Abstract. The aim of this paper is to introduce the concept of relation on neutrosophic parameterized soft set (NP-soft sets) theory. We have studied some related properties and also put forward some propositions on neutrosophic parameterized soft relation with proofs and examples. Finally the notions of symmetric, transitive, reflexive, and equivalence neutrosophic parameterized soft set relations have been established in our work. Finally a decision making method on NP-soft sets is presented.

Keywords: Soft set, neutrosophic parameterized soft set, NP-soft relations.

1. Introduction

Neutrosophic set theory was introduced in 1995 with the study of Smarandache [21] as mathematical tool for handling problem involving imprecise, indeterminacy and inconsistent data. The concept of neutrosophic set generalizes the concept of fuzzy sets [22], intuitionistic fuzzy sets [1] and so on. In neutrosophic set, indeterminacy is quantified explicitly and truth-membership, indeterminacy membership and falsity-membership are independent. Neutrosophic set theory has successfully used in logic, economics, computer science, decision making process and so on.

The concept of soft set theory is another mathematical theory dealing with uncertainty and vagueness, developed by Russian researcher [20]. The soft set theory is free from the parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability theory. Many interesting results of soft set theory have been studied by embedding the ideas of fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets and so on. For example; fuzzy soft sets [3,9,17], on intuitionistic fuzzy soft set theory [10,18], on possibility intuitionistic fuzzy soft set [2], on neutrosophic soft set [19], on intuitionistic neutrosophic soft set [4,7], on generalized neutrosophic soft set [5], on interval-valued neutrosophic soft set [6], on fuzzy parameterized soft set theory [14,15,16], on intuitionistic fuzzy parameterized soft set theory [12], on IFP-fuzzy soft set theory [13], on fuzzy parameterized fuzzy soft set theory [11].

Later on, Broumi et al. [8] defined the neutrosophic parameterized soft sets (NP-soft sets) which is a generalization of fuzzy parameterized soft sets (FP-soft sets) and intuitionistic fuzzy parameterized soft sets (IFP-soft sets). In this paper our main objective is to extend the concept relations on FP-soft sets[14] to the case of NP-soft sets. The
paper is structured as follows. In Section 2, some basic definition and preliminary results are given which will be used in the rest of the paper. In Section 3, we define relations on NP-soft sets and some of its algebraic properties are studied. In Section 4, we present decision making method on NP-soft relations. Finally we conclude the paper.

2. Preliminaries

Throughout this paper, let U be a universal set and E be the set of all possible parameters under consideration with respect to U, usually, parameters are attributes, characteristics, or properties of objects in U.

We now recall some basic notions of neutrosophic set, soft set and neutrosophic parameterized soft set. For more details, the reader could refer to [8,20,21].

Definition 2.1. [21] Let U be a universe of discourse then the neutrosophic set A is an object having the form

\[A = \{< x: \mu_A(x), \nu_A(x), \omega_A(x)>, x \in U \} \]

where the functions \(\mu, \nu, \omega : U \to [0,1] \) define respectively the degree of membership, the degree of indeterminacy, and the degree of non-membership of the element \(x \in X \) to the set A with the condition.

\[0 \leq \mu_A(x) + \nu_A(x) + \omega_A(x) \leq 3 \]

From philosophical point of view, the neutrosophic set takes the value from real standard or non-standard subsets of \([0,1]\). So instead of \([0,1]\) we need to take the interval \([0,1]\) for technical applications, because \([0,1]\) will be difficult to apply in the real applications such as in scientific and engineering problems.

For two NS,

\[A_{NS} = \{< x, \mu_A(x), \nu_A(x), \omega_A(x)>, x \in X \} \]

And

\[B_{NS} = \{< x, \mu_B(x), \nu_B(x), \omega_B(x)>, x \in X \} \]

Then,

1. \(A_{NS} \subseteq B_{NS} \) if and only if \(\mu_A(x) \leq \mu_B(x), \nu_A(x) \geq \nu_B(x) \) and \(\omega_A(x) \geq \omega_B(x) \).

2. \(A_{NS} = B_{NS} \) if and only if, \(\mu_A(x) = \mu_B(x), \nu_A(x) = \nu_B(x), \omega_A(x) = \omega_B(x) \) for any \(x \in X \).

3. The complement of \(A_{NS} \) is denoted by \(A_{NS}^c \) and is defined by

\[A_{NS}^c = \{< x, \omega_A(x), 1 - \nu_A(x), \mu_A(x)>, x \in X \} \]

4. \(A \cap B = \{< x, \min \{\mu_A(x), \mu_B(x)\}, \max \{\nu_A(x), \nu_B(x)\}, \max \{\omega_A(x), \omega_B(x)\}, x \in X \} \}

5. \(A \cap B = \{< x, \min \{\mu_A(x), \mu_B(x)\}, \max \{\nu_A(x), \nu_B(x)\}, \max \{\omega_A(x), \omega_B(x)\}, x \in X \} \}

As an illustration, let us consider the following example.

Example 2.2. Assume that the universe of discourse \(U = \{x_1, x_2, x_3\} \). It may be further assumed that the values of \(x_1, x_2 \) and \(x_3 \) are in \([0,1]\). Then, A is a neutrosophic set (NS) of U, such that,

\[A = \{< x_1, 0.7, 0.5, 0.2>, < x_2, 0.4, 0.5, 0.5>, < x_3, 0.4, 0.5, 0.6> \} \]

Definition 2.3.[8] Let U be an initial universe, \(P(U) \) be the power set of U, E be a set of all parameters and \(K \) be a ne
trosophic set over \(E \). Then a neutrosophic parameterized soft sets

\[
\psi_K = \left\{ \left(x, \mu_K(x), \nu_K(x), \omega_K(x) \right) \right\},
\]

where \(\mu_K : E \to [0, 1], \nu_K : E \to [0, 1], \omega_K : E \to [0, 1] \) and \(f_K : E \to P(U) \) such that \(f_K(x) = \Phi \) if \(\mu_K(x) = 0, \nu_K(x) = 1 \) and \(\omega_K(x) = 1 \).

Here, the function \(\mu_K, \nu_K \) and \(\omega_K \) called membership function, indeterminacy function and non-membership function of neutrosophic parameterized soft set (NP-soft set), respectively.

Example 2.4. Assume that \(U = \{ u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8 \} \) is a universal set and \(E = \{ x_1, x_2 \} \) is a set of parameters. If

\[
K = \left\{ \left(x_1, 0.7, 0.3, 0.4 \right), \left(x_2, 0.7, 0.5, 0.4 \right) \right\}
\]

and

\[
f_K(x_1) = \{ u_2, u_3 \}, f_K(x_2) = U.
\]

Then a neutrosophic parameterized soft set \(\Psi_K \) is written by

\[
\psi_K = \left\{ \left(x_1, 0.7, 0.3, 0.4, \{ u_2, u_3 \} \right), \left(x_2, 0.7, 0.5, 0.4 \right), U \right\}
\]

3. Relations on the NP-Soft Sets

In this section, after given the cartesian products of two NP-soft sets, we define a relations on NP-soft sets and study their desired properties.

Definition 3.1. Let \(\psi_K, \Omega_L \in NPS(U) \). Then, a Cartesian product of \(\psi_K \) and \(\Omega_L \), denoted by \(\psi_K \times \Omega_L \), is defined as:

\[
\psi_K \times \Omega_L = \left\{ \left(x, y, \mu_{K \times L}(x, y), \nu_{K \times L}(x, y), \omega_{K \times L}(x, y) \right) \right\}, f_{K \times L}(x, y) : (x, y) \in E \times E
\]

Where

\[
f_{K \times L}(x, y) = f_K(x) \cap f_L(y)
\]

and

\[
\mu_{K \times L}(x, y) = \min \{ \mu_K(x), \mu_L(y) \}
\]

\[
\nu_{K \times L}(x, y) = \max \{ \nu_K(x), \nu_L(y) \}
\]

\[
\omega_{K \times L}(x, y) = \max \{ \omega_K(x), \omega_L(y) \}
\]

Here \(\mu_{K \times L}(x, y), \nu_{K \times L}(x, y), \omega_{K \times L}(x, y) \) is a t-norm.

Example 3.2. Let \(U = \left\{ u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15} \right\} \),

\[
E = \{ x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \},
\]

\[
K = \left\{ \left(x_2, 0.5, 0.6, 0.3 \right), \left(x_3, 0.3, 0.2, 0.9 \right), \left(x_5, 0.6, 0.7, 0.3 \right), \left(x_6, 0.1, 0.4, 0.6 \right), \left(x_7, 0.7, 0.5, 0.3 \right) \right\}
\]

and

\[
L = \left\{ \left(x_1, 0.5, 0.6, 0.3 \right), \left(x_2, 0.5, 0.6, 0.3 \right), \left(x_4, 0.9, 0.8, 0.1 \right), \left(x_6, 0.3, 0.2, 0.9 \right) \right\}
\]

be to neutrosophic sets of \(E \). Suppose that

\[
\psi_K = \left\{ \left(x_2, 0.5, 0.6, 0.3 \right), \left\{ u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15} \right\} \right\},
\]

\[
\left\{ \left(x_3, 0.3, 0.2, 0.9 \right), \left\{ u_1, u_2, u_3, u_4, u_5, u_6, u_{11}, u_{12}, u_{15} \right\} \right\}
\]

\[
\left\{ \left(x_5, 0.6, 0.7, 0.3 \right), \left\{ u_1, u_2, u_3, u_4, u_6, u_{12}, u_{13}, u_{14}, u_{15} \right\} \right\}
\]

\[
\left\{ \left(x_6, 0.1, 0.4, 0.6 \right), \left\{ u_2, u_4, u_5, u_{10}, u_{12}, u_{13} \right\} \right\}
\]

\[
\left\{ \left(x_7, 0.7, 0.5, 0.3 \right), \left\{ u_2, u_3, u_6, u_9, u_{13}, u_{15} \right\} \right\}
\]

and

\[
\Omega_L = \left\{ \left(x_1, 0.7, 0.4, 0.6 \right), \left\{ u_1, u_2, u_4, u_5, u_{10}, u_{13} \right\} \right\},
\]

\[
\left\{ \left(x_3, 0.5, 0.6, 0.3 \right), \left\{ u_1, u_2, u_4, u_5, u_6, u_{10}, u_{12}, u_{13}, u_{14} \right\} \right\},
\]

\[
\left\{ \left(x_4, 0.9, 0.8, 0.1 \right), \left\{ u_1, u_2, u_3, u_{10}, u_{11} \right\} \right\},
\]

\[
\left\{ \left(x_6, 0.4, 0.7, 0.2 \right), \left\{ u_2, u_4, u_5, u_{10}, u_{12}, u_{14} \right\} \right\}
\]

Then, the Cartesian product of \(\psi_K \) and \(\Omega_L \) is obtained as follows;
\[\psi_{K}^{\check{\Omega}_{L}} = \left\{ (x, y, 0.5, 0.6, 0.6), (u_{1}, u_{2}, u_{10}) \right\}, \]
\[\left\{ (x, y, 0.5, 0.6, 0.3), (u_{1}, u_{2}, u_{15}) \right\} \]
\[\left\{ (x, y, 0.4, 0.7, 0.3), (u_{2}, u_{3}, u_{10}, u_{12}, u_{14}) \right\} \]
\[\left\{ (x, y, 0.4, 0.7, 0.3), (u_{2}, u_{3}, u_{5}, u_{3}, u_{13}) \right\} \]
\[\left\{ (x, y, 0.7, 0.8, 0.3), (u_{2}, u_{3}, u_{5}, u_{6}, u_{15}) \right\} \]
\[\left\{ (x, y, 0.4, 0.7, 0.3), (u_{2}, u_{3}, u_{5}) \right\} \]

and \[\beta = \left\{ (y, \mu_{L}(y), \nu_{L}(y), \omega_{L}(y), f_{L}(y)) \right\} \in \Omega_{L}, \text{ then} \]
\[\alpha R_{N} \beta \Leftrightarrow \left\{ (x, y), \mu_{KL}(x, y), \nu_{KL}(x, y), \omega_{KL}(x, y), f_{KL}(x, y) \right\} \in R_{N} \]
where \[f_{K}(x) = f_{K}(x) \cap f_{L}(y). \]

Example 3.4. Let us consider the Example 3.2. Then, we define a NP-soft relation from \[\psi_{K} \] to \[\Omega_{L} \], as follows
\[\alpha R_{N} \beta \Leftrightarrow \left\{ (x, y, \mu_{KL}(x, y), \nu_{KL}(x, y), \omega_{KL}(x, y), f_{KL}(x, y)) \right\} (1 \leq i, j \leq 8) \]

Such that \[\mu_{KL}(x, y) \geq 0.3 \]
\[\nu_{KL}(x, y) \leq 0.5 \]
\[\omega_{KL}(x, y) \leq 0.7 \]

Then
\[R_{N}^{N} = \left\{ (x, y, 0.5, 0.6, 0.6), (u_{1}, u_{2}, u_{10}) \right\}, \]
\[\left\{ (x, y, 0.5, 0.6, 0.3), (u_{1}, u_{2}, u_{15}) \right\} \]
\[\left\{ (x, y, 0.4, 0.7, 0.3), (u_{2}, u_{3}, u_{10}, u_{12}, u_{14}) \right\} \]
\[\left\{ (x, y, 0.4, 0.7, 0.3), (u_{2}, u_{3}, u_{5}, u_{6}, u_{15}) \right\} \]
\[\left\{ (x, y, 0.6, 0.8, 0.3), (u_{2}, u_{3}) \right\} \]

Definition 3.3. Let \[\psi_{K}, \Omega_{L} \in \text{NPS}(U). \] Then, a NP-soft relation from \[\psi_{K} \] to \[\Omega_{L} \], denoted by \[R_{N} \], is a NP-soft subset of \[\psi_{K}^{\check{\Omega}_{L}}. \] Any NP-soft subset of \[\psi_{K}^{\check{\Omega}_{L}} \] is called a NP-soft relation on \[\psi_{K}. \]

Note that if \[\alpha = \left\{ (x, \mu_{K}(x), \nu_{K}(x), \omega_{K}(x), f_{K}(x)) \right\} \in \psi_{K} \]
Definition 3.5. Let ψ_K, $\Omega_L \in NPS(U)$ and R_N be a NP-soft relation from ψ_K to Ω_L. Then, domain and range of R_N respectively are defined as;

$$D(R_N) = \{ \alpha \in \psi_K : \alpha R_N \beta \}$$

$$R_N = \{ \beta \in \Omega_L : \alpha R_N \beta \}.$$

Example 3.6. Let us consider the Example 3.4

$$D(R_N) = \{(x, 0.5, 0.6, 0.3), \{u_1, u_2, u_4, u_5, u_6, u_7, u_9, u_{10}, u_{12}, u_{13}, u_{15}\} \}$$

$$R_N = \{(x, 0.7, 0.4, 0.6), \{u_1, u_2, u_5, u_6, u_9, u_{10}, u_{12}, u_{13}, u_{15}\} \}$$

Proposition 3.9. Let R_{N_1} and R_{N_2} be two NP-soft relations. Then

1. $\left(R_{N_1}^{-1} \right)^{-1} = R_{N_1}$

2. $R_{N_1} \subseteq R_{N_2} \Rightarrow R_{N_1}^{-1} \subseteq R_{N_2}^{-1}$

Proof:

1. $\alpha \left(R_{N_1}^{-1} \right)^{-1} \beta = \beta R_{N_1}^{-1} \alpha = \alpha R_{N_1} \beta$

2. $\alpha R_{N_1} \beta \subseteq \alpha R_{N_2} \beta \Rightarrow \beta R_{N_1}^{-1} \alpha \subseteq \beta R_{N_2}^{-1} \alpha$

Definition 3.10. If R_{N_1} and R_{N_2} are two NP-soft relations from ψ_K to Ω_L, then a composition of two NP-soft relations R_{N_1} and R_{N_2} is defined by

$$\alpha \left(R_{N_1} \circ R_{N_2} \right) \gamma = \left(\alpha R_{N_1} \beta \right) \wedge \left(\beta R_{N_2} \gamma \right)$$

I. Deli, Y. Toktaş and S. Broumi, Neutrosophic Parameterized Soft Relations and Their Applications
Proposition 3.11. Let \(R_{N_1} \) and \(R_{N_2} \) be two \(NP \)-soft relations from \(\psi_K \) to \(\Omega_L \).

Then, \(\left(R_{N_1} \circ R_{N_2} \right)^{-1} = R_{N_2}^{-1} \circ R_{N_1}^{-1} \).

Proof:

\[
\begin{align*}
\alpha \left(R_{N_1} \circ R_{N_2} \right)^{-1} & = \gamma \left(R_{N_1} \circ R_{N_2} \right) \\
& = \left(\gamma R_{N_1} \beta \right) \land \left(\beta R_{N_2} \alpha \right) \\
& = \left(\beta R_{N_2} \alpha \right) \land \left(\gamma R_{N_1} \beta \right) \\
& = \left(\alpha R_{N_1}^{-1} \beta \right) \land \left(\beta R_{N_2}^{-1} \gamma \right) \\
& = \alpha \left(R_{N_2}^{-1} \circ R_{N_1}^{-1} \right)^{-1}
\end{align*}
\]

Therefore we obtain

\[
\left(R_{N_1} \circ R_{N_2} \right)^{-1} = R_{N_2}^{-1} \circ R_{N_1}^{-1}
\]

Definition 3.12. A \(NP \)-soft relation \(R_N \) on \(\psi_K \) is said to be a \(NP \)-soft symmetric relation if

\[
\alpha R_N \alpha, \forall \alpha \in \psi_K.
\]

Definition 3.13. A \(NP \)-soft relation \(R_N \) on \(\psi_K \) is said to be a \(NP \)-soft transitive relation if

\[
\alpha R_N \beta \Rightarrow \beta R_N \alpha, \forall \alpha, \beta \in \psi_K.
\]

Definition 3.14. A \(NP \)-soft relation \(R_N \) on \(\psi_K \) is said to be a \(NP \)-soft reflexive relation if

\[
\alpha R_N \alpha, \forall \alpha \in \psi_K.
\]

Example 3.16. Let

\[
U = \{ u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8 \},
\]

\[
E = \{ x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \} \text{ and}
\]

\[
X = \{ (x_1, 0.5, 0.4, 0.7), (x_2, 0.6, 0.8, 0.4), (x_3, 0.2, 0.5, 0.1) \}.
\]

Suppose that

\[
\psi_K = \{ (x_1, 0.5, 0.4, 0.7), (u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8) \},
\]

\[
(x_2, 0.6, 0.8, 0.4, (u_2, u_6, u_8)),
\]

\[
(x_3, 0.2, 0.5, 0.1, (u_1, u_2, u_4, u_5, u_7, u_8))
\]

Then, a cartesian product on \(\psi_K \) is obtained as follows.

\[
\psi_K \times \psi_K = \{ (x_1, x_2), 0.5, 0.4, 0.7, (u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8) \},
\]

\[
((x_1, x_2), 0.5, 0.8, 0.7, (u_2, u_6, u_8)),
\]

\[
((x_1, x_2), 0.2, 0.5, 0.7, (u_2, u_5, u_7, u_8)),
\]

\[
((x_2, x_3), 0.5, 0.8, 0.7, (u_2, u_6, u_8)),
\]

\[
((x_2, x_3), 0.6, 0.8, 0.4, (u_2, u_6, u_8)),
\]

\[
((x_1, x_2), 0.2, 0.8, 0.4, (u_2, u_8)),
\]

\[
((x_1, x_2), 0.2, 0.5, 0.7, (u_2, u_8)),
\]

\[
((x_2, x_3), 0.2, 0.8, 0.4, (u_2, u_8)),
\]

\[
((x_3, x_3), 0.2, 0.5, 0.1, (u_1, u_2, u_4, u_5, u_7, u_8))
\]

Then, we get a neutrosophic parameterized soft relation \(R_N \) on \(\psi_K \) as follows.
\[\alpha R_N \beta \Leftrightarrow \left((x, y), \mu_{KXL}^*(x, y), \nu_{KXL}^*(x, y), \omega_{KXL}^*(x, y), f_{KXL}^*(x, y) \right) (1 \leq i, j \leq 8) \]

Where
\[\mu_{KXL}^*(x, y) \geq 0.3 \]
\[\nu_{KXL}^*(x, y) \leq 0.5 \]
\[\omega_{KXL}^*(x, y) \leq 0.7 \]

Then
\[R_N = \left\{ \left((x_1, x_2), 0.5, 0.4, 0.7 \right), \left(u_2, u_3, u_5, u_6, u_7, u_8 \right) \right\} \]
\[\left((x_2, x_1), 0.5, 0.8, 0.7 \right), \left(u_2, u_6, u_8 \right) \}
\[\left((x_2, x_1), 0.5, 0.8, 0.7 \right), \left(u_2, u_6, u_8 \right) \}
\[\left((x_2, x_2), 0.6, 0.8, 0.4 \right), \left(u_2, u_6, u_8 \right) \}

\[R_N \text{ on } \psi_K \text{ is an NP-soft equivalence relation because it is symmetric, transitive and reflexive.} \]

Proposition 3.17. If \(R_N \) is symmetric, if and only if \(R_N^{-1} \) is so.

Proof: If \(R_N \) is symmetric, then
\[aR_N^{-1} \beta = \beta R_N \alpha = aR_N \beta = \beta R_N^{-1} \alpha. \]
So, \(R_N^{-1} \) is symmetric.

Conversely, if \(R_N^{-1} \) is symmetric, then
\[aR_N^{-1} \beta = \alpha(R_N^{-1})^{-1} \beta = \beta(R_N^{-1}) \alpha = \alpha(R_N^{-1}) \beta = \beta R_N \alpha \]
So, \(R_N \) is symmetric.

Proposition 3.18. \(R_N \) is symmetric if and only if \(R_N^{-1} = R_N \).

Proof: If \(R_N \) is symmetric, then
\[aR_N^{-1} \beta = \beta R_N \alpha = aR_N \beta. \]
So, \(R_N^{-1} = R_N \).

Conversely, if \(R_N^{-1} = R_N \), then
\[aR_N \beta = aR_N^{-1} \beta = \beta R_N \alpha. \]
So, \(R_N \) is symmetric.

Proposition 3.19. If \(R_{N_1} \) and \(R_{N_2} \) are symmetric relations on \(\psi_K \), then \(R_{N_1} \circ R_{N_2} \) is symmetric on \(\psi_K \) if and only if \(R_{N_1} \circ R_{N_2} = R_{N_1} \circ R_{N_2} \).

Proof: If \(R_{N_1} \) and \(R_{N_2} \) are symmetric, then it implies \(R_{N_1}^{-1} = R_{N_1} \) and \(R_{N_2}^{-1} = R_{N_2} \). We have
\[(R_{N_1} \circ R_{N_2})^{-1} = R_{N_2}^{-1} \circ R_{N_1}^{-1}. \]

Then \(R_{N_1} \circ R_{N_2} \) is symmetric. It implies
\[R_{N_1} \circ R_{N_2} = (R_{N_1} \circ R_{N_2})^{-1} = R_{N_2}^{-1} \circ R_{N_1}^{-1} = R_{N_2} \circ R_{N_1}. \]

Conversely,
\[(R_{N_1} \circ R_{N_2})^{-1} = R_{N_2}^{-1} \circ R_{N_1}^{-1} = R_{N_1} \circ R_{N_2} = R_{N_1} \circ R_{N_2}. \]

So, \(R_{N_1} \circ R_{N_2} \) is symmetric.

Corollary 3.20. If \(R_N \) is symmetric, then \(R_N^n \) is symmetric for all positive integer \(n \), where \(R_N^n = R_N \circ R_N \circ \ldots \circ R_N \) \(n \) times.

Proposition 3.21. If \(R_N \) is transitive, then \(R_N^{-1} \) is also transitive.

Proof:
\[aR_N^{-1} \beta = \beta R_N \alpha \supseteq \beta (R_N \circ R_N) \alpha \]
\[= (\beta R_N \alpha) \land (\gamma R_N \alpha) \]
\[= (\gamma R_N \alpha) \land (\beta R_N \alpha) \]
\[= (\alpha R_N^{-1} \beta) \land (\gamma R_N^{-1} \beta) \]
\[= \alpha (R_N^{-1} \circ R_N^{-1}) \beta \]

So, \(R_N^{-1} \circ R_N^{-1} \subseteq R_N^{-1} \). The proof is completed.
Proposition 3.22. If R_N is reflexive, then R_N^{-1} is so.

Proof: $aR_N^{-1} \beta = \beta R_N a \subseteq \alpha R_N \alpha = \alpha R_N^{-1} \alpha$ and $\beta R_N^{-1} \alpha = aR_N \beta \subseteq \alpha R_N \alpha = \alpha R_N^{-1} \alpha$.

The proof is completed.

Proposition 3.23. If R_N is symmetric and transitive, then R_N is reflexive.

Proof: It's clearly.

Definition 3.24. Let $(K, NPS(U), R)$ be an NP-soft relation on K. The neutrosophication operator, denoted by sR_N, is defined by

$$\mu_{sR_N}(u) = \frac{1}{|X \times X|} \sum_{i,j} \mu_{R_N}(x_i, x_j) \chi(u)$$

$$v_{sR_N}(u) = \frac{1}{|X \times X|} \sum_{i,j} v_{R_N}(x_i, x_j) \chi(u)$$

$$\omega_{sR_N}(u) = \frac{1}{|X \times X|} \sum_{i,j} \omega_{R_N}(x_i, x_j) \chi(u)$$

and where

$$\chi(u) = \begin{cases} 1, & u \in f_{R_N}(x_i, x_j) \\ 0, & u \notin f_{R_N}(x_i, x_j) \end{cases}$$

Note that $|X \times X|$ is the cardinality of $X \times X$.

Definition 4.2. Let $\Psi_K \in NPS(U)$ and R_N be a NP-soft relation on Ψ_K. A neutrosophication operator, denoted by sR_N, is defined by

$$sR_N : R_N \rightarrow F(U), sR_N (X \times X, U) = \{(u, \mu_{sR_N}(u), v_{sR_N}(u), \omega_{sR_N}(u)), u \in U\}$$

Where

$$\mu_{sR_N}(u) = \left[\sum_{i} \mu_{R_N}(x_i, x_i) \right] / m$$

$$v_{sR_N}(u) = \left[\sum_{i} v_{R_N}(x_i, x_i) \right] / m$$

$$\omega_{sR_N}(u) = \left[\sum_{i} \omega_{R_N}(x_i, x_i) \right] / m$$

Now, we can construct a decision making method on NP-soft relation by the following algorithm:

4. Decision Making Method

In this section, we construct a soft neutrosophication operator and a decision making method on NP-soft relations.
1. construct a feasible neutrosophic subset \(X \) over \(E \).
2. construct a \(NP-soft \) set \(\psi_K \) over \(U \).
3. construct a \(NP-soft \) relation \(R_N \) over \(\psi_K \) according to the request.
4. calculate the neutrosophication operator \(sR_N \) over \(R_N \).
5. calculate the reduced fuzzy set \(\tilde{\psi}_K \).
6. select the objects from \(\tilde{\psi}_K \) which have the largest membership value.

Example 4.3. A customer, Mr. X, comes to the auto gallery agent to buy a car which is over middle class. Assume that an auto gallery agent has a set of different types of car \(U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\} \), which may be characterized by a set of parameters \(E = \{x_1, x_2, x_3, x_4\} \). For \(i = 1, 2, 3, 4 \) the parameters \(x_i \) stand for "ty", "cheap", "modern" and "large", respectively. If Mr. X has to consider his own set of parameters, then we select a car on the basis of the set of customer parameters by using the algorithm as follows.

1. Mr. X constructs a neutrosophic set \(X \) over \(E \),
\[
X = \{<x_1, 0.5, 0.4, 0.7>, <x_2, 0.6, 0.8, 0.4>, <x_3, 0.2, 0.5, 0.1>\}
\]
2. Mr. X constructs a \(NP-soft \) set \(\psi_K \) over \(U \),
\[
\psi_K = \{(x_1, 0.5, 0.4, 0.7), (u_1, u_2, u_3, u_4, u_5), (x_2, 0.6, 0.8, 0.4), (u_6, u_7, u_8), (x_3, 0.2, 0.5, 0.1), (u_4, u_5, u_6, u_7, u_8)\}
\]
3. The neutrosophic parameterized soft relation \(R_N \) over \(\psi_K \) is calculated according to the Mr X’s request.
4. The soft neutrosophication operator \(sR_N \) over \(R_N \) calculated as follows
\[
sR_N = \left\{\left\{(x_1, x_2, 0.4, 0.6, 0.7), (u_2, u_3, u_4, u_5, u_6)\right\}, \left\{(x_1, x_3, 0.2, 0.5, 0.7), (u_2, u_3, u_4, u_5)\right\}, \left\{(x_2, x_3, 0.2, 0.3, 0.4), (u_3, u_4)\right\}, \left\{(x_2, x_4, 0.6, 0.8, 0.4), (u_2, u_4, u_5)\right\}\right\}
\]
5. Reduced fuzzy set \(\tilde{\psi}_K \) calculated as follows
\[
\tilde{\psi}_K(u) = \left\{\begin{array}{cccc}
0.033 & 0.205 & 0.016 & 0.033 & 0.05 \\
0.105 & 0.083 & 0.205 & u_6 & u_7 & u_8 \\
\end{array}\right\} ; u \in U
\]
6. Now, Mr. X selects the optimum car \(u_2 \) and \(u_8 \) which have the biggest membership degree 0.205 among the other cars.

5. Conclusion

In this work, we have defined relation on NP-soft sets and studied some of their properties. We also defined symmetric, transitive, reflexive and equivalence relations on the
NP-soft sets. Finally, we construct a decision making method and gave an application which shows that this method successfully works. In future work, we will extend this concept to interval valued neutrosophic parameterized soft sets.

3. References