Abstract. The purpose of this paper is to define the so-called "neutrosophic crisp points" and "neutrosophic crisp ideals", and obtain their fundamental properties. Possible application to GIS topology rules are touched upon.

Keywords: Neutrosophic Crisp Point, Neutrosophic Crisp Ideal.

1 Introduction

Neutrosophy has laid the foundation for a whole family of new mathematical theories, generalizing both their crisp and fuzzy counterparts. The idea of "neutrosophic set" was first given by Smarandache [12, 13]. In 2012 neutrosophic operations have been investigated by Salama at el. [4 -10]. The fuzzy set was introduced by Zadeh [13]. The intuitionistic fuzzy set was introduced by Atanassov [1, 2, 3]. Salama at el. [9] defined intuitionistic fuzzy ideal for a set and generalized the concept of fuzzy ideal concepts, first initiated by Sarker [11]. Here we shall present the crisp version of these concepts.

2 Terminologies

We recollect some relevant basic preliminaries, and in particular the work of Smarandache in [12, 13], and Salama at el. [4 -10].

3 Neutrosophic Crisp Points

One can easily define a natural type of neutrosophic crisp set in X, called "neutrosophic crisp point" in X, corresponding to an element $p \in X$:

3.1 Definition

Let X be a nonempty set and $p \in X$. Then the neutrosophic crisp point p_N defined by $p_N = \{\{p\}, \emptyset, \{p\}^C\}$ is called a neutrosophic crisp point (NCP for short) in X, where NCP is a triple (\{only one element in X\}, the empty set,\{the complement of the same element in X\}).

Neutrosophic crisp points in X can sometimes be inconvenient when expressing a neutrosophic crisp set in X in terms of neutrosophic crisp points. This situation will occur if $A = \{A_1, A_2, A_3\}$, and $p \in A_1$, where A_1, A_2, A_3 are three subsets such that $A_1 \cap A_2 = \emptyset$, $A_1 \cap A_3 = \emptyset$, $A_2 \cap A_3 = \emptyset$. Therefore we define the vanishing neutrosophic crisp points as follows:

3.2 Definition

Let $X = \{a, b, c, d\}$ and $p = b \in X$. Then $p_N = \{\emptyset, \emptyset, \{a, c, d\}\}$.

Now we shall present some types of inclusions of a neutrosophic crisp point to a neutrosophic crisp set:

3.3 Definition

Let $p_N = \{\{p\}, \emptyset, \{p\}^C\}$ be a NCP in X and $A = \{A_1, A_2, A_3\}$ a neutrosophic crisp set in X.

(a) p_N is said to be contained in A (denoted by $p_N \in A$ for short) iff $p \in A_1$.

(b) Let p_N be a VNCP in X, and $A = \{A_1, A_2, A_3\}$ a neutrosophic crisp set in X. Then p_N is said to be contained in A (denoted by $p_N \in A$ for short) iff $p \not\in A_3$.

3.1 Proposition

Let $\{D_j : j \in J\}$ be a family of NCSs in X. Then

(a) $p_N \in \bigcap_{\rho j} D_j$ iff $p_N \in D_j$ for each $j \in J$.

(b) $p_N \in \bigcap_{\rho j} D_j$ iff $p_N \in D_j$ for each $j \in J$.
(b2) \(p_{Nk} \in \bigcap_{j \in J} D_j \) iff \(\exists j \in J \) such that \(p_{Nk} \in D_j \).

Proof

Straightforward.

3.2 Proposition

Let \(A = \{A_1, A_2, A_3\} \) and \(B = \{B_1, B_2, B_3\} \) be two neutrosophic crisp sets in \(X \). Then

a) \(A \subseteq B \) iff for each \(p_N \) we have \(p_N \in A \Rightarrow p_N \in B \) and for each \(p_{NN} \) we have \(p_N \in A \Rightarrow p_{NN} \in B \).

b) \(A = B \) iff for each \(p_N \) we have \(p_N \in A \Rightarrow p_N \in B \) and for each \(p_{NN} \) we have \(p_{NN} \in A \Leftrightarrow p_{NN} \in B \).

Proof

Obvious.

3.4 Proposition

Let \(A = \{A_1, A_2, A_3\} \) be a neutrosophic crisp set in \(X \). Then

\[
A = (\bigcup\{p_N : p_N \in A\}) \cup (\bigcup\{p_{NN} : p_{NN} \in A\}).
\]

Proof

It is sufficient to show the following equalities:

\[
A_1 = (\bigcup\{p_N \} : p_N \in A) \cup (\bigcup\{p_{NN} : p_{NN} \in A\}),
\]

and \(A_3 = (\bigcap\{\{q\} : q \in A\}) \cap (\bigcap\{\{q\} : p_{NN} \in A\}) \),

which are fairly obvious.

3.4 Definition

Let \(f : X \rightarrow Y \) be a function.

(a) Let \(p_N \) be a neutrosophic crisp point in \(X \). Then the image of \(p_N \) under \(f \), denoted by \(f(p_N) \), is defined by \(f(p_N) = \{\{q\}, \phi, \{q\}^c\} \), where \(q = f(p) \).

(b) Let \(p_{NN} \) be a VNCP in \(X \). Then the image of \(p_{NN} \) under \(f \), denoted by \(f(p_{NN}) \), is defined by \(f(p_{NN}) = \{\phi, \{q\}, \{q\}^c\} \), where \(q = f(p) \).

It is easy to see that \(f(p_N) \) is indeed a NCP in \(Y \), namely \(f(p_N) = q_N \), where \(q = f(p) \), and it is exactly the same meaning of the image of a NCP under the function \(f \).

\(f(p_{NN}) \) is also a VNCP in \(Y \), namely \(f(p_{NN}) = q_{NN} \), where \(q = f(p_N) \).

3.4 Proposition

Any NCS \(A \) in \(X \) can be written in the form \(A = A \cup \cup \cup A \), where \(A = \cup\{p_N : p_N \in A\} \), \(A = \phi_N \) and \(A = \cup\{p_{NN} : p_{NN} \in A\} \). It is easy to show that, if \(A = \{A_1, A_2, A_3\} \), then \(A = \{x, A_1, \phi, A_1^c\} \) and \(A_N = \{x, \phi, A_2, A_3\} \).

3.5 Proposition

Let \(f : X \rightarrow Y \) be a function and \(A = \{A_1, A_2, A_3\} \) be a neutrosophic crisp set in \(X \). Then we have \(f(A) = f(A) \cup f(A) \cup f(A) \).

Proof

This is obvious from \(A = A \cup A \cup A \).

4 Neutrosophic Crisp Ideal Subsets

4.1 Definition

Let \(X \) be non-empty set, and \(L \) a non–empty family of NCSDs. We call \(L \) a neutrosophic crisp ideal (NCL for short) on \(X \) if

i. \(B \subseteq A \Rightarrow B \subseteq A \) [heredity],

ii. \(B \subseteq A \Rightarrow B \cup B \subseteq L \) [Finite additivity].

A neutrosophic crisp ideal \(L \) is called a \(\sigma \)-neutrosophic crisp ideal if \(\{M_j\} \subseteq L \), implies \(\bigcup_{j \in J} M_j \subseteq L \) (countable additivity).

The smallest and largest neutrosophic crisp ideals on a non-empty set \(X \) are \(\{\phi\} \) and the NSSDs on \(X \). Also, \(NCL_{f} \), \(NCL_{e} \) are denoting the neutrosophic crisp ideals (NCL for short) of neutrosophic subsets having finite and countable support of \(X \) respectively. Moreover, if \(A \) is a non-empty NS in \(X \), then \(\{B \in NSSD : B \subseteq A\} \) is an NCL on \(X \). This is called the principal NCL of all NSSDs, denoted by \(NCL(A) \).
4.1 Remark
 i. If \(X_N \notin L \), then L is called neutrosophic proper ideal.

 ii. If \(X_N \in L \), then L is called neutrosophic improper ideal.

 iii. \(\phi_N \in L \).

4.1 Example
Let \(\{ a, b, c \} = \{ \emptyset, \{ a \}, \{ b, c \}, \{ c \} \} \),
\(B = \{ \{ a \}, \{ b \}, \{ c \} \} \),
\(C = \{ \{ a \}, \{ b \}, \{ c \} \} \),
\(D = \{ \{ a \}, \{ c \}, \{ d \} \} \),
\(E = \{ \{ a \}, \{ b \}, \{ c \} \} \),
\(F = \{ \{ a \}, \{ b \}, \{ c \} \} \),
\(G = \{ \{ a \}, \{ b \}, \{ c \} \} \).
Then the family \(L = \{ \phi_N, A, B, C, D, E, F, G \} \) of NCSs is an NCL on X.

4.2 Definition
Let \(L_1 \) and \(L_2 \) be two NCLs on X. Then \(L_2 \) is said to be finer than \(L_1 \), or \(L_1 \) is coarser than \(L_2 \), if \(L_1 \subseteq L_2 \). If also \(L_1 \neq L_2 \), then \(L_2 \) is said to be strictly finer than \(L_1 \), or \(L_1 \) is strictly coarser than \(L_2 \).

Two NCLs are said to be comparable, if one is finer than the other. The set of all NCLs on X is ordered by the relation: \(L_1 \) is coarser than \(L_2 \); this relation is induced by the inclusion in NCSs.

The next Proposition is considered as one of the useful results in this sequel, whose proof is clear. \(L_j = \{ A_{j_1}, A_{j_2}, A_{j_3} \} \).

4.1 Proposition
Let \(\{ L_j : j \in J \} \) be any non-empty family of neutrosophic crisp ideals on a set X. Then \(\bigcap_{j \in J} L_j \) and \(\bigcup_{j \in J} L_j \) are neutrosophic crisp ideals on X, where
\[\bigcap_{j \in J} L_j = \{ \emptyset \} \cup \bigcup_{j \in J} A_{j_1} \cap \bigcup_{j \in J} A_{j_2} \cap \bigcup_{j \in J} A_{j_3} \] or
\[\bigcap_{j \in J} L_j = \{ \emptyset \} \cup \bigcup_{j \in J} A_{j_1} \cap \bigcup_{j \in J} A_{j_2} \cup \bigcup_{j \in J} A_{j_3} \] and
\[\bigcup_{j \in J} L_j = \{ \emptyset \} \cup \bigcup_{j \in J} A_{j_1} \cup \bigcup_{j \in J} A_{j_2} \cup \bigcup_{j \in J} A_{j_3} \] or
\[\bigcup_{j \in J} L_j = \{ \emptyset \} \cup \bigcup_{j \in J} A_{j_1} \cup \bigcup_{j \in J} A_{j_2} \cup \bigcup_{j \in J} A_{j_3} \].

In fact, L is the smallest upper bound of the sets of the \(L_j \) in the ordered set of all neutrosophic crisp ideals on X.

4.2 Remark
The neutrosophic crisp ideal defined by the single neutrosophic set \(\phi_N \) is the smallest element of the ordered set of all neutrosophic crisp ideals on X.

4.2 Proposition
A neutrosophic crisp set \(A = \{ A_1, A_2, A_3 \} \) in the neutrosophic crisp ideal L on X is a base of L iff every member of L is contained in A.

Proof
(Necessity) Suppose A is a base of L. Then clearly every member of L is contained in A.
(Sufficiency) Suppose the necessary condition holds. Then the set of neutrosophic crisp subsets in X contained in A coincides with L by the Definition 4.3.

4.3 Proposition
A neutrosophic crisp ideal \(L_1 \) with base \(\{ A_1, A_2, A_3 \} \), is finer than a fuzzy ideal \(L_2 \) with base \(\{ B_1, B_2, B_3 \} \), iff every member of \(B \) is contained in A.

Proof
Immediate consequence of the definitions.

4.1 Corollary
Two neutrosophic crisp ideals bases A, B, on X, are equivalent iff every member of A is contained in B and vice versa.

4.1 Theorem
Let \(\eta = \{ \emptyset, \{ A_1 \}, \{ A_2 \}, \{ A_3 \} \} \) be a non-empty collection of neutrosophic crisp subsets of X. Then there exists a neutrosophic crisp ideal \(L(\eta) = \{ A \in NCS : A \subseteq \bigcup_{j \in J} A_j \} \) on X for some finite collection \(\{ A_j : j = 1, 2, ..., n \} \).

Proof
It’s clear.

4.3 Remark
The neutrosophic crisp ideal \(L(\eta) \) defined above is said to be generated by \(\eta \) and \(\eta \) is called sub-base of \(L(\eta) \).
4.2 Corollary

Let \(L_1 \) be a neutrosophic crisp ideal on \(X \) and \(A \in \text{NCSs} \), then there is a neutrosophic crisp ideal \(L_2 \) which is finer than \(L_1 \) and such that \(A \in L_2 \) iff \(A \cup B \in L_2 \) for each \(B \in L_1 \).

Proof

It’s clear.

4.2 Theorem

If \(L = \left\{ \phi_N, \left\langle A_1, A_2, A_3 \right\rangle \right\} \) is a neutrosophic crisp ideals on \(X \), then:

i) \(\left\{ L = \left\{ \phi_N, \left\langle A_1, A_2, A_3 \right\rangle \right\} \right\} \) is a neutrosophic crisp ideals on \(X \).

ii) \(\left\{ L = \left\{ \phi_N, \left\langle A_3, A_2, A_1 \right\rangle \right\} \right\} \) is a neutrosophic crisp ideals on \(X \).

Proof

Obvious.

4.3 Theorem

Let \(A = \left\langle A_1, A_2, A_3 \right\rangle \in L_1 \), and
\(B = \left\langle B_1, B_2, B_3 \right\rangle \in L_2 \), where \(L_1 \) and \(L_2 \) are neutrosophic crisp ideals on \(X \), then \(A*B \) is a neutrosophic crisp set:

\[A*B = \left\langle A_1*B_1, A_2*B_2, A_3*B_3 \right\rangle \]

where

\[A_1*B_1 = \cup \left\langle A_1 \cap B_1, A_2 \cap B_2, A_3 \cap B_3 \right\rangle \]

\[A_2*B_2 = \cap \left\langle A_1 \cap B_1, A_2 \cap B_2, A_3 \cap B_3 \right\rangle \] and

\[A_3*B_3 = \cap \left\langle A_1 \cap B_1, A_2 \cap B_2, A_3 \cap B_3 \right\rangle \].

Received: October 01, 2013. Accepted: December 01, 2013.

References