 − − ϑkj

𝑖 − − θkj
𝑖 −)akj)

𝑟
𝑝

𝑘=1

𝑛

𝑗=1

 

 (𝑤Dkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )bkj −𝑤𝑟−(1 + ηkj

𝑖 − − ϑkj
𝑖 − − θkj

𝑖 −)bkj)
𝑟

+ 

 (𝑤Dkj(1+ ηkj
𝑖 − ϑkj

𝑖 − θkj
𝑖 )ckj −𝑤𝑟−(1 + ηkj

𝑖 − − ϑkj
𝑖 − − θkj

𝑖 −)ckj)
𝑟

+ 

 
(𝑤Dkj(1+ ηkj

𝑖 − ϑkj
𝑖 − θkj

𝑖 )dkj − 𝑤𝑟−(1 + ηkj
𝑖 − − ϑkj

𝑖 − − θkj
𝑖 −)dkj)

𝑟

]

1

𝑟
 

 

where 𝑤𝑟+ = max{𝑤j: j = 1,2,… , n} and 𝑤𝑟− = min{𝑤j: j = 1,2, … , n}. 

Step 5: Calculate the relative closeness degree CCk of each alternative Dk (k = 1,2, . . . , m) as; 
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           CCk =
V−(𝐷k)

V−(𝐷k) + V
+(𝐷k)

,             k = 1,2, . . . , m. 
(9) 

Step 6: Rank all alternatives according to CCk(k = 1,2, . . . , m) in decreasing order and determine the best 

alternatives.  

6. Application and Comparision 

Example 4.1. The circular economy is defined as an economic approach in which the value of products, 

materials and resources is kept in the economy as long as possible and the amount of waste is the lowest. The 

circular economy concept is based on a restorative industrial economy, the transition to renewable energy, the 

reduction of the use of toxic chemicals and the prevention of waste. This concept aims to redefine the 

production and consumption processes. The circular economy is based on three key elements that focus on 

both system and resource problems. Depending on the Industrial Revolution, the ever-developing technology 

and urban population growth bring along the demand for unplanned urbanization and ready-made consumption, 

causing a significant increase in urban waste. This process leads to many negative environmental effects, 

especially the depletion of natural resources and climate change Dindar [19]. Therefore, we want to use the 

two methods by comparing them to choose the country that does the best among the countries that implement 

the circular economy. Based on this, we want to implement it in our own country. That is,  using which is the 

set of altenatives as D = {k1 = TURKEY, k2 = ABD , k3 = France,  k4 = Germany, k5 = Italy}  and 

according to three criteria determined Z = {z1 = To protect and develop natural capital, z2 =

Optimizing resource efficiency, z3 = Maintain system efficiency.  Then we try to choose and rank all 

alternatives Dk for all k=1,2,…,5 by using the following algorithm. 

 

RANKING OF EACH ALTERNATIVE USING VIKOR 

Step 1: The evaluation matrix(Dkj)5x3 is given by an expert as; 

 (Dkj)5x3 =

k1
k2
k3
k4
k5(

  
 

⟨[0.23,0.25,0.54,0.64]; (0.2,0.6,0.7,0.8), (0.3,0.4,0.5,0.6), (0.2,0.3,0.5,0.6)⟩

⟨[0.62,0.72,0.82,0.90]; (0.4,0.2,0.3,0.5), (0.1,0.2,0.3,0.4), (0.7,0.5,0.6,0.8)⟩

⟨[0.62,0.72,0.83,0.85]; (0.3,0.4,0.5,0.8), (0.2,0.3,0.5,0.6), (0.4,0.3,0.4,0.5)⟩

⟨[0.17,0.23,0.63,0.92]; (0.8,0.7,0.5,0.6), (0.4,0.3,0.7,0.5), (0.1,0.5,0.7,0.7)⟩

⟨[0.63,0.73,0.83,0.98]; (0.7,0.8,0.9,0.9), (0.2,0.7,0.5,0.6), (0.1,0.7,0.8,0.4)⟩

 

                            

⟨[0.12,0.32,0.42,062]; (0.5,0.3,0.4,0.6), (0.2,0.1,0.5,0.4), (0.4,0.6,0.5,0.7)⟩

⟨[0.05,0.64,0.77,0.97]; (0.5,0.6,0.8,0.8), (0.1,0.3,0.4,0.7), (0.3,0.4,0.7,0.5)⟩

⟨[0.05,0.06,0.07,0.08]; (0.7,0.6,0.8,0.9), (0.1,0.2,0.5,0.3), (0.4,0.3,0.6,0.6)⟩

⟨[0.01,0.006,0.007,0.58]; (0.2,0.6,0.7,0.9), (0.8,0.7,0.6,0.5), (0.1,0.1,0.4,0.3)⟩

⟨[0.02,0.03,0.04,0.06]; (0.2,0.5,0.7,0.9), (0.1,0.3,0.5,0.4), (0.6,0.7,0.8,0.8)⟩

 

                              

⟨[0.15,0.35,0.45,0.61]; (0.1,0.6,0.8,0.9), (0.2,0.3,0.8,0.5), (0.3,0.5,0.6,0.4)⟩

⟨[0.35,0.43,0.57,0.85]; (0.3,0.6,0.8,0.9), (0.5,0.7,0.7,0.6), (0.4,0.6,0.8,0.6)⟩

⟨[0.07,0.08,0.09,0.11]; (0.2,0.6,0.9,0.5), (0.8,0.5,0.6,0.7), (0.1,0.3,0.5,0.8)⟩

⟨[0.63,0.73,0.83,0.93]; (0.2,0.6,0.7,0.9), (0.8,0.7,0.6,0.5), (0.3,0.6,0.7,0.2)⟩

⟨[0.41,0.43,0.68,0.74]; (0.5,0.7,0.8,0.3), (0.1,0.2,0.6,0.4), (0.4,0.2,0.9,0.7)⟩)

  
 

 

 

Step 2: Since the normalized entropy matrix is 
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(ℰkj)5×3
=

(

 
 

0.692281 0.803063 0.885496
0.621053 0.573171 0.870410
0.719292
0.532164
0.609610

0.471153
0.716684
0.966851

0.968321
0.394200
0.760479)

 
 

5×3

 

we have calculated the weights of the criteria w= (w1,w2,w3) as; 

w2 =
5 − (ℰ11 + ℰ21 + ℰ31 + ℰ41 + ℰ51)

15 − (ℰ11 + ℰ12 + ℰ13 + ℰ21 + ℰ22 + ℰ23 + ℰ31 + ℰ32 +⋯+ ℰ42 + ℰ43 + ℰ51 + ℰ52 + ℰ53)
 

 

=
5− (0.803063 + 0.573171 + 0.471153 + 0.716684 + 0.966851)

15 − (0.561587 + 0.869281 + 0.848676 + 0.621053 +⋯+ 0.60961 + 0.966851 + 0.760479)
 

= 0.332727274 

similarly we have  w1 = 0.413354514, and w3 = 0.253918212. 

 

 

Figure 1: Weights of the criteria by normalized NVNT- numbers  

Step 3: The positive ideal solution 𝑟+ and negative ideal solution 𝑟−, respectively calculated as; 

r+ = ⟨[0.63,0.73,0.83,0.97]; (0.8,0.9,0.9,0.9), (0.1,0.1,0.2,0.3), (0.1,0.1,0.4,0.2)⟩ 

and 

r− = ⟨[0.01,0.006,0.007,0.11]; (0.1,0.2,0.3,0.3), (0.8,0.7,0.8,0.7), (0.7,0.7,0.9,0.8)⟩.
 

 

Step 4:  According to Equation (3) positive value of V+(Dkj)  based on positive ideal solution 𝑟+ and negative 

value of V−(Dkj) based on negative ideal solution 𝑟− of alternative kk (k=1,2,…,5) calculated as follows: 

V+(D11) = 0.0148,  V
+(D12) = 0.0157, V

+(D13) = 0.0152, V
+(D21) = 0.0170, V

+(D22) = 0.0118 

V+(𝐷23) = 0.0176,  V
+(D31) = 0.0334, V

+(D32) = 0.1071, V
+(D33) = 0.0495, V

+(D41) = 0.0127  

V+(D42) = 0.0151,  V
+(D43) = 0.0126, V

+(D51) = 0.0105, V
+(D52) = 0.0193, V

+(D53) = 0.0134.  

d𝑟
w(𝑟−, 𝑟+) = 0.0745 

w1 w2 w3

Values 0.41479572 0.337912129 0.247292152

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
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Step 5: Computed the group utility  𝛿𝑘 (k=1,2,…,5) values for the maximum and individual regret 𝜎𝑘 values 

for the opponent 

𝛿1 =∑(𝑤𝑟+)
V+(Fkj)

d𝑟
w(𝑟−, 𝑟+)

𝑛

𝑗=1

 

 

= (𝑤𝑟+)
V+(D11) + V

+(D12) + V
+(D13)

d𝑟
w(𝑟−, 𝑟+)

 

 

           = (0.383558117)
0.2137 + 0.0157 + 0.0152

0.0711
 

= 0.265606                                                         

Similar to 

𝛿2 = 0.252026, 𝛿3 = 1.105034, 𝛿4 = 0.249513, 𝛿5 = 0.251712. 

𝜎𝑘 = 𝑚𝑎𝑥 {
d𝑟
w(Dkj, 𝑟

+)

d𝑟
w(𝑟−, 𝑟+)

} 

𝜎1 = 𝑚𝑎𝑥{0.0148, 0.0157, 0.0152 } = 0.0157 

𝜎2 = 𝑚𝑎𝑥{0.0170, 0.0118, 0.0145 } = 0.0170 

𝜎3 = 𝑚𝑎𝑥{0.0334, 0.1071, 0.0495 } = 0.1071 

𝜎4 = 𝑚𝑎𝑥{0.0127 , 0.0176, 0.0126 } = 0.0176 

𝜎5 = 𝑚𝑎𝑥{0.0132, 0.0193, 0.0199 } = 0.0199. 

Step 6: Let ρ = 0.5, compute the index values 𝜃𝑘 as follows; 

           𝜃𝑘  = ρ. (
𝛿𝑘 − δ

−

δ+ + δ−
) + (1 − ρ). (

𝜎𝑘 − σ
−

σ+ + σ−
),             

 

                           𝜃1  = (0.5). (
0.265606 − 0.249513

1.105034 + 0.249513
) + (1 − 0.5). (

0.0157 − 0.0157

0.1071 + 0.0157
) 

        = 0.00941                                                                      

Similar to  

𝜃2 = 0.088, 𝜃3 = 1, 𝜃4 = 0.01072,  𝜃5 = 0.02112 

 

 

Step 7: Ranking the all alternatives NVNT-numbers based on VIKOR method, Dk(k = 1,2, . . . ,5) are shown 

in Figure 2 and given as; 

 

D3 > D5 > D4 > D1 > D2. 

Finally the best alternative is D3. 
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Figure 2 The ranking of alternatives  Dk (k = 1,2, . . . ,5) 
 

 
Figure 3: VIKOR index for all ρ values 

 

The results from the different distance measures used to resolve the MCDM problem in section 4 are shown in 

Figure 4 
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Figure 4: The results from the different distance measures 

 

 

RANKING OF EACH ALTERNATIVE USING TOPSIS 

Step 3: Similar to above VIKOR method from Step1 to Step-3. 

Step 4:  According to Equation (3) positive value of V+(Dk)  based on positive ideal solution 𝑟+ and negative 

value of V−(Dk) based on negative ideal solution 𝑟− of alternative Dk (k=1,2,…,5) calculated as follows: 

V+(D1) = 0.2145,  V
+(D2) = 0.2090, V

+(D3) = 0.1457, V
+(D4) = 0.2080, V

+(D5) = 0.2089 

V−(D1) = 0.0322, V
−(D2) = 0.2251, V

−(D3) = 0.0410, V
−(D4) = 0.0877, V

−(D5) = 0.0517 

Step 5: We calculated the relative closeness degree CCk of each alternative Dk (k = 1,2, . . . ,5) as; 

CC1 = 0.1716, CC2 = 0.3650, CC3 = 0.3518, CC4 = 0.3183, CC5 = 0.1749 

Step 6: Based on the index values CCk(k = 1,2, . . . ,5) the ranking of alternatives Dk(k = 1,2, . . . ,5) are shown 

in Figure 5 and given as; 

 

D2 > D4 > D3 > D5 > D1. 

Finally the best alternative is D2. 
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Figure 5 The ranking of alternatives Dk based on CCk (k = 1,2, . . . ,5) 

 

The results from the different distance measures used to resolve the MCDM problem in section 4 are shown in 

Figure 6 

 

Figure 6: The results from the different distance measures 
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Abstract: In this paper, some similarity measures of N-Valued Fuzzy Numbers (NVTF-

numbers) by using 𝛼-cut sets/integral vector, values and ambiguities of NVTF-numbers are 

developed. Then some desired properties of NVTF-numbers are examined. Also, a multi 

attribute decision making method based on the defined similarity measures are developed. 

Finally, a medical diagnosis problem is given on NVTF-numbers. 

Keywords: Fuzzy sets, N-valued trapezoidal fuzzy numbers, 𝛼-cut sets/integral vector, 

value and ambiguity of NVTF-numbers, multi attribute decision making method. 

1. Introduction

A fuzzy set [28] is defined help of a function from universal set X to [0,1] to handle 

ambiguous and incomplete information. Fuzzy sets, especially fuzzy numbers, which are a 

fuzzy set on R real numbers, have study by many author in [1,3,22-29].  As a 

generalization of  a fuzzy set, an N-valued fuzzy set (fuzzy multi-set) which an element 

can have more than one value in the range [0,1] was first developed by Yager [27]. After 

Yager, many studies have also been proposed many authors in [2,6-17]. 

Recently, Uluçay et al. [21] gave concept of the N-valued fuzzy numbers and Deli and 

Keleş [4] introduced their related concepts such as 𝛼-cut sets/integral vector, values and 

ambiguities.  Later, various studies have also been done by many authors in [5,18-21]. 

Since there is not enough work in the literature on N-valued fuzzy numbers, in this study, 

firstly, we presented some basic definitions and operations of fuzzy sets, fuzzy numbers, 

N-valued fuzzy sets and N-valued trapezoidal fuzzy numbers (NVTF-numbers). Secondly,
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some similarity measures of NVTF-numbers by using 𝛼-cut sets/integral vector, values and 

ambiguities of NVTF-numbers are introduced. Thirdly, a multi attribute decision making 

method based on the defined similarity measures is developed. Finally, a multi attribute 

decision-making problem on NVTF-numbers are solved. The present expository paper is a 

condensation of part of the dissertation Keleş [5]. 

2. Preliminaries

In the section, we give some main definitions and properties which are guide to our work. 

Definition 1. [28] Let X be the universe of discourse. A fuzzy set A defined on X is an 

object of the form  

A = {〈μA(x)/x〉: x ∈ X},
where μA: X → [0,1].

Definition 2. . [25] Let 𝑎1 ≤ 𝑏1 ≤ 𝑐1 ≤ 𝑑1 such that 𝑎1, 𝑏1, 𝑐1, 𝑑1 ∈ 𝑅. A trapezoidal fuzzy 

number a =< (a1, b1, c1, d1);wa > 
 
is a special fuzzy set on the real number set R, whose

membership function 𝜇𝑎: 𝑅 → [0,𝑤𝑎]can generally be defined as

𝜇𝑎(𝑥) =

{

(𝑥 − 𝑎1)𝑤𝑎
𝑏1 − 𝑎1

,    𝑎1 ≤ 𝑥 < 𝑏1,

𝑤𝑎,        𝑏1 ≤ 𝑥 < 𝑐1,
(𝑑1 − 𝑥)𝑤𝑎
𝑑1 − 𝑐1

,    𝑐1 ≤ 𝑥 < 𝑑1,

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

where 𝑤𝑎  ∈   [0,1] is a constant, If 𝑤�̂�= 1, then 𝑎 is a normal trapezoidal fuzzy number;

otherwise, it is said to be a non-normal trapezoidal fuzzy number (or generalized 

trapezoidal fuzzy number).  Also, if we get b1 = c1then  a = (a1, b1, c1, d1; wa) reduced to

triangular fuzzy number  a =< (a1, b1, d1);wa >.

Definition 3. [29] Let 𝑎 =< (𝑎1, 𝑏1, 𝑐1) > ve 𝑏 =< (𝑎2, 𝑏2, 𝑐2) > be two triangular fuzzy

numbers. Then, similarity measures between 𝑎 and b are given as; 

i. 𝑆1(𝑎, 𝑏) =
∑ 𝑎𝑖.𝑏𝑖
𝑛
𝑖=1

∑ 𝑎𝑖
2+∑ 𝑏𝑖

2−∑ 𝑎𝑖.𝑏𝑖
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

ii. 𝑆2(𝑎, 𝑏) =
2.∑ 𝑎𝑖.𝑏𝑖

𝑛
𝑖=1

∑ 𝑎𝑖
2+∑ 𝑏𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

iii. 𝑆3(𝑎, 𝑏) =
∑ 𝑎𝑖.𝑏𝑖
𝑛
𝑖=1

√∑ 𝑎𝑖
2𝑛

𝑖=1 .√∑ 𝑏𝑖
2𝑛

𝑖=1
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Teorem 4. [29] Let 𝑎 =< (𝑎1, 𝑏1, 𝑐1) > and 𝑏 =< (𝑎2, 𝑏2, 𝑐2) > be two triangular fuzzy

numbers. Then, similarity measures 𝑆𝑖(𝑎, 𝑏) (𝑖 = 1,2,3)between 𝑎 and b  hold following

properties; 

i. 0 ≤ 𝑆𝑖(𝑎, 𝑏) ≤ 1

ii. 𝑆𝑖(𝑎, 𝑏) = 𝑆𝑖(𝑏, 𝑎)

iii. If 𝑎 =b (𝑎𝑖=𝑏𝑖  ; i=1,2,3) then 𝑆𝑖(𝑎, 𝑏) = 1

 Definition 5. [6] Let X be the universe of discourse. A multi fuzzy set G defined on X is 

an object of the form  

G = {〈x, µG
1 (x), µG

2(x), … , µG
n(x)〉: x ∈ X}

where µG
i (x): X → [0,1], (i=1,2,…,n). 

Definition 6. [21] Let wa̅ 
i ϵ[0,1]   (i = 1,2, … , n) , a ≤ b ≤ c ≤  d  such that 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈

𝑅. An N-valued trapezoidal fuzzy number (NVTF-number) 

a̅ =< (a , b , c , d );wa̅ 
1 , wa̅ 

2 , …wa̅ 
n >

is a special fuzzy multi set on the real number set R, whose membership functions μa̅ 
i : R →

[0,wa
i ](i = 1,2, … , n) can generally be defined as;

𝜇�̄� 
𝑖 (𝑥) =

{

(𝑥 − 𝑎 )𝑤�̄� 
𝑖

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 < 𝑏 ,

𝑤�̄� 
𝑖 ,    𝑏 ≤ 𝑥 ≤ 𝑐 ,

(𝑑 − 𝑥)𝑤�̄� 
𝑖

𝑑 − 𝑐 
, 𝑐 < 𝑥 ≤ 𝑑 ,

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

where 𝑤�̄� 
𝑖  ∈   [0,1] is a constant, If 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈ [0,1], then a̅  is a normal NVTF-number.

Also, if we get b = c , then a̅ =< (a , b , c , d );wa̅ 
1 , wa̅ 

2 , …wa̅ 
n >  reduced to triangular

fuzzy multi number  a̅ =< (a , b , d );wa̅ 
1 , wa̅ 

2 , …wa̅ 
n >  .

Definition 7.  [5] Let a̅ =< (a , b , c , d );wa̅ 
1 , wa̅ 

2 , … ,wa̅ 
n > be a NVTF-number and

α=(α1,α2,…αn)  be a vector  such that 0 ≤ αi ≤ wa̅ 
i (i=1,2,…,n). Then, α-cut of a̅, denoted

by a̅α, is defined as;  

 a̅α =
 = 

{(x1, x2, … , xn); µa̅
1(x1) ≥ α1, µa̅

2(x2) ≥ α2, … , µa̅
n(xn) ≥ αn, x ∈ R}

 ([La̅(α1
 ), Ra̅(α1

 )], [La̅(α2
 ), Ra̅(α2

 )],…… . . , [La̅(αn
 ), Ra̅(αn

 )])

([
(wa̅

1−α1
 )a+α1

 b

wa̅
1 ,

(wa̅
1−α1

 )d+α1
 c

wa̅
1 ] , [

(wa̅
2−α2

 )a+α2
 b

wa̅
2 ,

(wa̅
2−α2

 )d+α2
 c

wa̅
2 ],…,  

[
(wa̅

n−αn
 )a+αn

 b

wa̅
n ,

(wa̅
n−αn

 )d+αn
 c

wa̅
n ]) 



224 

Definition 8. [5]  Let a̅ =< (a , b , c , d );wa̅ 
1 , wa̅ 

2 , … ,wa̅ 
n > be a NVTF-number and

a̅α = ([La̅(α1
 ), Ra̅(α1

 )], [La̅(α2
 ), Ra̅(α2

 )], …… . . , [La̅(αn
 ), Ra̅(αn

 )]) be α-cut set of a such

that 0 ≤ αi ≤ wa̅ 
i (i=1,2,…,n). Then,

i. the values vector of  a̅   for α-cut set a̅α, denoted by V( a̅ ), is defined as;

V(a̅) = (∫ (La̅(α1
 ) +

wa̅
1

0

Ra̅(α1
 ))f(α1

 )dα1
 , ∫ (La̅((α2

 ))

wa̅
2

0

+Ra̅((α2
 )))f(α2

 )d(α2
 ),… ,∫ (La̅(αn

 ) +

wa̅
n

0

Ra̅(αn
 ))f(αn

 )dαn
 )

= (
(a + 2b + 2c + d)(wa̅

1)2

6
,
(a + 2b + 2c + d)(wa̅

2)2

6
,… ,

(a + 2b + 2c + d)(wa̅
n)2

6
)

ii. the ambiguities vector of the a̅   for α-cut set a̅α, denoted by A( a̅ ), is defined as;

A(a̅) = (∫ (Ra̅(α1
 ) −

wa̅
1

0

La̅(α1
 ))f(α1

 )dα1
 , ∫ (Ra̅(α2

 )

wa̅
2

0

−La̅(α2
 ))f(α2

 )dα2
 , … , ∫ (Ra̅(αn

 ) −

wa̅
n

0

La̅(αn
 ))f(αn

 )dαn
 )

= (
(d − a + 2c − 2b)(wa̅

1)2

6
 ,
(d − a + 2c − 2b)(wa̅

2)2

6
,… ,

(d − a + 2c − 2b)(wa̅
n)2

6
)

where f(αi
 ) = αi for  0 ≤ αi ≤ wa̅ 

i (i=1, 2,…,n).

Note that the f can be any function such that monotonic and nondecreasing for αi ∈
[0,wa̅ 

i ].

Definition 9.  [5] Let a̅ =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > be a NVTF-number. Then,

integral vector of  a̅ , denoted by inta̅̅ ̅̅ ̅ 
α,  is given as;

inta̅̅ ̅̅ ̅ 
α = ([X1

′ , X1
′′], [X2

′ , X2
′′], … , [Xn

′ , Xn
′′])

 = ([∫ (
(wa̅

1 − α)a1 + αb1

wa̅
1 )dα

wa̅
1

0

, ∫ (
(wa̅

1 − α)d1 + αc1

wa̅
1 )dα

wa̅
1

0

], 
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[∫ (
(wa̅

2−α)a1+αb1

wa̅
2 ) dα

wa̅
2

0
, ∫ (

(wa̅
2−α)d1+αc1

wa̅
2 ) dα

wa̅
2

0
],…, 

[∫ (
(wa̅

n−α)a1+αb1

wa̅
n ) dα

wa̅
n

0
, ∫

(wa̅
n−α)a1+αb1

wa̅
n )dα

wa̅
n

0
]) 

 = ([
(a1 + b1)wa̅

1

2
,
(c1 + d1)wa̅

1

2
] , [
(a1 + b1)wa̅

2

2
,
(c1 + d1)wa̅

2

2
] , … 

[
(a1 + b1)wa̅

n

2
,
(c1 + d1)wa̅

n

2
]) 

3. Similarity Measures on NVTF-numbers

In this sevtion we introduce some similarity measures of NVTF-numbers by using 𝛼-cut 

sets/integral vector, value and ambiguity of NVTF-numbers. 

Definition 10. Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > and a̅2 =<

(a2, b2, c2, d2);wa̅2
1 , wa̅2

2 , …wa̅2
n > be two NVTF-numbers having the integral vector,

respectively as; 

inta̅̅ ̅̅ ̅1
α = ([X1

′ , X1
′′], [X2

′ , X2
′′], … , [Xn

′ , Xn
′′])  =

([
(𝑎1+𝑏1)wa̅1

1

2
,
(𝑐1+𝑑1)wa̅1

1

2
] , [

(𝑎1+𝑏1)wa̅1
2

2
,
(𝑐1+𝑑1)wa̅1

2

2
] , … 

[
(𝑎1 + 𝑏1)wa̅1

n

2
,
(𝑐1 + 𝑑1)wa̅1

n

2
]) 

and  

𝑖𝑛𝑡𝑎̅̅ ̅̅ ̅̅ 2
𝛼 = ([𝑌1

′, 𝑌1
′′], [𝑌2

′, 𝑌2
′′], … , [𝑌𝑛

′, 𝑌𝑛
′′])

 = ([
(𝑎2 + 𝑏2)wa̅2

1

2
,
(𝑐2 + 𝑑2)wa̅2

1

2
] , [
(𝑎2 + 𝑏2)wa̅2

2

2
,
(𝑐2 + 𝑑2)wa̅2

2

2
] , … 

[
(𝑎2 + 𝑏2)wa̅2

𝑛

2
,
(𝑐2 + 𝑑2)wa̅2

𝑛

2
]) 

Then 

i. 1. similarity measure between a̅1 and a̅2  based on α − cut sets/integral vector,

denoted by 𝑆1̅(�̅�1,�̅�2), is defined as; 

𝑆1̅(�̅�1, �̅�2) =
∑ (𝑋𝑖

′. 𝑌𝑖
′ +𝑛

𝑖=1 𝑋𝑖
′′. 𝑌𝑖

′′)

∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2] + ∑ [(𝑌𝑖
′)2 + (𝑌𝑖

′′)2] − ∑ (𝑋𝑖
′. 𝑌𝑖

′ +𝑛
𝑖=1 𝑋𝑖

′′. 𝑌𝑖
′′)𝑛

𝑖=1
𝑛
𝑖=1

ii. 2. similarity measure between a̅1 and a̅2  based on α − cut sets/integral vector,

denoted by 𝑆2̅(�̅�1,�̅�2), is defined as;
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𝑆2̅(�̅�1, �̅�2) =
2. ∑ (𝑋𝑖

′. 𝑌𝑖
′ +𝑛

𝑖=1 𝑋𝑖
′′. 𝑌𝑖

′′)

∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2] + ∑ [(𝑌𝑖
′)2 + (𝑌𝑖

′′)2]𝑛
𝑖=1

𝑛
𝑖=1

iii. 3. similarity measure between a̅1 and a̅2  based on α − cut sets/integral vector,

denoted by 𝑆3̅(�̅�1,�̅�2), is defined as;

𝑆3̅(�̅�1, �̅�2) =
∑ (𝑋𝑖

′. 𝑌𝑖
′ +𝑛

𝑖=1 𝑋𝑖
′′. 𝑌𝑖

′′)

√∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2]𝑛
𝑖=1 ∙ √∑ [(𝑌𝑖

′)2 + (𝑌𝑖
′′)2]𝑛

𝑖=1

Teorem 11. Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > and a̅2 =<

(a2, b2, c2, d2);wa̅2
1 , wa̅2

2 , …wa̅2
n > be two NVTF-numbers. Then, j. similarity measure

between a̅1 and a̅2  based on α − cut sets/integral vector, denoted by 𝑆�̅�(�̅�1,�̅�2)(j=1,2,3), 

hold following properties; 

i. 0≤ �̅�𝑖(�̅�1, �̅�2)≤1

ii. 𝑆�̅�(�̅�1, �̅�2) = �̅�𝑖(�̅�2, �̅�1)

iii. �̅�1 = �̅�2 → 𝑆�̅�(�̅�1, �̅�2)=1

Proof. For example; we give proof of  𝑆1̅(�̅�1, �̅�2)

i. 𝑆1̅(�̅�1, �̅�2) ≥ 0 is clear. We show that 𝑆1̅(�̅�1, �̅�2) ≤ 1  as;

Since (𝑋𝑖
′ − 𝑌𝑖

′)2 + (𝑋𝑖
′′ − 𝑌𝑖

′′)2 ≥ 0, (𝑋𝑖
′)2 − 2𝑋𝑖

′𝑌𝑖
′ + (𝑌𝑖

′)2 + (𝑋𝑖
′′)2 − 2𝑋𝑖

′′𝑌𝑖
′′ +

(𝑌𝑖
′′)2 ≥ 0, (𝑋𝑖

′)2 + (𝑋𝑖
′′)2 + (𝑌𝑖

′)2 + (𝑌𝑖
′′)2 ≥ 2𝑋𝑖

′𝑌𝑖
′ + 2𝑋𝑖

′′𝑌𝑖
′′

and (𝑋𝑖
′)2 + (𝑋𝑖

′′)2 + (𝑌𝑖
′)2 + (𝑌𝑖

′′)2 ≥ 2(𝑋𝑖
′𝑌𝑖
′ + 𝑋𝑖

′′𝑌𝑖
′′).

In here we have 

∑(𝑋𝑖
′)2 + (𝑋𝑖

′′)2
𝑛

𝑖=1

+∑(𝑌𝑖
′)2 + (𝑌𝑖

′′)2
𝑛

𝑖=1

− ∑(𝑋𝑖
′. 𝑌𝑖

′ +

𝑛

𝑖=1

𝑋𝑖
′′. 𝑌𝑖

′′)  ≥

2𝑋𝑖
′𝑌𝑖
′ + 2𝑋𝑖

′′𝑌𝑖
′′ − (𝑋𝑖

′𝑌𝑖
′ + 𝑋𝑖

′′𝑌𝑖
′′) ≥ 𝑋𝑖

′𝑌𝑖
′ + 𝑋𝑖

′′𝑌𝑖
′′

and therefore we have  𝑆1̅(�̅�1, �̅�2) ≤ 1.

ii. Proof of 𝑆1̅(�̅�1, �̅�2)=𝑆1̅(�̅�2, �̅�1) is clear.

iii. If �̅�1 = �̅�2 then 𝑋𝑖
′ = 𝑌𝑖

′ and 𝑋𝑖
′′ = 𝑌𝑖

′′ (i=1,2,….,n ) . Therefore we have

𝑆1̅(�̅�1, �̅�2) =
∑ (𝑋𝑖

′. 𝑋𝑖
′ +𝑛

𝑖=1 𝑋𝑖
′′. 𝑋𝑖

′′)

∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2] + ∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2] − ∑ (𝑋𝑖
′. 𝑋𝑖

′ +𝑛
𝑖=1 𝑋𝑖

′′. 𝑋𝑖
′′)𝑛

𝑖=1
𝑛
𝑖=1

= 1 

Proof of 𝑆2̅(�̅�1, �̅�2) and 𝑆3̅(�̅�1, �̅�2) can be similarity made.
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Example 12. Assume that   �̅�1 =< (0.1,0.2,0.3,0.4); 0.3,0.2,0.5,0.7 >

and �̅�2 =< (0.2,0.3,0.3,0.5); 0.5,0.7,0.4,0.1> be two NVTF-numbers. In here values

𝑖𝑛𝑡𝑎̅̅ ̅̅ ̅̅ 1
𝛼 ve 𝑖𝑛𝑡𝑎̅̅ ̅̅ ̅̅ 2

𝛼 of a̅1 and a̅2 is given, respectively, as;

𝑖𝑛𝑡𝑎̅̅ ̅̅ ̅̅ 1
𝛼 = ([0.045,0.105], [0.030,0.070], [0.075,0.175], [0.105,0.245])

𝑎𝑛𝑑 

𝑖𝑛𝑡𝑎̅̅ ̅̅ ̅̅ 2
𝛼 = ([0.125,0.200], [0.175,0.280], [0.100,0.160], [0.025,0.040])

Then, 

i. 1. similarity measure 𝑆1̅(�̅�1,�̅�2)  between a̅1 and a̅2  based on α − cut sets/

integral vector is calculated as;

𝑆1̅(�̅�1, �̅�2) =
∑ (𝑋𝑖

′. 𝑌𝑖
′ +4

𝑖=1 𝑋𝑖
′′. 𝑌𝑖

′′)

∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2] + ∑ [(𝑌𝑖
′)2 + (𝑌𝑖

′′)2] − ∑ (𝑋𝑖
′. 𝑌𝑖

′ +4
𝑖=1 𝑋𝑖

′′. 𝑌𝑖
′′)4

𝑖=1
4
𝑖=1

  = 0.4336 

ii. 2. similarity measure 𝑆2̅(�̅�1,�̅�2)  between a̅1 and a̅2  based on α − cut sets/

integral vector is calculated as;

𝑆2̅(�̅�1, �̅�2) =
2. ∑ (𝑋𝑖

′. 𝑌𝑖
′ +4

𝑖=1 𝑋𝑖
′′. 𝑌𝑖

′′)

∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2] + ∑ [(𝑌𝑖
′)2 + (𝑌𝑖

′′)2]4
𝑖=1

4
𝑖=1

= 0.6049 

3. 3. similarity measure 𝑆3̅(�̅�1,�̅�2)  between a̅1 and a̅2  based on α − cut sets/

integral vector is calculated as;

𝑆3̅(�̅�1, �̅�2) =
∑ (𝑋𝑖

′. 𝑌𝑖
′ +4

𝑖=1 𝑋𝑖
′′. 𝑌𝑖

′′)

√∑ [(𝑋𝑖
′)2 + (𝑋𝑖

′′)2]4
𝑖=1 ∙ √∑ [(𝑌𝑖

′)2 + (𝑌𝑖
′′)2]4

𝑖=1

= 0.6219 

Definition 13. Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > and a̅2 =<

(a2, b2, c2, d2);wa̅2
1 , wa̅2

2 , …wa̅2
n > be two NVTF-numbers with values of  a̅1 and a̅2,

respectively, as; 

𝑉(�̅�1) = (𝑉1
′, 𝑉2

′, … , 𝑉𝑛
′)
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 =

(

(𝑎1 + 2𝑏1 + 2𝑐1 + 𝑑1)(𝑤�̅�1
1 )2

6
,
(𝑎1 + 2𝑏1 + 2𝑐1 + 𝑑1)(𝑤�̅�1

2 )2

6
,… ,

(𝑎1 + 2𝑏1 + 2𝑐1 + 𝑑1)(𝑤�̅�1
𝑛 )2

6 )

and 

𝑉(�̅�2) = (𝑉1
′′, 𝑉2

′′, … , 𝑉𝑛
′′)

 =

(

(𝑎2 + 2𝑏2 + 2𝑐2 + 𝑑2)(𝑤�̅�2
1 )2

6
,
(𝑎2 + 2𝑏2 + 2𝑐2 + 𝑑2)(𝑤�̅�2

2 )2

6
,… ,

(𝑎2 + 2𝑏2 + 2𝑐2 + 𝑑2)(𝑤�̅�2
𝑛 )2

6 )

Then, 

i. 4. similarity measure between a̅1 and a̅2  based on values, denoted by 𝑆4̅(�̅�1,�̅�2), is

defined as;

𝑆4̅(�̅�1, �̅�2) =
∑ (𝑛
𝑖=1 𝑉𝑖

′. 𝑉𝑖
′′)

∑ (𝑉𝑖
′)2 + ∑ (𝑉𝑖

′′)2 − ∑ (𝑛
𝑖=1 𝑉𝑖

′. 𝑉𝑖
′′)𝑛

𝑖=1
𝑛
𝑖=1

ii. 5. similarity measure between a̅1 and a̅2  based on values, denoted by 𝑆5̅(�̅�1,�̅�2), is

defined as;

𝑆5̅(�̅�1, �̅�2) =
2. ∑ (𝑛

𝑖=1 𝑉𝑖
′. 𝑉𝑖

′′)

∑ (𝑉𝑖
′)2 + ∑ (𝑉𝑖

′′)2𝑛
𝑖=1

𝑛
𝑖=1

iii. 6. similarity measure between a̅1 and a̅2  based on values, denoted by 𝑆6̅(�̅�1,�̅�2), is

defined as;

𝑆6̅(�̅�1, �̅�2) =
∑ (𝑛
𝑖=1 𝑉𝑖

′. 𝑉𝑖
′′)

√∑ (𝑉𝑖
′)2𝑛

𝑖=1 . √∑ (𝑉𝑖
′′)2𝑛

𝑖=1

Teorem 14. Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > and a̅2 =<

(a2, b2, c2, d2);wa̅2
1 , wa̅2

2 , …wa̅2
n > be two NVTF-numbers. Then, j. similarity measure

between a̅1 and a̅2  based on values, denoted by 𝑆�̅�(�̅�1,�̅�2)(j=4,5,6), hold following 

properties; 

i. 0≤𝑆�̅�(�̅�1, �̅�2)≤1

ii. 𝑆�̅�(�̅�1, �̅�2) = 𝑆�̅�(�̅�2, �̅�1)

iii. �̅�1 = �̅�2 → 𝑆�̅�(�̅�1, �̅�2)=1
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Proof: For example; we give proof of  𝑆4̅(�̅�1, �̅�2).

i. 𝑆4̅(�̅�1, �̅�2) ≥ 0 is clear. We show that 𝑆4̅(�̅�1, �̅�2) ≤ 1 as;

Since (𝑉𝑖
′ − 𝑉𝑖

′′)2 ≥ 0, (𝑉𝑖
′)2 − 2𝑉𝑖

′𝑉𝑖
′′ + (𝑉𝑖

′′)2 ≥ 0  and  (𝑉𝑖
′)2 + (𝑉𝑖

′′)2 ≥ 2𝑉𝑖
′𝑉𝑖

′′

we have

∑(𝑉𝑖
′)2

𝑛

𝑖=1

+∑(𝑉𝑖
′′)2

𝑛

𝑖=1

− ∑𝑉𝑖
′. 𝑉𝑖

′′

𝑛

𝑖=1

≥ 2𝑉𝑖
′𝑉𝑖
′′ − 𝑉𝑖

′𝑉𝑖
′′  ≥ 𝑉𝑖

′𝑉𝑖
′′

and therefore we have 𝑆4̅(�̅�1, �̅�2) ≤ 1.

ii. Proof of 𝑆4̅(�̅�1, �̅�2) = 𝑆4̅(�̅�2, �̅�1) is clear.

iii. If �̅�1 = �̅�2 then 𝑉𝑖
′ = 𝑉𝑖

′′(i=1,2,….,n ) .

Finally we have 𝑆4̅(�̅�1, �̅�2) =
∑ 𝑉𝑖

′𝑉𝑖
′𝑛

𝑖=1

∑ (𝑉𝑖
′)2+∑ (𝑉𝑖

′)2−∑ 𝑉𝑖
′𝑉𝑖
′𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1

= 1. 

Proof of 𝑆5̅(�̅�1, �̅�2) and 𝑆6̅(�̅�1, �̅�2) can be similarity made.

Example 15. Assume that �̅�1 =< (0.1,0.2,0.3,0.4); 0.3,0.2,0.5,0.7 > and

�̅�2 =< (0.2,0.2,0.5,0.6); 0.5,0.4,0.6,0.8> be two NVTF-numbers. In here value of a̅1 and

a̅2 is 𝑉(�̅�1) = (0.0225,0.01, 0.0625,0.1225) and 𝑉(�̅�2) =

(0.0916,0.0586, 0.1320,0.2346) . Then,   

i. 4. similarity measure 𝑆4̅(�̅�1,�̅�2) between a̅1 and a̅2  based on values is computed as;

𝑆4̅(�̅�1, �̅�2) =
∑ (𝑛
𝑖=1 𝑉𝑖

′. 𝑉𝑖
′′)

∑ (𝑉𝑖
′)2 + ∑ (𝑉𝑖

′′)2 − ∑ (𝑛
𝑖=1 𝑉𝑖

′. 𝑉𝑖
′′)𝑛

𝑖=1
𝑛
𝑖=1

=   0.6174 

ii. 5. similarity measure 𝑆5̅(�̅�1,�̅�2) between a̅1 and a̅2  based on values is computed as;

𝑆5̅(�̅�1, �̅�2) =
2. ∑ (𝑛

𝑖=1 𝑉𝑖
′. 𝑉𝑖

′′)

∑ (𝑉𝑖
′)2 + ∑ (𝑉𝑖

′′)2𝑛
𝑖=1

𝑛
𝑖=1

  = 0.7634 

iii. 6. similarity measure 𝑆6̅(�̅�1,�̅�2) between a̅1 and a̅2  based on values is computed as;
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𝑆6̅(�̅�1, �̅�2) =
∑ (𝑛
𝑖=1 𝑉𝑖

′. 𝑉𝑖
′′)

√∑ (𝑉𝑖
′)2𝑛

𝑖=1 . √∑ (𝑉𝑖
′′)2𝑛

𝑖=1

= 0.9771 

Definition 16. Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > and a̅2 =<

(a2, b2, c2, d2);wa̅2
1 , wa̅2

2 , …wa̅2
n > be two NVTF-numbers with ambiguity of  a̅1 and a̅2,

respectively as; 

𝐴(�̅�1) = (𝐴1
′ , 𝐴2

′ , … , 𝐴𝑛
′ )

=

(

(𝑑1 − 𝑎1 + 2𝑐1 − 2𝑏1)(𝑤�̅�1
1 )2

6
 ,
(𝑑1 − 𝑎1 + 2𝑐1 − 2𝑏1)(𝑤�̅�1

2 )2

6
,… ,

(𝑑1 − 𝑎1 + 2𝑐1 − 2𝑏1)(𝑤�̅�1
𝑛 )2

6 )

and 

𝐴(�̅�2) = (𝐴1
′′, 𝐴2

′′, … , 𝐴𝑛
′′)

=

(

(𝑑2 − 𝑎2 + 2𝑐2 − 2𝑏2)(𝑤�̅�2
1 )2

6
 ,
(𝑑2 − 𝑎2 + 2𝑐2 − 2𝑏2)(𝑤�̅�2

2 )2

6
,… ,

(𝑑2 − 𝑎2 + 2𝑐2 − 2𝑏2)(𝑤�̅�2
𝑛 )2

6 )

Then, 

iv. 7. similarity measure between a̅1 and a̅2  based on ambiguity, denoted by

𝑆7̅(�̅�1,�̅�2), is defined as;

𝑆7̅(�̅�1, �̅�2)  =
∑ (𝑛
𝑖=1 𝐴𝑖

′ . 𝐴𝑖
′′)

∑ (𝐴𝑖
′)2 + ∑ (𝐴𝑖

′′)2 −∑ (𝑛
𝑖=1 𝐴𝑖

′ . 𝐴𝑖
′′)𝑛

𝑖=1
𝑛
𝑖=1

v. 8. similarity measure between a̅1 and a̅2  based on ambiguity, denoted by

𝑆8̅(�̅�1,�̅�2), is defined as;

𝑆8̅(�̅�1, �̅�2) =
2. ∑ (𝑛

𝑖=1 𝐴𝑖
′ . 𝐴𝑖

′′)

∑ (𝐴𝑖
′)2 + ∑ (𝐴𝑖

′′)2𝑛
𝑖=1

𝑛
𝑖=1

vi. 9. similarity measure between a̅1 and a̅2  based on ambiguity, denoted by

𝑆9̅(�̅�1,�̅�2), is defined as;

𝑆9̅(�̅�1, �̅�2) =
∑ (𝑛
𝑖=1 𝐴𝑖

′ . 𝐴𝑖
′′)

√∑ (𝐴𝑖
′)2𝑛

𝑖=1 . √∑ (𝐴𝑖
′′)2𝑛

𝑖=1
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Teorem 17. Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > and a̅2 =<

(a2, b2, c2, d2);wa̅2
1 , wa̅2

2 , …wa̅2
n > be two NVTF-numbers. Then, j. similarity measure

between a̅1 and a̅2  based on ambiguity, denoted by 𝑆�̅�(�̅�1,�̅�2)(j=7,8,9), hold following 

properties; 

i. 0≤ �̅�𝑖(�̅�1, �̅�2)≤1

ii. 𝑆�̅�(�̅�1, �̅�2) = 𝑆�̅�(�̅�2, �̅�1)

iii. �̅�1 = �̅�2 → 𝑆�̅�(�̅�1, �̅�2)=1

Proof: For example; we give proof of  𝑆7̅(�̅�1, �̅�2).

i. 𝑆7̅(�̅�1, �̅�2) ≥ 0 is clear. We show that 𝑆7̅(�̅�1, �̅�2) ≤ 1 as;

Since (𝐴𝑖
′ − 𝐴𝑖

′′)2 ≥ 0, (𝐴𝑖
′)2 − 2𝐴𝑖

′𝐴𝑖
′′ + (𝐴𝑖

′′)2 ≥ 0 and (𝐴𝑖
′)2 + (𝐴𝑖

′′)2 ≥ 2𝐴𝑖
′𝐴𝑖
′′

we have 

∑𝐴𝑖
′)2

𝑛

𝑖=1

+∑(𝐴𝑖
′′)2

𝑛

𝑖=1

− ∑𝐴𝑖
′ . 𝐴𝑖

′′

𝑛

𝑖=1

≥ 2𝐴𝑖
′𝐴𝑖
′′ − 𝐴𝑖

′𝐴𝑖
′′  ≥ 𝐴𝑖

′𝐴𝑖
′′

and therefore we have 𝑆7̅(�̅�1, �̅�2) ≤ 1.

ii. Proof of 𝑆7̅(�̅�1, �̅�2) = 𝑆7̅(�̅�2, �̅�1) is clear.

iii. If �̅�1 = �̅�2 then 𝐴𝑖
′ = 𝐴𝑖

′′(i=1,2,….,n ). Finally we have

𝑆7̅(�̅�1, �̅�2) =
∑ 𝐴𝑖

′𝐴𝑖
′𝑛

𝑖=1

∑ (𝐴𝑖
′)2 + ∑ (𝐴𝑖

′)2 − ∑ 𝐴𝑖
′𝐴𝑖
′𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1

= 1 

Proof of 𝑆8̅(�̅�1, �̅�2) and 𝑆9̅(�̅�1, �̅�2) can be similarity made.

Example 18. Assume that  �̅�1 =< (0.1,0.2,0.3,0.4); 0.3,0.2,0.5,0.7 >

and �̅�2 =< (0.2,0.3,0.4,0.5); 0.5,0.4,0.6,0.8> be two NVTF-numbers. In here ambiguity of

a̅1 and a̅2, respectively, is   𝐴(�̅�1) = (0.0075,0.0033, 0.0208,0.0408)

and 𝐴(�̅�2) = (0.0208,0.0133, 0.0300,0.0533). Then,

i. 7. similarity measure 𝑆7̅(�̅�1,�̅�2) between a̅1 and a̅2  based on ambiguity is

computed as;
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𝑆7̅(�̅�1, �̅�2)  =
∑ (𝑛
𝑖=1 𝐴𝑖

′ . 𝐴𝑖
′′)

∑ (𝐴𝑖
′)2 + ∑ (𝐴𝑖

′′)2 −∑ (𝑛
𝑖=1 𝐴𝑖

′ . 𝐴𝑖
′′)𝑛

𝑖=1
𝑛
𝑖=1

= 0.8528 

ii. 8. similarity measure 𝑆8̅(�̅�1,�̅�2) between a̅1 and a̅2  based on ambiguity is

computed as;

𝑆8̅(�̅�1, �̅�2) =
2. ∑ (𝑛

𝑖=1 𝐴𝑖
′ . 𝐴𝑖

′′)

∑ (𝐴𝑖
′)2 + ∑ (𝐴𝑖

′′)2𝑛
𝑖=1

𝑛
𝑖=1

 = 0.9206 

iii. 8. similarity measure 𝑆8̅(�̅�1,�̅�2) between a̅1 and a̅2  based on ambiguity is

computed as;

𝑆9̅(�̅�1, �̅�2) =
∑ (𝑛
𝑖=1 𝐴𝑖

′ . 𝐴𝑖
′′)

√∑ (𝐴𝑖
′)2𝑛

𝑖=1 . √∑ (𝐴𝑖
′′)2𝑛

𝑖=1

= 0.9771 

4. Application

In this section, inspired by Rajarajeswari and Uma [28,29], an application is given on 

how to apply similarity measures in NDYB-numbers based on multi attribute decision 

making problem under medical diagnosis. We will use the proposed similarity measures 

to diagnose disease by correlating patients' data based on symptoms and symptom-

generated data for some diseases. 

For this; let 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑟} be the set of patients, {D1, D2, , … , Dm} the set of diseases,

and 𝑆 = {S1, S2, … , , Sp}the set of symptoms. Now we can give the following algorithm; 

 Algorithm: 

Step 1: Give the relation table ( )sk rxp
x between the Patient and their Symptoms; (The 

value of patient 𝑃𝑠 in the table due to symptom 𝑆𝑘 

(𝑥𝑠𝑘 =< (𝑎𝑠𝑘, 𝑏𝑠𝑘,𝑐𝑠𝑘, 𝑑𝑠𝑘); 𝑤𝑠𝑘
1 , 𝑤𝑠𝑘

2 , … , 𝑤𝑠𝑘
𝑛 ) > is an NDYB number.) ( 𝑠 =

1,2, … , 𝑟, 𝑘 = 1,2, … , 𝑝) 
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Step 2: Give the relation table ( )ik mxp
n between the Disease 𝐷𝑖 and its Symptoms 𝑆𝑘; 

( value in the table depending on the symptom 𝑆𝑘 of the disease 𝐷𝑖( 𝑘 = 1,2, … , 𝑝, 𝑖 =

1,2, … ,𝑚) (𝑛𝑖𝑘 =< (𝑎𝑖𝑘, 𝑏𝑖𝑘,𝑐𝑖𝑘, 𝑑𝑖𝑘); 𝑤𝑖𝑘
1 , 𝑤𝑖𝑘

2 , … , 𝑤𝑖𝑘 
𝑛 > is an NDYB number. )

Step 3: Compute the total similarity measures 𝑆�̅�𝑖 = 𝑆̅(𝑃𝑠, 𝐷𝑖) based on  𝑆𝑗(j=1,2,…,n) as;

𝑆�̅�𝑖 =
1

𝑝
∑𝑆𝑗(𝑥𝑠𝑘 , 𝑛𝑖𝑘) (𝑠 = 1,2, … , 𝑟, 𝑖 =

𝑝

𝑘=1

1,2, … ,𝑚) 

Step 4: Rank the possible diseases.(if 𝑆�̅�𝑖𝑖𝑠 biggest similarity measures then  𝐷𝑖 is the 

best choice ) 

Example 19. Let's assume that 𝑃 = {𝑃1, 𝑃2, 𝑃3, 𝑃4} } be set of patients, Let

D = {D1 = Blood pressure, D2 = Bronchitis, D3 = rheumatism, D4 = diabetes} be set

of diseases and 𝑆 = {S1 = Sweating, S2 = Heartache, S3 = bone pain, S4 = Hungry}  be

set of symptoms. 

Step 1 According to the results obtained after patients 𝑃𝑖(i=1,2,3,4) was given medication 

4 times in a day (08:00, 12:00, 16:00, 20:00) and then analyzed the patient 𝑃𝑠(i=1,2,3,4) 

and the symptom 𝑆𝑘(j=1,2,3,4) the results proposed by Table 1. 

Table 1. Situations between the patient and the symptoms 

𝑥𝑠𝑘 𝑆1 𝑆2

 𝑃1 

<(0.0,0.1,0.2,0.3);0.3,0.2,0.5,0.4> <(0.2,0.3,0.6,0.8);0.3,0.1,0.4,0.7> 

 𝑃2 
<(0.4,0.5,0.5,0.7);0.1,0.4,0.3,0.6> <(0.3,0.5,0.5,0.6);0.4,0.5,0.6,0.7> 

 𝑃3 <(0.2,0.4,0.5,0.6);0.6,0.4,0.5,0.9> <(0.1,0.2,0.3,0.5);0.1,0.2,0.4,0.6> 

 𝑃4 <(0.3,0.4,0.5,0.6);0.3,0.2,0.6,0.7> <(0.2,0.4,0.4,0.6);0.8,0.2,0.5,0.4> 

𝑆3 𝑆4

 𝑃1 

<(0.3,0.4,0.5,0.6);0.2,0.5,0.3,0.6> <(0.1,0.1,0.4,0.7);0.4,0.2,0.7,0.6> 

 𝑃2 
<(0.5,0.7,0.9,1.0);0.3,0.7,0.5,0.4> <(0.3,0.5,0.5,0.8)9;0.3,0.1,0.5,0.7> 

 𝑃3 <(0.3,0.5,0.7,0.9);0.7,0.2,0.5,0.6> <(0.2,0.4,0.5,0.7);0.2,0.6,0.5,0.4> 

      𝑃4 <(0.1,0.4,0.5,0.7);0.8,0.4,0.5,0.7> <(0.1,0.3,0.3,0.6);0.5,0.8,0.3,0.4> 
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Step 2: The values of diseases 𝐷𝑖(i=1,2,3,4) related to symptoms 𝑆𝑘(j=1,2,3,4) based on 

previous patients the results given by Table 2. with ( )
4 4ik x

n

Table.2. Situations between the disease and its symptoms 

𝑛𝑖𝑘 𝐷1 𝐷2 

𝑆1 <(0.5,0.6,0.7,0.8);0.1,0.1,0.1,0.1> <(0.3,0.4,0.5,0.7);0.6,0.6,0.6,0.6> 

𝑆2 
<(0.3,0.5,0.6,0.7);0.3,0.3.0.3,0.3> <(0.2,0.4,0.5,0.6);0.5,0.5,0.5,0.5> 

𝑆3 
<(0.2,0.5,0.6,0.6);0.4,0.4,0.4,0.4> <(0.2,0.5,0.6,0.9);0.4,0.4,0.4,0.4> 

𝑆4 <(0.4,0.6,0.7,0.7);0.2,0.2,0.2,0.2> <(0.4,0.7,0.8,0.9);0.7,0.7,0.7,0.7> 

𝐷3 𝐷4 

𝑆1 <(0.1,0.2,0.5,0.8);0.3,0.3,0.3,0.3> <(0.1,0.3,0.5,0.6);0.9,0.9,0.9,0.9> 

𝑆2 
<(0.3,0.4,0.6,0.8);0.4,0.4,0.4,0.4> <(0.2,0.4,0.5,0.6);0.3,0.3,0.3,0.3> 

𝑆3 
<(0.2,0.3,0.5,0.7);0.6,0.6,0.6,0.6> <(0.2,0.3,0.7,0.8);0.5,0.5,0.5,0.5> 

𝑆4 <(0.3,0.4,0.7,0.8);0.8,0.8,0.8,0.8> <(0.5,0.6,0.7,1.0);0.4,0.4,0.4,0.4> 

Step 3: We computed the total similarity measures 𝑆�̅�𝑖from Table 1 and Table 2 with

𝑆1̅(𝑃𝑠, 𝐷𝑖) as Tablo 3; 

Table 3. 𝑆1̅(𝑃𝑠, 𝐷𝑖) for 𝑃𝑠 and 𝐷𝑖  (i=1,2,3,4 and s=1,2,3,4)

Step 4: According to the results of Table 3. with 𝑆1̅(𝑃𝑠, 𝐷𝑖); 𝑃1 is blood pressure patient,

𝑃2 is bronchitis,, 𝑃3 diabetes, 𝑃4 is diabetes.

𝑆1̅(𝑃𝑠, 𝐷𝑖) 𝐷1 𝐷2 𝐷3 𝐷4 
Ranking 

𝑃1 0.7207 0.5608 0.6457 0.5513 𝐷1 > 𝐷3 > 𝐷2>𝐷4 

𝑃2 
0.5599 0.7161 0.7142 0.6829 𝐷2 > 𝐷3 > 𝐷4>𝐷2 

𝑃3 
0.5709 0.6833 0.6309 0.8022 𝐷4 > 𝐷2 > 𝐷3>𝐷1 

𝑃4 0.6577 0.7376 0.7152 0.7503 𝐷4 > 𝐷2 > 𝐷3>𝐷1 
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Based on 𝑆�̅�(𝑃𝑠, 𝐷𝑖) (i = 1,2, … ,9) the disease diagnoses are as in Table 4

Table 4: The disease diagnoses based  on 𝑆�̅�(𝑃𝑖 , 𝐷𝑘) (i = 1,2, … ,9)

𝑃1 𝑃2 𝑃3 𝑃4 

𝑆1̅(𝑃𝑠, 𝐷𝑖)  𝐷1 𝐷2 𝐷4 𝐷4 

𝑆2̅(𝑃𝑠, 𝐷𝑖) 𝐷1 𝐷2 𝐷4 𝐷2 

𝑆3̅(𝑃𝑠, 𝐷𝑖)  𝐷3 𝐷1 𝐷2 𝐷2 

𝑆4̅(𝑃𝑠, 𝐷𝑖)  𝐷3 𝐷2 𝐷4 𝐷2 

𝑆5̅(𝑃𝑠, 𝐷𝑖)  𝐷3 𝐷1 𝐷2 𝐷2 

𝑆6̅(𝑃𝑠, 𝐷𝑖)  𝐷4 𝐷1 = 𝐷2 = 𝐷3 𝐷1 = 𝐷2 = 𝐷3 𝐷1 

𝑆7̅(𝑃𝑠, 𝐷𝑖)  𝐷2 𝐷3 𝐷2 𝐷3 

𝑆8̅(𝑃𝑠, 𝐷𝑖)  𝐷2 𝐷3 𝐷2 𝐷2 

𝑆9̅(𝑃𝑠, 𝐷𝑖)  𝐷1 = 𝐷2 = 𝐷3=𝐷4 𝐷1 = 𝐷2 = 𝐷3=𝐷4 𝐷2 𝐷1 = 𝐷2 = 𝐷3=𝐷4 
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Abstract

In this chapter, we have introduced the notion of direct sum of neutrosophic submodules
of an R-module M and discuss some related properties. We also analyze the direct sum of
arbitrary family of neutrosophic submodules and derive some results based on support of a
neutrosophic submodule.

Keywords: Module, Neutrosophic set, Neutrosophic submodule, Support, Direct sum

1. Introduction

In classical set theory, the membership grades of elements in a set is assessed in binary
terms 0 and 1. According to the bivalent condition, an element either belongs or does not
belong to the set. As an extension, fuzzy set theory permits the gradual assessment of the
membership of elements in a set. A fuzzy set A in X is characterised by a membership
function which is associated with each element in X, a real number in the interval [0, 1]. In
1965, Lotfi A. Zadeh [14]introduced the concept of vagueness in mathematical modelling.
A number of generalisations of the fundamental concept of set theory have come up. As
a generalization of fuzzy set theory, intuitionistic fuzzy set theory [1] was proposed by At-
tanassov in 1986 in which each element is associated with a degree of membership and non
membership values. Again as a generalization of fuzzy set and intuitionistic fuzzy set, neu-
trosophic set was defined with three different types of membership values by Smarandache
in 1995. In the real world, the practical problems are related to incomplete, indeterminate
and inconsistent information. Neutrosophic set is a powerful tool and the most appropriate
frame work for dealing with incomplete, indeterminate and inconsistent information.

The algebraic structure in pure mathematics cloning with uncertainty has been studied
by some authors. In 1971, Azriel Rosenfield presented a seminal paper on fuzzy subgroup
and W.J. Liu developed the concept of fuzzy normal subgroup and fuzzy sub ring. The
direct sum of fuzzy submodules was introduced by Mordeson and Malik [8]. In 2017, Isaac.P,
P.P.John [6] identified some algebraic nature of intuitionistic fuzzy submodule of a module.
Combining neutrosophic set theory with abstract algebra is an emerging trend in the area
of mathematical research. Neutrosophic algebraic structures and its properties give us a
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strong mathematical background to explain applied mathematical concepts in engineering,
data mining and economics. Neutrosophy is a new branch of philosophy and logic which
studies the origin and features of neutralities in nature. Each proposition in neutrosophic
logic is approximated to have the percentage of truth (T), the percentage of indeterminacy
(I) and the percentage of falsity (F) [3, 12, 2, 13].

2. Preliminaries

Definition 2.1. [8] Let R be a commutative ring with unity. A set M with a binary operation
+ is said to be an R module or a module over the ring R if

1. (M,+) is an abelian group

2. ∃ a map R×M → M i.e. (r,m) → rm (an action of R on M) such that

(a) (r + s)m = rm+ sm
(b) (rs)m = r(sm)
(c) r(m+ n) = rm+ rn
(d) 1m = m, 1 ∈ R, ∀r, s ∈ R and m,n ∈ M .

Definition 2.2. [8] Let M be an R module. A submodule is a subgroup N of M which is
also an R module i.e, rn ∈ N,∀r ∈ R, n ∈ N .

Definition 2.3. [5] Let M1 and M2 be the R-submodules of R-module M . Then we define

M1 +M2 = {m1 +m2 : m1 ∈ M1,m2 ∈ M2}

which is an R-submodule of M containing both M1 and M2.

Definition 2.4. [5] Let M1 and M2 be the R-submodules of an R-module M . M1 +M2 is
called direct sum, denoted as M1 ⊕M2 if any element in M1 +M2 can be written uniquely
as m1 +m2 where m1 ∈ M1 and m2 ∈ M2.

Theorem 2.1. [5] Let M1 and M2 be the submodules of an R-module M , then M1 +M2 is
direct sum ⇔ M1 ∩M2 = {0}

Definition 2.5. [7] Let µ, η and ν be fuzzy submodules of M , then µ is the direct sum of
η and ν if

1. µ = η + ν

2. η ∩ ν = 1{0} where 1{0}(x) =

{
1 x = 0

0 x ̸= 0
and we write µ = η ⊕ ν

Definition 2.6. [7] Let µ and η be fuzzy submodules of the R-modules M and N respectively.
Consider the direct sum M ⊕ N . We extend the definition of µ and η to M ⊕ N to get µ,

and η,, fuzzy subsets of M ⊕N as follows

µ,(m,n) =

{
µ(m) n = 0

0 n ̸= 0

{
η(n) m = 0

0 m ̸= 0
, η,(m, n) = 
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∀ (m,n) ∈ M ⊕N . Then µ, and η, are fuzzy submodules of M ⊕N . Moreover

(µ, ∩ η,)(m,n) = µ,(m,n) ∧ η,(m,n) =

{
1 (m,n) = 0

0 (m,n) ≠ 0

Therefore µ, + η, is a direct sum and we denote it by µ⊕ η.

Definition 2.7. [11] A Neutrosophic set A on the universal set X is defined as

A = {(x, tA(x), iA(x), fA(x)) : x ∈ X}

where tA, iA, fA : X → (−0, 1+). The three components tA, iA and fA represent membership
value (Percentage of truth), indeterminacy (Percentage of indeterminacy) and non mem-
bership value (Percentage of falsity) respectively. These components are functions of non
standard unit interval (−0, 1+).
If tA, iA, fA : X → [0, 1], then A is known as single valued neutrosophic set(SVNS)[9].

Definition 2.8. [11] Let A and B be two neutrosophic sets of X. Then A is contained in B,
denoted as A ⊆ B if and only if A(x) ⩽ B(x) ∀x ∈ X, this means that

tA(x) ≤ tB(x), iA(x) ≤ iB(x), fA(x) ≥ fB(x)

Definition 2.9. [11] The complement of A = {x, tA(x), iA(x), fA(x) : x ∈ X} is denoted by
AC and defined as AC = {x, fA(x), 1− iA(x), tA(x) : x} and (AC)C = A

Definition 2.10. [4, 11] Let A and B be two Neutrosophic sets of X

1. The union C of A and B is denoted by C = A ∪B and defined as

C(x) = A(x) ∨B(x)

where C(x) = {x, tC(x), iC(x), fC(x) : x ∈ X} where

tC(x) = tA(x) ∨ tB(x)

iC(x) = iA(x) ∨ iB(x)

fC(x) = fA(x) ∧ fB(x)

2. The intersection C of A and B is denoted by C = A ∩B and is defined as

C(x) = A(x) ∧B(x)

where C(x) = {x, tC(x), iC(x), fC(x) : x ∈ X} where

tC(x) = tA(x) ∧ tB(x)

iC(x) = iA(x) ∧ iB(x)

fC(x) = fA(x) ∨ fB(x)
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Definition 2.11. [10] Let A and B be neutrosophic sets of a universal set X. Then their
sum A+B is a neutrosophic set of X, defined as follows

tA+B(x) = ∨{tA(y) ∧ tB(z)|x = y + z, y, z ∈ X}

iA+B(x) = ∨{iA(y) ∧ iB(z)|x = y + z, y, z ∈ X}

fA+B(x) = ∧{fA(y) ∨ fB(z)|x = y + z, y, z ∈ X}

Definition 2.12. For any neutrosophic subset A = {(x, tA(x), iA(x), fA(x)) : x ∈ X}, the
support A∗ of the neutrosophic set A can be defined as

A∗ = {x ∈ X, tA(x) > 0, iA(x) > 0, fA(x) < 1}

.

3. Direct Sum

Definition 3.1. Let M be an R module. Let A ∈ UM where UMdenotes the neutrosophic
power set of R module M . Then a neutrosophic subset A = (tA(x), iA(x), fA(x)) in M is
called a neutrosophic submodule of M if it satisfies the following

1. tA(0) = 1, iA(0) = 1, fA(0) = 0

2. tA(x+ y) ≥ tA(x) ∧ tA(y)
iA(x+ y) ≥ iA(x) ∧ iA(y)
fA(x+ y) ≤ fA(x) ∨ fA(y),∀x, y ∈ M

3. tA(rx) ≥ tA(x)
iA(rx) ≥ iA(x)
fA(rx) ≤ fA(x),∀x ∈ M,∀r ∈ R

Remark 3.1. We denote the set of all neutrosophic submodules of R module M by U(M).

Remark 3.2. If A ∈ U(M), then the neutrosophic components of A can be denoted as
{tA(x), iA(x), fA(x)}.

Theorem 3.1. If A, B ∈ U(M), then A + B ∈ U(M).

Theorem 3.2. Let A be a neutrosophic set on M . Then A ∈ U(M) if and only if the 
following properties are satisfied ∀  x, y  ∈ M , a, b ∈ R

i) tA(0) = 1, iA(0) = 1, fA(0) = 0.

ii) tA(ax + by) ≥ tA(x) ∧ tA(y), iA(ax + by) ≥ iA(x) ∧ iA(y), fA(ax + by) ≤ fA(x) ∨ fA(y) 

Theorem 3.3. Let A ∈ U(M). Then A∗ is an R submodule of M .
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Proof. A ∈ U(M) and A∗ = (x ∈ X, tA(x) > 0, iA(x) > 0, fA(x) < 1). Let x, y ∈ A∗ and
a, b ∈ R. Then

tA(x) > 0, iA(x) > 0, fA(x) < 1

tA(y) > 0, iA(y) > 0, fA(y) < 1

Now

tA(ax+ by) ≥ tA(ax) ∧ tA(by)

≥ tA(x) ∧ tA(y)

≥ 0

Similarly iA(ax + by) ≥ 0 and fA(ax + by) ≤ 1, then ax + by ∈ A∗. Hence A∗ is an R
submodule of M .

[The proof of the theorems 3.1and 3.2 are explained in the paper titled as Some Character-
izations of Neutrosophic submodules of an R-module which is submitted for the publication
by the same authors ]

Definition 3.2. Let X be a non empty set. The neutrosophic point N̂{0} in X is defined as

N̂{0} = {(x, tN̂{0}
, iN̂{0}

, fN̂{0}
) : x ∈ X} where

N̂{0}(x) =

{
(1, 0, 0) x = 0

(0, 0, 1) x ̸= 0

Theorem 3.4. Let A ∈ U(M). A = N̂{0} if and only if A∗ = {0}.

Proof. If A = N̂{0}, then A∗ = (x ∈ X, tA(x) > 0, iA(x) > 0, fA(x) < 1) = {0}.
Conversely, if A∗ = {0},⇒ tA(0) > 0, iA(0) > 0, fA(x) < 1 and tA(x) = 0, iA(x) =
0 and fA(x) = 1 ∀ x ̸= 0.Therefore

A(x) =

{
(1, 1, 0) x = 0

(0, 0, 1) x ̸= 0
= N̂{0}

Hence the proof.

Definition 3.3. Let A,B and C ∈ U(M), then A is said to be the direct sum of B and C if

1. A = B + C

2. B ∩ C = N̂{0}

and we write A = B ⊕ C.

Definition 3 .4. Let A i ∈ U (M) ∀i ∈ J , then we say that A  is the direct sum of {Ai : i ∈ J} 
denoted by ⊕i∈JAi if
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1. A =
∑

i∈J Ai

2. Aj ∩
∑

i∈J−{j}Ai = N̂{0} ∀j ∈ J

Theorem 3.5. If A,B and C ∈ U(M) such that A = B ⊕ C. Then A∗ = B∗ ⊕ C∗.

Proof. Let x ∈ A∗ ⇒ x ∈ (B ⊕ C)∗

⇒ tB⊕C(x) > 0, iB⊕C(x) > 0 and fB⊕C(x) < 1 ∀x ∈ M

⇒ tB+C(x) > 0, iB+C(x) > 0 and fB+C(x) < 1 ∀x ∈ M

Now

tB+C(x) = ∨{tB(y) ∧ tC(z)|x = y + z, y, z ∈ M} > 0

⇒ tB(y) ∧ tC(z) > 0 for some y, z ∈ M, with x = y + z

⇒ ∃ y, z ∈ M such that tB(y) > 0, tC(z) > 0

Similarly we can prove that iB(y) > 0, iC(z) > 0 where x = y + z and
fB(y) < 1, fC(z) < 1 where x = y + z
⇒ ∃ y, z ∈ M such that y ∈ B∗, z ∈ C∗ where x = y + z
⇒ A∗ ⊆ B∗ + C∗.....(1)
Now x ∈ B∗ + C∗ ⇒ ∃ y ∈ B∗, z ∈ C∗ such that x = y + z
⇒ tB(y) > 0, iB(y) > 0, fB(y) < 1 and tC(y) > 0, iC(y) > 0, fC(y) < 1 which is true for
all y ∈ B∗, z ∈ C∗ such that x = y + z
⇒

∨{tA(y) ∧ tB(z)|x = y + z, y, z ∈ M} > 0

∨{iA(y) ∧ iB(z)|x = y + z, y, z ∈ M} > 0

∧ fA(y) ∨ fB(z)|x = y + z, y, z ∈ M} < 1

⇒ tB+C(x) > 0, iB+C(x) > 0 and fB+C(x) < 1
⇒ tA(x) > 0, iA(x) > 0 and fA(x) < 1 since A = B ⊕ C
⇒ x ∈ A∗

⇒ B∗ + C∗ ⊆ A∗.....(2)
From (1) and (2), we can conclude A∗ = B∗ + C∗

Now x ∈ B∗ ∩ C∗ ⇒ x ∈ B∗ and x ∈ C∗

⇒ tB(x) > 0, iB(x) > 0, fB(x) < 1 and tC(x) > 0, iC(x) > 0, fC(x) < 1
⇒ tB(x) ∧ tC(x) > 0, iB(x) ∧ iC(x) > 0 and fB(x) ∧ fC(x) < 1
⇒ tB∩C(x) = 1, iB∩C(x) = 0 and fB∩C(x) = 0 ( since A = B ⊕ C ⇒ B ∩ C = N̂{0} )
⇒ x = 0 ⇒ B∗ ∩ C∗ = {0}
Hence A∗ = B∗ ⊕ C∗

Remark The converse of the above theorem need not be true as we see in the following
example
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Example 3.1. Let M = R2 = {(a, b) : a, b ∈ R} where R is any ring. Define

A = {x, tA(x), iA(x), fA(x);x ∈ M} ∈ U(M)

B = {x, tB(x), iB(x), fB(x);x ∈ M} ∈ U(M)

C = {x, tC(x), iC(x), fC(x);x ∈ M} ∈ U(M)

where

tA(x) =


1 x = (0, 0)
1
4

x = (a, 0), a ̸= 0
1
2

x = (a, b), b ̸= 0

, iA(x) =


1 x = (0, 0)
1
4

x = (a, 0), a ̸= 0
1
2

x = (a, b), b ̸= 0

, fA(x) =


0 x = (0, 0)
1
2

x = (a, 0), a ̸= 0
1
4

x = (a, b), b ̸= 0

tB(x) =


1 x = (0, 0)
1
4

x = (a, 0), a ̸= 0

0 x = (a, b), b ̸= 0

, iB(x) =


1 x = (0, 0)
1
4

x = (a, 0), a ̸= 0

0 x = (a, b), b ̸= 0

, fB(x) =


0 x = (0, 0)
1
2

x = (a, 0), a ̸= 0

1 x = (a, b), b ̸= 0

tC(x) =


1 x = (0, 0)
1
4

x = (0, b), b ̸= 0

0 x = (a, b), a ̸= 0

, iC(x) =


1 x = (0, 0)
1
4

x = (0, b), b ̸= 0

0 x = (a, b), a ̸= 0

, fC(x) =


0 x = (0, 0)
1
2

x = (0, b), b ̸= 0

1 x = (a, b), a ̸= 0

Now A∗ = {x ∈ R2 : tA(x) > 0, iA(x) > 0, fA(x) < 1} = R2. Similarly B∗ = (R, 0) and
C∗ = (0, R) ⇒ A∗ = B∗ + C∗, B∗ ∩ C∗ = {0} ⇒ A∗ = B∗ ⊕B∗

But B + C = {x, tB+C(x), iB+C(x), fB+C(x) : x ∈ M}

tB+C(x) =


1 x = (0, 0)
1
4

x = (a, 0), a ̸= 0
1
4

x = (a, b), b ̸= 0

, iB+C(x) =


1 x = (0, 0)
1
4

x = (a, 0), a ̸= 0
1
4

x = (a, b), b ̸= 0

, fB+C(x) =


0 x = (0, 0)
1
2

x = (a, 0), a ̸= 0
1
2

x = (a, b), b ≠ 0

⇒ {tB+C(x), iB+C(x), fB+C(x) : x ∈ M} ̸= {tA(x), iA(x), fA(x) : x ∈ M} ⇒ A ̸= B + C

⇒ A ̸= B ⊕ C

4. Conclusion

Neutrosophic submodule is one of the generalizations of an algebraic structure, mod-
ule. This chapter has developed a combination of an algebraic structure module with neu-
trosophic set theory. The algebraic property of direct sum of neutrosophic submodules and
its extension to neutrosophic submodules of direct sum are defined.
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ABSTRACT 

One of the special form of neutrosophic multi-set on real number set is N-valued 

neutrosophic trapezoidal number (NVNT-number). Core of this notion is thatit has a lot of 

possibility of the same or the different membership functions which are truth-membership 

functions, indeterminacy-membership functions and falsity-membership functions. In this 

study, a method for NVNT-numbers based on multi-criteria decision-making problems which 

isgiven with NVNT-numbers are proposed. Initially, notion of centroid point of NVNT-

numbers is introduced. Second, some distance measures under centroid point of NVNT-

numbers are proposed. In addition, an algorithm to solve multi-criteria decision-making 

problems given with proposed concept of NVNT-numbers is developed. Finally, a numerical 

example of multi-criteria decision-making, in which the ratings of alternatives are given with 

NVNT-numbers, is proposed to show practicality of the developed algorithm. 

Keywords: Neutrosophic sets, N-valued neutrosophic trapezoidal numbers, distance 

measures, centroid point, multi-criteria decision-making,  

1. Introduction

Many theories put forward to deal with problems involving uncertainty in our daily

life have lost their importance over time and have been replaced by different theories. Some 

of the theories are interval mathematic, probability theory, fuzzy set theory [31], intuitionistic 

fuzzy set theory [1] and neutrosophic set theory [19].Among these theories, the most up-to-

date and that has the widest application area is the fuzzy set theory developed by Zadeh [31] 

in 1965.The theory is constructed with the help of a membership function that takes the values 

in the interval [0,1] for elements of a universal set X. Intuitionistic fuzzy set theory was 

constructed by Atanassov [1] in 1986 by adding a non-membership membership function to 

fuzzy set theory that takes the values in the interval [0,1] for elements of a universal set X. 

Inintuitionistic fuzzy set theory, the sum of the values of the membership function and non-
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membership function for each element of the universal set X always remains in the interval 

[0,1]. This limitation of the membership function and non-membership function creates 

deficiency for problems involving uncertainty. To overcome this situation, in 1998 

Smarandache [19] presented a new set theory called neutrosophic set theory, which includes 

fuzzy set and intuitionistic fuzzy set theory. Later, single-valued neutrosophic sets, which are 

special cases of neutrosophic sets, were developed by Wang et al. [26] in 2010. Recently, 

many author have studied on the neutrosophic sets in [6-9,11,16,17]. 

Fuzzy sets with single membership value between [0,1] have some disadvantages for 

solving problems. For instance; as to measurement of amount carbon in weather problem, it is 

hard to model the data and make a decision by getting results of 4 measurements in a day 

(09:00, 15:00, 18:00, 23:00). Therefore, the multi-fuzzy sets (N-valued fuzzy sets), which is a 

different generalization of fuzzy sets, firstly developed on the multi sets of Yager [29] by 

Miyamoto [14], [15]. In 2018, to model uncertain problems, trapezoidal fuzzy multi-numbers 

with operation laws by using multi fuzzy sets introduced by Uluçay et al [25].The concept of 

trapezoidal fuzzy multi-number allows the repeated occurrences of any element on real 

numbers set R and it is more general when compared to fuzzy numbers. Later, Şahin et al. 

[20-22] proposed new similarity measures on trapezoidal fuzzy multi-numbers and gave two 

applications in multi-criteria decision-making problem. Then, Uluçay [24] introduced a 

decision-making method by defining a new similarity function and a weighted new similarity 

function on trapezoidal fuzzy multi-numbers. In 2021, some new distance measures on 

trapezoidal fuzzy multi-numbers and their application to multi-criteria decision-making 

problems introduced by Deli and Keleş [4]. In fact, the development of the theories is not 

perfect, and further research and exploration are still needed. This is the reason why this study 

is written. 

2. Preliminary

In this section, we present some basic concepts such as fuzzy sets, trapezoidal fuzzy multi-

number, intuitionistic fuzzy multi-sets, intuitionistic fuzzy multi-numbers, neutrosophic sets, 

neutrosophic multi-sets, neutrosophic multi-numbers and so on. 

Definition 2.1 [31] Let X be the universe of discourse. A fuzzy set M defined on X is an 

object of the form  

M = {〈μ
M
(x)/x〉: x ∈ X},

where μ
M
: X → [0,1].
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Definition 2.2 [2] Let M and N be two fuzzy numbers. Then, some distance measures 

between M and N are given as follows; 

i. The generalized distance measure dr(M,N) is defined as;

dq(M,N) = √∑ |μ
M
(xi) − μ

N
(xi)|q

n
i=1

q
 , q≥1. 

ii. The Hamming distance measure dH(M,N) is defined as;

dH(M,N) =∑|μ
M
(xi) − μ

N
(xi)|

n

i=1

iii. The normalized Euclidean distance measure  dnE(M, N) is defined as;

dnE(M, N) =
1

n
√∑|μ

M
(xi) − μ

N
(xi)|2

n

i=1

iv. Supremum distance measure d+∞(M, N)   is defined as;

d+∞(M,N) = sup|μM(xi) − μ
N
(xi)|

Definition 2.3 [27] Let a1 ≤ b1 ≤ c1 ≤ d1  such that a1, b1, c1, d1 ∈ R.A trapezoidal fuzzy 

number a =< (a1, b1, c1, d1);wa >is a special fuzzy set on the real number set R, whose

membership function μ
a
: R → [0,wa]can generally be defined as

μ
a
(x) =

{

(x − a1)wa

b1 − a1
,    a1 ≤ x < b1,

wa,              b1 ≤ x < c1,
(d1 − x)wa

d1 − c1
,    c1 ≤ x < d1,

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

wherewa   ∈   [0,1] is a constant.

Definition 2.4 [5] Let  a =< (a1, b1, c1, d1);wa >  be a trapezoidal fuzzy number such

that 0 ≤ α ≤ wa. Then, α-cut set of a, denoted aα, is defined as; 

aα = {x; µ
a
(x) ≥ α, xϵR} = [La(α), Ra(α)]

 = [
(wa − α)a1 + αb1

wa

,
(wa − α)d1 + αc1

wa

] 

Definition 2.5 [25] Let wa̅
i ∈ [0,1](i ∈ {1,2, . . . , p}) and a, b, c, d ∈ ℝ such that a ≤ b ≤ c ≤

d. Then, a trapezoidal fuzzy multi-number (TFM-number) a̅ = 〈[a, b, c, d]; (wa̅
1, wa̅

2, . . . , wa̅
p
)〉
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is a special fuzzy multi-set on the real number set ℝ, whose membership functions are defined 

as; 

μ
a̅
i (x) =

{

(x−a)

(b−a)
wa̅
i , a ≤ x < 𝑏

wa̅
i , b ≤ x ≤ c

(d−x)

(d−c)
wa̅
i , c < 𝑥 ≤ 𝑑

0, otherwise,

Definition 2.6 [4] Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n >be a trapezoidal fuzzy multi

number. Then, integral vector of  a̅1, denoted by inta̅̅ ̅̅ ̅1
α ,  is given as;

inta̅̅ ̅̅ ̅1
α = ([X1

′ , X1
′′ ], [X2

′ , X2
′′ ], … , [Xn

′ , Xn
′′ ])

 = ([∫ (
(wa̅1

1 − α)a1 + αb1

wa̅1
1 )dα

wa̅1
1

0

, ∫ (
(wa̅1

1 − α)d1 + αc1

wa̅1
1 )dα

wa̅1
1

0

], 

[∫ (
(wa̅1

2 −α)a1+αb1

wa̅1
2 ) dα

wa̅1
2

0
, ∫ (

(wa̅1
2 −α)d1+αc1

wa̅1
2 ) dα

wa̅1
2

0
],…, 

[∫ (
(wa̅1

n − α)a1 + αb1

wa̅1
n )dα

wa̅1
n

0

, ∫
(wa̅1

n − α)a1 + αb1

wa̅1
n )dα

wa̅1
n

0

]) 

= ([
(a1 + b1)wa̅1

1

2
,
(c1 + d1)wa̅1

1

2
] , [
(a1 + b1)wa̅1

2

2
,
(c1 + d1)wa̅1

2

2
] , … , [

(a1 + b1)wa̅1
n

2
,
(c1 + d1)wa̅1

n

2
]) 

Definition 2.7 [4] Let a̅1 =< (a1, b1, c1, d1);wa̅1
1 , wa̅1

2 , …wa̅1
n > and

a̅2 =< (a2, b2, c2, d2);wa̅2
1 , wa̅2

2 , …wa̅2
n > be two trapezoidal fuzzy multi numbers having the

integral vector inta̅̅ ̅̅ ̅1
α = ([X1

′ , X1
′′ ], [X2

′ , X2
′′ ], … , [Xn

′ , Xn
′′ ]) and inta̅̅ ̅̅ ̅2

α =

([Y1
′ , Y1

′′], [Y2
′ , Y2

′′], … , [Yn
′ , Yn

′′]) respectively. Then, generalized distance measure between  a̅1

and a̅2 based on α-cut sets, denoted by d̅1r(a̅1, a̅2)(r ≥ 1),  is defined as;

d̅r(a̅1, a̅2) = √
1

2n
∑((Xi

′ − Yi
′)r + (Xi

′′ − Yi
′′)r

n

i=1

r

34 

Definition 2.8 [30] Let X be a space of discourse, a trapezoidal neutrosophic set Hin X is 

defined as follow: 

H={〈y, TH(y), IH(y), FH(y) 〉|y ∈ Y }

where TH(y) ⊂ [0,1], IH(y) ⊂ [0,1] and FH(y) ⊂ [0,1] are three trapezoidal fuzzy numbers

such that 
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TH(y) = (tH
1 (y), tH

2 (y), tH
3 (y), tH

4 (y)):Y→ [0,1],IH(y) = (iH
1 (y), iH

2 (y), iH
3 (y), iH

4 (y)):Y→ [0,1]

and FH(y) = (fH
1(y), fH

2(y),  fH
3(y), fH

4(y)) :Y→ [0,1]with the condition 0≤ tH
4 (y) + iH

4 (y) +

fH
4(y)≤3, y ∈ Y.

For convenience, the three trapezoidal fuzzy numbers are denoted by TH(y) = (a, b, c, d),

IH(y) = (e, f, g, h)  and FH(y) = (i, j, k, l) . Thus, a trapezoidal neutrosophic numbers is

denoted by m= 〈(a, b, c, d),(e, f, g, h),(i, j, k, l)〉. 

Definition 2.9 [30] Let  ñ = 〈(a1, a2, a3, a4), (b1, b2, b3, b4) , (c1, c2, c3, c4)〉 be a

trapezoidalfuzzyneutrosophicnumber. 

i) Centroid point of the truth membership function of trapezoidal fuzzy neutrosophic

number ñ is

OT = (xT(ñ), yT(ñ))=
1

3
([a1 + a2 + a3 + a4 −

a4a3−a1a2

(a4+a3)−(a1+a2)
],[1 +

a3−a2

(a4+a3)−(a1+a2)
]).

ii) Centroid point of the indeterminacy membership function of trapezoidal fuzzy

neutrosophic number ñ is

OI = (xI(ñ), yI(ñ)) =
1

3
([b1 + b2 + b3 + b4 −

b4b3−b1b2
(b4+b3)−(b1+b2)

] ,[1 +
b3−b2

(b4+b3)−(b1+b2)
]). 

iii) Centroid point of the falsity membership function of trapezoidal fuzzy neutrosophic number ñ is

OF = (xF(ñ), yF(ñ)) =
1

3
([c1 + c2 + c3 + c4 −

c4c3−c1c2
(c4+c3)−(c1+c2)

] ,[1 +
c3−c2

(c4+c3)−(c1+c2)
]). 

Finally, centroid point of trapezoidal fuzzy neutrosophic number ñ is 

O(x(ñ),y(ñ))=(
xT(ñ)+xI(ñ)+xF(ñ)

3
,
yT(ñ)+yI(ñ)+yF(ñ)

3
) 

Definition 2.11 [3] Let η
A1

i , ϑA1
i , θA1

i ∈ [0,1](i ∈ {1,2,… , p})and a, b, c, d ∈ ℝ such that a ≤

b ≤ c ≤ d. Then, an N-valued neutrosophic trapezoidal number(NVNT-number) 

A1 = 〈[a, b, c, d]; (η
A1

1 , η
A1

2 , . . . , η
A1

P ), (ϑA1
1 , ϑA1

2 , . . . , ϑA1
P ), (θA1

1 , θA1
2 , . . . , θA1

P )〉  is a neutrosophic 

multi-set on the real number set ℝ , whose truth-membership functions, indeterminacy-

membership functions and falsity-membership functions are defined as, respectively.  
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TA1
i (x) =

{

(x−a)

(b−a)
η
A1

i , a ≤ x < 𝑏

η
A1

i , b ≤ x ≤ c

(d−x)

(d−c)
η
A1

i , c < 𝑥 ≤ 𝑑

0, otherwise,

,   Iα̃
i (x) =

{

(b−x)+ϑA1
i (x−a)

(b−a)
, a ≤ x < 𝑏

ϑA1
i , b ≤ x ≤ c

(x−c)+ϑA1
i (d−x)

(d−c)
, c < 𝑥 ≤ 𝑑

1, otherwise,

and 

FA1
i (x) =

{

(b − x) + θA1
i (x − a)

(b − a)
, a ≤ x < 𝑏

θA1
i , b ≤ x ≤ c

(x − c) + θA1
i (d − x)

(d − c)
, c < 𝑥 ≤ 𝑑

1, otherwise,

Note that the set of all NVNT-numbers onℝ will be denoted by Λ. 

Definition 2.12 [3] Let A̅1 =

〈[a1, b1, c1, d1]; (η
A̅1

1 ,η
A̅1

2 , . . . ,η
A̅1

P ) , (ϑA̅1
1 , ϑA̅1

2 , . . . , ϑA̅1
P ), (θA̅1

1 , θA̅1
2 , . . . , θA̅1

P )〉, 

A̅2 = 〈[a2, b2, c2, d2]; (η
A̅2

1 ,η
A̅2

2 , . . . , η
A̅2

P ) , (ϑA̅2
1 , ϑA̅2

2 , . . . , ϑA̅2
P ), (θA̅2

1 , θA̅2
2 , . . . , θA̅2

P )〉  ∈ Λ and 

γ ≠ 0 be any real number. Then, 

i. A̅1+A̅2=〈⦋a1 + a2, b1 + b2, c1 + c2, d1 +

d2⦌; (
η
A̅1
1 +η

A̅2
1

1+ηA̅1
1 η

A̅2
1 ,

η
A̅1
2 +η

A̅2
2

1+ηA̅1
2 η

A̅2
2 , … ,

η
A̅1

p
+η

A̅2

p

1+η
A̅1

p
η
A̅2

p ) 

(
ϑA̅1
1

ϑA̅2
1

1+(1−ϑA̅1
1 )(1−ϑA̅2

1 )
,

ϑA̅1
2

ϑA̅2
2

1+(1−ϑA̅1
1 )(1−ϑA̅2

2 )
, … ,

ϑ
A̅1

p
ϑ
A̅2

p

1+(1−ϑ
A̅1

p
)(1−ϑ

A̅2

p
)
), 

(
θA̅1
1

θA̅2
1

1 + (1 − θA̅1
1 )(1 − θA̅2

1 )
,

θA̅1
2

θA̅2
2

1 + (1 − θA̅1
1 )(1 − θA̅2

2 )
, … ,

θA̅1
p

θA̅2
p

1 + (1 − θA̅1
p
) (1 − θA̅2

p
)
)⟩ 

ii. A̅1. A̅2 = 〈[a1. a2, b1. b2, c1. c2, d1. d2⦌; (
η
A̅1

1 η
A̅2

1

1 + (1 − η
A̅1

1 ) (1 − η
A̅2

1 )
, 
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η
A̅1
2 η

A̅2
2

1+(1−ηA̅1
2 )(1−ηA̅2

2 )
, … ,

η
A̅1
2 η

A̅2
2

1+(1−ηA̅1
2 )(1−ηA̅2

2 )
), 

(
ϑA̅1
1 + ϑA̅2

1

1 + ϑA̅1
1

ϑA̅2
1 ,

ϑA̅1
2 + ϑA̅2

2

1 + ϑA̅1
2

ϑA̅2
2 , … ,

ϑA̅1
p
+ ϑA̅2

p

1 + ϑA̅1
p

ϑA̅2
p ) ,

(
θA̅1
1 + θA̅2

1

1 + θA̅1
1

θA̅2
1 ,

θA̅1
2 + θA̅2

2

1 + θA̅1
2

θA̅2
2 , … ,

θA̅1
p
+ θA̅2

p

1 + θA̅1
p

θA̅2
p )〉

iii. γA̅1 = 〈[γa1, γb1, γc1, γd1];

(
(1+η

A̅1
1 )γ−(1−η

A̅1
1 )γ

(1+η
A̅1
1 )γ+(1−η

A̅1
1 )γ

,
(1+η

A̅1
2 )γ−(1−η

A̅1
2 )γ

(1+η
A̅1
2 )γ+(1−η

A̅1
2 )γ

, … ,
(1+η

A̅1

p
)γ−(1−η

A̅1

p
)γ

(1+η
A̅1

p
)γ+(1−η

A̅1

p
)γ
), 

(
2(ϑA̅1

1 )γ

(2 − ϑA̅1
1 )γ + (ϑA̅1

1 )γ
,

2(ϑA̅1
2 )γ

(2 − ϑA̅1
2 )γ + (ϑA̅1

2 )γ
, … ,

2(ϑA̅1
p
)γ

(2 − ϑA̅1
p
)γ + (ϑA̅1

p
)γ
), 

(
2(θA̅1

1 )γ

(2 − θA̅1
1 )γ + (θA̅1

1 )γ
,

2(θA̅1
2 )γ

(2 − θA̅1
2 )γ + (θA̅1

2 )γ
, … ,

2(θA̅1
p
)λ

(2 − θA̅1
p
)λ + (θA̅1

p
)λ
)〉. 

iv. A̅1
γ
= 

 〈[a1
γ
, b1

γ
, c1

γ
, d1

γ
]; (

2(η
A̅1

1 )γ

(2 − η
A̅1

1 )γ + (η
A̅1

1 )γ
,

2(η
A̅1

2 )γ

(2 − η
A̅1

2 )γ + (η
A̅1

2 )γ
, … ,

2(η
A̅1

p
)γ

(2 − η
A̅1

p
)γ + (η

A̅1

p
)γ
),

(
(1 + ϑA̅1

1 )γ − (1 − ϑA̅1
1 )γ

(1 + ϑA̅1
1 )γ + (1 − ϑA̅1

1 )γ
,
(1 + ϑA̅1

2 )γ − (1 − ϑA̅1
2 )γ

(1 + ϑA̅1
2 )γ + (1 − ϑA̅1

2 )γ
, … ,

(1 + ϑA̅1
p
)γ − (1 − ϑA̅1

p
)γ

(1 + ϑA̅1
p
)γ + (1 − ϑA̅1

p
)γ
), 

(
(1 + θA̅1

1 )γ − (1 − θA̅1
1 )γ

(1 + θA̅1
1 )γ + (1 − θA̅1

1 )γ
,
(1 + θA̅1

2 )γ − (1 − θA̅1
2 )γ

(1 + θA̅1
2 )γ + (1 − θA̅1

2 )γ
, … ,

(1 + θA̅1
p
)γ − (1 − θA̅1

p
)γ

(1 + θA̅1
p
)γ + (1 − θA̅1

p
)γ
)〉. 

Definition 2.13 [3] Let 

Aj = 〈(aj, bj, cj, dj); (η
Aj

1 ,η
Aj

2 , … , η
Aj

P ) , (ϑAj
1 , ϑAj

2 , … , ϑAj
P ) , (θAj

1 , θAj
2 , … , θAj

P )〉 ∈ Λ ( j ∈

{1,2, … , n}) be a collection of NVNT-numbers. Then, 
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i. weighted arithmetic operator of NVNT-numbers, denoted by NVNTNaw , is

defined as;

NVNTNaw(A̅1, A̅2, . . . , A̅n) =∑wjA̅j

n

j=1

= ⟨[∑wjaj

n

j=1

,∑wjbj

n

j=1

,∑wjcj,

n

j=1

∑wjdj

n

j=1

] ; (
∏ (1 + η

A̅j

1 )wj −∏ (1 − η
A̅j

1 )wjn
j=1

n
j=1

∏ (1 + η
A̅j

1 )wj +∏ (1 − η
A̅j

1 )wjn
j=1

n
j=1

, 

∏ (1 + η
A̅j

2 )wj −∏ (1 − η
A̅j

2 )wjn
j=1

n
j=1

∏ (1 + η
A̅j

2 )wj +∏ (1 − η
A̅j

2 )wjn
j=1

n
j=1

, . . . ,
∏ (1 + η

A̅j

p
)wj −∏ (1 − η

A̅j

p
)wjn

j=1
n
j=1

∏ (1 + η
A̅j

p
)wj +∏ (1 − η

A̅j

p
)wjn

j=1
n
j=1

), 

(
2∏ (ϑA̅j

1 )wjn
j=1

∏ (2 − ϑA̅j
1 )wj +∏ (ϑA̅j

1 )wjn
j=1

n
j=1

,
2∏ (ϑA̅j

2 )wjn
j=1

∏ (2 − ϑA̅j
2 )wj +∏ (ϑA̅j

2 )wjn
j=1

n
j=1

, . . ., 

2∏ (ϑA̅j
p
)wjn

j=1

∏ (2 − ϑA̅j
p
)wj +∏ (ϑA̅j

p
)wjn

j=1
n
j=1

) , (
2∏ (θA̅j

1 )wjn
j=1

∏ (2 − θA̅j
1 )wj +∏ (θA̅j

1 )wjn
j=1

n
j=1

, 

2∏ (θA̅j
2 )wjn

j=1

∏ (2 − θA̅j
2 )wj +∏ (θA̅j

2 )wjn
j=1

n
j=1

, . . . ,
2∏ (θA̅j

p
)wjn

j=1

∏ (2 − θA̅j
p
)wj +∏ (θA̅j

p
)wjn

j=1
n
j=1

)⟩ 

ii. weighted geometric operator of NVNT-numbers, denoted by NVNTNgw , is

defined as

NVNTNgw(A̅1, A̅2, . . . , A̅n) =
1

j
n w

jj
A



= 

1

1

1 1 1 1 1 1

1 1

2 ( )
, , , ; ,

(2 ) ( )

j

jj j j j

j j

j j

n w

n n n n Aw w w w j

j j j j n nw wj j j j

A Aj j

a b c d


 



   

 


 

    



   

 

2

1 1

2 2

1 1 1 1

2 ( ) 2 ( )
,...,

(2 ) ( ) (2 ) ( )

j j

j j

j j j j

j j j j

n nw wp

A Aj j

n n n nw w w wp p

A A A Aj j j j

 

   

 

   



   


 

   

1 1 2 2

1 1 1 1

1 1 2 2

1 1 1 1

(1 ) (1 ) (1 ) (1 )
, ,...,

(1 ) (1 ) (1 ) (1 )

j j j j

j j j j

j j j j

j j j j

n n n nw w w w

A A A Aj j j j

n n n nw w w w

A A A Aj j j j

   

   

   

   

      

      


   

   

1 1

1 1 1 1

1 1

1 1 1 1

(1 ) (1 ) (1 ) (1 )
,

(1 ) (1 ) (1 ) (1 )

j j j j

j j j j

j j j j

j j j j

n n n nw w w wp p

A A A Aj j j j

n n n nw w w wp p

A A A Aj j j j

   

   

   

   

      
 
      
 

   

   
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2 2

1 1 1 1

2 2

1 1 1 1

(1 ) (1 ) (1 ) (1 )
,...,

(1 ) (1 ) (1 ) (1 )

j j j j

j j j j

j j j j

j j j j

n n n nw w w wp p

A A A Aj j j j

n n n nw w w wp p

A A A Aj j j j

   

   

   

   

     

     


   

   

where w = (w1, w2, w3, . . . , wn)
T is the weight vector of A̅j, ( j ∈ {1,2,… , n}) with wj ∈ [0,1]

and ∑nj=1 wj = 1.

Definition 2.14 [3] Let 

Ai = 〈(ai, bi, ci, di); (η
Ai

1 ,η
Ai

2 , . . . ,η
Ai

P ) , (ϑAi
1 , ϑAi

2 , . . . , ϑAi
P ), (θAi

1 , θAi
2 , . . . , θAi

P )〉 be a collection of

NVTN-numbers and In = {1,2,… , n}. The positive ideal solution r+and negative solution r−

of NVNT-numbers are given as; 

r+ = 〈max
i∈In

{ai},max
i∈In

{bi}, max
i∈In

{ci}, max
i∈In

{di}); (max
i∈In

{η
Ai

1 } , max
i∈In

{η
Ai

2 } ,… ,max
i∈In

{η
Ai

P }), 

(min
i∈In

{(ϑAi
1 )}, min

i∈In
{(ϑAi

2 )},… ,min
i∈In

{(ϑAi
P )}), (min

i∈In

{(θAi
1 )},min

i∈In
{(θAi

2 )},… ,min
i∈In

{(θAi
P )})〉 

and 

r− = 〈min
i∈In

{ai},min
i∈In

{bi}, min
i∈In

{ci},min
i∈In

{di}); (min
i∈In

{η
Ai

1 } , min
i∈In

{η
Ai

2 } , … ,min
i∈In

{η
Ai

P }), 

(max
i∈In

{(ϑAi
1 )},max

i∈In
{(ϑAi

2 )}, … ,max
i∈In

{(ϑAi
P )}), (max

i∈In

{(θAi
1 )},max

i∈In
{(θAi

2 )}, … ,max
i∈In

{(θAi
P )})〉 

respectively. 

3. A New Distance Measure for NVNT-Number

In this section,  we introduce a new distance measure for N-valued trapezoidal fuzzy 

neutrosophic number based on centroid points. 

Definition 3.1 Let 

A1 = 〈(a1, b1, c1, d1); (η
A1

1 , η
A1

2 , . . . ,η
A1

P ) , (ϑA1
1 , ϑA1

2 , . . . , ϑA1
P ), (θA1

1 , θA1
2 , . . . , θA1

P )〉 be a NVTN-

number. 

i) Centroid point of the truth membership functions of A1is;

(OT(1), OT(2), … , OT(P))

= ((xT (η
A1

1 ) , yT (η
A1

1 )) , (xT (η
A1

2 ) , yT (η
A1

2 )) ,… , (xT (η
A1

P ) , yT (η
A1

P )))

Where 

254



xT (η
A1

i ) =
∫ xf

ηA1
i
L dx+∫ x.ηAi

1 dx+∫ xf
ηA1
i
R dx

d1
c1

c1
b1

b1
a1

∫ f
ηA1
i
L dx+∫ ηAi

1 dx+∫ f
ηA1
i
R dx

d1
c1

c1
b1

b1
a1

and yT (η
A1

i )=
∫ y(g

ηA1
i
L −g

ηA1
i
R )dy

ηAi
1

0

∫ (g
ηA1
i
L −g

ηA1
i
R )dy

ηAi
1

0

. 

f
ηA1
i
L =

(x−a1)

(b1−a1)
η
A1

i , f
ηA1
i
R =

(d1−x)

(d1−c1)
η
A1

i  and  g
ηA1
i
L =

a1 .ηA1
i +x(b1−a1)

ηA1
i  ,  g

ηA1
i
R =

d1.ηA1
i −x.(d1−c1)

ηA1
i  are 

inverse functions of f
ηA1
i
L  and f

ηA1
i
R  respectively.

ii) Centroid points of the indeterminacy membership functions of A1
i  are;

(OI(1), OI(2), … , OI(P)) = ((xI(ϑA1
1 ), yI(ϑA1

1 )) , (xI(ϑA1
2 ), yI(ϑA1

2 )) , … , (xI(ϑA1
P ), yI(ϑA1

P ))) 

Where 

xI(ϑA1
i ) =

∫ xf
ϑA1
i
L dx+∫ x.ϑA1

i dx+∫ xf
ϑA1
i
R dx

d1
c1

c1
b1

b1
a1

∫ f
ϑA1
i
L dx+∫ ϑA1

i dx+∫ f
ϑA1
i
R dx

d1
c1

c1
b1

b1
a1

, andyI(ϑA1
i )=

∫ y(g
ϑA1
i
L −g

ϑA1
i
R )dy

ϑA1
i

0

∫ (g
ϑA1
i
L −g

ϑA1
i
R )dy

ϑA1
i

0

. 

f
ϑA1
i
L =

(b1−x)+ϑA1
i (x−a1)

(b1−a1)
, f

ϑA1
i
R =

(x−c1)+ϑA1
i (d1−x)

(d1−c1)
and g

ϑA1
i
L =

b1−a1 .ϑA1
i −x(b1−a1)

1−ϑA1
i , g

ϑA1
i
R =

d1.ϑA1
i −c1−x(d1−c1)

ϑA1
i −1

 the inverse functions of f
ϑA1
i
L  and f

ϑA1
i
R  respectively. 

iii) Centroid points of the falsify membership functions of A1
i  are;

(OF(1), OF(2), … , OF(P)) = ((xF(θA1
1 ), yF(θA1

1 )) , (xF(θA1
2 ), yF(θA1

2 )) ,… , (xF(θA1
P ), yF(θA1

P ))) 

Where 

xF(θA1
i ) =

∫ xf
θA1
i
L dx+∫ x.θA1

i dx+∫ xf
θA1
i
R dx

d1
c1

c1
b1

b1
a1

∫ f
θA1
i
L dx+∫ θA1

i dx+∫ f
θA1
i
R dx

d1
c1

c1
b1

b1
a1

and yF(θA1
i )=

∫ y(g
θA1
i
L −g

θA1
i
R )dy

θA1
i

0

∫ (g
θA1
i
L −g

θA1
i
R )dy

θA1
i

0

f
θA1
i
L =

(b1−x)+θA1
i (x−a1)

(b1−a1)
, f

θA1
i
R =

(x−c1)+θA1
i (d1−x)

(d1−c1)
 and g

θA1
i
L =

b1−a1.θA1
i −x(b1−a1)

1−θA1
i , g

θA1
i
R =

d1.θA1
i −c1−x(d1−c1)

θA1
i −1

 the inverse functions of f
θA1
i
L  and f

θA1
i
R  respectively. 

 By computing integrals given above, we get following result; 

Result 3.1 Let 
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A1 = 〈(a1, b1, c1, d1); (η
A1

1 , η
A1

2 , . . . ,η
A1

P ) , (ϑA1
1 , ϑA1

2 , . . . , ϑA1
P ), (θA1

1 , θA1
2 , . . . , θA1

P )〉be a NVTN-

number. 

i) Centroid points of the truth membership functions of A1
i  are;

(OT(1), OT(2), … , OT(P)

= ((xT (η
A1

1 ) , yT (η
A1

1 )) , (xT (η
A1

2 ) , yT (η
A1

2 )) , … , (xT (η
A1

P ) , yT (η
A1

P )))

Where for i=1,2,...,P; 

xT (η
A1

i ) =
(c1

2+d1
2−a1

2−b1
2+c1d1−a1b1)

3(c1+d1−a1−b1)
and yT (η

A1

i ) =
ηAi
1 .(2b1+a1−d1−2c1)

3(b1+a1−d1−c1)

ii) Centroid points of the indeterminacy membership functions of A1
i  are;

(OI(1), OI(2), … , OI(P)) = ((xI(ϑA1
1 ), yI(ϑA1

1 )) , (xI(ϑA1
2 ), yI(ϑA1

2 )) , … , (xI(ϑA1
P ), yI(ϑA1

P ))) 

Where for i=1,2,...,P; 

xI(ϑA1
i ) =

(ϑA1
i +2)(a1

2−d1
2)+(ϑA1

i −1)(a1b1+b1
2−c1

2−c1d1)

3.[(ϑA1
i +1)(a1−d1)+(ϑA1

i −1)(b1−c1)]
and yI(ϑA1

i )=
ϑA1
i [a1+2b1−2c1−d1−3(b1−c1)/ϑA1

i ]

3[a1+b1−c1−d1−
2(b1−c1)

ϑA1
i ]

iii) Centroid points of the falsify membership functions of A1
i  are;

(OF(1), OF(2), … , OF(P)) = ((xF(θA1
1 ), yF(θA1

1 )) , (xF(θA1
2 ), yF(θA1

2 )) ,… , (xF(θA1
P ), yF(θA1

P ))) 

Where for i=1,2,...,P; 

xF(θA1
i ) =

(θA1
i +2)(a1

2−d1
2)+(θA1

i −1)(a1b1+b1
2−c1

2−c1d1)

3.[(θA1
i +1)(a1−d1)+(θA1

i −1)(b1−c1)]
and yF(θA1

i )=
θ A1
i [a1+2b1−2c1−d1−3(b1−c1)/θA1

i ]

3[a1+b1−c1−d1−
2(b1−c1)

θA1
i ]

Definition 3.2 Let 

A1 = 〈(a1, b1, c1, d1); (η
A1

1 , η
A1

2 , . . . ,η
A1

P ) , (ϑA1
1 , ϑA1

2 , . . . , ϑA1
P ), (θA1

1 , θA1
2 , . . . , θA1

P )〉 be a NVTN-

number. Centroid point of A1, denoted by C(A1), is defined as; 

C(A1) = ((rA1
1 , sA1

1 ), (rA1
2 , sA1

2 ),… , (rA1
P , sA1

P ))

Where 

(rA1
i , sA1

i )=(
xT(A1

i )+xI(A1
i )+xF(A1

i )

3
,
yT(A1

i )+yI(A1
i )+yF(A1

i )

3
) (i=1,2,...,P) 

Lemma 3.1 [28] Let x1, x2,…,xn and y1,y2,…,yn be real numbers. Then, 

|x1y1 + x2y2 +⋯+ xnyn|≤√x12 + x22 +⋯+ xn2.√y12 + y22 +⋯+ yn2
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Definition 3.3Let 

A1 = 〈[a1, b1, c1, d1]; (η
A1

1 ,η
A1

2 , . . . , η
A1

P ) , (ϑA1
1 , ϑA1

2 , . . . , ϑA1
P ), (θA1

1 , θA1
2 , . . . , θA1

P )〉, 

A2 = 〈[a2, b2, c2, d2]; (η
A2

1 ,η
A2

2 , … ,η
A2

P ) , (ϑA2
1 , ϑA2

2 , … , ϑA2
P ), (θA2

1 , θA2
2 , … , θA2

P )〉  and A3

= 〈[a3, b3, c3, d3]; (η
A3

1 , η
A3

2 , … , η
A3

P ) , (ϑA3
1 , ϑA3

2 , … , ϑA3
P ), (θA3

1 , θA3
2 , … , θA3

P )〉

be three NVTN − numbers and C(A1) = ((rA1
1 , sA1

1 ), (rA1
2 , sA1

2 ),… , (rA1
P , sA1

P )) , C(A2) =

((rA2
1 , sA2

1 ), (rA2
2 , sA2

2 ), … , (rA2
P , sA2

P )) and C(A3) =

((rA3
1 , sA3

1 ), (rA3
2 , sA3

2 ), … , (rA3
P , sA3

P )) be centroid point of A1, A2 and A3 respectively.

Distance between A1 and A2 is given as; 

dq(A1, A2) = √
1

2P
∑

P

i=1

(|rA1
i − rA2

i |
q
+ |sA1

i − sA2
i |

q
)

q

By changing value of q, we get some special cases of the distance between A1 and A2 as 

follows; 

Case 1: If q=1, we get Hamming distance between A1 and A2 as follows; 

d1(A1, A2) =
1

2P
∑

P

i=1

(|rA1
i − rA2

i | + |sA1
i − sA2

i |) 

Case 2: If q=2, we get Euclidean distance between A1 and A2 as follows; 

d2(A1, A2) = √
1

2P
∑

P

i=1

((rA1
i − rA2

i )2 + (sA1
i − sA2

i )2)

Case 3: If q→+∞, we get 1. Chebyshev distance measure between A1 and A2 as follows; 

d+∞(A1, A2) = max {
|rA1
i − rA2

i | + |sA1
i − sA2

i |

2P
} 

Teorem 3.1 Let A1 =

〈[a1, b1, c1, d1]; (η
A1

1 ,η
A1

2 , . . . ,η
A1

P ) , (ϑA1
1 , ϑA1

2 , . . . , ϑA1
P ), (θA1

1 , θA1
2 , . . . , θA1

P )〉, 

A2 = 〈[a2, b2, c2, d2]; (η
A2

1 ,η
A2

2 , . . . , η
A2

P ) , (ϑA2
1 , ϑA2

2 , . . . , ϑA2
P ), (θA2

1 , θA2
2 , . . . , θA2

P )〉  and 

A3 = 〈[a3, b3, c3, d3]; (η
A3

1 , η
A3

2 , … ,η
A3

P ) , (ϑA3
1 , ϑA3

2 , … , ϑA3
P ), (θA3

1 , θA3
2 , … , θA3

P )〉 

be three NVTN − numbers and O(i)(rA1
i , sA1

i ), O(i)(rA2
i , sA2

i ) and O(i)(rA3
i , sA3

i )

 be centroid point of A1, A2 and A3 respectively.  Distance between A1 and A2  has 

following conditions; 

i) dq(A1, A2) ≥0

ii) dq(A1, A2) =0 ⇔A1 = A2
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iii) dq(A1, A2) = dq(A2, A1)

iv) dq(A1, A2) + dq(A2, A3) ≥ dq(A1, A3)

Proof The teorem is proven for q=2. 

i) By using basic mathematical laws, we can get ;

(rA1
i − rA2

i )2 ≥0, (sA1
i − sA2

i )2 ≥0

⇒(rA1
i − rA2

i )2 + (sA1
i − sA2

i )2 ≥0

⇒∑
p
i=1 ((rA1

i − rA2
i )2 + (sA1

i − sA2
i )2) ≥0

⇒
1

2P
∑p
i=1 ((rA1

i − rA2
i )2 + (sA1

i − sA2
i )2) ≥0

⇒√
1

2P
∑p
i=1

((rA1
i − rA2

i )2 + (sA1
i − sA2

i )2) ≥0

⇒d2(A1, A2) ≥0

ii) d2(A1, A2) = √
1

2P
∑p
i=1

((rA1
i − rA2

i )2 + (sA1
i − sA2

i )2)=0

⇒
1

2P
∑p
i=1 ((rA1

i − rA2
i )

2
+ (sA1

i − sA2
i )

2
)=0

⇒∑
p
i=1 ((rA1

i − rA2
i )2 + (sA1

i − sA2
i )2)=0

⇒(rA1
i − rA2

i )2 + (sA1
i − sA2

i )2=0.

Therefore we get; 

(rA1
i − rA2

i )2 = 0 ⇔ rA1
i = rA2

i ,

(sA1
i − sA2

i )2 = 0 ⇔ sA1
i = sA2

i .

That means 

A1 = A2 

iii) d2(A1, A2) = √
1

2P
∑p
i=1

((rA1
i − rA2

i )2 + (sA1
i − sA2

i )2)

=√
1

2P
∑p
i=1

((rA2
i − rA1

i )2 + (sA2
i − sA1

i )2)

 =d2(A2, A1) 

iv) By using Cauchy-Schwarz inequality given in Lemma 3.1;

(rA1
i + sA1

i )2+(rA2
i + sA2

i )2=(rA1
i 2

+rA2
i 2

)+ (sA1
i 2

+sA2
i 2

)+2.(rA1
i sA1

i + rA2
i sA2

i )

≤(rA1
i 2

+rA2
i 2

)+ (sA1
i 2

+sA2
i 2

)+2.√rA1
i 2

+ rA2
i 2
√sA1

i 2
+ sA2

i 2
 

=(√rA1
i 2

+ rA2
i 2

+ √sA1
i 2

+ sA2
i 2
)

2
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Taking square roots gives; 

√(rA1
i + sA1

i )2 + (rA2
i + sA2

i )2 ≤ √rA1
i 2

+ rA2
i 2

+√sA1
i 2

+ sA2
i 2

 

Now we can compute  

√(rA1
i − rA3

i )2 + (sA1
i − sA3

i )2

=√((rA1
i − rA2

i ) + (rA2
i − rA3

i ))
2

+ ((sA1
i − sA2

i ) + (sA2
i − sA3

i ))
2

≤√(rA1
i − rA2

i )2 + (sA1
i − sA2

i )2+√(rA2
i − rA3

i )2 + (sA2
i − sA3

i )2

Therefore we get; 

d2(A1, A2) + d2(A2, A3) ≥ d2(A1, A3)

4. An approach to MCDM problems under for N-valued Neutrosophic Trapezoidal

Numbers

Definition 4.1 [3] Let X = {x1, x2, … , xm} be a set of alternatives, U = {u1, u2, … , un} be the 

set of criteria. Assume that the evaluating value of criteria ujwith respect to alternative xi, be 

represented by a NVNT-numbers 

Aij =

〈[aij , bij , cij , dij]; (η
Aij

1 , η
Aij

2 , η
Aij

3 , … , η
Aij

P ) , (ϑAij
1 , ϑAij

2 , ϑAij
3 , … , ϑAij

P ) , (θAij
1 , θAij

2 , θAij
3 , … , θAij

p
)〉m×n 

where 0 ≤ aij ≤ bij ≤ cij ≤ dij ≤ 1, 0 ≤

η
Aij

1 , η
Aij

2 ,η
Aij

3 , … , η
Aij

P , ϑAij
1 , ϑAij

2 , ϑAij
3 , … , ϑAij

P , θAij
1 , θAij

2 , θAij
3 , … , θAij

p
≤ 1, and (Aij)mxn

=

((aij, bij , cij , dij); (η
Aij

1 ,η
Aij

2 ,η
Aij

3 , … ,η
Aij

p
) , (ϑAij

1 , ϑAij
2 , ϑAij

3 , … , ϑAij
p
) , (θAij

1 , θAij
2 , θAij

3 , … , θAij
p
))
mxn

 , 

(i=1,2,…,m) and (j=1,2,…,n) be the  decision matrix given by experts based on Table 1. 

Then,  

(Aij)mxn =

(

A11 A12 ⋯ A1n
A21 A22 ⋯ A2n
⋮ ⋮ ⋱ ⋮
Am1 Am2 ⋯ Amn

)
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is called a NVNT-numbers multi-criteria decision matrix of the decision maker. 

Table 1 [3]. The linguistic values of the NVNT-numbers for the evaluation matrix 

 Linguistic values NVNT-number values 

Very Poor(VP)
⟨(0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3)⟩

Poor( P) 
⟨(0.86,0.88,0.90,1.00); (0.9,0.5,02), (0.7,0.6,0.4), (0.3,0.1,0.2)⟩

Medium (M) 
⟨(0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3)⟩

Good (G) 
⟨(0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4)⟩ 

Very Good(VG)
⟨(0.00,0.12,0.15,0.20); (0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5)⟩ 

Also, assume that w= (w1, w2, … , wn) be weight vector of the criteria set U given by experts. 

Algorithm 

Step 1: Create an evaluation matrix (Aij)m×n based on Table 1. 

Step 2:For all i (i = 1,2, . . . ,m) find the aggregation values according to NVNTNaw operator, 

in order to obtain the ultimate performance value corresponding to the alternative Ai(i =

1,2, . . . , m) as;  

Ai = NVNTNaw(Ai1, Ai2, . . . , Ain) (i = 1,2, . . . , m)

Step 3: Find the centroid points of  Ai  (i = 1,2, . . . , m) for truth, indeterminacy and falsity

memberships according to Result 3.1; 

(OT(1), OT(2), … , OT(P)) = ((xT(Ai
1), yT(Ai

1)) , (xT(Ai
2), yT(Ai

2)) , … , (xT(Ai
P), yT(Ai

P)))

(OI(1), OI(2), … , OI(P)) = ((xI(Ai
1), yI(Ai

1)) , (xI(Ai
2), yI(Ai

2)) , … , (xI(Ai
P), yI(Ai

P)))

(OF(1), OF(2), … , OF(P)) = ((xF(Ai
1), yF(Ai

1)) , (xF(Ai
2), yF(Ai

2)) , … , (xF(Ai
P), yF(Ai

P)))

Step 4:  Find the centroid point of Ai(i = 1,2,… ,m)givenin Definition 3.2;

C(Ai) = ((rAi
1 , sAi

1 ), (rAi
2 , sAi

2 ), … , (rAi
P , sAi

P ))
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Step 5: Find the distances between Ai (i = 1,2,… ,m) and positive-negative ideal solution

based on Definition 3.3 as; 

d2(Ai, r
+), d2(Ai, r

−)(i = 1,2,… ,m)

Where r+  and  r−   are the positive ideal solution and negative ideal solution of Ai

(i=1,2,…,m) respectively. That is, 

r+ = 〈 max
i∈{1,2,…,m}

{ai}, max
i∈{1,2,…,m}

{bi}, max
i∈{1,2,…,m}

{ci}, max
i∈{1,2,…,m}

{di}) ;

( max
i∈{1,2,…,m}

{η
Ai

1 } , max
i∈{1,2,…,m}

{η
Ai

2 } ,… , max
i∈{1,2,…,m}

{η
Ai

P }), 

(min
i∈{1,2,…,m}

{(ϑAi
1 )}, min

i∈{1,2,…,m}
{(ϑAi

2 )}, … , min
i∈{1,2,…,m}

{(ϑAi
P )}), 

(min
i∈{1,2,…,m}

{(θAi
1 )}, min

i∈{1,2,…,m}
{(θAi

2 )}, … , min
i∈{1,2,…,m}

{(θAi
P )})〉 

and 

r− = 〈 min
i∈{1,2,…,m}

{ai}, min
i∈{1,2,…,m}

{bi}, min
i∈{1,2,…,m}

{ci}, min
i∈{1,2,…,m}

{di}) ;

( min
i∈{1,2,…,m}

{η
Ai

1 } , min
i∈{1,2,…,m}

{η
Ai

2 } , … , min
i∈{1,2,…,m}

{η
Ai

P }), 

(max
i∈{1,2,…,m}

{(ϑAi
1 )}, max

i∈{1,2,…,m}
{(ϑAi

2 )},… , max
i∈{1,2,…,m}

{(ϑAi
P )}), 

(max
i∈{1,2,…,m}

{(θAi
1 )}, max

i∈{1,2,…,m}
{(θAi

2 )},… , max
i∈{1,2,…,m}

{(θAi
P )})〉 

Step 6: Calculate the score value s(Ai ) of the Ai (i = 1,2, . . . , m) defined as;

s(Ai ) =
d2(Ai ,r

−)

d2(Ai ,r
+)+d2(Ai ,r

−)

Step 7: Rank all the alternatives Ai (i = 1,2, . . . ,m)and select the best one, in accordance with

score of each Ai (S(Ai )). The smaller the S(Ai ), the better the alternatives Ai . 

5. Application

In order to show usefulness of proposed method, we give following application adopted from 

Kesen [13]. 

Suppose that a factory administration is aim to hire a technician for newly-established section 

of the factory. The administration doesn’t know exactly who is suitable for that position since 

there are a lot ofalternatives. After a short consideration, the administration managed to shrink 
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the alternatives’ list and five alternatives left for choosing which isX = {x1, x2, x3, x4, x5}. The 

administration will choose a technician from alternatives’ list according to four attributes: 

1. Work experience  (c1)

2. Tendency to team work (c2)

3. Reference (c3)

4. Education backround (c4)

Weight vector of the attributes is w = (0.3,0.2,0.4,0.1). The administration considers the 

alternatives in the context of the linguistic terms given in Table 1. The process of finding the 

best choice is given as follows: 

Step 1: Alternatives and attributes evaluated by the administrationand results of the 

evaluation are presented in decision matrix (Aij)5×4 as;  

(Aij)5x4 =

(

⟨(0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3)⟩

⟨(0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3)⟩

⟨(0.86,0.88,0.90,1.00); (0.9,0.5,0.2), (0.7,0.6,0.4), (0.3,0.1,0.2)⟩

⟨(0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4)⟩

⟨(0.00,0.12,0.15,0.20); (0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5)⟩

 

⟨(0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3)⟩

⟨(0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4)⟩

⟨(0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3)⟩

⟨(0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4)⟩

⟨(0.00,0.12,0.15,0.20); (0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5)⟩

 

⟨(0.00,0.12,0.15,0.20); (0.2,0.4,0.2), (0.3,0.4,0.6), (0.2,0.2,0.5)⟩

⟨(0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4)⟩

⟨(0.86,0.88,0.90,1.00); (0.9,0.5,02), (0.7,0.6,0.4), (0.3,0.1,0.2)⟩

⟨(0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3)⟩

⟨(0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3)⟩

 

⟨(0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4)⟩

⟨(0.56,0.60,0.65,0.68); (0.8,0.7,0.6), (0.3,0.4,0.3), (0.7,0.2,0.3)⟩

⟨(0.86,0.88,0.90,1.00); (0.9,0.5,0.2), (0.7,0.6,0.4), (0.3,0.1,0.2)⟩
⟨(0.18,0.23,0.30,0.35); (0.6,0.4,0.1), (0.5,0.4,0.3), (0.2,0.4,0.3)⟩

⟨(0.72,0.78,0.80,0.85); (0.9,0.8,0.3), (0.2,0.1,0.5), (0.5,0.3,0.4)⟩)

Step 2: For all i (i = 1,2, . . . ,5), the aggregation values according to NVNTNaw operator are

computed, in order to obtain the ultimate performance value corresponding to the alternative 

xi(i = 1,2, . . . ,5) as; 

A1 = NVNTNaw(A11, A12, A13, A14)

= 〈(0.312,0.374,0.425,0.469); (0.661,0.554,0.309), (0.357,0.352,0.367), (0.332,0.277,0.294)〉 
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A2 = NVNTNaw(A21, A22, A23 , A24)

= 〈0.542,0.597,0.635,0.683); (0.834,0.703,0.278), (0.279,0.179,0.411), (0.402,0.315,0.357)〉 

A3 = NVNTNaw(A31, A32, A33 , A34)

= 〈0.740,0.768,0.800,0.872); (0.867,0.589,0.379), (0.513,0.514,0.357), (0.432,0.133,0.236)〉 

A4 = NVNTNaw(A41, A42, A43 , A44)

= 〈0.558,0.615,0.650,0.700); (0.845,0.714,0.242), (0.268,0.155,0.432), (0.387,0.328,0.368)〉 

 A5 = NVNTNaw(A51, A52, A53 , A54)

= 〈0.184,0.282,0.315,0.361); (0.469,0.523,0.302), (0.288,0.352,0.518), (0.291,0.208,0.444)〉 

Step 3:Centroid points of  Ai  (i = 1,2, . . . ,5)  for truth, indeterminacy and falsity

memberships are computed as; 

For A1; 

(OA1
T(1), OA1

T(2), OA1
T(3))=((0.394,0.274),(0.394,0.230),(0.394,0.128))

(OA1
I(1), OA1

I(2), OA1
I(3)) = ((0.388,0.260), (0.388,0.253), (0.388,0.276))

(OA1
F(1), OA1

F(2), OA1
F(3)) = ((0.388,0.225)(0.387,0.169)(0.387,0.185))

For A2; 

(OA2
T(1), OA2

T(2), OA2
T(3))=( (0.614,0.337), (0.614,0.28),(0.614,0.112))

(OA2
I(1), OA2

I(2), OA2
I(3)) = ((0.611,0.190), (0.611,0.102), (0.612,1.376))

(OA2
F(1), OA2

F(2), OA2
F(3)) = ((0.612,0.885), (0.6110.245), (0.612,0.361))

For A3; 

(OA3
T(1), OA3

T(2), OA3
T(3))=( (0.797,0.346),(0.797,0.235),(0.797,0.151))

(OA3
I(1), OA3

I(2), OA3
I(3)) = ((0.810,0.038), (0.810,0.039), (0.812,0.572))

(OA3
F(1), OA3

F(2), OA3
F(3)) = ((0.811,−0.236), (0.816,0.073), (0.814,0.155))

For A4; 

(OA4
T(1), OA4

T(2), OA4
T(3))=( (0.630,0.337),(0.630,0.285),(0.630,0.097))

(OA4
I(1), OA4

I(2), OA4
I(3)) = ((0.628,0.190), (0.627,0.088), (0.628,−0.300))

(OA4
F(1), OA4

F(2), OA4
F(3)) = ((0.628,1.922), (0.628,0.323), (0.628,0.672))
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For A5; 

(O A5
T(1), O A5

T(2), O A5
T(3))=( (0.283,0.181),(0.283,0.202),(0.283,0.116))

(O A5
I(1), O A5

I(2), O A5
I(3)) = ((0.265,0.511), (0.266,−0.196), (0.268,0.109))

(O A5
F(1), O A5

F(2), O A5
F(3)) = ((0.265,0.554), (0.264,0.151), (0.268,0.048))

Step 4:  Centroid point of  Ai  (i = 1,2,… ,5) is computed as;

C(A1) = ((0.390,0.253), (0.390,0.217), (0.390,0.196))

C(A2) = ((0.612,0.471), (0.612,0.210), (0.612,0.616))

C(A3) = ((0.806,0.049), (0.808,0.116), (0.808,0.293))

C(A4) = ((0.629,0.816), (0.629,0.232), (0.629,0.156))

C(A5) = ((0.271,0.415), (0.271,0.052), (0.273,0.091))

Step 5: Distances between Ai  (i = 1,2,… ,5)and positive ideal-negative ideal  computed as;

d2(A1, r
+)=0.300, d2(A1, r

−)=0.187

d2(A2, r
+)=0.212, d2(A2, r

−)=0.385

d2(A3, r
+)=0.086, d2(A3, r

−)=0.403

d2(A4, r
+)=0.269  d2(A4, r

−)=0.415

d2(A5, r
+)=0.396, d2(A5, r

−)=0.151

Step 6: Score value (s(Ai )) of the Ai (i = 1,2, . . . ,5) is computed as;

s(A1 ) =0.383,  s(A2 ) =0.645, s(A3 ) =0.824, s(A4 ) =0,606, s(A5 ) =0.275

Step 7: Ranking of all the alternatives Ai (i = 1,2,… ,5) is given as following;

x5 > 𝑥1 > x4 > x2 > 𝑥3 

6. Conclusion

Neutrosophic numbers can be applied to many more areas to model and solve

problems containing many uncertainties. For example, studies can be applied on computer 

science, decision-making problems, business and economics problems, which contain 

ambiguous statements by their nature. For this reason, neutrosophic numbers and their 

operations can be extended by using different applications and techniques. As for multi-

valued neutrosophic numbers, it can be applied in solving problems with uncertain, imprecise, 

incomplete and inconsistent information that exist in scientific and engineering situations.  
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Neutrosophic Logic is a general framework for unification of many existing logics, such as 

fuzzy logic (especially intuitionistic fuzzy logic), paraconsistent logic, intuitionistic logic, etc. 

University of New Mexico (UNM)'s website on neutrosophic theories and their applications 

is: http://fs.unm.edu/neutrosophy.htm. 

From Classical Algebraic Structures to NeutroAlgebraic Structures and AntiAlgebraic 

Structures 

In 2019 Smarandache generalized the classical Algebraic Structures to NeutroAlgebraic 

Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially 

indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic 

Structures (or AntiAlgebras) {whose operations and axioms are totally false} and on 2020 he 

continued to develop them [2,3,4]. 

The NeutroAlgebras & AntiAlgebras are a new field of research, which is inspired from our 

real world. 

In classical algebraic structures, all operations are 100% well-defined, and all axioms are 

100% true, but in real life, in many cases these restrictions are too harsh, since in our world 

we have things that only partially verify some operations or some laws. 

Using the process of NeutroSophication of a classical algebraic structure we produce a 

NeutroAlgebra, while the process of AntiSophication of a classical algebraic structure 

produces an AntiAlgebra. 

Neutrosophic Algebraic Structures and 

Their Applications 

http://fs.unm.edu/neutrosophy.htm
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