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PREFACE

     In the real world, uncertainty or vagueness is prevalent in engineering and management 

computations. Commonly, such uncertainties are included in the design process by 

introducing simplified hypothesis and safety or design factors. In case of structural and 

pavement design, several design methods are available to optimize objectives.  But all such 

methods follow numerous monographs, tables and charts to find effective thickness of 

pavement design or optimum weight and deflection of structure calculating certain loop of 

algorithm in the cited iteration process. Most of the time, designers either only take help of  a 

software or  stop the cited procedure even after two or three iterations. As for example, the 

finite element method and genetic algorithm type of crisp optimization method had been 

applied on the cited topic, where the values of the input parameters were obtained from 

experimental data in laboratory scale. But practically, above cited standards have already 

ranged the magnitude of those parameters in between maximum to the minimum values. As 

such, the designer becomes puzzled  to select those input parameters from such ranges which 

actually yield imprecise parameters or goals with three key governing factors i.e. degrees of 

acceptance, rejection and hesitancy, requiring fuzzy, intuitionistic fuzzy, and neutrosophic 

optimization.

Therefore, the  problem of structural designs, pavement designs, welded beam designs

are firstly classified into single objective and multi-objective problems of structural systems.

Then, a mathematical algorithm - e.g. Neutrosophic Geometric Programming, Neutrosophic

Linear Programming Problem, Single Objective Neutrosophic Optimization, Multi-objective

Neutrosophic Optimization, Parameterized Neutrosophic Optimization, Neutrosophic Goal

Programming Technique - has been provided to solve the problem according to the nature of

impreciseness that exists in the problem. 

Thus, we provide in this book a solution which is hardly presented in the scientific

literature regarding structural optimum design, pavement optimum design, welded beam

optimum design, that works in imprecise environment i.e. in neutrosophic environment.

The objective of the book is not only to study the concept of neutrosophic set, single valued 

neutrosophic set, complement of neutrosophic set, union of neutrosophic set, intersection of 

neutrosophic set, generalized fuzzy number, triangular fuzzy number, normal neutrosophic 
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set, convex neutrosophic set, single valued neutrosophic number, generalized triangular 

neutrosophic number and their properties, but also to fulfil the criteria of specification of such

concepts  from a technical point of view. The second objective of the book is the 

identification of impreciseness that is involved in real life engineering design problems, such

as in various structural design problems, welded beam designs and pavement designs

problems. For example, they are often exhibit in the form of applied load, stresses, deflection

in the test problem, therefore we employ ultimate development of mathematical algorithm

using neutrosophic set theory to optimize various truss, welded beam, pavement design 

problems in neutrosophic environment.

In the following chapters, some mathematical optimization methods on neutrosophic set

theory have been studied and the results have been compared agaist Fuzzy and Intuitionistic

Fuzzy Optimization methods. Some structural models like two-bar, three bar truss, welded 

beam design, jointed plain concrete pavement are formulated and solved in fuzzy, 

intuitionistic fuzzy or neutrosophic environments. The proposed thesis has been divided into

following chapters:

In the First chapter, the basic concepts and definitions of Neutrosophic set, Single Valued

Neutrosophic Set (SVNS), complement of Neutrosophic Set, union of Neutrosophic Set,

intersection of Neutrosophic Set, Normal Neutrosophic Set, Convex Neutrosophic Set, Single

Valued Neutrosophic Number (SVNN), Generalized Triangular Neutrosophic Number

(GTNN) are given. Also, in this chapter, some basic methodologies - such as neutrosophic

linear programming, neutrosophic geometric programming, neutrosophic optimization 

technique to solve minimization type single objective nonlinear programming problem, 

neutrosophic optimization technique to solve minimization type nonlinear programming 

problem, solution of multi-objective welded beam optimization problem by generalized 

neutrosophic goal programming technique, neutrosophic non-linear programming 

optimization to solve parameterized multi-objective nonlinear programming problem, 

neutrosophic optimization technique to solve  parametric single objective nonlinear 

programming problem - have been discussed to solve several trusses, welded beam optimum

and jointed plain concrete pavement designs.
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In the Second chapter, an introduction of structural design optimization, conversion between 

U.S customary units and S.I units, S.I. unit prefixes, formulation of truss design, some welded 

beam designs and pavement designs are presented.  

In the Third Chapter, we take into consideration a neutrosophic optimization (NSO) approach 

for optimizing the design of truss with single objective, subject to a specified set of constraints. 

In the Fourth chapter, a multi-objective non-linear neutrosophic optimization (NSO) approach 

for optimizing the design of plane truss structure with multiple objectives subject to a specified 

set of constraints is explained.  

In the Fifth chapter, a Neutrosophic Optimization (NSO) approach is investigated to optimize 

the cost of welding of a welded steel beam, where the maximum shear stress in the weld group, 

maximum bending stress in the beam, maximum deflection at the tip and buckling load of the 

beam are considered as flexible constraints.  

In the Sixth chapter, a multi–objective Neutrosophic Optimization (NSO) approach is studied 

to optimize the cost of welding and deflection at the tip of a welded steel beam.  

In the Seventh chapter, a multi–objective Neutrosophic Goal Optimization (NSGO) approach  

with different aggregation method  is explored to optimize the cost of welding and deflection 

at the tip of a welded steel beam, while the maximum shear stress in the weld group, maximum 

bending stress in the beam, and buckling load of the beam are considered as constraints.  

In the Eighth Chapter, we employ a neutrosophic mathematical programming to solve a multi-

objective structural optimization problem with imprecise parameters. Generalized Single 

Valued Triangular Neutrosophic Numbers (GSVNNs) are assumed imprecise loads and stresses 

in a test problem.  

In the Ninth chapter, a solution procedure of Neutrosophic Optimization (NSO) is examined 

to solve optimum welded beam design with inexact co-efficient and resources. Interval 

approximation method is used here to convert the imprecise co-efficient, which is a triangular 

neutrosophic number, to an interval number.  

In the Tenth chapter, the optimization of thickness of Jointed Plain Concrete Pavement (JPCP) 

by following the guidelines of Indian Roads Congress (IRC:58- 2002) in imprecise environment 

is studied  and solved by neutrosophic optimization technique.  

In the Eleventh Chapter, we analyze a multi-objective Neutrosophic Goal Optimization 

(NSGO) technique for optimizing the design of three bar truss structure with multiple 

objectives, subject to a specified set of constraints.  
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In the Twelfth Chapter, we search upon a Neutrosophic Optimization (NSO) approach for 

optimizing the thickness and sag of skin plate of vertical lift gate with multi- objective, subject 

to a specified constraint. 
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CHAPTER  1
Basic Notions and Neutrosophic Optimization 

1.1 Over view 
The concept of fuzzy set was introduced by Zadeh in 1965.Since the fuzzy sets and fuzzy 

logic have been applied in many real applications to handle uncertainty. The traditional fuzzy 

set uses only real value    0,1A x   to represent the grade of membership of fuzzy set A

defined on universe X  .Sometimes  A x  itself is uncertain and hard to be defined by a 

crisp value. So the concept of interval valued fuzzy sets was proposed to capture the 

uncertainty of grade of membership. Interval valued fuzzy sets uses an interval value 

   ,L U
A Ax x     with    0 1L U

A Ax x     to represent the grade of membership of fuzzy 

set A . In some applications such as expert system, belief system and information fusion, we 

should consider not only the truth membership supported by the evident but also the falsity 

membership against by the evident. That is beyond the scope of fuzzy sets and interval valued 

fuzzy sets. In 1986 Atanassov introduced the Intuitionistic fuzzy sets which is a 

generalization of fuzzy sets and probably equivalent to interval valued fuzzy sets.The 

intuitionistic fuzzy sets consider both truth membership  iA
T x  and falsity membership  

 iA
F x  with   ,iA

T x  iA
F x  0,1  and    0 1.i iA A

T x F x    Intuitionistic fuzzy sets

can only handle incomplete information not the indeterminate information and inconsistent 

information which exists commonly belief in system. In intuitionistic fuzzy sets, 

indeterminacy is      1 i iA A
T x F x   by default. For example when we ask the opinion of

expert about certain statement, he or she may be in the position of the  possibility that the 

statement is true is 0.5 and the statement is false is 0.6 and the degree that he or she is  not 

sure is 0.2. 

In neutrosophic set indeterminacy is quantified explicitly and truth membership, 

indeterminacy membership and falsity membership are independent. This assumption is very 

important in a lot of situations such as information fusion when we try to combine the data 

from different sensors. Neutrosophy was introduced by Smarandache in 1995.”It is a branch 

of philosophy which studies the origin, nature and scope of nutralities, as well as their 
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interactions with different ideational spectra”.Neutrosophic Set is a power general framework 

which generalizes the concept of the classic set, fuzzy set ,interval valued fuzzy set, 

intuitionistic fuzzy set e.t.c. A neutrosophic set  nA   defined on universe U. 

 , , nx x T I F A   with   , ,T I F  being real standard or nonstandard subset of 0 ,1 .     T

is the degree truth membership function in the set ,nA I  is the degree indeterminacy 

membership function in the set nA and F  is the degree falsity membership function in the set 

.nA  

The neutrosophic set generalizes the above mensioned sets from philosophical point of view. 

From scientific or engineering point of view  the neutrosophic set and set theoretic operators 

need to be specified. Otherwise, it will be difficult to apply in the real applications. In this 

paper, we define neutrosophic set (the set theoretic operators on an instance of neutrosophic 

set called SVNS). 

1.2  Neutrosophic Set (NS) 

Let X  be a space of points (objects) with a generic element in X  denoted by x  i.e. x X . 
A neutrosophic set nA in X  is characterized by truth-membership function nA

T
indeterminacy- membership function nA

I and falsity-membership function nA
F , where

, ,n n nA A A
T I F are the functions from U to  ] 0, 1  [  i.e. , ,n n nA A A

T I F : X  ] 0, 1  [  ,that

means , ,n n nA A A
T I F are the real standard or non-standard subset of ] 0, 1  [. Neutrosophic set

can be expressed as   , , , :n n n
n

A A A
A x T I F x X     . Since , ,n n nA A A

T I F  are the subset of  ]
0, 1  [ , there the sum

 , ,n n nA A A
T I F lies between 0 and 3  , where 0 = 0 -   and  3  = 3 +  , >0.

The set nA
I may represent not only indeterminacy, but also vagueness, uncertainty, 

imprecision, error, contradiction, undefined, unknown, incompleteness, redundancy, etc. In 
order to catch up vague information, an indeterminacy-membership degree can be split into 
subcomponents, such as „„contradiction,‟‟ „„uncertainty‟‟, and „„unknown‟‟.  

Example 1. 

Suppose that  1 2 3, , ,........ .X x x x be the universal set. Let 1A be any neutrosophic set in X. 

Then 1A expressed as   1 1 1: .6,.3,.4 :A x x X    .
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Let a set X be the universe of discourse. A single valued neutrosophic set nA   over X is an 

object having the form       , , ,n n n
n

A A A
A x T x I x F x x X    where  : 0,1 ,nA

T X 

 : 0,1nA
I X  and  : 0,1nA

F X  are truth, indeterminacy and falsity membership functions 

with      0 3n n nA A A
T x I x F x     for all x X .

Example 1: Assume that  1 2 3, , .X x x x 1x is capability, 2x is trustworthiness and 3x  is price. 

The values of 1 2 3, ,x x x  are in  0,1 .They are obtained from questionnaire of some domain experts,

their option could be a degree of “good service”, a degree of indeterminacy and degree of “poor 

service”. nA is a single valued neutrosophic set of X defined by 

1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 / .nA x x x        
nB  is a single valued neutrosophic 

set of X defined by 1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 / .nB x x x          

1.4  Complement of Neutrosophic Set 

Complement of a single valued neutrosophic set nA is denoted by  nC A and  its truth, 

indeterminacy and falsity membership functions are denoted by

       : 0,1 , : 0,1n nC A C A
T X I X  and 

   : 0,1nC A
F X   where 

      ,nn AC A
T x F x (1.2)

     1 ,nn AC A
I x I x  (1.3)

     nn AC A
F x T x  .  (1.4)  

Example 2: Let nA be a single valued neutrosophic set in Example 1.Then 

  1 2 30.5,0.6,0.3 / 0.3,0.8,0.5 / 0.2,0.8,0.7 /nC A x x x        

1.5  Containment 

A single valued neutrosophic set nA  is contained in other single valued neutrosophic set ,nB

n nA B  if and only if 

   n nA B
T x T x  

   n nA B
I x I x  

   n nA B
F x F x  

For all x  in .X  

1.3  Single Valued Neutrosophic Set (SVNS) 
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Note that by definition of containment, X  is partial order but not linear order. For example let nA and 
nB  be the single valued neutrosophic sets defined in example  1.Then nA  is not contained in nB  and   
nB  is not contained in nA

1.6  Equality of Two Neutrosophic Sets 

Two single valued neutrosophic sets nA  and nB  are said to be equal and written as n nA B   if 

and only if  n nA B  and n nA B

1.7  Union of  Neutrosophic  Sets 

The union of two single valued neutrosophic sets nA and nB is a single valued neutrosophic 

set nU , written as n n nU A B ,whose truth membership, indeterminacy-membership and 

falsity-membership functions are given by 

Type-I 

(i)       max , ,n n nU A B
T x T x T x

(ii)       max ,n n nU A B
I x I x I x

(iii)       min ,n n nU A B
F x F x F x for all x X

    Type-II  

 (i)       max , ,n n nU A B
T x T x T x

(ii)       min ,n n nU A B
I x I x I x

(iii)       min ,n n nU A B
F x F x F x for all x X

Example 3: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and 

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two neutrosophic 

sets. Then the union of nA and nB is a single valued neutrosophic set 

Type -I 

1 2 30.6,0.4,0.2 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /n nA B x x x       

Type -II 

1 2 30.6,0.1,0.2 / 0.5,0.2,0.3 / 0.7,0.1,0.2 /n nA B x x x       

1.8  Intersection  of  Neutrosophic  Sets 
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The intersection of two single valued neutrosophic sets nA and nB is a single valued 

neutrosophic set nE , written as n n nE A B ,whose truth membership, indeterminacy-

membership and falsity-membership functions are given by 

Type-I 

(i)
 

      min , ,n n nE A B
T x T x T x  

(ii)
 

      min ,n n nE A B
I x I x I x  

(iii)
 

      max ,n n nE A B
F x F x F x for all x X  

Type-II 

 (i)
 

      min , ,n n nE A B
T x T x T x  

(ii)
 

      max ,n n nE A B
I x I x I x  

(iii)
 

      max ,n n nE A B
F x F x F x for all x X  

Example  4: 

Let 1 2 30.3,0.4,0.5 / 0.5,0.2,0.3 / 0.7,0.2,0.2 /nA x x x        and  

1 2 30.6,0.1,0.2 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /nB x x x         be two neutrosophic 

sets. Then the union of nA and nB is a single valued neutrosophic set 

Type -I  

1 2 30.3,0.1,0.5 / 0.3,0.2,0.6 / 0.4,0.1,0.5 /n nA B x x x         

Type -II  

1 2 30.3,0.4,0.5 / 0.3,0.2,0.6 / 0.4,0.2,0.5 /n nA B x x x         

1.9 Difference of Two Single Valued Neutrosophic set 

The difference of two single valued neutrosophic set ,nD  written as / ,n n nD A B  whose 

truth-membership,indeterminacy membership and falsity membership functions are related to 

those of nA  and nB  can be defined by 

(i)
 

      min , ,n n nD A B
T x T x T x  

(ii)
 

      min ,1n n nD A B
I x I x I x   

(iii)
 

      max ,n n nD A B
F x F x F x for all x X  
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Example  5: Let nA and nB be a single valued neutrosophic set in Example 1.Then 

1 2 30.2,0.4,0.6 / 0.5,0.2,0.3 / 0.5,0.2,0.4 /nD x x x          

1.10 Normal Neutrosophic  Set 

A single valued neutrosophic set       , , ,n n n
n

A A A
A x T x I x F x x X    is called 

neutrosophic normal if there exists at least three points 0 1 2, ,x x x X  such that  0 1nA
T x   

 1 1,nA
I x   2 1nA

F x  .  

1.11 Convex  Neutrosophic  Set 

A single valued neutrosophic set       , , ,n n n
n

A A A
A x T x I x F x x X    is a subset of the 

real line called neut-convex if for all 1 2,x x  and  0,1 the following conditions are 

satisfied. 

1.        1 2 1 21 min ,n n nA A A
T x x T x T x     

2.        1 2 1 21 max ,n n nA A A
I x x I x I x     

3.        1 2 1 21 max ,n n nA A A
F x x F x F x     

i.e nA is neut-convex if its truth membership function is fuzzy convex, indeterminacy 

membership function is fuzzy concave and falsity membership function is fuzzy concave. 

1.12 Single Valued   Neutrosophic  Number(SVNN) 

A single valued neutrosophic set       , , ,n n n
n

A A A
A x T x I x F x x X    ,subset of a real 

line ,is called generalised neutrosophic  number if  

1. nA is neut- normal. 

2. nA is neut- convex. 

3.  nA
T x  is upper semi-continuous,  nA

I x is lower semi continuous and  nA
F x is lower 

semi continuous ,and 

4. the support of nA ,i.e .  

   : 0, 1, 1n n n
n

A A A
S A x X T I F    

                                                                               
(1.5)  

 

is bounded. 

Thus for any Single Valued Triangular Neutrosophic Number (TNN)there exists nine 

numbers 1 2 3 1 2 3 1 2 3, , , , , , , ,T T I I F Fa a a b b b c c c such that 1 1 1 2 2 2 3 3 3
F I T T I Fc b a c b a a b c       
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and six functions              , , , , , : 0,1n n n n n n
L L L R R R

A A A A A A
T x I x F x T x I x F x  represent truth, 

indeterminacy and falsity membership degree of  nA .The three non-decreasing functions 

     , ,n n n
L L L

A A A
T x I x F x  represent  the left side of truth, indeterminacy and falsity membership 

functions of SVNN nA respectively. Similarly the three non-increasing functions 

     , ,n n n
R R R

A A A
T x I x F x  represent the right side of truth ,indeterminacy and falsity 

membership functions of SVNN nA respectively. The  truth, indeterminacy and falsity 

membership functions of SVNN nA can be defined in the following way 

 

 
 
 

1 2

2 3 ;
0

n

n n

L T
A
R T

A A

T x if a x a
T x T x if a x a

otherwise

  


  

                                                                                        

(1.6)  

 

 
 
 

1 2

2 3

0

n

n n

L I
A
R I

A A

I x if b x b
I x I x if b x b

otherwise

  


  

                                                                                          

(1.7)   

 
 
 

1 2

2 3

0

n

n n

L F
A
R F

A A

F x if c x c
F x F x if c x c

otherwise

  


  

                                                                                         

(1.8)   

The sum of three independent  membership degree of SVNN nA lie between the interval 

 0,3  .i.e      0 3n n n
R R R n

A A A
T x I x F x x A      .                                                              (1.9)   

1.13 Generalized Triangular Neutrosophic  Number(GTNN) 
 A generalized single valued triangular neutrosophic number nA  with the set of parameters 

1 1 1 2 2 2 3 3 3
F I T T I Fc b a c b a a b c        denoted as 

     1 2 3 1 2 3 1 2 3, , ; , , , ; , , ;n T T I I F F
a a aA a a a w b b b c c c  is the set of real numbers  .The truth 

membership, indeterminacy membership and falsity membership functions of nA  can be 

defined as follows 

1
1 2

2 1

2

3
2 3

3 2

0

n

T
T

a T

a
A T

T
a T

x aw for a x a
a a

w for x a
T

a xw for a x a
a a

otherwise

 
 


 

 
  

 

                                                                                     

(1.10)  
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1
1 2

2 1

2

3
2 3

3 2

0

n

I
I

a I

a
A I

I
a I

x b for b x b
b b

for x b
I

x b for b x b
b b

otherwise







 
 


 

 
  

 

                                                                                      

(1.11)  

 

1
1 2

2 1

2

3
2 3

3 2

0

n

F
F

a F

a
A F

F
a F

x c for c x c
c c

for x c
F

x c for c x c
c c

otherwise







 
 


 

 
  

 

                                                                                      

(1.12)  

 

1.14  , ,      Cut of Single Valued Triangular Neutrosophic  

Number(SVTNN) 

Let       1 2 3 1 2 3 1 2 3, , ; , , , ; , , ;n T T I I F F
a a aA a a a w b b b c c c  be generalized single valued 

triangular neutrosophic number. Then it is a crisp subset of  and is defined by  

      , , , ,n n n
n

A A A
A x T x I x F x          

            , , , , ,n n n n n nL A R A L A R A L A R A          
     

 

   

   

   

1 2 1 3 3 2

1 2 1 3 3 2

1 2 1 3 3 2

, ,

, ,

,

T T T T

a a

I I I I

a a

F F F F

a a

a a a a a a
w w

b b b b b b

c c c c c c

 

 

 

 

 

  
     

  
 
  

      
  
 
 
     
                                                                                 

(1.13)  

 

1.15 Ranking of Triangular Neutrosophic Number 

A triangular neutrosophic number      1 2 3 1 2 3 1 2 3, , ; , , , ; , , ;n T T I I F F
a a aA a a a w b b b c c c  is 

completely defined by 

  1
1 2

2 1

T
T

T a T

x aL x w for a x a
a a


  
                                                                                             

(1.14)  

 

 and  
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  3
2 3

3 2

;
T

T
T a T

a xR x w for a x a
a a


  

                                                                                           

(1.15)  

 

  1
1 2

2 1

I
I

I a I

x bL x for b x b
b b




  
                                                                                                

(1.16)  

 

 and  

  3
2 3

3 2

;
I

I
I a I

x bR x for b x b
b b




  
                                                                                              

(1.17)   

  1
1 2

2 1

F
F

F a F

x cL x for c x c
c c




  
                                                                                             

(1.18)  

 

and    3
2 3

3 2

F
F

F a F

x cR x for c x c
c c




  
                                                                                      

(1.19)  

 

.The inverse functions can be analytically expressed as 

   1
1 2 1 ;T T

T
a

hL h a a a
w

   

                                                                                                          
(1.20)  

 

    1
3 3 2 ;T T

T
a

hR h a a a
w

   

                                                                                                        

(1.21)  

 
    1

1 2 1 ;I I
I

a

hL h b b b


   

                                                                                                           
(1.22)  

 

   1
3 3 2 ;I I

I
a

hR h b b b


   

                                                                                                           
(1.23)   

   1
1 2 1
F F

F
a

hL h c c c


   

                                                                                                             
(1.24)  

 

And 

   1
3 3 2
F F

F
a

hR h c c c


   

                                                                                                            
(1.25)  

 

 Now left integral value of truth membership ,indeterminacy membership  and falsity 

membership functions of  nA are  

   
 1

1 21

0

2 1
2T

T
an

L T
a

w a a
V A L h

w


 
 

                                                                                        

(1.26)  

 

and  

   
 1

1 21

0

2 1
2I

an
L I

a

b b
V A L h






 

 
                                                                                         

(1.27)  
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and  

   
 1

1 21

0

2 1
2F

an
L I

a

c c
V A L h






 

 
                                                                                         

(1.28)  

 

respectively 

and right integral value of  truth, indeterminacy and falsity membership functions are   

   
 1

3 21

0

2 1
,

2T

T
an

R T
a

w a a
V A R h

w


 
 

                                                                                     

(1.29)  

 

   
 1

3 21

0

2 1
2I

I
an

R I
a

b b
V A R h






 

 
                                                                                         

(1.30)  

 

and  

   
 1

3 21

0

2 1
2F

F
an

R F
a

c c
V A R h






 

 
                                                                                        

(1.31)  

 

respectively. 

The total integral value of the truth membership functions is

 
 

 
      

 
2 3 13 2 1 2 2 1 12 1 2 1

1 ; 0,1
2 2 2

T TT T
aa an

T
a a a

a w a aw a a w a a
V A

w w w


 
  

      
    

 

                                                                                                                                            (1.32)  

  
 

The total integral value of indeterminacy membership functions is  

 
 

 
     

 3 2 1 2 2 32 1 2 1 1 2 2 2 1
1 ; 0,1

2 2 2

I I
a a an

I
a a a

b b b b b b
V A




    

  
  

       
    

                                                                                                                                                           
(1.33)  

 The total integral value of falsity membership functions is  

 
 

 
     

 3 2 1 2 2 32 1 2 1 1 2 2 2 1
1 ; 0,1

2 2 2

F I
a a an

F
a a a

c c c c c c
V A




    

  
  

       
    

 

                                                                                                                                            (1.34)   

Let      1 2 3 1 2 3 1 2 3, , ; , , , ; , , ;n T T I I F F
a a aA a a a w b b b c c c   and 

     1 2 3 1 2 3 1 2 3, , ; , , , ; , , ;n T T I I F F
b b bB e e e w f f f g g g  be two generalized triangular 

neutrosophic number then the following conditions hold good  

i) If     ,n n
T TV A V B       ,n n

I IV A V B  and    n n
F FI A I B  for 

 , , 0,1    then n nA B  
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ii) If     ,n n
T TV A V B       ,n n

I IV A V B  and    n n
F FI A I B  for 

 , , 0,1    then n nA B  

iii) If     ,n n
T TV A V B       ,n n

I IV A V B  and    n n
F FI A I B  for 

 , , 0,1    then n nA B  

 

1.16 Nearest Interval Approximation for Neutrosophic  Number 

Here we want to approximate an neutrosophic number

     1 2 3 1 2 3 1 2 3, , ; , , , ; , , ;n T T I I F F
a a aA a a a w b b b c c c   by a crisp model. 

Let nA and nB be two neutrosophic  numbers. Then the distance between them can be 

measured according to Euclidean matric as 

         
1 1 222

0 0

1 1
2 2L L U UE A B A Bd T T d T T d         

 

         
1 1 22

0 0

1 1
2 2L L U UA B A BI I d I I d         

 

         
1 1 22

0 0

1 1
2 2L L U UA B A BF F d F F d         

                                                    

(1.35)  

 
Now we find a closed interval    ,

E

n
d L UC A C C which is nearest to nA with respect to the 

matric Ed .Again it is obvious that each real interval can also be considered as an 

neutrosophic number with constant  cut  ,L UC C for all  0,1  .Now we have to 

minimize   ,
E

n n
E dd A C A  with respect to LC and UC ,that is to minimize 

       
1 1 22

1
0 0

,
L UL U A L A UF C C T C d T C d       

 

     
1 1 22

0 0
L UA L A UI C d I C d         

     
1 1 22

0 0
L UA L A UF C d F C d       

                                                                       

(1.36)   
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With respect to LC and UC . We define partial derivatives

 
      

1
1

0

,
2 6

L L L

L U
A A A L

L

F C C
T I F d C

C
   


    

                                                    (1.37)   

 
      

1
1

0

,
2 6

U U U

L U
A A A U

U

F C C
T I F d C

C
   


    

                                                   (1.38)   

And then we solve the system 

 1 ,
0,L U

L

F C C
C





                                                                                                                                       (1.39)   

 1 ,
0L U

U

F C C
C





 .                                                                                                               (1.40)   

The solution is  

     1

0

;
3

L L LA A A
L

T I F
C d

  


 
 

                                                                                       

(1.41)  

 

 
     1

0 3
U U LA A A

U

T I F
C d

  


 
                                                                                   (1.42)   

Since 

   

   

2 2
1 1

2

2 2
1 1

2

, ,
6 0

det 36 0
0 6, ,

L U L U

L L U

L U L U

U L U

F C C F C C
C C C

F C C F C C
C C C

  
 

             
 
    

                                           (1.43)   

 then LC  UC mentioned above minimize  1 ,L UF C C . The nearest interval of the neutrosophic 

number nA  with respect to the matric Ed is 

 
           1 1

0 0

,
3 3

U U UL L L

E

A A AA A An
d

T I FT I F
C A d d

    
 

   
  
  
 

   

(1.44)  

3 3 3 2 3 3 2 3 21 1 1 2 1 2 1 2 1 ,
3 6 6 6 3 6 6 6

T I F T I FT I F T I F

a a a a a a

a b c a a b b c ca b c a a b b c c
w w   

         
       
   

1.17 Decision Making in Neutrosophic Environment 

Decision making is a process of solving the problem in involving pursuing the goals under 

constraints. The outcome is a decision which should in an action. Decision making plays an 
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important role in an economic and business, management sciences, engineering and 

manufacturing, social and political science, biology and medicine, military, computer science 

etc. It is difficult process due to factors like incomplete information which tend to be 

presented in real life situations. In the decision making process our main target is to find the 

value from the selected set with highest degree of membership in the decision set and these 

values support the goals under constraints only. But there may arise situations where some 

values selected from the set cannot support i.e such values strongly against the goals under 

constraints which are non-admissible. In this case we find such values from the selected set 

with least degree of non-membership in the decision sets. Intuitionistic fuzzy sets only can 

handle incomplete information not the indeterminate information and inconsistent 

information which exists commonly belief in system. In neutrosophic set, indeterminacy is 

quantified explicitly and truth membership, indeterminacy membership and falsity 

membership are independent. So it is natural to adopt for that  purpose the value from 

selected set with highest degree of truth membership ,indeterminacy membership and least 

degree of falsity membership in the decision set. These factors indicate that a decision 

making process takes place in neutrosophic environment. 

1.18 Single-Objective Neutrosophic Geometric Programming 

Let us consider a Neutrosophic Geometric Programming Problem as  

(P1. 1)  

 0

n
Min f x                                                                                                                                            (1.45) 

Subject to  

  n
j jf x b 1,2,..,j m                                                                                                                     (1.46) 

           0x                                                                                                                                                     (1.47) 

Here the symbol “ n ” denotes the neutrosophic version of “ ”.Now for Neutrosophic 
geometric programming linear truth,falsity and indeterminacy  membership functions  can be 
represented as follows 

  

 

 
 

 

0

'
0 '

' 0

'

1

0

j j

j j
j j j j j

j j

j j

if f x f
f f x

f x if f f x f
f f

if f x f



 



  


                                                                                  

(1.48)
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0,1,2,...,j m  

  

   

   
   

 

' ''

' ''
' '' '

''

'

1

0

j j j

j j j
j j j j j j

j

j j

if f x f f

f x f f
f x if f f f x f

f
if f x f



  

  

   

 
                                                         

(1.49)

 

0,1,2,...,j m  

  

 

   

 
   

   

0

' '''
0 ' '''

' ''' 0

' '''

1

0

j j

j j j
j j j j j j

j j j

j j j

if f x f

f f f x
f x if f f x f f

f f f

if f x f f



 

  

   
 


                                                        

(1.50) 

Now a Neutrosophic Geometric programming problem(P1.1) with truth ,falsity and 
indeterminacy membership function can be written as  

(P1. 2)  

  j jMaximize f x                                                                                                                                (1.51) 

  j jMinimize f x                                                                                                                                 (1.52) 

  j jMaximize f x                                                                                                                                (1.53) 

0,1,2,...,j m  

Considering equal importance of all truth,falsity and indeterminacy membership functions 
and using weighted sum method the above optimization problem reduces to  

(P1. 3)  

         
0

m

A j j j j j j
j

Maximize V f x f x f x  


                                                            (1.54) 

Subject to  

0x                                                                                                                                                       (1.55) 

The above problem is equivalent to  

(P1. 4)  
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' '' ' ' '''

1 ' 0 '' ' ''' 0 '' ' 0 ' '' 0
0

1 1 1m
j j j j j

A j
j j j j j j j j j j j j

f f f f f
Minimize V f x

f f f f f f f f f f f f

      
                      
      (1.56) 

Subject to  

 
1 1

1
j

jki

N n
a

j jk i
k i

f x C x
 

   1,2,...,j m                                                                              (1.57) 

0ix  1,2,...,i n                                                                                                                                      (1.58) 

Where 0jkC  and jkia  are all real.  1 2, ,.., .T
nx x x x

 

The posynomial Geometric Programming problem can be solved by usual geometric 
programming technique. 

1.19 Numerical Example of Neutrosophic Geometric Programming 

Consider an Intuitionistic Fuzzy Nonlinear Programing Problem as  

(P1. 5)  

  2 3
0 1 2 1 2, 2

n
Minimize f x x x x   (target value 57.87 with tolerance 2.91)                          (1.59) 

Subject to  

  1 1
1 1 2 1 2, 6.75f x x x x   ( with tolerance 2.91)                                                                  (1.60)  

 2 1 2 1 2, 1f x x x x                                                                                                           (1.61) 

1 2, 0x x      

Here linear truth ,falsity and indeterminacy membership  functions for fuzzy objectives and 
constraints goals are   

  

2 3
1 2

2 3
2 31 2

0 0 1 2 1 2

2 3
1 2

1 2 57.87
60.78 2, 57.87 2 60.78

2.91
0 2 60.78

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                  

(1.62) 

  

1 2
1 2

1 2
1 21 2

1 1 1 2 1 2

1 2
1 2

1 6.75
6.94, 6.75 6.94

0.19
0 6.94

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                                

(1.63) 
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2 3
1 2

2 3
2 31 2

0 0 1 2 1 2

2 3
1 2

1 2 59.03
2 59.03, 59.03 2 60.78

1.75
0 2 60.78

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                   

(1.64) 

  

1 2
1 2

1 2
1 21 2

1 1 1 2 1 2

1 2
1 2

1 6.83
6.83, 6.83 6.94

0.11
0 6.94

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                                

(1.65) 

  

2 3
1 2

2 3
2 31 2

0 0 1 2 1 2

2 3
1 2

1 2 57.87
59.50 2, 57.87 2 59.50

1.63
0 2 59.50

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                  

(1.66) 

  

1 2
1 2

1 2
1 21 2

1 1 1 2 1 2

1 2
1 2

1 6.75
6.88, 6.75 6.88

0.13
0 6.88

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                                

(1.67)

          

 

Based on max-additive operator FGP (P1.5)   reduces to   

(P1. 6)  

  1 1 2 3
1 2 1 2 1 2

1 1 1 1 1 1, 2
0.19 0.11 0.13 2.91 1.75 1.63AMaximize V x x x x x x      

        
   

            (1.68) 

Subject to  

 2 1 2 1 2, 1f x x x x                                                                                                           (1.69) 

1 2, 0x x   

Neglecting the constant term in the following model we have following crisp geometric 
programming problem as 

(P1. 7)  

  1 1 2 3
1 2 1 2 1 2, 22.046 3.057132Maximize V x x x x x x    

                                                                   

(1.70)

 
Subject to  

 2 1 2 1 2, 1f x x x x                                                                                                           (1.71) 
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1 2, 0x x                                                                                                                                                         (1.72) 

Here DD=4-(2+1)=1 

The dual problem of this GP is 

   
 

01 02 11 12

11 12

11 12
01 02 11 12

22.046 3.057132 1 1
w w w w

w wMax d w w w
w w w w

       
        

      
                     (1.73) 

Such that 

01 02 1w w                                                                                                                                                   (1.74) 

01 02 112 0w w w                                                                                                                                    (1.75) 

01 02 122 3 0w w w                                                                                                                                  (1.76) 

So 02 011 ;w w  11 012 ;w w  12 013 ;w w                                                                                      (1.77) 

 
     

 
 

01 01 01 01

01

1 2 3
5 2

01 01
01 01 01 01

22.046 3.057132 1 1 5 2
1 2 3

w w w w
wMaximize d w w

w w w w

  

       
        

                  

(1.78) 

Subject to  

010 1w                                                                                                                             (1.79)    

For optimality, 
  01

01

0
d d w

dw
                                                                                                              (1.80) 

     
2

01 01 01 01 0122.046 1 2 3 3.057132 5 2w w w w w                                                            (1.81) 

*
01 0.6260958,w  *

02 0.3739042,w  *
11 1.3739042,w  *

12 2.3739042,w                                   (1.82) 

*
1 0.366588,x  *

2 0.633411,x                                                                                                                (1.83) 

 * * *
0 1 2, 58.56211,f x x           * * *

1 1 2, 6.799086,f x x                                                                         (1.84)   

1.20 Application of Neutrosophic Geometric Programming in 
Gravel Box Design Problem 

Gravel Box Problem: A total of 800 cubic meters of gravel is to be ferried across a river on a 
barrage. A box (with an open top) is to be built for this purpose. After the entire gravel has 
been ferried, the box is to be discarded. The transport cost of round trip of barrage of box is 
Rs 1 and the cost of materials of the ends of the box  are Rs 20/m2and cost of the material of 
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other two sides and bottom are Rs 10/m2 and Rs 80/m2 respectively.Find the dimension of the 
gravel box that is to be built for this purpose and the total optimal cost. Let length ,width and 
height of the box be 1 2 3, ,x m x m x m  respectively. The area of the end of the gravel box is

2
2 3x x m . The area of the sides and bottom of the gravel box are  2

1 3x x m  and   2
1 2x x m  

respectively. The volume of the gravel box is 3
1 2 3 .x x x m  Transport cost is Rs 

1 2 3

80
x x x

 .Material 

cost is 2 340x x . 

So the gravel box problem can be formulated as multi-objective geometric programming 
problem as  

(P1. 8)  

   

 1 1 2 3 2 3
1 2 3

80, , 40Minimize f x x x x x
x x x

 

                                                                                                

(1.85)  
 

 2 1 2 3
1 2 3

80, ,Minimize f x x x
x x x



                                                                                                                 

(1.86)  
 

Such that 

1 2 1 32 4x x x x 
                                                                                                                      (1.87)  

 

1 2 3, , 0x x x 
                                                                                                                                                 

(1.88)  
 

Here objective goal is 90(with truth tolerance 8, falsity tolerance 5 and indeterminacy 
tolerance 5) 

And constraint goal 

 1 1 2 3, , 4f x x x  (with truth tolerance 0.9,falsity tolerance 0.5 and indeterminacy tolerance 

0.6) 

*
1 2.4775,x  *

2 0.1271,x  *
3 0.5635,x                                                                                                 (1.89) 

 * * *
0 1 2, 76.237,f x x           * * *

1 1 2, 4.5856,f x x        

 

 

1.21 Multi-Objective Neutrosophic Geometric Programming 
Problem 

A multi-objective geometric programming problem can be defined as  

(P1. 9)  
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Find  1 2, ,...., T
nX x x x                                                                                                                  (1.90) 

So as to 

 
0

0
0 0

1 1

k
k tj

T n
a

k k t j
t j

Minimize f x C x
 

                                         1,2,..,k p                                (1.91) 

Such that  

 
1 1

1
i

itj

T n
a

i it j
t j

f x C x
 

                                                     1,2,..,i m 1,2,..,j n                    (1.92) 

                         0,jx   

Where , 0kt itC C   for all k and t. ,ktj itja a  are real for all i,t,k,j 

Computational Algorithm 

Step-I: Solve the MONLP problem (P1.9)as a single objective non-linear problem p 
times for each problem by taking one of the objectives at a time and ignoring the others. 
These solutions are known as ideal solutions. Let kx  be the respective  optimal solution 
for the k th different objective and evaluate each objective values for all these k th 
optimal solution. 

Step-II: From the result of step-1, determine the corresponding values for every objective 
for each derived solution. With the values of all objectives at each ideal solution, pay-off 
matrix can be formulated as follows 

     

     

     

     

1 2

1 1 1
1 1 2

2 2 22
1 2

1 2

...

....

....
... ... ... ... ...

....

p

p

p

p p p p
p

f x f x f x

f x f x f xx
f x f x f xx

x f x f x f x

 
 
 
 
 
 
  

 

Step-III: For each objective   ,kf x  find lower bound kL  and upper bound kU   

  max r
k kU f x                                                                                                        (1.93) 

and   min r
k kL f x                                                                                                   (1.94) 

where 1 r k   for truth membership of objectives. 
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Step-IV: We represent upper and lower bounds for indeterminacy and falsity 
membership of objective as follows 

k kU U                                                                                                                         (1.95) 

and  k k k kL L t U L     
                                                                                                                

(1.96)
 

k kL L 
                                                                                                                                                  

(1.97) 
 

 and  k k k kU L s U L     
                                                                                                              

(1.98) 

Step-V: Define Truth membership, indeterminacy membership and falsity membership as 
follows 

  
 

1

0

k k

k k
k k k k k

k k

k k

if f L
U f x

f x if L f U
U L

if f U





 

 





 



  


                                                                            

(1.99) 

Then      
11

1k k k kv f x f x
t
 

                                                                                         
(1.100)

 

 and      
1 1

k k k k
sf x f x

s s
 


 

                                                                                      
(1.101) 

for
 

1,2,...,k p
 

It is obvious that 

  
 

1

0

k k

k k
k k k k k

k k

k k

if f L
U f x

f x if L f U
U L

if f U





 

 





 



  


                                                                            

(1.102) 

  
 

1

0

k k

k k
k k k k k

k k

k k

if f L
f x L

v f x if L f U
U L

if f U





 

 



 



  


                                                                               

(1.103) 

and         0 3k k k k k kf x f x f x       for
 

1,2,...,k p
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Step-VI: Now a neutrosophic geometric programming technique for multi-objective non-
linear programming problem with truth membership, falsity membership and 
indeterminacy membership function can be written as 

(P1. 10)  

         1 1 2 2, ,....., p pMaximize f x f x f x  
                                                           

(1.104)
 

         1 1 2 2, ,....., p pMinimize f x f x f x                                                                  (1.105) 

         1 1 2 2, ,....., p pMaximize f x f x f x                                                               (1.106)
 

Such that  

 
1 1

1
i

itj

T n
a

i it j
t j

f x C x
 

                                                     1,2,..,i m 1,2,..,j n                  (1.107) 

                         0,jx   

Where 0itC   for all i and t. itja  are real for all i,t,j 

Using weighted sum method the multi-objective nonlinear programming problem (P1.10) 
reduces to  

(P1. 11)  

           
1

p

MA k k k k k k k
k

Minimize V x w f x f x f x  


                                      
(1.108) 

  1

1 1

1 1 1 1 11 1
1 1

k
ktj

T n
a

kt jp p
t j k

MA k k
k kk k k k

C x
UMinimize V x w w

t s U L t s U L s



   

 

 

      
           

         

 
 

  
(1.109) 

Such that  

 
1 1

1
i

itj

T n
a

i it j
t j

f x C x
 

                                                     1,2,..,i m 1,2,..,j n                  (1.110) 

                         0,jx   

Where 0itC   for all i and t. itja  are real for all i,t,j 

 

Excluding the constant term, the problem (P1.11) reduces to the following geometric 
programming problem 
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(P1. 12) 

   1
1

1

1 11
1

k
ktj

T n
a

kt jp
t j

MA k
k k k

C x
Minimize V x w

t s U L 

 



 
   

  

 
  

(1.111) 

Such that 

 
1 1

1
i

itj

T n
a

i it j
t j

f x C x
 

      1,2,..,i m 1,2,..,j n     (1.112) 

0,jx   

Where 0itC   for all i and t. itja  are real for all i,t,j 

Here  , 0,1t s are predetermined real numbers.

 Where       1
1

1 1 11
1

p
k

MA k MA k k
k k k

UV f x V f x w
t s U L s



 


    
       

     
   

(1.113)

Here (P1.12)  is a posynomial geometric programming problem with 

0
1 1

1
p m

k i
k i

DD T T n
 

     (1.114) 

It can be solved by usual geometric  programming technique 

1.22 Definition: Neutrosophic Pareto (or NS Pareto) Optimal 
Solution 

A decision variable *x X  is said to be a NS Pareto optimal solution to the Neutrosophic 
GPP (P1.11) if there does not exist another x X  such that      * ,k k k kf x f x 

     *
k k k kf x f x   and      *

k k k kf x f x   for all 1,2,...,k p  and 

     * ,j j j jf x f x       *
j j j jf x f x   and      *

j j j jf x f x   for at least 

1,2,...,j p

1.23 Theorem 1 

The solution of  (P1.9) based on weighted sum method Neutrosophic GP Problem (P1.10) is 
weakly NS Pareto optimal. 

Proof: 
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Let *x X  be the solution of Neutrosophic GP Problem.Let us suppose that it is not weakly 
M-N pareto optimal.In this case there exist another  x X such that      * ,k k k kf x f x 

     *
k k k kf x f x   and      *

k k k kf x f x   for all 1,2,...,k p .Observe that   k kf x is 

strictly monotone decreasing function with respect to  kf x  .This implies 

     *
k k k kf x f x  and   k kf x  is monotone increasing function with respect to   ,kf x . 

This implies      *
k k k kf x f x  and    k kf x is strictly monotone decreasing function 

with respect to   ,kf x so      *
k k k kf x f x  .Thus we have 

     *

1 1
,

p p

k k k k k k
k k

w f x w f x 
 

       *

1 1

p p

k k k k k k
k k

w f x w f x 
 

  and

     *

1 1

p p

k k k k k k
k k

w f x w f x 
 

   .This is a contradiction to the assumption that *x  is a 

solution of Neutrosophic GP Problem (P1.9).Thus *x is a weakly NS Pareto Optimal. 

1.24 Theorem 2 

The unique solution of Neutrosophic GP Problem (P1.10) based on weighted sum method is 
weakly NS Pareto optimal. 

Proof: 

Let *x X  be the solution of Neutrosophic GP Problem.Let us suppose that it is not weakly 
NS pareto optimal. In this case there exist another  x X such that      * ,k k k kf x f x 

     *
k k k kf x f x   and      *

k k k kf x f x   for all 1,2,...,k p  

and      * ,l l l lf x f x       *
l l l lf x f x   for at least one  .l  Observe that   k kf x is 

strictly monotone decreasing function with respect to   ,kf x  this implies 

     *
k k k kf x f x  and   k kf x  is monotone increasing function with respect to   ,kf x . 

This implies      *
k k k kf x f x  and    k kf x is strictly monotone decreasing function 

with respect to   ,kf x this implies      *
k k k kf x f x  . Thus we have 

     *

1 1
,

p p

k k k k k k
k k

w f x w f x 
 

       *

1 1

p p

k k k k k k
k k

w f x w f x 
 

  and

     *

1 1

p p

k k k k k k
k k

w f x w f x 
 

   . On the other hand uniqueness of *x  means that

     *

1 1
,

p p

k k k k k k
k k

w f x w f x 
 

       *

1 1

p p

k k k k k k
k k

w f x w f x 
 

  and
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     *

1 1

p p

k k k k k k
k k

w f x w f x 
 

   . The two sets inequalities above are contradictory and thus 

*x  is weakly pareto optimal. 

1.25 Illustrated Numerical Example 

A multi-objective nonlinear programming problem can be written as  

(P1. 13)  

  1 2
1 1 2 1 2,Minimize f x x x x 

                                                                                                                      
(1.115)

 

  2 3
2 1 2 1 2, 2Minimize f x x x x 

                                                                                                                   
(1.116)

 

Such that 1 2 1x x 
                                                                                                                                   

(1.117)
 

Here the pay-off matrix is  

   1 1 2 1 1 2

1

2

, ,

6.75 60.78
6.94 57.87

f x x f x x

x
x
 
 
 

 

The truth membership,falsity membership and indeterminacy membership can be defined as 
follows 

  

1 2
1 2

1 2
1 21 2

1 1 1 2

1 2
1 2

1 6.75
6.94 6.75 6.94

0.19
0 6.94

if x x
x xf x if x x

if x x



 

 
 

 

 



  



                                                                     

(1.118) 

  

2 3
1 2

2 3
2 31 2

2 2 1 2

2 3
1 2

1 2 57.87
60.78 2 57.87 2 60.78

2.91
0 2 60.78

if x x
x xf x if x x

if x x



 

 
 

 

 



  



                                                        

(1.119) 

     1 1 1 1
11 ,

1
v f x f x

t
 

                                                                                                     
(1.120)

 

     2 2 2 1
11

1
v f x f x

t
 

                                                                                                     
(1.121)

                                                                     

 and      1 1 1 1
1 1 ,sf x f x
s s

 


 
                                                                                       

(1.122)
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     2 2 2 2
1 1 sf x f x
s s

 


 
                                                                                                

(1.123)
 

Table 1.1 Optimal values of primal, dual variables and objective functions from 
Neutrosophic Geometric Programming Problem for different weights  

Weights 
1,w 2w

 

Optimal 
Dual 
Variables 

*
01,w *

02 ,w *
11,w

*
12 ,w

 

Optimal 
Primal 
Variables 

*
1 ,x *

2 ,x
 

Optimal 
Objectives

 * * *
1 1 2, ,f x x

 * * *
2 1 2,f x x

 

Sum of the Optimal 
Objectives 

   * * * * * *
1 1 2 2 1 2, ,f x x f x x

 

0.5,0.5
 

0.6491609  
0.3508391  
1.3508391 

2.3508391
 

0.3649261  
0.6491609  
 

 

6.794329  

58.53371
 

65.32803  

 

0.9,0.1
 

0.9415706  
0.0584294  
1.0584294  

2.0584294
 

0.3395821  

0.6604179
 

6.751768  

60.21212
 

66.96388
 

0.1,0.9
 

0.1745920  
0.8254080  
1.8254080  

2.8254080
 

0.3924920  

0.6075080
 

6.903434  

57.90451
 

64.80794
 

 

Table 1.2 Comparison of optimal solutions by IFGP and NSGP technique 

 
Optimization 
Techniques 
 

Optimal 
Primal 
Variables 

*
1 ,x *

2 ,x
 

Optimal 
Objectives

 * * *
1 1 2, ,f x x

 * * *
2 1 2,f x x

 

Sum of the Optimal 
Objectives 

   * * * * * *
1 1 2 2 1 2, ,f x x f x x

 

Intuitionistic 
Fuzzy 
Geometric 
Programming 
(IFGP) 
 

0.36611  
0.63389  
 

 

6.797678  

58.58212
 

65.37980  

 

Proposed 
Neutrosophic 
Geometric 
Programming 
Technique 
 

0.3649261  

0.6491609
 

6.794329  

58.53371
 

65.32803
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In Table 1.2,It has been seen that NSGP technique gives better optimal result than IFGP 
technique  

1.26 Application of Neutrosophic Optimization in Gravel Box 
Design Problem 

Gravel Box Problem: A total of 800 cubic meters of gravel is to be ferried across a river on a 
barrage. A box (with an open top) is to be built for this purpose.After the entire gravel has 
been ferried, the box is to be discarded.The transport cost of round trip of barrage of box is 
Rs 1 and the cost of materials of other two sides and bottom are Rs 10/m2.Find the dimension 
of the gravel box that is to be built for this purpose and the total optimal cost.Let length width 
and height of the box be 1 2 3, ,x m x m x m  respectively. The area of the end of the gravel box is

2
2 3x x m . The area of the sides and bottom of the gravel box are  2

1 3x x m  and   2
1 2x x m  

respectively. The volume of the gravel box is 3
1 2 3 .x x x m  Transport cost is Rs 

1 2 3

80
x x x

 .Material 

cost is 2 340x x . 

So the gravel box problem can be formulated as multi-objective geometric programming 
problem as  

(P1. 14)  

 1 1 2 3 2 3
1 2 3

80, , 40Minimize f x x x x x
x x x

 

                                                                                                 

(1.124)
 

 2 1 2 3
1 2 3

80, ,Minimize f x x x
x x x



                                                                                                               

(1.125)
 

Such that 1 2 1 32 4x x x x 
                                                                                                                          

(1.126)
 

1 2 3, , 0x x x 
 

Solution: Here pay off matrix is  

   1 2

1

2

95.24 63.78
120 40

f x f x

x
x
 
 
 

 

Table 1.3 Comparison of optimal solutions of gravel box problem between IFGP 
and NSGP Method  

Optimization 
Techniques 
 

Optimal 
Primal 
Variables 

*
1 ,x *

2 ,x *
3 ,x

 

Optimal 
Objectives

 * * *
1 1 2, ,f x x

Sum of the Optimal 
Objectives 

   * * * * * *
1 1 2 2 1 2, ,f x x f x x
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 * * *
2 1 2,f x x

 
Intuitionistic 
Fuzzy 
Geometric 
Programming 
(IFGP) 
 

1.2513842  
1.5982302  
0.7991151  

 

101.1421624  

50.0553670
 

151.1975294  

 

Proposed 
Neutrosophic 
Geometric 
Programming 
Technique 
 

1.2513843  
1.5982300
0.7991150

 

101.1421582  

50.0553655
 

151.1975237
 

1.27 Multi-Objective Neutrosophic Linear Programming Problem (MOLPP) 

A general multi-objective linear programming problem with p objectives ,q constraints and n 
decision variables may be taken in the following form 

(P1. 15)  

 1 1Maximize f X C X
                                                                                                                       

(1.127) 

 2 2Maximize f X C X
                                                                                                                       

(1.128) 

................................. 

.................................. 

 p pMaximize f X C X
                                                                                                                     

(1.129) 

Subject to AX b                                                                                                                                    (1.130) 

0X                                                                                                                                                           (1.131) 

Where  1 2, ,.......,i i i inC c c c  for 1,2,..,i p                                                                                 (1.132) 

,
;ji q n

A a     1 2, ,....., ;nX x x x  1 2, ,.....,
T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n            (1.133) 

Consider the multi-objective linear programming problem as  

(P1. 16)  

      1 2, ,...., pMaximize f x f x f x                                                                                 (1.134) 

Subject to 

AX b                                                                                                                                                        (1.135) 
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Where  
,

,ij q n
A a  1 2, ,....., ,T

nX x x x  1 2, ,....,
T

qb b b b
                                                    

(1.136) 

Now the decision set nD  , conjunction of neutrosophic objectives and constraints are defined 

as        
1 1

, , ,n n n

p q
n n n

k j D D D
k j

D G C x T x I x F x
 

  
   
                                                         

(1.137)
 

Here  

              
1 2 1 2

, ,......, ; , ,.....,n n n n n n n
p qD G G G C C G

T x T x T x T x T x T x T x  for all  .x X           (1.138) 

              
1 2 1 2

, ,......, ; , ,.....,n n n n n n n
p qD G G G C C G

I x I x I x I x I x I x I x  for all  .x X           (1.139) 

              
1 2 1 2

, ,......, ; , ,.....,n n n n n n n
p qD G G G C C G

F x F x F x F x F x F x F x  for all  .x X       (1.140) 

Here      , ,n n nD D D
T x I x F x  are Truth membership function, Indeterminacy membership 

function, Falsity membership Functions of Neutrosophic Decision set respectively. Now 

using the definition of Smarandache‟s intersection of neutrosophic sets and criteria of 

decision making  ,the optimum linear programming problem can be formulated as  

Model-I-AL,BL 

(P1. 17)  

Max                                                                                                                                                          (1.141) 

Min                                                                                                                                                          (1.142) 

Max                                                                                                                                                          (1.143) 

Such that  

 n
kG

T x                                                                                                                                                  (1.144) 

 n
kC

T x 
                                                                                                                                                 

(1.145) 

 n
kG

I x 
                                                                                                                                                 

(1.146) 

 n
kC

I x 
                                                                                                                                                 

(1.147) 

 n
kG

T x 
                                                                                                                                                

(1.148) 

 n
kC

T x 
                                                                                                                                                

(1.149) 
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1,2,...,k p  

3                                                                                                                                                  (1.150) 

;                                                                                                                                                          (1.151) 

;                                                                                                                                                            

(1.152) 

 , , 0,1   
                                                                                                                                            

(1.153) 

In this algorithm we have considered the indeterminacy membership function as of 

decreasing sense and increasing sense respectively in Model-I-AL and Model-BL 

respectively  

But in real world situation a decision maker needs to minimize indeterminacy or hesitancy  

So using the another  definition of Smarandache‟s intersection of neutrosophic sets and 

criteria of decision making  the optimum linear programming problem is formulated as  

Model-II-AL,BL 

(P1. 18)  

Max                                                                                                                                                          (1.154) 

Min                                                                                                                                                          (1.155) 

Min                                                                                                                                                          (1.156) 

Such that  

 n
kG

T x                                                                                                                                                  (1.157) 

 n
kC

T x 
                                                                                                                                                 

(1.158) 

 n
kG

I x 
                                                                                                                                                 

(1.159) 

 n
kC

I x 
                                                                                                                                                 

(1.160) 

 n
kG

T x 
                                                                                                                                                

(1.161) 

 n
kC

T x 
                                                                                                                                                

(1.162) 

1,2,...,k p  

3                                                                                                                                                  (1.163) 

;                                                                                                                                                          (1.164) 

;                                                                                                                                                           (1.165) 
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 , , 0,1   
                                                                                                                                            

(1.166) 

In this algorithm we have considered the indeterminacy membership function as per 

decreasing sense and increasing sense respectively in Model-II-AL and Model-II-BL. 

 

Computational Algorithm 1 (Linear Membership Function) 

Step-I: Pick the objective function and solve it as a single objective subjected to the 

constraints. Continue the process k-times for k different objective functions. Find value of 

objective functions and decision variables. 

Step-II: To build membership functions, goals and tolerances should be determined at first. 

Using ideal solutions, obtained in step-I we find the values of all the objective functions at 

each ideal solution and construct pay-off matrix as follows  

     

     

     

* 1 1 1
1 2

2 * 2 2
2 2 2

*
1 2

........

........

........ ........ ........ .........

.......

p

p p p
p

f x f x f x

f x f x f x

f x f x f x

 
 
 
 
 
 
  

 

Step-III: From step-II we find the upper and lower bounds of each objective functions 

  *maxT
k k rU f x  and   *minT

k k rL f x  where 1 r k   for truth membership functions 

of objectives. 

Step-IV: We represent upper and lower bounds for indeterminacy and falsity membership of 

objectives as follows for  

Model-I,II-AL,AN 

I T
k kL L  and  I T T T

k k k kU L U L  
                                                                                                  

(1.167) 

 F T T T
k k k kL L t U L  

                                                                                                                             
(1.168) 

F T
k kU U

 

for Model-I,II-BL,BN 

F T I
k k kU U U 

 

 F T T T
k k k kL L t U L  

 

 I T T T
k k k kL L U L  

 

Here   and t  are two predominant real numbers in  0,1  
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Step-V: Define Truth membership, Indeterminacy membership, Falsity membership  

functions (For Model-I,II-AL,BL) as follows  

  

 

 
 

 

1

0

T
k k

T
k k T T

k k k k kT T
k k

T
k k

if f x L
U f x

T f x if L f x U
U L

if f x U

 



  


                                                                            

(1.169) 

For Model-I,II-AL
 

  

 

 
 

 

0

1

I
k k

I
k k I I

k k k k kI I
k k

I
k k

if f x L
U f x

I f x if L f x U
U L

if f x U

 



  


                                                                              

(1.170) 

For Model-I,II-BL 

                                                                            

 

  

 

 
 

 

0

1

I
k k

I
k k I I

k k k k kI I
k k

I
k k

if f x L
f x L

I f x if L f x U
U L

if f x U

 



  


                                                                               

(1.171)
 

 

  

 

 
 

 

0

1

F
k k

F
k k F F

k k k k kF F
k k

F
k k

if f x L
f x L

F f x if L f x U
U L

if f x U

 



  


                                                                         

(1.172)
 

Step-VI: Now neutrosophic optimization  method for MOLP problem gives an equivalent 

linear programming problem as Model-I-AL and Model-I-BL as 

Model-I-AL,BL 

(P1. 19)  

Maximize                                                                                                                                    (1.173)
 

  k kT f x 
                                                                                                                                         

(1.174)
 

  k kI f x 
                                                                                                                                          

(1.175)
 

  k kF f x   for  1,2,3,..,k p                                                                                                     (1.176)
 

3,                                                                                                                                                (1.177) 

,                                                                                                                                                          (1.178) 
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,                                                                                                                                                           (1.179)
 

 , , 0,1   
                                                                                                                                           

(1.180)
 

,Ax b                                                                                                                                                        (1.181) 

0x                                                                                                                                                              (1.182)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

Where in case of Model-I-AL we have considered Indeterminacy membership function as of 

decreasing sense and in Model-I-BL we have considered Indeterminacy membership function 

as of inceasing sense. 

Again Model-II-AL and Model-II-BL can be formulated as  

Model-II-AL,BL 

(P1. 20)  

Maximize                                                                                                                                    (1.183)
 

  k kT f x 
                                                                                                                                         

(1.184)
 

  k kI f x 
                                                                                                                                          

(1.185)
 

  k kF f x   for  1,2,3,..,k p                                                                                                     (1.186)
 

3,                                                                                                                                                (1.187) 

,                                                                                                                                                          (1.188) 
,                                                                                                                                                           (1.189)

 

 , , 0,1   
                                                                                                                                           

(1.190)
 

,Ax b                                                                                                                                                        (1.191) 

0x                                                                                                                                                              (1.192)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n  Here 

Here Model-II-AL,and Model-II-BL stand for neutrosophic algorithm with decreasing 

indeterminacy membership function and increasing indeterminacy membership function 

respectively. The above problems can be reduced to equivalent linear   programming  

problem as  

Model-I-AL 

(P1. 21)  
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Maximize                                                                                                                                    (1.193)
 

Such that  

   T T T
k k k kf x U L U  

                                                                                                                     
(1.194)

 

   I I I
k k k kf x U L U  

                                                                                                                     
(1.195)

 

   F F F
k k k kf x U L L  

                                                                                                                    
(1.196)

 

3,                                                                                                                                                (1.197) 

,                                                                                                                                                          (1.198) 
,                                                                                                                                                           (1.199)

 

 , , 0,1   
                                                                                                                                            

(1.200)
 

,Ax b                                                                                                                                                        (1.201) 

0x                                                                                                                                                              (1.202)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

And  

Model-I-BL 

(P1. 22)  

Maximize                                                                                                                                    (1.203)
 

Such that  

   T T T
k k k kf x U L U  

                                                                                                                     
(1.204)

 

   I I I
k k k kf x U L L  

                                                                                                                     
(1.205)

 

   F F F
k k k kf x U L L  

                                                                                                                    
(1.206)

 

3,                                                                                                                                                (1.207) 

,                                                                                                                                                          (1.208) 
,                                                                                                                                                           (1.209)

 

 , , 0,1   
                                                                                                                                            

(1.210)
 

,Ax b                                                                                                                                                        (1.211) 

0x                                                                                                                                                              (1.212)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   
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And  

Model-II-AL 

(P1. 23)  

Maximize                                                                                                                                    (1.213) 

Such that  

   T T T
k k k kf x U L U  

                                                                                                                     
(1.214)

 

   I I I
k k k kf x U L U  

                                                                                                                     
(1.215)

 

   F F F
k k k kf x U L L  

                                                                                                                    
(1.216)

 

3,                                                                                                                                                (1.217) 

,                                                                                                                                                          (1.218) 
,                                                                                                                                                           (1.219)

 

 , , 0,1   
                                                                                                                                            

(1.220)
 

,Ax b                                                                                                                                                        (1.221) 

0x                                                                                                                                                              (1.222)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

And  

Model-II-BL 

(P1. 24)  

Maximize                                                                                                                                    (1.223) 

Such that  

   T T T
k k k kf x U L U  

                                                                                                                     
(1.224)

 

        
   I I I

k k k kf x U L L  
                                                                                                             

(1.225)
 

   F F F
k k k kf x U L L  

                                                                                                                    
(1.226)

 

3,                                                                                                                                                (1.227) 
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,                                                                                                                                                          (1.228) 
,                                                                                                                                                           (1.229)

 

 , , 0,1   
                                                                                                                                            

(1.230)
 

,Ax b                                                                                                                                                        (1.231) 

0x                                                                                                                                                              (1.232)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

And  

Computational Algorithm 2 (Non Linear Membership Function) 

Repeat step 1 to 4 as same as computational algorithm 1 and construct pay off matrix. 

Step-V: Assumes that solutions so far computed by algorithm follow exponential function for 

Truth membership, hyperbolic membership function for Falsity membership and exponential 

function for Indeterminacy membership function (Model-I-AN,Model-I-BN) given as  

 

 

  

 

 
 

 

0

1 exp

1

T
k k

T
k k T T

k k k k kT T
k k

T
k k

if f x L

U f x
T f x if L f x U

U L

if f x U



 


   
      

  
                                                    

(1.233) 

For Model-I,II-AN as
 

  

 

 
 

 

0

exp

1

I
k k

I
k k I I

k k k k kI I
k k

I
k k

if f x L

U f x
I f x if L f x U

U L

if f x U

 


   
    

  
                                                                 

(1.234) 

For Model-I,II-BN as
 

  

 

 
 

 

0

exp

1

I
k k

I
k k I I

k k k k kI I
k k

I
k k

if f x L

f x L
I f x if L f x U

U L

if f x U

 


   
    

  
                                                                 

(1.235)
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0

1 1 tanh
2 2 2

1

F
k k

F F
F Fk k

k k k k k k k

F
k k

if f x L

U LF f x f x if L f x U

if f x U



 


    
       

   
                             

(1.236)

 

Step-VI: Now neutrosophic optimization method for MOLP problem with exponential Truth 

membership, Hyperbolic falsity membership and exponential indeterminacy membership 

functions give the equivalent linear programming problem  as 

Model-I-AN, 

(P1. 25)  

Maximize                                                                                                                                     (1.237)
 

Such that  

 
 

4

T T
k k T

k k

U L
f x U


 

                                                                                                                    
(1.238)

 

   I I I
k k k kf x U L U  

                                                                                                                     
(1.239)

 

 
2

F F
k k

k
k

U Lf x 




 

                                                                                                                           
(1.240)

 

3,                                                                                                                                                  (1.241) 

,                                                                                                                                                           (1.242) 

,                                                                                                                                                           (1.243)
 

 , , 0,1  
                                                                                                                                            

(1.244)
 

,Ax b                                                                                                                                                        (1.245)
 

0x                                                                                                                                                              (1.246)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

 log 1 ,   
                                                                                                                                     

(1.247)
 

log , 
                                                                                                                                                  

(1.248)
 

 1tanh 2 1 ,  
                                                                                                                             

(1.249)
 

4, 
                                                                                                                                                         

(1.250)
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6
k F F

k kU L
 

                                                                                                                                             
(1.251)

 

And 

 Model-I-BN 

(P1. 26)  

Maximize                                                                                                                                     (1.252)
 

Such that  

 
 

4

T T
k k T

k k

U L
f x U


 

                                                                                                                    
(1.253)

 

   I I I
k k k kf x U L L  

                                                                                                                     
(1.254)

 

 
2

F F
k k

k
k

U Lf x 




 

                                                                                                                           
(1.255)

 

3,                                                                                                                                                  (1.256) 

,                                                                                                                                                           (1.257) 

,                                                                                                                                                           (1.258)
 

 , , 0,1  
                                                                                                                                            

(1.259)
 

,Ax b                                                                                                                                                        (1.260)
 

0x                                                                                                                                                              (1.261)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

 log 1 ,   
                                                                                                                                     

(1.262)
 

log , 
                                                                                                                                                   

(1.263)
 

 1tanh 2 1 ,  
                                                                                                                             

(1.264)
 

4, 
                                                                                                                                                         

(1.265)
 

6
k F F

k kU L
 

                                                                                                                                             
(1.266)

 

Model-II-AN, 

(P1. 27)  
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Maximize                                                                                                                                     (1.267)
 

Such that  

 
 

4

T T
k k T

k k

U L
f x U


 

                                                                                                                    
(1.268)

 

   I I I
k k k kf x U L U  

                                                                                                                     
(1.269)

 

 
2

F F
k k

k
k

U Lf x 




 

                                                                                                                           
(1.270)

 

3,                                                                                                                                                  (1.271) 

,                                                                                                                                                           (1.272) 

,                                                                                                                                                           (1.273)
 

 , , 0,1  
                                                                                                                                            

(1.274)
 

,Ax b                                                                                                                                                        (1.275)
 

0x                                                                                                                                                              (1.276)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

 log 1 ,   
                                                                                                                                     

(1.277)
 

log , 
                                                                                                                                                

(1.278)
 

 1tanh 2 1 ,  
                                                                                                                             

(1.279)
 

4, 
                                                                                                                                                         

(1.280)
 

6
k F F

k kU L
 

                                                                                                                                             
(1.281)

 

 
Model-II-BN, 

(P1. 28)  

Maximize                                                                                                                                     (1.282)
 

Such that  

 
 

4

T T
k k T

k k

U L
f x U


 

                                                                                                                    
(1.283)

 

   I I I
k k k kf x U L L  

                                                                                                                     
(1.284)
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2

F F
k k

k
k

U Lf x 




 

                                                                                                                           
(1.285)

 

3,                                                                                                                                                  (1.286) 

,                                                                                                                                                           (1.287) 

,                                                                                                                                                           (1.288)
 

 , , 0,1  
                                                                                                                                            

(1.289)
 

,Ax b                                                                                                                                                        (1.290)
 

0x                                                                                                                                                              (1.291)
 

Where 
,

;ji q n
A a     1 2, ,....., ;nX x x x  1 2, ,.....,

T

qb b b b  for 1,2,.., ; 1,2,.....,j p i n   

 log 1 ,   
                                                                                                                                     

(1.292)
 

log , 
                                                                                                                                                  

(1.293)
 

 1tanh 2 1 ,  
                                                                                                                             

(1.294)
 

4, 
                                                                                                                                                         

(1.295)
 

6
k F F

k kU L
 

                                                                                                                                             
(1.296)

 

The above crisp linear programming problems can be solved by LINGO Tool Box. 

 

1.28 Production Planning Problem 

Consider a park of six machine types whose capacities are to be devoted to production of 

three products. A current capacity portfolio is available, measured in machine hours for each 

machine capacity unit price according to machine type. Necessary data are summarized 

below in table 1.4. 

Table 1.4 Physical Parameter values 

Machine Type Machine hours Unit price 

($ 100 per hour) 

Products 

1x  2x  3x  

Milling Machine 1400  0.75  12  17  0  
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Lathe 1000  0.60  3  9  8  

Grinder 1750  0.35  10  13  15  

Jig Saw 1325  0.50  6  0  16  

Drill Press 900  0.15  0  12  7  

Band Saw 1075  0.65  9.5  9.5  4  

Total capacity cost                                   $ 4658.75 

 

Let 1 2 3, ,x x x  denote three products, then the complete mathematical formulation of the above 

mentioned problem as Multi-objective linear programming problem can be given as 

(P1. 29)  

 1 1 2 350 100 17.5Maximize f x x x x    (profit)                                                             (1.297) 

 2 1 2 392 75 50Maximize f x x x x   (quality)                                                                (1.298) 

 3 1 2 325 100 75Maximize f x x x x   (worker satisfaction)                                           (1.299) 

Subject to  

1 212 17 1400;x x 
                                                                                                                                 

(1.300) 

1 2 33 9 8 1400;x x x  
                                                                                                                           

(1.301) 

1 2 310 13 15 1750x x x  
                                                                                                                     

(1.302) 

1 36 16 1325x x 
                                                                                                                                     

(1.303) 

1 2 3, , 0x x x 
                                                                                                                                               

(1.304) 

Table 1.5 Positive Ideal Solution 

 1f  2f  3f  

1Max f  8041.14  10020.33  9319.25  

2Max f  5452.63  10950.59  5903.00  

3Max f  7983.60  10056.99  9355.90  
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Table 1.6 Comparison of optimal solutions by IFO and NSO Technique  

Optimization 

Technique 

Optimal 

Decision 

Variable 
* * *
1 2 3, ,x x x  

Optimal 

Objective 

Function 
* * *

1 2 3, ,f f f  

Sum of 

optimal 

objective 

values 

Intuitionistic Fuzzy 

Optimization(IFO) 

*
1 62.82;x 
*
2 38.005;x 
*
3 41.84x   

*
1 7673.2;f 
*

2 10721.81;f 
*

3 8508.5f   

26903.51 

Proposed 

Neutrosophic 

Optimization(NSO) 

1 1, 1294.255  
 

2 2, 465.13  
 

3 3, 1726.450    

Model-I-AL 

*
1 79.99;x 
*
2 7.073;x 

*
3 42.611x   

*
1 5452.630;f 

*
2 10020.33;f 

*
3 5903.0f   

12375.96  

Model-I-BL *
1 68.89;x 
*
2 25.09;x 
*
3 45.30x   

*
1 6746.855;f 

*
2 465.13;f 
*

3 7629.45f   

14841.435  

Model-II-AL *
1 68.89;x 
*
2 25.09;x 
*
3 45.30x 

 

*
1 6746.855;f 

*
2 465.13;f 
*

3 7629.45f 
 

14841.435  

Model-II-BL *
1 79.99;x 
*
2 7.07;x 
*
3 42.62x 

 

*
1 5452.63;f 
*

2 10020.33;f 
*

3 5903.0f 
 

21375.96  

Model-I-AN *
1 66.58;x 

*
2 22.05;x 
*
3 43.95x 

 

*
1 6303.59;f 

*
2 9977.03;f 
*

3 7166.53f 
 

23447.15  

Model-I-BN *
1 64.088;x 

*
2 30.74;x 
*
3 46.422x 

 

*
1 7090.533;f 

*
2 10522.56;f 
*

3 8157.639f 
 

25770.732  
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Model-II-AN *
1 64.088;x 

*
2 30.74;x 

*
3 46.42x 

*
1 7090.533;f 

*
2 10522.56;f 

*
3 8157.639f 

25770.732  

Model-II-BN *
1 66.58;x 
*
2 22.06;x 

*
3 43.96x 

*
1 6303.89;f 
*

2 9977.61;f 

*
3 7167.44f 

23448.94  

Table 1.6 shows that neutrosophic optimization gives better result than intuitioistic fuzzy 

optimization. 

1.29 Neutrosophic Optimization (NSO)Technique to solve  Single-

Objective Minimization Type Nonlinear Programming 

(SONLP) Problem 

Let us consider a SONLP problem as  

(P1. 30) 

 Minimize f x (1.305) 

  1,2,...,j jg x b j m  (1.306) 

0x    (1.307) 

Usually constraint goals are considered as fixed quantity .But in real life problem,the 

constraint goal cannot be always exact. So we can consider the constraint goal for less than 

type constraints at least jb and it may possible to extend to 0
j jb b .This fact seems to take the 

constraint goal as a NS and which will be more realistic descriptions than others. Then the 

 NLP becomes NSO problem with neutrosophic resources, which can be described as follows 

(P1. 31) 

 Minimize f x  (1.308)

  1,2,....,n
j jg x b j m           (1.309) 

0x      (1.310) 

To solve the NSO (P1.31), following Werner‟s [118] and Angelov [3] we are presenting a 

solution procedure for SONSO problem (P1.31) as follows 

Step-1: Following Werner‟s approach solve the single objective non-linear programming 

problem without tolerance in constraints (i.e  j jg x b ),with tolerance of acceptance in 

constraints (i.e   0
j j jg x b b  ) by appropriate non-linear programming technique 



  Page 
43 

 
  

Here they are  

(P1. 32)  

Sub-problem-1  

 Minimize f x                                                                                                                (1.311)                                                                                                            

  1,2,....,j jg x b j m 
                                                                                                              

(1.312) 

0x                                                                                                                                             (1.313) 

(P1. 33)  

Sub-problem-2  

 Minimize f x                                                                                                              (1.314)

  0 , 1,2,....,j j jg x b b j m                                                                                         (1.315) 

0x                                                                                                                                                             (1.316) 

we may get optimal solutions    * 1 * 1,x x f x f x   and    * 2 * 2,x x f x f x  for sub-problem 

1 and 2 respectively.  

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective 

functions [Fig.-1.1]. If      , ,T I F
f x f x f xU U U be the upper bounds of truth, indeterminacy , falsity 

function for the objective respectively and      , ,T I F
f x f x f xL L L  be the lower bound of truth, 

indeterminacy, falsity membership functions of objective respectively then

      1 2max , ,T
f xU f x f x                                                                                                               (1.317) 

      1 2min , ,T
f xL f x f x

                                                                                                                
(1.318) 

for Model-I,II-AL,AN 

            I T I T T T
f x f x f x f x f x f xL L and U L s U L                                        (1.319)

            ;F T F T T T
f x f x f x f x f x f xU U and L L t U L                                                              (1.320) 

for Model-I,II-BL,BN 

F T I
k k kU U U 

 

 F T T T
k k k kL L s U L  

 

 I T T T
k k k kL L t U L  

 Here ,t s are predetermined real numbers in  0,1  
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Fig.-1.1 Rough Sketch of Lower and Upper bounds of Truth, Indeterminacy and Falsity 

Membership Functions of Objective of (P1.31) 

The initial neutrosophic model (Model -I)with aspiration levels of objectives can be 

formulated as  

(P1. 34)  

Find x
                                                                                                                                                         

(1.321)
 

So as to satisfy 

   
n T

f xf x L  with tolerance
    T T

f x f xU L for degree of truth membership                   (1.322) 

   
n I

f xf x L  with tolerance
    I I

f x f xU L for degree of indeterminacy membership   (1.323) 

   
n F

f xf x U  with tolerance
    F F

f x f xU L for degree of falsity membership               (1.324) 

  n
j jg x b  with tolerance 0

jb for degree of truth membership                                        (1.325) 

  n
j jg x b  with tolerance

  jg x for degree of indeterminacy membership                 (1.326)                                                            

  0n
j j jg x b b   with tolerance      0

jj j j g xb b b    for degree of falsity membership 

                                                                                                                                          (1.327)                                                                        

for 1,2,...j m ,
        ; 0,1

j j j

T T
g x g x g xt U L t     and 

        ; 0,1
j j j

T T
g x g x g xs U L s     

and for Mode-II it can be formulated as 

(P1. 35)  

Find x
                                                                                                                                                          

(1.328)
 

So as to satisfy 

   
n T

f xf x L  with tolerance
    T T

f x f xU L for degree of truth membership                   (1.329)                         
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n I

f xf x U  with tolerance
    I I

f x f xU L for degree of indeterminacy membership  (1.330) 

   
n F

f xf x U  with tolerance
    F F

f x f xU L for degree of falsity membership               (1.331)                 

  n
j jg x b  with tolerance 0

jb for degree of truth membership                                        (1.332) 

    j

n
j j g xg x b    with tolerance

  jg x for degree of indeterminacy membership   (1.333)       

  0n
j j jg x b b   with tolerance      0

jj j j g xb b b    for degree of falsity membership  

                                                                                                                                          (1.334)                  
For 1,2,...j m ,

        ; 0,1
j j j

T T
g x g x g xt U L t   

                                                                       
(1.335)

 

 and 
        ; 0,1

j j j

T T
g x g x g xs U L s   

                                                                                            
(1.336) 

Here ' 'n denotes inequality in neutrosophic sense. 

Step-3:  In this step we calculate linear membership for truth, indeterminacy and falsity 

membership functions of objective as follows 

    

   

   

   
     

   

1

0

T
f x

T
f x T T

f x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U

 

 
   
  


                                                         

(1.337)  

For Model-I,II-AL 

    

   

   

   
     

   

1

0

I
f x

I
f x I I

f x f x f xI I
f x f x

I
f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

 
   
  


                                                            

(1.338) 

For Model-I,II-BL 

 

    

   

   

   
     

   

1

0

I
f x

I
f x I I

f x f x f xI I
f x f x

I
f x

if f x U

f x L
I f x if L f x U

U L

if f x L

 

 
   
  


                                                             

(1.339) 
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0

1

F
f x

F
f x F F

f x f x f xF F
f x f x

F
f x

if f x L

f x L
F f x if L f x U

U L

if f x U

 

 

  





                                                                  

(1.340)

 

and exponential and hyperbolic membership for truth, indeterminacy and falsity membership 

functions as follows 

    

   

   

   
     

   

1

1 exp

0

T
f x

T
f x T T

f x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U



 

     

       
     




                                          

(1.341) 

For Model-I,II-AN 
 

    

   

   

   
     

   

1

exp

0

I
f x

I
f x I I

f x f x f xI I
f x f x

I
f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

    

    
   




                                     

(1.342) 

For Model-I,II-BN 

    

   

   

   
     

   

1

exp

0

I
f x

I
f x I I

f x f x f xI I
f x f x

I
f x

if f x U

f x L
I f x if L f x U

U L

if f x L

 

    

    
   


                                      

(1.343) 

    

   

 
   

       

   

0

1 1 tanh
2 2 2

1

F
f x

F F
f x f x F F

f x f x f x f x

F
f x

if f x L

U L
F f x f x if L f x U

if f x U



 

     

       
 

    




                                 

(1.344) 

Step-4:  In this step using linear, exponential and hyperbolic function for truth, 

indeterminacy and falsity membership functions, we may calculate membership function for 

constraints as follows 
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0
0

0

0

1

0

j

j j

j j j
j j j j jg x

j

j j

if g x b

b b g x
T g x if b g x b b

b

if g x b

 

  

     
 
                                                

(1.345) 

For Model-I,II-AL 

  

    

 

    

 

   

   

1

0

j

j j

j

j

j j

j jg x
j j j jg x g x

g x

j j g x

if g x b

b g x
I g x if b g x b

if g x b








 


 
   



                                      

(1.346) 

For Model-I,II-BL 

    

 

    
 

   

   

0

0
0

1

0

j

j j

j

j

j j j

j j g x
j j j j jg x g x

j g x

j j g x

if g x b b

g x b
I g x if b g x b b

b

if g x b








  

  

    



 

                                

(1.347) 

    

   

   

 
   

 

0
0

0

0

1

j

j

j j

j

j j g x

j j g x
j j j j jg x g x

j g x

j j j

if g x b

g x b
F g x if b g x b b

b

if g x b b








  


 
    




                                    

(1.348) 

where for 
   

01,2,..., 0 ,
j j jg x g xj m b    .  and

    

 

   

   

 

 

0

0

1

1 exp

0

j

j

j j

j j

T
jg x

j j j j jg x T T
g x g x

j j j

if g x b

U g x
T g x if b g x b b

U L

if g x b b



 


    
        
     


 

                  

(1.349)  

 

For Model-I,II-AN 

    

 

    

 

   

   

1

exp

0

j

j j

j

j

j j

j jg x

j j j jg x g x
g x

j j g x

if g x b

b g x
I g x if b g x b

if g x b








 


     
     
  

 
 



                           

(1.350)  
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For Model-I,II-BN 

    

 

    
      

   

0

0

0

1

exp

0

j

j j

j

j

j j j

j j g x

j j j j jg x g x

j g x

j j g x

if g x b b

g x b
I g x if b g x b b

b

if g x b








  


     
      

  
 

 
                    

(1.351) 

    

   

 
 

     

 

0
0

0

0

21 1 tanh
2 2 2

1

j

j

j j j

j j g x

j j g x
j j j j j jg x g x g x

j j j

if g x b

b b
F g x g x if b g x b b

if g x b b




 

  

      

         
     


 

          

(1.352) 

where ,  are non-zero parameters prescribed by the decision maker and for 

   
01,2,....., 0 ,

j j jg x g xj m b    .   

Step-5: Now using NSO for single objective optimization technique the optimization 

problem (P1.34) and (P1.35)can be formulated as 

(P1. 36)  

Model-I-AN,BN 

 Maximize    
                                                                                                                           

(1.353) 

Such that 

    ;f xT x 
                                                                                                                                             

(1.354)
 

  ;
jgT x 

                                                                                                                                                
(1.355) 

                                                                                                                    
 

    ;f xI x                                                                                                                                                (1.356) 

  ;
jgI x 

                                                                                                                                                
(1.357) 

    ;f xF x 
                                                                                                                                           

(1.358)
 

   ;
jgF x 

                                                                                                                                              
(1.359)

 

3;                                                                                                                                                 (1.360) 

 ; ;                                                                                                                                                 (1.361) 

       , , 0,1                                                                                                                                          (1.362) 
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In case of Model-I-AN and Model-I-BN we will consider indeterminacy membership 

function in decreasing sense and increasing sense respectively. 

(P1. 37)  

Model-II-AN,BN 

 Maximize    
                                                                                                                           

(1.363) 

Subject to  

    ;f xT x 
                                                                                                                                             

(1.364)
 

  ;
jgT x 

                                                                                                                                                
(1.365) 

                                                                                                                    
 

    ;f xI x                                                                                                                                                (1.366) 

  ;
jgI x 

                                                                                                                                                
(1.367) 

    ;f xF x 
                                                                                                                                           

(1.368)
 

   ;
jgF x 

                                                                                                                                              
(1.369)

 

3;                                                                                                                                                 (1.370) 

 ; ;                                                                                                                                                 (1.371) 

       , , 0,1                                                                                                                                          (1.372) 

In case of Model-II-A and Model-II-B we will consider indeterminacy membership function 

in decreasing sense and increasing sense respectively. 

Now the above problem (Model-I) (P1.36) can be simplified to following crisp linear 

programming problem  for linear membership function as 

Model-I-AL 

(P1. 38)  

 Maximize                                                                                                          (1.373)

 

        . ;T T T
f x f x f xsuch that f x U L U  

                                                                                  
(1.374) 

        . ;I I I
f x f x f xf x U L U  

                                                                                                         
(1.375) 

        . ; 1,2,....,F F F
f x f x f xf x U L L for k p   

                                                                     
(1.376) 

3;                                                                                                                                                (1.377) 

;                                                                                                                                                          (1.378) 
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;                                                                                                                                                            (1.379) 

 , , 0,1 ;                                                                                                                                              (1.380) 

  ,j jg x b                                                                                                                                                 (1.381) 

0,x                                                                                                                                                            (1.382) 

Model-I-BL 

(P1. 39)  

 Maximize                                                                                                          (1.383)

 

        . ;T T T
f x f x f xsuch that f x U L U  

                                                                                  
(1.384) 

        . ;I I I
f x f x f xf x U L L  

                                                                                                         
(1.385) 

        . ; 1,2,....,F F F
f x f x f xf x U L L for k p   

                                                                     
(1.386) 

3;                                                                                                                                                (1.387) 

;                                                                                                                                                          (1.388) 

;                                                                                                                                                            (1.389) 

 , , 0,1 ;                                                                                                                                              (1.390) 

  ,j jg x b                                                                                                                                                 (1.391) 

0,x                                                                                                                                                            (1.392)                                                                                                                      

and for nonlinear membership function as 

Model-I-AN 

(P1. 40)  

 Maximize                                                                                                            (1.393)                                                                                                   

Such that  

 
    

 
;

T T
f x f x T

f x

U L
f x U




 

                                                                                                         
(1.394)

 

         
;T

f x f x f xf x L   
                                                                                                             

(1.395)
 

 
 

      ;
2

T T
f x f x f x

f x

U L
f x





 
 

                                                                                                  

(1.396) 
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0

0;j
j j j

b
g x b b


  

                                                                                                                          
(1.397)

 

     
0 ;

j jj jg x g xg x b   
                                                                                                                 

(1.398)
 

 
 

 
02

;
2

jj j g x
j

g x

b b
g x





 
 

                                                                                                       

(1.399) 

                     3;                                                                                                                            (1.400) 

  ;                                                                                                                                                          (1.401) 

;                                                                                                                                                            (1.402) 

 , , 0,1  
                                                                                                                                            

(1.403) 

Where 

 ln 1 ;   
                                                                                                                                       

(1.404)
 

4;                                                                                                                                                           (1.405) 

 

    
6 ;f x F F

f x f xU L
 


                                                                                                                           

(1.406)

 

   0

6 , 1,2,...,
jg x

j j

for j m
b




 


                                                                                                   

(1.407)
 

ln ;                                                                                                                                                      (1.408) 

 1tanh 2 1 .  
                                                                                                                             

(1.409)  

Model-I-BN 

(P1. 41)  

 Maximize                                                                                                            (1.410)                                                                                                   

Such that  

 
    

 
;

T T
f x f x T

f x

U L
f x U




 

                                                                                                         
(1.411)

 

              
;T T T

f x f x f x f x f xf x U L L      
                                                                             

(1.412)
 

 
 

      ;
2

T T
f x f x f x

f x

U L
f x





 
 

                                                                                                  

(1.413) 
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0

0;j
j j j

b
g x b b


  

                                                                                                                          
(1.414)

 

     
0 ;

j jj jg x g xg x b   
                                                                                                                 

(1.415)
 

 
 

 
02

;
2

jj j g x
j

g x

b b
g x





 
 

                                                                                                       

(1.416) 

                     3;                                                                                                                            (1.417) 

  ;                                                                                                                                                          (1.418) 

;                                                                                                                                                            (1.419) 

 , , 0,1  
                                                                                                                                            

(1.420) 

Where 

 ln 1 ;   
                                                                                                                                       

(1.421)
 

4;                                                                                                                                                           (1.422) 

 

    
6 ;f x F F

f x f xU L
 


                                                                                                                           

(1.423)

 

   0

6 , 1,2,...,
jg x

j j

for j m
b




 


                                                                                                   

(1.424)
 

ln ;                                                                                                                                                      (1.425) 

 1tanh 2 1 .  
                                                                                                                             

(1.426)
                                                                                       

 

Again the problem (Model-II) (P1.37) can be reduced to following crisp linear programming 

problem for linear membership function as  

Model-II-AL 

(P1. 42)  

 Maximize                                                                                                          (1.427) 

        . ;T T T
f x f x f xsuch that f x U L U  

                                                                                  
(1.428) 

        . ;I I I
f x f x f xf x U L U  

                                                                                                         
(1.429) 

        . ; 1,2,....,F F F
f x f x f xf x U L L for k p   

                                                                     
(1.430) 

3;                                                                                                                                                (1.431) 

;                                                                                                                                                          (1.432) 



  Page 
53 

 
  

;                                                                                                                                                            (1.433) 

 , , 0,1 ;                                                                                                                                              (1.434) 

  ,j jg x b                                                                                                                                                 (1.435) 

0,x                                                                                                                                                            (1.436) 

Model-II-BL 

(P1. 43)  

 Maximize                                                                                                          (1.437) 

        . ;T T T
f x f x f xsuch that f x U L U  

                                                                                  
(1.438) 

        . ;I I I
f x f x f xf x U L L  

                                                                                                         
(1.439) 

        . ; 1,2,....,F F F
f x f x f xf x U L L for k p   

                                                                     
(1.440) 

3;                                                                                                                                                (1.441) 

;                                                                                                                                                          (1.442) 

;                                                                                                                                                            (1.443) 

 , , 0,1 ;                                                                                                                                              (1.444) 

  ,j jg x b                                                                                                                                                 (1.445) 

0,x                                                                                                                                                            (1.446) 

 and for nonlinear membership function as 

Model-II-AN 

(P1. 44)  

 Maximize                                                                                                            (1.447) 

Such that  

 
    

 
;

T T
f x f x T

f x

U L
f x U




 

                                                                                                         
(1.448)

 

         
;T

f x f x f xf x L   
                                                                                                             

(1.449)
 

 
 

      ;
2

T T
f x f x f x

f x

U L
f x





 
 

                                                                                                  

(1.450) 
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0

0;j
j j j

b
g x b b


  

                                                                                                                          
(1.451)

 

     
0 ;

j jj jg x g xg x b   
                                                                                                                 

(1.452)
 

 
 

 
02

;
2

jj j g x
j

g x

b b
g x





 
 

                                                                                                       

(1.453) 

                     3;                                                                                                                            (1.454) 

  ;                                                                                                                                                          (1.455) 

;                                                                                                                                                            (1.456) 

 , , 0,1  
                                                                                                                                            

(1.457) 

Where 

 ln 1 ;   
                                                                                                                                       

(1.458)
 

4;                                                                                                                                                           (1.459) 

 

    
6 ;f x F F

f x f xU L
 


                                                                                                                           

(1.460)

 

   0

6 , 1,2,...,
jg x

j j

for j m
b




 


                                                                                                   

(1.461)
 

ln ;                                                                                                                                                      (1.462) 

 1tanh 2 1 .  
                                                                                                                             

(1.463)
 

 
Model-II-BN 

(P1. 45)  

 Maximize                                                                                                            (1.464) 

Such that  

 
    

 
;

T T
f x f x T

f x

U L
f x U




 

                                                                                                         
(1.465)

 

              
;T T T

f x f x f x f x f xf x U L L      
                                                                             

(1.466)
 

 
 

      ;
2

T T
f x f x f x

f x

U L
f x





 
 

                                                                                                  

(1.467) 
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0

0;j
j j j

b
g x b b


  

                                                                                                                          
(1.468)

 

     
0 ;

j jj jg x g xg x b   
                                                                                                                 

(1.469)
 

 
 

 
02

;
2

jj j g x
j

g x

b b
g x





 
 

                                                                                                       

(1.470) 

                     3;                                                                                                                            (1.471) 

  ;                                                                                                                                                          (1.472) 

;                                                                                                                                                            (1.473) 

 , , 0,1  
                                                                                                                                            

(1.474) 

Where 

 ln 1 ;   
                                                                                                                                       

(1.475)
 

4;                                                                                                                                                           (1.476) 

 

    
6 ;f x F F

f x f xU L
 


                                                                                                                           

(1.477)

 

   0

6 , 1,2,...,
jg x

j j

for j m
b




 


                                                                                                   

(1.478)
 

ln ;                                                                                                                                                      (1.479) 

 1tanh 2 1 .  
                                                                                                                             

(1.480)
                                                                                                                

 
All these crisp nonlinear programming problems (P1.38-P1.45) can be solved by appropriate 

mathematical algorithm. 

1.30 Neutrosophic Optimization Technique to solve Minimization 
Type Multi-Objective Non-linear Programming Problem for Linear 
Membership Function 

A non-linear multi-objective optimization problem is of the form 

(P1. 46)  

      1 2, ,..., pMinimize f x f x f x                                                                                                    (1.481) 

  ,j jg x b 1,2,...,j q                                                                                                     (1.482) 
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Now the decision set ,nD  a conjunction of neutrosophic objectives and constraints is defined 

as       
1 1

, , ,n n n

p q
n n n

k j D D D
k j

D G C x T x I x F x
 

  
   
   

                                                         

(1.483) 

Here  

              
1 2 1 2

min , ,...., ; , ,....,n n n n n n n
p pD G G G C C C

T x T x T x T x T x T x T x for all x X         (1.484) 

              
1 2 1 2

min , ,...., ; , ,....,n n n n n n n
p pD G G G C C C

I x I x I x I x I x I x I x for all x X        (1.485) 

              
1 2 1 2

min , ,...., ; , ,....,n n n n n n n
p pD G G G C C C

F x F x F x F x F x F x F x for all x X    (1.486) 

where      , ,n n nD D D
T x I x F x  are Truth membership function, Indeterminacy membership 

function, Falsity membership function of Neutrosophic decision set respectively. Now using 
the definition of Smarandache‟s Intersection the problem (P1.46) is transferred to the 
nonlinear programming problem as  

Model-I-A,B 

(P1. 47)  

Maximize                                                                                                                                                (1.487) 

Minimize                                                                                                                                                (1.488) 

Maximize                                                                                                                                                (1.489) 

Such that  

 n
kG

T x                                                                                                                                                  (1.490) 

 n
jC

T x                                                                                                                                                   (1.491) 

 n
jG

I x                                                                                                                                                   (1.492) 

 n
jC

I x                                                                                                                                                   (1.493) 

 n
kG

F x                                                                                                                                                 (1.494) 

 n
jC

F x                                                                                                                                                  (1.495) 

3;                                                                                                                                                 (1.496) 

,                                                                                                                                                          (1.497) 
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                 (1.498) 

 , , 0,1     (1.499) 

In Model-I-A we will consider indeterminacy function as decreasing sense and in Model-I-B 
we will consider indeterminacy membership function as increasing sense. 

Again in real world practical problem a decision maker needs to minimize hesitancy 
function.So the  nonlinear programming problem can be formulated as  

Model-II-A,B 

(P1. 48) 

Maximize     (1.500) 

Minimize     (1.501) 

Minimize     (1.502) 

Such that 

 n
kG

T x     (1.503) 

 n
jC

T x      (1.504) 

 n
jG

I x      (1.505) 

 n
jC

I x      (1.506) 

 n
kG

F x      (1.507) 

 n
jC

F x     (1.508) 

3;        (1.509) 

,        (1.510) 

            (1.511) 

 , , 0,1   

In Model-II-A we will consider indeterminacy function as decreasing sense and in Model-II-
B we will consider indeterminacy membership function as increasing sense.       

Now this non-linear programming problem (P1.47,P1.48) can be easily solved by appropriate 
mathematical algorithm to give solution of multi-objective linear programming problem 
(P1.46) by neutrosophic optimization approach. 
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Step-1 Solve the MONLP(P1.46) as a single objective non-linear problem p times for each 
problem by taking one of the objectives at a time and ignoring the others. These solution are 
known as ideal solutions. Let kx  be the respective optimal solution for the k th different 
objective and evaluate each objective values for all these k th optimal solution. 

Step-2  From the result of Step-1,determine the corresponding values for every objective for 
each derived solution .With the values of all objectives at each ideal solutions, pay-off matrix 
can be formulated as follows 

     

     

     

* 1 1 1
1 2

2 * 2 2
1 2

*
1 2

....

....

... ... .... ...

....

p

p

p p p
p

f x f x f x

f x f x f x

f x f x f x

 
 
 
 
 
 
  

Step-3 For each objective  kf x ,the lower bound T
kL  and upper bound T

kU as 

  *maxT r
k kU f x (1.512) 

and   *minT r
k kL f x (1.513) 

where 1,2,...,r k  for truth membership function of objectives. 

Step-4 We represents upper and lower bounds for indeterminacy and falsity membership of 
objectives as follows 

Model- I,II-AL,AN 

F T
k kU U  and 

 F T T T
k k k kL L t U L   (1.514)

I T
k kU U  and 

 I T T T
k k k kL L s U L   (1.515)

Here t  and s  are predetermined real number in  0,1

Model-I,II-BL,BN 

F T I
k k kU U U   and 

 F T T T
k k k kL L t U L  

Computational Algorithm 
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 I T T T
k k k kL L s U L  

                                                                                                      

Here t  and s  are predetermined real number in  0,1
 

Step-5 Define Truth membership, Indeterminacy membership, Falsity membership functions 
as follows 

  

 

 
 

 

1

0

T
k k

T
k k T T

k k k k kT T
k k

T
k k

if f x L
U f x

T f x if L f x U
U L

if f x U

 



  


                                                                               

(1.516) 

For Model-I,II-AL
 

  

 

 
 

 

1

0

I
k k

I
k k I I

k k k k kI I
k k

I
k k

if f x L
U f x

I f x if L f x U
U L

if f x U

 



  


                                                                                

(1.517) 

For Model-I,II-BL
 

 

  

 

 
 

 

1

0

I
k k

I
k k I I

k k k k kI I
k k

I
k k

if f x U
f x L

I f x if L f x U
U L

if f x L

 



  


                                                                                 

(1.518)
 

  

 

 
 

 

1

0

F
k k

F
k k F F

k k k k kF F
k k

F
k k

if f x L
f x L

F f x if L f x U
U L

if f x U

 



  


                                                                           

(1.519) 

Step-6 Now neutrosophic optimization method for MONLP problem gives an equivalent 
nonlinear-programing problem as  

Model-I-A,B 

(P1. 49)  

 Max    
                                                                                                                                    

(1.520)
 

Such that 
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   ;k kT f x                                                                                                                                           (1.521) 

   ;k kI f x 
                                                                                                                                         

(1.522) 

   ;k kF f x 
                                                                                                                                        

(1.523)
 

3;    
                                                                                                                                            

(1.524)
 

; 
                                                                                                                                                        

(1.525)
 

; 
                                                                                                                                                          

(1.526) 

 , , 0,1 ;   
                                                                                                                                          

(1.527)
 

  ; 0j jg x b x 
                                                                                                                                      

(1.528)
 

1,2,.., ; 1,2,..,k p j q 
                                                                                                                        

(1.529) 

In Model-I-A and Model-I-B we will consider the indeterminacy membership function as 
decreasing sense and increasing sense and increasing sense respectively.  

Also as a decision maker needs to minimize hesitancy function in decision making problem, 
the above problem can be formulated as 

Model-II-A,B 

(P1. 50)  

 Max    
                                                                                                                                    

(1.530)
 

Such that 

   ;k kT f x                                                                                                                                           (1.531) 

   ;k kI f x 
                                                                                                                                         

(1.532) 

   ;k kF f x 
                                                                                                                                        

(1.533)
 

3;    
                                                                                                                                            

(1.534)
 

; 
                                                                                                                                                        

(1.535)
 

; 
                                                                                                                                                          

(1.536) 

 , , 0,1 ;   
                                                                                                                                          

(1.537)
 

  ; 0j jg x b x 
                                                                                                                                      

(1.356)
 

1,2,.., ; 1,2,..,k p j q 
                                                                                                                        

 

Which is reduced to equivalent non-linear programming problem as 



  Page 
61 

 
  

Model-I-AL  

(P1. 51)  

 Max    
                                                                                                                                    

(1.538)
 

Such that 

   .T T T
k k k kf x U L U                                                                                                                       (1.539) 

   .I I I
k k k kf x U L U  

                                                                                                                     
(1.540) 

   .F F F
k k k kf x U L L  

                                                                                                                    
(1.541)

 

3;    
                                                                                                                                            

(1.542)
 

; 
                                                                                                                                                        

(1.543)
 

; 
                                                                                                                                                         

(1.544) 

 , , 0,1 ;   
                                                                                                                                          

(1.545)
 

  ; 0j jg x b x 
                                                                                                                                      

(1.546)
 

1,2,.., ; 1,2,..,k p j q 
            

Model-I-BL  

(P1. 52)  

 Max    
                                                                                                                                    

(1.547)
 

Such that 

   .T T T
k k k kf x U L U                                                                                                                       (1.548) 

   .I I I
k k k kf x U L L  

                                                                                                                     
(1.549) 

   .F F F
k k k kf x U L L  

                                                                                                                    
(1.550)

 

3;    
                                                                                                                                            

(1.551)
 

; 
                                                                                                                                                        

(1.552)
 

; 
                                                                                                                                                         

(1.553) 

 , , 0,1 ;   
                                                                                                                                          

(1.554)
 

  ; 0j jg x b x 
                                                                                                                                      

(1.555)
 

1,2,.., ; 1,2,..,k p j q 
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   And 

Model-II-AL 

(P1. 53)  

 Max    
                                                                                                                                    

(1.556)
 

Subject to  

   .T T T
k k k kf x U L U                                                                                                                       (1.557) 

   .I I I
k k k kf x U L U  

                                                                                                                     
(1.558) 

   .F F F
k k k kf x U L L  

                                                                                                                    
(1.559)

 

3;    
                                                                                                                                            

(1.560)
 

; 
                                                                                                                                                        

(1.561)
 

; 
                                                                                                                                                         

(1.562) 

 , , 0,1 ;   
                                                                                                                                          

(1.563)
 

  ; 0j jg x b x 
                                                                                                                                      

(1.564)
 

1,2,.., ; 1,2,..,k p j q 
            

    Model-II-B 

(P1. 54)  

 Max    
                                                                                                                                    

(1.565) 

Subject to  

   .T T T
k k k kf x U L U                                                                                                                       (1.566) 

   .I I I
k k k kf x U L L  

                                                                                                                     
(1.567) 

   .F F F
k k k kf x U L L  

                                                                                                                    
(1.568)

 

3;    
                                                                                                                                            

(1.569)
 

; 
                                                                                                                                                        

(1.570)
 

; 
                                                                                                                                                         

(1.571) 

 , , 0,1 ;   
                                                                                                                                          

(1.572)
 

  ; 0j jg x b x 
                                                                                                                                      

(1.573)
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1,2,.., ; 1,2,..,k p j q 

1.31 Illustrated Numerical Example 
(P1. 55) 

  1 2
1 1 2 1 2,Min f x x x x 

(1.574) 

  2 3
2 1 2 1 2, 2Min f x x x x  (1.575) 

Such that 

1 2 1x x  (1.576) 

1 2, 0x x  (1.577) 

Solution : Here 1 6.75,TL   1 6.94TU   2 57.87,TL  2 60.78TU   

Comparison of optimal solution by IFO and NSO Technique 

Optimization 
Technique 

Optimal 
Decision 
Variables 

* *
1 2,x x

Optimal 
Objective 
Functions 

* *
1 2,f f

Sum of 
Optimal 
Objective 
Values 

Intuitionistic 
Fuzzy 
Optimization(IFO) 

0.3659009  
0.6356811  

6.797078  
58.79110  

65.588178  

Proposed 
Neutrosophic 
Optimization 
(NSO) 

1 1, 0.019    

2 2, 0.291    
Model-I-AL 

0.3704475  
0.6315016  

6.769
57.87

64.63  

Model-II-AL 0.3659010  
0.634099

6.797
58.59  

65.38  

Model-I-BL 0.3659016  
0.6340984  

6.797
58.59  

65.38  

Model-II-BL 0.3659016  
0.6340984  

6.797
58.59  

65.38  

Table 1.7 shows that neutrosophic optimization technique gives better result than 
Intuitionistic Fuzzy Nonlinear Programming Technique. 



Page 
64 

The function of a riser is to supply additional molten metal to a casting to ensure a shrinkage 
porosity free casting.Shrinkage porosity occurs because of the increase in density from the 
liquid to solid state of metals.To be effective a riser must be solidify after casting and contain 
sufficient metal to feed the casting. Casting solidification time is predicted from Chvorinov‟s 
rule. Chvorinov‟s rule provides guidance on why risers are typically cylindrical.The longest 
solidification time for a given volume is the one where the shape of the part has the minimum 
surface area. From a practical standpoint cylinder has least surface area for its volume and 
easiest to make. Since the riser should solidify a cylinder side riser which consists of a 
cylinder of height H and diameter D. The theoretical basis for riser design is Chvorinov‟s rule 
which is  

2/t k V SA  where t   solidification time (minutes/seconds), K   solidification

constant for moulding material(minutes/in2 or seconds/cm2), V   riser volume (in3 or cm3), 
SA   cooling surface area of the riser. 

The objective is to design the smallest riser such that R Ct t  .where Rt   solidification time 
of the riser, Ct   solidification time of the casting, 

   
2 2/ /R R R C C CK V SA K V SA (1.578) 

The riser and casting are assumed to be moulded in the same material so that RK and CK are 

equal .So    / /R R C CV SA V SA  . (1.579) 

The casting has a specified volume and surface area, so 

/C CV SA Y   constant, (1.580) 

which is called the casting modulus. 

/ ,C CV SA Y (1.581)

2 / 4,R R RV D H (1.582)

22 / 4R R R RSA D H D   (1.583) 

Therefore 

      2 2/ 4 2 / 4 / 4 2R R R R R R R RD D H D D H H D Y      (1.584) 

We take 96CV   cubic inch. 

 2 2.8 2.6 6.8 152CSA      square inch. (1.585) 

Then, 1 149 24 1
19 19R RD H   (1.586) 

Therefore Multi-objective cylindrical riser design problem can be stated as 

1.32 Application of Neutrosophic Optimization in Riser Design Problem 
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   2, / 4R R R R RMinimize V D H D H
                                                                                                

(1.587) 

     , / 4 2R R R R R R RMinimize t D H D H H D 
                                                                           

(1.588) 

Subject to 1 149 24 1
19 19R RD H  

                                                                                                           
(1.589) 

, 0R RD H 
                                                                                                                                                

(1.383) 

Here pay-off matrix is  

42.75642 0.631579
12.510209 0.6315786

R R

R

R

V T
D
H

 
 
 

 

Table 1.7 Values of Optimal Decision Variables and Objective Functions by 
Neutrosophic Optimization Technique 

Optimal Decision 
variables 

Optimal Objective 
Functions 
 

Aspiration levels 
of Truth, Falsity 
and 
Indeterminacy 
Membership 
Functions 

* 3.152158RD   
* 3.152158RH   

 * * *, 24.60870R R RV D H   

 * * *, 0.6315787R R Rt D H   

* 0.1428574   
* 0.1428574   
* 0.00001   

 

1.33 Neutrosophic Optimization(NSO) Technique to Solve 

Minimization Type Multi-Objective Non-linear Programming 

Problem(MONLP) 
A nonlinear multi-objective optimization problem is of the form  

(P1. 56)  

      1 2, ,..., pMinimize f x f x f x                                                                                   (1.590) 

  1,2,...,j jg x b j q 
                                                                                                                  

(1.591) 

Now the decision set nD , a conjunction of Neutrosophic objectives and constraints is defined 

       
1 1

, ,n n n

p q
n n n

k j D D D
k j

D G C x T x I x F x
 

  
   
                                                               

(1.592) 

Here  
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1 2 3

1 2 3

, , ,...., ;
min

, , ,....,

n n n n
p

n

n n n n
q

G G G G

D
C C C C

T x T x T x T x
T x for all x X

T x T x T x T x

 
 

  
                                           

(1.593) 

 
       

       

1 2 3

1 2 3

, , ,....., ;
min

, , ,.....,

n n n n
p

n

n n n n
q

G G G G

D
C C C C

I x I x I x I x
I x for all x X

I x I x I x I x

 
 

  
                                          

(1.594) 

 
       

       

1 2 3

1 2 3

, , ,...., ;
min

, , ,.....,

n n n n
p

n

n n n n
q

G G G G

D
C C C C

F x F x F x F x
F x for all x X

F x F x F x F x

 
 

  
                                       

(1.595) 

 Where      , ,n n nD D D
T x I x F x are truth-membership function, indeterminacy membership 

function, falsity membership function of neutrosophic decision set respectively .Now using 

the definition of Smarandache‟s intersection of neutrosophic sets and criteria of decision 

making (P1.56) is transformed to the non-linear programming problem as 

Model-I-AN,BN 

(P1. 57)  

Max                                                                                                                                (1.596) 

Max                                                                                                                                                          (1.597) 

Min                                                                                                                                                          (1.598) 

 
such that

                                                                                                                       

 
  ;n

kG
T x 

                                                                                                                                              
(1.599)

 

  ;n
jC

T x 
                                                                                                                                               

(1.600) 

  ;n
kG

I x 
                                                                                                                                               

(1.601)
 

  ;n
jC

I x 
                                                                                                                                               

(1.602) 

  ;n
kG

F x 
                                                                                                                                               

(1.603)
 

  ;n
jC

F x 
                                                                                                                                               

(1.604) 

3;                                                                                                                                                (1.605) 

; ;                                                                                                                                                  (1.606) 

 , , 0,1   
                                                                                                                                           

(1.607) 

Here Model-I-AN and Model-I-BN stands for the algorithm with decreasing indeterminacy 

nonlinear membership function and increasing indeterminacy nonlinear membership function 

respectively. 
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But as the decision makers needs to minimize indeterminacy membership function in real 

world problem the above problem can be formulated as 

Model-II-AN,BN 

(P1. 58)  

Max                                                                                                                                (1.608) 

Min                                                                                                                                                          (1.609) 

Min                                                                                                                                                          (1.610) 

 
such that

                                                                                                                       

 
  ;n

kG
T x 

                                                                                                                                              
(1.611)

 

  ;n
jC

T x 
                                                                                                                                               

(1.612) 

  ;n
kG

I x 
                                                                                                                                               

(1.613)
 

  ;n
jC

I x 
                                                                                                                                               

(1.614) 

  ;n
kG

F x 
                                                                                                                                               

(1.615)
 

  ;n
jC

F x 
                                                                                                                                               

(1.616) 

3;                                                                                                                                                (1.617) 

; ;                                                                                                                                                  (1.618) 

 , , 0,1   
    

Here Model-II-AN and Model-II-BN stand for same as Model-I
                                                                                                                                        

 

Now this NLP problem (P1.57) and (P1.58)  can be easily solved by an appropriate 

mathematical programming to give solution of MONLP problem (P1.56) by NSO approach. 

Computational Algorithm  

Step-1: Solve the MONLP problem (P1.56) as a single objective non-linear problem p times 

for each problem by taking one of the objectives at a time and ignoring the others. These 

solution are known as ideal solutions. Let kx be the respective optimal solution for the thk

different objective and evaluate each objective values for all these thk optimal solution. 

Step-2: From the result of step-1, determine the corresponding values for every objective for 

each derived solution; pay-off matrix can be formulated as follows 
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* 1 1 1
1 2

2 * 2 2
1 2

*
1 2

........

........

....... ........ ........ .......

.......

p

p

p p p
p

f x f x f x

f x f x f x

f x f x f x

 
 
 
 
 
 
  

 

Step-3: For each objective  kf x  find lower bound T
kL  and the upper bound T

kU  

  *maxT r
k kU f x                                                                                                                               (1.619) 

  *min 1,2,...,T r
k kL f x where r k 

                                                                           (1.620)

 For truth membership of objectives. 

Step-4:We represent upper and lower bounds for indeterminacy and falsity membership of 

objectives as follows : 

1,2,......for k p  
 Model-I,II-AL,AN 

 F T
k kU U                                                                                                                                                (1.621) 

 ;F T T T
k k k kL L t U L                                                                                                                              (1.622) 

I T
k kL L                                                                                                                                                        (1.623) 

 I T T T
k k k kU L s U L                                                                                                                               (1.624) 

Here ,t s are predetermined real numbers in  0,1  
and for Model-I,II-BL,BN 

 F T I
k k kU U U                                                                                                                                            

 ;F T T T
k k k kL L t U L                                                                                                                               

 I T T T
k k k kL L s U L                                                                                                                                

Here ,t s are predetermined real numbers in  0,1  

Step-5: Define nonlinear truth membership, indeterminacy membership and falsity 

membership functions as follows  

1,2,.......,for k p  
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1

1 exp

0

k

k

k k k

k k

k

T
k f x

T
kf x T T

k kf x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U



 

     

       
     


                         

(1.625) 

For Model-I,II-AN 

 

    

    

   

   

   
     

   

1

exp

0

k

k k k

k k

k

I
k f x

I
kf x I I

k kf x f x f xI I
f x f x

I
k f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

    

    
   


                              

(1.626) 

For Model-I,II-BN 

    

   

   

   
     

   

1

exp

0

k

k k k

k k

k

I
k f x

I
k f x I I

k kf x f x f xI I
f x f x

I
k f x

if f x U

f x L
I f x if L f x U

U L

if f x L

 

    

    
   


                                   

(1.627) 

    

   

 
   

       

   

0

1 1 tanh
2 2 2

1

F
f x

F F
f x f x F F

f x f x f x f x

F
f x

if f x L

U L
F f x f x if L f x U

if f x U



 

     

       
 

    


           

(1.628)

 

Step-6:Now neutrosophic optimization method for MONLP problem gives a equivalent 

nonlinear programming problem as: 

Model-I-AN,BN  

(P1. 59)  

 Maximize                                                                                                          (1.629) 

such that  

   ;k kT f x 
                                                                                                                                        

(1.630)
 

   ;k kI f x 
                                                                                                                                         

(1.631)
 

 
   ;k kF f x 

                                                                                                                                       
(1.632) 
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3;                                                                                                                                                (1.633) 

;                                                                                                                                                          (1.634) 

;                                                                                                                                                            (1.635) 

 , , 0,1 ;   
                                                                                                                                          

(1.636) 

 j jg x b                                                                                                                                                  (1.637) 

0,x 
                                                                                                                                                          

(1.638)
                                                                                                                                         

1,2,..., ;k p 1,2,...,j q                                                                                                                      (1.639) 

Model-II-AN,BN  

(P1. 60)  

 Maximize                                                                                                          (1.640) 

such that  

   ;k kT f x 
                                                                                                                                        

(1.641)
 

   ;k kI f x 
                                                                                                                                         

(1.642)
 

 
   ;k kF f x 

                                                                                                                                       
(1.643) 

3;                                                                                                                                                (1.644) 

;                                                                                                                                                          (1.645) 

;                                                                                                                                                            (1.646) 

 , , 0,1 ;   
                                                                                                                                          

(1.647) 

 j jg x b                                                                                                                                                  (1.648) 

0,x 
                                                                                                                                                          

(1.649)
                                                                                                                                         

1,2,..., ;k p 1,2,...,j q         

Where Model-I,II-AN and Model-I,II-BN stands for the optimization algorithm with 

decreasing indeterminacy nonlinear membership function and increasing indeterminacy 

nonlinear membership function respectively. 

which is reduced to equivalent nonlinear programming problem as 

Model-I-AN 

(P1. 61)  

 Maximize                                                                                                          (1.650) 

such that  
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;
4

T T
k k T

k k

U L
f x U

 
 

                                                                                                                   

(1.651) 

  ;
2

k

k

T T
k k f

k
f

U L
f x





 
 

                                                                                                                

(1.652)
 

  ; 1,2,....,
k k

T
k f k ff x L for k p    

                                                                                     
(1.653) 

 1tanh 2 1 ,where  

                                                                                                                

(1.654)
 

 log 1   
                                                                                                                                       

(1.655)
 

log                                                                                                                                                      (1.656) 

4,                                                                                                                                                            (1.657) 

6
kf F F

k kU L
 


                                                                                                                                          (1.658) 

3;                                                                                                                                                  (1.659) 

;                                                                                                                                                            (1.660) 

;                                                                                                                                                            (1.661) 

 , , 0,1 ;  
                                                                                                                                           

(1.662)
 

  ;j jg x b
                                                                                                                                               

(1.663)
 

 

0,x                                                                                                                                                           (1.664) 

and 

Model-I-BN 

(P1. 62)  

 Maximize                                                                                                          (1.665) 

such that  

 
 

;
4

T T
k k T

k k

U L
f x U

 
 

                                                                                                                   

(1.666) 

  ;
2

k

k

T T
k k f

k
f

U L
f x





 
 

                                                                                                                

(1.667)
 

    ; 1,2,....,
k k

T T T
k k k f k ff x U L L for k p       

                                                           
(1.668) 
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 1tanh 2 1 ,where  

                                                                                                                

(1.669)
 

 log 1   
                                                                                                                                       

(1.670)
 

log                                                                                                                                                      (1.671) 

4,                                                                                                                                                            (1.672) 

6
kf F F

k kU L
 


                                                                                                                                          (1.673) 

3;                                                                                                                                                  (1.674) 

;                                                                                                                                                            (1.675) 

;                                                                                                                                                            (1.676) 

 , , 0,1 ;  
                                                                                                                                           

(1.677)
 

  ;j jg x b
                                                                                                                                               

(1.678)
 

 

0,x           

This crisp nonlinear programming problem can be solved by appropriate mathematical 

algorithm. Again according to decision makers choice the above problem also can be 

formulated as 

Model-II-AN 

(P1. 63)  

 Maximize                                                                                                          (1.679) 

such that  

 
 

;
4

T T
k k T

k k

U L
f x U

 
 

                                                                                                                   

(1.680) 

  ;
2

k

k

T T
k k f

k
f

U L
f x





 
 

                                                                                                                

(1.681)
 

  ; 1,2,....,
k k

T
k f k ff x L for k p    

                                                                                     
(1.682) 

 1tanh 2 1 ,where  

                                                                                                                

(1.683)
 

 log 1   
                                                                                                                                       

(1.684)
 

log                                                                                                                                                      (1.685) 

4,                                                                                                                                                            (1.686) 
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6
kf F F

k kU L
 


                                                                                                                                          (1.687) 

3;                                                                                                                                                  (1.688) 

;                                                                                                                                                            (1.689) 

;                                                                                                                                                            (1.690) 

 , , 0,1 ;  
                                                                                                                                           

(1.691)
 

  ;j jg x b
                                                                                                                                               

(1.692)
 

 

0,x                                                                                                                                                           (1.693) 

And 

Model-II-B 

(P1. 64)  

 Maximize                                                                                                          (1.694) 

such that  

 
 

;
4

T T
k k T

k k

U L
f x U

 
 

                                                                                                                   

(1.695) 

  ;
2

k

k

T T
k k f

k
f

U L
f x





 
 

                                                                                                                

(1.696)
 

    ; 1,2,....,
k k

T T T
k k k f k ff x U L L for k p       

                                                           
(1.697) 

 1tanh 2 1 ,where  

                                                                                                                

(1.698)
 

 log 1   
                                                                                                                                       

(1.699)
 

log                                                                                                                                                      (1.700) 

4,                                                                                                                                                            (1.701) 

6
kf F F

k kU L
 


                                                                                                                                         (1.702) 

3;                                                                                                                                                  (1.703) 

;                                                                                                                                                            (1.704) 

;                                                                                                                                                            (1.705) 

 , , 0,1 ;  
                                                                                                                                           

(1.706)
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  ;j jg x b
                                                                                                                                               

(1.707)
 

 

0,x     

All the above crisp problems can be solved by appropriate optimization solver(LINGO).     

 

1.34 Neutrosophic Goal Programming(NGP) 
Goal programming can be written as  

(P1. 65)  

Find  

 1 2, ,..., T
nx x x x

                                                                                                                                    
(1.708) 

to achieve:  

i iz t 1,2,...,i k                                                                                                                                    (1.709) 

subject to x X  where it are scalars and represent the target achievement levels of the 

objective functions that the decision maker wishes to attain provided, X is feasible set of 

constraints.  

The nonlinear goal programming problem can be written as  

(P1. 66)  

Find  1 2, ,..., T
nx x x x  

                                                                                                                         
(1.710) 

so as to  

iMinimize z  with target value it ,acceptance tolerance ia ,indeterminacy tolerance id  

rejection tolerance ic
                                                                                                                             

(1.711) 

x X                                                                                                                                                           (1.712) 

 j jg x b , 1,2,.....,j m                                                                                                                    (1.713) 

0,ix  1,2,.....,i n                                                                                                                                  (1.714) 

with truth-membership, indeterminacy-membership and falsity-membership functions 

  1

1

0

i i

i i i
i i i i i i

i

i i i

if z t

t a zT z if t z t a
a

if z t a



  

    
 
                                                                                       

(1.715)
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 1

0

0

i i

i i
i i i i

i
i i

i i i
i i i i i

i i

i i i

if z t

z t if t z t a
d

I z
t a z if t d z t a

a d
if z t a




     
 

 
  

      
                                                                                

(1.716) 

 1

0

1

i i

i i
i i i i i i

i

i i i

if z t

z tF z if t z t c
c

if z t c



 

    
 
                                                                                                 

(1.717) 

To maximize the degree of acceptance and indeterminacy and to minimize the  degree of 

rejection of objectives and constraints of nonlinear goal programming (NGP), let us consider 

the following formulation, 

(P1. 67)  

  , 1,2,....,
iz iMaximize T z i k                                                                                        (1.718) 

  , 1,2,....,
iz iMaximize I z i k

                                                                                                          
(1.719) 

  , 1,2,....,
iz iMinimize F z i k

                                                                                                          
(1.720) 

subject to  

     0 3, 1,2,....,
i i iz i z i z iT z I z F z i k                                                                      (1.721) 

     0, 0, 0 1,2,...,
i i iz i z i z iT z I z F z i k   

                                                                               
(1.722) 

    , 1,2,....,
i iz i z iT z I z i k 

                                                                                                              
(1.723)

 

    , 1,2,...,
i iz i z iT z F z i k 

                                                                                                              
(1.724) 

 j jg x b , 1,2,...,j m                                                                                                                       

(1.725) 

0,ix  1,2,...,i n                                                                                                                                    (1.726) 

where  
iz iT z   ,  

iz iI z  and  
iz iF z  are truth  membership function  indeterminacy 

membership function ,falsity membership function of neutrosophic decision set respectively. 

Now the NGP in model (P1.67) can be represented by crisp programming model using truth 

membership, indeterminacy membership, and falsity membership functions as 

(P1. 68)  
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, ,Maximize Maximize Minimize                                                                               (1.727) 

  , 1,2,...,
iz iT z i k 

                                                                                                                          
(1.728)

 

  , 1,2,...,
iz iI z i k 

                                                                                                                          
(1.729)

 

  , 1,2,...,
iz iF z i k 

                                                                                                                         
(1.730) 

, 1,2,.....,i iz t i k 
                                                                                                                                 

(1.731)
 

0 3;                                                                                                                                           (1.732) 
, 0, 1;                                                                                                                                              (1.733) 

  , 1,2,.....,j jg x b j m 
                                                                                                                      

(1.734)
 

0, 1,2,....,ix i n 
                                                                                                                                

(1.735) 

1.35 Theorem on Generalized Goal Programming 
For a generalized neutrosophic goal programming problem (P1.65) 

The sum of truth, indeterminacy and falsity membership function will lie between 0  and 

1 2 3w w w    

Proof: 

Let the truth ,indeterminacy and falsity membership functions be defined as  

membership functions 

  1

1

1

0

i i

w i i i
i i i i i i

i

i i i

w if z t

t a zT z w if t z t a
a

if z t a




  
     

 
                                                                               

(1.736)                                                                                                             

 2

2

2

0

0

i i

i i
i i i i

iw
i i

i i i
i i i i i

i i

i i i

if z t

z tw if t z t a
d

I z
t a zw if t d z t a

a d
if z t a




     
 

 
  

      
                                                                        

(1.737)                                                                                                             

 3
3

3

0 i i

w i i
i i i i i i

i

i i i

if z t

z tF z w if t z t c
c

w if z t c




 
     

 
                                                                                       

(1.738)                                                                                                             
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Fig.-1.2 Truth Membership, Indeterminacy Membership and Falsity Membership 

Function of iz  

From Fig. -1.2 and definition of generalized single valued neutrosophic set it is clear that

  10
iz iT z w  ,   20

iz iI z w   and   10
iz iF z w 

                                                               
(1.739)                                                                                                             

When  i iz t  

  1iz iT z w and   0
iz iI z  and   0

iz iF z 
                                                                                 

(1.740)                                                                                                             

Therefore       1 1 2 3i i iz i z i z iT z I z F z w w w w     
                                                           

(1.741)                                                                                                             

and 1 0w  implies that       0
i i iz i z i z iT z I z F z  

                                                               
(1.742)                                                                                                             

when   ,i i i iz t t a  from Fig.-1.2 we see that   
iz iT z and  

iz iF z intersects each other and   

the point whose coordinate  is  ,i i i it d d c . 

where 1

1 2
i

i i

wd w w
a c





                                                                                                                            

(1.743)                                                                                                            

 

Now in the interval  ,i i i iz t t d   we see that 

      2 2 1 2 3i i i

i i
z i z i z i

i

z tT z I z F z w w w w w
d

 
       

                                                      

(1.744)                                                                                                             

Again in the interval  ,i i i i iz t d t a  
                                                                                       

(1.745)                                                                                                            
 

 we see that       2 2 1 2 3i i i

i i i
z i z i z i

i i

t a zT z I z F z w w w w w
a d

  
       

 
.                (1.746)                                                                                                             

Also for i i i it z t a  
                                                                                                                       

(1.747)                                                                                                             

when i iz t ,       2 0
i i iz i z i z iT z I z F z w   

                                                                         
(1.748)                                                                                                            

 

 and       1 0
i i iz i z i z iT z I z F z w   

                                                                                          
(1.749)                                                                                                            
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and when i i iz t a  ,       1 1 1 2i i i

i
z i z i z i

i

aT z I z F z w w w w
c

      (as 1i

i

a
c
  ).         

In the interval ( , ]i i i i iz t a t c  
                                                                                                    

(1.750)                                                                                                             

when i i iz t a  ,       2 2 0
i i i

i
z i z i z i

i

aT z I z F z w w
c

      (as 1i

i

a
c
 )                      (1.751)                                                                                                             

and when i i iz t c  ,       1 1 2 3i i iz i z i z iT z I z F z w w w w     
                                       

(1.752)                                                                                                             

for i i iz t c  ,       3 1 2 3i i iz i z i z iT z I z F z w w w w                                              (1.753)                                                                                                             

and as 2 0w  ,       0
i i iz i z i z iT z I z F z  

                                                                              
(1.754)                                                                                                             

Therefore combining all the cases we get  

 
      1 2 30

i i iz i z i z iT z I z F z w w w     
                                                                                

(1.755)                                                                                                            
 

Hence the proof. 

1.36 Generalized Neutrosophic Goal Programming(GNGP) 
 The Generalized Neutrosophic Goal Programming(GNGP) can be formulated as 

(P1. 69)  

  , 1,2,....,
iz iMaximize T z i k                                                                                        (1.756) 

  , 1,2,....,
iz iMaximize I z i k

                                                                                                          
(1.757) 

  , 1,2,....,
iz iMinimize F z i k

                                                                                                          
(1.758) 

subject to  

      1 2 30 , 1,2,....,
i i iz i z i z iT z I z F z w w w i k                                                       (1.759) 

     0, 0, 0 1,2,...,
i i iz i z i z iT z I z F z i k   

                                                                               
(1.760)

 

    , 1,2,....,
i iz i z iT z I z i k 

                                                                                                              
(1.761)

 

    , 1,2,...,
i iz i z iT z F z i k 

                                                                                                              
(1.762)

 

1 2 30 3w w w   
                                                                                                                                

(1.763) 

 1 2 3, , 0,1w w w 
                                                                                                                                      

(1.764)
 

 j jg x b , 1,2,...,j m                                                                                                                       

(1.765)
 

0,ix  1,2,...,i n                                                                                                                                    (1.766) 

 Equivalently 
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, ,Maximize Maximize Minimize                                                                               (1.767) 

  , 1,2,...,
iz iT z i k 

                                                                                                                          
(1.768)

 

  , 1,2,...,
iz iI z i k 

                                                                                                                          
(1.769)

 

  , 1,2,...,
iz iF z i k 

                                                                                                                         
(1.770) 

, 1,2,.....,i iz t i k 
                                                                                                                                 

(1.771)
 

1 2 30 ;w w w       
                                                                                                                

(1.772) 

     1 2 30, , 0, , 0, ;w w w    
                                                                                                    

(1.773)
 

     1 2 30,1 , 0,1 , 0,1 ;w w w  
                                                                                                         

(1.774) 

1 2 30 3;w w w   
                                                                                                                               

(1.775) 

  , 1,2,...,j jg x b j m 
                                                                                                                       

(1.776) 

0, 1,2,...,jx j n 
                                                                                                                                

(1.777)
 

Equivalently 

(P1. 70)  

, ,Maximize Maximize Minimize                                                                               (1.778) 

1

1 , 1,2,...,i i iz t a i k
w
 

    
                                                                                                            

(1.779)
 

2

, 1,2,...,i
i i

dz t i k
w

  

                                                                                                                       

(1.780)
 

 
2

, 1,2,...,i i i i iz t a a d i k
w


    

                                                                                                 

(1.781)
 

3

, 1,2,...,i
i i

cz t i k
w

  

                                                                                                                      

(1.782) 

, 1,2,.....,i iz t i k 
                                                                                                                                 

(1.783) 

1 2 30 ;w w w       
                                                                                                                

(1.784) 

     1 2 30, , 0, , 0, ;w w w    
                                                                                                    

(1.485) 

     1 2 30,1 , 0,1 , 0,1 ;w w w  
                                                                                                         

(1.786) 

1 2 30 3;w w w   
                                                                                                                               

(1.787)
 

With the help of generalized truth, indeterminacy, falsity membership function the GNGP 

based on arithmetic aggregation operator can be formulated as 
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(P1. 71)  

   1 1
3

Minimize
      

 
 

                                                                                      (1.788) 

subjected to same constraints as (P1.70) 

With the help of generalized truth, indeterminacy, falsity membership function ,the GNGP 

based on geometric aggregation operator can be formulated as 

(P1. 72)  

   3 1 1Minimize                                                                                                (1.789) 

subjected to same constraints as (P1.70). 

Now this non-linear programming problem (P1.70 or P1.71 or P1.72) can be easily solved by 

an appropriate mathematical programming to give solution of multi-objective non-linear 

programming problem (P1.65) by GNGP approach. 

1.37 Application of Neutrosophic Goal Programming to Bank Three 

Investment Problem 

Every investor must trade of return versus risk in deciding how to allocate his or her available 
funds. The opportunities that promise the greatest profits are almost the ones that present the 
most serious risks.Commercial banks must be especially careful in balancing return and risk 
because legal and ethical obligations demand that they avoid profit. This dilemma leads 
naturally the multi-objective optimization of investment that includes both profit and risk 
criteria.Our investment example [44] adopts this multi-objective approach to a fictitious Bank 
Three. Bank Three has a modest $20  million capital, with$150  million in demand deposits 
and$80  in times deposits(savings accounts and certificates of deposit).Table 1.8 display the 
categories among which the bank must divide its capital and deposited funds. Rates of return 
are also provided for each category together with other information related to risk. 

Table 1.8 Bank Three Investment Opportunities 

Investment 
Category, j 

Return Rate(%) Liquid Part(%) Required 
Capital 
Asset(%) 

Risk 

Cash 0.0  100.0  0.0  No 
Short Term 4.0  99.5  0.5  No 
Government:1 to 
5 years 

4.5  96.0  4.0  No 

Government:5 to 
10 years 

5.5  90.0  5.0  No 

Government:over 
10 years 

7.0  85.0  7.5  No 

Installment 
Loans 

10.5  0.0  10.0  Yes 
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Mortgage Loans 8.5  0.0  10.0  Yes 
Commercial 
Loans 

9.2  0.0  10.0  Yes 

 

The first goal of any private business is to maximize profit. Using rates of return from table 
1,this produces objective functions 

2 3 4 5 6 7 80.04 0.045 0.055 0.070 0.105 0.085 0.092Maximize I I I I I I I       (Profit) 

It is less clear how to quantify investment risk. We employ two common ratio measures. One 
is the capital –adequacy   ratio, expressed as the ratio of required capital for bank solvency to 
actual capital. A low value indicates minimum risk. The “required capital” rates of table 1 
approximate U.S. government formulas used to compute this ratio, and bank Three‟s present 
capital is$20  million. Thus we will express a second objective 

 2 3 4 5 6 7 8
1 0.005 0.040 0.050 0.075 0.100 0.100 0.100
20

Minimize I I I I I I I     
     

(1.559) 

Another measure of risk focuses on illiquid risk assets. A low risk asset/capital ratio indicates 
a financially secure institution. For our example, this third measure of success is expressed as  

 6 7 8
1
20

Minimize I I I 
                                                                                                                   

(1.790) 

To complete a bank Three‟s investment plans, we must describe the relevant constraints 

6.Investments must sum to the available capital and deposited funds. 

7.Cash reserves must be at least 14% of demand deposits plus 4%  of times deposits. 

8.The portion of investments considered should be liquid at least 47%  of demand deposits 
plus 36%  of times deposits. 

9.At least 30%  of funds should be invested in commercial loans, to maintain the bank‟s 
community status. 

Combining the 3 objective functions above with these 5 constraints completes a multi-
objective linear programming model of Bank Three‟s Investment Problem. 

(P1. 83)  

 1 2 8 2 3 4 5 6 7 8, ,..., 0.04 0.045 0.055 0.070 0.105 0.085 0.092Max PF I I I I I I I I I I        

                                                                                                                             (Profit)(1.791) 

   1 2 8 2 3 4 5 6 7 8
1, ,..., 0.005 0.040 0.050 0.075 0.100 0.100 0.100
20

Max CA I I I I I I I I I I      

                                                                                                                                 (Capital-Adequacy)(1.792) 
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   6 7 8 6 7 8
1, ,
20

Max RA I I I I I I                                                                          (Risk-Asset)(1.793) 

Such that 

     1 2 8 1 2 3 4 5 6 7 8
1, ,..., 20150 80
20

IA I I I I I I I I I I I                     (Invest All) (1.794) 

       1 1 0.14 150 0.04 80CR I I                                                                     (Cash Reserve) (1.795) 

     1 2 5 1 2 3 4 5, ,..., 1.00 0.995 0.960 0.900 0.850 0.47 150 0.36 80L I I I I I I I I         

                                                                                                                        (Liquidity) (1.796) 

   0.05 20 150 80j jCD I       for all 1,2,..,8j                                      (Diversification) (1.797) 

   8 0.30 20 150 80C I                                                                                        (Commercial) (1.798) 

1 2 8, ,..., 0I I I 
                                                                                                                                          

(1.799) 

1.38 Numerical Example 

Let us consider the input values of membership functions as follows
'

1 1 1 1 112, 6.67, 3, 13, 5.67c a t c p     '
2 2 2 2 20.58, 0.22, 0.20, 0.60, 0.20c a t c p      

'
3 3 3 3 35, 1.5, 1.0, 5.5, 1.0c a t c p      

The optimal Bank Three‟s Investment Problem can be tabulated as  

Table 1.9 Goal Programming Solution of Bank Three Problem 
Weights Optimal Primal Variables Optima Objectives 

1 0.8w   2 0.1w   

3 0.1w   
1 24.2,x  2 12.5,x 

3 12.5,x  4 12.5,x 

5 46.37,x  6 53.43,x 

7 12.5,x  8 24.2x   

1 18.67363,f 

2 0.942915,f  3 7.096f   

1 0.05w   2 0.9w   

3 0.05w   
1 100,x  2 12.5,x 

3 12.5,x  4 12.5,x 

5 12.5,x  6 12.5,x 

7 12.5,x  8 75x   

1 11.9,f  2 0.60625,f 

3 5.00f   

1 0.1w   2 0.1w   

3 0.8w   
1 24.2,x  2 88.30,x 

3 12.5,x  4 12.5,x 

5 12.5,x  6 12.5,x 

7 12.5,x  8 75x   

1 14.932,f  2 0.6252,f 

3 5.00f   

1 1/ 3w   2 1/ 3w   1 24.2,x  2 88.30,x  1 14.932,f  2 0.6252,f 
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3 1/ 3w   3 12.5,x  4 12.5,x 

5 12.5,x  6 12.5,x 

7 12.5,x  1 75x   

3 5.00f   

 
Table 1.10 Lexicographic Goal Programming Solution of Bank Three Problem 

Optimal Primal Variables Optima Objectives 
1 24.2,x  2 22.51454,x 

3 12.5,x  4 12.5,x 

5 34.64474,x 

6 56.14072,x  7 12.5,x 

8 24.2x   

1 18.43299,f 

2 0.9100,f 

3 7.182036f   

 

1.39 Neutrosophic  Non-linear Programming (NNLP) Optimization 

to solve Parameterized  Multi-objective Non-linear Programming 

Problem (PMONLP) 

A Multi-Objective Neutrosophic Non-Linear Programming(MONNLP) Problem with imprecise co-

efficient can be formulated as  

(P1. 84)  

 
0

0

0 0 0
1 1

k
k tj

T n
an n

k k t k t j
t j

Minimize f x c x
 

 
for 0 1,2,....,k p                                                   (1.800) 

Such that  
1 1

i
itj

T n
an n n

i it it j i i
t j

f x c x b 
 

   for 1,2,....,i m                                                            (1.801) 

                           0jx   1,2,...,j n                                                                                                       (1.802) 

Here  
0

,k t ,it i are the signum functions used to indicate sign of term in the equation. 
0

0,k tc 

0itc  .
0

,k tja  itja are real numbers for all 0, , , .i t k j  

Here  

    0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 1 2 3 1 2 3, , ; , , ; , , ; ;n T T I I F F
k t k t k t k t k t k t k t k t k t k t k t k t k tc c c c w c c c c c c 

               
(1.803)

    1 2 3 1 2 3 1 2 3, , ; , , ; , , ; ;n T T I I F F
it it it it it it it it it it it it itc c c c w c c c c c c     (1.804)

    1 2 3 1 2 3 1 2 3, , ; , , ; , , ;n T T I I F F
i i i i i i i i i i i i ib b b b w b b b b b b                                                       (1.805) 

Using total integral value of truth, indeterminacy and falsity membership functions we transform 

above MONNLP with imprecise parameter as 

(P1. 85)  
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0

0

0 0 01 1
1 1

ˆ ˆ;
k

k tj

T n
a

k k t k t j
t j

Minimize f x c x 
 

 
 for 0 1,2,....,k p                                          (1.806) 

 
0

0

0 0 02 2
1 1

ˆ ˆ;
k

k tj

T n
a

k k t k t j
t j

Minimize f x c x 
 

  for 0 1,2,....,k p
                                                       

(1.807)
 

 
0

0

0 0 03 3
1 1

ˆ ˆ;
k

k tj

T n
a

k k t k t j
t j

Minimize f x c x 
 

  for 0 1,2,....,k p
                                                        

(1.808) 

Such that  1 1 1
1 1

ˆ ˆˆ;
i

itj

T n
a

i it it j i i
t j

f x c x b  
 

   for 1,2,....,i m                                                       (1.809) 

 2 2 2
1 1

ˆ ˆˆ;
i

itj

T n
a

i it it j i i
t j

f x c x b  
 

   for 1,2,...,i m                                                                        (1.810) 

 3 3 3
1 1

ˆ ˆˆ;
i

itj

T n
a

i it it j i i
t j

f x c x b  
 

   for 1,2,...,i m                                                                          (1.811) 

                              0; , , 0,1jx      1,2,...,j n                                                                         (1.812) 

Here  
0

,k t ,it i are the signum functions used to indicate sign of term in the equation. 
01̂ 0,k tc 

1̂ 0;itc  1̂ 0ib  denote the total integral value of truth membership function  i.e 

    0 0 0 0

0

0

2 3 1

1

2 1 1
ˆ ,

2
k t k t k t k t

k t
k t

c w c c
c

w

     


                                                                                     

(1.813)
 

    2 3 1

1

2 1 1
ˆ

2
it it it it

it
it

c w c c
c

w

     


                                                                                           

(1.814)
 

and 
    2 3 1

1

2 1 1ˆ
2

i i i i
i

i

b w b b
b

w

     


                                                                                     

(1.815)
 

 and
 02ˆ 0,k tc  2ˆ 0;itc  2̂ 0ib   denote the total integral value of indeterminacy-membership function  

i.e 
  0 0 0 0

0

0

3 2 3

2

2 1 2
ˆ ,

2

I I
k t k t k t k t

k t
k t

c c c
c

 



  


                                                                                           

(1.816)
 

  3 2 3

2

2 1 2
ˆ ,

2

I I
it it it it

it
it

c c c
c

 



  


                                                                                                      

(1.817)
 

and 
  3 2 3

2

2 1 2ˆ .
2

I I
i i i i

i
i

b b b
b

 



  


                                                                                                

(1.818)
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 and
 03̂ 0,k tc  3̂ 0;itc  3̂ 0ib   denote the total integral value of falsity-membership function  i.e 

  0 0 0 0

0

0

3 2 3

3

2 1 2
ˆ ,

2

F F
k t k t k t k t

k t
k t

c c c
c

 



  


                                                                                                

(1.819)
 

  3 2 3

3

2 1 2
ˆ ,

2

F F
it it it it

it
it

c c c
c

 



  


                                                                                                      

(1.820)
 

and 
  3 2 3

2

2 1 2ˆ .
2

F F
i i i i

i
i

b b b
b

 



  


                                                                                                

(1.821) 

A Parametric Multi-Objective Non-Linear Neutrosophic Programming (PMONLNP) Problem can be  

formulated as  

(P1. 86)  

 

            1 1 2 2 1 3; ,...., ; , ; ,...., ; , ; ,...., ;
T

p p p p pMinimize f x f x f x f x f x f x      

        
(1.822) 

         subject to  ; ; 1,2,.....,j jg x b j m  
                                                                              

(1.823)
 

                         
 ; ; 1,2,.....,j jg x b j m  

                                                                                 
(1.824)

 

                      
 ; ; 1,2,.....,j jg x b j m  

                                                                                     
(1.825) 

             0x   , , 0,1   
                                                                                                              

    (1.826) 

Following Zimmermann [140],we have presented a solution algorithm to solve the MONLP Problem 

by fuzzy optimization technique. 

Step-1: Solve the MONLP (P1.84) as a single objective non-linear programming problem p times by 

taking one of the objectives at a time and ignoring the others .These solutions are known as ideal 

solutions. Let ix be the respective optimal solution for the thi different objectives with same 

constraints and evaluate each objective values for all these thi optimal solutions. 

Step-2: From the result of step -1 determine the corresponding values for every objective for each 

derived solutions. With the values of all objectives at each ideal solutions ,pay-off matrix can be 

formulated as follows 

           

 

 

 

   

   

   

 

 

 

 

1 1 2 2 1 3

* 1 * 1 * 1 * 1 * 1
1 1 1 2 2 1

* 2 * 2 * 2 * 22
1 1 2 2

3
* 3 * 3 * 3 * 3

1 1 2

; ... ; ; ... ; ; ... ;

; ... ; ; ... ; ;

; ... ; ; ... ;

... ... ... ... ... ...

; ... ; ; ... ;

p p p p p

p p p p

p p p p

p
p p p p

p p p

f x f x f x f x f x f x

f x f x f x f x f xx
f x f x f x f x fx

x f x f x f x f x

     

    

   

   

 

 





 

 

 

 

 

* 1
3

* 2 * 2
1 3

* 3 * 3
2 1 3

;...
; ;...

...... ...
...; ;

p

p

p p
p p

f x

x f x

f x f x



 

 





 
 
 
 
 
 
  

 



  Page 
86 

 
  

 Here 1 2 3, ,......, px x x are the ideal solutions of the objectives 

                 1 2 1 2 2 2 1 2 2 3; , ; ,...., ; , ; , ; ,...., ; , ; , ; ,...., ;p p p p p p pf x f x f x f x f x f x f x f x f x             

respectively. 

Step-3: For each objective      ; , ; , ;k k kf x f x f x    find lower bound T
kL  and the upper bound 

T
kU  , 

  * *max ;T r
k kU f x p

                                                                                                             
(1.827)

 
and

 
   * * *min ; , , ; 1,2,...,3T r

k kL f x p where p k p    
 
                                             (1.828) 

for truth membership of objectives. 

Step-4:We represent upper and lower bounds for indeterminacy and falsity membership of objectives 

as follows : 

                                                                              (1.829) 

                                                                                (1.830) 

Here are predetermined real numbers in  

Step-5: Define truth membership, indeterminacy membership and falsity membership functions as 

follows  
 

    

   

   

   
     

   

1

1 exp

0

k

k

k k k

k k

k

T
k f x

T
kf x T T

k kf x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U



 

     

       
     


                         

(1.831) 

    

   

   

   
     

   

1

exp

0

k

k k k

k k

k

I
k f x

I
kf x I I

k kf x f x f xI I
f x f x

I
k f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

    

    
   


                                  

(1.832) 

1,2,....,3for k p
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(1.833)

 

Where                                                                                                                    (1.834) 

,                                                                                                                                                          (1.835) 

Step-6:Now NSO method for MONLP problem with probabilistic operator  gives an equivalent 

nonlinear programming problem as:  

(P1. 87)  

           
2 3

1 1 2 1

; ; ;
p p p

i i i i i i
i i p i p

Maximize T f x T f x T f x  
    

                                            (1.836) 

           
2 3

1 1 2 1

1 ; 1 ; 1 ;
p p p

i i i i i i
i i p i p

Minimize I f x I f x I f x  
    

                             (1.837) 

           
2 3

1 1 2 1

1 ; 1 ; 1 ;
p p p

i i i i i i
i i p i p

Minimize F f x F f x F f x  
    

                           (1.838)
 

 

 

        0 ; ; ; 3i i i i i iT f x I f x F f x                                                                               (1.839) 

        0 ; ; ; 3i i i i i iT f x I f x F f x                                                                              (1.840)
 

        0 ; ; ; 3i i i i i iT f x I f x F f x                                                                                 (1.841)
 

 ; ;j jg x b   ; ;j jg x b   ; ;j jg x b                                                                                     (1.842)
 

 , , 0,1                                                                                                                                    (1.843) 

1,2,.., ;i p 1,2,...,j m  

This crisp nonlinear programming problem can be solved by appropriate mathematical algorithm. 

1.40 Neutrosophic Optimization Technique(NSO) to solve 

Parametric  Single-Objective Non-linear Programming Problem 

(PSONLP) 

A single-objective neutrosophic NLP problem with imprecise co-efficient can be formulated 

as  

6
k F F

k kU L
 



4 

subject to

0x 
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(P1. 88)  

                                                                   (1.844) 

Such that for                                                  (1.845) 

                                                                                                             (1.846) 

Here  are the signum functions used to indicate sign of term in the equation. 

.  are real numbers for all  

Here              (1.847)

     (1.848)

                                           (1.849) 

 for neutrosophic number  coefficient. Using nearest interval approximation  method  ,we 

transform all the triangular neutrosophic number into interval number i.e 

and   

Now the Single-Objective Neutrosophic Programming(SONSP) with imprecise parameter is 

of the following form 

(P1. 89)  

                                                                                      (1.850) 

Such that for                                                  (1.851) 

                                                                                                             (1.852) 

Here  are the signum function used to indicate sign of term in the equation. 

denote the interval component i.e and  

and
 

 are real numbers for all  

Using parametric interval valued function the above problem  transform into 

(P1. 90)  

                                                                  (1.853) 
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Such that for            (1.854) 

                                                                                              (1.855) 

Here  are the signum functions used to indicate sign of term in the equation.  

Let us consider a Single-Objective Nonlinear Optimization Problem(SONLOP) as   

(P1. 91)  

 

                                                                                                           (1.856)                                                                                                          

                                                                                  (1.857) 

                                                                                                                  (1.858) 

Usually constraint goals are considered as fixed quantity .But in real life problem ,the 

constraint goal cannot be always exact. So we can consider the constraint goal for less than 

type constraints at least and it may possible to extend to .This fact seems 

to take the constraint goal as a NS and which will be more realistic descriptions than others. 

Then the NLP becomes NSO problem with neutrosophic resources, which can be described 

as follows 

(P1. 92)  

                                                                                                           (1.859)                                                                                                    

                                                                                    (1.860) 

                                                                                                                  (1.861) 

To solve the NSO (P1.92), following Werner‟s [118] and Angelov [3] we are presenting a 

solution procedure for SONSO problem as follows 

Step-1: Following Werner‟s approach solve the single objective non-linear programming 

problem without tolerance in constraints (i.e ),with tolerance of acceptance in 

constraints (i.e ) by appropriate non-linear programming technique  

Here they are  

(P1. 93)  

Sub-problem-1  

                                                                                        (1.862)                                                                                                          

         
1 1

1 1

;
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   1,2,....,i m
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(1.863) 

(1.864) 

(P1. 94) 
Sub-problem-2 

(1.865)  

(1.866) 

(1.867) 

we may get optimal solutions  and for sub-problem 

1 and 2 respectively. 

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective 

functions. If be the upper bounds of truth, indeterminacy , falsity 

function for the objective respectively and  be the lower bounds of truth, 

indeterminacy, falsity membership functions of objective for particular values of 

respectively then

(1.888)

(1.889)

Here t,q are predetermined real numbers in (0,1)

Step-3:  In this step we calculate linear membership for truth, indeterminacy and falsity 

membership  functions of objective as follows 

(1.890)

(1.891) 
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(1.892)

Step-4:  In this step using linear function for truth, indeterminacy and falsity membership 

functions, we may calculate membership function for constraints as follows 

(1.893) 

(1.894) 

(1.895) 

where and for .  

Step-5: Now using NSO for single objective optimization technique the optimization 

problem (P1.92) can be formulated as 

(P1. 95) 

(1.896) 

such that 

(1.897)
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 (1.901)

(1.902) 

  (1.903) 

 , , 0,1     (1.904) 

Now the above problem (P1.95) can be simplified to following crisp linear programming 

problem  for linear membership function as 

(P1. 96) 

(1.905)

(1.906) 

    (1.907) 

(1.908) 

(1.909) 
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CHAPTER  2
Structural Design Optimization 

Optimization or in other word mathematical programming is the collection of mathematical 

principles and methods that have been used for solving several problems in many disciplines, 

including physics, biology, engineering, economics etc. Engineering is a branch of science 

where engineers are engaged in formulating different designs with useful objectives. As for 

examples civil engineers Designs Bridge, pavement and building, mechanical engineers 

design welded beam design, an electrical engineer designs computer, a chemical engineers 

design a chemical process. To deal with competitive market place an engineer might not only 

be interested in design which works at some sort of nominal level but is the best design in 

some way. The process of determining the best design is called optimization. 

In mechanics a structure is defined by J.E.Gordon as “any assemblage of materials which is 

intended to sustain loads”. The structural optimization is the subject of making an assemblage 

of materials sustains loads in the best way. As for example, let us consider the situation where 

load is to be transmitted from a region in space to a fixed support in best possible way .Then 

first specification that comes to our mind to make the structure as light as possible, i.e to 

minimize weight, secondly stiff as possible and another idea that could be to make it as 

insensitive to buckling or instability as possible. In case of welded beam design the welding 

is process of joining metallic parts with the application of heat or pressure or the both, with or 

without added material. This efficient method for obtaining permanent joints in metallic parts  

are generally used as a substitute for riveted joint or can be used as an alternative method for 

casting and forging. Above all, the design of welded beam should be economical (i.e the 

welding cost is to minimize) and durable one. Similarly Highway construction agencies 

throughout the globe chasing accelerating demands on durable un dowelled jointed plain 

concrete pavement (JPCP) due to scanty of rehabilitation of the same. Since decades, 

different design methods had been developed by various organizations which suit their locale 

and fix the depth criteria of the JPCP along with other parameters by satisfying the standard 

code of practice but few of them tries to optimize the design thickness of the same. Moreover  

few approaches designed such thickness of cited pavement by considering traffic overloading 

condition, its fatigue life and the fluctuation of ambient temperature effect individually. So 
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during service life of such pavement, the traffic loads and adverse environmental effect 

would deteriorate its joints and ultimately its foundation. Therefore optimization of such rigid 

pavement become essential considering multiple decision making criteria as stated above to 

make it more durable.  

Now such structural optimization and pavement design optimization i.e maximization or 

minimization cannot be performed without any constraints. For example if there is no 

limitation of the amount of the material that can be used, the structure can be made stiff 

without limit and we have an optimization problem without a well-defined solution. So 

constraints are necessary. Quantities that are usually constrained in structural optimization 

problem and welded beam design problem are stresses, deflection, buckling load, and or the 

geometry. The factors governing of JPCP constraints such as fatigue analysis, stresses and 

deflections , axel loads, pavement thickness, modulus of elasticity of cement concrete, 

subgrade modulus, Poisson‟s ratio, load contact area, annual rate of growth of commercial 

traffic, number of axel per day, radius of relative stiffness , design period and so on. 

Thus we can formulate a optimization problem by picking one of the measures on structural 

performances as weight, stiffness, critical load, stress, displacement, deflection, geometry or 

cost of welding or thickness of JPCP as an objective function that should be maximized or 

minimized and some other measures as constraints. This type of optimization problem is 

called single objective optimization problem. But there is some optimization problem where 

multiple and conflicting objectives frequently exists .The accomplishment of this task is due 

to the methodology known as multi-objective optimization. 

But  in the real world, uncertainty or vagueness is  prevalent in Engineering Computations. In 

the context of structural engineering and mechanical engineering design the uncertainty is 

connected with lack of accurate data of design factors. In case of pavement design several 

design methods e.g. American Association of State Highway and Transportation 

Officials(AASHTO), Portland Cement Association (PCA) Method Crop of Engineers of the 

US army iteration method etc. are available to determine the thickness of JPCP.  However all 

such methods follow numerous monographs, tables and charts to do the same and abiding by 

certain loop of algorithm in the cited iteration process to find an effective thickness of such 

pavement. But most of the time, designers stop the cited procedure even after two or three 

trials which yield safe but unnecessarily less economical thick rigid pavement. 

So lots of efforts had been made to get rid of from such problem. As for example finite 

element method and genetic Algorithm type of crisp optimization method had been applied 

on the cited subject, where the values of the input parameters were obtained from 
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experimental data in laboratory scale. Sometimes the above cited standards have already 

ranged the magnitude of those parameters in between maximum to the minimum value. 

Therefore, designer get confused to select those input parameters from such ranges which 

yield  imprecise parameters with three key governing factors i.e. degree of acceptance, 

rejection and hesitancy that attributes the necessity of Fuzzy Set (FS)theory, Intuitionistic 

Fuzzy Set (IFS) theory and Neutrosophic Set (NS) theory For this purpose we will optimize 

captioned optimum design in imprecise environment. 

 

2.1 S.I Unit Prefixes 

                   Prefix Symbol Multiplication Factor 

Tera T 1210  

Giga G 910  

Mega M 610  

Kilo K 310  

Hector h 210  

Deka da 110  

Deci D 110  

Centi c 210  

Milli m 310  

Micro   610  

Nano n 910  

Pico p 1210  

 

2.2  Conversion of U.S Customary Units to S.I Units  
 

 
Quantity Conversion of U.S 

Customary Unit to S.I. 
Units 

Conversion of S.I. Units 
to U.S Customary Units 

 
Length 1 . 25.4 0.0254in mm m   

1 . 304.8 0.3048ft mm m   
1 0.039370mm in  

1 39.370 3.281m in ft   
Area 2 21 . 645.16in mm  2 21 0.001550mm in  
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2 21 . 0.09290304ft m  2 2 21 1550 10.764m in ft   
Volume 3 31 . 16387.064in mm  

3 31 . 0.028317ft m  

3 31 0.000061024mm in  
3 31 35.315m ft  

Force 1 4.45lb N  1 0.2248N lb  
Stress 

21 6890 , 1 1 Npsi Pa Pa
m

 
  

 
 

1 0.000145Pa psi  

 

Conversion of  5
25 10 N

mm
  to 21 1 NGPa Pa

m
 

 
 

 

                   

5
9

5
22

5 10
105 10 500

1000

GN
N Gpa

mm m

 
  

   
 
 
                                                       (2.1)

 

Conversion of  27 N
mm

 to Mpa  

6

22 2

7
107 7 7

1000

MN
N MN Mpa

mm mm

 
 
   

 
 
                                                                                   (2.2)

 

A tensile bar stretches an amount . ,
.

P L
A E

  where is the applied force, L is the length of 

the bar , A is the cross sectional area, and E is the Young’s Modulus. The bar has a 
circular cross section. Given a load of 60 ,KN a length of 70 ,cm a diameter of , 5mm   and a 
Young’s Modulus of 207 ,Gpa  calculate the deflection in mm  
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(2.3)

 

 

2.3 Design Studies 
In this book we have considered Two-bar truss design, three bar truss design, Jointed plain 

concrete pavement design and Welded Beam design as  structural optimization models. Their 

formulation have been generated in the following way 
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2.3.1 Two-Bar Truss(Model-I) 
 
A well-known two-bar [Fig.-2.1] planar truss structure is considered. The design objective is 

to minimize weight of the structural  1 2, , BWT A A y of a statistically loaded two-bar planar 

truss subjected to stress  1 2, ,i BA A y constraints on each of the truss members 1,2i  . 

 

 
Fig.-2.1 Two-Bar Planar Truss(Model-III) 

 
Optimization model of two-bar truss shown in Fig.-1.1 is designed to support the loading 

condition. The weight of the structure is  

 1 1 2 2 ,WT A L A L 
                                                                                                                   

(2.4)
 

where  is the material density of the bar 1 2,A A  are the cross sectional area and 1 2,L L are the 

length of bar 1and bar 2 respectively. Length ,AC l Perpendicular distance from AC to 

point load point B is ,Bx Nodal load P  .Using simple Pythagorean‟s theorem we may find 

the length of the each bars  

 
22

1 ,B BL x l y                                                                                                                           (2.5) 

2 2
2 B BL x y  .                                                                                                                      (2.6) 

Therefore weight of the structure is  

 
22 2 2

1 2B B B BWT A x l y A x y       
 

.                                                                         (2.7) 

Let 1P and 2P  be the reaction forces along the bar 1and bar 2  respectively .Considering the 

equilibrium condition at loading point, the following equations are obtained  

1 1 2 2cos cos ,P P P  
                                                                                                              (2.8) 
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1 1 2 2sin sin 0P P   .                                                                                                          (1.6) 

Solving these two equations we get the axial force on bar 1  as  

 2 2

1 ,
B BP x l y

P
l

 


                                                                                                                      
(2.9)

 
the axial force on bar 2 as 

2 2

2 ,B BP x y
P

l


 
                                                                                                                         

(2.10)
 

 the stress of bar 1  as  

 2 2

1
1

1 1

,
B BP x l yP

A lA


 
 

                                                                                                          
(2.11)

 
i.e tensile stress. the stress of bar 2  as  

2 2
2

2
2 2

,B BP x yP
A lA




 

                                                                                                                 
(2.12)

 
i.e compressive stress. As  

 
1 2 2

cos ,B

B B

l y

x l y





 
                                                                                                                 (2.13) 

 
1 2 2

sin ,B

B B

x

x l y
 

 
                                                                                                                 (2.14) 

2 2 2
cos ,B

B B

y
x y

 


                                                                                                                        (2.15) 

1 2 2
sin ,B

B B

x
x y

 


                                                                                                              (2.16) 

The single-objective optimization problem can be stated as follows 

(P2.1)      

     22 2 2
1 2 1 2, , B B B B BMinimize WT A A y A x l y A x y                                         (2.17)                                      

                Such that  

                                         
 

 
22

AB 1 2
1

, , ;B B T
B AB

P x l y
A A y

lA
 

 
    

                               
(2.18) 

                                                 
 

2 2

BC 1 2
2

, , ;B B C
B BC

P x y
A A y

lA
 


    

                                
(2.19) 

                                                               1 20.5 1.5; 0, 0;By A A     

2.3.2 Three-Bar Truss(Model-II) 
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A well-known three bar planer truss is considered in Fig2.2 to minimize weight of the 

structure  1 2,WT A A and minimize the deflection  1 2,A A  at a loading point of a 

statistically loaded three bar planer truss subject to stress constraints on each of the truss 

members 

 
Fig.-2.2 Three-Bar Planar Truss(Model-I) 

 
Consider the three-bar truss shown in Fig-2.2. The bars have Young‟s modulus E and the 

lengths are 1 2 3l l l L   .The design variables are cross-sectional areas 1 2,A A and 3A .But we 

assume that 1 3A A .Weight of the structure is  

 1 1 2 2 3 3 1 22 2WT l A l A l A L A A       
                                                                      

(2.20)
 

 where  is the material density of each bar. The equilibrium equations in the direction x- and 

y- directions become in matrix form  

1

2

3

1 1
02 2

1 1 1
2 2

x

y

N
P

N
P

N

 
                

                                                                                                    

(2.21) 

i.e TF B N .Where F represents the column matrix of external load, N  represents the 

column matrix of member‟s forces, TB and represents the diagonal matrix of member of 

stiffness. We cannot obtain bar forces from equilibrium equations alone since the number of 

bars exceeds the number of degree-of-freedom. In order to find the bar forces, or, rather, that 

appear in the constraints, we need to make use of Hook‟s law and geometry conditions. The 

extension of each bar corresponding to length and force are given in Table 2.1. 

Table 2.1  Extension of Bars of Fig.-2.2  

Bar Length Force Extension 

Bar1 
1 2l L  1N  1

1
1

2N Le
A E
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Bar2 
2l L  2N  2

2
2

N Le
A E

  

Bar3 
3 2l L  3N  3

3
1

2N Le
A E

  

   

we have 1,2,3i i
i

i

EAeN i
l

 

                                                                                                   
(2.22) 

1 1
1 1

1
2 2

2 2 2

3 3 3
3 1

2 2
,

22

e A E e A
LN

e A E EN e A
L L

N e Ae A E
L
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(2.24) 

We write these equations for all three bars in matrix form as N De , where 
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(2.27) 

 

The compatibility equations relate the member displacement e to the nodal displacement r by 

,e Br the bar forces are obtained as ,N DBr s, .The equilibrium equation 

1,2,3i i
i

i

EAeN i
l

 

                                                                                                                       
(2.28) 

 becomes  
T TF B N B DBr Kr                                                                                                                  (2.29) 
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where TK B DB is global stiffness matrix of the truss, which is  
1

2

1

1 10 01 1
2 2 202 2 0 0 0 1

1 1 1
1 10 02 2
2 22

A

EK A
L

A

   
          
     
     
      

                                                            

(2.30) 
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(2.31) 

 

Thus we obtain the displacement of free node as 1r K F  
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(2.32) 

 

i.e the horizontal deflection of loaded joint is  
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2 xLPr
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(2.33) 

The vertical deflection of loaded joint is 
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(2.34) 

So stresses may be written as  

AN ADBr                                                                                                                   (2.35) 
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(2.37) 

 
The tensile stress of bar 1 is  
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The tensile stress of bar 2 is  
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(2.39) 

The compressive stress of bar 3 is  
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(2.40) 

Considering  

cosxP P 
                                                                                                                                 

(2.41) 

 and sinyP P 
                                                                                                                         

(2.42) 

Assuming 045   multi-objective structural design problem, the diagram of which is 

presented by Fig.-2.2 can be formulated as 

(P2.2)  

   1 2 1 2, 2 2 ;Minimize WT A A L A A                                                                        (2.43) 
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(2.47)

 
min max 1,2i i iA A A i    

2.3.3 Design Criteria for Thickness Optimization 
 

The design method of JPCP, presented by Westergaard‟s Analysis, is the background of 

current design method of PCA. This method has taken into consideration of fatigue analysis, 

deflection analysis for subgrade, corner stress analysis in the following way.  

Fatigue Analysis 

 

Fig.-2.3 Typical schematic diagram for fatigue analysis of JPCP 

Fatigue analysis of JPCP is well described in Report 1-26 (NCHRP, 1990)[88], where 

Damage Ratio  DR have been derived considering curling stress   ,k sub grade support  j

and loading group (i) affixed in Eq.(2.48). However, combined effect of all such factor 

initiates crack in the slab (Fig.- 2.3) while the cited  ratio is greater than unity. 

3
, ,

1 1 1 , .

p m
i k j

j k i i k j

n
DR

N  

                                                                                                            (2.48) 

Where, m is the total number of load groups, p  is the number of period in year, , ,i k jn is the 

predicted number of load repetitions for the i th load group, k th curling condition and j th 

period whereas , ,i k jN is the allowable number of load repetitions for the same condition . By 

neglecting the combined effect of warping and curling due to temperature, (2.48) had been 

transformed into Eq.(2.49). 

   
1

m
i

i i

nDR
N

                                                                                                                                                                                              (1.49) 

Where  DR has been measured by the arithmetic sum of ratio of predicted number of load 

repetitions for  i th load group  in to the allowable number of load repetitions for the  i th 
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load group  iN in between total number of load groups (i.e. m ).However such ratio at the 

end of the design period  n should be smaller than unity,(IRC;58-2002)  

i.e 

1
1

m
i

i i

nDR
N

                                                                                                                                                                                           (2.50) 

and  in of the above equation has been assumed in this study is cumulative number of axels

 iC  during the design period defined by  

  365 1 1n
i

i

A r
C

r

  
                   (2.51) 

with ,n r  and  iA  as design period in years ,annual rate of growth of commercial traffic and 

initial number of axle per day respectively. However in this study Ni is replaced by the 

fatigue life  fN of JPCP that attributed by the allowable number of load repetitions for the i

th load group  iN  

So the Eq.(2.48)has been rearranged in the form as furnished in Eq.(2.52). In this 

formulation, only two load group (one single axle load and other tandem axle load) i.e. m=2 

has been considered,  

 
1 2

1 2

1C C
N N

                                                                                                      (2.52) 

 

Where 1N  and 2N  are fatigue life of the JPCP due to allowable number of load repetitions 

for single axel as well as tandem axel load respectively. Now fatigue behaviour of cement 

concrete states that due to repeated application of flexural stresses initiated by the stated 

loads, progressive fatigue damage takes place in JPCP. However such gradual damage 

develops akin of micro-cracks especially when the flexural strength of used concrete is high. 

The ratio between the flexural stress due to load and the flexural strength of concrete is 

termed as stress ratio  , 1,2iSR i  .Now such ratio is majorly influenced by the i th load group 

(i.e. single and tandem axel load).  

The expression of  , 1,2iSR i   ,stress ratio for single axle load  1i  and tandem axle load 

 2i  have been illustrated assuming its contact radius as circle – 
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 3

2 4

3 1 1.18 1 24 1ln 1.84
3 100 3 2

i

i
f

P aEh v v
h ka l

SR h
S

 

 

    
     

    for 1,2i              (2.53) 

Where    and  E denote Poisson‟s ratio and modulus of elasticity of cement concrete 

respectively. , ,l a h  and fS denote radius of relative stiffness, radius of load contact areas 

thickness of the slab and flexural strength of concrete respectively. The relation between 

 iN and  iSR  for single axle load  1i  and tandem axle  2i  is expressed as per IRC 

58- 2002 below-  

  0.45i iN if SR h                                                                                                    (2.54)            

 
 

3.268
4.2577 0.45 0.55

0.4325i i
i

N if SR h
SR h
 

   
  

                                                        (2.55) 

 

 
0.9718

0.082810 0.55
iSR h

i iN if SR h
 
  
                                                                                     (2.56) 

                                                           
 
Therefore three cases will come up for consideration to demonstrate the stress ratio in terms 

of fatigue life and axel load.  

Case I : When Eq.(2.54)  is influenced over the Eq.(2.52), the DR remain unchanged as 

Eq.(2.54) as the relation is trivially true   
Case II:   When Eq.(2.55)  is influenced over the Eq.(2.52)  the DR is transforms into  

              
2 3.268 2 6.536 2

1 1 2 1 2 1 2, , , , 365 1 1 0.4325 0.4325 0.5 4.2577nF l h k A A r SR h SR h A A r            

 

                                                                                                                                            (2.57)                                                                                           
Case 3: When Eq.(2.56)  is influenced over the equation Eq.(2.52),  the DR is expressed as 
 

 
      

 

2

1 2
2 1 2 1 2

365 1 1 0.25
, , , , 2 23.47

0.25 0.0828

r SR h SR h
F l h k A A Log Log A A

r

                

 
                                                                                                                                            (2.58)                                   
In the above expression A  is initial number of axle per day in year which is not greater than 

the sum of initial number of axle per day due to single axle 1A  and initial number of axle per 

day due to tandem axle 2A . 

 
Deflection Analysis for Subgrade  
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Subgrade strength is expressed in terms of modulus of subgrade (k) that has been measured 

as pressure per unit deflection of the cited subgrade. However if the sustained deflection ( i.e. 

 ,SALD k l and  ,TALD k l ) are known for different type of vehicular load at JPCP, such 

modulus can be represented by Eq.2.59 and Eq.2.60 respectively (Huang, 2004)[50]  

  1
12

0.431, 1 0.82SAL
P aD k l d

kl l
  

    
  

                                                                                                                         (2.59)                                   

and  

  2
22

0.431, 1 0.82TAL
P aD k l d

kl l
  

    
  

                                                                            (2.60)                                   

where 1 2,d d are the limiting value of deflection of concrete due to single axle load  1P and 

tandem axle load  2P respectively. 

Corner Stress Analysis 

In the corner region, the temperature stress is negligible but the load stress is maximum at 
night when the slab corners have a tendency to lift up, due to warping and lose partly its 
foundation support as the diagram affixed in Fig.- a, Fig.-b, Fig.-c.  

 

 
 

 
 
 

 
 

Fig.-2.4 Temperature Effect of  JPCP in Different Time 
 

Therefore, load stresses (corner stress for single axle,  C
SALS h ; tandem axle load,  C

TALS h ) at 
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corner region may be obtained as per modified Westergaard‟s analysis for different types of 
load groups  as per Eq.(2.61), and Eq.(2.62), respectively.  

 

1.2

1
2

3 21C
SAL f

P aS h S
h l

  
        

                                                             (2.61) 

 

1.2

2
2

3 21C
TAL f

P aS h S
h l

  
        

                                                           (2.62) 

 
Formulation for Optimization of Thickness of Rigid Pavement  

The first step of formulation of JPCP is to formulate the pavement optimization problem by 

defining objective function (minimum thickness) and the constraints (fatigue life consumed, 

deflection and corner stress due to single and tandem axle) that control the solution. 

 

Design input parameters 

The input parameters that influence the design are Poisson ratio   , Load due to single axle

 1P , Load due to tandem axle  2P , Modulus of elasticity of concrete  E , Modulus of 

subgrade reaction  k , Radius of load contact areas assumed circular  a , Initial number of 

axles per day in the year  A , Design period in year  n , Annual rate of growth of commercial 

traffic  r , Limiting value of deflection due to single axle  1d , Limiting value of deflection 

due to tandem axle  2d , Flexural strength of concrete  fS , 

Design method 

For determining optimum thickness of JPCP, a crisp mathematical model has been 

formulated. Here Thickness of Slab (TS) has been minimized subjected to a specified set of 

constraints Eq.(2.62-2.71) .Here the optimum design is 

(P2.3)  

 Minimize TS h h                                                                                                                                       (2.63) 

Subject to  

              
2 3.268 2 6.536 2

1 1 2 1 2 1 2, , , , 365 1 1 0.4325 0.4325 0.5 4.2577nF l h k A A r SR h SR h A A r            

                                                                                                                                       
(2.64) 
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             (2.65) 
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 1 2 1 2,IAA A A A A A                                                                                                                                                (2.70) 

1 2, , , 0;l h A A  k kl k u 
                                                                                          (2.71) 

Where 
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    for 1,2i              (2.72) 

2.3.4 Welded Beam Design Formulation 
The optimum welded beam design(Fig.-2.5) can be formulated considering some design 

criteria such as cost of welding i.e cost function, shear stress, bending stress and deflection 

,derived as follows 

Cost Function Formulation 

The performance index appropriate to this design is the cost of weld assembly. The major 

cost components of such an assembly are (i) set up labour cost, (ii) welding labour cost, (iii) 

material cost,i.e 

  0 1 2C X C C C                                                                                                             (2.73) 

where,  C X   cost function;
 0C   set up cost;

 1C   welding labour cost;
 2C   material cost. 

Now 

Set Up Cost 0C  

The company has chosen to make this component a weldment, because of the existence of a 

welding assembly line. Furthermore, assume that fixtures for set up and holding of the bar 
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during welding are readily available. The cost 0C  can therefore be ignored in this particular 

total cost model. 

Welding Labour Cost 1C   

Assume that the welding will be done by machine at a total cost of $10/hr (including 

operating and maintenance expense). Furthermore suppose that the machine can lay down a 

cubic inch of weld in 6 min. The labour cost is then 

 1 3 3
$ 1 $ min $10 6 1

60 min w wC V V
hr in in

     
      
     

                                                                (2.74) 

Where wV   weld volume,in3  

Material Cost 2C  

2 3 4w BC C V C V                                                                                                                                

Where 3C   cost per volume per weld material,$/in3 (0.37)(0.283)  ;
 4C   cost per volume 

of bar stock,$/in3 (0.37)(0.283)  ;
 BV   volume of bar,in3. 

From geometry 2
wV h l  ;volume of the weld material,in3

 
; 2

1 2weldV x x  and  BV tb L l 

;volume of bar ,in3
  3 4 2barV x x L x   . 

Therefore cost function become 

     2 2 2
3 4 1 2 3 4 21.10471 0.04811 14.0C X h l C h l C tb L l x x x x x      

                    
(2.75) 

Constraints Derivation from Engineering Relationship 

 
Fig.-2.5 Shear Stresses in the Weld Group. 

Maximum shear stress in weld group 
To complete the model it is necessary to define important stress states 
Direct or primary shear stress i.e  

 1
1 22 2

Load P P P
Throat area A hl x x

    

                                                                               

(2.76) 

Since the shear stress produced due to turning moment 
 

.M P e  at any section, is 

proportional to its radial distance from centre of gravity of the joint „G‟, therefore stress due 
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to M  is proportional to R  and is in a direction at right angles to  R  . In other words  

2

R r
 

   constant                                                                                                               (2.77) 

Therefore   
22 2 2

1 32

2 2 4 4
x xxl h tR
   

      
                                                            

(2.78)
 

Where, 2  is the shear stress at the maximum distance R  and  is the shear stress at any 

distance r . Consider a small section of the weld having area dA  at a distance r  from „G‟. 

Therefore shear force on this small section dA   and turning moment of the shear force 

about centre of gravity is 

22dM dA r dA r
R


     
                                                                                                 

(2.79) 

Therefore total turning moment over the whole weld area  

22 2 .M dA r J
R R
 

  
                                                                                                           

(2.80)
 

 where J   polar moment of inertia of the weld group about centre of gravity.  

Therefore shear stress due to the turning moment i.e.  

Secondary shear stress, 2
MR
J

 
                                                                                           

(2.81) 

In order to find the resultant stress, the primary and secondary shear stresses are combined 

vectorially. Therefore the maximum resultant shear stress that will be produced at the weld 

group, 2 2
1 2 1 22 cos        ,                                                                                       (2.82) 

where,    angle between 1  and 2  . 

As 22cos ;
2
xl

R R
  

                                                                                                                
(2.83)

 

2 2 2
1 2 1 22

2
x
R

        .                                                                                                   (2.84) 

Now the polar moment of inertia of the throat area  A  about the centre of gravity is obtained 
by parallel axis theorem, 

 
222 2

1 32 2 2 2
1 22 2 2 2 2

12 12 12 2xx

x xxA l lJ I A x A x A x x x
       

               
                      

(2.85)
 
 

Where, A   throat area 1 22x x  ,
 
l  Length of the weld,

  

x Perpendicular distance between two parallel axes 1 3

2 2 2
x xt h 

                             (2.86) 
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Maximum bending stress in beam 

Now Maximum bending moment PL , Maximum bending stress
T
Z

 ,where ;T PL
 

Z   section modulus ;I
y

 I moment of inertia
3

;
12
bt

 y   distance of extreme fibre from 

centre of gravity of cross section ;
2
t

 Therefore 
2

6
btZ  . 

So bar bending stress   2 2
4 3

6 6 .T PL PLx
Z bt x x

   

                                                                       
(2.87) 

 
Maximum deflection in beam 

 Maximum deflection at cantilever tip  
3 3 3 3

3 3 2
4 3

4 4
3 3

12

PL PL PL PLx
btEI Ebt Ex xE

    

                   

(2.88)
 

Buckling load of beam 

Buckling load can be approximated by   2
4.013 1C

EIC a ElP x
l l C

 
   

                           
(2.89) 
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t bE t E
L L G

 
   

 

6 6
3 4 3

2

4.013 / 36
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2 4
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(2.90) 

where, I moment of inertia
3

;
12
bt

 torsional rigidity 31 ;
3

C GJ tb G  ; .
2
tl L a    

Crisp Formulation of Welded Beam Design 
 
In design formulation  a welded beam (Fig. -2.6) has to be designed at minimum cost whose 
constraints are shear stress in weld    ,bending stress in the beam    ,buckling load on the 

bar  P ,and deflection of the beam   .The design variables are 

1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

where h is the 

weld size, l  is the length of the weld , t is the depth of the welded beam, b is the width of the 
welded beam.  
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Fig.-2.6 Design of the welded beam 

The single-objective crisp welded beam optimization problem can be formulated as follows  
(P2.4)  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                                       (2.91) 

such that  

   1 max 0g x x   
                                                                                                             

(2.92)
 

   2 max 0g x x   
                                                                                                          

(2.93)
 

 3 1 4 0g x x x  
                                                                                                                     

(2.94)
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0g x x x x x x    

                                                          
(2.95) 

 5 10.125 0g x x  
                                                                                                              

(2.96)
 

   6 max 0g x x   
                                                                                                           

(2.97)

   7 0Cg x P P x  
                                                                                                              

(2.98)
 

 1 2 3 4, , , 0,1x x x x 
                                                                                                                     

(2.99) 
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 as derived as Eq.(2.82), Eq.(2.76), Eq.(2.81), 

Eq.(2.80), Eq. (2.78), Eq. (2.85), Eq. (2.87), Eq. (2.88), Eq. (2.90), respectively. Again P 

Force on beam ; L Beam length beyond weld; 1x   Height of the welded beam; 2x   Length  

of the welded beam; 3x   Depth of the welded beam; 4x   Width of the welded beam; 

 x Design shear stress;  x Design normal stress for beam material; M   Moment of 
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P  about the centre of gravity of the weld , J  Polar moment of inertia of weld group; G   

Shearing modulus of Beam Material; E   Young modulus; max   Design Stress of the weld; 

max   Design normal stress for the beam material; max   Maximum deflection; 1   

Primary stress on weld throat. 2 Secondary torsional stress on weld. 
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CHAPTER  3 

Truss Design  Optimization using Neutrosophic Optimization 

Technique: A Comparative Study 

 

The research area of optimal structural design has been receiving increasing attention from 

both academia and industry over the past four decades in order to improve structural 

performance and to reduce design costs. However, in the real world, uncertainty or vagueness 

is prevalent in the Engineering Computations. In the context of structural design the 

uncertainty is connected with lack of accurate data of design factors. This problem has been 

solving by use of fuzzy mathematical algorithm for dealing with this class of problems. 

Fuzzy set (FS) theory has long been introduced to deal with inexact and imprecise resources 

by Zadeh [133], as an application, Bellman and Zadeh [10] used the FS theory to the decision 

making problem. In such extension, Atanassov [1] introduced Intuitionistic Fuzzy set (IFS) 

which is one of the generalizations of FS theory and is characterized by a membership 

function, a non membership function and a hesitancy function. In FS the degree of acceptance 

is only considered but IFS is characterized by a degree of acceptance and degree of rejection 

so that their sum is less than one. As a generalization of FS and IFS,  F. Smrandache [94] 

introduced a new notion which is known as  neutrosophic  set (NS in short) in 1995.NS is 

characterized by degree of truth membership, degree of indeterminacy membership and 

degree of falsity membership. The concept of NS generates the theory of neutrosophic sets by 

expressing indeterminacy of imprecise information. This theory is considered as complete 

representation of structural design problems like other decision making problems. Therefore, 

if uncertainty is involved in a structural model, we use fuzzy theory while dealing 

indeterminacy, we need neutrosophic theory .This is the first time NSO technique is applied 

in structural design. Several researchers like Wang et al. [119] first applied α-cut method to 

structural designs where the non-linear problems were solved with various design levels α, 

and then a sequence of solutions were obtained by setting different level-cut value of α. To 

design a four–bar mechanism for function generating problem, Rao [89] used the same α-cut 

method.  
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Structural optimization with fuzzy parameters was developed by Yeh et al. [131]. Xu [13] 

used two-phase method for Fuzzy Optimization (FO) of structures. A level-cut of the first and 

second kind approach used by Shih et al. [95] for structural design optimization problems 

with fuzzy resources. Shih et al. [96] developed alternative α-level-cuts methods for optimum 

structural design with fuzzy resources. Dey et al. [32] used generalized fuzzy number in 

context of a structural design. Dey et al. [33] developed parameterized t-norm based FO 

method for optimum structural design. Also, a parametric geometric programming is 

introduced by Dey et.al [34] to Optimize shape design of structural model with imprecise 

coefficient.  A transportation model was solved by Jana et al.[57] using multi-objective 

intuitionistic fuzzy linear programming. Dey et al. [35] solved two bar truss non linear 

problem by using Intuitionistic Fuzzy Optimization (IFO) problem. Dey et al. [36] used IFO 

technique for multi objective optimum structural design. R-x Liang et al.[66] applied 

interdependent inputs of single valued trapezoidal neutrosophic information on Multi-criteria 

group decision making problem. P Ji et al. [58], S Yu et al. [132] did so many research study 

on  application based neutosophic sets and intuitionistic linguistic number . Z-p Tian et 

al.[115] Simplified neutrosophic linguistic multi-criteria group decision-making approach to 

green product development. Again J-j Peng et al.[81] introduced multi-valued neutrosophic 

qualitative flexible approach based on likelihood for multi-criteria decision-making 

problems.Also H Zhang et al [135] investigates a case study on a novel decision support 

model for satisfactory restaurants utilizing social information. P Ji et al. [58] developed a 

projection-based TODIM method under multi-valued neutrosophic environments and its 

application in personnel selection. 

The present study investigates computational algorithm for solving single-objective structural 

problem by single valued Neutrosophic Optimization (NSO) approach. The impact of linear 

and nonlinear truth, indeterminacy and falsity membership functions in such optimization 

process also has been studied here. A comparison is made numerically among FO, IFO and 

NSO technique. From our numerical result, it is clear that NSO technique provides better 

results than FO as well as IFO. 

3.1 General Formulation of Single-objective Structural Model 

In sizing optimization problems, the aim is to minimize single objective function, usually the 

weight of the structure under certain behavioural constraints which are displacement or 

stresses. The design variables are most frequently chosen to be dimensions of the cross 
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sectional areas of the members of the structures. Due to fabrications limitations the design 

variables are not continuous but discrete for belongingness of cross-sections to a certain set. 

A discrete structural optimization problem can be formulated in the following form 

(P3.1)  

 Minimize WT A                                                                                                                 (3.1) 

    , 1,2,...,i isubject to A A i m                                                                                                
(3.2) 

, 1,2,...,d
jA R j n 

                                                                                                                                
(3.3) 

where  WT A represents objective function,  i A is the behavioural constraints and 

 i A    denotes the maximum allowable value , m and n are the number of constraints and 

design variables respectively. A given set of discrete value is expressed by dR and in this 

paper objective function is taken as  

 
1

m

i i i
i

WT A l A



                                                                                                                                      

(3.4)
 

 and constraint are chosen to be stress of structures as follows 

  i iA   with allowable tolerance 0
i for 1,2,....,i m                                                    (3.5)

 

Where i and il are weight of unit volume and length of thi element respectively, m  is the 

number of structural element, i  and 0
i  are the thi stress , allowable stress respectively 

3.2 Neutrosophic Optimization Technique to Solve Single-objective 

Structural Optimization Problem (SOSOP)  

To solve the SOSOP (P3.1), step 1 of 1.29 is used and we will get optimum solutions of two 

sub problem as 1A  and 2A .After that according to step 2 we find upper and lower bound of  

membership function of objective function as      , ,T I F
WT A WT A WT AU U U and      , ,T I F

WT A WT A WT AL L L  

where
      1 2max , ,T

WT AU WT A WT A
                                                                                            

(3.6)
 

      1 2min , ,T
WT AL WT A WT A

                                                                                                         
(3.7) 

for Model-I,II-AL,AN 
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         ,F T F T
WT A WT A WT A WT A WT AU U L L    where       0 T T

WT A WT A WT AU L  
    

(3.8)

         ,I T I T
WT A WT A WT A WT A WT AL L U L     where       0 T T

WT A WT A WT AU L  
                             

(3.9) 

for Model-I,II-BL,BN 

     
F T I

WT A WT A WT AU U U 
 

     
F T
WT A WT A WT AL L    where       0 T T

WT A WT A WT AU L  
     

     
I T
WT A WT A WT AL L    where       0 T T

WT A WT A WT AU L  
                              

Let the  linear membership function for objective be  

    

   

   

   
     

   

1

0

T
WT A

T
WT A T T

WT A WT A WT AT T
WT A WT A

T
WT A

if WT A L

U WT A
T WT A if L WT A U

U L

if WT A U

 

 
   
  


                                     

(3.10)  

For Model-I,II-AL 

    

   

      

 
       

     

1

0

T
WT A

T
WT A WT A T T

WT A WT A WT A WT A
WT A

T
WT A WT A

if WT A L

L WT A
I WT A if L WT A L

if WT A L








 

      
 
 


 
                     

(3.11) 

For Model-I,II-BL 

    

   

      
     

       

     

1

0

T
WT A

T
WT A WT A T T

WT A WT A WT A WT AT T
WT A WT A WT A

T
WT A WT A

if WT A U

WT A L
I WT A if L WT A U

U L

if WT A L








 

      
   


 
                      

(3.12) 
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0

1

T
WT A WT A

T
WT A WT A T T

WT A WT A WT A WT AT T
WT A WT A WT A

T
WT A

if WT A L

WT A L
F WT A if L WT A U

U L

if WT A U








  

      
   



               

(3.13)

 

and constraints be   

    

 

 
 

 

1

0

i

i

i ii

i i

i

T
i

T
i T T

i iA T T

T
i

if A L

U A
T A if L A U

U L

if A U





 

 






 



 

  

     


                                                                

(3.14)  

For Model-I,II-AL 

    

 

    

 

   

   

1

0

i

i xi

i ii i

i

i i

T
i

T
i T T

i iA x
x

T
i x

if A L

L A
I A if L A L

if A L







  



 



 
  



 

 

   
     
 
 

 
                                  

(3.15) 

For Model-I,II-BL 

    

 

 
  

 
   

   

1

0

i

i xi

i ii i

i i i

i i

T
i

T
i T T

i iA xT T
x

T
i x

if A U

A L
I A if L A U

U L

if A L







  

  

 



 
  



 

 

   
       
 

 
                                 

(3.16) 

    

   

   

 
   

 

0

1

i i

i i

i ii i

i i i

i

T
i x

T
i x T T

i iA xT T
x

T
i

if A L

A L
F A if L A U

U L

if A U

 

 

  

  



 

 
  





  

  
    
   


                              

(3.17) 

where for    
01,2,..., 0 ,

i i ix Aj m
 
       

and if  non-linear membership function be considered for objective function  WT A  then  



  
Page 120 

 
  

    

   

   

   
     

   

1

1 exp

0

T
WT A

T
WT A T T

WT A WT A WT AT T
WT A WT A

T
WT A

if WT A L

U WT A
T WT A if L WT A U

U L

if WT A U



 

     

       
     




         

(3.18)  

  

For Model-I,II-AN 

    

   

    
     

   

1

exp

0

T
WT A

T
WTWT A T T

WTWT A WT A WT A
WT

T
WTWT A

if WT A L

L WT A
I WT A if L WT A L

if WT A L








 

     

     
   


 


       

(3.19) 

For Model-I,II-BN 

    

   

    
   

     

   

1

exp

0

T
WT A

T
WTWT A T T

WTWT A WT A WT AT T
WTWT A WT A

T
WTWT A

if WT A U

WT A L
I WT A if L WT A U

U L

if WT A L








 

     

     
    


 

            

(3.20) 

    

   

 
    

     

   

0

1 1 tanh
2 2 2

1

T
WTWT A

T T
WTWT A WT A T T

WT WTWT A WT A WT A

T
WT A

if WT A L

U L
F WT A WT A if L WT A U

if WT A U




 

  

              

 
    




  

(3.21)

 0 , T T
WT WT WT WTwhere U L      and if  nonlinear  truth, indeterminacy and falsity 

membership functions  be considered for constraints then 

    

 

 
 

 

1

1 exp

0

i

i

i ii

i i

i

T
i

T
T T

i iA T T

T
i

if A L

U A
T A if L A U

U L

if A U





 

 






  



 


     
            


                                      

(3.22) 

For Model-I,II-AN  



  
Page 121 

 
  

    

 

   
 

 

1

exp

0

i

i i

i i ii

i

i i

T
i

T
i T T

i iA

T
i

if A L

L A
I A if L A L

if A L



 

  



 



 
  



 

 


     
     
   


                               

(3.23) 

For Model-I,II-BN 

    

 

   
 

 

1

exp

0

i

i i

i i ii

i i i

i i

T
i

T
i T T

i iA T T

T
i

if A U

A L
I A if L A U

U L

if A L



 

  

  

 



 
  



 

 


     
     

    


                                 

(3.24) 

 

    

 

 
 

 

 

0

1 1 tanh
2 2 2

1

i i

i i i

i i i ii

i

T
i

T T
T T

i i iA

T
i

if A L

U L
F A A if L A U

if A U

 

  

   



 


    



  


              
     


                

(3.25) 

where ,  are non-zero parameters prescribed by the decision maker.

 0 ,
i i i i

T Twhere U L        

then  according to Smarandache’s definition of intersection of  Neutrosophic sets and 

decision making criteria the neutrosophic optimization problem can be formulated as   

(P3.2)  

Model-I- AL, BL, AN, BN 

 Maximize    
                                                                                                                           

(3.26) 

such that 

 
     ;WT AT WT A 

                                                                                                                                
(3.27)

 

 
     ;

i iAT A


 
                                                                                                                                    

(3.28) 

  
 

   ;
WT A

I WT A 
                                                                                                                                 

(3.29)
 

 
     ;

i iAI A


 
                                                                                                                                     

(3.30) 

 
 

   ;
WT A

F WT A 
                                                                                                                                 

(3.31)
 

    
i iAF A


 

                                                                                                                                     
(3.32)
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   ;i ix 
                                                                                                                                               

(3.33)
 

3; ; ;                                                                                                                              (3.34) 

 , , 0,1   
                                                                                                                                              

(3.35) 

Where Model-I-AL,AN and Model-I-BL,BN stand for the neutrosophic optimization 

algorithm with indeterminacy membership function as of decreasing sense and as of 

increasing sense respectively. 

But in real life problem decision maker needs to minimize indeterminacy membership 

function. So nutrosophic optimization problem also can be formulated as  

(P3.3)  

Model-II-AL,AN,BL,BN 

 Maximize    
                                                                                                                           

(3.36) 

such that 

 
     ;WT AT WT A 

                                                                                                                                
(3.37)

 

 
     ;

i iAT A


 
                                                                                                                                    

(3.38) 

  
 

   ;
WT A

I WT A 
                                                                                                                                 

(3.39)
 

 
     ;

i iAI A


 
                                                                                                                                     

(3.40) 

 
 

   ;
WT A

F WT A 
                                                                                                                                 

(3.41)
 

    
i iAF A


 

                                                                                                                                     
(3.42)

 

   ;i ix 
                                                                                                                                               

(3.43)
 

3; ; ;                                                                                                                              (3.44) 

 , , 0,1   
                                                                                                                                              

 

Where Model-II-AL,AN and Model-II-BL,BN stand for the neutrosophic optimization 

algorithm with indeterminacy membership function considered as of decreasing sense and as 

of increasing sense respectively.
                                                                                                                                  

 

Now the above problem can be simplified to following crisp linear programming problem, 

whenever linear membership are considered, as  

(P3.4)  

Model-I-AL 
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 Maximize                                                                                                           (3.45)                                                                                                          

Such that 

         ;
T T T
WT A WT A WT AWT A U L U  

                                                                                             
(3.46)

 

       ;
T

WT A WT A WT AWT A L   
                                                                                                       

(3.47)
 

            ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

                                                                
(3.48)

 

        ;T T T

T T T
T A A AA U L U

  
   

                                                                                                 
(3.49)

 

       ;T T T

T
T A A AA L

  
    

                                                                                                         
(3.50)

 

            ;T T T T T

T T T
T A A A A AA U L L

    
       

                                                                    
(3.51)

 

        ;C C C

T T T
C A A AA U L U

  
   

                                                                                                 
(3.52)

 

       ;C C C

T
C A A AA U

  
    

                                                                                                         
(3.53)

 
3;                                                                                                                                                 (3.54) 

; ;                                                                                                                                                 (3.55) 

 , , 0,1   
                                                                                                                                            

(3.56) 

(P3.5)  

Model-I-BL 

 Maximize                                                                                                           (3.57)                                                                                                          

Such that 

         ;
T T T
WT A WT A WT AWT A U L U  

                                                                                             
(3.58)

 

            ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

                                                                 
(3.59)

 

            ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

                                                                
(3.60)

 

        ;T T T

T T T
T A A AA U L U

  
   

                                                                                                 
(3.61)

 

            ;T T T T T

T T T
T A A A A AA U L L

    
       

                                                                    
(3.62)

 

            ;T T T T T

T T T
T A A A A AA U L L

    
       

                                                                    
(3.63)
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        ;C C C

T T T
C A A AA U L U

  
   

                                                                                                 
(3.64)

 

            ;C C C C C

T T T
C A A A A AA U L L

    
       

                                                                   
(3.65)

 

3;                                                                                                                                                 (3.66) 

; ;                                                                                                                                                 (3.67) 

 , , 0,1   
                                                                                                                                            

(3.68) 

and  crisp linear programming problem like Model-I-A whenever non-linear membership 

function is considered as 

(P3.6)  

Model-I-AN 

 Maximize                                                                                                            (3.69) 

such that                                                                                                                                      

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                              

(3.70)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                        

(3.71) 

       
;T

WT A WT A WT AWT A L   
                                                                                                        

(3.72) 

 
 

;i i

i

T T
T

i

U L
A U 

 



 

                                                                                                                   

(3.73)
 

     
;

ii i

T
i A AA L 

    
                                                                                                                

(3.74)
 

 
 

  ;
2

i i i

i

T T
A

i
A

U L
A   








 
 

                                                                                                     

(3.75) 

3;                                                                                                                                                 (3.76) 

; ;                                                                                                                                                   (3.77) 

 , , 0,1  
                                                                                                                                            

(3.78) 

Where  ln 1 ;   
                                                                                                                         

(3.79)
 

4;                                                                                                                                                           (3.80) 

 

    
6 ;WT A F F

WT A WT AU L
 


                                                                                                                   

(3.81)
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ln ;                                                                                                                                                       (3.82) 

 1tanh 2 1 .   
                                                                                                                             

(3.83)
 

 

    
6 ;

i

i i

A F F
A A

and
U L



 

 


                                                                                                                 

(3.84)

 

(P3.7)  

Model-I-BN 

 Maximize                                                                                                            (3.85) 

such that                                                                                                                                      

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                              

(3.86)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                     

(3.87) 

            
;T T T

WT A WT A WT A WT A WT AWT A U L L      
                                                                    

(3.88) 

 
 

;i i

i

T T
T

i

U L
A U 

 



 

                                                                                                                  

(3.89)
 

      
;

i i ii i

T T T
i A AA U L L   

       
                                                                                       

(3.90)
 

 
 

  ;
2

i i i

i

T T
A

i
A

L U
A   








 
 

                                                                                                     

(3.91) 

3;                                                                                                                                                 (3.92) 

; ;                                                                                                                                                   (3.93) 

 , , 0,1  
                                                                                                                                            

(3.94) 

Where  ln 1 ;   
                                                                                                                         

(3.95)
 

4;                                                                                                                                                           (3.96) 

 

    
6 ;WT A F F

WT A WT AU L
 


                                                                                                                   

(3.97)

 

ln ;                                                                                                                                                       (3.98) 

 1tanh 2 1 .   
                                                                                                                             

(3.99)
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6 ;

i

i i

A F F
A A

and
U L



 

 


                                                                                                               

(3.100)

 

. 

Using linear and nonlinear truth, indeterminacy, and falsity membership function Model-II 

can be simplified as  

(P3.8)  

Model-II-AL 

 Maximize                                                                                                           (3.101)                                                                                                           

Such that 

         ;
T T T
WT A WT A WT AWT A U L U  

                                                                                             
(3.102)

 

       ;
T

WT A WT A WT AWT A L   
                                                                                                      

(3.103)
 

            ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

                                                                
(3.104)

 

        ;T T T

T T T
T A A AA U L U

  
   

                                                                                                 
(3.105)

 

       ;T T T

T
T A A AA L

  
    

                                                                                                         
(3.106)

 

            ;T T T T T

T T T
T A A A A AA U L L

    
       

                                                                    
(3.107)

 

        ;C C C

T T T
C A A AA U L U

  
   

                                                                                                 
(3.108)

 

       ;C C C

T
C A A AA U

  
    

                                                                                                       
(3.109)

 
3;                                                                                                                                                 (3.110) 

; ;                                                                                                                                                  (3.111) 

 , , 0,1   
                                                                                                                                            

(3.112)
 

(P3.9)  

 
Model-II-BL 

 Maximize                                                                                                           (3.113)                                                                                                           

Such that 

         ;
T T T
WT A WT A WT AWT A U L U  

                                                                                             
(3.114)
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            ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

                                                                 
(3.115)

 

            ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

                                                                
(3.116)

 

        ;T T T

T T T
T A A AA U L U

  
   

                                                                                                 
(3.117)

 

            ;T T T T T

T T T
T A A A A AA U L L

    
       

                                                                    
(3.118)

 

            ;T T T T T

T T T
T A A A A AA U L L

    
       

                                                                    
(3.119)

 

        ;C C C

T T T
C A A AA U L U

  
   

                                                                                                 
(3.120)

 

            ;C C C C C

T T T
C A A A A AA U L L

    
       

                                                                   
(3.121)

 

3;                                                                                                                                                 (3.122) 

; ;                                                                                                                                                 (3.123) 

 , , 0,1   
                                                                                                                                           

(3.124)
 

(P3.10)  

 

Model-II-AN 

 Maximize                                                                                                            (3.125) 

Such that 

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                              

(3.126)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                     

(3.127) 

       
;T

WT A WT A WT AWT A L   
                                                                                                      

(3.128) 

 
 

;i i

i

T T
T

i

U L
A U 

 



 

                                                                                                                 
(3.129)

 
     

;
ii i

T
i A AA L 

    
                                                                                                                

(3.130)
 

 
 

  ;
2

i i i

i

T T
A

i
A

U L
A   








 
 

                                                                                                     

(3.131) 
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3;                                                                                                                                                 (3.132) 

; ;                                                                                                                                                   (3.133) 

 , , 0,1  
                                                                                                                                            

(3.134) 

Where  ln 1 ;   
                                                                                                                         

(3.135)
 

4;                                                                                                                                                           (3.136) 

 

    
6 ;WT A F F

WT A WT AU L
 


                                                                                                                   

(3.137)

 

ln ;                                                                                                                                                       (3.138) 

 1tanh 2 1 .   
                                                                                                                             

(3.139)
 

 

    
6 ;

i

i i

A F F
A A

and
U L



 

 


                                                                                                               

(3.140)

 

(P3.11)  

Model-II-BN 

 Maximize                                                                                                            (3.141)                                                                                                            

such that                                                                                                                                      

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                              

(3.142)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                     

(3.143) 

            
;T T T

WT A WT A WT A WT A WT AWT A U L L      
                                                                  

(3.144) 

 
 

;i i

i

T T
T

i

U L
A U 

 



 

                                                                                                                 
(3.145)

 
      

;
i i ii i

T T T
i A AA U L L   

       
                                                                                      

(3.146)
 

 
 

  ;
2

i i i

i

T T
A

i
A

L U
A   








 
 

                                                                                                     

(3.147) 

3;                                                                                                                                                 (3.148) 

; ;                                                                                                                                                   (3.149) 
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 , , 0,1  
                                                                                                                                            

(3.150) 

Where  ln 1 ;   
                                                                                                                         

(3.151)
 

4;                                                                                                                                                           (3.152) 

 

    
6 ;WT A F F

WT A WT AU L
 


                                                                                                                   

(3.153)

 

ln ;                                                                                                                                                       (3.154) 

 1tanh 2 1 .   
                                                                                                                             

(3.155)
 

 

    
6 ;

i

i i

A F F
A A

and
U L



 

 


                                                                                                               

(3.156)

                                                                                   

  

 All these  crisp nonlinear programming problem can be solved by appropriate mathematical 

algorithm.   

3.3 Numerical Solution of Two Bar Truss Design using Single 

Objective NSO Technique 

A well-known two-bar planar truss structure (Fig.-3.1)is considered and the detail 

formulation is given in appendix. The design objective is to minimize weight of the structural 

 1 2, , BWT A A y of a statistically loaded two-bar truss subjected to stress  1 2, ,i BA A y

constraints on each of the truss members 1,2i  . 

 

Fig.-3.1 Design of the Two-Bar Truss(http://www.sciencedirect.com,accessed on 17June 

2017) 

The single-objective optimization problem can be stated as follows  
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(P3.12)  

    22 2 2
1 2 1 2, , B B B B BMinimize WT A A y A x l y A x y                                        (3.157) 

Such that  

 
 

22

AB 1 2
1

, , ;B B T
B AB

P x l y
A A y

lA
 

 
    

                                                                               

(3.158) 

 
2 2

BC 1 2
2

, , ;B B C
B BC

P x y
A A y

lA
 


    

                                                                                         

(3.159) 

                             0.5 1.5By 
                                                                                                               

(3.160) 

                             1 20, 0;A A 
                                                                                                              

(3.161) 

where P   nodal load ;  volume density ; l  length of AC ; Bx   perpendicular distance 

from AC to point B . 1A Cross section of bar- AB ; 2A Cross section of bar- BC .  T   

maximum allowable tensile stress,  C maximum allowable compressive stress and

By y -co-ordinate of node B .Input data are given in Table 3.1. 

Table 3.1 Input Data for Crisp Model (P3.8) 

Applied 

load P
 

 KN  

Volume 

density 
 

 3/KN m  

Length 

l 
 m  

Maximum 

allowable   

tensile  

stress  T  
 Mpa  

Maximum 

allowable 

compressive 

stress C    
 Mpa  

Distance of 

Bx from

AC  
 

 m  

100  7.7  2  

130  

 with fuzzy 

region 

20   

 

90  

 with fuzzy 

region 

10   

 

1  

Solution: According to step 2 of 1.29,we find upper and lower bound of  membership 

function of objective function as      , ,T I F
WT A WT A WT AU U U and      , ,T I F

WT A WT A WT AU U U  where

       14.23932 , 12.57667 ,T F T I
WT A WT A WT A WT AU U L L       12.57667F

WT A WT AL   with

 0 1.66265;WT A  and      
I T

WT A WT A WT AU L    where  0 1.66265WT A   
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Now using the bounds we calculate the membership functions for objective as follows

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 12.57667

14.23932 , ,
, , 12.57667 , , 14.23932

1.66265
0 , , 14.23932

B

B

B
B BWT A A y

B

if WT A A y

WT A A y
T WT A A y if WT A A y

if WT A A y

 

 

   
 
 

     

(3.162)  

For Model-I,II,AL 

    

 

    

 

   

   

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 12.57667

12.57667 , ,
, , 12.57667 , , 12.57667

0 , , 12.57667

B

B

BWT A
B BWT A A y WT A

WT A

B WT A

if WT A A y

WT A A y
I WT A A y if WT A A y

if WT A A y








 

       
 
 


 

           

(3.163) 

For Model-I,II,BL 

    

 

    
 

   

   

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 14.23932

, , 12.57667
, , 12.57667 , , 14.23932

1.66265

0 , , 12.57667

B

B

B WT A
B BWT A A y WT A

WT A

B WT A

if WT A A y

WT A A y
I WT A A y if WT A A y

if WT A A y








 

       
  


             

(3.164) 
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1 2

1 2
1 2 1 2, ,

1 2

0 , , 12.57667

, , 12.57667
, , 12.57667 , , 14.23932

1.66265

1 , , 14.23932

B

B WT A

B WT A
B BWT A A y WT A

WT A

B

if WT A A y

WT A A y
F WT A A y if WT A A y

if WT A A y








  

  
    
  




       

(3.165) 

 Similarly the membership functions for tensile stress are   
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1 2

1 2
1 2 1 2, ,

1 2

1 , , 130

150 , ,
, , 130 , , 150

20
0 , , 150

T B

T B

T B
T B T BA A y

T B

if A A y

A A y
T A A y if A A y

if A A y






 



 

 

   
 
 

                     

(3.166) 

For Model-I,II,AL 
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1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 130

130 , ,
, , 130 , , 130

0 , , 130

T

TT B

T

T

T B

T B
T B T BA A y

T B

if A A y

A A y
I A A y if A A y

if A A y











 
  



 

 

       
  


 

                       (3.167) 

For Model-I,II,BL 
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1 2

1 2
1 2 1 2, ,

1 2

1 , , 150

, , 130
, , 130 , , 150

20

0 , , 130

T

TT B

T

T

T B

T B
T B T BA A y

T B

if A A y

A A y
I A A y if A A y

if A A y











 
  



 

 

       
  


                         

(3.168)
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1 2 1 2, ,

1 2

0 , , 130

, , 130
, , 130 , , 150

20

1 , , 150

T

T

TT B

T

T B

T B
T B T BA A y

T B

if A A y

A A y
F A A y if A A y

if A A y









 

 
  





  

  

      
 


                   (3.169) 

0 , 20
T T

where      

    and the membership functions for compressive stress constraint are 
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1 2
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1 2 1 2, ,
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1 , , 90

100 , ,
, , 90 , , 100
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0 , , 100

C B

C B
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C B C BA A y

C B

if A A y

A A y
T A A y if A A y

if A A y






 



 

 

   
 
 

                           

(3.170) 

For Model-I,II,AL 
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1 2
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1 2 1 2, ,

1 2

1 , , 90

90 , ,
, , 90 , , 90

0 , , 90

C

CC B

C

C

C B

C B
C B C BA A y

C B

if A A y

A A y
I A A y if A A y

if A A y











 
  



 

 

       
  


 

                               

(3.171) 

For Model-I,II,BL 
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10
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C

C B
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if A A y
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I A A y if A A y

if A A y











 
  



 

 

       
  


                               

(3.172)
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C

C
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C

C B
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F A A y if A A y
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(3.173)

 

0 , 10
C C

where    
 

Again the nonlinear truth, indeterminacy and falsity membership functions for objectives and 

constraints can be formulated as  
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1 2
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1 2 1 2, ,
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1 , , 12.57667

14.23932 , ,
, , 1 exp 4 12.57667 , , 14.23932
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0 , , 14.23932

B

B
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B BWT A A y
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if WT A A y

WT A A y
T WT A A y if WT A A y

if WT A A y

 


    
       

    
 

          

(3.174) 

For Model-I,II,AN 
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0 , , 12.57667

B

B
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I WT A A y if WT A A y
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        (3.175) 

For Model-I,II,BN 
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(3.176) 
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B B WT BWT A A y
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if WT A A y

F WT A A y WT A A y if WT A A y
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(3.177)

 
 Similarly the membership functions for tensile stress are   
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if A A y






 



 


    
       

    
 

          

(3.178) 

For Model-I,II,AN 

 
    

 

   
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 130

130 ,
, , exp 130 , , 130

0 , , 130

T

TT B

T

T

T B

T B
T B T BA A y

T B

if A A y

A A y
I A A y if A A y
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(3.179) 

For Model-I,II,BN 
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(3.180) 
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           (3.181)

 0 , 20
T T

where      
and the membership functions for compressive stress constraint are 
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(3.182) 

For Model-I,II,AN 

    

 

   
 

 

1 2

1 2

1 2
1 2 1 2, ,

1 2

1 , , 90

90 , ,
, , exp 90 , , 90

0 , , 90

C

CC B

C

C

C B

C B
C B C BA A y

C B

if A A y

A A y
I A A y if A A y

if A A y











 
  



 

 


     
     
   


 

        

(3.183) 
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For Model-I,II,BN 
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(3.184) 
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(3.185)

 0 , 10
C C

where    
 

Now , using above mentioned  truth, indeterminacy and falsity linear and nonlinear 

membership function NLP (P3.12) can be solved for Model-I-AL,AN, Model-I-BL,BN, 

Model-II-AL,AN, Model-II-BL,BN by NSO technique for different values of , ,
T CWT    

and , ,
T CWT     . The optimum solution of  SOSOP(P3.12) is given in Table 3.2and Table 3.3 

and the solution is compared with fuzzy and intuitionistic fuzzy problem.  

Table 3.2 Comparison of Optimal Solution of SOSOP (P3.12) for Model I based on 
Different Methods 

Methods 
 

Model
 

 
1

2

A

m
 

 
2

2

A

m
  

 

1 2,WT A A

KN
 

 
By
m

 

Fuzzy single-
objective non-

linear 
programming 

(FSONLP) 

I-AL .5883491 .7183381 14.23932 1.013955 

I-AN 
.5883491 

 

.7183381 

 

14.23932 

 

1.013955 

 

Intuitionistic 

Fuzzy single-

objective non-

linear 

programming 

(FSONLP) 

I-AL 

0.33253,WT  4,
T

 

2
C

 
 

0.5482919 0.6692795 13.19429 0.8067448 

I-AN 

0.8,WT  16,
T

  8
C

 
 

0.6064095 0.6053373 13.59182 0.5211994 

Neutosophic 

optimization(NSO)  

I-AL 

0.33253, 4, 2
T CWT     

.498795, 6, 3
T CWT     

 

.5954331 .7178116 13.07546 .818181 
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I-BL 

.498795, 6, 3
T CWT     

0.33253, 4, 2
T CWT     

 

NO FEASIBLE SOLUTION FOUND 

I-AN 

0.8, 16, 8
T CWT     

0.66506, 8, 4
T CWT     

 

0.5451860 0.677883 13.24173 0.7900455 

I-BN 

0.8, 16, 8
T CWT     

0.66506, 8, 4
T CWT     

 

NO FEASIBLE SOLUTION  FOUND 

 
Table 3.3 Comparison of Optimal Solution of SOSOP (P3.12) for Model II based on 

Different Method 

Methods 
 

Model
 

 
1

2

A

m
 

 
2

2

A

m
  

 

1 2,WT A A

KN
 

 
By
m

 

Fuzzy single-
objective non-

linear 
programming 

(FSONLP) 

II-AL .5954331 .7178116 14.23932 0.81818 

II-AN 
1.317107 

 

0.7174615 

 

13.82366 

 

1.399050 

 

Intuitionistic 

Fuzzy single-

objective non-

linear 

programming 

(IFSONLP) 

II-AL 

0.33253,WT  4,
T

 

2
C

 
 

0.5954331 0.7178116 13.50036 0.8181818 

II-AN 

0.8,WT  16,
T

  8
C

 
 

1.107847 0.2557545 13.78028 0.5 

Neutosophic 

optimization(NSO)  

II-AL 

0.33253, 4, 2
T CWT     

.498795, 6, 3
T CWT     

 

0.5954331 0.7178116 13.13089 .8181817 

II-BL 

 

.498795, 6, 3
T CWT     

0.33253, 4, 2
T CWT     

 

3.603750 3.603750 12.90920 
1 

 

II-AN 

0.8, 16, 8
T CWT     

 

0.66506, 8, 4
T CWT     

 

0.6494508 0.8336701 13.78028 0.5004718 
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II-BN 

0.8, 16, 8
T CWT     

 

0.66506, 8, 4
T CWT     

 

3.603750 4.043915 13.07546 0.5 

 

Here we get best solutions for the different tolerance ,
T CWT and

    for indeterminacy 

membership function of objective functions whenever indeterminacy is tried to be minimized 

(i.e in Model II) for this structural optimization problem. From Table 3.2andTable 3.3, it is 

shown that NSO technique gives better optimal result in the perspective of Structural 

Optimization. 

3.4 Conclusion 

This work is done for  illustration of  NSO technique that using linear and nonlinear 

membership function how it  can be utilized to solve a single objective-nonlinear structural 

problem. The concept of NSO technique allows one to define a degree of truth membership, 

which is not a complement of degree of falsity; rather, they are independent with degree of 

indeterminacy. The numerical illustration shows the superiority of NSO over FO and IFO. 

The results of this study may lead to the development of effective neutrosophic technique for 

solving other models in form of single objective  nonlinear programming problem in other 

field of engineering .  
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CHAPTER  4  

Multi-objective Neutrosophic Optimization Technique and its 
Application to Structural Design 

 

In the field of civil engineering nonlinear structural design optimizations are of great of 

importance. So the description of structural geometry and mechanical properties like stiffness 

are required for a structural system. However the system description and system inputs may 

not be exact due to human errors or some unexpected situations. At this juncture fuzzy set 

theory provides a method which deal with ambiguous situations like vague parameters, non-

exact objective and constraint. In structural engineering design problems, the input data and 

parameters are often fuzzy/imprecise with nonlinear characteristics that necessitate the 

development of fuzzy optimum structural design method. Fuzzy set (FS) theory has long been 

introduced to handle inexact and imprecise data by Zadeh [133], Later on Bellman and Zadeh 

[10] used the FS theory to the decision making problem. The FS theory also found 

application in structural design. Several researchers like Wang et al. [121] first applied α-cut 

method to structural designs where the non-linear problems were solved with various design 

levels α, and then a sequence of solutions were obtained by setting different level-cut value of 

α. Rao [89] applied the same α-cut method to design a four–bar mechanism for function 

generating problem. Structural optimization with fuzzy parameters was developed by Yeh et 

al. [131]. Xu [13] used two-phase method for fuzzy optimization of structures. Shih et al. [96] 

used level-cut approach of the first and second kind for structural design optimization 

problems with fuzzy resources. Shih et al. [95] developed alternative α-level-cuts methods for 

optimum structural design with fuzzy resources. Dey et al. [35] used generalized fuzzy 

number in context of a structural design. Dey et al.[33]used basic t-norm based fuzzy 

optimization technique for optimization of structure.  

In such extension, Atanassov [1] introduced Intuitionistic Fuzzy Set (IFS) which is one of the 

generalizations of fuzzy set theory and is characterized by a membership function, a non- 

membership function and a hesitancy function. In FS the degree of acceptance is only 

considered but IFS is characterized by a membership function and a non-membership 

function so that the sum of both values is less than one.  A transportation model was solved 

by Jana et al.[57]using multi-objective intuitionistic fuzzy linear programming. Dey et al. 

[35] solved two bar truss non-linear problem by using Intuitionistic Fuzzy Optimization 



  
Page 139 

 
  

problem. Dey et al. [36] used IFO technique for multi objective optimum structural design. 

IFS consider both truth membership and falsity membership. IFS can only handle incomplete 

information not the indeterminate information and inconsistent information. 

In neutrosophic sets indeterminacy is quantified explicitly and truth membership, 

indeterminacy membership and falsity membership which are independent. Neutrosophic 

theory was introduced by Smarandache [94]. The motivation of the present study  of this 

chapter is to give computational algorithm for solving multi-objective structural problem by 

single valued Neutrosophic Optimization(NSO) approach. NSO technique is very rare in 

application to structural optimization. We also aim to study the impact of truth exponential 

membership, indeterminacy exponential membership and falsity hyperbolic membership 

function in such optimization process. The results are compared numerically linear and  

nonlinear NSO technique. From our numerical result, it has been seen  that there is no change 

between the result of linear and non-linear neutrosophic optimization technique in the 

perspective of  structural optimization technique.  

  

4.1 General form of Multi-objective Truss Design Model 

In the design problem of the structure i.e. lightest weight of the structure and minimum 

deflection of the loaded joint that satisfies all stress constraints in members of the structure. 

In truss structure system ,the basic parameters (including allowable stress ,etc) are  known 

and the optimization’s target is to identify the optimal bar truss cross-section area so that the 

structure is of the smallest total weight with minimum nodes displacement in a given load 

conditions . 

The multi-objective structural model can be expressed as  

(P4.1)  

 Minimize WT A                                                                                                                                        (4.1) 

 Minimize A                                                                                                                                            (4.2) 

   subject to A                                                                                                                                 (4.3) 

min maxA A A                                                                                                                       (4.4)                                                          

where  1 2, ,...., T
nA A A A are the design variables for the cross section, n is the group 

number of design variables for the cross section bar , 
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1

n

i i i
i

WT A A L



                                                                                                              

(4.5)
 

is the total weight of the structure ,  A is the deflection of the loaded joint ,where ,i iL A and 

i are the bar length, cross section area and density of the thi group bars respectively.  A is 

the stress constraint and   is allowable stress of the group bars under various conditions,

minA and maxA  are the lower and upper bounds of cross section area A respectively. 

 

4.2 Solution of Multi-objective Structural Optimization Problem 

(MOSOP) by Neutrosophic Optimization Technique 
To solve the MOSOP (P4.1), step 1 of 1.33 is used .After that pay off matrix is formulated. 

   

   

   

* 1 11

2 2 * 2

WT A A

WT A AA
A WT A A







 
 
 
 

 

According to step-2 the bound of weight objective , ;T T
WT WTU L ,I I

WT WTU L and ,F F
WT WTU L for truth, 

indeterminacy and falsity membership function   have been  calculated respectively so that  

     ; ;T T I I F F
WT WT WT WT WT WTL WT A U L WT A U L WT A U      . Similarly the bound of 

deflection objective are , ; , ,T T I I F FU L U L and U L       respectively for truth, indeterminacy  and 

falsity membership function. Then      ; ;T T I I F FL A U L A U L A U             .Where  

for Model-I,II-AL,AN 

,F T
WT WTU U                                                                                                                                                   (4.6) 

;F T
WT WT WTL L                                                                                                                                           (4.7) 

,I T
WT WTL L                                                                                                                                                    (4.8) 

I T
WT WT WTU L                                                                                                                     (4.9) 

Such that  0 , T T
WT WT WT WTU L      

for Model-I,II-BL,BN 

F T I
WT WT WTU U U 
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F T
WT WT WTL L    where  0 T T

WT WT WTU L  
     

I T
WT WT WTL L    where  0 T T

WT WT WTU L  
                              

And for Model-I,II-AL,AL  

,F TU U                                                                                                                                                      (4.10) 

;F TL L                                                                                                                                                   (4.11) 

,I TL L                                                                                                                                                          (4.12) 

I TU L     

 such that  

 0 , T TU L       .                                                                                                        (4.13) 

for Model-I,II-BL,BN 

F T IU U U   
 

F TL L     where  0 T TU L    
     

I TL L     where  0 T TU L    
                             

 

Therefore the truth, indeterminacy and falsity membership functions for objectives are  

    

   

   

   
     

   

1

1 exp

0

T
WT A

T
WT A T T

WT A WT A WT AT T
WT A WT A

T
WT A

if WT A L

U WT A
T WT A if L WT A U

U L

if WT A U



 

     

       
     




                   

(4.14)  

for Model-I,II-AN 

    

   

    
     

   

1

exp

0

T
WT A

T
WTWT A T T

WTWT A WT A WT A
WT

T
WTWT A

if WT A L

L WT A
I WT A if L WT A L

if WT A L








 

     

     
   


 


             

(4.15) 

for Model-I,II-BN 
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1

exp

0

T
WT A

T
WTWT A T T

WTWT A WT A WT AT T
WTWT A WT A

T
WTWT A

if WT A U

WT A L
I WT A if L WT A U

U L

if WT A L








 

     

     
    


 

              

(4.16) 

 

    

   

 
    

     

   

0

1 1 tanh
2 2 2

1

T
WTWT A

T T
WTWT A WT A T T

WT WTWT A WT A WT A

T
WT A

if WT A L

U L
F WT A WT A if L WT A U

if WT A U




 

  

              

 
    




 

(4.17)

 0 , T T
WT WT WT WTwhere U L   

and

 

    

 

 
 

 

1

1 exp

0

T

T
T T

A T T

T

if A L

U A
T A if L A U

U L

if A U





 

 






  



 


    
            


                                             

(4.18)  

for Model-I,II-AN 

 

    

 

   
 

 

1

exp

0

T

T
T T

A

T

if A L

L A
I A if L A L

if A L



 

  



 



 
  



 

 


    
     
   


                                             

(4.19) 

for Model-I,II-BN 

    

 

   
 

 

1

exp

0

T

T
T T

A T T

T

if A U

A L
I A if L A U

U L

if A L



 

  

  

 



 
  



 

 


    
     

    


                                           

(4.20) 
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0

1 1 tanh
2 2 2

1

T

T T
T T

A

T

if A L

U L
F A A if L A U

if A U

 

  

   



 


    



  


      
        
     


                                    

(4.21) 

where ,  are non-zero parameters prescribed by the decision maker and for 

 0 , T Twhere U L      
.
 

 According to Smarandach’s definition of intersection and decision making criteria, 

considering truth, indeterminacy and falsity membership function for MOSOP (P4.1), crisp 

NLP problem can be formulated as 

Model-I-AN,BN 

(P4.2)  

 Maximize                                                                                                            (4.22) 

 Subject to 

   ;WTT WT A                                                                                                                (4.23) 

   ;T A                                                                                                                       
(4.24) 

   ;WTI WT A                                                                                                                 
(4.25)

 

   ;I A                                                                                                                       
(4.26)

 

   ;WTF WT A                                                                                                                
(4.27)

 

    ;F A                                                                                                                     
(4.28) 

   ;A                                                                                                                          (4.29) 

3;                                                                                                                           (4.30) 

;                                                                                                                                  (4.31) 

;                                                                                                                                   (4.32) 

 , , 0,1 ,                                                                                                                        (4.33) 
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min maxA A A                                                                                                                     (4.34) 

Where Model-I-AN, Model-I-BN stands for the neutrosophic optimization algorithm with 

decreasing indeterminacy membership function and increasing indeterminacy membership 

function. 

which is reduced to equivalent NLP problem as  

Model-I-AN                                                     

(P4.3)  

 Maximize                                                                                                              (4.35)                                                                                                      

Such that 

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                              

(4.36)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                        

(4.37) 

       
;T

WT A WT A WT AWT A L   
                                                                                                        

(4.38)
 

 
 

;
T T

T
U L

A U 

 



 

                                                                                                                      

(4.39)
 

  ;TA L      
                                                                                                                               

(4.40) 

  ;
2

T T
WT WTU LA 








 
 

                                                                                                                 

(4.41) 

   ;A                                                                                                                          (4.42)
 

3;                                                                                                                                                   (4.43) 

; ;                                                                                                                                                     (4.44) 

 , , 0,1  
                                                                                                                                              

(4.45) 

where  ln 1 ;   
                                                                                                                             

(4.46)
 

4;                                                                                                                                                              (4.47) 
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6 ;WT F F

WT WTU L
 


                                                                                                                                   

(4.48)
 

 
6 ;

F FU L

 

 


                                                                                                                                        

(4.49)
 

ln ;                                                                                                                                                          (4.50) 

 1tanh 2 1 .   
                                                                                                                                

(4.51) 

And 

Model-I-BN                                                     

(P4.4)  

 Maximize                                                                                                              (4.52)                                                                                                      

Such that 

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                                

(4.53)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                        

(4.54) 

            
;T T T

WT A WT A WT A WT A WT AWT A U L L      
                                                                     

(4.55)
 

 
 

;
T T

T
U L

A U 

 



 

                                                                                                                      

(4.56)
 

    ;T T TA U L L           
                                                                                                     

(4.57) 

  ;
2

T T
WT WTU LA 








 
 

                                                                                                                

(4.58) 

   ;A                                                                                                                          (4.59)
 

3;                                                                                                                                                   (4.60) 

; ;                                                                                                                                                     (4.61) 

 , , 0,1  
                                                                                                                                              

(4.62) 

where  ln 1 ;   
                                                                                                                             

(4.63)
 

4;                                                                                                                                                              (4.64) 
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6 ;WT F F

WT WTU L
 


                                                                                                                                   

(4.15)
 

 
6 ;

F FU L

 

 


                                                                                                                                        

(4.66)
 

ln ;                                                                                                                                                          (4.67) 

 1tanh 2 1 .   
                                                                                                                               

(4.68) 

But as the decision maker needs to minimize indeterminacy membership function in an 

optimization problem another form of NSO algorithm can be formulated as 

Model-II-AN 

(P4.5)  

 Maximize                                                                                                              (4.69)                                                                                                      

Such that 

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                              

(4.70)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                     

(4.71) 

       
;T

WT A WT A WT AWT A L   
                                                                                                       

(4.72)
                                                                                                                              

 
 

;
T T

T
U L

A U 

 



 

                                                                                                                      

(4.73)
 

  ;TA L      
                                                                                                                               

(4.74) 

  ;
2

T T
WT WTU LA 








 
 

                                                                                                                 

(4.75) 

   ;A                                                                                                                          (4.76)
 

3;                                                                                                                                                   (4.77) 

; ;                                                                                                                                                     (4.78) 

 , , 0,1  
                                                                                                                                              

(4.79) 
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where  ln 1 ;   
                                                                                                                             

(4.80)
 

4;                                                                                                                                                              (4.81) 

 
6 ;WT F F

WT WTU L
 


                                                                                                                                   

(4.82)
 

 
6 ;

F FU L

 

 


                                                                                                                                        

(4.83)
 

ln ;                                                                                                                                                          (4.84) 

 1tanh 2 1 .   
                                                                                                                                

(4.85)
 

And 

Model-II-BN 

(P4.6)  

 Maximize                                                                                                              (4.86)                                                                                                      

Such that 

 
    

 
;

T T
WT A WT A T

WT A

U L
WT A U




 

                                                                                              

(4.87)
 

 
 

      ;
2

T T
WT A WT A WT A

WT A

U L
WT A





 
 

                                                                                        

(4.89) 

            
;T T T

WT A WT A WT A WT A WT AWT A U L L      
                                                                     

(4.90)
                                                           

 
 

;
T T

T
U L

A U 

 



 

                                                                                                                      

(4.91)
 

    ;T T TA U L L           
                                                                                                      

(4.92) 

  ;
2

T T
WT WTU LA 








 
 

                                                                                                                

(4.93) 

   ;A                                                                                                                          (4.94)
 

3;                                                                                                                                                   (4.95) 

; ;                                                                                                                                                     (4.96) 

 , , 0,1  
                                                                                                                                              

(4.97) 
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where  ln 1 ;   
                                                                                                                             

(4.98)
 

4;                                                                                                                                                              (4.99) 

 
6 ;WT F F

WT WTU L
 


                                                                                                                                

(4.100)
 

 
6 ;

F FU L

 

 


                                                                                                                                      

(4.101)
 

ln ;                                                                                                                                                        (4.102) 

 1tanh 2 1 .   
                                                                                                                              

(4.103)
 

Solving the above crisp model (P4.3),(P4.4),(P4.5),(P4.6) we get optimal solution and hence 

objective functions i.e structural weight and deflection of the loaded joint will attain its 

optimum value 

. 

4.3 Numerical  Solution of Multi-objective Structural Optimization 

Problem (MOSOP) by Neutrosophic Optimization Technique 
 

A well-known three bar planer truss [Fig.-4.1]is considered to minimize weight of the 

structure  1 2,WT A A and minimize the deflection  1 2,A A  at a loading point of a 

statistically loaded three bar planer truss, subject to stress constraints on each of the truss 

members 

 

Fig.-4.1 Design of the Three-Bar Planar Truss(Pratt Truss Bridge, 

http://www.atlaso.com,accessed on 17 June 2017) 

The multi-objective optimization problem can be stated as follows 

(P4.7)  

http://www.atlaso.com,accessed/
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   1 2 1 2, 2 2Minimize WT A A L A A                                                                       (4.104) 

 
 

1 2
1 2

,
2

PLMinimize A A
E A A

 


                                                                                           

(4.105) 

Subject to  

 
 

 
1 2

1 1 2 12
1 1 2

2
, ;

2 2
T

P A A
A A

A A A
 


    


                                                                                                 

(4.106) 

 
 

2 1 2 2
1 2

, ;
2

TPA A
A A

     


                                                                                                    

(4.107) 

 
 

2
3 1 2 32

1 1 2

, ;
2 2

CPAA A
A A A

     


                                                                                               

(4.108) 

min max 1,2i i iA A A i  
                                                                                                                      

(4.109) 

 where P   applied load ;  material density ; L  length ; E Young’s modulus ; 1A 

Cross section of bar-1 and bar-3; 2A Cross section of bar-2;   is deflection of loaded joint. 

1
T   and 2

T   are maximum allowable tensile stress for bar 1 and bar 2 respectively, 3
C is 

maximum allowable compressive stress for bar 3. 

Table 4.1 Input Data for Crisp Model (P4.4) 
 

Applied 
load P  
 KN  

Volume 
density 

  
 3/KN m  

Length 
L 
 m  

Maximum 
allowable   

tensile  
stress

1
T 

   
 2/KN m  

Maximum 
allowable 

compressive 
stress 3

C 
   

 2/KN m  

Young’s 
modulus 

E 
 2/KN m  

min
iA  

and  
max
iA  

of cross 
section 
of bars 
 4 210 m  

20  100  1  20  15  72 10  

min
1 0.1A   

max
1 5A   
min
2 0.1A 

max
2 5A   

Solution : According to step 2 of 1.33, pay-off matrix is formulated as follows 
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   1 2 1 2

1

2

, ,

2.638958 14.64102
19.14214 1.656854

WT A A A A

A
A



 
 
 

. 

Here 

19.14214,F T
WT WTU U                                                                                                                           (4.110) 

1 12.638958 ;F T
WT WTL L     

                                                                                                          
(4.111) 

2.638958,I T
WT WTL L                                                                                                                             (4.112) 

1 12.638958I T
WT WTU L     

                                                                                                           
(4.113) 

such that  1 10 , 19.14214 2.638958    ; 

14.64102,F TU U  
                                                                                                                             

(4.114) 

2 21.656854 ;F TL L      
                                                                                                              

(4.115) 

1.656854,I TL L  
                                                                                                                               

(4.116)
 

2 21.656854I TU L      
                                                                                                               

(4.117)
 

such that  2 20 , 14.64102 1.656854                                                                       (4.118) 
Here truth, indeterminacy, and falsity membership function for objective functions 

   1 2 1 2, , ,WT A A A A are defined as follows  

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2,

1 2

1 , 2.638958

19.14214 ,
, 1 exp 4 2.638958 , 19.14214

16.503182

0 , 19.14214

WT A A

if WT A A

WT A A
T WT A A if WT A A

if WT A A

 


    
       

    
 

        

(4.119) 

    

 

   
 

 

1 2

1 2

1 1 2
1 2 1 2 1,

1

1 2 1

1 , 2.638958

2.638958 ,
, exp 2.638958 , 2.638958

0 , 2.638958

WT A A

if WT A A

WT A A
I WT A A if WT A A

if WT A A








 


  
     

 
  

        

(4.120) 
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1 2

1 2

1
1 2 1 2 1 2,

1

1 2

0 , 2.638958

21.7810981 1 6, tanh , 2.638958 , 19.14214
2 2 2 16.503182

1 , 19.14214

WT A A

if WT A A

F WT A A WT A A if WT A A

if WT A A





 


    
       

    
        

(4.121) 

1 10 , 16.503182  

 

and  

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2,

1 2

1 , 1.656854

14.64102 ,
, 1 exp 4 1.656854 , 14.64102

12.984166

0 , 14.64102

A A

if A A

A A
T A A if A A

if A A






 



 


    
       

    
 

           

(4.122) 

For Model-I,II-AN 

    

 

   
 

 

1 2

1 2

2 1 2
1 2 1 2 2,

2

1 2 2

1 , 1.656854

1.656854 ,
, exp 130 , 1.656854

0 , 1.656854

T
A A

if A A

A A
I A A if A A

if A A





 
  



 

 


  
     

 
  

         

(4.123) 

For Model-I,II-BN 

    

 

   
 

 

1 2

1 2

1 2 2
1 2 2 1 2,

2

1 2 2

1 , 14.64102

, 1.656854
, exp 1.656854 , 14.64102

12.984166
0 , 1.656854

T
A A

if A A

A A
I A A if A A

if A A





 
  



 

 


  
     

 
  

(4.124)

 

    

 

   

 

1 2

1 2 2

2
1 2 1 2 2 1 2,

2

1 2

0 , 1.656854

16.2978741 1 6, tanh , 1.656854 , 14.64102
2 2 2 12.984166

1 , 14.64102

A A

if A A

F A A A A if A A

if A A



 


   





  


   
        

  
 

           

(4.125) 

2 20 , 12.9842    
According to NSO the MOSOP (P4.7) can be formulated as 

Model-I-AN 

(P4.8)  

 Maximize    
                                                                                                                           

(4.126) 

 1 22 2 4.1257 19.14214;A A   
                                                                                                

(4.127)
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   1 1

1 2

16.503182 21.781098
2 2 ;

6 2
A A

   
  

                                                             
(4.128)

 
   1 2 1 12 2 2.638958 ;A A     

                                                                                              

(4.129) 

 1 2

20 3.2460415 14.64102;
2A A

 


                                                                                           

(4.130) 

 
   2 2

1 2

12.984166 16.29787420 ;
6 22A A

   
 


                                                              

(4.131)

 
 

 2 2
1 2

20 1.656854 ;
2A A

   


                                                                                              

(4.132)

 

 
 

1 2

2
1 1 2

20 2
20;

2 2

A A

A A A





                                                                                                                             

(4.133) 

 1 2

20 20;
2A A




                                                                                                                                  

(4.134) 

 
2

2
1 1 2

20 15;
2 2

A
A A A




                                                                                                                               

(4.135) 

3;                                                                                                                                                 (4.136) 

;                                                                                                                                                    (4.137) 

1

2

0.1 , 5A A 
                                                                                                                                         

(4.138) 

Model-I-BN 

(P4.9)  

 Maximize    
                                                                                                                           

(4.139) 

 1 22 2 4.1257 19.14214;A A   
                                                                                                

(4.140)

 
 

   1 1
1 2

16.503182 21.781098
2 2 ;

6 2
A A

   
  

                                                             
(4.141)

 
     1 2 1 12 2 16.503182 2.638958 ;A A       

                                                                 
(4.142) 

 1 2

20 3.2460415 14.64102;
2A A

 


                                                                                           

(4.143) 
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   2 2

1 2

12.984166 16.29787420 ;
6 22A A

   
 


                                                              

(4.144)

 
 

   2 2
1 2

20 12.984166 1.656854 ;
2A A

     


                                                                 

(4.145)

 

 
 

1 2

2
1 1 2

20 2
20;

2 2

A A

A A A





                                                                                                                             

(4.146) 

 1 2

20 20;
2A A




                                                                                                                                  

(4.147) 

 
2

2
1 1 2

20 15;
2 2

A
A A A




                                                                                                                               

(4.148) 

3;                                                                                                                                                 (4.149) 

;                                                                                                                                                    (4.150) 

1

2

0.1 , 5A A 
                                                                                                                                         

(4.151)
 

Model-II-AN 

(P4.10)  

 Maximize    
                                                                                                                           

(4.152) 

 1 22 2 4.1257 19.14214;A A   
                                                                                                

(4.153)

 
 

   1 1
1 2

16.503182 21.781098
2 2 ;

6 2
A A

   
  

                                                             
(4.154)

 
   1 2 1 12 2 2.638958 ;A A     

                                                                                              

(4.155) 

 1 2

20 3.2460415 14.64102;
2A A

 


                                                                                           

(4.156) 

 
   2 2

1 2

12.984166 16.29787420 ;
6 22A A

   
 


                                                              

(4.157)

 
 

 2 2
1 2

20 1.656854 ;
2A A

   


                                                                                              

(4.158)
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1 2

2
1 1 2

20 2
20;

2 2

A A

A A A





                                                                                                                             

(4.159) 

 1 2

20 20;
2A A




                                                                                                                                  

(4.160) 

 
2

2
1 1 2

20 15;
2 2

A
A A A




                                                                                                                               

(4.161) 

3;                                                                                                                                                 (4.162) 

;                                                                                                                                                    (4.163) 

1

2

0.1 , 5A A 
                                                                                                                                         

(4.164)
                                    

Model-II-BN 

(P4.11)  

 Maximize    
                                                                                                                           

(4.165) 

 1 22 2 4.1257 19.14214;A A   
                                                                                                

(4.166)

 
 

   1 1
1 2

16.503182 21.781098
2 2 ;

6 2
A A

   
  

                                                             
(4.167)

 
     1 2 1 12 2 16.503182 2.638958 ;A A       

                                                                 
(4.168) 

 1 2

20 3.2460415 14.64102;
2A A

 


                                                                                           

(4.169) 

 
   2 2

1 2

12.984166 16.29787420 ;
6 22A A

   
 


                                                              

(4.170)

 
 

   2 2
1 2

20 12.984166 1.656854 ;
2A A

     


                                                                 

(4.171)

 

 
 

1 2

2
1 1 2

20 2
20;

2 2

A A

A A A





                                                                                                                             

(4.172) 

 1 2

20 20;
2A A




                                                                                                                                  

(4.173) 

 
2

2
1 1 2

20 15;
2 2

A
A A A




                                                                                                                               

(4.174) 
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3;      (4.175) 

;       (4.176) 

1

2

0.1 , 5A A 

So , using above mentioned  truth, indeterminacy and falsity membership function NLP 

(P4.7) can be solved by NSO technique for different values of 1 2,  and 1 2,  . The optimum 

solution of  MOSOP(P4.7) is given in Table 4.2.

Table 4.2 Comparison of Optimal solution of MOSOP (P4.7) based on Different 

Method 

Methods 1
4 210

A
m

2
4 210

A
m

 1 2

2

,

10

WT A A

KN

 1 2

7

,

10

A A

m





Neutosophic optimization 
(NSO) with linear 

membership function  
1 23.30064, 2.59696  

1 21.65032, 1.29848    

.5777658 2.655110 4.289278 2.955334 

Neutosophic optimization 
(NSO) with nonlinear 
membership function  

1 23.30064, 2.59696    
1 21.65032, 1.29848    

Model-I-AN 

.5777658 2.655110 4.289278 2.955334 

Model-I-BN 1.234568 1.234568 4.062995 6.710259 

Model-II-AN 1.481133 1.10275 3.931177 6.577532 

Model-II-BN 0.5777307 3.752957 6.581384 3.398347 

Here we get same solutions for the different tolerance 1 2,  and 3  for indeterminacy 

membership function of objective functions. From the Table 4.2, it shows that NSO technique 

gives same result for linear and non-linear membership functions in the perspective of 

Structural Optimization. 

4.4 Conclusion 
Here we have considered a non-linear three bar truss design problem .In this test problem, we 

find out minimum weight of the structure as well as minimum deflection of loaded joint. The 

comparisons of results obtained for the undertaken problem clearly show the superiority of 

neutrosophic optimization over fuzzy optimization. The results of this study may lead to the 

development of effective neutrosophic technique for solving other model of nonlinear 

programming problem in different field.  
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CHAPTER  5
Optimization of Welded Beam Structure using Neutrosophic 

Optimization Technique: A Comparative Study 

   In today’s highly competitive market, the pressure on a construction agency is to find better 

ways to attain the optimal solution. In conventional optimization problems, it is assumed that 

the decision maker is sure about the precise values of data involved in the model. But in real 

world applications all the parameters of the optimization problems may not be known 

precisely due to uncontrollable factors. Such type of imprecise data is well represented by 

fuzzy number introduced by Zadeh [133].In reality, a decision maker may assume that an 

object belongs to a set to a certain degree, but it is probable that he is not sure about it. In 

other words, there may be uncertainty about the membership degree. The main premise is that 

the parameters’ demand across the problem is uncertain. So, they are known to fall within a 

prescribed uncertainty set with some attributed degree. In Fuzzy Set (FS) theory, there is no 

means to incorporate this hesitation in the membership degree. To incorporate the uncertainty 

in the membership degree, Intuitionistic Fuzzy Sets (IFSs) proposed by Atanassov [1] is an 

extension of FS theory. In IFS theory along with degree of membership a degree of non-

membership is usually considered to express ill-know quantity. This degree of membership 

and non-membership functions are so defined as they are independent to each other and sum 

of them is less or equal to one. So IFS is playing an important role in decision making under 

uncertainty and has gained popularity in recent years. However an application of the IFSs to 

optimization problems introduced by Angelov [4] .His technique is based on maximizing the 

degree of membership, minimizing the degree of non-membership and the crisp model is 

formulated using the IF aggregation operator. Now the fact is that in IFS indeterminate 

information is partially lost, as hesitant information is taken in consideration by default. So 

indeterminate information should be considered in decision making process. Smarandache 

[94] defined neutrosophic set that could handle indeterminate and inconsistent information . 

In neutrosophic sets indeterminacy is quantified explicitly as indeterminacy membership is 

considered along with truth membership, and falsity membership function independently 

Wang et.al [120] define single valued neutrosophic set which represents imprecise, 

incomplete, indeterminate, inconsistent information. Thus taking the universe as a real line 
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we can develop the concept of single valued neutrosophic set as special case of neutrosophic 

sets. This set is able to express ill-known quantity with uncertain numerical value in decision 

making problem. It helps more adequately to represent situations where decision makers 

abstain from expressing their assessments. In this way neutrosophic set provides a richer tool 

to grasp impression and ambiguity than the conventional FS as well as IFSs. Although 

exactly known, partially unknown and uncertain information handled by fully utilising the 

properties of transition rate matrices, together with the convexification of uncertain domains 

[121-123] ,NSO is more realistic in application of optimum design. These characteristics of 

neutrosophic set led to the extension of optimization methods in Neutrosophic environment 

(NSE).Besides It has been seen that the current research on fuzzy mathematical programming 

is limited to the range of linear programming introduced by Ziemmermann[136] . It has been 

shown that the solutions of Fuzzy Linear Programming Problems (FLPPs) are always 

efficient. The most common approach for solving fuzzy linear programming problem is to 

change it into corresponding crisp linear programming problem. But practically there exist so 

many nonlinear structural designs such as welded beam design problem in various fields of 

engineering. So development of nonlinear programming is also essential. Recently a robust 

and reliable  static output feedback (SOF) control for nonlinear systems [124] and for 

continuous-time nonlinear stochastic systems [128] with actuator fault in a descriptor system 

framework have been studied. However welding can be defined as a process of joining 

metallic parts by heating to a suitable temperature with or without the application of pressure. 

This cost of welding should be economical and welded beam should be durable one. 

Since decades, deterministic optimization has been widely used in practice for optimizing 

welded connection design. These include mathematical  traditional optimization algorithms 

such as David-Fletcher-Powell with a penalty function (DAVID)[95],Griffith and Stewart’s 

Successive Linear Approximation(APPROX) [95],Simplex Method with Penalty Function 

(SIMPLEX)[95],Recherdson’s Random Method(RANDOM)[95],Harmony Search 

Method[67],GA based Method [37,16],Improved Harmony Search Algorithm [72],Simple 

Constrained Particle Swarm Optimizer(SiC-PSO)[25],Mezura [73],Constrained Optimization 

via PSO Algorithm(COPSO)[5],GA based on a co-evolution model(GA1)[14],GA through 

the use of dominance based tournament selection (GA2)[15],Evolutionary Programming with 

a cultural algorithm(EP)[16],Co-evolutionary Particle Swarm 

Optimization(CPSO)[51],Hybrid Particle swarm optimization (HPSO)with a feasibility based 

rule[52],Hybrid Nelder-Mead Simplex search method and particle swarm optimization(NM-

PSO)[137],Particle Swarm Optimization(PSO)[38],Simulate Anneling(SA)[38],Goldlike 
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(GL)[38],Cuckoo Search(Cuckoo)[38],Firefly Algorithm(FF),Flower Pollination(FP)[38],Ant 

Lion Optimizer(ALO)[38],Gravitational Search Algorithm(GSA)[38],Multi-Verse 

Optimizer(MVO)[38]etc. All these deterministic optimizations aim to search the optimum 

solution under given constraints without consideration of uncertainties.  

So these traditional techniques cannot be applicable in optimizing welded beam design when 

impreciseness is involved in information. Thus the research on optimization for nonlinear 

programming under fuzzy, IF and neutrosophic environment are not only necessary in the 

fuzzy optimization theory but also has great and wide value in application to welded beam 

design problem of conflicting and imprecise nature. This is the motivation of our present 

investigation. In this regard it can be cited that Das et al. [39] developed neutrosophic 

nonlinear programming with numerical example and application of real life problem recently. 

A single objective plane truss structure[97] and a multi-objective plane truss structure[98] 

have been optimized in IF environment. A multi-objective structural model has been 

optimized by IF mathematical programming with IF number for truss structure [99] ,welded 

beam structure[102] and neutrosophic number for  truss design [101] as coefficient of 

objective by Sarkaret.al. With the help of linear membership[100]and nonlinear membership 

[103,104]for  single objective truss design  and multi-objective truss design[107] have been 

optimized in neutrosophic environment. A multi-objective goal programming technique[105] 

and T-norm , T-co-norm based IF optimization technique[107] have been developed to 

optimize cost of welding in neutrosophic  and IF environment respectively. 

The aim of this chapter is to show the efficiency of single objective NSO technique in finding 

optimum cost of welding of welded beam in imprecise environment and to make a 

comparison of results obtained in different deterministic methods.  

 

5.1 Welded Beam Design (WBD)and its Optimization  in Neutrosophic 

Environment  

Welding, a process of joining metallic parts with the application of heat or pressure or the 

both, with or without added material, is an economical and efficient method for obtaining 

permanent joints in the metallic parts. These welded joints are generally used as a substitute 

for riveted joint or can be used as an alternative method for casting or forging. The welding 

processes can broadly be classified into following two groups, the welding process that uses 

heat alone to join two metallic parts and the welding process that uses a combination of heat 
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and pressure for joining (Bhandari. V. B). However, above all the design of welded beam 

should preferably be economical and durable one.  

5.1.1 Crisp Formulation of WBD 

In design formulation  a welded beam ([90],Fig.- 5.1) has to be designed at minimum cost 

whose constraints are shear stress in weld    ,bending stress in the beam    ,buckling load 

on the bar  P ,and deflection of the beam   .The design variables are 

1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

where h is 

the weld size, l  is the length of the weld , t is the depth of the welded beam, b is the width of 

the welded beam.  

  

Fig.-5.1 Design of the Welded Beam 

(http://www.foundationrepairduluth.com,accessed on 18 June 2017) 

The single-objective crisp welded beam  optimization problem can be formulated as follows  

(P5.1)  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                                       (5.1) 

such that  

   1 max 0g x x   
                                                                                                                            

(5.2)
 

   2 max 0g x x   
                                                                                                                         

(5.3)
 

 3 1 4 0g x x x  
                                                                                                                                     

(5.4)
 

http://www.foundationrepairduluth.com,accessed/
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   2
4 1 2 3 4 20.10471 0.04811 14 5 0g x x x x x x    

                                                                
(5.5)

 5 10.125 0g x x  
                                                                                                                             

(5.6)
 

   6 max 0g x x   
                                                                                                                          

(5.7)
 

   7 0Cg x P P x  
                                                                                                                              

(5.8)
 

 1 2 3 4, , , 0,1x x x x 
                                                                                                                                      

(5.9) 

where   2 22
1 1 2 22

2
xx
R

        ;                                                                                   (5.10) 

 1
1 22

P
x x

  ;                                                                                                                      (5.11) 

2
MR
J

  ;                                                                                                                            (5.12) 

2

2
xM P L 

  
 

;                                                                                                                 (5.13) 

22
1 32

4 2
x xxR  

   
 

;                                                                                                        (5.14) 

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

                                                                                                  
(5.15)

 

  2
4 3

6 ;PLx
x x

 

                                                                                                                      
(5.16)

 

 
3

2
4 3

4 ;PLx
Ex x

 

                                                                                                                    
(5.17)

 

 
6 6
3 4 3

2

4.013 / 36
1

2 4C

EGx x x EP x
L L G

 
   

 

 .                                                                      (5.18) 

Again P Force on beam ; L Beam length beyond weld; 1x   Height of the welded beam; 

2x   Length  of the welded beam; 3x   Depth of the welded beam; 4x   Width of the welded 

beam;  x Design shear stress;  x Design normal stress for beam material; M   
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Moment of P  about the centre of gravity of the weld , J  Polar moment of inertia of weld 

group; G   Shearing modulus of Beam Material; E   Young modulus; max   Design Stress 

of the weld; max   Design normal stress for the beam material; max   Maximum deflection; 

1   Primary stress on weld throat. 2 Secondary torsional stress on weld.  

5.1.2 WBD Formulation in Neutrosophic Environment 

Sometimes slight change of stress or deflection enhances the weight of structures and 

indirectly cost of processing. In such situation when Decision Maker (DM) is in doubt to 

decide the stress constraint goal, the DM can induce the idea of acceptance boundary, 

hesitancy response or negative response margin of constraints goal. This fact seems to take 

the constraint goal as a NS instead of FS and IFS. It may be more realistic description than 

FS and IFS. When the sheer stress, normal stress and deflection constraint goals are NS in 

nature the above crisp welded beam design (P5.1) can be formulated as   

(P5.2)  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                                       (5.19) 

Such that  

   1 max
ng x x  

                                                                                                                                 
(5.20)

 

   2 max
ng x x  

                                                                                                                              
(5.21)

 

 3 1 4 0g x x x  
                                                                                                                                     

(5.22)
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0g x x x x x x    

                                                                
(5.23)

 5 10.125 0g x x  
                                                                                                                             

(5.24)
 

   6 max
ng x x  

                                                                                                                               
(5.25)

 

   7 0Cg x P P x  
                                                                                                                              

(5.26)
 

 1 2 3 4, , , 0,1x x x x 
                                                                                                                                      

(5.27) 

Where all the parameters have their usual meaning as stated in sect.5.1.2 .Here   constraint 

goals are characterized by Neutrosophic Sets 

           
max max max

max max 1 2 max 1 2 max 1 2 max 1 2, , , , , , ,n n n
n x x T x x I x x F x x

  
                           (5.28) 
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with   
max

max 1 2, ,nT x x


    
max

max 1 2, ,nI x x


    
max

max 1 2,nF x x


  as the degree of truth, 

indeterminacy and falsity membership function of Neutrosophic set max
n ;  

           
max max max

max max 3 4 max 3 4 max 3 4 max 3 4, , , , , , ,n n n
n x x T x x I x x F x x

  
                   (5.29) 

with   
max

max 3 4, ,nT x x


    
max

max 3 4, ,nI x x


   
max

max 3 4,nF x x


  as the degree of truth, 

indeterminacy and falsity membership function of Neutrosophic set max
n ; and 

           
max max max

max max 3 4 max 3 4 max 3 4 max 3 4, , , , , , ,n n n
n x x T x x I x x F x x

  
                       (5.30) 

with   
max

max 3 4, ,nT x x


    
max

max 3 4, ,nI x x


    
max

max 3 4,nF x x


  as the degree of truth, 

indeterminacy and falsity membership function of Neutrosophic set max
n  

5.1.3 Optimization of WBD in Neutrosophic Environment 

 To solve the WBD (P5.2) step 1 of sect.1.29 is used and we will get optimum solutions of 

two sub problem as 1X  and 2X . After that according to step 2 we find upper and lower 

bound of  membership function of objective function as 
     , ,T I F

C X C X C XU U U and 

     , ,T I F
C X C X C XL L L  where 

      1 2max , ,T
C XU C X C X

                                                                                                            
(5.31)

 

      1 2min , ,T
C XL C X C X

                                                                                                              
(5.32)

 

Therefore 

          ,F T F T
C X C X C X C X C XU U L L    where       0 T T

C X C X C XU L  
   

(5.33)

         ,I T I T
C X C X C X C X C XL L U L     where       0 T T

C X C X C XU L  
                                       

(5.34) 

for Model-I,II-BL,BN 

F T I
WT WT WTU U U 

 

F T
WT WT WTL L    where  0 T T

WT WT WTU L  
     

I T
WT WT WTL L    where  0 T T

WT WT WTU L  
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Let the linear membership functions for objective be,  

    

   

   

   
     

   

1

0

T
C X

T
C X T T

C X C X C XT T
C X C X

T
C X

if C X L

U C X
T C X if L C X U

U L

if C X U

 

 
   
  


                                                  

(5.35) 

Model-I,II-AL 

    

   

      

 
       

     

1

0

T
WT A

T
C X C X T T

C X C X C X C X
C X

T
C X C X

if C X L

L C X
I C X if L C X L

if WT A L








 

      
 
 


 
                     

(5.36) 

Model-I,II-BL 

    

   

      
     

       

     

1

0

T
WT A

T
C X C X T T

C X C X C X WT AT T
WT A WT A C X

T
C X C X

if C X U

C X L
I C X if L C X U

U L

if WT A L








 

      
   


 
                     

(5.37) 

 

    

     

      
     

       

   

0

1

T
C X C X

T
C X C X T T

C X C X C X C XT T
C X C X C X

T
C X

if C X L

C X L
F C X if L C X U

U L

if C X U








  

      
   



                  

(5.38)

 

and constraints be,   

    

 

 
 

 

1

0

i

i

i ii

i i

i

T
i

T
i T T

i iX T T

T
i

if X L

U X
T X if L X U

U L

if X U





 

 






 



 

  

     


                                                            

(5.39) 

Model-I,II-AL 
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1

0

i

i i

i ii i

i

i i

T
i

T
iX T T

i iX X
X

T
i X

if X L

L X
I X if L X L

if X L



 

  



 



 
  



 

 

       
 
 


                              

(5.40) 

Model-I,II-BL 

    

 

    
 

   

   

1

0

i

i i

i ii i

i i i

i i

T
i

T
i X T T

i iX XT T
X

T
i X

if X U

X L
I X if L X U

U L

if X L



 

  

  

 



 
  



 

 

       
   


                             

(5.41) 

 

    

   

   

 
   

 

0

1

i i

i i

i ii i

i i i

i

T
i X

T
i X T T

i iX XT T
X

T
i

if X L

X L
F X if L X U

U L

if X U

 

 

  

  



 

 
  





  

  
    
   


                          

(5.42) 

for 
   

01,2,..., 0 ,
i i iX Xj m

 
       

Using Smarandache’s definition of intersection of neutrosophic sets and decision making 

criteria NSO problem (P5.2), can be formulated as the following crisp linear programming 

problem by considering linear membership as follows, 

Model-I-AL  

(P5.3)  

 Maximize                                                                                                           (5.43) 

Such that 

         ;
T T T
C X C X C XC X U L U  

                                                                                                      
(5.44)

 

       ;
T

C X C X C XC X L   
                                                                                                               

(5.45)
 

            ;
T T T
C X C X C X C X C XC X U L L      

                                                                            
(5.46)

 

        ;i i i

T T T
i X X XX U L U

  
   

                                                                                                 
(5.47)
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       ;i i i

T
i X X XX U

  
    

                                                                                                           
(5.48)

 

            ;i i i i i

T T T
i X X X X XX U L L

    
       

                                                                        

(5.49)
 

3;    
                                                                                                                                            (5.50) 

; ;    
                                                                                                                                            (5.51) 

 , , 0,1   
                                                                                                                                            

(5.52) 

Model-I-BL  

(P5.4)  

 Maximize                                                                                                           (5.53) 

Such that 

         ;
T T T
C X C X C XC X U L U  

                                                                                                   
(5.54)

 

            ;
T T T
C X C X C X C X C XC X U L L      

                                                                           
(5.55)

 

            ;
T T T
C X C X C X C X C XC X U L L      

                                                                         
(5.56)

 

        ;i i i

T T T
i X X XX U L U

  
   

                                                                                                 
(5.57)

 

            ;i i i i i

T T T
i X X X X XX U L L

    
       

                                                                     
(5.46)

 

            ;i i i i i

T T T
i X X X X XX U L L

    
       

                                                                     
(5.58)

 

3;    
                                                                                                                                            (5.59) 

; ;    
                                                                                                                                            (5.60) 

 , , 0,1   
                

Here Model-I-AL and Model-I-BL stand for the Neutrosophic Optimization algorithm with 

indeterminacy membership function of decreasing sense and increasing sense respectively.       

(P5.5)  
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Model-II-AL 

 Maximize                                                                                                           (5.61)                                                                                                    

Subject to  

        ;
T T T
C X C X C XC X U L U  

                                                                                                     
(5.62)

 

       ;
T

C X C X C XC X L   
                                                                                                               

(5.63)
 

            ;
T T T
C X C X C X C X C XC X U L L      

                                                                            
(5.64)

 

        ;i i i

T T T
i X X XX U L U

  
   

                                                                                                    
(5.65)

 

       ;i i i

T
i X X XX L

  
    

                                                                                                            
(5.66)

 

            ;i i i i i

T T T
i X X X X XX U L L

    
       

                                                                        

(5.67)
 

3;    
                                                                                                                                              (5.68) 

; ;    
                                                                                                                                              (5.69) 

 , , 0,1   
                                                                                                                                              

(5.70)
 

Model-II-BL 

(P5.6)  

 Maximize                                                                                                           (5.71)                                                                                                    

Subject to  

        ;
T T T
C X C X C XC X U L U  

                                                                                                     
(5.72)

 

            ;
T T T
C X C X C X C X C XC X U L L      

                                                                           
(5.73)

 

            ;
T T T
C X C X C X C X C XC X U L L      

                                                                         
(5.74)

 

        ;i i i

T T T
i X X XX U L U

  
   

                                                                                                 
(5.75)

 

            ;i i i i i

T T T
i X X X X XX U L L

    
       

                                                                     
(5.76)
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            ;i i i i i

T T T
i X X X X XX U L L

    
       

                                                                     
(5.77)

 

3;    
                                                                                                                                            (5.78) 

; ;    
                                                                                                                                            (5.79) 

 , , 0,1     

Here Model-II-AL and Model-II-BL stand for the Neutrosophic Optimization algorithm with 

indeterminacy membership function of decreasing sense and increasing sense respectively.       

All these crisp nonlinear programming problem can be solved by appropriate mathematical 

algorithm.   

5.2 Numerical Solution of WBD by Single Objective Neutrosophic 

Optimization Technique 
Input data of welded beam design problem (P5.1)   are given in Table 5.1as follows 

Table 5.1 Input Data for Neutrosophic  Model (P5.2) 

Applied 

load P
 

 lb  

Beam 

length 

beyond 

weld 
L

 
 in  

Young 

Modulus 

E  

 psi  

Value of  

G   

 psi  

Maximum 

allowable   

shear  

stress max
 

 psi  

Maximum 

allowable 

normal 

stress max
 

 psi  

Maximum 

allowable 

deflection 

max  
 

 in  

6000  14  63 10  

 

 

612 10  

13600  

 with 

allowable 

tolerance 

50   

 

30000  

 with 

allowable 

tolerance 

50   

 

0.25  

with 

allowable 

tolerance 

0.05   

  

 

Solution: According to step 2 of sect. 1.29, we find upper and lower bound of  membership 

function of objective function as 
     , ,T I F

C X C X C XU U U and 
     , ,T I F

C X C X C XL L L  where

       1.861642 , 1.858613 ,T F T I
C X C X C X C XU U L L       1.858613F

C X C XL   ,with

 0 .003029;C X  and
     

I T
C X C X C XU L    with

 0 .003029C X   



  
Page 168 

 
  

Now using the bounds we calculate the membership functions for objective as follows

    

 

 
 

 

1 1.858613

1.861642
1.858613 1.861642

.003029
0 1.861642

C X

if C X

C X
T C X if C X

if C X

 

 

   
 
 

                        (5.80) 

For Model-I-AL 

 

    

 

    

 

   

   

1 1.858613

1.858613
1.858613 1.858613

0 1.858613

C X
C X C X

C X

C X

if C X

g x
I C X if C X

if C X








 

       
 
 


 

              

(5.81)

         

For Model-I-BL 

    

 

    
 

   

   

1 1.861642

1.858613
1.858613 1.861642

0.003029

0 1.858613

C X
C X C X

C X

C X

if C X

g x
I C X if C X

if C X








 

       
  


                 

(5.82) 

 

    

   

   

 
   

 

0 1.858613

1.858613
1.858613 1.861642

.003029

1 1.861642

C X

C X
C X C X

C X

if C X

C X
F C X if C X

if C X








  

  
    
  




             

(5.83) 

 Similarly the membership functions for shear stress constraint are,   
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1

1

1
1 1

1

1 13600

13600
13600 13650

50
0 13650

g x

if g x

g x
T g x if g x

if g x

 

 

   
 
 

                                         (5.84) 

For Model-I-AL 

 

    

 

    

 

   

   

1

1 1

1

1

1

1
1 1

1

1 13600

13600
13600 13600

0 13600

g x
g x g x

g x

g x

if g x

g x
I g x if g x

if g x








 

       
 
 


 

                             

(5.85) 

For Model-I-BL 

    

 

    
 

   

   

1

1 1

1

1

1

1
1 1

1

1 13650

13600
13600 13650

50

0 13600

g x
g x g x

g x

g x

if g x

g x
I g x if g x

if g x








 

       
  


                                 

(5.86)

 
 

    

   

   

 
   

 

1

1

1 1

1

1

1
1 1

1

0 13600

13600
13600 13650

50

1 13650

g x

g x
g x g x

g x

if g x

g x
F g x if g x

if g x








  

  
    
  




                             

(5.87) 

   1 1
0 , .003209g x g xwhere     

 and the membership functions for normal stress constraint are, 

    

 

 
 

 

2

2

2
2 2

2

1 30000

30000
30000 30050

50
0 30050

g x

if g x

g x
T g x if g x

if g x

 

 

   
 
 

                                             

(5.88) 
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For Model-I-AL 

    

 

    

 

   

   

2

2 2

2

2

2

2
2 2

2

1 30000

30000
30000 30000

0 30000

g x
g x g x

g x

g x

if g x

g x
I g x if g x

if g x








 

       
 
 


 

                

(5.89)

                                                  

 

For Model-I-BL 

    

 

    
 

   

   

2

2 2

2

2

2

2
2 2

2

1 30050

30000
30000 30050

50

0 30000

g x
g x g x

g x

g x

if g x

g x
I g x if g x

if g x








 

       
  


                    

(5.90)

 

    

   

   

 
   

 

2

2

2 2

2

2

2
2 2

2

0 30000

30000
30000 30050

50

1 30050

g x

g x
g x g x

g x

if g x

g x
F g x if g x

if g x








  

  
    
  




               

(5.91)

 

   2 2
0 , 50g x g xwhere   

 

The membership functions for deflection constraint are, 

    

 

 
 

 

6

6

6
6 6

6

1 0.25

0.25
0.25 0.3

0.05
0 0.3

g x

if g x

g x
T g x if g x

if g x

 

 

   
 
 

                                                           

(5.92) 

For Model-I-AL 
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6

6 6

6

6

6

6
6 6

6

1 0.25

0.25
0.25 0.25

0 0.25

g x
g x g x

g x

g x

if g x

g x
I g x if g x

if g x








 

       
 
 


 

                         

(5.93) 

For Model-I-BL 

    

 

    
 

   

   

6

6 6

6

6

6

6
6 6

6

1 0.3

0.25
0.25 0.3

0.05

0 0.25

g x
g x g x

g x

g x

if g x

g x
I g x if g x

if g x








 

       
  


                                 

(5.94)

 

 

    

   

   

 
   

 

6

6

6 6

6

6

6
6 6

6

0 0.25

0.25
0.25 0.3

0.05

1 0.3

g x

g x
g x g x

g x

if g x

g x
F g x if g x

if g x








  

  
    
  




                             

(5.95)

 

   6 6
0 , .05g x g xwhere   

 

Now, using above mentioned  truth, indeterminacy and falsity linear membership function 

NLP (P5.1) can be solved for Model –I-AL,BL, Model-II-AL,BL, by fuzzy, IF and  NSO 

technique with  different values of 
       1 2 6

, , ,C X g x g x g x    and 
       1 2 6

, , ,C X g x g x g x    . The 

optimum height, length, depth, width and cost of welding of welded beam design (P5.1) are 

given in Table 5.2 and the solutions are compared with other deterministic optimization 

methods. 

  

Table 5.2 Comparison of Optimal Solution of Welded Beam Design(P5.1) based on  

Fuzzy and IF and  NSO Technique( Model - I and Model- II) with Different Methods 

 

Methods Height
 

 
1x

inch
 

Length
 

 
2x

inch
 

Depth
 

3x
inch

 Width
 

 
4x

inch
 

Welding 

cost 
 C X  
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$  

DAVID[6] 0.2434
 

6.2552
 

8.2915
 

0.2444
 

2.3841  

APPROX[6] 0.2444
 

6.2189
 

8.2915
 

0.2444
 

2.3815  

SIMPLEX[6] 0.2792
 

5.6256
 

7.7512
 

0.2796
 

2.5307  

RANDOM[6] 0.4575
 

4.7313
 

5.0853
 

0.66
 

4.1185  

Harmony Search 

Algorithm[10] 

0.2442
 

6.2231
 

8.2915
 

0.2443
 

2.3807  

GA Based Method[9] 0.2489
 

6.173
 

8.1789
 

0.2533
 

2.4328  

GA Based Method[11] 0.2088
 

3.4205
 

8.9975
 

0.21
 

1.7483  

Improved Harmony Search 

Algorithm[18] 

0.20573
 

3.47049
 

9.03662
 

0.20573
 

1.72485  

SiC-PSO[13] 0.205729
 

3.470488
 

9.036624
 

0.205729
 

1.724852  

Mezura [18] 0.244438
 

6.237967
 

8.288576
 

0.244566
 

2.38119  

COPSO[18] 0.205730  3.470489  9.036624  0.205730  1.724852  

GA1[18] 0.208800  3.420500  8.997500  0.210000  1.748309  

GA2[19] 0.205986  3.471328  9.020224  0.206480  1.728226  

EP[20] 0.205700  3.470500  9.036600  0.205700  1.724852  

CPSO[21] 0.202369  3.544214  9.048210  0.205723  1.728024  

HPSO[15] 0.205730  3.470489  9.036624  0.205730  1.724852  

NM-PSO[16] 0.205830  0.3.468338  9.036624  0.205730  1.724717  

PSO[24] 0.206412  3.528353  8.988437  0.208052  1.742326  

SA[24] 0.165306  5.294754  8.872164  0.217625  1.939196  

GL[24] 0.204164  3.565391  9.05924  0.206216  1.7428  

Cuckoo [24] 0.20573  3.519497  9.036624  0.20573  1.731527  

FF[24] 0.214698  3.655292  8.507188  0.234477  1.864164  

FP[24] 0.205729  3.519502  9.036628  0.20573  1.731528  

ALO[24] 0.177859  4.393466  9.065462  0.20559  1.796793  

GSA[24] 0.219556  4.728342  8.50097  0.271548  2.295076  

MVO[24] 0.199033  3.652944  9.114448  0.205478  1.749834  

Fuzzy single-objective non-

linear programming [28] 

 

.2444216  3.028584  8.283678  0.2444216  1.858613  
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Intuitionistic Fuzzy single-

objective non-linear 

programming (FSONLP) 

[28] 

  .0015,C X 
 1

25,
xg 

 2
25,

xg 
 6

.025,
xg   

.2443950  3.034430  8.287578  0.2443950  1.860125  

Proposed 

Neutosophic 

optimization(NSO) 

  .0015,C X 

 1
25,

xg 
 2

25,
xg 

 

 6
.025,

xg 

  .0024,C X 

 1
40,

xg 
 2

40,
xg 

 6
.04,

xg   

Model-I -

AL 
.2443950  3.034430  8.287578  0.2443950  1.860125  

Model-I-

BL 
NO FEASIBLE SOLUTION FOUND  

Model-II-

AL 
.2443950  3.034430  8.287578  0.2443950  1.860125  

Model-II-

BL 
.7308867  1.840784  2.0  .5078827  1.860419  

 

 

A detailed comparison has been made among several deterministic optimization methods for 

optimizing welding cost with imprecise optimization methods such as fuzzy, IF and NSO 

methods in Table 5.2. It has been observed that fuzzy nonlinear optimization provides better 

result in comparison with IF and NSO methods. Although it has been seen that cost of 

welding is minimum other than the method studied in this paper, as far as non-deterministic 

optimization methods  concern ,fuzzy, IF and NSO are  providing a valuable result  in 

imprecise environment in this chapter and literature. It has been seen that Improved Harmony 

Search Algorithm[17],COPSO[17],EP[20],HPSO[15] are providing minimum most cost of 

welding where all the parameters have been considered as exact in nature . However, it may 

also be noted that the efficiency of the proposed method depends on the model chosen to a 

greater extent because it is not always expected that NSO will provide  better results over 

fuzzy and IF optimization . So overall NSO is an efficient method in finding best optimal 

solution in imprecise environment. It has been studied that same results have been obtained 

while indeterminant membership tried to be maximize (Model- I) or minimize (Model-II) in 

NSO for this particular problem. 
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5.3 Conclusion  

In this paper, a single objective NSO algorithm has been developed by defining truth, 

indeterminacy and falsity membership function which are independent to each other. Using 

this method firstly optimum height length depth, width and cost of welding have been 

calculated and finally the results are compared with different deterministic methods.  So 

illustrated example of welded beam design has been provided to illustrate the optimization 

procedure, effectiveness and advantages of the proposed NSO method. The comparison of 

NSO technique with other optimization techniques has enhanced the acceptability of 

proposed method .The proposed procedures has not only validated by the existing methods 

but also it develops a new direction of optimization theory in imprecise environment which is 

more realistic. 
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CHAPTER  6
Multi-Objective Welded Beam Optimization using Neutrosophic 

Optimization Technique: A Comparative Study 

Structural optimization, such as welded beam design optimization is an important notion in 

civil engineering. Traditionally structural optimization is a well-known concept and in many 

situations it is treated as single objective form, where the objective is known cost function . 

The extension of this can be defined as optimization where one or more constraints are 

simultaneously satisfied next to the minimization of the cost function. This does not always 

hold well in real world problems where multiple and conflicting objectives frequently exist. 

In this consequence a methodology known as Multi-Objective Structural Optimization 

(MOSO) is introduced. Welding, a process of joining metallic parts with the application of 

heat or pressure or the both, with or without added material, is an economical and efficient 

method for obtaining permanent joints in the metallic parts. Most important the design of 

welded beam should preferably be economical and durable one. Since decades, deterministic 

optimization has been widely used in practice for optimizing welded connection design. 

These include mathematical optimization algorithms (Ragsdell & Phillips [90]) such as 

APPROX (Griffith & Stewart’s) successive linear approximation, DAVID (Davidon Fletcher 

Powell with a penalty function), SIMPLEX (Simplex method with a penalty function), and 

RANDOM (Richardson’s random method) algorithms, GA-based methods (Deb [40], Deb 

[37], Coello [14], Coello [39]), particle swarm optimization (Reddy [59]), harmony search 

method (Lee & Geem [67]), and Big-Bang Big-Crunch (BB-BC) (O. Hasançebi, [65]) 

algorithm. SOPT (O. Hasançebi, [55]), subset simulation (Li [69]), improved harmony search 

algorithm (Mahadavi [72]), etc. All these deterministic optimizations aim to search the 

optimum solution under given constraints without consideration of uncertainties. So, while a 

deterministic optimization approach is unable to handle structural performances such as 

imprecise stresses and deflection etc. due to the presence of uncertainties, to get rid of such 

problem Fuzzy Set (FS)(Zadeh, [133]), Intuitionistic Fuzzy Set(IFS) (Atanassov,[1]), 

Neutrosophic Set (NS)(Smarandache,[94]) play great roles. So to deal with different 

impreciseness such as stresses and deflection with multiple objective ,we have been 

motivated to incorporate the concept of NS in this problem, and have developed Multi-
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Objective Neutrosophic Optimization(MONSO) algorithm to optimize the optimum design. 

Usually IFS, which is the generalization of FS, considers both truth membership and falsity 

membership that can handle incomplete information excluding the indeterminate and 

inconsistent information while NS can quantify indeterminacy explicitly by defining truth, 

indeterminacy and falsity membership function independently. Therefore in 2010 Wang et.al 

presented such set as Single Valued Neutrosophic set (SVNS) as it comprised of generalized 

classic set, FS, interval valued FS, IFS and Para-consistent set.  

As application of SVNS optimization method is rare in welded beam design, hence it is used 

to minimize the cost of welding by considering shear stress, bending stress in the beam, the 

buckling load on the bar, the deflection of the beam as constraints. Therefore the result has 

been compared among three cited methods in each of which impreciseness has been 

considered completely in different way.Moreover using above cited concept, a MONSO 

algorithm has been developed to optimize three bar truss design (Sarkar et.al [107]), and to 

optimize riser design problem (Das et.al [25]).However, the factors governing of former 

constraints are height and length of the welded beam, forces on the beam, moment of load 

about the centre of gravity of the weld group, polar moment of inertia of the weld group 

respectively. The second constraint considers forces on the beam, length and size of the weld, 

depth and width of the welded beam respectively.  Third constraint includes height and width 

of the welded beam. Fourth constraints consist of height, length, depth and width of the 

welded beam. Lastly fifth constraint includes height of the welded beam. Besides, flexibility 

has been given in shear stress, bending stress and deflection only, hence all these parameters 

become imprecise in nature so that it can be considered as NS to form truth, indeterminacy 

and falsity membership functions Ultimately, NSO technique has been applied on the basis of 

the cited membership functions and outcome of such process provides the minimum cost of 

welding, minimum deflection for nonlinear welded beam design. The comparison of results 

shows difference between the optimum value when partially unknown information is fully 

considered or not. 

6.1 General Form of Multi-Objective Welded Beam Design(MOWBD) 

In sizing optimization problems, the aim is to minimize multi objective function, usually the 

cost of the structure, deflection under certain behavioural constraints which are displacement 

or stresses. The design variables are most frequently chosen to be dimensions of the height, 

length, depth and width of the structures. Due to fabrications limitations the design variables 
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are not continuous but discrete for belongingness of cross-sections to a certain set. A discrete 

structural optimization problem can be formulated in the following form 

(P6.1) 

( )Minimize C X  (6.1) 

 Minimize X (6.2) 

    , 1,2,..,i isubject to X X i m     (6.3) 

, 1,2,...,d
jX R j n  (6.4) 

where ( ),C X  X  and  i X as represent cost function, deflection and the behavioural 

constraints respectively whereas  i X    denotes the maximum allowable value , ‘m’ and

‘n’ are the number of constraints and design variables respectively. A given set of discrete 

value is expressed by dR and in this paper objective functions are taken as 

 
1 1

mT
tn

t n
t n

C X c x
 

   and  X     (6.5)

The constraints are chosen to be stress of structures as follows 

 i iA   With allowable tolerance 0
i for 1,2,....,i m  (6.6)

Where tc is the cost coefficient of tth side and nx is the thn design variable respectively, m  is 

the number of structural element, i  and 0
i  are the thi stress , allowable stress respectively. 

6.2 Solution of Multi-Objective Welded Beam Design  (MOWBD) 

Problem by Neutrosophic Optimization(NSO) Technique 

To solve the MOSOP (P6.1), step 1 of 1.33 is used .After that according to step to pay off 

matrix is formulated. 

   

   

   

* 1 11

2 2 * 2

C X X

C X XX
X C X X







 
 
 
 

According to step-2 the bound of weight objective 
   , ;T T

C X C XU L    ,I I
C X C XU L and 

   ,F F
C X C XU L

for truth, indeterminacy and falsity membership function respectively. Then 
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     ;
T T
C X C XL C X U                                                                                                                               (6.7)                                   

     ;
I I
C X C XL C X U                                                                                                                               (6.8)                                   

 
     

F F
C X C XL C X U                                                                                                                                (6.9)                                   

Similarly the bound of deflection  objective  are 
           , ; , ,T T I I F F
X X X X X XU L U L and U L

     
are 

respectively for truth, indeterminacy  and falsity membership function. Then

     ;
T T

X XL X U
 

                                                                                                          
(6.10)                                  

 

     ;
I I

X XL X U
 

                                                                                                                                (6.11)                                   

     
F F

X XL X U
 

  .                                                                                                         (6.12)                                   

Where ,for Model-I,II-AL,AN 

    ,
F T
C X C XU U                                                                                                                      

(6.13)                                  
 

     ;
F T
C X C X C XL L                                                                                                                                   (6.14)                                   

    ,
I T
C X C XL L                                                                                                                                               (6.15)                                   

     
I T
C X C X C XU L                                                                                                                                    (6.16)  

        0 , T T
C X C X C X C XU L     

for Model-I,II-BL,BN 

     
F T I
C X C X C XU U U 

 

     
F T
C X C X C XL L    where       0 T T

C X C X C XU L  
     

     
I T
C X C X C XL L    where       0 T T

C X C X C XU L  
                              

                                   

And for Model-I,II-AL,AN 

    ,
F T

X XU U
 

                                                                                                                
(6.17)                                  

 

     ;
F T

X X XL L
  

                                                                                                                                   (6.18)                                   

    ,
I T

X XL L
 

                                                                                                                                               (6.19)                                   

     
I T

X X XU L
  

                                                                                                                                    (6.20)                                   

 such that  
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        0 , T T
X X X XU L

   
    . 

for Model-I,II-BL,BN 

     
F T I

X X XU U U
  

 
 

     
F T

X X XL L
  

   where       0 T T
X X XU L

  
  

     
I T

X X XL L
  

   where       0 T T
X X XU L

  
  

Therefore the truth, indeterminacy and falsity membership functions for objectives are 

    

   

   

   
     

   

1

1 exp

0

T
C X

T
C X T T

C X C X C XT T
C X C X

T
C X

if C X L

U C X
T C X if L C X U

U L

if C X U



 

     

       
     




     (6.21)  

For Model-I,II-AN 

    

   

      

 
       

     

1

exp

0

T
C X

T
C X C X T T

C X C X C X C X
C X

T
C X C X

if C X L

L C X
I C X if L C X L

if C X L








 

     

     
   


 


(6.22)

For Model-I,II-BN 

    

   

      
     

       

     

1

exp

0

T
C X

T
C X C X T T

C X C X C X C XT T
C X C X C X

T
C X C X

if C X U

C X L
I C X if L C X U

U L

if C X L








 

     

     
    


 



(6.23) 
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0

1 1 tanh
2 2 2

1

T
C X C X

T T
C X C X C X T T

C X C X C X C X C X

T
C X

if C X L

U L
F C X C X if L C X U

if C X U




 

  

              

 
    




(6.24)          

        0 , T T
C X C X C X C Xwhere U L   

and

    

   

   

   
     

   

1

1 exp

0

T
X

T
X T T

X X XT T
X X

T
X

if X L

U X
T X if L X U

U L

if X U





  

 






  



 

     

       
     




(6.25) 

Model-I,II-AN 

    

 

      

 
       

     

1

exp

0

T

T
X X T T

X X X X
X

T
X X

if X L

L X
I X if L X L

if X L



 

   



 



 
  



 

 


     
     
   


 

(6.26)  

Model-I,II-AN 

Model-I,II-BN 

    

 

      
 

     

     

1

exp

0

T

T
X X T T

X X XT T
X

T
X X

if X U

X L
I X if L X U

U L

if X L



 

  

  

 



 
  



 

 


     
     

    


 

 (6.27)  

    

     

 
      

         

   

0

1 1 tanh
2 2 2

1

T
X X

T T
X X X T T

X X X X X

T
X

if X L

U L
F X X if L X U
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(6.28)  
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where ,  are non-zero parameters prescribed by the decision maker and for 

        0 , T T
X X X Xwhere U L

   
   

 According to Smarandache’s definition of intersection of neutrosophic sets and decision 

making criteria NSO algorithm for MOSOP (P6.1) can be formulated as 

Model-I-AN,BN 

(P6.2) 

 Maximize         (6.29)  

 Subject to 

     ;C XT C X      (6.30)  

     ;XT X


  (6.31)  

     ;C XI C X  (6.32)  

     ;XI X


  (6.33)  

     ;C XF C X       (6.34)  

     ;XF X


  (6.35)  

    ;i iX X        
(6.36)  

3;          (6.37)  

;  ;      (6.38)  

 , , 0,1 ,     (6.39)  

min maxX X X   (6.40) 

But in realworld decision making problem a decision maker needs to minimize indeterminacy 

membership function.So the optimization algorithm problem can be formulated as  

Model-II-AN,BN 

(P6.3) 

 Maximize     (6.41)  

 Subject to 

     ;C XT C X  (6.42)  

     ;XT X


  (6.43)  
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     ;C XI C X  (6.44)  

     ;XI X


  (6.45)  

     ;C XF C X  (6.46)  

     ;XF X


  (6.47)  

    ;i iX X        
(6.48)  

3;     (6.49)  

;  ;     (6.50)  

 , , 0,1 ,     (6.51)  

min maxX X X 

Here Model-IAN andModel-IBN stands for neutrosophic algorithm with indeterminacy 

membership function as decreasing sense and increasing sense respectively,  which is 

reduced to equivalent non linear programming problem as 

Model-I-AN 

(P6.4) 

 Maximize    

Such that 

 
    

 ;
T T
C X C X T

C X

U L
C X U




  (6.52)  

 
 

      ;
2

T T
C X C X C X

C X

U L
C X





 
  (6.53)  

       ;
T

C X C X C XC X L    (6.54)  

 
    

 ;
T T

X X T
X

U L
X U 


 




  (6.55)  

       ;
T

X X XX L
  

     (6.56)  

 
 

      ;
2

T T
X X X

X

U L
X   








 
  (6.57)  

    ;i iX X        
(6.58)  

3;      (6.59)  

; ;      (6.60)  
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 , , 0,1   (6.61)  

min maxX X X   (6.62)  

where  ln 1 ;   
                 

(6.63)  

4;         (6.64)  

 

    
6 ;C X F F

C X C XU L
 


(6.65)  

 

    
6 ;X F F

X XU L


 

 


(6.66)  

ln ;            (6.67)  

 1tanh 2 1 .    (6.68)  

Model-I-BN 

(P6.5) 

 Maximize    

Such that 

 
    

 ;
T T
C X C X T

C X

U L
C X U




  (6.69)  

 
 

      ;
2

T T
C X C X C X

C X

U L
C X





 
  (6.70)  

            ;
T T T
C X C X C X C X C XC X U L L       (6.71)  

 
    

 ;
T T

X X T
X

U L
X U 


 




  (6.72)   

            ;
T T T

X X X X XX U L L
    

        (6.73)  

 
 

      ;
2

T T
X X X

X

U L
X   








 
  (6.74)  

    ;i iX X        
(6.75)  

3;      (6.76)  

; ;      (6.77)  

 , , 0,1   (6.78)  
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min maxX X X           (6.79) 

where  ln 1 ;   
                 

(6.80)  

4;         (6.81)  

 

    
6 ;C X F F

C X C XU L
 


(6.82)  

 

    
6 ;X F F

X XU L


 

 


(6.83)  

ln ;            (6.84)  

 1tanh 2 1 .    (6.85)

Model-II-AN 

(P6.6) 

 Maximize     (6.86)

Such that 

 
    

 ;
T T
C X C X T

C X

U L
C X U




  (6.87)  

 
 

      ;
2

T T
C X C X C X

C X

U L
C X





 
  (6.88)  

       ;
T

C X C X C XC X L    (6.89)  

 
    

 ;
T T

X X T
X

U L
X U 


 




  (6.90)  

       ;
T

X X XX L
  

     (6.91)  

 
 

      ;
2

T T
X X X

X

U L
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  (6.92)  

    ;i iX X        
(6.93)  

3;      (6.94)  

; ;      (6.95)  

 , , 0,1   (6.96)  

min maxX X X   (6.97)  
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where  ln 1 ;   
                 

(6.98)  

4;         (6.99)  

 

    
6 ;C X F F

C X C XU L
 


(6.100)  

 

    
6 ;X F F

X XU L


 

 


(6.101)  

ln ;            (6.102)  

 1tanh 2 1 .    (6.103)  

Model-II-BN 

(P6.7) 

 Maximize       (6.104)

Such that 

 
    

 ;
T T
C X C X T

C X

U L
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  (6.105)  

 
 

      ;
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T T
C X C X C X

C X

U L
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  (6.106)  

            ;
T T T
C X C X C X C X C XC X U L L       (6.107)  

 
    

 ;
T T

X X T
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U L
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  (6.108)  

            ;
T T T

X X X X XX U L L
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      ;
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X X X

X

U L
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  (6.110)  

    ;i iX X        
(6.111)  

3;      (6.112)  

; ;      (6.113)  

 , , 0,1   (6.114)  

min maxX X X   (6.115)  

where  ln 1 ;   
                 

(6.116)  
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4;      (6.117)  

 

    
6 ;C X F F

C X C XU L
 


(6.118)  

 

    
6 ;X F F

X XU L


 

 


(6.119)  

ln ;            (6.120)  

 1tanh 2 1 .   
                 

(6.121)

Solving the above crisp model (P6.4),(P6.5),(P6.6),(P6.7) by an appropriate mathematical 

programming algorithm we get optimal solution and hence objective functions i.e minimum 

cost and deflection of the beam will attain optimal solution. 

6.3 Numerical Solution of Welded Beam Design using Multi-Objective 

Neutrosophic Optimization Technique 

A welded beam (Ragsdell and Philips 1976,Fig.-6.1) has to be designed at minimum cost 

whose constraints are shear stress in weld    ,bending stress in the beam    ,buckling

load on the bar  P ,and deflection of the beam   .The design variables are

1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

where h is the weld size, l  is the length of the weld , t is the depth of the welded beam, b is 

the width of the welded beam. 

Fig.-6.1 Design of the Welded Beam(Cracked Beam Onsite Welding, 

http://www.allmetalweldingservices.co.uk,accessed on 19 June 2017 ) 

http://www.allmetalweldingservices.co.uk,accessed/
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The multi-objective optimization problem can be stated as follows 

(P6.8) 

   2
1 2 2 3 41.10471 0.04811 14Minimize g x x x x x x    (6.122)  

 
3

2
4 3

4 ;PLMinimize x
Ex x

  (6.123)  

Such that 

   1 max 0;g x x    (6.124)  

   2 max 0;g x x    (6.125)  

 3 1 4 0;g x x x   (6.126)  

   2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x     (6.127)  

 5 10.125 0;g x x   (6.128)  

   6 max 0;g x x    (6.129)  

   7 0;Cg x P P x   (6.130)  

1 4 2 30.1 , , , 2.0x x x x   

where   2 22
1 1 2 22

2
xx
R

        ;  (6.131)  

 1
1 22

P
x x

  ;     (6.132)  

2
MR
J

  ;      (6.133)  

2

2
xM P L 

  
 

;      (6.134)  

22
1 32

4 2
x xxR  

   
 

;       (6.135)  

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

     

(6.136)  

  2
4 3

6 ;PLx
x x

  (6.137)  
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2
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  (6.138)  
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6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

 

(6.139)  

P Force on beam ; L Beam length beyond weld; 1x   Height of the welded beam; 2x 

Length  of the welded beam; 3x   Depth of the welded beam; 4x   Width of the welded 

beam;  x Design shear stress;  x Design normal stress for beam material; M   

Moment of P  about the centre of gravity of the weld , J  Polar moment of inertia of weld 

group; G   Shearing modulus of Beam Material; E   Young modulus; max   Design Stress 

of the weld; max   Design normal stress for the beam material; max   Maximum deflection; 

1   Primary stress on weld throat. 2 Secondary torsional stress on weld. Input data are 

given in Table 6.1. 

Table 6.1 Input Data for Crisp Model (P6.4) 

Applied 

load P

 lb  

Beam 

length 

beyond 

weld

L

 in

Young 

Modulus 

E 

 psi

Value of 

G

 psi

Maximum 

allowable 

shear 

stress max

 psi

Maximum 

allowable 

normal 

stress max

 psi

6000 14 63 10

612 10

13600  30000

Solution:  According to step 2 of 1.33, pay-off matrix is formulated as follows 

   
1

2

7.700387 0.2451363
11.91672 0.1372000

C X X

X
X



 
 
 

. 

Here 

    11.91672,F T
C X C XU U  (6.140)  

    1 17.700387 ;F T
C X C XL L                                    (6.141)  

    7.700387,I T
C X C XL L  (6.142)  
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    1 17.700387I T
C X C XU L                                    (6.143)  

such that  1 10 , 11.91672 7.700387    ; (6.144) 

    0.2451363,F T
X XU U

 
  (6.145)  

    2 2.1372000 ;F T
X XL L

 
                                  (6.146)  

    0.1372000,I T
X XL L

 
  (6.147)  

    2 20.1372000I T
X XU L

 
                                      (6.148)  

such that  2 20 , 0.2451363 0.1372000   

Here truth, indeterminacy, and falsity membership function for objective functions 

   ,C X X are defined as follows

    

 

 
 

 

1 7.700387

11.91672
1 exp 4 7.700387 11.91672

4.216333

0 11.91672

C X

if C X

C X
T C X if C X

if C X

 


    
       

    
 

(6.149) 

   For Model-I,II-AN         
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(6.150) 

For Model-I,II-BN    
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    (6.151)  
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1

0 7.700387
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2 2 2 4.216333
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C X
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F C X C X if C X

if C X





 


    
       

    
 

(6.152)  

1 10 , 4.216333  

and 
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(6.153)                                   

For Model-I,II-AN         
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(6.154) 

For Model-I,II-BN          
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   (6.155)  
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(6.156)  

2 20 , 0.1079363  

According to NSO technique the MOSOP (P6.4) can be formulated as 

Model-I-AN 

(P6.9) 

 Maximize     (6.157)  

 2
1 2 2 3 4

4.2163331.10471 0.04811 14 11.91672;
4

x x x x x     (6.158)  

 
   1 12

1 2 2 3 4

4.216333 19.617107
1.10471 0.04811 14 ;

6 2
x x x x x

   
    (6.159)  

   2
1 2 2 3 4 1 11.10471 0.04811 14 7.700387 ;x x x x x       (6.160)

3

2
4 3

4 0.1079363 0.2451363;
4

PL
Ex x

  (6.161)  

   3
2 2

2
4 3

0.1079363 0.38233634 ;
6 2

PL
Ex x

   
  (6.162)  
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3

2 22
4 3

4 0.1372000 ;PL
Ex x

    (6.163)  

   1 max 0;g x x    (6.164)  

   2 max 0;g x x    (6.165)  

 3 1 4 0;g x x x   (6.166)  

 5 10.125 0;g x x   (6.167)  

   6 max 0;g x x    (6.168)  

   7 0;Cg x P P x   (6.169)  

1 4 2 30.1 , , , 2.0x x x x  (6.170) 

3; ;            (6.171)  

 ln 1 ;   
                 

(6.172)  

4;        (6.173)  

 

    
6 ;C X F F

C X C XU L
 


(6.174)  

 

    
6 ;X F F

X XU L


 

 


(6.175)  

ln ;            (6.176)  

 1tanh 2 1 .    (6.177)  

  2 22
1 1 2 22

2
xx
R

        ;       (6.178)  

1
1 22

P
x x

  ;       (6.179)  

2
MR
J
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2
xM P L 

  
 

;        (6.181)  

22
1 32

4 2
x xxR  

   
 

;  (6.182)  

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

     

(6.183)  
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4 3

6 ;PLx
x x

 

                                                                                                                    
(6.184)                                  
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2
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4 ;PLx
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(6.185)                                  

 

 
6 6
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4.013 / 36
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(6186)  

Model-I-BN 

(P6.10)  

 Maximize    
                                                                                                                           

(6.187)                                  
                                                                                                    

 

 2
1 2 2 3 4

4.2163331.10471 0.04811 14 11.91672;
4

x x x x x    
                                               

(6.188)                                  

  
   1 12

1 2 2 3 4

4.216333 19.617107
1.10471 0.04811 14 ;

6 2
x x x x x

   
   

                   
(6.189)                                  

 

     2
1 2 2 3 4 1 11.10471 0.04811 14 4.216333 7.700387 ;x x x x x        

                     
(6.190)

                          
 

3

2
4 3

4 0.1079363 0.2451363;
4

PL
Ex x

 

                                                                                                  

(6.191)                                   

   3
2 2

2
4 3

0.1079363 0.38233634 ;
6 2

PL
Ex x

   
 

                                                                        

(6.192)                                  

    
3

2 22
4 3

4 0.1079363 0.1372000 ;PL
Ex x

     

                                                                       

(6.193)
                                           

 

   1 max 0;g x x   
                                                                                                                        

(6.194)                                  

 
   2 max 0;g x x   

                                                                                                                     
(6.195)                                  

 
 3 1 4 0;g x x x  

                                                                                                                                 
(6.196)                                  

 
 5 10.125 0;g x x  

                                                                                                                          
(6.197)                                  

 

   6 max 0;g x x   
                                                                                                                        

(6.198)                                  

 
   7 0;Cg x P P x  

                                                                                                                          
(6.199)                                  

 

1 4 2 30.1 , , , 2.0x x x x 
                                                                                                                   

(6.200) 

3; ;                                                                                                                                (6.201)                                   

 ln 1 ;   
                                                                                                                                        

(6.202)                                  
 

4;                                                                                                                                                            (6.203)                                   
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(6.204)  
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(6.205)  

ln ;            (6.206)  
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x xx x xJ

    
    

     

(6.213)  
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4 3

6 ;PLx
x x

  (6.214)  

 
3

2
4 3

4 ;PLx
Ex x

  (6.215)  

 
6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

 

(6.216)

Model-II-AN 

(P6.11) 

 Maximize     (6.217)  

 2
1 2 2 3 4

4.2163331.10471 0.04811 14 11.91672;
4

x x x x x     (6.218)  

 
   1 12

1 2 2 3 4

4.216333 19.617107
1.10471 0.04811 14 ;

6 2
x x x x x

   
    (6.219)  

   2
1 2 2 3 4 1 11.10471 0.04811 14 7.700387 ;x x x x x       (6.220)
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3

2
4 3

4 0.1079363 0.2451363;
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Ex x

  (6.221)  
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2 2

2
4 3
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6 2
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  (6.222)  
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2 22
4 3

4 0.1372000 ;PL
Ex x

    (6.223)  

   1 max 0;g x x    (6.224)  

   2 max 0;g x x    (6.225)  

 3 1 4 0;g x x x   (6.226)  

 5 10.125 0;g x x   (6.227)  

   6 max 0;g x x    (6.228)  

   7 0;Cg x P P x   (6.229)  

1 4 2 30.1 , , , 2.0x x x x  (6.230) 

3; ;            (6.231)  

 ln 1 ;   
                 

(6.232)  

4;         (6.233)  
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4 2
x xxR  

   
 

; (6.242)  

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

     

(6.243)  
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4 3

6 ;PLx
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  (6.244)  
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(6.246) 

Model-II-BN 

(P6.12) 

 Maximize     (6.247)  

 2
1 2 2 3 4

4.2163331.10471 0.04811 14 11.91672;
4

x x x x x     (6.248)  

 
   1 12

1 2 2 3 4

4.216333 19.617107
1.10471 0.04811 14 ;

6 2
x x x x x

   
    (6.249)  

     2
1 2 2 3 4 1 11.10471 0.04811 14 4.216333 7.700387 ;x x x x x         (6.250)

3

2
4 3
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4
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  (6.251)  

   3
2 2

2
4 3
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6 2
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Ex x

   
  (6.252)  

   
3

2 22
4 3

4 0.1079363 0.1372000 ;PL
Ex x

      (6.253)

   1 max 0;g x x    (6.254)  

   2 max 0;g x x    (6.255)  

 3 1 4 0;g x x x   (6.256)  

 5 10.125 0;g x x   (6.257)  

   6 max 0;g x x    (6.258)  

   7 0;Cg x P P x   (6.259)  
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1 4 2 30.1 , , , 2.0x x x x 
  

(6.260) 

3; ;            (6.261)  
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(6.262)  

4;         (6.263)  
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; (6.271)  
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; (6.272)  
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(6.273)  
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  (6.274)  

 
3

2
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4 ;PLx
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  (6.275)  

 
6 6
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2

4.013 / 36
1 ;

2 4C

EGx x x EP x
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(6.276)

Now , using above mentioned  truth, indeterminacy and falsity membership function NLP 
(P6.9) ,(P6.10),(P6.11),(P6.12)can be solved by NSO technique for different values of 

   ,g x x
  and    ,g x x

  . The optimum solution of  MOSOP(P6.8) is given in Table 6.2 .



Page 197 

Table 6.2 Comparison of Optimal Solution of MOSOP (P6.7) based on 
Different Methods 

Methods 
 

1x
inch  

2x
inch  

3x
inch  

4x
inch

 C X  X

Fuzzy single-objective non-linear 
programming (FSONLP) 

1.298580 0.9727729 1.692776 1.298580 3.395620 0.2456363

Intuitionistic Fuzzy single-objective non-
linear programming (IFSONLP) 

  0.42,g x    0.01,x 

1.298580 0.9727730 1.692776 1.298580 3.395620 0.2352203

Neutosophic optimization(NSO) 

  0.42,g x    0.42,g x 

  0.01,x    0.01,x 

Model-I-AN

1.957009 1.240976 2 1.957009 8.120387 0.1402140

Neutosophic optimization(NSO) 

  0.42,g x    0.42,g x 

  0.01,x    0.01,x 

Model-I-BN

NO FEASI
BLE 

SOLUT
ION 

FOUND 

Neutosophic optimization(NSO) 

  0.42,g x    0.42,g x 

  0.01,x    0.01,x 

Model-II-AN

2 1.588365 2 2 10.01855 0.1961680

Neutosophic optimization(NSO) 

  0.42,g x    0.42,g x 

  0.01,x    0.01,x 

Model-II-BN

1.940309 1.246993 2 2 8.120387 0.1472

A detailed comparison has been made among the minimum length, depth, height and width of 

the weld, welding cost and deflection while they have been compared among fuzzy, 

intuitionistic, NSO technique in perspective of welded beam design in Table 6.2. It has been 

observed that IF nonlinear optimization provides better result in comparison with other 

mentioned method in this study. However, it may also be noted that the efficiency of the 

proposed method depends on the model chosen to a greater extent. In the present study it has 

also been investigated that that cost of welding is maximum and deflection is minimum in 

NSO technique compared to the other method investigated. 

6.4 Conclusion 

In this chapter, a multi objective NSO algorithm has been developed by defining truth, 

indeterminacy and falsity membership function which are independent to each other. It has 

been shown that the developed algorithm can be applied to optimize a multi objective 

nonlinear structural design. Simulation example, i.e. welded beam design has been provided 

to illustrate the optimization procedure, effectiveness and advantages of the proposed NSO 
method. The extension of the proposed optimization can be NSO by using ranking method of 

neutrosophic numbers , considered for height, length, depth and width of weld and applied 

load as further topics of interest. 
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CHAPTER  7
Multi-Objective Welded Beam Optimization using  Neutrosophic 

Goal Programming Technique 

With ever increasing demand for both high production rates and high precision, fully 

mechanized or automated welding processes have taken a prominent place in the welding 

field. Welding is the process of joining together two pieces of metal so that bonding takes 

place at their original boundary surfaces. When two parts are to be joined with or without 

added metal for formation of metallic bond, they are melted together by heat or pressure or 

by both. The welding process is divided into two major categories: Plastic Welding or 

Pressure Welding and Fusion Welding or Non-Pressure Welding. However, above all the 

design of welded beam should preferably be economical and durable one. Since decades, 

deterministic optimization has been widely used in practice for optimizing welded connection 

design. These include mathematical optimization algorithms (Ragsdell & Phillips [90]) such 

as APPROX (Griffith & Stewart’s) successive linear approximation, DAVID (Davidon 

Fletcher Powell with a penalty function), SIMPLEX (Simplex method with a penalty 

function), and RANDOM (Richardson’s random method) algorithms, GA-based methods 

(Deb [40], Deb [37], Coello [14], Coello [39]), particle swarm optimization (Reddy [59]), 

harmony search method (Lee & Geem [67]), and Big-Bang Big-Crunch (BB-BC) (O. 

Hasançebi, [65]) algorithm. SOPT (O. Hasançebi, [55]), subset simulation (Li [73]), 

improved harmony search algorithm (Mahadavi [72]), were other methods used to solve this 

problem. Recently a robust and reliable  H∞ static output feedback (SOF) control for 

nonlinear systems (Yanling Wei 2016[128]) and for continuous-time nonlinear stochastic 

systems (Yanling Wei [29]) with actuator fault in a descriptor system framework have been 

studied. All these deterministic optimizations aim to search the optimum solution under given 

constraints without consideration of uncertainties. So, while a deterministic optimization 

approach is unable to handle structural performances such as imprecise stresses and 

deflection etc. due to the presence of uncertainties, to get rid of such problem Fuzzy Set 

(FS)(Zadeh, [133]), Intuitionistic Fuzzy Set (IFS)(Atanassov,[1]), Neutrosophic Set (NS) 

(Smarandache,[94]) play great roles. Traditionally structural design optimization is a well-

known concept and in many situations it is treated as single objective form, where the 
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objective is known the weight or cost  function. The extension of this is the optimization 

where one or more constraints are simultaneously satisfied next to the minimization of the 

weight or cost function. This does not always hold good in real world problems where 

multiple and conflicting objectives frequently exist. In this consequence a methodology 

known as multi-objective optimization is introduced. So to deal with different impreciseness 

such as stresses and deflection with multiple objective , we have been motivated to 

incorporate the concept of NS in this problem, and have developed Multi-Objective 

Neutrosophic Optimization(MONSO) algorithm to optimize the optimum design. Usually 

IFS, which is the generalization of FS, considers both truth membership and falsity 

membership that can handle incomplete information excluding the indeterminate and 

inconsistent information while NS can quantify indeterminacy explicitly by defining  truth, 

indeterminacy and falsity membership function independently. Therefore, in 2010 Wang et.al  

presented such set as Single Valued Neutrosophic Set (SVNS) as it comprised of generalized 

classic set, FS, interval valued FS, IFS and Para-consistent set. As application of SVNS 

optimization method, it is rare in welded beam design; hence it is used to minimize the cost 

of welding by considering shear stress, bending stress in the beam, the buckling load on the 

bar, the deflection of the beam as constraints. Moreover using above cited concept, a 

MONSO algorithm has been developed to optimize three bar truss design (Sarkar [107]), and 

to optimize riser design problem (Das [25]). In early 1961 Charnes and Cooper[24] first 

introduced Goal programming problem for a linear model. Usually conflicting goal are 

presented in a multi-objective goal programming problem. Actually objective goals of  

existing structural model are considered to be deterministic and a fixed quantity. In a 

situation ,the decision maker can be doubtful with regard to accomplishment of the goal .The 

DM may include the idea of truth, indeterminacy and falsity bound on objectives goal.The 

goal may have a target value with degree of truth, indeterminacy as well as degree of falsity. 

Precisely, we can say a human being can express degree of truth membership of a given 

element in a FS, truth and falsity membership in a IFS, but very often does not express the 

corresponding degree of indeterminacy   membership as complement to truth and falsity 

membership which are independent. This fact seems to take the objective goal as a NS. Dey 

et al[41]. used intuitionistic goal programming on nonlinear structural model. 

This is the first time Neutrosophic Goal Programming (NGP) technique is in application to 

multi-objective welded beam design. The present study investigates computational algorithm 

for solving multi-objective welded beam problem by single valued generalized NGP 

technique. The results are compared numerically for different aggregation method of NGP 
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technique. From our numerical result, it has been seen that the best result obtained for 

geometric aggregation method for NGP technique in the perspective of structural 

optimization technique.  

  

7.1 General Formulation  of Multi-objective Welded Beam Design  

In sizing optimization problems, the aim is to minimize multi objective function, usually the 

cost of the structure, deflection under certain behavioural constraints which are displacement 

or stresses. The design variables are most frequently chosen to be dimensions of the height, 

length, depth and width of the structures. Due to fabrications limitations the design variables 

are not continuous but discrete for belongingness of cross-sections to a certain set. A discrete 

structural optimization problem can be formulated in the following form 

(P7.1)  

( )Minimize C X                                                                                                                    (7.1)                                                                                                             

 Minimize X
                                                                                                                                           

(7.2)                                                                                                             

    , 1,2,..,i isubject to X X i m                                                                                                
(7.3)                                                                                                             

, 1,2,..,d
jX R j n 

                                                                                                                                
(7.4)                                                                                                             

where ( ),C X  X  and  i X as represent cost function, deflection and the behavioural 

constraints respectively whereas  i X    denotes the maximum allowable value , ‘m’ and 

‘n’ are the number of constraints and design variables respectively. A given set of discrete 

value is expressed by dR and in this chapter objective functions are  taken as  

 
1 1

mT
tn

t n
t n

C X c x
 

   and  X                                                                                            (7.5)                                                                                                            
 

and constraint are chosen to be stress of structures as follows 

  i iA   with allowable tolerance 0
i for 1,2,....,i m                                                     

(7.6)                                                                                                            
 

Where tc is the cost coefficient of tth side and nx is the  thn design variable respectively, m  is 

the number of structural element, i  and 0
i  are the thi stress , allowable stress respectively. 
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7.2 Generalized Neutrosophic Goal Optimization Technique to Solve 

Multi-objective Welded Beam Optimization Problem (MOWBP)  
The multi-objective neutrosophic   structural model can be expressed as  

(P7.2)  

 Minimize C X  with target value 0C  ,truth tolerance Ca  ,indeterminacy tolerance Cd and 

rejection tolerance Cc                                                                                                                                (7.7)                                                                                                                                                                                                                                

 Minimize X  with target value 0  ,truth tolerance 
0

a
 ,indeterminacy tolerance 

0
d

and 

rejection tolerance 
0

c                                                                                                                               
(7.8)                                                                                                             

   subject to X 
                                                                                                                            

(7.9)                                                                                                             

min max
i i ix x x                                                                                                                                             

(7.10)                                                                                                             

where  1 2, ,...., T
nX x x x are the design variables, n is the group number of design variables 

for the welded beam design. 

To solve this problem we first calculate truth ,indeterminacy and falsity membership function 

of objective as follows  
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(7.11)                                                                                                             
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(7.12)                                                                                                            
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a c
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And 
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(7.17)                                                                                                            

 
 

    

 

 
 

 

3

0

0
3 0 0

3 0

0

w
X

if X

X
F X w if X c

c
w if X c







 

 
   

 

 


 
     

 
                                                           

(7.18)                                                                                                             

According to  Generalized Neutrosophic Goal Programming(GNGP) technique using  truth, 

indeterminacy and falsity membership function ,MOSOP (P7.1) can be formulated as 

(P7.3)  

Model -I  

,Maximize  ,Maximize  Minimize                                                                               (7.19)                                                                                                             

  0
1

1 ,CC X C a
w
 

   
                                                                                                                         

(7.20)                                                                                                            
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2
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(7.21)                                                                                                            
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   0
2

,C C CC X C a a d
w


   

                                                                                                           

(7.22)                                                                                                            
 

  0
3

,CcC X C
w

 

                                                                                                                                   

(7.23)                                                                                                             

  0 ,C X C
                                                                                                                                                 

(7.24)                                                                                                            
 

  0
1

1 ,X a
w


 

 
   

                                                                                                                           

(7.25)                                                                                                            
 

  0
2

,dX
w
   

                                                                                                                                     

(7.26)                                                                                                            
 

   0
2

,X a a d
w  


    

                                                                                                              

(7.27)                                                                                                            
 

  0
3

,cX
w
   

                                                                                                                                    

(7.28)                                                                                                             

  0 ,X 
                                                                                                                                                  

(7.29)                                                                                                             

1 2 30 ;w w w       
                                                                                                                  

(7.30)                                                                                                             

     1 2 30, , 0, , 0, ;w w w    
                                                                                                       

(7.31)                                                                                                             

     1 2 30,1 , 0,1 , 0,1 ;w w w  
                                                                                                            

(7.32)                                                                                                             

1 2 30 3;w w w   
                                                                                                                                  

(7.33)                                                                                                             

   , 1,2,...,i X i m  
                                                                                                                       

(7.34)                                                                                                             

0, 1,2,....,jx j n 
                                                                                                                                 

(7.35)                                                                                                             

With the help of generalized truth, indeterminacy, falsity  membership function the GNGP 

based on arithmetic aggregation operator (P7.1)can be formulated as  

(P7.4)  

Model -II  

   1 1
3

Minimize
      

 
                                                                                                            

(7.36)                                                                                                            
 

Subjected to same constraint as Model I 

With the help of generalized truth, indeterminacy, falsity membership function the GNGP 

based on geometric aggregation operator(P7.1) can be formulated as 

(P7.5)  

Model -III  
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   3 1 1Minimize    
                                                                                                                   

(7.37)                                                                                                            
 

Subjected to same constraint as Model I 

Now these  non-linear programming Model-I,II,III can be easily solved through  an 

appropriate mathematical programming to give solution of MONLPP (P7.1) by  GNGP 

approach. 

7.3 Numerical Solution of welded Beam Design by GNGP, based on 

Different Operator 
A welded beam (Ragsdell and Philips 1976,Fig.- 7.1) has to be designed at minimum cost 

whose constraints are shear stress in weld    ,bending stress in the beam    ,buckling load 

on the bar  P ,and deflection of the beam   .The design variables are 

1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

where h is 

the weld size, l  is the length of the weld , t is the depth of the welded beam, b is the width of 

the welded beam.  

 

Fig.-7.1 Design of the Welded Beam(Welded Beam on High Rise Building 

http://www.gettyimages.in,accessed on 18 June 2017) 

The multi-objective optimization problem can be stated as follows 

(P7.6)  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                                       (7.38)                                                                                                             

 
3

2
4 3

4 ;PLMinimize x
Ex x

 

                                                                                                                       

(7.39)                                                                                                             

Such that  

http://www.gettyimages.in,accessed/
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   1 max 0;g x x   
                                                                                                                          

(7.40)                                                                                                            
 

   2 max 0;g x x   
                                                                                                                        

(7.41)                                                                                                            
 

 3 1 4 0;g x x x  
                                                                                                                                   

(7.42)                                                                                                            
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x    

                                                                     
(7.43)                                                                                                             

 5 10.125 0;g x x  
                                                                                                                            

(7.44)                                                                                                            
 

   6 max 0;g x x   
                                                                                                                        

(7.45)                                                                                                            
 

   7 0;Cg x P P x  
                                                                                                                          

(7.46)                                                                                                            
 

1 4 2 30.1 , , , 2.0x x x x 
                                                                                                                           

(7.47)                                                                                                             

where   2 22
1 1 2 22

2
xx
R

       ;                                                                                  (7.48)                                                                                                             

1
1 22

P
x x

  ;                                                                                                                     (7.49)                                                                                                             

2
MR
J

  ;                                                                                                                          (7.50)                                                                                                             

2

2
xM P L 

  
 

;                                                                                                               (7.51)                                                                                                             

22
1 32

4 2
x xxR  

   
 

;                                                                                                      (7.52)                                                                                                             

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

                                                                                                
(7.53)                                                                                                            

 

  2
4 3

6 ;PLx
x x

 

                                                                                                                    
(7.54)                                                                                                            

 

 
3

2
4 3

4 ;PLx
Ex x

 

                                                                                                                  
(7.55)                                                                                                            

 

 
6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

                                                                      
(7.56)                                                                                                            
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 P Force on beam ; L Beam length beyond weld; 1x   Height of the welded beam; 2x   

Length  of the welded beam; 3x   Depth of the welded beam; 4x   Width of the welded 

beam;  x Design shear stress;  x Design normal stress for beam material; M   

Moment of P  about the centre of gravity of the weld , J  Polar moment of inertia of weld 

group; G   Shearing modulus of Beam Material; E   Young modulus; max   Design Stress 

of the weld; max   Design normal stress for the beam material; max   Maximum 

deflection; 1   Primary stress on weld throat. 2 Secondary torsional stress on weld. Input 

data are given in Table 7.1.
 

Table 7.1 Input Data for Crisp Model (P7.6) 
 

Applied 

load P
 

 lb  

Beam 
length 
beyond 

weld 
L

 
 in  

Young 

Modulus 

E  

 psi  

Value of  

G   

 psi  

Maximum 

allowable   

shear  

stress max
 

 psi  

Maximum 

allowable 

normal 

stress max
 

 psi  

Maximum 

allowable 

deflection 

max  
 

 in  

6000  14  63 10  

 

 

612 10  

13600  

 with 

fuzzy 

region 

50   

 

30000  

 with fuzzy 

region 

50   

 

0.25  

with fuzzy 

region 

0.05   

  

 

This multi objective structural model can be expressed as neutrosophic model as 

(P7.7)  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x    with target value 3.39  ,truth tolerance 

5  ,indeterminacy tolerance 1

1 20.2 0.14
w

w w
and rejection tolerance 7                            (7.57)                                                                                                             

 
3

2
4 3

4 ;PLMinimize x
Ex x

  with target value 0.20  ,truth tolerance 0.23   ,indeterminacy 

tolerance 1

1 24.34 4.16
w

w w
and rejection tolerance 0.24                                                             (7.58)                                                                                                             

Subject to  
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   1 max 0;g x x   
                                                                                                                        

(7.59)                                                                                                            
 

   2 max 0;g x x   
                                                                                                                      

(7.60)                                                                                                            
 

 3 1 4 0;g x x x  
                                                                                                                                 

(7.61)                                                                                                            
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x    

                                                                  
(7.62)                                                                                                             

 5 10.125 0;g x x  
                                                                                                                          

(7.63)                                                                                                            
 

   6 max 0;g x x   
                                                                                                                        

(7.64)                                                                                                            
 

   7 0;Cg x P P x  
                                                                                                                          

(7.65)                                                                                                            
 

1 4 2 30.1 , , , 2.0x x x x 
                                                                                                                           

(7.66)                                                                                                             

where   2 22
1 1 2 22

2
xx
R

        ;                                                                                 (7.67)                                                                                                             

1
1 22

P
x x

  ;                                                                                                                     (7.68)                                                                                                             

2
MR
J

  ;                                                                                                                          (7.69)                                                                                                             

2

2
xM P L 

  
 

;                                                                                                               (7.70)                                                                                                             

22
1 32

4 2
x xxR  

   
 

;                                                                                                      (7.71)                                                                                                             

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

                                                                                                
(7.72)                                                                                                            

 

  2
4 3

6 ;PLx
x x

 

                                                                                                                    
(7.73)                                                                                                            

 

 
3

2
4 3

4 ;PLx
Ex x

 

                                                                                                                  
(7.74)                                                                                                            

 

 
6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

                                                                      
(7.75)                                                                                                            

 
According to  GNGP technique using  truth, indeterminacy and falsity membership function, 

MOWBP (P7.7) can be formulated as 

(P7.8)  

Model -I  
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,Maximize  ,Maximize  Minimize                                                                             (7.76)                                                                                                                                                                                

 2
1 2 2 3 4

1

1.10471 0.04811 14 3.39 5 1 ,x x x x x
w
 

     
                                                              

(7.77)                                                                                                            
 

 
 

2 1
1 2 2 3 4

2 1 2

1.10471 0.04811 14 3.39 ,
0.2 0.14

wx x x x x
w w w

   


                                     

(7.78)                                                                                                            
 

 
 

2 1
1 2 2 3 4

2 1 2

1.10471 0.04811 14 3.39 5 2 ,
0.2 0.14

wx x x x x
w w w
  

                              

(7.79)                                                                                                            
 

 2
1 2 2 3 4

3

71.10471 0.04811 14 3.39 ,x x x x x
w

   

                                                                    

(7.80)                                                                                                             

 2
1 2 2 3 41.10471 0.04811 14 3.39,x x x x x  

                                                                                  
(7.81)                                                                                                            

 

3

2
4 3 1

4 0.20 0.23 1 ,PL
Ex x w

 
   

                                                                                                                

(7.82)                                                                                                            
 

 

3
1

2
4 3 2 1 2

4 0.20 ,
4.3 4.1

wPL
Ex x w w w

 


                                                                                                

(7.83)                                                                                                            
 

 

3
1

2
4 3 2 1 2

4 0.20 0.23 0.23 ,
4.3 4.1

wPL
Ex x w w w

  
                                                                           

(7.84)                                                                                                            
 

3

2
4 3 3

4 0.240.20 ,PL
Ex x w

 

                                                                                                                         

(7.85)                                                                                                             

3

2
4 3

4 0.20,PL
Ex x



                                                                                                                                           

(7.86)                                                                                                             

1 2 30 ;w w w       
                                                                                                                

(7.87)                                                                                                             

     1 2 30, , 0, , 0, ;w w w    
                                                                                                    

(7.88)                                                                                                             

     1 2 30,1 , 0,1 , 0,1 ;w w w  
                                                                                                         

(7.89)                                                                                                             

1 2 30 3;w w w   
                                                                                                                               

(7.90)                                                                                                             

   1 max 0;g x x   
                                                                                                                        

(7.91)                                                                                                            
 

   2 max 0;g x x   
                                                                                                                      

(7.92)                                                                                                            
 

 3 1 4 0;g x x x  
                                                                                                                                 

(7.93)                                                                                                            
 

   2
4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x    

                                                                  
(7.94)                                                                                                             
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 5 10.125 0;g x x  
                                                                                                                          

(7.95)                                                                                                            
 

   6 max 0;g x x   
                                                                                                                        

(7.96)                                                                                                            
 

   7 0;Cg x P P x  
                                                                                                                          

(7.97)                                                                                                            
 

1 4 2 30.1 , , , 2.0x x x x 
                                                                                                                           

(7.98)                                                                                                             

where   2 22
1 1 2 22

2
xx
R

        ;                                                                                 (7.99) 

1
1 22

P
x x

  ;                                                                                                                     (7.100) 

2
MR
J

  ;                                                                                                                          (7.101) 

2

2
xM P L 

  
 

;                                                                                                               (7.102) 

22
1 32

4 2
x xxR  

   
 

;                                                                                                      (7.103) 

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

                                                                                                
(7.104)

 

  2
4 3

6 ;PLx
x x

 

                                                                                                                    
(7.105)

 

 
3

2
4 3

4 ;PLx
Ex x

 

                                                                                                                  
(7.106)

 

 
6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

                                                                      
(7.107)

 

With the help of generalized truth, indeterminacy, falsity  membership function the GNGP 

problem (P7.7)based on arithmetic aggregation operator can be formulated as 

(P7.9)  

Model -II  

   1 1
3

Minimize
      

 
                                                                                                         

(7.108)
 

subjected to same constraints as (P7.8) 
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With the help of generalized truth, indeterminacy, falsity membership function the GNGP 

problem (P7.7) based on geometric aggregation operator can be formulated as 

(P7.10)  

Model -III  

   3 1 1Minimize    
                                                                                                                 

(7.109)
 

subjected to same constraints as (P7.8) 

Now these  non-linear programming problem Model-I,II,III can be easily solved by an 

appropriate mathematical programming to give solution of multi-objective non-linear 

programming problem (P7.7) by  GNGP approach and the results are shown in Table 7.2. 

Table 7.2 Comparison of GNGP Solution of MOWBP (P8.12) based on 

Different Aggregation 

Methods 1x in  2x in
  3x in  4x in

 
 C X

  X  

Generalized Fuzzy Goal 
programming(GFGP) 

1 0.15w   
1.297612

 
0.9717430

 
1.693082

 

 
1.297612  

 
3.39  0.20

 
Generalized Intuitionistic 

Fuzzy Goal 
programming(GIFGP) 

1 0.15w  3 0.8w   
1.297612  0.9717430  1.693082  

 
1.297612  
 

 
3.39  0.20  

Generalized Neutrosophic 
Goal programming 

(GNGP) 
1 2 30.4, 0.3, 0.7w w w    

1.347503  0.7374240  2  

 
 

1.347503  

 
 

3.39  
2  

Generalized Intuitionistic 
Fuzzy optimization 
(GIFGP) based on  

Arithmetic Aggregation  
1 30.15, 0.8w w   

1.297612  0.9717430  1.693082  

 
 

1.297612  

 
 

3.39  
 

0.20  

 
Generalized Neutosophic 

optimization (GNGP) 
based on  Arithmetic 

Aggregation  
1 2 30.4, 0.3, 0.7w w w    

1.347503  0.7374240  2  

 
 
 

1.347503  

 
 
 

3.39  
0.20  

Generalized Intuitionistic 
Fuzzy optimization 
(GIFGP) based on  

Geometric Aggregation  
1 30.15, 0.8w w   

1.372  0.697176  2  

 
 

1.37200  

 
 

3.39  0.2  

 
Generalized Neutosophic  

optimization (GNGP) 
based on  Geometric 

1.372  0.6971  2  

 
 

1.372  

 
 

3.39  
0.2  
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Aggregation  
1 2 30.4, 0.3, 0.7w w w    

 

Here we have got almost same  solutions for the different value of 1 2 3, ,w w w  in different 

aggregation method for objective functions. From Table7.2 it is clear that  the cost of welding 

and deflection are almost same in fuzzy and intuitionistic fuzzy as well as NSO technique. 

Moreover it has been seen that desired value obtained in different aggregation method have 

not affected by variation of methods in perspective of welded beam design optimization. 

7.4 Conclusion 

The research study investigates that NGP can be utilized to optimize a nonlinear welded 

beam design problem. The results obtained for different aggregation method of the 

undertaken problem show that the best result is achieved using geometric aggregation 

method. The concept of NSO technique allows one to define a degree of truth membership, 

which is not a complement of degree of falsity; rather, they are independent with degree of 

indeterminacy. As we have considered a non-linear welded beam design problem and find out 

minimum cost of welding  of the structure as well as minimum deflection, the results of this 

study may lead to the development of effective neutrosophic technique for solving other 

model of nonlinear programming problem in different field.  
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CHAPTER  8 

Truss Design Optimization with Imprecise Load and Stress  in 

Neutrosophic Environment 
 
Optimization techniques for structural optimal design, consisting of deterministic optimization and 

non-deterministic optimization methods, have been widely used in practice. The former i.e 

deterministic optimization aims to search the optimum solution under given constraints without 

consideration of uncertainties. However, in so many engineering structures, deterministic optimization 

approaches are unable to handle structural performances exhibit variations such as the fluctuation of 

external loads, the variation of material properties, e.t.c due to the presence of uncertainties, the so-

called optimum solution obtained may lie in the infeasible region. Thus, so many realistic design-

approaches must be able to deal with the imprecise nature of structures. This type of optimum solution 

has been obtained under given reliability constraints, while the later one aims to minimize the 

variation of the objective function. Such several non-deterministic structural design optimization 

approaches which are reliability-based design optimization (RBDO), solved by D.M Frangopol 

et.al[47]and M. Papadrakakis [83], considering structural impreciseness, have been reported in the 

literature. Moreover in the practical optimization problems usually more than one objective is 

required to be optimized. Generally they are minimum cost, maximum stiffness, minimum 

displacement at specific structural nodes, maximum natural frequency of free vibration and optimum 

structural strain energy e.t.c. These make it necessary to formulate a multi-objective optimization 

problem. The applications of different optimization techniques to structural design have attracted 

interest of many researchers. For example Ray Optimization (Kaveh. Et.al [60]), artificial bee colony 

algorithm (Sonmez, M.[108]),Particle Swarm Optimization (Perez et. al [84],Kaveh et.al [61] and 

Luh,et.al.[70]),genetic Algorithm (Kaveh,et.al[62],Ali.et.al[7],Dede,et.al[42]), meta heuristic 

algorithm (Kaveh,A. Motie ,S.Mohammed ,A.,Moslehi,M.[63]),others (Shih, C.j. and 

Chang,C.J.[109],Hajela,P. and Shih,C.J.[54]Wang ,D.,Zhang,W.H.and Jiang,J.S.[126],Wang 

,D.,Zhang,W.H. and Jiang ,J.S.[127];Kripakaran,P.,Gupta,A. and Baugh Jr,J.W.[64]).Fuzzy as well as 

intuitionistic fuzzy optimization, not only help  the engineers,  especially  in structural engineering, to 

design and to analyse the systems but also leads to discover fuzzy optimization theory and techniques. 

This Fuzzy Set(FS) theory was first introduced by Zadeh[133]. As an extension Intuitionistic Fuzzy 

Set(IFS) theory was first introduced by Atanassov[1] .When an imprecise information can not be 

expressed by means of conventional FS, IFS plays an important role. In IFS we usually consider 

degree of acceptance, and degree of rejection  where as we consider only membership function in FS. 

A few research work has been done on Intuitionistic Fuzzy Optimization(IFO) in the field of 
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structural optimization. Dey and Roy [35] used IF technique to optimize single objective two bar truss 

structural model. A Multi-Objective Intuitionistic Fuzzy  Optimization(MOIFO) technique  is applied 

to optimize three bar truss structural model by Dey and Roy [36]  in their paper. When an ill-known 

information are represented by IF number which is generalization of fuzzy number expresses the 

available information in flexible way considering non-membership functions. Shu [110] applied 

Triangular Intuitionistic Fuzzy Number(TIFN) to fault tree analysis on printed board circuit 

assembly.P.Grzegorzewski et.al [48], H.B.Mitchell et.al [75],G.Nayagam et.al [78],H.M.Nehi et.al 

[79],S.Rezvani et.al [92] used concept of Intuitionistic Fuzzy Number(IFN) in multi-attribute decision 

making(MADM) problem. Li[69] proposed a ranking method for TIFN  with definition of ratio of 

value index to ambiguity index of TIFN in MADM problem as an application. In IFN indeterminate 

information is partially lost, as hesitant information is taken in consideration by default. So 

indeterminate information should be considered in decision making process. Smarandache 

[94]defined Neutrosophic Set(NS) that could handle indeterminate and inconsistent information. In 

NS indeterminacy is quantified explicitly with truth membership, indeterminacy membership and 

falsity membership function which are  independent .Wang et.al [120] define single valued NS which 

represents imprecise, incomplete, indeterminate, inconsistent information. Thus taking the universe as 

a real line we can develop the concept of single valued neutrosophic number as special case of NS. 

These  numbers are able to express ill-known quantity with uncertain numerical value in decision 

making problem. In this present study, we define generalized single valued triangular neutrosophic 

number and total integral value of this number and using a ranking method of single valued 

generalized triangular neutrosophic number we solve a multi-objective structural design problem in 

neutrosophic environment.  In this chapter we have considered  three-bar planer truss subjected to a 

single load condition .Here the objective functions are  weight of the truss and deflection of loaded 

joint in test problem and the design variables are the cross-sections of bars with the constraints as 

stresses in members. In this chapter we have developed an approach to solve multi-objective structural 

design using probabilistic operator in neutrosophic environment. Here total integral values of 

Generalized Single Valued Triangular Neutrosophic Numbers(GSVTNN) have been considered for  

applied load and stress.  

8.1 Multi-Objective Structural Design Formulation 

A structural design problem may be considered as a minimization type Multi-Objective Nonlinear 

Programming Problem(MONLPP) where weight and deflection of the loaded joint are to be 

minimized as objectives and  subject to a specified set of stress constraints. The design variables are 

cross sectional area of bars. The target of optimization is the identification of the optimum cross-

sectional area of bar so that the structure can achieve its smallest total weight with minimum nodal 

displacement, in a given load conditions. 
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The multi-objective structural model can be expressed as 

(P8.1)  

 Minimize WT A       (8.1)                                                                                                              

 Minimize A
                                                                                                                                           

(8.2)                                                                                                               

   i isubject to A 
                                                                                                                              

(8.3)                                                                                                               

min maxA A A                                                                                                                                                (8.4)                                                                                                               

where  1 2, ,... T
nA A A A are the design variables for the cross section, n is the group number of 

design variables for the cross section of bars,  

 
1

n

i i i
i

WT A A L



                                                                                                                                     

(8.5)                                                                                                              
 

is the total weight of the structure ,  A is the deflection of the loaded joint ,where ,i iL A  and i are 

the length of bar, cross section area and density of the thi group bars respectively.  i A is the stress 

constraints and  i is allowable stress of the group bars under various conditions, minA and maxA  are 

the lower and upper bounds of cross section area A respectively. 

8.2 Parametric Neutrosophic  Optimization Technique to Solve Multi-

Objective Structural Optimization Problem  

The multi-objective structural model (P8.1)can be expressed as parametric neutrosophic form as  

(P8.2)  

     ; ; ; ; ;Minimize WT A Minimize WT A Minimize WT A                                        (8.6)                                                                                                                                               

     ; ; ; ; ;Minimize A Minimize A Minimize A     
                                                           

(8.7)                                                                                                              
 

subject to
 

    ; ; ;A   
                                                                                                                                    

(8.8)                                                                                                              
 

    ; ; ;A                                                                                                                                        (8.9)                                                                                                               

    ; ;A                                                                                                                                         (8.10)                                                                                                              
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min maxA A A   , , 0,1   
                                                                                                                

(8.11)                                                                                                               

Where  1 2, ,...., T
nA A A A  

To solve the MOSOP (P8.1) step 1 of 1.39is used. After that according to step 2 pay-off matrix is 

formulated  

           

       

       

       

       

 

 

 

 

 

 

1 * 1 * 1 * 1 * 1 * 1 * 1

2
* 2 * 2 * 2 * 2 * 2 * 2

3
* 3 * 3 * 3 * 3 * 3 * 3

* 6 * 6 * 6 * 6 * 66

; ; ; ; ; ;

; ; ; ; ; ;

; ; ; ; ; ;

; ; ; ; ;.
... ... ... ... ....

; ; ; ; ;

WT A WT A WT A A A A

A WT A WT A WT A A A A
A WT A WT A WT A A A A
A

WT A WT A WT A A A A

WT A WT A WT A A AA

        

        

        

       

      

 

 * 6

;

...

;A



 

 
 
 
 
 
 
 
 
  

 

Here 1 2 6, ,......,A A A are the ideal solution of the objectives 

           ; , ; , ; , ; , ; , ;WT A WT A WT A A A A          respectively. 

For each objective            ; , ; , ; , ; , ; , ;WT A WT A WT A A A A          find lower 

bound 
T
kL   and the upper bound T

kU as 

    *
*

;
max ; 0 6; , ,

r

T
rWT A p

U WT A p r p      

   

(8.12)                                                                                                              

    *
*

;
min ; 0 6; , ,

r

T
rWT A p

L WT A p r p                                                                                 (8.13)                                                                                                               

for truth membership of weight functions and 

    *
*

;
max ; 0 6; , ,

r

T
rA p

U A p r p


      

                                                                

(8.14)                                                                                                              

 
    *

*
;

min ; 0 6; , ,
r

T
rA p

L A p r p


                                                                                     (8.15)                                                                                                              

 for truth membership of deflection functions 

Similarly the upper and lower bounds for indeterminacy and falsity membership of weight objective 

function as  

   * *; ;
;

r r

F T
WT A p WT A p

U U

                                                                                                              

(8.16)                                                                                                              

 
       * * * *; ; ; ;

;
r r r r

F T T T
WT A p WT A p WT A p WT A p

L L t U L    
 

                                                                                  (8.17)                                                                                                              

 
   * *; ;

;
r r

I T
WT A p WT A p

L L                                                                                                                                  (8.18)                                                                                                               

       * * * *; ; ; ;
;0 6; , ,

r r r r

I T T T
WT A p WT A p WT A p WT A p

U L s U L r p          
 

                                         (8.19)                                                                                                              
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And deflection objective function  as

    * *; ;
,

r r

F T
A p A p

U U
 



                                                                                                                  

(8.20)                                                                                                              

 
       * * * *; ; ; ;

;
r r r r

F T T T
A p A p A p A p

L L t U L
   

    
 

                                                                                             (8.21)                                                                                                               

   * *; ;
,

r r

I T
A p A p

L L
 

                                                                                                                                         (8.22)                                                                                                               

       * * * *; ; ; ;
;0 6; , ,

r r r r

I T T T
A p A p A p A p

U L s U L r p
   

         
 

                                                    (8.23)                                                                                                               

Here ,t s are predetermined real numbers in  0,1  

Define truth membership, indeterminacy membership and falsity membership functions  for weight 

and deflection as follows  

 

    

   

   

   
     

   

*

*

* *

* *

*

;

;

; ; ;
; ;

;

1 ;

;
; 1 exp ;

0 ;

r

r

r r

r r

r

T
WT A p

T
WT A p T T

WT A p T T WT A p WT A p
WT A p WT A p

T
WT A p

if WT A p L

U WT A p
T WT A p if L WT A p U

U L

if WT A p U



 

   
         

     


                

(8.24)                                                                                                             

    

   

   

   
     

   

*

*

* *

* *

*

;

;

; ; ;
; ;

;

1 ;

;
; exp ;

0 ;

r

r

r r

r r

r

I
WT A p

I
WT A p I I

WT A p I I WT A p WT A p
WT A p WT A p

I
WT A p

if WT A p L

U WT A p
I WT A p if L WT A p U

U L

if WT A p U

 

  
  

    
   




                    

(8.25)                                                                                                               

    

   

 
   

 

     

   

*

* *

*

* *

*

;

; ;

;
;

; ;

;

0 ;

1 1 tanh ;
2 2 2;

;

1 ;

r

r r

r

r r

r

F
WT A p

F F
WT A p WT A p

WT A p
WT A p

F F
WT A p WT A p

F
WT A p

if WT A p L

U L
WT A p

F WT A p

if L WT A p U

if WT A p U



 

   
            


 

 
                                

(8.26)                                                                                                              

 

 

    

   

   

   
     

   

*

*

* *

* *

*

;

;

; ; ;
; ;

;

1 ;

;
; 1 exp ;

0 ;

r

r

r r

r r

r

T
A p

T
A p T T

A p T T A p A p
A p A p

T
A p

if A p L

U A p
T A p if L A p U

U L

if A p U





  

 






  



 

   
         

     


                         

(8.27)                                                                                                               
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*

* *

* *

*

;

;

; ; ;
; ;

;

1 ;

;
; exp ;

0 ;

r

r

r r

r r

r

I
A p

I
A p I I

A p I I A p A p
A p A p

I
A p

if A p L

U A p
I A p if L A p U

U L

if A p U





  

 






 



 

  
  

    
   




                         

(8.28)                                                                                                               
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*

* *

*

;

; ;

;
;

; ;

;

0 ;

1 1 tanh ;
2 2 2;

;

1 ;

r

r r

r

r r

r

F
A p

F F
A p A p

A p
A p

F F
A p A p

F
A p

if A p L

U L
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F A p

if L A p U

if A p U



 





 





 






 

   
            


 

 
                          

(8.29)                                                                                                              

 

Where  
 

   
*

* *
;

; ;

6 ;
r

r r

F FWT A p
WT A p WT A p

U L
 


                                                                                              

(8.30)                                                                                                              

 

 
   

*

* *
;

; ;

6 ;
r

r r

F FA p
A p A p

U L

 

 


                                                                                                                  

(8.31)                                                                                                              

 

 4   0 6; , ,r p                                                                                                                       (8.32)                                                                                                              

 

Now NSO method for MONLP problem with probabilistic operator  gives a equivalent nonlinear 

programming problem as  

(P8.3)  

                   

         

; ; ; ;

; ;

; ; ; ;

; ;
WT A WT A WT A A

A A

T WT A T WT A T WT A T A
Maximize

T A T A
    

   

    

   

 
 
 
  

       

                                                                                                                                                                       (8.33)                                                                                                               

              

              

; ; ;

; ; ;

1 ; 1 ; 1 ;

1 ; 1 ; 1 ;

WT A WT A WT A

A A A

I WT A I WT A I WT A
Miniimize

I A I A I A

  

     

  

     

        
     
 
                

                                                                                                                                          (8.34)                                                                                                              
 

              

              

; ; ;

; ; ;

1 ; 1 ; 1 ;

1 ; 1 ; 1 ;

WT A WT A WT A

A A A

F WT A F WT A F WT A
Miniimize

F A F A F A

  

     

  

     

        
     
 
                

                                                                                                                                          (8.35)                                                                                                               

subject to  
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              ; ; ;0 ; ; ; 3;WT A p WT A p WT A pT WT A p I WT A p F WT A p   
                             

(8.36)                                                                                                              
 

              ; ; ;0 ; ; ; 3;A p A p A pT A p I A p F A p
  

     
                                                

(8.37)                                                                                                              
 

   ;A 
                                                                                                                                              

(8.38)                                                                                                              
 

min maxA A A  0 6; , , ;r p       , , 0,1   
                                                                   

(8.39)                                                                                                               

This crisp nonlinear programming problem can be solved by appropriate mathematical algorithm. 

8.3 Numerical Solution of Three Bar Truss Design using Parametric 

Neutrosophic Optimization Technique  

A well known three bar planer truss( Fig. -8.1) is considered to minimize weight of the 

structure  1 2,WT A A and minimize the deflection  1 2,A A  at a loading point of a 

statistically loaded three bar planer truss subject to stress constraints on each of the truss 

members 

 

Fig.-8.1 Design of the Three-Bar Planar Truss(Shenzhen Stock 

Exchange, https://www.e-architect.co.uk,accessed on 18 June 2017) 

The multi-objective optimization problem can be stated as follows 
(P8.4)  

   1 2 1 2, 2 2Minimize WT A A L A A                                                                              (8.40)                                                                                                              

 1 2
1

,u
LPMinimize A A
EA

 

                                                                                                                    

(8.41)                                                                                                               

 
 

1 2
1 2

,
2

v
LPMinimize A A

E A A
 


                                                                                                

(8.42)                                                                                                               

such that  

https://www.e-architect.co.uk,accessed/
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1 2

1 1 2 12
1 1 2

2 2
,

2
T

P A A
A A

A A A
 


    


                                                                                               

(8.43)                                                                                                               

 
 

2 1 2 2
1 2

,
2

TPA A
A A

     


                                                                                                      

(8.44)                                                                                                               

 
 

2
3 1 2 32

1 1 2

,
2 2

CPAA A
A A A

     


                                                                                              

(8.45)                                                                                                               

min max 1,2.i i iA A A i  
                                                                                                                        

(8.46)                                                                                                               

Where applied load  

    20 19,20,21; 18,20,22; 17,20,23;n n
p p pP w    ;                                                    (8.47)                                                                                                               

 material density 3100KN/m  ; length 1L m  ; Young’s modulus 82 10E   ; 1A Cross 

section of bar-1 and bar-3; 2A Cross section of bar-2; u and v are the deflection of loaded joint 

along u and v  axes respectively. 

    
1 1 1

1 20 19.5,20,20.5; 18,20,21; 17.5,20,21.5;T T T
Tn n w

  
      

                          
(8.48)                                                                                                              

 

and
 

    
2 2 2

2 20 18.5,20,21; 18,20,21.5; 17.5,20,22;T T T
Tn n w

  
      

                           
(8.49)                                                                                                              

 

are maximum allowable tensile stress for bar 1 and bar 2 respectively, 

    
3 3 3

3 15 14,15,16; 13,15,17; 13.5,15,17.5;C C C
Cn n w

  
      

                                       
(8.50)                                                                                                              

 

is maximum allowable compressive stress for bar 3 where 
1 2 3

0.8, 0.7, 0.6, 0.9T T Cpw w w w
  

     

are degree of aspiration level of applied load, tensile stresses and compressive stress respectively and 

1 2 3
0.4, 0.5, 0.3, 0.4;T T Cp   

      
1 2 3

0.2, 0.2, 0.2, 0.1T T Cp   
        are degree of 

hesitancy and desperation level of applied load, tensile stresses and compressive stress respectively. 

Now total integral value of membership and non-membership function are  

1̂ 22.43 0.75 ;P  
                                                                                                                                    

(8.51)                                                                                                              
 

 2̂ 19.5 5 ;P   2̂ 15.5 15 ;P  
                                                                                                             

(8.52)                                                                                                               

11ˆ 19.57 0.57 ;T  
                                                                                                                               

(8.53)                                                                                                              
 

21ˆ 20 2 ;T  
                                                                                                                                          

(8.54)                                                                                                              
 

31ˆ 17.75 7.5 ;T  
                                                                                                                                  

(8.55)                                                                                                               
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12ˆ 19.75 .42 ;T  
                                                                                                                                  

(8.56)                                                                                                              
 

 22ˆ 20.25 3.75 ;T  
                                                                                                                             

(8.57)                                                                                                              
 

32ˆ 17 10 ;T  
                                                                                                                                         

(8.58)                                                                                                               

13ˆ 14.55 0.89 ;C  
                                                                                                                               

(8.59)                                                                                                              
 

23ˆ 14.5 5 ;C  
                                                                                                                                       

(8.60)                                                                                                              
 

33ˆ 5 25 ;C  
                                                                                                                                           

(8.61)                                                                                                               

Using total integral values of coefficients,   problem (P8.4) can be transformed into  

(P8.5)  

   1 2 1 2, 100 2 2Minimize WT A A A A                                                                           (8.62)                                                                                                               

 
 

1 2 8
1

22.43 0.75
, ;

2 10uMinimize A A
A


 





                                                                                        

(8.63)                                                                                                              
 

 
 

1 2 8
1

19.5 5
, ;

2 10uMinimize A A
A


 





                                                                                                 

(8.64)                                                                                                              
 

 
 

1 2 8
1

15.5 15
, ;

2 10uMinimize A A
A


 





                                                                                                

(8.65)                                                                                                               

 
 

  
1 2 8

1 2

22.43 0.75
, ;

2 10 2
vMinimize A A

A A


 




 
                                                                              

(8.66)                                                                                                              
 

 
 

  
1 2 8

1 2

19.5 5
, ;

2 10 2
vMinimize A A

A A


 




 
                                                                              

(8.67)                                                                                                               

 
 

  
1 2 8

1 2

15.5 15
, ;

2 10 2
vMinimize A A

A A


 




 
                                                                               

(8.68)                                                                                                              
 

such that  

 
  

 
1 2

11 1 2 2
1 1 2

22.43 0.75 2 2
, ; 19.57 0.57 ;

2

A A
A A

A A A


  

 
  


                                             

(8.69)                                                                                                              
 

 
  

 
1 2

21 1 2 2
1 1 2

19.5 5 2 2
, ; 20 2 ;

2

A A
A A

A A A


  

 
  


                                                                 

(8.70)                                                                                                              
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1 2

31 1 2 2
1 1 2

15.5 15 2 2
, ; 15.5 15 ;

2

A A
A A

A A A


  

 
  


                                                             

(8.71)                                                                                                              
 

 
 

 
12 1 2

1 2

22.43 0.75
, ; 19.75 0.42 ;

2
A A

A A


  


  


                                                                       

(8.72)                                                                                                              
 

 
 

 
22 1 2

1 2

19.5 5
, ; 20.25 3.75 ;

2
A A

A A


  


  


                                                                             

(8.73)                                                                                                              
 

 
 

 
32 1 2

1 2

15.5 15
, ; 17 10 ;

2
A A

A A


  


  


                                                                                          

(8.74)                                                                                                               

 
 

 
2

13 1 2 2
1 1 2

22.43 0.75
, ; 19.57 0.57 ;

2 2

A
A A

A A A


  


  


                                                                  

(8.75)                                                                                                              
 

 
 

 
2

23 1 2 2
1 1 2

19.5 5
, ; 20 2 ;

2 2

A
A A

A A A


  


  


                                                                                  

(8.76)                                                                                                              
 

 
 

 
2

33 1 2 2
1 1 2

15.5 15
, ; 15.5 15 ;

2 2

A
A A

A A A


  


  


                                                                              

(8.77)                                                                                                               

min max 1,2.i i iA A A i    , , 0,1   
                                                                                            

(8.88)                                                                                                               

According to step 2 pay-off matrix can be formulated as follows  

             1 2 1 2 1 2 1 2 1 2 1 2 1 2

1

2

3

4

5

6

7

, , ; , ; , ; , ; , ; , ;

5.994110 12.52100 12.23464 12.15401 7.229002 7.063671 7.07121
17.16237 4.486000 4.128718 4.051560 2.419306 2.226623 2.185012
15.95051 4.5192

u u u v v vWT A A A A A A A A A A A A A A

A
A
A
A
A
A
A

           

18 3.90 4.051560 3.048520 2.580241 2.680513
19.14214 4.519218 4.135986 3.10 1.908612 1.713182
19.14214 4.48600 4.128718 4.051560 1.858162 1.71017
19.14214 4.519218 3.90 4.051560 1.908612
19.14214 4.519218 4.135986 3.10 1.908612

1.284062
1 1.678211

1.615433 1.678211
1.713182 1.284062

 
 
 
 
 
 
 
 
 
 
 

 

Here 
            1 2 1 2 1 2 1 2 1 2 1 2, , , , , ,19.14214, 5.994110 ;F T F T

WT A A WT A A WT A A WT A A WT A A WT A AU U L L         

           1 2 1 2 1 2 1 2 1 2 1 2, , , , , ,5.994110, 5.994110I T I T
WT A A WT A A WT A A WT A A WT A A WT A AL L U L         

such that      
1 2 1 2, ,0 , 19.14214 5.994110WT A A WT A A    ;

 
   

 
   

1 2 1 2

1 2 1 2 1 2 1 2

, ,
, , , ,

6 64, ,WT A A WT A AF F F F
WT A A WT A A WT A A WT A AU L U L
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           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;12.52100, 4.486000 ;
u u u u u u

F T F T
A A A A A A A A A A A AU U L L

           
        

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;4.486000, 4.486000
u u u u u u

I T I T
A A A A A A A A A A A AL L U L

           
      

 
such that      

1 2 1 2, ; , ;0 , 12.52100 4.48600
u uA A A A   

   

 
   

 
   

1 2 1 2

1 2 1 2 1 2 1 2

, ; , ;
, ; , ; , ; , ;

6 64, ,
u u

u u u u

A A A AF F F F
A A A A A A A AU L U L   

       

    
 

 

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;12.23464, 3.90 ;
u u u u u u

F T F T
A A A A A A A A A A A AU U L L

           
        

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;3.90, 3.90
u u u u u u

I T I T
A A A A A A A A A A A AL L U L

           
      

 
such that      

1 2 1 2, ; , ;0 , 12.23464 3.90
u uA A A A   

   

 
   

 
   

1 2 1 2

1 2 1 2 1 2 1 2

, ; , ;
, ; , ; , ; , ;

6 64, ,
u u

u u u u

A A A AF F F F
A A A A A A A AU L U L   

       

    
 

 

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;12.15401, 3.1 ;
u u u u u u

F T F T
A A A A A A A A A A A AU U L L

           
        

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;3.10, 3.10
u u u u u u

I T I T
A A A A A A A A A A A AL L U L

           
      

 
such that      

1 2 1 2, ; , ;0 , 12.15401 3.10
u uA A A A   

   

 
   

 
   

1 2 1 2

1 2 1 2 1 2 1 2

, ; , ;
, ; , ; , ; , ;

6 64, ,
u u

u u u u

A A A AF F F F
A A A A A A A AU L U L   

       

    
 

 

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;7.229002, 1.858162 ;
v v v v v v

F T F T
A A A A A A A A A A A AU U L L

           
        

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;1.858162, 1.858162
v v v v v v

I T I T
A A A A A A A A A A A AL L U L

           
      

 
such that      

1 2 1 2, ; , ;0 , 7.229002 1.858162
v vA A A A   

   

 
   

 
   

1 2 1 2

1 2 1 2 1 2 1 2

, ; , ;
, ; , ; , ; , ;

6 64, ,
v v

v v v v

A A A AF F F F
A A A A A A A AU L U L   

       

    
 

 

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;7.063671, 1.615433 ;
v v v v v v

F T F T
A A A A A A A A A A A AU U L L

           
        

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;1.615433, 1.615433
v v v v v v

I T I T
A A A A A A A A A A A AL L U L

           
      

 
such that      

1 2 1 2, ; , ;0 , 7.063671 1.615433
v vA A A A   

   

 
   

 
   

1 2 1 2

1 2 1 2 1 2 1 2

, ; , ;
, ; , ; , ; , ;

6 64, ,
v v

v v v v

A A A AF F F F
A A A A A A A AU L U L   
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           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;7.07121, 1.284062 ;
v v v v v v

F T F T
A A A A A A A A A A A AU U L L

           
        

           1 2 1 2 1 2 1 2 1 2 1 2, ; , ; , ; , ; , ; , ;1.284062, 1.284062
v v v v v v

I T I T
A A A A A A A A A A A AL L U L

           
      

 
such that      

1 2 1 2, ; , ;0 , 7.07121 1.284062
v vA A A A   

   

 
   

 
   

1 2 1 2

1 2 1 2 1 2 1 2

, ; , ;
, ; , ; , ; , ;

6 64, ,
v v

v v v v

A A A AF F F F
A A A A A A A AU L U L   

       

    
 

 

Here nonlinear truth, indeterminacy and falsity membership function of objectives  1 2, ;WT A A  

 1 2, ; ;u A A    1 2, ; ;u A A   1 2, ;u A A  and  1 2, ; ;v A A   1 2, ; ;v A A    1 2, ;v A A  are 

defined for 2T  as follows 

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2,

1 2

1 , 5.994110

19.14214 ,
, 1 exp 4 5.994110 , 19.14214

19.14214 5.994110
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if WT A A

WT A A
T WT A A if WT A A

if WT A A

 


    
       

    
                       

(8.89)                                                                                                               
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1 2 1 2

1 2

1 2 ,

1 2

1 2, ,

1 2,

1 2

1 , 5.994110
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WT A A

WT A A WT A A

WT A A

if WT A A

WT A A

I WT A A

if WT A A
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(8.90)                                                                                                              

    

   

 
 

 

   

 

1 2

1 2

1 2

1 2

1 2

1 2 ,

,
1 2 ,

1 2,

1 2,

1 2

0 , 5.994110

19.14214 5.9941101 1 tanh ,
2 2 2,
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1 , 19.14214

WT A A

WT A A
WT A A

WT A A

WT A A

if WT A A

WT A A
F WT A A

if WT A A

if WT A A








  

     

           


  
      

(8.91)                                                                                   

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2, ;

1 2

1 , ; 4.48600

12.52100 , ;
, ; 1 exp 4 4.48600 , ; 12.52100

12.52100 4.48600

0 , ; 12.52100

u

u

u
u uA A

u

if A A

A A
T A A if A A

if A A

 

 

 
   

 

 


    
       

    
     

(8.92)  
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u u

u

u A A
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uA A A A
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u
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(8.93)                                                                                                               
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1 2

1 2
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1 2 , ;

1 2, ;
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1 2

0 , ; 4.48600
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u

u

u

u

u

u A A

A A
u A A

uA A

uA A

u

if A A

A A
F A A

if A A

if A A

 

 

 

 

 

  


  

 

  

 

  

     

           


  
              

(8.94)                                                                                                               

    

 

 
 

 

1 2

1 2

1 2
1 2 1 2, ;

1 2

1 , ; 3.90

12.23464 , ;
, ; 1 exp 4 3.90 , ; 12.23464

12.23464 3.90

0 , ; 3.90

u

u

u
u uA A

u

if A A

A A
T A A if A A

if A A
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Using  fuzzy, Intuitionistic, Neutrosophic  Probabilistic Operator for truth; truth, falsity and truth, 

indeterminacy , falsity membership function respectively the optimal results of model (P8.5) can be 

obtained and is given in Table 8.1. 

 Table 8.1 Optimal weight and deflection for    1 2 1 2, ,, 1.3;WT A A WT A A  
 

   1 2 1 2, ; , ;, 0.8;
u uA A A A   

      1 2 1 2, ; , ;, 0.83;
u uA A A A   

      1 2 1 2, ; , ;, 0.9;
u uA A A A   

  

   1 2 1 2, ; , ;, 0.53;
v vA A A A   

      1 2 1 2, ; , ;, 0.54;
v vA A A A   

      1 2 1 2, ; , ;, 0.57;
v vA A A A   

  
  

Method  * 4 2
1 10A m  * 4 2

2 10A m  * 210WT KN  * 710u m   * 710v m   

Fuzzy Max-

Min Operator 

2.425445
 

1.568392
 

8.428587  0.5830738
 

0.3045585
 

Fuzzy 

Probabilistic 

operator 

2.299305   

 

4.006269  10.50968  8.698282  2.510978  

Intuitionistic 

Probabilistic 

Operator 

1.495007  2.604875  6.833394  13.37785  3.861852  

 

Neutrosophic 

Probabilistic 

Operator 

4.903401  4.807390  18.67630  4.078801  1.709098  

 

From the Table 8.1.we may arrive to the conclusion that the weight  is minimized when we have 

solved the model in intuitionistic optimization technique. As an explanation we can say in IFO  we 

usually minimize non membership functions and maximize membership functions simultaneously. So 

it gives better result compare to FO where we only consider membership function for minimization. 

But as degree of acceptance is partially included in hesitancy and we minimize it in NSO it has given  

higher value than the result obtained in intuitionistic optimization. 

8.4 Conclusion 

In this chapter we have proposed a method to solve multi-objective structural model in neutrosophic 

environment. Here generalized neutrosophic number has been considered for applied load and stress 

parameter. The said model is solved by neutrosophic probabilistic operator and result is compared 

with fuzzy as well as intuitionistic probabilistic operator. The weight of the truss is more optimized by 

intuitionistic optimization technique. The main advantage of the described method is that it allows us 



  
Page 228 

 
  

to overcome  the actual limitations in a problem where impreciseness of supplied data  are involved 

during the specification of the objectives. This approximation method can be applied to optimize 

different models in various fields of engineering and sciences. 
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CHAPTER  9 

Optimization of Welded Beam with Imprecise Load and Stress by 
Parameterized Neutrosophic Optimization Technique 

 
 
Welding is a process of joining metallic parts by heating to a suitable temperature with or 

without the application of pressure. In this chapter we have investigated a  problem which is a 

simplified example of many complex design issues arising in structural engineering. The 

problem is dealing with designing the form of steel beams and with connecting them to form 

complex structure like bridges, buildings etc. The problem of designing an optimum welded 

beam  consists of dimensioning a welded steel beam and the welding length so as to minimize 

its cost subject to constraints on sheer stress, bending stress in the beam, buckling load on the 

bar, the end the deflection on the beam and the side constraints. Most importantly the design 

of welded beam should preferably be economical and durable one. Since decades, 

deterministic optimization has been widely used in practice for optimizing welded connection 

design. These include mathematical  traditional optimization algorithms (Ragsdell & Phillips 

[90]) ,GA-based methods (Deb [40], Deb [37], Coello [14], Coello [25]), particle swarm 

optimization (Reddy [59]), harmony search method (Lee & Geem [67]), and Big-Bang Big-

Crunch (BB-BC) algorithm (O. Hasançebi, [65]), subset simulation (Li [73]), improved 

harmony search algorithm (Mahadavi [72]), as  methods used to solve this problem. All these 

deterministic optimizations aim to search the optimum solution under given constraints 

without consideration of uncertainties. So, while a deterministic optimization approach is 

unable to handle structural performances such as imprecise stresses and deflection etc. due to 

the presence of impreciseness, to get rid of such problem Fuzzy Set(FS)(Zadeh, [133]), 

Intuitionistic Fuzzy Set(IFS) (Atanassov,[1])  Neutrosophic Set(NS)(Smarandache [99]) play 

great roles. In IFS theory we usually consider degree of acceptance, and degree of rejection  

where as we consider only membership function in FS. Sarkar [104] optimize two bar truss 

design with imprecise load and stress in Intuitionistic Fuzzy(IF) environment calculating total 

integral values of Triangular Intuitionistic Fuzzy Number(TIFN). Shu [108] applied TIFN to 

fault tree analysis on printed board circuit assembly .P.Grzegorzewski et.al [48],H.B.Mitchell 

et.al [75],G.Nayagam et.al [78],H.M.Nehi et.al [79],S.Rezvani et.al [92] have been employed 

concept of 
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Intuitionistic Fuzzy Number (IFN) in Multi-Attribute Decision Making (MADM) problem 

.So indeterminate information should be considered in decision making process. A few 

research work has been done on Neutrosophic  Optimization (NSO) in the field of structural 

optimization. So to deal with different impreciseness on load, stresses and deflection, we 

have been motivated to incorporate the concept of Neutrosophic Number(NN) in this 

problem, and have developed NSO algorithm to optimize the optimum design in imprecise 

environment. In IFN indeterminate information is partially lost, as hesitant information is 

taken in consideration by default. So indeterminate information should be considered in 

decision making process. Smarandache [94] defined neutrosophic set that could handle 

indeterminate and inconsistent information. In neutrosophic sets indeterminacy is quantified 

explicitly with truth membership, indeterminacy membership and falsity membership 

function which are independent. Wang et.al [120] define Single Valued Neutrosophic 

Set(SVNS) which represents imprecise, incomplete, indeterminate, inconsistent information. 

Thus taking the universe as a real line we can develop the concept of single valued 

neutrosophic number as special case of neutrosophic sets. These numbers are able to express 

ill-known quantity with uncertain numerical value in decision making problem.We define 

generalized triangular  neutrosophic number and nearest interval approximation  of this 

number. Then using  parametric interval valued function for approximated interval number of  

NN we solve WBD problem in neutrosophic environment .This paper develops optimization 

algorithm  using max-min operator in neutrosophic environment  to optimize the cost of 

welding, while the maximum shear stress in the weld group, maximum bending stress in the 

beam, and buckling load of the beam and deflection at the tip of a welded steel beam have 

been considered as constraints. Here parametric interval valued function of Generalized 

Triangular Neutrosophic  Number(GTNN) have been considered for  applied load , stress and 

deflection .The present study investigates computational algorithm for solving single-

objective nonlinear programming problem by parametric NSO approach.  

 

9.1 General Formulation of Single-Objective Welded Beam Design 
 

In sizing optimization problems, the aim is to minimize single objective function, usually the 

cost of the structure under certain behavioural constraints which are displacement or stresses. 

The design variables are most frequently chosen to be dimensions of the height, length, depth 

and width of the structures. Due to fabrications limitations the design variables are not 
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continuous but discrete for belongingness of cross-sections to a certain set. A discrete 

structural optimization problem can be formulated in the following form 

(P9.1)  

( )Minimize C X                                                                                                                    (9.1) 

 
   , 1,2,...,i isubject to X i m  

                                                                                     
(9.2)

 

, 1,2,...,d
jX R j n 

                                                                                                           
(9.3) 

where ( )C X represents cost function,  i X is the behavioural constraints and  i X    

denotes the maximum allowable value , ‘m’ and ‘n’ are the number of constraints and design 

variables respectively. A given set of discrete value is expressed by dR and in this chapter 

objective function is taken as  

 
1 1

mT
tn

t n
t n

C X c x
 

 
                                                                                                                   

(9.4)
 

 and constraint are chosen to be stress of structures as follows 

  i iX   with allowable tolerance 0
i for 1,2,....,i m                                                  (9.5) 

The deflection of the structure as follows  

  maxX   with allowable tolerance 0
max                                                                        (9.6)

 

Where tc is the cost coefficient of tth side and nx is the  thn design variable respectively, m  is 

the number of structural element, i  and 0
i  0

max are the thi stress , allowable stress and 

allowable deflection respectively. 

9.2 NSO Technique to Optimize  Parametric  Single-Objective Welded 

Beam Design(SOWBD)  

The parametric WBD problem can be formulated as  

(P9.2)  

( ; )Minimize C X s                                                                                                                 (9.7)                                                                                                         

   ; , 1,2,..,i isubject to X s s i m                                                                                   
(9.8) 
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, 1,2,.....,d
jX R j n 

                                                                                                    
(9.9)

 

 0; 0,1X s 
                                                                                                                 

(9.10) 

where ( ; )C X s represents cost function,  ;i X s is the behavioural constraints and 

 ;i X s    denotes the maximum allowable value , ‘m’ and ‘n’ are the number of constraints 

and design variables respectively. A given set of discrete value is expressed by dR and in this 

chapter  objective function is taken as  

   
1 1

;
mT

tn
t n

t n
C X s c s x

 

 
                                                                                                

(9.11)
 

 and constraint are chosen to be stress of structures as follows 

    ; n
i iX s s   with allowable tolerance  0

i s for 1,2,....,i m                              (9.12) 

The  deflection of the structure as follows  

   max; nX s s   with allowable tolerance  0
max s                                                    (9.13)

 

Where tc is the cost coefficient of tth side and nx is the  thn design variable respectively, m  is 

the number of structural element, i  and  0
i s   0

max s are the thi stress , allowable stress and 

allowable deflection respectively. 

To solve the SOWBP (P9.2), step 1 of 1.40 is used and let  
     ; ; ;, ,T I F

C X s C X s C X sU U U be the 

upper bounds of truth, indeterminacy , falsity function for the objective respectively and 

     ; ; ;, ,T I F
C X s C X s C X sL L L  be the lower bound of truth, indeterminacy, falsity membership 

functions of objective respectively then 

      1 2
; max ; , ; ,T

C X sU C X s C X s
                                                                                              

(9.14)
 

      1 2
; min ; , ; ,T

f x sL C X s C X s                                                                                                 (9.15) 

   ; ; ,F T
C X s C X sU U

                                                                                                                                    
(9.16)

 

            ; ; ; ; ; ;0F T T T
C X s C X s C X s C X s C X s C X sL L where U L                                                    (9.17) 

   ; ; ,I T
C X s C X sL L

                                                                                                                                     
(9.18)

 

            ; ; ; ; ; ;0I T T T
C X s C X s C X s C X s C X s C X sU L where U L                                                    (9.19)
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Let the  linear membership function for objective be  

    

   

   

   
     

   

;

;
; ; ;

; ;

;

1 ;

;
; ;

0 ;

T
C X s

T
C X s T T

C X s C X s C X sT T
C X s C X s

T
C X s

if C X s L

U C X s
T C X s if L C X s U

U L

if C X s U

 

 
   
  




                     (9.20) 

    

   

   

   
     

   

;

;
; ; ;

; ;

;

1 ;

;
; ;

0 ;

I
C X s

I
C X s I I

C X s C X s C X sI I
C X s C X s

I
C X s

if C X s L

U C X s
I C X s if L C X s U

U L

if C X s U

 

 
   
  


                            

(9.21) 

    

   

   

   
     

   

;

;
; ; ;

; ;

;

0 ;

;
; ;

1 ;

F
C X s

F
C X s F F

C X s C X s C X sF F
C X s C X s

F
C X s

if C X s L

C X s L
F C X s if L C X s U

U L

if C X s U

 

 

  





                                   

(9.22)

 

and constraints be   

 

    

   

     

 
       

   

0
0

; 0

0

1 ;

;
; ;

0 ;

j

j j

j j j
j j j j jg x s

j

j j

if g x s b s

b s b s g x s
T g x s if b s g x s b s b s

b s

if g x s b s

 

  

     
 
                           

(9.23)  

    

   

      

 

       

     

;

; ;
;

;

1 ;

;
; ;

0 ;

j

j j

j

j

j j

j jg x s
j j j jg x s g x s

g x s

j j g x s

if g x s b s

b s g x s
I g x s if b s g x s b s

if g x s b s








 


 
   



                    

(9.24) 

    

     

     

   

         

     

;

; 0
; ;0

;

0

0 ;

;
; ;

1 ;

j

j

j j

j

j j g x s

j j g x s
j j j j jg x s g x s

j g x s

j j j

if g x s b s

g x s b s
F g x s if b s g x s b s b s

b s

if g x s b s b s








  


 
    




 

       (9.25) 
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where and for 
   

0
; ;1,2,....., 0 ,

j j jg x s g x sj m b      

where and for            0
;; ; ; ; ,0

jj j j j jg X sg X s X s or X s or X s b s        

then  parametric NSO problem can be formulated as [107],i.e 

(P9.3)  

 Maximize                                                                                                        (9.26)

 

        ; ; ;; . ;T T T
C X s C X s C X ssuch that C X s U L U  

                                                                   
(9.27) 

        ; ; ;; . ;I I I
C X s C X s C X sC X s U L U  

                                                                                        
(9.28) 

        ; ; ;; . ;F F F
C X s C X s C X sC X s U L L  

                                                                                        
(9.29)

 

        ; ; ;; . ;
j j j

T T T
j g x s g x s g x sg x s U L U  

                                                                                       
(9.30) 

        ; ; ;; . ;
j j j

I I I
j g x s g x s g x sg x s U L U  

                                                                                        
(9.31) 

        ; ; ;; . ;
j j j

F F F
j g x s g x s g x sg x s U L L  

                                                                                        
(9.32)

 

3;     ; ;      , , 0,1 ;                                                                                      (9.33)
 

 0, 0,1x s 
                                                                                                                                        

(9.34)
 

where            0
;; ; ; ; ,0

jj j j j jg X sg X s X s or X s or X s b s        

All these crisp nonlinear programming problems (P9.3) can be solved by appropriate 

mathematical algorithm. 

9.3 Numerical Solution of Parametric Welded Beam Design Problem by 

NSO Technique  

A welded beam (Ragsdell and Philips 1976,Fig.-9.1) has to be designed at minimum cost 

whose constraints are shear stress in weld    ,bending stress in the beam    ,buckling 

load on the bar  P ,and deflection of the beam   .The design variables are 

1

2

3

4

x h
x l
x t
x b

   
   
   
   
   

  

where
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h is the weld size, l  is the length of the weld , t is the depth of the welded beam, b is the 

width of the welded beam.  

  

Fig.-9.1 Design of the Welded Beam(http://www.spantec.com.au,accessed 

on 20June 2017) 

The single-objective optimization problem can be stated as follows  

(P9.4)  

   2
1 2 2 3 41.10471 0.04811 14Minimize C X x x x x x                                                   (9.35) 

Such that  

   1 max 0;g x x   
                                                                                                     

(9.36)
 

   2 max 0;g x x   
                                                                                                   

(9.37)
 

 
 3 1 4 0;g x x x  

                                                                                                           
(9.38)

 
   2

4 1 2 3 4 20.10471 0.04811 14 5 0;g x x x x x x    
                                                         

(9.39) 

 5 10.125 0;g x x  
                                                                                                       

(9.40)
 

   6 max 0;g x x   
                                                                                                    

(9.41)
 

   7 0;Cg x P P x  
                                                                                                       

(9.42)
 

1 4 2 30.1 , , , 2.0x x x x   

where   2 22
1 1 2 22

2
xx
R

        ;                                                                                   (9.43) 

 1
1 22

P
x x

  ;                                                                                                                   (9.44) 

http://www.spantec.com.au,accessed/
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2
MR
J

  ;                                                                                                                        (9.45) 

2

2
xM P L 

  
 

;                                                                                                             (9.46) 

22
1 32

4 2
x xxR  

   
 

;                                                                                                    (9.47) 

22
1 31 2 2 ;

12 22
x xx x xJ

    
    

                                                                                              
(9.48)

 

  2
4 3

6 ;PLx
x x

 

                                                                                                                  
(9.49)

 

 
3

2
4 3

4 ;PLx
Ex x

 

                                                                                                                
(9.50)

 

 
6 6
3 4 3

2

4.013 / 36
1 ;

2 4C

EGx x x EP x
L L G

 
   

                                                                 
(9.51)

 
 P Force on beam ; L Beam length beyond weld; 1x   Height of the welded beam; 2x   

Length  of the welded beam; 3x   Depth of the welded beam; 4x   Width of the welded 

beam;  x Design shear stress;  x Design normal stress for beam material; M   

Moment of P  about the centre of gravity of the weld , J  Polar moment of inertia of weld 

group; G   Shearing modulus of Beam Material; E   Young modulus; max   Design Stress 

of the weld; max   Design normal stress for the beam material; max   Maximum deflection; 

1   Primary stress on weld throat. 2 Secondary torsional stress on weld. Input data are 

given in Table 10.1and Table 10.2. 

Table 9.1 Input Data for Crisp Model (P9.4) 
 

Applied load P  
 lb  

Beam 
length 
beyond 
weld 

L  
 in  

Young 

Modulus 

E  
 psi  

Value 

of  

G   
 psi  
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6000

5580,6000,6100;

5575,5590,6110;

5570,5585,6120;

p

p

p

w





 
 
 
 
 
 

 14  63 10  

 

 

612 10  

 
Table 9.2 Input Data For Crisp Model (P9.4) 

 
Maximum allowable   

shear  

stress max  
 psi  

Maximum allowable 

deflection max   
 in  

Maximum allowable 

normal stress max  
 psi  

 

 

 

13550

13520,13550,13580;

13510,13540,13570;

13500,13530,13560;

w











 
 
 
 
 
 

 

Maximum allowable   

value 

 

 

 

1

1

1

13600

13580,13600,13610;

13575,13590,13615;

13570,13585,136120;

w











 
 
 
 
 
 
 

 

 

 

 

0.25

0.22,0.25,0.26;

0.21,0.24,0.27;

0.20,0.23,0.28;

w











 
 
 
 
 
 

  

Maximum allowable   

value 

 

 

 

1

1

1

0.26

0.23,0.26,0.27;

0.22,0.25,0.28;

0.21,0.26,0.29;

w











 
 
 
 
 
 
 

 

 

 

 

3000

2980,3000,3030;

2975,2990,3020;

2970,2985,3010;

w











 
 
 
 
 
 

  

Maximum allowable   

value 

 

 

 

1

1

1

3100

3070,3100,3130;

3060,3090,3120;

3050,3080,3110;

w











 
 
 
 
 
 
 

 

where , , ,pw w w w  
 and 1 1 1, , ,pw w w w    are degree of truth membership or aspiration level 

and maximum degree of truth membership or aspiration level; , , ,p        ; 1 1 1, , ,p        are 

degree of indeterminacy and maximum degree of indeterminacy and , , ,p        and

1 1 1, , ,p        are degree of falsity and maximum degree of falsity  or desperation level of 

applied load, normal stress ,deflection and  allowable shear   stress respectively . 

 

Now parameterized value of interval valued function can be calculated as 
1

70 2.5 2.5 16.67 86.67 89.17ˆ 5575 6110 ;
s s

a a a a a a

P
w w   

    
          
     

                                    (9.52) 
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1
max 5 5 5 1.67 5 5ˆ 13510 13570 ;

s s

a a a a a aw w


   

    
          
                                              

(9.53) 

Allowable value of max̂  

1
max
1

3.33 2.5 2.5 1.67 4.17 5.83ˆ 13575 13615 ;
s s

a a a a a aw w


   

    
          
                                

(9.54) 

1
max 0.005 0.005 0.005 0.001 0.005 0.008ˆ 0.21 0.27 ;

s s

a a a a a aw w


   

    
          
                    

(9.55)

 

Allowable value of max̂  

1
max

1
0.005 0.005 0.005 0.001 0.005 0.008ˆ 0.22 0.28 ;

s s

a a a a a aw w


   

    
          
                    

(9.56) 

1
max 3.33 2.5 2.5 1.67 5 7.5ˆ 2975 3020 ;

s s

a a a a a aw w


   

    
          
                                      

(9.57)

 

Allowable value of max̂  

1
max
1

5 5 5 1.67 5 8.83ˆ 3060 3120 ;
s s

a a a a a aw w


   

    
          
                                          

(9.58) 

Table 9.3 The Upper and Lower Value of Objective(P9.4) for Different Values of   

w  Pessimistic Value of  s  

                                                  The pessimistic value of s=0.2 

Aspiration level 
,uncertainty level and 

desperation level 

1 1 1

p

p

w w w w

w w w w w
  

  

  

    
 

1 1 1

p   

  

   

   

  

   
  

1 1 1

p   

  

   

   

  

   
         

 

0.3w      

 

0.5w      

 

0.7w      
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Upper and lower value of 

objective 
 

0.1419847,T
C XL 

 
0.1425069T

C XU 
 

 
0.1387723,T

C XL 

 
0.1393634T

C XU   
 

0.1374016,T
C XL 

 
0.1380209T

C XU   

 

Table 9.4 The Upper and Lower Value of Objective (P9.4)for Different Values of   

w  ,Moderate Value of  s   

                                                  The pessimistic value of s=0.5 

Aspiration level 
,uncertainty level and 

desperation level 

1 1 1

p

p

w w w w

w w w w w
  

  

  

    
 

1 1 1

p   

  

   

   

  

   
  

1 1 1

p   

  

   

   

  

   
        

 

0.3w      

 

0.5w      

 

0.7w      

Upper and lower value of 

objective 
 

0.1485833,T
C XL 

 
0.1491453T

C XU   

 
0.1444032,T

C XL 

 
0.1450005T

C XU   
 

0.1426218,T
C XL 

 
0.1432331T

C XU   

 

Table 9.5 The Upper and Lower Value of Objective(P9.4) for Different 

Values of   w  Optimistic Value of  s  

                                                  The pessimistic value of s=0.8 

Aspiration level 
,uncertainty level and 

desperation level 

1 1 1

p

p

w w w w

w w w w w
  

  

  

    
 

1 1 1

p   

  

   

   

  

   
  

 

0.3w      

 

0.5w      

 

0.7w      
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1 1 1

p   

  

   

   

  

   
         

Upper and lower value of 

objective 
 

0.1555725T
C XL 

 
0.1561771T

C XU   

 
0.1503266T

C XL 

 
0.1509290T

C XU   
 

0.1480966T
C XL 

 
0.1486975T

C XU   

 

Now using truth, indeterminacy and falsity membership function as mentioned in section 10.4 

neutrosophic optimization problem can be formulated as similar as (P9.4) and solving this 

optimal for different values of , , ,s w    ,design variables and objective functions can be 

obtained as follows. 

Table 9.6 The Optimum Values of Design Variables(P9.4) for Different Values of  

, ,w    and 0.2s   

Value of ,i i   
.Aspiration level 

,uncertainty level and 
desperation level 

 

1 1 1

p

p

w w w w

w w w w w
  

  

  

    
 

1 1 1

p   

  

   

   

  

   
  

1 1 1

p   

  

   

   

  

   
         

0.3w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

0.5w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

0.7w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

1( )x in  0.3415895  0.3389869  0.3378618  

2 ( )x in  0.9535080  0.9463785  0.9433100  

3( )x in  2  2  2  

4 ( )x in  1.089426  1.080890  1.077210  

   $C X  0.1420369  0.1388314  0.1374635  

Where i iU and L are upper and lower bound of respective objective and    The Optimum 

constraints.  
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Table 9.7 The Optimum Values of Design Variables(P9.4) for Different 

Values of  , ,w    and 0.5s   

Value of ,i i  . 
Aspiration level 

uncertainty level and 
desperation level 

 

1 1 1

p

p

w w w w

w w w w w
  

  

  

    
 

1 1 1

p   

  

   

   

  

   
  

1 1 1

p   

  

   

   

  

   
         

0.3w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

 

 

0.5w      

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

0.7w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

1( )x in  0.3422657  0.3396719  0.3385506  

2 ( )x in  0.9552806  0.9481638  0.9451009  

3( )x in  2  2  2  

4 ( )x in  1.091979  1.083465  1.079794  

   $C X  0.1486395  0.1444629  0.1426829  

Where i iU and L are upper and lower bound of respective objective and constraints. 

Table 9.8 The Optimum Values of Design Variables(P9.4) for Different Values of  

, ,w    and 0.8s   

Value of ,i i  . 
Aspiration level 

,uncertainty level and 
desperation level 

 

1 1 1

p

p

w w w w

w w w w w
  

  

  

    
 

1 1 1

p   

  

   

   

  

   
  

0.3w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

0.5w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L

 

   

0.7w    

  0.1
i

T T
i iU L

 

 
 

  0.1
i

T T
i iU L
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1 1 1

p   

  

   

   

  

   
         

1( )x in  0.3429429  0.3403578  0.3392404  

2 ( )x in  0.9570581 0.9499542  0.9468969  

3( )x in  2  2  2  

4 ( )x in  1.094538  1.086046  1.082384  

   $C X  0.1556330  0.1503868  0.1503868  

Where i iU and L are upper and lower bound of respective objective and constraints 

From the above results it is clear that whenever we chose 0.7w      and 0.2s  , 

the of cost welding is minimum most. Also it has been observed that cost of welding is 

decreased by higher value of aspiration level, uncertainty level and desperation level for a 

particular value of parameter ‘s’. 

9.4 Conclusion 

In this chapter we have proposed a method to solve WBD  in  fully neutrosophic 

environment. Here GNN has been considered for deflection and stress parameter. The said 

model is solved by Single Objective Parametric Neutrosophic Optimization (SOPNSO) 

technique and result is calculated for different parameter. The main advantage of the 

described method is that it allows us to overcome the actual limitations in a problem where 

impreciseness of supplied data is involved during the specification of the objectives. This 

approximation method can be applied to optimize different models in various fields of 

engineering and sciences. 
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CHAPTER  10 

Optimization of Thickness of Jointed Plain Concrete Pavement 

Using Neutrosophic  Optimization Technique 
 

 

Highway construction agencies throughout the globe chasing accelerating demands on 

durable undowelled Jointed Plain Concrete Pavement (JPCP) due to scanty of rehabilitation 

of the same . Since decades, different design methods had been developed by various 

organizations which suit their locale and fix the depth criteria of the JPCP along with other 

parameters by satisfying the standard code of practice but none of them tries to optimize the 

design thickness of the same (Hadi and Arfiadi, [53]). However a few approaches designed 

such thickness of cited pavement by considering traffic overloading condition, its fatigue life 

and the fluctuation of ambient temperature effect individually (Maser et al., [74];Ramsamooj 

[91];Levenberg, [68]). But during service life of such pavement, the traffic loads and adverse 

environmental effect would deteriorate its joints and ultimately its foundation. Therefore 

optimization of such rigid pavement is become essential considering multiple decision 

making criteria as stated above to make it more durable.  

Several design methods e.g. AASHTO, PCA, Crop of Engineers of the US army iteration 

method etc. are available to determine the thickness of JPCP.  However all such methods 

follow numerous monographs, tables and charts to do the same and abiding by certain loop of 

algorithm in the cited iteration process to find an effective thickness of such pavement. But 

most of the time, designers stop the cited procedure even after two or three trials which yields 

safe but unnecessarily less economical thick rigid pavement (Hadi and Arfiadi, [53]). 

However lots of efforts had been made to get rid of from such problem but optimization on 

the same subject has rarely found. Moreover, finite element method (Davids, [40]) and 

genetic Algorithm (Hadi and Arfiadi, [53]) type of crisp optimization method had been 

applied on the cited subject, where the values of the input parameters were obtained from 

experimental data in laboratory scale. While the above cited standards has already ranged the 

magnitude of those parameters in between maximum to the minimum value. Therefore, 

designer get confused to select those input parameters from such ranges which yield three key 

governing factors i.e. degree of acceptance, rejection and hesitancy that attributes the 
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necessity of neutrosophic fuzzy set (Das et al., [39]; Sarkar et al., [107]). Meanwhile, Wang 

et.al [120] presented such set as Single Valued Neutrosophic Set (SVNS) as it comprised of 

generalized classic set, Fuzzy set, interval valued fuzzy set, Intuitionistic Fuzzy Set and para 

consistent set respectively.  

As application of SVNS optimization method is rare in rigid pavement design; hence it is 

used to minimize the thickness of the pavement by considering cumulative fatigue life and 

deflection as constraints respectively. However the factors governing of former constraints 

are axel loads, pavement thickness, modulus of elasticity of cement concrete, subgrade 

modulus, poisson’s ratio, load contact area, annual rate of growth of commercial traffic, 

number of axel per day, radius of relative stiffness and design period respectively. While, the 

later constraint includes radius of load contact area, subgrade modulus, radius of relative 

stiffness and single as well as tandem axel loads respectively. Besides that, in this effort 

flexibility has been given in number of axel per day in fatigue life constraint only; hence 

cumulative vehicle per day (CVPD) becomes imprecise in nature so that it can be considered 

as neutrosophic set to from truth, indeterminacy and falsity membership functions. Ultimately 

neutrosophic optimization technique can be applied on the basis of cited membership 

functions and outcome of such Nonlinear Optimum Pavement Design (NLOPD) tries to 

provide the minimum thickness for varying subgrade modulus of soil. 

10.1 Formulation for Optimum JPCP Design  

The first step of formulation of JPCP is to formulate the pavement optimization problem by  

defining objective function (minimum thickness) and the constraints (fatigue life consumed, 

deflection and corner stress due to single and tandem axle) that control the solution. 

 

 

  
Fig.-10.1 Construction and Fatigue Failure of JPCP(http://www.escsi.org, 
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http://c3sinc.com,accessed on 20 June 2017) 

10.1.1 Design input parameters 

The input parameters that influence the design are Poisson ratio   , Load due to single axle

 1P , Load due to tandem axle  2P , Modulus of elasticity of concrete  E , Modulus of 

subgrade reaction  k , Radius of load contact areas assumed circular  a , Initial number of 

axles per day in the year  A , Design period in year  n , Annual rate of growth of commercial 

traffic  r , Limiting value of deflection due to single axle  1d , Limiting value of deflection 

due to tandem axle  2d , Flexural strength of concrete  fS , 

10.1.2 Design method 

For determining optimum thickness of JPCP ,a crisp mathematical model has been 

formulated. Here Thickness of Slab (TS) has been minimized subjected to a specified set of 

constraints (P11.1) .Here the optimum design is 

(P10.1)  

 

 Minimize TS h h                                                                                        (10.1) 

subject to  

              
2 3.268 2 6.536 2

1 1 2 1 2 1 2, , , , 365 1 1 0.4325 0.4325 0.5 4.2577nF l h k A A r SR h SR h A A r            

 

                                                                                                                               (10.2) 

 
      

 

2

1 2
2 1 2 1 2

365 1 1 0.25
, , , , 2 23.47

0.25 0.0828

r SR h SR h
F l h k A A Log Log A A

r

                

             (10.3) 

                   1
12

0.431, 1 0.82SAL
P aD k l d

kl l
  

    
  

                                                                           (10.4) 

 

  2
22

0.431, 1 0.82TAL
P aD k l d

kl l
  

    
  

                                                                      (10.5) 

 

 

1.2

1
2

3 21C
SAL f

P aS h S
h l

  
        

                                                                              (10.6) 

http://c3sinc.com,accessed/
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1.2

2
2

3 21C
TAL f

P aS h S
h l

  
        

                                                                              (10.7) 

 1 2 1 2,IAA A A A A A                                                                                              (10.8) 

1 2, , , 0;l h A A  k kl k u                                                                                  (10.9) 

where 

 

 
 

 3

2 4

3 1 1.18 1 24 1ln 1.84
3 100 3 2

i

i
f

P aEh v v
h ka l

SR h
S

 

 

    
     

    for 1,2i           (10.10) 

The Non-linear Programming Problems (NLPPs) under crisp scenario, the aim is to maximize 

or minimize a objective function under constraints. But in many practical situations, the 

decision maker may not be in a position to specify the objective and/or constraint functions 

precisely bur rather can specify in imprecise sense. In such situation, it is desirable to use 

some NNLP type of modelling for providing more flexibility to the decision maker. Since the 

impreciseness may appear in a NLP in many ways (e.g. the inequalities may be imprecise, the 

goals may be imprecise  or the problem parameters like initial number of axle per day in year 

and deflection may be flexible in nature)so the definition of NNLP is not unique .Here initial 

number of axle per day in year and deflection have been considered imprecise so that the 

limiting value of fatigue analysis constraints, sum of initial axle per day in year, deflection 

due to single axle load and tandem axle load are assumed as 1 2; ; ; ;w q A d d with maximum 

allowable tolerance 
1 2

; ; , ,w q A d dp p p p p respectively .Thus above problem is  formulated as a 

nonlinear programming problem with precise and imprecise resources as  

(P10.2)  
 

 Minimize TS h h                                                                                              (10.11) 

such that 

 1 1 2( , , , , ) wF l h k A A w with maximum allowabletollerance p
                                             (10.12) 

 2 1 2( , , , , ) ;qF l h k A A q with maximum allowabletollerance p
                                            (10.13) 

 11( , ) ;SAL dD l k d with maximum allowabletollerance p
                                                      

(10.14) 
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 22( , ) ;TAL dD l k d with maximum allowabletollerance p
                                                      

(10.15) 

  ;C
SAL fS h S

                                                                                                                                          (10.16) 

 C
TAL fS h S

                                                                                                                                           (10.17) 

 1 2,IAA A A A ( )Awith maximum allowable tollerance p
                                                     (10.18) 

1 2, , , , 0, k kl h t A A l k u  
                                                                                                        (10.19) 

Where kl and  ku  are the lower and upper limit of k respectively 

       
2 3.2682

1 1 2 1 2, , , , 365 1 1 0.25 0.4325 0.4325F l h k A A r SR SR                                
(10.20)

 

   
2 6.536 2

1 2

0.5 4.2577 r
w

A A


                                                                                                                  
(10.21)

 

 
  2

1 2
2 1 2

365 1 1 0.25
, , , , 2 23.47;

0.5 0.0828

r SR SRF l h k A A Log
r

             
          

(10.22)
 

 1 2q Log A A
                                                                                                                         (10.23)

 

 

  1
2

0.431, 1 0.82SAL
P aD k l

kl l
  

    
                                                                                      

(10.24)
 

  2
2

0.431, 1 0.82TAL
P aD k l

kl l
  

    
                                                                                     

(10.25)
 

 

 1 2 1 2,IAA A A A A 
                                                                                                               (10.26)

 

 

 

 
 

 3

2 4

3 1 1.18 1 24 1ln 1.84
3 100 3 2

i

i
f

v P v aEh v v
v h ka l

SR h
S
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                                                                                                             for   i=1,2            (10.27) 

To solve above nonlinear programming problem (P10.2) we have used Neutrosophic 

Optimization Technique 

10.2 Neutrosophic Optimization  

In conventional optimization problems, it is assumed that the decision maker is sure about the 

precise values of data involved in the model. But in real world applications all the parameters 

and goals (objective goals ,constraint goals etc.)   of the optimization problems may not be 

known precisely due to uncontrollable factors. Such type of imprecise parameters and goals 

are represented by fuzzy set theory (Zadeh [133]) 

Actually, a decision maker may assume that an object belongs to a set to a certain degree, but 

it is possible that he is not sure about it. In other words, there may be uncertainty about the 

membership degree. The main premise is that the parameters’ demands across the problem 

are uncertain. So, they are known to fall within a prescribed uncertainty set with some 

attributed degree. In fuzzy set theory, there is no means to incorporate this hesitation in the 

membership degree. To incorporate the uncertainty in the membership degree, intuitionistic 

fuzzy sets (IFSs) proposed by Atanassov [1] is an extension of fuzzy set theory.In 

intuitionistic fuzzy set theory along with degree of membership a degree of non-menbership 

is usually considered to express ill-know quantity. This degree of membership and non-

memship functions are so defined as they are independent to each other and sum of them is 

less or equal to one. So IFS is playing an important role in decision making under uncertainty 

and has gained popularity in recent years. However an application of the IFSs to optimization 

problems introduced by Angelov [4] His technique is based on maximizing the degree of 

membership, minimizing the degree of non-membership and the crisp model is formulated 

using the IF aggregation operator.  

Now the fact is that in IFS indeterminate information is partially lost ,as hesitant information 

is taken in consideration by default. So indeterminate  information should be considered in 

decision making process. Smarandache [94] defined NS that could handle indeterminate and 

inconsistent information. In neutrosophic sets indeterminacy is quantified explicitly with 

truth membership, indeterminacy membership and falsity membership function which are 

independent .Wang et.al [120] define SVNS which represents imprecise, incomplete, 

indeterminate, inconsistent information. Thus taking the universe as a real line we can 

develop the concept of single valued NS as special case of NS. These  set is  able to express 
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ill-known quantity with uncertain numerical value in decision making problem. It help more 

adequately to represent situations where decision makers abstain from expressing their 

assessments. In this way NS provide a richer tool to grasp impression and ambiguity than the 

conventional fuzzy as well as IFS. These characteristics of neutrosophic set led to the 

extension of optimization methods in Neutrosophic Environment (NSE). 

Besides It has been seen that the current research on fuzzy mathematical programming is 

limited to the range of linear programming introduced by Ziemmermann[136] . He  showed 

that the solutions of Fuzzy Linear Programming Problems (FLPPs) are always efficient. The 

most common approach for solving fuzzy linear programming problem is to change it into 

corresponding crisp linear programming problem. But practically there exist many fuzzy and 

intuitionistic fuzzy nonlinear structural , pavement design problems in the field of civil 

engineering. These problems cannot be modelled as a linear form and solved by traditional 

techniques due to presence of imprecise information.  

So, the research on modelling and optimization for nonlinear programming under fuzzy 

intuitionistic fuzzy and neutrosophic environment are not only necessary in the fuzzy 

optimization theory but also has great and wide value in application to structural engineering  

problems of conflicting and imprecise  nature. So following nonlinear neutrosophic 

optimization technique ( Sarkar et.al.[100]) the proposed nonlinear JPCP (P10.1) for the first 

time ever being solved with LINGO 11.0 in neutrosophic  environment in this chapter and 

literature. LINGO  11.0 is a comprehensive tool designed to make building and solving 

mathematical optimization models easier and more efficient. LINGO provides a completely 

integrated package that includes a powerful language for expressing optimization models, 

a full-featured environment for building and editing problems, and a set of fast built-in 

solvers capable of efficiently solving most classes of optimization models. However the 

outcome of this investigation has been furnished in the following flowchart by incorporating 

all the essential parameters associated with the pavement design. In this regard it can be cited 

that fuzzy, IF and neutrosophic  NLP are  rarely involved in literature and Das et.al [25] 

developed  neutrosophic NLP with numerical example and application of real life problem 

recently. 
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Fig.-10.2 Flow Chart for Work Plan of The JPCP Design Study 

Minimization of thickness of Slab subject to 

 

Minimization of thickness of Slab subject 

to 

Model Formulation in 
Imprecise  Environment 

Solve using NSO Technique (Sarkar et.al [105]) 

Solve the problem by LINGO-11 Solver 

Output: Thickness of the slab, radius of 
relative stiffness, initial number of axle due 
to single axle and initial number of axle due 

to tandem axle according to modulus of 
subgrade reaction.   

Crisp Model Formulation 
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10.3 Numerical Illustration of Optimum JPCP Design based on IRC:58-

2002 

For designing the thickness of rigid pavement, Indian Roads Congress (IRC: 58-2002) 

[17]recommends a guideline for incorporating the input data e.g. Poisson ratio  v   as 0.15, 

legal single axle load  1P  and legal tandem axle load  2P  as 10200 kg and 19000 kg 

respectively,  Modulus of elasticity of concrete  E  as 3×105 kg/cm2, Modulus of subgrade 

reaction  k  ranging from 6 to 22 kg/cm3, design period as 20 years, Annual rate of growth 

of commercial traffic (r) as 7.5%, Limiting value of deflection due to single axle (d1) as well 

as to tandem axle (d2) as 0.1with maximum allowable tolerance 0.025, Flexural Strength of 

Concrete (Sf) as 45 kg/cm2 and Radius of load contact areas (a) assumed as circular. By 

flowing such guidelines, a sample calculation was made for National Highway (NH) 

considering the trial thickness as 32 cm for subgrade modulus of        considering peak 

vehicular load passing through it. Flexibility to the axles per day in the year with the range of 

its value greater than equal to 3000 having 250 tolerance in the unit of Commercial Vehicle 

Per Day (CVPD) was considered as per standard guidelines (IRC-58-2002)[14]. Further 25 % 

of the total CVPD in the direction of predominant traffic was also taken into consideration 

but that trial became unsafe. However by considering thickness of the said pavement as 33 

cm become safe.   

Now following Neutrosophic Optimization Method (Sarkar et.al [105]) imprecise model 

(P10.2) can be reduced to following crisp linear programming problem as 

(P10.3)  

 Maximize                                                                                                           (10.28) 

such that 
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ln ;                                                                                                                                        (10.40) 

 1tanh 2 1 .   
                                                                                                              (10.41) 

3;                                                                                                                                 (10.42) 

 , , 0,1   
                                                                                                                            (10.43)

 
Here impreciseness on flexible constraints is taken as single valued neutrosophic set with 

nonlinear truth, indeterminacy and falsity membership functions. It is noted that if proper 

nonlinear membership functions are chosen based on past experience, we may get better 

results. For example we have chosen exponential and hyperbolic membership functions. The 

result have been calculated for 6 22k   .For example the numerical expression has been 

shown  for 8k  .The optimum value of Thickness of the slab, radius of relative stiffness, 

optimum value of initial number axle per day in year due to single axle load and due to 

tandem axle load according to modulus of subgrade reaction have been shown in  the 

Table.10.1. 

Table 10.1 Optimum Thickness of JPCP using NSO Technique 

Modulus of 
subgrade reaction 
(k kg/cm3) 

Thickness of 

slab (h* cm) 

Radius of relative 
stiffness. (l*  cm) 

Initial 
number of 
axle due to 
single axle 
load ( *

1A ) 

Initial 
number of 
axle due to 
tandem  axle 
load ( *

2A ) 

6 32.84625  102.7743  .0025  2999.997  

7 32.51866  95.10986  169.0116  2884.639  

8 32.25517  95.10986  1568.750  1568.750  

9 31.95554  83.10438  .00258  2999.997  

10 31.69637  77.85755  .003095  3053.647  

11 31.39012  74.32656  .04876  3053.602  

12 31.15804  73.85598  1568.750  1568.750  

13 30.89417  67.26979  1568.750  1568.750  

14 30.63287  64.51202  1568.750  1568.750  
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15 30.37357  62.03011  .0258  2999.997  

16 30.11578  59.78019  1568.750  1568.750  

17 29.85905  57.72759  1568.750  1568.750  

18 29.60300  55.84443  0.258  2999.997  

19 29.34726  54.10806  1568.750  1568.750  

20 29.09102  53.18488  856.2631 2143.737  

21 28.83046  51.63307  .0258  2999.997  

22 28.57874  49.60825  .0025  2999.997  

 

In  Table.10.1 the optimum thickness of slab ,radius of relative stiffness, initial number of 

axle per day in year due to single axle load and tandem axle load are calculated according to 

modulus of subgrade reaction. However as expected ,the thickness (h) ,and radius of relative 

stiffness (l)of JPCP has tent to decrease with the increment of modulus of  subgrade reaction 

(k)and   at the value of k=8 the optimum thickness is 32.25517 which supports a safe  PCA 

experimental value (IRC:58-2002).The optimum thickness obtained by neutrosophic 

optimization technique has shown 2.26%  lesser value compared to  the calculated value as 

shown in IRC:58-2002. There is no significant change of optimum thickness with change of 

modulus of subgrade reaction and as a whole the model formulation become cost effective. In  

the present study the optimum radius of relative stiffness has been calculated as 87.98206 for 

k=8 which is 14.99%less value supported by IRC:58-2002 .   

10.4 Conclusion 
This work investigates how NSO technique can be utilized to solve a JPCP problem. The 

concept of NSO technique allows one to define a degree of truth membership, which is not a 

complement of degree of falsity; rather, they are independent with degree of indeterminacy. 

In this problem actually we investigate the effect of  nonlinear truth, indeterminacy and 

falsity membership function of NS in perspective of single objective nonlinear JPCP problem  

Here we have formulated a non-linear JPCP design .In this test problem, we find out 

minimum thickness ,radius of relative stiffness ,initial number of axle due to single and 

tandem axle per day in year according to modulus of subgrade reaction. The comparisons of 

results obtained for the undertaken problem clearly show the superiority of neutrosophic 



  
Page 255 

 
  

optimization over PCA. The results of this study may lead to the development of effective 

neutrosophic technique for solving other model of nonlinear programming problem in 

different field.  
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CHAPTER  11 

Multi-Objective Structural Design Optimization Based on 

Neutrosophic Goal Programming Technique 
 

The research area of optimal structural design has been receiving increasing attention from 

both academia and industry over the past four decades in order to improve structural 

performance and to reduce design costs. In the real world, uncertainty or vagueness is 

prevalent in the Engineering Computations. In the context of structural design the uncertainty 

is connected with lack of accurate data of design factors. This tendency has been changing 

due to the increase in the use of fuzzy mathematical algorithm for dealing with such kind of  

problems. 

Fuzzy set (FS) theory has long been introduced to deal with  inexact and imprecise data by 

Zadeh [1], Later on the fuzzy set theory was used by Bellman and Zadeh [58] to the decision 

making problem. A few work has been done  as an application of fuzzy set theory on 

structural design. Several researchers like Wang et al. [119] first applied α-cut method to 

structural designs where various design levels α were used to solve the non-linear problems. 

In this regard ,a generalized fuzzy number has been used Dey et al. [32] in context of a  non-

linear structural design optimization. Dey et al.[34]used basic t-norm based fuzzy 

optimization technique for optimization of structure and Dey et al. [33] developed 

parameterized t-norm based fuzzy optimization method for optimum structural design.  

In such extension, Intuitionistic fuzzy set which is one of the generalizations of fuzzy set 

theory and was characterized by a membership, a non- membership and a hesitancy function 

was first  introduced by Atanassov [1] (IFS). In fuzzy set theory the degree of acceptance is 

only considered but in case of IFS  it is characterized by  degree of membership and  non-

membership in such a way  that their sum  is less or equal to one. Dey et al. [35]solved two 

bar truss non-linear problem by using intuitionistic fuzzy optimization problem.Again Dey et 

al. [36] used intuitionistic fuzzy optimization technique to solve  multi objective structural 

design. R-x Liang et al[66] applied interdependent inputs of single valued trapezoidal 

neutrosophic information on Multi-criteria group decision making problem. P Ji et al. [10],S 

Yu et al. [132] did so many research study on  application based neutosophic sets and 

intuitionistic linguistic number . Z-p Tian et al.[115]Simplified neutrosophic linguistic multi-
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criteria group decision-making approach to green product development. Again J-j Peng et 

al.[85] introduced multi-valued neutrosophic qualitative flexible approach based on 

likelihood for multi-criteria decision-making problems.Also H Zhang et. al [58]investigates a 

case study on a novel decision support model for satisfactory restaurants utilizing social 

information. P Ji et al. [135] developed  a projection-based TODIM method under multi-valued 

neutrosophic environments and its application in personnel selection. 

Intuitionistic fuzzy sets consider both truth and falsity membership and can only handle 

incomplete information but not the information which is connected with indeterminacy or  

inconsistency. 

In neutrosophic sets indeterminacy or inconsistency is quantified explicitly by indeterminacy 

membership function. Neutrosophic Set (NS), introduced by Smarandache [94] was 

characterized by truth, falsity and indeterminacy membership so that in case of single valued 

NS set their sum is less or equal to three. In early [24] Charnes and Cooper first introduced 

Goal programming problem for a linear model. Usually conflicting goal are presented in a 

multi-objective goal programming problem. Dey et al[41] used intuitionistic goal 

programming on nonlinear structural model. This is the first time NSGO technique is in 

application to multi-objective structural design. Usually objective goals of  existing structural 

model are considered to be deterministic and a fixed quantity.In a situation ,the decision 

maker can be doubtful with regard to accomplishment of the goal .The DM may include the 

idea of truth,indeterminacy and falsity bound on objectives goal.The goal may have a target 

value with degree of truth,indeterminacy as well as degree of falsity.Precisely ,we can say a 

human being that express degree of truth membership of a given element in a fuzzy set,truth 

and falsity membership in a intuitionistic fuzzy set,very often does not express the 

corresponding degree of falsity membership as complement to 3.This fact seems to take the 

objective goal as a neutrosophic set. The present study investigates computational algorithm 

for solving multi-objective structural problem by single valued generalized NSGO technique. 

The results are compared numerically for different aggregation method of NSGO technique. 

From our numerical result, it has been seen that the best result obtained for geometric 

aggregation method for NSGO technique in the perspective of structural optimization 

technique.  

11.1 Multi-objective Structural Model 

In the design problem of the structure i.e. lightest weight of the structure and minimum 

deflection of the loaded joint that satisfies all stress constraints in members of the structure. 
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In truss structure system ,the basic parameters (including allowable stress,etc.) are  known 

and the optimization’s target is that identify the optimal bar truss cross-section area so that 

the structure is of the smallest total weight with minimum nodes displacement in a given load 

conditions . 

The multi-objective structural model can be expressed as  

(P11.1)  

 Minimize WT A                                                                                                               (11.1)  

 minimize A                                                                                                                   (11.2) 

   subject to A 
                                                                                                                             

(11.3) 

min maxA A A                                                                                                                                            (11.4) 

where  1 2, ,..., T
nA A A A are the design variables for the cross section, n is the group number 

of design variables for the cross section bar ,  
1

n

i i i
i

WT A A L


 is the total weight of the 

structure ,  A is the deflection of the loaded joint ,where ,i iL A and i are the bar length, 

cross section area and density of the thi group bars respectively.  A is the stress constraint 

and   is allowable stress of the group bars under various conditions, minA and maxA  are the 

lower and upper bounds of cross section area A respectively. 

11.2 Solution of Multi-objective Structural Optimization Problem (MOSOP) by  

Generalized Neutrosophic Goal Optimization Technique 

The multi-objective neutrosophic fuzzy structural model can be expressed as  

(P11.2)  

 Minimize WT A  with target value 0WT  ,truth tolerance WTa  ,indeterminacy tolerance WTd

and rejection tolerance WTc                                                                                                                    (11.5) 

 Minimize A  with target value 0  ,truth tolerance 
0

a
 ,indeterminacy tolerance 

0
d

and 

rejection tolerance 
0

c                                                                                                                            
(11.6) 

   subject to A 
                                                                                                                           

(11.7) 
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min maxA A A                                                                                                                                          (11.8) 

where  1 2, ,...., T
nA A A A are the design variables for the cross section, n is the group 

number of design variables for the cross section bar. 

To solve this problem we first calculate truth ,indeterminacy and falsity membership function 

of objective as follows  
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(11.15) 

According to  generalized neutrosophic goal optimization technique using  truth, 

indeterminacy and falsity membership function ,MOSOP (P11.1) can be formulated as 

(P11.3)  

Model -I  

, ,Maximize Maximize Minimize                                                                                               (11.16) 
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1 ,WTWT A WT a
w
 

   
                                                                                                                

(11.17)
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(11.20) 
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   0
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,A a a d
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(11.24)
 

  0
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,cA
w
   

                                                                                                                                  

(11.25) 

  0 ,A 
                                                                                                                                                 

(11.26) 

1 2 30 ;w w w       
                                                                                                                

(11.27) 

     1 2 30, , 0, , 0, ;w w w      

     1 2 30,1 , 0,1 , 0,1 ;w w w    

1 2 30 3;w w w   
                                                                                                                               

(11.28) 

  , 1,2,.....,j jg x b j m 
                                                                                                                     

(11.29) 

0, 1,2,....,jx j n 
                                                                                                                               

(11.30) 

With the help of generalized truth, indeterminacy, falsity  membership function the 

generalized neutrosophic goal programming based on arithmetic aggregation operator can be 

formulated as  

(P11.4)  

Model -II  

   1 1
3

Minimize
      

 
                                                                                                         

(11.31)  

Subjected to the same constraint as (P11.3) 

With the help of generalized truth, indeterminacy, falsity membership function the 

generalized neutrosophic goal programming based on geometric aggregation operator can be 

formulated as 

(P11.5)  

Model -III  

   3 1 1Minimize                                                                                                  (11.32)                                                                                            
 

Subjected to the same constraint as (P11.3) 

Now these  non-linear programming Model-I,II,III can be easily solved through  an 

appropriate mathematical programming to give solution of multi-objective non-linear 

programming problem (P11.1) by  generalized neutrosophic goal optimization approach. 

11.3 Numerical Illustration  
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A well-known three bar planer truss is considered in Fig.-11.1 to minimize weight of the 

structure  1 2,WT A A and minimize the deflection  1 2,A A  at a loading point of a 

statistically loaded three bar planer truss subject to stress constraints on each of the truss 

members 

 

Fig.-11.1 Design of the Three-Bar Planar Truss(Pratt Truss Bridge, 

http://www.atlaso.com,accessed on 17 June 2017) 

The multi-objective optimization problem can be stated as follows 

(P11.6)  

   1 2 1 2, 2 2Minimize WT A A L A A                                                                      (11.33) 

 
 

1 2
1 2

,
2

PLMinimize A A
E A A
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(11.38) 

min max 1,2i i iA A A i    

http://www.atlaso.com,accessed/
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 where P   applied load ;  material density ; L  length ; E Young’s modulus ; 1A 

Cross section of bar-1 and bar-3; 2A Cross section of bar-2;   is deflection of loaded joint. 

1
T   and 2

T   are maximum allowable tensile stress for bar 1 and bar 2 respectively, 3
C is 

maximum allowable compressive stress for bar 3.The input data is given in table1. 

Table 11.1 Input data for crisp model (P11.6) 
 

Applied 
load P  
 KN  

Volume 
density 
  

 3/KN m  

Length 
L 
 m  

Maximum 
allowable   

tensile  
stress

T 
   

 2/KN m  

Maximum 
allowable 

compressive 
stress C 

   
 2/KN m  

Young’s 
modulus 

E 
 2/KN m  

min
iA  

and  
max
iA  

of cross 
section 
of bars 
 4 210 m  

20  100  1  20  15  72 10  

min
1 0.1A   

max
1 5A   
min
2 0.1A 

max
2 5A   

This multi objective structural model can be expressed as neutrosophic fuzzy model as 

(P11.7)  

   1 2 1 2, 2 2Minimize WT A A L A A   with target value 24 10 KN  ,truth tolerance 

22 10 KN  ,indeterminacy tolerance 21

1 2

10
0.5 0.22

w KN
w w




and rejection tolerance 

24.5 10 KN                                                                                                                      (11.39) 

 
 

1 2
1 2

,
2

PLMinimize A A
E A A

 


 with target value 72.5 10 m  ,truth tolerance

72.5 10 m   ,indeterminacy tolerance 71

1 2

10
0.4 0.22

w m
w w




and rejection tolerance 

74.5 10 m                                                                                                                                                 (11.40) 

Subject to  
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(11.43) 

min max 1,2i i iA A A i  
                                                                                                                      

(11.44) 

According to  generalized neutrosophic goal optimization technique using  truth, 

indeterminacy and falsity membership function ,MOSOP (P11.6) can be formulated as 

(P11.8)  

Model -I  

, ,Maximize Maximize Minimize                                                                                               (11.45) 
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(11.50)
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(11.58) 

 1 2
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2A A




                                                                                                                                

(11.59) 

 
2

2
1 1 2

20 15;
2 2
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(11.60) 

0.1 5 1,2iA i  
                                                                                                                             

(11.61) 

With the help of generalized truth, indeterminacy, falsity  membership function the 

generalized neutrosophic goal programming problem (P11.6)based on arithmetic aggregation 

operator can be formulated as  

(P11.9)  

Model -II  

   1 1
3

Minimize
      

 
 

                                                                                    (11.62)
 

Subjected to the same constraint as (P11.8) 

With the help of generalized truth, indeterminacy, falsity  membership function the 

generalized neutrosophic goal programming problem (P11.6) based on geometric aggregation 

operator can be formulated as 

(P11.10)  

Model -III  

   3 1 1Minimize                                                                                                (11.63)                                                                                            
 

Subjected to the same constraint as (P11.8) 
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The above problem can be formulated  using  Model-I,II,III and can be easily solved by an 

appropriate mathematical programming to give solution of multi-objective non-linear 

programming problem (P11.6) by  generalized neutrosophic goal optimization approach and 

the results are shown in the table 11.2.Again value of membership function in GNGP 

technique for MOSOP (P11.6) based on different Aggregation is given in Table 11.3. 

Table 11.2 Comparison of GNGP solution of MOSOP (P11.6) based on different 

Aggregation 

Methods 1
4 210

A
m

  
2

4 210
A

m

 
 1 2

2

,

10

WT A A

KN
  1 2

7

,

10

A A

m




 

Generalized Fuzzy Goal 
programming(GFGP) 1 0.15w   0.5392616

 
4.474738

 
6

 
2.912270

 
Generalized Intuitionistic 

Fuzzy Goal 
programming(GIFGP) 1 0.15w 

3 0.8w   

0.5392619  4.474737  6  2.912270  

Generalized Neutrosophic Goal 
programming (GNGP) 

1 2 30.4, 0.3, 0.7w w w    
5  0.4321463  4.904282  3.564332  

Generalized Intuitionistic 
Fuzzy optimization (GIFGP) 

based on  Arithmetic 
Aggregation  
1 30.15, 0.8w w   

0.5392619  4.474737  6  2.912270  

 
Generalized Neutosophic 

optimization (GNGP) based on  
Arithmetic Aggregation  

1 2 30.4, 0.3, 0.7w w w    

5  0.4321468  4.904282  3.564333  

Generalized Intuitionistic 
Fuzzy optimization (GIFGP) 

based on  Geometric 
Aggregation  
1 30.15, 0.8w w   

0.5727008  2.380158  4  5.077751  

 
Generalized Neutosophic  

optimization (GNGP) based on  
Geometric Aggregation  

1 2 30.4, 0.3, 0.7w w w    

5  1.109954  4.462428  3.044273  

Here we get best solutions for the different value of 1 2 3, ,w w w  in geometric aggregation method 

for objective functions. From Table 11.2 it is clear that Neutrosophic Optimization technique 

is more fruitful in optimization of weight compare to fuzzy and intuitionistic fuzzy 

optimization technique. Moreover it has been seen that more desired value is obtain in 
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geometric aggregation method compare to arithmetic aggregation method in intuitionistic as 

well as neutrosophic environment in perspective of structural engineering. 

Table 11.3 Value of membership function in GNGP technique for MOSOP (P11.6) 

based on different Aggregation  

Methods * * *, ,    Sum of Truth, Indeterminacy and Falsity 
Membership Function

 

Neutrosophic Goal 
programming 

(GNGP) 
1 2 30.4, 0.3, 0.7w w w  

 

* .1814422 

* .2191435 

* .6013477 

 

        1 2 1 2 1 2, , ,

.2191435 .1804043 .1406661 .5402139
WT WT WTT WT A A I WT A A F WT A A 

   

        1 2 1 2 1 2, , ,

.2297068 .1804043 .1655628 .5756739

T A A I A A F A A     

   
 

Generalized 
Neutosophic 
optimization 
(GNGP) based on  
Arithmetic 
Aggregation  

1 2 30.4, 0.3, 0.7w w w  

 

* .2191435 

 
* .2191435 

* .6013480 

 
 

 

        1 2 1 2 1 2, , ,

.2191435 .1804044 .1406662 .5402141
WT WT WTT WT A A I WT A A F WT A A 

   

        1 2 1 2 1 2, , ,

.2297068 .1804044 .1655629 .5756741

T A A I A A F A A     

   
 

Generalized 
Neutosophic 
optimization 
(GNGP) based on  
Geometric 
Aggregation  

1 2 20.4, 0.3, 0.7w w w  

 

* .3075145 

 
* .3075145 

* .3075145 

 
 
 
 

 

        1 2 1 2 1 2, , ,

.3075145 .0922543 .07193320 .471702
WT WT WTT WT A A I WT A A F WT A A 

   

        1 2 1 2 1 2, , ,

.3129163 .09225434 .08466475 .48983539

T A A I A A F A A     

   
 

 
 

From the above table it is clear that all the objective functions are attain their goals as well as 
restriction of truth,indeterminacy and falsity membership function in neutrosophic goal 
programming problem based on different aggregation operator.The sum of 
truth,indeterminacy and falsity membership function for each objective is less than sum of 
gradiation  1 2 3w w w  . Hence the criteria of generalized neutrosophic set is satisfied.  

11.4 Conclusion 

The research study investigates that neutrosophic goal programming can be utilized to 

optimize a nonlinear structural problem. . The results obtained for different aggregation 

method of the undertaken problem show that the best result is achieved using geometric 

aggregation method. The concept of neutrosophic optimization technique allows one to 

define a degree of truth membership, which is not a complement of degree of falsity; rather, 

they are independent with degree of indeterminacy. As we have considered a non-linear three 

bar truss design problem and find out minimum weight of the structure as well as minimum 
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deflection of loaded joint, the results of this study may lead to the development of effective 

neutrosophic technique for solving other model of nonlinear programming problem in 

different field.  
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CHAPTER  12 
Multi-objective Cylindrical Skin Plate Design Optimization based on 

Neutrosophic Optimization Technique 
 
 
Structural optimization is an important notion in civil engineering. Traditionally structural 
optimization is a well known concept and in many situations it is treated as single objective 
form, where the objective is known the weight function. The extension of this is the 
optimization where one or more constraints are simultaneously satisfied next to the 
minimization of the weight function. This does not always hold good in real world problems 
where multiple and conflicting objectives frequently exist. In this consequence a 
methodology known as multi-objective structural optimization (MOSO) is introduced.In 
structural engineering design problems, the input data and parameters are often 
fuzzy/imprecise with nonlinear characteristics that necessitate the development of fuzzy 
optimum structural design method. Fuzzy set (FS) theory has long been introduced to handle 
inexact and imprecise data by Zadeh[133]. Later on Bellman and Zadeh [10] used the fuzzy 
set theory to the decision making problem. The fuzzy set theory also found application in 
structural design. Several researchers like Wang et al. [119] first applied α-cut method to 
structural designs where the non-linear problems were solved with various design levels α, 
and then a sequence of solutions were obtained by setting different level-cut value of α. Rao 
[89] applied the same α-cut method to design a four–bar mechanism for function generating 
problem. Structural optimization with fuzzy parameters was developed by Yeh et al. [132] 
Xu [13] used two-phase method for fuzzy optimization of structures. Shih et al. [95] used 
level-cut approach of the first and second kind for structural design optimization problems 
with fuzzy resources. Shih et al [96] developed an alternative α-level-cuts methods for 
optimum structural design with fuzzy resources. Dey et al. [32] used generalized fuzzy 
number in context of a structural design. Dey et al. [33] developed parameterized t-norm 
based fuzzy optimization method for optimum structural design. Also, Dey et.al[34] 
Optimized shape design of structural model with imprecise coefficient by parametric 
geometric programming.  In such extension, Atanassov [1] introduced Intuitionistic fuzzy set 
(IFS) which is one of the generalizations of fuzzy set theory and is characterized by a 
membership function, a non membership function and a hesitancy function. In fuzzy sets the 
degree of acceptance is only considered but IFS is characterized by a membership function 
and a non-membership function so that the sum of both values is less than one.  A 
transportation model was solved by Jana et al[57] using multi-objective intuitionistic fuzzy 
linear programming. Dey et al. [35] solved two bar truss non linear problem by using 
intuitionistic fuzzy optimization problem. Dey et al. [31] used intuitionistic fuzzy 
optimization technique for multi objective optimum structural design. Intuitionistic fuzzy sets 
consider both truth membership and falsity membership. Intuitionistic fuzzy sets can only 
handle incomplete information not the indeterminate information and inconsistent 
information.In neutrosophic sets indeterminacy is quantified explicitly and truth membership, 
indeterminacy membership and falsity membership which are independent. Neutrosophic 
theory was introduced by Smarandache [94] .The motivation of the present study is to give 
computational algorithm for solving multi-objective structural problem by single valued 
neutrosophic optimization approach. Neutrosophic optimization technique is very rare in 
application to structural optimization. We also aim to study the impact of truth membership, 
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indeterminacy membership and falsity membership function in such optimization process. 
The results are compared numerically both in fuzzy optimization technique, intuitionistic 
fuzzy optimization technique and neutrosophic optimization technique. From our numerical 
result, it is clear that neutrosophic optimization technique provides better results than fuzzy 
optimization and intuitionistic fuzzy optimization.  

12.1 Multi-objective Structural Model Formulation 

In the design problem of the structure i.e. lightest thickness of the structure and minimum sag 
that satisfies all stress  and deflection constraints in members of the structure. In vertical lift 
gate structural  system ,the basic parameters (including allowable stress ,deflection etc) are  
known and the optimization’s target is that identify the optimal thickness and sag so that the 
structure is of the smallest total weight with minimum stress and deflection in a given load 
conditions . 
The multi-objective structural model can be expressed as  

(P12.1)  
Minimize G    (12.1)                                                                                                                           
Minimize S                                                                                                                            (12.2)                                                                                                                            

 subject to                                                                                                                      (12.3)                                                                                                                            
                                                                                                                                     (12.4)                                                                                                                            

min maxG G G                                                                                                                        (12.5)                                                                                                                            
min maxS S S                                                                                                                         (12.6)                                                                                                                            

where G and S are  the design variables for the structural design,  is the deflection of the 
vertical lift gate of skin plate due to hydraulic load. is the stress constraint and   ,   are 
allowable stress of the vertical lift gate of skin plate under various conditions. minG and minS ,

maxG  and maxS are the lower and upper bounds of design variables respectively. 

12.2 Solution of Multi-objective Structural Optimization Problem (MOSOP) 
by Neutrosophic Optimization Technique 

To solve the MOSOP (P12.1), step 1 of 1.30 is used .After that according to step to pay off 
matrix is formulated. 

1 1 1

2 2 2

G S

G G S
S T S

 
 
 

 

According to step-2 the bound of weight objective , ;T T
G GU L ,I I

G GU L and ,F F
G GU L for truth, 

indeterminacy and falsity membership function respectively. Then  

;T T
G GL G U  ;F F

G GL G U  I I
G GL G U  . Similarly the bound of deflection  objective  are , ;T T

S SU L

,F F
S SU L and ,I I

S SU L are respectively for truth, indeterminacy  and falsity membership function. 
Then ;T T

S SL S U  ;F F
S SL S U  I I

S SL S U  .Where ;F T
G GU U ;F T

G G GL L   ,I T I T
G G G G GL L U L     

and ;F T
S SU U ;F T

S S SL L    ;I T
S SL L I T

S S SU L   such that  

 0 T T
G G GU L   and  0 T T

S S SU L   . 
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 According to neutrosophic optimization technique considering truth, indeterminacy and 
falsity membership function for MOSOP (P12.1), crisp non-linear programming problem can 
be formulated as  

(P12.2)  
 Maximize                                                                                                                                      

subject to 

;GT   ;ST  ;GF   ;GF   

;GI  ;SI   ;   ;   

3;     ;  ;   

 , , 0,1 ,       min maxG G G  min maxS S S                                                                                     

Solving the above crisp model (6) by an appropriate mathematical programming algorithm 
we get optimal solution and hence objective functions i.e structural weight and deflection of 
the loaded joint will attain Pareto optimal solution. 

12.3 Numerical Illustration  

    A cylindrical skin plate of vertical lift gate (Guha A.L et al [49]) in Fig-12.1 has been 
considered. The weight of the skin plate is about 40% of the weight of the vertical lift gate, 
thus the minimum weight of the vertical lift gate can be achieved by using minimum 
thickness of a skin plate with same number of horizontal girders for the particular hydraulic 
load. It is proposed to replace stiffened flat skin plate by unstiffened cylindrical skin plate. 
The stress developed in skin plate and its distribution mainly depends on water head, skin 
plate thickness, and sag and position of Horizontal girders. Stress and deflection are 
expressed in terms of water head, skin plate thickness, and sag based on finite element 
analysis. 
 

 

Fig.-12.1 Vertical lift gate with cylindrical shell type skin plate 

The proposed expressions are furnished as stress   31 2
1, , nn nG S H K G S H  

 where,   stress in 
Kg/cm2; H water Head in ‘m’ G Thickness in ‘mm’ S  Sag in ‘mm’ 

1K constant of variation and 1;n 2n  and 3n  constants depend on the properties of material  
Similarly,deflection   5 64

2, , n nnG S H K G S H 
  where, 2K   constant of variation and 
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4 ;n 5n  and 6n  constants depend on the properties of material.  

To minimize the weight of Vertical gate by simultaneous minimization of Thickness G  and 
sag, S of skin plate subject to maximum allowable stress  0 and deflection  0 . 

So the model is 
(P12.3)  

Minimize G                                                                                                                          (12.54)                                                                                                                                                                                                                                                                          

Minimize S                                                                                                                          (12.55)                                                                                                                            

Subject to  

  31 2
1 0, , ;nn nG S H K G S H  

                                                                                             (12.56)                                                                                                                            

  5 64
2 0, , n nnG S H K G S H 

                                                                                              (12.57)                                                                                                                            

, 0;G S   

Input data of the problem is tabulated in Table.12. 1.  

Table 12.1 Input data for crisp model (P12.1) 
 

constant of 
variation 1K  

constant of 
variation

2K  
constants depend on the 
properties of material 

water 
head

H  
 m  

Maximum 
allowable 
stress 0  
 Mpa  

Maximum 
allowable 
deflection 
of girder

0  
 Mpa  

33.79 10  587.6 10  1 0.44;n  2 1.58;n  3 1.0n   
4 0.729;n  5 0.895;n  6 1.0n   25  

137.5  5.5  

Solution : According to step 2 of 1.30, pay-off matrix is formulated as follows 

1 5

2 2

0.59 10 37.61824
3528.536 0.10256 10

G S

G
S





 
 

 

 

Here 3528.536,F T
G GU U  50.59 10 ;F T

G G G GL L       50.59 10 ,I T
G GL L   

50.59 10I T
G G G GU L        

Such that  50 , 3528.536 0.59 10G G      ; 

37.61824,F T
S SU U  20.10256 10 ;F T

S S S SL L       20.10256 10 ,I T
S SL L   

20.10256 10I T
S S S SU L      

 
such that  20 , 37.61824 0.10256 10S S       

Here truth, indeterminacy, and falsity membership function for objective functions are G and 
S are defined as follows  
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5

5
5

1 0.59 10
3528.536 0.59 10 3528.536

3528.536 0.59 10
0 3528.536

G

if G
GT if G

if G







  



   

 
 
                                                          

(12.58)                                                                                                                            

 

5

5
5

5

0 0.59 10

0.59 10
0.59 10 3528.536;

3528.536 0.59 10
1 3528.536

G

G
G G

G

if G

G
F if G

if G
















   


  
    

  
 
   

(12.59)                                                                                                                           

 

5

5
5 5

5

1 0.59 10

0.59 10
0.59 10 0.59 10

0 0.59 10

G
G G

G

G

if G

G
I if G

if G












 



  


  
     

   
                                                   

(12.60)                                                                                                                            

 
2

2
2

1 0.10256 10
37.61824 0.10256 10 37.61824;

37.61824 0.10256 10
0 37.61824

S

if S
ST if S

if S







  



   

 
 
  

(12.61)                                                                                                                           

 

2

2
2

2

0 0.10256 10

0.10256 10
0.10256 10 37.61824;

37.61824 0.10256 10
1 37.61824

S

S
S S

S

if S

S
F if S

if S
















   


  
    

  
 
                                 

(12.62)                                                                                                                            

 

2

2
2 2

2

1 0.10256 10

0.10256 10
0.10256 10 0.10256 10

0 0.10256 10

S
S S

S

S

if S

S
I if S

if S












 



  


  
     

   
                                    

(12.63)                                                                                                                           

 

Now using neutrosophic optimization technique with truth, indeterminacy and falsity 
membership functions we get 

(P12.4)  
 Maximize                                                                                                                (12.64)                                                                                                                            

 53528.536 0.59 10 3528.536;subject to G                                                                      (12.65)                                                                                                                            

 237.61824 0.10256 10 37.61824;S                                                                                 (12.66)                                                                                                                            

  51 0.59 10 3528.536 ;GG                                                                                        (12.67)                                                                                                                            

  21 0.10256 10 37.61824 ;SS                                                                                    (12.68)                                                                                                                            



  

Page 274 

 

  

 50.59 10 ;G GG                                                                                                          (12.69)                                                                                                                            

 20.10256 10 ;S SS                                                                                                      (12.70)                                                                                                                            

 3 0.44 1.583.79 10 25 137.5;G S                                                                                              (12.71)                                                                                                                            

 5 0.729 0.89587.6 10 25 5.5;G S                                                                                               (12.72)                                                                                                                            

;                                                                                                                                  (12.73)                                                                                                                            

;                                                                                                                                   (12.74)                                                                                                                            

3;                                                                                                                            (12.75)                                                                                                                            

 , , 0,1                                                                                                                           (12.76)                                                                                                                            

Table 12.2 Comparison of Optimal solution of MOSOP (P12.1) based on 
different method 

Methods 
G

 
 mm  

T
 

 mm  

Fuzzy multi-objective nonlinear 
programming (FMONLP) 52.88329  0.5648067  

Intuitionistic fuzzy multi-objective 
nonlinear programming (IFMONLP) 

1764.268, 2.57033G S    
52.88329  0.5648065  

Neutosophic optimization (NSO) 
1764.268, 22.57033G G S S        44.28802  0.5676034  

Here we get best solutions for the different tolerance ,G S   for indeterminacy membership 
function of objective functions. From the Table 12.2, it shows that NSO technique gives 
better Pareto optimal result in the perspective of Structural Optimization. 

12.4 Conclusion 

The main objective of this work is to illustrate how much neutrosophic optimization 
technique reduce thickness and sag of  nonlinear vertical lift gate in comparison of fuzzy and 
intuitionistic fuzzy optimization technique. The concept of neutrosophic optimization 
technique allows one to define a degree of truth membership, which is not a complement of 
degree of falsity; rather, they are independent with degree of indeterminacy. Here we have 
considered a non-linear skin plate of vertical lift gate problem .In this problem, we find out 
minimum thickness of the structure as well as minimum sag of cylindrical skin plate. The 
comparisons of results obtained for the undertaken problem clearly show the superiority of 
neutrosophic optimization over fuzzy optimization and intuitionistic fuzzy optimization. The 
results of this study may lead to the development of effective neutrosophic technique for 
solving other model of nonlinear programming problem in different field.  
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APPENDIX-A 

13.1 Crisp Set 
A set (crisp set) can be defined as the collection of well-defined distinct objects. For example 

if the set of odd  positive real numbers in between 0 20and  be denoted by    ,then in 

tabular form it will be  : 2 ,0 10x x n n      and in set builder form it will be 

 2,4,6,8,10,12,14,16,18   

13.2  Fuzzy Set 
A fuzzy set is an extension of the notion of  crisp set such that their elements   are 

characterized by their grade of membership and non-membership. 

 Fuzzy Sets are  Introduced by Zadeh [133] as means of modelling problems and 

manipulating data that are not precise, in which the source of imprecisions is the absence of 

sharply defined criteria of class membership. Fuzzy set is an extension of crisp set i.e a 

classical set. Specially a fuzzy set on a classical set X  is defined as follows 

   , :AA x x x X 
                                                                                                                          

(13.1)
 

where  A x is termed as the grade of membership of x  in A and the function 

   : 0,1A x X   while assign the value 0 ,the member is not included in the given set and 

while it assign  1 ,the member is fully included. The value strictly lies between 0 1and

characterized by the fuzzy numbers. 

 

 
 

Fig.-13.1 Rough Sketch of Crisp Set and Membership Function of Fuzzy Set 

 

In case of crisp set members are in the set with membership value 1 or out of the set the 

membership value 0 .Thus crisp set  fuzzy set. In other word crisp set is the special case of 
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fuzzy set. For example  if “tall women” is considered as a member in fuzzy  set then it will be 

considered as a member in crisp set when it  ranged with 6 ft   . Similarly a point near 10  

in fuzzy while be ranged with 9.8,10.3  then it will be considered as an member in crisp set. 

13.3 Height of a Fuzzy Set 

The height of a fuzzy set A  on X ,denoted by  hgt A  is the least upper bound of  A x i.e 

   sup A
x X

hgt A x



                                                                                                            

(13.2) 

13.4  Normal Fuzzy Set 

A fuzzy set A is said to be normal if there exist at least one x X attaining the maximum 

membership grade 1 (i.e   1hgt A   ),otherwise it is subnormal .For optimized fuzzy set A

  1Ax X
Max x



                                                                                                                                            

(13.3) 

13.5     Cut of Fuzzy Set 

The  cut of the fuzzy set A on X is  crisp set that contains all the element of X  that 

have membership values in A  greater than or equal to .  i.e 

    : , , 0,1AA x x x X      
                                                                                 

(13.4) 

13.6  Union of Two Fuzzy Sets 

The union of two fuzzy sets  A  and B  is a fuzzy set of X ,denoted by A B  and is defined 

by the membership function  

     BA B Ax x x    for each x X                                                                                        (13.5) 

so that           , : max , ,BA B A B AA B x x x x x x X      
                          

(13.6)
 

or     max , /BA
x X

A B x x X 


 
                                                                             

(13.7)
 

for any continuous fuzzy set ,A B  . 

13.7 Intersection of Two Fuzzy Sets 

The intersection of two fuzzy sets  A  and B  is a fuzzy set of X ,denoted by A B  and is 

defined by the membership function  

     BA B Ax x x    for each x X                                                                                        (13.8) 

so that 
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          , : min , ,BA B A B AA B x x x x x x X      
 

(13.9)

    min , /BA
x X

A B x x X 


                                                                                   (13.10)
 

for any continuous fuzzy set ,A B .  
13.8 Convex Fuzzy Set 

A fuzzy set  A of universe of X is convex if and only if for all 1 2,x x in X

       1 2 1 21 min ,A A Ax x x x         when 0 1                                                    (13.11) 

13.9 Interval Number 
Interval analysis is a new and growing branch of applied mathematics. It provides necessary 

calculus called interval arithmetic for interval numbers. An interval number can be thought as 

an extension of the concept of a real number and also as a subset of real numbers. An interval 

number A  is defined by an ordered pair of real numbers as follows

   , : ,L R L RA a a x a x a x R                                                                                    (13.12) 

where La and Ra the left and right bounds of interval A  respectively The interval A is also 

defined by centre  ca and half width  wa  as follows 

 , : ,c w c w c wA a a x a a x a a x                                                                        (13.14) 

where 2
R L

c
a aa 

 is the centre and 2
R L

w
a aa 

 is the half width of A . 

The addition of two interval numbers  ,L RA a a and  ,L RB b b is defined as 

     , , ,L R L R L L R RA B a a b b a b a b        (13.15)

,c w c w c c w wor A B a a b b a b a b                                                              (13.16) 

Similarly the multiplication of an interval number by a scalar can be defined by 

 

 

, 0

, 0
L R

R R

kA ka ka if k

ka ka if k

 

 
                                                                                                                        

(13.17)
 

 or , ,c w c wkA k a a ka k a   
                                                                                                    

(13.18)  

13.10 Fuzzy  Number 
A fuzzy number is a special case of a fuzzy set. Different definitions and properties of fuzzy 
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 numbers are encountered in the literature but they all agree on that fuzzy numbers represents 

the conception of a set of „real numbers choose to a‟ ,where „a‟ is the number of fuzzy field.A 

fuzzy number is a fuzzy set in the universe of discourse X i.e both convex and normal. 

A Fuzzy number A is a fuzzy set defined on real line whose membership function  A x

has the following characteristic with 1 2 3 4a a a a      

 

 

 

1 2

2 3

3 4

1

0

L

A
R

x for a x a
for a x a

x
x for a x a

for otherwise






  


 
 

 

                                                                                        

(13.19)

 

where      1 2: , 0,1L x a a  is continuous and strictly increasing;    3 4: , 0,1R a a  is 

continuous and strictly decreasing. The general shape of fuzzy number following the above 

definition is shown below. 

 

Fig.-13.2 Fuzzy Number 

Fig.-13.2 Triangular Fuzzy number(TFN) 

Let  F   be a set of all triangular fuzzy number in real line  . A triangular fuzzy number  

 A F  is fuzzy number with membership function  : 0,1A  parameterized by a 

triplet  1 2 3, ,
TFN

a a a  and defined by  

 

1
1 2

2 1

2

3
2 3

3 2

1

0

A

x a for a x a
a a

for x a
x

a x for a x a
a a

otherwise



 
  

 
 

 
 

    
                                                                        

(13.20) 

where 1a and 3a denote the lower and upper limits of support of a fuzzy number A  
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Fig.-13.3 Triangular Fuzzy Number 

2.10.1 Trapezoidal Fuzzy Number(TrFN) 

Let  F   be a set of all trapezoidal fuzzy number in real line  . A trapezoidal fuzzy 

number  A F  is fuzzy number with membership function  : 0,1A  parameterized 

by a quadruple  1 2 3 4, , ,
TrFN

a a a a and defined by  

 

1
1 2

2 1

2 3

4
3 4

4 3

1

0

A

x a for a x a
a a

for a x a
x

a x for a x a
a a

otherwise



 
  

 
  

 
 

    
                                                                                 

(13.21) 

where 1a and 4a denote the lower and upper limits of support of a fuzzy number A  

 

Fig.-13.4 Trapezoidal Fuzzy Number 

 

13.11       Cut of Fuzzy  Number 

The   level of a fuzzy number A is defined as a crisp set 

    : , , 0,1AA x x x X      
                                                                                

(13.22)
 

. A is nonempty bounded closed interval contained in X and it can be denoted by  
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   ,L RA A A       ,                                                                                                                          (13.23) 

 LA   and  RA  are the lower and upper bound of the closed interval. 

13.12 Generalized Fuzzy Number (GFN) 

Generalized fuzzy number can be defined as A  as  , , , ;A a b c d w  where 0 1w   and 

, , ,a b c d  are real numbers .The generalized fuzzy numbers  A is a fuzzy subset of real line 

whose membership function  A x  satisfies the following conditions 

1)  A x  is continuous mapping from  to the closed interval  0,1  

2)   0A x  where ;x a    

3)  A x is strictly increasing with constant rate on  ,a b  

4)  A x w   where b x c   

5)  A x  is strictly decreasing with constant rate on  ,c d ; 

6)   0A x  where d x   

Note: A is a convex fuzzy set and it is non normalized fuzzy number till 1w  .It will be 

normalized for 1w   

i) If a b c d   and 1w  ,then A is called a real number a . 

Here   , AA x x with membership function  
1
0A

if x a
x

if x a



 

  

ii) If a b  and c d ,then A is called a crisp interval  ,a b . 

Here   , AA x x with membership function  
1
0A

if a x d
x

if otherwise


 
 
  

iii) If b c  then A is called Generalized Triangular Fuzzy Number(GTFN) as  , , ;a b d w  

iv) If , 1b c w   then A is called Triangular Fuzzy Number (TFN) as  , ,A a b d  

Here   , AA x x  with membership function  

0

A

x aw for a x b
b a
d xx w for b x d
d b

otherwise
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v) If b c  then A is called Generalized Trapezoidal Fuzzy Number (GTrFN) and 

denoted by  , , , ;A a b c d w  

vi) If , 1b c w   then A is called Trapezoidal Fuzzy Number(TrFN) as  , , ,A a b c d  

Here   , AA x x  with membership function  

 

0

A

x aw for a x b
b a
w for b x c

x
d xw for c x d
d c

otherwise



  
  

 
  

 
      


                                                                                       

(13.24) 

  Traditional fuzzy arithmetic operations can deal with only normalized fuzzy numbers and  

the type of membership function of fuzzy number are not changeable after arithmetic 

operations. Thus Chen [31] proposed the function principle by which  these fuzzy arithmetic 

operations on fuzzy numbers does not only change the type of membership function after 

arithmetic operation ,but they can also reduce the troublesomeness and tediousness of 

arithmetical operations. Thus in this chapter ,we have introduced  Chen‟s[31] fuzzy number  

arithmetical operators to deal with the fuzzy number arithmetical operation of  generalized 

fuzzy numbers.The difference between the arithmetic operations on generalized fuzzy 

numbers and the traditional fuzzy numbers is that the later can deal with only normalized 

fuzzy number. 

13.13 Nearest Interval Approximation of Fuzzy Number 
Here we want to approximate an fuzzy number  1 2 3, , ;A a a a w  by a crisp model. 

Let A and B be two fuzzy number with    cuts     ,L UA A     and    ,L UB B     

respectively. Then the distance between them can be measured according to Euclidean matric 

as          
1 1

2 22

0 0
E L L U Ud A B d A B d         

                                                       

(13.25) 

Now we find a closed interval    ,
Ed L UC A C C which is nearest to A with respect to the 

matric Ed .Again it is obvious that each real interval can also be considered as an fuzzy 
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number with constant  cut     ,
Ed L UC A C C  for all  0,1  .Now we have to 

minimize         
1 1

2 22

0 0

,
EE d L L U Ud A C A A C d A C d       

                                 

(13.26)
 

 with respect to LC and UC .In order to minimize   ,
EE dd A C A it is sufficient to minimize 

the functions      2, ,
EL U E dD C C d A C A . The first partial derivatives are 

 
 

1

0

,
2 2L U

L L
L

D C C
A d C

C
 


  

 
                                                                                                  

(13.27)  

 
 

1

0

,
2 2L U

U U
U

D C C
A d C

C
 


  

 
                                                                                                  

(13.28) 

And then we solve the system 

 ,
0,L U

L

D C C
C





                                                                                                                                     (13.29) 

 ,
0L U

U

D C C
C





                                                                                                               (13.30) 

The solution is  

 
1

0

;L LC A d  
                                                                                                                                    

(13.31)
 

  
1

0
U UC A d                                                                                                                (13.32) 

Since  

   

   

2 2

2

2 2
1

2

, ,

det
, ,

L U L U

L L U

L U L U

L U U

d C C D C C
C C C

D C C F C C
C C C

  
 

   
  
 
    

 
2 0

4 0
0 2
 

   
 

                                                    (13.33) 

then LC  UC mentioned above minimize  ,L UD C C . The nearest interval of the intuitionistic 

fuzzy number A  with respect to the matric Ed is  

     
1 1

0 0

,
Ed L UC A A d A d   

 
  
 
 

   1 2 3 22 1 2 1
,

2 2
w a a w a a

w w
    

  
                              

(13.34) 

13.14 Intuitionistic Fuzzy Set 
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Fuzzy set theory was first introduced by L.A.Zadeh [134] in 1965.Let X  be the universe of 

discourse defined by  1 2, ,..., nX x x x .The grade of membership of an element ix X in a 

fuzzy set is represented by real value in  0,1  .It does indicate the evidence of ix X but does 

not indicate the evidence against ix X .Attanassov [1] presented the concept of IFS.An IFS

iA  in X is characterized by a membership function  iA
x and a nonmembership function

 iA
x  .Here  iA

x  and  iA
x are associated with each point in X ,a real number in 0,1

with the values of  iA
x  and  iA

x at X  representing the grade of membership and non-

membership of x  in  iA  .When iA is an ordinary (crisp) set its membership function (non- 

membership functions) can only take two values zero and one.An IFS becomes a fuzzy set 

A when   0iA
x   but    0,1i

i
A

x x A    .Let a set X  be fixed .An intuitionistic fuzzy 

set iA  in X is and object having the form  

    , , :i i
i

A A
A x x x x X                                                                                          

where    : 0,1iA
x X   and    : 0,1iA

x X   define the degree of membership and 

degree of nonmembership respectively of the element x X to the set iA  ,which is a subset 

of X ,for every element of x X ,    0 1.i iA A
x x   

                                                     
(13.35)

 

13.15    ,    Level Or  ,    Cuts  

A set of  ,  cut, generated by an IFS iA where     , 0,1   are fixed number such that 

1    is defined as  

 

   

     ,

, , /
, , , 0,1

i i

i i

i A A

A A

x x x x X
A

x x 

 

     

    
  

                                                                           
(13.36)

 

.We define  ,   level or  ,  cut ,denoted by  ,
iA
 

 ,as the crisp set of elements x  

which belong to iA at least to the degree   and which belong to iA at most to the degree  . 

13.16 Convex Intuitionistic Fuzzy Set 
An intuitionistic fuzzy set  

    , , :i i
i

A A
A x x x x X    

                                                                                           
(13.37)

 
 is convex intuitionistic  fuzzy set if  

       1 2 1 21 max ,i i iA A A
x x x x      

                                                                              
(13.38)
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 and        1 2 1 21 min ,i i iA A A
x x x x       1 2,x x X  and 0 1  .                      (13.39) 

13.17 Union Of Two Intuitionistic Fuzzy Sets 

Let      , , :i i
i

A A
A x x x x X     and     , , :i i

i
B B

B x x x x X      be two 

intuitionistic fuzzy sets, then union of two intuitionistic fuzzy set will be defined by 

          ,max , ,min , :i i i i
i i

A B A B
A B x x x x x x X      

                               
(13.40)

 

13.18 Intersection of Two Intuitionistic Fuzzy Sets 

Let      , , :i i
i

A A
A x x x x X      and     , , :i i

i
B B

B x x x x X      be two 

intuitionistic fuzzy sets, then intersection of two intuitionistic fuzzy sets will be defined by 

          ,min , ,max , :i i i i
i i

A B A B
A B x x x x x x X      

                               
(13.41) 

13.19 Generalized Intuitionistic Fuzzy Number(GIFN) 

A generalised intuitionistic fuzzy number iA  can be defined with the following properties 

i)It is an intuitionistic fuzzy subset of real line. 

ii)It is normal i.e there exists 0x R such that    0iA
x w R   and    0iA

x R    for 

1;w    

iii)It is a convex set for membership function  iA
x i.e  

       1 2 1 21 min ,i i iA A A
x x x x        for all  1 2, , 0,x x R w  . 

iv) It is a concave set for non membership function  iA
x i.e  

       1 2 1 21 max ,i i iA A A
x x x x        for all  1 2, , ,1x x R    . 

v) iA
 is continuous mapping from R to the closed interval  0, w and iA

 is continuous 

mapping from R to the closed interval  ,1 and for 0x R the relation 1i iA A
    holds 

13.20 Generalized Triangular Intuitionistic Fuzzy Number(GTIFN) 

A generalized triangular intuitionistic fuzzy number    1 2 3 1 2 3, , ; , , ;i
a aA a a a w a a a     is a 

intuitionistic fuzzy number in   and can be defined with the following membership function 

and non-membership function as follows 
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1
1 2

2 1

2

3
2 3

3 2

0

i

a

a
A

a

x aw for a x a
a a

w for x a
a xw for a x a
a a

otherwise













 
 


 

 
  

 

                                                                                  

(13.42)

 

1
1 2

2 1

2

2
2 3

3 2

1

i

a

a
A

a

x a for a x a
a a

for x a
x a for a x a

a a
otherwise

















 
 


 

 
  

 

                                                                                    

(13.43) 

Where 1 1 2 3 3a a a a a       . 

13.21 Level Set or   Cut of Intuitionistic Fuzzy Number 

Let    1 2 3 1 2 3, , ; , , ;i
a aA a a a w a a a     be a triangular intuitionistic fuzzy number then  

cut of this intuitionistic fuzzy number is defined by the closed interval 

   , , (0,1]i i
L UA A

      
 

and    , , [0,1)i i
L UA A

      
 

where 

    inf :i i
L LA A

x R x     
                                                                                                      

(13.44)
 

  
    sup : ,i i

U UA A
x R x     

                                                                                                
(13.45)

 

    inf :i i
L LA A

x R x     
                                                                                                       

(13.46)
 

    sup : ,i i
U UA A

x R x     
                                                                                           

(13.47)
 

13.22 Arithmetic Operation of Triangular Intuitionistic Fuzzy 

Number (TIFN) 

Let    1 2 3 1 2 3, , ; , , ;i
a aA a a a w a a a      and    1 2 3 1 2 3, , ; , , ;i

b bB b b b w b b b     be two 

triangular intuitionistic fuzzy number then the arithmetic operations on these numbers can be 

defined as follows 

(i)       1 1 2 2 3 3 1 1 2 2 3 3, , ;min , , , ;max ,i i
a b a bA B a b a b a b w w a b a b a b                  

(ii)       1 1 2 2 3 3 1 1 2 2 3 3, , ;min , , , ;max ,i i
a b a bA B a b a b a b w w a b a b a b                  
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(iii) 
   

   

1 2 3 1 2 3

3 2 1 3 2 1

, , ; , , ; 0

, , ; , , ; 0

a ai

a a

ka ka ka w ka ka ka for k
kA

ka ka ka w ka ka ka for k

   

   





 


 




 

(iv)

      

      

      

1 1 2 2 3 3 1 1 2 2 3 3

1 3 2 2 3 1 1 3 2 2 3 1

3 3 2 2 1 1 3 3 2 2 1 1

, , ;min , , , ;max , 0, 0

. , , ;min , , , ;max , 0, 0

, , ;min , , , ;max ,

i i
a b a b

i i i i
a b a b

a b a b

a b a b a b w w a b a b a b for A B

A B a b a b a b w w a b a b a b for A B

a b a b a b w w a b a b a b fo

       

       

       

 

 

 

 

  

0, 0i ir A B






  


 

(v) 

      

      

  

1 3 2 2 3 1 1 3 2 2 3 1

3 3 2 2 1 1 3 3 2 2 1 1

3 1 2 2 1 3 3 1 2 2

/ , / , / ;min , / , / , / ;max , 0, 0

/ / , / , / ;min , / , / , / ;max , 0, 0

/ , / , / ;min , / , / ,

i i
a b a b

i i i i
a b a b

a b

a b a b a b w w a b a b a b for A B

A B a b a b a b w w a b a b a b for A B

a b a b a b w w a b a b

       

       

     

 

 

 

  

   1 3/ ;max , 0, 0i i
a ba b for A B   






  
  

13.23 Nearest Interval Approximation for Intuitionistic Fuzzy 

Number 
Here we want to approximate an intuitionistic fuzzy number

   1 2 3 1 2 3, , ; , , ;i
a aA a a a w a a a      by a crisp model. 

Let iA and iB be two intuitionistic fuzzy number.Then the distance between them can be 

measured according to Euclidean matric as 

         
1 1 222

0 0

1 1
2 2L L U UE A B A Bd d d             

         
1 1 22

0 0

1 1
2 2L L U UA B A Bd d                                                                     (13.48) 

Now we find a closed interval    ,
E

i
d L UC A C C which is nearest to iA with respect to the 

matric Ed .Again it is obvious that each real interval can also be considered as an intuitionistic 

fuzzy number with constant  cut  ,L UC C for all  0,1  .Now we have to minimize 

  ,
E

i i
E dd A C A  with respect to LC and UC ,that is to minimize 

       
1 1 22

1
0 0

,
L UL U A L A UF C C C d C d         

     
1 1 22

0 0
L UA L A UC d C d                                                                                           (13.49) 

With respect to LC and UC . We define partial derivatives 
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1
1

0

,
2 4

L L

L U
A A L

L

F C C
d C

C
    


   

                                                                (13.50) 

 
    

1
1

0

,
2 4

U U

L U
A A U

U

F C C
d C

C
    


   

 
                                                              (13.51) 

and then we solve the system 

 1 ,
0,L U

L

F C C
C





                                                                                                                                     (13.52) 

 1 ,
0L U

U

F C C
C





                                                                                                               (13.53) 

The solution is  

   1

0

;
2

L LA A
LC d

   



 

                                                                                                                (13.54) 

 

   1

0 2
U UA A

UC d
   




 
                                                                                            (13.55) 

Since  

   

   

2 2
1 1

2

2 2
1 1

2

, ,
4 0

det 4 0
0 4, ,

L U L U

L L U

L U L U

U L U

F C C F C C
C C C

F C C F C C
C C C

  
 

             
 
    

                                                                 (13.56)
 

 then LC  UC mentioned above minimize  1 ,L UF C C . The nearest interval of the intuitionistic 

fuzzy number iA  with respect to the matric Ed is 

 
       1 1

0 0

,
2 2

U UL L

E

A AA Ai
dC A d d

      
 

 
  
  
 

  

(13.57)

2 3 3 2 3 21 2 2 1 2 1 ,
2 4 4 2 4 4

a a a a a aa a a a a a
w w

    

 

     
     
 

 

13.24  Parametric Interval Valued Function 

 If  ,m n be an interval with , 0m n  we can express an interval number by a function. The 

parametric interval-valued function for the interval  ,m n can be taken as  

  1 s sg s m n  for  0,1s                                                                                                (13.58) 
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which is strictly monotone continuous function and its inverse exists .Let   be the inverse of 

 g s then log log
log log

ms
n m
 




.                                                                                            (13.59) 

13.25 Ranking of Triangular Intuitionistic Fuzzy Number 

A triangular intuitionistic fuzzy number    1 2 3 1 2 3, , ; , , ;i
a aA a a a w a a a     is completely 

defined by 

  1
1 2

2 1
a

x aL x w for a x a
a a




 


  


                                                                                 (13.60) 

and  

  3
2 3

3 2

;a
a xR x w for a x a
a a




 


  

                                                                                
(13.61) 

  2
1 2

2 1
a

a xL x for a x a
a a



 



  

                                                                                  
(13.62)

 
and   

  2
2 3

3 2
a

x aR x for a x a
a a



 



  


.                                                                                 (13.63) 

The inverse functions can be analytically express as 

   1
1 2 1 ;

a

hL h a a a
w

 



                                                                                                  (13.64) 

   1
3 3 2 ;

a

hR h a a a
w

 



   

                                                                                             
(13.65)

 

    1
2 2 1 ;

a

hL h a a a




   

                                                                                              
(13.66)

 

   1
2 3 2 ;

a

hR h a a a




   

                                                                                               
(13.67) 

Now left integral value of membership and non-membership functions of  iA are 

   
 1

1 21

0

2 1
2

ai
L

a

w a a
I A L h

w






 

 
                                                                               

(13.68)
 

and  

   
 1

1 21

0

2 1
2

ai
L

a

a a
I A L h










 

 
                                                                                 

(13.69)
 

respectively 
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and right integral value of membership and non-membership functions are   

 
   

 1
3 21

0

2 1
2

ai
R

a

w a a
I A L h

w






 

 
                                                                               

(13.40)
 

and  

   
 1

3 21

0

2 1
2

ai
R

a

a a
I A L h










 

 
                                                                                 

(13.41)
 

respectively. 

The total integral value of the membership functions is 

 
 

 
      2 3 13 2 1 2 2 1 12 1 2 1

1
2 2 2

aa ai
T

a a a

a w a aw a a w a a
I A

w w w

  


 

 
      

   

         
(13.42) 

The total integral value of the non membership functions is  

 
 

 
      2 3 13 2 1 2 2 1 12 1 2 1

1
2 2 2

aa ai
T

a a a

a a aa a a a
I A

  


   

 
  

      
   

         
(13.43) 

Now if    1 2 3 1 2 3, , ; , , ;i
a aA a a a w a a a      and    1 2 3 1 2 3, , ; , , ;i

b bB b b b w b b b     be two 

triangular intuitionistic fuzzy number then the following relations hold good 

i) If    i i
T TI A I B   and    i i

T TI A I B  for  , 0,1   then i iA B        

ii) If    i i
T TI A I B   and    i i

T TI A I B  for  , 0,1   then i iA B  

iii) If    i i
T TI A I B   and    i i

T TI A I B  for  , 0,1   then i iA B  
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APPENDIX-B 

14.1 Geometric Programming(GP) Method 

 
A Geometric Programming (GP) is a type of mathematical optimization problem 

characterized by objective and constraint functions that have a special form. GP is a 

methodology for solving algebraic non-linear optimization problems. Also linear 

programming is a subset of a GP .The theory of GP was initially developed about three 

decades ago and culminated in the publication of the seminal text in this area by Duffin, 

Peterson, and Zener [134]              

The general constrained Primal GP problem can be stated as follows      

(P14.1)  
0

0
0 0

1 1

( ) tj

T n
a

t j
t j

Minimize f x c x
 

                                                                                           (14.1)                  

             subject to                                                                                                   

1 1

( ) ; 1,2,3,...,
m

itj

T n
a

i it j i
t j

f x c x b i m
 

                                                                               (14.2)                                                                          

0, 1,2,..., .jx j n                                                                                                        (14.3) 

Here 0 0tc   and 0tja be any real number. The objective function contains 0T terms and 

inequality constraints contain iT terms. Here the coefficient of each term is positive. So it is a 

constrained posynomial GP  problem. Let  0 1 ......... iT T T T     be the total number of 

terms in the primal programme. The degree of difficulty (DD) is defined as DD = Total no. of 

terms – (Total no. of variables -1) = ( 1)T n  .The dual problem (with the objective function 

( )d w ,where  ( ), 0,1,2......, ; 1,2,.....it iw w w i m t T    is the decision vector) of the GP 

problem (P14.1) for the general posynomial case is as follows 

(P14.2)  
0

0
0

1 1 10

( )
itt

i
wwT Tm

it itt

t i tt i it

c wcMaximize d w
w b w  

  
     

   


                                                              (14.4) 

            subject to                                                                                                              

0

0
1

1
T

t
t

w


 ,                                             (Normality condition)                                           (14.5) 
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0 1
0 1,2,.., .

iTm

itj it
i t

a w for j n
 

        (Othogonality conditions)                                      (14.6) 

0 0,1,..., ; 1,2,... .it iw i m t T                                                                                         (14.7) 

For a primal problem with m  variables, 0 1 ......... iT T T    terms and n constraints, the dual 

problem consists of 0 1 ......... iT T T    variables and  m+ 1 constraints. The relation between 

these problems, the optimality has been shown to satisfy 

0 * * *
0 0

1

( ) 1,2,3,...,tj
n

a
t j t i

j

c x d w w t T


                                                                                (14.8) 

*

*1

1

1,2,3,..., ; 1,2,3,...,itj

i

n
a it

it n iT
j

it
t

wc x i m t T
w



  


                                                             (14.9) 

Taking logarithms in (14.8) and (14.9) and putting logj jt x  for 1,2,..., .j n  we shall get a 

system of linear equations of jt ( 1,2,..., .j n ).We can easily find primal variables from the 

system of linear equations. 

Case I: For 1T n   ,the dual programme presents a system of linear equations for the dual          

variables where the number of linear equations is either less than or equal to the number of 

dual variables. A solution vector exists for the dual variable (Beightler and Philips [9]). 

Case II: For 1T n  ,the dual programme presents a system of linear equations for the dual 

variables where the number of linear equation is greater than the number of dual variables. In 

this case, generally, no solution vector exists for the dual variables. However, one can get an 

approximate solution vector for this system using either the least squares or the linear 

programming method. 

14.2 Posynomial Geometric Programming Problem 

Let us consider the primal Geometric Problem as  

(P14.3)  

 0Minimize f x                                                                                                                (14.10) 

Subject to  

 
1 1

1
j

jki

N n
a

j jk i
k i

f x C x
 

   1,2,...,j m                                                                              (14.11) 

0ix  1,2,...,i n                                                                                                                                      (14.12) 
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Where 0jkC  and jkia  are all real.  1 2, ,.., .T
nx x x x  

The dual problem of (P14.3) can be written as  

  0

0 1

jk
j

wNm
jk j

j k jk

C w
Maximize d w

w 

 
   

 
                                                                                               

(14.13) 

Subject to  

0
1

1
jN

k
k

w


          (Normality Condition)                                                                            (14.14) 

0 1
0

jNm

jki jk
j k

a w
 

 (Orthogonality Condition)                                                                                   (14.15) 

0
1

0,
jN

j jk
k

w w


                                                                                                                                       
(14.16)

 

0,jkw 
                                                                                                                                                       

(14.17)
 

 1,2,.., ;i n 1,2,.. ;jk N
 

00 1w  .                                                                                                                             (14.18) 

14.3 Signomial Geometric Programming Problem 

Let us consider the primal Geometric Problem as  

(P14.4)  

 0Minimize f x                                                                                                                (14.19) 

Subject to  

 
1 1

j
jki

N n
a

j jk jk i j
k i

f x C x 
 

   1,2,...,j m                                                                       (14.20) 

0ix  1,2,...,i n                                                                                                                                     (14.21) 

Where 1, 0,1,2,.., ; 1,2,...,jk jj m k N     and 1j    jkia are all real numbers.

 1 2, ,..., T
nx x x x  

The dual problem of (P14.4) can be written as  



  
Page 293 

 
  

 

0

0
0

0 1

jk jk
j

wNm
jk j

j k jk

C w
Maximize d w

w





 

  
       

                                                                              
(14.22) 

Subject to  

0 0 0
1

jN

k k
k

w 


          (Normality Condition)                                                                     (14.23) 

0 1
0

jNm

jk jki jk
j k

a w
 

 (Orthogonality Condition)                                                                              (14.24) 

Where 1, 0,1,2,.., ; 1,2,...,jk jj m k N     and 1j    jkia are all real numbers.

 1 2, ,..., T
nx x x x  

0
1

0,
jN

j j jk jk
k

w w 


                                                                                                                             
(14.25)

 

0,jk 
                                                                                                                                                       

(14.26)
 

 1,2,.., ;j m 1,2,.. ;jk N
 

00 1w  .                                                                                                                  (14.27)   

14.4 Fuzzy Geometric Programming(FGP)  

A fuzzy geometric programming problem can be defined as   

(P14.5)  
 0Minimize f x                                                                                                    (14.28)   

Subject to  

 j jf x b 1,2,...,j m                                                                                                      (14.29) 

0ix  1,2,...,i n           

Here the symbol " "Minimize  denotes a relaxed version of “Minimize”.Similarly the symbol “
 ”denotes a fuzzy version of  “ ”.These fuzy requrements may be quantified by taking 

membership function    , 0,1,2,....,j jf x j m   from the decision maker for all functions  

  , 0,1,2,....,jf x j m by taking account of the rate of increased membership functions .It is 

in general strictly monotone decreasing  linear or non-linear function with respect to 
  , 0,1,2,....,jf x j m .Here for simplicity linear membership functions are considered. The 

linear membership function can be represented by  
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0

'
0 '

' 0

'

1

0

j j

j j
j j j j j

j j

j j

if f x f
f f x

f x if f f x f
f f

if f x f



 



  


 

                                                                               
(14.30) 

0,1,2,...,j m
 

The problem (P14.5) reduces to the FGP when  0f t and  jf x  are signomial and 

posignomial functions.Based on fuzzy decision making of Bellmann and Zadeh(1972),we 
may write 

i)       * max minD j jx f x                                                 (Max-Min Operator)(14.31) 

Subject to  

  

 

 
 

 

0

'
0 '

' 0

'

1

0

j j

j j
j j j j j

j j

j j

if f x f
f f x

f x if f f x f
f f

if f x f



 



  


                                                                                 

(14.32)

 

0,1,2,...,j m  1 2, ,..., T
nx x x x 0x   

ii)
 

    *

0
max

m

D j j j
j

x f x  


 
  

 


                                               
(Max-Additive Operator) (14.33) 

Subject to  

  

 

 
 

 

0

'
0 '

' 0

'

1

0

j j

j j
j j j j j

j j

j j

if f x f
f f x

f x if f f x f
f f

if f x f



 



  


                                                                                 

(14.34)

 

0,1,2,...,j m  1 2, ,..., T
nx x x x 0x 

 

iii)
 

     *

0

max
j

m

D j j
j

x f x


 


 
  

 


                                            
(Max-Product Operator) (14.35) 

Subject to  
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0

'
0 '

' 0

'

1

0

j j

j j
j j j j j

j j

j j

if f x f
f f x

f x if f f x f
f f

if f x f



 



  


                                                                                 

(14.36)

 

0,1,2,...,j m  1 2, ,..., T
nx x x x 0x 

 

Here for 0,1,2,..., ; jj m   are considered numerical weights of decision making unit. For 

normalized weight
0

1.
m

j
j




  For equal importance of objective and constraint goals, 1j   

And  0,1 ,j  0,1,2,..., ;j m  

14.5 Numerical example Of Fuzzy Geometric Programming 

Let us consider a fuzzy geometric programming problem as  

(P14. 6)  

  2 3
0 1 2 1 2, 2Minimize f x x x x   (target value 57.87 with tolerance 2.91)                    (14.37) 

Subject to  

  1 1
1 1 2 1 2, 6.75f x x x x   ( with tolerance 2.91)                                                                (14.38)  

 2 1 2 1 2, 1f x x x x                                                                                                         (14.39) 

1 2, 0x x      

Here linear membership functions for fuzzy objectives and constraints goals are   

  

2 3
1 2

2 3
2 31 2

0 0 1 2 1 2

2 3
1 2

1 2 57.87
60.78 2, 57.87 2 60.78

2.91
0 2 60.78

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                

(14.40) 

  

1 2
1 2

1 2
1 21 2

1 1 1 2 1 2

1 2
1 2

1 6.75
6.94, 6.75 6.94

0.19
0 6.94

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                             

(14.41)

 

Based on max-additive operator FGP (P14.6)   reduces to  

(P14. 7)  
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1 1 2 3

1 2 1 2
1 2

6.94 60.78 2,
0.19 2.91A

x x x xMaximize V x x
    

                                                      (14.42) 

Subject to  

 2 1 2 1 2, 1f x x x x                                                                                                         (14.43) 

1 2, 0x x   

Neglecting the constant term in the following model we have following crisp geometric 
programming problem as  

(P14. 8)  

  1 1 2 3
1 2 1 2 1 2, 5.263 0.687Maximize V x x x x x x    

                                                                          

(14.44)

 
Subject to  

 2 1 2 1 2, 1f x x x x                                                                                                         (14.45) 

1 2, 0x x                                                                                                                                                      (14.46) 

Here DD=4-(2+1)=1 

The dual problem of this GP is 

(P14. 9)  

   
 

01 02 11 12

11 12

11 12
01 02 11 12

5.263 0.687 1 1
w w w w

w wMax d w w w
w w w w

       
        

      
                          (14.47) 

Such that 

01 02 1w w                                                                                                                                                (14.48) 

01 02 112 0w w w                                                                                                                                  (14.49) 

01 02 122 3 0w w w                                                                                                                                (14.50) 

So 02 011 ;w w  11 012 ;w w  12 013 ;w w                                                                                     (14.51) 

 
     

 
 

01 01 01 01

01

1 2 3
5 2

01 01
01 01 01 01

5.263 0.687 1 1 5 2
1 2 3

w w w w
wMaximize d w w

w w w w

  

       
        

         
    (14.52) 

Subject to  

010 1w                                                                                                                           (14.53)    
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For optimality, 
  01

01

0
d d w

dw
                                                                                                            (14.54) 

     
2

01 01 01 01 015.263 1 2 3 0.687 5 2w w w w w                                                                   (14.55) 

*
01 0.7035507,w  *

02 0.2964493,w  *
11 1.296449,w  *

12 2.296449,w                                     (14.56) 

*
1 0.360836,x  *

2 0.6391634,x                                                                                                           (14.57) 

 * * *
0 1 2, 58.82652,f x x   * * *

1 1 2, 6.783684,f x x     

14.6 Intuitionistic Fuzzy Geometric Programming 

Consider an Intuitionistic Fuzzy Geometric Programming Problem as  

(P14.10)  

 0

i
Min f x                                                                                                                                           (14.58) 

Subject to  

  i
j jf x b 1,2,..,j m                                                                                                                   (14.59) 

           0x                                                                                                                                                   

(14.60) 

Here the symbol “ i ” denotes the intuitionistic fuzzy version of “ ”.Now for intuitionistic 
fuzzy geometric programming linear membership and non-membership can be represented as 
follows 

  

 

 
 

 

0

'
0 '

' 0

'

1

0

j j

j j
j j j j j

j j

j j

if f x f
f f x

f x if f f x f
f f

if f x f



 



  


                                                                                 

(14.61)

 

0,1,2,...,j m  

  

   

   
   

 

' ''

' ''
' '' '

''

'

1

0

j j j

j j j
j j j j j j

j

j j

if f x f f

f x f f
f x if f f f x f

f
if f x f



  

  

   

 
                                                       

(14.62)

 

0,1,2,...,j m  
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Now an Intuitionistic Fuzzy Geometric programming problem(P14.10) with membership and 
non-membership function can be written as  

(P14.11)  

  j jMaximize f x                                                                                                                              (14.63) 

  j jMinimize f x                                                                                                                               (14.64) 

0,1,2,...,j m  

Considering equal importance of all membership and non-membership functions and using 
weighted sum method the above optimization problem reduces to  

(P14.12)  

      
0

m

A j j j j
j

Maximize V f x f x 


                                                                                    (14.65) 

Subject to  

0x                                                                                                                                                       

(14.66) 

The above problem is equivalent to  

 
' '' '

1 ' 0 '' '' ' 0
0

1 1m
j j j

A j
j j j j j j

f f f
Minimize V f x

f f f f f f

     
                
                                         (14.67) 

Subject to  

 
1 1

1
j

jki

N n
a

j jk i
k i

f x C x
 

   1,2,...,j m                                                                              (14.68) 

0ix  1,2,...,i n                                                                                                                                      (14.69) 

Where 0jkC  and jkia  are all real.  1 2, ,.., .T
nx x x x

 

The posynomial Geometric Programming problem can be solved by usual geometric 
programming technique. 

Numerical example 

Consider an Intuitionistic Fuzzy Nonlinear Programing Problem as  

(P14.13)  
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  2 3
0 1 2 1 2, 2

i
Minimize f x x x x   (target value 57.87 with tolerance 2.91)                         (14.70) 

Subject to  

  1 1
1 1 2 1 2, 6.75f x x x x   ( with tolerance 2.91)                                                                (14.71)  

 2 1 2 1 2, 1f x x x x                                                                                                         (14.72) 

1 2, 0x x      

Here linear membership  and non-membership functions for fuzzy objectives and constraints 
goals are   

  

2 3
1 2

2 3
2 31 2

0 0 1 2 1 2

2 3
1 2

1 2 57.87
60.78 2, 57.87 2 60.78

2.91
0 2 60.78

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                

(14.73) 

  

1 2
1 2

1 2
1 21 2

1 1 1 2 1 2

1 2
1 2

1 6.75
6.94, 6.75 6.94

0.19
0 6.94

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                             

(14.74) 

  

2 3
1 2

2 3
2 31 2

0 0 1 2 1 2

2 3
1 2

1 2 59.03
2 59.03, 59.03 2 60.78

1.75
0 2 60.78

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                 

(14.75) 

  

1 2
1 2

1 2
1 21 2

1 1 1 2 1 2

1 2
1 2

1 6.83
6.83, 6.83 6.94

0.11
0 6.94

if x x
x xf x x if x x

if x x



 

 
 

 

 



  



                                                              

(14.76) 

Based on max-additive operator FGP (14.13)   reduces to  

(P14.14)  

  1 1 2 3
1 2 1 2 1 2

1 1 1 1, 2
0.19 0.11 2.91 1.75AMaximize V x x x x x x      

      
   

                               (14.77) 

Subject to  

 2 1 2 1 2, 1f x x x x                                                                                                         (14.78) 
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1 2, 0x x   

Neglecting the constant term in the following model we have following crisp geometric 
programming problem as  

(P14.15)  

  1 1 2 3
1 2 1 2 1 2, 14.35 1.828Maximize V x x x x x x    

                                                                           

(14.79)

 
Subject to  

 2 1 2 1 2, 1f x x x x                                                                                                         (14.80) 

1 2, 0x x                                                                                                                                                      (14.81) 

Here DD=4-(2+1)=1 

The dual problem of this GP is 

   
 

01 02 11 12

11 12

11 12
01 02 11 12

14.354 1.828 1 1
w w w w

w wMax d w w w
w w w w

       
        

      
                         (14.82) 

Such that 

01 02 1w w                                                                                                                                                (14.83) 

01 02 112 0w w w                                                                                                                                  (14.84) 

01 02 122 3 0w w w                                                                                                                                (14.85) 

So 02 011 ;w w  11 012 ;w w  12 013 ;w w                                                                                     (14.86) 

 
     

 
 

01 01 01 01

01

1 2 3
5 2

01 01
01 01 01 01

14.354 1.828 1 1 5 2
1 2 3

w w w w
wMaximize d w w

w w w w

  

       
        

         
 (14.87) 

Subject to  

010 1w                                                                                                                           (14.88)    

For optimality, 
  01

01

0
d d w

dw
                                                                                                            (14.89) 

     
2

01 01 01 01 0114.354 1 2 3 1.828 5 2w w w w w                                                                 (14.90) 

*
01 0.6454384,w  *

02 0.3545616,w  *
11 1.3545616,w  *

12 2.3545616,w                                (14.91) 
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*
1 0.365197,x  *

2 0.63348027,x                                                                                                         (14.92) 

 * * *
0 1 2, 58.62182,f x x   * * *

1 1 2, 6.795091,f x x          

14.7 Fuzzy Decision Making 

In this real world ,most of the decision making problems take place in a fuzzy environment. 

The objective goal, constraints and consequences of possible actions are not known precisely. 

Under this observation, Bellman et al. [10] introduced three basic concepts. They are fuzzy 

objective goal, fuzzy constraint and fuzzy decision based on fuzzy goal and constraint. We 

introduce the conceptual framework for decision making in a fuzzy environment .Let X be a 

given set of possible alternatives which contains the solution of a decision making problem in 

fuzzy environment. The problem based on fuzzy decision making may be considered as 

follows   

                      Optimize fuzzy goal G  

                     Subject to constraint C  

A Fuzzy goal    , GG x x x X  and a fuzzy constraint    , CC x x x X  is a 

fuzzy set characterised by its membership function    : 0,1G x X  and    : 0,1C x X   

respectively. Both the fuzzy goal and fuzzy constraints are desired to be satisfied 

simultaneously, So Bellman et al. [10] defined fuzzy decision through fuzzy goal and fuzzy 

constraint. 

14.8 Additive Fuzzy Decision 

Fuzzy decision based on additive operator is a fuzzy set  

   ,a DD x x x X 
                                                                                                                      

(14.93)
 

such that 

   a G CD x x   for all x X .                                                                                  (14.94) 

14.9 Intuitionistic Fuzzy Optimization(IFO) Technique to solve 

Minimization Type Single Objective Non-linear Programming 

(SONLP)  Problem 

   Let us consider a SONLP problem as   

(P14.16)  
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 Minimize f x                                                                                                                (14.95) 

  1,2,......,j jg x b j m                                                                                            (14.96) 

0x                                                                                                                                  (14.97) 

Usually constraints goals are considered as fixed quantity .But in real life problem,the 

constraint goal cannot be always exact. So we can consider the constraint goal for less than 

type constraints at least jb and it may possible to extend to 0
j jb b .This fact seems to take the 

constraint goal as a IFS and which will be more realistic descriptions than others. Then the 

NLP becomes IFO problem with intuitionistic resources, which can be described as follows 

(P14.17)  

 Minimize f x                                                                                                               (14.98) 

  1,2,....,i
j jg x b j m                                                                                              (14.99) 

0x                                                                                                                                (14.100) 

To solve the IFO (P14.16), following warner’s [118] and Angelov [3] we are presenting a 

 solution procedure for Single Objective Intuitionistic Fuzzy Optimization (SOIFO) problem 

as follows 

Step-1: Following Werner’s approach solve the single objective non-linear programming 

problem without tolerance in constraints (i.e  j jg x b ),with tolerance of acceptance in 

constraints (i.e   0
j j jg x b b  ) by appropriate non-linear programming technique  

Here they are  

(P14.18)  

Sub-problem-1  

 Minimize f x                                                                                                              (14.101) 

  1,2,....,j jg x b j m                                                                                           (14.102) 

0x                                                                                                                                 (14.103) 
(P14.19)  

Sub-problem-2  

 

 Minimize f x                                                                                                              (14.104) 

  0 , 1,2,....,j j jg x b b j m                                                                                         (14.105) 
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0x                                                                                                                                 (14.106) 

we may get optimal solutions    * 1 * 1,x x f x f x   and    * 2 * 2,x x f x f x  for sub-

problem 1 and 2 respectively.  

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective 

functions. If 
   

,f x f xU U  be the upper bounds of membership and non-membership functions 

for the objective respectively and 
   

,f x f xL L   be the lower bound of membership and non-

membership functions of objective respectively then 

      1 2max ,f xU f x f x                                                                                                                (14.107) 

      1 2min , ,f xL f x f x 
                                                                                              

(14.108)
 

                , 0f x f x f x f x f x f x f x f xU U L L where U L           
                              

(14.109)
 

Step-3:  In this step we calculate linear membership for membership and non -membership 

functions of objective as follows 

     

   

   

   
     

   

1

0

f x

f x
f x f x f x

f x f x

f x

if f x L

U f x
f x if L f x U

U L

if f x U





 

 





 

 
   
  


                                            

(14.110)  

    

   

   

   
     

   

0

1

f x

f x
f x f x f x

f x f x

f x

if f x L

f x L
f x if L f x U

U L

if f x U





 

 





 

 

  





                                                     

(14.111)

 

and exponential and hyperbolic membership for membership and non-membership functions 

as follows 

    

   

   

   
     

   

1

1 exp

0

f x

f x
f x f x f x

f x f x

f x

if f x L

U f x
f x if L f x U

U L

if f x U





 

 



 

 

     

       
     




                              

(14.112) 
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0

1 1 tanh
2 2 2

1

f x

f x f x
f x f x f x f x

f x

if f x L

U L
f x f x if L f x U

if f x U



 

 



 

 

     

       
 

    




                            

(14.113)

 Step-4:  In this step using linear, exponential and hyperbolic function for membership and 

non-membership functions, we may calculate membership function for constraints as follows 

    

 

 
 

 

0
0

0

0

1

0

j

j j

j j j
j j j j jg x

j

j j

if g x b

b b g x
g x if b g x b b

b

if g x b



 

  

     
 
                                        

(14.114)  

    

   

   

 
   

 

0
0

0

0

1

j

j

j j

j

j j g x

j j g x
j j j j jg x g x

j g x

j j j

if g x b

g x b
g x if b g x b b

b

if g x b b




 



  

  

    



                                         

(14.115)  

where and for 
   

01,2,....., 0 ,
j j jg x g xj m b    .  and 

    

 

   

   

 

 

0

0

1

1 exp

0

j

j

j j

j j

jg x
j j j j jg x

g x g x

j j j

if g x b

U g x
g x if b g x b b

U L

if g x b b



 
 

 


    
        
     


 

           

(14.116) 

    

   

 
 

     

 

0
0

0

0

21 1 tanh
2 2 2

1

j

j

j j j

j j g x

j j g x
j j j j j jg x g x g x

j j j

if g x b

b b
g x g x if b g x b b

if g x b b




  

  

      

         
     


 

            

(14.117)

 where ,  are non-zero parameters prescribed by the decision maker and for 

   
01,2,....., 0 ,

j j jg x g xj m b    .   

Step-5: Now using IFO for single objective optimization technique the optimization problem 

(P14.17) can be formulated as 

(P14.20)  

Model-I 
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 Maximize                                                                                                             (14.118) 

such that 

    ;f x x    ;
jg x 

                                                                                               
(14.119)  

    ;f x x     ;
jg x 

                                                                                             
(14.120)

 
1;                                                                                                                  (14.121) 

       , 0,1                                                                                                                  (14.122) 

Now the above problem (P14.20)can be simplified to following crisp linear programming 

problem  for linear membership function as 

(P14.21)  

 Maximize                                                                                                            (14.123)

 

such that  

   . ;f x U L U    
                                                                                              

(14.124) 

        
. ;f x f x f xf x U L L    

                                                                                     
(14.125) 

 1; ; , 0,1 ;                                                                                                  (14.126)
 

  0,j jg x b x 
                                                                                                                       

(14.127) 

and for non linear membership function as 

(P14.22)  

 Maximize                                                                                                               (14.128) 

such that  

 
    

 
;

f x f x

f x

U L
f x U

 





 

                                                                                     
(14.129)

 

   
 

      ;
2

f x f x f x

f x

U L
f x

  



 
 

                                                                              
(14.130) 

 
0

0;j
j j j

b
g x b b


  

                                                                                                    
(14.131)
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02

;
2

jj j g x
j

g x

b b
g x





 
 

                                                                                    
(14.132)

1;   ;   , 0,1                                                                                              (14.133) 

where  ln 1 ;                                                                                                         (14.134) 
4;                                                                                                                               (14.135) 

 

    
6 ;f x

f x f xU L 
 


                                                                                                    

(14.136)

 

   0

6 , 1,2,...,
jg x

j j

for j m
b




 
                                                                                  

(14.137)
 

 1tanh 2 1 .                                                                                                          (14.138)  

All these crisp nonlinear programming problems i.e (P14.21),(P14.22) can be solved by 

appropriate mathematical algorithm. 

14.10 Fuzzy Non-linear Programming (FNLP) Technique to Solve 

Multi-Objective Non-Linear Programming (MONLP)problem  

A Multi-Objective Non-Linear Programming (MONLP)problem may be considered in the 

following form 

(P14.23)  

      1 2, ,.....,
T

pMinimize f x f x f x                                                                            (14.139) 

         Subject to   1,2,...,j jg x b j m 
                                                                        

(14.140) 

             0x                                                                                                                      (14.141) 

Following Zimmermann [136] ,we have presented a solution algorithm to solve the MONLP 

Problem by fuzzy optimization technique. 

Step-1: Solve the MONLP (P14.23) as a single objective non-linear programming problem 

p times by taking one of the objectives at a time and ignoring the others .These solutions are 

known as ideal solutions. Let ix be the respective optimal solution for the thi different 

objectives with same constraints and evaluate each objective values for all these thi optimal 

solutions. 
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Step-2: From the result of step -1 determine the corresponding values for every objective for 

each derived solutions. With the values of all objectives at each ideal solutions ,pay-off 

matrix can be formulated as follows 

     

     

     

     

1 2

* 1 * 1 * 1
1 1 2

* 2 * 2 * 22
1 2

* * *
1 2

....

......

......

...... ........ ...... .......

.....

p

p

p

p
p p p

p

f x f x f x

f x f x f xx
f x f x f xx

x f x f x f x

 
 
 
 
 
 
  

 

 Here 1 2, ,.., px x x are the ideal solutions of the objectives      1 2, ,..., pf x f x f x  

respectively. 

Step-3: From the result of step-2,now we find lower bound (minimum) iL  and upper bound 

(maximum) iU by using the following rules 

   max ,i i pU f x                                                                                                                              (14.142) 

  mini i pL f x
                                                                                                           

(14.143)
 

where 1 i p  .It is obvious  * , 1i
i iL f x i p   . 

Step-4: Using aspiration level of each objective, the MONLP   (P14.23) may be written as 

follows 

(P14.24)  

Find  x  so as to satisfy                                                                                                  (14.144) 

   1,2,...,i if x L i p 
                                                                                                                    

(14.145) 

  1,2,...,j jg x b j m                                                                                                  (14.146) 

0x                                                                                                                                                           (14.147) 

Here objective function of (P14.23) are consider as fuzzy constraints. This type of fuzzy 

constraint can be quantified by eliciting a corresponding membership function 

   , 1,2,.....,i if x i p   
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1

1
0

ACC
i i
ACC ACC
i i

ACC
i i

f x L
w

U L w
ACC ACC

i i i i iw

ACC
i i

if f x L

e ef x if L f x U
e

if f x U



 
 
   



 


 

  




                                                   

(14.148)

 

 Under the concept of mean operator , the feasible solution set is defined by intersection of 

the fuzzy objective set .The feasible set is then characterized by its membership  D x which 

is            1 1 2 2min , ,...,D p px f x f x f x                                                               (14.149)  

The decision solution can be obtained by solving the problem of 

  Dmaximize minimize x subject to the given constraints i.e  

(P14.25)  

 
0 i

Maximize Minimize
x

x i


 
 

   
                                                                                                             (14.150) 

  ,j jsuch that g x b
                                                                                                                          

(14.151) 

0, 1,2,..., , 1,2,...,x j m i p                                                                                                      (14.152)                                          

Now if suppose  iMinimize x   be the overall satisfactory level of compromise, then we 

obtain the following equivalent model  

(P14.26)  

Maximize                                                                                                                                            (14.153) 

  , 1,2,...,isuch that x i p  
                                                                                             

(14.154) 

  , 1,2,....,j jg x b j m 
                                                                                                              

(14.155) 

 0, 0,1x  
                                                                                                                              

(14.156) 

  Step-5: Solve (P14.26) to get optimal solution. 

14.11 An Intuitionistic Fuzzy(IF) Approach for Solving Multi-

Objective Non-Linear Programming(MONLP) Problem with Non-

linear membership and Non-linear Non-membership Function 

Following Zimmermann [140] and Angelov [3],we have presented a solution algorithm to 

solve MONLP (P14.23) by Intuitionistic fuzzy optimization (IFO). Here Step 1 and Step 2 

are same as shown in 14.10 
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Step-3: From the result of step 2 now we find lower bound (minimum) ACC
iL  

and upper bound (maximum) ACC
iU by using following rules  

  max ,ACC p
i iU f x                                                                                                                         (14.157) 

  minACC p
i iL f x where 1 i p  .                                                                             (14.158) 

But in IFO the degree of non-membership (rejection) and the degree of membership 

(acceptance) are considered so that the sum of both value is less than one. To define the non -

membership of NLP problem let Re j
iU and Re j

iL  be the upper bound and lower bound of 

objective function  if x  where Re ReACC j j ACC
i i i iL L U U   .For objective function of 

minimization problem ,the upper bound for non-membership function (rejection) is always 

equals to that the upper bound of membership function (acceptance).One can take lower 

bound for non-membership function as follows   
Re j Acc
i i iL L                                                                                                                   (14.159) 

where  0 Acc Acc
i i iU L  

 
based on the decision maker choice. 

The initial IF model with aspiration level of objectives becomes  , 1,2,....,iFind x i p  

so as to satisfy  

  i Acc
i if x L with tolerance  Acc Acc Acc

i i iP U L   for the degree of acceptance for 

1,2,....,i p  
                                                                                                                                        (14.160)  

  Rei j
i if x U with tolerance   Acc Acc Acc

i i iP U L  for degree of rejection for 1,2,....,i p  

                                                                                                                                        (14.161) 

Define the membership (acceptance) and non-membership (rejection) functions of above 

uncertain objectives as follows. For the , 1,2,....,thi i p objectives functions the linear 

membership function   i if x  and linear non-membership   i if x is defined as follows 
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1

1
0

Acc
i i

Acc Acc
i i

Acc
i i

f x L
w

U L w
Acc Acc

i i i i iw

Acc
i i

if f x L

e ef x if L f x U
e

if f U



 
 
   



 


 

  




                                                          

(14.162) 

  

 

 
 

 

Re

2Re
Re Re

Re Re

Re

0

1

j
i i

j
i i j j

i i i i ij j
i i

j
i i

if f x L

f x L
f x if L f x U

U L

if f x U



 

  

     
 
                                                             

(14.163) 

Step-4:  Now an IFO problem for above problem with membership and non-membership 

functions can be written as  

(P14.27)  

   i i

Maximize
f x

i



                                                                                                                       (14.164) 

   i i

Minimize
f x

i


                                                                                                                         

(14.165) 

      1i i i isubject to f x f x  
                                                                                              

(14.166) 

       ;i i i if x f x 
                                                                                                               

(14.167) 

    0;i if x 
                                                                                                                                    

(14.168) 

  0;jg x 
                                                                                                                                                

(14.169) 

0x                                                                                                                                                            (14.170) 

1,2,...., ; 1,2,...,i p j m   

 Find an equivalent crisp model by using membership and non-membership functions of 

objectives by IF decision making as follows 

(P14.28)  

     1 2 1 2, ,.., , ,...,p pMax Min Min Max                                                           (14.171) 

      1i i i isubject to f x f x  
                                                                                              

(14.172) 

       ;i i i if x f x 
                                                                                                               

(14.173) 

    0;i if x 
                                                                                                                                    

(14.174) 
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  0;jg x   

0x                                                                                                                                                           (14.175) 

1,2,.., ; 1,2,...,i p j m   

If we consider  

 1 2, ,...., ;pMinimize   
                                                                                                          

(14.176)
 

 1 2, ,...., pMaximize   
                                                                                                             

(14.177)
 

 accordingly the Angelov [4], the above can be written as  

(P14.29)  

 Maximize                                                                                                                                  (14.178) 

   ;i isubject to f x 
                                                                                                                 

(14.179) 

  0;jg x 
                                                                                                                                                

(14.180) 

0, 1x                                                                                                                                            (14.181) 

   0,1 , 0,1 ; 1,2,...,i p   
                                                                                                     

(14.182) 

1,2,...,j m                                                                                                                                            (14.183) 

 which on substitution of       1,2,....,i i i if x and f x for i p    becomes 

(P14.30)  

( )Maximize                                                                                                              (14.184) 

subject to  

    ln 1 ;
Acc Acc

w w Acci i
i i

U Lf x e e L
w

 
   

                                                                          
(14.185) 

   Re Re Re ;j j j
i i i if x U L L  

                                                                                                      
(14.186) 

  0;jg x 
                                                                                                                                               

(14.187) 

1;                                                                                                                                                    (14.188) 

   0,1 , 0,1  
                                                                                                                               

(14.189) 

1,2,.., ; 1,2,..,i p j m                                                                                                                      (14.190) 

Step-5:  Solve the above crisp model (P14.30) by using appropriate mathematical 

programming algorithm to get optimal solution of objective function. 

Step-6:  Stop. 
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14.12 Intuitionistic Fuzzy Non-linear Programming (IFNLP) 

Optimization to solve Parametric  Multi-Objective Non-linear 

Programming Problem (PMONLP) 

A multi-objective IFNLP problem with imprecise co-efficient can be formulated as  

(P14.31)  

 
0

0

0 0 0
1 1

k
k tj

T n
a

k k t k t j
t j

Minimize f x c x
 

  for 0 1,2,....,k p                                                  (14.191) 

Such that  
1 1

i
itj

T n
a

i it it j i i
t j

f x c x b 
 

   for 1,2,....,i m                                                 (14.192) 

                           0jx   1,2,....,j n                                                                             (14.193) 

Here  
0

,k t ,it i are the signum function used to indicate sign of term in the equation. 

0
0,k tc  0itc  .

0
,k tja  itja are real numbers for all 0, , , .i t k j  

Here    0 0 0 0 0 0 0 0 0

1 2 3 1 2 3, , ; , , ; ;k t k t k t k t k t k t k t k t k tc c c c w c c c    
                                                          

(14.194)
 

   1 2 3 1 2 3, , ; , , ; ;it it it it it it it it itc c c c w c c c    
                                                                          

(14.195)
 

   1 2 3 1 2 3, , ; , , ;i i i i i i i i ib b b b w b b b    
                                                                            

(14.196) 

Using total integral value of membership and non-membership functions, we transform above  

multi-objective intuitionistic programming with imprecise parameter as 

(P14.32)  

 
0

0

0 0 01 1
1 1

ˆ ˆ;
k

k tj

T n
a

k k t k t j
t j

Minimize f x c x 
 

  for 0 1,2,...,k p                                             (14.197) 

 
0

0

0 0 02 2
1 1

ˆ ˆ;
k

k tj

T n
a

k k t k t j
t j

Minimize f x c x 
 

  for 0 1,2,...,k p                                            (14.198) 

Such that  1 1 1
1 1

ˆ ˆˆ;
i

itj

T n
a

i it it j i i
t j

f x c x b  
 

   for 1,2,...,i m                                           (14.199) 

 2 2 2
1 1

ˆ ˆˆ;
i

itj

T n
a

i it it j i i
t j

f x c x b  
 

   for 1,2,....,i m                                                         (14.200) 

                            0; , 0,1jx     1,2,....,j n                                                          (14.201) 
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Here  
0

,k t ,it i are the signum functions used to indicate sign of term in the equation. 

01̂ 0,k tc  1̂ 0;itc  1̂ 0ib  denote the total integral value of membership function  i.e 

    0 0 0 0

0

0

2 3 1

1

2 1 1
ˆ ,

2
k t k t k t k t

k t
k t

c w c c
c

w

     


                                                                    
(14.202)

 

    2 3 1

1

2 1 1
ˆ

2
it it it it

it
it

c w c c
c

w

     


                                                                          
(14.203)

 

and 
    2 3 1

1

2 1 1ˆ
2

i i i i
i

i

b w b b
b

w

     


                                                                    
(14.204)

 

 and 01̂ 0,k tc  1̂ 0;itc  1̂ 0ib   denote the total integral value of non-membership function  ie 

     0 0 0 0

0

0

2 3 1

2

2 1 1
ˆ ,

2
k t k t k t k t

k t
k t

c c c
c

   



   


                                                                    
(14.205) 

    2 3 1

2

2 1 1
ˆ

2
it it it it

it
it

c c c
c

   



   


                                                                           
(14.206)

 
and  

    2 3 1

2

2 1 1ˆ
2

i i i i
i

i

b b b
b

   



   


                                                                            
(14.207) 

A Parametric Multi-Objective Intuitionistic Fuzzy Non-Linear Programming 

(PMOIFNLP)Problem can be  formulated as  

(P14.33)  

 
            1 2 1 2; , ; ,...., ; , ; , ; ,...., ;

T

p pMinimize f x f x f x f x f x f x     

            
(14.208) 

         Subject to  ; ; 1,2,...,j jg x b j m                                                                 (14.209) 

                          ; ; 1,2,...,j jg x b j m                                                                  (14.210) 

             0x   , 0,1                                                                                                  (14.211) 

Following Zimmermann [140]we have presented a solution algorithm to solve the 

PMOIFNLP Problem by fuzzy optimization technique. 

Step-1: Solve the PMOIFNLP (P14.33) as a SONLPP p times by taking one of the objectives 

at a time and ignoring the others .These solutions are known as ideal solutions. Let ix be the 

respective optimal solution for the thi different objectives with same constraints and evaluate 

each objective values for all these thi optimal solutions. 
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Step-2: From the result of step -1 determine the corresponding values for every objective for 

each derived solutions. With the values of all objectives at each ideal solutions ,pay-off 

matrix can be formulated as follows 

       

 

 

 

   

   

   

 

 

 

1 1

* 1 * 1 * 1 * 1
1 1 1

* 2 * 2 * 2 * 22
1 1

2
* 2 * 2 * 2 * 2

1 1

; ... ; ; ... ;

; ... ; ; ... ;

; ... ; ; ... ;

... ... ... ... ... ...

; ... ; ; ... ;

p p

p p

p p

p
p p p p

p p

f x f x f x f x

f x f x f x f xx
f x f x f x f xx

x f x f x f x f x

   

   

   

   

 
 
 
 
 
 
  

 

 Here 1 2, ,......, px x x is the ideal solutions of the objectives 

           1 2 1 2; , ; ,...., ; , ; , ; ,...., ;p pf x f x f x f x f x f x       respectively. 

Step-3: From the result of step 2 now we find lower bound (minimum) ACC
iL  

and upper bound (maximum) ACC
iU by using following rules  

    max ; , ; ,ACC p p
i i iU f x f x                                                                                                 (14.212) 

    min ; , ;ACC p p
i i iL f x f x 

                                                                                 
(14.213)

 
where 1 i p  .But in IFO The degree of non-membership (rejection) and the degree of 

membership (acceptance) are considered so that the sum of both value is less than one. To 

define the non -membership of NLP problem let Re j
iU and Re j

iL  be the upper bound and lower 

bound of objective function    , , ,i if x f x   where Re ReACC j j ACC
i i i iL L U U   .For 

objective function of minimization problem ,the upper bound for non-membership function 

(rejection) is always equal to that the upper bound of membership function (acceptance).One 

can take lower bound for non-membership function as follows   
Re j Acc
i i iL L                                                                                                                   (14.214) 

where  0 Acc Acc
i i iU L   based on the decision maker choice. 

The initial IF model with aspiration level of objectives becomes 

 Find  

 , 1,2,..,ix i p                                                                                                                                      (14.215) 

so as to satisfy   i Acc
i if x L with tolerance  Acc Acc Acc

i i iP U L   for the degree of acceptance 

for 1,2,...,i p .                                                                                                               (14.216) 
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  Re; i j
i if x s U with tolerance   Acc Acc Acc

i i iP U L  for degree of rejection for 1,2,...,i p  

                                                                                                                                        (14.217) 

Define the membership (acceptance) and non-membership (rejection) functions of above 

uncertain objectives as follows. For the , 1,2,....,thi i p objective functions the linear 

membership functions    ;i if x   and   ;i if x  and linear non-membership functions 

  ;i if x  and   ;i if x   are defined as follows 

  

 
 

 

 

;

1 ;

; ;
1
0 ;

Acc
i i

Acc Acc
i i

Acc
i i

f x L
T

U L T
Acc Acc

i i i i iT

Acc
i i

if f x L

e ef x if L f x U
e

if f x U





  



 
 
   



 


 

  




                                     

(14.218)

 

  

 
 

 

 

;

1 ;

; ;
1
0 ;

Acc
i i

Acc Acc
i i

Acc
i i

f x L
T

U L T
Acc Acc

i i i i iT

Acc
i i

if f x L

e ef x if L f x U
e

if f x U





  



 
 
   



 


 

  




                                     

(14.219) 

  

 

 
 

 

Re

2Re
Re Re

Re Re

Re
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i i

j
i i j j

i i i i ij j
i i
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i i

if f x L

f x L
f x if L f x U
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if f x U




  



 

  

     
 
                                       

(14.220)

 

  

 

 
 

 

Re

2Re
Re Re

Re Re

Re

0 ;

;
; ;

1 ;

j
i i

j
i i j j

i i i i ij j
i i

j
i i

if f x L

f x L
f x if L f x U

U L

if f x U




  



 

  

     
 
                                       

(14.221) 

Step-4:  Now using IF probabilistic operator above problem can be written as  

(P14.34)  

       
1

; ;
p

i i i i
i

Maximize f x f x   


                                                                   

(14.222) 
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1

1 ; 1 ;
p

i i i i
i

Maximize f x f x   


 
                                                        

(14.223) 

subject to  

  0 ; 1;i if x  
                                                                                                       

(14.224)
 

  0 ; 1;i if x  
                                                                                                        

(14.225)
 

     0 ; ; 1;i i i if x f x                                                                                      
(14.226)

 

  0 ; 1;i if x  
                                                                                                       

(14.227)
 

  0 ; 1;i if x                                                                                                          
(14.228)

 

     0 ; ; 1;i i i if x f x                                                                                      
(14.229)

 

 ; ;j jg x b                                                                                                                   (14.230) 

 ; ;j jg x b                                                                                                                   (14.231) 

0x   , 0,1                                                                                                               (14.232) 

1,2,.., ; 1,2,...,i p j m                                                                                                   (14.233) 

Step-5:  Solve the above crisp model (P14.34) by using appropriate mathematical 

programming algorithm to get optimal solution of objective function. 

Step-6:  Stop. 

14.13 Fuzzy and Intuitionistic Fuzzy Non-linear Programming 

(IFNLP) Optimization to solve Parametric  Single-Objective Non-

linear Programming (PSONLP) Problem 

A multi-objective IFNLP with imprecise co-efficient can be formulated as  

(P14.35)  

 
1 1

tj
nT

a
t t j

t j

Minimize f x c x
 

                                                                                       (14.234) 

Such that  
1 1

i
itj

T n
a n

i it it j i i
t j

f x c x b 
 

   for 1,2,....,i m                                                          (14.235) 

                           0jx   1,2,....,j n                                                                                                   (14.236) 

Here  ,t ,it i are the signum functions used to indicate sign of term in the equation. 0,tc 

0itc  . ,tja  itja are real numbers for all , , .i t j  
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Here  1 2 3, , ; ;t t t t tc c c c w 
                                                                                                                

(14.237)
 

 1 2 3, , ; ;it it it it itc c c c w 
                                                                                                                           

(14.238)
 

 1 2 3, , ;i i i i ib b b b w 
                                                                                                                             

(14.239)
 

 for fuzzy number as coefficients and 

   1 2 3 1 2 3, , ; , , ; ;t t t t t t t t tc c c c w c c c    
                                                                                           

(14.240) 

   1 2 3 1 2 3, , ; , , ; ;it it it it it it it it itc c c c w c c c    
                                                                                         

(14.241)
 

   1 2 3 1 2 3, , ; , , ;i i i i i i i i ib b b b w b b b                                                                                                 (14.242) 

for IF coefficient. 

Using nearest interval approximation method for both fuzzy and IFN ,we transform all the 

TIFN into interval number i.e , ,L U
t tc c   , ,L U

it itc c   and ,L U
i ib b     

Now the MOIFNLP with imprecise parameter is of the following form 

(P14.36)  

 
0

1 1

ˆ ˆ tj
nT

a
k t t j

t j

Minimize f x c x
 

                                                                                      (14.243) 

Such that  
1 1

ˆ ˆˆ
i

itj

T n
a

i it it j i i
t j

f x c x b 
 

   for 1,2,....,i m                                                          (14.244) 

                           0jx   1,2,....,j n                                                                                                   (14.245) 

Here  ,t ,it i are the signum functions used to indicate sign of term in the equation. ˆ 0,tc 

ˆ 0;itc  ˆ 0ib  denote the interval component i.e  

ˆ , ,L U
t t tc c c                                                                                                                                              

(14.246)
 

ˆ , ,L U
it it itc c c                                                                                                                                             

(14.247)
 

and ˆ ,L U
i i ib b b                                                                                                                                       

(14.248)
 

 and
 

,tja  itja are real numbers for all , , .i t j  

Using parametric interval valued function the above problem transforms into 

(P14.37)  

     
1

1 1

; tj
nT s s aL U

t t t j
t j

Minimize f x s c c x


 

 

                                                                              

(14.249)  
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such that          
1 1

1 1

;
i

itj

T ns s s saL U L U
i it it it j i i i

t j

f x s c c x b b 
 

 

   for 1,2,...,i m              (14.250) 

                           0jx   1,2,...,j n  0,1s
                                                                                 

(14.251) 

Here  ,t ,it i are the signum functions used to indicate sign of term in the equation.  

This is a parametric single objective non-linear programming problem and can be solved by 

IFO technique. 

Let us consider a Single-Objective Parametric Nonlinear  Programming  Problem(SOPNLPP) 

as   

(P14.38)  

 ;Minimize f x s                                                                                                           (14.252) 

   ; 1,2,..,j jg x s b s j m 
                                                                                                     

(14.253) 

 0; 0,1x s 
                                                                                                                                       

(14.254) 

Usually constraint goals are considered as fixed quantity .But in real life problem ,the 

constraint goal cannot be always exact. So we can consider the constraint goal for less than 

type constraints at least  jb s and it may possible to extend to  0
jb s  so that the maximum 

allowable tolerance is  1
jb s  with      0 1

j j jb s b s b s  .This fact seems to take the constraint 

goal as a IFS and which will be more realistic descriptions than others. Then the NLP 

becomes IFO problem with IF resources, which can be described as follows 

(P14.39)  

 ;Minimize f x s                                                                                                    (14.255) 

   ; 1,2,....,i
j jg x s b s j m                                                                                    (14.256) 

 0; 0,1x s                                                                                                                  (14.257) 

To solve the IFO (P14.39) following Werner’s [118] and Angelov [3] we are presenting a 

solution procedure for Single Objective Neutrosophic Optimization (SONSO) problem as 

follows 

Step-1: Following Warner’s approach solve the SONLP without tolerance in constraints (i.e 

   ;j jg x s b s ),with tolerance of acceptance in constraints (i.e    0;j jg x s b s ) by 

appropriate non-linear programming technique.  

Here they are  

(P14.40)  
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Sub-problem-1  

 ;Minimize f x s                                                                                                    (14.258)                                                                                                   

   ; 1,2,...,j jg x s b s j m 
                                                                                                   

(14.259) 

 0; 0,1x s 
                                                                                                                                       

(14.260) 

(P14.41)  

Sub-problem-2  

 ;Minimize f x s                                                                                                    (14.261) 

   0; , 1,2,....,j jg x s b s j m 
                                                                                                     

(14.262) 

 0; 0,1x s 
                                                                                                                                       

(14.263) 

we may get optimal solutions    * 1 * 1, ; ;x x f x s f x s   and    * 2 * 2, ; ;x x f x s f x s  for sub-

problem 1 and 2 respectively.  

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective 

functions. If    ; ;,f x s f x sU U  be the upper bounds membership and non-membership functions 

for the objective respectively and    ; ;,f x s f x sL L   be the lower bounds of membership and non-

membership functions of objective respectively then 

      1 2
; max ; , ; ,f x sU f x s f x s                                                                                                    (14.264) 

      1 2
; min ; , ; ,f x sL f x s f x s 

                                     
(14.265)

                ; ; ; ; ; ; ; ;, 0f x s f x s f x s f x s f x s f x s f x s f x sU U L L where U L                              (14.266)
 

Step-3:  In this step we calculate linear membership for membership and non-membership 

functions of objective as follows 
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; ;
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if f x s U





 

 





 

 
   
  


                                 

(14.267)  
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; ; ;

; ;
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0 ;

;
; ;

1 ;

f x s

f x s
f x s f x s f x s

f x s f x s

f x s

if f x s L

f x s L
f x s if L f x s U

U L

if f x s U





 

 





 

 

  





                                            

(14.268)

 

 

Step-4:  In this step using linear function for membership and non-membership functions, we 

 may calculate membership and non-membership function for constraints as follows 

    

   

   

 
     

   

0
0

; 1

0

1 ;

;
; ;

0 ;
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j j

j j
j j j jg x s

j

j j
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b s

if g x s b s



 

 

    
 
                                

(14.269)  

    

     

     

   

       

   

;

; 0
; ;1

;

0

0 ;

;
; ;

1 ;

j

j

j j

j

j j g x s

j j g x s
j j j jg x s g x s

j g x s

j j

if g x s b s

g x s b s
g x s if b s g x s b s

b s

if g x s b s




 



  


 
   




      

(14.270)  

where and for    1
;1,2,....., 0

j jg x sj m b s   .   

 0; 0,1x s 
                                                                                                                                       

(14.271) 

Step-5: Now using Fuzzy and IFO for single objective optimization technique(Singh .et.al 

[93]) the optimization problem (P14.39) can be formulated as 

(P14.42)  

Maximize 
                                                                                                                                           (14.272) 

Such that 

   ; ; ;f x s x s   ; ;
jg x s 

                                                                                                        
(14.273) 

       0,1    0; 0,1x s 
                                                                                                              

(14.274) 

and 

(P14.43)  

 Maximize  
                                                                                                                                

(14.275) 
Such that 

    ;f x x   ; ;
jg x s 

                                                                                                               
(14.276)
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    ;f x x    ; ;
jg x s 

                                                                                                             
(14.277)

 

1;                                                                                                                                         (14.278) 

 , 0,1     0; 0,1x s 
                                                                                                               

(14.279) 

In fuzzy and IF environment respectively. Now the above problem (P14.42),(P14.43) can be 

 Solved by  appropriate mathematical programming 
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