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Reprinted from: Symmetry 2020, 12, 193, doi:10.3390/sym12020193 . . . . . . . . . . . . . . . . . 241

Yaser Saber, Fahad Alsharari, Florentin Smarandache and Mohammed Abdel-Sattar
Connectedness and Stratification of Single-Valued Neutrosophic Topological Spaces
Reprinted from: Symmetry 2020, 12, 1464, doi:10.3390/sym12091464 . . . . . . . . . . . . . . . . . 261

Kritika Mishra, Ilanthenral Kandasamy, Vasantha Kandasamy W. B. and Florentin
Smarandache
A Novel Framework Using Neutrosophy for Integrated Speech and Text Sentiment Analysis
Reprinted from: Symmetry 2020, 12, 1715, doi:10.3390/sym12101715 . . . . . . . . . . . . . . . . . 281

Muhammad Rayees Ahmad, Muhammad Saeed, Usman Afzal and Miin-Shen Yang
A Novel MCDM Method Based on Plithogenic Hypersoft Sets under Fuzzy Neutrosophic
Environment
Reprinted from: Symmetry 2020, 12, 1855, doi:10.3390/sym12111855 . . . . . . . . . . . . . . . . . 303

Dongsik Jo, S. Saleh, Jeong-Gon Lee, Kul Hur and Chen Xueyou
Topological Structures via Interval-Valued Neutrosophic Crisp Sets
Reprinted from: Symmetry 2020, 12, 2050, doi:10.3390/sym12122050 . . . . . . . . . . . . . . . . . 327

Fahad Alsharari
£-Single Valued Extremally Disconnected Ideal Neutrosophic Topological Spaces
Reprinted from: Symmetry 2020, 13, 53, doi:10.3390/sym13010053 . . . . . . . . . . . . . . . . . . 357

Bhimraj Basumatary, Nijwm Wary, Dimacha Dwibrang Mwchahary, Ashoke Kumar Brahma,
Jwngsar Moshahary and Usha Rani Basumatary et al.
A Study on Some Properties of Neutrosophic Multi Topological Group
Reprinted from: Symmetry 2021, 13, 1689, doi:10.3390/sym13091689 . . . . . . . . . . . . . . . . . 375

vi



About the Editors

Florentin Smarandache

Florentin Smarandache is a professor of mathematics at the University of New Mexico, United

States. He received his MSc in Mathematics and Computer Science from the University of Craiova,

Romania, PhD in Mathematics from the State University of Kishinev, and Postdoctoral in Applied

Mathematics from Okayama University of Sciences, Japan, and The Guangdong University of

Technology, Guangzhou, China. He has been the founder of neutrosophy (generalization of

dialectics), neutrosophic set, logic, probability and statistics since 1995 and has published hundreds

of papers and books on neutrosophic physics, superluminal and instantaneous physics, unmatter,

quantum paradoxes, absolute theory of relativity, redshift and blueshift due to the medium gradient

and refraction index in addition to the Doppler effect, paradoxism, outerart, neutrosophy as

a new branch of philosophy, Law of Included Multiple-Middle, multispace and multistructure,

hypersoft sets, degree of dependence and independence between neutrosophic components,

refined neutrosophic sets, neutrosophic over-under-off-sets, plithogenic sets / logic / probability /

statistics, neutrosophic triplet and duplet structures, quadruple neutrosophic structures, extension

of algebraic structures to NeutroAlgebras and AntiAlgebras, NeutroGeometry and AntiGeometry,

Dezert–Smarandache Theory, and so on to many peer-reviewed international journals and many

books and he has presented papers and plenary lectures at many international conferences around

the world.

In addition, he has published many books of poetry, drama, children’s stories,

translations, essays, a novel, folklore collections, traveling memories, and art albums

(http://fs.unm.edu/FlorentinSmarandache.htm).

Yanhui Guo

Yanhui Guo received his B. S. degree in Automatic Control from Zhengzhou University, China,

M.S. degree in Pattern Recognition and Intelligence System from Harbin Institute of Technology,

China, and Ph.D. degree in the Department of Computer Science, Utah State University, USA. He

was a research follow in the Department of Radiology at the University of Michigan and an assistant

professor in St. Thomas University. Dr. Guo is currently an assistant professor in the Department of

Computer Science at the University of Illinois at Springfield. Dr. Guo has published more than 100

journal papers and 30 conference papers, completed more than 10 grant-funded research projects,

and worked as an associate editor of different international journals, a reviewer for top journals and

has been a part of many conferences. His research areas include computer vision, machine learning,

big data analytics, and computer-aided detection/diagnosis.

vii





Preface to ”New Development of Neutrosophic
Probability, Neutrosophic Statistics, Neutrosophic
Algebraic Structures, and Neutrosophic Plithogenic
Optimizations”

This Special Issue presents state-of-the-art papers on new topics related to neutrosophic theories,

such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic

extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic

triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary

algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic

hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic

algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic

computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic

data analytics, neutrosophic deep learning, and neutrosophic symmetry, as well as their applications

in the real world.

The neutrosophic extended triplet group (NETG) is a novel algebra structure studied here

by Xin Zhou, Ping Li, Florentin Smarandache and Ahmed Mostafa Khalil in an article (Results

on Neutrosophic Extended Triplet Groups Equipped with a Partial Order) presenting the concept

of a partially ordered neutrosophic extended triplet group (po-NETG), considering the properties

and structure features of po-NETGs. The authors propose the concepts of the positive cone and

negative cone in a po-NETG, study the specificity of the positive cone in a partially ordered weak

commutative neutrosophic extended triplet group (po-WCNETG), and introduce the concept of a

po-NETG homomorphism between two po-NETGs.

In the next selected paper (Single-Valued Neutrosophic Ideals in Šostak Sense), Yaser Saber,

Fahad Alsharari and Florentin Smarandache introduce the notion of single-valued neutrosophic

ideals sets in Šostak’s sense, and then the concept of a single-valued neutrosophic ideal open local

function for a single-valued neutrosophic topological space, studying the basic structure, especially

a basis for such generated single-valued neutrosophic topologies and several relations between

different single-valued neutrosophic ideals and single-valued neutrosophic topologies. For the

purpose of symmetry, the authors also define the single-valued neutrosophic relations.

Guansheng Yu, Shouzhen Zeng and Chonghui Zhang study the single-valued neutrosophic

linguistic distance measures based on the induced aggregation method in their paper (-Valued

Neutrosophic Linguistic-Induced Aggregation Distance Measures and Their Application in

Investment Multiple Attribute Group Decision Making), suggesting a new extension of the existing

distance measures based on the induced aggregation view, namely the single-valued neutrosophic

linguistic-induced ordered weighted averaging distance (SVNLIOWAD) measure. Based on

SVNLIOWAD, in order to eliminate the defects of the existing methods, the authors develop a novel

induced distance for single-valued neutrosophic linguistic sets, called the single-valued neutrosophic

linguistic weighted induced ordered weighted averaging distance (SVNLWIOWAD). Then, the

relationship between the two proposed distance measures is explored, and a numerical example

concerning an investment selection problem is constructed to prove the efficiency of the proposed

method under a single-valued neutrosophic linguistic environment.

Ashraf Al-Quran, Hazwani Hashim and Lazim Abdullah extend, in the paper Hybrid Approach
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of Interval Neutrosophic Vague Sets and DEMATEL with New Linguistic Variable, the concept

of Interval Neutrosophic Vague Sets (INVS) to the linguistic variable that can be used in the

decision-making process. The advantages of the linguistic variable of INVS, which is a useful tool to

deal with uncertainty and incomplete information, derives from allowing the greater range of value

for membership functions. In addition, a case study on the quality of hospital service is evaluated

to demonstrate the approach, and a comparative analysis to check the feasibility of the method

is presented, showing that different methods produce different relations and levels of importance,

which is due to the inclusion of the INVS linguistic variable.

The paper of Imaginative Play in Children Using Single-Valued Refined Neutrosophic Sets,

by Vasantha W. B., Ilanthenral Kandasamy, Florentin Smarandache, Vinayak Devvrat and Shivam

Ghildiyal, introduces the Single-Valued Refined Neutrosophic Set (SVRNS), a generalized version of

the neutrosophic set consisting of six membership functions based on imaginary and indeterminate

aspects, and hence it is more sensitive to real-world problems. Machine learning algorithms such as

K-means, parallel axes coordinate, etc., are applied for a real-world application in child psychology.

The study of imaginative pretend play of children in the age group from 1 to 10 years is analyzed

using SVRNS, helping in detecting the mental abilities of a child on the basis of imaginative play.

The authors conclude that SVRNS is better at representing these data when compared to other

neutrosophic sets.

Aggregation operators are key features of decision-making theory, while the neutrosophic

cubic set (NCS), as a generalized version of NS and INS, is a very effective choice when dealing

with vague and imprecise data. Majid Khan, Muhammad Gulistan, Mumtaz Ali and Wathek

Chammam intend, in the paper Generalized Neutrosophic Cubic Aggregation Operators and Their

Application to Multi-Expert Decision-Making Method, to generalize these aggregation operators by

presenting neutrosophic cubic-generalized unified aggregation (NCGUA) and neutrosophic cubic

quasi-generalized unified aggregation (NCQGUA) operators. The authors employ the multi-expert

decision-making method (MEDMM) to express this complex framework.

In the paper Single Valued Neutrosophic Data Envelopment Analysis: Application to

Hospital Performance Measurement, Wei Yang, Lulu Cai, Seyed Ahmad Edalatpanah and Florentin

Smarandache introduce a model of data envelopment analysis (DEA) in the context of neutrosophic

sets, proposing an innovative process to solve it. Furthermore, the authors analyze the problem of

healthcare system evaluation with inconsistent, indeterminate, and incomplete information using the

new model. The triangular single-valued neutrosophic numbers are also employed to deal with the

data, and the method is used to assess 13 hospitals of Tehran University of Medical Sciences of Iran.

The results prove the efficiency of the suggested approach and emphasize that the model has practical

outcomes for decision makers.

Another study (Novel Dynamic Multi-Criteria Decision Making Method Based on Generalized

Dynamic Interval-Valued Neutrosophic Set, by Nguyen Tho Thong, Florentin Smarandache, Nguyen

Dinh Hoa, Le Hoang Son, Luong Thi Hong Lan, Cu Nguyen Giap, Dao The Son and Hoang Viet

Long) selected for this Special Issue introduces the generalized dynamic internal-valued neutrosophic

sets, which are an extension of dynamic internal-valued neutrosophic sets. Based on this extension,

the authors develop some operators and a TOPSIS method to deal with the change of both criteria,

alternatives, and decision makers by time. For example, the method is applied to rank students

according to attitude–skill–knowledge evaluation model.

The associative law reflects the symmetry of operation, and other various variation associative
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laws reflect some generalized symmetries. In the article Kind of Variation Symmetry: Tarski

Associative Groupoids (TA-Groupoids) and Tarski Associative Neutrosophic Extended Triplet

Groupoids (TA-NET-Groupoids), Xiaohong Zhang, Wangtao Yuan, Mingming Chen and Florentin

Smarandache introduce a new concept of Tarski associative groupoids (or transposition associative

groupoid (TA-groupoid)), presenting many examples, to determine their basic properties and

structural characteristics, and as well to discuss the relationships among a few non-associative

groupoids. Moreover, the researchers suggest a new concept of Tarski associative neutrosophic

extended triplet groupoids (TA-NET-groupoid), examining related properties.

In the next paper (Components Semigroups and Multiset Neutrosophic Components

Semigroups), Vasantha W. B., Ilanthenral Kandasamy and Florentin Smarandache define the usual

product and sum operations of neutrosophic components (NC). Four different NCs are defined using

the four different intervals: (0, 1), [0, 1), (0, 1] and [0, 1]. In the neutrosophic components, it is assumed

that the truth value or the false value or the indeterminate value is from the intervals (0, 1) or [0, 1) or

(0, 1] or [0, 1]. All the operations defined on these neutrosophic components on the four intervals are

symmetric. In all four cases, the NC collection happens to be a semigroup under product, and all of

them are torsion-free semigroups or weakly torsion-free semigroups. The NC defined on the interval

[0, 1) is a group under addition modulo 1, while the NC defined on the interval [0, 1) is an infinite

commutative ring under addition modulo 1. The authors also examine the multiset NC semigroup

using the four intervals, and derive several interesting properties of these structures.

Abdul Alamin, Sankar Prasad Mondal, Shariful Alam, Ali Ahmadian, Soheil Salahshour and

Mehdi Salimi focus on analyzing the homogeneous linear difference equation in a neutrosophic

environment in the paper and Interpretation of Neutrosophic Homogeneous Difference Equation.

The authors interprete the solution of the homogeneous difference equation with initial information,

the coefficient and both as a neutrosophic number. The theoretical work is followed by numerical

examples and an application in actuarial science, which shows the great impact of neutrosophic set

theory in mathematical modeling in a discrete system to better understand the behavior of the system.

The grand theory of action of Parsons has an important place in social theories, but there are

many uncertainties in this theory, for which classical logic is often insufficient. In the study Modeling

of Talcott Parsons’s Action and Decision-Making Applications for It, the researchers Cahit Aslan,

Abdullah Kargın and Memet Şahin export, for the first time, the grand theory of action of Parsons

in neutrosociology. The authors achieve a more effective way of dealing with the uncertainties

in the theory of Parsons as in all social theories, proposing a similarity measure for single-valued

neutrosophic numbers, showing, in addition, that this measure of similarity satisfies the similarity

measure conditions, obtaining applications that allow finding the ideal society in the theory of

Parsons within the theory of neutrosociology. Finally, the authors compare the data obtained in this

study with the results of the similarity measures defined previously.

In the article of the Single-Valued Neutrosophic Fuzzy Set and the Soft Set with Applications in

Decision-Making, Ahmed Mostafa Khalil, Dunqian Cao, Abdelfatah Azzam, Florentin Smarandache

and Wedad R. Alharbi propose a novel concept of the single-valued neutrosophic fuzzy soft set by

combining the single-valued neutrosophic fuzzy set and the soft set. Five types of operations (e.g.,

subset, equal, union, intersection, and complement) on single-valued neutrosophic fuzzy soft sets

are presented for possible applications. Additionally, several theoretical operations of single-valued

neutrosophic fuzzy soft sets are given. In addition, the first type for fuzzy decision making based

on a single-valued neutrosophic fuzzy soft set matrix is constructed. To clarify the applicability, the

xi



authors scrutinize a numerical example using the AND operation of the single-valued neutrosophic

fuzzy soft set for fuzzy decision making.

Fault diagnosis has become more and more important with increasing automation, and the

factors that cause mechanical failures are becoming more and more complex. In order to contribute

to a solution for the given problem, Shchur Iryna, Yu Zhong, Wen Jiang, Xinyang Deng and Jie Geng

propose a single-valued neutrosophic set ISVNS algorithm for processing uncertain and inaccurate

information in fault diagnosis in the paper -Valued Neutrosophic Set Correlation Coefficient and Its

Application in Fault Diagnosis. In order to solve the fault diagnosis problem more effectively, the

authors generate a neutrosophic set by triangular fuzzy number and introduce the formula of the

improved weighted correlation coefficient. Experiments show that the algorithm can significantly

improve the accuracy degree of fault diagnosis, and can better satisfy the diagnostic requirements in

practice.

The paper New Multi-Sensor Fusion Target Recognition Method Based on Complementarity

Analysis and Neutrosophic Set, by Yuming Gong, Zeyu Ma, MeWang, Xinyang Deng and Wen Jiang,

investigates a multi-sensor fusion recognition method based on complementarity analysis and a

neutrosophic set. The proposed method has two parts: complementarity analysis and data fusion.

Complementarity analysis applies the trained multi-sensor to extract the features of the verification

set into the sensor, obtaining the recognition result of the verification set. Based on the recognition

result, the multi-sensor complementarity vector is obtained. Then, the sensor output the recognition

probability and complementarity vectors are used to generate multiple neutrosophic sets, which

are then merged within the group through the simplified neutrosophic weighted average (SNWA)

operator. Finally, the neutrosophic set is converted into a crisp number, and the maximum value is

the recognition result.

Yaser Saber, Fahad Alsharari, Florentin Smarandache and Mohammed Abdel-Sattar introduce

the notion of r-single-valued neutrosophic connected sets in single-valued neutrosophic topological

spaces, which is considered as a generalization of r-connected sets in Šostak’s sense and r-connected

sets in intuitionistic fuzzy topological spaces. In their paper (and Stratification of Single-Valued

Neutrosophic Topological Spaces), they introduce the concept of r-single-valued neutrosophic

separated and obtain some of its basic properties, also attempting to show that every r-single-valued

neutrosophic component in single-valued neutrosophic topological spaces is an r-single-valued

neutrosophic component in the stratification of it. For the purpose of symmetry, the authors

conclusively define the single-valued neutrosophic relations.

Neutrosophy has been used in sentiment analyses of textual data, but it has not been used

in speech sentiment analysis. Consequently, Kritika Mishra, Ilanthenral Kandasamy, Vasantha

Kandasamy W. B. and Florentin Smarandache (in the paper Novel Framework Using Neutrosophy for

Integrated Speech and Text Sentiment Analysis) suggest a novel framework that performs sentiment

analysis on audio files by calculating their single-valued neutrosophic sets (SVNS) and clustering

them into positive–neutral–negative, combining the results with those obtained by performing

sentiment analysis on the text files of these audio files.

In another selected paper (Novel MCDM Method Based on Plithogenic Hypersoft Sets under

Fuzzy Neutrosophic Environment), Muhammad Rayees Ahmad, Muhammad Saeed, Usman Afzal

and Miin-Shen Yang advance the study of plithogenic hypersoft sets (PHSS), by investigating four

classifications of PHSS that are based on the number of attributes chosen for application and the

nature of alternatives or that of attribute value degree of appurtenance. The proposed classifications

xii



cover most of the fuzzy and neutrosophic cases with possible neutrosophic applications in symmetry.

As an extension of the technique for order preference by similarity to an ideal solution (TOPSIS), the

paper also suggests a novel multi-criteria decision making (MCDM) method that is based on PHSS.

The proposed PHSS-based TOPSIS method can be employed to solve real MCDM problems precisely

modeled by the concept of PHSS. As an application, a parking spot choice problem is solved by

the proposed PHSS-based TOPSIS under a fuzzy neutrosophic environment and it is validated by

considering two different sets of alternatives along with a comparison with fuzzy TOPSIS in each

case, and the results prove that the method is able to be extended to analyze time series and in develop

algorithms for graph theory, machine learning, pattern recognition, and artificial intelligence.

Dongsik Jo, S. Saleh, Jeong-Gon Lee, Kul Hur and Chen Xueyou introduce the new notion of

interval-valued neutrosophic crisp sets, providing a tool for approximating undefinable or complex

concepts in the real world in the paper Structures via Interval-Valued Neutrosophic Crisp Sets.

The authors also propose an interval-valued neutrosophic crisp (vanishing) point and obtain some

of its properties, and then define an interval-valued neutrosophic crisp topology, base (subbase),

neighborhood, and interior (closure), respectively, and investigate each property, and give some

examples. Finally, they define an interval-valued neutrosophic crisp continuity and quotient topology

and study each property.

Fahad Alsharari aims in the paper £-Single Valued Extremally Disconnected Ideal Neutrosophic

Topological Spacesto mark out new concepts of r-single valued neutrosophic sets, called

r-single-valued neutrosophic £-closed and £-open sets. The definition of £-single-valued

neutrosophic irresolute mapping is provided, discussing its properties, and then the concepts

of £-single-valued neutrosophic extremally disconnected and £-single-valued neutrosophic normal

spaces are established. A useful implication diagram between the r-single-valued neutrosophic ideal

open sets is obtained.

Finally, in the last paper (Study on Some Properties of Neutrosophic Multi Topological Group)

of this Special Issue, the researchers Bhimraj Basumatary, NWary, Dimacha Dwibrang Mwchahary,

Ashoke Kumar Brahma, Jwngsar Moshahary, Usha Rani Basumatary and Jili Basumatary study

some properties of the neutrosophic multitopological group, by introducing the definitions of a

semi-open neutrosophic multiset, semi-closed neutrosophic multiset, neutrosophic multi regularly

open set, neutrosophic multi regularly closed set, neutrosophic multi continuous mapping, and then

investigating some of their properties. Since the concept of the almost topological group is new, the

authors also provide the definition of the neutrosophic multi almost topological group, and for the

purpose of symmetry, they use the definition of neutrosophic multi almost continuous mapping to

define a neutrosophic multi almost topological group and examine its properties.

The fields of neutrosophic probability and neutrosophic statistics, neutrosophic algebraic

structures, neutrosophic optimization, and neutrosophic applications in symmetry are receiving more
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Abstract: Neutrosophic extended triplet group (NETG) is a novel algebra structure and it is different
from the classical group. The major concern of this paper is to present the concept of a partially
ordered neutrosophic extended triplet group (po-NETG), which is a NETG equipped with a partial
order that relates to its multiplicative operation, and consider properties and structure features of
po-NETGs. Firstly, in a po-NETG, we propose the concepts of the positive cone and negative cone,
and investigate the structure features of them. Secondly, we study the specificity of the positive
cone in a partially ordered weak commutative neutrosophic extended triplet group (po-WCNETG).
Finally, we introduce the concept of a po-NETG homomorphism between two po-NETGs, construct a
po-NETG on a quotient set by providing a multiplication and a partial order, then we discuss some
fundamental properties of them.

Keywords: partially ordered neutrosophic extended triplet group; positive cone; homomorphism;
quotient set

1. Introduction

Groups play a very important role in algebraic structures [1–3], and have been applied in many
other areas such as chemistry, physics, biology, etc. The concept of neutrosophic set theory is proposed
by Smarandache in [4], which is the generalization of classical sets [5], fuzzy sets [6], and intuitionistic
fuzzy sets [5,7]. Neutrosophic sets have received wide attention both on practical applications [8–10]
and on theory as well [11,12]. The main idea of the concept of a neutrosophic triplet group (NTG),
is defined in [13,14]. For an NTG (G, ∗), every element a in G has its own neutral element (denoted by
neut(a)) satisfying a ∗ neut(a) = neut(a) ∗ a = a, and there exists at least one opposite element (denoted
by anti(a)) in G relative to neut(a) satisfying a ∗ anti(a) = anti(a) ∗ a = neut(a). Here, neut(a) is not
allowed to be equal to the classical identity element as a special case. By removing this restriction,
the concept of neutrosophic extended triplet group (NETG), is presented in [13]. Many significant
results and several studies on NTGs and NETGs can be found in [15–20]. On the other hand, some
algebraic structures are equipped with a partial order that relates to the algebraic operations, such as
ordered groups, ordered semigroups, ordered rings and so on [21–28].

Regarding these developments, as the motivation of this article, we will consider what it is
like to endow a NETG with a partial order and introduce the concepts of partially ordered NETGs
and positive cones. Then we consider a question: is a subset P of a NETG G the positive cone
relative to some compatible order on G if P satisfies some conditions? To solve this problem,
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we investigate structure features of partially ordered NETGs and try to characterize the positive
cones. Finally, we study properties of homomorphisms and quotient sets in partially ordered NETGs,
and discuss the relationships between homomorphisms and congruences. In particular, the quotient
set equipped with a special multiplication and a partial order provides a way to obtain a partially
ordered NETG. All these results lay the groundwork for investigation of category properties of partially
ordered NETGs.

The rest of this paper is organized as follows. In Section 2, we review some basic concepts, such as
a neutrosophic extended triplet set, a neutrosophic extended triplet group, a weak commutative
neutrosophic extended triplet group and a completely regular semigroup, and several results were
published in [16,19]. In Section 3, we define a partially ordered neutrosophic extended triplet group and
partially ordered weak commutative neutrosophic extended triplet group. Several of their interesting
properties of partially ordered neutrosophic extended triplet group and partially weak commutative
neutrosophic extended triplet group are explained. The homomorphisms and quotient sets of partially
ordered neutrosophic extended triplet group are shown in Section 4. Finally, conclusions are given in
Section 5.

2. Preliminaries

In this section, we recall some basic notions and results which will be used in this paper as
indicated below.

Definition 1. ([13]) Let G be a non-empty set together with a binary operation ∗. Then G is called a neutrosophic
extended triplet set if for any a ∈ G, there exist a neutral of "a" (denoted by neut(a)) and an opposite of "a"
(denoted by anti(a)), such that neut(a) ∈ G, anti(a) ∈ G, and

a ∗ neut(a) = neut(a) ∗ a = a;

a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 2. ([13]) Let (G, ∗) be a neutrosophic extended triplet set. If (G, ∗) is a semigroup, then G is called
a neutrosophic extended triplet group (for short, NETG).

Proposition 1. ([[16] Theorems 1 and 2]) Let (G, ∗) be a NETG. The following properties hold: ∀a ∈ G

(1) neut(a) is unique;
(2) neut(a) ∗ neut(a) = neut(a);
(3) neut(neut(a)) = neut(a).

Notice that anti(a) may be not unique for every element a in a NETG (G, ∗). To avoid confusion, we use
the following notations:

anti(a) denotes any certain one opposite of a and {anti(a)} denotes the set of all opposites of a.

Proposition 2. ([[19], Theorem 1]) Let (G, ∗) be a NETG. The following properties hold: ∀ a ∈ G, ∀ p, q ∈
{anti(a)}

(1) p ∗ neut(a) ∈ {anti(a)};
(2) p ∗ neut(a) = q ∗ neut(a) = neut(a) ∗ q;
(3) neut(p ∗ neut(a)) = neut(a);
(4) a ∈ {anti(p ∗ neut(a))};
(5) anti(p ∗ neut(a)) ∗ neut(p ∗ neut(a)) = a.
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Definition 3. ([16]) Let (G, ∗) be a NETG. If a ∗ neut(b) = neut(b) ∗ a (∀a ∈ G, ∀b ∈ G), then G is called
a weak commutative neutrosophic extended triplet group ( WCNETG).

Proposition 3. ([[16], Theorem 2]) Let (G, ∗) be a NETG. Then G is a WCNETG iff G satisfies the following
conditions: ∀a ∈ G, ∀b ∈ G

(1) neut(a) ∗ neut(b) = neut(b) ∗ neut(a);
(2) neut(a) ∗ neut(b) ∗ a = a ∗ neut(b).

Proposition 4. ([[16], Theorem 3]) Let (G, ∗) be a WCNETG. The following properties hold: ∀a ∈ G, ∀b ∈ G

(1) neut(a) ∗ neut(b) = neut(b ∗ a);
(2) anti(a) ∗ anti(b) ∈ {anti(b ∗ a)}.

Definition 4. ([29]) A semigroup (S, ∗) will be called completely regular if there exists a unary operation
a 7→ a−1 on S with the properties:

(a−1)−1 = a, a ∗ a−1 ∗ a = a, a ∗ a−1 = a−1 ∗ a.

Proposition 5. ([[19], Theorem 2]) Let (G, ∗) be a groupoid. Then G is a NETG iff it is a completely
regular semigroup.

Note 1. In semigroup theory, a−1 is called the inverse element of a and it is unique. However,
in a NETG, anti(a) is called an opposite element of a and it may not be unique. From Proposition 5,
we get that for arbitrary element a of a NETG (G, ∗), if we define a unary operation a 7→ a−1 by
a−1 = anti(a) ∗ neut(a), then (G, ∗) is a completely regular semigroup.

In the following, we will regard all NETGs as completely regular semigroups, in which a−1 =

anti(a) ∗ neut(a) for arbitrary element a. Then by Proposition 2, we have in a NETG (G, ∗), for each
a ∈ G, a−1 ∈ {anti(a)} and a−1 ∗ a = a ∗ a−1 = neut(a).

3. Partially Ordered NETGs

An NETG is a special set endowed with a multiplicative operation. Assuming that we introduce
a partial order which is compatible with multiplication in a NETG, we will get the definition of partially
ordered NETGs as indicated below.

Definition 5. Let (G, ∗) be a NETG. If there exists a partial order relation ≤ on G such that a ≤ b implying
c ∗ a ≤ c ∗ b and a ∗ c ≤ b ∗ c for all a ∈ G, b ∈ G, c ∈ G, then ≤ is called a compatible partial order on G,
and (G, ∗,≤) is called a partially ordered NETG (for short, po-NETG).

Similarly, if (G, ∗) is a WCNETG and endowed with a compatible partial order, then (G, ∗,≤) is called a
partially ordered WCNETG ( po-WCNETG). Hence, po-WCNETGs must be po-NETGs.

Remark 1. Obviously, the properties of NETGs and WCNETGs are holding in po-NETGs and
po-WCNETGs, respectively.

In the following, we give an example of a po-NETG.

Example 1. Let G = {0, a, b, c, 1} with the Hasse diagram as shown in Figure 1, in which 0 denotes the
bottom element (mean the element is smallest element w.r.t. to partial order) and 1 denotes the top element (mean
the element is largest element w.r.t. to partial order) of G. Then G is a partially ordered set.

Define multiplication ∗ on G as shown in Table 1 , where a, b, c to label the elements in the po-NETG and
the multiplication ∗ among these elements.
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Table 1. Multiplication ∗ on G.

* 0 a b c 1
0 0 0 0 0 0
a 0 b c a 1
b 0 c a b 1
c 0 a b c 1
1 0 1 1 1 1

Figure 1. Hasse diagram.

We can verify that (G, ∗) is a WCNETG. Moreover,

neut(0) = 0, {anti(0)} = {0, a, b, c, 1}, 0−1 = 0;

neut(a) = c, {anti(a)} = {b}, a−1 = b;

neut(b) = c, {anti(b)} = {a}, b−1 = a;

neut(c) = c, {anti(c)} = {c}, c−1 = c;

neut(1) = 1, {anti(1)} = {a, b, c, 1}, 1−1 = 1.

It is easy to see that the partial order shown in Fig.1 is compatible with multiplication ∗. Hence,
(G, ∗,≤) is a po-WCNETG.

Definition 6. If (G, ∗,≤) is a po-NETG, then a ∈ G is said to be a positive element if neut(a) ≤ a; and a
negative element if a ≤ neut(a). The subset PG of all positive elements of G is called the positive cone of G, and
the subset NG of all negative elements the negative cone.

Remark 2. By Proposition 1, ∀ a ∈ G, neut(a) ∈ PG ∩ NG, so PG ∩ NG 6= ∅.

Lemma 1. Let (G, ∗) be an NETG. Then ∀ a ∈ G,

[neut(a)]−1 = neut(a) = neut(a−1).

Proof. Let a ∈ G. Then
[neut(a)]−1 = anti(neut(a)) ∗ neut(neut(a))

= anti(neut(a)) ∗ neut(a)

= neut(neut(a))

= neut(a).
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On the other hand, by Proposition 2(3), we have neut(a−1) = neut(anti(a) ∗ neut(a)) =

neut(a).

Remark 3. If G is a po-NETG and P ⊆ G, we shall use the notation

P−1 = {a−1 : a ∈ P}.

Proposition 6. Let (G, ∗,≤) be a po-NETG. Then PG ∩ P−1
G = {a ∈ G : a = neut(a) = a−1}.

Proof. (=⇒) Let a ∈ G. By Proposition 1 and Lemma 1, we have

neut(a) ∈ {a ∈ G : a = neut(a) = a−1},

so {a ∈ G : a = neut(a) = a−1} 6= ∅. By Lemma 1, it is clear that

{a ∈ G : a = neut(a) = a−1} ⊆ PG ∩ P−1
G .

(⇐=) Let b ∈ PG ∩ P−1
G , then neut(b) ≤ b and ∃ c ∈ PG such that b = c−1, so

b = c−1 = anti(c) ∗ neut(c) ≤ anti(c) ∗ c = neut(c) = neut(b−1) = neut(b),

that is, b ≤ neut(b), whence b = neut(b). Hence,

c = b−1 = [neut(b)]−1 = neut(b) = b.

Then we can conclude that b ∈ {a ∈ G : a = neut(a) = a−1}, and so

PG ∩ P−1
G ⊆ {a ∈ G : a = neut(a) = a−1}.

Thus, PG ∩ P−1
G = {a ∈ G : a = neut(a) = a−1}.

Remark 4. If (G, ∗,≤) is a po-NETG and P ⊆ G, then we shall use the notation

P2 = {a ∗ b : a, b ∈ P}.

Proposition 7. (1) If (G, ∗,≤) is a po-NETG, then PG ⊆ P2
G.

(2) If (G, ∗,≤) is a po-WCNETG, then PG = P2
G.

Proof. (1) If (G, ∗,≤) is a po-NETG, then ∀ a ∈ PG, by neut(a) ∈ PG, we have a = a ∗ neut(a) ∈ P2
G,

and so PG ⊆ P2
G.

(2) If (G, ∗,≤) is a po-WCNETG, then ∀ a ∈ PG, ∀b ∈ PG, by Propositions 3 and 4, we have
neut(a ∗ b) = neut(b) ∗ neut(a) = neut(a) ∗ neut(b) ≤ a ∗ b, and so a ∗ b ∈ PG, thus P2

G ⊆ PG.
Consequently, PG = P2

G.

Proposition 8. Let (G, ∗,≤) be a po-WCNETG. Then ∀ a ∈ G, aPGa−1 ⊆ PG.

Proof. Let a ∈ G and b ∈ PG, then by Propositions 3 and 4, we have neut(a ∗ b ∗ a−1) =

neut(a−1) ∗ neut(a ∗ b) = neut(a ∗ b) ∗ neut(a−1) = [neut(b) ∗ neut(a)] ∗ neut(a−1) = neut(b) ∗
[neut(a) ∗ neut(a−1)] = neut(b) ∗ neut(a−1 ∗ a) = neut(b) ∗ neut(neut(a)) = neut(b) ∗ neut(a) =

neut(b) ∗ (a ∗ a−1) = [neut(b) ∗ a] ∗ a−1 = [a ∗ neut(b)] ∗ a−1 ≤ a ∗ b ∗ a−1, thus aba−1 ∈ PG. Therefore,
aPGa−1 ⊆ PG.

Lemma 2. Let (G, ∗) be a WCNETG. Then ∀ a ∈ G, ∀b ∈ G, (a ∗ b)−1 = b−1 ∗ a−1.
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Proof. We know a ∗ b is an element of G ∀ a ∈ G, ∀b ∈ G and by Proposition 4, we have anti(b) ∗
anti(a) ∈ {anti(a ∗ b)}. Then using Propositions 1, 5 and Note 1 we get the following identities:

b−1 ∗ a−1 = [anti(b) ∗ neut(b)] ∗ [anti(a) ∗ neut(a)]
= anti(b) ∗ [neut(b) ∗ anti(a)] ∗ neut(a) (Because the multiplication ∗ is associative)
= anti(b) ∗ [anti(a) ∗ neut(b)] ∗ neut(a) (Because G is a WCNETG)

= [anti(b) ∗ anti(a)] ∗ [neut(b) ∗ neut(a)] (Because the multiplication ∗ is associative)
= [anti(b) ∗ anti(a)] ∗ neut(a ∗ b) (By Proposition 3)
= (a ∗ b)−1.

Lemma 3. Let (G, ∗,≤) be a po-NETG. Then PG = P−1
N and P−1

G = PN .

Proof. Let a ∈ G. If a ∈ PG, then neut(a) ≤ a, it follows by Lemma 1 that a−1 = neut(a−1) ∗ a−1 =

neut(a) ∗ a−1 ≤ a ∗ a−1 = neut(a) = neut(a−1), and so a−1 ∈ PN , whence a = (a−1)−1 ∈ P−1
N . Hence,

PG ⊆ P−1
N . Similarly, we can prove that if a ∈ PN then a−1 ∈ PG, so P−1

N ⊆ PG. Consequently, PG = P−1
N .

Similarly, P−1
G = PN .

Definition 7. Let (G, ∗) be a WCNETG. If ∀a ∈ G, ∀b ∈ G, ∀c ∈ G, a ∗ neut(c) = b ∗ neut(c) implies
a = b, then we say G satisfies neutrosophic cancellation law.

Lemma 4. Let (G, ∗) be a WCNETG satisfying neutrosophic cancellation law and P ⊆ G satisfy ∀ a ∈
P, a ∗ a = a. Then ∀ a ∈ G, ∀ b ∈ G, a ∗ neut(b) ∈ P implies neut(a) = a = a−1.

Proof. If a ∗ neut(b) ∈ P, then a ∗ neut(b) = (a ∗ neut(b)) ∗ (a ∗ neut(b)) = (a ∗ a) ∗ neut(b), and so
a ∗ a = a, whence neut(a) = a ∀ a ∈ G, ∀ b ∈ G. Then by Lemma 1, we get a−1 = [neut(a)]−1 =

neut(a) = a.

Proposition 9. Let (G, ∗) be a WCNETG satisfying neutrosophic cancellation law and P ⊆ G satisfy the
following conditions:

(1) P2 ⊆ P;
(2) P ∩ P−1 = {a ∈ G : neut(a) = a = a−1};
(3) ∀ a ∈ P, a ∗ a = a;
(4) ∀ a ∈ G, aPa−1 ⊆ P,

then a compatible partial order on G exists such that P is the positive cone of G relative to it. Moreover, G is a
chain with respect to this partial order if and only if P ∪ P−1 = G.

Proof. Define the relation ≤ on G by

a ≤ b⇔ b ∗ a−1 ∈ P.

By Proposition 1 and Lemma 1, we have ∀ a ∈ G, neut(a) ∈ P ∩ P−1 ⊆ P, and so ≤ is reflexive
on G obviously.
If now a ≤ b and b ≤ a, then b ∗ a−1 ∈ P and a ∗ b−1 ∈ P. Since by Lemma 2 we know that

(a ∗ b−1)−1 = (b−1)−1 ∗ a−1 = b ∗ a−1,

we conclude
b ∗ a−1 ∈ P ∩ P−1.

It follows by (2) that b ∗ a−1 = neut(b ∗ a−1). However, by Proposition 4 and Lemma 1,

neut(b ∗ a−1) = neut(a−1) ∗ neut(b) = neut(a) ∗ neut(b),
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thus
b ∗ neut(a) = b ∗ a−1 ∗ a = neut(b ∗ a−1) ∗ a = [neut(a) ∗ neut(b)] ∗ a = neut(a) ∗ [a ∗ neut(b)] =

[neut(a) ∗ a] ∗ neut(b) = a ∗ neut(b), that is, b ∗ neut(a) = a ∗ neut(b).
However, by Proposition 3, we have

b ∗ neut(a) = neut(b) ∗ neut(a) ∗ b = neut(a ∗ b) ∗ b,

and similarly,

a ∗ neut(b) = neut(a) ∗ neut(b) ∗ a = [neut(b) ∗ neut(a)] ∗ a = neut(a ∗ b) ∗ a,

therefore,
neut(a ∗ b) ∗ b = neut(a ∗ b) ∗ a,

and by neutrosophic cancellation law, consequently a = b. Hence, ≤ is anti-symmetric.
To prove that ≤ is transitive, let a ≤ b and b ≤ c. Then

b ∗ a−1 ∈ P and c ∗ b−1 ∈ P.

It follows by (1) that

P ⊇ P2 ∋ (c ∗ b−1) ∗ (b ∗ a−1) = c ∗ (b−1 ∗ b) ∗ a−1 = c ∗ neut(b) ∗ a−1 = (c ∗ a−1) ∗ neut(b).

By (3) and Lemma 4, we have

neut(c ∗ a−1) = c ∗ a−1 = (c ∗ a−1)−1,

and so
c ∗ a−1 ∈ P ∩ P−1 ⊆ P,

that is, c ∗ a−1 ∈ P. Thus, a ≤ c. Therefore, ≤ is a partial order on G.
To see that it is compatible, let x ≤ y. Then y ∗ x−1 ∈ P and it follows by (1) and (4) that, for every

a ∈ G,
(a ∗ y) ∗ (a ∗ x)−1 = (a ∗ y) ∗ (x−1 ∗ a−1) = a ∗ (y ∗ x−1) ∗ a−1 ∈ P,

(y ∗ a) ∗ (x ∗ a)−1 = y ∗ (a ∗ a−1) ∗ x−1 = y ∗ neut(a) ∗ x−1 = (y ∗ x−1) ∗ neut(a) ∈ P2 ⊆ P,

which shows that
a ∗ x ≤ a ∗ y and x ∗ a ≤ y ∗ a.

It follows that ≤ is compatible.
Finally, note that ∀ a ∈ G,

neut(a) ≤ a⇔ a ∗ [neut(a)]−1 ∈ P⇔ a ∗ neut(a) ∈ P⇔ a ∈ P,

so P is the associated positive cone. Suppose now that (G,≤) is a chain, then for every a ∈ G, we have
either

neut(a) ≤ a or a ≤ neut(a).

It follows by Lemma 3 that
a ∈ P or a ∈ P−1.

Thus G = P ∪ P−1. Conversely, if G = P ∪ P−1, then for all a, b ∈ G, we have

a ∗ b−1 ∈ P or a ∗ b−1 ∈ P−1,

7
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that is,
a ∗ b−1 ∈ P or b ∗ a−1 = (a ∗ b−1)−1 ∈ P.

Hence, we have either b ≤ a or a ≤ b. Therefore, (G,≤) is a chain.

By the following example, we clarify the above proposition as:

Example 2. Let G = {a, b, c}. Define multiplication ∗ on G as shown in Table 2, where a, b, c to label the
elements in the po-NETG and the multiplication ∗ among these elements.

Table 2. Multiplication ∗ on G.

* a b c
a a b c
b b c a
c c a b

It is easy to verify that (G, ∗) is a WCNETG and (G, ∗) satisfies neutrosophic cancellation law, in which

neut(a) = neut(b) = neut(c) = a,

{anti(a)} = {a}, a−1 = a;

{anti(b)} = {c}, b−1 = c;

{anti(c)} = {b}, c−1 = b.

Let P = {a}, then P satisfies all conditions mentioned in Proposition 9. Define the relation ≤ on G by
x ≤ y⇔ y ∗ x−1 ∈ P, then ≤ is a partial order on G and (G,≤) is a antichain. Obviously, P is the positive
cone of G with respect to this partial order ≤.

Proposition 10. Let (G, ∗) be a po-WCNETG. Then ∀ x ∈ G, ∀y ∈ G, x ≤ y implies y ∗ x−1 ∈ PG.

Proof. Let ∀ x ∈ G, ∀y ∈ G. If x ≤ y, then neut(x) = x ∗ x−1 ≤ y ∗ x−1, hence, by Proposition 4 and
Lemma 1, we have neut(y ∗ x−1) = neut(x−1) ∗ neut(y) = neut(x) ∗ neut(y) ≤ (y ∗ x−1) ∗ neut(y) =
neut(y) ∗ (y ∗ x−1) = (neut(y) ∗ y) ∗ x−1 = y ∗ x−1. Thus, y ∗ x−1 ∈ PG.

4. Homomorphisms and Quotient Sets of po-NETGs

Definition 8. Let (G, ∗,≤1) and (T, ·,≤2) be two po-NETGs. The map f : G → T is called a po-NETG
homomorphism of po-NETGs, if f satisfies: ∀a ∈ G, ∀b ∈ G

(1) f (a ∗ b) = f (a) · f (b);
(2) a ≤1 b implies f (a) ≤2 f (b).

Proposition 11. Let (G, ∗,≤1) and (T, ·,≤2) be two po-NETGs, and let f : G → T be a po-NETG
homomorphism of po-NETGs. The following properties hold:

(1) ∀a ∈ G, f (neut(a)) = neut( f (a));
(2) ∀a ∈ G, { f (b) : b ∈ {anti(a)}} ⊆ {anti( f (a))}, and if f is bijective, then { f (b) : b ∈ {anti(a)}} =

{anti( f (a))};
(3) ∀a ∈ G, [ f (a)]−1 = f (a−1);
(4) ∀a ∈ PG, f (a) ∈ PT ;
(5) ∀a ∈ NG, f (a) ∈ NT .
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Proof.

(1) ∀ a ∈ G, ∀ b ∈ {anti(a)}, since

f (a) · f (neut(a)) = f (a ∗ neut(a)) = f (a) = f (neut(a) ∗ a) = f (neut(a)) · f (a),

f (a) · f (b) = f (a ∗ b) = f (neut(a)) = f (b ∗ a) = f (b) · f (a),

then we obtain f (neut(a)) = neut( f (a)).

(2) From the proof of (1), we can get that

∀ a ∈ G, ∀ b ∈ {anti(a)}, f (b) ∈ {anti( f (a))},

and so
{ f (b) : b ∈ {anti(a)}} ⊆ {anti( f (a))}.

If f is bijective, then ∀ d ∈ {anti( f (a))}, ∃ c ∈ G such that f (c) = d. Since

f (c ∗ a) = f (c) · f (a) = d · f (a) = neut( f (a)) = f (neut(a)),

we have c ∗ a = neut(a). Similarly, we can get a ∗ c = neut(a). Thus, c ∈ anti(a) and so

d = f (c) ∈ { f (b) : b ∈ {anti(a)}}.

By the arbitrariness of d, we have

{anti( f (a))} ⊆ { f (b) : b ∈ {anti(a)}}.

Then,
{ f (b) : b ∈ {anti(a)}} = {anti( f (a))}.

(3) Let a ∈ G and b ∈ {anti(a)}. By (2), f (b) ∈ {anti( f (a))}. Then by (1), we have

[ f (a)]−1 = anti( f (a)) · neut( f (a)) = f (b) · f (neut(a)) = f (b ∗ neut(a)) = f (a−1).

(4) Since ∀ a ∈ PG, neut(a) ≤1 a, we have neut( f (a)) = f (neut(a)) ≤2 f (a), and so f (a) ∈ PT .

(5) It is similar to (4).

Definition 9. Let (G, ∗,≤) be a po-NETG and θ be an equivalence relation on G. If θ satisfies

∀a ∈ G, ∀b ∈ G, ∀c ∈ G, ∀d ∈ G, (a, b) ∈ θ & (c, d) ∈ θ ⇒ (a ∗ c, b ∗ d) ∈ θ,

then θ is called a congruence on G.
Obviously, θ1 = {(a, a) : a ∈ G} and θ2 = {(a, b) : ∀ a, b ∈ G} are both congruences on G, and they

are called identity congruence on G and pure congruence on G, respectively.

Definition 10. Let (G, ∗,≤) be a po-NETG and θ be a congruence on G. A multiplication ◦ on the quotient
set G/θ = {[a]θ : a ∈ G} is defined by

[a]θ ◦ [b]θ = [a ∗ b]θ .

9
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Proposition 12. Let a relation � on (G/θ, ◦) be defined by

∀ [a]θ ∈ G/θ, ∀[b]θ ∈ G/θ, [a]θ � [b]θ ⇔ a ≤ b.

Then, (G/θ, ◦,�) is a po-NETG.

Proof. We can verify that ◦ is associative. Let [a]θ ∈ G/θ (see Definition 10), since

[neut(a)]θ ◦ [a]θ = [neut(a) ∗ a]θ = [a]θ = [a ∗ neut(a)]θ = [a]θ ◦ [neut(a)]θ ,

and
[anti(a)]θ ◦ [a]θ = [anti(a) ∗ a]θ = [neut(a)]θ = [a ∗ anti(a)]θ = [a]θ ◦ [anti(a)]θ ,

we conclude that (G/θ, ◦) is a NETG, in which ∀ [a]θ ∈ G/θ, neut([a]θ) = [neut(a)]θ and [anti(a)]θ ∈
{anti([a]θ)}. Then it is easy to see that� is a partial order on (G/θ, ◦). Moreover, ∀ [a]θ ∈ G/θ, ∀[b]θ ∈
G/θ, ∀[c]θ ∈ G/θ, if [a]θ � [b]θ , then a ≤ b, so we have a ∗ c ≤ b ∗ c, and c ∗ a ≤ c ∗ b. Thus,

[a]θ ◦ [c]θ = [a ∗ c]θ � [b ∗ c]θ = [b]θ ◦ [c]θ

and
[c]θ ◦ [a]θ = [c ∗ a]θ � [c ∗ b]θ = [c]θ ◦ [b]θ .

Thus, (G/θ, ◦,�) is a po-NETG.

In the following, we give an example to illustrate Proposition 12.

Example 3. Consider the po-NETG (G, ∗,≤) is given in Example 1. Now we define a relation θ on G by

θ = {(0, 0), (a, a), (b, b), (c, c), (1, 1), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}.

Then we can verify that θ is a congruence on G with the following blocks:

[0]θ = {0}, [a]θ = {a, b, c}, [1]θ = {1}.

So the quotient set G/θ = {[0]θ , [a]θ , [1]θ}. By Proposition 12, we know (G/θ, ◦,�) is a
po-NETG, in which neut([0]θ) = [0]θ , neut([a]θ) = [c]θ = [a]θ , neut([1]θ) = [1]θ , {anti([0]θ)} =

{[0]θ , [a]θ , [1]θ}, {anti([a]θ)} = {[a]θ}, {anti([1]θ)} = {[a]θ , [1]θ}, and then G/θ is a chain, because
[0]θ � [a]θ � [1]θ .

Proposition 13. Let (G, ∗,≤) be a po-NETG and θ be a congruence on G. Then the natural mapping
♮θ : (G, ∗,≤)→ (G/θ , ◦,�) given by ♮θ(a) = [a]θ is a po-NETG homomorphism of po-NETGs.

Proof. As ♮θ(a ∗ b) = [a ∗ b]θ = [a]θ ◦ [b]θ = ♮θ(a) ◦ ♮θ(b) ∀ a ∈ G, ∀b ∈ G. If a ≤ b, then [a]θ � [b]θ
which implies ♮θ(a) � ♮θ(b). Thus, the natural mapping ♮θ : (G, ∗,≤) → (G/θ , ◦,�) is a po-NETG
homomorphism of po-NETGs.

Next, we give an example to explain Proposition 13.

Example 4. From Example 3, we consider the natural mapping ♮θ : (G, ∗,≤)→ (G/θ , ◦,�). Thus, ♮θ(0) =
[0]θ , ♮θ(a) = ♮θ(b) = ♮θ(c) = [a]θ , ♮θ(1) = [1]θ . It is easy to verify that ♮θ is a po-NETG homomorphism of
po-NETGs.

10
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Proposition 14. Let (G, ∗,≤1) and (T, ·,≤2)be two po-NETGs and f : (G, ∗,≤1) → (T, ·,≤2) be a
po-NETG homomorphism of po-NETGs. We shall use the notation

Ker f = {(a, b) ∈ G× G : f (a) = f (b)},

then we can get the following properties:

(1) Ker f is a congruence on G;
(2) f is a injective po-NETG homomorphism of po-NETGs if and only if ker f is an identity congruence on G;
(3) There exists an injective po-NETG homomorphism of po-NETGs g : (G/Ker f , ◦,�)→ (T, ·,≤2) such

that f = g ◦ ♮Ker f .

Proof.

(1) Obviously, Ker f is an equivalence relation on G. Let ∀ a ∈ G, ∀ b ∈ G, ∀ c ∈ G, ∀ d ∈ G, if
(a, b) ∈ Ker f and (c, d) ∈ Ker f , then f (a) = f (b) and f (c) = f (d). Since f is a po-NETG
homomorphism of po-NETGs, we have f (a ∗ c) = f (a) · f (c) = f (b) · f (d) = f (b ∗ d), and so
(a ∗ c, b ∗ d) ∈ Ker f . Thus, Ker f is a congruence on G.

(2) If f is an injective po-NETG homomorphism of po-NETGs and if (a, b) ∈ ker f then f (a) = f (b).
Therefore, we get a = b. Hence, by the arbitrariness of (a, b), we obtain ker f is an identity
congruence on G.

Conversely, suppose that ker f is an identity congruence on G. ∀ a ∈ G, ∀ b ∈ G, if f (a) = f (b),
then (a, b) ∈ ker f , so a = b. Therefore, f is an injective po-NETG homomorphism of po-NETGs.

(3) We define a map g : G/Ker f → T by ∀ [a]Ker f ∈ G/Ker f , g([a]Ker f ) = f (a), then g is injective.
∀ [a]Ker f , [b]Ker f ∈ G/Ker f , we have g([a]Ker f ◦ [b]Ker f ) = g([a ∗ b]Ker f ) = f (a ∗ b) = f (a) ·
f (b) = g([a]Ker f ) · g([b]Ker f ), and if [a]Ker f � [b]Ker f , then a ≤1 b, thus, f (a) ≤2 f (b), that is,
g([a]Ker f ) ≤2 g([b]Ker f ). Hence, g is an injective po-NETG homomorphism of po-NETGs.

G ✲ T

G/Ker f

❅
❅
❅❘ �

�
��✒

f

♮Ker f g

∀ a ∈ G, (g ◦ ♮Ker f )(a) = g(♮Ker f (a)) = g([a]Ker f ) = f (a), that is, f = g ◦ ♮Ker f .

In the following, we present an example to illustrate Proposition 14.

Example 5. Consider (G, ∗,≤1) be the po-NETG is given in Example 1, in which the partial order ≤1 is the
same as the partial order ≤ in Example 1. Assume that T = {m, n, p, q, r} be a bounded lattice with a partial
order ≤2 with the Hasse diagram shown as in Figure 2 whose multiplication · is defined as ∧.

11
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Figure 2. Hasse diagram.

We can verify that (T, ·,≤2) is a po-NETG, in which ∀ x ∈ T, neut(x) = x,
{anti(m)} = {m, n, p, q, r}, {anti(n)} = {n, q, r}, {anti(p)} = {p, q, r}, {anti(q)} =

{q, r}, {anti(r)} = {r}. Now, we define a map f : G → T by f (0) = m, f (a) =

f (b) = f (c) = f (1) = r, then f is a po-NETG homomorphism of po-NETGs, and Ker f =

{(0, 0), (a, a), (b, b), (c, c), (1, 1), (a, b), (a, c), (a, 1), (b, a), (b, c), (b, 1), (c, a), (c, b), (c, 1), (1, a), (1, b),
(1, c)}. Obviously, Ker f is a congruence on G. f is not injective, and of course, ker f is not an identity
congruence on G.

5. Conclusions

In this paper, inspired by the research work in algebraic structures equipped with a partial order,
we proposed the concepts of po-NETGs, deeply studied the relationships between po-NETGs and
their positive cones, and characterized the positive cone of a WCNETG after defining a partial order
relation on it. Moreover, we found that the quotient set of a po-NETG can construct another po-NETG
by defining a special multiplication and a partial order on the quotient set, and we also achieved
the interrelation of homomorphisms and congruences of po-NETGs. All these results are useful for
exploring the structure characterization (for example, category properties) of po-NETGs. As a direction
of future research, we will consider the application of the fuzzy set theory and the rough set theory to
the research of algebraic structure of po-NETGs. Furthermore, we will discuss the relation between the
homomorphisms and congruences of po-NETG and the morphisms of ordered lattice ringoids [30].
Finally, in the next paper, we will study sub-structures of po-NETGs and we give some examples using
constructions such as central extensions or direct products related to sub-structures of po-NETGs.
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Abstract: This paper studied the single-valued neutrosophic linguistic distance measures based on the
induced aggregation method. Firstly, we proposed a single-valued neutrosophic linguistic-induced
ordered weighted averaging distance (SVNLIOWAD) measure, which is a new extension of the
existing distance measures based on the induced aggregation view. Then, based on the proposed
SVNLIOWAD, a novel induced distance for single-valued neutrosophic linguistic sets, namely
the single-valued neutrosophic linguistic weighted induced ordered weighted averaging distance
(SVNLWIOWAD), was developed to eliminate the defects of the existing methods. The relationship
between the two proposed distance measures was also explored. A multiple attribute group decision
making (MAGDM) model was further presented based on the proposed SVNLWIOWAD measure.
Finally, a numerical example concerning an investment selection problem was provided to demonstrate
the usefulness of the proposed method under a single-valued neutrosophic linguistic environment
and, then, a comparison analysis was carried out to verify the flexibility and effectiveness of the
proposed work.

Keywords: single-valued neutrosophic linguistic set; distance measure; weighted induced
aggregation; MAGDM; investment selection

1. Introduction

The growing uncertainties and complexities in multiple attribute decision making (MADM) make
it increasingly difficult for people to judge their attributes accurately. Accordingly, how to measure
such complex and uncertain information effectively has become a key issue during the process of
decision making. Several tools, such as fuzzy set [1], intuitionistic fuzzy set (IFS) [2], picture fuzzy
set [3,4], linguistic term [5], and neutrosophic set [6], have been introduced to deal with inaccurate
and uncertain information. The single-valued neutrosophic linguistic set (SVNLS), introduced by
Ye [7], is an up-to-date tool to measure uncertainty or inaccuracy of information by combining the
advantages of single-valued neutrosophic set [8] and linguistic terms [5]. The basic element of the
SVNLS is the single-valued neutrosophic linguistic number (SVNLN), which makes it more suitable for
solving uncertain and imprecise information than the existing tools. Ye [7] extended the conventional
the technique for order preference by similarity to ideal solutions (TOPSIS) [9] approach to SVNLS
environment and explored its application in investment selection problems. Wang et al. [10] studied the
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operational laws for SVNLS and presented the SVNL Maclaurin symmetric mean aggregation operator.
Chen et al. [11] studied the ordered weighted distance measure between SVNLSs. Wu et al. [12] studied
the application of the SVNLS in a 2-tuple MADM environment. Kazimieras et al. [13] presented a
weighted aggregated sum product assessment approach for SVN decision making problems. Garg and
Nancy [14] proposed some SVNLS aggregation operators based on the prioritized method to solve the
attributes’ priority in MADM problems. Cao et al. [15] studied the SVNL decision making approach
based on a combination of ordered and weighted distances measures.

Distance measure is one of the most popular tools to express the deviation degree between two sets
or variables. Consequently, many types of distance measures have been investigated and proposed in
the existing literature, such as the weighted distance (WD) measure [16], ordered weighted averaging
distance (OWAD) measure [17], combined weighted distance (CWD) measure [18], and induced OWAD
(IOWAD) measure [19]. Among them, the IOWAD measure is a widely used one, recently proposed by
Merigó and Casanovas [19]. The key advantage of the IOWAD is that it summarizes the minimun
and maximum distance measures and can use induced-ordering variables to depict the intricate
attitudinal characteristics. Now, the IOWAD operator has been widely used in MADM problems and
extended to accommodate several fuzzy environments, such as fuzzy IOWAD (FIOWAD) [20], fuzzy
linguistic IOWAD [21], intuitionistic fuzzy IOWAD (IFIOWAD) [22], and 2-tuple linguistic IOWAD
(2LIOWAD) [23].

However, as far as we know, there is no research on the application of the SVNLS with the IOWAD
method. In accordance with the previous analysis, the SVNLS is an excellent method to describe fuzzy
and uncertain information, while the IOWAD is a new tool that can be well integrated into the complex
attitudes of decision makers. In order to develop and enrich the measure theory of SVNLS, this study
explored the usefulness of the IOWAD measure in SVNL environments. For this purpose, the rest of
the article is set out as follows: in Section 2, we briefly introduce some basic concepts. Section 3 firstly
develops the single-valued neutrosophic linguistic induced ordered weighted averaging distance
(SVNLIOWAD) operator, which is the extension of the IOWAD operator with SVNL information.
Furthermore, the single-valued neutrosophic linguistic weighted induced ordered weighted averaging
distance (SVNLWIOWAD) is then introduced to overcome the defects of the SVNLIOWAD operator
and other existing induced aggregation distances. In Section 4, a MAGDM model based on the
SVNLWIOWAD operator is formulated and a financial decision making problem is also provided to
demonstrate the usefulness of the proposed method. Finally, Section 5 gives a conclusion for the paper.

2. Preliminaries

In this section, we mainly recap some basic concepts of the SVNLS and the IOWAD operator.

2.1. The Single-Valued Neutrosophic Set (SVNS)

Definition 1 [24]. Let u be an element in a finite set U. A single-valued neutrosophic set (SVNS) A in U can
be defined as in (1):

A =
{ 〈

u, TA(u), IA(u), FA(u)
〉∣∣∣u ∈ U

}
, (1)

where TA(u), IA(u), and FA(u) are called the truth-membership function, indeterminacy-membership function,
and falsity-membership function, respectively, which satisfy the following conditions:

0 ≤ TA(u), IA(u), FA(u) ≤ 1, 0 ≤ TA(u) + IA(u) + FA(u) ≤ 3. (2)

A single-valued neutrosophic number (SVNN) is expressed as (TA(u), IA(u), FA(u)) and is simply
termed as u = (Tu, Iu, Fu). The mathematical operational laws between SVNNs u = (Tu, Iu, Fu) and
v = (Tv, Iv, Fv) are defined as follows:

(1) u⊕ v = (Tu + Tv − Tu ∗ Tv, Iu ∗ Tv, Fu ∗ Fv);
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(2) λu = (1− (1− Tu)
λ, (Iu)

λ, (Fu)
λ), λ > 0;

(3) uλ = ((Tu)
λ, 1− (1− Iu)

λ, 1− (1− Fu)
λ), λ > 0.

2.2. The Linguistic Set

Let S = {sα|α = 1, . . . , l } be a finite and totally ordered discrete term set, where sα indicates a
possible value for a linguistic variable (LV) and l is an odd value. For instance, given l = 7, then a
linguistic term set S could be specified S = {s1, s2, s3, s4, s5, s6, s7} = {extremely poor, very poor, poor, fair,
good, very good, extremely good}. Then, for any two LVs, si and s j in S, should satisfy rules (1)–(4) [24]:

(1) si ≤ s j ⇔ i ≤ j ;
(2) Neg(si) = s−i;
(3) max(si, s j) = s j, if i ≤ j;
(4) min(si, s j) = si, if i ≤ j.

The discrete term set S is also extended to a continuous set S = { sα|α ∈ R} for reducing the loss
of information during the operational process. The operational rules for LVs sα, sβ ∈ S are defined as
follows [25]:

(1) sα ⊕ sβ = sα+β;
(2) µsα = sµα, µ ≥ 0.

2.3. The Single-Valued Neutrosophic Linguistic Set (SVNLS)

Definition 2 [7]. Let U be a finite universe set and S be a continuous linguistic set, a SVNLS B in U is defined
as in (3):

B =
{〈

u, [sθ(u), (TB(u), IB(u), FB(u))]
〉∣∣∣∣u ∈ U

}
, (3)

where sθ(u) ∈ S, the truth-membership function TB(u), the indeterminacy-membership function IB(u), and the
falsity-membership function FB(u) satisfy condition (4):

0 ≤ TB(u), IB(u), FB(u) ≤ 1, 0 ≤ TB(u) + IB(u) + FB(u) ≤ 3. (4)

For an SVNLS B in U, the SVNLN
〈
sθ(u), (TB(u), IB(u), FB(u))

〉
is simply termed as u =〈

sθ(u), (Tu, Iu, Fu)
〉
. The operational rules for SVNLNs ui =

〈
sθ(ui)

, (Tui , Iui , Fui)
〉
(i = 1, 2) are defined

as follows:

(1) u1 ⊕ u2 =
〈
sθ(u1)+θ(u2), (Tu1 + Tu2 − Tu1 ∗ Tu2 , Iu1 ∗ Tu2 , Fu1 ∗ Fu2)

〉
;

(2) λu1 =
〈
sλθ(u1), (1− (1− Tu1)

λ, (Iu1)
λ, (Fu1)

λ)
〉
, λ > 0;

(3) uλ1 =
〈
sθλ(u1)

, ((Tu1)
λ, 1− (1− Iu1)

λ, 1− (1− Fu1)
λ)

〉
, λ > 0.

Definition 3 [7]. Given two SVNLNs ui =
〈
sθ(ui)

, (Tui , Iui , Fui)
〉
(i = 1, 2), their distance measure is defined

using the following formula:

d(u1, u2) =
[∣∣∣θ(u1)Tu1 − θ(u2)Tu2

∣∣∣l +
∣∣∣θ(u1)Iu1 − θ(u2)Iu2

∣∣∣l +
∣∣∣θ(u1)Fu1 − θ(u2)Fu2

∣∣∣l
]1/l

, (5)

where l ∈ (0,+∞). If we consider different weights associated with individual distances of SVNLVs, then we
can get the single-valued neutrosophic linguistic weighted distance (SVNLWD) measure [10].
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Definition 4. Let u j, u′j( j = 1, 2, . . . , n) be the two collections of SVNLNs, a single-valued neutrosophic
linguistic weighted distance measure is defined as following formula:

SVNLWD
(
(u1, u′1), . . . , (un, u′n)

)
=

n∑

j=1

w jd(u j, u′j), (6)

where the associated weighting vector w j satisfies w j ∈ [0, 1] and
n∑

j=1
w j = 1.

2.4. The Single-Valued Neutrosophic Linguistic Set (SVNLS)

Motivated by the induced ordered weighted averaging (IOWA) operator [26], Merigó and
Casanovas [19] developed the IOWAD operator. For two crisp sets X = (x1, . . . , xn) and Y = (y1, . . . , yn),
the IOWAD operator be easily obtained as follows:

Definition 5. An IOWAD operator is defined by a weight vector W = (w1, . . . , wn)
T with 0 ≤ w j ≤ 1 and

n∑
j=1

w j = 1 and an order-inducing vector T = (t1, . . . , tn), such that:

IOWAD(
〈
t1, x1, y1

〉
, . . . ,

〈
tn, xn, yn

〉
) =

n∑

j=1

w jD j, (7)

where (D1, . . . , Dn) is recorded (d1, . . . , dn), induced by the decreasing order of (t1, . . . , tn), and di = d(xi, yi) =∣∣∣xi − yi

∣∣∣ is the distance between xi and yi.

3. Single-Valued Neutrosophic Linguistic-Induced Aggregation Distance Measures

3.1. SVNLIOWAD Measure

Previous analysis has shown that the IOWAD is a very practical tool to measure deviation in many
fields, such as clustering analysis and decision making. In this section, we explore the application of
the IOWAD operator in an SVNL situation and develop the SVNLIOWAD operator.

Definition 6. Let u j, u′j( j = 1, 2, . . . , n) be two sets of SVNLNs, then the SVNLIOWAD operator is defined

by a weight vector W = (w1, . . . , wn)
T with 0 ≤ w j ≤ 1 and

n∑
j=1

w j = 1 and an order-inducing vector

T = (t1, . . . , tn), such that:

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

w jD j, (8)

where (D1, . . . , Dn) is recorded (d1, . . . , dn), induced by the decreasing order of (t1, . . . , tn), di = d(ui, u′i ) =∣∣∣ui − u′i
∣∣∣ is the distance between SVNLNs, defined in Equation (5).

Using a similar analysis with the IOWAD operator [18,19,27,28], it is easy to derive the following
useful properties for the SVNLIOWAD operator:

Theorem 1 (Idempotency). If di = d(ui, u′i ) =
∣∣∣ui − u′i

∣∣∣ = d for all i, then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= d. (9)
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Theorem 2 (Boundedness). Let min
i
(
∣∣∣ui − u′i

∣∣∣) = x and max
i

(
∣∣∣ui − u′i

∣∣∣) = y, then

x ≤ SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≤ y. (10)

Theorem 3 (Monotonicity). If
∣∣∣ui − u′i

∣∣∣ ≥
∣∣∣vi − v′i

∣∣∣ for all i, then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≥ SVNLIOWAD

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (11)

Theorem 4 (Commutativity-IOWA operator aggregation). Let
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
(i = 1, 2, . . . , n)

be any possible permutation of the argument vector
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
, then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= SVNLIOWAD

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (12)

We can also illustrate the property of commutativity by considering the distance measure:

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= SVNLIOWAD

(〈
t1, u′1, u1

〉
, . . . ,

〈
tn, u′n, un

〉)
. (13)

By considering different cases of the weighted vector in the SVNLIOWAD operator, we can get
several special distance measures. For example:

• If w1 = · · · = wn = 1
n , we obtain the SVNLWD;

• If the ordering of weight w j is same as the order-inducing t j for all j, then the SVNLIOWAD
reduces to the SVNLOWAD measure [15];

• If T = (t, 0, · · · , 0), then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= D1. (14)

Next, a numerical example is given to show the aggregation process of the SVNLIOWAD operator.

Example 1. Assuming that:

U = (u1, u2, u3, u4, u5)

= (
〈
s2, (0.5, 0.3, 0.4)

〉
,
〈
s5, (0.3, 0.3, 0.6)

〉
,
〈
s5, (0.5, 0.2, 0.2)

〉
,
〈
s7, (0.5, 0.8, 0.2)

〉
,
〈
s2, (0.1, 0.4, 0.6)

〉
)

and

V = (v1, v2, v3, v4, v5)

= (
〈
s3, (0.7, 0.8, 0)

〉
,
〈
s5, (0.4, 0.4, 0.5)

〉
,
〈
s3, (0.5, 0.7, 0.2)

〉
,
〈
s3, (0.4, 0.2, 0.6)

〉
,
〈
s4, (0.5, 0.7, 0.2)

〉
),

are two SVNLNs defined in linguist term set S = {s1, s2, s3, s4, s5, s6, s7} and suppose w =

(0.20, 0.30, 0.15, 0.10, 0.25)T and T = (5, 8, 4, 2, 7) are the weight vector and order-inducing variable vector
of the SVNLIOWAD operator, respectively. Then, the calculation steps of the SVNLIOWAD are displayed as
follows:

(1) Calculate the individual distances d(ui, vi) (i = 1, 2, . . . , 5) (let λ = 1) according to Equation (5):

d(u1, v1) = |2× 0.5− 3× 0.7|+ |2× 0.3− 3× 0.8|+ |2× 0.4− 3× 0| = 3.7.
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Similarly, we get

d(u2, v2) = 1.5, d(u3, v3) = 2.4, d(u4, v4) = 7.7, d(u5, v5) = 3.2;

(2) Sort the d(ui, vi) (i = 1, 2, . . . , 5) according to the decreasing order of the order-inducing variable:

D1 = d(u2, v2) = 1.5, D2 = d(u5, v5) = 3.2, D3 = d(u1, v1) = 3.7,
D4 = d(u3, v3) = 2.4, d(u4, v4) = 7.7;

(3) Utilize the SVNLIOWAD operator defined in Equation (8) to perform the following aggregation:

SVNLIOWAD(U, V)

= 0.20× 1.5 + 0.30× 3.2 + 0.15× 3.7 + 0.10× 2.4 + 0.25× 7.7 = 3.71.

From the aggregation process of the SVNLIOWAD operator, as well as the existing other induced
aggregation distances, we see that the order-inducing variables are not really infused in the aggregation
results, which fail to express the variation caused by the change of order-inducing variables. Thus, we
needed to develop a new induced aggregation distance operator for SVNLSs to overcome this defect.

3.2. SVNLWIOWAD Measure

The special feature of the SVNLWIOWAD operator is that its induced ordering-variables play a
dual role in the aggregation process. One role is, as the previous SVNLIOWAD operator, to induce
the order of the arguments and the other is to adjust the associated weights. Thus it can better reflect
the influence of the induced variables on the ensemble results. The SVNLWIOWAD operator can be
defined as follows.

Definition 7. Let u j, u′j( j = 1, 2, . . . , n) be two sets of SVNLNs, the SVNLWIOWAD operator is defined

by a weight vector W = (w1, . . . , wn)
T with 0 ≤ w j ≤ 1 and

n∑
j=1

w j = 1; and an order-inducing vector

T = (t1, . . . , tn), such that:

SVNLWIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

̟ jD j, (15)

where (D1, . . . , Dn) is recorded (d1, . . . , dn) induced by the decreasing order of (t1, . . . , tn), di =
∣∣∣ui − u′i

∣∣∣ is the
distance between SVNLNs, defined in Equation (5). ̟ j( j = 1, 2, . . . , n) is a moderated weight that is relatively
determined by the weight w j ∈W and order-inducing variable t j ∈ T:

̟ j =
w jtσ( j)

n∑
j=1

w jtσ( j)

, (16)

where (σ(1), . . . , σ(n)) is a permutation of (1, . . . , n) such that tσ( j−1) ≥ tσ( j) for all j > 1. Example 2 illustrates
the performance of the SVNLWIOWAD operator.
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Example 2 (Example 1 continuation). To utilize the SVNLWIOWAD operator, we calculated the moderated
weight ̟ j defined in Equation (16):

̟1 =
w1tσ(1)
5∑

j=1
w jtσ( j)

=
0.20× 8

0.20× 8 + 0.30× 7 + 0.15× 5 + 0.10× 4 + 0.25× 4
= 0.274.

Similarly,
̟2 = 0.359,̟3 = 0.128,̟4 = 0.068,̟5 = 0.171.

Thus, based on the results of Example 1, we can get the aggregation result of the SVNLWIOWAD operator:

SVNLWIOWAD(U, V)

= 0.274× 1.5 + 0.359× 3.2 + 0.128× 3.7 + 0.068× 2.4 + 0.171× 7.7 = 3.462

Obviously, we got a different result compared with the SVNLIOWAD operator in Example 1.
The main reason for the difference is that the order-inducing variables in the SVNLIOWAD operator
(including the existing IOWAD and its numerous extensions) only act as inducers for the arguments,
and do not participate in the actual calculation process. However, the SVNLWIOWAD’s order-inducing
variables can not only act as the inducer, but also participate in the actual calculation progress by
adjusting the associated weights. Therefore, it can measure the effect of order-inducing variables on the
aggregation results. Consequently, the SVNLWIOWAD can achieve a more reasonable and scientific
measurement over the SVNLIOWAD operator.

The following theorems show some useful properties of the SVNLWIOWAD operator:

Theorem 5 (Idempotency). Let Q be the SVNLWIOWAD operator, if all di =
∣∣∣ui − u′i

∣∣∣ = d for all i, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= d. (17)

Proof. Because di =
∣∣∣ui − u′i

∣∣∣ = d, then D j = d for j = 1, 2, . . . , n, and we have:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

̟ jD j = d
n∑

j=1

̟ j.

Note that
n∑

j=1
̟ j = 1, thus we obtain Q

(〈
t1, u1, u′1

〉
, . . . ,

〈
tn, un, u′n

〉)
= d

n∑
j=1

̟ j = d. �

Theorem 6 (Boundedness). Let min
i
(
∣∣∣ui − u′i

∣∣∣) = x and max
i

(
∣∣∣ui − u′i

∣∣∣) = y, then:

x ≤ Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≤ y. (18)

Proof. Because ̟ j ∈ [0, 1] and
n∑

j=1
̟ j = 1, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

̟ jD j ≤

n∑

j=1

̟ jy = y
n∑

j=1

̟ j = y.
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Similarly,

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

̟ jD j ≥

n∑

j=1

̟ jx = x
n∑

j=1

̟ j = x.

Thus, we get
x ≤ Q

(〈
t1, u1, u′1

〉
, . . . ,

〈
tn, un, u′n

〉)
≤ y

�

Theorem 7 (Monotonicity). If
∣∣∣ui − u′i

∣∣∣ ≥
∣∣∣vi − v′i

∣∣∣ for all i, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≥ Q

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (19)

Proof. Let

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

̟ jD j,

Q
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
=

n∑

j=1

̟ jD
′

j.

As
∣∣∣ui − u′i

∣∣∣ ≥
∣∣∣vi − v′i

∣∣∣ for all i, it follows D j ≥ D′j for all j, therefore

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

̟ jD j ≥

n∑

j=1

̟ jD
′
j = Q

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)

�

Theorem 8 (Commutativity-IOWA operator aggregation). Let
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
(i = 1, 2, . . . , n)

be any possible permutation of the argument vector
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= Q

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (20)

Proof. The permutation between
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
and

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
(i =

1, 2, . . . , n) follows that the corresponding rearranged arguments D j = D′j for all j, therefore

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑

j=1

̟ jD j =
n∑

j=1

̟ jD
′
j = Q

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)

We can also illustrate the property of commutativity by considering the distance measure:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= Q

(〈
t1, u′1, u1

〉
, . . . ,

〈
tn, u′n, un

〉)
. (21)

Note that
∣∣∣ui − u′i

∣∣∣ =
∣∣∣u′i − ui

∣∣∣ for all i, thus the Equation (20) is easy to prove. �

In light of the similar analysis methods in [29–34], some particular cases of the SVNLWIOWAD
operator can be achieved by exploring the weight vector and order-inducing values.
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4. A New MAGDM Approach Based on the SVNLWIOWAD Operator

4.1. Steps of the MAGDM Method Based on the SVNWIOWAD Operator

On the basis of the analysis reviewed in the Introduction, it is customary for decision makers
to express their opinions on alternatives over attributes by SVNLNs because of their cognition with
uncertainty and vagueness. Therefore, it is well worth investigating the application of the proposed
SVNLWIOWAD under the SVNL framework. For an MAGDM problem with n alternatives A =

{A1, A2, . . . , An} assessed by decision makers with respect to m schemes (attributes) C = {C1, C2, . . . , Cm},
the decision steps based on the SVNLWIOWAD are listed as follows:

Step 1: Each expert dk(k = 1, 2, . . . , l) (whose weight is εk, meeting εk ≥ 0 and
l∑

k=1
εk = 1) provides

his or her performance of attributes by the SVNLNs. Afterwards, the individual decision matrix

Uk =
(
u(k)

i j

)

m×n
is obtained, where u(k)

i j is the k-th expert’s evaluation of the alternative A j with respect

to the attribute Ci;
Step 2: Aggregate all performances of the individual experts into a collective one and then form

the group decision matrix:

U =
(
ui j

)
m×n

=




u11 · · · u1n
...

. . .
...

um1 · · · umn



, (22)

where ui j =
l∑

k=1
εku(k)

i j ;

Step 3: Find the ideal levels for each attribute to construct the ideal scheme, listed in the Table 1;

Table 1. Ideal scheme.

C1 C2 · · · Cn

I I1 I2 . . . In

Step 4: Utilize Equation (15) to calculate the distance SVNLWIOWAD(Ai, I) between different
alternatives Ai(i = 1, 2, . . . , m) and the ideal scheme I;

Step 5: Rank the alternatives and identify the best one(s) according to SVNLWIOWAD(Ai, I),
where the smaller the value of SVNLWIOWAD(Ai, I), the better the alternative Ai(i = 1, 2, . . . , m).

4.2. An Illustrative Example: Investment Selection

We explored the application of the proposed approach in an investment selection problem
where three decision makers were invited to assess a suitable strategy. There were four companies
(alternatives) considered as potential investment options, chemical company (A1), food company (A2),
car company (A3) and furniture company (A4), according to following possible situations (attributes)
for the next year: C1 was the risk, C2 was the growth, C3 was the environmental impact, and C4 was
other impacts. The evaluation presented by the decision makers with respect to the four attributes
formed individual SVNL decision matrices under the linguistic term set S = {s1 = extremely poor,
s2 = very poor, s3 = poor, s4 = fair, s5 = good, s6 = very good, and s7 = extremely good}, as shown in
Tables 2–4.
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Table 2. Single-valued neutrosophic linguistic (SVNL) decision matrix U1.

C1 C2 C3 C4

A1

〈
s(1)4 , (0.3, 0.2, 0.3)

〉 〈
s(1)3 , (0.5, 0.3, 0.1)

〉 〈
s(1)4 , (0.5, 0.2, 0.3)

〉 〈
s(1)5 , (0.3, 0.5, 0.2)

〉

A2

〈
s(1)6 , (0.6, 0.1, 0.2)

〉 〈
s(1)4 , (0.5, 0.2, 0.2)

〉 〈
s(1)5 , (0.6, 0.1, 0.2)

〉 〈
s(1)3 , (0.6, 0.2, 0.4)

〉

A3

〈
s(1)5 , (0.7, 0.0, 0.1)

〉 〈
s(1)3 , (0.3, 0.1, 0.2)

〉 〈
s(1)4 , (0.6, 0.1, 0.2)

〉 〈
s(1)6 , (0.6, 0.1, 0.2)

〉

A4

〈
s(1)5 , (0.4, 0.2, 0.3)

〉 〈
s(1)3 , (0.3, 0.2, 0.5)

〉 〈
s(1)5 , (0.4, 0.2, 0.3)

〉 〈
s(1)4 , (0.5, 0.3, 0.3)

〉

Table 3. SVNL decision matrix U2.

C1 C2 C3 C4

A1

〈
s(2)6 , (0.4, 0.2, 0.4)

〉 〈
s(2)4 , (0.6, 0.1, 0.3)

〉 〈
s(2)6 , (0.6, 0.3, 0.4)

〉 〈
s(2)5 , (0.4, 0.4, 0.1)

〉

A2

〈
s(2)6 , (0.7, 0.2, 0.3)

〉 〈
s(2)5 , (0.6, 0.2, 0.2)

〉 〈
s(2)6 , (0.7, 0.2, 0.3)

〉 〈
s(2)4 , (0.5, 0.4, 0.2)

〉

A3

〈
s(2)4 , (0.8, 0.1, 0.2)

〉 〈
s(2)4 , (0.4, 0.2, 0.2)

〉 〈
s(2)5 , (0.7, 0.2, 0.3)

〉 〈
s(2)6 , (0.6, 0.3, 0.3)

〉

A4

〈
s(2)5 , (0.4, 0.3, 0.4)

〉 〈
s(2)5 , (0.3, 0.1, 0.6)

〉 〈
s(2)6 , (0.5, 0.1, 0.2)

〉 〈
s(2)3 , (0.7, 0.1, 0.1)

〉

Table 4. SVNL decision matrix U3.

C1 C2 C3 C4

A1

〈
s(3)6 , (0.5, 0.1, 0.3)

〉 〈
s(3)4 , (0.6, 0.2, 0.1)

〉 〈
s(3)5 , (0.6, 0.1, 0.3)

〉 〈
s(3)4 , (0.3, 0.6, 0.2)

〉

A2

〈
s(3)5 , (0.5, 0.2, 0.3)

〉 〈
s(3)5 , (0.7, 0.2, 0.1)

〉 〈
s(3)4 , (0.7, 0.2, 0.2)

〉 〈
s(3)6 , (0.4, 0.6, 0.2)

〉

A3

〈
s(3)4 , (0.6, 0.1, 0.2)

〉 〈
s(3)3 , (0.4, 0.1, 0.1)

〉 〈
s(3)4 , (0.5, 0.2, 0.2)

〉 〈
s(3)5 , (0.7, 0.2, 0.1)

〉

A4

〈
s(3)6 , (0.5, 0.2, 0.3)

〉 〈
s(3)5 , (0.2, 0.1, 0.6)

〉 〈
s(3)6 , (0.6, 0.2, 0.4)

〉 〈
s(3)4 , (0.5, 0.2, 0.3)

〉

Assuming that the weights of the experts were ε1 = 0.30, ε2 = 0.37, and ε3 = 0.33, respectively,
then the group SVNL decision matrix could be obtained through aggregating the three individual
decision matrices. The results are listed in the Table 5.

Table 5. Group SVNL decision matrix U.

C1 C2 C3 C4

A1
〈
s5.26, (0.399, 0.163, 0.330)

〉 〈
s3.37, (0.566, 0.185, 0.144)

〉 〈
s4.96, (0.566, 0.186, 0.330)

〉 〈
s4.70, (0.335, 0.491, 0.159)

〉

A2
〈
s5.70, (0.611, 0.155, 0.258)

〉 〈
s2.37, (0.602, 0.200, 0.162)

〉 〈
s4.70, (0.666, 0.155, 0.229)

〉 〈
s4.23, (0.514, 0.350, 0.258)

〉

A3
〈
s4.37, (0.714, 0.000, 0.155)

〉 〈
s3.67, (0.365, 0.128, 0.163)

〉 〈
s4.33, (0.611, 0.155, 0.229)

〉 〈
s5.70, (0.633, 0.180, 0.186)

〉

A4
〈
s5.30, (0.432, 0.229, 0.330)

〉 〈
s2.37, (0.271, 0.129, 0.561)

〉 〈
s5.63, (0.450, 0.159, 0.286)

〉 〈
s3.67, (0.578, 0.185, 0.209)

〉

.
The ideal scheme (Table 6) determined by experts represents the optimal results that a supplier

should satisfy, which further serves as a reference point in the aggregation process.

Table 6. Ideal scheme.

C1 C2 C3 C4

I
〈
s7, (0.9, 0, 0)

〉 〈
s7, (0.9, 0, 0.1)

〉 〈
s7, (1, 0, 0.1)

〉 〈
s6, (0.9, 0.1, 0)

〉
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We assumed that the weight and the order-inducing vectors of the SVNLWIOWAD were w =

(0.2, 0.15, 0.3, 0.35)T and T = (5, 9, 7, 4), respectively. Based on the available information, we utilized
the SVNLWIOWAD to calculate the distances between the alternative Ai and the ideal scheme I:

SVNLWIOWAD(A1, I) = 6.440, SVNLWIOWAD(A2, I) = 5.713,
SVNLWIOWAD(A3, I) = 5.323, SVNLWIOWAD(A4, I) = 6.810.

Therefore, the ordering of the alternatives through the values of SVNLWIOWAD(Ai, I)(i =

1, 2, 3, 4) was A3 ≻ A2 ≻ A1 ≻ A4, which implies that the optimal company A3 is the best choice
for investment.

To conduct a comparative analysis with the existing methods, in this example we utilized the
SVNLWD, SVNLOWAD, and SVNLIOWAD to measure the relative performance of all alternatives to
the ideal scheme, and the aggregation results are listed in the Table 7.

Table 7. Aggregation results.

A1 A2 A3 A4 Ranking

SVNLWD(Ai, I) 6.828 5.836 5.048 6.444 A3 ≻ A2 ≻ A4 ≻ A1

SVNLOWAD(Ai, I) 6.466 5.652 4.802 6.460 A3 ≻ A2 ≻ A4 ≻ A1

SVNLIOWAD(Ai, I) 6.770 5.788 4.833 6.460 A3 ≻ A2 ≻ A1 ≻ A4

From the Table 7, it is easy to see that the most desirable alternative was A3 for the different
distance measures used, which was the same as the result obtained from the SVNLWIOWAD operator.
We also found that the ranking of alternatives may change for the different distance measures used
because the different operators include different information. The SVNLWD uses the importance of
attributes and the SVNLOWD focuses on the ordered location of the arguments. The SVNLIOWAD
considers the attitudinal character of the decision-makers, while the SVNLIOWAD operator includes
more information than the SVNLIOWAD as its design function of the order-induced variables. It is
worth pointing out that the SVNLWIOWAD operator not only combines the advantages of the existing
methods, but also overcomes some of their shortcomings, so that it can achieve a more scientific and
reasonable result.

5. Conclusions

With the help of SVNLNs, decision makers may easily evaluate alternatives by linguistic terms
as well as uncertainty degrees, which is very close to human cognition. In order to highlight the
theory and application of SVNLS, in this paper, we explored some distance measures for SVNLSs
from an induced aggregation point of view. Firstly, we put forward the SVNLIOWAD operator, which
is a useful extension of the existing IOWAD operator. Then, a novel induced aggregation distance,
namely the single valued neutrosophic linguistic weighted IOWAD (SVNLWIOWAD) operator, was
developed to overcome the defects of the existing methods. The key feature of the SVNLWIOWAD
is that it extends the functions of the order-inducing variables, which not only induce the order of
arguments, but also moderate the associated weights. Compared with the existing methods, wherein
the order-inducing variables just play the induced function, this dual role enables the SVNLWIOWAD
operator to effectively measure the intrinsic variation of the induced variables on the integration results.
Therefore, it can consider the complex attitudinal characteristics as well as reflect the influence of the
induced variables on the aggregation results by moderating the associated weights. An MAGDM
method, based on the SVNLWIOWAD operator, was further presented, which turned out to be a very
powerful approach to handle decision making problems under SVNL situation. Finally, a numerical
example on investment selection and comparative analysis were utilized to demonstrate the feasibility
and effectiveness of the proposed method.
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For future research, we will consider some methodological extensions and application of
the proposed method with other decision making approaches, such as moving averaging and
probability information.
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Abstract: Nowadays, real world problems are complicated because they deal with uncertainty and
incomplete information. Obviously, such problems cannot be solved by a single technique because
of the multiple perspectives that may arise. Currently, the combination of DEMATEL and the
neutrosophic environment are still new and not fully explored. Previous studies of DEMATEL and
this neutrosophic environment have been carried out based on numerical values to represent a new
scale. Until now, little importance has been placed on the development of a linguistic variable for
DEMATEL. It is important to develop a new linguistic variable to represent opinions based on human
experience. Therefore, to fill this gap, the concept of Interval Neutrosophic Vague Sets (INVS) has
been extended to the linguistic variable that can be used in the decision-making process. The INVS is
useful tool to deal with uncertainty and incomplete information. Additionally, the advantages of
the linguistic variable of INVS allows the greater range of value for membership functions. This
study proposes a new framework for INVS and DEMATEL. In addition, a case study on the quality of
hospital service has been evaluated to demonstrate the proposed approach. Finally, a comparative
analysis to check the feasibility of the proposed method is presented. It demonstrates that different
methods produce different relations and levels of importance. This is due to the inclusion of the INVS
linguistic variable.

Keywords: INVS; DEMATEL; linguistic variable

1. Introduction

Multi Criteria Decision Making (MCDM) was introduced in the mid-1960s, and is still a hot topic
in decision making. The application fields of the MCDM include in-system engineering [1], energy
planning [2,3], supply chain-selection [4], risk management [5], water resources management [6], and
so on. Besides that, Pamučar et al. [7] used the MCDM method to select of the optimal type of hotel
for investment. MCDM can be defined as a systematic and standardized method of decision making
to resolve complex problems [8]. This method requires decision makers to choose the best among a
set of alternatives by comparing them according to the relevant criteria. Today, the Trial Evolution
Laboratory (DEMATEL) method approach is one of the widely known MCDM methods. In the 1970s,
the DEMATEL method was developed to solve complex problems in the identifying relationships
between cause–effect [9]. In DEMATEL, there are formally four basic steps: the development of a direct
influence matrix, establishing the direct influence matrix, constructing the total influence matrix and
producing the influential relation map. DEMATEL’s strengths are as a systematic tool for constructing
and evaluating the structure of complex causal relationships between matrix or diagram variable.
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Generally, crisp numbers are used to represent the existing scale in classical DEMATEL in order to
reflect the ambiguity and vagueness that occur in the decision-making problems. However, several
studies have criticized classical DEMATEL, which is insufficient to resolve ambiguity due to the
input of linguistic experts into the information [10–13]. Thus, the DEMATEL method is extended by
integrating with fuzzy set theory. The combination is called Fuzzy DEMATEL.

Zadeh [14] introduced Fuzzy Sets to overcome the confusion in decision making. Fuzzy DEMATEL
has been successfully applied in various applications. Most of the linguistic variables in DEMATEL
are constructed based on Fuzzy Set. This model has been applied in green supply chain management
practices by [15–17]. Meanwhile Akyuz and Celik [18] used Fuzzy DEMATEL to evaluate critical
operational hazards during the gas freeing process. Atanassov [19] extended the concept of the
fuzzy set to the intuitionistic fuzzy set (IFS). An IFS consists of membership and non-membership
to deal with uncertain information. A study by Govindan et al. [20] applied IFS with DEMATEL to
handle the linguistic impression and ambiguity of human judgment. Another study by Li et al. [21]
used IFS as a linguistic variable with a DEMATEL to identify critical success factors in emergency
management. Hosseini et al. [22] proposed a fuzzy extension of the DAMATEL. In this study, the
linguistic variable is in form of a type 2 fuzzy set to obtain the weight of criteria based on word.
Later, research by Dalalah et al. [23] developed a modified fuzzy DEMATEL where the fuzzy distance
measure is presented. The FPIS and FNIS are used to find similarities of the available alternatives.
There was an attempt made by Abdullah and Zulkifli [24] to propose the integration of fuzzy AHP
and interval type 2 fuzzy DEMATEL. The authors focus on linguistic variables in interval type-2
fuzzy sets (IT2FS) and the expected value for normalizing the upper and lower membership of IT2FS.
Authors in [25] developed an interval type-2 fuzzy set based hierarchical MADM model by combining
DEMATEL and TOPSIS. The inherent complexity that arises in the decision-making problem is solved
using a hierarchical decomposition approach. The interval type-2 fuzzy DEMATEL is used to solve
interdependencies among problem attributes. Baykasoğlu et al. [26] proposed fuzzy DEMATEL for the
assessment of criteria, weight of criteria and the hierarchical fuzzy TOPSIS method for the assessment
of alternatives by criteria.

Gray system theory is a good theory that combines with MCDM, and this set is being used
with DEMATEL. Julong [27] implemented the gray system to solve uncertainties and incomplete
information [28–31]. Besides that, the combination between gray–fuzzy and DEMATEL in expert
judgment to evaluate interrelationship of service quality has been done by Tseng [32]. In short,
several kinds of extensions of DEMATEL are used to model uncertainty inherent in the assessment.
Nevertheless, some sources of uncertainty are partially or completely overlooked in the previous
literature [28].

The neutrosophic set is a powerful tool for dealing with uncertainty-related issues, and consists
of the level of truth, indeterminate and false degrees. In recent years, the theory extensions of
neutrosophic have made rapid progress among scholars, such as [33–38]. A considerable amount of
literature has been published on neutrosophic and MCDM, such as Dung et al. [39], who used interval
neutrosophic set with TOPSIS to evaluate personnel selection. In addition, one work [40] suggested
the TOPSIS method for MCDM under a single-valued neutrosophic set, and illustrated it by example.
Abdel-Basset et al. [41] implemented the combination in the neutrosophic context of the Analytic
Hierarchy Process (AHP) and Delphi Method. The authors have highlighted different techniques for
monitoring consistency and evaluating the consensus level of expert opinions. Pamučar et al. [42]
developed a new model which combines linguistic neutrosophic numbers (LNNs) and the weighted
aggregated sum product assessment (WASPAS) for evaluating consultants’ work in hazardous goods
transport. In addition, Abdel-Basset et al. [43] developed a combination of the neutrosophic ANP
and VIKOR method to achieve sustainable supplier choice. The triangular neutrosophic numbers
(TriNs) are used in this study to represent a linguistic variable based on opinion experts and decision
makers. However, a combination of neutrosophic, particularly with DEMATEL, has not yet been fully
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explored [44]. The literature published related to DEMATEL and the neutrosophic environment, such as
Abdel-Basset et al. [45] simply represents numerical values without focusing on the linguistic variable.

Most experts cannot give accurate numerical values to represent opinions based on human
experience and rather use linguistic assessments as opposed to numerical values to be more
practical [10,46]. This method seems to lack information on the linguistic parameter, since the
key shortcoming of DEMATEL is that it relies on the input of linguistic experts [12,47]. Hence to fill
this gap, we develop a new linguistic variable under the neutrosophic environment. Our proposed
method can be seen as a DEMATEL framework in which interval neutrosophic vague sets are used as
the linguistic variable. The benefits of our new linguistic variable allow greater range of values for the
membership functions, since a new parameter is added to the interval neutrosophic set. It considers
more range of values while handling the uncertainty that arises in decision-making problems. The
insertion of INVS in DEMATEL gives a new representation of the model.

The remainder of the paper is organized as follows: In Section 2, some fundamental concepts of
interval neutrosophic vague sets is presented. Section 3 discusses the proposed method, and Section 4
introduces an implementation of the proposed method. Finally, Section 5 describes the findings and
proposal for future study.

2. Preliminaries

This section introduces the basic definitions related to the interval neutrosophic vague set (INVS).

Definition 1. [48] Let U be a universe discourse and the interval-valued neutrosophic set S is defined as follows:

S =
{
a,

〈[
mL

S(a), mU
S (a)

]
,
[
nL

S(a), nU
S (a)

]
,
[
pL

S(a), pU
S (a)

]〉∣∣∣∣a ∈ U
}

(1)

where
[
mL

S(a), mU
S (a)

]
∈ [0, 1],

[
nL

S(a), nU
S (a)

]
∈ [0, 1],

[
pL

S(a), pU
S (a)

]
∈ [0, 1] satisfies 0 ≤ mS(a) + nS(a) +

pS(a) ≤ 3. When the upper and lower limits of mS(a), nS(a), pS(a) in INS are equal, the INS is reduced to

SVNS. For notational convenience, we use S =
〈[

mL
S(a), mU

S (a)
]
,
[
nL

S(a), nU
S (a)

]
,
[
pL

S(a), pU
S (a)

]〉
to represent

the element S in INS, while the element S refers to an interval-valued neutrosophic number (INN).

Definition 2. [49] Let S be a universe discourse U. Then an interval neutrosophic vague set denoted as SINV is
written as:

SINV =
{
a,

[
mL

S(a), mU
S (a)

]
,
[
nL

S(a), nU
S (a)

]
,
[
pL

S(a), pU
S (a)

]
>
∣∣∣∣a ∈ U

}
(2)

Whose truth membership, indeterminacy membership and falsity-membership functions are
defined as:

mL
S(a) =

[
mL− , mL+

]
, mU

S (a) =
[
mU−, mU+

]
, nL

S(a) =
[
nL−, nL+

]
, nU

S (a) =
[
nU−, nU+

]

and pL
S(e) =

[
pL−, pL+

]
, pU

S (e) =
[
pU−, pU+

] (3)

where
mL+ = 1− pL−, pL+ = 1−mL−,

mU+ = 1− pU−, pU+ = 1−mU−,
−0 ≤ mL− + mU− + nL− + nU− + pL− + pU− ≤ 4+,
−0 ≤ mL+ + mU+ + nL+ + nU+ + pL+ + pU+ ≤ 4+.

(4)

31



Symmetry 2020, 12, 275

Definition 3. [49] Let κINV be an INVS of the universe U where ∀ai ∈ U,

mL
κINV

(a) = [1, 1], mU
κINV

(a) = [1, 1],

nL
κINV

(a) = [0, 0], nU
κINV

(a) = [0, 0],

pL
κINV

(a) = [0, 0], pU
κINV

(a) = [0, 0].

Then, a unit INVS is denoted as κINV where 1 ≤ i ≤ n.

Definition 4. [49] Let ηINV be an INVS of the universe U where ∀ai ∈ U,

mL
ηINV

(a) = [0, 0], mU
ηINV

(a) = [0, 0],

nL
ηINV

(a) = [1, 1], nU
ηINV

(a) = [1, 1],

pL
ηINV

(a) = [1, 1], pU
ηINV

(a) = [1, 1].

Hence, a zero INVS is denoted as ηINV where 1 ≤ i ≤ n.

3. Proposed Method

This section is presented mainly to discuss the development of the INVS-DEMATEL. In this study,
a new linguistic variable for INVS DEMATEL is constructed, and some changes have been made to
DEMATEL without the loss of originality of the DEMATEL method. Figure 1 demonstrates the overall
structure of the proposed method.

 

4)  

 

 

Figure 1. Algorithm of the proposed method.

The proposed method consists of nine steps, and is basically similar with the concept of DEMATEL.
However, the difference in the proposed method is especially in the development of the linguistic
variable. The proposed method INVS-DEMATEL uses the linguistic variable developed from the
interval neutrosophic set. Definition of INS in [49] is extended to the new linguistic variable in the
form of IVNS. The aggregation operator is used to aggregate all the experts’ opinion. The important
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step is, the total relation matrix should be greater than zero before the casual diagram is obtained. The
threshold value is setup and the degree of importance and net impact is obtained from the NRM.

3.1. Construction of Linguistic Variable

Gabus et al. [9] introduced a 4-degree scale in the classical DEMATEL. The most commonly used
are: the original 4-degree scale and a 3-degree scale, but other scales such as a 5-degree scale or even an
8-degree scale are also available [50]. The linguistic variable under neutrosophic environment SVNS
and INS have been developed by [39,40]. In this study, we have constructed a new linguistic variable
for INVS based on Equation (1). The linguistic variable INVS consists of a 5-degree scale. Table 1
shows the linguistic variables for INS:

Table 1. Linguistic variable [39].

Linguistic Variable Interval Neutrosophic Set

No Influence (NI) [0.1, 0.2], [0.5, 0.6], [0.7, 0.8]
Very Low Influence (LI) [0.2, 0.4], [0.5, 0.6], [0.5, 0.6]
Medium Influence (MI) [0.4, 0.6], [0.4, 0.5], [0.3, 0.4]

High Influence (HI) [0.6, 0.8], [0.3, 0.4], [0.2, 0.4]
Absolutely Influence (AI) [0.7, 0.9], [0.2, 0.3], [0.1, 0.2]

In order to illustrate this conversion, the linguistic variable of “No Influence” from Table 1 is
considered and calculated as follows:

Step 1: Convert linguistic variable of INS to INVS.

Using the definition of the interval neutrosophic set Equation (1), we have
S =

{〈
a, mS(a), nS(a), pS(a)

〉
: a ∈ U

}
, where mS(a) =

[
mL

S(a), mU
S (a)

]
⊆ [0, 1], nS(a) =

[
nL

S(a), nU
S (a)

]
⊆

[0, 1] and pS(a) =
[
pL

S(a), pU
S (a)

]
⊆ [0, 1]. Therefore, it is represented as [0.1, 0.2], [0.5, 0.6], [0.7, 0.8].

Using definition of INVS Equation (2)〈{[
mL−, mL+

]
,
[
mU−, mU+

]}
,
{[

nL−, nL+
]
,
[
nU−, nU+

]}
,
{[

pL−, pL+
]
,
[
pU−, pU+

]}〉
, therefore we obtain〈{[

0.1, mL+
]
,
[
mU−, 0.2

]}
,
{[

0.5, nL+
]
,
[
nU−, 0.6

]}
,
{[

0.7, pL+
]
,
[
pU−, 0.8

]}〉
.

Step 2: Calculation of mL+, mU−, nL+, nU−, pL+, pL− is obtained by condition of INVS.

Using Equations (3) and (4) and restated mL+ = 1− pL− = 1− 0.7 = 0.3, pL+ = 1−mL− = 1− 0.1 =

0.9, pU− = 1−mU+ = 1− 0.2 = 0.8 and pU− = 1−mU+ = 1− 0.2 = 0.8. Therefore, we get:

〈{
[0.1, 0.3], [0.2, 0.2]

}
,
{[

0.5, nL+
]
,
[
nU−, 0.6

]}
,
{
[0.7, 0.9], [0.8, 0.8]

}〉

In the definition of INVS, the indeterminate value is free since vague set do not handle
indeterminacy. Therefore, we can assign any value (if possible) for indeterminacy interval. Therefore,
we reach: 〈{

[0.1, 0.3], [0.2, 0.2]
}
,
{
[0.5, 0.65], [0.6, 0.6]

}
,
{
[0.7, 0.9], [0.8, 0.8]

}〉
.

Step 3: verify the linguistic variable for INVS.

Using condition −0 ≤ mL− + mU− + nL− + nU− + pL− + pU− ≤ 4+, therefore, we have 0.1 + 0.2 +

0.5 + 0.6 + 0.7 + 0.8 = 2.9 and −0 ≤ mL+ + mU+ + nL+ + nU+ + pL+ + pU+ ≤ 4+.
Therefore, we have 0.3 + 0.2 + 0.65 + 0.6 + 0.9 + 0.8 = 3.45.
The rest of calculation for the linguistic variable INVS is calculated similarly. Finally, we propose

the linguistic variables that are defined in INVS, as presented in Table 2.
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Table 2. The new linguistic variable under the Interval Neutrosophic Vague Sets (INVS) concept.

Linguistic Variable Interval Neutrosophic Vague Set

No Influence (NI)
〈{
[0.1, 0.3], [0.2, 0.2]

}
,
{
[0.5, 0.65], [0.6, 0.6]

}
,
{
[0.7, 0.9], [0.8, 0.8]

}〉

Very Low Influence (LI)
〈{
[0.2, 0.5], [0.4, 0.4]

}
,
{
[0.5, 0.55], [0.5, 0.6]

}
,
{
[0.5, 0.8], [0.6, 0.6]

}〉

Medium Influence (MI)
〈{
[0.4, 0.7], [0.6, 0.6]

}
,
{
[0.40.45], [0.4, 0.5]

}
,
{
[0.3, 0.6], [0.4, 0.4]

}〉

High Influence (HI)
〈{
[0.6, 0.8], [0.6, 0.8]

}
,
{
[0.3, 0.35], [0.3, 0.4]

}
,
{
[0.2, 0.4], [0.2, 0.4]

}〉

Absolutely Influence (AI)
〈{
[0.7, 0.9], [0.8, 0.9]

}
,
{
[0.2, 0.25], [0.2, 0.3]

}
,
{
[0.1, 0.3], [0.1, 0.2]

}〉

3.2. The INVS DEMATEL Procedures

The procedures of INVS DEMATEL with the new linguistic variable are described as follows:

Step 1: Construct linguistic data using the new linguistic variable.

The decision makers (DMs) constructs a decision matrix based on the proposed INVS linguistic
variable. DMs were asked to determine a score using five linguistic variables that ranged from no
influence to absolute influence based on criteria. The kth DM gave the INVS score ak

i j and the notation
of ai j shows the degree to which DM believes criteria i affects criteria j. The diagonal components are
set to zero for decision making, where:

Ak =




0 ak
12 · · · ak

1n
ak

21 0 · · · ak
2n

...
... 0

...
ak

n1 ak
n2 · · · 0




(5)

The matrix contains INVSs in the form of

ak
i j =

〈
mi j, ni j, pi j

〉
=

〈{[
mL−

11 , mL+
12

]
,
[
mU−

13 , mU+
14

]}
,
{[

nL−
11 , nL+

12

]
,
[
nU−

13 , nU+
14

]}
,
{[

pL−
11 , pL+

12

]
,
[
pU−

13 , pU+
14

]}〉

Step 2: Aggregate DM’s preferences using the mean operator of INVS.

The membership degrees obtained from the DMs are combined using mean operators of INVS
as follows:

xi j =
1
H

H∑

k=1

ak
i j (6)

where H is the total number of DMs and ak
i j =

〈
mi j, ni j, pi j

〉
=

〈{[
mL−

11 , mL+
12

]
,
[
mU−

13 , mU+
14

]}
,
{[

nL−
11 , nL+

12

]
,
[
nU−

13 , nU+
14

]}
,
{[

pL−
11 , pL+

12

]
,
[
pU−

13 , pU+
14

]}〉
.

Step 3: Deneutrosophication process to obtain crisp value.

Deneutrosophication is the method by which a crisp number is collected. The deneutrosophication
formula is as follows:

Step 4: Normalizing the direct relation matrix.

Bi j =
mL−+mU−

2 + mL++mU+

2 +
(
1− nL−+nU−

2

)
IU− +

(
1− nL++nU+

2

)
nU+

−

(
pL−+pU−

2

)
1− pU− −

(
pL++pU+

2

)
1− pU+

(7)

The initial direct-relation is normalized using D = B× S where

S =
1

max
1 ≤ i ≤ n

∑n
j=1 bi j

(8)
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Step 5: Constructing the INVS total relation matrix.

In this step, from the normalized matrix D, the INVS total relation matrix is computed using
Equation (9), where I denotes the identity matrix.

T = D× (I −D)−1 (9)

Step 6: Calculating the sum of the rows and columns.

The sum of rows denoted as R and the sum of columns denoted as C are both calculated as using
Equations (10) and (11) as follows:

R =




n∑

i=1

ti j




n×1

(10)

C =




n∑

j=1

ti j




1×n

(11)

Step 7: Construct a causal diagram.

The graph is constructed by plotting the (R + C, R−C) data set. The R + C on the horizontal axis
characterizes as “Prominence” and the vertical axis R−C represents as “Relation”. Generally, when
R−C is positive, the criterion belongs to the cause group. Otherwise, the criterion belongs to the effect
group if R−C is negative. This diagraph is very useful as a decision-making aid.

Step 8: Set up the threshold value and the network relationship map.

In this step, the threshold value referred as θ is calculated by measuring the average of the
component in matrix T. Matrix T elements are considered to be zero if they are lower than θ, which
means their effect is lower than other criteria. The network relationship map’s advantages can reflect
the MCDM flow. Each graph node represents the object examined, while the arc between two nodes
shows the direction and strength of the influence relationship [50].

4. Illustrative Example: Hospital Service Quality

The proposed INVS DEMATEL with a new linguistic variable has been tested using a numerical
example provided by [51].

Step 1: Construct the decision matrix with proposed INVS linguistic variable.

Three decision makers are selected to define key success factors for the performance of hospital
service. There are seven criteria involved, which are: F1: well-equipped medical facilities, F2: service
personnel with good communication skills, F3: trusted medical staff with professional competence
of health care, F4: service personnel with immediate-solving abilities, F5: detailed description of the
patient’s condition by the medical doctor, F6: medical staffwith professional skills and F7: pharmacist’s
advice for taking medicine. Table 3 shows DMs analysis based on 7 criteria.
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Table 3. Decision makers’ (DMs) analysis of the criteria.

F1 F2 F3 F4 F5 F6 F7

F1 0 HI, MI, MI MI, MI, HI LI, HI, MI MI, LI, HI MI, AI, HI NI, HI, MI

F2 MI, LI, HI 0 MI, AI, LI HI, HI, NI HI, HI, MI LI, MI, HI LI, HI, MI

F3 M, VU, M NI, MI, NI 0 HI, NI, LI NI, MI, AI NI, MI, HI HI, MI, LI

F4 HI, HI, MI MI, AI, HI LI, MI, MI 0 MI, HI, AI NI, HI, MI NI, AI, HI

F5 HI, MI, MI MI, NI, AI MI, MI, HI HI, MI, MI 0 NI, MI, HI AI, HI, MI

F6 MI, NI, MI HI, MI, MI MI, NI, AI LI, HI, MI MI, MI, MI 0 LI, MI, AI

F7 HI, MI, LI AI, HI, MI LI, VI, LI HI, HI, MI AI, HI, NI MI, HI, AI 0

Step 2: Aggregate DM’s preferences using mean operator of INVS.

Equation (6) is used to aggregate the DM’s opinion; for instance the element of a12 can be obtained
as follows:

a12 = 1
3
{
[0.4 + 0.2 + 0.6, 0.7 + 0.5 + 0.8], [0.6 + 0.4 + 0.6, 0.6 + 0.4 + 0.8]

}
,{

[0.4 + 0.5 + 0.3, 0.45 + 0.55 + 0.35] , [0.4 + 0.5 + 0.3, 0.5 + 0.6 + 0.4]
}
,{

[0.3 + 0.5 + 0.2, 0.6 + 0.8 + 0.4], [0.4 + 0.6 + 0.2], [0.4 + 0.6 + 0.4]
}

=
{
[0.4, 0.67], [0.43, 0.6]

}
,
{
[0.4, 0.43], [0.4, 0.5]

}
,
{
[0.4, 0.46]

}

The rest of the elements are calculated similarly.

Step 3: Deneutrosophication process to obtain crisp value.

Equation (7) is used to obtain crisp value and the result is presented in Table 4.

Table 4. The crisp values of matrix.

F1 F2 F3 F4 F5 F6 F7

F1 0.0000 1.2461 1.2461 1.1022 1.1022 1.4383 0.9911 7.1261
F2 1.1022 0.0000 1.1789 1.0833 1.3519 1.1789 1.1022 6.9975
F3 0.9011 0.7169 0.0000 0.8756 1.0589 0.7169 1.1022 5.3717
F4 1.3519 1.4383 1.0044 0.0000 1.4383 0.9911 1.1528 7.3769
F5 1.2461 1.0589 1.2461 1.2461 0.0000 0.9911 1.4383 7.2267
F6 0.9011 1.2461 1.0589 1.1022 1.1425 0.0000 1.1789 6.6297
F7 1.1022 1.4383 1.0408 1.3519 1.1528 1.4383 0.0000 7.5244

Step 4: Normalizing the INVS direct relation matrix.

Normalizing the direct relation matrix denoted as D can be achieved using Equation (8). The sum
for each row is calculated, and the largest value is obtained by row 7 (see Table 4). Each element in
Table 4 is divided by 7.5244. The result is shown in Table 5.

Table 5. The normalize direct relation matrix.

F1 F2 F3 F4 F5 F6 F7

F1 0.0000 0.1656 0.1656 0.1465 0.1465 0.1912 0.1317
F2 0.1465 0.0000 0.1567 0.1440 0.1797 0.1567 0.1465
F3 0.1198 0.0953 0.0000 0.1164 0.1407 0.0953 0.1465
F4 0.1797 0.1912 0.1335 0.0000 0.1912 0.1317 0.1532
F5 0.1656 0.1407 0.1656 0.1656 0.0000 0.1317 0.1912
F6 0.1198 0.1656 0.1407 0.1465 0.1518 0.0000 0.1567
F7 0.1465 0.1912 0.1383 0.1797 0.1532 0.1912 0.0000
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Step 5: Construct the INVS total relation matrix.

The total relation matrix T can be computed using Equation (9), where I is denoted as the identity
matrix. Since we have 7 criteria, then identity matrix should be size of 7 × 7. In this step, Maple
software is used to calculate total relation matrix. Table 6 shows total relation matrix.

Table 6. The Interval Neutrosophic Vague Sets (INVS) total relation matrix.

F1 F2 F3 F4 F5 F6 F7

F1 1.562 1.8104 1.8104 1.7226 1.8214 1.7509 1.768
F2 1.5936 1.5657 1.6528 1.6225 1.7405 1.627 1.6726
F3 1.3341 1.3978 1.3108 1.3572 1.4518 1.336 1.4209
F4 1.8383 1.9587 1.9587 1.7196 1.9871 1.83 1.9091
F5 1.7028 1.7904 1.7904 1.7354 1.6903 1.7048 1.8053
F6 1.6069 1.7427 1.7427 1.6584 1.757 1.5243 1.7163
F7 1.8336 1.9825 1.9825 1.8937 1.9824 1.8957 1.7983

Step 6: Calculating the sum of the rows and columns.

The sums of rows are represented by R and sums of columns represented by C is calculated by
Equations (10) and (11). The R + C and R−C values are calculated in which these values reflect the
importance and relation values, respectively. Based on the information in Table 7, the importance
degree R + C of criteria towards hospital service quality is identified as F7φF4φF5φF2φF1φF6φF3. The
most important criteria that influence the hospital service quality are F7 and F4. Meanwhile, F6 and F3

are the least important. The details results are presented in Table 7.

Table 7. The total of rows and columns.

R C R+C
Rank of

Importance
R−C

Rank of
Effect

Cause/Effect

F1 12.2457 11.4713 23.717 5 0.7744 4 Cause
F2 11.4747 12.2482 23.7229 4 −0.7735 6 Effect
F3 9.6086 12.2483 21.8569 7 −2.6397 7 Effect
F4 13.2015 11.7094 24.9109 2 1.4921 1 Cause
F5 12.2194 12.4305 24.6499 3 −0.2111 5 Effect
F6 11.7483 11.6687 23.417 6 0.0796 3 Cause
F7 13.3687 12.0905 25.4592 1 1.2782 2 Cause

Step 7: Construct a causal diagram.

The complex causal relationships of criteria can be seen in the causal diagram illustrated in
Figure 2. In addition, it provides valuable insight into solving problems. The horizontal in this diagram
reflects the level of importance of each criterion, while the vertical axis classifies the criteria into the
category of causes and effects.
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Figure 2. Causal diagram.

Figure 2 shows that the criteria with positive values of R−C are F1, F4, F6, F7; these criteria are
categorized into a cause group. On the other hand, F6, F3 and F5 are categorized into the effect group.

Step 8: Setup a threshold value and construct the network relationship map.

The threshold value θ is obtained by taking the average of the INVS total relation matrix,
θ = 1.7116. The values below the θ are set by 0, and the values above the θ are set by 1. Table 8 shows
the new total relation matrix denoted as Tθ. Figure 3 displays the graph of the network relationship
map to visualize the existent of mutual influence among the criteria. This map is constructed based on
new total influence in Table 8. It can be seen that F1 (well-equipped medical equipment) has arrows
pointing toward the other criteria, which indicates that it has an influence on them. On the other hand,
there are arrows pointing toward F1 (well-equipped medical equipment), which indicates that this
criterion is affected by some other criteria.
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Figure 3. Network relationship map.
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Table 8. New total influence.

F1 F2 F3 F4 F5 F6 F7

F1 0 1 1 1 1 1 1
F2 0 0 0 0 1 0 0
F3 0 0 0 0 0 0 0
F4 1 1 1 1 1 1 1
F5 0 1 1 1 0 0 1
F6 0 1 1 0 1 0 1
F7 1 1 1 1 1 1 1

5. Comparison Analysis

In this section, comparison analysis is performed in order to validate the proposed method. For
this purpose, firstly we present comparative analysis between DEMATEL, Neutrosophic DEMATEL
and the proposed method INVS-DEMATEL. In second section, we compare the INVS-DEMATEL with
two other existing models which are interval-valued hesitant fuzzy sets and Neutrosophic DEMATEL.

5.1. Comparative Analysis

Comparative analysis is performed in this study to observe the accuracy of the DEMATEL’s
modification. Table 9 represents comparative findings of the INVS-DEMATEL method against
DEMATEL and Neutrosophic DEMATEL methods. It can be seen that INVS-DEMATEL reveals an
obvious difference degree of importance and net impact. For example, by using the proposed method,
F7 is the most important criterion. The main reason is that the new linguistic variable is included. Even
though a new linguistic variable is suggested, the proposed method was implemented without losing
the originality of the DEMATEL method. In addition, INVS-DEMATEL introduces a new linguistic
variable that consists of truth, falsity and indeterminacy degrees which are not limited to a single
interval. This set provides interval-based membership when dealing with incomplete and inconsistent
information. Meanwhile, classical DEMATEL uses crisp value to solve the uncertainty problems. The
classical DEMATEL cannot represent the better decision under uncertainty. Besides that, Neutrosophic
DEMATEL is characterized by truth membership, indeterminacy membership and falsity membership.
In real life, some complicated problems cannot be solved by SVNS, but need to use several possible
values. Therefore, INVS is blended with DEMATEL to accurately assess the relationship between
the factors.

Table 9. Comparative results of the different models.

Type of Assessment Degree of Importance & Net Impact

INVS-DEMATEL with new linguistic variable
(proposed method)

F7 ≻ F4 ≻ F5 ≻ F2 ≻ F1 ≻ F6 ≻ F3
Cause criterion: F1, F4, F6, F7

Effect criterion: F2, F3, F5

Neutrosophic DEMATEL
F3 ≻ F2 ≻ F6 ≻ F1 ≻ F4 ≻ F5 ≻ F7

Cause criterion: F2, F3, F6
Effect criterion: F1, F4, F5, F7

DEMATEL
F4 ≻ F2 ≻ F6 ≻ F7 ≻ F5 ≻ F3 ≻ F1

Cause criterion: F1, F4, F7
Effect criterion: F2, F3, F5, F6

5.2. Comparison between INVS-DEMATEL and the Existing Models

In this study, we have used INVSs as a linguistic variable accompanied with DEMATEL. The
development of a new linguistic variable is important to better represent the opinions of experts. The
INVS-DEMATEL is applied in the case study of hospital service quality to represent the effectiveness
of this model. The findings are in the form of a cause and effect group. In this section, we will compare
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our proposed INVS-DEMATEL with two other existing models which are interval-valued hesitant
fuzzy sets DEMATEL [28] and Neutrosophic DEMATEL [45].

Umut et al. [28] integrate interval-valued hesitant fuzzy sets and DEMATEL to better represent the
uncertainty and vagueness in the decision-making problem. The concept of interval-valued hesitant
fuzzy set is a generalization of fuzzy set and hesitant fuzzy set [52]. It consists of the membership
degrees of an element in the form of several possible interval values. However, the interval-valued
hesitant fuzzy set is unable to solve problems that involved indeterminacy. Considering the complexity
of the decision-making process, it is difficult to insert the indeterminacy degree during the process of
collection data in the decision making. This is beyond the scope of interval-valued hesitant fuzzy sets.
Therefore, this integration may lead to incomplete information and results.

Abdel-Baset et al. [45], developed a combination of Neutrosophic and DEMATEL. Neutrosophic
sets involve an indeterminacy degree that helps experts to express their opinions more accurately. The
authors examine the proposed model for selection of supplier. The Neutrosophic DEMATEL method
represents a new scale from 0 to 1 and employs the maximum truth membership degree (α), the
minimum indeterminacy membership degree (θ) and the minimum falsity membership degree (β) of
a single value neutrosophic number. Nevertheless, in this analysis, authors focused on the numerical
values in order to convey the opinion of the experts without emphasizing linguistic variable growth.
The DEMATEL method requires qualitative evaluation by experts as data input. Therefore, it is better
to represent the experts’ opinion in the form of a linguistic variable.

INVS is able to overcome the classical challenges of DEMATEL methods. INVS is characterized
by multiple intervals instead of a single interval. INVS allows a greater range of value when dealing
with an uncertain and incomplete environment. The use of simple a linguistic variable is not suitable
to express the real preferences of the expert. For this reason, our approach is more focused towards
defining a new linguistic variable in the entire framework INVS-DEMATEL, and without losing the
originality of DEMATEL.

6. Conclusions

A new INVS-DEMATEL has been successfully proposed. We have constructed a new linguistic
variable for INVS based on the definition of INS from previous study. The proposed approach is used
for identifying the key success factors of hospital service quality. The results show that F7 is the most
important criterion and the most influential criterion among these seven criteria, because it has the
highest strength of relation to other criteria. The management should give attention on this criterion
so that the hospital service quality is guaranteed. In addition, F1,F4, F6 and F7 are categorized as a
cause criteria group. Meanwhile, the effect criterion group were F2, F3 and F5. A comparative analysis
between the proposed methods and the other existing method has been performed. The results show
that different methods produce difference results. This research contributes to the literature by filling
in the gap of linguistic variable in a neutrosophic environment.

In summary, this research’s main results are as follows:

• In this research, the neutrosophic environment was used to establish the linguistic variable of
the DEMATEL. The new INVS linguistic variable considers more range of value while handling
uncertainty, since a new parameter is added to INS. This is accordance with recommendations by
Rodríguez et al. [53]. It is useful to include the complex linguistic variable to capture information
in different forms and to manage uncertainties of different types within a single framework.

• The combination of INVS and DEMATEL can manage the complex interactions between criteria.
• The insertion of a vague set with a neutrosophic set gives a new result on the degree of importance

and net impact.

As an extension of this study, different types of threshold value should be explored [44].
Additionally, future studies can be extended to another types of aggregation operator. The sensitivity
analysis is recommended for the future studies to show the robustness of INVS DEMATEL and its
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results by changing the criteria weights in different situations. Additionally, the weighted super-matrix
should be computed to become a long-term stable super-matrix.
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42. Pamučar, D.; Sremac, S.; Stević, Ž.; Ćirović, G.; Tomić, D. New multi-criteria LNN WASPAS model for
evaluating the work of advisors in the transport of hazardous goods. Neural Comput. Appl. 2019, 31,
5045–5068. [CrossRef]

43. Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR
method for achieving sustainable supplier selection: A case study in importing field. Comput. Ind. 2019, 106,
94–110. [CrossRef]

44. Si, S.L.; You, X.Y.; Liu, H.C.; Zhang, P. DEMATEL technique: A systematic review of the state-of-the-art
literature on methodologies and applications. Math. Probl. Eng. 2018, 2018, 1–33. [CrossRef]

42



Symmetry 2020, 12, 275

45. Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A hybrid approach of neutrosophic sets and
DEMATEL method for developing supplier selection criteria. Des. Autom. Embed. Syst. 2018, 22, 257–278.
[CrossRef]

46. Herrera, F.; Herrera-Viedma, E.; Martínez, L. A fusion approach for managing multi-granularity linguistic
term sets in decision making. Fuzzy Sets Syst. 2000, 114, 43–58. [CrossRef]

47. Wei, D.; Liu, H.; Shi, K. What are the key barriers for the further development of shale gas in china? A
grey-DEMATEL approach. Energy Rep. 2019, 5, 298–304. [CrossRef]

48. Wang, H.; Smarandache, F.; Zhang, Y.-Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and
Applications in Computing; HEXIS: Phoenix, AZ, USA, 2005.

49. Hashim, H.; Abdullah, L.; Al-Quran, A. Interval neutrosophic vague sets. Neutrosophic Sets Syst. 2019, 25,
66–75.
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Abstract: This paper introduces Single Valued Refined Neutrosophic Set (SVRNS) which is a
generalized version of the neutrosophic set. It consists of six membership functions based on
imaginary and indeterminate aspect and hence, is more sensitive to real-world problems. Membership
functions defined as complex (imaginary), a falsity tending towards complex and truth tending
towards complex are used to handle the imaginary concept in addition to existing memberships in the
Single Valued Neutrosophic Set (SVNS). Several properties of this set were also discussed. The study
of imaginative pretend play of children in the age group from 1 to 10 years was taken for analysis
using SVRNS, since it is a field which has an ample number of imaginary aspects involved. SVRNS
will be more apt in representing these data when compared to other neutrosophic sets. Machine
learning algorithms such as K-means, parallel axes coordinate, etc., were applied and visualized for a
real-world application concerned with child psychology. The proposed algorithms help in analysing
the mental abilities of a child on the basis of imaginative play. These algorithms aid in establishing a
correlation between several determinants of imaginative play and a child’s mental abilities, and thus
help in drawing logical conclusions based on it. A brief comparison of the several algorithms used is
also provided.

Keywords: neutrosophic sets; Single Valued Refined Neutrosophic Set; applications of Neutrosophic
sets; k-means algorithm; clustering algorithms

1. Introduction

Neutrosophy is an emerging branch in modern mathematics. It is based on philosophy and was
introduced by Smarandache and deals with the concept of indeterminacy [1]. Neutrosophic logic is a
generalization of fuzzy logic proposed by Zadeh [2]. A proposition in Neutrosophic logic is either true
(T), false (F) or indeterminate (I). This inclusion of indeterminacy makes the neutrosophic logic capable
of analyzing uncertainty in datasets. Hence, it can be used to logically represent the uncertain and often
inconsistent information in the real world problems. Single Valued Neutrosophic Sets (SVNS) [3] are
an instance of a neutrosophic set which can be used in real scientific and engineering applications such
as Decision-making problems [4–11], Image Processing [12–14], Social Network Analysis [15], Social
problems [16,17] and psychology [18]. The distance and similarity measures have found practical
applications in the fields of psychology for comparing different behavioural and cognitive patterns.

Imaginative or pretend play is one of the fascinating topics in child psychology. It begins around
the age of 1 year or so. It is at its most prominent during the preschool years when children begin
to interact with other children of their own age and begin to access more toys. It is crucial in child
development as it helps in the development of language (sometimes the child language which cannot
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be deciphered by everyone) and also helps nurture the imagination of tiny-tots. However, the factors
determining the level of imaginative play in children are varied and complicated and a study of
them would help one to assess their mental development. It is here that fuzzy neutrosophic logic
comes into play. In this paper, we propose a new notion of Single Valued Refined Neutrosophic Sets
(SVRNS) which is a model structured on indeterminate and imaginary notions, coupled with machine
learning techniques such as heat maps, clustering, parallel axes coordinate, etc., to study the factors
that determine and influence imaginative play in children and how it differs in children with different
abilities and skills.

Every child is born different. The personality and behaviour of children is an interplay of several
different factors. Psychology is a complicated and varied science and open to subjective interpretations.
The study of child psychology in an objective manner can help one uncover several aspects of child
behaviour and also result in early detection of certain mental disorders. One of the key motivations of
this research is to uncover the factors that determine the mental abilities of a child and the extent of their
imagination which helps in predicting their academic and overall performance in later stages. Machine
Learning is slowly but steadily becoming one of the hot topics of computer science. Amalgamation
of machine learning algorithms and psychology on the basis of complex and neutrosophic logic is
certainly exciting and will help to cover new bounds.

This study primarily focuses on the analysis of imaginative play in children on the basis of
neutrosophic logic and draws conclusions on the same with the help of clustering algorithms.
The approach is initialized by generating a finite number of complex and neutrosophic sets determined
by several cognitive, psychological and biological factors that affect imaginative play in the mentioned
age group. The primary advantage here is the ability of such sets to deal with the uncertainty,
imagination and indeterminacy present in the study of pretend play in children in the age group from
1 to 10 years. With the help of this study, we aim to distinguish the contribution of several factors of
imaginative play in children and conclude from the study whether the child has any mental disorders
or not and about the general cognitive skills coupled with imagination. This model will also help in
identifying factors which may contribute to potential psychological disorders in young children at an
early stage and predict the academic performance of the child.

In this research, a new complex fuzzy neutrosophic set is defined which will be used as a model to
study the imaginary and indeterminate behaviour in young children in the age group from 1 to 10 years
by giving them suitable stimuli for imaginary play. The data were collected from different sources with
the help of a questionnaire, observations, recorded sessions and interviews, and after transforming the
data into the proposed new neutrosophic logic, they were fitted into the newly constructed model and
conclusions were drawn from them using a child psychologist as an expert. This model attempts to
discover the extent to which several factors contribute to imaginative play in children of the specified
age group and to detect possibilities of mental disorders such as autism and hyperactivity in young
children on the basis of the trained model.

The paper is organized into seven major sections which are further divided into a few subsections.
Section one is introductory in nature. A detailed analysis of the works related to neutrosophy and its
applications to a few relevant fields are presented in section two. It also provides the gaps that have
been identified in those works. Section 3 introduces Single Valued Refined Neutrosophic Sets (SVRNS)
along with their properties, such as distance measures and related algorithms. It also introduces and
discusses several machine learning techniques used for assessment. The description of the dataset
used for the application of algorithms such as K-means clustering, heat maps, parallel axes coordinate
is given in section four. It also includes the approach involved in processing the data obtained
appropriately into SVRNSs. Section 5 provides an illustrative example of the methods described in
the preceding section. Section 6 details the results obtained from the application of the discussed
algorithms and their respective visualizations. Section 7 discusses the conclusions based on our study
and its future scope.
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2. Related Works

Fink [19] explored the role of imaginative play in the attainment of conservation and perspectivism
with the help of a training study paradigm. Kindergarten children were assigned to certain conditions
such as free play in the presence of an experimenter and a control group. The method of their data
collection was observation. The results indicate that imaginative play can result in new cognitive
structures. The relationship between different types of play experiences and the construction of certain
physical or social concepts were also discussed, along with educational implications.

Udwin [20] studied a group of children who had been removed from harmful family backgrounds
and placed in institutional care. These children were exposed to imaginative play training sessions.
These subjects showed an increase in imaginative behaviour. Age, non-verbal intelligence and fantasy
predisposition were determinants of the subjects’ response to the training programme, with younger,
high-fantasy and high-IQ children being most susceptible to the influence of the training exercises.

Huston-Stein [21] attempted to establish a relationship between social structure and child
psychology by employing methods of direct observations of field experiments. The behaviour was
then categorised on the basis of a set of defined behavioural categories and evaluated on the basis of
suitable metrics. The results focus on establishing correlations between these behavioural categories
and classroom structure and draw conclusions on how such social structures impact imaginative play.

Bodrova [22] related another important parameter, namely academic performance, to imaginative
play. They have established imaginative play as a necessary prerequisite and one of the major sources
of child development. They deduced how imaginative play scenarios require a certain knowledge of
environmental setting and how it affects the academic excellence of a child.

Seja [23] explored another important factor in child psychology—emotions. They attempted to
determine how imaginative play helps to understand the emotional integration of children. The source
of data collected in this study is elementary school children who were tested on verbal intelligence
and by standard psychological tests. Conclusions were drawn on the basis of an extensive statistical
analysis which also attempted to investigate gender differences.

Neutrosophy has given importance to the imprecision and complexity of data. This is an important
reason behind using neutrosophic logic in real life applications. Dhingra et al. [24] attempted to
classify a given leaf as diseased or healthy based on the membership functions of the neutrosophic sets.
Image segmentation into true, false and indeterminate regions after preprocessing was used to extract
features and several classifiers were used to arrive at a classification. A comparative analysis of these
classifiers was also provided.

Several researchers [25–30] dealt with algebraic structures of neutrosophic duplets, which are a
special case of neutrality. Single Valued Neutrosophic Sets (SVNS), which is particular cases of triplet
following the fuzzy neutrosphic membership concepts in their mathematical properties and operations
are dealt by Haibin [31].

Haibin [31] gave the notion of Single Valued Neutrosophic Sets (SVNS) along with their
mathematical properties and set operations. Properties such as inclusion, complement and union were
defined on SVNS. They also gave examples of how such sets can be used in practical engineering
applications. SVNS has found a major application in medical diagnosis. Shehzadi [32] presented the
use of Hamming distance and similarity measures of given SVNSs to diagnose a patient as having
Diabetes, Dengue or Tuberculosis. The three membership functions (truth, falsity and indeterminacy)
were assigned suitable values and distance and similarity measures were applied on them. These
measures were then used to provide a medical diagnosis. Smarandache and Ali [33] provided the
notion of complex neutrosophic sets (CNS). Membership values given to them were of the form a+bi.
Several properties of these sets were defined. These sets find applications in electrical engineering and
decision-making fields. Neutrosophic Refined Sets where defined in [34].

A more refined and precise view of indeterminacy is provided by Kandasamy [35].
The indeterminacy membership function was further categorized as indeterminacy tending towards
truth and indeterminacy tending towards false. Hence, resulting in Double-Valued Neutrosophic

47



Symmetry 2020, 12, 402

Set (DVNS). Their properties, such as complement, union and equality were also discussed and
distance measures were also defined on them. On the basis of these properties, minimum spanning
trees and clustering algorithms were described [36]. Dice measures on DVNS were proposed in [37].
The importance given to the indeterminacy of incomplete and imprecise data, as often found in the
real world, is a major advantage of the DVNS and hence, is more apt for several engineering and
medical applications.

The model of Triple Refined Indeterminate Neutrosophic Set (TRINS) was also introduced by
Kandasamy and Smarandache [38]. It categorizes indeterminacy membership function as leaning
towards truth and leaning towards false in addition to the traditional three membership functions of
neutrosophic sets. After defining the several properties and distance measures, the TRINS was used
for personality classification. The personality classification using TRINS has been found to be more
accurate and realistic as compared to SVNS and DVNS. Indeterminate Likert scaling using five point
scale was introduced in [39] and a sentiment analysis using Neutrosophic refined sets was conducted
in [40,41].

To date, the study of imaginative play in children has not been analysed using neutrosophy
coupled with an imaginary concept; thus, to cover this unexplored area, the new notion of Single
Valued Refined Neutrosophic Sets (SVRNS) that represent imaginary and indeterminate memberships
individually were defined. A study of imaginative play in children using Neutrosophic Cognitive
Maps (NCM) model was carried out in [42].

3. Single Valued Refined Neutrosophic Set (SVRNS) and Its Properties

This section presents the definition of Single Valued Refined Neutrosophic Set (SVRNS). These sets
are based on the essential concepts of real, complex and neutrosophic values which takes membership
from the fuzzy interval [0,1]. In a way this can be realized as a mixture of refined neutrosophic sets
coupled with real membership values for imaginary aspect. However SVRNS are different from
traditional neutrosophic sets. The neutrosophic logic is powerful and can model concepts of arbitrary
complexity covering incomplete and imprecise data. Children’s behaviour is one such complicated
and the imprecise branch that can be modelled as objectively as possible by coupling imaginary or
complex nature of data with its indeterminacy.

The concept of SVRNS are defined, developed and described in the following.

3.1. Single Valued Refined Neutrosophic Set (SVRNS)

Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set
A in X is characterised by a truth membership function TA (x), a true tending towards complex membership
function TCA (x), a complex membership function CA (x), a false tending towards complex membership function
FCA (x), an indeterminacy membership function IA (x), and a falsity membership function FA (x). For each
point x in X, there are TA (x), TCA (x), CA (x), FCA (x), IA (x), FA (x) ∈ [0, 1] and 0 ≤ TA(x) + TCA(x) +
CA(x)+FCA(x)+ IA(x)+FA(x) ≤ 6. Therefore, a Single Valued Refined Neutrosophic Set (SVRNS) A can be
represented by

A =
{
〈TA (x) , TCA (x) ,CA (x) ,FCA (x) , IA (x) , FA (x)〉|x ∈ X

}
.

3.2. Distance Measures of SVRNS

The distance measures of SVRNSs are defined in this section and the related algorithm for
determining the distance is given.

Definition 2. Consider two SVRNSs A and B in a universe of discourse, X = x1, x2, . . . , xn, which are
denoted by

A =
{
〈TA (xi) , TCA (xi) ,CA (xi) ,FCA (xi) , IA (xi) , FA (xi)〉|xi ∈ X

}
,
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and
B =

{
〈TB (xi) , TCB (xi) ,CB (xi) ,FCB (xi) , IB (xi) , FB (xi)〉|xi ∈ X

}
,

where TA (xi), TCA (xi), CA (xi), FCA (xi), IA (xi), FA (xi) , TB (xi), TCB (xi), CB (xi), FCB (xi), IB (xi),
FB (xi) ∈ [0, 1] for every xi ∈ X. Let wi (i = 1, 2, . . . , n) be the weight of an element xi (i = 1, 2, . . . , n), with
wi ≥ 0 (i = 1, 2, . . . , n) and

∑n
i=1 wi = 1. Then, the generalised SVRNS weighted distance is defined as follows:

dλ(A,B) = {
1
6

n∑

i=1

wi[|TA(xi)−TB(xi)|
λ+ |TCA(xi)−TCB(xi)|

λ+ |CA(xi)−CB(xi)|
λ+

|FCA(xi)−FCB(xi)|
λ+ |IA(xi)− IB(xi)|

λ+ |FA(xi)−FB(xi)|
λ]}

1
λ

where λ > 0.
The above equation reduces to the SVRNS weighted Hamming distance and the SVRNS weighted Euclidean
distance, when λ = 1, 2, respectively. The SVRNS weighted Hamming distance is given as

dλ(A,B) = {
1
6

n∑

i=1

wi[|TA(xi)−TB(xi)|+ |TCA(xi)−TCB(xi)|+ |CA(xi)−CB(xi)|+

|FCA(xi)−FCB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)−FB(xi)|]}

where λ = 1.
The SVRNS weighted Euclidean distance is given as

dλ(A,B) = {
1
6

n∑

i=1

wi[|TA(xi)−TB(xi)|
2 + |TCA(xi)−TCB(xi)|

2 + |CA(xi)−CB(xi)|
2+

|FCA(xi)−FCB(xi)|
2 + |IA(xi)− IB(xi)|

2 + |FA(xi)−FB(xi)|
2]}

1
2

where λ = 2.

The algorithm to obtain the generalized SVRNS weighted distance dλ(A,B) between two SVRNS
A and B is given in Algorithm 1.

Algorithm 1: Generalized SVRNS weighted distance dλ(A,B)
Input: X = xl,x2, . . . ,xn, SVRNS A,B where

A =
{
〈TA (xi) , TCA (xi) ,CA (xi) ,FCA (xi) , IA (xi) , FA (xi)〉|xi ∈ X

}
,

B =
{
〈TB (xi) , TCB (xi) ,CB (xi) ,FCB (xi) , IB (xi) , FB (xi)〉|xi ∈ X

}
, wi(i = 1,2, . . . ,n)

Output: dλ(A,B)
begin

dλ← 0
for i = 1 to n do

dλ← dλ+
n∑

i=1

wi[|TA(xi)−TB(xi)|
λ+ |TCA(xi)−TCB(xi)|

λ+

|CA(xi)−CB(xi)|
λ+ |FCA(xi)−FCB(xi)|

λ+

|IA(xi)− IB(xi)|
λ+ |FA(xi)−FB(xi)|

λ]

end
dλ← dλ /6

dλ← d
{ 1
λ }

λ

end
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The related flowchart is given in Figure 1.

Figure 1. Flow Chart for Generalized SVRNS weighted distance d(λ).

The generalised SVRNS weighted distance dλ (A, B) for λ > 0 satisfies the following properties:

1. dλ (A, B) ≥ 0
2. dλ (A, B) = 0 if and only if A = B
3. dλ (A, B) = dλ (B, A)
4. If A ⊆ B ⊆ C, C is a SVRNS in X, then dλ (A, C) ≥ dλ (A, B) and dλ (A, C) ≥ dλ (B, C)

3.3. K-Means Algorithm

The K-means algorithm for SVRNS is given in Algorithm 2.
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Algorithm 2: K-means algorithm for clustering SVRNS values
Input: Al, A2, . . . , An SVRNS, K—Number of Clusters
Output: K Clusters
begin

Step 1: Choose K different SVRNS A j as the initial centroids, denoted as α j, j = 1, . . . , K
Step 2: Initialize β j← 0, j = 1, . . . , K; // 0 is a vector with all 0’s
Step 3: Initialize n j← 0, j = 1, . . . , K; // n j is the number of points in cluster j
Step 4: Creation of Clusters repeat

for i = 1 to n do

j← argmin
j∈{1,...,K}

dλ
(
Ai, α j

)

// From Algorithm 1

assign Ai to cluster j
β j← β j + a
n j← n j + 1

end

α j←
β j

n j
, j = 1, . . . , K

until Clusters do not change
end

The related flowchart is given in Figure 2.

Figure 2. Flow Chart for k means clustering of SVRNS values.
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We used the following machine learning techniques in this paper after obtaining and processing
the data.

3.4. Other Machine Learning Techniques

The Elbow method is a technique used to find the value of appropriate value of K(Number of
clusters) in K-means clustering. It makes the cluster analysis design consistent. A heat map is a
data visualization technique used to show correlation between two attributes in the form of a matrix
where each value is represented as colours. The Principal Component Analysis (PCA) makes use
of orthogonal transformation to convert a set of observations of variables which might be possibly
correlated, into a set of values of linearly uncorrelated variables called principal components. It is a
widely used statistical technique. Parallel coordinates (also known as Parallel Axes Chart (PAC)) are
highly used for the visualization of multi-dimensional geometry and analysis of multivariate data.
Easy visualization of multiple dimensions is an innate feature of PAC plot, making it simple to analyse
attributes which are associated with other attributes in a similar manner.

4. Dataset Description

Imaginative play is defined as “a form of symbolic play where children use objects, actions or
ideas to represent other objects, actions, or ideas using their imaginations to assign roles to inanimate
objects or people”. During the early stage, “toddlers begin to develop their imaginations, with sticks
becoming boats and brooms becoming horses. Their play is mostly solitary, assigning roles to inanimate
objects like their dolls and teddy bears”. It has proven to be highly beneficial as it results in early
use of language and proper use of tenses and adjectives. It gives the children a sense of freedom and
allows them to be creative in their own space. It helps children make sense of the physical world and
also their inner selves. It can develop with the help of the most basic tools such as a toy mobile or a
cardboard tube.

The data regarding imaginative play in children were collected from the local school and an
orphanage in Vellore, India.

A child psychologist was present throughout the sessions, analyzed and suggested the various
parameters and recorded the observations about each session. The session at each of these places began
with the expert talking to the child about general things and everyday life as an ice-breaker exercise.
This included talking about his/her favourite subjects, parents and treating him/her with biscuits or
chocolates. The surroundings were made as comfortable as possible. The child was then asked to
conduct an imaginary phone call in whichever way he/she liked. The imaginary conversation was
then recorded as video on a phone. The expert made observations that were recorded on paper in a
running hand description. This signified the end of the session.

Overall, 10 such sessions were conducted at the school and 2 were conducted at the orphanage.
The children belonged to the age group of 6 to 8 years. Additionally, in order to make the dataset
diverse as suggested by the expert, 7 videos were taken from the internet in which children conducted
imaginary conversations over the phone. The running hand description thus collected was used by
this expert to assign values to the six membership functions based on which the SVRNS is constructed.

Table 1 provides the parameters which have been used to study imaginative play along with their
description. The parameters 1 to 11 are available in [19] and the other 4 parameters from 12 to 15 are
introduced by us.
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Table 1. Parameter Description.

S.No Parameter Name Description

1 Imaginative Theme (IT)
The theme of the imaginative play is assumed by the child and can be based on
a real or imaginative situation and/or setting.

2 Physical Movements (PM)
The movements a child may make while s/he conducts the imaginative play are
also an important determinant of the child’s cognitive patterns. They are the
ways in which the child uses his/her body during the play.

3 Gestures (G)
They are the ways in which the child moves a part of the body in order to
express an idea or some meaning. They are the non-verbal means of
communication using hands, head, etc.

4 Facial Expressions (FE)
The movement of facial muscles for non-verbal communication and also convey
the emotions experienced by the child.

5
Nature and Length of Social
Interaction (NoI/LoI)

The time duration during which the child engages in the imaginative play
activity can determine the extent of his/her imagination. The nature of any form
of interaction which may take place during the imaginative play be day-to-day,
meaningful in some way, etc. and even the combination of the two.

6 Play Materials Used (PMU)
They are the objects provided to the child to conduct an imaginative play
activity. The play material used here was a play mobile phone to conduct an
imaginary talk.

7
Way Play Materials were
Used (WPMwu)

The child’s approach to using the play material provided can give an insight
into his/her imaginative capabilities.

8 Verbalisation (V)
It is the way in which the child is expressing his/her feelings or emotions during
the imaginative play activity.

9 Tone of Voice (ToI)
It is an important aspect that child’s mood and state of mind as in if the child is
happy, sad or nervous. For example, a high pitched voice may indicate
happiness or excitement.

10 Role Identification (RI)
It is the role a child assumes during the imaginative play and the role s/he
assigns to other people.

11 Engagement Level (EL) It is the extent to which the child involves in the activity of imaginative play.

12 Eye Reaction (ER)
It refers to the movement of the eyes during the imaginative play activity. It can
give insight into the child’s emotions during the play.

13 Cognitive Response (CR) It is the mental process by which the child forms association between things.

14
Grammar and Linguistics
(GaL)

It refers to the ability of a child to make grammatically correct sentences with
proper sentence structure and syntax.

15 Coherence (C)
Whether the child is making sense of the talks, i.e., if the sentences formed are
related to one another is called coherence.

Method of Evaluation

The running hand description of the above-mentioned parameters was transformed into a complex
fuzzy neutrosophic sets by the expert/child psychologist, for applying machine learning algorithms
discussed in the earlier section. The methods of evaluation for each parameter as suggested by the
expert are discussed below.

1. Imaginative Theme: An imaginative theme that is based on the real situation will result in the
increase in the truth membership function and otherwise if the theme is entirely imaginative.
However, since there is always a degree of complex and indeterminacy in this parameter, the
complex and indeterminate membership functions was also assigned certain values from [0,1].

2. Physical Movements: If physical movements are made, the value of truth membership function will
increase else the falsity membership function will increase. Complex and indeterminacy values
from [0,1] shall be assigned values if movements are difficult to interpret properly or happened to
be imaginary.

3. Gestures: Similar to physical movements, any gestures made in accordance with the imaginative
activity will result in an increase in the truth membership value and in falsity value otherwise.
Any indeterminate or complex feature will result in values being assigned to indeterminate and
complex respectively from [0,1].

4. Facial Expressions: Any facial expressions made in accordance with the imaginative activity
conducted will lead to an increase in the truth membership and in falsity membership function
otherwise. Complex and indeterminacy membership functions shall be assigned values if facial
expressions are difficult to interpret properly.
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5. Nature and Length of Social Interaction: Any interaction that is made in accordance with the play
activity will result in an increase in truth membership functions and in falsity membership
functions otherwise. Indeterminate and complex membership functions shall be assigned values
if the interactions are difficult to interpret properly.

6. Play Materials Used: These are nouns and need not be translated to SVRNS.
7. Way Play Materials were Used: Any usage of play materials in a realistic manner will lead to an

increase in the truth membership and in falsity membership function otherwise. Complex
and indeterminacy membership functions shall be assigned values if usage is difficult to
interpret properly.

8. Verbalisation: Any verbalisation that is made in accordance with the play activity will result in an
increase in truth membership functions and in falsity membership functions otherwise. Complex
and indeterminacy membership functions shall be assigned values if the verbalization is difficult
to interpret properly.

9. Tone of Voice: If the tone of voice is in accordance with the situation of play activity and high, it
will result in an increase in truth membership functions and in falsity membership functions
otherwise. Complex and indeterminacy membership functions shall be assigned values if the
interactions are difficult to interpret properly.

10. Role Identification: Any role identification that is realistic will lead to an increase in the truth
membership and in falsity membership function otherwise. Complex and indeterminacy
membership functions shall be assigned values if role identification is difficult to interpret properly.

11. Engagement Level: If the engagement level is high but the theme and role identification are realistic,
truth membership function value increases. If the engagement level is high but the theme and role
identification are imaginative, falsity membership function value increases. Other combinations
of engagement level, theme and role identification will result in assigning values to the other
membership functions.

12. Eye Reaction: Any eye reaction that is made in accordance with the play activity will result in an
increase in truth membership functions and in falsity membership functions otherwise. Complex
and indeterminacy membership functions shall be assigned values if the eye reaction is difficult
to interpret properly.

13. Cognitive Response: Any cognitive response that is made in accordance with the play activity
will result in an increase in truth membership functions and in falsity membership functions
otherwise. Complex and indeterminacy membership functions shall be assigned values if the
cognitive is difficult to interpret properly.

14. Grammar and Linguistics: If the grammar, sentence structure and syntax are correct, the value of
truth membership function will increase. Any error in grammar, syntax or sentence structure will
lead to an increase in the value of falsity membership function. If, however, the linguistics are
difficult to comprehend, indeterminate and complex membership functions’ value will increase.

15. Coherence: If the sentences made are related to one another, the value of truth membership function
will increase. Any incoherence, i.e., making sentences are not related to one another will lead to
an increase in the value of falsity membership function. If, however, the coherence of sentences is
difficult to comprehend, indeterminate and complex membership functions’ value will increase.

5. Illustrative Example

This section provides an example on processing of the data obtained as a running hand description.
On the basis of this description, the expert estimated and evaluated the child. The following example
is based on a video of 3-year-old child and the following observations given by the expert are made in
form of running hand descriptions of the 15 parameters given in Table 2.
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Table 2. Parameter Description for Example.

S.No Parameter Name Description

1 Imaginative Theme
The child talks to Mickey Mouse over the phone. The child attempts to discuss
something she describes “gross”.

2 Physical Movements The child does not use a lot of her body during the conversation.
3 Gestures The child does not use any significant gestures during the conversation.

4 Facial Expressions
The child is cheerful, serious and astonished when she initiates the conversation,
asks something to the receiver and when comes to know about something
“gross” respectively.

5
Nature and Length of Social
Interaction

The child engages in the conversation for about a minute. The interaction is
mostly day-to-day and the child is rather expressive of her emotions.

6 Play Materials Used
The child uses a toy mobile to conduct an imaginative conversation between
herself and Mickey Mouse.

7
Way Play Materials were
Used

The child uses the mobile in a very realistic way.

8 Verbalisation
The child makes sound and noises in accordance with the mood of the
conversation.

9 Tone of Voice The tone of the child’s voice is high-pitched. She is very expressive.

10 Role Identification
The child does not assume any role other than herself. However, she does
imagine herself to be a friend of Mickey Mouse.

11 Engagement Level
The child’s engagement level is high and she is attentive throughout the play
activity.

12 Eye Reaction The child’s eyes widen and narrow during different points of the play activity.
13 Cognitive Response The cognitive response is direct, quick and coherent.

14 Grammar and Linguistics
The child makes grammatically correct sentences except she does skip
supportive verbs like “will”.

15 Coherence The sentences made are coherent and in sync with the imaginative conversation.

Table 2 depicts a running hand description of the discussed parameters. These parameters are
then assigned real values by the expert. These values are discussed in Table 3.

Table 3. SVRNS for Example.

S.No Parameter Description SVRNS

1 IT
Entirely imaginative theme though the conversation was
realistic

〈0.75, 0, 0, 0, 0.25, 0〉

2 PM Not a lot 〈0, 0, 0, 0, 0.25, 0.75〉
3 G Not a lot 〈0, 0, 0, 0, 0.25, 0.75〉
4 FE Cheerful, confident, serious 〈0, 0.75, 0.25, 0, 0, 0〉
5 NoI/LoI 1 minute; day-to-day, verbal 〈0.5, 0.25, 0.25, 0, 0, 0〉
6 PMU Mobile NA
7 WPMwu Realistic 〈0.75,0,0,0,0.25〉
8 V In accordance with imaginative play 〈0.5, 0.25, 0.25, 0, 0, 0〉
9 ToI In accordance with imaginative play; high pitched 〈0.5, 0.25, 0.25, 0, 0, 0〉
10 RI Self 〈0.5, 0, 0.25, 0, 0.25, 0〉
11 EL High 〈0.5, 0.25, 0.25, 0, 0, 0〉
12 ER Widening, narrowing; In accordance with imaginative play 〈0, 0, 0.5, 0, 0.5, 0〉
13 CR Direct; In accordance with imaginative play 〈0.75, 0, 0, 0, 0.25, 0〉
14 GaL Partially correct; In accordance with imaginative play 〈0.75, 0, 0.25, 0, 0, 0〉
15 C In accordance with imaginative play 〈0.75, 0, 0, 0.25, 0, 0〉

Likewise the SVRNS tuples for the other data sets was done with the help of the expert. Then
these SVRNS sets are used for analysis using machine learning algorithms.
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6. Results and Discussions

Several libraries such as pandas, numpy, matplotlib, sklearn, seaborn and pylab associated
with Python were used for data visualization. Programming was carried out using python for the
visualization of the previous discussed algorithms, based on the result of elbow curve, K-means
clustering was done. Logical conclusions have been drawn from these visualizations and the role several
determinants play in determining the imaginative capabilities of the child has also been highlighted.

Heat map, which strongly demonstrates the factors of correlation and associativity, has a colour
scale in which lighter shades signify positive correlation and darker shades signify a negative correlation.
Correlation between any two parameters signifies their associated relation. Positive correlation happens
when an increase in one attribute shows an increase in another attribute as well. Negative correlation
happens when an increase in one attribute shows a decrease in another attribute. The heat map, which
strongly demonstrates the factors of correlation and associativity, has a colour scale in which lighter
shades signify positive correlation and darker shades signify a negative correlation. For example,
in Figure 3, which is a heat map for feature T, Grammar and Coherence show extremely positive
correlation whereas Eye Reaction and Role Identification show a negative correlation.

The results from the Figure 3 shows the heatmap for feature T (Truth membership).

Figure 3. Heat map for feature T.

An elbow curve was plotted to determine the optimal number of clusters for K-means and PCA
K-means clustering. Figure 4 shows our elbow curve for feature T where we can see that the sharp
bend comes at k = 4, thus, 4 clusters are optimal.

In Figure 5, while testing K-means on feature T for the parameters ‘Facial Expression’ on the
y-axis against ‘Imaginative Theme’ on the x-axis, it was found that higher concentration of points lies
near x = 0.5 and y = 0.2.
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Figure 4. Elbow curve for feature T.

Figure 5. K-means for feature T.

Then, the data was resolved along its principal components, thus giving a new spatial arrangement
of the feature, which was then clustered again using K-Means. Figure 6 shows the output for PCA
K-Means Clustering for T. A significant deviation of the spatial arrangement of data points is seen
in the figure. Now, the higher concentration of points shift to x = 0.2, y = 0.08. ‘Tone of Voice’
and ‘Engagement Level’ are similarly associated with ‘Role Identification’ as the co-ordinate axis is
symmetrical about it, as shown in Figure 7.

Figure 6. PCA K-means for feature T.
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Figure 7. PAC for feature T.

The comparative analysis in Table 4 focuses on five common factors between the four algorithms.
The correlation between any two parameters signifies their associated relation. A positive correlation
happens when an increase in one attribute shows an increase in another attribute as well. A negative
correlation happens when an increase in one attribute shows a decrease in another attribute. The heat
map, which strongly demonstrates the factors of correlation and associativity, has a colour scale in which
lighter shades signify positive correlation and darker shades signify a negative correlation. For example,
in Figure 3, which is a heat map for feature T, Grammar and Coherence show extremely positive
correlation whereas Eye Reaction and Role Identification show a negative correlation. The visibility of
data points is best observed in the PAC graph while the least was observed in the Heat Map, which
focused more on their associativity. Associativity, the reverse of this happened in PAC Graphs and Heat
Maps where associativity in the former decreased due to conflict of interest in the arrangement of axes.
The dynamicity of PAC, unlike for all other graphs, is the highest because the axes can be rearranged
to see which arrangement gives us the best results. However, in K-Means, PCA K-Means and Heat
map, the axes are static and rearranging them does not show any significant change. Scalability is a
measure of how many data points can be represented in the same graph without the loss of visibility.
This was found to be strongest in K-Means and PCA K-means as each point could be seen uniquely on
a 2D Cartesian space.

Table 4. Comparative Analysis.

Factors Heat Map K-Means PCA K-Means PAC Graph

Correlation Strong Weak Weak Weak
Visibility Weak Medium Medium Strong
Associativity Strong Strong Strong Medium
Dynamicity Medium Strong Strong Very Strong
Scalability Medium Strong Strong Medium

7. Conclusions and Future Work

The authors have defined the new concept of Single Valued Refined Neutrosophic Sets (SVRNS)
which is a generalized version of neutrosophic sets which functions using six memberships values.
Furthermore, these SVRNS make use of imaginary values for the memberships. This newly defined
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concept of SVRNS was used to study the imaginative play in children. The model proposed also
consists of distance measures such as Hamming distance and Euclidean distance for two given SVRNSs.

On the basis of expert opinion, the data was successfully transformed into SVRNS. These sets were
helpful in drawing clusters, heat maps, parallel axes coordinate and so on. The pictorial representation
of the results of these algorithms has helped to gain useful insight into the data collected. We were
able to objectively interpret, for instance, the role of factors such as grammar in imaginative play
in children.

On the basis of the data collected and processed to form SVRNSs, we will be able to successfully
develop an artificial neural network (ANN), decision trees and other supervised learning algorithms
in this domain for future research and they will be useful for drawing insights into the role of these
parameters by varying the values of the parameters. Other quality measures such as p-value, confusion
matrix and accuracy can also be drawn from it. Since the data under consideration were small, we
were not able to construct ANN.

For future work, we will study the mentally retarded children in this age group and perform a
comparative analysis with the normal children in this age group.

The model will help us in identifying children with autism and attention deficit hyperactivity
disorder (ADHD) and other psychological disorders. The detection of such disorders if any at an early
stage with the help of our model will help parents and doctors to use the necessary measures to treat
and control them quickly.

The model can be further used for other psychological studies like for modeling destructive
behaviours of alcoholics and bulimic children and/or adults.

With this given dataset, cross culture validation was not done. For future research, we shall
consider the study of cross culture among children and try to generate a variation from cross culture
and its effect or influence on the cognitive and language abilities of children.
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Abbreviations

The following abbreviations are used in this manuscript:

SVNS Single Valued Neutrosophic Sets
SVRNS Single Valued Refined Neutrosophic Sets
CNS Complex Neutrosophic Sets
DVNS Double Valued Neutrosophic Sets
TRINS Triple Refined Indeterminate Neutrosophic Sets
NCM Neutrosophic Cognitive Maps
PCA Principal Component Analysis
PAC Parallel Axes Chart
ANN Artificial Neural Networks
ADHD Attention deficit hyperactivity disorder

References

1. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Probability, and
Statistics; American Research Press: Rehoboth, DE, USA, 2000.

2. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
3. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single Valued Neutrosophic Sets; Infinite Study:

Phoenix, AZ, USA, 2010; p. 10.

59



Symmetry 2020, 12, 402

4. Liu, P.; Wang, Y. Multiple attribute decision-making method based on single-valued neutrosophic normalized
weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [CrossRef]

5. Liu, P.; Shi, L. The generalized hybrid weighted average operator based on interval neutrosophic hesitant set
and its application to multiple attribute decision making. Neural Comput. Appl. 2015, 26, 457–471. [CrossRef]

6. Liu, P.; Teng, F. Multiple attribute group decision making methods based on some normal neutrosophic
number Heronian Mean operators. J. Intell. Fuzzy Syst. 2017, 32, 2375–2391. [CrossRef]

7. Liu, P.; Li, H. Multiple attribute decision-making method based on some normal neutrosophic Bonferroni
mean operators. Neural Comput. Appl. 2017, 28, 179–194. [CrossRef]

8. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic
environment. Int. J. Gen. Syst. 2013, 42, 386–394. [CrossRef]

9. Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets.
J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [CrossRef]

10. Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math.
Model. 2014, 38, 1170–1175. [CrossRef]

11. Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria
decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [CrossRef]

12. Cheng, H.D.; Guo, Y. A new neutrosophic approach to image thresholding. New Math. Nat. Comput. 2008,
4, 291–308. [CrossRef]

13. Sengur, A.; Guo, Y. Color texture image segmentation based on neutrosophic set and wavelet transformation.
Comput. Vis. Image Underst. 2011, 115, 1134–1144. [CrossRef]

14. Zhang, M.; Zhang, L.; Cheng, H. A neutrosophic approach to image segmentation based on watershed
method. Signal Process. 2010, 90, 1510–1517. [CrossRef]

15. Salama, A.; Haitham, A.; Manie, A.; Lotfy, M. Utilizing Neutrosophic Set in Social Network Analysis
e-Learning Systems. Int. J. Inf. Sci. Intell. Syst. 2014, 3, 61–72.

16. Vasantha, W.; Smarandache, F. Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps; Infinite Study: Phoenix,
AZ, USA, 2003

17. Vasantha, W.; Smarandache, F. Analysis of Social Aspects of Migrant Labourers Living With HIV/AIDS Using
Fuzzy Theory and Neutrosophic Cognitive Maps: With Special Reference to Rural Tamil Nadu in India; Infinite
Study: Phoenix, AZ, USA, 2004.

18. Smarandache, F. Neutropsychic personality. In A Mathematical Approach to Psychology; Pons: Brussels,
Belgium, 2018

19. Fink, R.S. Role of imaginative play in cognitive development. Psychol. Rep. 1976, 39, 895–906. [CrossRef]
20. Udwin, O. Imaginative play training as an intervention method with institutionalised preschool children.

Br. J. Educ. Psychol. 1983, 53, 32–39. [CrossRef]
21. Huston-Stein, A.; Friedrich-Cofer, L.; Susman, E.J. The relation of classroom structure to social behavior,

imaginative play, and self-regulation of economically disadvantaged children. Child Dev. 1977, 48, 908–916.
[CrossRef]

22. Bodrova, E. Make-believe play versus academic skills: A Vygotskian approach to today’s dilemma of early
childhood education. Eur. Early Child. Educ. Res. J. 2008, 16, 357–369. [CrossRef]

23. Seja, A.L.; Russ, S.W. Children’s fantasy play and emotional understanding. J. Clin. Child Psychol. 1999,
28, 269–277. [CrossRef]

24. Dhingra, G.; Kumar, V.; Joshi, H.D. A novel computer vision based neutrosophic approach for leaf disease
identification and classification. Measurement 2019, 135, 782–794. [CrossRef]

25. Vasantha, W.B.; Kandasamy, I.; Smarandache, F. Neutrosophic Duplets of Zpn,× and Zpq,× and Their
Properties. Symmetry 2018, 10, 345. [CrossRef]

26. Vasantha, W.; Kandasamy, I.; Smarandache, F. Algebraic Structure of Neutrosophic Duplets in Neutrosophic
Rings. Neutrsophic Sets Syst. 2018, 23, 85–95.

27. Vasantha, W.B.; Kandasamy, I.; Smarandache, F. A Classical Group of Neutrosophic Triplet Groups Using
Z2p, ×. Symmetry 2018, 10, 194. [CrossRef]

28. Kandasamy W.B.; Kandasamy, I.; Smarandache, F. Semi-Idempotents in Neutrosophic Rings. Mathematics
2019, 7, 507. [CrossRef]

29. Kandasamy, W.B.; Kandasamy, I.; Smarandache, F. Neutrosophic Triplets in Neutrosophic Rings. Mathematics
2019, 7, 563. [CrossRef]

60



Symmetry 2020, 12, 402

30. Kandasamy, W.V.; Kandasamy, I.; Smarandache, F. Neutrosophic Quadruple Vector Spaces and Their
Properties. Mathematics 2019, 7, 758.

31. Haibin, W.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single Valued Neutrosophic Sets; Infinite Study:
Tamil Nadu, India, 2010; Volume 1, pp. 10–14.

32. Shahzadi, G.; Akram, M.; Saeid, A.B. An application of single-valued neutrosophic sets in medical diagnosis.
Neutrosophic Sets Syst. 2018, 18, 80–88.

33. Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1817–1834. [CrossRef]
34. Smarandache, F. n-Valued Refined Neutrosophic Logic and Its Applications to Physics. Prog. Phys. 2013,

4, 143–146.
35. Kandasamy, I. Double-valued neutrosophic sets, their minimum spanning trees, and clustering algorithm.

J. Intell. Syst. 2018, 27, 163–182. [CrossRef]
36. Kandasamy, I.; Smarandache, F. Multicriteria Decision Making Using Double Refined Indeterminacy

Neutrosophic Cross Entropy and Indeterminacy Based Cross Entropy. Appl. Mech. Mater. 2016, 859, 129–143.
[CrossRef]

37. Khan, Q.; Liu, P.; Mahmood, T. Some Generalized Dice Measures for Double-Valued Neutrosophic Sets and
Their Applications. Mathematics 2018, 6, 121. [CrossRef]

38. Kandasamy, I.; Smarandache, F. Triple Refined Indeterminate Neutrosophic Sets for Personality Classification.
In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece,
6–9 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–8. [CrossRef]

39. Kandasamy, I.; Vasantha, W.B.; Obbineni, J.; Smarandache, F. Indeterminate Likert Scaling. Soft Comput.
2019, 1–10. [CrossRef]

40. Kandasamy, I.; Vasantha, W.; Mathur, N.; Bisht, M.; Smarandache, F. Chapter 6 Sentiment analysis of the
MeToo movement using neutrosophy: Application of single-valued neutrosophic sets. In Optimization Theory
Based on Neutrosophic and Plithogenic Sets; Elsevier: Amsterdam, The Netherlands, 2020. [CrossRef]

41. Kandasamy, I.; Vasantha, W.; Obbineni, J.M.; Smarandache, F. Sentiment analysis of tweets using refined
neutrosophic sets. Comput. Ind. 2020, 115, 103180. [CrossRef]

42. Kandasamy W.B., V.; Kandasamy, I.; Smarandache, F.; Devvrat, V.; Ghildiyal, S. Study of Imaginative Play in
Children using Neutrosophic Cognitive Maps Model. Neutrosophic Sets Syst. 2019, 30, 241–252.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

61





symmetryS S

Article

The Generalized Neutrosophic Cubic Aggregation
Operators and Their Application to Multi-Expert
Decision-Making Method

Majid Khan 1, Muhammad Gulistan 1,* , Mumtaz Ali 2 and Wathek Chammam 3,*
1 Department of Mathematics and Statistics, Hazara University, Mansehra 21310, Pakistan;

majid_swati@yahoo.com
2 Deakin-SWU Joint Research Centre on Big Data, School of Information Technology Deakin University,

Melbourne, VIC 3125, Australia; mumtaz.ali@deakin.edu.au
3 Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Zufi, P.O. Box 66,

Majmaah 11952, Saudi Arabia
* Correspondence: gulistanmath@hu.edu.pk (M.G.); w.chammam@mu.edu.sa (W.C.)

Received: 24 February 2020; Accepted: 12 March 2020; Published: 27 March 2020
����������
�������

Abstract: In the modern world, the computation of vague data is a challenging job. Different theories
are presented to deal with such situations. Amongst them, fuzzy set theory and its extensions produced
remarkable results. Samrandache extended the theory to a new horizon with the neutrosophic set
(NS), which was further extended to interval neutrosophic set (INS). Neutrosophic cubic set (NCS) is
the generalized version of NS and INS. This characteristic makes it an exceptional choice to deal with
vague and imprecise data. Aggregation operators are key features of decision-making theory. In recent
times several aggregation operators were defined in NCS. The intent of this paper is to generalize these
aggregation operators by presenting neutrosophic cubic generalized unified aggregation (NCGUA)
and neutrosophic cubic quasi-generalized unified aggregation (NCQGUA) operators. The accuracy
and precision are a vital tool to minimize the potential threat in decision making. Generally, in
decision making methods, alternatives and criteria are considered to evaluate the better outcome.
However, sometimes the decision making environment has more components to express the problem
completely. These components are named as the state of nature corresponding to each criterion.
This complex frame of work is dealt with by presenting the multi-expert decision-making method
(MEDMM).

Keywords: neutrosophic cubic set (NCS); neutrosophic cubic generalized unified aggregation
(NCGUA); neutrosophic cubic quasi-generalized unified aggregation (NCQGUA); multi-expert
decision-making method (MEDMM)

1. Introduction

In real-life problems complex phenomena occur. One of the complex phenomena is to deal with the
vagueness and uncertainty in data. Because uncertainty is inevitable in problems in different areas of
life, conventional methods have failed to cope with such problems. The big task was to deal with
uncertain information for many years. Many models have been introduced to incorporate uncertainty
into the description of the system. Zadeh presented their theory of Fuzzy sets [1]. The possibilistic
nature of fuzzy set theory attracted researchers to apply it in different fields of sciences like artificial
intelligence, decision making theory, information sciences, medical sciences and more. Due to its
applicability in sciences and daily life problems, fuzzy set has been extended to interval valued fuzzy
sets (IVFS) [2,3], intuitionistic fuzzy sets (IFS) [4], interval valued intuitionistic fuzzy sets (IVIFS) [5],
cubic sets [6], etc. Over the last decades, researchers used it for decision making problems [7–12].
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Smrandache presented the idea of neutrosophic sets (NS) [13]. NS provide the more general plate
form to extend the ideas of classic theory and fuzzy set theory. The NS consists of three components:
truth, indeterminacy and falsehood; all three components are independent, and this makes NS more
general than IFS. In fact, NS is a generalization of IFS [14]. For sciences and engineering problems,
Wang et al. [15] presented single value neutrosophic set (SVNS), which is a class of NS. Wang et al. [16]
further characterized neutrosophic sets to interval neutrosophic set (INS). INS range to an interval
value within [0, 1], which comfort the selectors to make an appropriate choice. Jun et al. [17] combined
INS and NS to form neutrosophic cubic set (NCS). NCS enables us to choose both interval value and
single value membership and indeterminacy and falsehood components. The NCS is the generalization
of all abovementioned predeccessors. For example, if the interval part is not taken into account, the
set becomes NS, and if the second part is not considered, the NS is dealt with. Since the NS is a
generalization of IFS, it is concluded that NCS is the generalization of NS, INS, CS, IFS and fuzzy set.
Due to this nature of NCS, it provides more general plate form for uncertain and vague data.

The aggregation operators are an important component of decision making. The insufficient and
vague data make it challenging for a decision maker to compute the exact decision. This situation can be
minimized by the vague nature of NS and its extensions. The vague nature of NS attracted researchers to
implement it in the different fields of science, engineering and decision-making theory. The researchers
proposed different aggregation operators and multi-criteria decision-making methods in NS and
INS [18–27]. The NCS is the more general form of both NS and INS. This nature attracted researchers
to apply it in different fields like science, engineering and decision-making theory. Khan et al. [19]
presented neutrosophic cubic Einstein geometric aggregation operators. Zhan et al. [28] worked on
multi-criteria decision making on neutrosophic cubic sets. Banerjee et al. [29] used grey rational
analysis (GRA) techniques to neutrosophic cubic sets. Lu and Ye [30] defined cosine measure to
neutrosophic cubic set. Pramanik et al. [31] used similarity measure to neutrosophic cubic set. Shi and
Ji [32] defined Dombi aggregation operators on neutrosophic cubic sets. Ye [33] defined aggregation
operators over the neutrosophic cubic numbers. Alhazaymeh et al. [34] presented hybrid geometric
aggregation operator with application to multi-attribute decision-making method on neutrosophic
cubic sets.

Contribution. The methodologies to measure the generalized aggregations of neutrosophic
cubic values.

- First neutrosophic cubic generalized unified aggregation operators are proposed.
- Second neutrosophic cubic quasi-generalized unified aggregation operators are proposed.
- The multi-expert decision-making method is proposed.
- The method is furnished upon numeric data of EMU European Monitory union as an application.
- Comparison is given between some aggregation operators.

Organization. The remaining manuscript is structured as follows. In Section 2, the preliminary
work is reviewed. In Section 3, the NCGUA operators are defined. In Section 4, the NCQGU operators
are defined. In Section 5, MEDMM is proposed and applied to a numeric data of EMU as an application.
Lastly, the comparison of some aggregation operators is provided.

2. Preliminaries

This section consists of some work that provides the foundation for our work.

Definition 1. [13] A structure N =
{
(TN(u), IN(u), FN(u))

∣∣∣u ∈ U
}

is NS, where{
TN(u), IN(u), FN(u) ∈ [0−, 1+]

}
and TN(u), IN(u), FN(u) are truth, indeterminacy and falsehood

respectively.
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Definition 2. [15] A structure N =
{
(TN(u), IN(u), FN(u))

∣∣∣u ∈ U
}

is SVNS, where{
TN(u), IN(u), FN(u) ∈ [0, 1]

}
respectively called truth, indeterminancy and falsehood are simply denoted by

N = (TN, IN, FN).

Definition 3. [16] An INS in U is a structure N =
{(

T̃N(u), ĨN(u), F̃N(u)
)∣∣∣∣u ∈ U

}
where

{
T̃N(u), ĨN(u), F̃N(u) ∈ D[0, 1]

}
are respectively called truth, indeterminacy and falsehood in U, is

simply denoted by N =
(
T̃N, ĨN, F̃N

)
. For convenience denoted by N =

(
T̃N, ĨN, F̃N

)
by N =(

T̃N =
[
TL

N, TU
N

]
, ĨN =

[
IL
N, IU

N

]
, F̃N =

[
FL

N, FU
N

])
.

Definition 4. [16] A structure N =
{(

u, T̃N(u), ĨN(u), F̃N(u), TN(u), IN(u), FN(u)
)∣∣∣∣u ∈ U

}
is NCS in U,

in which
(
T̃N =

[
TL

N, TU
N

]
, ĨN =

[
IL
N, IU

N

]
, F̃N =

[
FL

N, FU
N

])
is an INS and (TN, IN, FN) is NS in U, is simply

denoted by N =
(
T̃N, ĨN, F̃N, TN, IN, FN

)
,[0, 0] ≤ T̃N + ĨN + F̃N ≤ [3, 3], and 0 ≤ TN + IN + FN ≤ 3.NU

denotes the collection of NCS in U, which is simply denoted by N =
(
T̃N, ĨN, F̃N, TN, IN, FN

)
.

Definition 5. [28] The sum of two NCS, A =
(
T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A

]
, ĨA =[

IL
A, IU

A

]
, F̃A =

[
FL

A, FU
A

]
and B =

(
T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B, TU
B

]
, ĨB =

[
IL
B, IU

B

]
, F̃B =

[
FL

B, FU
B

]

is defined as

A⊕ B =
([

TL
A + TL

B − TL
ATL

B, TU
A + TU

B − TU
A TU

B

]
,
[
IL
A + IL

B − IL
AIL

B, IU
A + IU

B − IU
A IU

B

]
,
[
FL

AFL
B, FU

AFU
B

]
, TATB, IAIB, FA + FB − FAFB

)

Definition 6. [28] The product of two NCS, A =
(
T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A

]
, ĨA =[

IL
A, IU

A

]
, F̃A =

[
FL

A, FU
A

]
and B =

(
T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B, TU
B

]
, ĨB =

[
IL
B, IU

B

]
, F̃B =

[
FL

B, FU
B

]

is defined as

A⊗ B =
([

TL
ATL

B, TU
A TU

B

]
,
[
IL
AIL

B, IU
A IU

B

]
,
[
FL

A + FL
B − FL

AFL
B, FU

A + FU
B − FU

AFU
B

]
, TA + TB − TATB, IA + IB − IAIB, FAFB

)

Definition 7. [28] The scalar multiplication on a NCS, A =
(
T̃A, ĨA, F̃A, TA, IA, FA

)
where T̃A =

[
TL

A, TU
A

]
, ĨA =[

IL
A, IU

A

]
, F̃A =

[
FL

A, FU
A

]
and a scalar k is defined

kA =
([

1− (1− TL
A)

k, 1− (1− TU
A )

k
]
,
[
1− (1− IL

A)
k, 1− (1− IU

A )
k
]
,
[(

FL
A

)k
,
(
FU

A

)k
]
, (TA)

k, (IA)
k, 1− (1− FA)

k
)

Definition 8. [28] Let A =
([

TL
A, TU

A

]
,
[
IL
A, IU

A

]
,
[
FL

A, FU
A

]
, TA, IA, FA

)
, be an NCS and A∗ =

([1, 1], [1, 1], [0, 0], 0, 0, 1) be maximum NCS, then the cosine measure (Cm) is defined as

Cm(A) =
{
π

18

(
1− TL

A + 1− TU
A + 1− IL

A + 1− IU
A + FL

A + FU
A + TA + IA + 1− FA

)}
, Cm(A) ∈ [0, 1]

For comparison of two NCS cosine measure is used.

3. The Neutrosophic Cubic Generalized Unified Aggregation Operator

The NCGUA operators are the generalization of many aggregation operators. The NCGUA
operators unify several aggregations operators consequent upon their importance to analyze the
imprecise data according to their importance. Moreover, it allows to use arithmetic, quadratic and
geometric aggregation operators. By including a wide range of systems, it can adopt different scenario
without losing any information.
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Definition 9. The NCGUA is defined as, NCGUA(A1, A2, . . . , An) =
m∑

j=1
C j

(
n∑

i=1
w j

i A
λ j

i

)1/λ j

where C j is the

relevance that each sub-aggregation has in the system with C j ∈ [0, 1] and
m∑

j=1
C j = 1;w j

i is the ith weight of

the jth weighing vector W with w j
i ∈ [0, 1], j = 1,λh is the parameter such that λ j ∈ R and Ai is the argument

value of neutrosophic cubic value.

Definition 10. The further generalization can be expressed as,

NCGUA(A1, A2, . . . , An) =







m∑

j=1

C j




n∑

i=1

w j
i A

λ j

i




1/λ j



δ

1/δ

where δ ∈ (−∞,∞). Usually λ j remain same but for complex type of aggregation different values can be assumed.

The operation used on NC is defined by [28].
NCGUA operators accomplish properties like monotonicity, boundness and idempotency.

Families of NCGUA Operators

The main aspect of NCGUA operator is that it characterizes a variety of aggregation operators.
The aim of this section is to analyze these sub aggregations operators. First generalized NCOWA,
NCWA and NCPOWA operators are analyzed.

NCGUA(A1, A2, . . . , An) = C1

n∑

i=1

w1
i Ai + C2

n∑

i=1

w2
i Ai + C3

n∑

i=1

w3
i Ai (1)

where Ai is the ith largest of An, and w1, w2, w3 represent the weights corresponding to the NCOWA,
NCWA and NCPOWA operators, λ j = δ = 1.

Note that in NCOWA operator, an additional order is made of (A1, A2, . . . , An), then it is weighted.

C1 = 1, C2 = C3 = 0⇒ NCOWA (2)

C2 = 1, C1 = C3 = 0⇒ NCWA (3)

C3 = 1, C1 = C2 = 0⇒ NCPOWA (4)

Some other family of aggregation operators can be analyzed by assigning values to λ j and δ, these
values depend on the type of problem under discussion.

The averaging aggregation operators have a most practical operator among their competitors,
but in some situations, other operators like geometric, quadratic, cubic operators are in a much better
position to evaluate the values.

• If λ = δ = 1 and for all j, the aggregation operator is deduced to NCUA.

NCUA(A1, A2, . . . , An) =
m∑

j=1

C j

n∑

i=1

w j
i Ai (5)

• If λ→ 1, δ = 1 and for all j, the aggregation operator is deduced to NCUG.

NCUG(A1, A2, . . . , An) =
m∑

j=1

C j

n∏

i=1

A
w j

i (6)
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• If λ = 2, δ = 1 and for all j, the aggregation operator is deduced to NCUQA.

NCUQA(A1, A2, . . . , An) =
m∑

j=1

C j




n∑

i=1

w j
i A

2
i




1/2

(7)

• If λ→ 0, δ→ 0 and for all j, the aggregation operator is deduced to NCGUG.

NCGUG(A1, A2, . . . , An) =
m∏

j=1

C j

n∏

i=1

A
w j

i (8)

• If λ = 2, δ = 2 and for all j, the aggregation operator is deduced to NCQUQA.

NCQUQA(A1, A2, . . . , An) =




m∑

j=1

C2
j




n∑

i=1

w j
i A

2
i




1/2

1/2

(9)

The particular cases of NCUA operators can be analyzed by different values of λ and δ as shown
in Table 1.

Table 1. Types of family of neutrosophic cubic generalized unified aggregation (NCGUA) operators.

λ=−∞ λ→0 λ=2 λ=∞

δ = −∞ Min Min Min Max
δ→ 0 Min NCUGA Max
δ = 1 Min NCUGA max
δ = 2 Min NCUGA Max
δ = ∞ Min NCUGA Max

λ and δ have different values in the sub-aggregation operators. Thus, the aggregation operators
have listed aggregation operators above. For further analysis, assume that aggregation operators follow
the weighted averaging aggregation approach. Observe that a different scenario may be constructed
by assigning different values to λ and δ. Today’s world has much more complex phenomena; to deal
with such situation, complex aggregation operators become a vital tool. Note that the complex and
simple aggregation operators can be studied by assigning different values not only to λ and δ but to
the weight as well.

4. Neutrosophic Cubic Quasi-Generalized Unified Aggregation Operators

The NCGUA operator can further be generalized by quasi- arithmetic means by neutrosophic
cubic quasi-generalized unified aggregation (NCQGUA) operator. The characteristic of NCQGUA
operators is that they are a generalization of not only NCGUA operators but of some other aggregation
operators by the function introduced in NCQGUA.

Definition 11. The NCQGUA operator can be defined as

NCQGUA(A1, A2, . . . , An) = f−1
j




m∑

j=1

mC j f j


g−1

j




n∑

i=1

w j
i g j(Ai)







1/2

1/2

where f j and g j are strictly continuous monotone functions.
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The NCQGUA operator can be deduced to a wide range of aggregation operators. The Table 2
illustrates the range generated by NCQGUA operators.

Table 2. Types of family neutrosophic cubic quasi-generalized unified aggregation
(NCQGUA) operators.

gj=a fj=Cj NCAO Operator

g j = a2 f j = C j NCQA operator
g j = a−1 f j = C j NCHA operator
g j = a3 f j = C j NCCA operator
g j = a0 f j = C j NCGA operator
g j = a2 f j = C2

j NCAUAQA operator

g j = a−1 f j = C−j NCHUHA operator

g j = a3 f j = C3
j NCUCA operator

g j = a0 f j = C0
j NCUGA operator

In Table 1 it is assumed that g1 = g2 = . . . = gm for all j.

5. The Application of NCQGUA and NCGUA Operators to Multi-Expert Decision-Making
Method

The NCQGUA and NCGUA aggregation operators are generalized forms of most of the aggregation
operators that can easily be deduced under some special conditions. This characteristic offers a great
advantage when applying them to different MCDM. For this purpose, the multi-expert decision-making
method MEDMM is proposed. This method is specially designed for complex situations where need of
more than one criterion has a further classification, which is the state of nature. In the modern world,
the areal study becomes a vital tool to set foreign policy or investments to a country or region. The
choice of country or region to invest is a risk-taking job. The countries and multinational companies
hire experts for these regions to come up with profitable decisions. For such situation MEDMM is
developed under a NC environment that is a neutrosophic cubic multi-expert decision-making method
(NCMEDMM).

5.1. Algorithm

This decision-making technique, which is specially designed for the problem, has different criteria,
and each criterion has different classifications named as state of nature. The choice of alternatives in
such a situation becomes different from the group decision making studied until now. Due to this
phenomenon the following method is proposed.

The problem consist of n alternatives A = {A1, A2, A3, . . . , An} corresponding to k C =

{C1, C2, C3, . . . , Ck} criteria and has S = {S1, S2, S3, . . . , Sm} m state of nature corresponding to
each criterion.

➢ Construction of expert’s criteria matrices for each criterion corresponding to the given alternatives
and finite state of nature.

➢ Transformation of expert criteria matrices to general group expert’s matrix by aggregation operator.
➢ Transformation of all the general group experts’ matrices to a single matrix by aggregation operator.
➢ Ranking of alternatives.

5.2. Model Formulation

European Monetary Union EMU is an organization working for the benefit of the EU. The EMU
formation has a lot of micro- and macro-finance decisions to build a productive state. All the areas like
economics, finance, politics, marketing, management and EU laws are taken into account for making
any decision.
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Consider an illustrative example in multi-person decision making in the EMU [35–38]. This type
of problem in macroeconomics usually deals with huge amounts of capital or other variables. This
makes it critical to find the accurate decision; otherwise, a small deviation may cause huge economic
difference in the region. The two different criteria are considered to analyze MPDMM. It is very
common that a decision of EMU is usually influenced by several experts and criteria.

The model consists of the following data.

Criteria

Cr1 : Internal economic condition.
Cr2 : Global economic condition.

Alternative

A1 : Increase the rates 1%.
A2 : Increase the rates 0.5%.
A3 : No change in rates.
A4 : Decrease the rates 0.5%.
A5 : Decrease the rates 1%.

State of nature

S1 : Negative growth.
S2 : Growth close to 0.
S3 : Positive growth.

The company collected the data regarding these alternatives. The assumption is that this decision
has potential states of nature benefit corresponding to the two criteria.

Cr1 : Internal economic condition
S1 : Negative growth.
S2 : Growth close to 0.
S3 : Positive growth.
Cr2 : Global economic condition.
S1 : Negative growth.
S2 : Growth close to 0.
S3 : Positive growth.
The EMU nominates individuals responsible for this decision which is divided into three groups;

each group provides their opinion regarding the outcome and the possible strategy. The data of expert
1 subject to criterion 1 is shown in Table 3.

Table 3. Expert 1–Criterion 1.

S1 S2 S3

A1

(
[0.25, 0.35], [0.35, 0.45],

[0.45, 0.55], 0.30, 0.40, 0.50

) (
[0.55, 0.65], [0.45, 0.55],

[0.75, 0.85], 0.60, 0.70, 0.80

) (
[0.75, 0.85], [0.87, 0.97],

[0.75, 0.85], 0.30, 0.50, 0.60

)

A2

(
[0.45, 0.60], [0.35, 0.50],

[0.73, 0.89], 0.30, 0.45, 0.80

) (
[0.85, 0.95], [0.55, 0.65],

[0.30, 0.40], 0.75, 0.40, 0.59

) (
[0.45, 0.55], [0.35, 0.48],

[0.61, 0.81], 0.40, 0.60, 0.70

)

A3

(
[0.45, 0.55], [0.65, 0.75],

[0.25, 0.45], 0.50, 0.30, 0.60

) (
[0.40, 0.55], [0.43, 0.53],

[0.45, 0.55], 0.35, 0.50, 0.40

) (
[0.60, 0.75], [0.25, 0.35],

[0.40, 0.55], 0.70, 0.20, 0.30

)

A4

(
[0.28, 0.37], [0.41, 0.53],

[0.40, 0.50], 0.33, 0.52, 0.50

) (
[0.40, 0.50], [0.25, 0.35],

[0.65, 0.78], 0.30, 0.50, 0.80

) (
[0.28, 0.40], [0.35, 0.43],

[0.25, 0.45], 0.30, 0.20, 0.50

)

A5

(
[0.35, 0.55], [0.30, 0.50],

[0.50, 0.60], 0.30, 0.40, 0.40

) (
[0.60, 0.70], [0.48, 0.60],

[0.70, 0.80], 0.60, 0.50, 0.80

) (
[0.45, 0.55], [0.53, 0.65],

[0.80, 0.85], 0.50, 0.58, 0.70

)
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The data of expert 1 subject to criterion 2 is shown in Table 4.

Table 4. Expert 1–Criterion 2.

S1 S2 S3

A1

(
[0.50, 0.60], [0.25, 0.35],
[0.45, 0.55], 0.55.40, 0.50

) (
[0.25, 0.35], [0.45, 0.55],

[0.50, 0.60], 0.30, 0.45, 0.50

) (
[0.35, 0.45], [0.45, 0.55],

[0.50, 0.55], 0.40, 0.50, 0.60

)

A2

(
[0.65, 0.75], [0.50, 0.55],

[0.75, 0.85], 0.70, 0.80, 0.90

) (
[0.40, 0.55], [0.35, 0.45],

[0.50, 0.60], 0.40, 0.50, 0.50

) (
[0.50, 0.60], [0.55, 0.65],

[0.65, 0.75], 0.40, 0.50, 0.60

)

A3

(
[0.25, 0.35], [0.45, 0.55],

[0.75, 0.85], 0.30, 0.50, 0.60

) (
[0.65, 0.75], [0.75, 0.85],

[0.85, 0.95], 0.70, 0.80, 0.90

) (
[0.20, 0.35], [0.35, 0.45],

[0.45, 0.55], 0.30, 0.40, 0.50

)

A4

(
[0.55, 0.65], [0.45, 0.55],

[0.75, 0.85], 0.50, 0.70, 0.80

) (
[0.45, 0.55], [0.55, 0.60],

[0.70, 0.80], 0.50, 0.50, 0.70

) (
[0.45, 0.55], [0.50, 0.55],

[0.80, 0.90], 0.50, 0.60, 0.70

)

A5

(
[0.20, 0.30], [0.30, 0.40],

[0.50, 0.60], 0.30, 0.40, 0.60

) (
[0.60, 0.70], [0.55, 0.65],
[0.6, 0.75], 0.70, 0.50, 0.70

) (
[0.35, 0.45], [0.35, 0.45],

[0.75, 0.85], 0.70, 0.50, 0.70

)

Subject to this information, the first criterion is weighted as 0.70 and the second criterion as 0.30.
The NCGUA operators are applied to form the general matrix, which represents the matrix of the
group of experts illustrated in Table 5.

Table 5. Expert 1–General result.

S1 S2 S3

A1




[0.4967, 0.5981],
[0.3214, 0.4217],
[0.4500, 0.5500],

0.3598, 0.4000, 0.5000







[0.4754, 0.5785],
[0.4500, 0.5500],
[0.6641, 0.7656],

0.4873, 0.6131, 0.7367







[0.6670, 0.7785],
[0.7996, 0.9324],
[0.6641, 0.7459],

0.3270, 0.5000, 0.6000




A2




[0.5167, 0.6526],
[0.3992, 0.5155],
[0.6314, 0.8618],

0.3868, 0.5348, 0.8375







[0.7726, 0.9033],
[0.4975, 0.5992],
[0.3497, 0.4517],

0.6211, 0.4277, 0.5648







[0.4655, 0.5656],
[0.4179, 0.5382],
[0.6217, 0.7915],

0.4000, 0.56810, 0.7121




A3




[0.3964, 0.4975],
[0.5991, 0.7017],
[0.3476, 0.5445],

0.4289, 0.3497, 0.8375







[0.4896, 0.6227],
[0.5549, 0.6663],
[0.7044, 0.6036],

0.4309, 0.5757, 0.8375







[0.3502, 0.6670],
[0.3500, 0.4361],
[0.2982, 0.4779],

0.6131, 0.2662, 0.3868




A4




[0.3746, 0.4718],
[0.4223, 0.5361],
[0.4830, 0.5862],

0.3738, 0.5139, 0.6202







[0.4155, 0.5155],
[0.3565, 0.4381],
[0.6646, 0.7859],

0.3496, 0.5000, 0.7741







[0.3358, 0.4496],
[0.3500, 0.4360],
[0.3544, 0.5540],

0.3496, 0.2780, 0.5710




A5




[0.3353, 0.4862],
[0.3000, 0.4718],
[0.5000, 0.6000],

0.3000, 0.6000, 0.4687







[0.6000, 0.7000],
[0.5020, 0.6157],
[0.6683, 0.7846],

0.6283, 0.5000, 0.607741







[0.3817, 0.5228],
[0.4819, 0.5992],
[0.7646, 0.8500],

0.6328, 0.5547, 0.7000




The data of expert 2 subject to criterion 1 is shown in Table 6.
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Table 6. Expert 2–Criterion 1.

S1 S2 S3

A1

(
[0.22, 0.35], [0.40, 0.50],

[0.45, 0.55], 0.30, 0.45, 0.55

) (
[0.70, 0.75], [0.75, 0.85],

[0.70, 0.80], 0.60, 0.70, 0.85

) (
[0.70, 0.85], [0.15, 0.30],

[0.25, 0.35], 0.80, 0.50, 0.20

)

A2

(
[0.20, 0.30], [0.30, 0.40],

[0.60, 0.70], 0.25, 0.45, 0.70

) (
[0.35, 0.45], [0.45, 0.60],

[0.30, 0.40], 0.15, 0.40, 0.10

) (
[0.50, 0.60], [0.45, 0.55],

[0.40, 0.53], 0.70, 0.30, 0.60

)

A3

(
[0.10, 0.25], [0.25, 0.75],

[0.25, 0.45], 0.30, 0.20, 0.50

) (
[0.25, 0.35], [0.40, 0.55],

[0.40, 0.50], 0.35, 0.50, 0.40

) (
[0.60, 0.75], [0.20, 0.35],

[0.45, 0.55], 0.70, 0.20, 0.40

)

A4

(
[0.55, 0.65], [0.40, 0.50],

[0.45, 0.50], 0.70, 0.50, 0.40

) (
[0.60, 0.70], [0.25, 0.35],

[0.45, 0.55], 0.80, 0.50, 0.30

) (
[0.25, 0.40], [0.35, 0.43],

[0.75, 0.85], 0.30, 0.40, 0.85

)

A5

(
[0.70, 0.85], [0.20, 0.40],

[0.40, 0.50], 0.90, 0.20, 0.40

) (
[0.70, 0.90], [0.40, 0.50],

[0.50, 0.60], 0.90, 0.50, 0.40

) (
[0.15, 0.25], [0.25, 0.35],

[0.80, 0.85], 0.30, 0.30, 0.70

)

The data of expert 2 subject to criterion 2 is shown in Table 7.

Table 7. Expert 2–Criterion 2.

S1 S2 S3

A1

(
[0.40, 0.50], [0.50, 0.60],
[0.55, 0.65], 0.55.20, 0.60

) (
[0.55, 0.65], [0.40, 0.50],

[0.50, 0.65], 0.60, 0.45, 0.60

) (
[0.15, 0.25], [0.35, 0.55],

[0.55, 0.65], 0.40, 0.50, 0.70

)

A2

(
[0.30, 0.45], [0.50, 0.55],

[0.70, 0.80], 0.20, 0.60, 0.70

) (
[0.10, 0.20], [0.30, 0.40],

[0.40, 0.50], 0.10, 0.40, 0.45

) (
[0.40, 0.50], [0.25, 0.35],

[0.65, 0.75], 0.40, 0.30, 0.60

)

A3

(
[0.70, 0.85], [0.45, 0.55],

[0.25, 0.35], 0.80, 0.50, 0.40

) (
[0.15, 0.25], [0.70, 0.80],

[0.75, 0.85], 0.20, 0.80, 0.90

) (
[0.30, 0.45], [0.35, 0.45],

[0.55, 0.65], 0.30, 0.40, 0.65

)

A4

(
[0.55, 0.65], [0.25, 0.35],

[0.85, 0.95], 0.50, 0.30, 0.80

) (
[0.35, 0.45], [0.55, 0.60],

[0.20, 0.30], 0.50, 0.50, 0.30

) (
[0.50, 0.50], [0.50, 0.55],

[0.40, 0.50], 0.50, 0.50, 0.45

)

A5

(
[0.70, 0.80], [0.30, 0.40],

[0.40, 0.60], 0.85, 0.40, 0.35

) (
[0.30, 0.40], [0.55, 0.65],

[0.40, 0.50], 0.40, 0.50, 0.50

) (
[0.35, 0.45], [0.35, 0.45],

[0.70, 0.80], 0.40, 0.40, 0.70

)

Subject to this information, the first criterion is weighted as 0.70 and the second criterion as 0.30.
The NCGUA operators are applied to form the general matrix, which represents the matrix of the
group of experts illustrated in Table 8.

Table 8. Expert 2–General result.

S1 S2 S3

A1




[0.2832, 0.4235],
[0.4489, 0.5625],
[0.5423, 0.6235],

0.4623, 0.3233, 0.5436







[0.6235, 0.7135],
[0.6145, 0.7023],
[0.6235, 0.7235],

0.6000, 0.6123, 0.7127







[0.3523, 0.5515],
[0.2523, 0.3124],
[0.3931, 0.4956],

0.6123, 0.5000, 0.4456




A2




[0.2645, 0.3845],
[0.4124, 0.5142],
[0.6496, 0.7485],

0.2124, 0.5217, 0.7000







[0.2345, 0.3325],
[0.3854, 0.5123],
[0.3485, 0.4489],

0.1223, 0.4000, 0.6625







[0.4659, 0.7152],
[0.3645, 0.4153],
[0.5189, 0.6478],

0.6478, 0.2485, 0.5123




A3




[0.4125, 0.5689],
[0.4351, 0.6628],
[0.2500, 0.3485],

0.5489, 0.5000, 0.4658







[0.2134, 0.3125],
[0.5681, 0.7125],
[0.5678, 0.5000],

0.2189, 0.6456, 0.6478







[0.4691, 0.6123],
[0.3500, 0.4485],
[0.5986, 0.7458],

0.3000, 0.4489, 0.7674




A4




[0.5500, 0.6500],
[0.3456, 0.4657],
[0.6647, 0.7456],

0.5987, 0.3985, 0.6123







[0.4875, 0.5825],
[0.3645, 0.5621],
[0.3245, 0.6987],

0.4989, 0.6487, 0.3000







[0.3825, 0.4658],
[0.4360, 0.5032],
[0.5687, 0.6689],

0.3958, 0.4489, 0.6658




A5




[0.7000, 0.8354],
[0.2658, 0.4680],
[0.4000, 0.5489],

0.887200, 0.3152, 0.3254







[0.5125, 0.6652],
[0.4658, 0.5684],
[0.4458, 0.5482],

0.6685, 0.5000, 0.4458







[0.2145, 0.3641],
[0.3125, 0.4128],
[0.7458, 0.8285],

0.3456, 0.3456, 0.7000



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The data of expert 3 subject to criterion 1 is shown in Table 9.

Table 9. Expert 3–Criterion 1.

S1 S2 S3

A1

(
[0.20, 0.40], [0.30, 0.40],

[0.55, 0.65], 0.30, 0.40, 0.60

) (
[0.55, 0.65], [0.60, 0.75],

[0.70, 0.80], 0.60, 0.70, 0.75

) (
[0.30, 0.40], [0.40, 0.50],

[0.60, 0.70], 0.30, 0.45, 0.65

)

A2

(
[0.35, 0.45], [0.35, 0.45],

[0.60, 0.75], 0.30, 0.45, 0.70

) (
[0.50, 0.60], [0.55, 0.65],

[0.20, 0.30], 0.50, 0.55, 0.20

) (
[0.50, 0.60], [0.40, 0.50],

[0.60, 0.75], 0.50, 0.50, 0.70

)

A3

(
[0.55, 0.65], [0.60, 0.75],

[0.70, 0.80], 0.60, 0.70, 0.75

) (
[0.55, 0.65], [0.60, 0.75],

[0.70, 0.80], 0.60, 0.70, 0.75

) (
[0.60, 0.75], [0.25, 0.35],

[0.50, 0.60], 0.70, 0.20, 0.50

)

A4

(
[0.60, 0.75], [0.25, 0.35],

[0.50, 0.60], 0.70, 0.20, 0.50

) (
[0.55, 0.65], [0.60, 0.75],

[0.70, 0.80], 0.60, 0.70, 0.75

) (
[0.60, 0.75], [0.25, 0.35],

[0.50, 0.60], 0.70, 0.20, 0.50

)

A5

(
[0.30, 0.40], [0.30, 0.40],

[0.55, 0.65], 0.30, 0.40, 0.60

) (
[0.60, 0.70], [0.45, 0.60],

[0.65, 0.80], 0.60, 0.50, 0.70

) (
[0.20, 0.40], [0.30, 0.40],

[0.55, 0.65], 0.30, 0.40, 0.60

)

The data of expert 3 subject to criterion 2 is shown in Table 10.

Table 10. Expert 3–Criterion 2.

S1 S2 S3

A1

(
[0.35, 0.45], [0.35, 0.45],

[0.60, 0.75], 0.30, 0.45, 0.70

) (
[0.55, 0.65], [0.60, 0.75],

[0.70, 0.80], 0.60, 0.70, 0.75

) (
[0.20, 0.40], [0.30, 0.40],

[0.55, 0.65], 0.30, 0.40, 0.60

)

A2

(
[0.55, 0.65], [0.60, 0.75],

[0.70, 0.80], 0.60, 0.70, 0.75

) (
[0.40, 0.55], [0.35, 0.45],

[0.50, 0.60], 0.40, 0.50, 0.50

) (
[0.35, 0.45], [0.35, 0.45],

[0.60, 0.75], 0.30, 0.45, 0.70

)

A3

(
[0.45, 0.55], [0.20, 0.30],

[0.60, 0.75], 0.50, 0.20, 0.60

) (
[0.45, 0.55], [0.20, 0.30],

[0.60, 0.75], 0.50, 0.20, 0.60

) (
[0.60, 0.70], [0.55, 0.65],

[0.45, 0.55], 0.70, 0.40, 0.60

)

A4

(
[0.55, 0.65], [0.45, 0.55],

[0.75, 0.85], 0.50, 0.70, 0.80

) (
[0.45, 0.55], [0.55, 0.60],

[0.70, 0.80], 0.50, 0.50, 0.70

) (
[0.35, 0.45], [0.35, 0.45],

[0.60, 0.75], 0.30, 0.45, 0.70

)

A5

(
[0.35, 0.45], [0.35, 0.45],

[0.60, 0.75], 0.30, 0.45, 0.70

) (
[0.45, 0.55], [0.20, 0.30],

[0.60, 0.75], 0.50, 0.20, 0.60

) (
[0.35, 0.45], [0.30, 0.40],

[0.75, 0.85], 0.70, 0.50, 0.70

)

Subject to this information, the first criterion is weighted as 0.70 and the second criterion as 0.30.
The NCGUA operators are applied to form the general matrix, which represents the matrix of the
group of experts illustrated in Table 11.

Table 11. Expert 3–General result.

S1 S2 S3

A1




[0.2325, 0.4103],
[0.3102, 0.4103],
[0.5645, 0.6625],

0.3000, 0.4102, 0.6354







[0.5500, 0.6500],
[0.6000, 0.7500],
[0.7000, 0.8000],

0.6000, 0.7000, 0.7500







[0.2145, 0.4000],
[0.3185, 0.4152],
[0.5624, 0.6625],

0.3000, 0.4123, 0.6124




A2




[0.3960, 0.4952],
[0.4101, 0.4963],
[0.6000, 0.7652],

0.3446, 0.4915, 0.7124







[0.4215, 0.5685],
[0.3925, 0.4952],
[0.2402, 0.3446],

0.4781, 0.5396, 0.2235







[0.4730, 0.5736],
[0.3912, 0.4925],
[0.6000, 0.7500],

0.4623, 0.4921, 0.7000




A3




[0.5315, 0.6319],
[0.5405, 0.6928],
[0.6725, 0.7821],

0.5748, 0.6289, 0.7253







[0.5315, 0.6319],
[0.5405, 0.6928],
[0.6721, 0.7808],

0.5742, 0.6235, 0.7253







[0.6000, 0.7407],
[0.3228, 0.5344],
[0.4852, 0.5842],

0.7000, 0.2347, 0.5218




A4




[0.5904, 0.6500],
[0.2951, 0.3960],
[0.5547, 0.6672],

0.6581, 0.3324, 0.5837







[0.5315, 0.6319],
[0.5904, 0.7253],
[0.7000, 0.8000],

0.5714, 0.6582, 0.7407







[0.5592, 0.7072],
[0.2711, 0.3713],
[0.5182, 0.6235],

0.6446, 0.2577, 0.5485




A5




[0.3713, 0.4103],
[0.3102, 0.4103],
[0.5886, 0.6758],

0.3000, 0.4101, 0.6822







[0.5736, 0.6746],
[0.4072, 0.5526],
[0.4458, 0.5482],

0.5972, 0.4475, 0.6822







[0.2325, 0.4103],
[0.3000, 0.4000],
[0.5823, 0.6952],

0.6321, 0.4103, 0.6223



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Now applying NCGUA operator subject to the weight (0.45, 0.35, 0.20), the following matrix is
obtained illustrated in Table 12.

Table 12. Collective results of experts.

S1 S2 S3

A1




[0.3802, 0.5076],
[0.3670, 0.5291],
[0.5026, 0.5964],

0.3787, 0.3731, 0.5453







[0.5470, 0.6452],
[0.5443, 0.6537],
[0.6565, 0.7572],

0.6000, 0.6123, 0.6293







[0.5009, 0.6539],
[0.5941, 0.7656],
[0.5347, 0.6313],

0.4003, 0.4811, 0.5544




A2




[0.4145, 0.5426],
[0.4060, 0.5112],
[0.6232, 0.8101],

0.3064, 0.5213, 0.7742







[0.5808, 0.7435],
[0.4399, 0.5504],
[0.3240, 0.3805],

0.5053, 0.4376, 0.5529







[0.4771, 0.6266],
[0.3943, 0.4888],
[0.5794, 0.6548],

0.4874, 0.4579, 0.6167




A3




[0.4316, 0.6806],
[0.5354, 0.6867],
[0.3534, 0.5007],

0.4957, 0.4457, 0.7262







[0.4178, 0.5368],
[0.5523, 0.6884],
[0.5812, 0.5949],

0.3600, 0.6088, 0.7634







[0.4869, 0.6263],
[0.3764, 0.4808],
[0.4194, 0.4701],

0.4902, 0.3178, 0.5282




A4




[0.4879, 0.5788],
[0.3720, 0.4862],
[0.5552, 0.6544],

0.4935, 0.4309, 0.6104







[0.4659, 0.5647],
[0.4492, 0.5537],
[0.5225, 0.7569],

0.4368, 0.5786, 0.6550







[0.4512, 0.5314],
[0.3764, 0.5032],
[0.4512, 0.6059],

0.4126, 0.3178, 0.6028




A5




[0.5024, 0.6455],
[0.2903, 0.4587],
[0.4777, 0.5955],

0.4384, 0.4438, 0.4788







[0.5658, 0.6821],
[0.4715, 0.5874],
[0.5348, 0.6441],

0.6356, 0.4890, 0.5755







[0.2979, 0.4495],
[0.3925, 0.5034],
[0.7177, 0.7881],

0.5119, 0.4425, 0.6860




Now applying NCGUA operator subject to the weight (0.33, 0.33, 0.34) the following matrix is
obtained illustrated in Table 13.

Table 13. Aggregated result of experts.

A1




[0.4808, 0.6079],
[0.5117, 0.6644],
[0.5606, 0.6578],

0.4491, 0.4790, 0.5778




A2




[0.5358, 0.5426],
[0.4135, 0.5172],
[0.4899, 0.5872],

0.4232, 0.4708, 0.6613




A3




[0.4467, 0.6191],
[0.4927, 0.6286],
[0.4414, 0.5187],

0.4443, 0.4403, 0.6860




A4




[0.4684, 0.5585],
[0.4000, 0.5151],
[0.5071, 0.6688],

0.4460, 0.4282, 0.6214




A5




[0.4670, 0.6028],
[0.3892, 0.5193],
[0.5694, 0.6722],

0.5224, 0.4577, 0.5900




For comparison of NC values, the cosine measure is computed of the alternatives, so that the
values are ranked.

C(A1) = 0.04055, C(A2) = 0.4058, C(A3) = 0.04394, C(A4) = 0.03890, C(A5) = 0.03750.

73



Symmetry 2020, 12, 496

From this data the ranking is A3 > A2 > A1 > A4 > A5.
For comparison purposes, some other aggregation operators are considered, and their results

are computed.
The aggregation operators like neutrosophic cubic weighted geometric (NCWG), neutrosophic

cubic probabilistic (NCP), neutrosophic cubic maximum (NCmax) and neutrosophic cubic minimum
(NCmin) operators are also applied to the data. The following results are obtained.

The graphical comparison of these operators is shown in the following figure.
Figure 1: Graphical representation of Operators.
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Figure 1. Graphical Comparison of different methods.

The following table also illustrates the comparison of these aggregation operators under
the MPDMM.

From the above table with the different alternatives of each decision maker, the alternative in
closest accordance to his interests will be selected; this data indicates that the optimal decision is A5.
Thus, the optimal alternative is A5.

6. Discussion

Jose et al. [39] analyze the data on fuzzy sets and conclude with the following results.
Comparison of Tables 14 and 15. It is observed that in both tables, the optimal alternative is A5,

although individually, some aggregation operators may have different results. The reason may be that
NC has more components compared to the FS, like indeterminate and falsehood. Overall comparison
has the same result, which ensures the validity of this method. But the advantage of NCS over table FS
is that NCS is a generalized version of FS. That is, it enables the expert to deal with inconsistent and
indeterminate data more efficiently than the FS.
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Table 14. Ranking using different operators.

Operators Ranking

NCWA A5 > A2 > A1 > A4 > A3
NCWG A2 > A1 > A3 > A4 > A5

NCP A5 > A3 > A1 > A2 > A4
NCmax A5 > A3 > A1 > A2 > A4
NCmin A3 > A5 > A2 > A1 > A4

Table 15. Ranking using different operators in fuzzy data.

Operators Ranking

FWA A5 > A3 > A1 > A2 > A4
FOWA A3 > A5 > A2 > A1 > A4

FPA A5 > A3 > A2 > A1 > A4
FMax A5 > A3 > A1 > A2 > A4
FMin A2 > A3 > A5 > A1 > A4

7. Conclusions

This paper generalized aggregation operators, such as NCGUA operators, which provide a single
plate form for researchers and experts to deal with different types of aggregation operators. This
generalization helps to work in a complex frame of work where more than one operator is required.
The data involves inconsistent and indeterminate factors and is furnished upon a daily life problem.
The NCGUA operator is further generalized to NCQGUA aggregation operators. Moreover, it can
include complex aggregation operators that deal with complex environments such as problems with a
wide range of sub-aggregations. It is shown that some particular aggregation operators like NCWA,
NCOWA, NCGA, NCOGA, NCmax, NCmin and other aggregation operators can easily be deduced
from NCQGUA or NCGUA operator. A new decision-making method is formed to deal with the
problem in which each criterion is further classified into nature of stats. A numeric example involving
the EMU is provided as an application. It is concluded that the proposed method provides the best
results in comparison to the method previously proposed due to the indeterminate factors involved
in data.
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Abstract: The foremost broadly utilized strategy for the valuation of the overall performance
of a set of identical decision-making units (DMUs) that use analogous sources to yield related
outputs is data envelopment analysis (DEA). However, the witnessed values of the symmetry or
asymmetry of different types of information in real-world applications are sometimes inaccurate,
ambiguous, inadequate, and inconsistent, so overlooking these conditions may lead to erroneous
decision-making. Neutrosophic set theory can handle these occasions of data and makes an imitation
of the decision-making procedure with the aid of thinking about all perspectives of the decision.
In this paper, we introduce a model of DEA in the context of neutrosophic sets and sketch an
innovative process to solve it. Furthermore, we deal with the problem of healthcare system evaluation
with inconsistent, indeterminate, and incomplete information using the new model. The triangular
single-valued neutrosophic numbers are also employed to deal with the mentioned data, and the
proposed method is utilized in the assessment of 13 hospitals of Tehran University of Medical Sciences
of Iran. The results exhibit the usefulness of the suggested approach and point out that the model has
practical outcomes for decision-makers.

Keywords: single-valued neutrosophic set; triangular neutrosophic number; data envelopment
analysis; healthcare systems; performance evaluation

1. Introduction

As a strong analytical tool for benchmarking and efficiency evaluation, DEA (data envelopment
analysis) is a technique for evaluating the relation efficiency of decision-making units (DMUs),
developed initially by Charens et al. [1] on a printed paper named the Charnes, Cooper, and Rhodes
(CCR) model. They extended the nonparametric method introduced by Farrell [2] to gauge DMUs
with multiple inputs and outputs. The Banker, Charnes, and Cooper (BCC) model is an extension of
the previous model under the assumption of variable returns-to-scale (VRS) [3]. With this technique,
managers can obtain the relative efficiency of a set of DMUs. In time, many theoretical and empirical
studies have applied DEA to several fields of science and engineering, such as healthcare, agriculture,
banking supply chains, and financial services, among others. For more details, the reader is referred to
the studies of [4–14].

Conventional DEA models require crisp information that may not be permanently accessible in
real-world applications. Nevertheless, in numerous cases, data are unstable, uncertain, and complicated;
therefore, they cannot be accurately measured. Zadeh [15] first proposed the theory of fuzzy sets (FSs)
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against certain logic. After this work, many researchers studied this topic; details of some approaches
can be observed in [16–20]. Several researchers also proposed some models of DEA under a fuzzy
environment [21–25].

However, Zadeh’s fuzzy sets consider only the membership function and cannot deal with other
parameters of vagueness. To overcome this lack of information, Atanassov [26] introduced an extension
of FSs called intuitionistic fuzzy sets (IFSs). There are also several models of DEA with intuitionistic
fuzzy data: see [27–30].

Although the theory of IFSs can handle incomplete information for various real-world issues,
it cannot address all types of uncertainty such as inconsistent and indeterminate evidence. Therefore,
Smarandache [31,32] established the neutrosophic set (NS) as a robust overall framework that
generalizes classical and all kinds of fuzzy sets (FSs and IFSs).

NSs can accommodate indeterminate, ambiguous, and conflicting information where the
indeterminacy is clearly quantified, and define three kinds of membership function independently.

In the past years, some versions of NSs such as interval neutrosophic sets [33,34], bipolar
neutrosophic sets [35,36], single-valued neutrosophic sets [37–39], and neutrosophic linguistic sets [40]
have been presented. In addition, in the field of neutrosophic sets, logic, measure, probability, statistics,
pre-calculus and calculus, and their applications in multiple areas have been extended: see [41–44].

In real circumstances, some data in DEA may be uncertain, indeterminate, and inconsistent,
and considering truth, falsity, and indeterminacy membership functions for each input/output of
DMUs in the neutrosophic sets help decision-makers to obtain a better interpretation of information.
In addition, by using the NS in DEA, analysts can better set their acceptance, indeterminacy, and rejection
degrees regarding each datum. Moreover, with NSs, we can obtain a better depiction of reality through
seeing all features of the decision-making procedure. Therefore, the NS can embrace imprecise,
vague, incomplete, and inconsistent evidence powerfully and efficiently. Although there are several
approaches to solve various problems under neutrosophic environments, there are not many studies
that have dealt with DEA under NSs.

The utilization of neutrosophic logic in DEA can be traced to Edalatpanah [45]. Kahraman et al. [46]
proposed a hybrid algorithm based on a neutrosophic analytic hierarchy process (AHP) and DEA for
bringing a solution to the efficiency of private universities. Edalatpanah and Smarandache [47], based
on some operators and natural logarithms, proposed an input-oriented DEA model with simplified
neutrosophic numbers. Abdelfattah [48], by converting a neutrosophic DEA into an interval DEA,
developed a new DEA model under neutrosophic numbers. Although these approaches are interesting,
some restrictions exist. One of them is that these methods have high running times, mainly when
we have many inputs and outputs. Furthermore, the main flaw of [48] is the existence of several
production frontiers in the steps of efficiency measure, and this leads to the lack of comparability
between efficiencies.

Therefore, in this paper, we design an innovative simple model of DEA in which all inputs and
outputs are triangular single-valued neutrosophic numbers (TSVNNs), and establish a new efficient
strategy to solve it. Furthermore, we use the suggested technique for the performance assessment of
13 hospitals of Tehran University of Medical Sciences (TUMS) of Iran.

The paper unfolds as follows: some basic knowledge, concepts, and arithmetic operations on NSs
and TSVNNs are discussed in Section 2. In Section 3, some concepts of DEA and the CCR model are
reviewed. In Section 4, we establish the mentioned model of DEA under the neutrosophic environment
and propose a method to solve it. In Section 5, the suggested model is utilized for a case study of
TUMS. Lastly, conclusions and future directions are presented in Section 6.

2. Preliminaries

In this section, we discuss some basic definitions related to neutrosophic sets and single-valued
neutrosophic numbers, respectively.
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Smarandache put forward an indeterminacy degree of membership as an independent component
in his papers [31,32], and since the principle of excluded middle cannot be applied to new
logic, he combines non-standard analysis with three-valued logic, set theory, probability theory,
and philosophy. As a result, neutrosophic means “neutral thinking knowledge.” Given this meaning
and the use of the term neutral, along with the components of truth (membership) and falsity
(non-membership), its distinction is marked by fuzzy sets and intuitionistic fuzzy sets. Here, it is
appropriate to give a brief explanation of the non-standard analysis.

In the early 1960s, Robinson developed non-standard analysis as a form of analysis and a branch
of logic in which infinitesimals are precisely defined [49]. Formally, x is called an infinitesimal number
if and only if for any non-null positive integer n we have |x| ≤ 1

n . Let ε > 0 be an infinitesimal number;
then, the extended real number set is an extension of the set of real numbers that contains the classes of
infinite numbers and the infinitesimal numbers. If we consider non-standard finite numbers 1+ = 1+ ε
and −0 = 0− ε, where 0 and 1 are the standard parts and ε is the non-standard part, then ]−0, 1+[ is
a non-standard unit interval. It is clear that 0, 1, as well as the non-standard infinitesimal numbers
that are less than zero and infinitesimal numbers that are more than one belong to this non-standard
unit interval. Now, let us define a neutrosophic set:

Definition 1 ([31,32,41]) (neutrosophic set). A neutrosophic set in universal U is defined by three membership
functions for the truth, indeterminacy, and falsity of x in the real non-standard ]−0, 1+[, where the summation of
them belongs to [0, 3].

Definition 2 ([34]). If the three membership functions of a NS are singleton in the real standard [0, 1], then a
single-valued neutrosophic set (SVNS) ψ is denoted by:

ψ =
{(

x, τψ(x), ιψ(x), νψ(x)
)∣∣∣∣x ∈ U

}
,

which satisfies the following condition:

0 ≤ τψ(x) + ιψ(x) + νψ(x) ≤ 3.

Definition 3 ([38]). A TSVNN Aℵ =
〈(

al, am, au
)
,
(
bl, bm, bu

)
,
(
cl, cm, cu

)
〉 is a particular single-valued

neutrosophic number (SVNN) whose τAℵ (x), ιAℵ (x), and νAℵ (x) are presented as follows:

τ
Aℵ
(x) =



(x−al)
(am−al)

al ≤ x < am,

1 x = am,
(au−x)
(au−am)

am < x ≤ au,

0 otherwise.

,

ι
Aℵ
(x) =



(bm−x)

(bm−bl)
bl ≤ x < bm,

0 x = bm,
(x−bm)
(bu−bm)

bm < x ≤ bu,

1 otherwise.

,

ν
Aℵ
(x) =



(cm−x)

(cm−cl)
cl ≤ x < cm,

0 c = cm,
(x−cm)
(cu−cm)

cm < x ≤ cu,

1 otherwise.

,
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Definition 4 ([38]). Let Aℵ =
〈(

al, am, au
)
,
(
bl, bm, bu

)
,
(
cl, cm, cu

)〉
and Bℵ =

〈(
dl, dm, du

)
,(

el, em, eu
)
,
(

f l, f m, f u
)〉

be two TSVNNs, where their elements are in [L1, U1]. Then, Equations (1) to (3)
are true:

(i)Aℵ ⊕ Bℵ =
〈(

min(al + dl, U1

)
, min(am + dm, U1), min(au + du, U1);(

min(bl + el, U1

)
, min(bm + em, U1), min(bu + eu, U1);(

min(cl + f l, U1

)
, min(cm + f m, U1), min(cu + f u, U1)

〉
,

(1)

(ii) −Aℵ =
〈(
−au,−am,−al

)
,
(
−bu,−bm,−bl

)
,
(
−cu,−cm,−cl

)
〉, (2)

(iii)λAℵ =
〈(
λal,λam,λau

)
,
(
λbl,λbm,λbu

)
,
(
λcl,λcm,λcu

)
〉, λ > 0. (3)

Definition 5 ([38]). Consider Aℵ =
〈(

al, am, au
)
,
(
bl, bm, bu

)
,
(
cl, cm, cu

)
〉 as a TSVNN. Then, the ranking

function of Aℵ can be defined with Equation (4):

ξ
(
Aℵ

)
=

(
al + bl + cl

)
+ 2(am + bm + cm) + (au + bu + cu)

12
(4)

Definition 6 ([20]). Suppose Pℵ and Qℵ are two TSVNNs, then:

(i) Pℵ ≤ Qℵ if and only if ξ
(
Pℵ

)
≤ ξ

(
Qℵ

)
,

(ii) Pℵ < Qℵ if and only if ξ
(
Pℵ

)
< ξ

(
Qℵ

)
.

3. Data Envelopment Analysis

Let a set of n DMUs, with each DMUj ( j = 1, 2, . . . , n) using m inputs pi j (i = 1, 2, . . . , m) produce
s outputs qrj(r = 1, 2, . . . , s). If DMUo is under consideration, then the input-oriented CCR multiplier
model for the relative efficiency is computed on the basis of Equation (5) [1]:

θo
∗ = max

∑s
r=1 vrqro∑m
i=1 uipio

(5)

s.t: ∑s
r=1 vrqrj∑m
i=1 uipi j

≤ 1, j = 1, 2, . . . , n

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.

where vr and ui are the related weights. The above nonlinear programming may be converted as
Equation (6) to simplify the computation:

θo
∗ = max

s∑

r=1

vrqro (6)

s.t:
m∑

i=1
uipio = 1

s∑
r=1

vrqrj −
m∑

i=1
uipi j ≤ 0, j = 1, 2, . . . , n

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.

The DMUo is efficient if θo
∗ = 1; otherwise, it is inefficient.

82



Symmetry 2020, 12, 588

4. Neutrosophic Data Envelopment Analysis

Like every other model, DEA has been the subject of evolution. One of the critical improvements
in this field is related to circumstances where the information of DMUs is characterized and measured
beneath conditions of uncertainty and indeterminacy. Indeed, one of the traditional DEA models’
assumptions is their crispness of inputs and outputs.

However, it seems questionable to assume the data and observations are crisp in situations
where uncertainty and indeterminacy are inevitable features of a real environment. In addition, most
management decisions are not made based on known calculations, and there is a lot of uncertainty,
indeterminacy, and ambiguity in decision-making problems. The DEA under a neutrosophic
environment is more advantageous than a crisp DEA because a decision-maker, in the preparation of the
problem, is not obliged to make a subtle formulation. Furthermore, because of a lack of comprehensive
knowledge and evidence, precise mathematics are not sufficient to model a complex system. Therefore,
the approach based on neutrosophic logic seems fit for such problems [31,32]. In this section, we
establish DEA under a neutrosophic environment.

Consider the input and output for the jth DMU as follows:

...
p i j =

〈
ai
pi j,

bi
pi j,

ci
pi j

〉
=

〈
[
a1
p i j,

a2
p i j,

a3
p i j] , [

b1
p i j,

b2
p i j,

b3
p i j], [

c1
p i j,

c2
p i j,

c3
p i j]

〉
,

...
q rj =

〈
ai
qrj ,

bi
qrj,

ci
qrj

〉
=

〈
[
a1
q rj,

a2
q rj,

a3
q rj] , [

b1
q rj,

b2
q rj,

b3
q rj], [

c1
q rj,

c2
q rj,

c3
q rj]

〉
,

which are TSVNNs. Then, the triangular single-valued neutrosophic CCR model called TSVNN-CCR
is defined as follows:

θℵ
∗

o = max
s∑

r=1

vr
...
q ro (7)

s.t:
m∑

i=1
ui

...
p io = 1

s∑
r=1

vr
...
q rj −

m∑
i=1

ui
...
p i j ≤ 0, j = 1, 2, . . . , n

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.

Next, to solve Model (7), we propose the following algorithm:
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Algorithm 1. The solution of TSVNN-CCR Model

Step 1. Construct the problem based on Model (8).
Step 2. Using Definition 3 (ii, iii), transform the TSVNN-CCR model of Step 1 into
Model (8):

θℵ
∗

o = max
s∑

r=1

〈
[vr

a1
q ro, vr

a2
q ro, vr

a3
q ro], [vr

b1
q ro, vr

b2
q ro, vr

b3
q ro], [vr

c1
q ro, vr

c2
q ro, vr

c3
q ro]

〉
(8)

s.t:
m∑

i=1

〈
[ui

a1
p io, ui

a2
p io, ui

a3
p io] , [ui

b1
p io, ui

b2
p io, ui

b3
p io], [ui

c1
p io, ui

c2
p io, ui

c3
p io]

〉
= 1

s∑
r=1

〈
[vr

a1
q rj, vr

a2
q rj, vr

a3
q rj] , [vr

b1
q rj, vr

b2
q rj, vr

b3
q rj], [vr

c1
q rj, vr

c2
q rj, vr

c3
q rj]

〉
⊕

m∑
i=1

〈
[−ui

a3
p i j,−ui

a2
p i j,−ui

a1
p i j] , [−ui

b3
p i j,−ui

b2
p i j,−ui

b1
p i j],− [ui

c3
p i j,−ui

c2
p i j,−ui

c1
p i j]

〉
≤ 0,

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.
Step 3. Transform Model (8) into the following model:

θℵ
∗

o = max

〈(
s∑

r=1
vr

a1
q ro,

s∑
r=1

vr
a2
q ro,

s∑
r=1

vr
a3
q ro

)
,
(

s∑
r=1

vr
b1
q ro,

s∑
r=1

vr
b2
q ro,

s∑
r=1

vr
b3
q ro

)
,
(

s∑
r=1

vr
c1
q ro,

s∑
r=1

vr
c2
q ro,

s∑
r=1

vr
c3
q ro

)
〉 (9)

s.t:〈(
m∑

i=1
ui

a1
p io,

m∑
i=1

ui
a2
p io,

m∑
i=1

ui
a3
p io

)
,
(

m∑
i=1

ui
b1
p io,

m∑
i=1

ui
b2
p io,

m∑
i=1

ui
b3
p io

)
,
(

m∑
i=1

ui
c1
p io,

m∑
i=1

ui
c2
p io,

m∑
i=1

ui
c3
p io

)
〉 = 1

〈(
s∑

r=1
vr

a1
q rj ⊕

m∑
i=1
−ui

a3
p i j,

s∑
r=1

vr
a2
q rj ⊕

m∑
i=1
−ui

a2
p i j,

s∑
r=1

vr
a3
q rj ⊕

m∑
i=1
−ui

a1
p i j

)
,

(
s∑

r=1
vr

b1
q rj ⊕

m∑
i=1
−ui

b3
p i j,

s∑
r=1

vr
b2
q rj ⊕

m∑
i=1
−ui

b2
p i j,

s∑
r=1

vr
b3
q rj ⊕

m∑
i=1
−ui

b1
p i j

)
,

(
s∑

r=1
vr

c1
q rj ⊕

m∑
i=1
−ui

c3
p i j,

s∑
r=1

vr
c2
q rj ⊕

m∑
i=1
−ui

c2
p i j,

s∑
r=1

vr
c3
q rj ⊕

m∑
i=1
−ui

c1
p i j

)
〉 ≤ 0,

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.
Step 4. Based on Definitions 4–5, convert TSVNN-CCR Model (9) into crisp Model (10):
θo
∗ ≈ ξ

(
θℵ

∗

o

)
=

max
s∑

r=1
ξ
(〈
[vr

a1
q ro, vr

a2
q ro, vr

a3
q ro] , [vr

b1
q ro, vr

b2
q ro, vr

b3
q ro], [vr

c1
q ro, vr

c2
q ro, vr

c3
q ro]

〉)
(10)

s.t:
m∑

i=1
ξ
(〈
[ui

a1
p io, ui

a2
p io, ui

a3
p io] , [ui

b1
p io, ui

b2
p io, ui

b3
p io], [ui

c1
p io, ui

c2
p io, ui

c3
p io]

〉)
= 1

s∑
r=1

ξ
(〈
[vr

a1
q rj, vr

a2
q rj, vr

a3
q rj], [vr

b1
q rj, vr

b2
q rj, vr

b3
q rj] , [vr

c1
q rj, vr

c2
q rj, vr

c3
q rj]

〉)
⊕

m∑
i=1

ξ
(〈[
−ui

a3
p ii,−ui

a2
p i j,−ui

a1
p i j

]
,
[
−ui

b3
p i j,−ui

b2
p i j,−ui

b1
p i j

]
,
[
−ui

c3
p i j,−ui

c2
p i j,−ui

c1
p i j

]
〉

)
≤ 0,

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.
Step 5. Run Model (10) and get the optimal efficiency of each DMU.

5. Numerical Experiment

In this section, a case study of a DEA problem under a neutrosophic environment is used to reveal
the validity and usefulness of the proposed model.

Case Study: The Efficiency of the Hospitals of TUMS

Performance assessments in healthcare frameworks are a noteworthy worry of policymakers
so that reforms to improve performance in the health sector are on the policy agenda of numerous
national governments and worldwide agencies. In the related literature, various methods such as
least squares and simple ratio analysis have been applied to assess the performance of healthcare
systems (see for instance: [50–52]). Nonetheless, due to the applicability of DEA in the solution of
problems with multiple inputs and outputs, it is most commonly used in healthcare systems [53].
The utilizations of DEA in the healthcare sector can be found in several works of literature, including for
crisp data [54–56], fuzzy data [57,58], and intuitionistic fuzzy data [59]. To the best of our knowledge,
none of these current works assessed the efficiency of healthcare organizations with neutrosophic sets.
Therefore, to assess the efficiency of the mentioned systems under a neutrosophic environment, we
used the proposed model to evaluate 13 hospitals of TUMS. It is worth emphasizing that due to privacy
policies, the names of these hospitals are not shared. Furthermore, for the selection of the most suitable
and acceptable items of the healthcare system, which are commonly used for measuring efficiency
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in the literature, we considered two inputs, namely the number of doctors and number of beds, and
three outputs, namely the total yearly days of hospitalization of all patients, number of outpatient
department visits, and overall patient satisfaction.

For each hospital, we gathered the related data from the medical records unit of the hospitals,
Center of Statistics of the University of Medical Sciences, the reliable library, online resources, and the
judgments of some experts. After collecting data, we found that the information was sometimes
inconsistent, indeterminate, and incomplete. The investigation revealed that several reforms by the
mentioned hospitals and other issues have led to considerable uncertainty and indeterminacy about
the data. As a result, we identified them as triangular single-valued neutrosophic numbers (TSVNNs).
For example, for “Patient Satisfaction,” we collected data in terms of “satisfaction,” “dissatisfaction,”
and “abstention,” and for each term, the related data was expressed by a triangular fuzzy number.
In addition, each triangular fuzzy number was constructed based on min, average, and max. All data
were expressed by using TSVNNs, and can be found in Tables 1 and 2.

Table 1. Input information of the nominee hospitals.

DMU
Inputs 1

Number of Doctors
Inputs 2

Number of Beds

1
〈
[404, 540, 674] , [350, 440, 560], [420, 645, 700]〉

〈
[520, 530, 535] , [520, 525, 530], [532, 534, 540]〉

2
〈
[119, 136, 182] , [122, 125, 137], [125, 178, 200]〉

〈
[177, 180, 188] , [173, 175, 179], [185, 189, 195]〉

3
〈
[139, 145, 158] , [139, 140, 147], [146, 155, 167]〉

〈
[208, 214, 218] , [195, 209, 215], [210, 217, 230]〉

4
〈
[86, 93, 151] , [83, 85, 87], [89, 138, 160]〉

〈
[114, 116, 118] , [114, 115, 117], [116, 118, 125]〉

5
〈
[84, 93, 143] , [84, 89, 120], [90, 140, 155]〉

〈
[110, 117, 121] , [105, 112, 120], [113, 119, 128]〉

6
〈
[101, 113, 170] , [110, 112, 115], [112, 120, 177]〉

〈
[101, 107, 111] , [95, 100, 104], [108, 112, 115]〉

7
〈
[561, 694, 864] , [510, 640, 750], [582, 857, 930]〉

〈
[492, 495, 508] , [492, 494, 500 ], [493, 506, 520]〉

8
〈
[123, 179, 199] , [122, 125, 130], [195, 200, 205]〉

〈
[66, 68, 73] , [63, 67, 69], [68, 70, 78]〉

9
〈
[101, 153, 155] , [140, 145, 150], [145, 149, 167]〉

〈
[192, 195, 198] , [185, 193, 197], [194, 196, 205]〉

10
〈
[147, 164, 170] , [147, 160, 167], [165, 169, 180]〉

〈
[333, 340, 357] , [335, 338, 350], [338, 347, 364]〉

11
〈
[130, 158, 192] , [110, 144, 173], [146, 177, 205]〉

〈
[96, 100, 114] , [97, 99, 103], [99, 110, 129]〉

12
〈
[128, 137, 187] , [128, 133, 164], [134, 184, 199]〉

〈
[213, 220, 224] , [208, 215, 223], [216, 222, 231]〉

13
〈
[151, 160, 210] , [151, 156, 187], [157, 207, 222]〉

〈
[320, 327, 331] , [315, 322, 330], [323, 329, 338]〉

Next, we used Algorithm 1 to solve the performance valuation problem. For example, Algorithm 1
for DMU1 can be used as follows:

First, we construct a DEA model with the mentioned TSVNNs:

max θ̃1 ≈
〈
[121.13, 139.24, 140.04] , [138.64, 139.14, 139.81], [139.14, 140.02, 141.17]〉v1⊕〈

[38, 41, 45] , [38, 40, 43], [41, 44, 49]〉v2⊕〈
[104.23, 114.04, 278.51] , [102.37, 109.15, 235.72], [104.81, 275.25, 279.88]〉v3

s.t: 〈
[404, 540, 674] , [350, 440, 560], [420, 645, 700]〉u1

⊕
〈
[520, 530, 535] , [520, 525, 530], [532, 534, 540]〉u2 = 1,

(
〈
[121.13, 139.24, 140.04] , [138.64, 139.14, 139.81], [139.14, 140.02, 141.17]〉v1 ⊕

〈
[38, 41, 45] , [38, 40, 43],

[41, 44, 49]〉v2 ⊕
〈
[104.23, 114.04, 278.51] , [102.37, 109.15, 235.72], [104.81, 275.25, 279.88]〉v3)−

(
〈
[404, 540, 674] , [350, 440, 560], [420, 645, 700]〉u1 ⊕

〈
[520, 530, 535] , [520, 525, 530], [532, 534, 540]〉u2) ≤ 0,

(
〈
[31.54, 34.93, 38.89] , [31.54, 34.15, 38.27], [34.86, 38.15, 39.83]〉v1 ⊕

〈
[40, 44, 47] , [35, 52, 45],

[41, 46, 50]〉v2 ⊕
〈
[34.54, 36.98, 54.82 ] , [36.45, 36.80, 41.57], [47.61, 54.25, 55.35] > v3

〉
)−

(
〈
< [109, 126, 172] , [112, 115, 127], [115, 168, 190]〉u1 ⊕ [〈177, 180, 188 ], [173, 175, 179], [185, 189, 195]〉u2) ≤ 0,
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(
〈
[81.62, 82.07, 85.51] , [81.41, 81.94, 83.35], [81.78, 85.49, 88.16]〉v1 ⊕

〈
[18, 20, 29] , [19, 21, 23],

[28, 30, 35]〉v2 ⊕ [〈157.75, 177.57, 264.52 ], [157.75, 176.68, 250.75], [180.29, 263.98, 272.16]〉v3)−

(
〈
[139, 145, 158] , [139, 140, 147], [146, 155, 167]〉u1 ⊕

〈
[208, 214, 218] , [195, 209, 215], [210, 217, 230]〉u2) ≤ 0,

(
〈
[19.54, 20.41, 20.59] , [20.15, 20.25, 20.32], [20.54, 20.58, 20.70]〉v1 ⊕

〈
[18, 21, 25] , [15, 19, 23],

[20, 24, 30]〉v2 ⊕
〈
[32.89, 35.56, 87.74 ] , [35.25, 35.50, 35.61], [87.50, 87.94, 88.30]〉v3)−

(
〈
[86, 93, 151] , [83, 85, 87], [89, 138, 160]〉u1 ⊕

〈
[114, 116, 118] , [114, 115, 117], [116, 118, 125]〉u2) ≤ 0,

(
〈
[23.89, 24.60, 26.09] , [23.56, 23.60, 23.68], [25.97, 26.35, 26.72]〉v1 ⊕

〈
[30, 36, 41] , [34, 35, 37],

[35, 40, 57]〉v2 ⊕
〈
[63.23, 69.58, 120.73 ] , [63, 65.17, 94.93], [64.47, 118.75, 124.75 ]〉v3)−

(
〈
[84, 93, 143] , [84, 89, 120], [90, 140, 155]〉u1 ⊕

〈
[110, 117, 121] , [105, 112, 120], [113, 119, 128]〉u2) ≤ 0,

(
〈
[21.33, 21.49, 23.31] , [20.94, 24.25, 22.68 ], [21.38, 23.14, 23.94 ]〉v1 ⊕

〈
[50, 55, 60] , [50, 53, 57],

[56, 59, 70]〉v2 ⊕
〈
[72.84, 82.84, 94.18 ] , [82.15, 82.68, 84.89 ], [85.75, 93.50, 97.18 ]〉v3)−

(
〈
[101, 113, 170] , [110, 112, 115], [112, 120, 177]〉u1 ⊕

〈
[101, 107, 111] , [95, 100, 104], [108, 112, 115]〉u2) ≤ 0,

(
〈
[145.77, 148.28, 169.01], [145.77, 147.16, 168.31], [150.69, 168.95, 175.18]

〉
v1 ⊕

〈
[40, 44, 46], [42, 43, 45],

[43, 44, 55]
〉
v2 ⊕

〈
[147.59, 150.37, 227.12 ], [147.30, 147.45, 148. 25], [218.24, 224.61, 229.63]

〉
v3)−

(
〈
[561, 694, 864], [510, 640, 750], [582, 857, 930]

〉
u1 ⊕

〈
[492, 495, 508], [492, 494, 500 ], [493, 506, 520]

〉
u2) ≤ 0,

(
〈
[11.56, 11.74, 12.96] , [11.42, 11.61, 11.98], [11.58, 12.64, 13.16]〉v1 ⊕

〈
[60, 75, 80] , [55, 60, 62],

[78, 83, 85]〉v2 ⊕
〈
[189.37, 202.08, 284.99 ] , [189.37, 200.52, 281.63], [270.16, 284.55, 289.12]〉v3)−

(
〈
[123, 179, 199] , [122, 125, 130], [195, 200, 205]〉u1 ⊕

〈
[66, 68, 73] , [63, 67, 69], [68, 70, 78]〉u2) ≤ 0,

(
〈
[57.55, 62.67, 63.03] , [62.15, 62.50, 62.93], [62.50, 62.97, 63.61]〉v1 ⊕

〈
[32, 35, 38] , [32, 33, 35],

[34, 36, 45]〉v2 ⊕
〈
[14.63, 14.85, 29.40] , [14.70, 14.75, 15.25], [24.75, 28.36, 32.64]〉v3)−

(
〈
[101, 153, 155] , [140, 145, 150], [145, 149, 167]〉u1 ⊕

〈
[192, 195, 198] , [185, 193, 197], [194, 196, 205]〉u2) ≤ 0,

(
〈
[73.21, 76.03, 81.90 ] , [75.76, 76.05, 76.25], [81.67, 82.27, 82.64]〉v1 ⊕

〈
[22, 25, 40] , [20, 24, 27],

[23, 25, 29]〉v2 ⊕
〈
[96.77, 97.27, 110.39] , [96.77, 96.89, 105.14], [99.76, 108.62, 115.27]〉v3)−

(
〈
[147, 164, 170] , [147, 160, 167], [165, 169, 180]〉u1 ⊕

〈
[333, 340, 357] , [335, 338, 350], [338, 347, 364]〉u2) ≤ 0,

(
〈
[22.90, 27.71, 35.56] , [22.90, 26.45, 31.28], [27.92, 34.62, 39.41]〉v1 ⊕

〈
[20, 23, 26] , [21, 22, 24],

[22, 25, 30]〉v2 ⊕
〈
[171.53, 182.46, 384.99 ] , [171.12, 178.65, 210.34], [175.59, 270.65, 400.12]〉v3)−

(
〈
[130, 158, 192] , [110, 144, 173], [146, 177, 205]〉u1 ⊕

〈
[96, 100, 114] , [97, 99, 103], [99, 110, 129]〉u2) ≤ 0,

(
〈
[58.41, 59.12, 60.61], [58.08, 58.12, 58.20],

〈
[60.49, 60.87, 61.24 ]

〉
v1 ⊕

〈
[25, 31, 37] , [29, 30, 32],

〈
[30, 35, 52]

〉
v2 ⊕

〈
[59.87, 66.22, 117.37 ], [59.64, 61.81, 91.57], [61.11, 115.39, 121.39 ]

〉
v3)−

(
〈
[128, 137, 187], [128, 133, 164], [134, 184, 199]〉u1 ⊕

〈
[213, 220, 224] , [208, 215, 223], [216, 222, 231]

〉
u2) ≤ 0,

(
〈
[66.97, 67.68, 69.17] , [66.64, 66.68, 66.76], [69.05, 69.43, 69.80]〉v1 ⊕

〈
[20, 27, 31] , [23, 26, 28],

[24, 30, 46]〉v2 ⊕
〈
[96.97, 103.32, 154.47 ] , [96.74, 98.91, 128.67], [98.21, 152.49, 158.50 ]〉v3)−

(
〈
[151, 160, 210] , [151, 156, 187], [157, 207, 222]〉u1 ⊕

〈
[320, 327, 331] , [315, 322, 330], [323, 329, 338]〉u2) ≤ 0,

vr, ui ≥ 0, r = 1, 2, 3, i = 1, 2.
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Table 2. Output information of the nominee hospitals.

DMU
Outputs 1

Days of Hospitalization
(in Thousands)

Outputs 2
Patient Satisfaction (%)

Outputs 3
Number of Outpatients

(in Thousands)

1

〈
[121.13, 139.24, 140.04] ,
[138.64, 139.14, 139.81],
[139.14, 140.02, 141.17]〉

〈
[38, 41, 45] ,
[38, 40, 43],
[41, 44, 49]〉

〈
[104.23, 114.04, 278.51] ,
[102.37, 109.15, 235.72],
[104.81, 275.25, 279.88]〉

2

〈
[31.54, 34.93, 38.89] ,〈
[31.54, 34.15, 38.27] ,〈
[34.86, 38.15, 39.83]

〉

〈
[40, 44, 47] ,
[35, 42, 45],
[41, 46, 50]〉

〈
[34.54, 36.98, 54.82 ] ,
[36.45, 36.80, 41.57],
[47.61, 54.25, 55.35]〉

3

〈
[81.62, 82.07, 85.51] ,
[81.41, 81.94, 83.35],
[81.78, 85.49, 88.16]〉

〈
[18, 20, 29] ,
[19, 21, 23],
[28, 30, 35]〉

〈
[157.75, 177.57, 264.52 ] ,
[157.75, 176.68, 250.75],
[180.29, 263.98, 272.16]〉

4

〈
[19.54, 20.41, 20.59] ,
[20.15, 20.25, 20.32],
[20.54, 20.58, 20.70]〉

〈
[18, 21, 25] ,
[15, 19, 23],
[20, 24, 30]〉

〈
[32.89, 35.56, 87.74 ] ,
[35.25, 35.50, 35.61],
[87.50, 87.94, 88.30]〉

5

〈
[23.89, 24.60, 26.09] ,
[23.56, 23.60, 23.68],
[25.97, 26.35, 26.72 ]〉

〈
[30, 36, 41] ,
[34, 35, 37],
[35, 40, 57]〉

〈
[63.23, 69.58, 120.73 ] ,
[63, 65.17, 94.93],

[64.47, 118.75, 124.75 ]〉

6

〈
[21.33, 21.49, 23.31] ,
[20.94, 24.25, 22.68 ],
[21.38, 23.14, 23.94 ]〉

〈
[50, 55, 60] ,
[50, 53, 57],
[56, 59, 70]〉

〈
[72.84, 82.84, 94.18 ] ,
[82.15, 82.68, 84.89 ],
[85.75, 93.50, 97.18 ]〉

7

〈
[145.77, 148.28, 169.01] ,
[145.77, 147.16, 168.31],
[150.69, 168.95, 175.18]〉

〈
[40, 44, 46] ,
[42, 43, 45],
[43, 44, 55]〉

〈
[147.59, 150.37, 227.12 ] ,
[147.30, 147.45, 148.25],
[218.24, 224.61, 229.63]〉

8
〈
[11.56, 11.74, 12.96] ,
[11.42, 11.61, 11.98],
[11.58, 12.64, 13.16]〉

〈
[60, 75, 80] ,
[55, 60, 62],
[78, 83, 85]〉

〈
[189.37, 202.08, 284.99 ] ,
[189.37, 200.52, 281.63],
[270.16, 284.55, 289.12]〉

9

〈
[57.55, 62.67, 63.03 ] ,
[62.15, 62.50, 62.93 ],
[62.50, 62.97, 63.61]〉

〈
[32, 35, 38] ,
[32, 33, 35],
[34, 36, 45]〉

〈
[14.63, 14.85, 29.40 ] ,
[14.70, 14.75, 15.25 ],
[24.75, 28.36, 32.64 ]〉

10

〈
[73.21, 76.03, 81.90 ] ,
[75.76, 76.05, 76.25],
[81.67, 82.27, 82.64]〉

〈
[22, 25, 40] ,
[20, 24, 27],
[23, 25, 29]〉

〈
[96.77, 97.27, 110.39 ] ,
[96.77, 96.89, 105.14],
[99.76, 108.62, 115.27]〉

11

〈
[22.90, 27.71, 35.56 ] ,
[22.90, 26.45, 31.28],
[27.92, 34.62, 39.41]〉

〈
[20, 23, 26] ,
[21, 22, 24],
[22, 25, 30]〉

〈
[171.53, 182.46, 384.99 ] ,
[171.12, 178.65, 210.34],
[175.59, 270.65, 400.12]〉

12

〈
[58.41, 59.12, 60.61] ,
[58.08, 58.12, 58.20],
[60.49, 60.87, 61.24 ]〉

〈
[25, 31, 37] ,
[29, 30, 32],
[30, 35, 52]〉

〈
[59.87, 66.22, 117.37 ] ,
[59.64, 61.81, 91.57],

[61.11, 115.39, 121.39 ]〉

13

〈
[66.97, 67.68, 69.17] ,
[66.64, 66.68, 66.76],
[69.05, 69.43, 69.80]〉

〈
[20, 27, 31] ,
[23, 26, 28],
[24, 30, 46]〉

[96.97, 103.32, 154.47 ],
[96.74, 98.91, 128.67],〈
[98.21, 152.49, 158.50 ]

〉

Finally, based on Definition 4, we convert the above model to the following model:

max θ̃1 ≈ 138.0608v1+42v2 + 175.2v3
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s.t:
529.8333u1 + 529.5833u2 = 1,

138.0608v1+42v2 + 175.2v3 −529.8333u1− 529.5833u2 ≤ 0,
35.7792v1 + 43.5v2 + 43.8667v3 −146.9167u1− 182.0833u2 ≤ 0,

83.4025v1 + 24.5v2 + 209.9733v3 −148u1− 213u2 ≤ 0,
20.36v1 + 21.5833v2 + 57.1075v3 −104.3333u1− 116.8333u2 ≤ 0,

24.9175v1+38v2 + 86.5092v3 −110u1− 116.0833u2 ≤ 0,
22.6117v1 + 56.4167v2 + 86.2525v3 −122.9167u1− 106u2 ≤ 0,

156.9592v1 + 44.4167v2 + 180.2492v3 −714.9167u1− 499.5833u2 ≤ 0,
12.0533v1 + 71.3333v2 + 239.9117v3 −165.1667u1− 68.9167u2 ≤ 0,

62.3375v1 + 35.3333v2 + 20.6075v3 −146u1− 194.9167u2 ≤ 0,
78.3442v1 + 25.75v2 + 102.4717v3 −163.5u1− 343.9167u2 ≤ 0,

29.7942v1 + 23.5833v2 + 231.4342v3 −159.5u1− 104.6667u2 ≤ 0,
59.4375v1 + 33.0833v2 + 83.1492v3 −154u1− 219.0833u2 ≤ 0,
67.9975v1 + 28.1667v2 + 120.25v3 −177u1− 326.0833u2 ≤ 0,

vr, ui ≥ 0, r = 1, 2, 3, i = 1, 2.

After computations with Lingo, we obtained θ∗1 = 0.6673 for DMU1. Similarly, for the other
DMUs, we reported the results in Table 3. From these results, we can see that DMUs 3, 6, 8, and 11 are
efficient and others are inefficient.

Table 3. The efficiencies of the decision-making units (DMUs) by the triangular single-valued
neutrosophic number-Charnes, Cooper, and Rhodes (TSVNN-CCR) model.

DMUs Efficiency Ranking

1 0.6673 9
2 0.8057 6
3 1.00 1
4 0.5950 10
5 0.8754 4
6 1.00 1
7 0.7024 7
8 1.00 1
9 0.9116 2

10 0.8751 3
11 1.00 1
12 0.8536 5
13 0.7587 8

To authenticate the suggested efficiencies, these efficiencies were compared with the efficiencies
obtained by the crisp CCR (Model (6)), and are given in Figure 1. In this figure, the efficiencies of
DMUs are found to be smaller for TSVNN-CCR compared to crisp CCR.

It is interesting that DMU 12 is efficient in crisp DEA, but it is inefficient with an efficiency score
of 0.8536 using TSVNN-CCR. Therefore, TSVNN-CCR is more realistic than crisp CCR. In addition,
crisp CCR and TSVNN-CCR may give the same efficiencies for certain data. However, the crisp CCR
model does not deal with the uncertain, indeterminate, and incongruous information. Therefore,
TSVNN-CCR is more realistic than crisp CCR.
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Figure 1. Comparison of suggested and crisp models.

6. Conclusions and Future Work

In this paper, a new approach for data envelopment analysis was proposed in that indeterminacy,
uncertainty, vagueness, inconsistent, and incompleteness of data were shown by neutrosophic sets.
Furthermore, the sorting of DMUs in DEA has been presented, and using a de-neutrosophication
technique, a ranking order has been extracted. The efficiency scores of the proposed model have a
similar meaning and interpretation with the conventional CCR model. Finally, the application of
the proposed model was examined in a real-world case study of 13 hospitals of TUMS. The new
model is appropriate in situations where some inputs or outputs do not have an exact quantitative
value, and the proposed approach has produced promising results from computing efficiency and
performance aspects.

The proposed study had some barriers: first, the indeterminacy, uncertainty, and ambiguity
in the present report was limited to triangular single-valued neutrosophic numbers, but the other
forms of NSs such as bipolar NSs and interval-valued neutrosophic numbers can also be used to
indicate variables characterizing the neutrosophic core in global problems. Second, the presented
model was investigated under a constant returns-to-scale (CRS), but the suggested method can also be
extended under a VRS assumption, so we plan to extend this model to the VRS. Moreover, although
the arithmetic operations, model, and results presented here demonstrate the effectiveness of our
methodology, it could also be considered in other types of DEA models such as network DEA and its
applications to banks, supplier selection, tax offices, police stations, schools, and universities. While
developing data envelopment analysis, models based on bipolar and interval-valued neutrosophic
data is another area for further studies. As for future research, we intend to study these problems.
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Abbreviations: List of Acronyms

DEA Data Envelopment Analysis
DMU Decision-Making Units
CCR model Charnes, Cooper, Rhodes model
BCC model Banker, Charnes, Cooper model
CRS Constant Returns-to-Scale
VRS Variable Returns-to-Scale
AHP Analytic Hierarchy Process
TUMS Tehran University of Medical Sciences
FS Fuzzy Set
IFS Intuitionistic Fuzzy Set
NS Neutrosophic Set
SVNS Single-Valued Neutrosophic Set
TSVNN Triangular Single-Valued Neutrosophic number
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Abstract: Dynamic multi-criteria decision-making (DMCDM) models have many meaningful
applications in real life in which solving indeterminacy of information in DMCDMs strengthens the
potential application of DMCDM. This study introduces an extension of dynamic internal-valued
neutrosophic sets namely generalized dynamic internal-valued neutrosophic sets. Based on this
extension, we develop some operators and a TOPSIS method to deal with the change of both criteria,
alternatives, and decision-makers by time. In addition, this study also applies the proposal model to
a real application that facilitates ranking students according to attitude-skill-knowledge evaluation
model. This application not only illustrates the correctness of the proposed model but also introduces
its high potential appliance in the education domain.

Keywords: generalized dynamic interval-valued neutrosophic set; hesitant fuzzy set; dynamic
neutrosophic environment; dynamic TOPSIS method; neutrosophic data analytics

1. Introduction

Multi-criteria decision-making (MCDM) in real world is often dynamic [1]. In the dynamic MCDM
(DMCDM) model, neither alternatives nor criteria are constant throughout the whole problem and do
not change over time. Besides, the DMCDM model has to cope with both dynamic and indeterminate
problems of data. For example, when ranking tertiary students during learning time in a university by
the set of criteria based on attitudes-skills-knowledge model (ASK), the criteria, students and lecturers
are changing during semesters. The lecturers’ evaluations using scores, or other ordered scales, are also
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subject to indeterminacy because of lecturers’ personal experiences and biases. Therefore, a ranking
model that can handle these issues is necessary.

In [2], Smarandache introduced neutrosophic set including truth-membership, an indeterminacy-
membership and a falsity-membership to well treat the problem of information indeterminacy. Since
then, variant forms of MCDM and DMCDM models have been proposed as in [3–15]. In order to
consider the time dimension, Wang [16] proposed the interval neutrosophic set and its mathematical
operators. Ye [9] proposed MCDM in interval-valued neutrosophic set. Dynamic MCDM for
dynamic interval-valued neutrosophic set (DIVNS) was proposed in [14]. The authors have developed
mathematical operators for TOPSIS method in DIVNSs.

In some cases, criteria, alternatives and decision-makers are changing by time. This fact requires
a new method for DMCDM using TOPSIS method in the interval-valued neutrosophic set [17] with
diversion of history data. The TOPSIS method for DIVNS in [14] did not solve the problem with
the changing criteria, alternatives, and decision-makers. Liu et al. [13] combined the theory of both
interval-valued neutrosophic set and hesitant fuzzy set to solve the MCDM problem. However,
this study did not use TOPSIS method, and it did not consider the change of criteria also. In order
to take the history data into account, Je [10] proposed two hesitant interval neutrosophic linguistic
weighted operators to ranking alternatives in dynamic environment. In short, the DMCDM model in
DIVNS based on TOPSIS method has not been addressed before.

The purpose of this paper is to deal with the change of criteria, alternatives, and decision-makers
during time. We define generalized dynamic interval-valued neutrosophic set (GDIVNS) and some
operators. Based on mathematical operators in GDIVNS (distance and weighted aggregation operators),
a framework of dynamic TOPSIS is introduced. The proposed method is applied for ranking students
of Thuongmai University, Vietnam on attributes of ASK model. ASK model is applicable for evaluation
of tertiary students’ performance, and it gives more information that support employers besides a set
of university exit benchmark. It also facilitates students to make proper self-adjustments and help them
pursue appropriate professional orientation for their future career [18–21]. This application proves the
suitability of the proposed model for real ranking problems.

This paper is structured as follows: The Section 1 is an introduction, and the Section 2 provides the
brief preliminaries for DMCDM model in both legacy environment and interval-valued neutrosophic
set. The Section 3 presents the definition of GDIVNS and some mathematical operators on this
set. The Section 4 introduces the framework of dynamic TOPSIS method in GDIVNSs environment.
The Section 5 presents the application of dynamic TOPSIS method in the problem of ranking students
based on attributes of ASK model. The Section 6 compares the result of proposed model with previous
TOPSIS model in DIVNS. The last section mentions the brief summary of this study and intended
future works.

2. Preliminary

2.1. Multi-Criteria Decision-Making Model Based on History

A dynamic multi-criteria decision-making model introduced by Campanella and Ribeiro [1] is a
DMCDM in which all alternatives and criteria are subject to change. The model gives decisions at all
periods or just at the last one. The final rating of alternatives is calculated as:

Et(a) =



Rt(a), a ∈ At\HA
t−1

DE(Et−1(a), Rt(a)), a ∈ At ∩HA
t−1

Et−1(a), a ∈ HA
t−1\At

(1)

where At is a set of alternatives at period t, HA
t−1 is a historical set of alternatives at period t− 1 (HA

0 = Ø),
Rt(a) is rating of alternative a at period t, and DE is an aggregation operator.
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2.2. Dynamic Interval-Valued Neutrosophic Set and Hesitant Fuzzy Set

Thong et al. [14] introduced the concept of dynamic interval-valued neutrosophic set (DIVNS).

Definition 1. [14] Let U be a universe of discourse, and A be a dynamic interval-valued neutrosophic Set
(DIVNS) expressed by,

A =
{
x,

〈[
TL

x (τ), TU
x (τ)

]
,
[
IL
x (τ), IU

x (τ)
]
,
[
FL

x(τ), FU
x (τ)

]〉∣∣∣∣x ∈ U
}

(2)

where Tx, Ix, Fx are the truth-membership, indeterminacy-membership, falsity-membership respectively,
τ = {τ1, τ2, . . . , τk} is set of time sequence and

[
TL

x (τ), TU
x (τ)

]
⊆ [0, 1];

[
IL
x (τ), IU

x (τ)
]
⊆ [0, 1];

[
FL

x(τ), FU
x (τ)

]
⊆ [0, 1]

Example 1. A DIVNS in time sequence τ = {τ1, τ2} and universal U = {x1, x2, x3} is:

A =



x1,
〈
([0.5, 0.6], [0.1, 0.3], [0.2, 0.4]), ([0.4, 0.55], [0.25, 0.3], [0.3, 0.42])

〉

x2,
〈
([0.7, 0.81], [0.1, 0.2], [0.1, 0.2]), ([0.72, 0.8], [0.11, 0.25], [0.2, 0.4])

〉

x3,
〈
([0.3, 0.5], [0.4, 0.5], [0.6, 0.7]), ([0.4, 0.5], [0.5, 0.6], [0.66, 0.73])

〉



Hesitant fuzzy set (HFS) first introduced by Torra and Narukawa [19] and Torra [20] is defined
as follows.

Definition 2. [20] A hesitant fuzzy set E on U is defined by the function hE(x). When hE(x) is applied to U,
it returns a finite subset of [0, 1], which can be represented as

E =
{〈

x, hE(x)
〉∣∣∣x ∈ U

}
(3)

where hE(x) is a set of some values in [0, 1].

Example 2. Let X = {x1, x2, x3} be the discourse set, and hE(x1) = {0.1, 0.2}, hE(x2) = {0.3} and hE(x3) =

{0.2, 0.3, 0.5}. Then, E can be considered as a HFS:

E = {〈x1, {0.1, 0.2}〉, 〈x2, {0.3}〉, 〈x3, {0.2, 0.3, 0.5}〉}

3. Generalized Dynamic Interval-Valued Neutrosophic Set

Extending DIVNS by the concept of HFS is considered how to express the criteria, alternatives,
and DMs that are changing during time criteria, alternatives and decision-makers are changing by time.

In this section, we propose the concepts of generalized dynamic interval-valued neutrosophic
set (GDIVNS) and generalized dynamic interval-valued neutrosophic element (GDIVNE) including
fundamental elements, operational laws as well as the score functions. Then, GDIVNS’s theory is
applied for the decision-making model in Section 4.

Definition 3. Let U be a universe of discourse. A generalized dynamic interval-valued neutrosophic set
(GDIVNS) in U can be expressed as,

Ẽ =
{〈

x, h̃Ẽ(x(tr))
〉
|x ∈ U ;∀tr ∈ t;

}
(4)

where h̃Ẽ(x(tr)) is expressed for importing HFS into DIVNS. h̃Ẽ(x(tr)) is a set of DIVNSs at period tr and

t = {t1, t2, t3, . . . , ts}, which denotes the possible DIVNSs of the element x ∈ X to the set Ẽ, h̃Ẽ(x(tr)) can
be represented by a generalized dynamic interval-valued neutrosophic element (GDIVNE). When s = 1 and
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∣∣∣∣̃hẼ(x(tr))
∣∣∣∣ = 1, GDIVNS simplifies to DIVNS [14]. For convenience, we denote h̃ = h̃Ẽ(x(t)) =

{
γ
∣∣∣∣γ ∈ h̃

}
,

where
γ =

([
TL(x(τ)), TU(x(τ))

]
,
[
IL(x(τ)), IU(x(τ))

]
,
[
FL(x(τ)), FU(x(τ))

])

is a dynamic interval-valued neutrosophic number.

Example 3. Let t = {t1, t2}; τ = {τ1, τ2} and an universal X = {x1, x2, x3}. A GDIVNS in X is given as:

Ẽ =



〈
x1,

{ 〈
([0.2, 0.33], [0.4, 0.5], [0.6, 0.7]), ([0.24, 0.39], [0.38, 0.47], [0.56, 0.7])

〉
,〈

([0.29, 0.37], [0.3, 0.5], [0.4, 0.58]), ([0.4, 0.5], [0.2, 0.3], [0.35, 0.42])
〉

}〉
,

〈
x2,

{ 〈
([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]), ([0.72, 0.8], [0.11, 0.25], [0.23, 0.45])

〉
,〈

([0.4, 0.6], [0.2, 0.4], [0.3, 0.4]), ([0.41, 0.5], [0.26, 0.39], [0.2, 0.3])
〉

}〉
,

〈
x3,

{ 〈
([0.6, 0.7], [0.2, 0.3], [0.4, 0.5]), ([0.52, 0.66], [0.34, 0.4], [0.6, 0.77])

〉
,〈

([0.54, 0.62], [0.15, 0.3], [0.2, 0.4]), ([0.4, 0.5], [0.25, 0.32], [0.39, 0.43])
〉

}〉



Definition 4. Let h̃, h̃1 and h̃2 be three GDIVNEs. When λ > 0, the operations of GDIVNEs are defined
as follows:

(i) Addition

h̃1 ⊕ h̃2 = ∪
∀γ1∈̃h1;∀γ2∈̃h2

{
γ1 ⊕ γ2

}

=



〈 [
TL
γ1
(x(τ)) + TL

γ2
(x(τ)) − TL

γ1
(x(τ)) × TL

γ2
(x(τ)), TU

γ1
(x(τ)) + TU

γ2
(x(τ)) − TU

γ1
(x(τ)) × TU

γ2
(x(τ))

]
,[

IL
γ1
(x(τ)) × IL

γ2
(x(τ)), IU

γ1
(x(τ)) × IU

γ2
(x(τ))

]
,
[
FL
γ1
(x(τ)) × FL

γ2
(x(τ)), FU

γ1
(x(τ)) × FU

γ2
(x(τ))

]
〉

(ii) Multiplication

h̃1 ⊗ h̃2 = ∪
∀γ1∈̃h1;∀γ2∈̃h2

{
γ1 ⊗ γ2

}

=



〈
[
TL
γ1
(x(τ)) × TL

γ2
(x(τ)), TU

γ1
(x(τ)) × TU

γ2
(x(τ))

]
,[

IL
γ1
(x(τ)) + IL

γ2
(x(τ)) − IL

γ1
(x(τ)) × IL

γ2
(x(τ)), IU

γ1
(x(τ)) + IU

γ2
(x(τ)) − IU

γ1
(x(τ)) × IU

γ2
(x(τ))

]
,[

FL
γ1
(x(τ)) + FL

γ2
(x(τ)) − FL

γ1
(x(τ)) × FL

γ2
(x(τ)), FU

γ1
(x(τ)) + FU

γ2
(x(τ)) − FU

γ1
(x(τ)) × FU

γ2
(x(τ))

]

〉


(iii) Scalar Multiplication

λ̃h = ∪
∀γ∈̃h

{
λγ

}

= ∪
∀γ∈̃h



〈
[
1−

(
1− TL(x(τ))

)λ
, 1−

(
1− TU(x(τ))

)λ]
,

[(
IL(x(τ))

)λ
,
(
IU(x(τ))

)λ]
,
[(

FL(x(τ))
)λ

,
(
FU(x(τ))

)λ]
〉

(iv) Power

h̃λ = ∪
∀γ∈̃h

{
γλ

}

= ∪
∀γ∈̃h



〈
[(

TL(x(τ))
)λ

,
(
TU(x(τ))

)λ]
,
[
1−

(
1− IL(x(τ))

)λ
, 1−

(
1− IU(x(τ))

)λ]
,

[
1−

(
1− FL(x(τ))

)λ
, 1−

(
1− FU(x(τ))

)λ]
〉

Definition 5. Let h̃ be a GDIVNE. Then, the score functions of the GDIVNE h̃ are defined by,

S
(̃
h
)
=

1

#̃h
×

1
k

∑

∀γ∈̃h

k∑

l=1

((
TL(τl) + TU(τl)

2
+

(
1−

IL(τl) + IU(τl)

2

)
+

(
1−

FL(τl) + FU(τl)

2

))
/3

)
(5)
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where τ = {τ1, τ2, . . . , τk}, and #̃h is number of elements in h̃. Obviously, S
(̃
h
)
∈ [0, 1]. If S

(̃
h1

)
≥ S

(̃
h2

)
, then

h̃1 ≥ h̃2.

Example 4. Let three GDIVNEs:

h̃1 =
{〈
([1, 1], [0, 0], [0, 0]), ([1, 1], [0, 0], [0, 0])

〉
,
〈
([1, 1], [0, 0], [0, 0]), ([1, 1], [0, 0], [0, 0])

〉}

h̃2 =
{〈
([0, 0], [1, 1], [0, 0]), ([0, 0], [1, 1], [0, 0])

〉
,
〈
([0, 0], [1, 1], [0, 0]), ([0, 0], [1, 1], [0, 0])

〉}

h̃3 =
{〈
([0, 0], [1, 1], [1, 1]), ([0, 0], [1, 1], [1, 1])

〉
,
〈
([0, 0], [1, 1], [1, 1]), ([0, 0], [1, 1], [1, 1])

〉}

According to Equation (5), we have S
(̃
h1

)
= 1; S

(̃
h2

)
= 1

3 ; S
(̃
h3

)
= 0. Thus, h̃1 > h̃2 > h̃3.

Definition 6. Let h̃ j( j = 1, 2, . . . , n) be a collection of GDIVNEs. Generalized dynamic interval-valued
neutrosophic weighted average (GDIVNWA) operator is defined as

GDIVNWA
(̃
h1, h̃2, . . . , h̃n

)
=

n∑
j=1

w j̃h j

= ∪
γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn







1−

n∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
n∏

j=1

(
1− TU

γ j
(τ)

)w j


,




n∏
j=1

(
IL
γ j
(τ)

)w j ,
n∏

j=1

(
IU
γ j
(τ)

)w j


,



n∏
j=1

(
FL
γ j
(τ)

)w j ,
n∏

j=1

(
FU
γ j
(τ)

)w j









(6)

Theorem 1. Let h̃ j( j = 1, 2, . . . , n) be the collection of GDIVNEs. The result aggregated from GDIVNWA
operator is still a GDIVNE.

Proof. The Equation (6) is proved by mathematical inductive reasoning method. �

When n = 1, Equation (6) holds because it simplifies to the trivial outcome, which is obviously
GDIVNE as,

GDIVNWA
(̃
h1

)
=




[
1−

(
1− TL

γ1
(τ)

)w1 , 1−
(
1− TU

γ1
(τ)

)w1
]
,[(

IL
γ1
(τ)

)w1 ,
(
IU
γ1
(τ)

)w1
]
,
[(

FL
γ1
(τ)

)w1 ,
(
FU
γ1
(τ)

)w1
]


 (7)

Let us assume that (6) is true for n = z,

z∑

j=1

w j̃h j = ∪
γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz







1−

z∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
z∏

j=1

(
1− TU

γ j
(τ)

)w j


,




z∏
j=1

(
IL
γ j
(τ)

)w j ,
z∏

j=1

(
IU
γ j
(τ)

)w j


,



z∏
j=1

(
FL
γ j
(τ)

)w j ,
z∏

j=1

(
FU
γ j
(τ)

)w j








(8)
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When n = z + 1

z+1∑
j=1

w j̃h j =
z∑

j=1
w j̃h j ⊕wz+1h̃z+1

= ∪
γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz







1−

z∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
z∏

j=1

(
1− TU

γ j
(τ)

)w j


,




z∏
j=1

(
IL
γ j
(τ)

)w j ,
z∏

j=1

(
IU
γ j
(τ)

)w j


,



z∏
j=1

(
FL
γ j
(τ)

)w j ,
z∏

j=1

(
FU
γ j
(τ)

)w j









⊕




[
1−

(
1− TL

γk+1
(τ)

)wz+1 , 1−
(
1− TU

γz+1
(τ)

)wz+1
]
,[(

IL
γz+1

(τ)
)wz+1 ,

(
IU
γz+1

(τ)
)wz+1

]
,
[(

FL
γz+1

(τ)
)wz+1 ,

(
FU
γz+1

(τ)
)wz+1

]



= ∪
γ1∈̃h1,γ2∈̃h2,...,γz+1∈̃hz+1







1−

z+1∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
z+1∏
j=1

(
1− TU

γ j
(τ)

)w j


,




z+1∏
j=1

(
IL
γ j
(τ)

)w j ,
z+1∏
j=1

(
IU
γ j
(τ)

)w j


,



z+1∏
j=1

(
FL
γ j
(τ)

)w j ,
z+1∏
j=1

(
FU
γ j
(τ)

)w j









(9)

It follows that if (6) holds for n = z, then it holds for n = z + 1. Because it is also true for n = 1,
according to the method of mathematical inductive reasoning, Equation (6) holds for natural numbers
N and Theorem 1 is proven.

Definition 7. Let h̃ j( j = 1, 2, . . . , n) be a collection of GDIVNEs. Generalized dynamic interval-valued
neutrosophic weighted geometric (GDIVNWG) operator is defined as

GDIVNWG
(̃
h1, h̃2, . . . , h̃n

)
=

n∏
j=1

h̃
w j

j

= ∪
γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn









n∏
j=1

(
TL
γ j
(τ)

)w j
,

n∏
j=1

(
TU
γ j
(τ)

)w j


,

1−

n∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

n∏
j=1

(
1− IU

γ j
(τ)

)w j


,


1−

n∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

n∏
j=1

(
1− FU

γ j
(τ)

)w j









(10)

Theorem 2. Let h̃ j( j = 1, 2, . . . , n) be the collection of GDIVNEs. The result aggregated from GDIVNWG
operator is still a GDIVNE.

Proof. The Equation (10) is proved by mathematical inductive reasoning method. �

When n = 1, Equation (10) is true because it simplifies to the trivial outcome, which is
obviously GDIVNE,

GDIVNWG
(̃
h1

)
=




[(
TL
γ1
(τ)

)w1 ,
(
TU
γ1
(τ)

)w1
]
,
[
1−

(
1− IL

γ1
(τ)

)w1 , 1−
(
1− IU

γ1
(τ)

)w1
]
,[

1−
(
1− FL

γ1
(τ)

)w1 , 1−
(
1− FU

γ1
(τ)

)w1
]


 (11)

Let us assume that (10) is true for n = z.

z∏

j=1

h̃
w j

j = ∪
γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz









z∏
j=1

(
TL
γ j
(τ)

)w j
,

z∏
j=1

(
TU
γ j
(τ)

)w j


,

1−

z∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

z∏
j=1

(
1− IU

γ j
(τ)

)w j


,


1−

z∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

z∏
j=1

(
1− FU

γ j
(τ)

)w j








(12)
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When n = z + 1

z+1∏
j=1

h̃
w j

j =
z∏

j=1
h̃

w j

j ⊗ h̃wz+1

z+1

= ∪
γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz









k∏
j=1

(
TL
γ j
(τ)

)w j
,

k∏
j=1

(
TU
γ j
(τ)

)w j


,

1−

k∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

k∏
j=1

(
1− IU

γ j
(τ)

)w j


,


1−

k∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

k∏
j=1

(
1− FU

γ j
(τ)

)w j









⊗




[(
TL
γ j
(τ)

)wz+1
,
(
TU
γz+1

(τ)
)wz+1

]
,
[
1−

(
1− IL

γz+1
(τ)

)wz+1
, 1−

(
1− IU

γz+1
(τ)

)wz+1
]
,[

1−
(
1− FL

γz+1
(τ)

)wz+1
, 1−

(
1− FU

γz+1
(τ)

)wz+1
]




= ∪
γ1∈̃h1,γ2∈̃h2,...,γz+1∈̃hz+1








z+1∏
j=1

(
TL
γ j
(τ)

)w j
,
z+1∏
j=1

(
TU
γ j
(τ)

)w j


,

1−

z+1∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

z+1∏
j=1

(
1− IU

γ j
(τ)

)w j


,


1−

z+1∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

z+1∏
j=1

(
1− FU

γ j
(τ)

)w j









(13)

It follows that if (10) holds for n = z, then it holds for n = z + 1. Because it is also true for n = 1,
according to the method of mathematical inductive reasoning, Equation (10) holds for all natural
numbers N and Theorem 2 is proven.

Herein, we define the generalized dynamic interval-valued neutrosophic hybrid weighted
averaging (GDIVNHWA) operator to combine the effects of attribute weight vector and the positional
weight vector, which are mentioned in Definitions 6 and 7.

Definition 8. Let λ > 0 and h̃ j( j = 1, 2, . . . , n) be a collection of GDIVNEs. Generalized dynamic
interval-valued neutrosophic hybrid weighted averaging (GDIVNHWA) operator is defined as,

DIVHNWG
(̃
h1, h̃2, . . . , h̃n

)
=




n∑
j=1

w j̃hλj




1
λ

= ∪
γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn










1−

n∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j



1
λ

,


1−

n∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j



1
λ


,


1−


1−

n∏
j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j



1
λ

, 1−


1−

n∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j



1
λ


,


1−


1−

n∏
j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j



1
λ

, 1−


1−

n∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j



1
λ









(14)

Theorem 3. Let h̃ j( j = 1, 2, . . . , n) be the collection of GDIVNEs. The result aggregated from GDIVNHWA
operator is still a GDIVNE.

Proof. The Equation (14) can be proved by mathematical inductive reasoning method. �

We first prove that (15) is a collection of GDIVNEs,

n∑

j=1

w j̃h
λ
j = ∪

γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn







1−

n∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

n∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j

,


1−

n∏
j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

n∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j

,


1−

n∏
j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

n∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j








(15)
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When n = 1, Equation (15) is true because it simplifies to the trivial outcome, which is
obviously GDIVNE,

w1h̃λ1 =




[
1−

(
1−

(
TL
γ1
(τ)

)λ)w1
, 1−

(
1−

(
TU
γ1
(τ)

)λ)w1
]
,

[
1−

(
1−

(
1− IL

γ1
(τ)

)λ)w1
, 1−

(
1−

(
1− IU

γ1
(τ)

)λ)w1
]
,

[
1−

(
1−

(
1− FL

γ1
(τ)

)λ)w1
, 1−

(
1−

(
1− FU

γ1
(τ)

)λ)w1
]




(16)

Let us assume that (15) is true for n = z,

z∑

j=1

w j̃h
λ
j = ∪

γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz







1−

z∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j

,


1−

z∏
j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j

,


1−

z∏
j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j








(17)

When n = z + 1,

z+1∑
j=1

w j̃hλj =
z∑

j=1
w j̃hλj ⊕wz+1h̃λz+1

= ∪
γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz







1−

z∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j

,


1−

z∏
j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j

,


1−

z∏
j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j








⊕






[
1−

(
1−

(
TL
γz+1

(τ)
)λ)wz+1

, 1−
(
1−

(
TU
γz+1

(τ)
)λ)wz+1

]
,

[
1−

(
1−

(
1− IL

γz+1
(τ)

)λ)wz+1
, 1−

(
1−

(
1− IU

γz+1
(τ)

)λ)wz+1
]
,

[
1−

(
1−

(
1− FL

γz+1
(τ)

)λ)wz+1
, 1−

(
1−

(
1− FU

γz+1
(τ)

)λ)wz+1
]






= ∪
γ1∈̃h1,γ2∈̃h2,...,γk+1∈̃hk+!







1−

k+1∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

k+!∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j

,


1−

k+1∏
j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

k+1∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j

,


1−

k+1∏
j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

k+1∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j








(18)

It follows that if (15) holds for n = z, then it holds for n = z + 1. Because it is also true for n = 1,
according to the method of mathematical inductive reasoning, Equation (15) holds for natural numbers
N. According to Equation (15) and Definition 4, we have,
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DIVHNWG
(̃
h1, h̃2, . . . , h̃n

)
=




n∑
j=1

w j̃hλj




1
λ

= ∪
γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn










1−

n∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j



1
λ

,


1−

n∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j



1
λ


,


1−


1−

n∏
j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j



1
λ

, 1−


1−

n∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j



1
λ


,


1−


1−

n∏
j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j



1
λ

, 1−


1−

n∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j



1
λ









Thus, Theorem 3 is proven.

4. Dynamic TOPSIS Method

Based on the theory of GDVINS, the dynamic decision-making model is proposed to deal with
the change of criteria, alternatives, and decision-makers during time.

For each period t = {t1, t2, . . . , ts}, assume Ã(tr) =
{
A1, A2, . . . , Avr

}
and C̃(tr) =

{
C1, C2, . . . , Cnr

}

and D̃(tr) =
{
D1, D2, . . . , Dhr

}
being the sets of alternatives, criteria, and decision-makers at period rth,

r = {1, 2, . . . , s}. For a decision-maker Dq; q = 1, . . . , hr, the evaluation of an alternative Am; m = 1, . . . , vr,

on a criteria Cp; p = 1, . . . , nr, in time sequence τ =
{
τ1, τ2, . . . , τkr

}
is represented by the Neutrosophic

decision matrixℜq(tr) =
(
ξ

q
mp(τ)

)
vr×nr

; l = 1, 2, . . . , kr. where

ξ
q
mp(τ) =

〈
xq

dmp
(τ),

(
Tq

(
dmp, τ

)
, Iq

(
dmp, τ

)
, Fq

(
dmp, τ

))〉
;

taken by GDIVNSs evaluated by decision maker Dq.
Step 1. Calculate aggregate ratings at period rth.
Let xmpq(τl) =

{[
TL

mpq

(
xτl

)
, TU

mpq

(
xτl

)]
,
[
IL
mpq

(
xτl

)
, IU

mpq

(
xτl

)]
,
[
FL

mpq

(
xτl

)
, FU

mpq

(
xτl

)]}
be the

appropriateness rating of alternative Am for criterion Cp by decision-maker Dq in time sequence
τl, where: m = 1, . . . , vr; p = 1, . . . , nr; q = 1, . . . , hr; l = 1, . . . , kr. The averaged appropriateness rating

xmp =
{[

TL
mp(x), TU

mp(x)
]
,
[
IL
mp(x), IU

mp(x)
]
,
[
FL

mp(x), FU
mp(x)

]}
can be evaluated as:

xmp =
1

hr × kr
×

〈



1−


1−


1−

hr∑
q=1

TL
pmq

(
xτl

)

1
hr



1
kr

, 1−


1−


1−

h∑
q=1

TU
pmq

(
xτl

)

1
hr



1
kr


,







h∑
q=1

IL
pmq

(
xτl

)

1
hr×kr

,




h∑
q=1

IU
pmq

(
xτl

)

1
hr×kr


,







h∑
q=1

FL
pmq

(
xτl

)

1
hr×kr

,




h∑
q=1

FU
pmq

(
xτl

)

1
hr×kr




〉
(19)

Step 2. Calculate importance weight aggregation at period rth.
Let ypq(τl) =

{[
TL

pq

(
yτl

)
, TU

pq

(
yτl

)]
,
[
IL
pq

(
yτl

)
, IU

pq

(
yτl

)]
,
[
FL

pq

(
yτl

)
, FU

pq

(
yτl

)]}
be the weight of Dq to

criterion Cp in time sequence τl, where: p = 1, . . . , nr; q = 1, . . . , hr; l = 1, . . . , k. The average weight

wp =
{[

TL
p (y), TU

p (y)
]
,
[
IL
p (y), IU

p (y)
]
,
[
FL

p(y), FU
p (y)

]}
can be evaluated as:
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wp =
1

hr × kr
×

〈



1−


1−


1−

hr∑
q=1

TL
pq

(
yτl

)

1
hr



1
kr

, 1−


1−


1−

h∑
q=1

TU
pq

(
yτl

)

1
hr



1
kr


,







hr∑
q=1

IL
pq

(
yτl

)

1
hr×kr

,




hr∑
q=1

IU
pq

(
yτl

)

1
hr×kr


,







hr∑
q=1

FL
pq

(
yτl

)

1
hr×kr

,




hr∑
q=1

FU
pq

(
yτl

)

1
hr×kr




〉
, (20)

Step 3. Evaluation for aggregate ratings of alternatives with history data.
Using Equation (21), evaluate aggregate ratings and importance weight aggregation.

Ã(t∗r) =
{
A1, A2, . . . , Avr

}
∪ Ã(tr−1)

x∗mp =



xr
mp i f




Am ∈ Ã(tr)\Ã(tr−1)&Cp ∈ C̃(tr)\C̃(tr−1)

or Am ∈ Ã(tr−1)\Ã(tr)&Cp ∈ C̃(tr)\C̃(tr−1)

or Am ∈ Ã(tr)\Ã(tr−1)&Cp ∈ C̃(tr−1)\C̃(tr)




xr
mp ⊕ xr−1

mp i f Am ∈ Ã(tr) ∩ Ã(tr−1)&Cp ∈ C̃(tr) ∩ C̃(tr−1)

xr−1
mp i f Am ∈ Ã(tr−1)\Ã(tr)&Cp ∈ C̃(tr−1)\C̃(tr)

(21)

Step 4. Evaluation for importance weight aggregation of criteria with history data.
Using Equation (22), evaluate aggregate ratings and importance weight aggregation.

C̃(t∗r) =
{
C1, C2, . . . , Cnr

}
∪ C̃(tr−1)

w∗p =



wr
p i f Cp ∈ C̃(tr)\C̃(tr−1)

wr
p ⊕wr−1

p i f Cp ∈ C̃(tr) ∩ C̃(tr−1)

wr−1
p i f Cp ∈ C̃(tr−1)\C̃(tr)

(22)

Step 5. Calculate the average weighted ratings at period rth.
The average weighted ratings of alternatives at period tr, can be calculated by:

Θm =
1
n∗r

n∗r∑

p=1

x∗
mp
∗w∗p; m = 1, . . . , v∗r; p = 1, . . . , n∗r; (23)

Step 6. Determination of A+
r , A−r and d+r , d−r at period rth.

Interval-valued neutrosophic positive ideal solution (PIS, A+
r ) and interval-valued neutrosophic

negative ideal solution (NIS, A−r ) are:

A+
r =

{
x,

{
([1, 1], [0, 0], [0, 0])1, ([1, 1], [0, 0], [0, 0])2, . . . , ([1, 1], [0, 0], [0, 0])n∗r

}}
(24)

A−r =
{
x,

{
([0, 0], [1, 1], [1, 1])1, ([0, 0], [1, 1], [1, 1])2, . . . , ([0, 0], [1, 1], [1, 1])n∗r

}}
(25)

The distances of each alternative Am, m = 1, 2, . . . , n∗ from A+
r and A−r at period tr, are calculated as:

d+m =

√(
Θm −A+

r

)2
(26)
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d−m =

√
(Θm −A−r )

2 (27)

where d+m and d−m respectively represent the shortest and farthest distances of Am.
Step 7. Determination the closeness coefficient.
The closeness coefficient at period tr, is calculated in Equation (28), where an alternative that

is close to interval-valued neutrosophic PIS and far from interval-valued neutrosophic NIS, has
high value:

BCm =
d−m

d+m + d−m
(28)

Step 8. Rank the alternatives.
The alternatives are ranked by their closeness coefficient values. See Figure 1 for illustration.

 

Figure 1. Dynamic TOPSIS method.

103



Symmetry 2020, 12, 618

5. Applications

5.1. ASK Model for Ranking Students

Human resources recruitment plays a pivotal role in any enterprise as it exerts tremendous impact
on its sustainable development. Thus, the selection of competent and job-relevant staff will lay the
solid foundation for the successful performance of an enterprise. Notably, every year most of the
businesses invest a large sum of money for job vacancy advertisements (on newspapers, websites,
and in job fairs) and recruitment activities including application screening and interview. However,
to recruit new graduated student the organizations are likely to encounter high potential risks as
there are definitely inevitable employee turnovers or the selected candidates fall short of employers’
expectation [22]. Mis-assessment of candidate’s competence might be rooted from assessors’ criteria
and model for new graduated student evaluation.

The above problems underline the need for making the right assessment of potential employees.
Currently, ASK model (attitude, skill and knowledge) has been widely used by many organizations
because of its comprehensive assessment. This model was initially proposed by Bloom [11] with
three factors including knowledge which is acquired through education, comprehension, analysis,
and application skills which are the ability to process the knowledge to perform activities or
tasks, and attitude which is concerned with feeling, emotions, or motivation toward employment.
These elements are given divergent weights in the assessment model according to positions and
requirements of the job. ASK is applicable to evaluate tertiary students’ performance to give more
information that support employers besides a set of university exit benchmark. It also facilitates
students to make proper self-adjustments and pursue appropriate professional orientation for their
future career [23,24]. Ranking students based on attributes of ASK model requires a dynamic
multi-criteria decision-making model that is able to combine the estimations of different lecturers in
different periods. The proposed DTOPSIS completely fit to this complex task, and the application
model is depicted bellow.

5.2. Application Model

As mentioned above, the proposed method is applied to rank students of Thuongmai University,
Hanoi, Vietnam. In this research, the datasets were surveyed through three consecutive semesters
under three criteria (attitudes-skills-knowledge). Each student will be surveyed at the beginning
of semester and by the end of semester. With the model assessing student competence, it will be
conducted over semesters and over school years. This is the way of setting the time period in the
decision-making model of this research.

Figure 2 shows the ASK model for ranking students where three lectures i.e., D1, D2, D3 are chosen.
According to the language labels shown in Tables 1 and 2, rating of five students and criteria’ weights
are done by the lectures based on fourteenth criteria in three groups: attitude, skill, and knowledge.
The attitude group includes five criteria [25], the skill group includes six criteria [26], and the knowledge
group includes three criteria [23].

The criteria used for ranking Thuongmai university’s students contain 14 criteria divided into
three groups (attitudes-skills-knowledge) in the ASK model. In the early stage of each semester,
the knowledge criteria will not cause many impacts on student competency assessment so that we
only pay attention to 11 criteria in the two remaining groups: attitudes and skills. In the following
semesters, the knowledge criterion shall be supplemented that why all 14 criteria in three group shall
be conducted.

(1) Period t1 (the first semester): the decision-maker provides assessments of three students
A1, A2, A3 according to 11 criteria in two groups: attitude, skill. Tables 3 and 4 show the steps of the
model at time t1 and Table 5 shows the ranking order as A1 ≻ A2 ≻ A3. Thus, the best student is A1.
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Figure 2. Attitudes-skills-knowledge (ASK) model for recruitment of ternary students.
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Table 1. Appropriateness ratings.

Language Labels Values

Very Poor ([0.1, 0.26], [0.4, 0.5], [0.63, 0.76])
Poor ([0.26, 0.38], [0.47, 0.6], [0.51, 0.6])

Medium ([0.38, 0.5], [0.4, 0.61], [0.44, 0.55])
Good ([0.5, 0.65], [0.36, 0.5], [0.31, 0.48])

Very Good ([0.65, 0.8], [0.1, 0.2], [0.12, 0.2])

Table 2. The importance of criteria.

Language Labels Values

Unimportant ([0.1, 0.19], [0.32, 0.47], [0.64, 0.8])
Slightly Important ([0.2, 0.38], [0.46, 0.62], [0.36, 0.55])

Important ([0.45, 0.63], [0.41, 0.53], [0.2, 0.42])
Very Important ([0.66, 0.8], [0.3, 0.39], [0.22, 0.32])

Absolutely Important ([0.8, 0.94], [0.18, 0.29], [0.1, 0.2])

Table 3. Aggregated ratings at period t1.

Criteria
Students

A1 A2 A3

C1
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])

C2
([0.488, 0.632], [0.005, 0.025],

[0.008, 0.021])
([0.419,0.578], [0.011,0.037],

[0.011,0.026])
([0.419,0.578], [0.011,0.037],

[0.011,0.026])

C3
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.423, 0.556], [0.02, 0.066],

[0.02, 0.051])

C4
([0.423, 0.556], [0.02, 0.066],

[0.02, 0.051])
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.388, 0.523], [0.023, 0.065],

[0.024, 0.056])

C5
([0.523, 0.673], [0.005, 0.021],

[0.005, 0.018])
([0.423, 0.556], [0.02, 0.066],

[0.02, 0.051])
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])

C6
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.342, 0.463], [0.026, 0.081],

[0.034, 0.065])

C7
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.388, 0.523], [0.023, 0.065],

[0.024, 0.056])
([0.342, 0.463], [0.026, 0.081],

[0.034, 0.065])

C8
([0.26, 0.38], [0.036, 0.078],

[0.046, 0.078])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])

C9
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.523, 0.673], [0.005, 0.021],

[0.005, 0.018])
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])

C10
([0.5, 0.65], [0.016, 0.044],

[0.01, 0.038])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])

C11
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.302, 0.423], [0.03, 0.079],

[0.04, 0.071])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])

Table 4. Aggregated weights at period t1.

Criteria Importance Aggregated Weights

C1 ([0.963, 0.996], [0.022, 0.06], [0.004, 0.027])
C2 ([0.908, 0.968], [0.041, 0.094], [0.017, 0.056])
C3 ([0.758, 0.89], [0.077, 0.174], [0.014, 0.097])
C4 ([0.648, 0.816], [0.087, 0.204], [0.026, 0.127])
C5 ([0.604, 0.794], [0.06, 0.154], [0.046, 0.185])
C6 ([0.963, 0.992], [0.022, 0.06], [0.004, 0.027])
C7 ([0.834, 0.925], [0.069, 0.149], [0.008, 0.074])
C8 ([0.758, 0.89], [0.077, 0.174], [0.014, 0.097])
C9 ([0.758, 0.89], [0.077, 0.174], [0.014, 0.097])
C10 ([0.936, 0.975], [0.037, 0.081], [0.01, 0.043])
C11 ([0.897, 0.959], [0.05, 0.11], [0.009, 0.056])
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Table 5. Weighted ratings at period t1.

Students Weighted Ratings

A1 ([0.368, 0.409], [0.069, 0.168], [0.03, 0.114])
A2 ([0.34, 0.382], [0.071, 0.181], [0.035, 0.12])
A3 ([0.338, 0.377], [0.072, 0.178], [0.035, 0.121])

(2) Period t2 (the second semester): At this stage, a new student A4 is added with new criteria in
knowledge group. The steps are shown in Tables 6–12. Finally, the ranking is obtained: A1 ≻ A2 ≻

A3 ≻ A4. Thus, the best student is A1.

Table 6. The distance of each student from A+
t1

and A−t1
at period t1.

Students d+t1
d−t1

A1 0.364193 0.773329
A2 0.380989 0.763987
A3 0.382736 0.763579

Table 7. Closeness coefficient at period t1.

Students Closeness Coefficients Ranking Order

A1 0.679837 1
A2 0.667251 2
A3 0.666116 3

Table 8. Aggregated ratings at period t2.

Criteria
Students

A1 A2 A3 A4

C1
([0.699, 0.83], [0.001, 0.005],

[0, 0.002])
([0.566, 0.75], [0.001, 0.009],

[0.001, 0.003])
([0.637, 0.759], [0.001, 0.007],

[0.001, 0.003])
([0.5, 0.6], [0.022, 0.046],

[0.009, 0.022])

C2
([0.707, 0.852], [0.001, 0.007],

[0, 0.002])
([0.686, 0.834], [0.001, 0.008],

[0, 0.003])
([0.72, 0.862], [0.001, 0.006],

[0, 0.002])
([0.498, 0.6], [0.023, 0.049],

[0.009, 0.023])

C3
([0.709, 0.848], [0.003, 0.016],

[0, 0.005])
([0.643, 0.783], [0.003, 0.018],

[0, 0.006])
([0.603, 0.767], [0.003, 0.019],

[0.001, 0.006])
([0.56, 0.669], [0.008, 0.029],

[0.004, 0.016])

C4
([0.598, 0.766], [0.004, 0.022],

[0.001, 0.007])
([0.639, 0.782], [0.004, 0.021],

[0.001, 0.007])
([0.634, 0.793], [0.004, 0.02],

[0.001, 0.008])
([0.506, 0.643], [0.009, 0.034],

[0.006, 0.021])

C5
([0.721, 0.866], [0.002, 0.012],

[0.001, 0.015])
([0.651, 0.823], [0.002, 0.013],

[0.002, 0.016])
([0.616, 0.765], [0.002, 0.014],

[0.002, 0.017])
([0.461, 0.604], [0.013, 0.042],

[0.009, 0.035])

C6
([0.685, 0.81], [0.001, 0.005],

[0, 0.002])
([0.623, 0.803], [0.001, 0.007],

[0, 0.002])
([0.546, 0.72], [0.001, 0.009],

[0.001, 0.004])
([0.3, 0.5], [0.022, 0.08],

[0.022, 0.044])

C7
([0.62, 0.802], [0.002, 0.013],

[0, 0.004])
([0.618, 0.769], [0.002, 0.013],

[0.001, 0.005])
([0.543, 0.72], [0.002, 0.015],

[0.001, 0.006])
([0.438, 0.569], [0.024, 0.061],

[0.012, 0.03])

C8
([0.491, 0.648], [0.005, 0.025],

[0.002, 0.013])
([0.686, 0.862], [0.004, 0.02],

[0, 0.006])
([0.499, 0.709], [0.005, 0.025],

[0.001, 0.009])
([0.43, 0.567], [0.026, 0.071],

[0.012, 0.033])

C9
([0.702, 0.847], [0.004, 0.021],

[0, 0.007])
([0.761, 0.891], [0.004, 0.019],

[0, 0.006])
([0.682, 0.828], [0.004, 0.022],

[0, 0.007])
([0.488, 0.598], [0.026, 0.062],

[0.009, 0.027])

C10
([0.687, 0.8], [0.002, 0.01],

[0, 0.003])
([0.663, 0.836], [0.001, 0.008],

[0, 0.003])
([0.718, 0.842], [0.001, 0.008],

[0, 0.003])
([0.534, 0.636], [0.012, 0.032],

[0.006, 0.018])

C11
([0.608, 0.751], [0.001, 0.009],

[0.001, 0.003])
([0.557, 0.722], [0.001, 0.01],

[0.001, 0.006])
([0.565, 0.75], [0.001, 0.011],

[0.001, 0.004])
([0.499, 0.6], [0.023, 0.048],

[0.009, 0.023])

C12
([0.36, 0.533], [0.043, 0.12],

[0.021, 0.06])
([0.4, 0.516], [0.049, 0.11],

[0.023, 0.065])
([0.463, 0.606], [0.033, 0.089],

[0.012, 0.047])
([0.258, 0.439], [0.049, 0.133],

[0.037, 0.087])

C13
([0.229, 0.373], [0.05, 0.119],

[0.055, 0.108])
([0.229, 0.373], [0.05, 0.119],

[0.055, 0.108])
([0.43, 0.568], [0.038, 0.095],

[0.017, 0.047])
([0.43, 0.568], [0.038, 0.095],

[0.017, 0.047])

C14
([0.284, 0.408], [0.083, 0.167],

[0.046, 0.123])
([0.284, 0.408], [0.083, 0.167],

[0.046, 0.123])
([0.269, 0.486], [0.071, 0.179],

[0.03, 0.098])
([0.431, 0.592], [0.061, 0.137],

[0.017, 0.076])
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Table 9. Aggregated weights at period t2.

Criteria Importance Aggregated Weights

C1 ([0.999, 1], [0, 0.003], [0, 0.001])
C2 ([0.997, 1], [0.001, 0.006], [0, 0.002])
C3 ([0.985, 0.998], [0.003, 0.014], [0, 0.004])
C4 ([0.978, 0.997], [0.003, 0.016], [0, 0.005])
C5 ([0.959, 0.993], [0.002, 0.011], [0.001, 0.015])
C6 ([0.999, 1], [0, 0.003], [0, 0.001])
C7 ([0.993, 0.999], [0.002, 0.009], [0, 0.002])
C8 ([0.975, 0.997], [0.004, 0.019], [0, 0.005])
C9 ([0.975, 0.997], [0.004, 0.019], [0, 0.005])
C10 ([0.996, 1], [0.001, 0.006], [0, 0.002])
C11 ([0.998, 1], [0.001, 0.005], [0, 0.001])
C12 ([0.963, 0.996], [0.022, 0.06], [0.004, 0.027])
C13 ([0.977, 0.998], [0.016, 0.044], [0.005, 0.02])
C14 ([0.897, 0.973], [0.05, 0.11], [0.009, 0.056])

Table 10. Weighted ratings at period t2.

Students Weighted Ratings

A1 ([0.605, 0.76], [0.004, 0.02], [0.001, 0.009])
A2 ([0.594, 0.761], [0.004, 0.02], [0.001, 0.009])
A3 ([0.581, 0.744], [0.004, 0.021], [0.001, 0.009])
A4 ([0.458, 0.588], [0.022, 0.058], [0.011, 0.031])

Table 11. The distance of each student from A+
t2

and A−t2
at period t2.

Students d+t2
d−t2

A1 0.188874 0.901553
A2 0.192392 0.900405
A3 0.200641 0.896588
A4 0.279475 0.848118

Table 12. Closeness coefficient at period t2.

Students Closeness Coefficients Ranking Order

A1 0.826789 1
A2 0.823945 2
A3 0.817138 3
A4 0.752149 4

(3) Period t3 (the third semester): At this stage, a new student A5 is considered and an existing
student A2 is discarded. The criteria remain the same as in the previous period t2. Tables 13–17 show
the steps of this stage. Finally, the ranking is obtained: A5 ≻ A4 ≻ A2 ≻ A1 ≻ A3. Thus, the best student
is A5.

5.3. Comparison with the Related Methods

The proposed dynamic TOPSIS method has superior features compared to the method in [14].
In Table 18, the ranking order of five students in three periods are presented. We can observe that at
period t1, the results of the both methods are the same i.e., A1 ≻ A2 ≻ A3.
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Table 13. Aggregated ratings at period t3.

Criteria
Students

A1 A2 A3 A4 A5

C1
([0.794, 0.9], [0, 0],

[0, 0])
([0.51, 0.75],

[0, 0.006], [0, 0.002])
([0.764, 0.893],
[0, 0], [0, 0])

([0.711, 0.822],
[0, 0.003], [0, 0.001])

([0.441, 0.569], [0.022, 0.053],
[0.012, 0.027])

C2
([0.871, 0.951],
[0, 0], [0, 0])

([0.675, 0.818],
[0, 0.002], [0, 0.001])

([0.881, 0.96], [0, 0],
[0, 0])

([0.788, 0.891],
[0, 0.001], [0, 0])

([0.441, 0.569], [0.022, 0.053],
[0.012, 0.027])

C3
([0.829, 0.918],

[0, 0.001], [0, 0])

([0.608, 0.785],
[0.001, 0.005],

[0, 0.001])

([0.728, 0.884],
[0, 0.001], [0, 0])

([0.817, 0.91],
[0, 0.001], [0, 0])

([0.569, 0.67], [0.005, 0.016],
[0.004, 0.012])

C4
([0.711, 0.875],

[0, 0.001], [0, 0])

([0.608, 0.785],
[0.001, 0.005],

[0, 0.001])

([0.816, 0.922],
[0, 0.001], [0, 0])

([0.663, 0.795],
[0, 0.002], [0, 0.001])

([0.569, 0.67], [0.005, 0.016],
[0.004, 0.012])

C5
([0.81, 0.912],

[0, 0.001], [0, 0.001])
([0.635, 0.804],

[0, 0.003], [0, 0.001])
([0.777, 0.889],

[0, 0.001], [0, 0.001])
([0.751, 0.872],

[0, 0.001], [0, 0.001])
([0.48, 0.608], [0.011, 0.032],

[0.008, 0.021])

C6
([0.832, 0.923],
[0, 0], [0, 0])

([0.608, 0.785],
[0, 0.004], [0, 0.001])

([0.744, 0.902],
[0, 0], [0, 0])

([0.482, 0.69],
[0.001, 0.006],
[0.001, 0.003])

([0.536, 0.637], [0.011, 0.026],
[0.006, 0.016])

C7
([0.689, 0.86],

[0, 0.001], [0, 0])

([0.591, 0.759],
[0.001, 0.004],

[0, 0.002])

([0.682, 0.86],
[0, 0.001], [0, 0])

([0.586, 0.733],
[0.001, 0.004],
[0.001, 0.002])

([0.441, 0.569], [0.022, 0.053],
[0.012, 0.027])

C8
([0.751, 0.898],

[0, 0.001], [0, 0])
([0.662, 0.822],

[0, 0.003], [0, 0.001])
([0.732, 0.89],

[0, 0.001], [0, 0])
([0.699, 0.83],

[0, 0.004], [0, 0.001])
([0.268, 0.441], [0.027, 0.079],

[0.033, 0.062])

C9
([0.874, 0.95],

[0, 0.002], [0, 0])
([0.749, 0.861],

[0, 0.002], [0, 0.001])
([0.889, 0.963],

[0, 0.002], [0, 0])
([0.743, 0.853],

[0, 0.003], [0, 0.001])
([0.418, 0.578], [0.011, 0.039],

[0.011, 0.026])

C10
([0.757, 0.891],
[0, 0], [0, 0])

([0.636, 0.804],
[0, 0.003], [0, 0.001])

([0.837, 0.926],
[0, 0], [0, 0])

([0.712, 0.818],
[0, 0.002], [0, 0.001])

([0.5, 0.6], [0.022, 0.044],
[0.009, 0.022])

C11
([0.753, 0.88], [0, 0],

[0, 0])

([0.521, 0.71],
[0.001, 0.005],
[0.001, 0.003])

([0.696, 0.875],
[0, 0.001], [0, 0])

([0.651, 0.769],
[0.001, 0.004],

[0, 0.002])

([0.569, 0.67], [0.005, 0.015],
[0.004, 0.012])

C12

([0.753, 0.884],
[0.001, 0.007],

[0, 0.002])

([0.53, 0.662],
[0.002, 0.011],
[0.001, 0.007])

([0.778, 0.903],
[0.001, 0.007],

[0, 0.002])

([0.544, 0.72],
[0.002, 0.013],
[0.001, 0.005])

([0.534, 0.636], [0.012, 0.032],
[0.006, 0.018])

C13
([0.677, 0.845],

[0, 0.002], [0, 0.001])

([0.338, 0.521],
[0.001, 0.006],
[0.003, 0.009])

([0.759, 0.881],
[0, 0.002], [0, 0])

([0.699, 0.83],
[0.001, 0.004],

[0, 0.001])

([0.374, 0.536], [0.022, 0.065],
[0.016, 0.035])

C14

([0.688, 0.837],
[0.001, 0.005],

[0, 0.001])

([0.407, 0.555],
[0.002, 0.008],
[0.002, 0.008])

([0.777, 0.916],
[0.001, 0.005],

[0, 0.001])

([0.699, 0.826],
[0.001, 0.007],

[0, 0.002])

([0.44, 0.569], [0.023, 0.057],
[0.012, 0.029])

Table 14. Aggregated weights at period t3.

Criteria Importance Aggregated Weights

C1 ([0.99999, 1], [0, 0.00009], [0, 0.00001])
C2 ([0.99995, 1], [0.00001, 0.00019], [0, 0.00002])
C3 ([0.99964, 1], [0.00005, 0.00062], [0, 0.00009])
C4 ([0.99912, 0.99998], [0.00009, 0.00097], [0, 0.00018])
C5 ([0.99776, 0.99995], [0.00004, 0.00077], [0.00001, 0.00053])
C6 ([0.99999, 1], [0, 0.00006], [0, 0])
C7 ([0.99985, 1], [0.00003, 0.00039], [0, 0.00005])
C8 ([0.99907, 0.99999], [0.00009, 0.00114], [0, 0.00015])
C9 ([0.99842, 0.99996], [0.00014, 0.00154], [0, 0.00024])
C10 ([0.99991, 1], [0.00002, 0.00029], [0, 0.00004])
C11 ([0.99997, 1], [0.00001, 0.00016], [0, 0.00001])
C12 ([0.99615, 0.99988], [0.00112, 0.00657], [0.00004, 0.00152])
C13 ([0.99969, 1], [0.00016, 0.00145], [0.00001, 0.00026])
C14 ([0.99762, 0.99993], [0.00082, 0.00483], [0.00004, 0.00116])

Table 15. Weighted ratings at period t3.

Students Weighted Ratings

A1 ([0.78, 0.901], [0, 0.001], [0, 0])
A2 ([0.589, 0.759], [0.001, 0.004], [0, 0.002])
A3 ([0.785, 0.91], [0, 0.001], [0, 0])
A4 ([0.693, 0.822], [0, 0.003], [0, 0.001])
A5 ([0.476, 0.599], [0.014, 0.037], [0.009, 0.022])
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Table 16. The distance of each student from A+
t3

and A−t3
at period t3.

Students d+t3
d−t3

A1 0.37844 0.776416
A2 0.352522 0.752181
A3 0.381797 0.777005
A4 0.358066 0.764391
A5 0.325366 0.738391

Table 17. Closeness coefficient at period t3.

Students Closeness Coefficients Ranking Order

A1 0.672305 4
A2 0.680890 3
A3 0.670525 5
A4 0.680998 2
A5 0.694135 1

Table 18. The dynamic rankings obtained at periods.

Time Period The Method in [14] The Proposed Method

t1 A1 ≻ A2 ≻ A3 A1 ≻ A2 ≻ A3
t2 A4 ≻ A2 ≻ A3 ≻ A1 A1 ≻ A2 ≻ A3 ≻ A4
t3 A5 ≻ A3 ≻ A4 ≻ A1 A5 ≻ A4 ≻ A2 ≻ A1 ≻ A3

At period t2, the method in [14] and the proposed method show difference in ranking order of A1

and A4. In this period, A2 ≻ A3 according to both methods, and the method in [14] ranks A4 at the top,
meanwhile, A1 is ranked at the top by the proposed method. The reason is that A4 is evaluated at the
first time and it has not appeared while A1 has historical data, particularly A1 were ranked at the top
in the previous period. In this circumstance, the proposed model better utilizes the effect of historical
data on the alternatives A1 and A4. The result of the dynamic TOPSIS model is time-dependent and
combines the effect of current and historical data.

At period t3, the result shows difference in the number of ranked alternatives and in their
preferential order. In this period, the alternative A2 is not evaluated by decision-makers and it has only
historical data. The method in [14] could not process alternative A2, meanwhile the proposed model
could. Moreover, the alternative A5 is highly ranked by both methods. However, there is a change in
the relative order of A3 and A4. The method in [14] ranks A3 ≻ A4, but the proposed method ranks
A4 ≻ A3.

The comparison between the methods again illustrates the effect of historical data over the output
of the proposed decision-making model. If an alternative is considered and it has good evaluation in
the previous periods, this alternative will have high potential to reach high order. From that point of
view, the proposed model presents good compliance with the perceived dynamic rules. It illustrates
the advantage and applicability of the model.

6. Conclusions

The proposed dynamic TOPSIS (DTOPSIS) model in dynamic interval-valued neutrosophic sets
presents its advantages to cope with dynamic and indeterminate information in decision-making
model. DTOPSIS model handles historical data including the change of criteria, alternatives,
and decision-makers during periods. The concepts of generalized dynamic interval-valued
neutrosophic set, GDIVNS, and their mathematical operators on GDIVNSs have been proposed.
Distance and weighted aggregation operators are used to construct a framework of DTOPSIS in DIVNS
environment. The proposed DTOPSIS fulfills the requirement of an issue that is evaluates tertiary
students’ performance based on the attributes of ASK model. Data of Thuongmai University students
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were used to illustrate the proper of DTOPSIS model which opened the potential application in larger
scale also. For the future works, we will extend generalized dynamic interval-valued neutrosophic sets
for some other real-world applications [27–35]. Furthermore, we hope to apply GDIVNS for dealing
with the unlimited time problems in decision-making model in dynamic neutrosophic environment
based on the idea in [36,37].
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Abstract: The associative law reflects symmetry of operation, and other various variation associative
laws reflect some generalized symmetries. In this paper, based on numerous literature and related
topics such as function equation, non-associative groupoid and non-associative ring, we have
introduced a new concept of Tarski associative groupoid (or transposition associative groupoid
(TA-groupoid)), presented extensive examples, obtained basic properties and structural characteristics,
and discussed the relationships among few non-associative groupoids. Moreover, we proposed a
new concept of Tarski associative neutrosophic extended triplet groupoid (TA-NET-groupoid) and
analyzed related properties. Finally, the following important result is proved: every TA-NET-groupoid
is a disjoint union of some groups which are its subgroups.

Keywords: Tarski associative groupoid (TA-groupoid); TA-NET-groupoid; semigroup; subgroup

1. Introduction

Generally, group and semigroup [1–5] are two basic mathematical concepts which describe
symmetry. As far as we know the term semigroup was firstly introduced in 1904 in a French book (see
book review [1]). A semigroup is called right commutative if it satisfies the identity a*(x*y) = a*(y*x) [4].
When we combine right commutative with associative law, we can get the identity:

(x * y) * z = x * (z * y) (Tarski associative law).

In this study we focused on the non-associative groupoid satisfying Tarski associative law (it
is also called transposition associative law), and this kind of groupoid is called Tarski associative
groupoid (TA-groupoid). From a purely algebraic point of view, these structures are interesting. They
produce innovative ideas and methods that help solve some old algebraic problems.

In order to express the general symmetry and algebraic operation laws which are similar with
the associative law, scholars have studied various generalized associative laws. As early as in 1924,
Suschkewitsch [6] studied the following generalized associative law (originally called “Postulate A”):

(x * a) * b = x * c,

where the element c depended upon the element a and b only, and not upon x. Apparently, the
associative law is a special case of this Postulate A when c = a * b, and Tarski associative law explained
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above is also a special case of this Postulate A when c = b * a. This fact shows that Tarski associative
groupoid (TA-groupoid) studied in our research is a natural generalization of the semigroup. At the
same time, Hosszu studied the function equations satisfying Tarski associative law in 1954 (see [7–9]);
Thedy [10] studied rings satisfying x(yz) = (yx)z, and it is symmetric to Tarski associative groupoid,
since defining x*y = yx, x(yz) = (yx)z is changed to (z*y)*x = z*(x*y); Phillips (see the Table 12 in [11])
and Pushkashu [12] also referred to Tarski associative law. These facts show that the systematic study
of Tarski associative groupoid (TA-groupoid) is helpful to promote the study of non-associative rings
and other non-associative algebraic systems.

In recent years, a variety of non-associative groupoids have been studied in depth (it should
be noted that the term “groupoid” has many different meanings, such as the concept in category
theory and algebraic topology, see [13]). An algebraic structure midway between a groupoid and a
commutative semigroup appeared in 1972, Kazim and Naseeruddin [14] introduced the concept of
left almost semigroup (LA-semigroup) as a generalization of commutative semigroup and it is also
called Abel-Grassmann’s groupoid (or simply AG-groupoid). Many different aspects of AG-groupoids
have been studied in [15–22]. Moreover, Mushtaq and Kamran [19] in 1989 introduced the notion of
AG*-groupoids: one AG-groupoid (S, *) is called AG*-groupoid if it satisfies

(x * y) * z = y * (x * z), for any x, y, z ∈ S.

Obviously, when we reverse the above equation, we can get (z*x)*y = z*(y*x), which is the Tarski
associative law (transposition associative law). In [23], a new kind of non-associative groupoid (cyclic
associative groupoid, shortly, CA-groupoid) is proposed, and some interesting results are presented.

Moreover, this paper also involves with the algebraic system “neutrosophic extended triplet
group”, which has been widely studied in recent years. The concept of neutrosophic extended triplet
group (NETG) is presented in [24], and the close relationship between NETGs and regular semigroups
has been established [25]. Many other significant results on NETGs and related algebraic systems can be
found, see [25,26]. In this study, combining neutrosophic extended triplet groups (NETGs) and Tarski
associative groupoids (TA-groupoids), we proposed the concept of Tarski associative neutrosophic
extended triplet groupoid (TA-NET-groupoid).

This paper has been arranged as follows. In Section 2, we give some definitions and properties
on groupoid, CA-groupoid, AG-groupoid and NETG. In Section 3, we propose the notion of
Tarski associative groupoid (TA-groupoid), and show some examples. In Section 4, we study
its basic properties, and, moreover, analyze the relationships among some related algebraic systems.
In Section 5, we introduce the new concept of Tarski associative NET-groupoid (TA-NET-groupoid)
and weak commutative TA-NET-groupoid (WC-TA-NET-Groupoid), investigate basic properties of TA–
NET-groupoids and weak commutative TA-NET-groupoids (WC-TA-NET-Groupoids). In Section 6,
we prove a decomposition theorem of TA-NET-groupoid. Finally, Section 7 presents the summary and
plans for future work.

2. Preliminaries

In this section, some notions and results about groupoids, AG-groupoids, CA-groupoids and
neutrosophic triplet groups are given. A groupoid is a pair (S, *) where S is a non-empty set with a
binary operation *. Traditionally, when the * operator is omitted, it will not be confused. Suppose (S, *)
is a groupoid, we define some concepts as follows:

(1) ∀a, b, c∈S, a*(b*c) = a*(c*b), S is called right commutative; if (a*b)*c = (b*a)*c, S is called left
commutative. When S is right and left commutative, then it is called bi-commutative groupoid.

(2) If a2 = a (a∈S), the element a is called idempotent.
(3) If for all x, y∈S, a*x = a*y ⇒ x = y (x*a = y*a ⇒ x = y), the element a∈S is left cancellative

(respectively right cancellative). If an element is a left and right cancellative, the element is
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cancellative. If (∀a∈S) a is left (right) cancellative or cancellative, then S is left (right) cancellative
or cancellative.

(4) If ∀a, b, c ∈S, a*(b*c) = (a*b)*c, S is called semigroup. If ∀a, b∈S, a * b = b * a, then a semigroup (S, *)
is commutative.

(5) If ∀a∈S, a2 = a, a semigroup (S, *) is called a band.

Definition 1. ([14,15]) Assume that (S, *) is a groupoid. If S satisfying the left invertive law: ∀ a, b, c ∈S,
(a*b)*c = (c*b)*a. S is called an Abel-Grassmann’s groupoid (or simply AG-groupoid).

Definition 2. ([21,22]) Let (S, *) be an AG-groupoid, for all a, b, c∈S.

(1) If (a*b)*c = b*(a*c), then S is called an AG*-groupoid.
(2) If a*(b*c) = b*(a*c), then S is called an AG**-groupoid.
(3) If a*(b*c) = c*(a*b), then S is called a cyclic associative AG-groupoid (or CA-AG-groupoid).

Definition 3. [23] Let (S, *) be a groupoid. S is called a cyclic associative groupoid (shortly, CA-groupoid), if S
satisfying the cyclic associative law:∀a, b, c ∈S, a*(b*c) = c*(a*b).

Proposition 1. [23] Let (S, *) be a CA-groupoid, then:

(1) For any a, b, c, d, x, y∈S, (a * b) * (c * d) = (d * a) * (c * b);
(2) For any a, b, c, d, x, y∈S, (a * b) * ((c * d) * (x * y)) = (d * a) * ((c * b) * (x * y)).

Definition 4. ([24,26]) Suppose S be a non-empty set with the binary operation *. If for any a ∈ S, there is a
neutral “a” (denote by neut(a)), and the opposite of “a” (denote by anti(a)), such that neut(a) ∈S, anti(a) ∈S,
and: a * neut(a) = neut(a) * a = a; a * anti(a) = anti(a) * a = neut(a). Then, S is called a neutrosophic extended
triplet set.

Note: For any a ∈S, neut(a) and anti(a) may not be unique for the neutrosophic extended triplet set
(S, *). To avoid ambiguity, we use the symbols {neut(a)} and {anti(a)} to represent the sets of neut(a) and
anti(a), respectively.

Definition 5. ([24,26]) Let (S, *) be a neutrosophic extended triplet set. Then, S is called a neutrosophic extended
triplet group (NETG), if the following conditions are satisfied:

(1) (S, *) is well-defined, that is, for any a, b ∈ S, a * b ∈S.
(2) (S, *) is associative, that is, for any a, b, c ∈S, (a * b) *c = a * (b * c).

A NETG S is called a commutative NETG if a * b = b * a, ∀a, b ∈S.

Proposition 2. ([25]) Let (S, *) be a NETG. Then (∀a∈S) neut(a) is unique.

Proposition 3. ([25]) Let (S, *) be a groupoid. Then S is a NETG if and only if it is a completely regular semigroup.

3. Tarski Associative Groupoids (TA-Groupoids)

Definition 6. Let (S, *) be a groupoid. S is called a Tarski associative groupoid (shortly, TA-groupoid), if S
satisfying the Tarski associative law (it is also called transposition associative law): (a * b) * c = a * (c * b), ∀ a,
b, c∈S.
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The following examples depict the wide existence of TA-groupoids.

Example 1. For the regular hexagon as shown in Figure 1, denote S = {θ, G, G2, G3, G4, G5}, where G, G2, G3,
G4, G5 and θ represent rotation 60, 120, 180, 240, 300 and 360 degrees clockwise around the center, respectively.
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Define the binary operation ◦ as a composition of functions in S, that is, ∀ U, V∈S, U◦V is that the
first transforming V and then transforming U. Then (S, ◦) is a TA-groupoid (see Table 1).

Table 1. Cayley table on S = {θ, G, G2, G3, G4, G5}.

◦ θ G G2 G3 G4 G5

θ θ G G2 G3 G4 G5

G G G2 G3 G4 G5 θ

G2 G2 G3 G4 G5 θ G
G3 G3 G4 G5 θ G G2

G4 G4 G5 θ G G2 G3

G5 G5 θ G G2 G3 G4

Example 2. Let S = [n, 2n] (real number interval, n is a natural number), ∀ x, y∈S. Define the multiplication
* by

x ∗ y =

{
x + y− n, i f x + y ≤ 3n
x + y− 2n, i f x + y > 3n

Then (S, *) is a TA-groupoid, since it satisfies (x * y) * z = x * (z * y), ∀ x, y, z ∈ S, the proof is as follows:
Case 1: x + y + z − n ≤ 3n. It follows that y + z ≤ x + y + z − n ≤ 3n and x + y ≤ x + y + z − n ≤ 3n.

Then (x * y)*z = (x + y − n) *z = x + y + z − 2n = x * (z + y − n) = x * (z * y).
Case 2: x + y + z − n > 3n, y + z ≤ 3n and x + y ≤ 3n. Then(x * y)*z = (x + y − n)*c = x + y + z − 3n =

x * (z + y − n) = x * (z * y).
Case 3: x + y + z − n > 3n, y + z≤ 3n and x + y > 3n. It follows that x + y + z−2n ≤ x+3n − 2n = x + n

≤ 3n. Then (x * y) *z = (x + y − 2n) *c = x + y + z − 3n = x * (z + y − n) = x * (z * y).
Case 4: x + y + z − n > 3n, y + z > 3n and x + y ≤ 3n. It follows that x + y + z − 2n ≤ 3n + c − 2n = z +

n ≤ 3n. Then (x * y) *z = (x + y − n) *z = x + y + z − 3n = x * (z + y − 2n) = x * (z * y).
Case 5: x + y + z−n > 3n, y + z > 3n and x + y > 3n. When x + y + c − 2n ≤ 3n, (x * y) *z = (x + y − 2n)

*z = x + y + z − 3n = x * (z + y − 2n) = x * (z * y); When x + y + z − 2n > 3n, (x * y) *z = (x + y − 2n)*z = x +
y + z − 4n = x * (z + y − 2n) = x * (z * y).
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Example 3. Let

S =

{(
x 0
0 0

)
: x is a integralnumber

}
∪

{(
1 0
0 1

)
,
(

1 0
0 −1

)}
.

Denote S1=

{(
a 0
0 0

)
: a isaintegralnumber

}
, S2=

{(
1 0
0 1

)
,
(

1 0
0 −1

)}
. Define the operation * on

S: ∀ x, y∈S, (1) if x∈ S1 or y∈ S1, x*y is common matrix multiplication; (2) if x∈ S2 and y∈S2, x*y =

(
1 0
0 1

)
.

Then (S, *) is a TA-groupoid. In fact, we can verify that (x*y)*z = x* (z*y) ∀ x, y, z∈S, since

(i) if x, y, z∈S1, by the definition of operation * we can get (x*y)*z = x* (y*z) =x* (z*y);

(ii) if x, y, z∈ S2, then (x*y)*z =

(
1 0
0 1

)
= x* (z*y), by (2) in the definition of operation *;

(iii) if x∈ S2, y, z∈ S1, then (x*y)*z = y*z = z*y = x* (z*y), by (1) in the definition of operation *;

(iv) if x∈ S2, y∈ S2, z∈ S1, then (x*y)*z =

(
1 0
0 1

)
*z = z = z*y = x* (z*y), by the definition of operation *;

(v) if x∈ S2, y∈ S1, z∈ S2, then (x*y)*z = y*z = y = z*y = x* (z*y), by the definition of operation *;
(vi) if x∈ S1, y∈ S2, z∈ S1, then (x*y)*z = x*z = x* (z*y), by (1) in the definition of operation *;
(vii) if x∈ S1, y∈ S1, z∈ S2, then (x*y)*z = x*y = x* (z*y), by (1) in the definition of operation *;

(vii) if x∈S1, y∈S2, z∈S2, then (x*y)*z = x*z = x = x*

(
1 0
0 1

)
= x* (z*y), by (1) and (2) in the definition of

operation *.

Example 4. Table 2 shows the non-commutative TA-groupoid of order 5. Since (b * a) * b , b * (a * b), (a * b) * b
, (b * b) * a, so (S, *) is not a semigroup, and it is not an AG-groupoid.

Table 2. Cayley table on S = {a, b, c, d, e}.

* a b c d e

a a a a a a
b d d c c b
c d c c c c
d d d c c c
e d c c c e

From the following example, we know that there exists TA-groupoid which is a non- commutative
semigroup, moreover, we can generate some semirings from a TA-groupoid.

Example 5. As shown in Table 3, put S = {s, t, u, v, w}, and define the operations * on S. Then we can verify
through MATLAB that (S, *) is a TA-groupoid, and (S, *) is a semigroup.

Table 3. Cayley table on S = {s, t, u, v, w}.

* s t u v w

s s s s s s
t t t t t t
u s s u u s
v s s u v s
w t t w w t
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Now, define the operation + on S as Table 4 (or Table 5), then (∀m, n, p∈S) (m + n) * p = m * p + n * p and
(S; +, *) is a semiring (see [27]).

Table 4. A Commutative semigroup (S, +).

+ s t u v w

s s t u u w
t t s w w u
u u w u u w
v u w u u w
w w u w w u

Table 5. Another commutative semigroup (S, +) with unit s.

+ s t u v w

s s t u v w
t t t w w w
u u w u u w
v v w u u w
w w w w w w

Proposition 4. (1) If (S, *) is a commutative semigroup, then (S, *) is a TA-groupoid. (2) Let (S, *) be a
commutative TA-groupoid. Then (S, *) is a commutative semigroup.

Proof. It is easy to verify from the definitions. �

4. Various Properties of Tarski Associative Groupoids (TA-Groupoids)

In this section, we discussed the basic properties of TA-groupoids, gave some typical examples,
and established its relationships with CA-AG-groupoids and semigroups (see Figure 2). Furthermore,
we discussed the cancellative and direct product properties that are important for exploring the
structure of TA-groupoids.
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Proposition 5. Let (S, *) be a TA-groupoid. Then ∀ m, n, p, r, s, t ∈S:

(1) (m*n) *(p*r) = (m*r)*(p*n);
(2) ((m*n)*(p*r))*(s*t) = (m*r)*((s*t)*(p*n)).
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Proof. (1) Assume that (S, *) is a TA-groupoid, then for any m, n, p, r ∈ S, by Definition 6, we have

(m * n) * (p * r) = m * ((p * r) * n) = m * (p * (n * r)) = (m * (n * r)) * p = ((m * r) * n) * p = (m * r) * (p * n).

(2) For any m, n, p, r, s, t ∈S, by Definition 6, we have

((m * n) * (p * r)) * (s * t) = (m * n) * ((s * t) * (p * r)) = (m * n) * ((s * r) * (p * t)) = ((m * n) * (p * t)) * (s * r)
= ((m*n)*r)*(s* (p*t)) = ((m*n) *r)*((s*t) *p) = ((m*n) *p)*((s*t) *r)

= (m*(p*n))*((s*t)*r) = (m*r)*((s*t)*(p*n)). �

Theorem 1. Assume that (S, *) is a TA-groupoid.

(1) If ∃e∈S such that (∀a∈S) e*a=a, then (S, *) is a commutative semigroup.
(2) If e∈S is a left identity element in S, then e is an identity element in S.
(3) If S is a right commutative CA-groupoid, then S is an AG-groupoid.
(4) If S is a right commutative CA-groupoid, then S is a left commutative CA-groupoid.
(5) If S is a left commutative CA-groupoid, then S is a right commutative CA-groupoid.
(6) If S is a left commutative CA-groupoid, then S is an AG-groupoid.
(7) If S is a left commutative semigroup, then S is a CA-groupoid.

Proof. It is easy to verify from the definitions, and the proof is omitted. �

From the following example, we know that a right identity element in S may be not an identity
element in S.

Example 6. TA-groupoid of order 6 is given in Table 6, and e6 is a right identity element in S, but e6 is not a left
identity element in S.

Table 6. Cayley table on S = {e1, e2, e3, e4, e5, e6}.

* e1 e2 e3 e4 e5 e6

e1 e1 e1 e1 e1 e1 e1
e2 e2 e2 e2 e2 e2 e2
e3 e1 e1 e4 e6 e1 e3
e4 e1 e1 e6 e3 e1 e4
e5 e2 e2 e5 e5 e2 e5
e6 e1 e1 e3 e4 e1 e6

By Theorem 1 (1) and (2) we know that the left identity element in a TA-groupoid is unique.
But the following example shows that the right identity element in a TA-groupoid may be not unique.

Example 7. The following non-commutative TA-groupoid of order 5 given in Table 7. Moreover, x1 and x2 are
right identity elements in S.

Table 7. Cayley table on S = {x1, x2, x3, x4, x5}.

* x1 x2 x3 x4 x5

x1 x1 x1 x3 x3 x5
x2 x2 x2 x4 x4 x5
x3 x3 x3 x1 x1 x5
x4 x4 x4 x2 x2 x5
x5 x5 x5 x5 x5 x5
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Theorem 2. Let (S, *) be a TA-groupoid.

(1) If S is a left commutative AG-groupoid, then S is a CA-groupoid.
(2) If S is a left commutative AG-groupoid, then S is a right commutative TA-groupoid.
(3) If S is a right commutative AG-groupoid, then S is a left commutative TA-groupoid
(4) If S is a right commutative AG-groupoid, then S is a CA-groupoid.
(5) If S is a left commutative semigroup, then S is an AG-groupoid.

Proof. It is easy to verify from the definitions, and the proof is omitted. �

Theorem 3. Let (S, *) be a groupoid.

(1) If S is a CA-AG-groupoid and a semigroup, then S is a TA-groupoid.
(2) If S is a CA-AG-groupoid and a TA-groupoid, then S is a semigroup.
(3) If S is a semigroup, TA-groupoid and CA-groupoid, then S is an AG-groupoid.
(4) If S is a semigroup, TA-groupoid and AG-groupoid, S is a CA-groupoid.

Proof. (1) If (S, *) is a CA-AG-groupoid and a semigroup, then by Definition 2, ∀ a, b, c∈S:

b * (c * a) = c * (a * b) = (c * a) * b = (b * a) * c.

It follows that (S, *) is a TA-groupoid by Definition 6.
(2) Assume that (S, *) is a CA-AG-groupoid and a TA-groupoid, by Definition 2, ∀ a, b, c∈S:

a * (b * c) = c * (a * b) = (c * b) * a = (a * b) * c.

This means that (S, *) is a semigroup.
(3) Assume that (S, *) is a semigroup, TA-groupoid and CA-groupoid. Then, we have (∀ a, b, c∈S):

(a * b) * c = a * (b * c) = c * (a * b) = (c * b) * a.

Thus, (S, *) is an AG-groupoid.
(4) Suppose that (S, *) is a semigroup, TA-groupoid and AG-groupoid. ∀ a, b, c∈S:

c * (b * a) = (c * b) * a = (a * b) * c = a * (c * b).

That is, (S, *) is a CA-groupoid by Definition 3. �

Example 8. Put S = {e, f, g, h, i}. The operation * is defined on S in Table 8. We can get that (S, *) is a
CA-AG-groupoid. But (S, *) is not a TA-groupoid, due to the fact that (i * h) * i , i * (i * h). Moreover, (S, *) is
not a semigroup, because (i * i) * i , i * (i * i).

Table 8. Cayley table on S = {e, f, g, h, i}.

* e f g h i

e e e e e e
f e e e e e
g e e e e f
h e e e e f
i e e e g h

From Proposition 4, Theorems 1–3, Examples 4–5 and Example 8, we get the relationships among
TA-groupoids and its closely linked algebraic systems, as shown in Figure 2.
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Theorem 4. Let (S, *) be a TA-groupoid.

(1) Every left cancellative element in S is right cancellative element;
(2) if x, y∈S and they are left cancellative elements, then x*y is a left cancellative element;
(3) if x is left cancellative and y is right cancellative, then x*y is left cancellative;
(4) if x*y is right cancellative, then y is right cancellative;
(5) If for all a∈S, a2 = a, then it is associative. That is, S is a band.

Proof. (1) Suppose that x is a left cancellative element in S. If (∀p, q ∈S) p*x = q*x, then:

x*(x*(x*p)) = (x*(x*p))*x = ((x*p)*x)*x = (x*p)*(x*x)
= x*((x*x)*p) = x*(x*(p*x)) = x*(x*(q*x))
= x*((x*x)*q) = (x*q)*(x*x) = ((x*q)*x)*x

= (x*(x*q))*x = x*(x*(x*q)).

From this, applying left cancellability, x*(x*p) = x*(x*q). From this, applying left cancellability two
times, we get that p= q. Therefore, x is right cancellative.

(2) If x and y are left cancellative, and (∀p, q∈S) (x*y)*p = (x*y)*q, there are:

x*(x*(y*p)) = x*((x*p)*y) = (x*y)*(x*p)
= (x*p)*(x*y) (by Proposition 5 (1))

= x((x*y)*p) = x((xy)*p) = x((xy)*q) = x((x*y)*q)
= (x*q)*(x*y) = (x*y)*(x*q) = x*((x*q)*y)

= x *(x*(y*q)).

Applying the left cancellation property of x, we have y*p= y*q. Moreover, since y is left cancellative,
we can get that p = q. Therefore, x*y is left cancellative.

(3) Suppose that x is left cancellative and y is right cancellative. If (∀p, q∈S) (x*y)*p = (x*y)*q,
there are:

x*(p*y) = (x*y)*p = (x*y)*q = x*(q*y).

Applying the left cancellation property of x, we have p*y = q*y. Moreover, since y is right
cancellative, we can get that p = q. Therefore, x*y is left cancellative.

(4) If x*y is right cancellative, and p*y = q*y, p, q∈S, there are:

p*(x*y) = (p*y)*x = (q*y)*x = q*(x*y).

Applying the right cancellation property of x*y, we have p = q. Hence, we get that y is
right cancellative. �

(5) Assume that for all a∈S, a2=a. Then, ∀ r, s, t∈S,

r*(s*t) = (r*(s*t))*(r*(s*t)) = r*((r*(s*t))*(s*t))
= r*(r*((s*t)*(s*t))) = r*(r*(s*t)).

(1)

Similarly, according to (1) we can get r*(t*s) = r*(r*(t*s)). And, by Proposition 5 (1), we have

r*(r*(s*t)) = r*((r*t)*s) = (r*s)*(r*t) = (r*t)*(r*s)
= r*((r*s)*t) = r*(r*(t*s)).
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Combining the results above, we get that r*(s*t) = r*(r*(s*t)) = r*(r*(t*s)) = r*(t*s). Moreover, by
Definition 6, (r*s)*t = r*(t*s). Thus

(r*s)*t = r*(t*s) = r*(s*t).

This means that S is a semigroup, and for all a∈S, a2 = a.
Therefore, we get that S is a band. �

Example 9. TA-groupoid of order 4, given in Table 9. It is easy to verify that (S, *) is a band, due to the fact that
x * x = x, y * y = y, z * z = z, u * u = u.

Table 9. Cayley table on S = {x, y, z, u}.

* x y z u

x x x x x
y y y z y
z u u z u
u u u u u

Definition 7. Assume that (S1, *1) and (S2, *2) are TA-groupoids, S1×S2 = {(a, b)|a∈S1, b∈S2}. Define the
operation * on S1 × S2 as follows:

(a1, a2) * (b1, b2) = (a1*1 b1, a2*2b2), for any (a1, a2), (b1, b2)∈S1×S2.

Then (S1×S2, *) is called the direct product of (S1, *1) and (S2, *2).

Theorem 5. If (S1, *1) and (S2, *2) are TA-groupoids, then their direct product (S1 × S2, *) is a TA-groupoid.

Proof. Assume that (a1, a2), (b1, b2), (c1, c2)∈S1 × S2. Since

((a1, a2) * ((b1, b2)) * (c1, c2) = (a1 *1 b1, a2 *2 b2) * (c1, c2)
= ((a1 *1 b1)*1c1, (a2 *2 b2)*2 c2) = (a1 *1 (c1 *1 b1), a2 *2 (c2 *2 b2))
= (a1, a2) * (c1 *1 b1, c2*2 b2) = (a1, a2) * ((c1, c2) * (b1, b2)).

Hence, (S1 × S2, *) is a TA-groupoid. �

Theorem 6. Let (S1, * 1) and (S2, * 2) be two TA-groupoids, if x and y are cancellative (x ∈S1, y ∈S2), then (x,
y) ∈S1 ×S2 is cancellative.

Proof. Using Theorem 5, we can get that S1 × S2 is a TA-groupoid. Moreover, for any (s1, s2), (t1, t2) ∈
S1 × S2, if (x, y) * (s1, s2) = (x, y) * (t1, t2), there are:

(xs1, ys2) = (xt1, yt2)
xs1 = xt1, ys2 = yt2.

Since x and y are cancellative, so s1 = t1, s2 = t2, and (s1, s2) = (t1, t2).
Therefore, (x, y) is cancellative. �

5. Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids) and Weak
Commutative TA-NET-Groupoids (WC-TA-NET-Groupoids)

In this section, we first propose a new concept of TA-NET-groupoids and discuss its basic
properties. Next, this section will discuss an important kind of TA-NET-groupoids, called weak
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commutative TA-NET-groupoids (WC-TA-NET-groupoids). In particular, we proved some well-known
properties of WC-TA-NET-groupoids.

Definition 8. Let (S, *) be a neutrosophic extended triplet set. If

(1) (S, *) is well-defined, that is, (∀x, y∈S) x*y ∈ S;
(2) (S, *) is Tarski associative, that is, for any x, y, z ∈S (x*y)*z = x*(z*y).

Then (S, *) is called a Tarski associative neutrosophic extended triplet groupoid (or TA-NET-groupoid). A
TA-NET-groupoid (S, *) is called to be commutative, if (∀ x, y ∈ S) x*y = y*x.

According to the definition of the TA-NET-groupoid, element a may have multiple neutral
elements neut(a). We tried using the MATLAB math tools to find an example showing that an element’s
neutral element is not unique. Unfortunately, we did not find this example. This leads us to consider
another possibility: every element in a TA-NET-groupoid has a unique neutral element? Fortunately,
we successfully proved that this conjecture is correct.

Theorem 7. Let (S, *) be a TA-NET-groupoid. Then the local unit element neut(a) is unique in S.

Proof. For any a∈S, if there exists s, t ∈{neut(a)}, then ∃ m, n∈S there are:

a * s = s * a = a and a * m = m * a = s; a * t = t * a = a and a * n = n * a = t.

(1) s = t * s. Since
s = a * m = (t * a) * m = t * (m * a) = t * s.

(2) t = t * s. Since
t = n * a = n * (s * a) = (n * a) * s = t * s.

Hence s = t and neut(a) is unique for any a∈S. �

Remark 1. For element a in TA-NET-groupoid (S, *), although neut(a) is unique, we know from Example 10
that anti(a) may be not unique.

Example 10. TA-NET-groupoid of order 6, given in Table 10. While neut(∆) = ∆, {anti(∆)} = {∆, Γ, I, ϑ, K}.

Table 10. Cayley table on S = {∆, Γ, I, ϑ, K, Λ}.

* ∆ Γ I ϑ K Λ

∆ ∆ ∆ ∆ ∆ ∆ ∆

Γ ∆ Γ I ϑ K ∆

I ∆ I K Γ ϑ ∆

ϑ ∆ ϑ Γ K I ∆

K ∆ K ϑ I Γ ∆

Λ Λ Λ Λ Λ Λ Λ

Theorem 8. Let (S, *) be a TA-NET-groupoid. Then ∀ x∈S:

(1) neut(x) *neut(x) = neut(x);
(2) neut(neut(x)) = neut(x);
(3) anti(neut(x))∈ {anti(neut(x))}, x = anti(neut(x)) *x.

Proof. (1) For any x∈S, according to x*anti(x) = anti(x)*x = neut(x), we have

neut(x)*neut(x) = neut(x)*((anti(x)*x) = (neut(x)*x)*anti(x) = x*(anti(x)) = neut(x).
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(2) ∀x∈S, by the definition of neut(neut(x)), there are:

neut(neut(x))*neut(x) = neut(x)*neut(neut(x)) = neut(x).

Thus,

neut(neut(x))*x = neut(neut(x))*(x*neut(x)) = (neut(neut(x))*neut(x))*x = neut(x)*x = x;
x*neut(neut(x)) = (x*neut(x))*neut(neut(x)) = x*(neut(neut(x))*neut(x)) = x*neut(x) = x.

Moreover, we can get:

anti(neut(x))*neut(x) = neut(x)*anti(neut(x)) = neut(neut(x)).

Then,

(anti(neut(x))*anti(x))*x = anti(neut(x))* (x*anti(x)) = anti(neut(x))*neut(x) = neut(neut(x));
x*(anti(neut(x))*anti(x)) = (x*anti(x))*anti(neut(x)) = neut(x)*anti(neut(x)) = neut(neut(x)).

Combining the results above, we get

neut(neut(x))*x = x*neut(neut(x)) = x;
(anti(neut(x))*anti(x))*x = x*(anti(neut(x))*anti(x)) = neut(neut(x)).

This means that neut(neut(x)) is a neutral element of x (see Definition 4). Applying Theorem 6, we
get that neut(neut(x)) = neut(x).

(3) For all x∈S, using Definition 8 and above (2),

anti(neut(x))*x = anti(neut(x))*(x*(neut(x))) = (anti(neut(x))*neut(x))*x
= neut(neut(x))*x = neut(x)*x = x.

Thus, anti(neut(x))*x = x. �

Example 11. TA-NET-groupoid of order 4, given in Table 11. And neut(α) = α, neut(β) = β, neut(δ) = δ,
{anti(α)} = {α, δ, ε}. While anti(α) = δ, neut(anti(α)) = neut(δ) = δ , α = neut(α).

Table 11. Cayley table on S = {α, β, δ, ε}.

* α β δ ε

α α α α α
β β β β β
δ α α δ δ
ε α α δ ε

Theorem 9. Let (S, *) be a TA-NET-groupoid. Then ∀ x∈ S, ∀ m, n∈{anti(a)}, ∀ anti(a)∈{anti(a)}:

(1) m*(neut(x)) = neut(x)*n;
(2) anti(neut(x))*anti(x)∈{anti(x)};
(3) neut(x)*anti(n) = x*neut(n);
(4) neut(m)*neut(x) = neut(x)*neut(m) = neut(x);
(5) (n*(neut(x))*x = x*(neut(x)*n) = neut(x);
(6) neut(n)*x = x.
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Proof. (1) By the definition of neutral and opposite element (see Definition 4), applying Theorem 6,
there are:

(2) By Theorem 7(2), there are:

m*x = x*m = neut(x), n*x = x*n = neut(x).
m*(neut(x)) = m*(n*x) = (m*x)*n = neut(x)*n.

x*[anti(neut(x))*anti(x)] = [x*(anti(x))]*anti(neut(x)) = neut(x)*anti(neut(x))
= neut(neut(x)) = neut(x).

[anti(neut(x))*anti(x)]*x = anti(neut(x))*[x*(anti(x)] =anti(neut(x))*neut(x)
= neut(neut(x)) = neut(x).

Thus, anti(neut(x))*anti(x)∈{anti(x)}.

(3) For any x∈S, n∈{anti(a)}, by x*n = n*x = neut(x) and n*anti(n) = anti(n)*n = neut(n), we get

x*neut(n) = x*[anti(n)*n] = (x*n)*anti(n) = neut(x)*anti(n).

This shows that neut(x)*anti(n) = x*neut(n).

(4) For any x∈S, m∈{anti(x)}, by x*m = m*x = neut(x) and anti(m)*m = m*anti(m) = neut(m), there are:

neut(m)*neut(x) = neut(m)*(x*m) = (neut(m)*m)*x = m*x = neut(x).
neut(x)*neut(m) = neut(x)*[m*(anti(m))] = [neut(x)*anti(m)]*m.

Applying (3), there are:

neut(x)*neut(m) = [neut(x)*anti(m)]*m = [x*(neut(m))]*m = x*(m*(neut(m)) = x*m= neut(x).

That is,
neut(m)*neut(x) = neut(x)*neut(m) = neut(x).

(5) By x*n = n*x = neut(x), there are:

[n*(neut(x))]*x = n*(x*(neut(x))) = n*x = neut(x).
x*[neut(x)*n] = (x*n)*(neut(x)) = neut(x)*neut(x) = neut(x).

Thus, [n*(neut(x))]*x = x*[neut(x)*n] = neut(x).

(6) For any x∈S, n∈{anti(x)}, by x*n = n*x = neut(x),

neut(n)*x = neut(n)*[x*(neut(x))] = [neut(n)*neut(x)]*x.

From this, applying (4), there are:

neut(n)*x = [neut(n)*neut(x)]*x = neut(x)*x = x.

Hence, neut(n)*x = x. �

Proposition 6. Let (S, *) be a TA-NET-groupoid. Then ∀ x, y, z ∈S:

(1) y*x = z*x, implies neut(x)*y = neut(x)*z;
(2) y*x = z*x, if and only if y*neut(x) = z*neut(x).
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Proof. (1) For any x, y∈S, if y*x = z*x, then anti(x)*(y*x) = anti(x)*(z*x). By Definition 6 and Definition 8
there are:

anti(x)*(y*x) = (anti(x)*x)*y = neut(x)*y;
anti(x)*(z*x) = (anti(x)*x)*z = neut(x)*z.

Thus neut(x)*y = anti(x)*(y*x) = anti(x)*(z*x) = neut(x)*z.

(2) For any x, y∈S, if y*x = z*x, then (y*x)*anti(x) = (z*x)*anti(x). Since

(y*x)*anti(x) = y*(anti(x)*x) = y*neut(x); (z*x)*anti(x) = z*(anti(x)*x) = z*neut(x).

It follows that y*neut(x) = z*neut(x). This means that y*x = z*x implies y*neut(x) = z*neut(x).
Conversely, if y*neut(x) = z*neut(x), then (y*neut(x))*x = (z*neut(x))*x. Since

(y*neut(x))*x = y*(x*neut(x)) = y*x; (z*neut(x))*x = z*(x*neut(x)) = z*x.

Thus, y*x = z*x. Hence, y*neut(x) = z*neut(x) implies y*x = z*x. �

Proposition 7. Suppose that (S, *) is a commutative TA-NET-groupoid. ∀x, y∈S:

(1) neut(x) * neut(y) = neut(x * y);
(2) anti(x) * anti(y) ∈ {anti(x * y)}.

Proof. (1) For any x, y∈S, since S is commutative, so x * y = y* x. From this, by Proposition 5(1), we have

(x*y)*(neut(x)*neut(y)) = (y*x)*(neut(x)*neut(y)) = (y*neut(y))*(neut(x)*x) = y*x = x*y;
(neut(x)*neut(y))*(x*y) = (neut(x)*neut(y))*(y*x) = (neut(x)*x)*(y*(neut(y)) = x*y.

Moreover, using Proposition 5(1),

(anti(x)*anti(y))*(x*y) = (anti(x)*anti(y))*(y*x) = (anti(x)*x)*(y*anti(y)) = neut(x)*neut(y);
(x*y)*(anti(x)*anti(y)) = (x*y)*(anti(y)*anti(x)) = (x*anti(x))*(anti(y)*y) = neut(x)*neut(y).

This means that neut(x)*neut(y) is a neutral element of x*y (see Definition 4). Applying Theorem 6,
we get that neut(x)*neut(y) = neut(x*y).

(2) For any anti(x)∈{anti(x)}, anti(y)∈{anti(y)}, by the proof of (1) above,

(anti(x)*anti(y))*(x*y) = (x*y)*(anti(x)*anti(y)) = neut(x)*neut(y).

From this and applying (1), there are:

(anti(x)*anti(y))*(x*y) = (x*y)*(anti(x)*anti(y)) = neut(x*y).

Hence, anti(x)*anti(y) ∈{anti(x*y)}. �

Definition 9. Let (S, *) be a TA-NET-groupoid. If (∀x, y∈S) x * neut(y) = neut(y) * x, then we said that S is a
weak commutative TA-NET-groupoid (or WC-TA-NET-groupoid).

Proposition 8. Let (S, *) be a TA-NET-groupoid. Then (S, *) is weak commutative⇔ S satisfies the following
conditions (∀x, y∈S):

(1) neut(x)*neut(y) = neut(y)*neut(x).
(2) neut(x)*(neut(y)*x) = neut(x)*(x*neut(y)).
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Proof. Assume that (S, *) is a weak commutative TA-NET-groupoid, using Definition 9, there are
(∀x, y∈S):

neut(x)*neut(y) = neut(y)*neut(x),
neut(x)*(neut(y)*x) = neut(x)*(x*neut(y)).

In contrast, suppose that S satisfies the above conditions (1) and (2). there are(∀x, y∈S):

x*neut(y) = (neut(x)*x)*neut(y) = neut(x)*(neut(y)*x) = neut(x)*(x*neut(y))=
(neut(x)*neut(y))*x =(neut(y)*neut(x))*x = neut(y)*(x*neut(x)) = neut(y)*x.

From Definition 9 and this we can get that (S, *) is a weak commutative TA-NET-groupoid. �

Theorem 10. Assume that (S, *) is a weak commutative TA-NET-groupoid. Then ∀ x, y∈S:

(1) neut(x)*neut(y) = neut(y*x);
(2) anti(x)*anti(y) ∈{anti(y*x)};
(3) (S is commutative)⇔ (S is weak commutative).

Proof. (1) By Proposition 5 (1)), there are:

[neut(x)*neut(y)]*(y*x) = [neut(x)*x]*[y*neut(y)] = [neut(x)*x]*[neut(y)*y] =
[neut(x)*y]*[neut(y)*x] = [y*neut(x)]*[x*neut(y)] = [y*neut(y)]*[x*neut(x)] = y*x.

And, (y*x)*[neut(x)*neut(y)] = [y*neut(y)]*[neut(x)*x] = y*x. That is,

[neut(x)*neut(y)]*(y*x) = (y*x)*[neut(x)*neut(y)] = y*x.

And that, there are:

[anti(x)*anti(y)]*(y*x) = [anti(x)*x]*[y*anti(y)] = neut(x)*neut(y);
(y*x)*[anti(x)*anti(y)] = [y*anti(y)] * [anti(x)*x] = neut(y)*neut(x) = neut(x)*neut(y).

That is,
[anti(x)*anti(y)]*(y*x) = (y*x)*[anti(x)*anti(y)] = neut(x)*neut(y).

Thus, combining the results above, we know that neut(x)*neut(y) is a neutral element of y*x.
Applying Theorem 6, we get neut(x)*neut(y) = neut(y*x).

(2) Using (1) and the following result (see the proof of (1))

[anti(x)*anti(y)]*(y*x) = (y*x)*[anti(x)*anti(y)] = neut(x)*neut(y)

we can get that anti(x)*anti(y)∈{anti(y*x)}.

(3) If S is commutative, then S is weak commutative.

On the other hand, suppose that S is a TA-NET-groupoid and S is weak commutative.
By Proposition 5 (1) and Definition 9, there are:

x*y = (x*neut(x))*(y*neut(y)) = (x*neut(y))*(y*neut(x)) = (neut(y)*x)*(neut(x)*y)
= (neut(y)*y)*(neut(x)*x) = y*x.

Therefore, S is a commutative TA-NET-groupoid. �
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6. Decomposition Theorem of TA-NET-Groupoids

This section generalizes the well-known Clifford’s theorem in semigroup to TA-NET-groupoid,
which is very exciting.

Theorem 11. Let (S, *) be a TA-NET-groupoid. Then for any x ∈S, and all m ∈{anti(a)}:

(1) neut(x)*m∈{anti(x)};
(2) m*neut(x) = (neut(x)*m)*neut(x);
(3) neut(x)*m = (neut(x)*m)*neut(x);
(4) m*neut(x) = neut(x)*m;
(5) neut(m*(neut(x))) = neut(x).

Proof. (1) For any x∈S, m∈{anti(x)}, we have m*x = x*m = neut(x). Then, by Definition 6, Theorem 7 (1)
and Proposition 5 (1), there are:

x*[neut(x)*m] = (x*m)*neut(x) = neut(x)*neut(x) = neut(x);
[neut(x)*m]*x = [neut(x)*m]*[x*neut(x)] = [neut(x)*neut(x)]*(x*m) = [neut(x)*neut(x)]*neut(x) = neut(x).

This means that neut(x)*m∈{anti(x)}.

(2) If x∈S, m∈{anti(x)}, then m*x = x*m = neut(x). Applying (1) and Theorem 8 (1),

m*neut(x) = neut(x)*[neut(x)*m].

On the other hand, using Theorem 7 (1) and Proposition 5 (1), there are:

neut(x)*[neut(x)*m] = (neut(x)*neut(x))*[neut(x)*m] = [neut(x)*m]*[neut(x)*neut(x)] = [neut(x)*m]*neut(x).

Combining two equations above, we get m*neut(x) = (neut(x)*m)*neut(x).

(3) Assume that m∈{anti(x)}, then x*m = m*x = neut(x) and m*neut(m) = neut(m)*m = m.
By Theorem 7 (1), Proposition 5 (1) and Theorem 8 (4), there are:

neut(x)*m = [neut(x)*neut(x)]*(neut(m)*m) = (neut(x)*m)[neut(m)*neut(x)] = (neut(x)*m)*neut(x).

That is, neut(x)*m = (neut(x)*m)*neut(x).

(4) It follows from (2) and (3).

(5) Assume m∈{anti(x)}, then x*m = m*x = neut(x). Denote t = m*neut(x). We prove the
following equations,

t*neut(x) = neut(x)*t = t; t*x = x*t = neut(x).

By (3) and (4), there are:

t*neut(x) = (m*neut(x))*neut(x) = (neut(x)*m)*neut(x) = neut(x)*m = m*neut(x) = t.

Using Definition 6, Theorem 7 (1) and Theorem 8 (1), there are:

neut(x)*t = neut(x)*[m*(neut(x))] = (neut(x)*neut(x))*m = neut(x)*m = m*neut(x) = t.
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Moreover, applying Proposition 5 (1), Theorem 7 (1) and Definition 6, there are:

t*x = [m*(neut(x))]*x = [m*neut(x)] * (neut(x)*x) = (m*x)*[neut(x)*neut(x)]
= neut(x)*[neut(x)*neut(x)] = neut(x).

x*t = x*[m*(neut(x))] = [x*neut(x)]*m = x*m = neut(x).

Thus,
t*neut(x) = neut(x)*t = t; t*x = x*t = neut(x).

By the definition of neutral element and Theorem 6, we get that neut(x) is the neutral element of t
= m*neut(x). This means that neut(m*(neut(x))) = neut(x). �

Theorem 12. Let (S, *) be a TA-NET-groupoid. Then the product of idempotents is still idempotent. That is for
any y1, y2 ∈S, (y1 * y2) * (y1 * y2) = y1 * y2.

Proof. Assume that y1, y2 ∈S and (y1*y1 = y1, y2*y2 = y2), then:

(y1*y2)*(y1*y2) = y1*[(y1*y2)*y2] = y1*[y1*(y2*y2)] = y1*(y1*y2).

From this, applying Definition 4 and Definition 6,

y1*y2 = [neut(y1*y2)]*(y1*y2) = [anti(y1*y2)*(y1*y2)]*(y1*y2) = anti(y1*y2)*[(y1*y2)*(y1*y2)]
= anti(y1*y2)*[y1*(y1*y2)] (By (y1*y2)*(y1*y2) = y1*(y1*y2))

= [anti(y1*y2)*(y1*y2)]*y1 = neut(y1*y2)*y1.

Thus,
(y1*y2)*(y1*y2) = y1*(y1*y2) = (y1*y2)*y1

= [neut(y1*y2)*y1]*y1 (By y1*y2 = [neut(y1*y2)]*y1)
= neut(y1*y2)*(y1*y1) = neut(y1*y2)*y1 = y1*y2.

This means that the product of idempotents is still idempotent. �

Example 12. TA-NET-groupoid of order 4, given in Table 12, and the product of any two idempotent
elements is still idempotent, due to the fact that,

(z1* z2)*(z1* z2) = z1* z2, (z1* z3)*(z1* z3) = z1* z3, (z1* z4) * (z1* z4) = z1* z4,
(z2* z3)*(z2* z3) = z2* z3, (z2* z4)*(z2* z4) = z2* z4, (z3* z4)*(z3* z4) = z3* z4.

Table 12. Cayley table on S = {z1, z2, z3, z4}.

* z1 z2 z3 z4

z1 z1 z1 z1 z4
z2 z2 z2 z2 z4
z3 z1 z1 z3 z4
z4 z4 z4 z4 z4

Theorem 13. Let (S, *) be a TA-NET-groupoid. Denote E(S) be the set of all different neutral element in S,
S(e) = {a∈S| neut(a) = e} (∀ e∈E(S)). Then:

(1) S(e) is a subgroup of S.
(2) for any e1, e2∈E(S), e1,e2⇒ S(e1) ∩ S(e2) = ∅.
(3) S = ∪e∈E(S)S(e).
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Proof. (1) For any m∈ S(e), neut(m) = e. That is, e is an identity element in S(e). And, using Theorem 7
(1), we get e * e = e.

Assume that m, n∈S(e), then neut(m) = neut(n) = e. We’re going to prove that neut(m*n) = e.
Applying Definition 6, Proposition 5 (1),

(m*n)*e = m*(e*n) = m*n;
e*(m*n) = (e*e)*(m*n) = (e*n)*(m*e) = (e*n)*m

= (e*n)*(e*m) = (e*m)*(e*n) = m*n.

On the other hand, for any anti(m)∈{anti(m)}, anti(n)∈{anti(n)}, by Proposition 5 (1), we have

(m*n)*[anti(m)*anti(n)] = (m*anti(n))*(anti(m)*n) = [(m*anti(n))*n]*anti(m)
= [m*(n*anti(n))]*anti(m) = (m*neut(n))*anti(m) = (m*e)*anti(m)

= m*anti(m) = neut(m) = e.
[anti(m)*anti(n)]*(m*n) = [anti(m)*n]*[m*anti(n)] = anti(m)*[(m*anti(n))*n]

= anti(m)* [m*(n*anti(n))] = anti(m)*(m*neut(n)) = anti(m)*(m*e)
= anti(m)*m = neut(m) = e.

From this, using Theorem 6 and Definition 4, we know that neut(m*n) = e. Therefore, m*n∈S(e),
i.e., (S(e), *) is a sub groupoid.

Moreover, ∀ m∈S(e), ∃q∈S such that q∈{anti(m)}. Applying Theorem 10 (1)(2)(3), q*neut(m) ∈
{anti(m)}; and applying Theorem 10 (5), neut(q*neut(m)) = neut(m).

Put t = q*neut(m), we get

t = q*neut(m)∈{anti(m)},
neut(t) = neut(q*neut(m)) = neut(m) = e.

Thus t∈{anti(m)}, neut(t) = e, i.e., t∈S(e) and t is the inverse element of m in S(e).
Hence, (S(e), *) is a subgroup of S.

(2) Let x∈S(e1) ∩ S(e2) and e1, e2∈E(S). We have neut(x) = e1, neut(x) = e2. Using Theorem 6, e1 = e2.
Therefore, e1 , e2⇒ S(e1) ∩ S(e2) = ∅.

(3) For any x∈S, there exists neut(x)∈S. Denote e = neut(x), then e∈E(S) and x∈S(e).
This means that S = ∪e∈E(S)S(e). �

Example 13. Table 13 represents a TA-NET-groupoid of order 5. And,

neut(m1) = m4, anti(m1) = m1; neut(m2) = m3, anti(m2) = m2;
neut(m3) = m3, anti(m3) = {m3, m5}; neut(m4) = m4, anti(m4) = m4; neut(m5) = m5, anti(m5) = m5.

Table 13. Cayley table on S = {m1, m2, m3, m4, m5}.

* m1 m2 m3 m4 m5

m1 m4 m4 m1 m1 m1
m2 m3 m3 m2 m2 m2
m3 m2 m2 m3 m3 m3
m4 m1 m1 m4 m4 m4
m5 m2 m2 m3 m3 m5

Denote S1 = {m1, m4}, S2 = {m2, m3}, S3 = {m5}, then S1, S2 and S3 are subgroup of S, and S = S1 ∪ S2

∪S3, S1 ∩ S2 = ∅, S1 ∩ S3 = ∅,S2 ∩ S3 = ∅.
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Example 14. Table 14 represents a TA-NET-groupoid of order 5. And,

neut(x) = x, anti(x) = x; neut(y) = y, {anti(y)} = {y, v};
neut(z) = y, {anti(z)} = {z, v}; neut(u) = u, {anti(u)} = {y, z, u, v}; neut(v) = v, anti(v) = v.

Denote S1 = {x}, S2 = {y, z}, S3 = {u}, S4 = {v}, then S1, S2, S3 and S4 are subgroup of S, and
S =S1 ∪ S2 ∪ S3 ∪ S4, S1 ∩ S2 = ∅, S1 ∩ S3 = ∅, S1 ∩ S4 = ∅, S2 ∩ S3 = ∅, S2 ∩ S4 = ∅, S3 ∩ S4 = ∅.

Table 14. Cayley table on S = {x, y, z, u, v}.

* x y z u v

x x x x x x
y u y z u y
z u z y u z
u u u u u u
v u y z u v

Open Problem. Are there some TA-NET-groupoids which are not semigroups?

7. Conclusions

In this study, we introduce the new notions of TA-groupoid, TA-NET-groupoid, discuss some
fundamental characteristics of TA-groupoids and established their relations with some related algebraic
systems (see Figure 2), and prove a decomposition theorem of TA-NET-groupoid (see Theorem 13).
Studies have shown that TA-groupoids have important research value, provide methods for studying
other non-associated algebraic structures, and provide new ideas for solving algebraic problems.
This study obtains some important results:

(1) The concepts of commutative semigroup and commutative TA-groupoid are equivalent.
(2) Every TA-groupoid with left identity element is a monoid.
(3) A TA-groupoid is a band if each element is idempotent (see Theorem 4 and Example 9).
(4) In a Tarski associative neutrosophic extended triplet groupoid (TA-NET-groupoid), the local unit

element neut(a) is unique (see Theorem 7).
(5) The concepts of commutative TA-groupoid and WC-TA-groupoid are equivalent.
(6) In a TA-NET-groupoid, the product of two idempotent elements is still idempotent (see Theorem

12 and Example 12).
(7) Every TA-NET-groupoid is factorable (see Theorem 13 and Example 13–14).

Those results are of great significance to study the structural characteristics of TA-groupoids and
TA-NET-groupoids. As the next research topic, we will study the Green relations on TA-groupoids and
some relationships among related algebraic systems (see [23,25,28]).
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Abstract: Neutrosophic components (NC) under addition and product form different algebraic
structures over different intervals. In this paper authors for the first time define the usual product
and sum operations on NC. Here four different NC are defined using the four different intervals:
(0, 1), [0, 1), (0, 1] and [0, 1]. In the neutrosophic components we assume the truth value or the false
value or the indeterminate value to be from the intervals (0, 1) or [0, 1) or (0, 1] or [0, 1]. All the
operations defined on these neutrosophic components on the four intervals are symmetric. In all the
four cases the NC collection happens to be a semigroup under product. All of them are torsion free
semigroups or weakly torsion free semigroups. The NC defined on the interval [0, 1) happens to be
a group under addition modulo 1. Further it is proved the NC defined on the interval [0, 1) is an
infinite commutative ring under addition modulo 1 and usual product with infinite number of zero
divisors and the ring has no unit element. We define multiset NC semigroup using the four intervals.
Finally, we define n-multiplicity multiset NC semigroup for finite n and these two structures are
semigroups under + modulo 1 and {M(S),+,×} and {n-M(S),+,×} are NC multiset semirings.
Several interesting properties are discussed about these structures.

Keywords: neutrosophic components (NC); NC semigroup; multiset NC; n-multiplicity;
multiset NC semigroup; special zero divisors; torsion free semigroup; weakly torsion free semigroup;
infinite commutative ring; group under addition modulo 1; infinite neutrosophic communicative
ring; multiset NC semirings

1. Introduction

Semigroups play a vital role in algebraic structures [1–5] and they are applied in several fields
and it is a generalization of groups, as all groups are semigroups and not vice versa. Neutrosophic sets
proposed by Smarandache in [6] has become an interesting area of major research in recent days both
in the area of algebraic structures [7–11] as well as in applications ranging from medical diagnosis
to sentiment analysis [12,13]. The study of neutrosophic triplets happens to be a special form of
neutrosophic sets. Extensive study in this direction have been carried out by several researchers
in [8,14–17]. Here we are interested in the study of neutrosophic components (NC) over the intervals
(0, 1), (0, 1], [0, 1) and [0, 1]. So far researchers have studied and applied NC only on the interval
[0, 1] though they were basically defined by Smarandache [18] on all intervals. Further they have
not studied them under the usual operation + and ×. Here we venture to study NC on all the four
intervals and obtain several interesting algebraic properties about them.

Smarandache multiset semigroup studied in [19] is different from these semigroups. Further
these multiset NC semigroups are also different from multi semigroups in [20] which deals with multi
structures on semigroups.
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Any algebraic structure becomes more efficient for application only when it enjoys some strong
properties. In fact a set endowed with closed associative binary operation happens to be a semigroup.
This semigroup structure does not yield many applications like algebraic codes or commutative rings
or commutative semirings. Basically to have a vector space one needs at least the basic algebraic
structure to be a group under addition. The same is true in case of algebraic codes. However none of
the intervals [0, 1] or (0, 1) or (0, 1] can afford to have a group structure under +. One can not imagine
of a group structure under product for no inverse element can be got for any element in these intervals.
But when we consider the interval [0, 1) we see it is a group under addition modulo 1.

In fact for any collection of NC which are triplets to have a stronger structure than a semigroup
we need to have a strong structure on the interval over which it is built. That is why this paper studies
the NC on the interval [0, 1). These commutative rings in [0, 1) can be used to built both algebraic
codes on the NC for which we basically need these NC to be at least a commutative ring. With this
motivation, we have developed this paper.

This paper further proves that multiset NC built on the interval [0, 1) happens to be a commutative
semiring paving way to build multiset NC algebraic codes and multiset neutrosophic algebraic codes
which can be applied to cryptography with indeterminacy.

The paper is organized as follows. Section one is introductory in nature. Section 2 recalls the
basic concepts of partial order, torsion free semigroup and neutrosophic set. Section 3 introduces NC
on the four intervals [0, 1], (0,1), [0, 1) and (0, 1] and mainly prove they are infinite NC semigroups
which are torsion free. The new notion of weakly torsion free elements in a semigroup is introduced in
this paper and it is proved that NC semigroups built on intervals [0, 1] and [0, 1) are weakly torsion
free under usual product ×. We further prove the NC built using the interval [0, 1) happens to be an
infinite order commutative ring with infinite number of zero divisors and it has no unit. In Section 4
we prove multiset NC built using these four intervals are multiset neutrosophic semigroups under
usual product ×. We prove only in case of [0, 1) the multiset NC is a ring with infinite number of zero
divisors and in all the other interval, M(S) is a torsion free or weakly torsion free semigroup under ×.
Only in case of the interval [0, 1), M(S) is semigroup under modulo addition 1. In Section 5 we define
n-multiplicity multiset NC on all the intervals and obtain several interesting properties. Discussions
about this study are given in Section 6 and the final section gives conclusions and future research
based on their structures.

2. Basic Concepts

In this section we introduce the basic concepts needed to make this paper a self contained one.
We first recall the definition of partially ordered set.

Definition 1. There exist some distinct elements a, b ∈ S such that a < b or a > b, and other distinct elements
b, c ∈ S such that neither b < c nor b > c, then we say (S, <) is a partially ordered set. We say (S,≤) is a
totally ordered set if for every pair a, b,∈ S we have a ≤ b or b ≥ a.

The set of integers is a totally ordered set and the power set of a set X; P(X) is only a partially ordered set.

Next we proceed on to define torsion free semigroup.

Definition 2. A semigroup {S,×} is said to be a torsion free semigroup if for a, b ∈ S, a 6= b, an 6= bn for any
1 ≤ n < ∞.

We recall the definition of semiring in the following from [21].

Definition 3. For a non empty set S, {S,+,×} is defined as a semiring if the following conditions are true

1. {S,+} is a commutative semigroup with 0 as its additive identity.
2. {S,×} is a semigroup.
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3. a× (b + c) = a× b + a× c for all a, b, c,∈ S follows distribution law.

If {S,×} is a commutative semigroup we call {S,+,×} as a commutative semiring.

For more, see [21].
For example, set of integers under product is a torsion free semigroup. Finally we give the basic

definition of neutrosophic set.

Definition 4. The Neutrosophic components (NC) is a triplet (a, b, c) where a is the truth membership function
from the unit interval [0, 1], b is the indeterminacy membership function and c is the falsity membership function
all of them are from the unit interval [0, 1].

For more about Neutrosophic components (NC), sets and their properties please refer [6].
Next we proceed onto define the notion of multiset.

Definition 5. A neutrosophic multiset is a neutrosophic set where one or more elements are repeated with same
neutrosophic components or with different neutrosophic components.

Example 1. M = {a(0.3, 0.4, 0.5), a(0.3, 0.4, 0.5), b(1, 0, 0.2), b(1, 0, 0.2), c(0.7, 1, 0)} is a neutrosophic
multiset. For more refer [18]. However we in this paper use the term multiset NC to denote elements of
the form {5(0.3, 0.4, 1), 3(0.6, 0, 1), (0, 0.7, 0.5)} so 5 is the multiplicity of the NC (0.3, 0.4, 1) and 3 is the
multiplicity of the NC (0.6, 0, 1) and 1 is the multiplicity of the NC (0, 0.7, 0.5).

For more about multisets and multiset graphs [18,22].

3. Neutrosophic Components (NC) Semigroups under Usual Product and Sum

Throughout this section {x, y, z} will denote the truth value, indeterminate value, false value
where x, y, z belongs to [0, 1], the neutrosophic set. However we define special NC on the intervals
(0, 1), (0, 1] and [0, 1). We first prove S1 = {(x, y, z)/x, y, z ∈ (0, 1)} is a semigroup under product and
obtain several interesting properties about NC semigroups using the four intervals (0, 1), (0, 1], [0, 1)
and [0, 1].

Example 2. Let a = (0.3, 0.8, 0.5) and b = (0.9, 0.2, 0.7) be any two NC in S1. We define product a× b =
(0.3, 0.8, 0.5) × (0.9, 0.2, 0.7) = (0.3 × 0.9, 0.8 × 0.2, 0.5 × 0.7) = (0.27, 0.16, 0.35). It is again a neutrosophic
set in S1.

Definition 6. The four NC S1 = {(x, y, z)/x, y, z ∈ (0, 1)}, S2 = {(x, y, z)/x, y, z ∈ [0, 1)}, S3 =

{(x, y, z)/x, y, z ∈ (0, 1]} and S4 = {(x, y, z)/x, y, z ∈ [0, 1]} are all only partially ordered sets for if a = (x,
y, z) and b = (s, r, t) are in Si then a < b if and only if x < s, y < r, z < t; but not all elements are ordered in
Si, that is why we say Si are only partially ordered sets, and denote it by (Si,≤);where ≤ denotes the classical
order relation over reals; 1 ≤ i ≤ 4.

For instance if a = (0.3, 0.7, 0.5) and b = (0.5, 0.2, 0.3) are in Si then a and b cannot be compared.
If d = (0.8, 0.5, 0.7) and c = (0.6, 0.2, 0.5), then d > c or c < d.

In view of this we have the following theorem.

Theorem 1. Let S1 = {(x, y, z)/x, y, z ∈ (0, 1)} be the collection of all NC which are such that the elements
x, y and z do not take any extreme values.

1. {S1,×} is an infinite order commutative semigroup which is not a monoid and has no zero divisors.
2. Every a = (x, y, z) in S1 will generate an infinite cyclic subsemigroup under product of S1 denoted by

(P,×).
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3. The elements of P forms a totally ordered set, (for if a = (x, y, z) ∈ P we see a2 = a× a < a).
4. {S1,×} has no idempotents and {S1,×} is a torsion free semigroup.

Proof. Proof of 1: Clearly if a = (x, y, z) and b = (r, s, t) are in S1, then a× b = (x× r, y× s, z× t) is in
S1; as x× r, y× s and z× t ∈ (0, 1). Hence, {S1,×} is a semigroup under product. Further as number
of elements in (0, 1) is infinite so is S1. Finally as the product in (0, 1) is commutative so is the product
in S1. Hence the claim. (1, 1, 1) is not in S1 as we have used only the open interval (0, 1), we see {S1,×}
is not a monoid. S1 has no zero divisors as the elements are from the open interval which does not
include 0, hence the claim.

Proof of 2: Let a = (x, y, z) be in S, we see a × a = (x × x, y × y, z × z) = a2, and so on
a× a× . . .× a = an = (xn, yn, zn) and n can take values from (0, ∞). Thus a in S generates a cyclic
subsemigroup of infinite order, hence the claim.

Proof of 3: Let P = 〈a〉, a generates the semigroup under product, it is of infinite order and from
the property of elements in (0, 1); a > a2 > a3 > and so on > an. Hence the claim.

Proof of 4: If any a = (x, y, z) ∈ S1 as x, y, z ∈ (0, 1), and x, y and z are torsion free so is a. We see
a2 6= a for any a ∈ S1. Further if a 6= b for no n ∈ (0, ∞); an = bn. Hence the claim.

Definition 7. The four NC S1, S2, S3 and S4 mentioned in definition 6 under the usual product × forms a
commutative semigroup of infinite order defined as the NC semigroups.

Theorem 2. Let S2 = {(x, y, z)/x, y, z ∈ [0, 1)} be the collection of NC. {S2,×} is only a semigroup and not
a monoid and has infinite number of zero divisors. Further all other results mentioned in Theorem 1 are true
with an additional property if a 6= b; (a, b ∈ S2) we have

lim
n→∞

an = lim
n→∞

bn = (0, 0, 0)

as (0, 0, 0) ∈ S2.

Proof as in case of Theorem 1.
In view of this we define an infinite torsion free semigroup to be weakly torsion free if a 6= b; but

lim
n→∞

an = lim
n→∞

bn

Thus S2 is only a weakly torsion free semigroup.
It is interesting to note S1 is contained in S2 and in fact S1 is a subsemigroup of S2.The differences

between S1 and S2 is that S2 has infinite number of zero divisors and the lim
n→∞

an = (0, 0, 0) exists in S2

and S1 is torsion free but S2 is weakly torsion free.

Theorem 3. Let S3 = {(x, y, z)/x, y, z ∈ (0, 1]} be the collection of NC. {S3,×} is a monoid and has no
zero divisors.

Results 2 to 4 of Theorem 1 are true. Finally S1 is a subset of S3, in fact S1 is a subsemigroup of S3.
The main difference between S1 and S3 is that S3 is a monoid and S1 is not a monoid. The difference
between S2 and S3 is that S3 has no zero divisors but S2 has zero divisors and S3 is a monoid.

Next we prove a theorem for S4.

Theorem 4. Let S4 = {(x, y, z)/x, y, z ∈ [0, 1]}. {S4,×} is a semigroup and is a monoid and has zero
divisors. Other three conditions of Theorem 1 is true, but S4 like S2 is only a weakly torsion free semigroup.

Proof as in case of Theorem 1. We have S1 contained in S2 and S2 is contained in S4 and S1

contained in S3 and S3 is contained in S4.
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However, it is interesting to note S2 and S3 are not related in spite of the above relations.
Now we analyse all these four neutrosophic semigroups to find out, on which of them we can

define addition modulo 1. S1 does not include the element (0, 0, 0) as 0 is not in (0, 1), so S1 is not even
closed under addition modulo 1. So S1 in not a semigroup or a group under plus modulo 1. Since S3

and S4 contains (1, 1, 1) we cannot define addition modulo 1; hence, they can not have any algebraic
structure under addition modulo 1. Now consider {S2,+}, clearly {S2,+} is a group under addition
modulo 1.

In view of all these we have the following theorem.

Definition 8. The NC {S2,+} under usual addition modulo 1 is a group defined as the NC group denoted by
{S2,+}

Theorem 5. {S2,+} is a group under addition modulo 1.

Proof. For any y, x ∈ S2, x + y (mod 1) ∈ S2. (0, 0, 0) ∈ S2 acts as additive identity. Further for every x
there is a unique y ∈ S2 with x + y = (0, 0, 0). Hence the theorem.

Definition 9. The NC S2 under the operations of the usual addition + modulo 1 and usual product × forms a
commutative ring of infinite order defined as the NC commutative ring denoted by {S2,+,×}

Theorem 6. {S2,+,×} is a commutative ring with infinite number of zero divisors and has no multiplicative
identity (1, 1, 1).

Proof. Follows from the Theorem 1 and the fact S2 is closed under + modulo 1 by Theorem 5.
The distributive property is inherited from the number theoretic properties of modulo integers. As 1 is
not in [0, 1); (1, 1, 1) is not in S2, hence the result.

Next we proceed on to define multiset NC semigroups in the following section.

4. Multiset NC Semigroups

In this section we proceed on to define multiset NC semigroups using S1, S2, S3 and S4. We see
M(S1) = {Collection of all multiset NC using elements of S1}. On similar lines we define M(S2), M(S3)

and M(S4) using S2, S3 and S4 respectively. We prove {M(S2),+,×} is a multiset neutrosophic
semiring of infinite order.

Recall [18], A is a multi neutrosophic set, then A = {5(0.3, 0.7, 0.9), 12(0.6.0.2, 0.7), 8(0.1, 0.5, 0.1),
(0.6, 0.7, 0.5)}; that is in the multiset neutrosophic set A; (0.3, 0.7, 0.9) has occurred 5 times; (0.6, 0.2,
0.7) has occurred 12 times or its multiplicity is 12 in A and so on.

Let M(S1) = {Collection of all multisets using the elements from S1}, M(S1) is an infinite collection.
We just show how the classical product is defined on M(S1).

Let A = {9(0.3, 0.2, 0.4), 2(0.6, 0.7, 0.1), (0.1, 0.3, 0.2)} and B = {5(0.1, 0.2, 0.5), 10(0.8, 0.4, 0.5)} in
M(S1) be any two multisets. We define the classical product × of A and B as follows;

A× B = {9(0.3, 0.2, 0.4)× 5(0.1, 0.2, 0.5), 9(0.3, 0.2, 0.4)× 10(0.8, 0.4, 0.5),

2(0.6, 0.7, 0.1)× 5(0.1, 0.2, 0.5), 2(0.6, 0.7, 0.1)× 10(0.8, 0.4, 0.5),

(0.1, 0.3, 0.2)× 5(0.1, 0.2, 0.5), (0.1, 0.2, 0.5)× 10(0.8, 0.4, 0.5)}

= {45(0.03, 0.04, 0.2), 90(0.24, 0.08, 0.2), 10(0.06, 0.14, 0.05),

20(0.48, 0.28, 0.05), 5(0.01, 0.06, 0.1), 10(0.08, 0.08, 0.25)};

A× B is in M(S1), thus {M(S1),×} is a commutative semigroup of infinite order defined as the
multiset NC semigroup.
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Definition 10. Let M(Si) be the multi NC using elements of Si(i = 1, 2, 3, 4), {M(Si),×} on the usual
product × is defined as the multiset neutrosophic semigroup for i = 1, 2, 3 and 4.

Definition 11. Let {S2,×} be the multiset NC semigroup under × , elements of the form (a, 0, 0), (0, b, c)
and so on which are infinite in number with a, b, c ∈ S2 contribute to zero divisors. Hence multisets using these
types of elements contribute to zeros of the form n(0, 0, 0); 1 < n < ∞ . As the zeros are of varying multiplicity
we call these zero divisors as special type of zero divisors.

We will provide examples of them.

Example 3. Let R = {(S2),×} be the multiset NC semigroup under product. Let A = (0.6, 0, 0) and B =
(0, 0.4, 0.5) be in R, A× B = (0, 0, 0). Take D = {9(0.6, 0.9, 0)} and E = 9(0, 0, 0.4) in R; we get D× E =

{81(0, 0, 0)}. Take W = {7(0, 0.5, 0), 4(0, 0.6, 0)} and V = {(0.7, 0, 0.4), 20(0.8, 0, 0)} be two multisets in R;
W ×V = {7× 44(0, 0, 0) + 7× 20(0, 0, 0) + 4× 44(0, 0, 0) + 4× 20(0, 0, 0)} = {704(0, 0, 0)} is a special
type of zero divisor of R.

Thus M(S2) is closed under the binary operation ×.

Theorem 7. The neutrosophic multiset semigroups {M(Si),×} for i = 1, 2, 3, 4 are commutative and of
infinite order satisfying, the following properties for each M(Si); i = 1, 2, 3, 4.

1. {M(S1),×} has no trivial or non-trivial special type of zero divisors and no trivial or non-trivial
idempotents.

2. {M(S2),×} has infinite number of special type of zero divisors and no non-trivial idempotents.
3. {M(S3),×} has no trivial or non-trivial special zero divisors but has (1, 1, 1) as identity and has no non

trivial idempotents.
4. {M(S4),×} has non-trivial special type of zero divisors and has (1, 1, 1) as its identity and has idempotents

of the form {(0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1) and so on }.

Proof. 1. Follows from the fact that S1 has no zero divisors and idempotents as it is built on the
interval (0, 1).

2. Evident from the fact S2 is built on [0, 1) so has special type of zero divisors by definition but no
idempotent.

3. True from the fact S3 is built on (0, 1], so (1, 1, 1) ∈ M(S3).
4. S4 which is built on [0, 1] has infinite special type of zero divisors as (0, 0, 0) ∈ S4 by Definition 11

and (1, 1, 1) ∈ M(S4) and has idempotents of the form {(0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1) and
so on }.
Hence the claims of the theorem.

Now we proceed onto define usual addition on M(S1)

S1 = {(x, y, z)/x, y, z ∈ (0, 1)} in not even closed under addition. For there are x, y ∈ (0, 1) such
that x + y is 1 or greater than 1, so these elements are not in (0 , 1), hence our claim.

Recall S2 = {(x, y, z)/x, y, z ∈ [0, 1)}. We can define addition modulo 1 and product under that
addition both S2 and [0, 1) are closed.

Let a = (0.7, 0.6, 0.9) and b = (0.5, 0.9, 0.4) be in S2, we find a + b mod 1.
a + b = (0.7, 0.6, 0.9) + (0.5, 0.9, 0.4) = (0.7 + 0.5(mod 1), 0.6 + 0.9(mod 1), 0.9 + 0.4(mod 1)) =

(0.2, 0.5, 0.3) is in S2. (0, 0, 0) in S2 acts as the additive identity.
For every a ∈ S2 there is a unique b ∈ S2 such that a + b = (0, 0, 0)mod 1. Thus (S2,+) is a NC

group of infinite under addition modulo 1. Further (S2,×) is a semigroup under product of infinite
order which is commutative and not a monoid as (1, 1, 1) is not in S2.

Now we illustrate how addition is performed on any two neutrosophic multisets in M(S2).
Let A = {7(0.3, 0.8, 0.45), 9(0.02, 0.41, 0.9), (0.6, 0.3, 0.2)} and B = {5(0.1, 0, 0.9), 2(0.6, 0.5, 0)} be

any two multisets of M(S2). To find the sum of A with B under addition modulo 1.
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A + B = { 35[(0.3, 0.8, 0.45) + (0.1, 0, 0.9)]mod 1, 45[(0.02, 0.41, 0.9) + (0.1, 0, 0.9)]mod 1, 5[(0.6, 0.3,
0.2) + (0.1,0, 0.9)]mod 1, 14[(0.3, 0.8, 0.45) + (0.6, 0.5,0)]mod 1, 18[(0.02, 0.41, 0.9) + (0.6, 0.5, 0)]mod 1,
2[(0.6, 0.3, 0.2) + (0.6, 0.5, 0)]mod 1} = {35(0.4, 0.8, 0.35), 45(0.12, 0.41, 0.8), 5(0.7, 0.3, 0.1), 14(0.9, 0.3,
0.45), 18(0.62, 0.91, 0.9), 2(0.2, 0.8, 0.2)}

is in M(S2). This is the way addition modulo 1 operation is performed. For M(S3) and M(S4) we
can not define usual addition modulo 1 as (1, 1, 1) ∈ M(S3) and M(S4).

Next we proceed on to describe the product of any two elements in M(S2). We take the above A
and B and find A× B. A× B = {35[(0.3,0.8,0.45) × (0.1, 0, 0.9)], 45[(0.02, 0.41, 0.9) × (0.1, 0, 0.9)], 5[(0.6,
0.3, 02)× (0.1, 0, 0.9)], 14[(0.3, 0.8, 0.45)×(0.6, 0.5 0)], 18[(0.02, 0.41. 0.9)× (0.0.6, 0.5, 0)], 2[(0.6, 0.3, 0.2)
× ( 0.6, 0.5, 0)]} = {35(0.03, 0, 0.405), 45(0.002,0, 0.81), 5(0.06, 0, 0.18), 14(0.18, 0.4, 0), 18(0.012, 0.205, 0),
2(0.36, 0.15, 0)}, is in M(S2).

Theorem 8. {M(S2),+} is a multiset NC semigroup under addition modulo 1.

Proof. M(S2) is closed under the binary operation addition modulo 1. Thus M(S2) is the neutrosophic
multiset semigroup under + modulo 1.

Now we proceed on to define a special type of zero divisors. In view of this we have the
following theorem.

Theorem 9. R = {M(S2),×} is an infinite commutative multiset NC semigroup, which is not a monoid and
has special type of zero divisors.

Proof. We see M(S2) under the binary operation product is closed and is associative as the base set S2

is associative and commutative and is closed under the binary operation product. Thus {(S2),×} is
commutative semigroup of infinite order. Further M(S2) does not contain (1, 1, 1) so {M(S2),×} is
not a monoid.

From the above definition and description of special zero divisors R has infinite number
of them.

We have the following theorem.

Theorem 10. {M(S2),+,×} is a NC multiset commutative semiring of infinite order which has infinite
numbers of special type of zero divisors.

Proof. Follows from Theorem 8 and Theorem 9.

Next we proceed on to define n- multiplicity neutrosophic multisets and derive some properties
related with them. M(S3) and M(S4) are just multiset NC semigroups under product and in fact they
are monoids. Further M(S4) has infinite number of special zero divisors.

5. n-Multiplicity Neutrosophic Set Semigroups Using S1, S2, S3 and S4

In this section we define the new notion of n-multiplicity NC using S1, S2, S3 and S4. We prove
these n-multiplicity NC are of infinite order but what is restricted is the multiplicity n, that is any
element cannot exceed multiplicity n; it can maximum be n, where n is a positive finite integer. Finally
we prove {M(S2),+,×} where S2 = [0, 1) is a NC n-multiset commutative semiring of infinite order.

We will first illustrate this situation by some examples before we make an abstract definition
of them.

Example 4. Let 4-M(S1) = {collection all multisets with entries from S1 = {(x, y, z)/x, y, z ∈
(0, 1)}, such that any element in S1 can maximum repeat itself only four times}. Here n =

4, A = {4(0.5, 0.7, 0.4), 3(0.1, 0.9, 0.7), 4(0.1, 0.2, 0.3), 4(0.7, 0.8, 0.4), 4(0.8, 0.8, 0.8), 2(0.9, 0.9, 0.9),
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3(0.7, 0.9, 0.6), (0.6, 0.1, 0.1)} be a 4-multiplicity multiset from 4-M(S1). We see the NC
(0.5, 0.7, 0.4), (0.1, 0.2, 0.3), (0.7, 0.8, 0.4) and (0.8, 0.8,0.8) have multiplicity four which is the highest
multiplicity an element of 4-M(S1) can have. The NC (0.1, 0.9, 0.7) and (0.7,0.9,0.6) have multiplicity
3. The multiplicity of (0.9, 0.9, 0.9) is two and that of (0.6, 0.1, 0.1) is one. Clearly S1 does not contain
the extreme values 0 and 1 as S1 is built using the open interval (0, 1). However on M(S1) we can not
define addition.

Thus 4-M(S1) can not have the operation of addition defined on it. Now we show how the
operation × is defined on 4-M(S1) for the some A, B ∈ 4-M(S1). Now

A× B = {3(0.3, 0.7, 0.8), 2(0.5, 0.9, 0.6), 4(0.2, 0.3, 0.4)} × {(0.1, 0.3, 0.7), 2(0.5, 0.7, 0.1)}

= {3(0.03, 0.21, 0.56), 2(0.05, 0.27, 0.42), 4(0.02, 0.09, 0.28),

6(0.15, 0.49, 0.08), 4(0.25, 0.63, 0.06), 8(0.1, 0.21, 0.04)}

we now use the fact we can have maximum only 4 multiplicity of an element so we replace
6(0.15, 0.49, 0.08) by 4(0.15, 0.49, 0.08) and 8(0.1, 0.21, 0.04) by 4(0.1, 0.21, 0.04). Now the thresholded
product is {(3(0.03, 0.21, 0.56), 2(0.05, 0.27, 0.42), 4(0.02, 0.09, 0.28), 4(0.15, 0.49, 0.08), 4(0.25, 0.63, 0.06),
4(0.1, 0.21, 0.04))} ∈ 4-M(S1).

{4-M(S1),×} is a commutative neutrosophic multiset semigroup of infinite order and the
multiplicity of any element cannot exceed 4.

This semigroup is not a monoid and it has no special zero divisors or zero divisors or units.

Definition 12. 12 Let n-M(Si) ={ collection of all multisets with entries from Si of at-most multiplicity
n; 2 ≤ n < ∞}(1 ≤ i < 4). n-M(Si) under usual product, × is defined as the n-multiplicity NC semigroup,
1 ≤ i ≤ 4.

In view of this we have the following theorem.

Theorem 11. Let n-M(Si) = {t(x, y, z)|x, y, z ∈ Si; 1 ≤ t ≤ n} be the n-multiplicity neutrosophic multisets
(1 ≤ i ≤ 4).

1. n-M(Si) is not closed under the binary operation ‘+’ under usual addition, for i = 1, 3 and 4.
2. n-M(Si) is a (n-multiplicity neutrosophic multiset) semigroup under the usual product for i = 1, 2, 3

and 4.
3. {n-M(Si),×} is a monoid for i = 3 and 4. .
4. {n-M(Si),×} has no special zero divisors if Si = S1 and S3 but they have no non trivial idempotents. S2

and special zero divisors and no non trivial idempotents, but S4 has both non trivial special zero divisors
and non trivial idempotents.

Proof. Proof of 1: If A = {(0.3, 0.8, 0.9)} and B = {(0.4, 0.3, 0.1)} ∈ n-M(Si). A + B = {(0.7, 1.1,
1.0)} /∈ n-M(Si) as Si when built using S3 and S4 and by example 4 n-M(S1). Only M(S2) is closed
under addition.

Proof of 2: Since (Si,×) is closed under product so is n-M(Si) with replacing the numbers greater
than n by n in the resultant product; i = 1, 2, 3 and 4 are semigroups, hence the claim.

Proof of 3: As (1, 1, 1) ∈ S3 and S4 so is in n-M(S3) and n-M(S4) respectively so they are monoids.
Proof of 4: n-M(Si) has no special zero divisors in case of S1 and S3. Finally Si = {(x, y, z)|x, y, z ∈

Si}, has zero divisors and special zero divisors in case of S2 and S4 for i = 2 and 4, and non trivial
idempotents contributed by 0’s and 1’s only in case of S4. Hence the theorem.

Example 5. Let 5-M(S2) = {Collection of all neutrosophic multisets which can occur at most
5-times that is the multiplicity is 5 with elements from S2 = {(x, y, z)|x, y, z ∈ [0, 1)}} Let A =
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4(0.2, 0.5, 0.7), 3(0.1, 0.2, 0.3), 5(0.3, 0.1, 0.2), (0.1, 0.2, 0.8) ∈ 5-M(S2) We see the multiplicity of (0.3, 0.1,
0.2) is 5 others are less than 5.

Let A = {3(0.3, 0.2, 0), 4(0.5, 0.6, 0.9), 5(0.1, 0.2, 0.7)} and B = {4(0.8, 0.1, 0.9), 2(0.6, 0.6, 0.6)} ∈
5-M(S2). Now we first find A× B = {5(0.24, 0.02, 0), 5(0.4, 0.06, 0.81), 5(0.08, 0.02, 0.63), 5(0.06, 0.12,
0.42)} ∈ 5(M(S2).

A + B = {5(0.1, 0.3, 0.9), 5(0.9, 0.8, 0.6), 5(0.3, 0.7, 0.8), 5(0.9, 0.3, 0.6), 5(0.1, 0.2, 0.5), 5(0.7, 0.8,
0.3)} ∈ 5-M(S2). Addition is done modulo 1. However we have closure axiom to be true under + for elements
in S2 and in case of S1; 0 /∈ S1 = (0, 1)). This closure axiom is flouted.

If addition modulo 1 is done we have to see that 1 is not included in the interval and 0 is included in that
interval so we need to have only closed open interval [0, 1). Under these two constraints only we can make S2 as
well as M(S2) and n-M(S2) as semigroups under addition modulo 1.

We can built strong structure only using the [0, 1).

Theorem 12. Let n-M(S2) = Collection of all multisets of S built using S2 = {(x, y, z)|x, y, z ∈ [0, 1)} with
multiplicity less than or equal to n; 2 ≤ n ≤ ∞

{ n-M(S2),×} is a commutative neutrosophic multiset semigroup of infinite order and is not a monoid,
n-M(S2) has infinite number of zero divisors.

Proof. If A and B ∈ n-M(S2) we find A× B and update the multiplicities in A× B to be less than or
equal to n so that A× B ∈ n-M(S2). by Theorem 11(2).

Clearly (1, 1, 1) /∈ n-M(S2) so is not a monoid.

Theorem 13. B = {n-M(S2),+,×}, the n-multiplicity multiset NC is a commutative semiring of infinite
order and has no unit, where S2 = [0, 1).

Proof. Follows from the fact { n-M(S2), +} is a commutative semigroup under addition modulo 1,
Theorem 11(1) and Theorem 12 and {n-M(S2), ×} is a commutative semigroup under ×. Hence
the claim.

6. Discussions

The main motive of this paper is to construct strong algebraic structures with two binary
operations on the NC. Here we are able to get a NC commutative ring structure using the base
interval as [0, 1). This will lead to future research of constructing Smarandache neutrosophic vector
spaces and Smarandache neutrosophic algebraic codes using the same interval [0, 1). Now using the
same interval [0, 1), we construct multiset NC and n-multiset NC 2 ≤ n < ∞. On these we were able
to built only neutrosophic multiset(n-multiplication set) commutative semiring structure. Now using
these we can construct Smarandache multiset neutrosophic semi vector spaces which will be taken as
future research. So this is significant first step to develop other strong structures and apply them to
NC codes and NC cryptography.

7. Conclusions

In this paper, authors have made a study of NC on the 4-intervals (0, 1) (0, 1], [0, 1] and [0, 1).
We define usual + and× on these intervals which is very different from the study taken so far. The main
properties enjoyed by these NC semigroups are developed. Further of these intervals only the interval
[0, 1) gives a nice algebraic structure viz an abelian group under usual addition modulo 1, which in
turn helps in constructing NC commutative ring under usual addition modulo 1 and product, the ring
has infinite number of zero divisors, whereas all the other intervals are semigroups/monoids which
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are torsion free or weakly torsion free of infinite order under ×. Further in this paper we introduce the
notion of multiset NC semigroups using these four intervals under product. Furthermore, the multiset
NC forms a commutative semiring with zero divisors only when the interval [0, 1) is used. Finally we
introduce n-multiplicity multiset using these NC. They are also semigroups which is torsion free or
weakly torsion free under product.

For future research we will be using the product and addition modulo 1 in the place of min and
max in Single Valued Neutrosophic Set (SVNS) and would compare the results with the existing ones
when applied as SVNS models to real world problems.

Apart from all these we can use these NC, multiset NC and n-multiplicity multiset NC to built
NC codes which is one of the applications to neutrosophic cryptography which will be taken up by the
authors for future research.
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Abstract: In this manuscript, we focus on the brief study of finding the solution to and analyzingthe
homogeneous linear difference equation in a neutrosophic environment, i.e., we interpreted the
solution of the homogeneous difference equation with initial information, coefficient and both as
a neutrosophic number. The idea for solving and analyzing the above using the characterization
theorem is demonstrated. The whole theoretical work is followed by numerical examples and
an application in actuarial science, which shows the great impact of neutrosophic set theory in
mathematical modeling in a discrete system for better understanding the behavior of the system in an
elegant manner. It is worthy to mention that symmetry measure of the systems is employed here,
which shows important results in neutrosophic arena application in a discrete system.

Keywords: fuzzy set theory; difference equation; neutrosophic number; simplified neutrosophic
symmetry measure

1. Introduction

1.1. Uncertainty Theory and Neutrosophic Sets

The uncertainty theory becomes a very helpful tool for real life modeling in discrete and continuous
systems. The different theories of the fuzzy uncertainty theory have been given a new direction
since the setting of the fuzzy set, invented by Professor Zadeh [1]. This is generalized representation
of [1] is established as an intuitionistic fuzzy set theory by Atanassov [2]. Atarasov gave a novel
designusing the intuitionistic fuzzy theory, where he demonstrated the idea of a membership function
and non-membership function by which degree of belongingness and non-belongingness, respectively,
can be measured in a set. Liu and Yuan [3] ignited the perception of a triangular intuionistic fuzzy
set, which is the affable blend of a triangular fuzzy number and a intuionistic fuzzy set theory. Ye [4]
set up the idea for a trapezoidal intuionistic fuzzy set. Smarandache [5] found his more generalized
idea as a neutrosophic set, considering terms of the truth membership function, the indeterminacy
membership function, and the falsity membership function. This theory become more beneficial and
germane, rather than the common fuzzy and intuitionistic fuzzy theory settings.
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Several researchershave already worked in the neutrosophic field, some of which have developed
the theory [6,7], while some have applied the related theories in an applied field [8,9]. Various kinds of
forms and extensions of the Neutrosophic set, such as the triangular neutrosophic set [10], the bipolar
neutrosophic sets [11–14], and the multi-valued neutrosophic sets [15], were also found.

1.2. Difference Equation in an Uncertain Environment

There exist some works associated with difference equation and uncertainty. Mostly, researchers
have worked on the difference equation allied with fuzzy and intuitionistic fuzzy environments. We are
now giving details descriptions of some related published work. In the literature [16], Deebaet al. found
a strategy for solving the fuzzy difference equation with an interesting application. The model involving
CO2 levels in blood streamflow is thinkingin the view ofthe fuzzy difference equation by Deebaet
al. [17]. Lakshmikantham and Vatsala [18] talk abou tdifferent basic theories and properties of fuzzy
difference equations. Papaschinopoulos et al. [19,20] and PapaschinopoulosandSchinas [21] discuss
more findings in a similar context. Papaschinopoulos and Stefanidou [22] provide an explanation
on boundedness with asymptotic behavior of a fuzzy difference equation. Umekkanet al. [23] give
a finance application based on discrete system modeling in a fuzzy environment. Stefanidou et
al. [24] treat the exponential-type fuzzy difference equation. The asymptotic behavior of a second
order fuzzy difference equation is considered by Din [25]. The fuzzy non-linear difference equation is
considered by Zhang et al. [26], where Memarbashi and Ghasemabadi [27] corporate with a volterra
type rational form by Stefanidou and Papaschinopoulos [28]. The economics application is considered
by Konstantinos et al. [29]. Mondal et al. [30] solve the second-order intuitionistic difference equation.
Non-linear interval-valued fuzzy numbers and their relevance to difference equations are shown in [31].
National income determination models with fuzzy stability analysis in a discrete system are elaborately
discussed by Sarkar et al. [32]. The fuzzy discrete logistic equation is taken and stability situations are
found in the literature [33]. Zhang et al. [34] show the asymptotic performance of a discrete time fuzzy
single species population model. On discrete time, a Beverton–Holt population replica with fuzzy
environment is illustrated in [35]. Additionally, a different view of the fuzzy discrete logistic equation
is taken under uncertainty in [36]. The existence and stability situation of the difference equation with
a fuzzy setting is found by Mondal et al. [37]. Important results are also found for fuzzy difference
equations by Khastan and Alijani [38] and Khastan [39].

1.3. Novelties of the Work

In this connection of the above idea, few advances can still be prepared, which include:

(1) The homogeneous difference equation, solved and analyzed with a neutrosophic initial condition,
neutrosophic coefficient, and neutrosophic coefficient and initial together as a different section,
which was not done earlier.

(2) Establishment of the corresponding characterization theorem for the neutrosophic set with a
difference equation.

(3) Different theorems, lemmas, and corollary drawn for the purpose of the study.
(4) Numerical examples of the difference equation with a neutrosophic number, solved and illustrated

for better understanding of our observations.
(5) An application in actuarial science, illustrated in a neutrosophic environment for better

understanding of the practical application of the proposed theoretical results.

1.4. Structure of the Paper

In Section 1, we recall the related work and write the novelties of our study. The preliminary
concepts are addressed in Section 2. The difference equation with a neutrosophic variable is defined
and corresponds with a necessary theory, for which a lemma is prepared for the study in Section 3.
Section 4 shows the solution of the neutrosophic homogeneous difference equation. Two numerical
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examples are shown in Section 5. In Section 6, we take an appliance of an actuarial science problem in
the neutrosophic data and solve it. The conclusion and future research scope are written in Section 7.

2. PreliminaryIdea

Definition 1. Neutrosophicset: [6] Let X be a universe set. A single-valued neutrosophic set A on X is
distinct as A =

{
(TA(x), IA(x), FA(x)) : x ∈ X

}
, where TA(x), IA(x), FA(x) : X→ [0, 1] is the degree of

membership, degree of indeterministic, and degree of non-membership, respectively, of the element x ∈ X,
such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2. Neutrosophicfunction: If we take the set of all real numbers as notation R and real valued
fuzzy numbers as notation RF , then the function W : R → [0, 1] is called a fuzzy number valued function if w
satisfies the subsequent properties.

(1) W is the upper semi continuous.
(2) W is the fuzzy convex, i.e., W(λs1 + (1− λ)s2) ≥ min

{
W(s1), W(s2)

}
for all s1, s2 ∈ R and λ ∈ [0, 1].

(3) W is normal, i.e., ∃ a s0 ∈ R, such that W(s0) = 1

(4) Closure of supp(W) is compact, where supp(W) =
{
s ∈ R

∣∣∣ W(s) >0
}
.

Definition 3. Triangular neutrosophic number: [40] If we consider the measure of the truth, for
which indeterminacy and falsity are not dependent, then a Triangular Neutrosophic number is taken as
Ñ = (r0, r1, r2; s0, s1, s2; w0, w1, w2), where the truth membership, falsity, and indeterminacy membership
function is treated as follows:

T Ñ(y) =



y−r0
r1−r0

when r0 ≤ y < r1

1 when y = r1
r2−y
r2−r1

when r1 < y ≤ r2

0 otherwise

and

F Ñ(y) =



s1−y
s1−s0

when s0 ≤ y < s1

0 when y = s1
y−s1
s2−s2

when s1 < y ≤ s2

1 otherwise

I Ñ(y) =



w1−y
w1−w0

when w0 ≤ y < w1

0 when y = w1
y−w1

w2−w1
when w1 < y ≤ w2

1 otherwise

where 0 ≤ T Ñ(y) + F Ñ(y) + I Ñ(y) ≤ 1, y ∈ Ñ.

The parametric setting of the above number is
(
Ñ

)
α,β,γ

=

[TNeu1(α), TNeu2(α); INeu1(β), INeu2(β); FNeu1(γ), FNeu2(γ)],
where

N1
L(α) = r0 + α(r1 − r0)

N1
R(α) = r2 − α(r2 − r1)

N2
L(β) = s1 − β(s1 − s0)

N2
R(β) = s1 + β(s2 − s1)

147



Symmetry 2020, 12, 1091

N3
L(γ) = w1 − γ(w1 −w0)

N3
R(γ) = w1 + γ(w2 −w1)

Here, 0 < α, β,γ ≤ 1 and 0 < α+ β+ γ ≤ 3
The verbal phrase with the number can be written as in Table 1:

Table 1. The verbal phrase of different uncertain settings and neutrosophic numbers.

Type of Uncertain Parameter Verbal Phrase Used Functionsand Their Roles

Triangular Fuzzy Number [Low, Medium, High]
Membership function for measuring

degree of belongingness

Triangular Intuitionistic
Fuzzy Number

[Low, Medium, High; Very Low,
Medium, Very High]

Membership and non-membership
function for measuring degree of

belongingness and non-belongingness

Triangular NeutrosophicNumber

[Low, Medium, High; Very Low,
Medium, Very High; Between low
and very low; Medium; Between

high and very high]

Truthiness, falsity, and indeterminacy
function for measuring

the degree of truth belongingness, strictly
non-belongingness and indeterminacy

Definition 4. Hukuhara difference on neutrosophic function: Let E∗ be the set of all neutrosophicfunctions,
s̃, t̃ ∈ E∗. If ∃ is a neutrosophic number, w̃ ∈ E∗ and w̃ suit the relation s̃ = w̃ + t̃, then w̃ is assumed to be the
Hukuhara difference of s̃ and t̃, denoted by w̃ = s̃⊖ t̃.

3. Difference Equation with a Neutrosophic Variable

Definition 5. A difference equation (sometime named as a recurrence relation) is an equation that relates the
consecutive terms of a sequence of numbers.

A qth order difference equation in the linear form can be articulated:

xn+q = d1xn+q−1 + d2xn+q−2 + · · ·+ dqxn + bn (1)

where d1, d2, . . . , dq and bn are constants, which are known.
If bn = 0 for all n, then Equation (1) is the homogeneous difference equation. On the other hand,

it will be the non-homogeneous difference equation if bn , 0, where bn is treated as the forcing factor.
We consider an autonomous linear homogeneous difference equation of the form:

xn+1 = σxn , (σ , 0) (2)

with the initial condition xn=0 = x0. The solution of Equation (2) can then be written as:

xn = σnx0 (3)

Theorem 1. [41] Let m ∈ N, m ≥ 2. A linear homogeneous system of them first order difference equation is
given in matrix form as:

Xn+1 = AXn (4)

where, Xn =
(
X1

n, X2
n, . . . , Xm

n

)T
and A =

(
ai j

)
m×m

, i, j = 1, 2, . . . , m

The solution of Equation (3) can then be written as:

Xn = AnX0, n ∈ N (5)

The difference Equation (1) is considered as the neutrosophic difference equation if any one of the
following conditions are added:
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(i) The initial condition or conditions are the neutrosophic number (Type I);
(ii) The coefficient or coefficients are the neutrosophic number (Type II);
(iii) The initial conditions and coefficient or the coefficients are both neutrosophic numbers (Type III).

Theorem 2. Characterization theorem: Let us consider the neutrosophic difference equation problem:

x̃n+1 = f̃ (xn, n), (6)

with initial value x̃n=0 = x̃0 as a neutrospohic number, where f : E∗ ×Z≥0 → E∗ , such that

(1) The parametric form of the function is:

[
f̃ ((xn, n))

]
(α, β,γ)

=




f 1
L,n

(
x1

L,n(α), x1
R,n(α), n,α

)
, f 1

R,n

(
x1

L,n(α), x1
R,n(α), n,α

)
;

f 2
L,n

(
x2

L,n(β), x2
R,n(β), n, β

)
, f 2

R,n

(
x2

L,n(β), x2
R,n(β), n, β

)
;

f 3
L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
, f 3

R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)




(2) The functions f 1
L,n

(
x1

L,n(α), x1
R,n(α), n,α

)
, f 1

R,n

(
x1

L,n(α), x1
R,n(α), n,α

)
, f 2

L,n

(
x2

L,n(β), x2
R,n(β), n, β

)
,

f 2
R,n

(
x2

L,n(β), x2
R,n(β), n, β

)
, f 3

L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
and f 3

R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
are taken as

continuous functions, i.e., for any ∈1> 0 ∃ a δ1 > 0, such that:

∣∣∣∣ f 1
L,n

(
x1

L,n(α), x1
R,n(α), n,α

)
− f 1

L,n1

(
x1

L,n1
(α), x1

R,n1
(α), n1,α

)∣∣∣∣ <∈1

for all α ∈ [0, 1] with ‖
(
x1

L,n(α), x1
R,n(α), n,α

)
−

(
x1

L,n1
(α), x1

R,n1
(α), n1,α

)
‖ < δ1 and for any ∈2> 0 ∃

an δ2 > 0, such that:
∣∣∣∣ f 1

R,n

(
x1

L,n(α), x1
R,n(α), n,α

)
− f 1

R,n2

(
x1

L,n2
(α), x1

R,n2
(α), n2,α

)∣∣∣∣ <∈2 for all α ∈ [0, 1]

with ‖
(
x1

L,n(α), x1
R,n(α), n,α

)
−

(
x1

L,n2
(α), x1

R,n2
(α), n2,α

)
‖ < δ2, where n, n1 and n2 ∈ Z≥0.

In a similar way, the continuity of the remaining four functions, f 2
L,n

(
x2

L,n(β), x2
R,n(β), n, β

)
,

f 2
R,n

(
x2

L,n(β), x2
R,n(β), n, β

)
, f 3

L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
and f 3

R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
, can be defined.

The difference Equation (6) then reduces to the system of six difference equations, as follows:

x1
L,n+1(α) = f 1

L,n

(
x1

L,n(α), x1
R,n(α), n,α

)

x1
R,n+1(α) = f 1

R,n

(
x1

L,n(α), x1
R,n(α), n,α

)

x2
L,n+1(β) = f 2

L,n

(
x2

L,n(β), x2
R,n(β), n, β

)

x2
R,n+1(β) = f 2

R,n

(
x2

L,n(β), x2
R,n(β), n, β

)

x3
L,n+1(γ) = f 3

L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)

x3
R,n+1(γ) = f 3

R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)

with the initial conditions:
x1

L,n=0(α) = x1
L,0(α)

x1
R,n=0(α) = x1

R,0(α)

x1
L,n=0(β) = x1

L,0(β)

x1
R,n=0(β) = x1

R,0(β)
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x1
L,n=0(γ) = x1

L,0(γ)

x1
R,n=0(γ) = x1

R,0(γ)

Note 1. By the characterization theorem, we can see that a neutrosopic difference equation is transformed into
a system of six difference equations in crisp form. In this article, we have taken only a single neutrosophic
difference equation in a neutrosophic environment. Hence, the difference equation converted into six crisp
difference equations.

Definition 6. Strong and weak solutions of a neutrosophic difference equation: The solutions of difference
Equation (6), with initial condition (3.7) to be regarded as:

(1) A strong solution if
x1

L,n(α) ≤ x1
R,n(α)

x1
L,n(β) ≤ x1

R,n(β)

x1
L,n(γ) ≤ x1

R,n(γ)

and
∂

∂α

[
x1

L,n(α)
]
> 0,

∂

∂α

[
x1

R,n(α)
]
< 0

∂

∂β

[
x1

L,n(β)
]
< 0,

∂

∂β

[
x1

R,n(β)
]
> 0

∂

∂γ

[
x1

L,n(γ)
]
< 0,

∂

∂γ

[
x1

R,n(γ)
]
> 0

for every α, β,γ ∈ [0, 1].
(2) A weak solution if

x1
L,n(α) ≥ x1

R,n(α)

x1
L,n(β) ≥ x1

R,n(β)

x1
L,n(γ) ≥ x1

R,n(γ)

and
∂

∂α

[
x1

L,n(α)
]
< 0,

∂

∂α

[
x1

R,n(α)
]
> 0

∂

∂β

[
x1

L,n(β)
]
> 0,

∂

∂β

[
x1

R,n(β)
]
< 0

∂

∂γ

[
x1

L,n(γ)
]
> 0,

∂

∂γ

[
x1

R,n(γ)
]
< 0

for every α, β,γ ∈ [0, 1].

Definition 7. Let p and q be neutrosophic numbers, where [p̃](α,β,γ) =[
p1

L(α), p1
R(α); p2

L(β), p2
R(β); p3

L(γ), p3
R(γ)

]
, [̃q](α,β,γ) =

[
q1

L(α), q1
R(α); q2

L(β), q2
R(β); q3

L(γ), q3
R(γ)

]
, for all

α, β,γ ∈ [0, 1]. The metric on the neutrosophic number space is then defined as:

d(p, q) = sup max
α,β,γ∈[0,1]

{∣∣∣p1
L(α) − q1

L(α)
∣∣∣,
∣∣∣p1

R(α) − q1
R(α)

∣∣∣,
∣∣∣p2

L(β) − q2
L(β)

∣∣∣,
∣∣∣p2

R(β) − q2
R(β)

∣∣∣,
∣∣∣p3

L(γ) − q3
L(γ)

∣∣∣,
∣∣∣p3

R(γ) − q3
R(γ)

∣∣∣
}
.

Note 2. For some cases, the solution may not become strictly strong or weak solution type. In this scenario, a
specific time interval or specific interval of α,β, or γ becomes the strong or weak solution. The main objective is
to find the strong solutions. For scenariosin which neitherthe strong nor weak solutions occur, we call them
non-recommended neutrosophic solutions. We strongly recommended taking strong solutions.
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4. Solution of Neutrosophic Homogeneous Difference Equation

Considering linear homogeneous difference equations:

un+1 = aun (7)

In a neutrosophic sense, another inequivalent form of is (7) taken as:

un+1 − aun = 0 (8)

Remarks 1. Equations (7) and (8) are equivalent in a crisp sense, but in fuzzy sense they are not equivalent.

Proof 1. If we take the fuzzy difference Equation (7), it becomes Theorem 1.

[un+1](α,β,γ) = [aun](α,β,γ)

or [
u1

L,n+1(α), u1
R,n+1(α); u2

L,n+1(β), u2
R,n+1(β); u3

L,n+1(γ), u3
R,n+1(γ)

]

= a
[[

u1
L,n(α), u1

R,n(α); u2
L,n(β), u2

R,n(β); u3
L,n(γ), u3

R,n(γ)
]]

,

i.e., 

u1
L,n+1(α) = au1

L,n(α)

u1
R,n+1(α) = au1

R,n(α)

u2
L,n+1(β) = au2

L,n(β)

u2
R,n+1(β) = au2

R,n(β)

u3
L,n+1(γ) = au3

L,n(γ)

u3
R,n+1(γ) = au3

R,n(γ)

(9)

but when we take (8), it becomes Theorem 1.

[un+1](α,β,γ) − [aun](α,β,γ) = 0

or [
u1

L,n+1(α), u1
R,n+1(α); u2

L,n+1(β), u2
R,n+1(β); u3

L,n+1(γ), u3
R,n+1(γ)

]

−a
[[

u1
L,n(α), u1

R,n(α); u2
L,n(β), u2

R,n(β); u3
L,n(γ), u3

R,n(γ)
]]
= 0,

i.e., 

u1
L,n+1(α) − au1

R,n(α) = 0
u1

R,n+1(α) − au1
L,n(α) = 0

u2
L,n+1(β) − au2

R,n(β) = 0
u2

R,n+1(β) − au2
L,n(β) = 0

u3
L,n+1(γ) − au3

R,n(γ) = 0
u3

R,n+1(γ) − au3
L,n(γ) = 0

or 

u1
L,n+1(α) = au1

R,n(α)

u1
R,n+1(α) = au1

L,n(α)

u2
L,n+1(β) = au2

R,n(β)

u2
R,n+1(β) = au2

L,n(β)

u3
L,n+1(γ) = au3

R,n(γ)

u3
R,n+1(γ) = au3

L,n(γ)

(10)

Clearly, from (9) and (10), we conclude that they are different.
Therefore, in a crisp sense, (7) and (8) are the same, but not in a neutrosophic sense. �
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Theorem 3. Supposea and u0 are positive neutrosophic numbers, then ∃ is a unique positive solution for
Equation (7).

Proof 2. Let the (α, β, γ)-cut of the positive neutrosophic number ũ0 be defined
as [ũ0](α, β, γ) =

[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
and [̃a](α, β, γ) =[

a1
L(α), a1

R(α); a2
L(β), a2

R(β); a3
L(γ), a3

R(γ)
]
,∀α,β,γ ∈ [0, 1], and 0 ≤ α + β + γ ≤ 1, and if ũ0 =

[ξ1, ξ2, ξ3; η1,η2,η3; ζ1, ζ2, ζ3] then,



u1
L,0(α) = ξ1 + α(ξ2 − ξ1)

u1
R,0(α) = ξ3 − α(ξ3 − ξ2)

u2
L,0(β) = η2 − β(η2 − η1)

u2
L,0(β) = η2 + β(η3 − η2)

u3
L,0(γ) = ζ2 − γ(ζ2 − ζ1)

u3
L,0(γ) = ζ2 + γ(ζ3 − ζ2)

Suppose there exists a sequence of netrosophic numbers un of Equation (7), with the positive
netrosophic number u0. Taking the (α, β, γ)-cut of Equation (7), we have:

[un+1](α,β,γ) = [aun](α,β,γ)= [a](α,β,γ)[un](α,β,γ)

or
[
u1

L,n+1(α), u1
R,n+1(α); u2

L,n+1(β), u2
R,n+1(β); u3

L,n+1(γ), u3
R,n+1(γ)

]

=
[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

][
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

] (11)

Equation (11) then forwards the following system of the crisp homogeneous linear difference
equation for all α, β, and γ ∈ [0, 1], as follows:



u1
L,n+1(α) = a1

L(α)u
1
L,n(α)

u1
R,n+1(α) = a1

R(α)u
1
R,n(α)

u2
L,n+1(β) = a2

L(β)u
2
L,n(β)

u2
R,n+1(β) = a2

R(β)u
2
R,n(β)

u3
L,n+1(γ) = a3

L(γ)u
3
L,n(γ)

u3
R,n+1(γ) = a3

R(γ)u
3
R,n(γ)

(12)

and Equation (12) has unique solutions
[
u1

L,n(α), u1
R,n(α); u2

L,n+1(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
with an

initial condition
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
.

(The unique solution concept of a difference equation is taken from [42])
Therefore, using Equation (3), solutions are as follows:



u1
L,n(α) =

(
a1

L(α)
)n

u1
L,0(α)

u1
R,n(α) =

(
a1

R(α)
)n

u1
R,0(α)

u2
L,n(β) =

(
a2

L(β)
)n

u2
L,0(β)

u2
R,n(β) =

(
a2

R(β)
)n

u2
R,0(β)

u3
L,n(γ) =

(
a3

L(γ)
)n

u3
L,0(γ)

u3
R,n(γ) =

(
a3

R(γ)
)n

u3
R,0(γ)

(13)
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We show that
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
, where each components

are given (by 4.5) with the initial condition
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
,

which indicates the (α, β, γ)-cut of solution ũn of (7) with initial condition ũ0, so that:

[un](α,β,γ) =
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
(14)

Now, [
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]

=




(
a1

L(α)
)n

u1
L,0(α),

(
a1

R(α)
)n

u1
R,0(α);(

a2
L(β)

)n
u2

L,0(β),
(
a2

R(β)
)n

u2
R,0(β);(

a3
L(γ)

)n
u3

L,0(γ),
(
a3

R(γ)
)n

u3
R,0(γ)




= [aun](α,β,γ)

Therefore,
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
represents a positive neutrosophic

number, such that un = anu0 is the solution of (7).
To prove the uniqueness of the solution, let us assume that there exists an alternative solution ûn

for Equation (4.1). Proceeding in asimilar way, we then have:

[ûn](α,β,γ) =
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
for all (α, β,γ) ∈ [0, 1]. (15)

Therefore, from Equations (14) and (15), we obtain [ûn](α,β,γ) = [un](α,β,γ) for all (α, β,γ) ∈ [0, 1],
i.e., ûn = un. Thus, the theorem is proved. �

Theorem 4. Let a and u0 are positive neutrosophic numbers. There also exists a unique positive solution for
Equation (8).

Proof 3. The proof of this theorem is almost similar to Theorem (3). �

Theorem 5. Let a and u0b epositive neutrosophic numbers,
and max

{
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

}
< 1, ∀ α , β,γ ∈ [0, 1] and supp(u0) ⊂ [M1, N1],

where M1, N1 are finite positive real numbers. All the sequences of positive neutrosophic solution of Equation (7)
are then bounded and persist.

Proof 4. Let un be a sequence of positive neutrosophic solutions of Equation (7).
Since max

{
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

}
< 1, ∀α,β,γ ∈ [0, 1] and supp(u0) ⊂ [M1, N1],

where M1, N1 are finite positive real numbers, it is evident from Equation (9) that all the component
solutions of neutrosophic positive solution un converge to 0 as n→∞ i.e., un → 0netro as n→∞ ,
where (0neutro)(α,β,γ) = [0, 0; 0, 0; 0, 0]. Since every convergent sequence is bounded, the sequence of
positive neutrosophic solutions un of Equation (7) is bounded. �

Theorem 6. Let a and u0 bepositive neutrosophic numbers and
max

{
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

}
< 1, ∀ α , β,γ ∈ [0, 1] and supp(u0) ⊂ [M1, N1],

where M1, N1 are finite positive real numbers. All the sequences of positive neutrosophic solutions of Equation
(8) are then bounded and persist.

4.1. Solution of Homogeneous Difference Equation of Type I

Consider Equation (4.1) with the fuzzy initial condition ũn=0 = ũ0 as a neutrosophic number.
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Let [ũ0](α, β, γ) =
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
, ∀ α,β,γ ∈ [0, 1],

and 0 < α + β + γ < 3, where, [ũ0](α, β, γ) is the (α, β, γ)-cut of ũ0 and, if ũ0 =

[ξ1, ξ2, ξ3; η1, η2, η3; ζ1, ζ2, ζ3], then



u1
L,0(α) = ξ1 + α(ξ2 − ξ1)

u1
R,0(α) = ξ3 − α(ξ3 − ξ2)

u2
L,0(β) = η2 − β(η2 − η1)

u2
L,0(β) = η2 + β(η3 − η2)

u3
L,0(γ) = ζ2 − γ(ζ2 − ζ1)

u3
L,0(γ) = ζ2 + γ(ζ3 − ζ2)

(16)

4.1.1. The Solution When a > 0 Is a Crisp Number and u0 Is a Neutrosophic Number

Taking the (α, β, γ)-cut of Equation (7), we have the following equations:



u1
L,n+1(α) = au1

L,n(α)

u1
R,n+1(α) = au1

R,n(α)

u2
L,n+1(β) = au2

L,n(β)

u2
R,n+1(β) = au2

R,n(β)

u3
L,n+1(γ) = au3

L,n(γ)

u3
R,n+1(γ) = au3

R,n(γ)

(17)

Solutions of the above equations are:



u1
L,n(α) = anu1

L,0(α)

u1
R,n(α) = anu1

R,0(α)

u2
L,n(β) = anu2

L,0(β)

u2
R,n(β) = anu2

R,0(β)

u3
L,n(γ) = anu3

L,0(γ)

u3
R,n(γ) = anu3

R,0(γ)

(18)

4.1.2. The Solution When a = 1 and the Initial Value u0 is a Neutrosophic Number

In this case, a sequence of solutions is given by



u1
L,n(α) = u1

L,0(α)

u1
R,n(α) = u1

R,0(α)

u2
L,n(β) = u2

L,0(β)

u2
R,n(β) = u2

R,0(β)

u3
L,n(γ) = u3

L,0(γ)

u3
R,n(γ) = u3

R,0(γ)

(19)

which lead to convergent solutions.

4.1.3. The Solution When a < 0 and the Initial Value u0 Is a Neutrosophic Number

Let a = −µ, µ > 0, the real valued number.
From Equation (7), we then have

[
un+1(α), un+1(α)

]
= −µ

[
un(α), un(α)

]
(20)
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Therefore, we obtain the following:



u1
L,n+1(α) = −µu1

R,n(α)

u1
R,n+1(α) = −µu1

L,n(α)

u2
L,n+1(β) = −µu2

R,n(β)

u2
R,n+1(β) = −µu2

L,n(β)

u3
L,n+1(γ) = −µu3

R,n(γ)

u3
R,n+1(γ) = −µu3

L,n(γ)

(21)

The first pairs of equations can be written in the matrix form as:




u1
L,n+1(α)

u1
R,n+1(α)


 =

(
0 −µ

−µ 0

)
u1

L,n(α)

u1
R,n(α)


 (22)

From Equation (22), let the co-efficient matrix be A1 =

(
0 −µ

−µ 0

)

Therefore,

A1
n =



(
µn 0
0 µn

)
when n is an even natural number

(
0 −µn

−µn 0

)
when n is an odd natural number

Therefore, the solution of (4.1.6), using Theorem (3.1), is given by:




u1
L,n(α)

u1
R,n(α)


 = An

1




u1
L,0(α)

u1
R,0(α)


 (23)

When n is an even natural number, the general solutions are:



u1
L,n(α) = µnu1

L,0(α)

u1
R,n(α) = µnu1

R,0(α)

u2
L,n(β) = µnu2

L,0(β)

u2
R,n(β) = µnu2

R,0(β)

u3
L,n(γ) = µnu3

L,0(γ)

u3
R,n(γ) = µnu3

R,0(γ)

(24)

When n is odd natural number, the general solutions are:



u1
L,n(α) = −µ

nu1
R,0(α)

u1
R,n(α) = −µ

nu1
L,0(α)

u2
L,n(β) = −µ

nu2
R,0(β)

u2
R,n(β) = −µ

nu2
L,0(β)

u3
L,n(γ) = −µ

nu3
R,0(γ)

u3
R,n(γ) = −µ

nu3
L,0(γ)

(25)

4.1.4. The Solution When a > 0 Is Aneutrosophic Number and the Initial Value u0 Is a Crisp Number

Let [̃a](α, β, γ) =
[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]
, ∀ α ,β,γ ∈ [0, 1], and 0 ≤ α+β+ γ ≤ 3.
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Taking the (α, β, γ)-cut of Equation (7), we have the following equation:



u1
L,n+1(α) = a1

L(α)u
1
L,n(α)

u1
R,n+1(α) = a1

R(α)u
1
R,n(α)

u2
L,n+1(β) = a2

L(β)u
2
L,n(β)

u2
R,n+1(β) = a2

R(β)u
2
R,n(β)

u3
L,n+1(γ) = a3

L(γ)u
3
L,n(γ)

u3
R,n+1(γ) = a3

R(γ)u
3
R,n(γ)

(26)

where u0 is the initial value. The solutions are as follows:



u1
L,n(α) =

(
a1

L(α)
)n

u0

u1
R,n(α) =

(
a1

R(α)
)n

u0

u2
L,n(β) =

(
a2

L(β)
)n

u0

u2
R,n(β) =

(
a2

R(β)
)n

u0

u3
L,n(γ) =

(
a3

L(γ)
)n

u0

u3
R,n(γ) =

(
a3

R(γ)
)n

u0

(27)

4.1.5. The Solution When a < 0 Is a Neutrosophic Number and the Initial Value u0 Is a Crisp Number

Let a = −µ, where µ is a positive fuzzy number. [µ̃](α, β,γ) =[
µ1

L(α),µ
1
R(α); µ

2
L(β),µ

2
R(β); µ

3
L(γ),µ

3
R(γ)

]
, ∀ α ,β,γ ∈ [0, 1], and 0 ≤ α+ β+ γ ≤ 3.

Equation (7) then splits into the following equations:



u1
L,n+1(α) = −µ

1
R(α)u

1
R,n(α)

u1
R,n+1(α) = −µ

1
L(α)u

1
L,n(α)

u2
L,n+1(β) = −µ

2
R(β)u

2
R,n(β)

u2
R,n+1(β) = −µ

2
L(β)u

2
L,n(β)

u3
L,n+1(γ) = −µ

3
R(γ)u

3
R,n(γ)

u3
R,n+1(γ) = −µ

3
L(γ)u

3
L,n(γ)

(28)

In the matrix form, the first pairs of equations of Equation (28) can be written as:




u1
L,n+1(α)

u1
R,n+1(α)


 =

(
0 −µ1

R(α)

−µ1
L(α) 0

)
u1

L,n(α)

u1
R,n(α)


 (29)

The solution of (29) is given by:




u1
L,n(α)

u1
R,n(α)


 = An

2

(
u0

u0

)
(30)

where,

A2 =

(
0 −µ1

R(α)

−µ1
L(α) 0

)

and

An
2 =






(
µ1

L(α)µ
1
R(α)

) n
2 0

0
(
µ1

L(α)µ
1
R(α)

) n
2


 when n is even




0 −
(
µ1

L(α)
) n−1

2

−
(
µ1

L(α)
) n+1

2
(
µ1

R(α)
) n−1

2 0

(
µ1

R(α)
) n+1

2


 when n is odd
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The solution of Equation (30) when n is even is:



u1
L,n(α) =

(
µ1

L(α) µ
1
R(α)

) n
2 u0

u1
R,n(α) =

(
µ1

L(α)
(
µ1

Rα
)) n

2 u0

u2
L,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u0

u2
R,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u0

u3
L,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u0

u3
R,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u0

(31)

In this case, solutions become crisp numbers, i.e., un(α) =
(
µ(α) µ(α)

) n
2 u0.

The solution of Equation (30) when n is odd:



u1
L,n(α) = −

(
µ1

L(α)
) n−1

2
(
µ1

R(α)
) n+1

2 u0

u1
R,n(α) = −

(
µ1

L(α) )
) n+1

2
(
µ1

R(α)
) n−1

2 u0

u2
L,n(β) = −

(
µ2

L(β)
) n−1

2
(
µ2

R(β)
) n+1

2 u0

u2
R,n(β) = −

(
µ2

L(β) )
) n+1

2
(
µ2

R(β)
) n−1

2 u0

u3
L,n(γ) = −

(
µ3

L(γ)
) n−1

2
(
µ3

R(γ)
) n+1

2 u0

u3
R,n(γ) = −

(
µ3

L(γ) )
) n+1

2
(
µ3

R(γ)
) n−1

2 u0

(32)

4.1.6. The Solution When a > 0 and u0 Are Bothneutrosophic Numbers

Let
[̃a](α, β, γ) =

[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]

[ũ0](α, β, γ) =
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]

∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
The solution of Equation (16), which follows from Equation (26), is thengiven by:



u1
L,n(α) =

(
a1

L(α)
)n

u1
L,0(α)

u1
R,n(α) =

(
a1

R(α)
)n

u1
R,0(α)

u2
L,n(β) =

(
a2

L(β)
)n

u2
L,0(β)

u2
R,n(β) =

(
a2

R(β)
)n

u2
R,0(β)

u3
L,n(γ) =

(
a3

L(γ)
)n

u3
L,0(γ)

u3
R,n(γ) =

(
a3

R(γ)
)n

u3
R,0(γ)

(33)

4.1.7. The Solution When a < 0 and u0 Are Both Neutrosophic Numbers

Let a = −µ , µ > 0. Let [µ̃](α, β, γ) =
[
µ1

L(α),µ
1
R(α); µ

2
L(β),µ

2
R(β); µ

3
L(γ),µ

3
R(γ)

]
and [ũ0](α, β, γ) =[

u1
L,0(α), u1

R,0(α); u2
L,0(β), u2

R,0(β); u3
L,0(γ), u3

R,0(γ)
]

∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
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The solution of Equation (16), which is follows from Equation (31), is then given by:



u1
L,n(α) =

(
µ1

L(α) µ
1
R(α)

) n
2 u1

L,0(α)

u1
R,n(α) =

(
µ1

L(α) µ
1
R(α)

) n
2 u1

R,0(α)

u2
L,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u2

L,0(β)

u2
R,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u2

R,0(β)

u3
L,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u3

L,0(γ)

u3
R,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u3

R,0(γ)

(34)

The above equations show that the solution for n is even only. When n is odd, the solutions,
which follow from Equation (32), are as follows:



u1
L,n(α) = −

(
µ1

L(α)
) n−1

2
(
µ1

R(α)
) n+1

2 u1
L,0(α)

u1
R,n(α) = −

(
µ1

L(α)
) n+1

2
(
µ1

R(α)
) n−1

2 u1
R,0(α)

u2
L,n(β) = −

(
µ2

L(β)
) n−1

2
(
µ2

R(β)
) n+1

2 u2
L,0(β)

u2
R,n(β) = −

(
µ2

L(β)
) n+1

2
(
µ2

R(β)
) n−1

2 u2
R,0(β)

u3
L,n(γ) = −

(
µ3

L(γ)
) n−1

2
(
µ3

R(γ)
) n+1

2 u3
L,0(γ)

u3
R,n(γ) = −

(
µ3

L(γ)
) n+1

2
(
µ3

R(γ)
) n−1

2 u3
R,0(γ)

(35)

4.2. Solution of Homogeneous Difference Equation of Type II

4.2.1. The Solution When a = 1 and the Initial Condition u0 Is a Neutrosophic Number

Taking the (α, β, γ)-cut of Equation (8), we have the following:



u1
L,n+1(α) = u1

R,n(α)

u1
R,n+1(α) = u1

L,n(α)

u2
L,n+1(β) = u2

R,n(β)

u2
R,n+1(β) = u2

L,n(β)

u3
L,n+1(α) = u3

R,n(α)

u3
R,n+1(α) = u3

L,n(α)

(36)

In the matrix form, the first pairs of Equation (36) can be written as:




u1
L,n+1(α)

u1
R,n+1(α)


 =

(
0 1
1 0

)
u1

L,n(α)

u1
R,n(α)


 (37)

The solution of Equation (37) is, when n is even:


u1

L,n(α) = u1
L,0(α)

u1
R,n(α) = u1

R,0(α)
(38)

When n is odd, the solutions are: 
u1

L,n(α) = u1
R,0(α)

u1
R,n(α) = u1

L,0(α)
(39)

For both cases, when either n is even or odd, u1
L,n(α) and u1

R,n(α) leads to a convergent solution.
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In a similar way, solutions of remaining equations are as follows:
when n is even: 

u1
L,n(β) = u1

L,0(β)

u1
R,n(β) = u1

R,0(β)

u1
L,n(γ) = u1

L,0(γ)

u1
R,n(γ) = u1

R,0(γ)

(40)

When n is odd: 

u1
L,n(β) = u1

R,0(β)

u1
R,n(β) = u1

L,0(β)

u1
L,n(γ) = u1

R,0(γ)

u1
R,n(γ) = u1

L,0(γ)

(41)

4.2.2. The Solution When a > 0, a Real Valued Number, and the Initial Condition u0 Is a
Neutrosophic Number

Taking the (α, β,γ)-cut of (8), we get the following equations:



u1
L,n+1(α) − au1

R,n(α) = 0
u1

R,n+1(α) − au1
L,n(α) = 0

u1
L,n+1(β) − au1

R,n(β) = 0
u1

R,n+1(β) − au1
L,n(β) = 0

u1
L,n+1(γ) − au1

R,n(γ) = 0
u1

R,n+1(γ) − au1
L,n(γ) = 0

(42)

In the matrix form, the first pair of Equation (42) can be written as:




u1
L,n+1(α)

u1
R,n+1(α)


 =

(
0 a
a 0

)
u1

L,n(α)

u1
R,n(α)


 (43)

The solutions of (43) are, when n is even:


u1

L,n(α) = anu1
L,0(α)

u1
R,n(α) = anu1

R,0(α)
(44)

The solutions of (44) and (45) are, when n is odd:


u1

L,n(α) = anu1
R,0(α)

u1
R,n(α) = anu1

L,0(α)
(45)

In a similar way, the solutions of the remaining Equation (42) are as follows:
When n is even: 

u1
L,n(β) = anu1

L,0(β)

u1
R,n(β) = anu1

R,0(β)

u1
L,n(γ) = anu1

L,0(γ)

u1
R,n(γ) = anu1

R,0(γ)

(46)

When n is odd: 

u1
L,n(β) = anu1

R,0(β)

u1
R,n(β) = anu1

L,0(β)

u1
L,n(γ) = anu1

R,0(γ)

u1
R,n(γ) = anu1

L,0(γ)

(47)
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4.2.3. The Solution When a < 0 and When the Initial Condition u0 Is a Neutrosophic Number

Let a = −m , m > 0, a real valued number.
From Equation (8), after taking the (α, β, γ)-cut, we have the following sets of equations:



u1
L,n+1(α) + mu1

L,n(α) = 0
u1

R,n+1(α) + mu1
R,n(α) = 0

u1
L,n+1(β) + mu1

L,n(β) = 0
u1

R,n+1(β) + mu1
R,n(β) = 0

u1
L,n+1(γ) + mu1

L,n(γ) = 0
u1

R,n+1(γ) + mu1
R,n(γ) = 0

(48)

Solving the above equations, we get:



u1
L,n(α) = (−m)nu1

L,0(α)

u1
R,n(α) = (−m)nu1

R,0(α)

u2
L,n(β) = (−m)nu2

L,0(β)

u2
R,n(β) = (−m)nu2

R,0(β)

u3
L,n(γ) = (−m)nu3

L,0(γ)

u3
R,n(γ) = (−m)nu3

R,0(γ)

(49)

4.2.4. The Solution When a > 0 Is a Positive Neutrosophic Number and the Initial Condition u0 Is Nota
Neutrosophic Number

Let [̃a](α, β, γ) =
[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]
,∀ α ,β,γ ∈ [0, 1], and 0 ≤ α+ β+ γ ≤ 3.

Taking the (α, β, γ)-cut of Equation (8), we have the following equation:



u1
L,n+1(α) = a1

L(α)u
1
R,n(α)

u1
R,n+1(α) = a1

R(α)u
1
L,n(α)

u2
L,n+1(β) = a2

L(β)u
2
R,n(β)

u2
R,n+1(β) = a2

R(β)u
2
L,n(β)

u3
L,n+1(γ) = a3

L(γ)u
3
R,n(γ)

u3
R,n+1(γ) = a3

R(γ)u
3
L,n(γ)

(50)

In the matrix form, among the above equations, the first pair of Equation (50) can be written as:




u1
L,n+1(α)

u1
R,n+1(α)


 =

(
0 a1

R(α)

a1
L(α) 0

)
u1

L,n(α)

u1
R,n(α)


 (51)

The solution of Equation (51), when n is even:



u1
L,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u0

u1
R,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u0

u2
L,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u0

u2
R,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u0

u3
L,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u0

u3
R,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u0

(52)
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When n is odd: 

u1
L,n(α) =

(
a1

L(α)
) n−1

2
(
a1

R(α)
) n+1

2 u0

u1
R,n(α) =

(
a1

L(α)
) n+1

2
(
a1

R(α)
) n−1

2 u0

u2
L,n(β) =

(
a2

L(β)
) n−1

2
(
a2

R(β)
) n+1

2 u0

u2
R,n(β) =

(
a2

L(β)
) n+1

2
(
a2

R(β)
) n−1

2 u0

u3
L,n(γ) =

(
a3

L(γ)
) n−1

2
(
a3

R(γ)
) n+1

2 u0

u3
R,n(γ) =

(
a3

L(γ)
) n+1

2
(
a3

R(γ)
) n−1

2 u0

(53)

4.2.5. The Solution When a < 0 Is a Neutrosophic Number and when the Initial Condition u0 Is a
Crisp Number

Let a = −m , m > 0. Let [m̃](α, β, γ) =
[
m1

L(α), m1
R(α); m2

L(β), m2
R(β); m3

L(γ), m3
R(γ)

]
and

[ũ0](α, β, γ) =
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]

∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
Taking the (α, β, γ)-cut of Equation (8), we have the following equations:



u1
L,n+1(α) = −m1

L(α)u
1
L,n(α)

u1
R,n+1(α) = −m1

R,n(α)u
1
R,n(α)

u2
L,n+1(β) = −m2

L(β)u
2
L,n(β)

u2
R,n+1(β) = −m2

R,n(β)u
2
R,n(β)

u3
L,n+1(γ) = −m3

L(γ)u
3
L,n(γ)

u3
R,n+1(γ) = −m3

R,n(γ)u
3
R,n(γ)

(54)

The general solutions of the above equations are as follows:



uL,n(α) = (−mL(α))
nu0

uR,n(α) = (−mR(α))
nu0

uL,n(β) = (−mL(β))
nu0

uR,n(β) = (−mR(β))
nu0

uL,n(γ) = (−mL(γ))
nu0

uR,n(γ) = (−mR(γ))
nu0

(55)

4.2.6. The Solution When the Initial Condition u0 and a > 0 Are Both Neutrosophic Numbers

Let [̃a](α, β, γ) =
[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]
and [ũ0](α, β, γ) =[

u1
L,0(α), u1

R,0(α); u2
L,0(β), u2

R,0(β); u3
L,0(γ), u3

R,0(γ)
]

∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
In this case, the solutions are given, following from Equation (50):
when n is even: 

u1
L,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u1

L,0(α)

u1
R,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u1

R,0(α)

u2
L,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u2

L,0(β)

u2
R,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u2

R,0(β)

u3
L,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u3

L,0(γ)

u3
R,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u3

R,0(γ)

(56)
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when n is odd: 

u1
L,n(α) =

(
a1

L(α)
) n−1

2
(
a1

R(α)
) n+1

2 u1
R,0(α)

u1
R,n(α) =

(
a1

L(α)
) n+1

2
(
a1

R(α)
) n−1

2 u1
L,0(α)

u2
L,n(β) =

(
a2

L(β)
) n−1

2
(
a2

R(β)
) n+1

2 u2
R,0(β)

u2
R,n(β) =

(
a2

L(β)
) n+1

2
(
a2

R(β)
) n−1

2 u2
L,0(β)

u3
L,n(γ) =

(
a3

L(γ)
) n−1

2
(
a3

R(γ)
) n+1

2 u3
R,0(γ)

u3
R,n(γ) =

(
a3

L(γ)
) n+1

2
(
a3

R(γ)
) n−1

2 u3
L,0(γ)

(57)

4.2.7. The Solution When the Initial Condition u0 and a < 0 Are Both Neutrosophic Numbers

Let a = −m , m > 0. Let [m̃](α, β, γ) =
[
m1

L(α), m1
R(α); m2

L(β), m2
R(β); m3

L(γ), m3
R(γ)

]
and

[ũ0](α, β, γ) =
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]

∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
In a similar way, as seen in Equation (54), we have the following solutions.
The general solutions of the above equations are as follows:



u1
L,n(α) = (−mL(α))

nu1
L,0(α)

u1
R,n(α) = (−mR(α))

nu1
R,0(α)

u2
L,n(β) = (−mL(β))

nu2
L,0(β)

u2
R,n(β) = (−mR(β))

nu2
R,0(β)

u3
L,n(γ) = (−mL(γ))

nu3
L,0(γ)

u3
R,n(γ) = (−mR(γ))

nu3
R,0(γ)

(58)

5. Numerical Example

Example 1. Solve the difference equation:

un+1 = (2, 4, 6; 1, 4, 5; 2, 4, 5)un (59)

with the initial condition ũn=0 = (50, 60, 70; 55, 60, 75; 50, 60, 80)

Solution 1. If the [ũn](α, β, γ) is the (α, β, γ)-cut of a sequence of neutrosophic numbers, then its components
are as follows: 

u1
L,n(α) = (2 + 2α)n(50 + 10α)

u1
R,n(α) = (6− 2α)n(70− 10α)
u2

L,n(β) = (4− 3β)n(60− 5β)
u2

R,n(β) = (4 + β)n(60 + 15β)
u3

L,n(γ) = (4− 2γ)n(60− 10γ)
u3

R,n(γ) = (4 + γ)n(60 + 20γ)

(60)

Remarks 2. We plot the solution for n = 2. From the above Table 2 and Figure 1, we see that u1
L,n(α) is

an increasing function and u1
R,n(α) is a decreasing function, with respect to α. On the other hand, u2

L,n(β)

is a decreasing function and u2
R,n(β) is an increasing function, with respect to β. Additionally, u3

L,n(γ) is a

decreasing function and u3
R,n(γ) is an increasing function, with respect to γ. Therefore, using the concept of

Definition 3.2, we call the solution a strong solution.
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Table 2. Solution for n = 2.

α,β,γ u1
L,n(α) u1

R,n(α) u2
L,n(β) u2

R,n(β) u3
L,n(γ) u3

R,n(γ)

0 200.00 2520.00 960.00 960.00 960.00 960.00
0.1 246.84 2321.16 814.55 1033.81 851.96 1042.22
0.2 299.52 2132.48 682.04 1111.32 751.68 1128.96
0.3 358.28 1953.72 562.18 1192.60 658.92 1220.34
0.4 423.36 1784.64 454.72 1277.76 573.44 1316.48
0.5 495.00 1625.00 359.37 1366.87 495.00 1417.50
0.6 573.44 1474.56 275.88 1460.04 423.36 1523.52
0.7 658.92 1333.08 203.96 1557.34 358.28 1634.66
0.8 751.68 1200.32 143.36 1658.88 299.52 1751.04
0.9 851.96 1076.04 93.79 1764.73 246.84 1872.78
1 960.00 960.00 55.00 1875.00 200.00 2000.00

 

n = 2 u୐,୬ଵ (α)uୖ,୬ଵ (α) αu୐,୬ଶ (β) uୖ,୬ଶ (β) βu୐,୬ଷ (γ) uୖ,୬ଷ (γ)γ
𝑛 = 2𝜶, 𝜷, 𝜸 𝒖𝑳,𝒏𝟏 (𝜶) 𝒖𝑹,𝒏𝟏 (𝜶) 𝒖𝑳,𝒏𝟐 (𝜷) 𝒖𝑹,𝒏𝟐 (𝜷) 𝒖𝑳,𝒏𝟑 (𝜸) 𝒖𝑹,𝒏𝟑 (𝜸)

𝑛 = 2.n = 5u୐,୬ଵ (α) uୖ,୬ଵ (α) αu୐,୬ଶ (β) uୖ,୬ଶ (β) βu୐,୬ଷ (γ) uୖ,୬ଷ (γ)γ

Figure 1. Graph for n = 2.

Remarks 3. We plotted the solution for n = 5. From the above Table 3 and Figure 2, we see that u1
L,n(α) is

an increasing function and u1
R,n(α) is a decreasing function, with respect to α. On the other hand, u2

L,n(β)

is a decreasing function and u2
R,n(β) is an increasing function, with respect to β. Additionally, u3

L,n(γ) is a

decreasing function and u3
R,n(γ) is an increasing function, with respect to γ. Therefore, using the concept of

Definition 6, we call the solution a strong solution.

Table 3. Solution for n = 5.

α,β,γ u1
L,n(α) u1

R,n(α) u2
L,n(β) u2

R,n(β) u3
L,n(γ) u3

R,n(γ)

0 1600.00 544,320.00 61,440.00 61,440.00 61,440.00 61,440.00
0.1 2628.35 452,886.16 41,259.65 71,251.56 46,748.74 71,830.84
0.2 4140.56 374,497.60 26,806.90 82,335.47 35,070.38 83,642.38
0.3 6297.12 307,640.56 16,748.05 94,820.44 25,898.19 97,025.57
0.4 9293.59 250,934.66 9982.01 108,844.70 18,790.48 112,143.03
0.5 13,365.00 203,125.00 5615.23 124,556.48 13,365.00 129,169.68
0.6 18,790.48 163,074.53 2937.57 142,114.45 9293.59 148,293.34
0.7 25,898.19 129,756.67 1398.99 161,688.22 6297.12 169,715.30
0.8 35,070.38 102,248.05 587.20 183,458.85 4140.56 193,651.01
0.9 46,748.74 79,721.65 206.06 207,619.30 2628.35 220,330.69
1 61,440.00 61,440.00 55.00 234,375.00 1600.00 250,000.00
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𝑛 = 5.𝜶,𝜷, 𝜸 𝒖𝑳,𝒏𝟏 (𝜶) 𝒖𝑹,𝒏𝟏 (𝜶) 𝒖𝑳,𝒏𝟐 (𝜷) 𝒖𝑹,𝒏𝟐 (𝜷) 𝒖𝑳,𝒏𝟑 (𝜸) 𝒖𝑹,𝒏𝟑 (𝜸)

𝑛 = 5.𝛼, 𝛽, 𝛾 = 0.4 𝑛
𝛼, 𝛽, 𝛾 = 0.4 𝑛.𝒏 𝒖𝑳,𝒏𝟏 (𝜶) 𝒖𝑹,𝒏𝟏 (𝜶) 𝒖𝑳,𝒏𝟐 (𝜷) 𝒖𝑹,𝒏𝟐 (𝜷) 𝒖𝑳,𝒏𝟑 (𝜸) 𝒖𝑹,𝒏𝟑 (𝜸)

Figure 2. Graph for n = 5.

We interpret the solution for fixed α, β,γ = 0.4 and different n in Table 4 and Figure 3.

Table 4. Solution for α, β,γ = 0.4 and different n.

n u1
L,n(α) u1

R,n(α) u2
L,n(β) u2

R,n(β) u3
L,n(γ) u3

R,n(γ)

1 151.20 343.20 162.40 290.40 179.20 299.20
2 381.93 1513.38 410.23 1101.80 510.47 1135.19
3 964.79 6673.49 1036.26 4180.33 1454.14 4307.01
4 2437.12 29,427.69 2617.65 15,860.57 4142.31 16,341.19
5 6156.31 129,765.52 6612.33 60,176.40 11,799.88 61,999.93
6 15,551.16 572,219.06 16,703.10 228,314.58 33,613.43 235,233.20
7 39,283.04 2,523,279.35 42,192.90 866,245.64 95,752.00 892,495.51
8 99,231.00 11,126,750.35 106,581.44 3,286,612.28 272,761.37 3,386,206.59
9 250,662.64 49,064,949.17 269,230.24 12,469,696.48 776,994.32 12,847,566.07

10 633,186.78 216,358,699.65 680,089.51 47,311,126.78 2,213,363.93 48,744,797.29

 

𝛼, 𝛽, 𝛾 = 0.4 𝑛
𝑢௡ାଵ − 4𝑢௡ = 0𝑢෤௡ୀ଴ = (50,60,70; 55,60,75; 50,60,80)[𝑢෤௡](ఈ,ఉ,ఊ) 𝛼, 𝛽, 𝛾

 𝑛

⎩⎪⎪
⎨⎪⎪
⎧𝑢௅,௡ଵ (𝛼) = 4௡(50 + 10𝛼)𝑢ோ,௡ଵ (𝛼) = 4௡(70 − 10𝛼)𝑢௅,௡ଵ (𝛽) = 4௡(60 − 5𝛽)𝑢ோ,௡ଵ (𝛽) = 4௡(60 + 15𝛽)𝑢௅,௡ଵ (𝛾) = 4௡(60 − 10𝛾)𝑢ோ,௡ଵ (𝛾) = 4௡(60 + 20𝛾) 𝑛

⎩⎪⎪
⎨⎪⎪
⎧𝑢௅,௡ଵ (𝛼) = 4௡(70 − 10𝛼)𝑢ோ,௡ଵ (𝛼) = 4௡(50 + 10𝛼)𝑢௅,௡ଵ (𝛽) = 4௡(60 + 15𝛽)𝑢ோ,௡ଵ (𝛽) = 4௡(60 − 5𝛽)𝑢௅,௡ଵ (𝛾) = 4௡(60 + 20𝛾)𝑢ோ,௡ଵ (𝛾) = 4௡(60 − 10𝛾)

𝑆଴ 𝑖𝑆௧ 𝑡

Figure 3. Graph for α, β,γ = 0.4 and different n.

Example 2. Solve the difference equation:

un+1 − 4un = 0 (61)
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with initial condition ũn=0 = (50, 60, 70; 55, 60, 75; 50, 60, 80)

Solution 2. If [ũn](α, β, γ) is the (α, β, γ)-cut of a sequence of neutrosophic numbers, then it’s components are
as follows:

when n is even: 

u1
L,n(α) = 4n(50 + 10α)

u1
R,n(α) = 4n(70− 10α)
u1

L,n(β) = 4n(60− 5β)
u1

R,n(β) = 4n(60 + 15β)
u1

L,n(γ) = 4n(60− 10γ)
u1

R,n(γ) = 4n(60 + 20γ)

(62)

when n is odd: 

u1
L,n(α) = 4n(70− 10α)

u1
R,n(α) = 4n(50 + 10α)

u1
L,n(β) = 4n(60 + 15β)

u1
R,n(β) = 4n(60− 5β)

u1
L,n(γ) = 4n(60 + 20γ)

u1
R,n(γ) = 4n(60− 10γ)

(63)

As previous examples, we easily interpret the solutions in a different manner.

6. Application of the Method in Actuarial Science

Let us consider that a sum S0 is invested at a compound interest of i per unit amount and per unit
of time and St is the amount at the end of time t. We then get the difference equation associated with
the problem, which is:

St+1 = St + iSt = (1 + i)St (64)

If, for some reason, i may vary, we are interested to find the possible amount after a certain
time interval.

For this problem, let us consider hypothetical data and solve it. Suppose a person has initially
invested St=0 = 10000$ in a firm, where they get about 4% interest (which may be considered a
neutrosophic value).

As per Table 1, if we take the verbal phrase for a triangular neutrosophic number, we then set the
interest rate as follows:

For the truth part: low as 3%, medium as 4%, high as 5%;
For the falsity portion: very low as 2%, medium as 4%, very high as 6%;
For the indeterminacy part: between low and very low 2.5%, medium 4%, between high and very
high 5.5%,

i.e., we can take ĩ = (3, 4, 5; 2, 4, 6; 2.5, 4, 5.5)% per annum rate. We wish to predict the amount of
money after 10 years.
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Therefore, we get the fuzzy difference equation

St+1 = St + iSt =
(
1 + ĩ

)
St (65)

With the initial conditions St=0 = 10000$ and ĩ = (3, 4, 5; 2, 4, 6; 2.5, 4, 5.5)%.

Solution 3. Equation (65) is equivalent to

St+1 = St + iSt = (1 + (0.03, 0.04, 0.05; 0.02, 0.04, 0.06; 0.025, 0.04, 0.055))St

or
St+1 = (1.03, 1.04, 1.05; 1.02, 1.04, 1.06; 1.025, 1.04, 1.055)St (66)

with the initial condition St=0 = 10000$.
The solution of (66) can be written using the concept of (19), as follows:



S1
L,t(α) = 10000(1.03 + 0.01α)t

S1
R,t(α) = 10000(1.05− 0.01α)t

S2
L,t(β) = 10000(1.04− 0.02β)t

S2
R,t(β) = 10000(1.04 + 0.02β)t

S3
L,t(γ) = 10000(1.04− 0.015γ)t

S3
R,t(γ) = 10000(1.04 + 0.015γ)t

(67)

Remarks 4. (1) We plot the solution for t = 10. From the above Table 5 and Figure 4, we see that S1
L,n(α) is

an increasing function and S1
R,n(α) is a decreasing function, with respect to α. On the other hand, S2

L,n(β)

is a decreasing function and S2
R,n(β) is an increasing function, with respect to β. Additionally, S3

L,n(γ) is a

decreasing function and S3
R,n(γ) is an increasing function, with respect to γ. Therefore, using the concept of

Definition 3.2, we call the solution a strong solution. (2) From Table 5, we can see that we find the crisp solution
at α = 1, β,γ = 0 (since, at α = 1, β,γ = 0, the neutrosophic number becomes a crisp number) and for
t = 10 is equal to 14802.4428. Therefore, we can say that after 10 years, the most probable chance to get the
money is 14802.4428$.(3) If we consider α = 0 and β,γ = 1, i.e., in the case that we get the most uncertain
solution interval, we observe that the truthiness of the solution belongs to the interval [13439.1638, 16288.9463],
the falsity belongs to the interval [12189.9442, 17908.4770], and the indeterminacy belongs to the interval
[12800.8454, 17081.4446].

Table 5. Solution for t = 10.

α,β,γ S1
L,t(α) S1

R,t(α) S2
L,t(β) S2

R,t(β) S3
L,t(γ) S3

R,t(γ)

0 13,439.1638 16,288.9463 14,802.4428 14,802.4428 14,802.4428 14,802.4428
0.1 13,570.2126 16,134.4766 14,520.2313 15,089.5813 14,590.3264 15,017.3306
0.2 13,702.4105 15,981.3266 14,242.8714 15,381.7230 14,380.9496 15,235.0219
0.3 13,835.7662 15,829.4861 13,970.2889 15,678.9453 14,174.2808 15,455.5492
0.4 13,970.2889 15,678.9453 13,702.4105 15,981.3266 13,970.2889 15,678.9453
0.5 14,105.9876 15,529.6942 13,439.1638 16,288.9463 13,768.9430 15,905.2433
0.6 14,242.8714 15,381.7230 13,180.4776 16,601.8849 13,570.2126 16,134.4766
0.7 14,380.9496 15,235.0219 12,926.2814 16,920.2240 13,374.0675 16,366.6791
0.8 14,520.2313 15,089.5813 12,676.5060 17,244.0464 13,180.4776 16,601.8849
0.9 14,660.7259 14,945.3915 12,431.0828 17,573.4357 12,989.4133 16,840.1284
1 14,802.4428 14,802.4428 12,189.9442 17,908.4770 12,800.8454 17,081.4446
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𝑡 = 10Figure 4. Graph for t = 10.

7. Conclusions and Future Research Scope

In this paper, we find the solution strategy for solving and analyzing homogeneous linear difference
equations with neutrosophic numbers, i.e., we found the solutions of the homogeneous difference
equations with initial conditions and coefficients, both as neutrosophic numbers. We demonstrate the
solution of different cases using the neutrosophic characterization theorem, which is established in this
paper. The strong and weak solution concepts are also applied to different results.

Moreover, the outcomes of the study are as follows:

(1) The difference type of the homogeneous difference equation is solved in a neutrosophic
environment and the symmetric behavior between them is discussed.

(2) The characterization theorem for the neutrosophic difference equations are established.
(3) The strong and weak solution concept is applied for the neutrosophic difference equation.
(4) Different examples and real-life applications in actuarial science are illustrated for better

understanding of neutrosophic difference equations.

For some limitations, we did not study the different perspectives of related research in the theory
of difference equations with uncertainty in this present work. From this work, anyone can take
motivation and find a new theory and results in the following field, as follows:

(1) The solution of difference equation can be found with different types of uncertainty, such as Type
2 fuzzy, interval valued fuzzy, hesitant fuzzy, rough fuzzy environment.

(2) Finding several methods (analytical and numerical) for solving non-linear first and higher order
difference equations or system of difference equations with uncertainty.

(3) Solving the real-life model associated with the discrete system modeling with uncertain data.

As a final argument, we can surely say that this research is very helpful to the research community
who deals with discrete system modeling with uncertainty.
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Abstract: The grand theory of action of Parsons has an important place in social theories. Furthermore,
there are many uncertainties in the theory of Parsons. Classical math logic is often insufficient to
explain these uncertainties. In this study, we explain the grand theory of action of Parsons in
neutrosociology for the first time. Thus, we achieve a more effective way of dealing with the
uncertainties in the theory of Parsons as in all social theories. We obtain a similarity measure for
single-valued neutrosophic numbers. In addition, we show that this measure of similarity satisfies
the similarity measure conditions. By making use of this similarity measure, we obtain applications
that allow finding the ideal society in the theory of Parsons within the theory of neutrosociology.
In addition, we compare the results we obtained with the data in this study with the results of
the similarity measures previously defined. Thus, we have checked the appropriateness of the
decision-making application that we obtained.

Keywords: neutrosociology; modeling of grand theory of action of Talcott Parsons; single-valued
neutrosophic number; measure of similarity; decision-making applications

1. Introduction

There are many uncertainties in the world. Classical math logic is usually insufficient to explain
uncertainties. Thus, we are not always able to say for a situation or an event whether it is true or wrong
in an absolute manner. For example, we cannot always say the weather is hot or cold. While the weather
is hot according to some, it may be cold for others. Therefore, Smarandache obtained the neutrosophic
logic and neutrosophic set to deal with uncertainties more objectively in 1998 [1]. ‘T’ is the membership
degree, ‘I’ is the uncertainty degree and ‘F’ is the non-membership degree in the neutrosophic logic
and neutrosophic sets. “T, I, F” are defined independently. In addition, a neutrosophic number has the
form (T, I, F). Furthermore, neutrosophic logic is a generalization of fuzzy logic [2] and intuitionistic
fuzzy logic [3] since fuzzy and intuitionistic fuzzy logic’s membership, non–membership degrees are
defined dependently. Thus, many researchers have obtained new structures and new applications on
neutrosophic logic and sets [4–15].

In Section 2 of this study, we provide a literature review. In Section 3, we give related works.
In Section 4, we include the definitions of neutrosophic sets [1], single-valued sets [6], similarity
measures in [7] and [16], the theory of social action of Parsons [17], Hausdorff measure [18] and
Hamming measure [18]. In Section 5, we re-model the social action theory of Parsons which is modeled
in neutrosociology. In Section 6, we obtain a similarity measure for single-valued neutrosophic sets and
prove that this measure meets the requirements of the similarity measure. In Section 7, we create the
decision-making algorithm that we can choose the ideal society among the societies for the social action
theory of Parsons in neutrosociology with the help of similarity measure in Section 6. In Section 8,
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we give sensitivity analysis for numeric example in Section 7; in Section 9, we give comparison methods.
We compare the results we obtained with the data in this study with the results of the similarity
measures previously defined. Thus, we have checked the appropriateness of the decision-making
application we obtained; in Section 10, we discuss what we obtained in this study and make suggestions
for studies that can be obtained by making use of this study; in Section 11, we give conclusions.

2. Literature Review

Similarity measure and decision-making practices emerge as an important application theory,
especially after the definition of the fuzzy sets and neutrosophic sets. Many researchers have tried to deal
with uncertainties by making new applications on neutrosophic sets, using similarity measures, TOPSIS
method, VIKOR method, multicriteria method, Maximizing deviation method, decision tree methods,
gray relational analysis method, etc. Recently, Şahin et al. studied combined classic neutrosophic sets
and double neutrosophic sets [19]; Şahin et al. obtained decision-making applications for professional
proficiencies in neutrosophic theory [16]; Uluçay et al. introduced decision-making applications for
neutrosophic soft expert graphs [20]; Olgun et al. studied neutrosophic logic on the decision tree [21];
Wang et al. studied an extended VIKOR method with triangular fuzzy neutrosophic numbers [22];
Biswas et al. introduced TOPSIS method for decision–making applications [23]; Şahin et al. obtained
a maximizing deviation method in neutrosophic theory [24]; Biswas et al. studied gray relational
analysis method for decision-making applications [25].

3. Related Works

Smarandache claims that sociopolitical events can be studied mathematically [4]. In addition,
he claims that it is possible to design a tool to describe an equation, an operator, a mathematical
structure or a social phoneme. Studying the past gives us an idea about the future, at least partially.
For this reason, we need to construct neutrosophic theories that may describe the new possible types
of social structures with a neutrosophic number form. Since the social word contains a high degree
of subjectivity that causes a low level of unanimity, these theories necessarily address uncertainty.
Most of the data we come across in the field of sociology may be vague, incomplete, contradictory,
biased, hybrid, ignorant, redundant, etc. Therefore, they are neutrosophic in nature and neutrosophic
sciences dealing with indeterminacy should be involved in the study of sociology [4].

For the very same reasons, Smarandache proposed a model to be used in neutrosophic studies.
He states that a neutrosophic extension of an element x with a neutrosophic number form.

Parsons, who built his theory on methodological and meta-theoretical debates in the field of
social science, also paid special attention to hermeneutic to explain the extent of the individual’s
voluntary involvement in action [26]. He made structural and functional explanations to maintain
social balance and harmony [21]. While Parsons saw culture as values and norms that guide the
actions of individuals in social life, he conceptualized the structure as a system of intertwined and
independent parts [27]. According to Parsons, cultural objects are autonomous. He did this by
distinguishing between the cultural and social systems. He also viewed society as a general system of
action. In addition, many researchers have studied Parsons’s social action theory [26–36].

In this study, Parsons’s social action theory was aimed to re-model neutrosociology. As in all social
theories, the social action theory of Parsons could not escape uncertainty [21]. Hence, the handling
of it in neutrosociology theory would make this theory more useful. Therefore, we have obtained a
similarity measure with single-valued neutrosophic numbers and included applications where this
measure can be used as the neutrosophic equivalent of the ideal society in this theory.

4. Preliminaries

This section includes the definitions of neutrosophic sets [1], single-valued neutrosophic sets [6],
similarity measures [7,16] and theory of social action of Parsons [17], Hausdorff measure [18] and
Hamming measure [18].
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Definition 1 ([17]). Parsons, who built his theory on methodological and meta-theoretical debates in the field
of social science, also paid special attention to hermeneutic to explain the extent of the individual’s voluntary
involvement in action (so, which is neutrosophic). He made structural and functional explanations to maintain
social balance and harmony. While Parsons saw culture as values and norms that guide the actions of individuals
in social life, he conceptualized the structure as a system of intertwined and independent parts. According to
Parsons, cultural objects are autonomous. He did this by distinguishing between the cultural and social systems.
He also viewed society as a general system of action.

Definition 2 ([1]). Let X be a universal set. Neutrosophic set S; is identified as S = {(x:TA(x), IA(x), FA(x)>,
x ∈ X}. Where; on the condition that 0−≤ TA(x) + IA(x) + FA(x) ≤3+; the functions T:U→ ]0−,1+[ is truth
function, I:U→ ]0−,1+[ is uncertain function and F:U→ ]0−,1+[ is falsity function.

Definition 3 ([6]). Let X be a universal set. Single-valued neutrosophic number set S; is identified as
S = {(x:TA(x), IA(x), FA(x)>, x ∈ X}. Where; on condition that 0≤ TA(x) + IA(x) + FA(x) ≤3; the functions T:X
→ [0,1] is truth function, I:X→ [0,1] is uncertainly function and F:X→ [0,1] is falsity function.

Definition 4 ([6]). Let A = {(x:<TA(x), IA(x), FA(x)>} and B = {(x:<TB(x), IB(x), FB(x)>} are single-valued
neutrosophic numbers. If A = B; then TA(x) = TB(x), IA(x) = IB(x) and FA(x) = FB(x).

Definition 5 ([6]). Let A = {(x:<TA(x), IA(x), FA(x)>} and B = {(x:<TB(x), IB(x), FB(x)>} are single-valued
neutrosophic sets for x ∈ U. If A < B; then for ∀ x ∈ U; TA(x) < TB(x), IA(x) < IB(x) and FA(x) < FB(x).

Properties 1 ([7]). Let A1, A2 and A3 are three single-valued neutrosophic numbers and S be a similarity
measure. S provides the following conditions.

i. 0 ≤ S(A1, A2) ≤ 1
ii. S(A1, A2) = S(A2, A1)

iii. S(A1, A2) = 1 ⇔ A1 = A2 .
iv. If A1 ≤ A2 ≤ A3 then, S(A1, A3) ≤ S(A1, A2).

Definition 6 ([16]). Let A1 = <T1, I1, F1> and A2 = <T2, I2, F2> be two single-valued neutrosophic numbers.

SN(A1, A2) =

1− (2/3)[
min{|3(T1−T2)−2(F1−F2)|,|F1−F2 |}

{max{|3(T1−T2)−2(F1−F2)|,|F1−F2 |}/5}+1
+

min{|4(T1−T2)−3(I1−I2)|,|I1−I2 | }

{max{|4(T1−T2)−3(I1−I2)|,|I1−I2 |}/7}+1
+

min{|5(T1−T2)−2(F1−F2)−3(I1−I2)|,|T1−T2 |}

{max{|5(T1−T2)−2(F1−F2)−3(I1−I2)|,|T1−T2 |}/10}+1
]

is a similarity measure.

Definition 7 ([18]). Let A1 = <T1, I1, F1> and A2 = <T2, I2, F2> be two single-valued neutrosophic numbers.

Sh(A1, A2) = 1−max{|T1 − T2|, |I1 − I2|, |F1 − F2|}

is a Hausdorff similarity measure.

Definition 8 ([18]). Let A1 = <T1, I1, F1> and A2 = <T2, I2, F2> be two single-valued neutrosophic numbers.

SH(A1, A2) = 1− (|T1 − T2|+ |I1 − I2|+ |F1 − F2|)/3

is a Hamming similarity measure.
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5. Neutrosophic Modeling of Parson’s Theory of Action

According to the perfection of action categories of Parsons, it is inevitable to have deep doubts in
every society and between layers of a particular society. However, “there is no ideal society in the sense
that Marx defines, within each society the definition of ideal changes according to the place of a person
within the society. By those who are at the top layer, the society is defined as ideal, by those at the
lowest layer, it is far from being ideal, and by those in the mid-layer, who can sometimes be completely
ignorant of what is an ideal society, it can be described as a fluctuating phenomenon depending on
circumstances. Therefore, we always have a neutrosophic ideal society with an opposite and neutral
triad. Naturally, this is valid for all societies since there are always people with more privileges than
the others. Even in any a democratic society, some people have more privileges although they may
form a small minority” [4].

Parsons developed a theory of action to explain how the macro and micro aspects of a particular
social order show structural integrity together with the participation of its members. He took into
account the voluntary participation of the individual in the social life on one hand, and structural
continuity on the other. Here, it is assumed that the individual acts under the motivation of the social
structure while taking action. According to him, social sciences should consider a trio considering the
purposes, ends and ideals when examining actions.

Grand Theory of Action

The basic paradigm of Parson viewed society as a general system of action is based on the
understanding of ‘rational social action’ of Weber [28]. However, according to Weber, sociology is a
science that tries its interpretive understanding of social action to achieve a causal explanation of its
course and its effects [36].

This interpretation is enriched from the perspective of the sociologist. Thus, social actions become
neutrosophic. Others may agree, partially agree or disagree (1, 0, 0). Likewise, in the theory of
Parson, the possibility of all members of society to participate in social values and norms that regulate,
and guide human relations rather than individual activities is questionable, uncertain. Here we must see
neutrosophic triplets.

According to Parson’s theory, all social actions are based on five pattern variables. These:

1. Affectivity versus affective neutrality;
2. Self-orientation versus collective orientation;
3. Universalism versus particularism;
4. Quality versus performance;
5. Specificity versus diffuseness.

Parsons believes that these variables classify expectations and the structure of relationships,
making the intangible action theory more understandable. However, according to Parsons, pattern
variables are twofold, and each pattern variable indicates a problem or riddle that must be solved by
the actor before the action can be performed. At the same time, there is a wide variety between the
traditional society and the modern society. However, these can be seen as binary for neutrosophic
sociological analysis (1, 0), it is very difficult to determine which of the individual’s behaviors are
modern or traditional. Therefore, each of them should be considered as triple neutrosophic (1, 0, 0).
The feminists’ response to Parsons’ family view can be given as an example. According to Parsons,
the instrumental leadership role in the family structure in modern societies should be given to the
spouse–father, on which the family’s reputation and income are based [32]. However, according to
feminists, this statement by Parsons is nothing more than the continuation of the status quo [35].
In addition, these pattern variables (stereotypes) do not say how people will behave when faced with
role conflict, and we will once again encounter uncertainty. This uncertainty can only be answered
by neutrosociology.
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The society model that Parsons has compared to the biologic model of an organism is based on the
understanding of “living systems” that continues in a balanced way. According to him, a change in any
part of the social system leads to adaptive changes in other parts [33]. There are four main problems an
all-action system must solve. These are adaptation, goal-attainment, integration and latent pattern
maintenance (AGIL). In short, these are referred to as AGIL in Table 1.

Table 1. Pure adaptation, goal-attainment, integration and latent pattern maintenance (AGIL) model
for all living systems [33].

A Instrumental Consummatory G

External Adaptation Goal-attainment

Internal Latent pattern maintenance Integration

L I

“Adaptation” (A) is concerned with meeting the needs of the system from its environment and
how resources are distributed within the system. Here, the system should provide sufficient resources
from the environment and distribute it within itself. Social institutions are related to interrelated social
rules and roles system that will meet social needs or functions and help solve social system problems.
For example, economy, political order, law, religion, education and family are basic institutions for
these. If a social system will continue to live, it needs structures and organizations that will function to
adapt to its environment. The most dominant of these institutions is the economy. In “achieving the
goal” (G), it is determined that the system reaches the specific target and which of these targets has
priority. In other words, it should mobilize the resources and energies of the system and determine
the priorities among them. “Integration” (I) refers to the coordination and harmony of parts of the
system so that the system functions as a whole. To keep the system running, it must coordinate,
correct, and regulate the relationships between the various actors or units in the system. “Latent
pattern maintenance” (L) shows how to ensure the continuity of the action within the system according
to a certain order or norm. The system should protect its values from deterioration and ensure the
transfer of social values. Thus, it ensures the compliance of the members of the system. Especially
family, religion, media and education have basic functions. Thanks to these, individuals gain a moral
commitment to values shared socially [30].

The General Action Level is as follows in Table 2:

Table 2. General Action Level [30].

A G

The behavioral organism The personality system

The cultural system The social system

L I

Ultimately we get this series: The social the system, the fiduciary the cognitive.
Let us rebuild this series neutrosociology: (1, 0, 0) (1, 0, 0) (1, 0, 0).
If we go back to the beginning, “Behavioral organic, Personality system, Cultural system and

Social system” must work continuously to ensure social balance. This will be through “socialization”
and “social control”. If socialization “works”, all members of the society will adhere to shared values,
make appropriate choices between pattern variables, and do what is expected of them in harmony,
integration and other issues. For example, people will marry and socialize their children (L), and the
father in the family will gain bread as it should be (A) [35].
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6. A New Measurement of Similarity for Single-Valued Neutrosophic Numbers

Definition 9. Let A1 = <T1, I1, F1>, A2 = <T2, I2, F2> be two single-valued neutrosophic numbers. We define
measure of similarity between A1 and A2 as follows

SN(A1, A2) = 1 − (2/3)[
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1

+
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1

+
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

]

We show that the measure of similarity in Definition 9 meets the requirements in Properties 1.

Theorem 1. Let SN be the measure of similarity in Definition 9. SN provides the following features.

i. 0 ≤ SN(A1, A2) ≤ 1
ii. SN(A1, A2) = SN(A2, A1)

iii. SN(A1, A2) = 1 if and only if A1 = A2.
iv. If A1 ≤ A2 ≤ A3, then SN(A1, A3) ≤ SN(A1, A2).

Proof: (i) Since A1 and A2 are single-valued neutrosophic numbers, we have

max{
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1
} = 1/2,

min{
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1
} = 0,

max{
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1
} = 1/2,

min{
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1
} = 0,

max{
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

} = 1/2,

min{
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

} = 0.

Therefore,

min{SN(A1, A2)} = 1− 2/3(1/2 + 1/2 + 1/2) = 1− 1 = 0,
max{SN(A1, A2)} = 1− 2/3(0 + 0 + 0) = 1− 0 = 1.

Hence, 0 ≤ SN(A1, A2) ≤1.
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(ii)

SN(A1, A2) = 1− (2/3)[
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1

+
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1

+
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

]

= 1− 2/3. {
min{

√
3(T2−T1)

2+(I2−I1)
2, |2(T2−T1)−(I2−I1)|/3}

{max{
√

3(T2−T1)
2+(I2−I1)

2, |2(T2−T1)−(I2−I1)|/3}/2}+1

+
min{

√
3(T2−T12)

2+(F2−F1)
2, |2(T2−T1)−(F2−F1)|/3}

{max{
√

3(T2−T1)
2+(F2−F1)

2, |2(T2−T1)−(F2−F1)|/3}/2}+1

+
min{

√
2(T2−T1)

2+(I2−I1)
2+(F2−F1)

2, |3(T2−T1)−(I2−I1)−(F2−F1)|/5}

{max{
√

2(T2−T1)
2+(I2−I1)

2+(F2−F1)
2, |3(T2−T1)−(I2−I1)−(F2−F1)|/5}/2}+1

}

= SN(A2 , A1).

(iii) We assume that

SN(A1, A2) = 1− (2/3)[
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1

+
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1

+
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

] = 1

Therefore,

−(2/3)[
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1

+
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1

+
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

] = 0

So,
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1
= 0 and

min{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1
= 0,

min{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

= 0.

Therefore,

min{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3} = 0,

min{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3} = 0,

min{
√

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2,

∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)
∣∣∣/5} = 0.
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Now, we write all the cases that can make these statements 0 one-by-one.
(a) We assume that √

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2 = 0. (1)

Therefore, it is
2(T1 − T2)

2 + (I1 − I2)
2 + (F1 − F2)

2 = 0.

Here, it is obtained that T1 − T2 = 0, I1 − I2 = 0 and F1 − F2 = 0. Hence, we get T1 = T2, I1 = I2

and F1 = F2. By Definition 4, A1 = A2.
(b) Let √

3(T1 − T2)
2 + (I1 − I2)

2 = 0, (2)
√

3(T1 − T2)
2 + (F1 − F2)

2 = 0. (3)

By (2) and (3), we obtain 3(T1 − T2)
2 + (I1 − I2)

2
= 0 and 3(T1 − T2)

2 + (F1 − F2)
2
= 0.

Therefore, we obtain T1 − T2 = 0, I1 − I2 = 0 and F1 − F2 = 0. Hence, we obtain T1 = T2, I1 = I2

and F1 = F2. By Definition 4, A1 = A2.
(c) We assume that √

3(T1 − T2)
2 + (I1 − I2)

2 = 0, (4)
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣ = 0, (5)

By (4), we have
T1 − T2= 0 and I1 − I2 = 0. (6)

Hence, we obtain that F1 − F2 = 0 by (5) and (6).
Hence, T1 = T2, I1 = I2 and F1 = F2. By Definition 4, we get A1 = A2.
(d) We assume that ∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3 = 0, (7)
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3 = 0, (8)
∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)

∣∣∣/5 = 0. (9)

By (7) and (8), we obtain
T1 − T2= I1 − I2= F1 − F2. (10)

Hence, T1 − T2 = 0 by (9) and (10).
Hence, T1 = T2, I1 = I2 and F1 = F2. By Definition 4, A1 = A2.
We assume that A1 = A2. Therefore, by Definition 4, it is T1 = T2, I1 = I2, F1 = F2. Because of this,

we have

SN(A1, A2) = 1− (2/3)[
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max{
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3}/2}+1

+
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1

+
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(I1−I2)−(F1−F2)|/5}

{max{
√

2(T1−T2)
2+(I1−I2)

2+(F1−F2)
2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5}/2}+1

] = 0
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(iv) We assume that A1 ≤ A2 ≤ A3. By Definition 5, it is T1 ≤ T2 ≤ T3, I1 ≥ I2 ≥ I3, F1 ≥ F2 ≥ F3.
Hence, we obtain that

min{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3} ≤ 1,

max{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3}/2} ≤ 1,

min{
√

3(T1 − T3)
2 + (I1 − I3)

2,
∣∣∣2(T1 − T3) − (I1 − I3)

∣∣∣/3 } ≤ 1,

max{
√

3(T1 − T3)
2 + (I1 − I3)

2,
∣∣∣2(T1 − T3) − (I1 − I3)

∣∣∣/3}/2} ≤ 1.

Therefore, we have

min{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3} ≤

min{
√

3(T1 − T3)
2 + (I1 − I3)

2,
∣∣∣2(T1 − T3) − (I1 − I3)

∣∣∣/3 },

max{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3}/2} ≤

max{
√

3(T1 − T3)
2 + (I1 − I3)

2,
∣∣∣2(T1 − T3) − (I1 − I3)

∣∣∣/3}/2}.

Hence,

min{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3}

{max{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3}/2}+ 1
≤

min{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3}

{max{
√

3(T1 − T2)
2 + (I1 − I2)

2,
∣∣∣2(T1 − T2) − (I1 − I2)

∣∣∣/3}/2}+ 1
. (11)

In addition,

min{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3} ≤ 1,

max{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3}/2} ≤ 1

min{
√

3(T1 − T3)
2 + (F1 − F3)

2,
∣∣∣2(T1 − T3) − (F1 − F3)

∣∣∣/3} ≤ 1,

max{
√

3(T1 − T3)
2 + (F1 − F3)

2,
∣∣∣2(T1 − T3) − (F1 − F3)

∣∣∣/3}/2} ≤ 1

Therefore, we obtain that

min{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3} ≤

min{
√

3(T1 − T3)
2 + (F1 − F3)

2,
∣∣∣2(T1 − T3) − (F1 − F3)

∣∣∣/3},

max{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3}/2} ≤

max{
√

3(T1 − T3)
2 + (F1 − F3)

2,
∣∣∣2(T1 − T3) − (F1 − F3)

∣∣∣/3}/2}.

Hence,

min{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3 }

{max{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3}/2}+ 1
≤
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min{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3}

{max{
√

3(T1 − T2)
2 + (F1 − F2)

2,
∣∣∣2(T1 − T2) − (F1 − F2)

∣∣∣/3}/2}+ 1
. (12)

In addition,

min{
√

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2,

∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)
∣∣∣/5} ≤ 1

max{
√

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2,

∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)
∣∣∣/5}/3 ≤ 1,

min{
√

2(T1 − T3)
2 + (I1 − I3)

2 + (F1 − F3)
2,

∣∣∣3(T1 − T3) − (I1 − I3) − (F1 − F3)
∣∣∣/5} ≤ 1

max{
√

2(T1 − T3)
2 + (I1 − I3)

2 + (F1 − F3)
2,

∣∣∣3(T1 − T3) − (I1 − I3) − (F1 − F3)
∣∣∣/5}/3 ≤ 1,

Hence, we have

min{
√

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2,

∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)
∣∣∣/5} ≤

min{
√

2(T1 − T3)
2 + (I1 − I3)

2 + (F1 − F3)
2,

∣∣∣3(T1 − T3) − (I1 − I3) − (F1 − F3)
∣∣∣/5},

max{
√

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2,

∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)
∣∣∣/5}/2 ≤ 1,

max{
√

2(T1 − T3)
2 + (I1 − I3)

2 + (F1 − F3)
2,

∣∣∣3(T1 − T3) − (I1 − I3) − (F1 − F3)
∣∣∣/5}/2.

Hence,

min{
√

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2,

∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)
∣∣∣/5}

{max{
√

2(T1 − T2)
2 + (I1 − I2)

2 + (F1 − F2)
2,

∣∣∣3(T1 − T2) − (I1 − I2) − (F1 − F2)
∣∣∣/5}/2}+ 1

≤

+
min{

√
2(T1 − T3)

2 + (I1 − I3)
2 + (F1 − F3)

2,
∣∣∣3(T1 − T3) − (I1 − I3) − (F1 − F3)

∣∣∣/5}

{max{
√

2(T1 − T3)
2 + (I1 − I3)

2 + (F1 − F3)
2,

∣∣∣3(T1 − T3) − (I1 − I3) − (F1 − F3)
∣∣∣/5}/2}+ 1

. (13)

By (11), (12) and (13), we have

1− (2/3)[
min{

√
3(T1−T3)

2+(I1−I3)
2, |2(T1−T3)−(I1−I3)|/3}

{max{
√

3(T1−T3)
2+(I1−I3)

2, |2(T1−T3)−(I1−I3)|/3}/2}+1

+
min{

√
3(T1−T3)

2+(F1−F3)
2, |2(T1−T3)−(F1−F3)|/3}

{max{
√

3(T1−T3)
2+(F1−F3)

2, |2(T1−T3)−(F1−F3)|/3}/2}+1

+
min{

√
2(T1−T3)

2+(I1−I3)
2+(F1−F3)

2, |3(T1−T3)−(I1−I3)−(I1−I3)−(F1−F3)|/5}

{max {
√

2(T1−T3)
2+(I1−I3)

2+(F1−F3)
2, |3(T1−T3)−(I1−I3)−(F1−F3)|/5

}
/2}+1

] ≤

1− (2/3)[
min{

√
3(T1−T2)

2+(I1−I2)
2, |2(T1−T2)−(I1−I2)|/3}

{max {
√

3(T1−T2)
2+(I1−I2)

2, |2(T1−T2)−(I1−I2)|/3
}

/2}+1

+
min{

√
3(T1−T2)

2+(F1−F2)
2, |2(T1−T2)−(F1−F2)|/3}

{max{
√

3(T1−T2)
2+(F1−F2)

2, |2(T1−T2)−(F1−F2)|/3}/2}+1

+
min{

√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F3)|/5}

{max

{√
2(T1−T2)

2+(I1−I2)
2+(F1−F2)

2, |3(T1−T2)−(I1−I2)−(F1−F2)|/5
}

/2}+1
].

Hence, we get SN(A1, A3) ≤ SN(A1, A2) as desired. �
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7. Decision-Making Applications for Neutrosophic Modeling of Talcott Parsons’s Action

In this section, we give an algorithm for applications that allow us to find the ideal society in
the grand theory of action of Parsons by taking advantage of the similarity measure in Definition 9.
In addition, we give a numeric example to this algorithm.

7.1. Algorithm

1. Step: To find out which societies are closer to the ideal society, the criteria to be considered are
determined. The criteria of the ideal society in the grand theory of action of Parsons [17] are taken as
below:

c1 = affectivity versus affective neutrality
c2 = self-orientation versus collective orientation
c3 = universalism versus particularism
c4 = quality versus performance
c5 = specificity versus diffuseness

Let the set of these criteria be C = {c1, c2, . . . , c5}.
2. Step: Let the set of weighted values of the criteria be W = {w1, w2, . . . , wm} and let the weighted

values be taken as below:

the weighted value of the criterion c1 is w1,
the weighted value of the criterion c2 is w2,
the weighted value of the criterion c3 is w3,
the weighted value of the criterion c4 is w4 and
the weighted value of the criterion c5 is w5.

In addition, it must be
∑m

i = 1 wi = 1 and w1, w2, . . . , wm ∈ [0,1].
In this study, we will take the weighted value of each criterion as equal. If necessary, different

weighted values can be selected for each criterion.
3. Step: Each society that will be taken into ideal society assessment should be evaluated by

sociologists determined as a single-valued neutrosophic number. Let T = {t1, t2, . . . , tn} be set of
societies. Symbolic representation of societies as single-valued neutrosophic sets are denoted as:

t1= {c1:< Tt1(c1), It1(c1), Ft1(c1)>, c2:< Tt1(c2), It1(c2), Ft1(c2)>, . . . , c5:< Tt1(c5), It1(c5), Ft1(c5)>; ci ∈ C (i = 1, 2, . . . , 5)},
t2= {c1:< Tt2(c1), It2(c1), Ft2(c1)>, c2:< Tt2(c2), It2(c2), Ft2(c2)>, . . . , c5:< Tt2(c5), It2(c5), Ft2(c5)>; ci ∈ C (i = 1, 2, . . . , 5)},
t3= {c1:< Tt3(c1), It3(c1), Ft3(c1)>, c2:< Tt3(c2), It3(c2), Ft3(c2)>, . . . , c5:< Tt3(c5), It3(c5), Ft3(c5)>; ci ∈ C (i = 1, 2, . . . , 5)},
tn= {c1:< Ttn(c1), Itn(c1), Ftn(c1)>, c2:< Ttn(c2), Itn(c2), Ftn(c2)>, . . . , c5:< Ttn(c5), Itn(c5), Ftn(c5)>; ci ∈ C (i = 1, 2, . . . , 5)}.

Here, c1, c2, . . . , c5 are the criteria in Step 1. Thus, each society will be obtained as a single-valued
neutrosophic number according to the given criteria.

4. Step: To compare how close the societies are to ideal society in the theory of Parsons, an
imaginary perfect society is determined. Perfect society under the similarity measure we have obtained
should be as

I = {c1 :< 1, 0, 0 >, x2 :< 1, 0, 0 >, . . . , c5 : < 1, 0, 0 >; ci ∈ C (i = 1, 2, . . . , 5) }.

Hence, we will accept the existence of an imaginary society that includes 100% truth, 0% uncertainty
and 0% falsity according to each criterion.

5. Step: We express the societies given as a single-valued neutrosophic set in step 3 in a table
according to criteria. Thus, we will obtain Table 3.
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Table 3. Criteria table of societies.

c1 c2 c3 c4 c5

t1
<Tt1(c1), It1(c1),

Ft1(c1)>
. . .

<Tt1(c3),
It1(c3), Ft1(c3)>

. . .
<Tt1(c5),

It1(c5), Ft1(c5)>

t2
<Tt2(c1), It2(c1),

Ft2(c1)>
. . .

<Tt2(c3),
It2(c3), Ft2(c3)>

. . .
<Tt2(c5),

It2(c5), Ft2(c5)>

...
... . . . ... . . . ...

tn
<Ttn(c1), Itn(c1),

Ftn(c1)>
. . .

<Ttn(c3),
Itn(c3), Ftn(c3)>

. . .
<Ttn(c5),

Itn(c5), Ftn(c5)>

6. Step: We will process each criterion values given for each society separately and each criterion
values of the perfect society I in Step 4 separately with similarity measure. Hence, we will obtain
Table 4.

Table 4. Similarity table for each social criteria to perfect society criteria.

c1 c2 c3 c4 c5

t1 SN(Ic1 , t1c1
) . . . SN(Ic3 , t1c3

) . . . SN(Ic5 , t1c5
)

t2 SN(Ic1 , t2c1
) . . . SN(Ic3 , t2c3

) . . . SN(Ic5 , t2c5
)

...
... . . . ... . . . ...

tn SN(Ic1 , tnc1
) SN(Ic3 , tnc3

) . . . SN(Ic5 , tnc5
)

7. Step: In this step, we will obtain a weighted similarity table (Table 5).

Table 5. Weighted similarity table for each social criteria to perfect society criteria.

w1c1 w2c2 w3c3 w4c4 w5c5

t1 w1SN(Ic1 , t1c1
) . . . w3SN(Ic3 , t1c3

) . . . w5SN(Ic5 , t1c5
)

t2 w1SN(Ic1 , t2c1
) . . . w3SN(Ic3 , t2c3

) . . . w5SN(Ic5 , t2c5
)

...
... . . . ... . . . ...

tn w1SN(Ic1 , tnc1
) w3SN(Ic3 , tnc3

) . . . w5SN(Ic5 , tnc5
)

In this study, this step is not needed since we take the same weighted value of each criterion.
More precisely, Tables 4 and 5 will be the same since the weighted values are equal. This step can be
used if necessary.

8. Step:
In this last step, we will obtain a similarity value table (Table 6) by applying

SNk(tk, I) =
∑n

i = 1 wi.SN(Ici , tkci
).

Table 6. Similarity value table of societies to the perfect society.

The Similarity Value

t1 SN1(t1, I)
t2 SN2(t2, I)
...

...
tn SNn(tn, I)

See Figure 1.
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sets 

5.
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7.
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8.
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table of societies 

to perfect 
society

Figure 1. Diagram of the algorithm.

7.2. Numeric Example

Using the steps in Section 7.1, we show how close the 4 societies are to the ideal society.
1. Step: Let the criteria of an ideal society in the theory of Parsons be as it is in Step 1 of Section 7.1;

c1 = affectivity versus affective neutrality
c2 = self-orientation versus collective orientation
c3 = universalism versus particularism
c4 = quality versus performance
c5 = specificity versus diffuseness

Let C = {c1, c2, . . . , c5} be the set of criteria.
2. Step: In this example, we will take the weight values of each criterion equal so that w1 =w2 = . . .

= w5 = 0.2.
3. Step: Let the set of societies be T = {t1, t2, t3, t4}. We assume that the single-valued neutrosophic

set with evaluation of societies by sociologists according to the criteria in Step 1 will be as below:

t1= {c1:< 0.6, 0.2, 0.1 >, c2:< 0.7, 0.2, 0.1 >, c3:< 0.4, 0.1, 0.2 >, c4:< 0.8, 0.1, 0 >, c5 :< 0.5, 0.1, 0.2 >}

t2= {c1:< 0.5, 0.2, 0.3 >, c2:< 0.6, 0.1, 0.3 >, c3:< 0.8, 0.1, 0.2 >, c4:< 0.4, 0.1, 0.4 >, c5 :< 0.9, 0, 0.1 >}

t3= {c1:< 0.5, 0.2, 0.1 >, c2:< 0.8, 0.1, 0.1 >, c3:< 0.8, 0.1, 0 >, c4:< 0.7, 0.2, 0.1 >, c5 :< 0.7, 0.2, 0.3 >}

t4= {c1:< 0.7, 0.2, 0.1 >, c2:< 0.6, 0.2, 0.2 >, c3:< 0.7, 0.2, 0.1 >, c4:< 0.7, 0.1, 0.2 >, c5 :< 0.8, 0.1, 0.1 >}
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4. Step: Let the dream perfect society that we compare societies be

I = {c1 :< 1, 0, 0 >, c2 :< 1, 0, 0 >, c3 : < 1, 0, 0 >, c3 :< 1, 0, 0 >, c4 :< 1, 0, 0 >, c5 : < 1, 0, 0 >}.

5. Step: Let us express the societies as a single-valued neutrosophic set in Step 3 in Table 7.

Table 7. The criteria table of societies.

c1 c2 c3 c4 c5

t1 <0.6, 0.2, 0.1> <0.7, 0.2, 0.1> <0.4, 0.1, 0.2> <0.8, 0.1, 0> <0.5, 0.1, 0.2>
t2 <0.5, 0.2, 0.3> <0.6, 0.1, 0.3> <0.8, 0.1, 0.2> <0.4, 0.1, 0.4> <0.9, 0, 0.1>
t3 <0.5, 0.2, 0.1> <0.8, 0.1, 0.1> <0.8, 0.1, 0> <0.7, 0.2, 0.1> <0.7, 0.2, 0.3>
t4 <0.7, 0.2, 0.1> <0.6, 0.2, 0.2> <0.7, 0.2, 0.1> <0.7, 0.1, 0.2> <0.8, 0.1, 0.1>

6. Step: Using the similarity measure, we obtain the similarity table (Table 8) which is the
similarity of the criteria of societies to the criteria of the perfect society.

Table 8. The similarity table of the criteria of societies to the criteria of the perfect society.

c1 c2 c3 c4 c5

t1 0.5351 0.6088 0.4121 0.7489 0.4700
t2 0.4263 0.5132 0.6930 0.3734 0.8494
t3 0.4700 0.7196 0.7489 0.6088 0.5610
t4 0.6088 0.5112 0.6088 0.6088 0.7196

7. Step: In this example, there is no need to make any changes in Table 8 since we take the
weighted value of each criterion as equal.

8. Step: In this step, we obtain similarity values of the societies in Table 8 to the perfect society.
Now, we obtain the similarity values of the societies in Table 9 and we obtain Table 10 by dividing

the values in Table 9 by 5, taking the weighted values as equal for each society on 5 criteria and, hence,
getting the results in the range [0,1].

Table 9. The similarity value table of the societies to the perfect society.

The Similarity Value

t1 SN1(t1, I) = 2.7749
t2 SN2(t2, I) = 2.8553
t3 SN3(t3, I) = 3.1083
t4 SN4(t4, I) = 3.0572

Table 10. The similarity rate of the societies to the perfect society.

The Similarity Value

t1 SN1(t1, I) = 0.5549
t2 SN2(t2, I) = 0.5710
t3 SN3(t3, I) = 0.6216
t4 SN4(t4, I) = 0.6114

In addition, the similarity value of each society to the perfect society in Table 10 is obtained. The
result of the evaluation is given. Thus, societies closest to the perfect society are obtained as t3, t4, t2

and t1 respectively.
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8. Sensitivity Analysis

In 7.1 Numeric example, we take the weighted values of criteria W = {w1, w2, . . . , wm} equal
such that

the weighted value of c1 criteria w1 = 0.2
the weighted value of c2 criteria w2 = 0.2
the weighted value of c3 criteria w3 = 0.2
the weighted value of c4 criteria w4 = 0.2
the weighted value of c5 criteria w5 = 0.2

Thus, societies closest to the perfect society are obtained as t3, t4, t2, t1 respectively.
(a) If we take the W = {w1 = 0.1, w2 = 0.3, w3 = 0.2, w4 = 0.2, w5 = 0.2}, then we obtain that societies

closest to the perfect society are obtained as t3, t4, t2 and t1 respectively (Table 11).

Table 11. The similarity rate of the societies to the perfect society for W = {w1 = 0.1, w2 = 0.3, w3 = 0.2,
w4 = 0.2, w5 = 0.2}.

The Similarity Value

t1 SN1(t1, I) = 0.55235
t2 SN2(t2, I) = 0.57975
t3 SN3(t3, I) = 0.64662
t4 SN4(t4, I) = 0.60168

Thus, we obtain the same result with the Numeric Example 7.1.
(b) If we take the W = {w1 = 0.2, w2 = 0.2, w3 = 0.3, w4 = 0.1, w5 = 0.2}, then we obtain that societies

closest to the perfect society are obtained as t3, t4, t2 and t1 respectively respectively (Table 12).

Table 12. The similarity rate of the societies to the perfect society for W = {w1 = 0.2, w2 = 0.2, w3 = 0.3,
w4 = 0.1, w5 = 0.2}.

The Similarity Value

t1 SN1(t1, I) = 0.5213
t2 SN2(t2, I) = 0.60302
t3 SN3(t3, I) = 0.63567
t4 SN4(t4, I) = 0.61144

Thus, we obtain same result with Numeric Example 7.1.
(c) If we take the W = {w1 = 0.3, w2 = 0.1, w3 = 0.2, w4 = 0.2, w5 = 0.2}, then we obtain that societies

closest to the perfect society are obtained as t4, t3, t2 and t1 respectively respectively (Table 13).

Table 13. The similarity rate of the societies to the perfect society for W = {w1 = 0.3, w2 = 0.1, w3 = 0.2,
w4 = 0.2, w5 = 0.2}.

The Similarity Value

t1 SN1(t1, I) = 0.54761
t2 SN2(t2, I) = 0.56237
t3 SN3(t3, I) = 0.5967
t4 SN4(t4, I) = 0.6212

Thus, we obtain a different result from Numeric Example 7.1.
(d) If we take the W = {w1 = 0.2, w2 = 0.2, w3 = 0.1, w4 = 0.3, w5 = 0.2}, then we obtain that societies

closest to the perfect society are obtained as t4, t1, t2 and t3 respectively respectively (Table 14).
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Table 14. The similarity rate of the societies to the perfect society for W = {w1 = 0.2, w2 = 0.2, w3 = 0.1,
w4 = 0.3, w5 = 0.2}.

The Similarity Value

t1 SN1(t1, I) = 0.58866
t2 SN2(t2, I) = 0.5391
t3 SN3(t3, I) = 0.36379
t4 SN4(t4, I) = 0.61144

Thus, we obtain a different result with Numeric Example 7.1.
(e) If we take the W = {w1 = 0.2, w2 = 0.2, w3 = 0.2, w4 = 0.3, w5 = 0.1}, then we obtain that societies

closest to the perfect society are obtained as t3, t4, t1, and t2 respectively respectively (Table 15).

Table 15. The similarity rate of the societies to the perfect society for W = {w1 = 0.2, w2 = 0.2, w3 = 0.2,
w4 = 0.3, w5 = 0.1}.

The Similarity Value

t1 SN1(t1, I) = 0.58287
t2 SN2(t2, I) = 0.52346
t3 SN3(t3, I) = 0.62644
t4 SN4(t4, I) = 0.60036

Thus, we obtain a different result from Numeric Example 7.1.
(f) If we take the W = {w1 = 0.2, w2 = 0.2, w3 = 0.2, w4 = 0.1, w5 = 0.3}, then we obtain that societies

closest to the perfect society are obtained as t4, t2, t3, and t1 respectively respectively (Table 16).

Table 16. The similarity rate of the societies to the perfect society for W = {w1 = 0.2, w2 = 0.2, w3 = 0.2,
w4 = 0.1, w5 = 0.3}.

The Similarity Value

t1 SN1(t1, I) = 0.52709
t2 SN2(t2, I) = 0.61866
t3 SN3(t3, I) = 0.61688
t4 SN4(t4, I) = 0.62252

Thus, we obtain a different result from Numeric Example 7.1.
Now, we give results in (a), (b), (c), (d), (e) and (f) in Table 17.

Table 17. Ideal societies according to weighted values.

Ideal Societies Respectively

W = {w1 = 0.2, w2 = 0.2, w3 = 0.2, w4 = 0.1, w5 = 0.3} t3, t4, t1, t2
W = {w1 = 0.2, w2 = 0.2, w3 = 0.2, w4 = 0.3, w5 = 0.1} t4, t3, t2, t1
W = {w1 = 0.2, w2 = 0.1, w3 = 0.3, w4 = 0.2, w5 = 0.2} t3, t4, t2, t1
W = {w1 = 0.2, w2 = 0.3, w3 = 0.1, w4 = 0.2, w5 = 0.2} t4, t1, t2, t3
W = {w1 = 0.3, w2 = 0.1, w3 = 0.2, w4 = 0.2, w5 = 0.2} t4, t3, t2, t1
W = {w1 = 0.1, w2 = 0.3, w3 = 0.2, w4 = 0.2, w5 = 0.2} t3, t4, t2, t1

As seen in Table 17, if we take W = {w1 = 0.2, w2 = 0.2, w3 = 0.2, w4 = 0.1, w5 = 0.3} or W = {w1 = 0.1,
w2 = 0.3, w3 = 0.2, w4 = 0.2, w5 = 0.2}, then we obtain same result with Numeric Example 7.1. In other
cases, we obtain different results from Numeric Example 7.1.
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9. Study Comparison Methods

In this section, we have compared the obtained results of the data in our Example 1 with the
results of the similarity measures, Hausdorffmeasure [18], Hamming measure [18] and the previously
defined similarity measure [16].

1. If we use the similarity measure in Definition 6 [16] for Example 1, we obtain Table 18 as a
result.

Table 18. The similarity rate according to similarity measure, in Definition 6 [16], of the societies to the
perfect society.

The Similarity Value

t1 SN1(t1, I) = 0.661445
t2 SN2(t2, I) = 0.639916
t3 SN3(t3, I) = 0.691014
t4 SN4(t4, I) = 0.678023

Thus, societies closest to the perfect society are obtained as t3, t4, t1 and t2 respectively according
to similarity measure in Definition 6 [16].

2. If we use the Hausdorffmeasure [18] for Example 1, we obtain Table 19 as a result.

Table 19. The similarity rate according to Hausdorffmeasure, in Definition 7 [18], of the societies to the
perfect society.

The Similarity Value

t1 Sh(t1, I) = 0.6
t2 Sh(t2, I) = 0.64
t3 Sh(t3, I) = 0.7
t4 Sh(t4, I) = 0.7

Thus, societies closest to the perfect society are obtained as t3 = t4, t2 and t1 respectively according
to Hausdorff similarity measure in Definition 7 [18].

3. If we use the Hamming measure [18] for Example 1, we obtain Table 20 as a result.

Table 20. The similarity rate according to Hamming similarity measure, in Definition 8 [18], of the
societies to the perfect society.

The Similarity Value

t1 SH(t1, I) = 0.78
t2 SH(t2, I) = 0.76
t3 SH(t3, I) = 0.806667
t4 SH(t4, I) = 0.8

Thus, societies closest to the perfect society are obtained as t3, t4, t1 and t2 respectively according
to Hamming similarity measure, in Definition 8 [18].

As a result,

according to our similarity measure, the perfect society is obtained as t3, t4, t2, t1 respectively;
according to similarity measure [16], the perfect society is obtained as t3, t4, t1, t2 respectively;
according to Hausdorffmeasure [18], the perfect society is obtained as t3 = t4, t2, t1 respectively;
according to Hamming measure [18], the perfect society is obtained as t3, t4, t1, t2 respectively.
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10. Discussions

In this study, we explained the grand theory of action of Parsons, which has an important place in
social theories, for the first time in neutrosociology. Thus, like all social theories, we have achieved
a more effective way of dealing with uncertainties in the theory of Parsons. In addition, we have
obtained a similarity measure for single-valued neutrosophic numbers. By making use of this similarity
measure, we have obtained applications that allow finding the ideal society in the theory of Parsons
within the theory of neutrosociology. Hence, we have added a new structure to neutrosophic theory,
neutrosociology theory. In addition, by utilizing this study, other social theories can be explained in
neutrosociology. Thus, the uncertainties encountered can be dealt with more easily. In addition, by
using neutrosophic numbers and sets related to other social theories, new similarity measures can be
obtained, and the consistency of these measures can be checked.

11. Conclusions

In Section 9, we obtained different results for the similarity measure [16]; Hausdorffmeasure [18];
and Hamming measure [18]. In addition, we give a comparison in Table 21.

Table 21. Comparison methods.

Ideal Societies, Respectively

Similarity measure in definition 9 t3, t4, t1, t2
Similarity measure in definition 6 [16] t3, t4, t1, t2
Hausdorffmeasure in definition 7 [18] t3 = t4, t2, t1
Hamming measure in definition 8 [18] t3, t4, t1, t2

Author Contributions: In this article, each author contributed equally. C.A. obtained Neutrosophic Modeling of
Grand Theory of Action of Talcott Parsons; A.K. introduced similarity measure and algorithm; M.Ş. obtained
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24. Şahin, R.; Liu, P. Maximizing deviation method for neutrosophic multiple attribute decision making with
incomplete weight information. Neural Comput. Appl. 2016, 27, 2017–2029. [CrossRef]

25. Biswas, P.; Pramanik, S.; Giri, B.C. Entropy based grey relational analysis method for multi-attribute decision
making under single valued neutrosophic assessments. Neutrosophic Sets Syst. 2014, 2, 102–110.

26. Bourricaud, F. The Sociology of Talcott Parsons; University of Chicago Press: Chicago, IL, USA, 1981.
27. Polama, M.M. Contemporary Sociological Theory; Macmillan: New York, NY, USA, 1979.
28. Dillon, M. Talcott Parsons and Robert Merton, Functionalism and Modernization. In Introduction to Sociological

Theory: Theorists, Concepts, and their Applicability to the Twenty-First Century; Wiley: Hoboken, NJ, USA, 2013;
pp. 156–157.

29. Parsons, T. Action Theory and the Human Condition; Free Press: New York, NY, USA, 1978.
30. Parsons, T. The System of Modern Societies; Prentice-Hall: Englewood Cliffs, NJ, USA, 1971.
31. Parsons, T. Societies: Evolutionary and Comparative Perspectives; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966.
32. Parsons, T. Essays in Sociological Theory, Revised Edition; The Free Press: New York, NY, USA, 1954.
33. Parsons, T.; Shils, E. Toward a General Theory of Action; Harvard University Press: Cambridge, MA, USA, 1951.
34. Parsons, T. The Structure of Social Action: A Study in Social Theory with Special Reference to a Group of Recent

European Writers; Free Press: New York, NY, USA, 1968.

189



Symmetry 2020, 12, 1166

35. Wallace, R.A.; Wolf, A. Contemporary Sociological Theory: Expanding the Classical Tradition, Subsequent ed.;
Prentice Hall, Pearson Education: New York, NY, USA, 1995.

36. Weber, M. The Theory of Social and Economic Organization; The Free Press: New York, NY, USA, 1947.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

190



symmetryS S

Article

Combination of the Single-Valued Neutrosophic
Fuzzy Set and the Soft Set with Applications in
Decision-Making

Ahmed Mostafa Khalil 1 , Dunqian Cao 2,* , Abdelfatah Azzam 3,4 and Florentin Smarandache
5 and Wedad R. Alharbi 6

1 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
a.khalil@azhar.edu.eg

2 School of Mathematics and Physics, Guangxi University of Nationalities, Nanning 530006, China
3 Department of Mathematics, Faculty of Science and Humanities, Prince Sattam Bin Abdulaziz University,

Alkharj 11942, Saudi Arabia; aa.azzam@psau.edu.sa
4 Department of Mathematics, Faculty of Science, New Valley University, Elkharga 72511, Egypt
5 Department of Mathematics, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA;

smarand@unm.edu
6 Physics Department, Faculty of Science, University of Jeddah, Jeddah 23890, Saudi Arabia;

04103076@uj.edu.sa
* Correspondence: caodunqian@gxun.edu.cn; Tel.: +86-150-7715-5355

Received: 16 July 2020; Accepted: 8 August 2020; Published: 14 August 2020
����������
�������

Abstract: In this article, we propose a novel concept of the single-valued neutrosophic fuzzy soft set
by combining the single-valued neutrosophic fuzzy set and the soft set. For possible applications,
five kinds of operations (e.g., subset, equal, union, intersection, and complement) on single-valued
neutrosophic fuzzy soft sets are presented. Then, several theoretical operations of single-valued
neutrosophic fuzzy soft sets are given. In addition, the first type for the fuzzy decision-making
based on single-valued neutrosophic fuzzy soft set matrix is constructed. Finally, we present the
second type by using the AND operation of the single-valued neutrosophic fuzzy soft set for fuzzy
decision-making and clarify its applicability with a numerical example.

Keywords: single-valued neutrosophic fuzzy set; soft set; Algorithm 1; Algorithm 2; decision-making

1. Introduction

Many areas (e.g., physics, social sciences, computer sciences, and medicine) work with vague data
that require fuzzy sets [1], intuitionistic fuzzy sets [2], picture fuzzy sets [3], and other mathematical
tools. Molodtsov [4] presented a novel approach termed “soft set theory”, which plays a very significant
role in different fields. Therefore, several researchers have developed some methods and operations
of soft set theory. For instance, Maji et al. [5] introduced some notions of and operations on soft
sets. In addition, Maji et al. [6] gave an application of soft sets to solve fuzzy decision-making.
Maji et al. [7] proposed the notion of fuzzy soft sets, followed by studies on inverse fuzzy soft sets [8],
belief interval-valued soft sets [9], interval-valued intuitionistic fuzzy soft sets [10], interval-valued
picture fuzzy soft sets [11], interval-valued neutrosophic soft sets [12], and generalized picture fuzzy
soft sets [13]. Furthermore, several expansion models of soft sets have been developed very quickly,
such as possibility Pythagorean fuzzy soft sets [14], possibility m-polar fuzzy soft sets [15], possibility
neutrosophic soft sets [16], and possibility multi-fuzzy soft sets [17]. Karaaslan and Hunu [18] defined
the notion of type-2 single-valued neutrosophic sets and gave several distance measure methods:
Hausdorff, Hamming, and Euclidean distances for Type-2 single-valued neutrosophic sets. Al-Quran
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et al. [19] presented the notion of fuzzy parameterized complex neutrosophic soft expert sets and
gave a novel approach by transforming from the complex case to the real case for decision-making.
Qamar and Hassan [20] proposed a novel approach to Q-neutrosophic soft sets and studied several
operations of Q-neutrosophic soft sets. Further, they generalized Q-neutrosophic soft expert sets
based on uncertainty for decision-making [21]. On the other hand, Uluçay et al. [22] presented the
concept of generalized neutrosophic soft expert sets and applied a novel algorithm for multiple-criteria
decision-making. Zhang et al. [23] gave novel algebraic operations of totally dependent neutrosophic
sets and totally dependent neutrosophic soft sets. In 2018, Smarandache [24] generalized the soft set to
the hypersoft set by transforming the function F into a multi-argument function.

Fuzzy sets are used to tackle uncertainty using the membership grade, whereas neutrosophic
sets are used to tackle uncertainty using the truth, indeterminacy, and falsity membership grades,
which are considered as independent. As the motivation of this article, we present a novel notion
of the single-valued neutrosophic fuzzy soft set, which can be seen as a novel single-valued
neutrosophic fuzzy soft set model, which gives rise to some new concepts. Since neutrosophic
fuzzy soft sets have some difficulties in dealing with some real-life problems due to the nonstandard
interval of neutrosophic components, we introduce the single-valued neutrosophic fuzzy soft set
(i.e., the single-valued neutrosophic set has a symmetric form, since the membership (T) and
nonmembership (F) are symmetric with each other, while indeterminacy (I) is in the middle), which is
considered as an instance of neutrosophic fuzzy soft sets. The structural operations (e.g., subset,
equal, union, intersection, and complement) on single-valued neutrosophic fuzzy soft sets, and several
fundamental properties of the five operations above are introduced. Lastly, two novel approaches (i.e.,
Algorithms 1 and 2) to fuzzy decision-making depending on single-valued neutrosophic fuzzy soft
sets are discussed, in addition to a numerical example to show the two approaches we have developed.

The rest of this article is arranged as follows. Section 2 briefly introduces several notions related to
fuzzy sets, neutrosophic sets, single-valued neutrosophic sets, neutrosophic fuzzy sets, single-valued
neutrosophic fuzzy sets, soft sets, fuzzy soft sets, and neutrosophic soft sets. Section 3 discusses
single-valued neutrosophic fuzzy soft sets (along with their basic operations and structural properties).
Section 4 gives two algorithms for single-valued neutrosophic fuzzy soft sets for decision-making.
Lastly, the conclusions are given in Section 5.

2. Preliminaries

In the following, we present a short survey of seven definitions which are necessary to this paper.

2.1. Fuzzy Set

Definition 1 (cf. [1]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and µ(xp) is a membership
function of element xp ∈ X. Then

(1) The following mapping (called fuzzy set), is given by

µ : X −→ [0, 1]

and [0, 1]X is a set of whole fuzzy subset over X.
(2) Let

µ =

{
µ(x1)

x1
,

µ(x2)

x2
, · · · ,

µ(xp)

xp

∣∣∣∣ xp ∈ X
}
∈ [0, 1]X

and

ν =

{
ν(x1)

x1
,

ν(x2)

x2
, · · · ,

ν(xp)

xp

∣∣∣∣ xp ∈ X
}
∈ [0, 1]X .

Then
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(1) The union µ ∪ ν, is defined as

µ ∪ ν =

{
µ(x1) ∨ ν(x1)

x1
,

µ(x2) ∨ ν(x2)

x2
, · · · ,

µ(xp) ∨ ν(xp)

xp

∣∣∣∣ xp ∈ X
}

.

(2) The intersection µ ∩ ν, is defined as

µ ∩ ν =

{
µ(x1) ∧ ν(x1)

x1
,

µ(x2) ∧ ν(x2)

x2
, · · · ,

µ(xp) ∧ ν(xp)

xp

∣∣∣∣ xp ∈ X
}

.

2.2. Neutrosophic Set and Single-Valued Neutrosophic Set

Definition 2 (cf. [25,26]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and

Φ =

{(
TΦ(xp), IΦ(xp), FΦ(xp)

)

xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

.

(1) If TΦ(xp) ∈]0−, 1+[ (i.e., the degree of truth membership), IΦ(xp) ∈]0−, 1+[ (i.e., the degree of
indeterminacy membership), and FΦ(xp) (i.e., the degree of falsity membership), then Φ is called a
neutrosophic set on X, denoted by (NS)X .

(2) If TΦ(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ(xp) ∈ [0, 1] (i.e., the degree of indeterminacy
membership), and FΦ(xp) ∈ [0, 1] (i.e., the degree of falsity membership), then Φ is called a single-valued
neutrosophic set on X, denoted by (SVNS)X .

2.3. Neutrosophic Fuzzy Set and Single-Valued Neutrosophic Fuzzy Set

Definition 3 (cf. [27]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and

Φ̂ =

{(
TΦ̂(xp), IΦ̂(xp), FΦ̂(xp), µ(xp)

)

xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

.

(1) If TΦ̂(xp) ∈]0−, 1+[ (i.e., the degree of truth membership), IΦ̂(xp) ∈]0−, 1+[ (i.e., the degree of
indeterminacy membership), and FΦ̂(xp) (i.e., the degree of falsity membership), then Φ̂ is called
a neutrosophic fuzzy set on X, denoted by (NFS)X .

(2) If TΦ̂(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ̂(xp) ∈ [0, 1] (i.e., the degree of indeterminacy
membership), and FΦ̂(xp) ∈ [0, 1] (i.e., the degree of falsity membership), then Φ̂ is called a single-valued
neutrosophic fuzzy set on X, denoted by (SVNFS)X .

Definition 4 (cf. [27]). Let Φ̂, Ψ̂ ∈ (SVNFS)X , where

Φ̂ =

{(
TΦ̂(xp), IΦ̂(xp), FΦ̂(xp), µ(xp)

)

xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

and

Ψ̂ =

{(
T′

Ψ̂
(xp), I′

Ψ̂
(xp), F′

Ψ̂
(xp), µ′(xp)

)

xp

∣∣∣∣ xp ∈ X, 0 ≤ TΨ̂(xp) + IΨ̂(xp) + FΨ̂(xp) ≤ 3
}

.

The following operations (i.e., complement, inclusion, equal, union, and intersection) are defined by

(1) Φ̂c =

{(
FΦ̂(xp), 1− IΦ̂(xp), TΦ̂(xp), 1− µ(xp)

)

xp

∣∣∣∣ xp ∈ X
}

.
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(2) Φ̂ ⊆ Ψ̂ ⇐⇒ TΦ̂(xp) ≤ T′
Ψ̂
(xp), IΦ̂(xp) ≥ I′

Ψ̂
(xp), FΦ̂(xp) ≥ F′

Ψ̂
(xp) and µ(xp) ≤

µ′(xp) (∀xp ∈ X).
(3) Φ̂ = Ψ̂⇐⇒ Φ̂ ⊆ Ψ̂ and Ψ̂ ⊆ Φ̂.

(4) Φ̂ ∪ Ψ̂ =

{(
FΦ̂(xp) ∨ F′

Ψ̂
(xp), IΦ̂(xp) ∧ I′

Ψ̂
(xp), TΦ̂(xp) ∧ T′

Ψ̂
(xp), µ(xp) ∨ µ′(xp)

)

xp

∣∣∣∣ xp ∈ X
}

.

(5) Φ̂ ∩ Ψ̂ =

{(
FΦ̂(xp) ∧ F′

Ψ̂
(xp), IΦ̂(xp) ∨ I′

Ψ̂
(xp), TΦ̂(xp) ∨ T′

Ψ̂
(xp), µ(xp) ∧ µ′(xp)

)

xp

∣∣∣∣ xp ∈ X
}

.

2.4. Soft Set, Fuzzy Soft Set, and Neutrosophic Soft Set

Definition 5 (cf. [4,7,28]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and I (i.e., I =

{i1, i2, ..., iq}) is a set of parameters, where (p, q ∈ N, N are natural numbers). Then
(1) The following mapping (called a soft set), is given by

S : I → P(X),

where P(X) is a set of all subsets over X.
(2) The following mapping (called a fuzzy soft set), is given by

S̃ : I → [0, 1]X ,

where [0, 1]X is a set of whole fuzzy subset over X.
(3) The following mapping (called a neutrosophic soft set), is given by

˜̂S : I → (NS)X ,

where (NS)X is a set of whole neutrosophic subset over X.

Example 1. Assume that the two brothers Mr. Z and Mr. M plan to go the car dealership office to purchase a new
car. Suppose that the car dealership office contains types of new cars X = {x1, x2, x3, x4} and I = {i1, i2, i3}
characterize three parameters, where i1 is “cheap”, i2 is “expensive”, and i3 is “beautiful”. Then

(1) By Definition 5(1) we can describe the soft sets as S(i1) = {x1, x3}, S(i2) = {x3, x4}, and S(i3) = {x2}.
Therefore,

S =

{
{x1, x3}

i1
,
{x3, x4}

i2
,
{x2}

i3

}
.

(2) It is obvious to replace the crisp number 0 or 1 by a membership of fuzzy information. Therefore,

by Definition 5(2) we can describe the fuzzy soft sets by S̃(i1) =
{

0.3
x1

, 0.4
x2

, 0.6
x3

, 0.5
x4

}
, S̃(i2) =

{
0.6
x1

, 0.9
x2

, 0.1
x3

, 0.2
x4

}
, S̃(i3) =

{
0.7
x1

, 0.5
x2

, 0.2
x3

, 0.9
x4

}
. Then,

S̃ =





{
0.3
x1

, 0.4
x2

, 0.6
x3

, 0.5
x4

}

i1
,

{
0.6
x1

, 0.9
x2

, 0.1
x3

, 0.2
x4

}

i2
,

{
0.7
x1

, 0.5
x2

, 0.2
x3

, 0.9
x4

}

i3



 .

(3) By Definition 5(3) we can describe the neutrosophic soft sets as

˜̂S(i1) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.4, 0.7, 0.6)

x4

}
,

˜̂S(i2) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.5, 0.8, 0.3)

x4

}
,
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and
˜̂S(i3) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.8, 0.9, 0.2)

x4

}
.

3. Single-Valued Neutrosophic Fuzzy Soft Set

In the following, we propose the concept of a single-valued neutrosophic fuzzy soft set and study
some definitions, propositions, and examples.

Definition 6. Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements, I (i.e., I = {i1, i2, ..., iq}) is a
set of parameters, and SXI is called a soft universe. A single-valued neutrosophic fuzzy soft set Φ̂(iq) over X,

denoted by (SVNFS)XI , is defined by

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

where p, q ∈ N (N are natural numbers) and µ(xp) ∈ [0, 1]. For each parameter iq ∈ I and for each xp ∈ X,
TΦ̂(iq)

(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ̂(iq)
(xp) ∈ [0, 1] (i.e., the degree of indeterminacy

membership), and FΦ̂(iq)
(xp) ∈ [0, 1] (i.e., the degree of falsity membership).

Example 2. Assume that X = {x1, x2, x3} are three kinds of novel cars and I = {i1, i2, i3} are three parameters,
where i1 is “cheap”, i2 is “expensive”, and i3 is “beautiful”. Let µ ∈ [0, 1]X and Φ̂(iq) ∈ (SVNFS)XI are
defined as follows (q = 1, 2, 3):

Φ̂(i1) =

{
(0.3, 0.7, 0.5, 0.2)

x1
,
(0.1, 0.8, 0.5, 0.5)

x2
,
(0.2, 0.6, 0.8, 0.7)

x3

}
,

Φ̂(i2) =

{
(0.9, 0.4, 0.5, 0.7)

x1
,
(0.3, 0.7, 0.5, 0.4)

x2
,
(0.8, 0.2, 0.6, 0.8)

x3

}
,

Φ̂(i3) =

{
(0.6, 0.3, 0.5, 0.6)

x1
,
(0.3, 0.5, 0.6, 0.4)

x2
,
(0.7, 0.1, 0.6, 0.3)

x3

}
.

Additionally, we can write by matrix form as

Φ̂ =




I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)
i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)
i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)


 .

Definition 7. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{
(
T′

Ψ̂(iq)
(xp), I′

Ψ̂(iq)
(xp), F′

Ψ̂(iq)
(xp), µ′(xp)

)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′
Ψ̂(iq)

(xp) + I′
Ψ̂(iq)

(xp) + F′
Ψ̂(iq)

(xp) ≤ 3
}

.

Then, Φ̂(iq) ⋐ Ψ̂(iq) (i.e., Φ̂(iq) is a single-valued neutrosophic fuzzy soft subset of Ψ̂(iq)) if

(1) µ(xp) ≤ µ′(xp) ∀xp ∈ X;
(2) For all iq ∈ I, xp ∈ X, TΦ̂(iq)

(xp) ≤ T′
Ψ̂(iq)

(xp), IΦ̂(iq)
(xp) ≥ I′

Ψ̂(iq)
(xp), FΦ̂(iq)

(xp) ≥ F′
Ψ̂(iq)

(xp).
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Example 3. (Continued from Example 2). Let Ψ̂(iq) ∈ (SVNFS)XI be defined as follows (q = 1, 2, 3):

Ψ̂ =




I x1 x2 x3

i1 (0.4, 0.6, 0.4, 0.4) (0.2, 0.7, 0.3, 0.5) (0.3, 0.4, 0.7, 1)
i2 (1, 0.3, 0.5, 0.8) (0.4, 0.6, 0.4, 0.6) (0.9, 0.2, 0.4, 0.9)
i3 (0.7, 0.2, 0.4, 0.7) (0.4, 0.5, 0.6, 0.6) (0.8, 0.1, 0.5, 0.5)


 .

Thus, Φ̂(iq) ⋐ Ψ̂(iq) (∀iq ∈ I).

Definition 8. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{
(
T′

Ψ̂(iq)
(xp), I′

Ψ̂(iq)
(xp), F′

Ψ̂(iq)
(xp), µ′(xp)

)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′
Ψ̂(iq)

(xp) + I′
Ψ̂(iq)

(xp) + F′
Ψ̂(iq)

(xp) ≤ 3
}

.

Then, Φ̂(iq) = Ψ̂(iq) (i.e., Φ̂(iq) is a single-valued neutrosophic fuzzy soft equal to Ψ̂(iq)) if Φ̂(iq) ⋐ Ψ̂(iq)

and Φ̂(iq) ⋑ Ψ̂(iq).

Definition 9. Let Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X , where

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

over SXI . Then,

(1) Φ̂(iq) is called a single-valued neutrosophic fuzzy soft null set (denoted by ∅̂(iq)), defined as

∅̂(iq) =

{
(0, 1, 1, 0)

xp
|iq ∈ I, xp ∈ X

}
.

(2) Φ̂(iq) is called a single-valued neutrosophic fuzzy soft universal set (denoted by X̂(iq)), defined as

X̂(iq) =

{
(1, 0, 0, 1)

xp
|iq ∈ I, xp ∈ X

}
.

Example 4. (Continued from Example 2). Then, ∅̂(iq), X̂(iq) ∈ (SVNFS)XI are defined as follows:

∅̂ =




I x1 x2 x3

i1 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)
i2 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)
i3 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)




and

X̂ =




I x1 x2 x3

i1 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)
i2 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)
i3 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)


 .
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Definition 10. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{
(
T′

Ψ̂(iq)
(xp), I′

Ψ̂(iq)
(xp), F′

Ψ̂(iq)
(xp), µ′(xp)

)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′
Ψ̂(iq)

(xp) + I′
Ψ̂(iq)

(xp) + F′
Ψ̂(iq)

(xp) ≤ 3
}

.

Then,

(1) The union Φ̂(iq) ⋒ Ψ̂(iq) is defined as

Φ̂(iq) ⋒ Ψ̂(iq) =

{
(
TΦ̂(iq)

(xp) ◦ T′
Ψ̂(iq)

(xp), IΦ̂(iq)
(xp) ∗ I′

Ψ̂(iq)
(xp), FΦ̂(iq)

(xp) ∗ F′
Ψ̂(iq)

(xp), µ(xp) ◦ µ′(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

.

(2) The intersection Φ̂(iq) ⋓ Ψ̂(iq) is defined as

Φ̂(iq) ⋓ Ψ̂(iq) =

{
(
TΦ̂(iq)

(xp) ∗ T′
Ψ̂(iq)

(xp), IΦ̂(iq)
(xp) ◦ I′

Ψ̂(iq)
(xp), FΦ̂(iq)

(xp) ◦ F′
Ψ̂(iq)

(xp), µ(xp) ∗ µ′(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

.

Example 5. (Continued from Examples 2 and 3). For α, β ∈ [0, 1], let the t-norm (i.e., given as α ∗ β = α ∧ β)
and the t-conorm (i.e., given as α ◦ β = α ∨ β). Then,

Φ̂ ⋒ Ψ̂ =




I x1 x2 x3

i1 (0.4, 0.6, 0.4, 0.4) (0.2, 0.7, 0.3, 0.5) (0.3, 0.4, 0.7, 1)
i2 (1, 0.3, 0.5, 0.8) (0.4, 0.6, 0.4, 0.6) (0.9, 0.2, 0.4, 0.9)
i3 (0.7, 0.2, 0.4, 0.7) (0.4, 0.5, 0.6, 0.6) (0.8, 0.1, 0.5, 0.5)




and

Φ̂ ⋓ Ψ̂ =




I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)
i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)
i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)


 .

Proposition 1. Let ∅̂(iq), X̂(iq), Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X . Then the following hold:

(1) Φ̂(iq) ⋒ Φ̂(iq) = Φ̂(iq);

(2) Φ̂(iq) ⋓ Φ̂(iq) = Φ̂(iq);

(3) Φ̂(iq) ⋒ ∅̂(iq) = Φ̂(iq);

(4) Φ̂(iq) ⋓ ∅̂(iq) = ∅̂(iq);

(5) Φ̂(iq) ⋒ X̂(iq) = X̂(iq);

(6) Φ̂(iq) ⋓ X̂(iq) = Φ̂(iq).

Proof. Follows from Definitions 9 and 10.

Proposition 2. Let Φ̂(iq), Ψ̂(iq), Γ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′, µ′′ ∈ [0, 1]X . Then the following hold:

(1) Φ̂(iq) ⋒ Ψ̂(iq) = Ψ̂(iq) ⋒ Φ̂(iq);

(2) Φ̂(iq) ⋓ Ψ̂(iq) = Ψ̂(iq) ⋓ Φ̂(iq);

(3) Φ̂(iq) ⋒ (Ψ̂(iq) ⋒ Γ̂(iq)) = (Φ̂(iq) ⋒ Ψ̂(iq))⋒ Γ̂(iq);
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(4) Φ̂(iq) ⋓ (Ψ̂(iq) ⋓ Γ̂(iq)) = (Φ̂(iq) ⋓ Ψ̂(iq))⋓ Γ̂(iq);

(5) Φ̂(iq) ⋓ (Ψ̂(iq) ⋒ Γ̂(iq)) = (Φ̂(iq) ⋓ Ψ̂(iq))⋒ (Φ̂(iq) ⋓ Γ̂(iq));

(6) Φ̂(iq) ⋒ (Ψ̂(iq) ⋓ Γ̂(iq)) = (Φ̂(iq) ⋒ Ψ̂(iq))⋓ (Φ̂(iq) ⋒ Γ̂(iq)).

Proof. Follows from Definition 10.

Proposition 3. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI , µ, µ′ ∈ [0, 1]X, and Ψ̂(iq) ⋐ Φ̂(iq). Then the
following hold:

(1) Φ̂(iq) ⋒ Ψ̂(iq) = Φ̂(iq);

(2) Φ̂(iq) ⋓ Ψ̂(iq) = Ψ̂(iq).

Proof. Follows from Definitions 7 and 10.

Next, we propose a definition, example, remark, and two propositions on the complement of
(SVNFS)XI over SXI .

Definition 11. Let Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X , where

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
.

Then, the complement Φ̂c
(iq)

of Φ̂(iq) is defined as

Φ̂c
(iq)

=

{(
FΦ̂(iq)

(xp), 1− IΦ̂(iq)
(xp), TΦ̂(iq)

(xp), 1− µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X
}

.

Example 6. (Continued from Example 2). The complement Φ̂c
(iq)

of Φ̂(iq) is calculated by

Φ̂c =




I x1 x2 x3

i1 (0.5, 0.3, 0.3, 0.8) (0.5, 0.2, 0.1, 0.5) (0.8, 0.4, 0.2, 0.3)

i2 (0.5, 0.6, 0.9, 0.3) (0.5, 0.3, 0.3, 0.6) (0.6, 0.8, 0.8, 0.2)

i3 (0.5, 0.7, 0.6, 0.4) (0.6, 0.5, 0.3, 0.6) (0.6, 0.9, 0.7, 0.7)


 .

Proposition 4. Let ∅̂(iq), X̂(iq), Φ̂(iq) ∈ (SVNFS)XI over SXI , and µ ∈ [0, 1]X . Then, the following hold:

(1) ∅̂c
(iq)

= X̂(iq);

(2) X̂c
(iq)

= ∅̂(iq);

(3) (Φ̂c
(iq)

)c = Φ̂c
(iq)

.

Proof. Follows from Definitions 9 and 11.

Remark 1. The equality of Φ̂(iq) ⋒ Φ̂c
(iq)

= X̂(iq) and Φ̂(iq) ⋓ Φ̂c
(iq)

= ∅̂(iq) does not hold by

the following example.

Example 7. (Continued from Examples 2 and 6). Then, Φ̂c
(iq)

of Φ̂(iq) is calculated by

Φ̂ ⋒ Φ̂c =




I x1 x2 x3

i1 (0.5, 0.3, 0.3, 0.8) (0.5, 0.2, 0.1, 0.5) (0.8, 0.4, 0.2, 0.3)

i1 (0.5, 0.6, 0.9, 0.3) (0.5, 0.3, 0.3, 0.6) (0.6, 0.8, 0.8, 0.2)

i1 (0.5, 0.7, 0.6, 0.4) (0.6, 0.5, 0.3, 0.6) (0.6, 0.9, 0.7, 0.7)



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and

Φ̂ ⋓ Φ̂c =




I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)

i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)

i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)


 .

This shows that Φ̂(iq) ⋒ Φ̂c
(iq)
6= X̂(iq) and Φ̂(iq) ⋓ Φ̂c

(iq)
6= ∅̂(iq).

Proposition 5. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X . Then, the following hold:

(1) (Φ̂(iq) ⋒ Ψ̂(iq))
c = Φ̂c

(iq)
⋓ Ψ̂c

(iq)
;

(2) (Φ̂(iq) ⋓ Ψ̂(iq))
c = Φ̂c

(iq)
⋒ Ψ̂c

(iq)
.

Proof. Consider a ∗ b = a ∧ b (t-norm) and α ◦ β = α ∨ β (t-conorm) (∀α, β ∈ [0, 1]). We have

(1) (Φ̂(iq) ⋒ Ψ̂(iq))
c(xp)

=

({
(
TΦ̂(iq)

(xp) ◦ T′
Ψ̂(iq)

(xp), IΦ̂(iq)
(xp) ∗ I′

Ψ̂(iq)
(xp), FΦ̂(iq)

(xp) ∗ F′
Ψ̂(iq)

(xp), µ(xp) ◦ µ′(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
})c

=

{
(

FΦ̂(iq)
(xp) ∗ F′

Ψ̂(iq)
(xp), 1− (IΦ̂(iq)

(xp) ∗ I′
Ψ̂(iq)

(xp)), TΦ̂(iq)
(xp) ◦ T′

Ψ̂(iq)
(xp), 1− (µ(xp) ◦ µ′(xp))

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{
(

FΦ̂(iq )
(xp) ∧ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ∧ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∨ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∨ µ′(xp))

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{
(

FΦ̂(iq )
(xp) ∧ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∨ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∨ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∧ 1− µ′(xp)

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{
(

FΦ̂(iq )
(xp) ∗ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ◦ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ◦ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∗ 1− µ′(xp)

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(
FΦ̂(iq)

(xp), 1− IΦ̂(iq)
(xp), TΦ̂(iq)

(xp), 1− µ(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}
⋓

{
(

F′
Ψ̂(iq)

(xp), 1− I′
Ψ̂(iq)

(xp), T′
Ψ̂(iq)

(xp), 1− µ′(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

= Φ̂c
(iq)

(xp)⋓ Ψ̂c
(iq)

(xp).

(2) (Φ̂(iq) ⋓ Ψ̂(iq))
c(xp)

=

({(
TΦ̂(iq )

(xp) ∗ T′
Ψ̂(iq )

(xp), IΦ̂(iq )
(xp) ◦ I′

Ψ̂(iq )
(xp), FΦ̂(iq )

(xp) ◦ F′
Ψ̂(iq )

(xp), µ(xp) ∗ µ′(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
})c

=

{
(

FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ◦ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∗ µ′(xp))

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{
(

FΦ̂(iq )
(xp) ∨ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ∨ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∧ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∧ µ′(xp))

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{
(

FΦ̂(iq )
(xp) ∨ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∧ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∧ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∨ 1− µ′(xp)

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{
(

FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∗ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), 1− µ(xp) ◦ 1− µ′(xp)

)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(
FΦ̂(iq)

(xp), 1− IΦ̂(iq)
(xp), TΦ̂(iq)

(xp), 1− µ(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}
⋒

{
(

F′
Ψ̂(iq)

(xp), 1− I′
Ψ̂(iq)

(xp), T′
Ψ̂(iq)

(xp), 1− µ′(xp)
)

xp

∣∣∣∣iq ∈ I, xp ∈ X
}

= Φ̂c
(iq)

(xp)⋒ Ψ̂c
(iq)

(xp).
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4. Two Algorithms of Single-Valued Neutrosophic Fuzzy Soft Sets for Decision-Making

Depending on single-valued neutrosophic fuzzy soft sets, in the following, we introduce two new
approaches for fuzzy decision-making problems.

Next, we construct Algorithm 1 as the first type for decision-making (i.e., the first application of
a single-valued neutrosophic fuzzy soft set).

Algorithm 1: Determine the optimal decision based on a single-valued neutrosophic fuzzy
soft set matrix.

First step: Input the single-valued neutrosophic fuzzy soft set Φ̂(iq) ∈ (SVNFS)XI as follows:

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

to be evaluated by a group of experts n to element x on parameter i, where TΦ̂(iq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΦ̂(iq)
(xp) (i.e., the degree of indeterminacy

membership), FΦ̂(iq)
(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1].

Second step: Input the single-valued neutrosophic fuzzy soft set in matrix form (written as
Mq×p, p, q ∈ N):

Mq×p =




(
TΦ̂(i1)

(x1), IΦ̂(i1)
(x1), FΦ̂(i1)

(x1), µ(x1)
) (

TΦ̂(i1)
(x2), IΦ̂(i1)

(x2), FΦ̂(i1)
(x2), µ(x2)

)
· · ·

(
TΦ̂(i2)

(xp), IΦ̂(i2)
(xp), FΦ̂(i2)

(xp), µ(xp)
)

(
TΦ̂(i2)

(x1), IΦ̂(i2)
(x1), FΦ̂(i2)

(x1), µ(x1)
) (

TΦ̂(i2)
(x2), IΦ̂(i2)

(x2), FΦ̂(i2)
(x2), µ(x2)

)
· · ·

(
TΦ̂(i2)

(xp), IΦ̂(i2)
(xp), FΦ̂(i2)

(xp), µ(xp)
)

(
TΦ̂(i3)

(x1), IΦ̂(i3)
(x1), FΦ̂(i3)

(x1), µ(x1)
) (

TΦ̂(i3)
(x2), IΦ̂(i3)

(x2), FΦ̂(i3)
(x2), µ(x2)

)
· · ·

(
TΦ̂(i3)

(xp), IΦ̂(i3)
(xp), FΦ̂(i3)

(xp), µ(xp)
)

...
...

. . .
...(

TΦ̂(iq)
(x1), IΦ̂(iq)

(x1), FΦ̂(iq)
(x1), µ(x1)

) (
TΦ̂(iq)

(x2), IΦ̂(iq)
(x2), FΦ̂(iq)

(x2), µ(x2)
)
· · ·

(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)




.

Third step: Calculate the center matrix (i.e.,
δΦ̂(iq)

(xp) = (TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp))− µ(xp)):

Cq×p =




δΦ̂(i1)
(x1) δΦ̂(i1)

(x2) · · · , δΦ̂(i1)
(xp)

δΦ̂(i2)
(x1) δΦ̂(i2)

(x2) · · · , δΦ̂(i2)
(xp)

...
...

. . .
...

δΦ̂(iq)
(x1) δΦ̂(iq)

(x2) · · · , δΦ̂(iq)
(xp)




.

Fourth step: Calculate the dmax(xj) (maximum decision), dmin(xj) (minimum decision), and
S(xj) (score) of elements xj (j = 1, 2, · · · , p):

dmax(xj) =
q

∑
i=1

(
1− δΦ̂(iq)

(xj)
)2, dmin(xj) =

q

∑
i=1

(δΦ̂(iq)
(xj))

2

S(xj) = dmax(xj) + dmin(xj).

(to understand the motivation behind this method, let ρ be the Euclidean metric on Rq,
000 = (0, · · · , 0)T ∈ Rq, 111 = (1, · · · , 1)T ∈ Rq, and θθθ j = (θ1,xj , θ2,xj , · · · , θq,xj)

T ∈ Rq. Thus

S(xj) = [ρ(θθθ j, 111)]2 + [ρ(θθθ j, 000)]2 (j = 1, 2, · · · , p)).
Fifth step: Obtain the decision p satisfying

xp = max
{

S(x1), S(x2), · · · , S(xj)
}

.

Now, we show the principle and steps of the above Algorithm 1 by using the following example.
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Example 8. An investment company wants to choose some investment projects to make full use of idle funds.
There are five alternatives X = {z1, z2, z3, z4, z5} that can be selected: two internet education projects (denoted
as z1 and z2) and three film studio investments (represented as z3, z4, z5). According to the project investment
books, the decision-makers evaluate the five alternatives from the following three parameters I = {i1, i2, i3},
where i1 is “human resources”, i2 is “social benefits”, and i3 is “expected benefits”. The data of the single-valued
neutrosophic fuzzy soft set Φ̂(iq) ∈ (SVNFS)XI is given by

Φ̂ =




I z1 z2 z3 z4 z5

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7) (0.5, 0.6, 0.5, 0.2) (0.4, 0.7, 0.9, 0.1)

i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8) (0.3, 0.7, 0.2, 0.5) (0.7, 0.8, 0.8, 0.3)

i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3) (0.8, 0.9, 0.6, 0.4) (0.7, 0.8, 0.9, 0.6)


 .

Now, we will explain the practical meaning of alternatives X by taking the alternative z1 as an example:
the single-valued neutrosophic fuzzy soft set Φ̂(i1)(z1) = (0.3, 0.7, 0.5, 0.2) is the evaluation by four expert
groups; the single-valued neutrosophic fuzzy soft value 0.3 (meaning that 30% say yes in the first expert group)
in Φ̂(i1)(z1), the single-valued neutrosophic fuzzy soft value 0.7 (meaning 70% say no in the second expert
group) in Φ̂(i1)(z1), the single-valued neutrosophic fuzzy soft value 0.5 (meaning 50% say yes in the third
expert group) in Φ̂(i1)(z1), and fuzzy value 0.2 (meaning 20% say no in the fourth expert group) in Φ̂(i1)(z1).
Then, the single-valued neutrosophic fuzzy soft set in matrix formM3×5 in the second step of Algorithm 1 is
given by

M3×5 =




(0.3, 0.7, 0.5, 0.2) (0.9, 0.4, 0.5, 0.7) (0.6, 0.3, 0.5, 0.6)

(0.1, 0.8, 0.5, 0.5) (0.3, 0.7, 0.5, 0.4) (0.3, 0.5, 0.6, 0.4)

(0.2, 0.6, 0.8, 0.7) (0.8, 0.2, 0.6, 0.8) (0.7, 0.1, 0.6, 0.3)

(0.5, 0.6, 0.5, 0.2) (0.3, 0.7, 0.2, 0.5) (0.8, 0.9, 0.6, 0.4)

(0.4, 0.7, 0.9, 0.1) (0.7, 0.8, 0.8, 0.3) (0.7, 0.8, 0.9, 0.6)




.

Thus, we obtain the following center matrix C3×5 ofM3×5 in the third step of Algorithm 1:

C3×5 =




1.3 1.1 0.8
0.9 1.1 1
0.9 0.8 1.1
1.4 0.7 1.9
1.9 2 1.8




.

By calculating, we get dmax(zj), dmin(zj), and S(zj) of elements zj (j = 1, 2, 3, 4, 5):

dmax(z1) = 0.14, dmax(z2) = 0.02, dmax(z3) = 0.06, d1(z4) = 1.06, dmax(z5) = 2.45;

dmin(z1) = 3.54, dmin(z2) = 3.02, dmin(z3) = 2.66, dmin(z4) = 6.06, dmin(z5) = 10.85;

S(z1) = 3.68, S(z2) = 3.04, S(z3) = 2.72, S(z4) = 7.12, S(z5) = 13.3.

Finally, we can see from the fifth step that z5 is the best decision.

Now, we present Algorithm 2 as a second type for a decision-making problem (i.e., a second
application of the single-valued neutrosophic fuzzy soft set) as follows:
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Algorithm 2: Determine the optimal decision based on AND operation of two single-valued
neutrosophic fuzzy soft sets.

First step: Input the single-valued neutrosophic fuzzy soft sets Φ̂(iq) ∈ (SVNFS)XI and

Ψ̂(jq) ∈ (SVNFS)XJ , defined, respectively, as follows:

Φ̂(iq) =

{(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

to be evaluated by a group of experts n to element x on parameter i, where TΦ̂(iq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΦ̂(iq)
(xp) (i.e., the degree of indeterminacy

membership), FΦ̂(iq)
(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1],

Ψ̂(jq) =

{
(
T′

Ψ̂(jq)
(xp), I′

Ψ̂(jq)
(xp), F′

Ψ̂(jq)
(xp), µ′(xp)

)

xp

∣∣∣∣ jq ∈ J, xp ∈ X, 0 ≤ T′
Ψ̂(jq)

(xp) + I′
Ψ̂(jq)

(xp) + F′
Ψ̂(jq)

(xp) ≤ 3
}

to be evaluated by a group of experts n to element x on parameter j, where TΨ̂′
(jq)

(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΨ̂′
(jq)

(xp) (i.e., the degree of indeterminacy

membership), FΨ̂′
(jq)

(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1].

Second step: Define and calculate the AND operation of two single-valued neutrosophic
fuzzy soft sets Φ̂(iq) ∈ (SVNFS)XI and Ψ̂(jq) ∈ (SVNFS)XJ , denoted by

(Φ̂∧Ψ̂)(iq ,jq) (∀i ∈ I, j ∈ J), defined as

(Φ̂∧Ψ̂)(iq ,jq) =

{
(
TΦ̂(iq)

(xp) ∧ T′
Ψ̂(jq)

(xp), IΦ̂(iq)
(xp) ∨ I′

Ψ̂(jq)
(xp), FΦ̂(iq)

(xp) ∨ F′
Ψ̂(jq)

(xp), µ(xp) ∧ µ′(xp)
)

xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

.

Third step: Define and write the truth membership (Φ̂∧Ψ̂)T
(iq ,jq)

, the indeterminacy

membership (Φ̂∧Ψ̂)I
(iq ,jq)

, and the falsity membership (Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, as follows:

(Φ̂∧Ψ̂)T
(iq ,jq)

=

{
(
TΦ̂(iq)

(xp) ∧ T′
Ψ̂(jq)

(xp), µ(xp) ∧ µ′(xp)
)

xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

,

(Φ̂∧Ψ̂)I
(iq ,jq)

=

{
(

IΦ̂(iq)
(xp) ∨ I′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)

xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

,

and

(Φ̂∧Ψ̂)F
(iq ,jq)

=

{
(

FΦ̂(iq)
(xp) ∨ F′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)

xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

.

Fourth step: Define and compute the max-matrices of (Φ̂∧Ψ̂)T
(iq ,jq)

, (Φ̂∧Ψ̂)I
(iq ,jq)

, and

(Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, for every xp ∈ X as follows (p = 1, 2, · · · , N):

(Φ̂∧Ψ̂)T
(iq ,jq)

(xp) =
1
2

(
(TΦ̂(iq)

(xp) ∧ T′
Ψ̂(jq)

(xp)) + (µ(xp) ∧ µ′(xp))

)
,

(Φ̂∧Ψ̂)I
(iq ,jq)

(xp) =

(
(IΦ̂(iq)

(xp) ∨ I′
Ψ̂(jq)

(xp))× (µ(xp) ∧ µ′(xp))

)
,

and

(Φ̂∧Ψ̂)F
(iq ,jq)

(xp) =

(
(FΦ̂(iq)

(xp) ∨ F′
Ψ̂(jq)

(xp))− (µ(xp) ∧ µ′(xp)

)2

.
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Algorithm 2: Cont.

Fifth step: Calculate and write the max-decision τT (i.e., τT : X → R), τI (i.e., τI : X → R),
and τF (i.e., τF : X → R) of (Φ̂∧Ψ̂)T

(iq ,jq)
, (Φ̂∧Ψ̂)I

(iq ,jq)
, and (Φ̂∧Ψ̂)F

(iq ,jq)
, respectively, for

every xp ∈ X as follows (p = 1, 2, · · · , N):

τT(xp) = ∑
(i,j)∈I×J

δT(xp)(i, j), τI(xp) = ∑
(i,j)∈I×J

δF(xp)(i, j), and ∑
(i,j)∈I×J

δF(xp)(i, j),

where

δT(xp)(i, j) =





(Φ̂∧Ψ̂)T
(iq ,jq)

(xp), (Φ̂∧Ψ̂)T
(iq ,jq)

(xp) = max{(Φ̂∧Ψ̂)T
(uq ,vq)

(xp) : (u, v) ∈ I × J}

0, otherwise

,

δI(xp)(i.j) =





(Φ̂∧Ψ̂)I
(iq ,jq)

(xp), (Φ̂∧Ψ̂)I
(iq ,jq)

(xp) = max{(Φ̂∧Ψ̂)I
(uq ,vq)

(xp) : (u, v) ∈ I × J}

0, otherwise

,

δF(xp)(i.j) =





(Φ̂∧Ψ̂)F
(iq ,jq)

(xp), (Φ̂∧Ψ̂)F
(iq ,jq)

(xp) = max{(Φ̂∧Ψ̂)F
(uq ,vq)

(xp) : (u, v) ∈ I × J}

0, otherwise

.

Sixth step: Calculate the score S(xp) of element xp as follows (p = 1, 2, · · · , N):

S(xp) = τT(xp) + τI(xp) + τF(xp).

Seventh step: Obtain the decision p satisfying

xp = max
{

S(x1), S(x2), · · · , S(xj)
}

.

Now, we show the principle and steps of the above Algorithm 2 using the following example.

Example 9. (Continued from Example 11). Suppose that an investment company also adds three different
parameters J = {j1, j2, j3}, where j1 is “marketing management”, j2 is “productivity of capital”, and j3 is
“interest rates”. The data of the single-valued neutrosophic fuzzy soft set Ψ̂(jq) ∈ (SVNFS)XJ is given by

Ψ̂ =




J z1 z2 z3 z4 z5

j1 (0.5, 0.6, 0.7, 0.4) (0.3, 0.2, 0.7, 0.8) (0.6, 0.9, 0.4, 0.3) (0.8, 0.8, 0.2, 0.1) (0.9, 0.5, 0.4, 0.2)

j2 (0.8, 0.4, 0.5, 0.2) (0.7, 0.9, 0.2, 0.1) (0.3, 0.3, 0.9, 0.4) (0.9, 0.4, 0.5, 0.5) (0.7, 0.8, 0.7, 0.2)

j3 (0.9, 0.9, 0.5, 0.3) (0.5, 0.9, 0.2, 0.1) (0.6, 0.6, 0.1, 0.5) (0.5, 0.7, 0.8, 0.8) (0.6, 0.2, 0.4, 0.7)


 .

Now, we explain the practical meaning of alternatives X by taking the alternative z1 as an example:
the single-valued neutrosophic fuzzy soft set Ψ̂(j1)(z1) = (0.5, 0.6, 0.7, 0.4) is the evaluation by four expert
groups; the single-valued neutrosophic fuzzy soft value 0.5 (meaning 50% say yes in the first expert group)
in Ψ̂(j1)(z1), the single-valued neutrosophic fuzzy soft value 0.6 (meaning 60% say no in the second expert
group) in Ψ̂(j1)(z1), the single-valued neutrosophic fuzzy soft value 0.7 (meaning 70% say yes in the third
expert group) in Ψ̂(j1)(z1), and fuzzy value 0.4 (meaning 40% say no in the fourth expert group) in Ψ̂(j1)(z1).
Then, by computing (Φ̂∧Ψ̂)(iq ,jq) (q = 1, 2, 3) in the second step of Algorithm 2, we obtain the following:
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


Φ̂∧Ψ̂ z1 z2 z3 z4 z5

(i1, j1) (0.3, 0.7, 0.7, 0.2) (0.1, 0.8, 0.7, 0.5) (0.2, 0.9, 0.8, 0.3) (0.5, 0.8, 0.5, 0.1) (0.4, 0.7, 0.9, 0.1)

(i1, j2) (0.3, 0.7, 0.5, 0.2) (0.1, 0.9, 0.5, 0.1) (0.2, 0.6, 0.9, 0.4) (0.5, 0.6, 0.5, 0.2) (0.4, 0.8, 0.9, 0.1)

(i1, j3) (0.3, 0.9, 0.5, 0.2) (0.1, 0.9, 0.5, 0.1) (0.2, 0.6, 0.8, 0.5) (0.5, 0.7, 0.8, 0.2) (0.4, 0.7, 0.9, 0.1)

(i2, j1) (0.5, 0.6, 0.7, 0.4) (0.3, 0.7, 0.7, 0.4) (0.6, 0.9, 0.6, 0.3) (0.3, 0.8, 0.2, 0.1) (0.7, 0.8, 0.8, 0.2)

(i2, j2) (0.8, 0.4, 0.5, 0.2) (0.3, 0.9, 0.5, 0.1) (0.3, 0.3, 0.9, 0.4) (0.3, 0.7, 0.5, 0.5) (0.7, 0.8, 0.8, 0.2)

(i2, j3) (0.9, 0.9, 0.5, 0.3) (0.3, 0.9, 0.5, 0.1) (0.6, 0.6, 0.6, 0.5) (0.3, 0.7, 0.8, 0.5) (0.6, 0.8, 0.8, 0.3)

(i3, j1) (0.5, 0.6, 0.7, 0.4) (0.3, 0.5, 0.6, 0.4) (0.7, 0.8, 0.6, 0.1) (0.8, 0.9, 0.6, 0.1) (0.7, 0.8, 0.9, 0.2)

(i3, j2) (0.6, 0.4, 0.5, 0.2) (0.3, 0.9, 0.6, 0.1) (0.3, 0.3, 0.9, 0.3) (0.8, 0.9, 0.6, 0.4) (0.7, 0.8, 0.9, 0.2)

(i3, j3) (0.6, 0.9, 0.5, 0.3) (0.3, 0.9, 0.6, 0.1) (0.6, 0.6, 0.6, 0.3) (0.5, 0.9, 0.8, 0.4) (0.6, 0.8, 0.9, 0.6)




.

By calculating in the third step of Algorithm 2, we get the truth membership (Φ̂∧Ψ̂)T
(iq ,jq)

,

the indeterminacy membership (Φ̂∧Ψ̂)I
(iq ,jq)

, and the falsity membership (Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, as follows:

(q = 1, 2, 3):




(Φ̂∧Ψ̂)T z1 z2 z3 z4 z5

(i1, j1) (0.3, 0.2) (0.1, 0.5) (0.2, 0.3) (0.5, 0.1) (0.4, 0.1)
(i1, j2) (0.3, 0.2) (0.1, 0.1) (0.2, 0.4) (0.5, 0.2) (0.4, 0.1)
(i1, j3) (0.3, 0.2) (0.1, 0.1) (0.2, 0.5) (0.5, 0.2) (0.4, 0.1)
(i2, j1) (0.5, 0.4) (0.3, 0.4) (0.6, 0.3) (0.3, 0.1) (0.7, 0.2)
(i2, j2) (0.8, 0.2) (0.3, 0.1) (0.3, 0.4) (0.3, 0.5) (0.7, 0.2)
(i2, j3) (0.9, 0.3) (0.3, 0.1) (0.6, 0.5) (0.3, 0.5) (0.6, 0.3)
(i3, j1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.1) (0.8, 0.1) (0.7, 0.2)
(i3, j2) (0.6, 0.2) (0.3, 0.1) (0.3, 0.3) (0.8, 0.4) (0.7, 0.2)
(i3, j3) (0.6, 0.3) (0.3, 0.1) (0.6, 0.3) (0.5, 0.4) (0.6, 0.6)




,




(Φ̂∧Ψ̂)I z1 z2 z3 z4 z5

(i1, j1) (0.7, 0.2) (0.8, 0.5) (0.9, 0.3) (0.8, 0.1) (0.7, 0.1)
(i1, j2) (0.7, 0.2) (0.9, 0.1) (0.6, 0.4) (0.6, 0.2) (0.8, 0.1)
(i1, j3) (0.9, 0.2) (0.9, 0.1) (0.6, 0.5) (0.7, 0.2) (0.7, 0.1)
(i2, j1) (0.6, 0.4) (0.7, 0.4) (0.9, 0.3) (0.8, 0.1) (0.8, 0.2)
(i2, j2) (0.4, 0.2) (0.9, 0.1) (0.3, 0.4) (0.7, 0.5) (0.8, 0.2)
(i2, j3) (0.9, 0.3) (0.9, 0.1) (0.6, 0.5) (0.7, 0.5) (0.8, 0.3)
(i3, j1) (0.6, 0.4) (0.5, 0.4) (0.8, 0.1) (0.9, 0.1) (0.8, 0.2)
(i3, j2) (0.4, 0.2) (0.9, 0.1) (0.3, 0.3) (0.9, 0.4) (0.8, 0.2)
(i3, j3) (0.9, 0.3) (0.9, 0.1) (0.6, 0.3) (0.9, 0.4) (0.8, 0.6)




,




(Φ̂∧Ψ̂)F z1 z2 z3 z4 z5

(i1, j1) (0.7, 0.2) (0.7, 0.5) (0.8, 0.3) (0.5, 0.1) (0.9, 0.1)
(i1, j2) (0.5, 0.2) (0.5, 0.1) (0.9, 0.4) (0.5, 0.2) (0.9, 0.1)
(i1, j3) (0.5, 0.2) (0.5, 0.1) (0.8, 0.5) (0.8, 0.2) (0.9, 0.1)
(i2, j1) (0.7, 0.4) (0.7, 0.4) (0.6, 0.3) (0.2, 0.1) (0.8, 0.2)
(i2, j2) (0.5, 0.2) (0.5, 0.1) (0.9, 0.4) (0.5, 0.5) (0.8, 0.2)
(i2, j3) (0.5, 0.3) (0.5, 0.1) (0.6, 0.5) (0.8, 0.5) (0.8, 0.3)
(i3, j1) (0.7, 0.4) (0.6, 0.4) (0.6, 0.1) (0.6, 0.1) (0.9, 0.2)
(i3, j2) (0.5, 0.2) (0.6, 0.1) (0.9, 0.3) (0.6, 0.4) (0.9, 0.2)
(i3, j3) (0.5, 0.3) (0.6, 0.1) (0.6, 0.3) (0.8, 0.4) (0.9, 0.6)




.
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By calculating in the fourth step of Algorithm 2, we obtain the max-matrices of (Φ̂∧Ψ̂)T
(iq ,jq)

, (Φ̂∧Ψ̂)I
(iq ,jq)

,

and (Φ̂∧Ψ̂)F
(iq ,jq)

(p = 1, 2, 3, 4, 5; q = 1, 2, 3), respectively, for every zp ∈ X as follows:




(Φ̂∧Ψ̂)T z1 z2 z3 z4 z5

(i1, j1) 0.25 0.3 0.25 0.3 0.25
(i1, j2) 0.25 0.1 0.3 0.35 0.25
(i1, j3) 0.25 0.1 0.35 0.35 0.25
(i2, j1) 0.45 0.35 0.45 0.2 0.45
(i2, j2) 0.5 0.2 0.35 0.4 0.45
(i2, j3) 0.6 0.2 0.55 0.4 0.45
(i3, j1) 0.45 0.35 0.4 0.45 0.45
(i3, j2) 0.4 0.2 0.3 0.6 0.45
(i3, j3) 0.45 0.2 0.45 0.45 0.6




,




(Φ̂∧Ψ̂)I z1 z2 z3 z4 z5

(i1, j1) 0.14 0.4 0.27 0.08 0.07
(i1, j2) 0.14 0.09 0.24 0.12 0.08
(i1, j3) 0.18 0.09 0.3 0.14 0.07
(i2, j1) 0.24 0.28 0.27 0.08 0.16
(i2, j2) 0.08 0.08 0.12 0.35 0.16
(i2, j3) 0.27 0.09 0.3 0.35 0.24
(i3, j1) 0.24 0.2 0.08 0.09 0.16
(i3, j2) 0.08 0.09 0.09 0.36 0.16
(i3, j3) 0.27 0.09 0.18 0.36 0.48




,




(Φ̂∧Ψ̂)F x1 z2 z3 z4 z5

(i1, j1) 0.25 0.04 0.25 0.16 0.64
(i1, j2) 0.09 0.16 0.25 0.09 0.64
(i1, j3) 0.09 0.16 0.09 0.36 0.64
(i2, j1) 0.09 0.09 0.09 0.01 0.36
(i2, j2) 0.09 0.16 0.25 0 0.36
(i2, j3) 0.04 0.16 0.01 0.09 0.25
(i3, j1) 0.09 0.04 0.25 0.25 0.49
(i3, j2) 0.09 0.25 0.36 0.04 0.49
(i3, j3) 0.04 0.25 0.09 0.16 0.09




.

By calculating in the fifth step of Algorithm 2, we obtain the max-decision τT , τI , and τF of elements zp,
respectively, as follows (p = 1, 2, 3, 4, 5):

τT(z1) = 2, τT(z2) = 0.3, τT(z3) = 0.8, τT(z4) = 2.05, τT(z5) = 1.5;

τI(z1) = 0.24, τI(z2) = 0.68, τI(z3) = 0.54, τI(z4) = 1.06, τI(z5) = 0.48;

τF(z1) = 0, τF(z2) = 0.25, τF(z3) = 0, τF(z4) = 0, τF(z5) = 3.87.

By calculating in the sixth step of Algorithm 2, the scores S(zp) of elements zp(p = 1, 2, 3, 4, 5), respectively,
are as follows:

S(z1) = 2.24, S(z2) = 1.23, S(z3) = 1.34, S(z4) = 3.11, S(z5) = 5.85.
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Finally, we know from the seventh step that z5 has a high value. Therefore, the experts should select z5 as
the best choice.

Remark 2.
(1) By means of Algorithms 1 and 2, we can see that the final results are in agreement. Thus, x5 is the most

accurate and refinable.
(2) By comparing the steps in Algorithms 1 and 2, we can see that step 4 and step 5 in Algorithm 2

are complicated in their process compared to step 2 and step 3 in Algorithm 1, respectively. So, if we take
the complexity of these steps into consideration, Algorithm 2 gives its decision concisely.

(3) Algorithms 1 and 2 that we have elaborated here arrive at their decisions by combining the concept of
single-valued neutrosophic fuzzy set theory and soft set theory. As result, we can apply Algorithm 1 to picture
fuzzy soft sets [29], generalized picture fuzzy soft sets [13], and interval-valued neutrosophic soft sets [12].
Further, Algorithm 2 can be applied to possibility m-polar fuzzy soft sets [15] and possibility multi-fuzzy soft
sets [17].

5. Conclusions

We introduced the notion of the single-valued neutrosophic fuzzy soft set as a novel neutrosophic
soft set model. We discussed the five operations of the single-valued neutrosophic fuzzy soft set, such
as subset, equal, union, intersection, and complement. The structure properties of the single-valued
neutrosophic fuzzy soft set are explained. Then, a novel approach (i.e., Algorithm 1) is presented as
a single-valued neutrosophic fuzzy soft set decision method. Lastly, an application (i.e., Algorithm 2)
of a single-valued neutrosophic fuzzy soft set for fuzzy decision-making is constructed, and the
two approaches (i.e., Algorithms 1 and 2) introduce an important contribution to further research
and relevant applications. Therefore, in the future, we will provide a real application with a real
dataset or we will apply the two approaches (i.e., Algorithms 1 and 2) to lung cancer disease [30]
and coronary artery disease [31]. In addition, we will describe in more detail in order to clarify if the
methods (i.e., Algorithms 1 and 2) converge or diverge from standard approaches such as fuzzy sets
[1], intuitionistic fuzzy sets [2], picture fuzzy sets [3].
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Abstract: With the increasing automation of mechanical equipment, fault diagnosis becomes more
and more important. However, the factors that cause mechanical failures are becoming more and
more complex, and the uncertainty and coupling between the factors are getting higher and higher.
In order to solve the given problem, this paper proposes a single-valued neutrosophic set ISVNS
algorithm for processing of uncertain and inaccurate information in fault diagnosis, which generates
neutrosophic set by triangular fuzzy number and introduces the formula of the improved weighted
correlation coefficient. Since both the single-valued neutrosophic set data and the ideal neutrosophic
set data are considered, the proposed method solves the fault diagnosis problem more effectively.
Finally, experiments show that the algorithm can significantly improve the accuracy degree of
fault diagnosis, and can better satisfy the diagnostic requirements in practice.

Keywords: neutrosophic set; fault diagnosis; triangle fuzzy number; weighted correlation coefficient

1. Introduction

With the development of automation technology, these mechanical machines gradually came into
the stage of fully automated control operation [1–5]. In this way, people’s hands are comparatively free,
and machines are more intelligent and comprehensive; however, this kind of full automation greatly
increases the probability of mechanical equipment failure as well [6–11]. If the mechanical equipment
has faults, the quality of the manufactured products will not pass the standard, which will affect the
economic benefits of the enterprise [12–15]; additionally, it will bring potential danger to personal
safety [16–19]. In order to solve this problem, it is necessary to carry out fault diagnosis on mechanical
equipment on a regular basis to detect and repair mechanical equipment and ensure its normal operation.

1.1. Research Status

Therefore, the fault diagnosis of mechanical equipment has been widely concerned by
many scholars, and has been applied in the military [20,22–24], medical [25–28], economic [29–32],
and other fields. In ref. [33], looking at the problem of low efficiency of fault diagnosis of automobile
exhaust system, based on a cold test, a fault diagnosis method is proposed for port vehicle exhaust
system based on the principal component analysis. The variance contribution rate of principal
component model is analyzed by the change of each variable of measurement data, and the fault
diagnosis is achieved; In ref. [34], aiming at the problem of fault diagnosis of the data-driven system,
a new diagnosis method based on Bayesian network (BN) combined with fault frequency is proposed
to realize fault diagnosis; In ref. [35], based on the particle filter (PF) program, a dual estimation method
is applied to fault diagnosis; In ref. [36], for the problem of bearing diagnosis under the condition
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of variable speed, the method of support vector machine and neural network is used for bearing
fault diagnosis; On the basis of machine learning technology, a new depth neural network model with
domain self-adaptability is proposed in ref. [37], which realizes fault diagnosis, but the selection of the
best parameters of the model is random, and the application of the model is limited.

In the actual operating environment of mechanical equipment, fault information is usually
inaccurate, incomplete and uncertain. It is difficult to use the above fault diagnosis method for
deterministic analysis and processing of fault information. In order to deal with the uncertain and
inaccurate information in the fault information, so as to better handle the fault information and
get more accurate fault diagnosis results, Smarandache [38] proposed the theory of neutrosophic
set from a philosophical point of view. It describes the uncertainty, imprecision, and inconsistent
information in the objective world much better. The literature [39] introduced the theory of interval
neutrosophic set and single-valued neutrosophic set; The literature [40] proposed the theory of
simplified neutrosophic set; Literature [41] proposed a single-valued neutrosophic set SVNS method
with a weighted correlation coefficient to realize fault diagnosis. However, the correlation coefficient
does not comprehensively consider the single-valued neutrosophic set and ideal neutrosophic set data
under various faults [42–46], only the maximum value between them is considered [47–49]. This does
not completely deal with the uncertain and inaccurate information in the fault information, and may
lead to an incorrect diagnosis.

1.2. Contribution of This Work

Based on the problems above, properly handling the uncertain information in the fault diagnosis
process is an important goal to be achieved, however, complicated and changeable environmental
information, the mutual influence between the factors causing the failure are difficult to handle. Due
to neutrosophic set’s outstanding performance in handling uncertain information issues, this paper
proposes a single-valued neutrosophic set ISVNS algorithm, which generates neutrosophic set by
triangular fuzzy number and introduces the formula of the improved weighted correlation coefficient.
In addition, the ISVNS algorithm comprehensively considers the single-valued neutrosophic set
and ideal neutrosophic set data of various faults, so make it possible to analyze the data more
comprehensively and make more accurate judgments. Finally, an example was used to diagnose
the fault; the degree of accuracy of the fault diagnosis was calculated; the excellent productivity of the
improved method, proposed in this paper was obtained by comparison. For the current difficulties in
dealing with some uncertain issues, this method may have some enlightenment.

Due to the Overall Equipment Effectiveness (OEE) and the Overall labor effectiveness (OLE) are
simple and practical production management tool, which has been widely used in European and
American manufacturing and Chinese multinational companies. The global equipment efficiency index
has become an important standard for measuring the production efficiency of enterprises, so it is also
important to consider the proposed method’s impact on OEE and OLE. During the simulation process
in the laboratory, the ratio of the operating hours and the planned working hours is relatively high;
therefore, the fault can be repaired in a more timely manner based on the diagnosis result, and the OEE
and the OLE can be improved.

The remainder of this paper is organized as follows. Section 2 briefly introduced triangular fuzzy
numbers and single-valued neutrosophic sets. Section 3 proposed improved correlation coefficient
between single-valued neutrosophic sets. In Section 4, a numerical example is given to fault diagnosis
and fault diagnosis accuracy based on the proposed approach. Some conclusions are shown in Section 5.
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2. Preliminaries

2.1. Triangular Fuzzy Numbers

About data sets D = {d1, d2, · · · , dn}, take its minimum value l = min{d1, d2, · · · , dn}, average value
m = mean{d1, d2, · · · , dn}, maximum value u = max{d1, d2, · · · , dn}, so s = [l; m; u] named as triangular
fuzzy number [9] of this data set D, as shown in Figure 1:
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Figure 1. Geometric Interpretation of Triangular Fuzzy Number.

It can be seen from the geometric interpretation of the triangular fuzzy number in the figure above:
If x = m, so x completely belongs to D;
If l ≤ x ≤ u, so x takes a certain degree of data set D;
If x < l or x > u, so x completely does not belong to the data set D.
And, for two triangle fuzzles M1 = (l1, m1, u1) and M2 = (l2, m2, u2), have the following

counting method:
M1 ⊕M2 = (l1 + l2, m1 + m2, u1 + u2)

M1 ⊗M2 ≈ (l1l2, m1m2, u1u2)

λ⊗M1 ≈ (λl1,λm1,λu1)
1

M1
≈ ( 1

u1
, 1

m1
, 1

l1
)

2.2. Single-Valued Neutrosophic Sets

Neutrosophic set introduced by Smarandache [38] is an effective tool for solving the problems
under complex environment. The definition of neutrosophic set is as follows.

Definition 1. X denote a space of points or objects, and each element of it is denoted as x. A neutrosophic set
A in X is characterized by a truth-membership function TA, an indeterminacy-membership function IA and a
falsity-membership function FA. TA(x), IA(x) and FA(x) are real standard or non-standard subsets of ]0−, 1+[.
That is:

TA : X 7→]0−, 1+[
IA : X 7→]0−, 1+[
FA : X 7→]0−, 1+[

(1)

For Formula (1), 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

To facilitate the application of neutrosophic set in real scientific and engineering problems, the
notion of SVNS was defined as follows.

Definition 2. X denote a space of points or objects, and each element of it is denoted as x. A neutrosophic set
A in X is characterized by a truth-membership function TA(x), a indeterminacy-membership function IA(x)
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and a falsity-membership function FA(x). If TA(x) : X→ [0, 1] , IA(x) : X→ [0, 1] and FA(x) : X→ [0, 1]
satisfied:

x ∈ X 7→ TA(x) ∈ [0, 1]
x ∈ X 7→ IA(x) ∈ [0, 1]
x ∈ X 7→ FA(x) ∈ [0, 1]

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3

(2)

then an SVNS A in X can be denoted as:

A =
{〈

x, TA(x), IA(x), FA(x)
〉∣∣∣x ∈ X

}
(3)

which is called an SVNS. Especially, if X includes only one element, N =
〈
TA(x), IA(x), FA(x)

〉
is called a

single-valued neutrosophic number (SVN).

For any two SVNSs (A =
〈
TA(x), IA(x), FA(x)

〉
, B =

〈
TB(x), IB(x), FB(x)

〉
operational relations

are defined as follows:

(1) A + B =
〈
TA(x) + TB(x) − TA(x)TB(x), IA(x) + IB(x) − IA(x)IB(x),
FA(x) + FB(x) − FA(x)FB(x)

〉

(2) A× B =
〈
TA(x)TB(x), IA(x)IB(x), FA(x)FB(x)

〉

(3) λA =
〈
1− (1− TA(x))

λ, 1− (1− IA(x))
λ, 1− (1− FA(x))

λ
〉
, λ > 0

(4) Aλ =
〈
TA(x)

λ, IA(x), FA(x)
〉
, λ > 0

(4)

These are a series of common laws in operation for SVNSs.
Moreover, the assumption and operation requirements are as follows: Because ISVNS algorithm

generates neutral set by triangular fuzzy number, the fault template data of each fault must be greater
than or equal to 3.

3. The Proposed Method

3.1. Correlation Coefficient between Single-Valued Neutrosophic Sets

For any two neutrosophic sets A = {TA, FA, IA} and B = {TB, FB, IB}, the improved correlation
coefficient is defined as follows:

W(A, B) =
2·C(A,B)

C(A,A)+C(B,B)

=
2·

n∑
i=1

[TA(xi)·TB(xi)+FA(xi)·FB(xi)+IA(xi)·IB(xi)]

n∑
i=1

[TA
2(xi)+FA

2(xi)+IA
2(xi)]+

n∑
i=1

[TB
2(xi)+FB

2(xi)+IB
2(xi)]

(5)

In addition, the correlation coefficient for any A = {TA, FA, IA} and B = {TB, FB, IB}must satisfy
the following three mathematical rules10:



W(A, B) = W(B, A)

0 ≤W(A, B) ≤ 1
i f A = B, W(A, B) = 1

(6)

For Formula (5), prove separately as follows:

(1) According to the structural symmetry of the Formula (5), the condition W(A, B) = W(B, A)

is satisfied.
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(2) For each element in the Formula (5), they are satisfied ≥ 0, so obviously W(A, B) ≥ 0; The proof of
inequality W(A, B) ≤ 1 as follows:

C(A, B) =
n∑

i=1
[TA(xi)·TB(xi) + FA(xi)·FB(xi) + IA(xi)·IB(xi)]

= TA(x1)·TB(x1) + TA(x2)·TB(x2) + · · ·+ TA(xn)·TB(xn)

+FA(x1)·FB(x1) + FA(x2)·FB(x2) + · · ·+ FA(xn)·FB(xn)

+IA(x1)·IB(x1) + IA(x2)·IB(x2) + · · ·+ IA(xn)·IB(xn)

And because of the inequality:

ab ≤
a2 + b2

2

Therefore, we can get:

C(A, B) =
n∑

i=1
[TA(xi)·TB(xi) + FA(xi)·FB(xi) + IA(xi)·IB(xi)]

= TA(x1)·TB(x1) + TA(x2)·TB(x2) + · · ·+ TA(xn)·TB(xn)

+FA(x1)·FB(x1) + FA(x2)·FB(x2) + · · ·+ FA(xn)·FB(xn)

+IA(x1)·IB(x1) + IA(x2)·IB(x2) + · · ·+ IA(xn)·IB(xn)

≤
TA

2(x1)+TB
2(x1)

2 +
TA

2(x2)+TB
2(x2)

2 + · · ·+
TA

2(xn)+TB
2(xn)

2

+
FA

2(x1)+FB
2(x1)

2 +
FA

2(x2)+FB
2(x2)

2 + · · ·+
FA

2(xn)+FB
2(xn)

2

+
IA

2(x1)+IB
2(x1)

2 +
IA

2(x2)+IB
2(x2)

2 + · · ·+
IA

2(xn)+IB
2(xn)

2

= 1
2

{
n∑

i=1
[TA

2(xi) + FA
2(xi) + IA

2(xi)] +
n∑

i=1
[TB

2(xi) + FB
2(xi) + IB

2(xi)]

}

= 1
2 [C(A, A) + C(B, B)]

Therefore:

C(A, B) ≤
1
2
[C(A, A) + C(B, B)]

There is:
2·C(A, B) ≤ C(A, A) + C(B, B)

Finally, contacting the previous types, there are:

W(A, B) =
2·C(A, B)

C(A, A) + C(B, B)
≤ 1

In summary, the condition 0 ≤W(A, B) ≤ 1 is satisfied;
(3) If A = B, so for any xi ∈ X(i = 1, 2, · · · , n), all TA(xi) = TB(xi), FA(xi) = FB(xi), IA(xi) = IB(xi),

we can see from the structure of Formula (5), W(A, B) = 1.

In practical application, it is usually necessary to consider the weight of neutrosophic sets, so the
weighted correlation coefficient of neutrosophic sets is given:

W(A, B) =

2·
n∑

i=1
wi[TA(xi)·TB(xi) + FA(xi)·FB(xi) + IA(xi)·IB(xi)]

n∑
i=1

wi[TA
2(xi) + FA

2(xi) + IA
2(xi)] +

n∑
i=1

wi[TB
2(xi) + FB

2(xi) + IB
2(xi)]

(7)
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Among them, w j( j = 1, 2, · · · , n) represents the weight of the i fault template, and
n∑

i=1
wi = 1.

In addition, the formula satisfies the three conditions of the formula and proves to be the same as the
Formula (5), which is not repeated here.

3.2. Fault Diagnosis Method

Based on the above analysis, properly handling the uncertain information in the fault diagnosis
process is an important goal to be achieved, however, complicated and changeable environmental
information, the mutual influence between the factors causing the failure are difficult to handle. Due to
neutrosophic set’s outstanding performance in handling uncertain information issues, this paper
proposes a single-valued neutrosophic set ISVNS algorithm, which generates neutrosophic set by
triangular fuzzy number and introduces the formula of the improved weighted correlation coefficient.

The objectives of the proposed algorithm are to rationally process the uncertain information in
the diagnosis process, and obtain correct and reasonable fault diagnosis results from the fault data.
Therefore, the laboratory simulation of the algorithm is carried out under the assumption that the
actual fault is one of several known fault templates, the collected fault data is reasonable, and there is
no major abnormality. The operating requirement is to collect fault data in a stable and equal time
interval way. The detailed flow chart of the fault diagnosis method is shown in Figure 2:

 

 

1 2  1 2 

( )
( )

1

Figure 2. The detailed flow chart of the fault diagnosis method.

Step 1: For fault template set A= {A 1, A2, · · · , Am}, and test sample set C= {C 1, C2, · · · , Cn}.
Firstly, three fuzzy numbers of fault template data and test sample data are generated, and the

calculation method is as follows:
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In a group number, the largest value is the right end value of the triangle; the minimum value is
the left end-point of the triangle; the average value is the upper-end value of the triangle; the height of
the triangle is 1, as shown in Figure 1.

Step 2: By comparing the three fuzzy number of each attribute of the test sample and the three
fuzzy number of the same attribute of the fault template, the degree of determinacy-membership
TAi

(
C j) , the degree of non-membership FAi(C j), and the degree of indeterminacy-membership IAi(C j)

are obtained, as shown in Figure 3, and the calculation method is as follows:

 

1 2  1 2 

( )
( )

1

X

U(X)

Membership
degree

Figure 3. Each degree of membership and neutrsophic set generate a schematic diagram.

TAi(C j): The ratio of the overlapping area of the analyzed sample triangular fuzzy number and
the triangular fuzzy number of the fault template under a certain attribute, and the analyzed sample
total area of the triangular fuzzy number;

FAi(C j): The ratio of the area of the part not overlapped with the fault template in the analyzed
sample triangular fuzzy number to the total area of the analyzed triangular fuzzy number. Moreover,
for each attribute, the sum of the non-membership degree and the determined membership degree is 1;

IAi(C j): The calculation of the indeterminacy-membership degree is as follows:

(R1 + R2)/2 (8)

Among them, R1= 1−S1/Sk, R2 = Sk/max{SA, SB, SC}, S1 is the overlapping area of the analyzed
sample triangular fuzzy number and the triangular fuzzy number of the fault template under the
current attributes, {Sk|k = A, B, C} is the area of the k fault triangular fuzzy number of the under the
current attribute.

Finally, each degree of membership, the relationship of Ai(i = 1, 2, · · ·m) and C j( j = 1, 2, · · · n) is
shown below:

Ai =
{
< TAi(C j), FAi(C j), IAi(C j) >

∣∣∣C j ∈ C, j = 1, 2, · · · , n
}

(9)

Among them TAi(C j), FAi(C j), IAi(C j) ∈ [0, 1] respectively denote the degree
of determinacy-membership, the degree of non-membership, and the degree of
indeterminacy-membership between Ai(i = 1, 2, · · ·m) and C j( j = 1, 2, · · · n), also
0 ≤ TAi(C j), FAi(C j), IAi(C j) ≤ 3.

Step 3: TAi(C j), FAi(C j), IAi(C j) can be expressed as single-valued neutrosophic set ai j =<

ti j, fi j, ii j >, at this point, a single-valued neutrsophic set decision matrix can be generated as follows:

D = (ai j)m×n

=




< t11, f11, i11 > < t12, f12, i12 > · · · < tin, fi j, ii j >

< t21, f21, i21 > < t22, f22, i22 > · · · < t2n, f2n, i2n >
...

...
...

< tm1, fm1, im1 > < tm2, fm2, im2 > · · · < tmn, fmn, imn >




(10)

215



Symmetry 2020, 12, 1371

Step 4: After obtaining the single-valued neutrosophic set decision matrix D, the ideal
single-valued neutrudophic number for attribute j( j = 1, 2, · · · , n) can be generated by column
as follows:

a∗ j =< t∗ j, f ∗ j, i∗ j >=< max
i

(ti j), min
i
( fi j), min

i
(ii j) > (11)

Among them, max
i

(ti j), min
i
( fi j), min

i
(ii j) respectively denote the maximum value of the jth column

in ti j, the minimum value of the jth column in fi j, the minimum value of the jth column in ii j.
Step 5: According to Formula (7), generated weighted correlation coefficient based on single-valued

neutrsophic set decision matrix D and the ideal single-valued neutrudophic number a∗, the calculation
formula is as follows:

W(Ai, B) =

2·
n∑

j=1
w j[ti j·t∗ j + fi j· f ∗ j + ii j·i∗ j]

n∑
j=1

w j[ti j
2 + fi j

2 + ii j
2] +

n∑
j=1

w j[t∗ j2 + f ∗ j
2 + i∗ j

2]

(12)

Among them, w j( j = 1, 2, · · · , n) represents the weight of the j attribute, and
n∑

j=1
w j = 1; ai j =<

ti j, fi j, ii j > denote single-valued neutrosophic set for attribute j from decision matrix D, a∗ j =<

t∗ j, f ∗ j, i∗ j > denote the ideal single-valued neutrudophic number for attribute j.
Step 6: Finally, sorting the W(Ai, B) of each analyzed sample, the largest value indicates that the

template data belongs to this kind of fault.

4. Illustrative Example and Discussion

In this section, in order to demonstrate the validity and accuracy rate of the proposed method,
an example of a motor rotor is used. The data in this paper is originated from ref. [11], and the data
analysis software is the LABVIEW environment12.

4.1. Fault Diagnosis

The specific steps for fault diagnosis using the ISVNS method proposed in this paper are as follows:

(i). According to the fault template data, the triangular fuzzy numbers under various attributes are
obtained, in turn, as shown in Table 1: According to the analyzed sample data, the triangular
fuzzy numbers under various attributes are obtained, in turn, as shown in Table 2: For the
analyzed sample Xk (k = 1, 2, 3, 4 represents the k attribute), Xk and Gk1−k5 (where G = X, Y, Z
represent A, B, C three kinds of faults) are used for matching, respectively. The neutrosophic
numbers (T, F, I) statistics generated by the determined-membership degree T, non-membership
degree F, and indeterminacy-membership degree I, are calculated, as shown in Table 4:

(ii). Next, for the same fault template, neutrosophic sets with different attributes under fuzzy sample X,
we can get the single-valued neutrosophic decision matrix, as shown in Table 3:

(iii). According to the single-valued neutrosophic set decision matrix and Formula (11) under sample
X in Table 3, the ideal neutrosophic set BX can be obtained as follows:

BX = [< 0.9612, 0.0388, 0.6747 >,< 0.7540, 0.2460, 0.5972 >,
< 0.9836, 0.0164, 0.6451 >,< 0.9966, 0.0034, 0.5757 >]

(13)

(iv). The weights of attributes j( j = 1, 2, 3, 4) are all the same, that is the weight matrix w is as follows:

w = [0.25, 0.25, 0.25, 0.25] (14)
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Next, according to Table 3, Formula (7), (13), (14), for the fault template type Ai

(A1= X11−X45,A2= Y11−Y45,A3= Z11−Z45) and the ideal single-valued neutrosophic set BX,
calculate the improved weight correlation coefficient as follows:



W[A1, BX] = 0.8126
W[A2, BX] = 0.4133
W[A3, BX] = 0.5398

(15)

(v). Finally, according to Formula (15), A1 > A3 > A2, it can be seen that the analyzed samples X1–X4
belong to the first type of fault, namely, the X fault.

Table 1. Triangle fuzzy number of fault template.

Min Value Average Value Max Value Area

X

X11-X15 0.0661 0.1614605 0.2006 0.06725

X21-X25 0.121 0.149226 0.3468 0.1129

X31-X35 0.0899 0.1123885 0.1296 0.01985

X41-X45 0.357 4.3256515 4.666 2.1545

Y

Y11-Y15 0.1567 0.181797 0.2038 0.02355

Y21-Y25 0.3071 0.329311 0.351 0.02195

Y31-Y35 0.1865 0.242014 0.3218 0.06765

Y41-Y45 4.094 4.715255 8.896 2.401

Z

Z11-Z15 0.3006 0.3294004 0.3476 0.0235

Z21-Z25 0.2801 0.343854 0.3647 0.0423

Z31-Z35 0.1151 0.136169 0.1864 0.03565

Z41-Z45 9.385 9.810633 10.112 0.3635

Table 2. Triangular fuzzy numbers data of the analyzed sample.

Min Value Average Value Max Value Area

X

X1 0.1416 0.14265 0.144 0.0012

X2 0.1028 0.11092 0.3058 0.1015

X3 0.1279 0.133655 0.1378 0.00495

X4 4.06 4.0938 4.18 0.06

Table 3. Single-valued neutrosophic set decision matrix under sample X.

Diagnosis Fault X1 X2 X3 X4

X11-X45 (0.9612,0.0388,0.9914) (0.7540,0.2460,0.6610) (0.0127,0.9873,0.6451) (0.9966,0.0034,0.9348)

Y11-Y45 (0,1,0.6751) (0,1,0.5972) (0,1,1) (0.0871,0.9129,0.9989)

Z11-Z45 (0,1,0.6747) (0.0126,0.9874,0.6722) (0.9836,0.0164,0.6952) (0,1,0.5757)
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Table 4. The calculation result of the membership degree of the analyzed sample X.

Analyzed Sample Fault Template Neutrosophic Number

X1
X11-X15 (0.9612,0.0388,0.9914)

Y11-Y15 (0,1,0.6751)

Z11-Z15 (0,1,0.6747)

X2
X21-X25 (0.7540,0.2460,0.6610)

Y21-Y25 (0,1,0.5972)

Z21-Z25 (0.0126,0.9874,0.6722)

X3
X31-X35 (0.0127,0.9873,0.6451)

Y31-Y35 (0,1,1)

Z31-Z35 (0.9836,0.0164,0.6952)

X4
X41-X45 (0.9966,0.0034,0.9348)

Y41-Y45 (0.0871,0.9129,0.9989)

Z41-Z45 (0,1,0.5757)

4.2. Fault Diagnosis Accuracy

To verify the accuracy of fault diagnosis, separately extract arbitrary 40 faults data from the three
faults template [18–42]; These 120 faults data are used as a diagnosis template. Diagnose the fault
type to which it belongs. Finally, compare each test sample with its original fault template [43,44],
Calculate the overall accuracy of fault diagnosis.

The SVNPWA algorithm in ref. [44] is used for verifying these 120 unknown fault samples, and the
diagnosis accuracy is 98.33%. Moveover, the ISVNS algorithm proposed in this paper also applied for
diagnosing the same 120 unknown fault samples, and the diagnosis accuracy is 99.16%. The diagnosis
results are shown in Table 5.

Table 5. Diagnosis results of applying the SVNPWA and proposed algorithm.

Unknow Fault
SVNPWA The Proposed Algorithm

Times of Right Times of Error Times of Right Times of Error

X 38 2 40 0

Y 40 0 39 1

Z 40 0 40 0

It can be seen from Table 5: Compared with the SVNPWA algorithm, the fault diagnostic accuracy
rate of the ISVNS algorithm, proposed in this paper, is improved by 0.83%. That is, the ISVNS algorithm
can better satisfy the diagnostic needs than the basic SVNPWA algorithm.

5. Conclusions

This paper proposes an ISVNS algorithm, which introduces the improved weighted correlation
coefficient formula, and more comprehensively considers both single-valued neutrosophic set and ideal
neutrosophic set under various faults, effectively solved the problem of fault diagnosis. An example
of a motor rotor is illustrated that the ISVNS algorithm could improve the diagnostic accuracy rate
compared with the SVNPWA algorithm. In conclusion, the ISVNS algorithm can obtain better fault
diagnosis accuracy, and satisfy the fault diagnosis needs in practice.

Since the collection and aggregation of data on technical faults is a laborious process. Moreover, the
parameters in the diagnosis process are automatically generated in the laboratory simulation, without
human intervention—therefore, the proposed method could be automating in practical application.
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Therefore, the next step of the work will focus on how to automating the proposed method in order to
scale the use of the proposed algorithm.
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Abstract: To improve the efficiency, accuracy, and intelligence of target detection and recognition,
multi-sensor information fusion technology has broad application prospects in many aspects.
Compared with single sensor, multi-sensor data contains more target information and effective fusion
of multi-source information can improve the accuracy of target recognition. However, the recognition
capabilities of different sensors are different during target recognition, and the complementarity
between sensors needs to be analyzed during information fusion. This paper proposes a multi-sensor
fusion recognition method based on complementarity analysis and neutrosophic set. The proposed
method mainly has two parts: complementarity analysis and data fusion. Complementarity
analysis applies the trained multi-sensor to extract the features of the verification set into the sensor,
and obtain the recognition result of the verification set. Based on recognition result, the multi-sensor
complementarity vector is obtained. Then the sensor output the recognition probability and the
complementarity vector are used to generate multiple neutrosophic sets. Next, the generated
neutrosophic sets are merged within the group through the simplified neutrosophic weighted average
(SNWA) operator. Finally, the neutrosophic set is converted into crisp number, and the maximum
value is the recognition result. The practicality and effectiveness of the proposed method in this
paper are demonstrated through examples.

Keywords: neutrosophic set; target recognition; complementarity analysis; data fusion

1. Introduction

In daily life, target recognition involves all aspects of our lives, such as intelligent video
surveillance and face recognition. These applications also make target recognition technology more
popular. The development of related technologies has greatly enriched the application scenarios of
target recognition and tracking theories. Research on related theoretical methods has also received
extensively attention. Target recognition involves image processing, calculation computer vision,
pattern recognition and other subjects.

Generalized target recognition includes two stages, feature extraction, and classifier classification.
Through feature extraction, image, video, and other target observation data are preprocessed to extract
feature information, and then the classifier algorithm implements target classification based on the
feature information [1]. Common image features can be divided into color gray statistical feature,
texture edge feature, algebraic feature, and variation coefficient feature. The feature extraction methods
corresponding to the above features are color histogram, gray-level co-occurrence matrix method,
principal component analysis method, wavelet transform [2]. The classic target classification algorithms
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include decision tree, support vector machine [3], neural network [4], logistic regression, and naive
Bayes classification [5–8]. On the basis of a single classifier, the ensemble classifier integrates the
classification results of a series of weak classifiers through an ensemble learning method, so as to obtain
a better classification effect than a single classifier, mainly including Bagging and Boosting [9]. With the
development of high-performance computing equipment and the enlargement in the amount of
available data, deep learning related theories and methods have developed rapidly, and the application
of deep learning in the direction of target recognition has also made it break through the limitations of
traditional methods based on deep neural networks [10–12]. Classification network models include
LeNet, AlexNet, VggNet.

In practical applications, multi-source sensor data is often processed in decision analysis [13–19]
as the number of sensors increases. For the problem of uncertain information processing, there are
many theoretical methods such as Dempster-Shafer evidence theory [20–26], fuzzy set theory [27,28],
D number [29–32] and rough set theory [33].

Smarandache [34] firstly generalized the concepts of fuzzy sets [35], intuitionistic fuzzy sets
(IFS) [36] and interval-valued intuitionistic fuzzy sets (IVIFS) [37], and proposed the neutrosophic set.
It is very suitable to use the neutrosophic set to deal with uncertain and inconsistent information in
the real world. However, its authenticity, uncertainty, and false membership function are defined in
the real number standard or non-standard subset. Therefore, non-standard intervals are not suitable
for scientific and engineering applications. Therefore, Ye [38] introduced a simplified neutrosophic set
(SNS), which limits the true value, uncertainty, and false membership function to the actual standard
interval [0, 1]. In addition, SNS also includes single value neutrosophic set (SVNS) [39–41] and interval
neutrosophic set (INS) [42].

As a new kind of fuzzy set, neutrosophic set [43,44] have been used in many fields, such as
decision-making [45–48], data analysis [49,50], fault diagnosis [51], the shortest path problem [52].
There is also a lot of progress in the related theoretical research of neutrosophic set. For example,
score function of pentagonal neutrosophic set [53,54].

Existing multi-sensor fusion methods, such as evidence theory, have complex calculation and long
calculation time [55], and there are a few methods that use neutrosophic set in multi-sensor fusion.
Therefore, this paper proposes a multi-sensor fusion based on neutrosophic set. First, the complementarity
vectors between multiple sensors are calculated. Then these complementarity vectors and the probability
of sensor output are used to form a group of neutrosophic sets, and generated neutrosophic sets are
fused through the SNWA operator. Finally, the neutrosophic set is converted to the crisp number, and the
maximum value is the recognition result. The proposed method has simple calculation and fast operation,
and can effectively improve the accuracy of target recognition.

The rest of this article is organized as follows: Section 2 introduces some necessary concepts,
such as neutrosophic set and multi-category evaluation standard. The proposed multi-sensor fusion
recognition method is listed step by step in Section 3. In Section 4, an example is used to illustrate and
explain the effective of proposed method. Some results discussion are shown in Section 5.

2. Preliminaries

2.1. Neutrosophic Set

Definition 1. The the simplified neutrosophic set (SNS) is defined as follows [38]:
X is a finite set, with a element of X denoted by x. A neutrosophic set (A) in X contains three parts:

a truth-membership function (Tp), an indeterminacy-membership function (Ip), and a falsity-membership
function (Fp).
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0 ≤ TP(x) ≤ 1 (1)

0 ≤ IP(x) ≤ 1 (2)

0 ≤ FP(x) ≤ 1 (3)

0 ≤ TP(x) + IP(x) + FP(x) ≤ 3 (4)

A single-valued neutrosophic set P on X is defined as:

P = {〈x, TP(x), IP(x), FP(x)〉|x ∈ X} (5)

This is called a SNS. In particular, if X includes only one element, N = 〈x, TP(x), IP(x), FP(x)〉 is called
a SNN (the simplified neutrosophic number) and is denoted by α = 〈µ, π, ν〉. The numbers µ, π, ν denote the
degree of membership, the degree of indeterminacy-membership, and the degree of non-membership.

Definition 2. The crisp number of each SNN is deneutrosophicated and calculated as follows [56]:

Si = µi + (πi)× (
µi

µi + νi
) (6)

Si can be regarded as the score of SNN, so SNN can be sorted according to crisp number Si.

2.2. Commonly Used Evaluation Indicators for Multi-Classification Problems

The index for evaluating the performance of a classifier is generally the accuracy of the classifier,
which is defined as the ratio of the number of samples correctly classified by the classifier to the total
number of samples for a given test data set [57].

The commonly used evaluation indicators for classification problems are precision and recall.
Usually, the category of interest is regarded as the positive category, and the other categories are
regarded as the negative category. The prediction of the classifier on the test data set is correct or
incorrect. There are four situations as follows:

• True Positive(TP): The true category is a positive example, and the predicted category is a
positive example.

• False Positive (FP): The true category is negative, and the predicted category is positive.
• False Negative (FN): The true category is positive, and the predicted category is negative.
• True Negative (TN): The true category is negative, and the predicted category is negative.

Based on the above basic concepts, the commonly used evaluation indicators for multi-
classification problems are as follows.

1. Precision or precision rate, also known as precision (P):

P =
TP

TP + FP
(7)

2. Recall rate, also known as recall rate (R):

R =
TP

TP + FN
(8)

3. F1 score is an index used to measure the accuracy of the classification model. It also takes
into account the accuracy and recall of the classification model. The score can be regarded as
a harmonic average of model accuracy and recall. Its maximum value is 1 and its minimum value
is 0:

F1 =
2× P× R

P + R
(9)

225



Symmetry 2020, 12, 1435

2.3. AdaBoost Algorithm

AdaBoost is essentially an iterative algorithm [58], and its core idea is to train some weak classifier
hi based on the initial sample using the decision tree algorithm. Use the classifier to detect the sample
set. For each training sample point, adjust its weight according to whether the result of its classification
is accurate: if hi makes it classified correctly, reduce the weight of the sample point; otherwise, increase
the sample the weight of the point. The adjusted weight is calculated according to the accuracy of the
detection result. The sample set after adjusting the weight constitutes the sample set to be trained at
the next level, which is used to train the next level classifier. In this way, iterate step by step to obtain
a new classifier until the classifier hm is obtained, and the sample detection error rate is 0.

Combine h1, h2, . . . , hm according to the error rate of the sample detection: make the weak classifier
with the larger error account for the smaller weight in the combined classifier, and the weak classifier
with the smaller error account for the larger weight to obtain a combined classifier.

The algorithm is essentially a comprehensive improvement of the weak classifier trained by
the basic decision tree algorithm. Through continuous training of samples and weight adjustment,
multiple classifiers are obtained, and the classifiers are combined by weight to obtain a comprehensive
classifier that improves the ability of data classification. The whole process is as follows:

• Train weak classifiers with sample sets.
• Calculate the error rate of the weak classifier, and obtain the correct and incorrect sample sets.
• Adjust the sample set weight according to the classification result to obtain a redistributed

sample set.

After M cycles, M weak classifiers are obtained, and the joint weight of the classifier is calculated
according to the detection accuracy of each weak classifier, and finally a strong classifier is obtained.

2.4. HOG Feature

Histogram of oriented gradient (HOG), which is a feature descriptor for target detection.
This technology counts the number of directional gradients that appear locally in the image.
This method is similar to the histogram of edge orientation and scale-invariant feature transform,
but the difference is hog calculate the density matrix based on the uniform space to improve accuracy.
Navneet Dalal and Bill Triggs first proposed HOG in 2005 for pedestrian detection in static images or
videos [59].

The core idea of HOG is that the shape of the detected local object can be described by the light
intensity gradient or the distribution of the edge direction. By dividing the entire image into small
connected areas (called cells). Each cell generates a directional gradient histogram or the edge direction
of the pixel in the cell, and the descriptor is represented by combining the histogram. To improve
the accuracy, the local histogram can be compared and standardized by calculating the light intensity
of a larger area (called block) in the image as a measure, and then using this value (measure) to
normalize all cells in the block. This normalization process completes better illumination/shadow
invariance. Compared with other descriptors, the descriptors obtained by HOG maintain the invariance
of geometric and optical transformations (unless the object orientation changes).

2.5. Gabor Feature

Gabor feature [60] is a feature that can be used to describe the texture information of an image.
The frequency and direction of the Gabor filter are similar to the human visual system, and it is
particularly suitable for texture representation and discrimination. The Gabor feature mainly relies on
the Gabor kernel to window the signal in the frequency domain, so as to describe the local frequency
information of the signal.

In terms of feature extraction, Gabor wavelet transform is compared with other methods: on the
one hand, it processes less data and can meet the real-time requirements of the system; on the other
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hand, wavelet transform is insensitive to changes in illumination and can tolerate a certain degree of
when image rotation and deformation are used for recognition based on Euclidean distance, the feature
pattern and the feature to be measured do not need to correspond strictly, so the robustness of the
system can be improved.

2.6. D-AHP Theory

Analytic Hierarchy Process (AHP) [61] is a systematic and hierarchical analysis method that
combines qualitative and quantitative analysis. The characteristic of this method is that on the
basis of in-depth research on the nature, influencing factors and internal relations of complex
decision-making problems, it uses less quantitative information to mathematicize the thinking process
of decision-making, thereby providing multi-objective, multi-criteria or complex decision-making
problems with no structural characteristics provide simple decision-making methods.

The D-AHP method extends the traditional AHP method in theory. In the D-AHP method [62],
the derived results about the ranking and priority weights of alternatives are impacted by the credibility
of providing information. A parameter λ is used to express the credibility of information, and its
value is associated with the cognitive ability of experts. If the comparison information used in
the decision-making process is provided by an authoritative expert, λ will take a smaller value.
If the comparison information comes from an expert whose judgment is with low belief, λ takes
a higher value.

3. The Proposed Method

In general sensor recognition, the training set is inputting to train the sensor by extracting
feature, and then the test set is inputting to test and get the recognition result. To improve the
accuracy of multi-sensor fusion recognition, this paper proposes a fusion recognition method
based on neutrosophic set. The proposed method in this paper is mainly divided into two parts:
complementarity analysis and data fusion. The main steps of the method proposed in this paper are
shown in Figure 1.

data set

Extract features

Identify the target

Sensor 1 Unknown target

Sensor 1 Sensor n

Probability matrix

data set

Extract features

Identify the target

Sensor n

Recognition matrix 1 Recognition matrix n

Complementarity 

vector

Sensor preference 

matrix 
SNNm

Unknown

 target 1

Complementarity 

vector

Sensor preference 

matrix 
SNN1

Recognition 

result

Complementarity analysis

Pretreatment Data Fusion

Unknown

 target n

Figure 1. Target fusion recognition based on sensor complementarity and neutrosophic set.

The essence of complementarity is to calculate the weight of the recognition ability of the base
sensor in different categories. Based on this, the data set is divided into training set, validation set,
and test set. First, the base sensor preference matrix is obtained from the recognition matrix of the
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trained base sensor on the verification set, and then the sensor complementarity vector is calculated in
each category.

Data fusion aims at different target types, based on the sensor complementarity vector,
the recognition results of different sensors are generated by the neutrosophic set. Then the fusion of the
neutrosophic set can be obtained in different categories, and finally the neutrosophic set is converted
into crisp number, and the maximum value is taken as the recognition result.

3.1. Complementarity

The main steps of the multi-sensor complementarity analysis are proposed as follows:

• According to the data test result, the sensor recognition matrix can be obtained.
• The sensor preference matrix for different target types is obtained from multiple sensor

recognition matrices.
• The sensor complementarity vector is gotten from the sensor preference relationship matrix.

3.1.1. Sensor Recognition Matrix

Suppose there are n types of sensors X1, X2, X3, · · · , Xn, and m types of target types
Y1, Y2, Y3, · · · , Ym. For a certain data set i, the recognition results of all its samples can be represented
by the following recognition matrix Ri.

Ri =




ri
11 ri

12 · · · ri
1m

ri
21 ri

22 · · · ri
2m

...
...

. . .
...

ri
n1 ri

n2 · · · ri
nm




(10)

3.1.2. Sensor Preference Matrix

To obtain the preference relationship matrix between sensors, the preference between sensors
needs to be defined. For two sensors, if the recognition performance of the sensor X1 on the target
Yj is better than the recognition performance of the sensor X2, then for the target Yj, the sensor X1 is
better than the sensor X2. The recognition results of a certain sensor on the samples in the data set i
can be organized in the form of a recognition matrix, but the rows and columns become the recognized
category of the sample and the true category of the sample. Furthermore, for the target of category Yj,
according to the recognition matrix, we can get Table 1:

Table 1. Ri
j: The recognition situation of a certain sensor to the target of category Yj.

Real-Recognition Yj Non-Yj

Yj ri
jj ∑

k 6=j
ri

jk

non-Yj ∑
k 6=j

ri
kj ∑

l 6=j
∑

k 6=j
ri

kl

Record the above matrix as Ri
j in Table 1, where ri

jj is the number of correct recognition of the

category Yj by the sensor, ∑
k 6=j

ri
kj is the number of samples that the sensor misrecognizes non-targets.

∑
k 6=j

ri
jk is the number of misrecognized category Yj samples into other categories. ∑

l 6=j
∑

k 6=j
ri

kl is the

number of samples other than the above three cases number. If the optimal performance of sensor
recognition is expressed as a matrix:
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Ij =




h
∑

l=1
ri

jl 0

0 ∑
k 6=j

h
∑

l=1
ri

kl


 (11)

Which means the category is fully recognized correctly. Then the recognition performance of
this sensor to the category Yj is defined as 1∥∥∥Ri

j−Ij

∥∥∥
. Therefore, if there are two sensors Xk and Xl ,

the preference value of the recognition accuracy rate of Xk versus Xl in the category (representing the
priority of the recognition ability of Xk over Xl in the category of Yj) is defined as:

pj
kl =

1
‖Rk

j−Ij‖
1

‖Rk
j−Ij‖

+ 1
‖Rl

j−Ij‖

=

∥∥∥Rl
j − Ij

∥∥∥
∥∥Rk

j − Ij
∥∥+

∥∥Rl
j − Ij

∥∥ (12)

In the same way, the recognition accuracy preference value of sensor Xl vs Xk on category Yj is
defined as follows:

pj
lk =

∥∥∥Rk
j − Ij

∥∥∥
∥∥Rk

j − Ij
∥∥+

∥∥Rl
j − Ij

∥∥ (13)

It is easy to get from the above two formulas that pj
kl+pj

lk = 1, which is the sum of the two
preference values is 1. If l = k, then pj

kl = 0.5. For the case where multiple sensors recognize at the
same time, the preference relationship matrix Pj on the category Yj can be obtained. For each target
category in the data set i, a corresponding preference relationship matrix can be obtained.

3.1.3. Sensor Complementarity Vector

Next, using the method in D-AHP theory [62], the complementarity vector can be calculated by
the preference relationship matrix.

According to the classifier preference relation matrix Pj of category Yj.

Pj =




Pj
11 Pj

12 · · · Pj
1n

Pj
21 Pj

22 · · · Pj
2n

...
...

. . .
...

Pj
n1 Pj

n2 · · · Pj
nn




(14)

It is calculated that for each sensor complementarity vector Cj of category Yj, Cj is a 1 × n
dimensional vector. The flowchart of the Cj calculation is presented as Figure 2, the calculation steps
are as follows:

1. Express the importance of the index relative to the evaluation target through the preference
relationship, and construct the D number preference matrix RD.

2. According to the integrated representation of the D number, transform the D number preference
matrix into a certain number matrix RI .

3. Construct a probability matrix RI based on the deterministic number matrix RP, and calculate the
preference probability between the indicators compared in pairs.

4. Convert the probability matrix RP into a triangularized probability matrix RT
P, and sort the

indicators according to their importance.
5. According to the index sorting result, the deterministic number matrix RI is expressed as a matrix

RT
I , finally Cj is obtained.
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Figure 2. Complementary vector generation process [62].

3.2. Data Fusion

For a picture with unknown target type, the probability matrix is formed via the recognition result
vectors of each sensor.

Q =




q11 · · · q1m
...

. . .
...

qn1 · · · qnm


 (15)

where qij is the probability that the sensor Xi considers the unknown target as the target type Yj.
At this time, the complementary vector is normalized to obtain the weight coefficient:

H j=Cj/(Cj
min + Cj

max) (16)

If the target type is Yj, the complementarity vector H j and Q can be combined to obtain
a neutrosophic set α = 〈µ, π, ν〉. Since there are n sensors, n groups neutrosophic sets can be obtained
according to Q and Yj as follows:

αi = [µ = qij × Hj, π = (1− qij)× Hj, ν = 1− Hj] (17)

Combining n groups of neutrosophic sets, a group of fused neutrosophic set can be obtianed,
and the target recognition neutrosophic set is calculated under the imaginary target type Yj. Since there
are m types of target, we can finally use the SNWA operator [63] to get m neutrosophic sets:

αTi = W1 × α1 + W2 × α2 + · · ·+ Wn × αn = [1−
n

∏
i=1

(1−µi)
Wi ,

n

∏
i=1

(πi)
Wi ,

n

∏
i=1

(νi)
Wi ] (18)

Finally, convert these m SNNs into crisp numbers, and take the maximum value as the
recognition result.

RS = Max(S) = Max[S1 = µT1 + (πT1)× (
µT1

µT1 + νT1

), ..., Sm = µTm + (πTm)× (
µTm

µTm + νTm

)] (19)
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4. Simulation

4.1. Data Set

The data source type of the experiment consists of two types: visible light image and infrared
light image. There are four target types: sailboat (1), cargo ship (2), speed boat (3), and fishing boat (4).
The structure of the experimental data is shown in Tables 2 and 3. The data consists of a train set,
a verification set, and a test set. The verification set and the test set are the same pictures. Since the
information of visible light and infrared sensors needs to be fused in the verification set and test set,
two visible and infrared images taken at the same location are required for the same target, as shown
in Figures 3–6. Due to the lack of data, K = 8 cross-validation is used for verificating and testing.
This means that the validation set (test set) is divided into eight groups, and when a certain one group
is tested, the remaining seven groups are used as the validation set. The image features use Gabor and
HOG, and the classifier uses AdaBoost.

Table 2. Target recognition image of infrared data.

Infrared Light Data Train Set Validation Set Test Set

Sailboat 65 28 28
Cargo ship 68 35 35
Speed boat 63 25 25

Fishing boat 79 35 35

Table 3. Target recognition image of visible light data.

Visible Light Data Train Set Validation Set Test Set

Sailboat 65 28 28
Cargo ship 79 35 35
Speed boat 70 25 25

Fishing boat 78 35 35

Figure 3. Visible light image and infrared light image for the same sailboat.

Figure 4. Visible light image and infrared light image for the same cargo ship.

231



Symmetry 2020, 12, 1435

Figure 5. Visible light image and infrared light image for the same speedboat.

Figure 6. Visible light image and infrared light image for the same fishing boat.

4.2. Sensor

Two data sources (visible light, infrared), two image features (HOG, Gabor), and the classification
algorithm AdaBoost can be combined separately to obtain 4 classifiers, as shown in Table 4. Since the
background of this research is target recognition, these classifiers are regarded as different sensors,
so as to recognize the target and generate their respective recognition results. The specific process of
recognition is shown in Figure 7.

Test set

 features

Training set 

features

Extract data 

features

Data 

source

Recognition result

Classifier 

Classifier after 

training

Train

Test

Output

Figure 7. The work process of sensor.
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Table 4. Base sensor recognition confusion matrix.

Sensor 1 Sensor 2

Visible light + HOG + AdaBoost Infrared light + HOG + AdaBoost

Sensor 3 Sensor 4

Visible light + GABOR + AdaBoost Infrared light + GABOR + AdaBoost

4.3. Base Sensor Recognition Confusion Matrix

The verification set is input into the trained base sensor, and the recognition confusion matrix of
the base sensor can be obtained according to the recognition result of the sensor. The Tables 5–8 are the
identification confusion matrixs of the base sensors on the verification set.

Table 5. Recognition confusion matrix of sensor 1.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 23 0 2 0
Cargo ship 0 29 3 0
Speed boat 1 1 20 0

Fishing boat 0 0 0 31

Table 6. Recognition confusion matrix of sensor 2.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 16 3 6 0
Cargo ship 1 13 17 1
Speed boat 0 0 18 4

Fishing boat 0 1 9 21

Table 7. Recognition confusion matrix of sensor 3.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 16 1 8 0
Cargo ship 5 17 10 0
Speed boat 0 0 22 0

Fishing boat 0 0 0 31

Table 8. Recognition confusion matrix of sensor 4.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 25 0 0 0
Cargo ship 5 25 0 2
Speed boat 0 10 1 11

Fishing boat 0 0 6 25

4.4. Preference Matrix

Tables 9–12 show the preference comparison matrix of the four sensors for the four types of target.

Table 9. Preference matrix P(1, 1) of Sailboat.

P(1, 1) Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 0.500 0.801 0.821 0.690
Sensor 2 0.198 0.500 0.532 0.355
Sensor 3 0.178 0.467 0.500 0.326
Sensor 4 0.309 0.644 0.673 0.500
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Table 10. Preference matrix P(1, 2) of Cargo ship.

P(1, 2) Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 0.500 0.859 0.826 0.794
Sensor 2 0.140 0.500 0.436 0.386
Sensor 3 0.173 0.563 0.500 0.448
Sensor 4 0.205 0.614 0.551 0.500

Table 11. Preference matrix P(1, 3) of Speedboat.

P(1, 3) Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 0.500 0.856 0.769 0.802
Sensor 2 0.143 0.500 0.358 0.403
Sensor 3 0.230 0.641 0.500 0.548
Sensor 4 0.197 0.596 0.451 0.500

Table 12. Preference matrix P(1, 4) of Fishing boat.

P(1, 4) Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 0.500 1.000 0.500 1.000
Sensor 2 0 0.500 0 0.561
Sensor 3 0.500 1.000 0.500 1.000
Sensor 4 0 0.438 0 0.500

4.5. Complementarity Vector

According to the previous research, the complementarity vector can be obtained from the
preference matrix, as shown in Table 13, which reflects the complementarity between the 4 sensors if the
target to be identified is the first type of target sailboat. These information also reflect the importance
of each sensor, so the complementary vector is used as the weight to generate the neutrosophic set
when fusing the neutrosophic set.

Table 13. Complementarity vector: C.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

C(1, 1) 0.473 0.138 0.106 0.283
C(1, 2) 0.513 0.102 0.166 0.219
C(1, 3) 0.500 0.086 0.231 0.183
C(1, 4) 0.382 0.132 0.382 0.104

4.6. Data Fusion

When identifying an unknown target, the four sensors can obtain the probability of the category
through the trained classifier, as shown in Table 14.

Table 14. Probability of the 4 sensors to recognize the unknown target.

Type Sailboat Cargo Ship Speedboat Fishing Boat

Sensor 1 0.256 0.122 0.180 0.442
Sensor 2 0.136 0.237 0.315 0.312
Sensor 3 0.078 0.107 0.352 0.463
Sensor 4 0.099 0.162 0.286 0.453

According to these probabilities, by Equation (16), the complementarity vectors are converted
into weight vectors, as shown in Table 15.
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Table 15. Weight vector: H.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

W(1, 1) 0.817 0.238 0.183 0.487
W(1, 2) 0.833 0.167 0.262 0.355
W(1, 3) 0.853 0.147 0.393 0.311
W(1, 4) 0.789 0.274 0.789 0.210

Use Equation (17) to combine P and W and get four neutrosophic sets in one category. The current
recognition framework has four categories, so four groups of neutrosophic set are obtained, as follows:

α1 =




α11 = [0.209, 0.607, 0.184]
α12 = [0.032, 0.205, 0.761]
α13 = [0.014, 0.168, 0.817]
α14 = [0.048, 0.439, 0.513]




α2 =




α21 = [0.102, 0.731, 0.167]
α22 = [0.039, 0.127, 0.833]
α23 = [0.029, 0.242, 0.729]
α24 = [0.057, 0.297, 0.645]




α3 =




α31 = [0.154, 0.699, 0.147]
α32 = [0.046, 0.101, 0.853]
α33 = [0.138, 0.255, 0.607]
α34 = [0.089, 0.222, 0.689]




α4 =




α41 = [0.348, 0.442, 0.210]
α42 = [0.085, 0.189, 0.726]
α43 = [0.365, 0.425, 0.210]
α44 = [0.095, 0.116, 0.789]




Combine these four groups of neutrosophic sets according to Equation (18) to obtain 4
neutrosophic sets:

α1 = 0.25× α11 + 0.25× α12 + 0.25× α13 + 0.25× α14 = [0.079, 0.492, 0.310]
α2 = 0.25× α21 + 0.25× α22 + 0.25× α23 + 0.25× α24 = [0.058, 0.506, 0.286]
α3 = 0.25× α31 + 0.25× α32 + 0.25× α33 + 0.25× α34 = [0.108, 0.479, 0.251]
α4 = 0.25× α41 + 0.25× α42 + 0.25× α43 + 0.25× α44 = [0.234, 0.399, 0.253]

Furthermore, the four neutrosophic sets are transformed into crisp numbers by Equation (19).

RS = 4 = Max(S) = Max[S1 = 0.181, S2 = 0.142, S3 = 0.252, S4 = 0.427]

Therefore, the recognition result of the unknown target is fishing boat.

4.7. Recognition Result

After all the test sets are finally tested, the results of the method proposed in this paper are shown
in Table 16. And the results of two other fusion methods such as simple fusion (Table 17) and D-S
fusion (Table 18) are given to compare with the proposed method.
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Table 16. The proposed method recognition result.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 27 0 1 0
Cargo ship 1 31 3 0
Speed boat 0 0 25 0

Fishing boat 0 0 0 35

Table 17. Simple fusion result.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 27 0 1 0
Cargo ship 1 33 1 0
Speed boat 1 1 21 2

Fishing boat 0 0 0 35

Table 18. D-S fusion result.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 26 1 1 0
Cargo ship 2 28 5 0
Speed boat 0 0 25 0

Fishing boat 0 0 2 33

The recognition results of the 4 base sensors on the test set are shown in Tables 19–22:

Table 19. Sensor 1 recognition result.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 25 0 3 0
Cargo ship 0 31 4 0
Speed boat 1 1 23 0

Fishing boat 0 0 0 35

Table 20. Sensor 2 recognition result.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 17 3 8 0
Cargo ship 1 14 18 2
Speed boat 0 1 19 5

Fishing boat 0 1 10 24

Table 21. Sensor 3 recognition result.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 17 1 10 0
Cargo ship 6 18 11 0
Speed boat 0 0 25 0

Fishing boat 0 0 0 35
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Table 22. Sensor 4 recognition result.

Real Category/Identify Category Sailboat Cargo Ship Speedboat Fishing Boat

Sailboat 28 0 0 0
Cargo ship 6 27 0 2
Speed boat 0 12 1 12

Fishing boat 0 0 6 29

The multi-category evaluation criteria is used in the previous article to evaluate the classification
results, shown in Table 23. It can be seen that the method proposed in this paper has improved
in the recall rate, accuracy rate, F1 score and other indicators compared with these four sensors.
After multi-sensor fusion recognition, the accuracy rate of a single sensor is increased by 3.25% at the
lowest and 35.77% at the highest, and the average performance of a single sensor is improved by 21.13%.
At the same time, compared with the other two fusion methods, the method proposed in this parper
also performs better.It can be seen that the accuracy of fusion recognition can be significantly improved.

Table 23. Recognition result analysis.

Category Accuracy Rate Recall Rate F1 Score Count Time Correct Rate

Sensor 1

Sailboat 0.962 0.893 0.926

54S 92.68%
Cargo ship 0.969 0.886 0.925
Speedboat 0.767 0.920 0.836

Fishing boat 1.000 1.000 1.000

Sensor 2

Sailboat 0.944 0.607 0.739

52S 60.16%
Cargo ship 0.737 0.400 0.519
Speedboat 0.345 0.760 0.475

Fishing boat 0.774 0.686 0.727

Sensor 3

Sailboat 0.739 0.607 0.667

162S 77.24%
Cargo ship 0.947 0.514 0.667
Speedboat 0.543 1.000 0.704

Fishing boat 1.000 1.000 1.000

Sensor 4

Sailboat 0.824 1.000 0.903

158S 69.11%
Cargo ship 0.692 0.771 0.730
Speedboat 0.143 0.040 0.063

Fishing boat 0.674 0.829 0.744

D-S fusion

Sailboat 0.929 0.929 0.929

434S 91.56%
Cargo ship 0.966 0.800 0.875
Speedboat 0.758 1.000 0.862

Fishing boat 1.000 0.943 0.971

Simple fusion

Sailboat 0.931 0.964 0.947

413S 94.30%
Cargo ship 0.971 0.943 0.957
Speedboat 0.913 0.840 0.875

Fishing boat 1.000 0.946 0.972

Proposed method

Sailboat 0.964 0.964 0.964

398S 95.93%
Cargo ship 1.000 0.886 0.940
Speedboat 0.862 1.000 0.926

Fishing boat 1.000 1.000 1.000

5. Results

Aiming at the problem of multi-sensor target recognition, this paper proposes a new method based
on the complementary characteristics of sensors in the fusion of neutrosophic set, which improves
the accuracy of target type recognition. Using the identification of the sea surface vessel type
as the verification scenario, the category-oriented sensor complementarity vector is constructed
through feature extraction, sensor training of the target’s infrared and visible image training data.
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The multi-sensor neutrosophic set model is performed on the target to be recognized to realize the
multi-sensor. Compared with other methods, the method proposed in this paper performs better in
recognition accuracy, Compared with other fuzzy mathematics theories, the neutrosophic set theory is
more helpful for us to deal with the complementary information between sensors. At the same time,
the three sets of functions included in the neutrosophic set allow us to flexibly adjust the weight and
other parameters, and the calculation of the neutrosophic set is simple, it takes less time to run the
program. Further research will mostly concentrate on the the proposed method can be used to more
complicated study to further demonstrate its efficiency.
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Abstract: Neutrosophy is a recent section of philosophy. It was initiated in 1980 by Smarandache.
It was presented as the study of origin, nature, and scope of neutralities, as well as their interactions
with different ideational spectra. In this paper, we introduce the notion of single-valued neutrosophic
ideals sets in Šostak’s sense, which is considered as a generalization of fuzzy ideals in Šostak’s
sense and intuitionistic fuzzy ideals. The concept of single-valued neutrosophic ideal open local
function is also introduced for a single-valued neutrosophic topological space. The basic structure,
especially a basis for such generated single-valued neutrosophic topologies and several relations
between different single-valued neutrosophic ideals and single-valued neutrosophic topologies, are
also studied here. Finally, for the purpose of symmetry, we also define the so-called single-valued
neutrosophic relations.

Keywords: single-valued neutrosophic closure; single-valued neutrosophic ideal; single-valued
neutrosophic ideal open local function; single-valued neutrosophic ideal closure; single-valued
neutrosophic ideal interior; single-valued neutrosophic ideal open compatible

1. Introduction

The notion of fuzzy sets, employed as an ordinary set generalization, was introduced in 1965 by
Zadeh [1]. Later on, using fuzzy sets through the fuzzy topology concept was initially introduced in
1968 by Chang [2]. Afterwards, many properties in fuzzy topological spaces have been explored by
various researchers [3–13]

Paradoxically, it is to be emphasized that being fuzzy or what is termed as fuzzy topology in fuzzy
openness concept is not highlighted and well-studied. Meanwhile, Samanta et al. [14,15] introduced
what is called the graduation of openness of fuzzy sets. Later on, Ramadan [16] introduced smooth
continuity, a number of their properties, and smooth topology. Demirci [17] investigated properties
and systems of smooth Q-neighborhood and smooth neighborhood alike. It is worth mentioning
that Chattopadhyay and Samanta [18] have initiated smooth connectedness and smooth compactness.
On the other hand, Peters [19] tackled the notion of primary fuzzy smooth characteristics and structures
together with smooth topology in Lowen sense. He [20] further evidenced that smooth topologies
collection constitutes a complete lattice. Furthermore, Onassanya and Hošková-Mayerová [21]
inspected certain features of subsets of α-level as an integral part of a fuzzy subset topology. Likewise,
more specialists in the field like Çoker and Demirci [22], in addition to Samanta and Mondal [23,24],
have provided definitions to the concept of graduation intuitionistic openness of fuzzy sets based on
Šostak’s sense [25] according to Atanassov’s [26] intuitionistic fuzzy sets. Essentially, they focused on
intuitionistic gradation of openness in light of Chang. On the other hand, Lim et al. [27] examined
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Lowen’s framework smooth intuitionistic topological spaces. In recent times, Kim et al. [28] considered
systems of neighborhood and continuities within smooth intuitionistic topological spaces. Moreover,
Choi et al. [29] scrutinized smooth interval-valued topology through graduation of the concept of
interval-valued openness of fuzzy sets, as suggested by Gorzalczany [30] and Zadeh [31], respectively.
Ying [32] put forward a topology notion termed as fuzzifying topology, taking into consideration the
extent of ordinary subset of a set openness. General properties in ordinary smooth topological spaces
were elaborated in 2012 by Lim et al. [33]. In addition, they [34–36] inspected compactness, interiors,
and closures within normal smooth topological spaces. In 2014, Saber et al. [37] shaped the notion of
fuzzy ideal and r-fuzzy open local function in fuzzy topological spaces in view of the definition of
Šostak. In addition, they [38,39] inspected intuitionistic fuzzy ideals, fuzzy ideals and fuzzy open local
function in fuzzy topological spaces in view of the definition of Chang.

Smarandache [40] determined the notion of a neutrosophic set as intuitionistic fuzzy set
generalization. Meanwhile, Salama et al. [41,42] familiarized the concepts of neutrosophic crisp set
and neutrosophic crisp relation neutrosophic set theory. Correspondingly, Hur et al. [43,44] initiated
classifications NSet(H) and NCSet including neutrosophic crisp and neutrosophic sets, where they
examined them in a universe topological position. Furthermore, Salama and Alblowi [45] presented
neutrosophic topology as they claimed a number of its characteristics. Salama et al. [46] defined a
neutrosophic crisp topology and studied some of its properties. Others, such as Wang et al. [47],
defined the single-valued neutrosophic set concept. Currently, Kim et al. [48] has come to grips with a
neutrosophic partition single-value, neutrosophic equivalence relation single-value, and neutrosophic
relation single-value.

Preliminaries of single-value neutrosophic sets and single-valued neutrosophic topology are
reviewed in Section 2. Section 3 is devoted to the concepts of single-valued neutrosophic closure space
and single-valued neutrosophic ideal. Some of their characteristic properties are considered. Finally,
the concepts of single-valued neutrosophic ideal open local function has been introduced and studied.
Several preservation properties and some characterizations concerning single-valued neutrosophic
ideal open compatible have been obtained.

2. Preliminaries

In this section, we attempt to cover enough of the fundamental concepts and definitions.

Definition 1 ([49]). A neutrosophic setH (NS, for short) on a nonempty set S is defined as

H = 〈κ, TH, IH, FH : κ ∈ S〉,

where

TH : S →⌋−0, 1+⌊, IH : S →⌋−0, 1+⌊, FH : S →⌋−0, 1+⌊

and

−0 ≤ TH(κ) + IH(κ) + FH(κ) ≤ 3+,

representing the degree of membership (namely, TH(κ)), the degree of indeterminacy (namely, IH(κ)), and the
degree of nonmembership (namely, FH(κ)); for all κ ∈ S to the setH.

Definition 2 ([49]). LetH andR be fuzzy neutrosophic sets in S . Then,H is a subset ofR if, for each κ ∈ S ,

inf TH(x) ≤ inf TR(κ), inf IH(x) ≥ inf IR(κ), inf FH(x) ≥ inf FR(κ)
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and

sup TH(κ) ≤ sup TR(κ), sup IH(κ) ≥ sup IR(κ), sup FH(κ) ≥ sup FR(κ).

Definition 3 ([47]). Let H be a space of points (objects) with a generic element in S denoted by κ. Then,
H is called a single-valued neutrosophic set (in short, SVNS) in S if H has the form H = 〈TH, IH, FH〉,
where TH, IH, FH : S → [0, 1].

In this case, TH, IH, FH are called truth-membership function, indeterminacy-membership function,
and falsity-membership function, respectively, and we will denote the set of all SVNS′s in S as SVNS(S).

Moreover, we will refer to the Null (empty) SVNS (or the absolute (universe) SVNS) in S as 0N (or 1N)
and define by 0N = (0, 1, 1) (or 1N = (1, 0, 0)) for each κ ∈ S .

Definition 4 ([47]). LetH = 〈TH, IH, FH〉 be an SVNS on S . The complement of the setH (Hc, f or short)
and is defined as follows: for every κ ∈ S ,

THc(κ) = FH(κ), IHc(κ) = 1− IH(κ), FHc(κ) = TH(κ).

Definition 5 ([50]). Suppose thatH ∈ SVNS(S). Then,

(i) H is said to be contained inR, denoted byH ⊆ R, if, for every κ ∈ S ,

TH(κ) ≤ TR(κ), IH(κ) ≥ IR(κ), FH(κ) ≥ FR(κ);

(ii) H is said to be equal toR, denoted byH = H, ifR ⊆ R andH ⊇ R.

Definition 6 ([51]). Suppose thatH,R ∈ SVNS(S). Then,

(i) the union ofH andR (H∪R, f or short) is an SVNS in S defined as

H∪R = (TH ∪ TR, IH ∩ IR, FH ∩ FR),

where (TH ∪ TR)(κ) = TH(κ) ∪ TR(κ) and (FH ∩ FR)(κ) = FH(κ) ∩ FR(κ), for each κ ∈ S ;
(ii) the intersection ofH andR, (H∩R, f or short), is an SVNS in S defined as

H∩R = (TH ∩ TR, IH ∪ IR, FH ∪ FR).

Definition 7 ([45]). LetH ∈ SVNS(S). Then,

(i) the union of {Hi}i∈J (
⋃

i∈J Hi, f or short) is an SVNS in S defined as follows: for every κ ∈ S ,

(
⋃

i∈J

Hi)(κ) = (
⋃

i∈J

THi
(κ),

⋂

i∈J

IHi
(κ),

⋂

i∈J

FHi
(κ);

(ii) the intersection of {Hi}i∈J (
⋂

i∈J Hi, f or short) is an SVNS in S defined as follows: for every κ ∈ S ,

(
⋂

i∈J

Hi)(κ) = (
⋂

i∈J

THi
(κ),

⋃

i∈J

IHi
(κ),

⋃

i∈J

FHi
(κ).

Definition 8 ([52]). A single-valued neutrosophic topology on S is a map (τT , τ I , τF) : IS → I satisfying the
following three conditions:

(SVNT1) τT(0) = τT(1) = 1 and τ I(0) = τ I(1) = τF(0) = τF(1) = 0,
(SVNT2) τT(H∩R) ≥ τT(H) ∩ τT(R), τ I(H∩R) ≤ τ I(H) ∪ τ I(R),

τF(H∩R) ≤ τF(H) ∪ τF(R), for anyH,R ∈ IS ,
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(SVNT3) τT(∪i∈jHi) ≥ ∩i∈jτ
T(Hi), τ I(∪i∈jHi) ≤ ∪i∈jτ

I(Hi) ,
τF(∪i∈jHi) ≤ ∪i∈jτ

F(Hi), for any {Hi}i∈J ∈ IS .

The pair (X, τT , τ I , τF) is called single-valued neutrosophic topological spaces
(SVNTS, f or short). We will occasionally write τTIF for (τT , τ I , τF) and it will cause no ambiguity.

3. Single-Valued Neutrosophic Closure Space and Single-Valued Neutrosophic Ideal in
Šostak Sense

This section deals with the definition of single-valued neutrosophic closure space. The researchers
examine the connection between single-valued neutrosophic closure space and SVNTS based in
Šostak sense. Moreover, the researchers focused on the single-valued neutrosophic ideal notion where
they obtained fundamental properties. Based on Šostak’s sense, where a single-valued neutrosophic
ideal takes the form (S ,LT ,LI ,LF) and the mappings LT ,LI ,LF : IS → I, where (LT ,LI ,LF) are the
degree of openness, the degree of indeterminacy, and the degree of non-openness, respectively.

In this paper, S is used to refer to nonempty sets, whereas I is used to refer to closed interval [0, 1]
and Io is used to refer to the interval (0, 1]. Concepts and notations that are not described in this paper
are standard, instead, S is usually used.

Definition 9. A mapping C : IS × I0 → IS is called a single-valued neutrosophic closure operator on S if,
for everyH,R ∈ IS and r, s ∈ I0, the following axioms are satisfied:

(C1) C((0.1.1), s) = (0.1.1),
(C2)H ≤ C(H, s),
(C3) C(H, s) ∨C(R, s) = C(H∨R, s),
(C4) C(H, s) ≤ C(H, r) if s ≤ r,
(C5) C(C(H, s), s) = C(H, s).

The pair (X,C) is a single-valued neutrosophic closure space (SVNCS , f or short).
Suppose that C1 and C2 are single-valued neutrosophic closure operators on S . Then, C1 is finer

than C2, denoted by C2 ≤ C1 iff C1(H, s) ≤ C2(H, s), for everyH ∈ IS and s ∈ I0.

Theorem 1. Let (S , τTIF) be an SVNTS. Then, for any H ∈ IS and s ∈ I0, we define an operator
CτTIF : IS × I0 → IS as follows:

CτTIF (H, s) =
∧
{R ∈ IX : H ≤ R, τT(1−R) ≥ s, τ I(1−R) ≤ 1− s, τF(1−R) ≤ 1− s}.

Then, (S ,CτTIF ) is an SVNCS .

Proof. Suppose that (S , τTIF) is an SVNTS. Then, C1, (C2) and (C4) follows directly from the
definition of CτTIF .

(C3) Since R,H ≤ H ∪ R, CτTIF (R, s) ≤ CτTIF (H ∪R, s) and CτTIF (H, s) ≤ CτTIF (H ∪R, s),
therefore,

CτTIF (H, s) ∪CτTIF (R, s) ≤ CτTIF (H∪R, s).

Let (X, τTIF) be an SVNTS. From (C2), we have

H ≤ CτTIF (H, s), τT(1−CτTIF (H, s)) ≥ s, τ I(1−CτTIF (H, s)) ≤ 1− s

and τF(1−CτTIF (H, s)) ≤ 1− s,
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R ≤ CτTIF (R, s), τT(1−CτTIF (R, s)) ≥ s, τ I(1−CτTIF (R, s)) ≤ 1− s

and τF(1−CτTIF (R, s)) ≤ 1− s.

It implies thatH∪R ≤ CτTIF (H, s) ∪CτTIF (R, s),

τT(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τT((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≥ τT(1−CτTIF (H, s)) ∩ τT(1−CτTIF (R, s)) ≥ s,

τ I(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τ I((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≤ τ I((1−CτTIF (H, s)) ∪ τ I(1−CτTIF (R, s)) ≤ 1− s,

τF(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τF((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≤ τF(1−CτTIF (H, s)) ∪ τF(1−CτTIF (R, s)) ≤ 1− s.

Hence, CτTIF (H, s) ∪CτTIF (H∪R, s) ≥ CτTIF (H∪R, s). Therefore,

CτTIF (H, s) ∪CτTIF (H∪R, s) = CτTIF (H∪R, s).

(C5) Suppose that there exists s ∈ I0,H ∈ IS , and κ ∈ S such that

CτTIF (CτTIF (H, s), s)(κ) > CτTIF (H, s)(κ).

By the definition of CτTIF , there exists D ∈ IS with D ≥ H, and τT(1−D) ≥ s, τ I(1−D) ≤ 1− s and
τF(1−D) ≤ 1− s such that

CτTIF (CτTIF (H, s), s)(κ) > D(κ) ≥ CτTIF (H, s)(κ).

Since CτTIF (H, s) ≤ D and τT(1−D) ≥ s, τ I(1−D) ≤ 1− s, and τF(1−D) ≤ 1− s, by the definition
of CτTIF (CτTIF ), we have

CτTIF (CτTIF (H, s), s) ≤ D.

It is a contradiction. Thus, CτTIF (CτTIF (H, s), s) = CτTIF (H, s). Hence, CτTIF is a single-valued
neutrosophic closure operator on S .

Theorem 2. Let (S ,C) be an SVNCS andH ∈ S . Define the mapping τTIF
C : IS → I on S by

τT
C
(H) =

⋃
{s ∈ I0 | C(1−H, s) = 1−H},

τ I
C
(H) =

⋂
{1− s ∈ I0 | C(1−H, s) = 1−H},

τF
C
(H) =

⋂
{1− s ∈ I0 | C(1−H, s) = 1−H},

Then,

(1) τTIF
C

is an SVNTS on S ;
(2) CτTIF

C

is finer than C.
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Proof. (SVNT1) Let (S ,C) be an SVNCS . Since C((0.1.1), r) = (0.1.1) and C(1, 0, 0), r) = (1, 0, 0) for
every s ∈ I0, (SVNT1).

(SVNT2) Let (S ,C) be an SVNCS . Suppose that there existsH1,H2 ∈ IS such that

τT
C
(H1 ∩H2) < τT

C
(H1) ∩ τT

C
(H2), τ I

C
(H1 ∩H2) > τ I

C
(H1) ∪ τ I

C
(H2),

τF
C
(H1 ∩H2) > τF

C
(H1) ∪ τF

C
(H2).

There exists s ∈ I0 such that

τT
C
(H1 ∩H2) < s < τT

C
(H1) ∩ τT

C
(H2), τ I

C
(H1 ∩H2) > 1− s > τ I

C
(H1) ∪ τ I

C
(H2),

τF
C
(H1 ∩H2) > 1− s > τF

C
(H1) ∪ τF

C
(H2).

For each i ∈ {1, 2}, there exists s ∈ I0 with C(Hi, si) = 1−Hi such that

s < si ≤ τT
C
(Hi), τ I

C
(Hi) ≤ 1− si < 1− s, τF

C
(Hi) ≤ 1− si < 1− s.

In addition, since (1−Hi, r) = 1−Hi by C2 and C4 of Definition 9, for any i ∈ {1, 2},

C((1−H1) ∪ (1−H2), s) = (1−H1) ∪ (1−H2).

It follows that τT
C
(H1 ∩H2) ≥ s, τ I

C
(H1 ∩H2) ≤ 1− s, and τF

C
(H1 ∩H2) ≤ 1− s. It is a contradiction.

Thus, for every H,R ∈ IS , τT
C
(H ∩ R) ≥ τT

C
(H) ∩ τT

C
(B), τ I

C
(H ∩ R) ≤ τ I

C
(H) ∪ τ I

C
(R),

and τF
C
(H∩R) ≤ τF

C
(H) ∪ τF

C
(R).

(SVNT3) Suppose that there existsH =
⋃

i∈I Hi ∈ IS such that

τT
C
(H) <

⋃

i∈I

τT
C
(Hi), τ I

C
(H) >

⋃

i∈I

τ I
C
(Hi), τF

C
(H) >

⋃

i∈I

τF
C
(Hi).

There exists s0 ∈ I0 such that

τT
C (H) < s0 <

⋃

i∈I

τT
C
(Hi), τ I

C
(H) > 1− s0 >

⋃

i∈I

τ I
C
(Hi), τF

C
(H) > 1− s0 >

⋃

i∈I

τF
C
(Hi).

For every i ∈ I, there exists C(Hi, si) = 1−Hi and si ∈ I0 such that

s0 < si ≤ τT
C
(Hi), 1− s0 > 1− si ≥ τ I

C
(Hi), 1− si > 1− s0 ≥ τF

C
(Hi).

In addition, since C(1−Hi, r0) ≤ C(1−Hi, si) = 1−Hi, by C2 of Definition 9,

C(1−Hi, s0) = 1−Hi.

It implies, for all i ∈ I,

C(1−H, s0) ≤ C(1−Hi, s0) = 1−Hi.

It follows that

C(1−H, r0) ≤
⋂

i∈J

(1−Hi) = 1−H.
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Thus, CI(1 − H, s0) = 1 − H, that is, τT
C
(H) ≥ s0, τ I

C
(H) ≤ 1 − s0, and τF

C
(H) ≤ 1 − s0. It is a

contradiction. Hence, τTIF
C

is an SVNTS on S .
(2) SinceH ≤ C(H, r),

τT
C
(1−C(H, s)) ≥ s, τ I

C
(1−C(H, s)) ≤ 1− s, τF

C
(1−C(H, s)) ≤ 1− s.

From C5 of Definition 9, we have CτTIF
C

(H, s) ≤ C(H, s). Thus, CτTIF
C

is finer than C.

Example 1. Let S = {a, b}. Define B,H,A ∈ IS as follows:

B = 〈(0.2, 0.2), (0.3, 0.3), (0.3, 0.3)〉;H = 〈(0.5, 0.5), (0.1, 0.1), (0.1, 0.1)〉.

We define the mapping C : IS × I0 → IS as follows:

C(A, s) =





(0.1.1), if A = (0.1.1), s ∈ I0,
B ∩H, if 0 6= A ≤ B ∩H, 0 < r < 1

2 ,
B, if A ≤ B,A 6≤ H, 0 < r < 1

2 ,
or 0 6= A ≤ B 1

2 < r < 2
3 ,

H, if A ≤ H,A 6≤ B, 0 < r < 1
2 ,

B ∪H, if 0 6= A ≤ B ∪H, 0 < r < 1
2 ,

1, otherwise.

Then, C is a single-valued neutrosophic closure operator.
From Theorem 2, we have a single-valued neutrosophic topology (τT

C
, τ I

C
, τF

C
) on S as follows:

τT
C
(A) =





1, if A = (1, 0, 0) or (0, 1, 1),
2
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
0, otherwise.

τ I
C
(A) =





0, if A = (1, 0, 0) or (0, 1, 1),
1
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
1, otherwise.

τF
C
(A) =





0, if A = (1, 0, 0) or (0, 1, 1),
1
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
1, otherwise.

Thus, the τTIF
C

is a single-valued neutrosophic topology on S .

Definition 10. A single-valued neutrosophic ideal (SVNI) on S in Šostak’s sense on a nonempty set S is a
family LT ,LI ,LF of single-valued neutrosophic sets in S satisfying the following axioms:
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(L1) L
T(0) = 1 and LI(0) = LF(0) = 0.

(L2) IfH ≤ B, then LT(R) ≤ LT(H), LI(R) ≥ LI(H), and LF(R) ≥ LF(H), for each single-valued
neutrosophic setR,H in IS .

(L3) L
T(R∪H) ≥ LT(R) ∩ LT(H), LI(R∪H) ≤ LI(R) ∪ LI(H), and LF(R∪H) ≤ LF(R) ∪

LF(H), for each single-valued neutrosophic setR,H in IS .
If L1 and L2 are SVNI on S , we say that L1 is finer than L2, denoted by L1 ≤ L2, iff LT

1 (H) ≤ LT
2 (H),

LI
1(H) ≥ LI

2(A), and LF
1 (H) ≥ LF

2 (H), forH ∈ IS .
The triable (X, (τT , τ I , τF), (LT ,LI ,LF) is called a single-valued neutrosophic ideal topological space in

Šostak sense (SVNITS, f or short).
We will occasionally write LTIF, LTIF

i , and LTIF : IX → I for (LT ,LI ,LF), (LT
i ,LI

i ,LF
i ), and

LT ,LI ,LF : IS → I, respectively.

Remark 1. The conditions (L2) and (L3), which are given in Definition 10, are equivalent to the following
axioms: LT(H ∪R) = LT(H) ∩ LT(R), LI(H ∪R) 6= LI(H) ∪ LI(R), and LF(H ∪R) 6= LF(H) ∪

LF(R), for everyR,H ∈ IS .

Example 2. Let S = {a, b}. Define the single-valued neutrosophic setsR, C,H,A and (LT ,LT ,LT) : IS →
I as follows:

R = 〈(0.3, 0.5), (0.4, 0.5), (0.5, 0.5)〉; C = 〈(0.3, 0.4), (0.5, 0.5), (0.3, 0.4)〉,

H = 〈(0.1, 0.2), (0.5, 0.5), (0.5, 0.5)〉.

LT(A) =





1, if B = (0.1.1),
1
2 , if A = R,
2
3 , if (0.1.1) < A < R,
0, otherwise.

LI(A) =





0, if A = (0.1.1),
1
2 , if A = C,
1
4 , if (0.1.1) < A < C,
1, otherwise.

LT(B) =





0, if A = (0, 1, 1),
1
2 , if A = H,
1
4 , if (0.1.1) < A < H,
1, otherwise.

Then, LTIF is an SVNI on S .

Remark 2. (i) If LT(1) = 1, LI(1) = 0, and LF(1) = 0, then LTIF is called a single-valued neutrosophic
proper ideal.

(ii) If LT(1) = 0, LI(1) = 1, and LF(1) = 1, then LTIF is called a single-valued neutrosophic improper
ideal.

Proposition 1. Let {LTIF
i }i∈J be a family o f SVNI on S . Then, their intersection

⋂
i∈J L

TIF
i is also SVNI.

Proof. Directly from Definition 7.
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Proposition 2. Let {LTIF
i }i∈J be a family o f SVNI on S . Then, their union

⋃
i∈J L

TIF
i is also an SVNI.

Proof. Directly from Definition 7.

4. Single-Valued Neutrosophic Ideal Open Local Function in Šostak Sense

In this section, we study the single-valued neutrosophic ideal open local function in Šostak’s sense
and present some of their properties. Additionally, properties preserved by single-valued neutrosophic
ideal open compatible are examined.

Definition 11. Let s, t, p ∈ I0 and s + t + p ≤ 3. A single-valued neutrosophic point xs,t,r of S is the
single-valued neutrosophic set in IS for each κ ∈ H, defined by

xs,t,p(κ) =

{
(s, t, p), if x = κ,
(0, 1, 1), if x 6= κ.

A single-valued neutrosophic point xs,t,p is said to belong to a single-valued neutrosophic set
H = 〈TH, IH, FH〉 ∈ IS , denoted by xs,t,p ∈ H iff s < TH, t ≥ IH and p ≥ FH. 1. We indicate the set
of all single-valued neutrosophic points in S as SVNP(S).

For every xs,t,p ∈ SVNP(S) andH ∈ IS we shall write xs,t,p quasi-coincident withH, denoted by
xs,t,pqH, if

s + TH(κ) > 1, t + IH(κ) ≤ 1, p + FH(κ) ≤ 1.

For everyR,H ∈ S we shall writeHqR to mean thatH is quasi-coincident withR if there exists
κ ∈ S such that

TH(κ) + TR(κ) > 1, IH(κ) + IR(κ) ≤ 1, FH(κ) + FR(κ) ≤ 1.

Definition 12. Let (S , τTIF) be an SVNTS. For each r ∈ I0, H ∈ IS , xs,t,p ∈ SVNP(S), a single-valued
neutrosophic open QτTIF -neighborhood of xs,t,p is defined as follows:

QτTIF (xs,t,p, r) = {H|(xs,t,p)qH, τT(H) ≥ r, τ I(H) ≤ 1− r, τF(H) ≤ 1− r}.

Lemma 1. A single-valued neutrosophic point xs,t,p ∈ CτTIF (R, r) iff every single-valued neutrosophic open
QτTIF -neighborhood of xs,t,p is quasi-coincident withH.

Definition 13. Let (S , τTIF) be an SVNTS for each H ∈ IS . Then, the single-valued neutrosophic ideal
open local functionH⋆

r (τ
TIF,LTIF) ofH is the union of all single-valued neutrosophic points xs,t,p such that if

R ∈ QτTIF (xs,t,p, r) and LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r, then there is at least one κ ∈ S for
which TR(κ) + TH(κ)− 1 > TC(κ), IR(κ) + IH(κ)− 1 ≤ IC(κ), and FR(κ) + FH(κ)− 1 ≤ FC(κ).

Occasionally, we will writeH⋆
r forH⋆

r (τ
TIF,LTIF) and it will have no ambiguity.

Example 3. Let (S , τTIF,LTIF) be an SVNITS. The simplest single-valued neutrosophic ideal on S is
LTIF

0 : IS → I, where

LTIF
0 (R) =

{
1, if R = (1, 0, 0),
0, otherwise.

If we take LTIF = LTIF
0 , for eachH ∈ IS we haveH⋆

r = CτTIF (H, r).
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Theorem 3. Let (S , τTIF) be an SVNTS and LTIF
1 ,LTIF

2 ∈ SVNI(S). Then, for anyH,R ∈ IS and r ∈ I0,
we have

(1) IfH ≤ R, thenH⋆
r ≤ R

⋆
r ;

(2) If LT
1 ≤ L

T
2 , LI

1 ≥ L
I
2 and LF

1 ≥ L
F
2 , thenH⋆

r (L
TIF
1 , τTIF) ≥ H⋆

r ((L
TIF
2 , τTIF);

(3) H⋆
r = CτTIF (A⋆

r , r) ≤ CτTIF (H, r);
(4) (H⋆

r )
⋆
r ≤ H

⋆
r ;

(5) (H⋆
r ∨R

⋆
r ) = (H∨R)⋆r ;

(6) If LT(H) ≥ r, LI(R) ≤ 1− r, and LF(R) ≤ 1− r then (H∨R)⋆r = A⋆
r ∨R

⋆
r = H⋆

r ;
(7) If τT(R) ≥ r, τ I(R) ≤ 1− r, and τF(R) ≤ 1− r, then (R∧H⋆

r ) ≤ (R∧H)⋆r ;
(8) (H⋆

r ∧R
⋆
r ) ≥ (H∧R)⋆r .

Proof. (1) Suppose thatH ∈ IS andH⋆
r 6≤ R

⋆
r . Then, there exists κ ∈ S and s, t, p ∈ I0 such that

TH⋆
r
(κ) ≥ s > TR⋆

r
(κ), IH⋆

r
(κ) < t ≤ IR⋆

r
(κ), FH⋆

r
(κ) < p ≤ FR⋆

r
(κ). (1)

Since TR⋆
r
(κ) < s, IR⋆

r
(κ) ≥ t, and FR⋆

r
(κ) ≥ p. Then, there exists D ∈ Q(τTIF)(xs,t,p, r), LT(C) ≥ r,

LI(C) ≤ 1− r, and LF(C) ≤ 1− r such that for any κ1 ∈ S ,

TD(κ1) + TR(κ1)− 1 ≤ TC(κ1), ID(κ1) + IR(κ1)− 1 > IC(κ1), FD(κ1) + FR(κ1)− 1 > FC(κ1).

SinceH ≤ R,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

So, TH⋆
r
(κ) < s, IH⋆

r
(κ) ≥ t, and FH⋆

r
(κ) ≥ p and we arrive at a contradiction for Equation (1). Hence,

H⋆
r ≤ R

⋆
r .

(2) SupposeH⋆
r (L

TIF
1 , τTIF) 6≥ H⋆

r (L
TIF
2 , τTIF). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH⋆
r (L

TIF
1 ,τTIF)(κ) < s ≤ TH⋆

r (L
TIF
2 ,τTIF)(κ),

IH⋆
r (L

TIF
1 ,τTIF)(κ) ≥ t > IH⋆

r (L
TIF
2 ,τTIF)(κ), (2)

FH⋆
r (L

TIF
1 ,τTIF)(κ) ≥ p > FH⋆

r (L
TIF
2 ,τTIF)(κ).

Since TH⋆
r (L

TIF
1 ,τTIF)(κ) < s, IH⋆

r (L
TIF
1 ,τTIF)(κ) ≥ t, and FH⋆

r (L
TIF
1 ,τTIF)(κ) ≥ p, D ∈ QτTIF (xs,t,p, r) with

LT
1 (C) ≥ r, LI

1(C) ≤ 1− r and LF
1 (C) ≤ 1− r. Thus, for every κ1 ∈ S ,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Since LT
2 (C) ≥ L

T
1 (C)) ≥ r, LI

2(C) ≤ L
I
1(C)) ≤ 1− r, and LF

2 (C) ≤ L
F
1 (C)) ≤ 1− r,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Thus, TH⋆
r (L

TIF
2 ,τTIF)(κ) < s, IH⋆

r (L
TIF
2 ,τTIF)(κ) ≥ t, and FH⋆

r (L
TIF
2 ,τTIF)(κ) ≥ p. This is a contradiction for

Equation (2). Hence,H⋆
r ((L

TIF
1 , τTIF)) ≥ H⋆

r ((L
TIF
2 , τTIF)).

(3)(⇒) SupposeH⋆
r 6≤ CτTIF (H, r). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH⋆
r
(κ) ≥ s > TC

τTIF (H,r)(κ), IH⋆
r
(κ) < t ≤ IC

τTIF (H,r)(κ), FH⋆
r
(κ) < p ≤ FC

τTIF (H,r)(κ). (3)
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Since TH⋆
r
(κ) ≥ s, IH⋆

r
(κ) < t and FH⋆

r
(κ) < p, xs,t,p ∈ H⋆

r . So there is at least one κ1 ∈ S for every
D ∈ QτTIF (xs,t,p, r) with LT

1 (C) ≥ r, LI
1(C) ≤ 1− r, LF

1 (C) ≤ 1− r such that

TD(κ1) + TH(κ1) > TC(κ1) + 1, ID(κ1) + IH(κ1) ≤ IC(κ1) + 1, FD(κ1) + FH(κ1) ≤ FC(κ1) + 1.

Therefore, by Lemma 1, xs,t,p ∈ CτTIF (H, r) which is a contradiction for Equation (3). Hence,
H⋆

r ≤ CτTIF (H, r).
(⇐) SupposeH⋆

r 6≥ CτTIF (H⋆
r , r). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH⋆
r
(κ) < s ≤ TC

τTIF (H
⋆
r ,r)(κ), IH⋆

r
(κ) ≥ t > IC

τTIF (H
⋆
r ,r)(κ), FH⋆

r
(κ) ≥ p > FC

τTIF (H
⋆
r ,r)(κ). (4)

Since TC
τTIF (H

⋆
r ,r)(κ) ≥ t, IC

τTIF (H
⋆
r ,r)(κ) < s, CτTIF (H⋆

r , r)(κ) < p we have xs,t,p ∈ CτTIF (H⋆
r , r). So,

there is at least one κ1 ∈ S withR ∈ QτTIF (xs,t,p, r) such that

TR(κ1) + TH⋆
r
(κ1) > 1, IR(κ1) + IH⋆

r
(κ1) ≤ 1, FR(κ1) + FH⋆

r
(κ1) ≤ 1.

Therefore, H⋆
r (κ1) 6= 0. Let s1 = TH⋆

r
(κ1), t1 = IH⋆

r
(κ1), and p1 = FH⋆

r
(κ1). Then, (κ1)s1,t1,p1 ∈ H

∗
r

and s1 + TR(κ1) > 1, t1 + IR(κ1) ≤ 1, and p1 + FR(κ1) ≤ 1 so that R ∈ QτTIF ((κ1)s1,t1,p1 , r). Now,
(κ1)s1,t1,p1 ∈ H

⋆
r implies there is at least one κ

′
∈ S such that TD(κ

′
) + TH(κ

′
)− 1 > TC(κ

′
), ID(κ

′
) +

IH(κ
′
)− 1 ≤ IC(κ

′
), and FD(κ

′
)+ FH(κ

′
)− 1 ≤ FC(κ

′
), for allLT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r,

and D ∈ QτTIF ((κ1)s1,t1,p1 , r). That is also true for R. So there is at least one κ
′′
∈ S such that

TR(κ
′′
) + TH(κ

′′
)− 1 > TC(κ

′′
), IR(κ

′′
) + IH(κ

′′
)− 1 ≤ IC(κ

′′
), and FR(x

′′
) + FH(κ

′′
)− 1 ≤ FC(κ

′′
).

Since R ∈ QτTIF (κs,t,p, r) and R is arbitrary; then TH⋆
r
(κ) > s, IH⋆

r
(κ) ≤ t and TH⋆

r
(κ) ≤ p. It is a

contradiction for (4). Thus,H⋆
r ≥ CτTIF (H⋆

r , r).
(4) (⇒) Can be easily established using standard technique.
(5) (⇒) Since H,R ≤ H ∪R. By (1), H⋆

r ≤ (H ∪R)⋆r and R⋆
r ≤ (H ∪R)⋆r . Hence, H⋆

r ∪ B
⋆
r ≤

(H∪R)⋆r .
(⇐) Suppose (H⋆

r ∪R
⋆
r ) 6≥ (H∪R)⋆r . Then, there exists s, t, p ∈ I0 and κ ∈ S such that

T(H⋆
r ∪R

⋆
r )
(κ) < s ≤ T(H∪R)⋆r (κ), I(H⋆

r ∪R
⋆
r )
(κ) ≥ t > I(H∪R)⋆r (κ), F(H⋆

r ∪R
⋆
r )
(κ) ≥ p > F(H∪R)⋆r (κ). (5)

Since T(H⋆
r ∪R

⋆
r )
(κ) < s, I(H⋆

r ∪R
⋆
r )
(κ) ≥ t, and F(H⋆

r ∪R
⋆
r )
(κ) ≥ p, we have TH⋆

r
(κ) < s, IH⋆

r
(κ) ≥ t,

FH⋆
r
(κ) ≥ p or TR⋆

r
(κ) < t, IR⋆

r
(κ) ≥ t, FR⋆

r
(κ) ≥ t. So, there exists D1 ∈ QτTIF (xs,t,p, r) such that for

every κ1 ∈ S and for some LT(C1) ≥ r, LI(C1) ≤ 1− r, LF(C1) ≤ 1− r, we have

TD1(κ1) + TH(κ1)− 1 ≤ TC1(κ1), ID1(κ1) + IH(κ1)− 1 > IC1(κ1), FD1(κ1) + FH(κ1)− 1 > FC1(κ1).

Similarly, there exists D2 ∈ QτTIF (xs,t,p, r) such that for every κ1 ∈ S and for some LT(C2) ≥ r,
LI(C2) ≤ 1− r, LF(C2) ≤ 1− r, we have

TD2(κ1) + TH(κ1)− 1 ≤ TC2(κ1), ID2(κ1) + IH(κ1)− 1 > IC2(κ1), FD2(κ1) + FH(κ1)− 1 > FC2(κ1).

Since D = D1 ∧D2 ∈ QτTIF (xs,t,p, r) and by (L3), LT(C1 ∪ C2) ≥ L
T(C1) ∩ L

T(C2) ≥ r, LI(C1 ∪ C2) ≤

LI(C1) ∪ L
I(C2) ≤ 1− r, and LF(C1 ∪ C2) ≤ L

T(C1) ∪ L
T(C2) ≤ 1− r. Thus, for every κ1 ∈ S ,

TD(κ1) + TR∪H(κ1)− 1 ≤ TC1∪C2(κ1),

ID(κ1) + IR∪H(κ1)− 1 ≥ IC1∪C2(κ1),

FD(κ1) + FR∪H(κ1) ≥ FC1∪C2(κ1).

Therefore, T(H∪R)⋆r (κ) < s, I(H∪R)⋆r (κ) ≥ t, and F(H∪R)⋆r (κ) ≥ p. So, we arrive at a contradiction for
(5). Hence, (H⋆

r ∪R
⋆
r ) ≥ (H∪R)⋆r .

(6), (7), and (8) can be easily established using the standard technique.
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Example 4. Let S = {a, b}. DefineR, C,H ∈ S as follows:

R1 = 〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)〉; R2 = 〈(0.4, 0.4, 0.4), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1)〉;

R3 = 〈(0.3, 0.3, 0.3), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1); C1 = 〈(0.3, 0.3, 0.3), (0.3, 0.3, 0.3), (0.1, 0.1, 0.1)〉;

C2 = 〈(0.2, 0.2, 0.2), (0.2, 0.2, 0.2), (0.1, 0.1, 0.1); C3 = 〈(0.1, 0.1, 0.1), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1)〉.

Define τTIF,LTIF : IX → I as follows:

τT(H) =





1, if H = (0, 1, 1),
1, if H = (1, 0, 0),
1
2 , if H = R1;

LT(H) =





1, if H = (0, 1, 1),
1
2 , if H = C1,
2
3 , if 0 < H < C1;

τ I(H) =





0, if H = (0, 1, 1),
0, if H = (1, 0, 0),
1
2 , if H = R2;

LI(R) =





0, if H = (0, 1, 1),
1
2 , if H = C2,
1
4 , if 0 < H < C2;

τF(H) =





0, if H = (0, 1, 1),
0, if H = (1, 0, 0),
1
2 , if H = R3;

LF(H) =





0, if H = (0, 1, 1),
1
2 , if H = C3,
1
4 , if 0 < H < C3.

Let G = 〈(0.4, 0.4, 0.4), (0.4, 0.4, 0.4), (0.4, 0.4, 0.4)〉. Then, G⋆1
2
= R1.

Theorem 4. Let {Hi}i∈J ⊂ IS be a family of single-valued neutrosophic sets on S and (S , τTIF,LTIF) be an
SVNITS. Then,

(1) (
⋃
(Hi)

⋆
r : i ∈ J) ≤ (

⋃
Hi : i ∈ J)⋆r ;

(2) (
⋂
(Hi)

⋆
r : i ∈ J) ≥ (

⋂
Hi : i ∈ J)⋆r .

Proof. (1) Since Hi ≤
⋃
Hi for all i ∈ J, and by Theorem 3 (1), we obtain

(
⋃
(Hi)

⋆
r , i ∈ J) ≤ (

⋃
Hi, i ∈ J)⋆r . Then, (1) holds.

(2) Easy, so omitted.

Remark 3. Let (S , τTIF,LTIF) be an SVNITS andH ∈ IS , we can define

C
⋆
τTIF (H, r) = H∪H⋆

r , int⋆
τTIF (H, r) = H∧ [1− (1−H)⋆r ].

It is clear, C⋆
τTIF is a single-valued neutrosophic closure operator and (τT⋆(LT), τ I⋆(LI), τF⋆(LF) is the

single-valued neutrosophic topology generated by C⋆
τTIF , i.e.,

τ⋆(I)(H) =
⋃
{r| C⋆

τTIF (1−H, r) = 1−H}.

Now, if LTIF = LTIF
0 , then, C⋆

τTIF (H, r) = H∗r ∪ H = C⋆
τTIF (H, r) ∪ H = CτTIF (H, r), for H ∈ IS . So,

τTIF⋆(LTIF
0 ) = τTIF.

Proposition 3. Let (S , τTIF,LTIF) be an SVNITS, r ∈ I0, andH ∈ IS . Then,

(1) C⋆
τTIF (1, r) = 1;
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(2) C⋆
τTIF (0, r) = 0;

(3) int⋆
τTIF (H∪R, r) ≤ int⋆

τTIF (H, r) ∪ int⋆
τTIF (R, r);

(4) int⋆
τTIF (H, r) ≤ H ≤ C⋆

τTIF (H, r) ≤ CτTIF (H, r);
(5) C⋆

τTIF (1−H, r) = 1− int⋆
τTIF (H, r) and 1−C⋆

τTIF⋆(H, r) = int⋆
τTIF (1−H, r);

(6) int⋆
τTIF (H∩R, r) = int⋆

τTIF (H, r) ∩ int⋆
τTIF (R, r).

Proof. Follows directly from definitions of C⋆
τTIF , int⋆

τTIF , CτTIF , and Theorem 3 (5).

Theorem 5. Let (S , τTIF
1 ,LTIF) and (S , τTIF

2 ,LTIF) be SVNTS′s and τTIF
1 ≤ τTIF

2 . Then,
H⋆

r (τ
TIF
2 ,LTIF) ≤ H⋆

r (τ
TIF
1 ,LTIF).

Proof. SupposeH⋆
r (τ

TIF
2 ,LTIF) 6≤ H⋆

r (τ
TIF
1 ,LTIF). Then, there exists s, t, p ∈ I0, κ ∈ S such that

TH⋆
r (τ

TIF
2 ,LTIF)(κ) ≥ s > TH⋆

r (τ
TIF
1 ,LTIF)(κ),

IH⋆
r (τ

TIF
2 ,LTIF)(κ) < t ≤ IH⋆

r (τ
TIF
1 ,LTIF)(κ), (6)

FH⋆
r (τ

TIF
2 ,LTIF)(κ) < t ≤ FH⋆

r (τ
TIF
1 ,LTIF)(κ).

Since TH⋆
r (τ

TIF
1 ,LTIF)(κ) < s, IH⋆

r (τ
TIF
1 ,LTIF)(κ) ≥ t, FH⋆

r (τ
TIF
1 ,LTIF)(κ) ≥ p, there exists D ∈ QτTIF

1
(xs,t,p, r)

with LT(C1) ≥ r, LI(C1) ≤ 1− r and LF(C1) ≤ 1− r, such that for any κ1 ∈ S ,

TD(κ1) + TH(κ1)− 1 ≤ TCκ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Since τTIF
1 ≤ τTIF

2 , D ∈ QτTIF
2

(xs,t,p, r). Thus, TH⋆
r (τ

TIF
2 ,LTIF)(κ) < s, IH⋆

r (τ
TIF
2 ,LTIF))(κ) ≥ t,

FH⋆
r (τ

TIF
2 ,LTIF)(κ) ≥ p. It is a contradiction for Equation (6).

Theorem 6. Let (S , τTIF,LTIF
1 ) and (S , τTIF,LTIF

2 ) be SVNTS′s and LTIF
1 ≤ LTIF

2 . Then,
H⋆

r (L
TIF
1 , τTIF) ≥ H⋆

r (L
TIF
2 , τTIF).

Proof. Clear.

Definition 14. Let Θ be a subset of IS , and 0 6∈ Θ. A mapping βT , βI , βF : Θ → I is called a single-valued
neutrosophic base on S if it satisfies the following conditions:

(1) βT(1) = 1 and βI(1) = βF(1) = 0;
(2) For allH,R ∈ Θ,

βT(H∩R) ≥ βT(H) ∩ βT(R), βI(H∩R) ≤ βI(H) ∪ βI(R), βF(H∩R) ≤ βF(H) ∪ βF(R).

Theorem 7. Define a mapping β : Θ→ I on S by

βI(H) =
⋃
{τT(R) ∩ IT(C)| H = R∩ (1− C)},

βI(H) =
⋂
{τ I(R) ∪ I I(C)| H = R∩ (1− C)},

βF(H) =
⋂
{τF(R) ∪ IF(C)| H = R∩ (1− C)}.
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Then, βTIF is a base for the single-valued neutrosophic topology τTIF⋆.

Proof. (1) Since LT(0) = 1 and LI(0) = LF(0) = 0, we have βT(1) = 1 and βI(1) = βF(1) = 0;
(2) Suppose that there existsH1,H2 ∈ Θ such that

βT(H1 ∩H2) 6≥ βT(H1) ∩ βT(H2),

βI(H1 ∩H2) 6≤ βI(H1) ∪ βI(H2),

βF(H1 ∩H2) 6≤ βF(H1) ∪ βF(H2).

There exists s, t, p ∈ I0 and κ ∈ S such that

βT(H1 ∩H2)(κ) < s ≤ βT(H1)(x) ∩ βT(H2)(κ),

βI(H1 ∩H2)(κ) ≥ t > βI(H1)(κ) ∩ βI(H2)(κ), (7)

βF(H1 ∩H2)(κ) ≥ p > βF(H1)(κ) ∪ βF(H2)(κ).

Since βT(H1)(κ) ≥ s, βI(H1)(κ) < t, βF(H1)(κ) < p, and βT(H2)(κ) ≥ s, βI(H2)(κ) < t,
βF(H2)(κ) < p, then there existsR1,R1, C1, C2 ∈ Θ withH1 = R1 ∩ (1−C1) andH2 = R2 ∩ (1−C2),
such that βT(H1) ≥ τT(R1) ∩ L

T(C1) ≥ s, βI(H1) ≤ τ I(R1) ∪ L
I(C1) < t, βF(H1) ≤

τF(R1) ∪ L
F(C1) < p, and βT(H2) ≥ τT(R2) ∩ L

T(C2) ≥ s, βI(H2) ≤ τ I(R2) ∪ L
I(C2) < t,

βF(H2) ≤ τF(R2) ∪ L
F(C2) < p. Therefore,

H1 ∩H2 = (R1 ∩ (1− C1)) ∩ (R2 ∩ (1− C2))

= (R1 ∩R2) ∩ ((1− C1) ∩ (1− C2))

= (R1 ∩R2) ∩ (1− (C1 ∪ C2)).

Hence, from Definition 14, we have

βT(H1 ∩H2) ≥ τT(R1 ∩R2) ∩ L
T(C1 ∪ C2)

≥ τT(R1) ∩ τT(R2) ∩ L
T(C1) ∩ L

T(C2)

= (τT(R1) ∩ L
T(C1)) ∩ (τT(R2) ∩ L

T(C2)) ≥ s,

βI(H1 ∩H2) ≤ τ I(R1 ∩R2) ∪ L
I(C1 ∪ C2)

≤ τ I(R1) ∪ τ I(R2) ∪ L
I(C1) ∪ L

I(C2)

= (τ I(R1) ∪ L
F(C1)) ∪ (τ I(R2) ∪ L

I(C2)) < t,

βF(H1 ∩H2) ≤ τF(R1 ∩R2) ∪ L
F(C1 ∪ C2)

≤ τF(R1) ∪ τF(R2) ∪ L
F(C1) ∪ L

F(C2)

= (τF(R1) ∪ L
F(C1)) ∪ (τF(R2) ∪ L

F(C2)) < p.

It is a contradiction for Equation (7). Thus,

βT(H1 ∩H2) ≥ βT(H1) ∩ βT(H2), βI(H1 ∩H2) ≤ βI(H1) ∪ βI(H2), βF(H1 ∩H2) ≤ βF(H1) ∪ βF(H2).
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Theorem 8. Let (S , τTIF) be an SVNTS, and LTIF
1 and LTIF

1 be two single-valued neutrosophic ideals on S .
Then, for every r ∈ I0 andH ∈ IS ,

(1) H⋆
r (L

TIF
1 ∩ LTIF

2 , τTIF) = H⋆
r (L

TIF
1 , τTIF) ∪H⋆

r (L
TIF
2 , τTIF),

(2) H⋆
r (L

TIF
1 ∪ LTIF

2 , τ) = H⋆
r (L

TIF
1 , τT⋆(LTIF

2 )) ∩H⋆(LTIF
2 , τT⋆(LTIF

1 )).

Proof. (1) Suppose thatH⋆
r (L

TIF
1 ∩LTIF

2 , τTIF) 6≤ H⋆
r (L

TIF
1 , τTIF)∪H⋆

r (L
TIF
2 , τTIF), there exists κ ∈ S

and s, t, p ∈ I0 such that

TH⋆
r (L

T
1 ∩L

T
2 ,τT)(κ) ≥ s > TH⋆

r (L
T
1 ,τT)(κ) ∪ TH⋆

r (L
T
2 ,τT)(κ), (8)

IH⋆
r (L

I
1∩L

I
2,τ I)(κ) < t ≤ IH⋆

r (L
I
1,τ I)(κ) ∪ IH⋆

r (L
I
2,τ I)(κ),

FH⋆
r (L

F
1∩L

F
2 ,τF)(κ) < p ≤ FH⋆

r (L
F
1 ,τF)(κ) ∩ FH⋆

r (L
F
2 ,τF)(κ).

Since TH⋆
r (L

T
1 ,τT)(κ) ∪ TH⋆

r (L
T
2 ,τT)(κ) < s, IH⋆

r (L
I
1,τ I)(κ) ∩ IH⋆

r (L
I
2,τ I)(κ) ≥ t, FH⋆

r (L
F
1 ,τF)(κ) ∩

FH⋆
r (L

F
2 ,τF)(κ) ≥ p, we have, TH⋆

r (L
T
1 ,τT)(κ) < s, IH⋆

r (L
I
1,τ I)(κ) ≥ t, FH⋆

r (L
F
1 ,τF)(κ) ≥ p, and

IH⋆
r (L

I
2,τ I)(κ) < s, IH⋆

r (L
I
2,τ I)(κ) ≥ t , FH⋆

r (L
F
2 ,τF)(κ) ≥ p.

Now, TH⋆
r (L

T
1 ,τT)(κ) < s, IH⋆

r (L
I
1,τ I)(κ) ≥ t, FH⋆

r (L
F
1 ,τF)(κ) ≥ p implies that there exists D1 ∈

QτTIF (xs,t,p, r) and for some LT
1 (C1) ≥ r, LI

1(C1) ≤ 1− r and LF
1 (C1) ≤ 1 − r such that for every

κ1 ∈ S ,

TD1(κ1) + TH(κ1)− 1 ≤ TC1(κ1), ID1(κ1) + IH(κ1)− 1 ≥ IC1(κ1), FD1(κ1) + FH(κ1)− 1 ≥ FC1(κ1).

Once again, TH⋆
r (L

T
2 ,τT)(κ) < s, IH⋆

r (L
I
2,τ I)(κ) ≥ t, FH⋆

r (L
F
2 ,τF)(κ) ≥ p, implies there exists D2 ∈

QτTIF (xs,t,p, r) and for some LT
2 (C2) ≥ r, LI

2(C2) ≤ 1− r and LF
2 (C2) ≤ 1− r, such that for κ1 ∈ S ,

TD2(κ1) + TH(κ1)− 1 ≤ TC2(κ1), ID2(κ1) + IH(κ1)− 1 ≥ IC2(κ), FD2(κ1) + FH(κ1)− 1 ≥ FC2(κ1),

Therefore, for every κ1 ∈ S , we have

TD1∩D2(κ1) + TH(κ1)− 1 ≤ TC1∩C2(κ1), ID1∪D2(κ1) + IH(κ1)− 1 ≥ IC1∪C2(κ1),

FD1∪D2(κ1) + FH(κ1)− 1 ≥ FC1∪C2(κ1).

Since (D1 ∧D2) ∈ QτTIF (xs,t,p, r) and (LT
1 ∩ L

T
2 )(C1 ∩ C2) ≥ r, (LI

1 ∩ L
I
2)(C1 ∪ C2) ≤ 1− r, and (LF

1 ∩

LF
2 )(C1 ∪ C2) ≥ 1− r we have TH⋆

r (L
T
1 ∩L

T
2 ,τT)(κ) ≤ s, IH⋆

r (L
I
1∩L

I
2,τ I)(κ) > t, and FH⋆

r (L
F
1∩L

F
2 ,τF)(κ) > t

and this is a contradiction for Equation (8). So that

H⋆
r (L

TIF
1 ∩ LTIF

2 , τTIF) ≤ H⋆
r (L

TIF
1 , τTIF) ∪H⋆

r (L
TIF
2 , τTIF).

On the opposite direction, LTIF
1 ≥ LTIF

1 ∩ LTIF
2 and LTIF

2 ≥ LTIF
1 ∩ LTIF

2 , so by Theorem 3 (2),

H⋆
r (L

TIF
1 ∩ LTIF

2 , τT) ≥ H⋆
r (L

TIF
1 , τTIF) ∪H⋆

r (L
TIF
2 , τTIF).

Then,

H⋆
r (L

TIF
1 ∩ LTIF

2 , τTIF) = H⋆
r (L

TIF
1 , τTIF) ∪H⋆

r (L
TIF
2 , τTIF).

(2) Straightforward.
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The above theorem results in an important consequence. τTIF⋆(LTIF) and [τTIF⋆(LTIF)]⋆(LTIF)

(in short τ⋆⋆) are equal for any single-valued neutrosophic ideal on S .

Corollary 1. Let (S , τTIF,LTIF) be an SVNITS. For every r ∈ I0 and H ∈ IX, H⋆
r (L

TIF) =

H⋆
r (L

TIF, τTIF⋆) and τTIF⋆(LTIF) = τTIF⋆⋆.

Proof. Putting LTIF
1 = LTIF

2 in Theorem 8 (2), we have the required result.

Corollary 2. Let (S , τTIF) be an SVNTS, and LTIF
1 and LTIF

1 be two single-valued neutrosophic ideals on S .
Then, for anyH ∈ IS and r ∈ I0,

(1) τT⋆(LTIF
1 ∪ ITIF

2 ) = (τTIF⋆(LTIF
2 ))⋆(LT

1 ) = (τTIF⋆(LTIF
1 ))⋆(LT

2 ),
(2) τT⋆(LTIF

1 ∩ LTIF
2 ) = τTIF⋆(LTIF

1 ) ∩ τT⋆(LTIF
2 ).

Proof. Straightforward.

Definition 15. For an SVNTS (S , τTIF) with a single-valued neutrosophic ideal ITIF, τTIF is said to be
single-valued neutrosophic ideal open compatible with ITIF, denoted by τTIF ∼ LTIF, if for each H, C ∈ IS

and xs,t,p ∈ H with LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, there exists D ∈ QτTIF (xt, r) such that
TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ) holds for any
κ ∈ S , then LT(H) ≥ r, LI(H) ≤ 1− r and LF(H) ≤ 1− r.

Definition 16. Let {Rj}j∈J be an indexed family of a single-valued neutrosophic set of S such that RjqH
for each j ∈ J, where H ∈ IS . Then, {Rj}j∈J is said to be a single-valued neutrosophic quasi-cover of H iff
TH(κ) + T∨

j∈J(Rj)
(κ) ≥ 1, IH(κ) + I∨

j∈J(Rj)
(κ) < 1, and FH(κ) + F∨

j∈J(Rj)
(κ) < 1, for every κ ∈ S .

Further, let (S , τTIF) be an SVNTS, for each τT(Rj) ≥ r, τ I(Rj) ≤ 1− r, and τF(Rj) ≤ 1− r.
Then, any single-valued neutrosophic quasi-cover will be called single-valued neutrosophic quasi
open-cover ofH.

Theorem 9. Let (S , τTIF) be an SVNTS with single-valued neutrosophic ideal LTIF on S . Then, the following
conditions are equivalent:

(1) τ ∼ L.
(2) If for every H ∈ IS has a single-valued neutrosophic quasi open-cover of {Rj}j∈J such that for each

j, TH(κ) + TRj(κ) − 1 ≤ TC(κ), IH(κ) + IRj(κ) − 1 > IC(κ), and FH(κ) + FRj(κ) − 1 > FC(κ)

for every κ ∈ S and for some LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, then LT(H) ≥ r,
LI(H) ≤ 1− r, and LF(H) ≤ 1− r,

(3) For everyH ∈ IS ,H∧H⋆
r = (0, 1, 1) implies LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r,

(4) For every H ∈ IS , LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r, where H̃ =
∨

xs,t,p such that
xs,t,p ∈ H but xs,t,p 6∈ H∗r ,

(5) For every τT⋆(1−H) ≥ r, τ I⋆(1−H) ≤ 1− r, and τF⋆(1−H) ≤ 1− r we have LT(H̃) ≥ r,
LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r,

(6) For every H ∈ IS , if A contains no R 6= (0, 1, 1) with R ≤ R⋆
r , then LT(H) ≥ r, LI(H) ≤ 1− r,

and LF(H) ≤ 1− r.

Proof. It is proved that most of the equivalent conditions ultimately prove the all the equivalence.
(1)⇒(2): Let {Rj}j∈J be a single-valued neutrosophic quasi open-cover ofH ∈ IS such that for

j ∈ J, TH(κ) + TRj(κ)− 1 ≤ TC(κ), IH(κ) + IRj(κ)− 1 > IC(κ), and FH(κ) + FRj(κ)− 1 > FC(κ) for

every κ ∈ R and for some LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r. Therefore, as {Rj}j∈J is a
single-valued neutrosophic quasi open-cover of R, for each xs,t,p ∈ H, there exists at least one Rj◦

such that xs,t,pqRj◦ and for every κ ∈ S , TH(κ) + TRj◦(κ)− 1 ≤ TC(κ), IH(κ) + IRj◦(κ)− 1 > IC(κ),
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and FH(κ) + FRj◦(κ) − 1 > FC(κ) for every κ ∈ S and for some LT(C) ≥ r, LI(C) ≤ 1 − r and

LF(C) ≤ 1− r. Obviously, Rj◦ ∈ QτTIF (xs,t,p, r). By (1), we have LT(H) ≥ r, LI(H) ≤ 1− r, and
LF(H) ≤ 1− r.

(2)⇒(1): Clear from the fact that a collection of {Rj}j∈J , which contains at least one Rj◦ ∈

QτT IF(xs,t,p, r) of each single-valued neutrosophic point ofH, constitutes a single-valued neutrosophic
quasi-open cover ofH.

(1)⇒(3): Let H ∩ H⋆
r = (0, 1, 1), for every κ ∈ S , xt ∈ H implies xs,t,p 6∈ H⋆

r . Then, there
exists D ∈ QτTIF (xs,t,p, r) and LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r such that for every κ ∈ S ,
TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ). Since D ∈
QτTIF (xs,t,p, r), By (1), we have LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r.

(3)⇒(1): For every xs,t,p ∈ H, there exists D ∈ QτTIF (xs,t,p, r) such that for every κ ∈ S , TD(κ) +
TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ), for some LT(C) ≥ r,
LI(C) ≤ 1− r, LF(C) ≤ 1− r. This implies xs,t,p 6∈ H⋆

r . Now, there are two cases: eitherH⋆
r = (0, 1, 1)

or H⋆
r 6= (0, 1, 1) but s > TH⋆

r
(κ) 6= 0, t ≤ IH⋆

r
(κ) 6= 1, and p ≤ FH⋆

r
(κ) 6= 1. Let, if possible,

xs,t,p ∈ H such that t > TH⋆
r
(κ) 6= 0, t ≤ IH⋆

r
(κ) 6= 1, and t ≤ FH⋆

r
(κ) 6= 1. Let s′ = TH⋆

r
(κ) 6= 0,

t′ = IH⋆
r
(κ) 6= 1, and p′ = FH⋆

r
(κ) 6= 1. Then, xs′ ,t′ ,p′ ∈ H

∗
r (κ). In addition, xs′ ,t′ ,p′ ∈ H. Thus, for every

V ∈ QτTIF (xs,t,p, r), for every LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, there is at least one κ ∈ S

such that TV (κ) + TH(κ) − 1 > TC(κ), IV (κ) + IH(κ) − 1 ≤ IC(κ), and FV (κ) + FH(κ) − 1 ≤ FC(κ).
Since xs,t,p ∈ H, this contradicts the assumption for every single-valued neutrosophic point ofH. So,
H⋆

r = (0, 1, 1). That means xs,t,p ∈ H implies xs,t,p 6∈ H∗r . Now this is true for every H ∈ IS . So, for
any H ∈ IS , H∩H⋆

r = (0, 1, 1). Hence, by (3), we have LT(H) ≥ r, LI(H) ≤ 1− r, LF(H) ≤ 1− r,
which implies τTIF ∼ LTIF.

(3)⇒(4): Let xs,t,pinH̃. Then, xs,t,p ∈ H but xs,t,p 6∈ H⋆
r . So, there exists a D ∈ QτTIF (xs,t,p, r) such

that for every κ ∈ S , TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)−
1 > FC(κ), for some LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r. Since H̃ ≤ H, for every κ ∈ S ,
TD(κ) + TH̃(κ)− 1 ≤ TC(κ), ID(κ) + IH̃(κ)− 1 > IC(κ), and FD(κ) + FH̃(κ)− 1 > FC(κ), for some
LT(C) ≥ r, LI(C) ≤ 1− r and LF(C) ≤ 1− r. Therefore, xs,t,p 6∈ H̃⋆

r implies that H̃⋆
r = (0, 1, 1) or

H̃⋆
r 6= (0, 1, 1) but s > TH̃⋆

r
, t ≤ IH̃⋆

r
, and p ≤ FH̃⋆

r
. Let xs′ ,t′ ,p′ in SVNP(S) such that s′ ≤ TH̃⋆

r
(κ) < s,

t ≤ IÃ⋆
r
(κ) < t′, and p ≤ FH̃⋆

r
(κ) < p′, i.e., xs′ ,t′ ,p′ ∈ H̃

⋆
r . Then, for each V ∈ QτTIF (xs′ ,t′ ,p′ , r)

and for each LT(C) ≥ r, LI(C) ≤ 1 − r, LF(C) ≤ 1 − r, there is at least one κ ∈ S such that
TV (κ) + TH̃(κ)− 1 > TC(κ), IV (κ) + IH̃(κ)− 1 ≤ IC(κ), and FV (κ) + FH̃(κ)− 1 ≤ FC(κ). Since H̃ ≤
H, then for each V ∈ QτTIF (xs′ ,t′ ,p′ , r) and for each LT(C) ≥ r, LI(C) ≤ 1 − r, LF(C) ≤ 1 − r,
there is at least one κ ∈ S such that TV (κ) + TH(κ) − 1 > TC(κ), IV (κ) + IH(κ) − 1 ≤ IC(κ), and
FV (κ) + FH(κ)− 1 ≤ FC(κ). This implies xs′ ,t′ ,p′ ∈ H

⋆
r . But as s′ < s, t′ < t, and p′ < p, xs,t,p ∈ H̃

implies xs′ ,t′ ,p′ ∈ H̃, and therefore, xs′ ,t′ ,p′ 6∈ H
⋆
r . This is a contradiction. Hence,H⋆

r = (0, 1, 1), so that

xs,t,p ∈ H̃ implies xs,t,p 6∈ H̃⋆
r with H̃⋆

r = (0, 1, 1). Thus, H̃ ∩ H̃∗r = 0, for everyH ∈ IX . Hence, by (3),
LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r.

(4)⇒(5): Straightforward.
(4)⇒(6): Let H ∈ IS and H ≤ R 6= (0, 1, 1) with R ≤ R⋆

r . Then, for any H ∈ IS , H =

H̃ ∪ (H∩H⋆
r ). Therefore,H⋆

r = (Ã ∪ (H∩H⋆
r ))

⋆
r = H̃⋆

r ∪ (H∩H⋆
r )

⋆
r . by Theorem 3 (5).

Now, by (4), we have LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r, then H̃⋆
r = (0, 1, 1). Hence,

(H ∩ H⋆
r )

⋆
r = H⋆

r but H ∩ H⋆
r ≤ H

⋆
r , then H ∩ A⋆

r ≤ (H ∩ H⋆
r )

⋆
r . This contradicts the hypothesis

about every single-valued neutrosophic set H ∈ IS , if (0, 1, 1) 6= R ≤ H with R ≤ R⋆
r . Therefore,

H∩H⋆
r = (0, 1, 1), so thatH = H̃ by (4), we have LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r.

(6)⇒(4): Since, for every H ∈ IS , H ∩ H⋆
r = (0, 1, 1). Therefore, by (6), as H contains no

non-empty single-valued neutrosophic subset R with R ≤ R⋆
r , LT(H) ≥ r, LI(H) ≤ 1− r, and

LF(H) ≤ 1− r.
(5)⇒(1): For every H ∈ IS , xs,t,p ∈ H, there exists an D ∈ QτTIF (xs,t,p, r) such that TD(κ) +

TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ) holds for every κ ∈ S

and for some LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r. This implies xs,t,p 6∈ H⋆
r . Let R =
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H∪H∗r . Then,R∗r = (H∪H∗r )
⋆
r = H⋆

r ∪ (H
⋆
r )

⋆
r = H⋆

r by Theorem 3(4). So, C⋆
τTIF (R, r) = R∪R⋆

r = R.
That means τT⋆(1−R) ≥ r, τ I⋆(1−R) ≤ 1− r, and τF⋆(1−R) ≤ 1− r. Therefore, by (5), we have
LT(R) ≥ r, LI(R) ≤ 1− r, and LF(R) ≤ 1− r.

Once again, for any xs,t,p in SVNP(X), xs,t,p 6∈ R̃⋆
r implies xs,t,p ∈ R but xs,t,p 6∈ R⋆

r = H⋆
r So,

as B = H∨H⋆
r , xs,t,p ∈ H. Now, by hypothesis aboutH. Then, for any xs,t,p ∈ H⋆

r . So, R̃ = H. Hence,
LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r, i.e., τTIF ∼ LTIF.

Theorem 10. Let (S , τTIF) be an SVNTS with single-valued neutrosophic ideal LTIF on S . Then, the
following are equivalent and implied by τ ∼ L.

(1) For everyH ∈ IS ,H∧H⋆
r = (0, 1, 1) impliesH∗r = (0, 1, 1);

(2) For anyH ∈ IS , H̃⋆
r = (0, 1, 1);

(3) For everyH ∈ IS ,H∧H⋆
r = H⋆

r .

Proof. Clear from Theorem 9.

The following corollary is an important consequence of Theorem 10.

Corollary 3. Let τTIF ∼ LTIF. Then, β(τTIF,LTIF) is a base for τTIF⋆ and also β(τTIF,LTIF) = τTIF⋆.

Definition 17. LetH,R ∈ SVNS on S . IfH is a single-valued neutrosophic relation on a set S , thenH is
called a single-valued neutrosophic relation on B if, for every κ, κ1 ∈ S ,

TR(κ, κ1) ≤ min(TH(κ), TH(κ1)),
IR(κ, κ1) ≥ max(IH(κ), IH(κ1)), and
FR(κ, κ1) ≥ max(FH(κ), FH(κ1)).

A single-valued neutrosophic relationH on S is called symmetric if, for every κ, κ1 ∈ S ,

TH(κ, κ1) = TH(κ1, κ), IH(κ, κ1) = IH(κ1, κ), FH(κ, κ1) = FH(κ1, κ); and

TR(κ, κ1) = TR(κ1, κ) IR(κ, κ1) = IR(κ1, κ), FR(κ, κ1) = FR(κ1, κ).

In the purpose of symmetry, we can replace Definition 3 with Definition 17.

5. Conclusions

In this paper, we defined a single-valued neutrosophic closure space and single-valued
neutrosophic ideal to study some characteristics of neutrosophic sets and obtained some of their
basic properties. Next, the single-valued neutrosophic ideal open local function, single-valued
neutrosophic ideal closure, single-valued neutrosophic ideal interior, single-valued neutrosophic
ideal open compatible, and ordinary single-valued neutrosophic base were introduced and studied.

Discussion for further works:
We can apply the following ideas to the notion of single-valued ideal topological spaces.

(a) The collection of bounded single-valued sets [53];
(b) The concept of fuzzy bornology [54];
(c) The notion of boundedness in topological spaces. [54].
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Abstract: This paper aims to introduce the notion of r-single-valued neutrosophic connected sets in
single-valued neutrosophic topological spaces, which is considered as a generalization of r-connected
sets in Šostak’s sense and r-connected sets in intuitionistic fuzzy topological spaces. In addition,
it introduces the concept of r-single-valued neutrosophic separated and obtains some of its basic
properties. It also tries to show that every r-single-valued neutrosophic component in single-valued
neutrosophic topological spaces is an r-single-valued neutrosophic component in the stratification of
it. Finally, for the purpose of symmetry, it defines the so-called single-valued neutrosophic relations.

Keywords: stratification of single-valued neutrosophic topological spaces; r-single-valued neutrosophic
separated; r-single-valued neutrosophic connected and r-single-valued neutrosophic component

1. Introduction

Under a neutrosophic environment, Smarandache had established a generalization of intuitionistic
fuzzy sets. His neutrosophic framework has a very large impact of constant applications for different
fields in applied and pure sciences. In 1965, Zadeh [1] defined the so-called fuzzy sets (FS) and,
later on, Atanassov [2] defined the intuitionistic fuzzy sets (IFS) in 1983. Topology is, of course,
a cornerstone notion of mathematics, especially for ordinary subjects. The main concept of fuzzy
topology (FT ) was defined by Chang [3]. Moreover, Lowen [4] gave the introduction to the
concept of stratified fuzzy topology in the sense of Chang’s fuzzy topology. Lee et al. and Liu
et al. in their papers [5,6] investigated fuzzy connectedness (F -connected) in fuzzy topological spaces.
Again, researchers in [7–10] have studied the concept of (F -connected). Sostak [11], however, also
introduced the concept of smooth topology as an extension of Lowen and Chang’s work.

In his paper [12], Smarandache characterized the neutrosophic set into three segment neutrosophic
sets (F-Falsehood, I-Indeterminacy, T-Truth), and neutrosophic topological spaces (SVNT ) presented
by Salama et al. [13,14]. Single valued neutrosophic sets (in sort, SVN ) were proposed by
Wang et al. [15]. Meanwhile, Kim et al. [16] inspected the single valued neutrosophic relations
(SVNRs ) and symmetric closure of SVNR, respectively. In recent times, Saber et al. [17] familiarized
the concepts of single-valued neutrosophic ideal open local function and single-valued neutrosophic
topological space.
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In this paper, we introduce the concept of r-single-valued neutrosophic connected sets and
r-single-valued neutrosophic component in single-valued neutrosophic topological spaces. We then
define the stratification of the single-valued neutrosophic topological spaces and show that every
r-single-valued neutrosophic component in a single-valued neutrosophic is an r-single-valued
neutrosophic component in the stratification of it. We have performed distinguished definitions,
theorems, and counterexamples in-depth analysis to investigate some of their significant properties
and to find out the best results and consequences. It can be said that different crucial notions in single
valued neutrosophic topology were developed and generalized in this article. Different attributes like
connectedness and stratification which have a significant impact on the overall topology’s notions
were also studied.

Innovative aspects and benefits of this article compared to relevant recent research on groups
related to it are very useful. This paper studies connectedness and stratification of single-valued
neutrosophic topological spaces. What makes this paper interesting is the introduction of the concept
of r-single-valued neutrosophic separated. The authors obtain some of its basic properties. They show
that every r-single-valued neutrosophic component in single-valued neutrosophic topological spaces
is an r-single-valued neutrosophic component in the stratification of it.

A neutrosophic set is a power general formal framework, which generalizes the concept of the
classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set, and interval intuitionistic fuzzy
set from a philosophical point of view. The applications aspects of these kinds of sets can be further
noted. It can be seen In Geographical Information Systems (GIS) where there is a need to model
spatial regions with indeterminate boundary and under indeterminacy (see [18]). In addition, possible
applications to superstrings and ζ∞ space–time are touched upon (see [19]). It can also be applicable to
control engineering in average consensus in multi-agent systems with uncertain topologies, multiple
time-varying delays, and emergence in random noisy environments (see [20]).

In this work, X̃ is assumed to be a nonempty set, ζ = [0, 1] and ζ0 = (0, 1]. For α ∈ ζ, α̃(x) = α

for all x ∈ X̃. The family of all single-valued neutrosophic sets on X̃ is denoted by ζ X̃ .

2. Preliminaries

This section is devoted to bring a complete survey and previous studies and important related
notions and ideas.

Definition 1 ([21]). Let X̃ be a non-empty set. A neutrosophic set (briefly, NS) in X̃ is an object having
the form

S = {〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃},

where γ̃S , η̃S , µ̃S and the degree of membership (namely γ̃S (x)), the degree of indeterminacy (namely η̃S (x)),
and the degree of non-membership (namely µ̃S (x)); for all x ∈ X̃ to the set S . A neutrosophic set S =

{〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃} can be identified as γ̃S , η̃S , µ̃S in ⌋−0, 1+⌊ in X̃.

Definition 2 ([22]). Suppose that S and E are NS ′s of the form S = {〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃} and
E = {〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃} Then, S ⊆ E , iff for every x ∈ X̃,

infγ̃S (x) ≤ inf γ̃E (x), inf η̃S (x) ≥ inf η̃E (x), inf µ̃S (x) ≥ inf µ̃E (x),

sup γ̃S (x) ≤ sup γ̃E (x), sup η̃S (x) ≥ sup η̃E (x), sup µ̃S (x) ≥ sup µ̃E (x).

Definition 3 ([15]). Let X̃ be a space of points (objects), with a generic element in X̃ denoted by x. Then, S is
called a single valued neutrosophic set (briefly, SVNS) in X̃, if S has the form S = {〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃},
where γ̃S , η̃S , µ̃S : X̃ → [0, 1].
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In this case, γ̃S , η̃S , µ̃S are called truth-membership, indeterminacy-membership, falsify-membership
mappings, respectively, and we will denote the set of all SVNS ′s in X̃ as IX̃. Moreover, we will refer to the
Null (empty) SVNS (resp. the absolute (universe) SVNS) in X̃ as 0̃ (resp. 1̃) and defined by 0̃ = 〈0, 1, 1〉
(resp. 1̃ = 〈1, 0, 0〉) for each x ∈ X̃.

Definition 4 ([15]). Let S = {〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃} be an SVNS on X̃. The complement of the set S
(briefly S c) is defined as follows:

γ̃S c(x) = µ̃S (x), η̃S c(x) = 1− η̃S (x), µ̃S c(x) = γ̃S (x),

for every x ∈ X̃.

Definition 5 ([23]). Let S = {〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃} and E = {〈x, γ̃E , η̃E , µ̃E 〉 : x ∈ X̃} be an
SVNS . Then,

(i) A SVNS S is contained in the other SVNS E (briefly, S ⊆ E ), if and only if

γ̃S (x) ≤ γ̃E (x), η̃S (x) ≥ η̃E (x), µ̃S (x) ≥ µ̃E (x)

for every ω ∈ X̃,
(ii) we say that S is equal to E , denoted by S = E , if S ⊆ E and S ⊇ E .

Definition 6 ([22]). Let S = {〈x, γ̃S , η̃S , µ̃S 〉 : x ∈ X̃} and E = {〈x, γ̃E , η̃E , µ̃E 〉 : x ∈ X̃} be an
SVNS . Then,

(i) the intersection of S and E (briefly, S ∩ E ) is a SVNS in X̃ defined as:

S ∩ E = (γ̃S ∩ γ̃E , η̃S ∪ η̃E , µ̃S ∪ µ̃E )

where (µ̃S ∪ µ̃E )(x) = µ̃S (x) ∪ µ̃E (x) and (γ̃S ∩ γ̃E )(x) = γ̃S (x) ∩ γ̃E (x), for all x ∈ X̃,
(ii) the union of S and E (briefly, S ∪ E ) is an SVNS on X̃ defined as:

S ∪ E = (γ̃S ∪ γ̃E , η̃S ∩ η̃E , µ̃S ∩ µ̃E ).

Definition 7 ([13]). Let {Sj, j ∈ Γ} be an arbitrary family of SVNS ′s on X̃. Then,

(i) the intersection of {Sj, j ∈ Γ} (briefly,
⋂

j∈Γ Sj) is SVNS over X̃ defined as:

(
⋂

J∈Γ

Sj)(x) = (
⋂

j∈Γ

γ̃Sj
(x),

⋃

j∈Γ

η̃Sj
(x),

⋃

j∈Γ

µ̃Sj
(x)),

for all x ∈ X̃,
(ii) the union of {Sj, j ∈ Γ} (briefly,

⋃
j∈Γ Sj) is SVNS over X̃ defined as:

(
⋃

j∈Γ

Sj)(x) = (
⋃

j∈Γ

γ̃Sj
(x),

⋂

j∈Γ

η̃Sj
(x),

⋂

j∈Γ

µ̃Sj
(x)),

for all x ∈ X̃.

Definition 8 ([24]). A single-valued neutrosophic topology (SVNT ) on X̃ is an ordered triple (τ̃γ̃, τ̃η̃ , τ̃µ̃) as
mappings from ζ X̃ to ζ such that:

(SVNT1) τ̃γ̃(0̃) = τ̃γ̃(1̃) = 1 and τ̃η̃(0̃) = τ̃η̃(1̃) = τ̃µ̃(0̃) = τ̃µ̃(1̃) = 0,
(SVNT2) τ̃γ̃(S ∩ E) ≥ τ̃γ̃(S) ∩ τ̃γ̃(E), τ̃η̃(S ∩ E) ≤ τη̃(S) ∪ τ̃η̃(E),
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τ̃µ̃(S ∩ E) ≤ τ̃µ̃(S) ∪ τ̃µ̃(E), for all S , E ∈ ζ X̃ ,
(SVNT3) τ̃γ̃(∪j∈ΓSj) ≥ ∩j∈Γτ̃γ̃(Sj), τ̃η̃(∪i∈ΓSj) ≤ ∪j∈Γτ̃η̃(Sj),

τ̃µ̃(∪j∈ΓSj) ≤ ∪j∈Γτ̃µ̃(Sj) for all {Sj, j ∈ Γ} ∈ ζ X̃ .

The quadruple (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) is called SVNT S . τ̃γ̃, τ̃η̃ and τ̃µ̃ may be interpreted as the degree
of openness, the degree of indeterminacy, and the degree of non-openness, respectively, and any single
valued neutrosophic (briefly, SVNS) set in X̃ is known as a single valued neutrosophic open set
(briefly, r-SVNO) set in X̃. The elements of τ̃γ̃, τ̃η̃ , τ̃µ̃ are called open single valued neutrosophic sets
(such that, for any SVNS S ∈ X̃ and r ∈ I0, we obtain τ̃γ̃(S) ≥ r, τ̃η̃(S) ≤ 1− r, and τ̃η̃(S) ≤ 1− r].
Then, the complement of r-SVNO is a single valued neutrosophic closed set (briefly, r-SVNC), and this
will cause no ambiguity. Occasionally, we will write τ̃γ̃η̃µ̃ for (τ̃γ̃, τ̃η̃ , τ̃µ̃), and it will be no ambiguity.

Definition 9 ([17]). Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S . A mapping C : ζ X̃ × ζ0 → ζ X̃ is called
a single-valued neutrosophic closure operator if, for every S , E ∈ ζ X̃ and r, s ∈ ζ0, it satisfies the
following conditions:

(C1) C(0̃, r) = 0̃,
(C2) S ≤ C(S , r),
(C3) C(S , r) ∪ C(E , r) = C(S ∪ E , r),
(C4) C(S , r) ≤ C(S , s) if r ≤ s.
(C5) C(C(S , r), r) = C(S , r).

The pair (X̃, C) is a single-valued neutrosophic closure space (briefly, SVNCS).

Theorem 1 ([17]). Let Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃ be an single-valued neutrosophic closure operator on X̃. Define the mappings

τ̃
γ̃
C

τ̃γ̃
, τ̃

η̃
C

τ̃η̃
, τ̃

µ̃
C

τ̃µ̃
: ζ X̃ → ζ by

τ̃
γ̃
C

τ̃γ̃
(S) =

⋃
{r ∈ ζ0 | Cτ̃γ̃(S c, r) = S c}, τ̃

η̃
C

τ̃η̃
(S) =

⋂
{1− r ∈ ζ0 | Cτ̃η̃ (S c, r) = S c},

τ̃
µ̃
C

τ̃µ̃
(S) =

⋂
{1− r ∈ ζ0 | Cτ̃µ̃(S c, r) = S c}.

Then, (τγ̃
C

τ̃γ̃
, τ

η̃
C

τ̃η̃
, τ

µ̃
C

τ̃µ̃
) is an SVNT on X̃.

Definition 10 ([25]). Let f : (X̃, τ̃
γ̃
1 , τ̃

η̃
1 , τ̃

µ̃
1 ) → (Ỹ, τ̃

γ̃
2 , τ̃

η̃
2 , τ̃

µ̃
2 ) be a mapping and r ∈ ζ0. Then, f is said

to be SVN -continuous if τ̃
γ̃
2 (S) ≤ τ̃

γ̃
1 ( f−1(S)), τ̃

η̃
2 (S) ≥ τ̃

η̃
1 ( f−1(S)), and τ̃

µ̃
2 (S) ≥ τ̃

µ̃
1 ( f−1(S)) for all

S ∈ ζỸ.

3. Connectedness in Single-Valued Neutrosophic Topological Spaces

The aim of this section is to introduce the r-single-valued neutrosophic separated (briefly,
r-SVNSEP), r-single-valued neutrosophic connected (briefly, r-SVNCON ), and r-single-valued
neutrosophic component (briefly, r-SVNCOM).

Definition 11. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S . For every S , E ,R ∈ ζ X̃, S and E are called
r-single-valued neutrosophic separated (briefly, r-SVNSEP) if for r ∈ ζ0,

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) ∩ E = Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E , r) ∩ S = 0̃
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A SVNS ,R is called r-single-valued neutrosophic connected (briefly, r-SVNCON ) if r-SVNSEP S , E ∈
ζ X̃ − {0̃} such thatR = S ∪ E does not exist. A SVNS R is said to be SVNCON if it is r-SVNCON for
any r ∈ ζ0. A quadruple (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) is said to be r-SVNCON if 1̃ is r-SVNCON .

Remark 1. Let S and E be r-SVNSEP . Then for every R ∈ ζ X̃ and r1 ≤ r. We have Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(R, r1) ≤

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(R, r), and S and E are said to be r1-SVNSEP . Conversely, from this fact, ifR is r1-SVNCON
and r ≥ r1, thenR is called r-SVNCON .

Example 1. Let X̃ = {a, b, c} be a set. Define E1, E2 ∈ ζ X̃ as follows:

E1 = 〈(1, 1, 0), (1, 1, 0), (1, 1, 0)〉; E2 = 〈(0, 0, 1), (0, 0, 1), (0, 0, 1)〉.

We define an SVNT (τ̃γ̃, τ̃η̃ , τ̃µ̃) on X̃ as follows: for each S ∈ ζ X̃ ,

τ̃γ̃(S) =





1, if S = 0̃,
1, if S = 1̃,
1
3 , if S = E1,
1
2 , if S = E2,
0, otherwise,

τ̃η̃(S) =





0, if S = 0̃,
0, if S = 1̃,
2
3 , if S = E1,
1
2 , if S = E2,
1, otherwise,

τ̃µ̃(S) =





0, if S = 0̃,
0, if S = 0̃,
2
3 , if S = E1,
1
2 , if S = E2,
1, otherwise.

We thus obtain

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) =





0̃, if S = 0̃, r ∈ ζ0,
E c

2 , if S ≤ E1, r ≤ 1
2 , 1− r ≥ 1

2 ,
E c

1 , if S ≤ E2, r ≤ 1
3 , 1− r ≥ 2

3 ,
0̃, otherwise.

If r ≤ 1
3 and 1 − r ≥ 2

3 , then E c
2 = Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E1, r) ∩ E2 = 0̃ and E c

1 = Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E2, r) ∩ E1 = 0̃.
Thus, E1 ∪ E2 = 1̃ is not r-SVNCON for r ≤ 1

3 and 1− r ≥ 2
3 . If r > 1

3 and 1− r < 2
3 , (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃)

is r-SVNCON .

Before we proceed further, we need to recall the following theorem given in [17] and prove its
second part.

Theorem 2 ([17]). Suppose that (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) is an SVNT S . For every r ∈ ζ0 and S ∈ ζ X̃. Define an
operator Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃ : ζ X̃xζ0 → ζ as follows:

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) =
⋂
{E ∈ ζ X̃ : E ≤ S , τ̃γ̃(E c) ≥ r, τ̃η̃(E c) ≤ 1− r, τ̃µ̃(E c) ≤ 1− r}.

Then,

(1) (X̃, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃) is an SVNCS ,

(2) τ̃
γ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
= τ̃γ̃, τ̃

η̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
= τ̃η̃ and τ̃

µ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
= τ̃µ̃

Proof. (1) It has been proven in [17].
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(2) Suppose that τ̃γ̃(E) = r, τ̃η̃(E) = 1 − r and τ̃µ̃(R) = 1 − r. Then, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E c, r) = E c.

Therefore, τ̃
γ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
≥ τ̃γ̃, τ̃

η̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
≤ τ̃η̃ and τ̃

µ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
≤ τ̃µ̃. Suppose that

τ̃
γ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
6≤ τ̃γ̃, τ̃

η̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
6≥ τ̃η̃ , τ̃

µ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
6≥ τ̃µ̃.

Then, there exists E with Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E c, r) = E c such that

τ̃
γ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
(E) ≥ r > τ̃γ̃(E), τ̃

η̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
(E) ≤ 1− r < τ̃η̃(E), τ̃

µ̃
C

τ̃γ̃ ,τ̃η̃ ,τ̃µ̃
(E) ≤ 1− r < τ̃µ̃(E). (1)

By the definition of Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃ , we have τ̃γ̃(E) ≥ r, τ̃η̃(E) ≤ 1− r and τ̃µ̃(E) ≤ 1− r. It is a contradiction
for Equation (1).

Example 2. Let X̃ = {a, b} be a set. Define E1, E2 ∈ ζ X̃ .

E1 = 〈(0.2, 0.2), (0.3, 0.3), (0.3, 0.3)〉; E2 = 〈(0.5, 0.5), (0.1, 0.1), (0.1, 0.1)〉.

We define the mapping C : ζ X̃ × ζ0 → ζ X̃ as follows:

C(S , r) =





0̃, if S = 0̃, r ∈ I0,
E1 ∩ E2, if 0 6= S ≤ E1 ∩ E2, 0 < r < 1

2 ,
E1, if S ≤ E1,S 6≤ E2, 0 < r < 1

2 ,
or 0 6= S ≤ E1

1
2 < r < 2

3 ,
E2, if S ≤ E2,S 6≤ E1, 0 < r < 1

2 ,
E1 ∪ E2, if 0 6= S ≤ E1 ∪ E2, 0 < r < 1

2 ,
1, otherwise.

Then, C is a single-valued neutrosophic closure operator.
From Theorem 1, we have a single-valued neutrosophic topology (τγ̃

C , τ
η̃
C , τ

µ̃
C) on X̃ as follows:

τ
γ̃
C (S) =





1, if S = 1̃ or 0̃,
2
3 , if S = E c

1 ,
1
2 , if S = E c

2 ,
1
2 , if S = E c

1 ∪H
c,

1
2 , if S = E c

1 ∩ E
c
2 ,

0, otherwise.

τ
η̃
C(S) =





0, if S = 1̃ or 0̃,
1
3 , if S = E c

1 ,
1
2 , if S = E c

2 ,
1
2 , if S = E c

1 ∪ E
c
2 ,

1
2 , if S = E c

1 ∩ E
c
2 ,

1, otherwise.

τ
µ̃
C(S) =





0, if S = 1̃ or 0̃,
1
3 , if S = E c

1 ,
1
2 , if S = E c

2 ,
1
2 , if S = E c

1 ∪ E
c
2 ,

1
2 , if S = E c

1 ∩ E
c
2 ,

1, otherwise.
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Thus, the (τγ̃
C , τ

η̃
C , τ

µ̃
C) is a single-valued neutrosophic topology on X̃.

Theorem 3. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S . Then, the following are equivalent.

(1) (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) is r-SVNCON .
(2) if S ∪ E = 1̃ and S ∩ E = 0̃ for (τ̃γ̃(E) ≥ r, τ̃η̃(E) ≤ 1− r, τ̃µ̃(E) ≤ 1− r) and (τ̃γ̃(S) ≥ r,

τ̃η̃(S) ≤ 1− r, τ̃µ̃(S) ≤ 1− r), then E = 0̃ or S = 0̃,
(3) if S ∪ E = 1̃, E1 ∩ E2 = 0̃ for (τ̃γ̃(E c) ≥ r, τ̃η̃(E c) ≤ 1− r, τ̃µ̃(E c) ≤ 1− r) and (τ̃γ̃(S c) ≥ r,

τ̃η̃(S c) ≤ 1− r, τ̃µ̃(S c) ≤ 1− r), then E = 0̃ or S = 0̃.

Proof. (1)⇒(2): Let there exist S , E ∈ ζ X̃ −{0̃} such that for every (τ̃γ̃(E) ≥ r, τ̃η̃(E) ≤ 1− r, τ̃µ̃(E) ≤

1− r) and (τ̃γ̃(S) ≥ r, τ̃η̃(S) ≤ 1− r, τ̃µ̃(S) ≤ 1− r), S ∪ E = 1̃, S ∩ E = 0̃. It implies

S c ∩ E c = 0̃, S c ∪ E c = 1̃.

Since Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S c, r) = S c and Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E c, r) = E c from Theorem 2, S c and E c are r-SVNSEP .

Suppose S = 1̃. Then, E = S ∩ E = 0̃. It is a contradiction. Hence, S c ∈ ζ X̃ − {0̃}. Similarly,
E c ∈ ζ X̃ − {0̃}. Furthermore, S c ∪ E c = 1̃. Thus, 1̃ is not r-SVNCON .

(2)⇒(3): It is trivial.
(3)⇒(1): Suppose that (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) is not r-SVNCON . Then, there exist r-SVNSEP

S , E ∈ ζ X̃ − {0̃} such that S ∪ E = 1̃. Since S ∩ E ≤ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) ∩ E = 0̃, we have S ∩ E = 0̃.
Thus, S c ∩ E c = 0̃ implies E c ≤ S . Hence, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) ∩ E = 0̃ implies, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) ≤ E c.
Thus, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) ≤ S . By Definition 9 (C2), we have Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) = S . By Theorem 2, we obtain
(τ̃γ̃(S c) ≥ r, τ̃η̃(S c) ≤ 1 − r, τ̃µ̃(S c) ≤ 1 − r). Similarly, we have (τ̃γ̃(E c) ≥ r, τ̃η̃(E c) ≤ 1 − r,
τ̃µ̃(E c) ≤ 1− r). It is a contradiction.

Lemma 1. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S and S , E ,R ∈ ζ X̃. If E and R are r-SVNSEP , then S ∩ E
and S ∩R are r-SVNSEP .

Proof. Let E andR be r-SVNSEP . Thus,

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S ∩ E , r) ∩ (S ∩R) ≤ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E , r) ∩R = 0̃

Similarly, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S ∩R, r) ∩ (S ∩ E) = 0̃. Thus, S ∩ E and S ∩R are r-SVNSEP .

Theorem 4. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S and S ∈ ζ X̃ . Then, the following are equivalent.

(1) S is r-SVNCON ,
(2) If E andR are r-SVNSEP such that S ≤ E ∪R, then S ∩ E = 0̃ or S ∩R = 0̃,
(3) If E andR are r-SVNSEP such that S ≤ E ∪R, then S ≤ E or S ≤ R.

Proof. (1)⇒ (2): Let E ,R ∈ ζ X̃ be r-SVNSEP such that S ≤ E ∪R. By Lemma 1, S ∩ E and S ∩R
are r-SVNSEP . Since S is r-SVNCON and S = S ∩ (E ∪R) = (S ∩ E) ∪ (S ∩R), then S ∩ E = 0̃
or S ∩R = 0̃.

(2)⇒ (3): It is easily proved.
(3)⇒ (1): Let E and R be r-SVNSEP such that S = E ∪R. By (3), S ≤ E or S ≤ R. If S ≤ E

and E ,R are r-SVNSEP , then

R = R∩ S ≤ R∩ E ≤ R∩ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E , r) = 0̃.

Hence,R = 0̃. If S ≤ R, similarly E = 0̃.

Theorem 5. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S and S , E ∈ ζ X̃ .
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(1) If S is r-SVNCON , S ≤ E ≤ Cτ̃γ̃η̃µ̃(S , r), then E is r-SVNCON .
(2) If S and E are r-SVNCON single-valued neutrosophic sets which are not r-SVNSEP , then S ∪ E is

r-SVNCON .

Proof. (1) Let R,D ∈ ζ X̃ be r-SVNSEP such that E = R∪D. Put, R1 = S ∩R and D1 = S ∩ D,
then R1 and D1 are r-SVNSEP such that S = R1 ∪D1. Since S is r-SVNCON , R1 = 0̃ or D1 = 0̃.
IfR1 = 0̃, then S = D1 = S ∩D ⇒ S ≤ D. It implies

E ≤ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) ≤ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(D, r).

Hence,R = R∩ E ≤ R∩ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(D, r) = 0̃.
If D1 = 0̃, similarly D = 0̃. Therefore, E is r-SVNCON .
(2) Let R and D be r-SVNSEP such that S ∪ E = R ∪ D. Since S is r-SVNCON ,

by Theorem 4 (3), S ≤ R or S ≤ D. Say, S ≤ R. Suppose that E ≤ D. Since (S ∪ E) ∩ R = S

and (S ∪ E)∩D = E , by Lemma 1, S and E are r-SVNSEP . It is a contradiction. Thus, E ≤ RHence,
S ∪ E ≤ R, by Theorem 4 (3), S ∪ E is r-SVNCON .

Theorem 6. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S . Let B = {Sj ∈ ζ X̃ | Sj is r− SVNCON sets , j ∈ Γ} be
a family in X̃ such that no two members of B are r-SVNSEP , then

⋃
j∈Γ Sj is r-SVNCON .

Proof. Put S =
⋃

j∈Γ Sj. Let E ,R ∈ ζ X̃ be r-SVNSEP such that S = E ∪R. Since any two members
Sj,Si ∈ B are not r-SVNSEP , by Theorem 5 (2), Sj ∪ Si is r-SVNCON . From Theorem 4 (3),
Sj ∪ Si ≤ E or Sj ∪ Si ≤ R. Say, Sj ∪ Si ≤ E . It implies that S ≤ E . Thus, S is r-SVNCON .

Corollary 1. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S . Let B = {Sj ∈ ζ X̃ | Sj is r−SVNCON sets , j ∈ Γ} be
a family in X̃. If

⋂
j∈Γ Sj 6= 0̃, then

⋃
j∈Γ Sj is r-SVNCON .

Lemma 2. Let f : (X̃, τ̃
γ̃
1 , τ̃

η̃
1 , τ̃

µ̃
1 ) → (Ỹ, τ̃

γ̃
2 , τ̃

η̃
2 , τ̃

µ̃
2 ) be a mapping from an SVNT S (X̃, τ̃

γ̃
1 , τ̃

η̃
1 , τ̃

µ̃
1 ) to

another SVNT S (Ỹ, τ̃
γ̃
2 .τ̃η̃

2 , τ̃
µ̃
2 ). Then, the following are equivalent, ∀ S ∈ ζ X̃ , E ∈ ζỸ and r ∈ ζ0

(1) f is SVN − continuous.
(2) f (C

τ̃
γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
(S , r)) ≤ C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
( f (S), r).

(3) C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
( f−1(E), r) ≤ f−1(C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
(E , r)).

Proof. (1)⇒(2): Suppose that f is SVN − continuous. Then, τ̃
γ̃
1 (( f−1(S))c) ≥ τ̃

γ̃
2 (S

c),

τ̃
η̃
1 (( f−1(S))c) ≤ τ̃

η̃
2 (S

c) and τ̃
µ̃
1 (( f−1(S))c) ≤ τ̃

µ̃
2 (S

c). Hence,

C
τ̃

γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
( f (S), r) =

⋂
{E ∈ ζỸ | f (S) ≤ E , τ̃

γ̃
2 (E

c) ≥ r, τ̃
η̃
2 (E

c) ≤ 1− r, τ̃
µ̃
2 (E

c) ≤ 1− r}

≥
⋂
{E ∈ ζỸ | S ≤ f−1(E), τ̃

γ̃
1 (( f−1(E))c) ≥ r, τ̃

η̃
1 (( f−1(E))c) ≤ 1− r,

τ̃
µ̃
1 (( f−1(E))c) ≤ 1− r}

≥
⋂
{ f ( f−1(E)) ∈ ζỸ | S ≤ f−1(E), τ̃

γ̃
1 (( f−1(E))c) ≥ r, τ̃

η̃
1 (( f−1(E))c) ≤ 1− r,

τ̃
µ̃
1 (( f−1(E))c) ≤ 1− r}

≥ f [
⋂
{ f−1(E)) ∈ ζỸ | S ≤ f−1(E), τ̃

γ̃
1 (( f−1(E))c) ≥ r, τ̃

η̃
1 (( f−1(E))c) ≤ 1− r,

τ̃
µ̃
1 (( f−1(E))c) ≤ 1− r}]

≥ f (C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
( f (S), r)).
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(2)⇒(3). For all E ∈ ζỸ. By (2),

f (C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
(S , r)) ≤ C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
( f (S), r).

Putting S = f−1(E), we obtain

f (C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
( f−1(E), r)) ≤ C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
( f ( f−1(E)), r) ≤ C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
(E , r)

Hence, C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
( f−1(E), r) ≤ f−1(C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
(E , r)).

(3)⇒(1). It follows that C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
(E , r) = E implies C

τ̃
γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
( f−1(E), r) = f−1(E).

Theorem 7. Let (X̃, τ̃
γ̃
1 , τ̃

η̃
1 , τ̃

µ̃
1 ), (Ỹ, τ̃

γ̃
2 , τ̃

η̃
2 , τ̃

µ̃
2 ) be two SVNT S ′s and f : X̃ → Ỹ is SVN -continuous

mapping. If S is r-SVNCON , then f (S) is r-SVNCON .

Proof. Let E ,R ∈ ζỸ be two r-SVNSEP ′s such that f (S) = E ∪R. We obtain

S ≤ f ( f−1)(S) = f−1(E ∪R) = f−1(E) ∪ f−1(R).

Since f is SVN -continuous, by Lemma 2,

C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
( f−1(E , r)) ≤ f−1(C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
(E , r)).

Thus,

C
τ̃

γ̃
1 ,τ̃η̃

1 ,τ̃µ̃
1
( f−1(E , r) ∩ f−1(R)) ≤ f−1(C

τ̃
γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
(E , r)) ∩ f−1(R)

= f−1(C
τ̃

γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
(E , r) ∩R)

= f−1(0̃) = 0̃.

Likewise, we obtain f−1(E) ∩ C
τ̃

γ̃
2 ,τ̃η̃

2 ,τ̃µ̃
2
(R, r) = 0̃. It implies that f−1(E), f−1(R) ∈ ζ X̃ are

r-SVNSEP ′s. Since S is r-SVNCON , then we have by Theorem 4 (3), S ≤ f−1(E) or S ≤ f−1(R),
so S ≤ f−1(E). Thus, f (S) ≤ f ( f−1(E)) ≤ E . Hence, f (S) is r-SVNCON .

Example 3. Let X̃ = Ỹ = {a, b} be a set. Define E1, E2, E3,B1,B2,B3 ∈ ζ X̃ :

E1 = 〈(0.5, 0.4), (0.5, 0.5), (0.9, 0.6)〉, E2 = 〈(0.4, 0.4), (0.1, 0.1), (0.1, 0.1)〉,

E3 = 〈(0.3, 0.1), (0.1, 0.1), (0.1, 0.1), B1 = 〈(0.4, 0.5), (0.5, 0.5), (0.6, 0.9)〉,

B2 = 〈(0.2, 0.2), (0.2, 0.2), (0.1, 0.1), B3 = 〈(0.1, 0.1), (0.1, 0.1), (0.1, 0.1)〉.

Define τ̃γ̃η̃µ̃, σ̃γ̃η̃µ̃ : ζ X̃ → ζ X̃ as follows:

τ̃γ̃(S) =





1, if S = 0̃,
1, if S = 1̃,
1
2 , if S = E1,
0, otherwise.

σ̃γ̃(S) =





1, if S = 0̃〉,
1, if S = 1̃,
1
2 , if S = B1,
0, otherwise.
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τ̃η̃(S) =





0, if S = 0̃,
0, if S = 1̃,
1
2 , if S = E2,
1, otherwise.

σ̃η̃(S) =





0, if S = 0̃,
0, if S = 1̃,
1
2 , if S = B2,
1, otherwise.

τ̃µ̃(S) =





0, if S = 0̃,
0, if S = 1̃,
1
2 , if S = E3,
1, otherwise.

σ̃µ̃(S) =





0, if S = 0̃,
0, if S = 1̃,
1
2 , if S = B3,
1, otherwise.

Define f : (X̃, τ̃γ̃η̃µ̃)) → (Ỹ, σ̃γ̃η̃µ̃) be a map as follows f (a) = b and f (b) = a. If J̃ γ̃(B1) ≥
1
2 ,

J̃ η̃(B1) ≤ 1− 1
2 and J̃ µ̃(B1) ≤ 1− 1

2 . Then, f−1(B1) = 〈(0.5, 0.4), (0.5, 0.5), (0.9, 0.6)〉 is 1
2 -single-valued

neutrosophic open set in X̃. Thus, f is SVN -continuous. However, by Theorem 7, for every S ∈ ζ X̃ is
r-SVNCON , then f (S) is r-SVNCON in Ỹ.

Definition 12. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S . A SVN ∫ S is called r-single-valued neutrosophic
component (r-SVNCOM, for short) in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) if S is a maximal r-SVNCON in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃),
i.e., if E ≥ S and E is r-SVNCON , then E = S .

Corollary 2. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S .

(1) If S is a r-SVNCOM, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) = S .

(2) If S1,S2 ∈ ζ X̃ are r-SVNCOM in X̃ such that S1 ∩ S2 = 0̃, then S1,S2 ∈ ζ X̃ are r-SVNSEP .
(3) Each single-valued neutrosophic point xt,s,k is SVNCON .
(4) Every r-SVNCOM is a crisp set.

Proof. Straightforward.

4. Stratification of Single-Valued Neutrosophic Topological Spaces

In this section, we obtain crucial results in the stratification of the single-valued neutrosophic
topology as follows.

Definition 13. The stratification of the single-valued neutrosophic topology (SVNT ) on X̃ is a mapping from
ζ X̃ to ζ such that

(SVNT1) τ̃γ̃(α̃) = 1 and τ̃η̃(α̃) = τ̃µ̃(α̃) = 0, ∀ α ∈ ζ,
(SVNT2) τ̃γ̃(S ∩ E) ≥ τ̃γ̃(S) ∩ τ̃γ̃(E), τ̃η̃(S ∩ E) ≤ τη̃(S) ∪ τ̃η̃(E),

τ̃µ̃(S ∩ E) ≤ τ̃µ̃(S) ∪ τ̃µ̃(E), for all S , E ∈ ζ X̃ ,
(SVNT3) τ̃γ̃(∪j∈ΓSj) ≥ ∩j∈Γτ̃γ̃(Sj), τ̃η̃(∪i∈ΓSj) ≤ ∪j∈Γτ̃η̃(Sj),

τ̃µ̃(∪j∈ΓSj) ≤ ∪j∈Γτ̃µ̃(Sj), for all {Sj, j ∈ Γ} ∈ ζ X̃ .

The ordered pair SVNT S (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) is called stratified. Let (τ̃γ̃
1 , τ̃

η̃
1 , τ̃

µ̃
1 ) and (τ̃γ̃

2 , τ̃
η̃
2 , τ̃

µ̃
2 )

be SVNGO′s on X̃. We say that (τ̃γ̃
1 , τ̃

η̃
1 , τ̃

µ̃
1 ) is finer then (τ̃γ̃

2 , τ̃
η̃
2 , τ̃

µ̃
2 ) [(τ̃γ̃

2 , τ̃
η̃
2 , τ̃

µ̃
2 ) is coarser then

(τ̃γ̃
1 , τ̃

η̃
1 , τ̃

µ̃
1 )] if τ̃

γ̃
1 (S) ≤ τ̃

γ̃
2 (S), τ̃

η̃
1 (S) ≥ τ̃

η̃
2 (S) and τ̃

µ̃
1 (S) ≥ τ̃

µ̃
2 (S) for all S ∈ ζ X̃ .

Theorem 8. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) be an SVNT S . Define the mappings τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st : ζ X̃ → ζ as follows: for all

S ∈ ζ X̃ ,

τ̃
γ̃
st(S) =

⋃
{
⋂

j∈Γ

τ̃γ̃(Sj) | S =
⋃

j∈Γ

(Sj ∩ α̃j)}
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τ̃
η̃
st(S) =

⋂
{
⋃

j∈Γ

τ̃η̃(Sj) | S =
⋃

j∈Γ

(Sj ∩ α̃j)}

τ̃
µ̃
st(S) =

⋂
{
⋃

j∈Γ

τ̃µ̃(Sj) | S =
⋃

j∈Γ

(Sj ∩ α̃j)}.

Then, (τ̃γ̃
st, τ̃

η̃
st, τ̃

µ̃
st) is the coarsest stratified SVNT on X̃ which is finer than (τ̃γ̃, τ̃η̃ , τ̃µ̃).

Proof. Firstly, we will show that (τ̃γ̃
st, τ̃

η̃
st, τ̃

µ̃
st) is a stratified SVNT on X̃.

(SVNT1) For every α ∈ ζ, there exists a collection {1̃}with α̃ = α̃∩ 1̃, we obtain τ̃
γ̃
st(α̃) ≥ τ̃γ̃(1̃) = 1,

τ̃
η̃
st(α̃) ≤ τ̃η̃(1̃) = 0 and τ̃

µ̃
st(α̃) ≤ τ̃µ̃(1̃) = 0. Thus, τ̃

γ̃
st(α̃) = 1 and τ̃

η̃
st(α̃) = τ̃

µ̃
st(α̃) = 0.

(SVNT2) Suppose there exists E ,R ∈ ζ X̃ and r ∈ ζ0 with

τ̃
γ̃
st(E ∩R) < r < τ̃

γ̃
st(E) ∩ τ̃

γ̃
st(R),

τ̃
η̃
st(E ∩R) > 1− r > τ̃

η̃
st(E) ∪ τ̃

η̃
st(R),

τ̃
µ̃
st(E ∩R) > 1− r > τ̃

µ̃
st(E) ∪ τ̃

µ̃
st(R).

Since [τ̃γ̃
st(E) > r, τ̃

γ̃
st(R) > r], [τ̃η̃

st(E) < 1− r, τ̃
η̃
st(R) < 1− r] and [τ̃γ̃

st(E) < 1− r, τ̃
γ̃
st(R) < 1− r],

by the definition of (τ̃γ̃, τ̃η̃ , τ̃µ̃), there exist {Ej | j ∈ Γ} with E =
⋃

j∈Γ(Ej ∩ α̃j) and {Rk | k ∈ K} with
R =

⋃
k∈K(Rk ∩ α̃k) such that

τ̃
γ̃
st(E) ≥

⋂

j∈Γ

τ̃γ̃(Ej) > r, τ̃
η̃
st(E) ≤

⋃

j∈Γ

τ̃η̃(Ej) < 1− r and τ̃
µ̃
st(E) ≤

⋃

j∈Γ

τ̃µ̃(Ej) < 1− r,

τ̃
γ̃
st(R) ≥

⋂

k∈K

τ̃γ̃(Rk) > r, τ̃
µ̃
st(R) ≤

⋃

k∈K

τ̃µ̃(Rk) < 1− r and τ̃
µ̃
st(R) ≤

⋃

k∈K

τ̃
µ̃
st(Rk) < 1− r.

Since ζ is completely distributive lattice, we have

E ∩R = [
⋃

j∈Γ

(Ej ∩ α̃j)] ∩ [
⋃

k∈K

(Rk ∩ α̃k)] =
⋃

j∈Γ

(Ej ∩Rk) ∩ (α̃j ∩ α̃k)

=
⋃

j∈Γ

(Ej ∩Rk) ∩ α̃jk. (α̃jk = α̃j ∩ α̃k).

Moreover, since τ̃γ̃(Ej ∩Rk) ≥ τ̃γ̃(Ej) ∩ τ̃γ̃(Rk), τ̃η̃(Ej ∩Rk) ≤ τη̃(Ej) ∪ τ̃η̃(Rk) and τ̃µ̃(Ej ∩Rk) ≤

τ̃µ̃(Ej) ∪ τ̃µ̃(Rk), we obtain

τ̃
γ̃
st(E ∩R) ≥

⋂

j,k

τ̃γ̃(Ej ∩Rk) ≥
⋂

j,k

(τ̃γ̃(Ej) ∩ τ̃γ̃(Rk)) = [
⋂

j∈Γ

(τ̃γ̃(Ej)] ∩ [
⋂

k∈K

τ̃γ̃(Rk)] > r,

τ̃
η̃
st(E ∩R) ≤

⋃

j,k

τ̃η̃(Ej ∩Rk) ≤
⋃

j,k

(τ̃η̃(Ej) ∪ τ̃η̃(Rk)) = [
⋃

j∈Γ

(τ̃η̃(Ej)] ∪ [
⋃

k∈K

τ̃η̃(Rk)] < 1− r,

τ̃
γ̃
st(E ∩R) ≤

⋃

j,k

τ̃γ̃(Ej ∩Rk) ≤
⋃

j,k

(τ̃µ̃(Ej) ∪ τ̃
µ̃
st(Rk)) = [

⋃

j∈Γ

(τ̃µ̃(Ej)] ∪ [
⋃

k∈K

τ̃
µ̃
st(Rk)] < 1− r
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It is a contradiction. Hence, for each E ,R ∈ ζ X̃ ,

τ̃
γ̃
st(E ∩R) ≥ τ̃

γ̃
st(E) ∩ τ̃

γ̃
st(R), τ̃

η̃
st(E ∩R) ≤ τ

η̃
st(E) ∪ τ̃

η̃
st(R), τ̃

µ̃
st(E ∩R) ≤ τ̃

µ̃
st(E) ∪ τ̃

µ̃
st(R).

(SVNT3) Suppose there exists a family {Ej ∈ ζ X̃ | j ∈ Γ} and r ∈ ζ0 with

τ̃
γ̃
st(

⋃

j∈Γ

Ej) < r <
⋂

j∈Γ

τ̃
γ̃
st(Ej),

τ̃
η̃
st(

⋃

i∈Γ

Ej) > 1− r >
⋃

j∈Γ

τ̃
η̃
st(Ej),

τ̃
µ̃
st(

⋃

j∈Γ

Ej) > 1− r >
⋃

j∈Γ

τ̃
µ̃
st(Ej)

Since [τ̃γ̃
st(Ej) ≥ r, τ̃

η̃
st(Ej) ≤ 1− r and τ̃

µ̃
st(Ej) ≤ 1− r] for all j ∈ Γ, there exists a family {Ejk | k ∈ Kj}

with Ej =
⋃

k∈Kj
Ejk ∩ α̃k such that

τ̃
γ̃
st(Ej) ≥

⋂

k∈Kj

τ̃
γ̃
st(Ejk) > r,

τ̃
η̃
st(Ej) ≤

⋃

k∈Kj

τ̃
η̃
st(Ejk) < 1− r,

τ̃
µ̃
st(Ej) ≤

⋃

k∈Kj

τ̃
µ̃
st(Ejk) < 1− r.

Since
⋃

j∈Γ Ej =
⋃

j∈Γ(
⋃

k∈Kj
(Ejk ∩ α̃k)) =

⋃
j,k(Ejk ∩ α̃k), we obtain

τ̃
γ̃
st(

⋃

j∈Γ

Ej) ≥
⋂

j,k

τ̃γ̃(Ejk) =
⋂

j∈Γ

(
⋂

k∈Kj

τ̃γ̃(Ejk) ≥ r,

τ̃
η̃
st(

⋃

j∈Γ

Ej) ≤
⋃

j,k

τ̃η̃(Ejk) =
⋃

j∈Γ

(
⋃

k∈Kj

τ̃η̃(Ejk) ≤ 1− r,

τ̃
µ̃
st(

⋃

j∈Γ

Ej) ≤
⋃

j,k

τ̃µ̃(Ejk) =
⋃

j∈Γ

(
⋃

k∈Kj

τ̃µ̃(Ejk) ≤ 1− r

It is a contradiction. Hence, for each {Ej}j∈Γ ∈ ζ X̃

τ̃
γ̃
st(

⋃

j∈Γ

Ej) ≥
⋂

j∈Γ

τ̃
γ̃
st(Ej), τ̃

η̃
st(

⋃

i∈Γ

Sj) ≤
⋃

j∈Γ

τ̃
η̃
st(Ej), τ̃

µ̃
st(

⋃

i∈Γ

Sj) ≤
⋃

j∈Γ

τ̃
µ̃
st(Ej).

Secondly, for each S ∈ ζ X̃, there exists a family {1̃} with S = S ∩ 1̃, such that [τ̃γ̃
st(S) ≥ τ̃γ̃(S),

τ̃
η̃
st(S) ≤ τ̃η̃(S) and τ̃

µ̃
st(S) ≤ τ̃µ̃(S)]. Hence, (τ̃γ̃

st, τ̃
η̃
st, τ̃

µ̃
st) is finer than (τ̃γ̃, τ̃η̃ , τ̃µ̃). Finally, if a stratified

SVNT (Ũγ̃, Ũη̃ , Ũµ̃) is finer than (τ̃γ̃, τ̃η̃ , τ̃µ̃), we show that [τ̃γ̃
st(S) ≤ Ũγ̃(S), τ̃

η̃
st(S) ≥ Ũη̃(S) and

τ̃
µ̃
st(S) ≥ Ũµ̃(E)] for each S ∈ ζ X̃ .
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Suppose that there exist E ∈ ζ X̃ and r ∈ ζ0 such that

τ̃
γ̃
st(E) > r > Ũγ̃(E), τ̃

η̃
st(E) < 1− r < Ũη̃(E), τ̃

µ̃
st(E) < 1− r < Ũµ̃(E).

Since [τ̃γ̃
st(E) > r, τ̃

η̃
st(E) < 1− r and τ̃

µ̃
st(E) < 1− r], there exists {Ej | j ∈ Γ} with Ej =

⋃
j∈Γ(Ej ∩ α̃j)

such that

τ̃
γ̃
st(E) ≥

⋂

j∈Γ

τ̃γ̃(Ej) > r, τ̃
η̃
st(E) ≤

⋃

j∈Γ

τ̃η̃(Ej) < 1− r, τ̃
µ̃
st(E) ≤

⋃

j∈Γ

τ̃µ̃(Ej) < 1− r.

On the other hand, since [Ũγ̃(Ej) ≥ τ̃γ̃(Ej), Ũη̃(Ej) ≤ τ̃η̃(Ej) and Ũµ̃(Ej) ≤ τ̃µ̃(Ej)] for all j ∈ Γ,
we have

Ũγ̃(E) = Ũγ̃(
⋃

j∈Γ

(Ej ∩ α̃j)) ≥
⋂

j∈Γ

Ũγ̃(Ej ∩ α̃j) ≥
⋂

j∈Γ

[Ũγ̃(Ej) ∩ Ũγ̃(α̃j)] =
⋂

j∈Γ

Ũγ̃(Ej) ≥
⋂

j∈Γ

τ̃γ̃(Ej) > r,

Ũη̃(E) = Ũη̃(
⋃

j∈Γ

(Ej ∩ α̃j)) ≤
⋃

j∈Γ

Ũη̃(Ej ∩ α̃j) ≤
⋃

j∈Γ

[Ũη̃(Ej) ∪ Ũη̃(α̃j)] =
⋃

j∈Γ

Ũη̃(Ej) ≤
⋃

j∈Γ

τ̃η̃(Ej) < 1− r

Ũµ̃(E) = Ũη̃(
⋃

j∈Γ

(Ej ∩ α̃j)) ≤
⋃

j∈Γ

Ũµ̃(Ej ∩ α̃j) ≤
⋃

j∈Γ

[Ũµ̃(Ej) ∪ Ũµ̃(α̃j)] =
⋃

j∈Γ

Ũµ̃(Ej) ≤
⋃

j∈Γ

τ̃µ̃(Ej) < 1− r

It is a contradiction.

Remark 2. From Defintion 13 and Theorem 8, we have (τ̃γ̃
st, τ̃

η̃
st, τ̃

µ̃
st) as a stratification for SVNT (τ̃γ̃, τ̃η̃ , τ̃µ̃)

on X̃.

Example 4. Let X̃ = {a, b, c} be a set. Define E1, E2 ∈ ζ X̃ as follows:

E1 = 〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)〉; E2 = 〈(0.4, 0.4, 0.4), (0.4, 0.4, 0.4), (0.6, 0.6, 0.6)〉.

We define τ̃γ̃, τ̃η̃ , τ̃µ̃ : ζ X̃xζ0 → ζ as follows: for every S ∈ ζ X̃ ,

τ̃γ̃(S) =





1, if S = 0̃,
1, if S = 1̃,
1
3 , if S = E1,
1
2 , if S = E2,
3
4 , if S = E1 ∪ E2,
2
3 , if S = E1 ∩ E2,
0, otherwise,

τ̃η̃(S) =





0, if S = 0̃,
0, if S = 1̃,
2
3 , if S = E1,
1
2 , if S = E2,
1
4 , if S = E1 ∪ E2,
1
3 , if S = E1 ∩ E2,
1, otherwise,

τ̃µ̃(S) =





0, if S = 0̃,
0, if S = 1̃,
2
3 , if S = E1,
1
2 , if S = E2,
1
2 , if S = E1 ∪ E2,
1
3 , if S = E1 ∩ E2,
1, otherwise,
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If γ̃S (ω) = α for any 0.5 < α < 0.6, η̃S (ω) = α for every 0.5 < α < 0.6 and γ̃S (ω) = 0.6 for all
β ≥ 0.6, since

S = (α̃ ∩ 1̃) ∪ (β̃ ∩ (E1 ∪ E2)) = (α̃ ∩ 1̃) ∪ (β̃ ∩ E2).

Then,

τ̃
γ̃
st(S) = [τ̃γ̃(1̃) ∩ τ̃γ̃(E1 ∪ E2)] ∪ [τ̃γ̃(1̃) ∩ τ̃γ̃(E2)] =

3
4

,

τ̃
η̃
st(S) = [τ̃η̃(1̃) ∪ τ̃η̃(E1 ∪ E2)] ∩ [τ̃η̃(1̃) ∪ τ̃η̃(E2)] =

1
4

,

τ̃
µ̃
st(S) = [τ̃µ̃(1̃) ∪ τ̃µ̃(E1 ∪ E2)] ∩ [τ̃µ̃(1̃) ∪ τ̃µ̃(E2)] =

1
2

.

If γ̃S (ω) = α ∀ 0.5 < α < 0.6, η̃S (ω) = α ∀ 0.5 < α < 0.6 and γ̃S (ω) = β ∀ 0.5 < α, β ≥ 0.6, we have
τ̃

γ̃
st(S) =

3
4 , τ̃

η̃
st(S) =

1
4 , τ̃

µ̃
st(S) =

1
2 .

If γ̃S (ω) = 0.5, η̃S (ω) = 0.5 and γ̃S (ω) = 0.6, since ∀ β ≥ 0.6, α ≥ 0.5,

S = (β̃ ∩ (E1 ∪ E2)) = (α̃ ∩ E1) ∪ (β̃ ∩ E2),

we obtain τ̃
γ̃
st(S) =

3
4 , τ̃

η̃
st(S) =

1
4 , τ̃

µ̃
st(S) =

1
2 .

If γ̃S (ω) = 0.5, η̃S (ω) = 0.5, and γ̃S (ω) = β, ∀ 0.5 < β < 0.6, since

S = (β̃ ∩ (E1 ∪ E2)) = (β̃ ∩ E1) ∪ (β̃ ∩ E2),

we obtain τ̃
γ̃
st(S) =

3
4 , τ̃

η̃
st(S) =

1
4 , τ̃

µ̃
st(S) =

1
2 .

If γ̃S (ω) = α, η̃S (ω) = α, and γ̃S (ω) = β, ∀ 0.4 < α β < 0.5 and α < β, since for every
S1 = {1̃, E1, E1 ∪ E2} and S2 = {E2, E1 ∩ E2}

S = (α̃ ∩ E1) ∪ (β̃ ∩ E2),

we have τ̃
γ̃
st(S) =

2
3 , τ̃

η̃
st(S) =

1
3 , τ̃

µ̃
st(S) =

1
3 . We can obtain the following:

τ̃
γ̃
st(S) =





1, if S = α̃,
3
4 , if γ̃S (ω) = α, η̃S (ω) = α and µ̃S (ω) = β f or 0.5 ≤ α, β ≤ 0.6, α < β,
1
2 , if γ̃S (ω) = α, η̃S (ω) = α f or 0.4 ≤ α < 0.5 and µ̃S (ω) = β, f or 0.5 < β ≤ 0.6,
2
3 , if γ̃S (ω) = α, η̃S (ω) = α and µ̃S (ω) = β f or 0.4 ≤ α, β ≤ 0.5, α < β,
0, otherwise,

τ̃
η̃
st(S) =





0, if S = α̃,
1
4 , if γ̃S (ω) = α, η̃S (ω) = α and µ̃S (ω) = β f or 0.5 ≤ α, β ≤ 0.6, α < β,
1
2 , if γ̃S (ω) = α, η̃S (ω) = α f or 0.4 ≤ α < 0.5 and µ̃S (ω) = β, f or 0.5 < β ≤ 0.6,
1
3 , if γ̃S (ω) = α, η̃S (ω) = α and µ̃S (ω) = β f or 0.4 ≤ α, β ≤ 0.5, α < β,
1, otherwise,
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τ̃
µ̃
st(S) =





0, if S = α̃,
1
4 , if γ̃S (ω) = α, η̃S (ω) = α and µ̃S (ω) = β f or 0.5 ≤ α, β ≤ 0.6, α < β,
1
2 , if γ̃S (ω) = α, η̃S (ω) = α f or 0.4 ≤ α < 0.5 and µ̃S (ω) = β, f or 0.5 < β ≤ 0.6,
1
3 , if γ̃S (ω) = α, η̃S (ω) = α and µ̃S (ω) = β f or 0.4 ≤ α, β ≤ 0.5, α < β,
1, otherwise.

Theorem 9. Let (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃), (Ỹ, Ũγ̃, Ũη̃ , Ũµ̃) be two SVNT S ′s and let (τ̃γ̃
st, τ̃

η̃
st, τ̃

µ̃
st) and (Ũγ̃

st, Ũη̃
st, Ũµ̃

st)

be stratification for (τ̃γ̃, τ̃η̃ , τ̃µ̃) and (Ũγ̃, Ũη̃ , Ũµ̃), respectively. If f : (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃)→ (Ỹ, Ũγ̃, Ũη̃ , Ũµ̃) is
r-SVN -continuous, then f : (X̃, τ̃

γ̃
st, τ̃

η̃
st, τ̃

µ̃
st)→ (Ỹ, Ũγ̃

st, Ũη̃
st, Ũµ̃

st) is r-SVN -continuous.

Proof. Suppose there exist r ∈ ζ0,R ∈ ζ X̃ , such that

Ũγ̃
st(R) > r > τ̃

γ̃
st( f−1(R)),

Ũη̃
st(R) < 1− r < τ̃

η̃
st( f−1(R))

Ũµ̃
st(R) < 1− r < τ̃

µ̃
st( f−1(R))

Since Ũγ̃
st(R) > r, Ũη̃

st(R) < 1− r and Ũµ̃
st(R) < 1− r, by the definition of (Ũγ̃

st, Ũη̃
st, Ũµ̃

st), there exists a
family {Rj}j∈Γ withR =

⋃
j∈Γ(Rj ∩ α̃j) such that

Ũγ̃
st(R) ≥

⋂

j∈Γ

Ũγ̃(Rj) > r, Ũη̃
st(R) ≤

⋃

j∈Γ

Ũη̃(Rj) < 1− r,

Ũµ̃
st(R) ≤

⋃

j∈Γ

Ũµ̃(Rj) < 1− r.

Since

f−1(R) = f−1(
⋃

j∈Γ

(Rj ∩ α̃j)) =
⋃

j∈Γ

f−1(R) ∩ α̃j,

and by Remark 2 and Theorem 8, we obtain

τ̃
γ̃
st( f−1(R)) ≥

⋂

j∈Γ

τ̃γ̃( f−1(Rj)),

τ̃
η̃
st( f−1(R)) ≤

⋃

j∈Γ

τ̃η̃( f−1(Rj)),

τ̃
µ̃
st( f−1(R)) ≤

⋃

j∈Γ

τ̃µ̃( f−1(Rj)).

Since f : (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) → (Ỹ, Ũγ̃, Ũη̃ , Ũµ̃) is r-SVN -continuous, that is, τ̃γ̃( f−1(Rj)) ≥ Ũγ̃(Rj),
τ̃η̃( f−1(Rj)) ≤ Ũη̃(Rj), τ̃µ̃( f−1(Rj)) ≤ Ũµ̃(Rj) for every j ∈ Γ,

τ̃
γ̃
st( f−1(R)) ≥

⋂

j∈Γ

τ̃γ̃( f−1(Rj)) ≥
⋂

j∈Γ

Ũγ̃(Rj) > r,
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τ̃
η̃
st( f−1(R)) ≤

⋃

j∈Γ

τ̃η̃( f−1(Rj)) ≤
⋃

j∈Γ

Ũη̃(Rj) < 1− r,

τ̃
µ̃
st( f−1(R)) ≤

⋃

j∈Γ

τ̃µ̃( f−1(Rj)) ≤
⋃

j∈Γ

Ũµ̃(Rj) < 1− r.

It is contradiction. Hence, f : (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st)→ (Ỹ, Ũγ̃

st, Ũη̃
st, Ũµ̃

st) is r-SVN -continuous.

The converse of the previous theorem is not true in general as it will be shown by the
following example.

Example 5. Let X̃ be a nonempty set. Define SVNT ′s (τ̃γ̃, τ̃η̃ , τ̃µ̃) and (Ũγ̃, τ̃Ũ , Ũµ̃), for each S ∈ ζ X̃ and
defineR ∈ ζ X̃ as follows: R = 〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)〉,

τ̃γ̃(S) =

{
1, if S = 0̃, 1̃,
0, otherwise,

τ̃η̃(S) =

{
0, if S = 0̃, 1̃,
1, otherwise,

τ̃µ̃(S) =

{
0, if S = 0̃, 1̃,
1, otherwise.

Ũγ̃(S) =





1, if S = 0̃, 1̃,
1
3 , if S = R,
0, otherwise,

Ũη̃(S) =





0, if S = 0̃, 1̃,
2
3 , if S = R,
1, otherwise,

Ũµ̃(S) =





0, if S = 0̃, 1̃,
2
3 , if S = R,
1, otherwise.

Since 0 = τ̃
γ̃
st(R) < Ũγ̃(R) = 1

3 , 0 = τ̃
η̃
st(R) > Ũη̃(R) = 2

3 and 0 = τ̃
µ̃
st(R) > Ũµ̃(R) = 2

3 ,
then the identity mapping idx : (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) → (X̃, Ũγ̃, ŨŨ , Ũµ̃) is not r-SVN -continuous.
Since for every a family {1̃} andR = R∩ 1̃, we have Ũγ̃

st(R) ≥ Ũγ̃(1̃) = 1, Ũη̃
st(R) ≤ Ũη̃(1̃) = 0 and

Ũµ̃
st(R) ≤ Ũµ̃(1̃) = 0. Thus, Ũγ̃

st(R) = 1, Ũη̃
st(R) = 0 and Ũµ̃

st(R) = 0. Hence,

τ̃
γ̃
st(S) = Ũγ̃

st(S) =

{
1, if S = α̃, ∀α ∈ ζ0,
0, otherwise,

τ̃
η̃
st(S) = Ũη̃

st(S) =

{
0, if S = α̃, ∀α ∈ ζ0

1, otherwise,

τ̃
µ̃
st(S) = Ũµ̃

st(S) =

{
0, if S = α̃, ∀α ∈ ζ0

1, otherwise.

Therefore, idx : (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st)→ (X̃, Ũγ̃

st, Ũη̃
st, Ũµ̃

st) is r-SVN -continuous.

In the following, we will show that every r-SVNCOM in the single-valued neutrosophic is
r-SVNCOM in the stratification of it.

Theorem 10. Let (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st) be a stratification of an SVNT S (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃). A SVNS S is a

r-SVNCOM in (τ̃γ̃, τ̃η̃ , τ̃µ̃) iff S is a r-SVNCOM in (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st)

Proof. (1) Let S be r-SVNCOM in (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st). Suppose that S is not r-SVNCON in

(X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃). Then, E 6= 0̃ and R 6= 0̃ are r-SVNSEP in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) such that S = E ∪ D.
Since τ̃γ̃ ≤ τ̃

γ̃
st, τ̃η̃ ≥ τ̃

η̃
st and τ̃µ̃ ≥ τ̃

µ̃
st, then, from Theorem 8, we get

C
τ̃

γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(E , r) ≤ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E , r), C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(R, r) ≤ Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(R, r).

Hence, E ,R are r-SVNSEP in (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st). Thus, S is not r-SVNCOM in (X̃, τ̃

γ̃
st, τ̃

η̃
st, τ̃

µ̃
st). We reach

a contradiction.
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(2) Now, we show that, if S is r-SVNCOM in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃), then S is r-SVNCON in
(X̃, τ̃

γ̃
st, τ̃

η̃
st, τ̃

µ̃
st). Let S be a r-SVNCOM in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃). Then, by Corollary 2 (1), we have

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) = S .

Supposing that S is not r-SVNCON in (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st), then E 6= 0̃,R 6= 0̃ are r-SVNSEP

in (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st) such that S = E ∪ R. Since τ̃γ̃ ≤ τ̃

γ̃
st, τ̃η̃ ≥ τ̃

η̃
st, τ̃µ̃ ≥ τ̃

µ̃
st, then C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(S , r) ≤

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(S , r) = S . Thus, C
τ̃

γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(S , r) = S . Since E ≤ S , we have C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(E , r) ≤ S . It implies

that S = C
τ̃

γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(E , r) ∪ R. Put C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(E , r) = D. If x ∈ supp(E), then x ∈ supp(S). Since S

is a r-SVNCOM in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃), by Corollary 2 (4), x1 ∈ S = D ∪R, that is, D(x) ∪ R(x) = 1.
Since D ∩ R = 0̃, thus, R(x) = 0. It implies that D(x) = 1. Therefore, D is a crisp set. Since
τ̃

γ̃
st(1̃−D) ≥ r, τ̃

η̃
st(1̃−D) ≤ 1− r, and τ̃

µ̃
st(1̃−D) ≤ 1− r. By Theorems (1) and (2), for each family,

{α̃j ∩ Cj : 1̃−D =
⋃

j∈Γ α̃j ∩ Cj},

τ̃
γ̃
st(1̃−D) =

⋃
{
⋂

j∈Γ

τ̃γ̃(Cj)} ≥ r, τ̃
η̃
st(1̃−D) =

⋂
{
⋃

j∈Γ

τ̃η̃(Cj)} ≤ 1− r,

τ̃
µ̃
st(1̃−D) =

⋂
{
⋃

j∈Γ

τ̃µ̃(Cj)} ≤ 1− r.

Let α̃j = 0̃. Since D(x) = 1 for any x ∈ supp(D), we have

(1̃−D)(x) =
⋃

j∈Γ

(α̃j ∩ Cj)(x)⇒ 1 = D(x) =
⋂

j∈Γ

(1̃− α̃j)(x) ∪ (1̃− Cj)(x).

Hence, (1̃−D)(x) =
⋃

j∈Γ(Cj)(x) for x ∈ supp(E). If y 6∈ supp(D), then

1 = (1̃−D)(y) = (α̃j ∩ Cj)(y) ≤
⋃

j∈Γ

Cj(y).

Thus, for any family {α̃j ∩ Cj : 1̃−D =
⋃

j∈Γ α̃j ∩ Cj}, we have 1̃−D =
⋃

j∈Γ Cj. It implies

τ̃
γ̃
st(1̃−D) = τ̃γ̃(1̃−D) =

⋂

j∈Γ

τ̃γ̃(Cj) ≥ r,

τ̃
η̃
st(1̃−D) = τ̃η̃(1̃−D) =

⋂

j∈Γ

τ̃η̃(Cj) ≤ 1− r,

τ̃
µ̃
st(1̃−D) = τ̃µ̃(1̃−D) =

⋂

j∈Γ

τ̃µ̃(Cj) ≤ 1− r.

Thus, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(D, r) = D. It implies

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(C
τ̃

γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(E , r), r) = C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(E , r).

Similarly, Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(C
τ̃

γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(R, r), r) = C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(R, r). Thus, E and R are r-SVNSEP in

(X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) from

Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(R, r) ∩ E ≤ (Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(C
τ̃

γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(R, r), r) ∩ E) = (C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(R, r), r) ∩ E) = 0̃,
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Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(E , r) ∩R ≤ (Cτ̃γ̃ ,τ̃η̃ ,τ̃µ̃(C
τ̃

γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(D, r), r) ∩R) = (C

τ̃
γ̃
st ,τ̃

η̃
st ,τ̃

µ̃
st
(E , r), r) ∩R) = 0̃.

Thus, S is not r-SVNCOM in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃). It is a contradiction.
(3) Let S be a r-SVNCOM in (X̃, τ̃

γ̃
st, τ̃

η̃
st, τ̃

µ̃
st). From (1), S is r-SVNCON in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃). There

exists a r-SVNCOMR in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃) containing S . From (2),R is r-SVNCON in (X̃, τ̃
γ̃
st, τ̃

η̃
st, τ̃

µ̃
st).

Thus, S = R.
LetR be a r-SVNCOM in (X̃, τ̃γ̃, τ̃η̃ , τ̃µ̃). Similarly,R is a r-SVNCOM in (X̃, τ̃

γ̃
st, τ̃

η̃
st, τ̃

µ̃
st).

Example 6. In Example 4, we proved that (τ̃γ̃
st, τ̃

η̃
st, τ̃

µ̃
st) is a stratification for SVNT (τ̃γ̃, τ̃η̃ , τ̃µ̃) on X̃.

By Theorem 10, we can clearly see that each r-SVNCOM in (τ̃γ̃, τ̃η̃ , τ̃µ̃) is r-SVNCOM in (τ̃γ̃
st, τ̃

η̃
st, τ̃

µ̃
st),

The opposite is also true.

For the purpose of Symmetry, we can apply the idea in the following definition into Definition 3
and get the desired symmetry’s consequences.

Note A SVNS R in X̃× X̃ is called a single valued neutrosophic relation (SVNR, for short) in
X̃, denoted byR = {〈(x, x1)γ̃R(x, x1), η̃R(x, x1), µ̃R(x, x1)〉 : (x, x1) ∈ X̃× X̃}, where γ̃R : X̃× X̃ →
[0, 1], η̃R : X̃× X̃ → [0, 1], µ̃R : X̃× X̃ → [0, 1] denote the truth-membership function, indeterminacy
membership function and falsity-membership function ofR, respectively.

Definition 14 ([17]). Let S , E ∈ ζ X̃. If S is a single-valued neutrosophic relation on a set X̃, then S is
called a single-valued neutrosophic relation on E if, for every x, x1 ∈ X̃, γ̃S (x, x1) ≤ min(γ̃E (x), γ̃E (x1)),
η̃S (x, x1) ≥ max(η̃E (x), η̃E (x1)) and µ̃S (x, x1) ≥ max(µ̃E (x), µ̃E (x1)).

Moreover, a single-valued neutrosophic relation S on X̃ is called symmetric if, for any k, k1 ∈ X̃,
γ̃S (k, k1) = γ̃S (k1, k), η̃S (k, k1) = η̃S (k1, k), µ̃S (k, k1) = µ̃S (k1, k); and γ̃E (k, k1) = γ̃E (k1, k)
η̃E (k, κ1) = η̃E (k1, k), µ̃E (k, k1) = µ̃E (k1, k).

Example 7. Let X̃ = {x1, x2, x3, x4, x5}. A a single valued neutrosophic relation S on X̃ is given in the
following table.

S x1 x2 x3 x4 x5

x1 (0.2, 0.6, 0.4) (0, 0.3, 0.7) (0.9, 0.2, 0.4) (0.3, 0.9, 1) (0.3, 0.9, 1)

x2 (0.4, 0.5, 0.1) (0.1, 0.7, 0) (1, 1, 1) (1, 0.3, 0) (0.5, 0.6, 1)

x3 (0, 1, 1) (1, 0.5, 0) (0, 0, 0) (0.2, 0.8, 0.1) (1, 0.8, 1)

x4 (1, 0, 0) (0, 0, 1) (0.5, 0.7, 0.1) (0.1, 0.4, 1) (1, 0.8, 0.8)

x5 (0, 1, 0) (0.9, 0, 0) (0, 0.1, 0.7) (0.8, 0.9, 1) (0.6, 1, 0)

5. Conclusions

In this paper, authors have made a study of the connectedness, the idea of component, and the
stratification of single-valued neutrosophic topological spaces which are different from the study
taken so far and obtained some of their basic properties. Next, the concepts of an r-SVNSEP
and r-SVNCOM were introduced and studied. It has been proven that every r-SVNCOM in an
single-valued neutrosophic topological spaces is r-SVNCOM in the stratification of it. We will
now go into detail on some of the conclusions of the research. Firstly, a single-valued neutrosophic
connected (r-SVNCON ) has the same properties in a single-valued neutrosophic topological spaces
(see Theorem 3). Secondly, a single-valued neutrosophic separated (r-SVNSEP) has the same
properties in a single-valued neutrosophic topological spaces (see Theorems 4 and 5). Finally,
it has been proven that every single-valued neutrosophic component (r-SVNCOM) in single-valued
neutrosophic topological spaces is r-SVNCOM in the stratification of it.
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Discussion for Further Works
It is known that the notion of boundedness in topological spaces (see [26]) plays a significant role

in topological aspects. It is also well known that the collection of bounded sets is an ideal. This concept
is generalized to the concept of bornology (which is essentially an interesting ideal). There is also the
corresponding generalized notion in fuzzy topics (the concept of fuzzy bornology (see [27]).

Therefore, the following ideas could be applied to the notion of single-valued neutrosophic
topological spaces.

(a) The collection of bounded single-valued sets;
(b) The concept of fuzzy bornology;
(c) The notion of boundedness in topological spaces.
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Abstract: With increasing data on the Internet, it is becoming difficult to analyze every bit and make
sure it can be used efficiently for all the businesses. One useful technique using Natural Language
Processing (NLP) is sentiment analysis. Various algorithms can be used to classify textual data based
on various scales ranging from just positive-negative, positive-neutral-negative to a wide spectrum of
emotions. While a lot of work has been done on text, only a lesser amount of research has been done
on audio datasets. An audio file contains more features that can be extracted from its amplitude and
frequency than a plain text file. The neutrosophic set is symmetric in nature, and similarly refined
neutrosophic set that has the refined indeterminacies I1 and I2 in the middle between the extremes
Truth T and False F. Neutrosophy which deals with the concept of indeterminacy is another not so
explored topic in NLP. Though neutrosophy has been used in sentiment analysis of textual data, it has not
been used in speech sentiment analysis. We have proposed a novel framework that performs sentiment
analysis on audio files by calculating their Single-Valued Neutrosophic Sets (SVNS) and clustering them
into positive-neutral-negative and combines these results with those obtained by performing sentiment
analysis on the text files of those audio.

Keywords: sentiment analysis; Speech Analysis; Neutrosophic Sets; indeterminacy; Single-Valued
Neutrosophic Sets (SVNS); clustering algorithm; K-means; hierarchical agglomerative clustering

1. Introduction

While many algorithms and techniques were developed for sentiment analysis in the previous years,
from classification into just positive and negative categories to a wide spectrum of emotions, less attention
has been paid to the concept of indeterminacy. Early stages of work were inclined towards Boolean
logic which meant an absolute classification into positive or negative classes, 1 for positive and 0 for
negative. Fuzzy logic uses the memberships of positive and negative that can vary in the range 0 to 1.
Neutrosophy is the study of indeterminacies, meaning that not every given argument can be distinguished
as positive or negative, it emphasizes the need for a neutral category. Neutrosophy theory was introduced
in 1998 by Smarandache [1], and it is based on truth membership T, indeterminate membership I and false
membership F that satisfies 0 ≤ T + I + F ≤ 3, and the memberships are independent of each other. In case
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of using neutrosophy in sentiment analysis, these memberships are relabelled as positive membership,
neutral membership and negative membership.

Another interesting topic is the speech sentiment analysis, it involves processing audio. Audio files
cannot be directly understood by models. Machine learning algorithms do not take raw audio files as
input hence it is imperative to extract features from the audio files. An audio signal is a three-dimensional
signal where the three axes represent amplitude, frequency and time. Previous work on detecting the
sentiment of audio files is inclined towards emotion detection as the audio datasets are mostly labelled
and created in a manner to include various emotions. Then using the dataset for training classifiers are
built. Speech analysis is also largely associated with speech recognition. Speech analysis is the process of
analyzing and extracting information from the audio files which are more efficient than the text translation
itself. Features can be extracted from audio using Librosa package in python. A total of 193 features per
audio file have been retrieved including Mel-Frequency Cepstral Coefficients (MFCC), Mel spectogram,
chroma, contrast, and tonnetz. The goal of this project is to establish a relationship between sentiment
detected in audio and sentiment detected from the translation of the same audio to text. Work done
in the domain of speech sentiment analysis is largely focused on labelled datasets because the datasets
are created using actors and not collected like it is done for text where we can scrape tweets, blogs or
articles. Hence the datasets are labelled as various emotions such as the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS) dataset which contains angry, happy, sad, calm, fearful, disgusted,
and surprised classes of emotions. These datasets have no text translation provided hence no comparison
can be established. With unlabelled datasets such as VoxCeleb1/2 which have been randomly collected
from random YouTube videos, again the translation problem arises leading to no meaningful comparison
scale. We need audio data along with the text data for comparison, so a dataset with audio translation was
required. Hence LibriSpeech dataset [2] was chosen, it is a corpus of approximately 1000 h of 16 kHz read
English speech.

The K-means clustering algorithm performs clustering of n values in K clusters, where each value
belongs to a cluster. Since the dataset is unlabelled features extracted from the audio are clustered using
the K-means clustering algorithm. Then the distance of each point from the centroid of each cluster is
calculated. 1-distance implies the closeness of an audio file to every cluster. This closeness measure
is used to generate Single Value Neutrosophic Sets (SVNS) for the audio. Since the data is unlabelled,
we performed clustering of SVNS values using the K-means clustering.

Sentiment analysis of the text has various applications. It is used by businesses for analysing customer
feedback of products and brands without having to go through all of them manually. An example of this
real-life application could be social media monitoring where scraping and analysing tweets from Twitter on
a certain topic or about a particular brand or personality and analysing them could very well indicate the
general sentiment of the masses. Ever since internet technology started booming, data became abundant.
While it is simpler to process and derive meaningful results from tabular data, it is the need for the hour to
process unstructured data in the form of sentences, paragraphs or text files and PDFs. Hence NLP provides
excellent sentiment analysis tools for the same. However, sentiment cannot be represented as a black and
white picture with just positive and negative arguments alone. To factor in indeterminacy, we have the
concept of neutrosophy which means the given argument may either be neutral or with no relation to the
extremes. Work done previously related to neutrosophy will be explained in detail in the next section.

For the sentiment analysis of text part, the translation of the audio is provided as text files along with
the dataset which mitigates the possibility of inefficient translation. In this paper, using Valence Aware
Dictionary and Sentiment Reasoner (VADER), a lexicon and rule-based tool for sentiment analysis on the
text files, SVNS values for text are generated. Then K-means clustering is applied to visualize the three
clusters. The first step is the comparison of the two K-means plots indicating the formation of a cluster
larger than the rest in audio SVNS implying the need for a neutral class. Then both the SVNS are combined
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by averaging out the two scores respectively for Px, Ix and Nx. Again K-means clustering and hierarchical
agglomerative clustering is performed on these SVNS values to get the final clusters for each file.

Neutrosophic logic uses Single Valued Neutrosophic Sets (SVNS) to implement the concept of
indeterminacy in sentiment analysis. For every sentence A, its representative SVNS is generated. SVNS
looks like 〈PA, IA, NA〉 where ‘PA’ is the positive sentiment score, ‘IA’ is the indeterminacy or neutrality
score and ‘NA’ is the negative sentiment score. Neutrosophy was introduced to detect the paradox
proposition.

In this paper, a new innovative approach is carried out in which we use unlabelled audio dataset
and then generate SVNS for audio to analyse audio files from the neutrosophic logic framework.
The higher-level architecture is shown in Figure 1.

Figure 1. High level architecture.

Indeterminacy is a strong concept which has rightly indicated the importance of neutral or
indeterminate class in text sentiment analysis. Coupling it with speech analysis is just an attempt to
prove that not all audio can be segregated into positive and negative. There is a very good amount of
neutrality present in the data that needs to be represented. We have used clustering to validate the presence
of neutrality.

This paper is organized as follows: Section 1 is introductory in nature, the literature survey is
provided in Section 2. In Section 3, the basic concepts related to speech sentiment analysis, text sentiment
analysis and neutrosophy are recalled. The model description of the proposed framework that makes
uses of neutrosophy to handle speech and text sentiment analysis is given in Section 4. In Section 5 the
experimental results in terms of K-clustering and agglomerative clustering are provided. Results and
discussions about combined SVNS are carried out in Section 6. The conclusions are provided in the
last section.

2. Literature Survey

Emphasizing on the need and application of sentiment analysis in business and how it can play a
crucial role in data monitoring on social media. The fuzzy logic model by Karen Howells and Ahmet
Ertugan [3] attempts to form a five class classifier—strongly positive, positive, neutral, negative and
strongly negative for tweets. It is proposed to add fuzzy logic classifier to the social bots used for data
mining. It will result in the analysis of the overall positive, neutral and negative sentiments which will
facilitate the companies to develop strategies to improve the customer feedback and improve the reputation
of their products and brand. A study on application of sentiment analysis in the tourism industry [4]
shows that most of the sentiment analysis methods perform better for positive class. One of the reasons
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for this could be the fact that human language is inclined towards positivity. It is even more difficult to
detect neutral sentiment. Ribeiro and others have pointed out a similar observation in [5] that twelve
out of twenty-four methods are better in classifying positive sentiment and neutral sentiment is harder
to identify. They also concluded from their experiments that VADER tool provides consistent results for
three-classes (positive, neutral, negative) classification.

Similarly, Hutto and Gilbert in [6] did an excellent job in comparing VADER tool eleven sentiment
analysis techniques depending on Naïve Bayes, Support Vector Machine (SVM) and maximum entropy
algorithms. They concluded that VADER is simple to understand and does not function like a black
box where the internal structure of process cannot be understood as in complex machine learning
and deep learning sentiment analysis techniques. VADER also performs in par with these benchmark
models and is highly efficient as it only requires a fraction of second for analysis because it uses a
lexicon rule-based approach, whereas its counterpart SVM can take much more time. VADER is also
computationally economical as it does not need any special technical specifications such as a GPU for
processing. The transparency of the tool attracts a larger audience as its users include professionals from
businesses and marketing as well as it allows researchers to experiment more. Hutto and Gilbert’s analysis
is applied in [7] to rule out the neutral tweets. They built an election prediction model for 2016 USA
elections. They used VADER to remove all the neutral tweets that were scraped to focus on positive and
negative sentiments towards Donald Trump and Hilary Clinton.

Fuzzy logic gives the measure of positive and negative sentiment in decimal figures, not as absolute
values 0 or 1 like Boolean logic. If truth measure is T, then F is falsehood according to the intuitionistic fuzzy
set and I is the degree of indeterminacy. Neutrosophy was proposed in [1], it was taken as 0 ≤ T + I + F ≤
3. The neutrosophy theory was introduced in 1998 by Smarandache [1]. Neutrality or indeterminacy was
introduced in sentiment analysis to address uncertainties. The importance of neutrosophy in sentiment
analysis for the benefit of its prime users such as NLP specialists was pointed out in [8]. To mathematically
apply neutrosophic logic in real world problems, Single Valued Neutrosophic Sets (SVNS) were introduced
in [9]. A SVNS for sentiment analysis represented by 〈PA, IA, NA〉 where ‘PA’ is the positive sentiment
score, ‘IA’ is the indeterminacy or neutrality score and ‘NA’ is the negative sentiment score.

Refined Neutrosophic sets were introduced in [10]. Furthermore, the concept of Double Valued
Neutrosophic Sets (DVNS) was introduced in [11]. DVNS are an improvisation of SVNS. The indeterminacy
score was split into two: one indicating indeterminacy of positive sentiment or ‘T’ the truth measure and
the other one indicating indeterminacy of negative sentiment or ‘F’ the falsehood measure. DVNS are
more accurate than SVNS. A minimum spanning tree clustering model was also introduced for double
valued neutrosophic sets. Multi objective non-linear optimization on four-valued refined neutrosophic set
was carried out in [12].

In [13] a detailed comparison between fuzzy logic and neutrosophic logic was shown by analyzing
the #metoo movement. The tweets relevant to the movement are collected from Twitter. After cleaning,
the tweets are then input in the VADER tool which generates SVNSs for each tweet. These SVNS are then
visualized using clustering algorithms such as K-means and K-NN. Neutrosophic refined sets [10,14–16]
have been developed and applied in various fields, including in sentiment analysis recently. However no
one has till now attempted to do speech sentiment analysis using neutrosophy and combine it with text
sentiment analysis.

A classifier with SVM in multi class mode was developed to classify a six class dataset by extracting
linear prediction coefficients, derived cepstrum coefficients and mel frequency cepstral coefficients [17].
The model shows a considerable improvement and results are 91.7% accurate. After various experiments
it was concluded in [18] that for emotion recognition convolutional neural networks capture rich features
of the dataset when a large sized dataset is used. They also have higher accuracy compared to SVM. SVMs
have certain limitations even though they can fit data with non-linearities. It was concluded that machine
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learning is a better solution for analysing audio. In [19] a multiple classifier system was developed for
speech emotion recognition. A multimodal system was developed in [20] to analyze audio, text and visual
data together. Features such as MFCC, spectral centroid, spectral flux, beat sum, and beat histogram are
extracted from the audio. For text, concepts were extracted based on various rules. For visual data, facial
features were incorporated. All these features were then concatenated into a single vector and classified.
A similar approach was presented in [21] to build multimodal classifier using audio, textual and visual
features and comparing it to its bimodal subsets (audio+text, text+visual, audio+visual). The same set
of features were extracted from audio using openSMILE software whereas for text convolutional neural
networks were deployed. These features were then combined using decision level fusion. From these
studies it can be very well inferred that using both audio and textual features for classification will yield
better or sensitive results.

3. Basic Concepts

3.1. Neutrosophy

Neutrosophy is essentially a branch of philosophy. It is based on understanding the scope and
dimensions of indeterminacy. Neutrosophy forms the basis of various related fields in statistical analysis,
probability, set theory, etc. In some cases, indeterminacy may require more information or in others, it
may not have any linking towards either positive or negative sentiment. To represent uncertain, imprecise,
incomplete, inconsistent, and indeterminate information that is present in the real world, the concept of a
neutrosophic set from the philosophical point of view has been proposed.

Single Valued Neutrosophic Sets (SVNS) is an instance of a Neutrosophic set. The concept of a
neutrosophic set is as follows:

Definition 1. Consider X to be a space of points (data-points), with an element in X represented by x.
A neutrosophic set A in X is denoted by a truth membership function TA(x), an indeterminacy membership
function IA(x), and a falsity membership function FA(x). The functions TA(x), IA(x), and FA(x) are real standard
or non-standard subsets of ]− 0, 1 + [; that is,

TA(x) : X ←]−0, 1+[

IA(x) : X ←]−0, 1+[,

FA(x) : X ←]−0, 1+[,

with the condition −0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

This definition of a neutrosophic set is difficult to apply in the real world in scientific and engineering
fields. Therefore, the concept of SVNS, which is an instance of a neutrosophic set, has been introduced.

Definition 2. Consider X be a space of points (data-points) with element in X denoted by x. An SVNS A in
X is characterized by truth membership function TA(x), indeterminacy membership function IA(x), and falsity
membership function FA(x). For each point x ∈ X, there are TA(x), IA(x), FA(x) ∈ [0, 1], and 0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3. Therefore, an SVNS A can be represented by

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X}

The various distance measures and clustering algorithms defined over neutrosophic sets are given
in [2,11,14].
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3.2. Sentiment Analysis of Text and VADER Package

Sentiment analysis is a very efficient tool in judging the popular sentiment revolving around any
particular product, services or brand. Sentiment analysis is also known as opinion mining. It is, in all
conclusive trails, a process of determining the tone behind a line of text and to get an understanding of the
attitude or polarity behind that opinion. Sentiment analysis is very helpful in social media understanding,
as it enables us to pick up a review of the more extensive general assessment behind specific subjects. Most
of the existing sentiment analysis tools classify the arguments into positive or negative sentiment based on
a set of predefined rules or ‘lexicons’. This enables the tool to calculate the overall leaning polarity of the
text and thus makes a decision on the overall tone of the subject.

VADER is an easy-to-use, highly accurate and consistent tool for sentiment analysis. It is fully open
source with the MIT License. It has a lexicon rule-based method to detect sentiment score for three classes:
positive, neutral, and negative. It provides a compound score that lies in the range [−1, 1]. This compound
score is used to calculate the overall sentiment of the input text. If the compound score ≥0.05, then it
is tagged as positive. If the compound score is ≤−0.05 then it tagged as negative. The arguments with
the compound score between (−0.05, 0.05) is tagged as neutral. VADER uses Amazon’s Mechanical Turk
to acquire their ratings, which is an extremely efficient process. VADER has a built in dictionary with a
list of positive and negative words. It then calculates the individual score by summing the pre-defined
score for the positive and negative words present in the dictionary. VADER forms a particularly strong
basis for social media texts since the tweets or comments posted on social media are often informal, with
grammatical errors and contain a lot of other displays of strong emotion, such as emojis, more than one
exclamation point, etc. As an example, the sentence, ‘This is good!!!’ will be rated as being ‘more positive’
than ‘This is good!’ by VADER. VADER was observed to be very fruitful when managing social media
writings, motion picture reviews, and product reviews. This is on the grounds that VADER not just tells
about the positivity and negativity score yet in addition tells us how positive or negative a text is.

VADER has a great deal of advantages over conventional strategies for sentiment analysis, including:

1. It works very well with social media content, yet promptly sums up to different areas.
2. Although it contains a human curated sentiment dictionary for analysis, it does not specifically

require any training data.
3. It can be used with real time data due to its speed and efficiency.

The VADER package for Python analysis presents the negative, positive and indeterminate values for
every single tweet. Every single tweet is represented as 〈Nx, Ix, Px〉, where x belongs to the dataset.

3.3. Speech Analysis

An important component of this paper is speech analysis which involves processing audio. Audio files
cannot be directly understood by models. Machine learning algorithms do not take raw audio files as
input hence it is imperative to extract features from the audio files. An audio signal is a three-dimensional
signal where the three axes represent amplitude, frequency and time. Extracting features from audio files
helps in building classifiers for prediction and recommendation.

Python provides a package called librosa for the analysis of audio and music. In this work, librosa
has been used to extract a total 193 features per audio file. To display an audio file as spectrogram, wave
plot or colormap librosa.display is used.

Figure 2 is a wave plot of an audio file. The loudness (amplitude) of an audio file can be shown in
wave plot.
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Figure 2. Wave plot of an audio file.

Figure 3 shows the spectrogram of the sample audio. Spectrogram is used to map different frequencies
at a given point of time to its amplitude. It is a visual representation of the spectrum of frequencies of
a sound.

Figure 3. Spectrogram of an audio file.

The MFCC features of an audio file is shown in Figure 4. The MFCCs of a signal are a small set of
features which concisely describe the overall shape of a spectral envelope. Sounds generated by a human
are filtered by the shape of the vocal tract including the tongue, teeth etc. MFCCs represent the shape of
the envelope that the vocal tract manifests on the short time power spectrum.

Figure 4. MFCC features of an audio file.
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The chroma features of the sample audio file is represented in Figure 5. These represent the tonal
content of audio files, that is the representation of pitch within the time window spread over the twelve
chroma bands.

Figure 5. Chromagram of an audio file.

Figure 6 represents the mel spectrogram of the sample audio file. Mathematically, mel scale is the
result of some non-linear transformation of the frequency scale. The purpose of the mel scale is that the
difference in the frequencies as perceived by humans should be different for all ranges. For example,
humans can easily identify the difference between 500 Hz and 1000 Hz but not between 8500 Hz and
9000 Hz.

Figure 6. Mel spectrogram of an audio file.

The spectral contrast of the sample audio file is represented in Figure 7. Spectral contrast extracts the
spectral peaks, valleys, and their differences in each sub-band. The spectral contrast features represent the
relative spectral characteristics.
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Figure 7. Spectral contrast of a sample audio file.

Figure 8 shows the tonnetz features of the sample audio file. The tonnetz is a pitch space defined by
the network of relationships between musical pitches in just intonation. It estimates tonal centroids as
coordinates in a six-dimensional interval space.

Figure 8. Tonnetz features of the sample audio file.
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4. Model Description

4.1. Model Architecture

The research work follows a semi-hierarchical model where one step is followed by another but it is
bifurcated into two wings one for audio and other for text and later on the SVNS are combined together in
the integration module.

The overall architecture of the work is provided in Figure 9. The process begins with selecting an
appropriate dataset with audio to text translations. For the audio section, convert the audio files into .wav
format and extract features for further processing. Since the dataset is unlabelled the only suitable choice
in the machine learning algorithms are clustering algorithms. For this module, K-means clustering was
chosen. Then the Euclidean distance(x) of each point from the centre of each cluster is calculated and 1− x
is used as the measure of that specific class, SVNS values were obtained. Clustering was performed again
to visualise the SVNS as clusters.

Figure 9. The model architecture.

For the text module, the text translations were considered and VADER tool was used to generate
SVNS. After the generation of SVNS, it was clustered and visualized.
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In the integration module the SVNS values obtained from speech module and text module was
combined together, there by combining both the branches. The final SVNS are calculated by averaging the
audio and text SVNS which are again clustered and visualized for comparison.

4.2. Data Processing

Dataset played a crucial role in this research work. The reason being we wanted to map audio SVNS to
text SVNS for comparison so a dataset with audio translation was required. Hence LibriSpeech dataset [2]
was chosen. LibriSpeech is a corpus of approximately 1000 h of 16kHz read English speech. The data is
derived from read audiobooks from the LibriVox project, and has been carefully segmented and aligned.
For this purpose the following folders have been used:

1. Dev-clean (337 MB with 2703 audio)
2. Train-clean (6.3 GB with 28,539 audio)

We used the dev clean (337MB) folder to test algorithms in the initial phase and then scaled up to
train clean-100 (6.3 GB) to get the final results. We did not scale further due to hardware limitations.
The reason for selecting the “clean” speech sets was to eliminate the more challenging audio and focus
more on speech analysis. Since these are audio books, the dataset is structured in the following format.
For example, 84-121123-0001.flac is present in the sub directory 121123 of directory 84, it implies that
the reader ID for this audio file is 84 and the chapter is 121123. There is a separate chapters.txt which
is provided along with the dataset that provides the details of the chapter. For example, 121123 is the
chapter ‘Maximilian’ in the book ‘The Count of Monte Cristo’. In the same sub directory 121123 a text
file is present, 84-121123.trans.txt which contains the audio to text translation of the audio files in that
directory. The reason for choosing this dataset over others is that it provides audio to text translations of
the audio files.

The processing of audio file from .flac format to .wav format was carried out. The dataset was
available in .flac format. It was necessary to convert these files into .wav format for further processing and
extracting features. For this ffmpeg was used in shell script with bash. Ffmpeg is a free and open-source
project consisting of a vast software suite of libraries and programs for handling video, audio, and other
multimedia files and streams.

4.3. Feature Extraction

The audio files were then fed into the python feature extraction script which extracted 193 features
per audio file. Using the Librosa package in python following features were extracted

1. MFCC (40)
2. Chroma (12)
3. Mel (128)
4. Contrast (7)
5. Tonnetz (6)

The following npy files were generated as result:

1. X_dev_clean.npy (2703 × 193)
2. X_train_clean.npy (28,539 × 193)

Then these files were normalized using sklearn. The screenshot of the normalized audio features is
given in Figure 10.
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Figure 10. Normalized audio features.

4.4. Clustering and Visualization

4.4.1. K-Means

The K-means algorithms used for clustering SVNS values for sentiment analysis was proposed in [13].
It is a simple algorithm which produces the same results irrespective of the order of the dataset. The input
is the SVNS values as dataset and the number of clusters (K) required. The algorithm then picks K SVNS
values from the dataset randomly and assigns them as centroid. Then repeatedly the distance between
other SVNS values and centroids are calculated and they are assigned to one cluster. This process continues
till the centroid stops changing. Elbow method specifies what a good K (number of clusters) would be
based on the sum of squared distance (SSE) between data points and their assigned clusters’ centroids.

4.4.2. Hierarchical Agglomerative Clustering and Visualization

Hierarchical clustering is a machine learning algorithm used to group similar data together based on
a similarity measure or the Euclidean distance between the data points. It is generally used for unlabelled
data. There are two types of hierarchical clustering approaches: divisive and agglomerative. Hierarchical
divisive clustering refers to top to down approach where all the data is assigned to one cluster and
then partitioned further into clusters. In hierarchical agglomerative clustering all the data points are
treated as individual clusters and then with every step data points closest to each other are identified
and grouped together. This process is continued until all the data points are grouped into one cluster,
creating a dendogram. The algorithm for hierarchical agglomerative clustering of SVNS values is given in
Algorithm 1.
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Algorithm 1: Hierarchical agglomerative clustering.

Input: N number of SVNSs {s1, . . . sN}
Output: Cluster
begin

Step 1: Create a distance matrix X using Euclidean distance function dist(si, sj)

for i← 1, N do
for j← i + 1, N do

xi ← dist(si, sj)

end
end
Step 2: X ← {x1, x2, . . . , xN}
Step 3: Perform clustering
while X.size > 1 do

(xmin1, xmin2)← minimum_dist(xa, xb)∀xa, xb ∈ X
Remove xmin1 and xmin2 from X
Add center{xmin1, xmin2} to X
Alter distance matrix X accordingly

end
Results in cluster automatically

end

4.5. Generating SVNS Values

4.5.1. Speech Module

Since the dataset was unlabelled, K-means algorithm was used for clustering. With K being set
to 3, the clusters were obtained. Let the cluster centres be B1, B2 and B3. B1, B2 and B3 were mapped
as positive, neutral, and negative clusters, respectively. We randomly selected 30 samples from each
cluster and mapped the maximum sentiment of the sample as the sentiment of the cluster. For every
data point P, in the dataset distance was calculated to the centres of each cluster. 1-distance implied the
closeness measure to each cluster or class (positive, neutral or negative). SVNS for audio were created
using 1-distance and stored in a .csv file as 〈PA, IA, NA〉.

4.5.2. Text Module

The next task is sentiment analysis of text translation using VADER. VADER is a tool used for
sentiment analysis which provides a measure for positive, neutral and negative classes for each input
sentence. Using VADER text translation for each audio was analysed and SVNS were generated and stored
in .csv file as 〈PT , IT , NT〉. Taking the csv file of text SVNS as input, K-means cluster with K, taken as 3,
was performed.

4.5.3. Integration Module

Next, we proceed on to combine the SVNS, the audio SVNS values are represented by 〈PA, IA, NA〉

and the text SVNS values are represented by 〈PT , IT , NT〉 and the combined SVNS are represented by
〈PC, IC, NC〉, where the component values are calculated as
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PC =
(PT + PA)

2

IC =
(IT + IA)

2

NC =
(NT + NA)

2

(1)

Combined SVNS values were generated using equations given in Equation (1). The visualization of
combined SVNS is carried out next. Using K-means clustering and hierarchical agglomerative clustering
algorithms, the SVNS of audio, text and combined modules were visualized into 3 clusters.

5. Experimental Results and Data Visualisation

5.1. Speech Module

The elbow method specifies what a good K, the number of clusters would be based on the SSE
between data points and their assigned clusters’ centroids. The elbow chart of the audio were created to
decide the most favourable number of clusters, they are given in Figure 11a,b for the dev-clean folder and
train-clean folder, respectively.

(a) Dev-clean (b) Train-clean
Figure 11. Elbow chart for dataset.

The elbow method generates the optimum number of clusters as three as shown in Figure 11a,b.
Hence, the dataset is clustered into three clusters – positive, indeterminate and negative. The results for
the clustering of the dataset into three is visualised in 2D and 3D in Figures 12a,b and 13a,b. The 2D
visualization of the clusters is given in Figure 12a,b for dev-clean and train-clean respectively. Figure 13a,b
are the K-Means clustering in 3D for dev-clean and train-clean respectively.

Once clusters are formed, we calculate the Euclidean distance of each data point from the centre of
the cluster. Let the cluster centres be B1, B2 and B3. For every data point P in the dataset distance was
calculated to the centres of each cluster. 1-distance implied the closeness measure to each cluster or class
(positive, neutral or negative). Euclidean distance d can be calculated using the formula given Equation (2).

d =
√
(x2 − x1)2 + (y2 − y1)2 (2)

The sample SVNS values generated from the audio features is given in Figure 14a.
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(a) Dev-clean (b) Train-clean
Figure 12. K-means clustering in 2D for audio dataset.

(a) Dev-clean (b) Train-clean
Figure 13. K-means clustering in 3D for audio dataset.

(a) Audio SVNS

(b) Text SVNS
Figure 14. Sample SVNS values.

5.2. Text Module

The audio to text translations are given in the dataset, a sample from the dataset is given Figure 15.
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Figure 15. Sample audio to translation.

Now the text file is processed with the VADER tool for analysis, which generates SVNS values in
form of 〈NT , IT , PT〉. For the sake of notational convenience, we created and populated .csv file in the
order of 〈PT , IT , NT〉, where PT is positive, IT is the indeterminate membership and NT is the negative
membership. A sample of the .csv file that contains the SVNS values is shown in Figure 14b. VADER also
gives a composite score for every line, depending on which the tool also provides a class label, i.e., positive
or neutral or negative. Since we were working with unlabelled data, we did not have a method to validate
the labels provided by the tool.

In the case of the textual content of a novel, this is a narration, so one cannot get high values for
positivity or negativity only, neutrals takes the maximum value when SVNS value is used; which is
evident from Figure 14b. The obtained SVNS values are clustered using K-means algorithm and visualized
in Figures 16a,b and 17a,b. Figure 16a,b are results of the K-means clustering in 2D on dev-clean and
train-clean datasets respectively.

(a) Dev-clean results (b) Train-clean results

Figure 16. K-means clustering in 2D text SVNS values.

Similarly the clustering results are represented in 3D in Figure 17a,b. Dev-clean folder contains 2703
audio files and train-clean folder contains 28,539 audio files.

The clustering visualisation clearly shows the presence of 3 clusters indicating the existence of
neutrality in the data.
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(a) Dev-clean (b) Train-clean
Figure 17. K-means clustering in 3D of text SVNS values.

5.3. Integration Module

The final SVNS are calculated by averaging the audio SVNS and text SVNS. The combined SVNS
values are again clustered and visualized for comparison. We visualize the SVNS values using clustering
algorithms such as K-means and hierarchical agglomerative clustering given in Algorithm 1. The K-means
clustering results of combined SVNS of dev-clean and train-clean are given in Figure 18a,b respectively.

(a) Dev-clean (b) Train-clean
Figure 18. K-means clustering in 3D of combined SVNS values.

The dendograms generated while clustering the combined SVNS values of dev-clean and train-clean
are given in Figure 19 and Figure 20 respectively.

The clustering results of using agglomerative clustering on the combined SVNS values of dev-clean
and train-clean datasets are given in Figure 21a,b respectively.
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Figure 19. Dendogram of combined SVNS values of Dev-clean.

Figure 20. Dendogram of combined SVNS values of Train-clean.
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(a) Dev-clean (b) Train-clean

Figure 21. Agglomerative Clustering of combined SVNS values.

6. Result and Discussion

The visualization of clustering results and the dendogram clearly reveal the presence of neutrality
in the data, which is validated by the existence of the third cluster. It is pertinent to note that, in
case of sentiment analysis, data cannot be divided into positive and negative alone, the existence of
neutrality needs to be acknowledged. After analysing the results of all the clustering algorithms, significant
conclusions have been made. The concept of indeterminacy or neutrality has not yet been dealt with in
normal or conventional and fuzzy sentiment analysis. SVNS provides a score for neutral sentiment along
with positive and negative sentiments. Speech sentiment analysis using neutrosophic sets has not been
done to date, whereas it can provide excellent results. The logic behind combining SVNS is to include both
features related to the audio files derived from amplitude and frequency and pairing it with the analysis of
text for better results. This is a much more wholesome approach than just picking either of the two.

In Table 1, the number of audio classified as cluster 1 (C1), cluster 2 (C2) and cluster 3 (C3) are shown
for SVNS from audio features, text SVNS and the combined SVNS for dev-clean LibriSpeech folder which
is 337 MB with 2703 audio. There is a considerable overlap in the values that are present in the cluster C1
and C2 and C3, for the three values from speech module, text module and combined module, respectively.

Table 1. Dev-clean clustering results.

SVNS C1 C2 C3

Audio 1097 1568 38
Text 1431 675 597
Combined 1465 752 486

In Table 2, the number of audio classified as cluster 1 (C1), cluster 2 (C2) and cluster 3 (C3) are shown
for SVNS from audio features, text SVNS and the combined SVNS for train-clean-100 LibriSpeech folder
which is 6.3 GB with 28539 audio. Since the dataset was unlabelled there was no other choice but to cluster
the features, hence the output which was received was clusters without class tags, hence it cannot be
identified with these given results which cluster represents positive class, neutral class or negative class.
Class tags can be obtained from VADER composite score, but since our aim was to show the presence of
neutrality in the data, we did not do the mapping of the clusters to a particular class using the VADER tool
provided labels.
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Table 2. Train-clean-100 clustering results.

SVNS C1 C2 C3

Audio 7830 13,234 7475
Text 9332 15,028 4179
Combined 8389 13,174 6976

Instead, if we used the max of the SVNS values present in the cluster to map the cluster to a class
tag. Accordingly we obtained C1 cluster was positive class, C2 cluster was neutral and C3 cluster was the
negative class. Though it can be inferred from the changing number of data points in the clusters and their
ratios to one another that analysis of audio separately and text separately, and then combining the two
together with neutrosophic sets is effective to address the indeterminacy and uncertainty of data.

7. Conclusions and Further Work

Work on analyzing sentiment of textual data using neutrosophic sets has been sparse and little,
only [13,14] made use of SVNS and refined neutrosophic sets for sentiment analysis. Analysis of audio or
speech sentiment analysis using neutrosophy has not been carried out, until now. To date, there has been
no way to accommodate the neutrosophy in the sentiment analysis of audio. In the first of a kind, we used
the audio features to implement the concept of neutrosophy in speech sentiment analysis. We proposed a
novel framework that combines audio features, sentiment analysis, and neutrosophy to generate SVNS
values. The initial phase of the work included extracting features from audio, clustering them into three
clusters, and generating the SVNS. This was followed by using the VADER tool for text and generating
SVNS. Now there were two SVNS for every audio file; one from the audio files and the other from the text
file. These two were combined by averaging out the SVNS and the newly obtained SVNS were clustered
again for final results. This is an innovative contribution to both sentiment analysis and neutrosophy. For
future work, while combining the SVNS weights can be set according to priority or depending on the
reliability of the data. For example, if the audio to text translations are bad then weights can be set in the
ratio 4:1 for audio SVNS to text SVNS where the resulting SVNS will depend 80% on the audio SVNS and
20% on the text SVNS. Similarly, other similarity measures other than distance measures can be used for
generating SVNS values for audio files.
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Abbreviations

The following abbreviations are used in this manuscript:

NLP Natural Language Processing
SVNS Single-Valued Neutrosophic Sets
MFCC Mel-Frequency Cepstral Coefficients
RAVDESS Ryerson Audio-Visual Database of Emotional Speech and Song
VADER Valence Aware Dictionary and Sentiment Reasoner
SVM Support Vector Machine
DVNS Double Valued Neutrosophic Sets
SSE Sum of Squared Distance
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Abstract: In this paper, we advance the study of plithogenic hypersoft set (PHSS). We present four
classifications of PHSS that are based on the number of attributes chosen for application and the nature
of alternatives or that of attribute value degree of appurtenance. These four PHSS classifications
cover most of the fuzzy and neutrosophic cases that can have neutrosophic applications in symmetry.
We also make explanations with an illustrative example for demonstrating these four classifications.
We then propose a novel multi-criteria decision making (MCDM) method that is based on PHSS, as an
extension of the technique for order preference by similarity to an ideal solution (TOPSIS). A number
of real MCDM problems are complicated with uncertainty that require each selection criteria or
attribute to be further subdivided into attribute values and all alternatives to be evaluated separately
against each attribute value. The proposed PHSS-based TOPSIS can be used in order to solve these real
MCDM problems that are precisely modeled by the concept of PHSS, in which each attribute value
has a neutrosophic degree of appurtenance corresponding to each alternative under consideration,
in the light of some given criteria. For a real application, a parking spot choice problem is solved
by the proposed PHSS-based TOPSIS under fuzzy neutrosophic environment and it is validated by
considering two different sets of alternatives along with a comparison with fuzzy TOPSIS in each case.
The results are highly encouraging and a MATLAB code of the algorithm of PHSS-based TOPSIS
is also complied in order to extend the scope of the work to analyze time series and in developing
algorithms for graph theory, machine learning, pattern recognition, and artificial intelligence.

Keywords: Soft set; hypersoft set; plithogenic hypersoft set (PHSS); multi-criteria decision making
(MCDM); PHSS-based TOPSIS

1. Introduction

A strong mathematical tool is always needed in order to combat real world problems involving
uncertainty in the data. This necessity has urged scholars to introduce different mathematical tools
to facilitate the world for solving such problems. In 1965, the concept of fuzzy set was introduced
by Zadeh [1], in which each element is assigned a membership degree in the form of a single crisp
value in the interval [0, 1]. It has been studied extensively by the researchers and a number of real life
problems have been solved by fuzzy sets [2–5]. However, in some practical situations, it is seen that
this membership degree is hard to be defined by a single number. The uncertainty in the membership
degree became the cause to introduce the concept of interval-valued fuzzy set in which the degree
of membership is an interval value in [0, 1]. Later on, the concept of intuitionistic fuzzy set (IFS) was
proposed by Atanassov [6] in 1986, which incorporates the non-membership degree. IFS had many
applications [7–10].
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However, IFS is unable to deal with indeterminate information, which is very common in belief
systems. This inadequacy was addressed by Smarandache [11] in 2000, who introduced the concept of
neutrosophic set in which membership (T), indeterminacy (I) and non-membership (F) degrees were
independently quantified i.e., T, I, F ∈ [0, 1] and the sum T + I + F need not to be contained in [0, 1].
All of these mathematical tools have been thoroughly explored and successfully applied to deal
with uncertainties [12–15], yet these tools usually fail to handle uncertainty in a variety of practical
situation, because these tools require all notions to be exact and do not possess a parametrization tool.
Consequently, soft set was introduced by Molodstsov [16] in 1999, which can be regarded as a general
mathematical tool to deal with uncertainty. Molodstsov [16] defined soft set as a parameterized family
of subsets of a universe of discourse. In 2003, Maji et al. [17] introduced aggregation operations on soft
sets. Soft sets and their hybrids have been successfully applied in various areas [18–21]

In a variety of real life MCDM problems, the attributes need to be further sub-divided into
attribute values for a better decision. This need was fulfilled by Smarandache [22], who introduced the
concept of hypersoft set as a generalization of the concept of soft set in 2018. Besides, Smarandache [22]
introduced the concept of plithogenic hypersoft set with crisp, fuzzy, intuitionistic fuzzy, neutrosophic,
and plithogenic sets. In 2020, Saeed et al. [23] presented a study on the fundamentals of hypersoft set
theory. Smarandache [24,25] developed the aggregation operations on plithogenic set and proved that
the plithogenic set is the most generalized structure that can be efficiently applied to a variety of real
life problems [26–29]

A PHSS-based TOPSIS is proposed in the article to deal with MCDM problem, in which attribute
may have attribute values and each attribute value has a neutrosophic degree of appurtenance of
each alternative. The proposed method is authenticated by taking two different sets of alternatives.
A comparison with fuzzy TOPSIS is made in each case. It shows that the results are highly inspiring.
A MATLAB code of the algorithm of PHSS-based TOPSIS is also complied in order to encompass
the scope of the work to analyze time series and in developing algorithms for graph theory, artificial
intelligence, machine learning, pattern recognition, and neutrosophic applications in symmetry.
It appears quite pertinent to point out that the article gives detailed insight on PHSS with related
definitions and its implementation in MCDM process. The scope of the work can be extended in other
mathematics directions as well by introducing important theorems and propositions [24]

The remainder of this article is organized, as follows. In Section 2, we briefly review some
basic notions, leading to the definitions of soft sets, hypersoft sets, plithogenic sets, and plithogenic
hypersoft sets (PHSSs), along with an illustrative example. Section 3 consists of the four proposed
classifications of PHSSs based on different criteria. More explanations with an illustrative example
for the four classifications are also made. In Section 4, the algorithm of the proposed PHSS-based
TOPSIS is given, along with its application to a real life parking spot choice problem under fuzzy
neutrosophic environment and its comparison with fuzzy TOPSIS. Section 5 provides the conclusion
and future directions.

2. Preliminaries

This section comprises of some necessary basic concepts that are related to plithogenic hypersoft
set (PHSS), which is also defined in this section along with an illustrative example for a clear
understanding. Throughout the study, let U be a non-empty universal set, P(U ) be the power set of
U , X ⊆ U be a finite set of alternatives, and A be a finite set of n distinct parameters or attributes,
as given by

A = {a1, a2, · · · , an}, n ≥ 1.

The attribute values of a1, a2, · · · , an belong to the sets A1, A2, . . . , An, respectively, where Ai ∩ Aj = φ,
for i 6= j, and i, j ∈ {1, 2, . . . , n}. Moreover, we consider a finite number of uni-dimensional attributes
and each attribute has a finite discrete set of attribute values. However, it is worth mentioning that
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the attributes may have an infinite number of attribute values. In such a case, every structure with
non-Archimedean metrics can be dealt in depth [30,31].

2.1. Soft Sets

A soft set over U is a mapping F : B → P(U ), B ⊆ A with the value FB(α) ∈ P(U ) at α ∈ B and
FB(α) = φ if α 6∈ B. It is denoted by (F ,B) and written as follows [16]:

(F ,B) = {(α,FB(α)) : α ∈ B, FB(α) ∈ P(U )}.

Moreover, a soft set over U can be regarded as a parameterized family of the subsets of U . For an
attribute α ∈ B, FB(α) is considered as the set of α-approximate elements of the soft set (F ,B).

2.2. Hypersoft Sets

Let C denote the cartesian product of the sets A1, A2, . . . , An, i.e., C = A1 × A2 × . . .× An, n ≥ 1.
Subsequently, a hypersoft set (H, C) over U is a mapping defined by H : C → P(U ) [22]. For an
n-tuple (γ1, γ2, . . . , γn) ∈ C,, where γi ∈ Ai, i = 1, 2, 3, . . . , n, a hypersoft set is written as

(H, C) = {(γ,H(γ)) : γ = (γ1, γ2, . . . , γn) ∈ C, H(γ) ∈ P(U )}.

It may be noted that hypersoft set is a generalization of soft set.

2.3. Plithogenic Sets

A set X is called a plithogenic set if all of its members are characterized by the attributes under
consideration and each attribute may have any number of attribute values [24]. Each attribute value
possesses a corresponding appurtenance degree of the element x, to the set X, with respect to some
given criteria. Moreover, a contradiction degree function is defined between each attribute value and
the dominant attribute value of an attribute in order to obtain accuracy for aggregation operations on
plithogenic sets. These degrees of appurtenance and contradiction may be fuzzy, intuitionistic fuzzy or
neutrosophic degrees.

Remark 1. Plithogenic set is regarded as a generalization of crisp, fuzzy, intuitionistic fuzzy. and neutrosophic
sets, since the elements of later sets are characterized by a combined single attribute value (degree of appurtenance),
which has only one value for crisp and fuzzy sets i.e., membership, two values in case of intuitionistic fuzzy set
i.e., membership and non-membership, and three values for neutrosophic set i.e., membership, indeterminacy,
and non-membership. In the case of plithogenic set, each element is separately characterized by all attribute
values under consideration in terms of degree of appurtenance.

2.4. Plithogenic Hypersoft Set (PHSS)

Let X ⊆ U and C = A1 × A2 × . . .× An, where n ≥ 1 and Ai is the set of all attribute values
of the attribute ai, i = 1, 2, 3, . . . , n. Each attribute value γ possesses a corresponding appurtenance
degree d(x, γ) of the member x ∈ X, in accordance with some given condition or criteria. The attribute
value degree of appurtenance is a function that is defined by

d : X× C → P([0, 1]j), ∀ x ∈ X,

such that d(x, γ) ∈ [0, 1]j, and P([0, 1]j) is the power set of [0, 1]j, where j = 1, 2, 3 are for fuzzy,
intuitionistic fuzzy, and neutrosophic degree of appurtenance, respectively.

Furthermore, the degree of contradiction (dissimilarity) between any two attribute values of the
same attribute is a function given by

c : Ai × Ai → P([0, 1]j), 1 ≤ i ≤ n, j = 1, 2, 3.
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For any two attribute values γ1 and γ2 of the same attribute, it is denoted by c(γ1, γ2) and satisfies the
following axioms:

c(γ1, γ1) = 0,

c(γ1, γ2) = c(γ2, γ1).

Subsequently, (X,A, C, d, c) is called a plithogenic hypersoft set (PHSS) [22]. For an n-tuple
(γ1, γ2, . . . , γn) ∈ C, γi ∈ Ai, 1 ≤ i ≤ n, a plithogenic hypersoft set F : C → P(U ) is mathematically
written as

F
(
{γ1, γ2, . . . , γn}

)
= {x(dx(γ1), dx(γ2), . . . , dx(γn)), x ∈ X}.

Remark 2. Plithogenic hypersoft set is a generalization of crisp hypersoft set, fuzzy hypersoft set, intuitionistic
fuzzy hypersoft set, and neutrosophic hypersoft set.

2.5. Illustrative Example

Let U = {m1, m2, m3, . . . , m10} be a universe containing mobile phones. A person wants to buy
a mobile phone for which the mobile phones under consideration (alternatives) are contained in
X ⊆ U , given by

X = {m2, m3, m5, m8}.

The characteristics or attributes of the mobile phones belong to the set A = {a1, a2, a3, a4}, such that

a1 = Processor power,
a2 = RAM,
a3 = Front camera resolution,
a4 = Screen size in inches.

The attribute values of a1, a2, a3, a4 are contained in the sets A1, A2, A3, A4 given below.

A1 = {dual-core, quad-core, octa-core},
A2 = {2GB, 4GB, 8GB, 16GB},
A3 = {2MP, 5MP, 8MP, 16MP},
A4 = {4, 4.5, 5, 5.5, 6}.

1. Soft set

Consider B = {a2, a3} ⊆ A. Afterwards, a soft set (F ,B), defined by the mapping F : B → P(U ),
is given by

(F ,B) = {(a2, {m2, m5}), (a3, {m2, m3, m8})}

Element-wise, it may be written as

FB(a2) = {m2, m5}, FB(a3) = {m2, m3, m8}.

2. Hypersoft set
Let C = A1 × A2 × A3 × A4. Then, a hypersoft set over U is a function f : C → P(U ). For an element
(octa-core, 8GB, 16MP, 5.5) ∈ C, it is given by

f ({octa-core, 8GB, 16MP, 5.5}) = {m5, m8}

3. Plithogenic hypersoft set
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For the same tuple (octa-core, 8GB, 16MP, 5.5) ∈ C, a plithogenic hypersoft set F : C → P(U )
is given by

F({octa-core, 8GB, 16MP, 5.5}) ={m5 (dm5(octa-core), dm5(8GB), dm5(16MP), dm5(5.5)) ,

m8 (dm8(octa-core), dm8(8GB), dm8(16MP), dm8(5.5))},

where dm5(γ) stands for the degree of appurtenance of the attribute value γ ∈

(octa-core, 8GB, 16MP, 5.5) to the element m5 ∈ X. A similar meaning applies to dm8(γ).

3. The Four Classifications of PHSS

In this section, we propose the four different classifications of PHSS that are based on the number
of attributes chosen for application and the characteristics of alternatives under consideration or that
of the attribute value degree of appurtenance function. The same example from Section 2 is considered
to each classification for a practical understanding. Figure 1 shows a diagram for these classifications.

Figure 1. Flowchart of four classifications of plithogenic hypersoft sets (PHSS).

3.1. The First Classification

This classification is based on the number of attributes that are chosen by the decision makers
for application.

3.1.1. Uni-Attribute Plithogenic Hypersoft Set

Let α ∈ A be an attribute required by the experts for application purpose and the attribute values
of α belong to the finite discrete set Y = {y1, y2, . . . , ym}, m ≥ 1. Hence, the degree of appurtenance
function is given by

d : X×Y → P([0, 1]j), ∀ x ∈ X,

307



Symmetry 2020, 12, 1855

such that d(x, y) ⊆ [0, 1]j, where P([0, 1]j) denotes the power set of [0, 1]j and j = 1, 2, 3 stands for
fuzzy, intuitionistic fuzzy, or neutrosophic degree of appurtenance, respectively.

The contradiction degree function between any two attribute values of α, is given by

c : Y×Y → P([0, 1]j), ∀ y ∈ Y, j = 1, 2, 3.

For any two attribute values y1, y2 ∈ Y, it is denoted by c(y1, y2) and the following properties hold:

c(y1, y1) = 0,

c(y1, y2) = c(y2, y1).

Subsequently, (X, α, Y, d, c) is termed as a uni-attribute plithogenic hypersoft set. For an attribute value
y ∈ Y, a uni-attribute plithogenic hypersoft set F : Y → P(U ) is mathematically written as

F(y) = {x(dx(y)) : x ∈ X}.

3.1.2. Multi-Attribute Plithogenic Hypersoft Set

Consider a subset B of A, consisting of all attributes that were chosen by the experts, given by

B = {b1, b2, . . . , bm}, m > 1.

Let the attribute values of b1, b2, . . . , bm belong to the sets B1, B2, . . . , Bm, respectively, and

Ym = B1 × B2 × . . .× Bm.

Afterwards, the appurtenance degree function is

d : X×Ym → P([0, 1]j), ∀ x ∈ X,

such that d(x, y) ⊆ [0, 1]j, j = 1, 2, 3. In this case, the contradiction degree function is given by

c : Bi × Bi → P([0, 1]j), 1 ≤ i ≤ m, j = 1, 2, 3.

The degree of contradiction between any two attribute values y1 and y2, is denoted by c(y1, y2) and it
satisfies the following axioms:

c(y1, y1) = 0,

c(y1, y2) = c(y2, y1).

Subsequently, (X,B, Ym, d, c) is called a multi-attribute plithogenic hypersoft set. For an m-tuple
(y1, y2, . . . , ym) ∈ Ym, yi ∈ Bi, 1 ≤ i ≤ m, a multi-attribute plithogenic hypersoft set F : Ym → P(U ) is
mathematically written as

F({y1, y2, . . . , ym}) = {x(dx(y1), dx(y2), . . . , dx(ym)), x ∈ X}.

Example 1. Consider the previous example in which U = {m1, m2, m3, . . . , m10} and X ⊆ U is given by
X = {m2, m3, m5, m8}. The attributes belong to the set A = {a1, a2, a3, a4}, such that

a1 = Processor power,
a2 = RAM,
a3 = Front camera resolution,
a4 = Screen size in inches.

The attribute values of a1, a2, a3, a4 are contained in the sets A1, A2, A3, A4 given below:
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A1 = {dual-core, quad-core, octa-core},
A2 = {2GB, 4GB, 8GB, 16GB},
A3 = {2MP, 5MP, 8MP, 16MP},
A4 = {4, 4.5, 5, 5.5, 6}.

1. Uni-attribute plithogenic hypersoft set

Consider the most demanding feature of a mobile phone given by the attribute a3 that stands for
front camera resolution. The set of attribute values of a3 is A3 = {2MP, 5MP, 8MP, 16MP}. Then,
the uni-attribute plithogenic hypersoft set F : A3 → P(U ) is given by

F(γ) = {x(dx(γ)), ∀ γ ∈ A3, x ∈ X},

where dx(γ) denotes the degree of appurtenance of x ∈ X, to the set X, w.r.t. the attribute value
γ ∈ A3. For an attribute value 16MP ∈ A3, we have

F(16MP) = {m5(dm5(16MP)), m8(dm8(16MP))},

2. Multi-attribute plithogenic hypersoft set

Let B = {a3, a4} be the set of attributes required by the customer. Therefore, we need A3 and A4

given by

A3 = {2MP, 5MP, 8MP, 16MP},

A4 = {4, 4.5, 5, 5.5, 6}.

Suppose that the customer is interested to buy a mobile phone with specific requirements of 16MP front
camera with 5.5 inch screen size. In this case, we take (16MP, 5.5) ∈ A3 × A4 and a multi-attribute
plithogenic hypersoft set F : A3 × A4 → P(U ) is given by

F({16MP, 5.5}) = {m5 (dm5(16MP), dm5(5.5)) , m8 (dm8(16MP), dm8(5.5))},

where dm5(γ) stands for the degree of appurtenance of m5 to the set X w.r.t. the attribute value
γ ∈ (16MP, 5.5).

3.2. The Second Classification

This classification is based on the nature of the attribute value degree of appurtenance that may
be crisp, fuzzy, intuitionistic fuzzy, or neutrosophic degree of appurtenance.

3.2.1. Plithogenic Crisp Hypersoft Set

A plithogenic hypersoft set X is crisp if the appurtenance degree dx(γ) of each member x ∈ X,
w.r.t. each attribute value γ, is crisp, i.e., dx(γ) is either 0 or 1.

3.2.2. Plithogenic Fuzzy Hypersoft Set

If the appurtenance degree dx(γ) of each member x ∈ X, w.r.t. each attribute value γ, is fuzzy,
then it is called the plithogenic fuzzy hypersoft set. Mathematically, dx(γ) ∈ P([0, 1]).

3.2.3. Plithogenic Intuitionistic Fuzzy Hypersoft Set

If the attribute value appurtenance degree dx(γ) of each x ∈ X, w.r.t. each attribute value,
is intuitionistic fuzzy degree, then it is called the plithogenic intuitionistic fuzzy hypersoft set.
Mathematically, it is written as dx(γ) ∈ P([0, 1]2).
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3.2.4. Plithogenic Neutrosophic Hypersoft Set

A plithogenic hypersoft set X is called plithogenic neutrosophic hypersoft set if dx(γ) ∈ P([0, 1]3).

Example 2. For (octa-core, 8GB, 16MP, 5.5) ∈ C, we have the following results:

1. Plithogenic crisp hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) = {m5(1, 1, 1, 1), m8(1, 1, 1, 1)}.

2. Plithogenic fuzzy hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 1, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

3. Plithogenic intuitionistic fuzzy hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5 ((0.9, 0.1), (0.2, 0.6), (1, 0), (0.75, 0.1)) ,

m8((0.5, 0.25), (0.5, 0.5), (0.25, 0.1), (0.9, 0))}.

4. Plithogenic neutrosophic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5((0.9, 0.7, 0.1), (0.2, 0.3, 0.6), (1, 0.25, 0), (0.75, 0.3, 0.1)),

m8((0.5, 1, 0.25), (0.5, 0.9, 0.5), (0.25, 0.7, 0.1), (0.9, 0.8, 0))}.

3.3. The Third Classification

This classification is based on the properties of attribute values and degree of appurtenance function.

3.3.1. Plithogenic Refined Hypersoft Set

Let (X,A, C, d, c) be a plithogenic hypersoft set and A denote the set of attribute values of
an attribute a. If an attribute value γ ∈ A of the attribute a is subdivided or split into at least
two or more attribute sub-values γ1, γ2, γ3, . . . ∈ A, such that the attribute sub-value degree of
appurtenance function d(x, γi) ∈ P([0, 1]j), for i = 1, 2, 3, . . . and j = 1, 2, 3 for fuzzy, intuitionistic
fuzzy, neutrosophic degree of appurtenance, respectively, then X is called a refined plithogenic
hypersoft set. It is represented as (Xr,A, C, d, c).

3.3.2. Plithogenic Hypersoft Overset

If the degree of appurtenance of any element x ∈ X w.r.t. any attribute value γ ∈ A of
an attribute a is greater than 1, i.e., d(x, γ) > 1, then X is called a plithogenic hypersoft overset.
It is represented as (Xo,A, C, d, c).

3.3.3. Plithogenic Hypersoft Underset

If the degree of appurtenance of any element x ∈ X w.r.t. any attribute value γ ∈ A of
an attribute a less than 0, i.e., d(x, γ) < 0, then X is called a plithogenic hypersoft underset.
It is represented as (Xu,A, C, d, c).

3.3.4. Plithogenic Hypersoft Offset

A plithogenic hypersoft set (X,A, C, d, c) is called a plithogenic hypersoft offset if it is both
an overset and an underset. Mathematically, if d(x1, γ1) > 1 and d(x2, γ2) < 0 for the same or
different attribute values γ1, γ2 ∈ A that correspond to the same or different members x1, x2 ∈ X,
then (Xoff,A, C, d, c) is a plithogenic hypersoft offset.
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3.3.5. Plithogenic Hypersoft Multiset

If an element x ∈ X repeats itself into the set X with same plithogenic components given by

x(c1, c2, . . . , cn), x(c1, c2, . . . , cn),

or with different plithogenic components given by

x(c1, c2, . . . , cn), x(d1, d2, . . . , dn),

then (Xn,A, C, d, c) is called a plithogenic hypersoft multiset.

3.3.6. Plithogenic Bipolar Hypersoft Set

If the attribute value appurtenance degree function is given by

d : X× C → P([−1, 0]j)× P([0, 1]j), ∀ x ∈ X,

where j = 1, 2, 3, then, (Xb,A, C, d, c) is called plithogenic bipolar hypersoft set. It may be noted that,
for an attribute value γ, d(x, γ) allots a negative degree of appurtenance in [−1, 0] and a positive
degree of appurtenance in [0, 1] to each element x ∈ X with respect to each attribute value γ.

Remark 3. The concept of plithogenic bipolar hypersoft set can be extended to plithogenic tripolar hypersoft set
and so on up to plithogenic multipolar hypersoft set.

3.3.7. Plithogenic Complex Hypersoft Set

If for any x ∈ X, the attribute value appurtenance degree function, with respect to any attribute
value γ, is given by

d : X× C → P([0, 1]j)× P([0, 1]j), j = 1, 2, 3,

such that d(x, γ) is a complex number of the form c1.eic2 , where c1 (amplitude) and c2 (phase) are
subsets of [0, 1], then (Xcom,A, C, d, c) is called a plithogenic complex hypersoft set.

Example 3. Consider the same example of choosing a suitable mobile phone from the set X = {m2, m3, m5, m8}.
The attributes are a1, a2, a3, a4, whose attribute values are contained in the sets A1, A2, A3, A4.

1. Plithogenic refined hypersoft set

Consider an attribute a4 = screen size in inches whose attribute values belong to the set
A4 = {4, 4.5, 5, 5.5, 6}. A refinement of A4 is given by

A4 = {4, 4.5, 4.7, 5, 5.5, 5.8, 6},

such that for all x ∈ X,
d(x, γ) ∈ P([0, 1]j), ∀ γ ∈ A4.

Therefore, a plithogenic refined hypersoft set Fr : A4 → P(U ) is given by

Fr({4, 4.5, 4.7, 5, 5.5, 5.8, 6}) ={m5
(
dm5(4), dm5(4.5), dm5(4.7), dm5(5), dm5(5.5), dm5(5.8), dm5(6)

)
,

m8
(
dm8(4), dm8(4.5), dm8(4.7), dm8(5), dm8(5.5), dm8(5.8), dm8(6)

)
}.

2. Plithogenic hypersoft overset
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Let each attribute value has a single-valued fuzzy degree of appurtenance to all the elements of X.
Subsequently, for (octa-core, 8GB, 16MP, 5.5) ∈ C, a plithogenic hypersoft overset Fo : C → P(U ) is
given by

Fo({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 1.3, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

It may be noted that dm5(16MP) > 1.

3. Plithogenic hypersoft underset

A plithogenic hypersoft underset defined by the function Fu : C → P(U ) is given by

Fu({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2,−0.3, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

It may be noted that dm5(16MP) < 0.

4. Plithogenic hypersoft offset

A plithogenic hypersoft offset is a function Foff : C → P(U ), as given by

Foff({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2,−0.3, 0.75), m8(0.5, 1.5, 0.25, 0.9)}.

Note that dm5(16MP) < 0 and dm8(8GB) > 1.

5. Plithogenic hypersoft multiset

A plithogenic hypersoft multiset Fm : C → P(U ) is given by

Fm({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 0.3, 0.75), m5(0.7, 0.1, 0.9, 1), m8(0.5, 0.5, 0.25, 0.9)}.

It should be noted that the element m5 repeats itself with different plithogenic components.

6. Plithogenic bipolar hypersoft set

A plithogenic bipolar hypersoft set F2 : C → P(U ) is given by

F2({octa-core, 8GB, 16MP, 5.5}) ={m5({−0.1, 0.9}, {−1, 0.2}, {−0.9, 0.3}, {−0.5, 1}),

m8({−0.5, 0}, {−0.9, 1}, {−0.2, 0.2}, {−1, 0.8})}.

7. Plithogenic complex hypersoft set

A plithogenic complex hypersoft set Fcom : C → P(U ) is given by

Fcom({octa-core, 8GB, 16MP, 5.5}) ={m5(0.9e0.5i, 0.2e0.9i, 0.3e0.25i, 0.75ei),

m8(0.5e0.5i, e0.3i, 0.25e0.75i, 0.9e0.1i)}.

3.4. The Fourth Classification

The attribute value degree of appurtenance may be a single crisp value in [0, 1], a finite discrete
set or an interval value in [0, 1]. Therefore, we have the following classification of PHSS.

3.4.1. Single-Valued Plithogenic Hypersoft Set

A plithogenic hypersoft set is called a single-valued plithogenic hypersoft set if the attribute value
appurtenance degree is a single number in [0, 1].
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3.4.2. Hesitant Plithogenic Hypersoft Set

If the attribute value degree of appurtenance is a finite discrete set of the form {m1, m2, . . . , mi},
1 ≤ i < ∞, included in [0, 1], then such a plithogenic hypersoft set is called a hesitant plithogenic
hypersoft set.

3.4.3. Interval-Valued Plithogenic Hypersoft Set

A plithogenic hypersoft set is known as an interval-valued plithogenic hypersoft set if the attribute
value appurtenance degree function is an interval value in [0, 1]. The interval value may be an open,
closed, or semi open interval.

Example 4. For (octa-core, 8GB, 16MP, 5.5) ∈ C, with each attribute value having fuzzy degree of
appurtenance, we have the following results:

1. Single-valued plithogenic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) = {m5(0.9, 0.2, 1, 0.75), m8(0.5, 0.5, 0.25, 0.9)}.

Each attribute value is assigned a single value in [0, 1] as a degree of appurtenance to m5 and m8.

2. Hesitant plithogenic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5({0.9, 0.75}, {0.2, 0.7}, {1, 0.9}, {0.75, 0.5}),

m8({0.5, 0.1}, {0.5, 0.9}, {0.25, 0}, {0.9, 1})}.

3. Interval-valued plithogenic hypersoft set

F({octa-core, 8GB, 16MP, 5.5}) ={m5([0.25, 0.75], [0.2, 0.6], [0.1, 0.9], [0.75, 1]),

m8([0.5, 0.6], [0.3, 0.9], [0.25, 0.8], [0.9, 1])}.

Each attribute value has an interval value degree of appurtenance in [0, 1] to each element m5 and m8.

4. The Proposed PHSS-Based TOPSIS with Application to a Parking Problem

In this section, we use the concept of PHSS in order to construct a novel MCDM method,
called PHSS-based TOPSIS, in which we extend TOPSIS based on PHSS under fuzzy neutrosophic
environment. Moreover, a parking spot choice problem is constructed in order to employ the newly
developed PHSS-based TOPSIS to prove its validity and efficiency. Two different sets of alternatives
are considered for the application and a comparison is performed with fuzzy TOPSIS in both cases.

4.1. Proposed PHSS-Based TOPSIS Algorithm

Let U be a non-empty universal set, and let X ⊆ U be the set of alternatives under consideration,
given by X = {x1, x2, . . . , xm}. Let C = A1 × A2 × . . . × An, where n ≥ 1 and Ai is the set of all
attribute values of the attribute ai, i = 1, 2, 3, . . . , n. Each attribute value γ has a corresponding
appurtenance degree d(x, γ) of the member x ∈ X, in accordance with some given condition or criteria.
Our aim is to choose the best alternative out of the alternative set X. The construction steps for the
proposed PHSS-based TOPSIS are as follows:

S1: Choose an ordered tuple (γ1, γ2, . . . , γn) ∈ C and construct a matrix of order n×m, whose entries
are the neutrosophic degree of appurtenance of each attribute value γ, with respect to each alternative
x ∈ X under consideration.
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S2: Employ the newly developed plithogenic accuracy function Ap, to each element of the matrix
obtained in S1, in order to convert each element into a single crisp value, as follows:

Ap(Tγ, Iγ, Fγ) =
Tγ + Iγ + Fγ

3
+

Tγd + Iγd + Fγd

3
× cF(γ, γd), (1)

where Tγ, Iγ, Fγ represent the membership, indeterminacy, and non-membership degrees of
appurtenance of the attribute value γ to the set X, and Tγd , Iγd , Fγd stand for the membership,
indeterminacy, and non-membership degrees of corresponding dominant attribute value, whereas
cF(γ, γd) denotes the fuzzy degree of contradiction between an attribute value γ and its corresponding
dominant attribute value γd. This gives us the plithogenic accuracy matrix.

S3: Apply the transpose on the plithogenic accuracy matrix to obtain the plithogenic decision matrix
Mp = [mij]m×n of alternatives versus criteria.

S4: A plithogenic normalized decision matrix Np = [yij]m×n is constructed, which represents the
relative performance of alternatives and whose elements are calculated as follows:

yij =
mij√
m
∑

i=1
m2

ij

, j = 1, 2, 3, . . . , n.

S5: Construct a plithogenic weighted normalized decision matrix Vp = [vij]m×n = NpWn,
where Wn = [w1 w2 . . . wn] is a row matrix of allocated weights wk assigned to the criteria
ak, k = 1, 2, 3, . . . , n and ∑ wk = 1, k = 1, 2, . . . , n. Moreover, all of the selection criteria are assigned
different weights by the decision maker, depending on their importance in the decision making process.

S6: Determine the plithogenic positive ideal solution V+
p and plithogenic negative ideal solution V−p

by the following formula:

V+
p =

{
m

max
i=1

(vij) if aj ∈ benefit criteria,
m

min
i=1

(vij) if aj ∈ cost criteria, j = 1, 2, 3, . . . , n
}

,

V−p =

{
m

min
i=1

(vij) if aj ∈ benefit criteria,
m

max
i=1

(vij) if aj ∈ cost criteria, j = 1, 2, 3, . . . , n
}

.

S7: Calculate plithogenic positive distance S+
i and plithogenic negative distance S−i of each alternative

from V+
p and V−p , respectively, while using the following formulas:

S+
i =

√√√√
n

∑
j=1

(vij − v+i )
2, i = 1, 2, 3, . . . , m,

S−i =

√√√√
n

∑
j=1

(vij − v−i )
2, i = 1, 2, 3, . . . , m.

S8: Calculate the relative closeness coefficient Ci of each alternative by the following expression:

Ci =
S−i

S+
i + S−i

, i = 1, 2, 3, . . . , m.

S9: The highest value from {C1, C2, . . . , Cm} belongs to the most suitable alternative. Similarly,
the lowest value gives us the worst alternative.
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4.2. Parking Spot Choice Problem

Based on the proposed method, a parking spot choice problem is constructed. Parking a vehicle at
some suitable parking spot is an interesting real life MCDM problem. A number of questions arises in
mind, for instance, how much will the parking fee be, how far is it, will it be an open or covered area,
how many traffic signals will be on the way, etc. Thus, it becomes a challenging task in the presence of
so many considerable criteria. This task is formulated in the form of a mathematical model in order
to apply the proposed technique to choose the most suitable parking spot. Consider a person at a
particular location on the road, who wants to park his car at a suitable parking place. Keeping in mind
the person’s various preferences, a few nearby available parking spots are considered, having different
specifications in terms of parking fee, distance between the person’s location and each parking spot,
the number of signals between the car and the parking spot, and traffic density on the way between
the car and the parking spot. Figure 2 shows the location of car to be parked at a suitable parking spot.

Figure 2. A real life parking spot choice problem.

Let U be a plithogenic universe of discourse consisting of all parking spots in the
surrounding area, where

U = {P1, P2, P3, . . . , P10}.

The attributes of the parking spots, chosen for the decision, are a1, a2, a3, a4 given below:

a1 = Parking fee,
a2 = Distance between car and parking spot,
a3 = Number of traffic signals between car and parking spot,
a4 = Traffic density on the way between car and parking spot.

The attribute values of a1, a2, a3, a4 belong to the sets A1, A2, A3, A4, respectively.

A1 = {low fee ( f1), medium fee ( f2), high fee ( f3)},
A2 = {very near (r1), almost near (r2), near (r3), almost far (r4), far (r5), very far (r6)},
A3 = {one signal (s1), two signals (s2)},
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A4 = {low (d1), high (d2), very high (d3)}.

The dominant attribute values of a1, a2, a3, a4 are chosen to be f1, r1, s1 and d1, respectively, and the
single-valued fuzzy degree of contradiction between the dominant attribute value and all other
attribute values is given below.

cF( f1, f2) =
1
3

, cF( f1, f3) =
2
3

,

cF(r1, r2) =
1
6

, cF(r1, r3) =
2
6

, cF(r1, r4) =
3
6

, cF(r1, r5) =
4
6

, cF(r1, r6) =
5
6

,

cF(s1, s2) =
1
2

,

cF(d1, d2) =
1
3

, cF(d1, d3) =
2
3

.

Two different sets of alternatives are considered for the application of PHSS-based TOPSIS, along with
a comparison with fuzzy TOPSIS in each case.

4.2.1. Case 1

In this case, the parking spots under consideration (alternatives) are contained in the set X ⊆ U ,
given by

X = {P1, P2, P3, P4}.

The neutrosophic degree of appurtenance of each attribute value corresponding to each alternative
P1, P2, P3, P4 is given in Table 1.

Let C = A1 × A2 × A3 × A4 and consider an element ( f2, r1, s2, d1) ∈ C for which the
corresponding matrix that was obtained from Table 1 is given below:




(0.7, 0.9, 0.1) (0.6, 0.5, 0.2) (0.2, 0.3, 0.6) (0.7, 0.9, 0.3)
(0.8, 0.1, 0.7) (0.9, 0.4, 0.5) (0.9, 0.4, 0.0) (0.8, 0.4, 0.2)
(1.0, 0.8, 0.6) (0.7, 0.5, 0.5) (0.4, 0.4, 0.7) (0.6, 0.5, 0.7)
(0.1, 0.2, 1.0) (0.3, 1.0, 0.6) (0.7, 0.9, 0.2) (0.9, 0.7, 0.5)


 (2)

Table 1. Degree of appurtenance of each attribute value w.r.t. to each alternative.

Sr. Variables P1 P2 P3 P4

1 f1 (0.5, 0.1, 0.3) (0.5, 0.0, 0.7) (0.1, 0.4, 0.5) (0.2, 0.1, 0.6)
2 f2 (0.7, 0.9, 0.1) (0.6, 0.5, 0.2) (0.2, 0.3, 0.6) (0.7, 0.9, 0.3)
3 f3 (0.5, 0.5, 0.1) (0.0, 0.1, 0.5) (0.1, 0.1, 0.9) (0.5, 0.7, 0.2)

4 r1 (0.8, 0.1, 0.7) (0.9, 0.4, 0.5) (0.9, 0.4, 0.0) (0.8, 0.4, 0.2)
5 r2 (0.9, 0.3, 0.2) (0.6, 0.1, 0.0) (0.5, 0.2, 0.4) (0.9, 0.1, 0.4)
6 r3 (0.9, 0.1, 0.3) (0.8, 0.3, 0.1) (0.6, 0.0, 0.6) (0.2, 0.2, 0.5)
7 r4 (0.8, 0.3, 0.2) (1.0, 0.1, 0.5) (0.8, 0.5, 0.1) (0.7, 0.3, 0.6)
8 r5 (1.0, 0.3, 0.2) (1.0, 0.3, 0.2) (0.8, 0.2, 0.8) (0.6, 0.5, 0.6)
9 r6 (0.8, 0.1, 0.0) (0.6, 0.8, 0.5) (0.9, 0.7, 0.1) (0.4, 0.8, 0.7)

10 s1 (0.0, 0.5, 0.5) (0.4, 0.1, 0.6) (0.2, 0.2, 0.7) (0.8, 0.3, 0.4)
11 s2 (1.0, 0.8, 0.6) (0.7, 0.5, 0.5) (0.4, 0.4, 0.7) (0.6, 0.5, 0.7)

12 d1 (0.1, 0.2, 1.0) (0.3, 1.0, 0.6) (0.7, 0.9, 0.2) (0.9, 0.7, 0.5)
13 d2 (0.1, 0.4, 0.8) (0.2, 0.2, 0.8) (0.2, 0.6, 0.3) (0.2, 0.8, 0.5)
14 d3 (0.5, 0.6, 0.9) (0.9, 0.6, 0.3) (0.9, 0.7, 0.5) (0.6, 0.7, 0.6)
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This MCDM problem is solved by the proposed PHSS-based TOPSIS and fuzzy TOPSIS, as follows:

A. Application of PHSS-based TOPSIS for Case 1

Apply the plithogenic accuracy function (1) to the matrix (2) in order to obtain the plithogenic
accuracy matrix given by:




0.6667 0.5667 0.4778 0.7333
0.5333 0.6000 0.4333 0.4667
0.9667 0.7500 0.6833 0.8500
0.4333 0.6333 0.6000 0.7000


 .

The plithogenic decision matrix Mp is constructed by taking the transpose of the plithogenic
accuracy matrix. It is a square matrix of order 4, given by

Mp =




0.6667 0.5333 0.9667 0.4333
0.5667 0.6000 0.7500 0.6333
0.4778 0.4333 0.6833 0.6000
0.7333 0.4667 0.8500 0.7000




A corresponding table, as shown in Table 2, of alternatives versus criteria may also be drawn to
see the situation in a clear way.

Table 2. Alternatives versus criteria table.

Al/Cr f2 r1 s2 d1

P1 0.6667 0.5333 0.9667 0.4333
P2 0.5667 0.6000 0.7500 0.6333
P3 0.4778 0.4333 0.6833 0.6000
P4 0.7333 0.4667 0.8500 0.7000

A plithogenic normalized decision matrix Np is obtained as:

Np =




0.5387 0.5205 0.5898 0.3612
0.4579 0.5855 0.4576 0.5280
0.3861 0.4229 0.4169 0.5002
0.5925 0.4555 0.5186 0.5836




A weighted normalized matrix W4 is constructed as:

W4 = [ 0.4, 0.22, 0.15, 0.23 ], (3)

whereas the plithogenic weighted normalized decision matrix Vp = [vij]4×4 is given, as follows:

Vp =




0.2155 0.1145 0.0885 0.0831
0.1832 0.1288 0.0686 0.1214
0.1544 0.0930 0.0625 0.1150
0.2370 0.1002 0.0778 0.1342



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The plithogenic positive ideal solution V+
p and plithogenic negative ideal solution V−p are

determined, as follows:

V+
p = {0.1544, 0.0930, 0.0625, 0.0831},

V−p = {0.2370, 0.1288, 0.0885, 0.1342}.

The plithogenic distance of each alternative from the V+
p and V−p , respectively, is determined as:

S+ =




0.0697
0.0601
0.0320
0.0986


 , S− =




0.0573
0.0588
0.0956
0.0305


 .

The relative closeness coefficient Ci, i = 1, 2, 3, 4, of each alternative is computed as:

C1 = 0.4511,

C2 = 0.4944,

C3 = 0.7494,

C4 = 0.2366.

The highest value corresponds to the most suitable alternative. Since C3 = 0.7494 is the maximum
value and it corresponds to P3, therefore, the most suitable parking spot is P3. The Table 3 is constructed
to rank all alternatives under consideration.

Table 3. PHSS-based TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0697 0.0573 0.4511 3
P2 0.0601 0.0588 0.4944 2
P3 0.0320 0.0956 0.7494 1
P4 0.0986 0.0305 0.2366 4

A bar graph presented in Figure 3 is given, in which all alternatives P1, P2, P3, P4 are ranked by
PHSS-based TOPSIS.

Figure 3. Ranking of Parking Spots by PHSS-based TOPSIS for Case 1.
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It is evident that the parking spot P3 is the most suitable place to park the car while P4 is not a
good choice for parking based on the selection criteria.

B. Application of Fuzzy TOPSIS for Case 1

In order to see the implementation of fuzzy TOPSIS [32–34] for the current scenario of the parking
problem, we apply the average operator [27,35] to each element of the matrix 2 and take the transpose
of the resulting matrix in order to obtain the decision matrix given by:

M =




0.5667 0.5333 0.8000 0.4333
0.4333 0.6000 0.5667 0.6333
0.3667 0.4333 0.5000 0.6000
0.6333 0.4667 0.6000 0.7000




Applying the fuzzy TOPSIS to the decision matrix M, along with the same weights
given in matrix (3), we obtain the values of positive distance S+, negative distance S−, relative
closeness Ci and ranking of each alternative, as given in Table 4.

Table 4. Fuzzy TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0888 0.0592 0.4000 3
P2 0.0591 0.0841 0.5872 2
P3 0.0320 0.1176 0.7863 1
P4 0.1170 0.0373 0.2417 4

A bar graph in Figure 4 is given in which all alternatives P1, P2, P3, P4 are ranked by Fuzzy TOPSIS.
A comparison is shown in Table 5, in which it can be seen that the result obtained by the proposed

PHSS-based TOPSIS is aligned with that of fuzzy TOPSIS.

Figure 4. Ranking of Parking Spots by Fuzzy TOPSIS for Case 1.

Table 5. Comparison analysis for case 1.

Sr. Parkings PHSS-Based TOPSIS Ranking Fuzzy TOPSIS Ranking

1 P1 3rd 3rd
2 P2 2nd 2nd
3 P3 1st 1st
4 P4 4th 4th
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It is observed in Table 5 that the results obtained by both methods coincide in terms of the ranking
of each alternative, but differ in the values of the relative closeness of each alternative. It is due to
the nature of the MCDM problem in hand in which each alternative needs to be evaluated against
each attribute value possessing a neutrosophic degree of appurtenance w.r.t. each alternative and a
contradiction degree is defined between each attribute value and its corresponding dominant attribute
value to be taken into consideration in the decision process. In such a case, the proposed PHSS-based
TOPSIS produces a more reliable relative closeness of each alternative, as it can been seen in the
parking spot choice problem that was chosen for the study. Therefore, it is worth noting that the
proposed PHSS-based TOPSIS can be regarded as a generalization of fuzzy TOPSIS [32], because
the fuzzy TOPSIS cannot be directly applied to MCDM problems in which the attribute values have
a neutrosophic degree of appurtenance with respect to each alternative. In the case of the parking
problem, fuzzy TOPSIS is applied after applying simple average operator to the neutrosophic elements
of the matrix (2). However, it does not takes into account the degree of contradiction between the
attribute values, which is the limitation of fuzzy TOPSIS. This concern is precisely addressed by the
proposed PHSS-based TOPSIS.

4.2.2. Case 2

In this case, the set of parking spots under consideration is given by

X = {P1, P5, P6, P7}.

The neutrosophic degree of appurtenance of each attribute value that corresponds to each alternative
of {P1, P5, P6, P7} is given in Table 6.

Table 6. Degree of appurtenance of each attribute value w.r.t each alternative.

Sr. Variables P1 P5 P6 P7

1 f1 (0.5, 0.1, 0.3) (0.6, 0.6, 0.8) (0.7, 0.2, 0.4) (0.9, 0.5, 0.2)
2 f2 (0.7, 0.9, 0.1) (0.8, 0.8, 0.5) (0.4, 0.4, 0.7) (0.7, 0.2, 0.1)
3 f3 (0.5, 0.5, 0.1) (0.4, 0.2, 0.5) (1.0, 0.5, 0.9) (1.0, 0.7, 0.6)

4 r1 (0.8, 0.1, 0.7) (0.9, 0.5, 0.2) (0.5, 0 , 0.9) (0.8, 0.6, 0.1)
5 r2 (0.9, 0.3, 0.2) (0.5, 0.4, 0.2) (0.7, 0.5, 0.4) (0.9, 0.6, 0.8)
6 r3 (0.9, 0.1, 0.3) (0.5, 0.7, 0.3) (0.9, 1.0, 0.6) (0.2, 0 , 1.0)
7 r4 (0.8, 0.3, 0.2) (1.0, 0.2, 1.0) (1.0, 0.5, 0.7) (0.8, 0.8, 0.9)
8 r5 (0.2, 0.3, 0.9) (1.0, 0.1, 0.8) (0.4, 0.6, 0.8) (0.8, 0.6, 0.6)
9 r6 (0.5, 0.7, 0.5) (0.8, 0.2, 0.0) (0.6, 0.3, 0.7) (0.0, 0.9, 0.9)

10 s1 (0 , 0.5, 0.5) (0.8, 0.4, 0.6) (0.9, 0.2, 0.2) (0.8, 0.4, 0.7)
11 s2 (1.0, 0.8, 0.6) (0.7, 1.0, 0.2) (0.2, 0.4, 0.7) (0.9, 0 , 1.0)

12 d1 (0.1, 0.2, 1.0) (1.0, 0.4, 0.3) (0.7, 0.5, 0.6) (0.8, 0.5, 0.7)
13 d2 (0.1, 0.4, 0.8) (0.7, 1.0, 0.8) (0.6, 0.6, 1.0) (1.0, 0.8, 0.8)
14 d3 (0.5, 0.6, 0.9) (1.0, 0.6, 0.5) (1.0, 1.0, 0.5) (1.0, 0.5, 0.8)

Let C = A1 × A2 × A3 × A4 and consider an element ( f2, r1, s2, d1) ∈ C for which the
corresponding matrix obtained from Table 6, is given below:




(0.7, 0.9, 0.1) (0.8, 0.8, 0.5) (0.4, 0.4, 0.7) (0.7, 0.2, 0.1)
(0.8, 0.1, 0.7) (0.9, 0.5, 0.2) (0.5, 0.0, 0.9) (0.8, 0.6, 0.1)
(1.0, 0.8, 0.6) (0.7, 1.0, 0.2) (0.2, 1.0, 0.7) (0.9, 0.0, 1.0)
(0.1, 0.2, 1.0) (1.0, 0.4, 0.3) (0.7, 0.5, 0.6) (0.8, 0.5, 0.7)


 (4)

The proposed PHSS-based TOPSIS and fuzzy TOPSIS are employed, as follows:
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A. Application of PHSS-Based TOPSIS for Case 2

The plithogenic accuracy matrix in this case is given by




0.6667 0.9222 0.6444 0.5111
0.5333 0.6000 0.4333 0.4667
0.9667 0.9333 0.6500 0.9500
0.4333 0.6333 0.6000 0.7000


 .

Plithogenic decision matrix Mp is given by

Mp =




0.6667 0.5333 0.9667 0.4333
0.9222 0.6000 0.9333 0.6333
0.6444 0.4333 0.6500 0.6000
0.5111 0.4667 0.9500 0.7000




A plithogenic normalized decision matrix Np is then constructed as:

Np =




0.4748 0.5205 0.5464 0.3612
0.6568 0.5855 0.5275 0.5280
0.4590 0.4229 0.3674 0.5002
0.3640 0.4555 0.5369 0.5836




The plithogenic weighted normalized decision matrix Vp is given, as follows:

Vp =




0.1899 0.1145 0.0820 0.0831
0.2627 0.1288 0.0791 0.1214
0.1836 0.0930 0.0551 0.1150
0.1456 0.1002 0.0805 0.1342




The plithogenic positive ideal solution V+
p and plithogenic negative ideal solution V−p are

determined, such that

V+
p = {0.1456, 0.0930, 0.0551, 0.0831},

V−p = {0.2627, 0.1288, 0.0820, 0.1342}.

The plithogenic positive distance S+, plithogenic negative distance S−, relative closeness Ci, and
ranking of each alternative is shown in Table 7.

Table 7. PHSS-based TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0561 0.0901 0.6163 3
P5 0.1306 0.0131 0.0912 4
P6 0.0496 0.0929 0.6518 2
P7 0.0576 0.1206 0.6769 1

A graphical representation of the ranking of all alternatives obtained by PHSS-based TOPSIS,
is shown in Figure 5.
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Figure 5. Ranking of Parking Spots by PHSS-based TOPSIS for Case 2.

It can be seen that the parking spot P7 is the most suitable alternative in the light of chosen criteria.

B. Application of Fuzzy TOPSIS for Case 2

In this case, the decision matrix M for the implementation of fuzzy TOPSIS is given by

M =




0.5667 0.5333 0.8000 0.4333
0.7000 0.6000 0.6333 0.6333
0.5000 0.4333 0.6333 0.6000
0.3333 0.4667 0.6333 0.7000




By implementing the fuzzy TOPSIS to the matrix M, with the same weights given in (3), the values
of positive distance S+, negative distance S−, relative closeness Ci, and ranking of each alternative are
shown in Table 8.

Table 8. Fuzzy TOPSIS ranking table.

S+
i S−

i Ci Ranking

P1 0.0908 0.0724 0.4439 3
P5 0.1453 0.0224 0.1337 4
P6 0.0694 0.0863 0.5543 2
P7 0.0516 0.1397 0.7301 1

The ranking of all alternatives can also been visualized as a bar graph in Figure 6, in which all
alternatives P1, P5, P6, P7 are ranked by Fuzzy TOPSIS.

The most suitable parking spot obtained by fuzzy TOPSIS is also P7.
A comparison of rankings obtained by PHSS-based TOPSIS and fuzzy TOPSIS is shown in

Table 9 for case 2.
It may be noted that similar results are obtained in case 2, with the help of proposed PHSS-based

TOPSIS and fuzzy TOPSIS with exactly same ranking of each alternative, but with a considerably
different values of the relative closeness of each alternative as shown in Table 9. Therefore, it is
accomplished that the results that were obtained by the PHSS-based TOPSIS are valid and more
reliable and PHSS-based TOPSIS can be regarded as the generalization of fuzzy TOPSIS on the basis of
the study conducted in the article.
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Figure 6. Ranking of Parking Spots by Fuzzy TOPSIS for Case 2.

Table 9. Comparison analysis for case 2.

Sr. Parkings PHSS-Based TOPSIS Ranking Fuzzy TOPSIS Ranking

1 P1 3rd 3rd
2 P5 4th 4th
3 P6 2nd 2nd
4 P7 1st 1st

5. Conclusions

It has always been a challenging task to deal with real life MCDM problems, due to the
involvement of many complexities and uncertainties. In particular, some real life MCDM problems
are designed in a way that the given attributes need to be further decomposed into two or more
attribute values such that each alternative is then required to be evaluated against each attribute
value in order to perform a detailed analysis to reach a fair conclusion. To deal with such situations,
a novel PHSS-based TOPSIS is proposed in the present study, and it is applied to a MCDM parking
problem with different choices of the set of alternatives and a comparison with fuzzy TOPSIS is done
to prove the validity and efficiency of the proposed method. All of the results are quite promising and
graphically depicted for a clear understanding. Moreover, the algorithm of the proposed method is
produced in MATLAB in order to broaden the scope of the study to other research areas, including
graph theory, machine learning, pattern recognition, etc.
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Abstract: In this paper, we introduce the new notion of interval-valued neutrosophic crisp sets
providing a tool for approximating undefinable or complex concepts in real world. First, we deal
with some of its algebraic structures. We also define an interval-valued neutrosophic crisp (vanishing)
point and obtain some of its properties. Next, we define an interval-valued neutrosophic crisp
topology, base (subbase), neighborhood, and interior (closure), respectively and investigate some
of each property, and give some examples. Finally, we define an interval-valued neutrosophic crisp
continuity and quotient topology and study some of each property.

Keywords: interval-valued neutrosophic crisp set; interval-valued neutrosophic crisp (vanishing)
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1. Introduction

Numerous mathematicians have been trying to find a mathematical expression of the
complexation and uncertainty in real world for a long time. For example, Zadeh [1] defined a fuzzy set
as a generalization of a classical set in 1965. Zadeh [2] (1975), Pawlak [3] (1982), Atanassov [4] (1983),
Atanassov and Gargov [5] (1989), Gau and Buchrer [6] (1993), Smarandache [7] (1998), Molodtsov [8]
(1999), Lee [9], Torra [10], Jun et al. [11] (2012), and Lee et al. [12] (2020) introduced the concept of
interval-valued fuzzy sets, rough sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets,
vague sets, neutrosophic sets, soft sets, bipolar fuzzy sets, hessitant fuzzy sets, cubic sets combined
by interval-valued fuzzy sets and fuzzy sets, and octahedron sets combined by interval-valued fuzzy
sets, intuitionistic fuzzy sets, and fuzzy sets, in turn, in order to solve various complex and uncertain
problems.

In 1996, cCoker [13] proposed the concept of an intuitionistic set as the generalization of a classical
set and the special case of an intuionistic fuzzy set and he studied topological structures based on
intuitionistic sets in [14]. Kim et al. [15] dealt with categorical structures based on intuitionistic
sets. They also obtained further properties of intuionistic topology in [16]. In 2014, Salama et
al. [17] defined neutrosophic crisp sets as the generalization of classical sets and the special case
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of neutrosophic sets proposed by Smarandache [7,18,19], and studied some of its properties. Moreover,
they dealt with topological structures based on the neutrosophic crisp sets in [17]. Hur et al. [20]
investigated categorical structures via neutrosophic crisp sets. Many researchers [21–29] have discussed
topological structures via neutrosophic crisp sets. Recently, Kim et al. [30] introduced the concept of an
interval-valued set as the generalization of a classical set and the specialization of an interval-valued
fuzzy set, and applied it to topological structures.

This paper considers two perspectives. First, we define the interval-valued neutrosophic crisp
set, a new concept that combines the interval-valued set and neutrosophic crisp set. As an example,
suppose a country conducts a poll during an election that determines the highest head of administration.
At this time, the preference for Candidate A is divided into three groups: Favor, neutral, and rejection
among its citizens from the viewpoint of neutrosophic crisp set, but the minimum and maximum for
each of a favor, neutral, and rejection from the viewpoint of interval-valued neutrosophic crisp set.
The group is considered. Then, it is believed that the results of the poll by the new concept are more
accurate than those by the neutrosophic crisp set. Thus, this new concept is needed. Second, since the
topology can be applied to high dimensional data sets, big data, and computational evaluations (see
[31–33], respectively), we study topological structures based on interval-valued neutrosophic crisp
sets. In order to accomplish such research, first, we recall some definitions related to intuitionistic
sets, interval-valued sets, and neutrosophic crisp sets. Secondly, we introduce the new concept of
interval-valued neutrosophic crisp set and obtain some of its algebraic structures, and give some
examples. We also define interval-valued neutrosophic crisp points of two types and discuss the
characterizations of the inclusion, equality, intersection, and union of interval-valued neutrosophic
crisp sets. Thirdly, we define an interval-valued neutrosophic crisp topology, an interval-valued
neutrosophic crisp base and subbase, and study some of their properties. Fourthly, we introduce
the concepts of interval-valued neutrosophic crisp neighborhoods of two types and find some of
their properties. In particular, we prove that there is an IVNCT under the hypothesis satisfying
some properties of interval-valued neutrosophic crisp neighborhoods. Moreover, we define an
interval-valued neutrosophic crisp interior and closure and deal with some of their properties.
In particular, we show that there is a unique IVNCT for interval-valued neutrosophic crisp interior
[resp. closure] operators. Finally, we introduce the concepts of interval-valued neutrosophic crisp
continuous [resp. open and closed] mappings and quotient topologies and obtain some of their
properties.

Throughout this paper, we assume that X, Y are non-empty sets, unless otherwise stated.

2. Preliminaries

In this section, we recall the concept of an intuitionistic set proposed in [13]. We also recall some
concepts and results introduced and studied in [30,34,35], respectively.

Definition 1 ([13]). The form A = (A∈, A 6∈) such that A∈, A 6∈ ⊂ X, and A∈ ∩ A 6∈ = ∅ is called
an intuitionistic set (briefly, IS) of X, where A∈ [resp. A 6∈] represents the set of memberships [resp.
non-memberships] of elements of X to A. In fact, A∈ [resp. A 6∈] is a subset of X agreeing or approving
[resp. refusing or opposing] for a certain opinion, suggestion, or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by ∅̄ [resp. X̄], is defined
by ∅̄ = (∅, X) [resp. X̄ = (X, ∅)]. The set of all ISs of X will be denoted by IS(X). It is also clear that for
each A ∈ IS(X), χA = (χA∈ , χA 6∈) is an intuitionistic fuzzy set in X proposed by Atanassov [4]. Thus we can
consider the intuitionistic set A in X as an intuitionistic fuzzy set in X.

Furthermore, we can easily check that for each A ∈ IS(X), A∈ ∪ A 6∈ 6= X (in fact, A∈c ∩ A 6∈
c
6= ∅)

in general (see Example 1) but if A∈ ∪ A 6∈ = X, then A∈c ∩ A 6∈
c
= ∅. We denote the family {A ∈ IS(X) :

A∈ ∪ A 6∈ = X} as IS∗(X).
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Example 1. Let X = {a, b, c, d, e} be a set and consider the IS A in X given by:

A = ({a, b, c}, {d}).

Then clearly, A∈ ∪ A 6∈ 6= X. In fact, A∈c ∩ A 6∈
c
6= ∅.

For the inclusion, equality, union, and intersection of intuitionistic sets, and the complement of an
intuitionistic set, the operations [ ] and <> on IS(X), refer to [13].

Definition 2 ([34,36]). The form A =
〈

AT , AI , AF〉 such that AT , AI , AF ⊂ X is called a neutrosophic
crisp set (briefly, NCS) in X, where AT , AI , and AF represent the set of memberships, indeterminacies, and
non-memberships respectively of elements of X to A.

We consider neutrosophic crisp empty [resp. whole] sets of two types in X, denoted by ∅1,N , ∅2,N

[resp. X1,N , X2,N] and defined by (see Remark 1.1.1 in [34]):

∅1,N = 〈∅, ∅, X〉 , ∅2,N = 〈∅, X, X〉 [resp.X1,N = 〈X, X, ∅〉 , X2,N = 〈X, ∅, ∅〉].

We will denote the set of all NCSs in X denoted by NC(X).

It is obvious that A = 〈A, ∅, Ac〉 ∈ NC(X) for each ordinary subset A of X. Then we can consider
an NCS in X as the generalization of an ordinary subset of X. It is also clear that A =

〈
A∈, ∅, A 6∈

〉
is

an NCS in X for each A ∈ IS(X). Thus an NCS in X can be considered as the generalization of an
intuitionistic set in X. Furthermore, we can easily see that for each A ∈ N(X),

χA = 〈χAT , χAI , χAF 〉

is a neutrosophic set in X introduced by Salama and Smarandache [7,18,19]. So an NCS is a special
case of a neutrosophic set.

Definition 3 ([34]). Let A ∈ NC(X). Then the complement of A, denoted by Ai,c (i = 1, 2) and defined by:

A1,c =
〈

AF, AI c
, AT

〉
, A2,c =

〈
AF, AI , AT

〉
.

Definition 4 ([34]). Let A, B ∈ NC(X). Then A is said to be:

(i) A 1-type subset of B, denoted by A ⊂1 B, if it satisfies the following conditions:

AT ⊂ BT , AI ⊂ BI , AF ⊃ BF,

(ii) A 2-type subset of B, denoted by A ⊂2 B, if it satisfies the following conditions:

AT ⊂ BT , AI ⊃ BI , AF ⊃ BF.

Definition 5 ([34]). Let A, B ∈ NC(X).

(i) The i-intersection of A and B, denoted by A ∩i B (i = 1, 2) and defined by:

A ∩1 B =
〈

AT ∩ BT , AI ∩ BI , AF ∪ BF
〉

, A ∩2 B =
〈

AT ∩ BT , AI ∪ BI , AF ∪ BF
〉

.

(ii) The i-union of A and B, denoted by A ∪i B (i = 1, 2) and defined by:

A ∪1 B =
〈

AT ∪ BT , AI ∪ BI , AF ∩ BF
〉

, A ∪2 B =
〈

AT ∪ BT , AI ∩ BI , AF ∩ BF
〉

.
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(iii) [ ]A =
〈

AT , AI , ATc
〉

, 〈 〉 A =
〈

AFc, AI , AF
〉

.

The followings are immediate results of Definitions 3, 4, and 5.

Proposition 1 (See Proposition 3.3 in [20] and also compare it with Proposition 3.5 in [15]). Let A, B, C ∈
NC(X) and let i = 1, 2. Then we have:

(1) (See Proposition 1.1.1 in [34]) ∅i,N ⊂i A ⊂i Xi,N ,
(2) If A ⊂i B and B ⊂i C, then A ⊂i C,
(3) A ∩i B ⊂i A and A ∩i B ⊂i B,
(4) A ⊂i A ∪i B and B ⊂i A ∪i B,
(5) A ⊂i B if and only if A ∩i B = A,
(6) A ⊂i B if and only if A ∪i B = B.

Proposition 2 (See Proposition 3.4 in [20] and also compare it with Proposition 3.6 in [15]). Let A, B, C ∈
NC(X) and let i = 1, 2. Then we have:

(1) (Idempotent laws): A ∪i A = A, A ∩i A = A,
(2) (Commutative laws): A ∪i B = B ∪i A, A ∩i B = B ∩i A,
(3) (Associative laws): A ∪i (B ∪i C) = (A ∪i B) ∪i C, A ∩i (B ∩i C) = (A ∩i B) ∩i C,
(4) (Distributive laws): A ∪i (B ∩i C) = (A ∪i B) ∩i (A ∪i C),

A ∩i (B ∪i C) = (A ∩i B) ∪i (A ∩i C),
(5) (Absorption laws): A ∪i (A ∩i B) = A, A ∩i (A ∪i B) = A,
(6) (DeMorgan’s laws): (A ∪1 B)1,c = A1,c ∩1 B1,c, (A ∪1 B)2,c = A2,c ∩2 B2,c,

(A ∪2 B)1,c = A1,c ∩2 B1,c, (A ∪2 B)2,c = A2,c ∩1 B2,c,

(A ∩1 B)1,c = A1,c ∪1 B1,c, (A ∩1 B)2,c = A2,c ∪2 B2,c,

(A ∩2 B)1,c = A1,c ∪2 B1,c, (A ∩2 B)2,c = A2,c ∪1 B2,c,
(7) (Ai,c)i,c = A,
(8) (8a) A ∪i ∅i,N = A, A ∩i ∅i,N = ∅i,N ,

(8b) A ∪i Xi,N = Xi,N , A ∩i Xi,N = A,
(8c) Xi,N

i,c = ∅i,N , ∅i,N
i,c = Xi,N ,

(8d) A ∪i Ai,c 6= Xi,N
i,c, A ∩i Ai,c 6= ∅i,N , in general.

Definition 6 (See [34,37]). Let a ∈ X. Then the form aN = 〈{a}, ∅, {a}c〉 [resp. aNV = 〈∅, {a}, {a}c〉] is
called a neutrisophic crisp [resp. vanishing] point in X.

We denote the set of all neutrisophic crisp points and all neutrisophic crisp vanishing points in X by NP(X).

Definition 7 (See [34,37]). Let a ∈ X and let A ∈ NC(X). Then,

(i) aN said to belong to A, denoted by aN ∈ A, if a ∈ AT ,
(ii) aNV said to belong to A, denoted by aNV ∈ A, if a 6∈ AF.

Result 1 ([34], Proposition 1.2.6). Let A ∈ NC(X). Then,

A = AN ∪
1 ANV ,

where AN =
⋃1

aN∈A aN , ANV =
⋃1

aNV∈A aNV . In fact, AN =
〈

AT , ∅, ATc
〉

and ANV =
〈
∅, AI , AF〉.

Definition 8 ([30,35]). The form [A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+} such that A−, A+ ⊂ X is called
an interval-valued sets (briefly, IVS) in X, where A− [resp. A+] represents the set of minimum [resp. maximum]
memberships of elements of X to A. In fact, A− [resp. A+] is a minimum [resp. maximum] subset of X agreeing
or approving for a certain opinion, suggestion, or policy.

[∅, ∅] [resp. [X, X]] is called the interval-valued empty [resp. whole] set in X and denoted by ∅̃ [resp. X̃].
The set of all IVSs in X will be denoted by IVS(X).
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For any classical subset A of X, [A, A] ∈ IVS(X) is obvious. Then we can consider an IVS in X as
the generalization of a classical subset of X. Also, if A = [A−, A+] ∈ IVS(X), then χA = [χ

A−
, χ

A+ ] is
an interval-valued fuzzy set in X introduced by Zadeh [2]. Thus an interval-valued fuzzy set can be
considered as the generalization of an IVS.

Furthermore, we can easily check that for each A ∈ IVS(X), A− 6= A+ (in fact, A+ ∩ A−c 6= ∅)
in general (see Example 2) but if A− = A+, then A+ ∩ A−c

= ∅. We denote the family {A ∈ IVS(X) :
A− = A+} as IVS∗(X).

Example 2. Let X = {a, b, c, d, e} and consider the IVS A in X given by:

A = [{a, b}, {a, , b, c}].

Then we can easily calculate that A− 6= A+ and A+ ∩ A−c 6= ∅.

For the inclusion, equality, union, and intersection of intuionistic sets, and the complement of an
intuitionistic set refer to [30,35].

3. Interval-Valued Neutrosophic Crisp Sets

In this section, we introduce the concept of an interval-valued neutrosophic crisp set combined by
a neutrosophic crisp set and an interval-valued set, and obtain some of its properties.

Definition 9. The form
〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+]

〉
is called an interval-valued neutrosophic

crisp set (briefly, IVNCS) in X, where [AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+] ∈ IVS(X).
In this case, [AT,−, AT,+], [AI,−, AI,+], and [AF,−, AF,+] represent the IVS of memberships,

indeterminacies, and non-memberships respectively of elements of X to A.
In particular, an IVNCS is defined as three types below.
An IVNCS A =

〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+]

〉
in X is said to be of:

(i) Type 1, if it satisfies the following conditions:

[AT,−, AT,+] ∩ [AI,−, AI,+] = ∅̃, [AT,−, AT,+] ∩ [AF,−, AF,+] = ∅̃,

[AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃,

equivalently, AT,+ ∩ AI,+ = ∅, AT,+ ∩ AF,+ = ∅, AI,+ ∩ AF,+ = ∅,
(ii) Type 2, if it satisfies the following conditions:

[AT,−, AT,+] ∩ [AI,−, AI,+] = ∅̃, [AT,−, AT,+] ∩ [AF,−, AF,+] = ∅̃,

[AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃, [AT,−, AT,+] ∪ [AI,−, AI,+] ∪ [AF,−, AF,+] = X̃,

equivalently, AT,+ ∩ AI,+ = ∅, AT,+ ∩ AF,+ = ∅, AI,+ ∩ AF,+ = ∅,

AT,− ∪ AI,− ∪ AF,− = X,
(iii) Type 3, if it satisfies the following conditions:

[AT,−, AT,+] ∩ [AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃,

[AT,−, AT,+] ∪ [AI,−, AI,+] ∪ [AF,−, AF,+] = X̃,

equivalently, AT,+ ∩ AI,+ ∩ AF,+ = ∅, AT,− ∪ AI,−AF,− = X.

The set of all IVNCSs of Type 1 [resp. Type 2 and Type 3] in X is denoted by IVN1(X) [resp. IVN2(X)

and IVN3(X)], and IVNCS(X) = IVN1(X) ∪ IVN2(X) ∪ IVN3(X), where IVNCS(X) is the set of all
IVNCSs in X.
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For any classical subset A of X,
〈
[A, A], ∅̃, [Ac, Ac]

〉
∈ IVNCS(X) is clear. Then we can consider

an INCS in X can be considered as the generalization of a classical subset of X. Moreover, if A =〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+]

〉
∈ IVNCS(X), then:

χA = ([χ
AT,− , χ

AT,+ ], [χAI,− , χ
AI,+ ], [χAF,− , χ

AF,+ ])

is an interval neutrosophic set in X proposed by Ye [38]. Thus we can consider an IVS as the
generalization of an IVNCS.

Remark 1.

(1) IVN2(X) ⊂ IVN1(X), IVN2(X) ⊂ IVN3(X),
(2) IVN1(X) 6⊂ IVN2(X), IVN1(X) 6⊂ IVN3(X) in general,
(3) IVN3(X) 6⊂ IVN1(X), IVN3(X) 6⊂ IVN2(X) in general.

Example 3. Let X = {a, b, c, d, e, f , g, h, i}. Consider two IVNCSs in X given by:

A = 〈[{a, b, c}, {a, b, c, d}], [{e}, {e, f }], [{g, h}, {g, h, i}]〉 ,

B = 〈[{a, b, c}, {a, b, c}], [{a, e, f }, {a, e, f }], [{g, h, i}, {g, h, i}]〉 .

(i) [AT,−, AT,+] ∩ [AI,−, AI,+] = ∅̃, [AT,−, AT,+] ∩ [AF,−, AF,+] = ∅̃,

[AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃. But

[AT,−, AT,+]∪ [AI,−, AI,+]∪ [AF,−, AF,+] = [{a, b, c, d, e, f , g, h}, X}] 6= X̃. Then A ∈ IVN1(X) but
A 6∈ IVN2(X). Moreover, we have:

[AT,−, AT,+] ∩ [AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃.

Thus A 6∈ IVN3(X). So we can confirm that Remark 1 (2) holds.
(ii) [BT,−, BT,+] ∩ [BI,−, BI,+] ∩ [BF,−, BF,+] = ∅̃,

[BT,−, BT,+] ∪ BCI,−, BI,+] ∪ [BF,−, BF,+] = X̃. But

[BT,−, BT,+] ∩ [BI,−, BI,+] = [{a}, {a}] 6= ∅̃.
Then B ∈ IVN3(X) but B 6∈ IVN1(X), B 6∈ IVN2(X). Thus we can confirm that Remark 1 (3) holds.

Definition 10. We may define the interval-valued neutrosophic crisp empty sets and the interval-valued
neutrosophic crisp whole sets, denoted by ∅i,IVN and Xi,IVN (i = 1, 2, 3, 4), respectively as follows:

(i) ∅1,IVN =
〈

∅̃, ∅̃, X̃
〉

, ∅2,IVN =
〈

∅̃, X̃, X̃
〉

,

∅3,IVN =
〈

∅̃, X̃, ∅̃
〉

, ∅4,IVN =
〈

∅̃, ∅̃, ∅̃
〉

,

(ii) X1,IVN =
〈

X̃, X̃, ∅̃
〉

, X2,IVN =
〈

X̃, ∅̃, ∅̃
〉

,

X3,IVN =
〈

X̃, ∅̃, X̃
〉

, X4,IVN =
〈

X̃, X̃, X̃
〉

.

Definition 11. Let A ∈ IVNCS(X). Then the complements of A, denoted by Ai,c (i = 1, 2, 3), is an IVNCS
in X, respectively as follows:

A1,c =
〈
[AT,−, AT,+]

c
, [AI,−, AI,+]

c
, [AF,−, AF,+]

c
〉

,

A2,c =
〈
[AF,−, AF,+], [AI,−, AI,+], [AT,−, AT,+]

〉
,

A3,c =
〈
[AF,−, AF,+], [AI,−, AI,+]

c
, [AT,−, AT,+]

〉
.
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Example 4. Let A = 〈[{a, b, c}, {a, b, c, d}], [{e}, {e, f }], [{g, h}, {g, h, i}]〉 be the IVNCS in X given in
Example 3. Then we can easily check that:

A1,c =< [{e, f , g, h, i}, {d, e, f , g, h, i}], [{a, b, c, d, g, h, i}, {a, b, c, d, f , g, h, i}],
[{a, b, c, d, e, f }, {a, b, c, d, e, f , i}] >,

A2,c = 〈[{g, h}, {g, h, i}], [{e}, {e, f }], [{a, b, c}, {a, b, c, d}]〉 ,
A3,c =< [{g, h}, {g, h, i}], [{a, b, c, d, g, h, i}, {a, b, c, d, f , g, h, i}],

[{a, b, c}, {a, b, c, d}] > .

Definition 12. Let A, B ∈ IVNCS(X). Then we may define the inclusions between A and B, denoted by
A ⊂i B (i = 1, 2), as follows:

A ⊂1 B iff [AT,−, AT,+] ⊂ [BT,−, BT,+], [AI,−, AI,+] ⊂ [BI,−, BI,+],
[AF,−, AF,+] ⊃ [BF,−, BF,+],

A ⊂2 B iff [AT,−, AT,+] ⊂ [BT,−, BT,+], [AI,−, AI,+] ⊃ [BI,−, BI,+],
[AF,−, AF,+] ⊃ [BF,−, BF,+].

Proposition 3. For any A ∈ IVNCS(X), the followings hold:

(1) ∅1,IVN ⊂1 A ⊂1 X1,IVN , ∅2,IVN ⊂2 A ⊂2 X2,IVN ,
(2) ∅i,IVN ⊂j ∅i,IVN , Xi,IVN ⊂j Xi,IVN , (i = 1, 2, 3, 4, j = 1, 2).

Proof. Straightforward.

Definition 13. Let A, B ∈ IVNCS(X), (Aj)j∈J ⊂ IVNCS(X).

(i) The intersection of A and B, denoted by A ∩i B (i = 1, 2), is an IVNCS in X defined by:

A ∩1 B =< [AT,−, AT,+] ∩ [BT,−, BT,+], [AI,−, AI,+] ∩ [BI,−, BI,+],

[AF,−, AF,+] ∪ [BF,−, BF,+] >,

A ∩2 B =< [AT,−, AT,+] ∩ [BT,−, BT,+], [AI,−, AI,+] ∪ [BI,−, BI,+],

[AF,−, AF,+] ∪ [BF,−, BF,+] > .
(i′) The intersection of (Aj)j∈J , denoted by

⋂i
j∈J Aj (i = 1, 2), is an IVNCS in X defined by:

1⋂

j∈J

Aj =

〈
⋂

j∈J

[AT,−
j , AT,+

j ],
⋂

j∈J

[AI,−
j , AI,+

j ],
⋃

j∈J

[AF,−
j , AF,+

j ]

〉
,

2⋂

j∈J

Aj =

〈
⋂

j∈J

[AT,−
j , AT,+

j ],
⋃

j∈J

[AI,−
j , AI,+

j ],
⋃

j∈J

[AF,−
j , AF,+

j ]

〉
.

(ii) The union of A and B, denoted by A ∪i B (i = 1, 2), is an IVNCS in X defined by:

A ∪1 B =< [AT,−, AT,+] ∪ [BT,−, BT,+], [AI,−, AI,+] ∪ [BI,−, BI,+],

[AF,−, AF,+] ∩ [BF,−, BF,+] >,

A ∪2 B =< [AT,−, AT,+] ∪ [BT,−, BT,+], [AI,−, AI,+] ∩ [BI,−, BI,+],

[AF,−, AF,+] ∩ [BF,−, BF,+] > .
(ii′) The union of (Aj)j∈J , denoted by

⋃i
j∈J Aj (i = 1, 2), is an IVNCS in X defined by:

1⋃

j∈J

Aj =

〈
⋃

j∈J

[AT,−
j , AT,+

j ],
⋃

j∈J

[AI,−
j , AI,+

j ],
⋂

j∈J

[AF,−
j , AF,+

j ]

〉
,

2⋃

j∈J

Aj =

〈
⋃

j∈J

[AT,−
j , AT,+

j ],
⋂

j∈J

[AI,−
j , AI,+

j ],
⋂

j∈J

[AF,−
j , AF,+

j ]

〉
.
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(iii) [ ]A =
〈
[AT,−, AT,+], [AI,−, AI,+], [AT,−, AT,+]c

〉
.

(iv) < > A =
〈
[AF,−, AF,+]c, [AI,−, AI,+], [AF,−, AF,+]

〉
.

From Definitions 10–13, we get similar results from Propositions 3.5 and 3.6 in [30].

Proposition 4. Let A, B, C ∈ IVNCS(X), i = 1, 2. Then,

(1) If A ⊂i B and B ⊂i C, then A ⊂i C,
(2) A ⊂i A ∪i B and B ⊂i A ∪i B,
(3) A ∩i B ⊂i A and A ∩i B ⊂i B,
(4) A ⊂i B if and only if A ∩i B = A,
(5) A ⊂i B if and only if A ∪i B = B.

Proposition 5. Let X A, B, C ∈ IVNCS(X), (Aj)j∈J ⊂ IVNCS(X), and let i = 1, 2; k = 1, 2, 3. Then

(1) (Idempotent laws) A ∪i A = A, A ∩i A = A,
(2) (Commutative laws) A ∪i B = B ∪i A, A ∩i B = B ∩i A,
(3) (Associative laws) A ∪i (B ∪i C) = (A ∪i B) ∪i C, A ∩i (B ∩i C) = (A ∩i B) ∩i C,
(4) (Distributive laws) A ∪i (B ∩i C) = (A ∪i B) ∩i (A ∪i C),

A ∩i (B ∪i C) = (A ∩i B) ∪i (A ∩i C),
(4′) (Generalized distributive laws) (

⋂i
j∈J Aj) ∪

i A =
⋂i

j∈J(Aj ∪
i A),

(
⋃i

j∈J Aj) ∩
i A =

⋃i
j∈J(Aj ∩

i A),
(5) (Absorption laws) A ∪i (A ∩i B) = A, A ∩i (A ∪i B) = A,
(6) (DeMorgan’s laws) (A ∪i B)k,c = Ak,c ∩i Bk,c, (A ∩i B)k,c = Ak,c ∪i Bk,c,
(6′) (Generalized DeMorgan’s laws) (

⋃i
j∈J Aj)

k,c =
⋂i

j∈J Ak,c
j ,

(7) (Ak,c)k,c = A,
(8) (8a) A ∪i ∅i,IVN = A, A ∩i ∅i,IVN = ∅i,IVN ,

(8b) A ∪i Xi,IVN = Xi,IVN , A ∩i Xi,IVN = A,
(8c) X1,IVN

1,c = ∅1,IVN , X1,IVN
2,c = ∅2,IVN , X1,IVN

3,c = ∅1,IVN ,

X2,IVN
1,c = ∅2,IVN , X2,IVN

2,c = ∅1,IVN , X2,IVN
3,c = ∅2,IVN ,

X3,IVN
1,c = ∅3,IVN , X3,IVN

2,c = X3,IVN , X3,IVN
3,c = X4,IVN ,

X4,IVN
1,c = ∅4,IVN , X4,IVN

2,c = X4,IVN , X4,IVN
3,c = X3,IVN ,

∅1,IVN
1,c = X1,IVN , ∅1,IVN

2,c = X2,IVN , ∅1,IVN
3,c = X1,IVN ,

∅2,IVN
1,c = X2,IVN , ∅2,IVN

2,c = X1,IVN , ∅2,IVN
3,c = X2,IVN ,

∅3,IVN
1,c = X3,IVN , ∅3,IVN

2,c = ∅3,IVN , ∅3,IVN
3,c = ∅4,IVN ,

∅4,IVN
1,c = X4,IVN , ∅4,IVN

2,c = ∅4,IVN , ∅4,IVN
3,c = ∅3,IVN ,

(8d) A ∪i Ak,c 6= Xj,IVN , A ∩i Ak,c 6= ∅j,IVN in general (see Example 5),

where j = 1, 2, 3, 4.

Example 5. Consider the IVNCS A in X given in Example 4. Then,
A ∩1 A1,c

= 〈[{a, b, c}, {a, b, c, d}], [{e}, {e, f }], [{g, h}, {g, h, i}]〉
∩1 < [{e, f , g, h, i}, {d, e, f , g, h, i}], [{a, b, c, d, g, h, i}, {a, b, c, d, f , g, h, i}],

[{a, b, c, d, e, f }, {a, b, c, d, e, f , i}] >
= 〈[∅, {d}], [∅, { f }], [{a, b, c, d, e, f , g, h}, X}]〉
6= ∅j,IVN .

Similarly, we can check that:

A ∪1 A1,c 6= Xj,IVN , A ∩1 A2,c 6= ∅j,IVN , A ∪1 A2,c 6= Xj,IVN .

Additionally, we can easily check the remainders.
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A neighborhood system of a point is very important in a classical topology. Then we propose an
interval-valued neutrosophic crisp point to define the concept of an interval-valued neutrosophic crisp
neighborhood. Moreover, when we deal with separation axioms in an interval-valued neutrosophic
crisp topology, the notion of interval-valued neutrosophic crisp points is used. Then we define it below.

Definition 14. Let a ∈ X, A ∈ IVNCS(X). Then the form
〈
[{a}, {a}], ∅̃, [{a}c, {a}c]

〉
[resp.

〈
∅̃, [{a}, {a}], [{a}c, {a}c]

〉
] is called an interval-valued neutrosophic [resp. vanishing] point in X and

denoted by aIVN [resp. aIVNV ]. We will denote the set of all interval-valued neutrosophic points in X as
IVNP(X).

(i) We say that aIVN belongs to A, denoted by aIVN ∈ A, if a ∈ AT,+.
(ii) We say that aIVNV belongs to A, denoted by aIVNV ∈ A, if a 6∈ AF,+.

Proposition 6. Let A ∈ IVNCS(X). Then A = AIVN ∪
1 AIVNV ,

where AIVN =
⋃1

aIVN∈A aIVN , AIVNV =
⋃1

aIVNV∈A aIVNV .
In fact,

AIVN =
〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]

c
〉

and
AIVNV =

〈
∅̃, [AI,−, AI,+], [AF,−, AF,+]

〉
.

Proof. AIVN =
⋃1

aIVN∈A aIVN =
⋃1

aIVN∈A

〈
[{a}, {a}], ∅̃, [{a}c, {a}c]

〉

=
〈⋃

aIVN∈A[{a}, {a}],
⋃

aIVN∈A ∅̃,
⋂

aIVN∈A[{a}
c, {a}c]

〉

=
〈
[
⋃

a∈AT,−{a},
⋃

a∈AT,+{a}], ∅̃, [
⋂

a∈AT,+ {a}c,
⋂

a∈AT,− {a}c]
〉

=
〈
[AT,−, AT,+], ∅̃, [AT,+c, AT,−c

]
〉

=
〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]c

〉
,

AIVNV =
⋃1

aIVNN∈A aIVNV =
⋃1

aIVNV∈A

〈
∅̃, [{a}, {a}], [{a}c, {a}c]

〉

=
〈⋃

aIVNV∈A ∅̃,
⋃

aIVNV∈A[{a}, {a}],
⋂

aIVNV∈A[{a}
c, {a}c]

〉

=
〈

∅̃, [
⋃

a∈AI,−{a},
⋃

a∈AI,+{a}, [
⋂

a 6∈AF,+ {a}c,
⋂

a∈AF,− {a}c]
〉

=
〈

∅̃, [AI,−, AI,+], [AF,−, AF,+]
〉

.
Then we have,

AIVN ∪
1 AIVNV =

〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]c

〉
∪1

〈
∅̃, [AI,−, AI,+], [AF,−, AF,+]

〉

=
〈
[AT,−, AT,+] ∪ ∅̃, ∅̃ ∪ [AI,−, AI,+], [AT,−, AT,+]c ∩ [AF,−, AF,+]

〉

=
〈
[AT,−, AT,+], [AI,−, AI,+], [AT,+c

∩ AF,−, AT,−c
∩ AF,+

〉

=
〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+〉

= A.
This completes the proof.

Example 6. Let X = {a, b, c, d, e, f , g, h, i} and consider the IVNCS in X given by:

A = 〈[{a, b}, {a, b, c}], [{d}, {d, e}], [{ f , g}, { f , g, h}]〉 .

Then clearly, we have:
AIVN

=
⋃1

aIVI∈A

〈
[{a}, {a}], ∅̃, [{a}c, {a}c]

〉

=
〈
[{a, b}, {a, b, c}], ∅̃, [{a}c ∩ {b}c ∩ {c}c, {a}c ∩ {b}c]

〉
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=
〈
[{a, b}, {a, b, c}], ∅̃, [{d, e, f , g, h, i}, {c, d, e, f , g, h, i}]

〉

=
〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]

c
〉

,

AIVNV

=
⋃1

aIVNV∈A

〈
∅̃, [{a}, {a}], [{a}c, {a}c]

〉

=< ∅̃, [{d}, {d, e}], [{a}c ∩ {b}c ∩ {c}c ∩ {d}c ∩ {e}c ∩ {h}c ∩ {i}c,
{a}c ∩ {b}c ∩ {c}c ∩ {d}c ∩ {e}c ∩ {i}c] >

=
〈

∅̃, [{d}, {d, e}], [{ f , g}, { f , g, h}]
〉

=
〈

∅̃, [AI,−, AI,+], [AF,−, AF,+]
〉

.

Thus AIVN ∪
1 AIVNV = 〈[{a, b}, {a, b, c}], [{d}, {d, e}], [{ f , g}, { f , g, h}]〉 = A. So we can confirm that

Proposition 6 holds.

Proposition 7. Let (Aj)j∈J ⊂ IVNCS(X) and let a ∈ X.
(1) aIVN ∈

⋂1
j∈J Aj [resp. aIVNV ∈

⋂1
j∈J Aj]⇔ aIVN ∈ Aj [resp. aIVNV ∈ Aj] for each j ∈ J.

(2) aIVN ∈
⋃1

j∈J Aj [resp. aIVNV ∈
⋃1

j∈J Aj]⇔ there exists j ∈ J such that aIVN ∈ Aj [resp. aIVNV ∈ Aj.

Proof. (1) Suppose aIVN ∈
⋂1

j∈J Aj and let A =
⋂1

j∈J Aj. Since AT,+ =
⋂

j∈J AT,+
j , a ∈

⋂
j∈J AT,+

j .

Then a ∈ AT,+
j for each j ∈ J. Thus aIVN ∈ Aj for each j ∈ J. The converse is proved similarly.

The proof of the second part is omitted.
(2) Suppose aIVNV ∈

⋃1
j∈J Aj and let A =

⋃1
j∈J Aj. Since AF,+ =

⋂
j∈J AT,+

j , a 6∈
⋂

j∈J AT,+
j .

Then a 6∈ AT,+
j for some j ∈ J. Thus aIVNV ∈ Aj for some j ∈ J. The converse is shown similarly.

The proof of the first part is omitted.

Proposition 8. Let A, B ∈ IVNCS(X). Then,

(1) A ⊂1 B if and only if aIVN ∈ A⇒ aIVN ∈ B [resp. aIVNV ∈ A⇒ aIVNV ∈ B] for each a ∈ X.
(2) A = B if and only if aIVN ∈ A⇔ aIVN ∈ B [resp. aIVNV ∈ A⇔ aIVNV ∈ B] for each a ∈ X.

Proof. Straightforward.

When we discuss with continuities in a classical topology, the concepts of the preimage and image
of a classical subset under a mapping are used. Then we define ones of an IVNCS under a mapping as
follows.

Definition 15. Let f : X → Y be a mapping, A ∈ IVNCS(X), B ∈ IVNCS(Y).

(i) The image of A under f , denoted by f (A), is an IVNCS in Y defined as:

f (A) =
〈
[ f (AT,−), f (AT,+)], [ f (AI,−), f (AI,+)], [ f (AF,−), f (AF,+)]

〉
.

(ii) The preimage of B under f , denoted by f−1(B), is an interval set in X defined as:

f−1(B) =
〈
[ f−1(BT,−), f−1(BT,+)], [ f−1(BI,−), f−1(BI,+)], [ f−1(BF,−), f−1(BF,+)]

〉
.

It is clear that f (aIVN ) = f (a)IVN and f (aIVNV ) = f (a)IVNV for each a ∈ X.

From the above definition, we have similar results of the image and the preimage of classical
subsets under a mapping.
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Proposition 9. Let f : X → Y be a mapping, A, A1, A2 ∈ IVNCS(X), (Aj)j∈J ⊂ IVNCS(X) and let
B, B1, B2 ∈ IVNCS(Y), (Aj)j∈J ⊂ IVNCS(Y). Let i = 1, 2; k = 1, 2, 3; l = 1, 2, 3, 4. Then,

(1) If A1 ⊂i A2, then f (A1) ⊂i f (A2),
(2) If B1 ⊂i B2, then f−1(B1) ⊂i f−1(B1),
(3) A ⊂i f−1( f (A)) and if f is injective, then A = f−1( f (A)),
(4) f ( f−1(B)) ⊂i B and if f is surjective, f ( f−1(B)) = B,
(5) f−1(

⋃i
j∈J Bj) =

⋃i
j∈J f−1(Bj),

(6) f−1(
⋂i

j∈J Bj) =
⋂i

j∈J f−1(Bj),
(7) f (

⋃i
j∈J Aj)i ⊂i

⋃i
j∈J f (Aj) and if f is surjective, then f (

⋃i
j∈J Aj)i =

⋃i
j∈J f (Aj),

(8) f (
⋂i

j∈J Aj) ⊂i
⋂i

j∈J f (Aj) and if f is injective, then f (
⋂i

j∈J Aj) =
⋂i

j∈J f (Aj),
(9) If f is surjective, then f (A)k,c ⊂i f (Ak,c),
(10) f−1(Bk,c) = f−1(B)k,c,
(11) f−1(∅l,IVN) = ∅l,IVN , f−1(Xl,IVN) = Xl,IVN ,
(12) f (∅l,IVN) = ∅l,IVN and if f is surjective, then f (Xl,IVN) = Xl,IVN ,
(13) If g : Y → Z is a mapping, then (g ◦ f )−1(C) = f−1(g−1(C)), for each C ∈ [Z].

Proof. The proofs are straightforward.

4. Interval-Valued Topological Spaces

In this section, we define an interval-valued neutrosophic crisp topology on X and study some
of its properties, and give some examples. We also introduce the concepts of an interval-valued
neutrosophic crisp base and subbase, and a family of IVNCSs gets the necessary and sufficient
conditions to become IVNCB and gives some examples.

From this section to the rest sections, ⊂1, ∪1, ∩1, 3,c, ∅1,IVN , and X1,IVN are denoted by ⊂, ∩, ∪, c,
∅IVN , and XIVN , respectively.

Definition 16. Let ∅ 6= τ ⊂ IVNCS(X). Then τ is called an interval-valued neutrosophic crisp topology
(briefly, IVNCT) on X, if it satisfies the following axioms:

(IVNCO1) ∅IVN , XIVN ∈ τ,
(IVNCO2) A ∩ B ∈ τ for any A, B ∈ τ,
(IVNCO3)

⋃
j∈J Aj ∈ τ for any family (Aj)j∈J of members of τ.

In this case, the pair (X, τ) is called an interval-valued neutrosophic crisp topological space (briefly,
IVNCTS) and each member of τ is called an interval-valued neutrosophic crisp open set (briefly, IVNCOS) in X.
An IVNCS A is called an interval-valued neutrosophic crisp closed set (briefly, IVNCCS) in X, if Ac ∈ τ.

It is obvious that {∅IVN , XIVN} [resp. IVNC(X)] is an IVNCT on X, and called the interval-valued
neutrosophic crisp indiscrete topology (briefly, IVNCIT) [resp. the interval-valued neutrosophic crisp discrete
topology (briefly, IVNCDT)] on X. The pair (X, τIVN,0) [resp. (X, τIVN,1)] is called an interval-valued
neutrosophic crisp indiscrete [resp. discrete] space (briefly, IVNCITS) [resp. (briefly, IVNCDTS)].

IVNCT(X) represents the set of all IVNCTs on X. For an IVNCTS X, the set of all IVNCOs [resp.
IVNCCSs] in X is denoted by IVNCO(X) [resp. IVNCC(X)].

Remark 2. (1) For each τ ∈ IVNCT(X), consider three families of IVSs in X:

τT = {[AT,−, AT,+] ∈ IVS(X) : A ∈ τ}, τ I = {[AI,−, AI,+] ∈ IVS(X) : A ∈ τ},

τF = {[AF,+c
, AF,−c

] ∈ IVS(X) : A ∈ τ}.

Then we can easily check that τT , τ I and τF are IVTs on X.
In this case, τT [resp. τ I and τF] is called the membership [resp. indeterminacy and non-membership]

topology of τ and we write τ =
〈
τT , τ I , τF〉. In fact, we can consider (X, τT , τ I , τF) as an interval-valued

tri-topological space on X (see the concept of bitopology introduced by Kelly [39]).

337



Symmetry 2020, 12, 2050

Furthermore, we can consider three intuitionistic topology on X proposed by cCoker [14]:

τT = {(AT,−, AT,+c
) ∈ IS(X) : A ∈ τ}, τI = {(AI,−, AI,+c

] ∈ IS(X) : A ∈ τ},

τF = {AF,+c
, AF,−) ∈ IS(X) : A ∈ τ}.

Let us also consider six families of ordinary subsets of X:

τT,− = {AT,− ⊂ X : A ∈ τ}, τT,+ = {AT,+ ⊂ X : A ∈ τ},

τ I,− = {AI,− ⊂ X : A ∈ τ}, τ I,+ = {AI,+ ⊂ X : A ∈ τ},

τF,− = {AT,+c
⊂ X : A ∈ τ}, τF,+ = {AI,−c

⊂ X : A ∈ τ}.

Then clearly, τT,−, τT,+, τ I,+, τ I,−, τF,−, τF,+ are ordinary topologies on X.
(2) Let (X, τo) be an ordinary topological space. Then there are four IVNCTs on X given by:

τ1 =

{
{
〈
[G, G], ∅̃, [Gc, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= X

{∅IVN , XIVN} if G = X,

τ2 =

{
{
〈
[G, G], X̃, [Gc, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= X

{∅IVN , XIVN} if G = X,

τ3 =

{
{
〈
[∅, G], ∅̃, [∅, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= ∅

{∅IVN , XIVN} if G = ∅,

τ4 =

{
{
〈
[∅, G], X̃, [∅, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= ∅

{∅IVN , XIVN} if G = ∅.

(3) Let (X, τIV ) be an IVTS introduced by Kim et al. [30]. Then clearly,

τ = {
〈
[A−, A+], ∅̃, [A+c, A−c

]
〉
∈ IVNC(X) : A ∈ τIV} ∈ IVNCT(X).

(4) Let (X, τI ) be an ITS introduced by cCoker [14]. Then clearly,

τ = {
〈
[A∈, A 6∈

c
], ∅̃, [A 6∈, A∈c

]
〉
∈ IVNC(X) : A ∈ τI} ∈ IVNCT(X).

(5) Let (X, τNC ) be a neutrosophic crisp topological space introduced by Salama and Smarandache [34].
Then clearly,

τ = {
〈
[AT , AT ], [AI , AI ], [AF, AF]

〉
∈ IVN∗(X)) : A ∈ τNC} ∈ IVNCT(X).

From Remark 2, we can easily see that an IVNCT is a generalization of a classical topology, an
IVT, an IT, and neutrosophic crisp topology. Then we have the following Figure 1:
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Figure 1. The relationships among five topologies.

Example 7. (1) Let X = {a, b}. Then we can easily check that:

τIVN,1 = {∅IVN , aIVN , bIVN , aIVNV , bIVNV ,
〈

∅̃, ∅̃, [{b}, {b}]
〉

,

〈[{a}, {a}], [{a}, {a}], [{b}, {b}]〉 , XIVN}.
(2) Let A ∈ IVNCS(X). Then A is said to be finite, if AT,+, AI,+, and AF,+ are finite. Consider the family

τ = {U ∈ IVNCS(X) : U = ∅IVN or Uc is finite}.

Then we can easily prove that τ ∈ IVNCT(X).
In this case, τ is called an interval-valued neutrosiophic crisp cofinite topology (briefly, IVNCCFT) on X.
(3) Let A ∈ IVNCS(X). Then A is said to be countable, if AT,+, AI,+, and AF,+ are countable.

Consider the family:
τ = {U ∈ IVNCS(X) : U = ∅IVN or Uc is countable}.

Then we can easily show that τ ∈ IVNCT(X).
In this case, τ is called an interval-valued neutrosiophic crisp cocountable topology (briefly, IVNCCCT)

on X.
(4) Let X = {a, b, c, d, e, f , g, h, i} and the family τ of IVNCSs on X given by:

τ = {∅IVN , A1, A2, A3, A4, XIVN},

where A1 = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
A2 = 〈[{a, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ,
A3 = 〈[{a}, {a, c}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ,
A4 = 〈[{a, b, d}, {a, b, c, d}], [{e}, {e, f }], [{g}, {g, i}]〉 .

Then we can easily check that τ ∈ IVNCT(X).
(5) Let X = {0, 1}. Consider the family τ of IVNCSs on X given by:

τ = {∅IVN ,
〈
[{0}, {0}], ∅̃, [{1}, {1}]

〉
, XIVN}.

Then we can easily prove that τ ∈ IVNCT(X). In this case, (X, τ) is called the interval-valued neutrosophic
crisp Sierpin

′
ski space.

From Definition 16, we have the following.

Proposition 10. Let X be an IVNCTS. Then:

(1) ∅IVN , XIVN ∈ IVNCC(X),
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(2) A ∪ B ∈ IVNCC(X) for any A, B ∈ IVNCC(X),
(3)

⋂
j∈J Aj ∈ IVNCC(X) for any (Aj)j∈J ⊂ IVNCC(X).

To discuss IVNCT(X) with a view-point of lattice theory, we define an order between two IVCTs.

Definition 17. Let τ1, τ2 ∈ IVNCT(X). Then we say that τ1 is contained in τ2 or τ1 is coarser than τ2 or τ2

is finer than τ1, if τ1 ⊂ τ2, i.e., A ∈ τ2 for each A ∈ τ1.

For each τ ∈ IVNCT(X), τIVN,0 ⊂ τ ⊂ τIVN,1 is clear.

From Definitions 14 and 16, we get the following.

Proposition 11. Let (τj)j∈J ⊂ IVNCT(X). Then
⋂

j∈J τj ∈ IVNCT(X).
In fact,

⋂
j∈J τj is the coarsest IVNCT on X containing each τj.

Proposition 12. Let τ, γ ∈ IVNCT(X). We define τ ∧ γ and τ ∨ γ as follows:

τ ∧ γ = {W : W ∈ τ, W ∈ γ},

τ ∨ γ = {W : W = U ∪V, U ∈ τ, V ∈ γ}.

Then we have:

(1) τ ∧ γ is an IVNCT on X which is the finest IVNCT coarser than both τ and γ,
(2) τ ∨ γ is an IVNCT on X which is the coarsest IVNCT finer than both τ and γ,

Proof. (1) Clearly, τ ∧ γ ∈ IVNCT(X). Let η be any IVNCT on X which is coarser than both τ and γ,
and let W ∈ η. Then W ∈ τ and W ∈ γ. Thus W ∈ τ ∧ γ. So η is coarser than τ ∧ γ.

(2) The proof is similar to (1).

From Definition 17, Propositions 11 and 12, we can easily see that (IVNCT(X),⊂) forms a
complete lattice with the least element τIVN,0 and the greatest element τIVN,1 .

A topology on a set can be a complicated collection of subsets of subsets of a set, and it can be
difficult to describe the entire collection. In most cases, one describes a subcollection (called a base and
a subbase) that “generates” the topology. Then we define a base and a subbase in an IVNCT. Moreover,
we introduce the various intervals via IVNCSs in real line R.

Definition 18. Let (X, τ) be an IVNCTS.
(i) A subfamily β of τ is called an interval-valued neutrosophic crisp base (briefly, IVNCB) for τ, if for each

A ∈ τ, A = ∅IVN or there is β
′
⊂ β such that A =

⋃
β
′
.

(ii) A subfamily σ of τ is called an interval-valued neutrosophic crisp subbase (briefly, IVNCSB) for τ, if
the family β = {

⋂
σ
′

: σ
′

is a finite subset of σ} is an IVNCB for τ.

Remark 3. (1) Let β be an IVNCB for an IVNCT τ on a non-empty set X and consider three families of IVSs
in X:

βT = {[AT,−, AT,+] ∈ IVS(X) : A ∈ β}, βI = {[AI,−, AI,−] ∈ IVS(X) : A ∈ β},

βF = {[AF,+c
, AF,−c

] ∈ IVS(X) : A ∈ β}.

Then we can easily see that βT , βI , and βF are an interval-valued base (see [30]) for τT , τ I , and τF, respectively.
Furthermore, we can consider three intuitionistic base on X defined by cCoker [14]:

βT = {(AT,−, AT,+c
) ∈ IS(X) : A ∈ β}, β I = {(AI,−, AI,+c

] ∈ IS(X) : A ∈ β},

βF = {AF,+c
, AF,−) ∈ IS(X) : A ∈ β}.
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Let also us consider six families of ordinary subsets of X:

βT,− = {AT,− ⊂ X : A ∈ β}, βT,+ = {AT,+ ⊂ X : A ∈ β},

βI,− = {AI,− ⊂ X : A ∈ β}, βI,+ = {AI,+ ⊂ X : A ∈ β},

βF,− = {AT,+c
⊂ X : A ∈ β}, βF,+ = {AI,−c

⊂ X : A ∈ β}.

Then clearly, βT,−, βT,+, βI,+, βI,−, βF,−, βF,+ are ordinary bases for ordinary topologies
τT,−, τT,+, τ I,+, τ I,−, τF,−, τF,+ on X, respectively.

(2) Let σ be an IVNCSB for an IVNCT τ on a non-empty set X and consider three families of IVSs in X:

σT = {[AT,−, AT,+] ∈ IVS(X) : A ∈ σ}, σI = {[AI,+, AI,−] ∈ IVS(X) : A ∈ σ},

σF = {[AF,+c
, AF,−c

] ∈ IVS(X) : A ∈ σ}.

Then we can easily see that σT , σI , and σF are an interval-valued subbases (see [30]) for τT , τ I , and τF,
respectively.

Furthermore, we can consider three intuitionistic base on X defined by cCoker [14]:

σT = {(AT,−, AT,+c
) ∈ IS(X) : A ∈ σ}, σI = {(AI,−, AI,+c

] ∈ IS(X) : A ∈ σ},

σF = {AF,+c
, AF,−) ∈ IS(X) : A ∈ σ}.

Let also us consider six families of ordinary subsets of X:

σT,− = {AT,− ⊂ X : A ∈ σ}, σT,+ = {AT,+ ⊂ X : A ∈ σ},

σI,− = {AI,− ⊂ X : A ∈ σ}, σI,+ = {AI,+ ⊂ X : A ∈ σ},

σF,− = {AT,+c
⊂ X : A ∈ σ}, σF,+ = {AF,−c

⊂ X : A ∈ σ}.

Then clearly, σT,−, σT,+, σI,+, σI,−, σF,−, σF,+ are ordinary subbases for ordinary topologies
τT,−, τT,+, τ I,+, τ I,−, τF,−, τF,+ on X, respectively.

Example 8. (1) Let σ = {〈[(a, b), (a, ∞)], [∅, ∅], [∅, (−∞, a]]〉 : a, b ∈ R} be the family of IVNCs in R.
Then σ generates an IVNCT τ on R which is called the “usual left interval-valued neutrosophic crisp topology
(briefly, ULIVNCT)” on R. In fact, the IVNCB β for τ can be written in the form:

β = {RIVN} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}

and τ consists of the following IVNCSs in R:

τ = {∅IVN ,RIVN} ∪ {
〈
[∪(aj, bj), (c, ∞)], ∅̃, ∅̃

〉
}

or
τ = {∅IVN ,RIVN} ∪ {

〈
[∪(ak, bk),R], ∅̃, ∅̃

〉
},

where aj, bj, c ∈ R, {aj : j ∈ J} is bounded from below, c < in f {aj : j ∈ J} and ak, bk ∈ R, {ak : k ∈ K} is
not bounded from below.

Similarly, one can define the “usual right interval-valued neutrosophic crisp topology (briefly, URIVNCT)”
on R using an analogue construction.

(2) Consider the family σ of IVNCSs in R:

σ = {
〈
[(a, b), (a1, ∞) ∩ (−∞, b1)], ∅̃, [∅, (−∞, a1] ∪ [b1, ∞]

〉
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: a, b, a1, b1 ∈ R, a1 ≤ a, b1 ≥ b}.
Then σ generates an IVNCT τ on R which is called the “usual interval-valued neutrosophic crisp topology
(briefly, UIVNCT)” on R. In fact, the IVNCB β for τ can be written in the form:

β = {RIVN} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}

and the elements of τ can be easily written down as in (1).
(3) Consider the family σ[0,1] of IVNCSs in R:

σ[0,1] = {
〈
[[a, b], [a, ∞) ∩ (−∞, b]], ∅̃, [∅, (−∞, a] ∪ [b, ∞]

〉

: a, b ∈ R and 0 ≤ a ≤ b ≤ 1}.
Then σ[0,1] generates an IVNCT τ[0,1] on R which is called the “usual unit closed interval interval-valued
neutrosophic crisp topology” on R. In fact, the IVNCB β[0,1] for τ[0,1] can be written in the form:

β[0,1] = {RIVN} ∪ {∩γ∈ΓSγ : Sγ ∈ σ[0,1], Γ is finite}

and the elements of τ can be easily written down as in (1).
In this case, ([0, 1], τ[0,1]) is called the “interval-valued neutrosophic crisp nusual unit closed interval” and

denoted by [0, 1]IVNCI . In fact,

[0, 1]IVNCI =
〈
[[0, 1], [0, ∞) ∪ (−∞, 1]], ∅̃, ∅̃

〉
.

(4) Let β = {aIVN : a ∈ X} ∪ {aIVNV : a ∈ X}. Then β is an IVNCB for the interval-valued neutrosophic
crisp discrete topology τ1 on X.

(5) Let X = {a, b, c, d, e, f , g, h, i} and consider the family β of IVNCSs in X given by:

β = {A, B, XIVN},

where A = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
B = 〈[{a, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h, i}]〉 .

Assume that β is an IVNCB for an IVNCT τ on X. Then by the definition of base, β ⊂ τ. Thus A, B ∈ τ. So
A ∩ B = 〈[{a}, {a, c}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ∈ τ. However for any β

′
⊂ β, A ∩ B 6=

⋃
β
′
. Hence β

is not an IVNCB for an IVNCT on X.

From (1), (2), and (3) in Example 8, we can define interval-valued neutrosophic crisp intervals as
following.

Definition 19. Let a, b ∈ R such that a ≤ b. Then:

(i) (The closed interval) [a, b]IVNCI =
〈
[[a, b], [a,−∞) ∩ (−∞, b]], ∅̃, ∅̃

〉
,

(ii) (The open interval) (a, b)IVNCI =
〈
[(a, b), (a,−∞) ∩ (−∞, b)], ∅̃, ∅̃

〉
,

(iii) (The half open interval or the half closed interval)

(a, b]IVNCI =
〈
[(a, b], (a,−∞) ∩ (−∞, b]], ∅̃, ∅̃

〉
,

[a, b)IVI =
〈
[[a, b), [a,−∞) ∩ (−∞, b)], ∅̃, ∅̃

〉
,

(iv) (The half interval-valued real line)

(−∞, a]IVNCI =
〈
[(−∞, a], (−∞, a]], ∅̃, ∅̃

〉
,

(−∞, a)IVNCI =
〈
[(−∞, a), (−∞, a)], ∅̃, ∅̃

〉
,
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[a, ∞)IVNCI =
〈
[[a, ∞), [a, ∞)], ∅̃, ∅̃

〉
,

(a, ∞)IVNCI =
〈
[(a, ∞), (a, ∞)], ∅̃, ∅̃

〉
,

(v) (The interval-valued real line)

(−∞, ∞)IVMCI =
〈
[(−∞, ∞), (−∞, ∞)], ∅̃, ∅̃

〉
= RIVN .

The following provide a necessary and sufficient condition which a collection of IVNCSs in a set
X is an IVNCB for some IVNCT on X.

Theorem 1. Let β ⊂ IVNCS(X). Then β is an IVNCB for an IVNCT τ on X if and only if it satisfies the
following properties:

(1) XIVN =
⋃

β,
(2) If B1, B2 ∈ β and aIVN ∈ B1 ∩ B2 [resp. aIVNV ∈ B1 ∩ B2], then there exists B ∈ β such that aIVN ∈ B ⊂

B1 ∩ B2 [resp. aIVNV ∈ B ⊂ B1 ∩ B2].

Proof. The proof is the same as one in classical topological spaces.

Example 9. Let X = {a, b, c} and consider the family of IVNCSs in X given by:

β = {A1, A2, A3, A3},

where A1 = 〈[{b}, {a, b}], [{b}, {b}], [{c}, {c}]〉 ,

A2 =
〈
[{b, c}, {b, c}], [{a}, {a}], ∅̃

〉
,

A3 = 〈[{a}, {a}], [{c}, {c}], [{b}, {b}]〉 ,

A4 =
〈
[{b}, ∅̃, [{c}, {c}]

〉
,

Then clearly, β satisfies two conditions of Theorem 1. Thus β is an IVNCB for an IVNCT τ on X. In fact,
we have:

τ = {∅IVN , A1, A2, A3, A4, A5, A6, A7, XIVN},

where A5 =
〈
[{b, c}, X], [{a, b}, {a, b}], ∅̃

〉
,

A6 =
〈
[{a, b}, {a, b}], [{b, c}, {b, c}], ∅̃

〉
,

A7 =
〈

X̃, [{a, c}, {a, c}], ∅̃
〉

.

The following provide a sufficient condition which a collection of IVNCSs in a set X is an IVNCB
for some IVNCT on X.

Proposition 13. Let σ ⊂ IVNCS(X) such that XIVN =
⋃

σ. Then there exists a unique IVNCT τ on X
such that σ is an IVNCSB for τ.

Proof. Let β = {B ∈ IVNCS(X) : B =
⋂n

i=1 Si and Si ∈ σ}. Let τ = {U ∈ IVNCS(X) : U =

∅̃ or there is a subcollection β
′

of β such that U =
⋃

β
′
}. Then we can show that τ is the unique

IVNCT on X such that σ is an IVNCSB for τ.

In Proposition 13, τ is called the IVNCT on X generated by σ.

Example 10. Let X = {a, b, c, d, e} and consider the family σ of IVNCSs in X given by:

σ = {A1, A2, A3, A4},
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where A1 = 〈[{a}, {a}], [{b}, {b}], [{c, d}, {c, d}]〉 ,
A2 = 〈[{a, b, c}, {a, b, c}], [{b, d}, {b, d}], [{e}, {e}]〉 ,
A3 = 〈[{b, c, e}, {b, c, e}], [{c, e}, {c, d, e}], [{d}, {d}]〉 ,
A4 = 〈[{c, d}, {c, d}], [{a, c}, {a, c}], [{a, b}, {a, b}]〉 .

Then clearly,
⋃

σ = XIVN . Let β be the collection of all finite intersections of members of σ. Then we have:

β = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12},

where A5 = 〈[{a}, {a}], [{b}, {b}], [{c, d, e}, {c, d, e}]〉 ,

A6 =
〈

∅̃, [{b}, {b}], [{c, d}, {c, d}]
〉

,

A7 =
〈

∅̃, ∅̃, [{a, b, c, d}, {a, b, c, d}]
〉

,

A8 = 〈[{b, c}, {b, c}], [∅, {d}], [{d, e}, {d, e}]〉 ,

A9 =
〈
[{c}, {c}], ∅̃, [{a, b, e}, {a, b, e}]

〉
,

A10 = 〈[{c}, {c}], [{c}, {c}], [{a, b, d}, {a, b, d}]〉 ,

A11 =
〈

∅̃, ∅̃, [{c, d, e}, {c, d, e}]
〉

,

A12 =
〈
[{c}, {c}], ∅̃, [{a, b, d, e}, {a, b, d, e}]

〉
.

Thus we have the generated IVNCT τ by σ:
τ = {∅IVN , A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, XIVN},

where A13 =
〈
[{a, b, c}, {a, b, c}], [{b, d}, {b, d}], ∅̃

〉
,

A14 = 〈[{a, b, c, e}, {a, b, c, e}], [{b, c, e}, {b, c, d, e}], [{d}, {d}]〉 ,

A15 =
〈
[{a, c, d}, {a, c, d}], [{a, b, c}, {a, b, c}], ∅̃

〉
,

A16 =
〈
[{a, b, c, e}, {a, b, c, e}], [{b, c, d, e}, {b, c, d, e}], ∅̃

〉
,

A17 =
〈
[{a, b, c, d}, {a, b, c, d}], [{a, b, c, d}, {a, b, c, d}], ∅̃

〉
,

A18 =
〈

X̃, [{a, c, e}, {a, c, e}], ∅̃
〉

.

Remark 4. By using “⊂2, ∪2, ∩2, i,c(i = 1, 2, 3), ∅2,IN , X2,IN , and INC(X), we can have the definitions
corresponding to Definitions 16 and 18, respectively.

5. Interval-Valued Neutrosophic Crisp Neighborhoods

In this section, we introduce the concept of interval-valued neutrosophic crisp neighborhoods of
IVNPs of two types, and find their various properties and give some examples.

Definition 20. Let X be an IVNCTS, a ∈ X, N ∈ IVNCS(X). Then:
(i) N is called an interval-valued neutrosophic crisp neighborhood (briefly, IVNCN) of aIVN , if there exists

a U ∈ IVNCO(X) such that:

aIVN ∈ U ⊂ N, i.e., a ∈ UT,− ⊂ NT,−,

(ii) N is called an interval-valued neutrosophic crisp vanishing neighborhood (briefly, IVNCVN) of aIVNV ,
if there exists a U ∈ IVNCO(X) such that:

aIVNV ∈ U ⊂ N, i.e., a 6∈ NF,+ ⊂ UF,+.

The set of all IVNCNs [resp. IVNCVNs] of aIVN [resp. aIVNV ] is denoted by N(aIVN ) [resp. N(IVNV )] and
will be called an IVNC neighborhood system of aIVN [resp. aIVNV ].
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Example 11. Let X = {a, b, c, d, e, f , g, h, i} and let τ be the IVNCT on X given in Example 7 (4). Consider
the IVNCS N = 〈[{a, b, d}, {a, b, c, d}], [{e}, {e}], [{g}, {g}]〉 in X. Then we can easily check that:

N ∈ N(aIVN ) ∩ N(aIVNV ), N ∈ N(bIVN ) ∩ N(bIVNV ),
N ∈ N(dIVN ) ∩ N(dIVNV ), N ∈ N(cIVNV ).

An IVNC neighborhood system of aIVN has a similar property for a neighborhood system of a
point in a classical topological space.

Proposition 14. Let X be an IVNCTS, a ∈ X.

[IVNCN1] If N ∈ N(aIVN ), then aIVN ∈ N.
[IVNCN2] If N ∈ N(aIVN ) and N ⊂ M, then M ∈ N(aIVN ).
[IVNCN3] If N, M ∈ N(aIVN ), then N ∩M ∈ N(aIVN ).
[IVNCN4] If N ∈ N(aIVN ), then there exists M ∈ N(aIVN ) such that N ∈ N(bIVN) for each bIVN ∈ M.

Proof. The proofs of [IVNCN1], [IVNCN2], and [IVNCN4] are easy.
[IVNCN3] Suppose N, M ∈ N(aIVN ). Then there are U, V ∈ IVNCO(X) such that aIVN ∈ U ⊂

N and aIVN ∈ V ⊂ M. Let W = U ∩V. Then clearly, W ∈ IVNCO(X) and aIVN ∈ W ⊂ N ∩M. Thus
N ∩M ∈ N(aIVN ).

In addition, an IVNC neighborhood system of aIVNV has the similar property.

Proposition 15. Let X be an IVNCTS, a ∈ X.

[IVNCVN1] If N ∈ N(aIVNV ), then aIVNV ∈ N.
[IVNCVN2] If N ∈ N(aIVNV ) and N ⊂ M, then M ∈ N(aIVNV ).
[IVNCVN3] If N, M ∈ N(aIVNV ), then N ∩M ∈ N(aIVNV ).
[IVNCVN4] If N ∈ N(aIVNV ), then there exists M ∈ N(aIVNV ) such that N ∈ N(bIVNV ) for each

bIVNV ∈ M.

Proof. The proof is similar to one of Proposition 15.

From Definition 20, we have two IVNCTs containing a given IVNCT.

Proposition 16. Let (X, τ) be an IVNCTS and let us define two families:

τIVN = {U ∈ IVNCS(X) : U ∈ N(aIVN ) for each aIVN ∈ U}

and
τIVNV = {U ∈ IVNCS(X) : U ∈ N(aIVNV ) for each aIVNV ∈ U}.

Then we have:
(1) τIVN , τIVNV ∈ IVNCT(X),
(2) τ ⊂ τIVN and τ ⊂ τIVNV .

Proof. (1) We only prove that τIVNV ∈ IVNCT(X).
(IVNCO1) From the definition of τIVNV , we have ∅IVN , XIVN ∈ τIVNV .
(IVNCO2) Let U, V ∈ IVN∗(X) such that U , V ∈ τIVNV and let aIVNV ∈ U ∩ V. Then clearly,

U, V ∈ N(aIVNV ). Thus by [IVNCVN3], U ∩V ∈ N(aIVNV ). So U ∩V ∈ τIVNV .
(IVNCO3) Let (Uj)j∈J be any family of IVNCSs in τIVNV , let U =

⋃
j∈J Uj and let aIVNV ∈ U.

Then by Proposition 7 (2), there is j0 ∈ J such that aIVNV ∈ Uj0 . Since Uj0 ∈ τIVNV , Uj0 ∈ N(aIVNV ) by
the definition of τIVNV . Since Uj0 ⊂ U, U ∈ N(aIVNV ) by [IVNCVN2]. So by the definition of τIVNV ,
U ∈ τIVNV .

(2) Let U ∈ τ. Then clearly, U ∈ N(aIVN ) and U ∈ N(aIVNV ) for each aIVN ∈ G and aIVNV ∈ G,
respectively. Thus U ∈ τIVN and U ∈ τIVNV . So the results hold.
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Remark 5. (1) From the definitions of τIVN and τIVNV , we can easily have:

τIVN = τ ∪ {U ∈ IVNCS(X) : VT,− ⊂ UT,−, V ∈ τ}

and
τIVNV = τ ∪ {U ∈ IVNCS(X) : UF,+ ⊂ VF,+, V ∈ τ}.

(2) For any IVNCT τ on a set X, we can have six IVTs on X given by:

τT
IVN

= {[UT,−, UT,+] ∈ IVS(X) : U ∈ τIVN},

τ I
IVN

= {[U I,−, U I,+] ∈ IVS(X) : U ∈ τIVN

τF
IVN

= {[UF,+c
, UF,−c

] ∈ IVS(X) : U ∈ τIVN},

τT
IVNV

= {[UT,−, UT,−] ∈ IVS(X) : U ∈ τIVNV},

τ I
IVNV

= {[U I,−, U I,+] ∈ IVS(X) : U ∈ τIVNV},

τF
IVNV

= {[UF,+c
, UF,+] ∈ IVS(X) : U ∈ τIVNV}.

Furthermore, we have 12 ordinary topologies on X:

τT,−
IVN

= {UT,− ⊂ X : U ∈ τIVN}, τT,+
IVN

= {UT,+] ⊂ X : U ∈ τIVN},

τ I,−
IVN

= {U I,− ⊂ X : U ∈ τIVN}, τ I,+
IVN

= {U I,+] ⊂ X : U ∈ τIVN},

τF,−
IVN

= {UF,+c
⊂ X : U ∈ τIVN}, τF,+

IVN
= {UF,−c

⊂ X : U ∈ τIVN},

τT,−
IVNV

= {UT,− ⊂ X : U ∈ τIVNV}, τT,+
IVNV

= {UT,− ⊂ X : U ∈ τIVNV},

τ I,−
IVNV

= {U I,− ⊂ X : U ∈ τIVNV}, τ I,+
IVNV

= {U I,+ ⊂ X : U ∈ τIVNV},

τF,−
IVNV

= {UF,+c
⊂ X : U ∈ τIVNV}, τF,+

IVNV
= {UF,+ ⊂ X : U ∈ τIVNV}.

Example 12. Let X = {a, b, c, d, e, f , g, h, i} and consider IVNCT τ on X given in Example 7 (4). Then from
Remark 5 ((1), we have:

τIVN = τ ∪ {A5, A6, A7},

where A5 = 〈[{a, b, c}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
A6 = 〈[{a, c, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ,
A7 = 〈[{a, b, c, d}, {a, b, c, d}], [{e}, {e, f }], [{g}, {g, i}]〉 .

Additionally, we have:
τIVNV = τ ∪ {A8, A9, A10, A11},

where A8 = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g}]〉 ,
A9 = 〈[{a, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h}]〉 ,
A10 = 〈[{a}, {a, c}], [{e}, {e}], [{g}, {g, h}]〉 ,
A11 = 〈[{a, b, d}, {a, b, c, d}], [{e}, {e, f }], [{g}, {g}]〉 .

So we can confirm that Proposition 16 holds.
Furthermore, we can obtain six IVTs on X for τ:

τT
IVN

, τ I
IVN

, τF
IVN

, τT
IVNV

, τ I
IVNV

, τF
IVNV

.

Additionally, we have 12 ordinary topologies on X:

τT,−
IVN

, τT,+
IVN

, τ I,−
IVN

, τ I,+
IVN

, τF,−
IVN

, τF,+
IVN

,
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τT,−
IVNV

, τT,+
IVNV

, τ I,−
IVNV

, τ I,+
IVNV

, τF,−
IVNV

, τF,+
IVNV

.

The following is the immediate result of Proposition 16 (2).

Corollary 1. Let (X, τ) be an IVNCTS and let IVNCCτ [resp. IVNCCτIVN
and IVNCCτIVNV

] be the set of
all IVNCCSs w.r.t. τ [resp. τIVN and τIVNV ]. Then,

IVNCCτ ⊂ IVNCCτIVN
, and IVNCCτ ⊂ IVNCCτIVNV

.

Example 13. Let (X, τ) be the IVNCTS given in Example 12. Then we have:
IVNCCτ = {∅IVN , XIVN , Ac

1, Ac
2, Ac

3, Ac
4},

IVNCCτIVN
= IVNCCτ ∪ {Ac

5, Ac
6, Ac

7},
IVCτIVNV

= IVCτ ∪ {Ac
8, Ac

9, Ac
10, Ac

11},
where Ac

1 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b}, {a, b, c}]〉 ,
Ac

2 = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 ,
Ac

3 = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a}, {a, c}]〉 ,
Ac

4 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, d}, {a, b, c, d}]〉 ,
Ac

5 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, c}, {a, b, c}]〉 ,
Ac

6 = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, c, d}, {a, c, d}]〉 ,
Ac

7 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, c, d}, {a, b, c, d}]〉 ,
Ac

8 = 〈[{g}, {g}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b}, {a, b, c}]〉 ,
Ac

9 = 〈[{g, h}, {g, h}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 ,
Ac

10 = 〈[{g}, {g, h}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a}, {a, c}]〉 ,
Ac

11 = 〈[{g}, {g}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, d}, {a, b, c, d}]〉 .
Thus we can confirm that Corollary 1 holds.

Now let us consider the converses of Propositions 14 and 15.

Proposition 17. Suppose to each a ∈ X, there corresponds a set N∗(aIVNV ) of IVNCSs in X satisfying the
conditions [IVNCVN1], [IVNCVN2], [IVNCVN3], and [IVNCVN4] in Proposition 15. Then there is an
IVNCT on X such that N∗(aIVNV ) is the set of all IVNCVNs of aIVNV in this IVNCT for each a ∈ X.

Proof. Let,
τIVNV = {U ∈ IVNCS(X) : U ∈ N(aIVNV ) for each aIVNV ∈ U},

where N(aIVNV ) denotes the set of all IVNCVNs in τ.
Then clearly, τIVNV ∈ IVNCT(X) by Proposition 16. We will prove that N∗(aIVNV ) is the set of all
IVNCVNs of a

IVNV)
in τIVNV for each a ∈ X.

Let V ∈ IVN∗(X) such that V ∈ N∗(aIVNV ) and let U be the union of all the IVNCVPs bIVNV in X
such that U ∈ N∗(aIVNV ). If we can prove that:

aIVNV ∈ U ⊂ V and U ∈ τIVNV ,

then the proof will be complete.
Since V ∈ N∗(aIVNV ), aIVNV ∈ U by the definition of U. Moreover, U ⊂ V. Suppose bIVNV ∈ U.

Then by [IVNCVN4], there is an IVNCS W ∈ N∗(bIVNV ) such that V ∈ N∗(c
IVNV)

) for each cIVNV ∈W.
Thus cIVNV ∈ U. By Proposition 9, W ⊂ U. So by [IVNCVN2], U ∈ N∗(bIVNV ) for each bIVNV ∈ U.
Hence by the definition of τIVNV , U ∈ τIVNV . This completes the proof.

Proposition 18. Suppose to each a ∈ X, there corresponds a set N∗(aIVN ) of IVNCSs in X satisfying the
conditions [IVNCN1], [IVNCN2], [IVNCN3], and [IVNCN4] in Proposition 14. Then there is an IVNCT on
X such that N∗(aIVN ) is the set of all IVNCNs of a

IVN)
in this IVNCT for each a ∈ X.
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Proof. The proof is similar to Proposition 17.

The following provide a necessary and sufficient condition which an IVNCSs is an IVNCOS in an
IVNCTS.

Theorem 2. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X). Then A ∈ τ if and only if A ∈ N(aIVN ) and
A ∈ N(aIVNV ) for each aIVN , aIVNV ∈ A.

Proof. Suppose A ∈ N(aIVN ) and A ∈ N(aIVNV ) for each aIVN , aIVNV ∈ A. Then there are
UaIVN

, VaIVNV
∈ τ such that aIVN ∈ UaIVN

⊂ A and aIVNV ∈ VaIVNV
⊂ A. Thus,

A = (
⋃

aIVN∈A

aIVN ) ∪ (
⋃

aIVNV∈A

aIVNV ) ⊂ (
⋃

aIVN∈A

UaIVN
) ∪ (

⋃

aIVNV∈A

VaIVNV
) ⊂ A.

So A = (
⋃

aIVN∈A UaIVN
) ∪ (

⋃
aIVNV∈A VaIVNV

). Since UaIVN
, VaIVNV

∈ τ, A ∈ τ.
The proof of the necessary condition is easy.

Now we will give the relation among three IVNCTs, τ, τIVN and τIVNV .

Proposition 19. τ = τIVN ∩ τIVNV .

Proof. From Proposition 16 (2), it is clear that τ ⊂ τIVN ∩ τIVNV .
Conversely, let U ∈ τIVN ∩ τIVNV . Then clearly, U ∈ τIVN and U ∈ τIVNV . Thus U is an IVNCN of

each of its IVNCPs aIVN and an IVNCVN of each of its IVNCVPs aIVNV . Thus, there are UaIVN
, UaIVNV

∈

τ such that aIVN ∈ UaIVN
⊂ U and aIVNV ∈ UaIVNV

⊂ U. So we have:

UIVN =
⋃

aIVN∈U

aIVN ⊂
⋃

aIVN∈U

UaIVN
⊂ U

and
UIVNV =

⋃

aIVNV∈U

aIVNV ⊂
⋃

aIVNV∈U

UaIVNV
⊂ U.

By Proposition 5, we get:

U = UIVN ∪UIVNV ⊂ (
⋃

aIVN∈U

UaIVN
) ∪ (

⋃

aIVNV∈U

UaIVNV
) ⊂ U, i.e.,

U = (
⋃

aIVN∈U

UaIVN
) ∪ (

⋃

aIVNV∈U

UaIVNV
).

It is obvious that (
⋃

aIVN∈U UaIVN
) ∪ (

⋃
aIVNV∈U UaIVNV

) ∈ τ. Hence U ∈ τ. Therefore τIVN ∩ τIVNV ⊂ τ.
This completes the proof.

From Proposition 19, we get the following.

Corollary 2. Let (X, τ) be an IVNCTS. Then,

IVNCCτ = IVNCCτIVN
∩ IVNCCτIVNV

.

Example 14. In Example 12, we can easily check that Corollary 2 holds.

6. Interiors and Closures of IVNCSs

In this section, we define interval-valued neutrosophic crisp interiors and closures, and
investigate some of their properties and give some examples. In particular, we will show that there is

348



Symmetry 2020, 12, 2050

a unique IVNCT on a set X from the interval-valued neutrosophic crisp closure [resp. interior] operator.

In an IVNCTS, we can define a closure and an interior as well as two other types of closures and
interiors by Proposition 16.

Definition 21. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X).

(i) The interval-valued neutrosophic crisp closure of A w.r.t. τ, denoted by IVNcl(A), is an IVNCS in X
defined as:

IVNcl(A) =
⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The interval-valued neutrosophic crisp interior of A w.r.t. τ, denoted by IVNint(A), is an IVS in X
defined as:

IVNint(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

(iii) The interval-valued neutrosophic crisp closure of A w.r.t. τIVN , denoted by clIVN (A), is an IVNCS in X
defined as:

clIVN (A) =
⋂
{K : Kc ∈ τIVN and A ⊂ K}.

(iv) The interval-valued neutrosophic crisp interior of A w.r.t. τIVN , denoted by intIVN (A), is an IVS in X
defined as:

intIVN (A) =
⋃
{G : G ∈ τIVN and G ⊂ A}.

(v) The interval-valued neutrosophic crisp closure of A w.r.t. τIVNV , denoted by clIVNV (A), is an IVNCS in X
defined as:

clIVNV (A) =
⋂
{K : Kc ∈ τIVNV and A ⊂ K}.

(vi) The interval-valued neutrosophic crisp interior of A w.r.t. τIVNV , denoted by intIVNV (A), is an IVNCS in
X defined as:

intIVNV (A =
⋃
{G : G ∈ τIVNV and G ⊂ A}.

Remark 6. From the above definition, it is obvious that the followings hold:

IVNint(A) ⊂ intIVN (A), IVNint(A) ⊂ intIVNV (A)

and
clIVN (A) ⊂ IVNcl(A), clIVNV (A) ⊂ IVNcl(A).

Example 15. Let (X, τ) be the IVNCTS given in Examples 12 and 13. Consider two IVNCSs in X:

A = 〈[{a, b, c}, {a, b, c, d}], [{a, e}, {a, e, f }], [{g}, {g}]〉 ,

B = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, e, f }], [{a}, {a, c}]〉 .

Then,
IVNint(A) =

⋃
{G ∈ τ : G ⊂ A} = A1 ∪ A3 = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,

intIVN (A) =
⋃
{G ∈ τIVN : G ⊂ A} = A1 ∪ A3 ∪ A5

= 〈[{a, b, c}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
intIVNV (A) =

⋃
{G ∈ τIVNV : G ⊂ A} = A1 ∪ A3 ∪ A8 ∪ A10

= 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g}]〉
and

IVNcl(B) =
⋂
{F : Fc ∈ τ, B ⊂ F} = Ac

2 ∩ Ac
3

= 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 ,
clIVN (B) =

⋂
{F : Fc ∈ τIVN , B ⊂ F} = Ac

2 ∩ Ac
3 ∩ Ac

6 ∩ Ac
10

= 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, c, d}, {a, c, d}]〉 ,
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clIVNV(B) =
⋂
{F : Fc ∈ τIVNV , B ⊂ F} = Ac

2 ∩ Ac
3 ∩ Ac

9 ∩ Ac
10

= 〈[{g}, {g, h}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 .
Thus we can confirm that Remark 6 holds.

Proposition 20. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X). Then,

IVNint(Ac) = (IVNcl(A))c and IVNcl(Ac) = (IVNint(A))c.

Proof. IVNint(Ac) =
⋃
{U ∈ τ : U ⊂ Ac} =

⋃
{U ∈ τ : U ⊂

〈
AF, AI c, AT

〉
}

=
⋃
{U ∈ τ : UT ⊂ AF, U I ⊂ AI c, UF ⊃ AT}

=
⋃
{U ∈ τ : UT ⊂ AF, U I c

⊂ AI , UF ⊃ AT}

= (
⋂
{Uc : U ∈ τ, A ⊂ Uc})c

= (IVNcl(A))c.
Similarly, we can show that IVNcl(Ac) = (IVNint(A))c.

Proposition 21. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X). Then,

IVNint(A) = intIVN (A) ∩ intIVNV (A).

Proof. The proof is straightforward from Proposition 19 and Definition 21.

The following is the immediate result of Definition 21, and Propositions 20 and 21.

Corollary 3. Let (X, τ) be an IVNCTS and let A ∈ IVNCS(X). Then,

IVNcl(A) = clIVN (A) ∪ clIVNV (A).

Example 16. Let A and B be two IVNCSs in X given in Example 15. Then we can easily check that:

intIVN(A) ∩ intIVNV(A) = IVNint(A), clIVN(B) ∪ clIVNV(B) = IVNcl(B).

Theorem 3. Let X be an IVNCTS, A ∈ IVNCS(X). Then:

(1) A ∈ IVNCC(X)⇔ if A = IVNcl(A),
(2) A ∈ IVNCO(X)⇔ A = IVNint(A).

Proof. Straightforward.

Proposition 22 (Kuratowski Closure Axioms). Let X be an IVNCTS, A, B ∈ IVNCS(X). Then,

[IVNCK0] If A ⊂ B, then IVNcl(A) ⊂ IVNcl(B),
[IVNCK1] IVNcl(∅IVN) = ∅IVN ,
[IVNCK2] A ⊂ IVNcl(A),
[IVNCK3] IVNcl(IVNcl(A)) = IVNcl(A),
[IVNCK4] IVcl(A ∪ B) = IVNcl(A) ∪ IVNcl(A).

Proof. Straightforward.

Let IVNcl∗ : IVNCS(X) → IVNCS(X) be the mapping satisfying the properties [IVNCK1],
[IVNCK2], [IVNCK3], and [IVNCK4]. Then the mapping IVcl∗ is called the interval-valued
neutrosophic crisp closure operator (briefly, IVNCCO) on X.
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Proposition 23. Let IVNcl∗ be the IVNCCO on X. Then there exists a unique IVNCT τ on X such
that IVNcl∗(A) = IVNcl(A), for each A ∈ IVNCS(X), where IVNcl(A) denotes the interval-valued
neutrosophic crisp closure of A in the IVNCTS (X, τ). In fact,

τ = {Ac ∈ IVNCS(X) : IVNcl∗(A) = A}.

Proof. The proof is almost similar to the case of classical topological spaces.

Proposition 24. ⇔Let X be an IVNCTS, A, B ∈ IVNCS(X). Then,

[IVNCI0] If A ⊂ B, then IVNint(A) ⊂ IVNint(B),
[IVNCI1] IVNint(XIVN) = XIVN ,
[IVNCI2] IVNint(A) ⊂ A,
[IVNCI3] IVNint(IVNint(A)) = IVNint(A),
[IVNCI4] IVNint(A ∩ B) = IVNint(A) ∩ IVNint(A).

Proof. Straightforward.

Let IVNint∗ : IVNCS(X) → IVNCS(X) be the mapping satisfying the properties [IVNCI1],
[IVNCI2], [IVNCI3], and [IVNCI4]. Then the mapping IVNint∗ is called the interval-valued
neutrosophic crisp interior operator (briefly, IVNCIO) on X.

Proposition 25. Let IVNint∗ be the IVNCIO on X. Then there exists a unique IVNCT τ on X such that
IVNint∗(A) = IVNint(A) for each A ∈ IVNCS(X), where IVNint(A) denotes the interval-valued
neutrosophic crisp interior of A in the IVNCTS (X, τ). In fact,

τ = {A ∈ IVNCS(X) : IVNint∗(A) = A}.

Proof. The proof is similar to one of Proposition 23.

7. Interval-Valued Neutrosophic Crisp Continuous Mappings

In this section, we define an interval-valued neutrosophic crisp continuity and quotient topology,
and study some of their properties.

Definition 22. Let X, τ), (Y, δ) be two IVTSs proposed in [30]. Then a mapping f : X → Y is said to be
interval-valued continuous, if f−1(V) ∈ τ for each V ∈ δ.

Definition 23. Let X, τ), (Y, δ) be two IVNCTSs. Then a mapping f : X → Y is said to be interval-valued
neutrosophic crisp continuous, if f−1(V) ∈ τ for each V ∈ δ.

From Remark 2 (1), and Definitions 22 and 23, we can easily have the following.

Theorem 4. Let (X, τ), (Y, δ) be two IVNCTSs and let f : X → Y be a mapping. Then f is interval-valued
neutrosophic crisp continuous if and only if f : (X, τT)→ (Y, δT), f : (X, τ I)→ (Y, δI), and f : (X, τF)→

(Y, δF) are interval-valued continuous, respectively.

The followings are immediate results of Proposition 9 (13) and Definition 23.

Proposition 26. Let X, Y, Z be IVNCTSs.

(1) The identity mapping id : X → X is continuous.
(2) If f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is continuous.
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Remark 7. From Proposition 26, we can easily see that the class of all IVNCTSs and continuous mappings,
denoted by IVNCTop, forms a concrete category.

The followings are immediate results of Definition 23.

Proposition 27. Let X, Y be INCTSs.

(1) If X is an IVNCDTS, the f : X → Y is continuous,
(2) If Y is an IVNCITS, then f : X → Y is continuous.

Theorem 5. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then the followings are equivalent:

(1) f is continuous,
(2) f−1(C) ∈ IVNCC(X) for each C ∈ IVNCC(Y),
(3) f−1(S) ∈ IVNCO(X) for each member S of the subbase for the IVNCT on Y,
(4) IVNcl( f−1(B)) ⊂ f−1(IVNcl(B)) for each B ∈ IVNC(Y),
(5) f (IVNcl(A)) ⊂ IVNcl( f (A)) for each A ∈ IVNC(X).

Proof. The proofs of (1)⇒(2)⇒(3)⇒(1) are obvious.
(2)⇒(4): Suppose the condition (2) holds and let B ∈ INC(Y). By Proposition 22 [IVNCK2],

B ⊂ IVNcl(B). Then by Proposition 9 (2), f−1(B) ⊂ f−1(IVNcl(B)). Thus by Proposition 22 [INCK0],

IVNcl( f−1(B)) ⊂ IVNcl( f−1(IVNcl(B))).

Since IVNcl(B) ∈ IVNCC(Y), f−1(IVNcl(B)) ∈ IVNCC(X) by the condition (2). So by Theorem 3
(1), IVNcl( f−1(IVNcl(B))) = f−1(IVNcl(B)). Hence IVNcl( f−1(B)) ⊂ f−1(IVNcl(B)).

(4)⇒(5): Suppose the condition (4) holds and let B = f (A) for each A ∈ IVNC(X). Then we have
IVNcl( f−1( f (A))) ⊂ f−1(IVNcl( f (A))). Thus by Proposition 9 (3), IVNcl(A) ⊂ f−1(IVNcl( f (A))).
So by Proposition 9 (1) and (4), f (IVNcl(A)) ⊂ IVNcl( f (A)).

(5)⇒(4): The proof is similar to (4)⇒(5).

Theorem 6. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is continuous if and only if
f−1(IVNint(B)) ⊂ IVNint( f−1(B)) for each B ∈ INC(Y).

Proof. The proof is straightforward.

Definition 24. Let (X, τ), (Y, δ) be two IVNCTSs. Then a mapping f : X → Y is said to be:

(i) Interval-valued neutrosophic crisp open, if f (U) ∈ δ for each U ∈ τ,
(ii) Interval-valued neutrosophic crisp closed, if f (C) ∈ IVNCC(Y) for each C ∈ IVNCC(X).

Proposition 28. Let X, Y, Z be IVNCTSs, let f : X → Y and g : Y → Z be mappings. If f , g are open [resp.
closed], then g ◦ g is open [resp. closed].

Proof. The proof is straightforward.

Theorem 7. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is open if and only if
IVNint( f (A)) ⊂ f (IVNint(A)) for each A ∈ IVNC(X).

Proof. The proof is straightforward.

Proposition 29. Let X, Y be IVNCTSs and let f : X → Y be injective. If f is continuous, then
f (IVNint(A)) ⊂ IVNint( f (A)) for each A ∈ IVNC(X).
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Proof. The proof is straightforward.

The following is the immediate result of Theorem 7 and Proposition 29.

Corollary 4. Let X, Y be IVNCTSs and let f : X → Y be continuous, open, and injective. Then
f (IVNint(A)) = IVNint( f (A)) for each A ∈ IVNC(X).

Theorem 8. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is close if and only if
IVNcl( f (A)) ⊂ f (IVNcl(A)) for each A ∈ IVNC(X).

Proof. The proof is straightforward.

The following is the immediate result of Theorems 5 and 8.

Corollary 5. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is continuous and closed if and
only if f (VINcl(A)) = IVNcl( f (A)) for each A ∈ IVNC(X).

Definition 25. Let (X, τ), (Y, δ) be two IVNCTSs. Then a mapping f : X → Y is called an interval-valued
neutrosophic crisp homeomorphism, if f is bijective, continuous, and open.

Theorem 9. Let X, Y be IVNCDTSs and let f : X → Y be a mapping. Then f is a homeomorphism if and
only if f is bijective.

Proof. The proof is straightforward.

Definition 26. Let (X, τ) be an IVNCTS, let Y be a set and let f : X → Y be a surjective mapping. Let δ be
the family of IVNCSs in Y given by:

δ = {B ∈ IVNC(Y) : f−1(B) ∈ τ}.

Then δ is called the interval-valued neutrosophic crisp quotient topology (briefly, IVNCQT) on Y.
It can easily be seen that δ ∈ IVNCT(Y). It is also obvious that for each B ∈ IVNC(Y), B is closed in δ

if and only if f−1(B) is closed in X.

Proposition 30. Let (X, τ), (Y, δ) be two IVNCTSs, where δ is the IVNCQT on Y. Then a surjection
f : X → Y is continuous and open. Moreover, δ is the finest topology on Y which f is continuous.

Proof. The proof is similar to the classical case.

The following is the immediate result of Proposition 30.

Corollary 6. Let (X, τ), (Y, δ) be two IVNCTSs. If a mapping f : X → Y is continuous, open, and sujective,
then δ is the IVNCQT on Y. But the converse does not hold in general (See Example 17).

Example 17. Let ([0, 1], τ) be an IVNCTS and let A = [
1
2

, 1]. Consider the characteristic function χA :

[0, 1] → {0, 1}, where {0, 1} is the interval-valued neutrosophic crisp Sierpin
′
ski space (see Example 7 (5)).

Then we can easily see that the topology on {0, 1} is the IVNCQT. On the other hand, (
1
2

, 1)IVNCI ∈ τ but

χA((
1
2

, 1)IVNCI) is not open in {0, 1}. Thus χA is not an open mapping.

Theorem 10. Let (X, τ), (Y, δ), (Z, σ) be IVNCTSs, where δ is the IVNCQT on Y. Let f : X → Y and
g : Y → Z be mappings. Then g is continuous if and only if g ◦ f is continuous.
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Proof. The proof is similar to the classical case.

8. Conclusions

We obtained various properties of IVNCSs and discussed with IVNCTSs which can be considered
as an interval-valued tri-opological space. Moreover, we defined an interval-valued neutrosophic
crisp base and subbase and proved the characterization of an interval-valued neutrosophic crisp
base. Next, we introduced the concept of interval-valued neutrosophic crisp neighborhoods and
obtained some similar properties to classical neighborhoods. Furthermore, we defined interval-valued
neutrosophic crisp closures and interiors, and found some properties. We also introduced the concept
of interval-valued neutrosophic crisp continuities and obtained its various properties.

In future, we expect that one can apply the concept of IVNCSs to group and ring theory,
BCK-algebra, and category theory, etc. We also expect that one can define the notions of interval-valued
soft sets and interval-valued neutrosophic crisp soft sets. Besides, the theorems developed in this
manuscript will promote future studies on the geometry calibration for multi-cameras.
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Abstract: This paper aims to mark out new concepts of r-single valued neutrosophic sets, called
r-single valued neutrosophic £-closed and £-open sets. The definition of £-single valued neutrosophic
irresolute mapping is provided and its characteristic properties are discussed. Moreover, the concepts
of £-single valued neutrosophic extremally disconnected and £-single valued neutrosophic normal
spaces are established. As a result, a useful implication diagram between the r-single valued
neutrosophic ideal open sets is obtained. Finally, some kinds of separation axioms, namely r-single
valued neutrosophic ideal-Ri (r-SVNIRi, for short), where i = {0, 1, 2, 3}, and r-single valued
neutrosophic ideal-Tj (r-SVNITj, for short), where j = {1, 2, 2 1

2 , 3, 4}, are introduced. Some of their
characterizations, fundamental properties, and the relations between these notions have been studied.

Keywords: r-single valued neutrosophic £-closed; £-single valued neutrosophic irresolute map-
ping; £-single valued neutrosophic extremally disconnected; £-single valued neutrosophic normal;
r-SVNIRi; r-SVNITj

1. Introduction

In 1999, Smarandache introduced the concept of a neutrosophy [1]. It has been used
at various axes of mathematical theories and applications. In recent decades, the theory
made an outstanding advancement in the field of topological spaces. Salama et al. and Hur
et al. [2–6], for example, among many others, wrote their works in fuzzy neutrosophic
topological spaces (FNTS), following Chang [7]’s discoveries in the way of fuzzy topological
spaces (FTS).

Šostak, in 1985 [8], marked out a new definition of fuzzy topology as a crisp subfamily
of family of fuzzy sets, which seems to be a drawback in the process of fuzzification of
the concept of topological spaces. Yan, Wang, Nanjing, Liang, and Yan [9,10] developed a
parallel theory in the context of intuitionistic I-fuzzy topological spaces.

The idea of “single-valued neutrosophic set” [11] was set out by Wang in 2010. Gay-
yar [12], in his 2016 paper, foregrounded the concept of a “smooth neutrosophic topological
spaces”. The ordinary single-valued neutrosophic topology was presented by Kim [13].
Recently, Saber et al. [14,15] familiarized the concepts of single-valued neutrosophic ideal
open local function, single-valued neutrosophic topological space, and the connectedness
and stratification of single-valued neutrosophic topological spaces.

Neutrosophy, and especially neutrosophic sets, are powerful, general, and formal
frameworks that generalize the concept of the ordinary sets, fuzzy sets, and intiuitionistic
fuzzy sets from philosophical point of view. This paper sets out to introduce and examine
a new class of sets called r-single valued £-closed in the single valued neutrosophic topo-
logical spaces in Šostak’s sense. More precisely, different attributes, like £-single valued
neutrosophic irresolute mapping, £-single valued neutrosophic extremally disconnected,
£-single valued neutrosophic normal spaces, and some kinds of separation axioms, were
developed. It can be fairly claimed that we have achieved expressive definitions, distin-
guished theorems, important lemmas, and counterexamples to investigate, in-depth, our
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consequences and to find out the best results. It is notable to say that different crucial
notions in single valued neutrosophic topology were generalized in this article. Different
attributes, like extremally disconnected and some kinds of separation axioms, which have
a significant impact on the overall topology’s notions, were also studied.

It is notable to say that the application aspects to this area of research can be further
pointed to. There are many applications of neutrosophic theories in many branches of
sciences. Possible applications are to control engineering and to Geographical Information
Systems, and so forth, and could be secured, as mentioned by many authors, such as
Reference [16–20].

In this study, X̃ is assumed to be a nonempty set, ξ = [0, 1] and ξ0 = (0, 1]. For α ∈ ξ,
α̃(ν) = α for all ν ∈ X̃. The family of all single-valued neutrosophic sets on X̃ is denoted
by ξ X̃ .

2. Preliminaries

This section is devoted to provide a complete survey and trace previous studies related
to the idea of this research article.

Definition 1 ([21]). Let X̃ be a non-empty set. A neutrosophic set (briefly, NS) in X̃ is an object
having the form

σn = {〈ν, ρ̃σn(ν), ˜̺σn(ν), η̃σn(ν)〉 : ν ∈ X̃},

where
ρ̃ : X̃ →⌋−0, 1+⌊, ˜̺ : X̃ →⌋−0, 1+⌊, η̃ : X̃ →⌋−0, 1+⌊

and
−0 ≤ ρ̃σn(ν) + ˜̺σn(ν) + η̃σn(ν) ≤ 3+

represent the degree of membership (namely ρ̃σn(ν)), the degree of indeterminacy (namely ˜̺σn(ν)),
and the degree of non-membership (namely η̃σn(ν)), respectively, of any ν ∈ X̃ to the set σn.

Definition 2 ([11]). Let X̃ be a space of points (objects), with a generic element in X̃ denoted
by ν. Then, σn is called a single valued neutrosophic set (briefly, SVNS) in X̃, if σn has the
form σn = 〈ρ̃σn , ˜̺σn , η̃σn〉, where ρ̃σn , ˜̺σn , η̃σn : X̃ → [0, 1]. In this case, ρ̃σn , ˜̺σn , η̃σn are
called truth membership function, indeterminancy membership function, and falsity membership
function, respectively.

Let X̃ be a nonempty set and ξ = [0, 1] and ξ0 = (0, 1]. A single-valued neutrosophic set
σn on X̃ is a mapping defined as σn = 〈ρ̃σn , ˜̺σn , η̃σn〉 : X̃ → ξ such that 0 ≤ ρ̃σn(ν) + ˜̺σn(ν) +
η̃σn(ν) ≤ 3.

We denote the single-valued neutrosophic sets 〈 0, 1, 1〉 and 〈1, 0, 0〉 by 0̃ and 1̃, respectively.

Definition 3 ([11]). Let σn = 〈ρ̃σn , ˜̺σn , η̃σn〉 be an SVNS on X̃. The complement of the set σn
(briefly σc

n) is defined as follows:

ρ̃σc
n
(ν) = η̃σn(ν), ˜̺σc

n
(ν) = [ ˜̺σn ]

c(ν), η̃σc
n
(ν) = ρ̃σn(ν).

Definition 4 ([22,23]). Let X̃ be a non-empty set and let σn, γn ∈ ξ X̃ be given by
σn = 〈ρ̃σn , ˜̺σn , η̃σn〉 and γn = 〈ρ̃γn , ˜̺γn , η̃γn〉. Then:

(1) We say that σn ⊆ γn if ρ̃σn ≤ ρ̃γn , ˜̺σn ≥ ˜̺γn , η̃σn ≥ η̃γn .
(2) The intersection of σn and γn denoted by σn ∩ γn is an SVNS and is given by

σn ∩ γn = 〈ρ̃σn ∩ ρ̃γn , ˜̺σn ∪ ˜̺γn , η̃σn ∪ η̃γn〉.

(3) The union of σn and γn denoted by σn ∪ γn is an SVNS and is given by

σn ∪ γn = 〈ρ̃σn ∪ ρ̃γn , ˜̺σn ∩ ˜̺γn , η̃σn ∩ η̃γn〉.
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For any arbitrary family {σn}i∈j ⊆ ξ X̃ of SVNS, the union and intersection are given by
(4)

⋂
i∈j[σn]i = 〈∩i∈jρ̃[σn ]i

, ∪i∈j ˜̺[σn ]i
, ∪i∈jη̃[σn ]i

〉,
(5)

⋃
i∈j[σn]i = 〈∪i∈jρ̃[σn ]i

, ∩i∈j ˜̺[σn ]i
, ∩i∈jη̃[σn ]i

〉.

Definition 5 ([12]). A single-valued neutrosophic topological space is an ordered quadruple
(X̃, τ̃ρ̃, τ̃ ˜̺, τ̃η̃) where τ̃ρ̃, τ̃ ˜̺, τ̃η̃ : ξ X̃ → ξ are mappings satisfying the following axioms:

(SVNT1) τ̃ρ̃(0̃) = τ̃ρ̃(1̃) = 1 and τ̃ρ̃(0̃) = τ̃ρ̃(1̃) = τ̃η̃(0̃) = τ̃η̃(1̃) = 0,
(SVNT2) τ̃ρ̃(σn ∩ γn) ≥ τ̃ρ̃(σn) ∩ τ̃ρ̃(γn), τ̃ ˜̺(σn ∩ γn) ≤ τ ˜̺(σn) ∪ τ̃ ˜̺(γn),

τ̃η̃(σn ∩ γn) ≤ τ̃η̃(σn) ∪ τ̃η̃(γn), for all σn, γn ∈ ζ X̃ ,
(SVNT3) τ̃ρ̃(∪j∈Γ[σn]j) ≥ ∩j∈Γτ̃ρ̃([σn]j), τ̃ ˜̺(∪i∈Γ[σn]j) ≤ ∪j∈Γτ̃ ˜̺([σn]j),

τ̃η̃(∪j∈Γ[σn]j) ≤ ∪j∈Γτ̃η̃([σn]j) for all {[σn]j, j ∈ Γ} ∈ ζ X̃ .
The quadruple (X̃, τ̃ρ̃, τ̃ ˜̺, τ̃η̃) is called a single-valued neutrosophic topological space (SVNTS,

for short). We will occasionally write τρ̃ ˜̺η̃ for (τρ̃, τ ˜̺, τη̃) and it will cause no ambiguity

Definition 6 ([14]). Let (X̃, τ̃ρ̃, τ̃ ˜̺, τ̃η̃) be an SVNTS. Then, for every σn ∈ ξ X̃ and r ∈ ξ0,
the single valued neutrosophic closure and the single valued neutrosophic interior of σn are
defined by:

Cτ̃ρ̃ ˜̺η̃ (σn, s) =
⋂
{γn ∈ ξX̃ : σn ≤ γn, τρ̃([γn]

c) ≥ r, τ ˜̺([γn]
c) ≤ 1− r, τη̃([γn]

c) ≤ 1− r},

intτ̃ρ̃ ˜̺η̃ (σn, s) =
⋃
{γn ∈ ξ X̃ : σn ≥ γn, τρ̃(γn) ≥ r, τ ˜̺(γn) ≤ 1− r, τη̃(γn) ≤ 1− r}.

Definition 7 ([24]). Let (X̃, τρ̃ ˜̺η̃) be an SVNTS and r ∈ ξ0, σn ∈ ξ X̃ . Then,

(1) σn is r-single valued neutrosophic semiopen (r-SVNSO, for short) iff σn ≤ Cτ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃

(σn, r), r),
(2) σn is r-single valued neutrosophic β-open (r-SVNβO, for short) iff σn ≤ Cτ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (Cτ̃ρ̃ ˜̺η̃

(σn, r), r), r).

The complement of r − SVNSO (resp. r-SVNβO) is said to be an r − SVNSC (resp. r-
SVNβC), respectively.

Definition 8 ([14]). Let X̃ be a nonempty set and ν ∈ X̃. If s ∈ (0, 1], t ∈ [0, 1) and p ∈ [0, 1).
Then, the single-valued neutrosophic point xs,t,p in X̃ is given by

xs,t,p(κ) =

{
(s, t, p), if x = ν,
(0, 1, 1), otherwise.

We say xs,t,p ∈ σn iff s < ρ̃σn(ν), t ≥ ˜̺σn(ν) and p ≥ η̃σn(ν). To avoid the ambiguity, we
denote the set of all neutrosophic points by pt(ξ X̃).

A single-valued neutrosophic set σn is said to be quasi-coincident with another single-valued
neutrosophic set γn, denoted by σnqγn, if there exists an element ν ∈ X̃ such that

ρ̃σn(ν) + ρ̃γn(ν) > 1, ˜̺σn(ν) + ˜̺γn(ν) ≤ 1, η̃σn(ν) + η̃γn(ν) ≤ 1.

Definition 9 ([14]). A mapping I ˜ρ̺η = I ρ̃, I ˜̺, I η̃ : ξ X̃ → ξ is called single-valued neutrosophic
ideal (SVNI) on X̃ if it satisfies the following conditions:

(I1) I ρ̃(0̃) = 1 and I ˜̺(0̃) = I η̃(0̃) = 0.
(I2) If σn ≤ γn,, then I ρ̃(γn) ≤ I ρ̃(σn), I ˜̺(γn) ≥ I ˜̺(σn), and I η̃(γn) ≥ I η̃(σn), for

γn, σn ∈ ξ X̃ .
(I3) I ρ̃(σn ∪ γn) ≥ I ρ̃(σn) ∩ I ρ̃(γn), I ˜̺(σn ∪ γn) ≤ I ˜̺(σn) ∪ I ˜̺(γn) and

I η̃(σn ∪ γn) ≤ I η̃(σn) ∪ I η̃(γn), for each σn, γn ∈ ξ X̃ .

The triple (X̃, τρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is called a single valued neutrosophic ideal topological space in
Šostak’s sense (SVNITS, for short).
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Definition 10 ([14]). Let (X̃, τρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS for each σn ∈ ξ X̃ . Then, the single valued
neutrosophic ideal open local function [σn]£r (τ

ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) of σn is the union of all single-valued
neutrosophic points xs,t,k such that, if γn ∈ Qτρ̃ ˜̺η̃ (xs,t,k, r) and I ρ̃(ςn) ≥ r, I ˜̺(ςn) ≤ 1− r,
I η̃(ςn) ≤ 1 − r, then there is at least one ν ∈ X̃ for which ρ̃σn(ν) + ρ̃γn(ν) − 1 > ρ̃ςn(ν),
˜̺σn(ν) + ˜̺γn(ν)− 1 ≤ ˜̺ςn(ν), and η̃σn(ν) + η̃γn(ν)− 1 ≤ η̃ςn(ν).

Occasionally, we will write [σn]£r for [σn]£r (τ
ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃), and it will cause no ambiguity.

Remark 1 ([14]). Let (X̃, τρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and σn ∈ ξ X̃ . Then,

CI£
τρ̃ ˜̺η̃ (σn, r) = σn ∪ [σn]

£
r , int£

τρ̃ ˜̺η̃ (σn, r) = σn ∩ [(σc
n)

£
r ]

c.

It is clear that CI£
τρ̃ ˜̺η̃ is a single-valued neutrosophic closure operator and (τρ̃£(Iρ, τ

˜̺£(I̺, τη̃£

(Iη) is the single-valued neutrosophic topology generated by CI£
τρ̃ ˜̺η̃ , i.e.,

τ£(I)(σn) =
⋃
{r| CI£

τρ̃ ˜̺η̃ (σ
c
n, r) = σc}.

Theorem 1 ([14]). Let {[σn]i}i∈J ⊂ ξ X̃ be a family of single-valued neutrosophic sets on X̃ and
(X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an r-SVNITS. Then,

(1) (
⋃
([σn]i)

£
r : i ∈ J) ≤ (

⋃
[σn]i : i ∈ j)£

r ,
(2) (

⋂
([σn]i) : i ∈ j)£

r ≥ (
⋂
([σn]i)

£
r : i ∈ J).

Theorem 2 ([14]). Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and σn, γn ∈ ξ X̃ , r ∈ ξ0. Then,

(1) int£
τ̃ρ̃ ˜̺η̃ (σn ∨ γn, r) ≤ int£

τ̃ρ̃ ˜̺η̃ (σn, r) ∨ int£
τ̃ρ̃ ˜̺η̃ (γn, r),

(2) intτ̃ρ̃ ˜̺η̃ (σn, r) ≤ int£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ σn ≤ CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ≤ Cτ̃ρ̃ ˜̺η̃ (σn, r),

(3) CI£
τ̃ρ̃ ˜̺η̃ ([σn]c, r) = [int£

τ̃ρ̃ ˜̺η̃ (σn, r)]c, and [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c = int£

τ̃ρ̃ ˜̺η̃ ([σn]c, r),
(4) int£

τ̃ρ̃ ˜̺η̃ (σn ∧ γn, r) = int£
τ̃ρ̃ ˜̺η̃ (σn, r) ∧ int£

τ̃ρ̃ ˜̺η̃ (γn, r).

3. £-Single Valued Neutrosophic Ideal Irresolute Mapping

This section provides the definitions of the r-single-valued neutrosophic £-open set
(SVN£O, for short), the r-single-valued neutrosophic £-closed set (SVN£C, for short) and
the £-single valued neutrosophic ideal irresolute mapping (£-SVNI-irresolute, for short), in
the sense of Šostak. To understand the aim of this section, it is essential to clarify its content
and elucidate the context in which the definitions, theorems, and examples are performed.
Some results follow.

Definition 11. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an r-SVNITS for every σn ∈ ξ X̃ and r ∈ ξ0. Then, σn is
called r-SVN£C iff CI£

τρ̃ ˜̺η̃ (σn, r) = σn. The complement of the r-SVN£C is called r-SVN£O.

Proposition 1. Let (X̃, τρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an r-SVNITS and σn ∈ ξ X̃ . Then,

(1) σn is r-SVN£C iff [σn]£r ≤ σn,
(2) σn is r-SVN£O iff ([σn]£r )

c ≥ [σn]c,
(3) If τρ̃([σn]c) ≥ r, τ̺([σn]c) ≤ 1− r, τη([σn]c) ≤ 1− r, then σn is r-SVN£C,
(4) If τρ̃(σn) ≥ r, τ̺(σn) ≤ 1− r, τη(σn) ≤ 1− r, then σn is r-SVN£O,
(5) If σn is r-SVNSC (resp. r-SVNβC), then intτρ̃ ˜̺η̃ ([σn]£r , r) ≤ σn (resp.intτρ̃ ˜̺η̃ ([intτρ̃ ˜̺η̃ (σn, r)]

£
r , r) ≤ σn).

Proof. The proof of (1) and (2) are straightforward from Definition 11.
(3) Let τρ̃([σn]c) ≥ r, τ̺([σn]c) ≤ 1− r, τη([σn]c) ≤ 1− r. Then,

σn = Cτ̃ρ̃ ˜̺η̃ (σn, r) ≥ CI£
τρ̃ ˜̺η̃ (σn, r) = σn ∪ [σn]

£
r ≥ [σn]

£
r .
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Hence, σn is an r-SVN£C.
(4) The proof is direct consequence of (1).
(5) Let σn be an r-SVNSC. Then,

σn ≥ intτ̃ρ̃ ˜̺η̃ (Cτ̃ρ̃ ˜̺η̃ (σn, r), r) ≥ intτ̃ρ̃ ˜̺η̃ (CI£
τρ̃ ˜̺η̃ (σn, r), r) = intτ̃ρ̃ ˜̺η̃ ([σn ∪ [σn]

£
r ], r)

≥ intτ̃ρ̃ ˜̺η̃ ([σn]
£
r , r).

The another case is similarly proved.

Example 1. Suppose that X̃ = {a, b}. Define εn, γn, ςn ∈ ξ X̃ as follows:

γn = 〈(0.3, 0.3), (0.3, 0.3), (0.3, 0.3)〉; εn = 〈(0.7, 0.7), (0.7, 0.7), (0.7, 0.7)〉;

ςn = 〈(0.2, 0.2), (0.2, 0.2), (0.2, 0.2)〉.

Define τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃ : ξ X̃ → ξ as follows:

τ̃ρ̃(σn) =





1, if σn = 0̃,
1, if σn = 1̃,
1
3 , if σn = γn;
1
3 , if σn = εn;
0, if otherwise;

I ρ̃(σn) =





1, if σn = (0, 1, 1),
1
3 , if σn = ςn,
2
3 , if 0̃ < σn < ςn;
0, if otherwise;

τ̃ ˜̺(σn) =





0, if σn = 0̃,
0, if σn = 1̃,
2
3 , if σn = γn;
2
3 , if σn = εn;
1, if otherwise;

I ˜̺(σn) =





0, if σn = (0, 1, 1),
2
3 , if σn = ςn,
1
3 , if 0̃ < σn < ςn;
1, if otherwise;

τ̃η̃(σn) =





0, if σn = 0̃,
0, if σn = 1̃,
2
3 , if σn = γn;
2
3 , if σn = εn;
1, if otherwise;

I η̃(σn) =





0, if σn = (0, 1, 1),
2
3 , if σn = ςn,
1
3 , if 0̃ < σn < ςn;
1, if otherwise.

(1) Gn = 〈(0.6, 0.6), (0.6, 0.6), (0.6, 0.6)〉 is 1
3 -SVN£C but τ̃ρ̃([Gn]c) 6≥

1
3 , τ̺̃([Gn]c) 6≤

2
3 , and

τ̃η([Gn]c) 6≤
2
3 ,

(2) Gn = 〈(0.6, 0.6), (0.6, 0.6), (0.6, 0.6)〉 ≥ intτ̃ρ̃ ˜̺η̃ ([Gn]£1
3
, 1

3 ) = 0̃ but Gn is not is 1
3 -SVNSC.

Lemma 1. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS. Then, we have the following.

(1) Every intersection of r-SVN£C’s is r-SVN£C.
(2) Every union of r-SVN£O’s is r-SVN£O.

Proof. (1) Let {[σn]i}i∈j be a family of r-SVN£C’s. Then, for every i ∈ j, we obtain
[σn]i = CI£

τρ̃ ˜̺η̃ ([σn]i, r), and, by Theorem 1(2), we have

⋂
i∈j[σn]i =

⋂

i∈j

CI£
τρ̃ ˜̺η̃ ([σn]i, r), r) =

⋂

i∈j

([σn]i ∪ ([σn]i)
£
r ) ≥

⋂

i∈j

[σn]i ∪
⋂

i∈j

([σn]i)
£
r

≥
⋂

i∈j

[σn]i ∪ (
⋂

i∈j

[σn]i)
£
r = CI£

τρ̃ ˜̺η̃ (
⋂

i∈j

[σn]i, r).

Therefore,
⋂

i∈Γ[σn]i is r-SVN£C.
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(2) From Theorem 1(1).

Lemma 2. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS for each r ∈ ξ0. Then,

(1) For each r-SVN£O σn ∈ ξ X̃ , σnqγn iff σnqCI£
τ̃ρ̃ ˜̺η̃ (γn, r),

(2) xs,t,kqCI£
τ̃ρ̃ ˜̺η̃ (γn, r) iff σnqγn for every r-SVN£O σn ∈ ξ X̃ with xs,t,k ∈ σn.

Proof. (1) Let σn be an r-SVN£O and σnqγn. Then, for any ν ∈ X̃, we obtain

ρ̃σn(ν) + ρ̃γn(ν) > 1, ˜̺σn(ν) + ˜̺γn(ν) ≤ 1, η̃σn(ν) + η̃γn(ν) ≤ 1.

This implies that ρ̃γn ≤ ρ̃[σn ]c , ˜̺γn ≥ ˜̺[σn ]c and η̃γn ≥ η̃[σn ]c ; hence, γn ≤ [σn]c. Since

σn is r-SVN£O, CI£
τ̃ρ̃ ˜̺η̃ (γn, r) ≤ CI£

τ̃ρ̃ ˜̺η̃ ([σn]c, r) = [σn]c, it follows that σnqCI£
τ̃ρ̃ ˜̺η̃ (γn, r).

(2) Let xs,t,kqCI£
τ̃ρ̃ ˜̺η̃ (γn, r). Then, σnqCI£

τ̃ρ̃ ˜̺η̃ (γn, r) with xs,t,k ∈ σn. By (1), we have

γnqσn for each r-SVN£O σn ∈ ξ X̃ . On the other hand, let σnqγn. Then, γn ≤ [σn]c. Since σn
is r-SVN£O,

CI£
τ̃ρ̃ ˜̺η̃ (γn, r) ≤ CI£

τ̃ρ̃ ˜̺η̃ ([σn]
c, r) = [σn]

c and σnqCI£
τ̃ρ̃ ˜̺η̃ (γn, r).

Since xs,t,k ∈ σn, we obtain xs,t,kqCI£
τ̃ρ̃ ˜̺η̃ (γn, r)

Definition 12. Suppose that f : (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 )→ (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) is a mapping. Then,

(1) f is called £-SVNI-irresolute iff f−1(σn) is r-SVN£O in X̃ for any r-SVN£O σn in Ỹ,
(2) f is called £-SVNI-irresolute open iff f (σn) is r-SVN£O in Ỹ for any r-SVN£O σn in X̃,
(3) f is called £-SVNI-irresolute closed iff f (σn) is r-SVN£C in Ỹ for any r-SVN£C σn in X̃.

Theorem 3. Let f : (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 ) → (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) be a mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute,
(2) f−1(σn) is r-SVN£C, for each r-SVN£C σn ∈ Ỹ,

(3) f (CI£
τ̃

ρ̃ ˜̺η̃
1

(σn, r)) ≤ CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r) for each σn ∈ ξ X̃ , r ∈ ξ0,

(4) CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(γn), r) ≤ f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

(γn, r)) for each γn ∈ ξỸ, r ∈ ξ0.

Proof. (1)⇒(2): Let σn be an r-SVN£C in Ỹ. Then, [σn]c is r-SVN£O in Ỹ by (1), we obtain
f−1([σn]c) is r-SVN£O. But, f−1([σn]c) = [ f−1(σn)]c. Then, f−1(σn) is r-SVN£C in X̃.

(2)⇒(3): For each σn ∈ ξ X̃ and r ∈ ξ0, since CI£
τ̃

ρ̃ ˜̺η̃
2

(CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r) = CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r).

From Definition 11, CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r) is r-SVN£C in Ỹ. By (2), f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r)) is r-

SVN£C in X̃. Since
σn ≤ f−1( f (σn)) ≤ f−1(CI£

τ̃
ρ̃ ˜̺η̃
2

( f (σn), r)),

by Definition 11, we get,

CI£
τ̃

ρ̃ ˜̺η̃
1

(σn, r) ≤ CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r)), r) = f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r)).

Hence,

f (CI£
τ̃

ρ̃ ˜̺η̃
1

(σn, r)) ≤ f ( f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r))) ≤ CI£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r).

(3)⇒(4): For each γn ∈ ξỸ and r ∈ ξ0, put σn = f−1(γn). By (3),

f (CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(γn), r)) ≤ CI£
τ̃

ρ̃ ˜̺η̃
2

( f ( f−1(γn)), r) ≤ CI£
τ̃

ρ̃ ˜̺η̃
2

(γn, r).
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It implies that CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(γn), r) ≤ f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

(γn, r)).

(4)⇒(1): Let γn be an r-SVN£O in Ỹ. Then, [γn]c is an r-SVN£C in Ỹ. Hence,
CI£

τ̃
ρ̃ ˜̺η̃
2

([γn]c, r) = [γn]c, and, by (4), we have,

f−1([γn]
c) = f−1(CI£

τ̃
ρ̃ ˜̺η̃
2

([γn]
c, r)) ≥ CI£

τ̃
ρ̃ ˜̺η̃
1

( f−1([γn]
c), r).

On the other hand, f−1([γn]c) ≤ CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1([γn]c), r). Thus, f−1([γn]c) = CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1

([γn]c), r), that is f−1([γn]c) is an r-SVN£C set in X̃. Hence, f−1(γn) is an r-SVN£O set in
X̃.

Theorem 4. Let f : (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 ) → (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) be a mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute open,

(2) f (int£
τ̃

ρ̃ ˜̺η̃
1

(σn, r)) ≤ int£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r) for each σn ∈ ξ X̃ , r ∈ ξ0,

(3) int£
τ̃

ρ̃ ˜̺η̃
1

(( f−1(γn), r) ≤ f−1(int£
τ̃

ρ̃ ˜̺η̃
2

(γn, r)) for each γn ∈ ξỸ, r ∈ ξ0,

(4) For any γn ∈ ξỸ and any r-SVN£C σn ∈ ξ X̃ with f−1(γn) ≤ σn, there exists an r-SVN£C

ςn ∈ ξỸ with γn ≤ ςn such that f−1(ςn) ≤ σn.

Proof. (1)⇒(2): For every σn ∈ ξ X̃, r ∈ ξ0 and int£
τ̃

ρ̃ ˜̺η̃
1

(σn, r) ≤ σn from Theorem 2(2),

we have f (int£
τ̃

ρ̃ ˜̺η̃
1

(σn, r)) ≤ f (σn). By (1), f (int£
τ̃

ρ̃ ˜̺η̃
1

(σn, r)) is r-SVN£O in Ỹ. Hence,

f (int£
τ̃

ρ̃ ˜̺η̃
1

(σn, r)) = int£
τ̃

ρ̃ ˜̺η̃
2

( f (int£
τ̃

ρ̃ ˜̺η̃
1

(σn, r))) ≤ int£
τ̃

ρ̃ ˜̺η̃
2

( f (σn), r).

(2)⇒(3): For each γn ∈ ξỸ and r ∈ ξ0, put σn = f−1(γn) from (2),

f (int£
τ̃

ρ̃ ˜̺η̃
1

( f−1(γn), r)) ≤ int£
τ̃

ρ̃ ˜̺η̃
2

( f ( f−1(γn)), r) ≤ int£
τ̃

ρ̃ ˜̺η̃
2

(γn, r).

It implies that

int£
τ̃

ρ̃ ˜̺η̃
1

( f−1(γn), r) ≤ f−1( f (int£
τ̃

ρ̃ ˜̺η̃
1

( f−1(γn), r))) ≤ f−1(int£
τ̃

ρ̃ ˜̺η̃
2

(γn, r)).

(3)⇒(4): Obvious.
(4)⇒(1): Let εn be an r-SVN£O in X̃. Put γn = [ f (εn)]c and σn = [εn]c such that σn is

r-SVN£C in X̃. We obtain

f−1(γn) = f−1([ f (εn)]
c) = [ f−1( f (εn))]

c ≤ [εn]
c = σn.

From (4), there exists r-SVN£O ςn ∈ ξỸ with γn ≤ ςn such that f−1(ςn) ≤ σn = [εn]c.
It implies εn ≤ [ f−1(ς)]c = f−1([ςn]c). Thus, f (εn) ≤ f ( f−1([ς]c)) ≤ [ςn]c. On the
other hand, since γn ≤ ςn, we have

f (εn) = [γ]c ≥ [ςn]
c.

Hence, f (εn) = [ςn]c, that is, f (εn) is r-SVN£O in Ỹ.

Theorem 5. Let f : (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 ) → (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) be a mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute closed.

(2) f (CI£
τ̃

ρ̃ ˜̺η̃
1

(γn, r)) ≤ CI£
τ̃

ρ̃ ˜̺η̃
2

( f (γn), r) for each γn ∈ ξ X̃ , r ∈ ξ0.
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Proof. Obvious.

Theorem 6. Let f : (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 )→ (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) be a bijective mapping. Then, the following
conditions are equivalent:

(1) f is £-SVNI-irresolute closed,

(2) CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(σn), r) ≤ f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

(σn, r)) for each σn ∈ ξỸ, r ∈ ξ0.

Proof. (1) ⇒ (2) : Suppose that f is an £-SVNI-irresolute closed. From Theorem 5(2),
we claim that, for each γn ∈ ξ X̃ and r ∈ ξ0,

f (CI£
τ̃

ρ̃ ˜̺η̃
1

(γn, r)) ≤ CI£
τ̃

ρ̃ ˜̺η̃
2

( f (γn), r).

Now, for all σn ∈ ξỸ, r ∈ ξ0, put γn = f−1(σn), since f is onto, it implies that
f ( f−1(σn)) = σn. Thus,

f (CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(σn), r)) ≤ CI£
τ̃

ρ̃ ˜̺η̃
2

( f ( f−1(σn)), r) = CI£
τ̃

ρ̃ ˜̺η̃
2

(σn, r).

Again, since f is onto, it follows:

CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(σn), r) = f−1( f (CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1(σn), r))) ≤ f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

(σn, r)).

(2)⇒ (1) : Put σn = f (γn). By the injection of f , we get

CI£
τ̃

ρ̃ ˜̺η̃
1

(γn, r) = CI£
τ̃

ρ̃ ˜̺η̃
1

( f−1( f (γn)), r) ≤ f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

( f (γn), r)),

for the reason that f is onto, which implies that

f (CI£
τ̃

ρ̃ ˜̺η̃
1

(γn, r)) ≤ f ( f−1(CI£
τ̃

ρ̃ ˜̺η̃
2

( f (γn), r))) = CI£
τ̃

ρ̃ ˜̺η̃
2

( f (γn), r).

4. £-Single Valued Neutrosophic Extremally Disconnected and £-Single Valued
Neutrosophic Normal

This section is devoted to introducing £-single valued neutrosophic extremally dis-
connected (£-SVNE-disconnected, for short) and £-single valued neutrosophic normal
(£-SVN-normal, for short), in the sense of Šostak. These definitions and their components,
together with a set of criteria for identifying the spaces, are provided to illustrate how the
ideas are applied.

Definition 13. An SVNITS (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is called £-SVNE-disconnected if τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥

r, τ̃ ˜̺(CI£
τ̃ ˜̺ (σn, r)) ≤ 1 − r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1 − r for each τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1 − r,
τ̃η̃(σn) ≤ 1− r.

Definition 14. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, σn ∈ ξ X̃ is said to be:

(1) r-single valued neutrosophic semi-ideal open set (r-SVNSIO) iff σn ≤ CI£
τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (σn, r), r),

(2) r-single valued neutrosophic pre-ideal open set (r-SVNPIO) iff σn ≤ intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r),

(3) r-single valued neutrosophic α-ideal open set (r-SVNαIO) iff σn ≤ intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ σn, r),

r), r),
(4) r-single valued neutrosophic β-ideal open set (r-SVNβIO) iff σn ≤ Cτ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃

(σn,r), r), r),
(5) r-single valued neutrosophic β-ideal open (r-SVNSβIO) iff σn ≤ CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃

(σn, r), r), r),
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(6) r-single valued neutrosophic regular ideal open set (r-SVNRIO) iff σn = intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃

(σn, r), r).

The complement of r-SVNSIO (resp. r-SVNPIO, r-SVNαIO, r-SVNβIO, r-SVNSβIO, r-
SVNRIO) are called r-SVNSIC (resp. r-SVNPIC, r-SVNαIC, r-SVNβIC, r-SVNSβIC, r-SVNRIC).

Remark 2. The following diagram can be easily obtained from the above definition:

r− SVNαIO ⇒ r− SVNSIO ⇒ r− SVNSO

⇓ ⇓ ⇓

r− SVNRIO ⇒ r− SVNPIO ⇒ r− SVNβIO ⇒ r− SVNβO

⇓

r− SVNSIO ⇒ r− SVNSβIO ⇒ r− SVNβIO.

Theorem 7. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, the following properties
are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected,
(2) τ̃ρ̃([int£

τ̃ρ̃(σn, r)]c) ≥ r, τ̃ ˜̺([int£
τ̃ ˜̺ (σn, r)]c) ≤ 1− r, τ̃η̃([int£

τ̃η̃ (σn, r)]c) ≤ 1− r for each
τ̃ρ̃([σn]c) ≥ r, τ̃ ˜̺([σn]c) ≤ 1− r, τ̃η̃([σn]c) ≤ 1− r,

(3) CI£
τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (σn.r), r) ≤ intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r), r), for each σn ∈ ξ X̃ ,
(4) Every r-SVNSIO set is r-SVNPIO,
(5) τ̃ρ̃(CI£

τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£
τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r for each r-SVNSβIO

σn ∈ ξ X̃ ,
(6) Every r-SVNSβIO set is r-SVNPIO,

(7) For each σn ∈ ξ X̃ , σn is r-SVNαIO set iff it is r-SVNSIO.

Proof. (1)⇒ (2):The proof is direct consequence of Definition 14.
(2)⇒(3): For each σn ∈ ξ X̃, τ̃ρ̃(intτ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(intτ̃ ˜̺ (σn, r))

≤ 1− r, τ̃η̃(intτ̃η̃ (σn, r)) ≤ 1− r, and, by (2), we have

τ̃ρ̃([int£
τ̃ρ̃([intτ̃ρ̃(σn, r)]c, r)]c) ≥ r, τ̃ ˜̺([int£

τ̃ ˜̺ ([intτ̃ ˜̺ (σn, r)]c, r)]c) ≤ 1− r,

τ̃η̃([int£
τ̃η̃ ([intτ̃η̃ (σn, r)]c, r)]c) ≤ 1− r.

Thus,

τ̃ρ̃(CI£
τ̃ρ̃ (intτ̃ρ̃ (σn, r), r)) ≥ r, τ̃ ˜̺([CI£

τ̃ ˜̺ (intτ̃ ˜̺ (σn, r), r)) ≤ 1− r, τ̃η̃([CI£
τ̃η̃ (intτ̃η̃ (σn, r), r)) ≤ 1− r;

hence,

CI£
τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (σn.r), r) = intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (σn, r), r), r) ≤ intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r).

(3)⇒(4): Let σn be an r-SVNSIO set. Then, by (4), we have

σn ≤ CI£
τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (σn, r), r) ≤ intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r), r).

Thus, σn is an r-SVNPIO set.
(4)⇒(5): Since σn is an r-SVNSβIO set, σn ≤ CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r), r). Then,

CI£
τ̃ρ̃ ˜̺η̃ (σn, r) is r-SVNSIO, and, by (4), CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ≤ intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r); hence,

τ̃ρ̃CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(5)⇒(6): Let σn be an r-SVNβIO set, then, by (5), CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ intτ̃ρ̃ ˜̺η̃ (Cl⋆(σn, r), r).

Thus,
σn ≤ CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ≤ intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r).
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Therefore, σn is an r-SVNPIO set.
(6)⇒(7): Let σn be an r-SVNSIO. Then, σn is r-SVNSβIO, by (6), σn is an r-SVNPIO set.

Since σn is r-SVNSIO and r-SVNPIO, σn is r-SVNαIO.
(7)⇒ (1): Suppose that τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r, then CI£

τ̃ρ̃ ˜̺η̃ (σn, r)
is r-SVNSIO, and, by (7), CI£

τ̃ρ̃ ˜̺η̃ (σn, r) is r-SVNαIO. Hence,

CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (Cl⋆(σn, r), r), r), r) = intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r) ≤ CI£

τ̃ρ̃ ˜̺η̃ (σn, r).

Hence,

τ̃ρ̃(CI£
τ̃ρ̃ ˜̺η̃ (σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ρ̃ ˜̺η̃ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃ρ̃ ˜̺η̃ (σn, r)) ≤ 1− r.

Thus, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected.

Theorem 8. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS r ∈ ξ0 and σn ∈ ξ X̃. Then, the following
are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected,
(2) CI£

τ̃ρ̃ ˜̺η̃ (σn, r)qCτ̃ρ̃ ˜̺η̃ (γn, r), for every τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r and

every r-SVN£O γn ∈ ξ X̃ with σnqγn,
(3) CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r), r)qCτ̃ρ̃ ˜̺η̃ (γn, r), for every σn ∈ ξ X̃ and r-SVN£O γn ∈ ξ X̃

with σnqγn.

Proof. (1)⇒(2): Let τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r. Then, by (1),

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

Since [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c is an r-SVN£O and CI£

τ̃ρ̃ ˜̺η̃ (σn, r)q[CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c, it implies that

CI£
τ̃ρ̃ ˜̺η̃ (σn, r)qCτ̃ρ̃ ˜̺η̃ ([CI£

τ̃ρ̃ ˜̺η̃ (σn, r)]c, r).

(2)⇒(1): Let τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r. Since [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c is an

r-SVN£O, then, by (2),

CI£
τ̃ρ̃ ˜̺η̃ (σn, r)qCτ̃ρ̃ ˜̺η̃ ([CI£

τ̃ρ̃ ˜̺η̃ (σn, r)]c, r).

This implies that CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r), r) ≤ CI£
τ̃ρ̃ ˜̺η̃ (σn, r), so

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(2)⇒(3): Suppose that σn ∈ ξ X̃ and γn is an r-SVN£O with σnqγn. Since

τ̃ρ̃(intτ̃ρ̃ (CI£
τ̃ρ̃ (σn, r), r)) ≥ r, τ̃ ˜̺(intτ̃ ˜̺ (CI£

τ̃ ˜̺ (σn, r), r)) ≤ 1− r, τ̃η̃(intτ̃η̃ (CI£
τ̃η̃ (σn, r), r)) ≤ 1− r.

By (2), we have CI£
τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r), r), r)qCτ̃ρ̃ ˜̺η̃ (γn, r).

(3)⇒(2): Let τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r and γn be an r-SVN£O with
σnqγn. Then, by (3), we obtain CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r), r)qCτ̃ρ̃ ˜̺η̃ (γn, r). Since

CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ CI£

τ̃ρ̃ ˜̺η̃ (inyτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r), r),

then, we have CI£
τ̃ρ̃ ˜̺η̃ (σn, r)qCτ̃ρ̃ ˜̺η̃ (γn, r).

Definition 15. An SVNITS (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is called £-SVN-normal if, for every [σn]1q[σn]2
with τ̃ρ̃([σn]1) ≥ r, τ̃ ˜̺([σn]1) ≤ 1− r, τ̃η̃([σn]1) ≤ 1− r and [σn]2 is r-SVN£O, there exists
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[γn]j ∈ ξ X̃, for j = {1, 2} with τ̃ρ̃([γn]c1) ≥ r, τ̃ ˜̺([γn]c1) ≤ 1− r, τ̃η̃([γn]c1) ≤ 1− r, [γn]2 is
r-SVN£C such that [σn]2 ≤ [γn]1, [σn]1 ≤ [γn]2 and [γn]1q[γn]2.

Theorem 9. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS; then, the following are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is an £-SVN-normal.
(2) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is an £-SVNE-disconnected.

Proof. (1)⇒(2): Let τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r and [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c be an

r-SVN£O. Then, σnq[CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c. By the £-SVN-normality of (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃), there exist

[γn]i ∈ ξ X̃ , for i = {1, 2} with

τ̃ρ̃([γn]
c
1) ≥ r, τ̃ ˜̺([γn]

c
1) ≤ 1− r, τ̃η̃([γn]

c
1) ≤ 1− r,

and [γn]c2 r-SVN£C such that [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c ≤ [γn]1, σn ≤ [γn]2 and [γn]1q[γn]2. Since

CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ CI£

τ̃ρ̃ ˜̺η̃ ([γn]2, r) = [γn]2 ≤ [γn]
c
1 ≤ CI£

τ̃ρ̃ ˜̺η̃ (σn, r),

we have CI£
τ̃ρ̃ ˜̺η̃ (σn, r) = [γn]2. Since [CI£

τ̃ρ̃ ˜̺η̃ (σn, r)]c ≤ [γn]1 ≤ [γn]c2 = [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c, so

[CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c = [γn]1. Hence, CI£

τ̃ρ̃ ˜̺η̃ (σn, r) = [γn]c1 and

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

Thus, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is an £-SVNE-disconnected.
(2)⇒(1): Suppose that τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1 − r, τ̃η̃(σn) ≤ 1 − r and γn is an

r-SVN£O with σnqγn. By the £-SVNE-disconnected of (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃), we have

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r,

and [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c is r-SVN£O. Since σnqγn, σn ≤ CI£

τ̃ρ̃ ˜̺η̃ (σn, r) and γn ≤ [CI£
τ̃ρ̃ ˜̺η̃ (σn, r)]c.

Thus, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is an £-SVN-normal.

Theorem 10. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS, σn, σnξ X̃ and r ∈ ξ0. Then, the following
properties are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected.
(2) If σn is r-SVNRIO, then σn is r-SVN£C.
(3) If σn is r-SVNRIC, then σn is r-SVN£O.

Proof. (1)⇒(2): Let σn be an r-SVNRIO. Then, σn = intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r) and τ̃ρ̃(σn) ≥ r,

τ̃ ˜̺(σn) ≤ 1− r, τ̃η̃(σn) ≤ 1− r. By (1),

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

Hence σn = intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r) = CI£

τ̃ρ̃ ˜̺η̃ (σn, r).
(2)⇒(1): Suppose that σn = intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r), r), then τ̃ρ̃(σn) ≥ r, τ̃ ˜̺(σn) ≤ 1− r,
τ̃η̃(σn) ≤ 1− r, by (2), σn is r-SVN£C. This implies that

CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r), r) = intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r), r) ≤ CI£
τ̃ρ̃ ˜̺η̃ (σn, r).

Thus,

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r,

then (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is an £-SVNE-disconnected.
(2)⇔ (3): Obvious.
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Remark 3. The union of two r-SVNRIO sets need not to be an r-SVNRIO.

Theorem 11. If (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected and σn, γn ∈ ξ X̃, r ∈ ξ0. Then, the
following properties hold:

(1) If σn and γn are r-SVNRIC, then σn ∧ γn is r-SVNRIC.
(2) If σn and γn are r-SVNRIO, then σn ∨ γn is r-SVNRIO.

Proof. Let σn and γn be r-SVNRIC. Then, τ̃ρ̃([σn]c) ≥ r, τ̃ ˜̺([σn]c) ≤ 1− r, τ̃η̃([σn]c) ≤ 1− r
and τ̃ρ̃([γn]c) ≥ r, τ̃ ˜̺([γn]c) ≤ 1− r, τ̃η̃([γn]c) ≤ 1− r, by Theorem 7, we have

τ̃ρ̃([int£
τ̃ρ̃(σn, r)]c) ≥ r, τ̃ ˜̺([int£

τ̃ ˜̺ (σn, r)]c) ≤ 1− r, τ̃η̃([int£
τ̃η̃ (σn, r)]c) ≤ 1− r,

and

τ̃ρ̃([int£
τ̃ρ̃(γn, r)]c) ≥ r, τ̃ ˜̺([int£

τ̃ ˜̺ (γn, r)]c) ≤ 1− r, τ̃η̃([int£
τ̃η̃ (γn, r)]c) ≤ 1− r.

This implies that

σn ∧ γn = Cτ̃ρ̃ ˜̺η̃ (int£
τ̃ρ̃ ˜̺η̃ (σn, r), r) ∧Cτ̃ρ̃ ˜̺η̃ (int£

τ̃ρ̃ ˜̺η̃ (γn, r), r)

= int£
τ̃ρ̃ ˜̺η̃ (σn, r) ∧ int£

τ̃ρ̃ ˜̺η̃ (γn, r) = int£
τ̃ρ̃ ˜̺η̃ (σn ∧ γn, r)

≤ Cτ̃ρ̃ ˜̺η̃ (int£
τ̃ρ̃ ˜̺η̃ (σn ∧ γn, r), r).

On the other hand,

Cτ̃ρ̃ ˜̺η̃ (int£
τ̃ρ̃ ˜̺η̃ (σn ∧ γn, r), r) = Cτ̃ρ̃ ˜̺η̃ (int£

τ̃ρ̃ ˜̺η̃ (σn, r) ∧ int£
τ̃ρ̃ ˜̺η̃ (γn, r), r)

≤ Cτ̃ρ̃ ˜̺η̃ (int£
τ̃ρ̃ ˜̺η̃ (σn, r), r) ∧Cτ̃ρ̃ ˜̺η̃ (int£

τ̃ρ̃ ˜̺η̃ (γn, r), r)

= σn ∧ γn.

Thus, Cτ̃ρ̃ ˜̺η̃ (int£
τ̃ρ̃ ˜̺η̃ (σn ∧ γn, r), r) = σn ∧ γn. Therefore, σn ∧ γn is an r-SVNRIC.

(2) The proof is similar to that of (1).

Theorem 12. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, the following properties
are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected,
(2) τ̃ρ̃(CI£

τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£
τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r, for every r-SVNSIO

σn ∈ ξ X̃ ,
(3) τ̃ρ̃(CI£

τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£
τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r, for every r-SVNPIO

σn ∈ ξ X̃ ,
(4) τ̃ρ̃(CI£

τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£
τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r, for every r-SVNRIO

σn ∈ ξ X̃ .

Proof. (1) ⇒ (2) and (1) ⇒ (3). Let σn be an r-SVNSIO (r-SVNPIO). Then, σn is r-
SVNSβIO, and, by Theorem 7, we have,

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(2)⇒(4) and (3)⇒(4). Let σn be an r-SVNRIO. Then, σn is r-SVNPIO and r-SVNSIO. Thus,

τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1− r.

(4)⇒(1). Suppose that

τ̃ρ̃(intτ̃ρ̃(CI£
τ̃ρ̃(σn, r), r)) ≥ r, τ̃ ˜̺(intτ̃ ˜̺ (CI£

τ̃ ˜̺ (σn, r), r)) ≥ r, τ̃η̃(intτ̃η̃ (CI£
τ̃η̃ (σn, r), r)) ≥ r.
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Then, by (4), we have

τ̃ρ̃(CI£
τ̃ρ̃(intτ̃ρ̃(CI£

τ̃ρ̃(σn, r), r), r)) ≥ r, τ̃ ˜̺(CI£
τ̃ ˜̺ (intτ̃ ˜̺ (CI£

τ̃ ˜̺ (σn, r), r), r)) ≥ r,

τ̃η̃(CI£
τ̃η̃ (intτ̃η̃ (CI£

τ̃η̃ (σn, r), r), r)) ≥ r.

Hence,

CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ CI£

τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r), r)

= intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r), r), r), r)

= intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r) ≤ CI£

τ̃ρ̃ ˜̺η̃ (σn, r).

Thus, τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1 − r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1 − r; hence,

(X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is an £-SVNE-disconnected.

Definition 16. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS. Then, σn is said to be an r-SVN£SO if σn ≤
Cτ̃ρ̃ ˜̺η̃ (int£

τ̃ρ̃ ˜̺η̃ (σn, r), r).

Definition 17. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS for each r ∈ ξ0, σn ∈ ξ X̃ and xs,t,p ∈ Pt(ξ X̃).
Then, xs,t,p is called an r-SVNδI-cluster point of σn if, for every γn ∈ Qτ̃ρ̃ ˜̺η̃ (xs,t,p, r), we have
σnqintτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (γn, r), r).

Definition 18. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS for each r ∈ ξ0, σn ∈ ξ X̃ and xs,t,p ∈ Pt(ξ X̃).
Then, the single-valued neutrosophic δI-closure operator is a mapping CδIτ̃ρ̃ ˜̺η̃ : ξ X̃ × ξ0 → ξ X̃

that is defined as: CδIτ̃ρ̃ ˜̺η̃ (σn, r) =
∨
{xs,t,p ∈ Pt(ξ X̃) is r-SVNδI-cluster point of σn}.

Lemma 3. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS. Then, σn is r-SVN£SO iff Cτ̃ρ̃ ˜̺η̃ (σn, r) = Cτ̃ρ̃ ˜̺η̃

(int£
τ̃ρ̃ ˜̺η̃ (σn, r), r).

Proof. Obvious.

Lemma 4. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS for each σn ∈ ξ x̃ and r ∈ ξ0. Then, Cτ̃ρ̃ ˜̺η̃ (σn, r) ≤
CδIτ̃ρ̃ ˜̺η̃ (σn, r).

Proof. Obvious.

Lemma 5. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and σn be an r-SVN£SO. Then, Cτ̃ρ̃ ˜̺η̃ (σn, r) =
CδIτ̃ρ̃ ˜̺η̃ (σn, r).

Proof. We show that Cτ̃ρ̃ ˜̺η̃ (σn, r) ≤ CδIτ̃ρ̃ ˜̺η̃ (σn, r). Suppose that Cτ̃ρ̃ ˜̺η̃ (σn, r) 6≥ CδIτ̃ρ̃ ˜̺η̃ (σn, r),;
then, there exist ν ∈ X̃ and s, t, p ∈ ξ0 such that

ρ̃C
τ̃ρ̃ (σn ,r)(ν) < s ≤ ρ̃C

δIτ̃ρ̃ (σn ,r)(ν), ˜̺C
τ̃ ˜̺ (σn ,r)(ν) ≥ t > ˜̺C

δIτ̃ ˜̺ (σn ,r)(ν), (1)

η̃C
τ̃η̃ (σn ,r)(ν) ≥ p > η̃C

δIτ̃η̃ (σn ,r)(ν).

By the definition of Cτ̃ρ̃ ˜̺η̃ , there exists τ̃ρ̃([γn]c) ≥ r, τ̃ ˜̺([γn]c) ≤ 1− r, τ̃η̃([γn]c) ≤
1− r with σn ≤ γn such that

ρ̃C
τ̃ρ̃ (σn ,r)(ν) ≤ ρ̃γn(ν) < s < ρ̃C

δIτ̃ρ̃ (σn ,r)(ν), ˜̺C
τ̃ ˜̺ (σn ,r)(ν) ≥ ˜̺γn(ν) > t > ˜̺C

δIτ̃ρ̃ (σn ,r)(ν),

η̃C
τ̃η̃ (σn ,r)(ν) ≥ ρ̃γn(ν) > p > η̃C

δIτ̃η̃ (σn ,r)(ν).
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Then, [γn]c ∈ Qτ̃ρ̃ ˜̺η̃ (xs,t,p, r) and

[σn]c ≥ [γn]c ⇒ CI£
τ̃ρ̃ ˜̺η̃ ([σn]

c, r) ≥ CI£
τ̃ρ̃ ˜̺η̃ ([γn]

c, r)

⇒ CI£
τ̃ρ̃ ˜̺η̃ ([σn]

c, r) ≥ intτ̃ρ̃ ˜̺η̃ ([γn]
c, r)

⇒ [int£
τ̃ρ̃ ˜̺η̃ (σn, r)]c ≥ [γn]

c.

Thus, int£
τ̃ρ̃ ˜̺η̃ (σn, r)q[γn]c. Hence, intτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ ([γn]c, r), r)qCτ̃ρ̃ ˜̺η̃ (int£
τ̃ρ̃ ˜̺η̃ (σn, r), r), r).

Since σn is an r-SVN£SO, we have intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (γn, r), r)qσn. So, xs,t,p is not an r-SVNδI-

cluster point of σn. It is a contradiction for equation 3. Thus, Cτ̃ρ̃ ˜̺η̃ (σn, r) ≥ CδIτ̃ρ̃ ˜̺η̃ (σn, r).
By Lemma 4, we have Cτ̃ρ̃ ˜̺η̃ (σn, r) = CδIτ̃ρ̃ ˜̺η̃ (σn, r).

Theorem 13. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS. Then, the following properties are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected,
(2) If σn is r-SVNSβIO and γn is r-SVN£SO, then CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ∧ Cτ̃ρ̃ ˜̺η̃ (γn, r) ≤ Cτ̃ρ̃ ˜̺η̃

(σn ∧ γn),
(3) If σn is r-SVNSIO and γn is r-SVN£SO, then CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ∧ Cτ̃ρ̃ ˜̺η̃ (γn, r) ≤ Cτ̃ρ̃ ˜̺η̃

(σn ∧ γn),
(4) CI£

τ̃ρ̃ ˜̺η̃ (σn, r)qCτ̃ρ̃ ˜̺η̃ (γn, r), for every r-SVNSIO set σn ∈ ξ X̃ and every r-SVN£SO γn ∈ ξ X̃

with σnqγn,
(5) If σn is an r-SVNPIO and γn is an r-SVN£SO, then CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ∧Cτ̃ρ̃ ˜̺η̃ (γn, r) ≤ Cτ̃ρ̃ ˜̺η̃

(σn ∧ γn).

Proof. (1)⇒(2): Let σn be an r-SVNSβIO and γn be an r-SVN£SO, by Theorem 7, τ̃ρ̃

(CI£
τ̃ρ̃(σn, r))

≥ r, τ̃ ˜̺(CI£
τ̃ ˜̺ (σn, r)) ≤ 1− r, τ̃η̃(CI£

τ̃η̃ (σn, r)) ≤ 1− r. Then,

CI£
τ̃ρ̃ ˜̺η̃ (σn, r)∧ Cτ̃ρ̃ ˜̺η̃ (γn, r) ≤ Cτ̃ρ̃ ˜̺η̃ (int£

τ̃ρ̃ ˜̺η̃ (γn, r), r) ≤ Cτ̃ρ̃ ˜̺η̃ [CI£
τ̃ρ̃ ˜̺η̃ (γn, r) ∧ int£

τ̃ρ̃ ˜̺η̃ (γn, r), r]

≤ Cτ̃ρ̃ ˜̺η̃ [CI£
τ̃ρ̃ ˜̺η̃ [γn ∧ int£

τ̃ρ̃ ˜̺η̃ (γn, r), r], r] ≤ Cτ̃ρ̃ ˜̺η̃ [Cτ̃ρ̃ ˜̺η̃ [γn ∧ int£
τ̃ρ̃ ˜̺η̃ (γn, r), r], r]

≤ Cτ̃ρ̃ ˜̺η̃ [γn ∧ int£
τ̃ρ̃ ˜̺η̃ (γn, r), r] ≤ Cτ̃ρ̃ ˜̺η̃ [γn ∧ γn, r].

Hence, CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ∧Cτ̃ρ̃ ˜̺η̃ (γn, r) ≤ Cτ̃ρ̃ ˜̺η̃ (σn ∧ γn).

(2)⇒(3): It follows from the fact that every r-SVNSIO set is an r-SVNSβIO.
(3)⇒(4): Clear.
(4)⇒(1): Let σn be an r-SVNSIO. Since [CI£

τ̃ρ̃ ˜̺η̃ (σn, r)]c ≤ Cτ̃ρ̃ ˜̺η̃ (int£
τ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ ([σn]c,
r), r), r) we have, [CI£

τ̃ρ̃ ˜̺η̃ (σn, r)]c is an r-SVN£SO. Then, by (4), CI£
τ̃ρ̃ ˜̺η̃ (σn, r)qCτ̃ρ̃ ˜̺η̃ ([CI£

τ̃ρ̃ ˜̺η̃

(σn, r)]c, r). Thus, CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ≤ [Cτ̃ρ̃ ˜̺η̃ (CI£

τ̃ρ̃ ˜̺η̃ (σn, r)]c, r)]c = intτ̃ρ̃ ˜̺η̃ (CI£
τ̃ρ̃ ˜̺η̃ (σn, r), r).

Therefore, τ̃ρ̃(CI£
τ̃ρ̃(σn, r)) ≥ r, τ̃ ˜̺(CI£

τ̃ ˜̺ (σn, r)) ≤ 1 − r, τ̃η̃(CI£
τ̃η̃ (σn, r)) ≤ 1 − r. Thus,

by Theorem 12, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected.
(2)⇒(5): It follows from the fact that every r-SVNPIO is an r-SVNSβIO.

Corollary 1. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS. Then, the following properties are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is £-SVNE-disconnected.
(2) If σn is an r-SVNSβIO and γn is an r-SVN£SO, then CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ∧ CδIτ̃ρ̃ ˜̺η̃ (γn, r) ≤
Cτ̃ρ̃ ˜̺η̃ (σn ∧ γn).

(3) If σn is an r-SVNSIO and γn is an r-SVN£SO, then CI£
τ̃ρ̃ ˜̺η̃ (σn, r) ∧ CδIτ̃ρ̃ ˜̺η̃ (γn, r) ≤

Cτ̃ρ̃ ˜̺η̃ (σn ∧ γn).
(4) If σn is an r-SVNPIO and γn is an r-SVN£SO, then CI£

τ̃ρ̃ ˜̺η̃ (σn, r) ∧ CδIτ̃ρ̃ ˜̺η̃ (γn, r) ≤
Cτ̃ρ̃ ˜̺η̃ (σn ∧ γn).

Proof. It follows directly from Lemma 3 and 5.
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5. Some Types of Separation Axioms

In this section, some kinds of separation axioms, namely r-single valued neutrosophic
ideal-Ri (r-SVNIRi, for short), where i = {0, 1, 2, 3}, and r-single valued neutrosophic
ideal-Tj (r-SVNITj, for short), where j = {1, 2, 2 1

2 , 3, 4}, in the sense of Šostak are defined.
Some of their characterizations, fundamental properties, and the relations between these
notions have been studied.

Definition 19. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, X̃ is called:

(1) r-SVNIR0 iff xs,t,pqCI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r) implies ys1,t1,p1 qCI£

τρ̃ ˜̺η̃ (xs,t,p, r) for any xs,t,p 6= ys1,
t1, p1.

(2) r-SVNIR1 iff xs,t,pqCI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r) implies that there exist r-SVN£O sets σn, γn ∈ ξ X̃

such that xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and σnqγn.
(3) r-SVNIR2 iff xs,t.pqςn = CI£

τρ̃ ˜̺η̃ (ςn, r) implies there exist r-SVN£O sets σn, γn ∈ ξ X̃ such
that xs,t,p ∈ σn, ςn ≤ γn and σnqγn.

(4) r-SVNIR3 iff [ςn]1 = CI£
τρ̃ ˜̺η̃ ([ςn]1, r)q[ςn]2 = CI£

τρ̃ ˜̺η̃ ([ςn]2, r) implies that there exist

r-SVN£O sets σn, γn ∈ ξ X̃ such that [ςn]1 ≤ σn, [ςn]2 ≤ γn and σnqγn.
(5) r-SVNIT1 iff xs,t,pqys1,t1,p1 implies that there exists r-SVN£O σn ∈ ξ X̃ such that xs,t,p ∈ σn

and ys1,t1,p1 qσn.
(6) r-SVNIT2 iff xs,t,pqys1,t1,p1 implies that there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that

xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and σnqγn.
(7) r-SVNIT2 1

2
iff xs,t,pqys1,t1,p1 implies that there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that

xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and CI£
τρ̃ ˜̺η̃ (σn, r)qCI£

τρ̃ ˜̺η̃ (γn, r).
(8) r-SVNIT3 iff it is r-SVNITR2 and r-SVNIT1.
(9) r-SVNIT4 iff it is r-SVNITR3 and r-SVNIT1.

Theorem 14. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, the following statements
are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIR0.

(2) If xs,t,pqσn = CI£
τρ̃ ˜̺η̃ (σn, r), then there exists r-SVN£O γn ∈ ξ X̃ such that xs,t,pqγn and

σn ≤ γn.
(3) If xs,t,pqσn = CI£

τρ̃ ˜̺η̃ (σn, r), then CI£
τρ̃ ˜̺η̃ (xs,t,p, r)qσn = CI£

τρ̃ ˜̺η̃ (σn, r).
(4) If xs,t,pqCI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r), then CI£
τρ̃ ˜̺η̃ (xs,t,p, r)qCI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r).

Proof. (1)⇒(2): Let xs,t,pqσn = CI£
τρ̃ ˜̺η̃ (σn, r). Then,

s + ρ̃σn(ν) < 1, t + ˜̺σn(ν) ≥ 1, p + η̃σn(ν) ≥ 1,

for every ys1,t1,p1 ∈ σn, we have s1 < ρ̃σn(ν), t1 ≥ ˜̺σn(ν) and p1 ≥ η̃σn(ν). Thus,
xs,t,pqCI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r). Since (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is an r-SVNIR0, we obtain ys1,t1,p1 qCI£
τρ̃ ˜̺η̃

(xs,t,p, r). By Lemma 2(2), there exists an r-SVN£O ςn ∈ ξ X̃ such that xs,t,pqςn and
ys1,t1,p1 ≤ ςn. Let

γn =
∨

ys1,t1,p1∈σn

{ςn : xs,t,pqςn, ys1,t1,p1 ∈ ςn}.

From Lemma 1(1), γn is an r-SVN£O. Then, xs,t,pqγn, σn ≤ γn.
(2)⇒(3): Let xs,t,pqσn = CI£

τρ̃ ˜̺η̃ (σn, r). Then, there exists an r-SVN£O γn ∈ ξ X̃ such
that xs,t,pqγn and σn ≤ γn. Since for every ν ∈ X̃,

s < 1− ρ̃γn(ν), t ≥ 1− ˜̺γn(ν), p ≥ 1− η̃γn(ν),

we obtain

CI£
τρ̃ ˜̺η̃ (xs,t,p, r) ≤ CI£

τρ̃ ˜̺η̃ ([γn]
c, r) = [γn]

c ≤ [σn]
c.
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Therefore, CI£
τρ̃ ˜̺η̃ (xs,t,p, r)qσn = CI£

τρ̃ ˜̺η̃ (σn, r).
(3)⇒(4): Let xs,t,pqCI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r). Then, xs,t,pqCI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r) = CI£

τρ̃ ˜̺η̃ (CI£
τρ̃ ˜̺η̃

(ys1,t1,p1 , r), r). By (3), s1, t1, p1(xs,t,p, r)qCI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r).

(4)⇒(1): Clear.

Theorem 15. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, if X̃ is

(1) [r-SVNIR3 and r-SVNIR0]⇒(a) r-SVNIR2 ⇒
(b) r-SVNIR1 ⇒

(c) r-SVNIR0.
(2) r-SVNIT2 ⇒ r-SVNIR1.
(3) r-SVNIT3 ⇒ r-SVNIR2.
(4) r-SVNIT4 ⇒ r-SVNIR3.
(5) r-SVNIT4 ⇒

(a) r-SVNIT3 ⇒
(b) r-SVNIT2 1

2
⇒(c) r-SVNIT2 ⇒

(d) r-SVNIT1.

Proof. (1a). Let xs,t.pqςn = CI£
τρ̃ ˜̺η̃ (ςn, r), by Theorem 14(3), CI£

τρ̃ ˜̺η̃ (xs,t,p, r)qςn = CI£
τρ̃ ˜̺η̃

(ςn, r). Since (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIR3 and CI£
τρ̃ ˜̺η̃ (xs,t,p, r) = CI£

τρ̃ ˜̺η̃ (CI£
τρ̃ ˜̺η̃ (xs,t,p, r), r),

there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that xs,t,p ∈ CI£
τρ̃ ˜̺η̃ (xs,t,p, r) ≤ σn, ςn ≤ γn and

σnqγn. Hence, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIR2.
(1b). For each xs,t,pqCI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r), by r-SVNIR2 of X̃, there exist r-SVN£O sets

σn, γn ∈ ξ X̃ such that xs,t,p ∈ σn, ys1,t1,p1 , r ∈ CI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r, r) ≤ γn and σnqγn. Thus,

(X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIR1.
(1c). Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be r-SVNIR1. Then, for every xs,t,pqCI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r, r) and

xs,t,p 6= ys1,t1,p1 , there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and
σnqγn. Hence, xs,t,p ∈ σn ≤ [γn]c. Since γn is an r-SVN£O set, we obtain CI£

τρ̃ ˜̺η̃ (xs,t,p, r) ≤
CI£

τρ̃ ˜̺η̃ ([γn]c, r) = [γn]c ≤ [ys1,t1,p1 ]
c. Thus, ys1,t1,p1 qCI£

τρ̃ ˜̺η̃ (xs,t,p, r) and (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is
r-SVNIR0.

(2). Let xs,t,pqCI£
τρ̃ ˜̺η̃ (ys1,t2,p1 , r). Then, xs,t,pqys1,t1,p1 . By r-SVNIT2 of X̃, there exist r-

SVN£O sets σn, γn ∈ ξ X̃ such that xst,p ∈ σn, ys1,t1,p1 ∈ γn and σnqγn. Hence, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃)
is r-SVNIR1.

(3) and (4) The proofs are direct consequence of (2) .
(5a). The proof is direct consequence of (1).
(5b). For each xs,t,pqys1,t1,p1 , since X̃ is both r-SVNIR2 and r-SVNIT1, then, there

exists an r-SVN£O set ςn ∈ ξ X̃ such that xs,t,p ∈ ςn and ys1,t1,p1 qςn. Then,

xt ∈ ςn = int£
τρ̃ ˜̺η̃ (ςn, r) ≤ int£

τρ̃ ˜̺η̃ ([ys1,t1,p1 ]
c, r) = [CI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r)]c.

Hence, xs,t,pqCI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r). By r-SVNIR2 of X̃, there exist r-SVN£O sets σn, γn ∈

ξ X̃ such that xs,t,p ∈ σn, CI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r) ≤ γn and σnqγn. Thus, σn ≤ [γn]c, so

CI£
τρ̃ ˜̺η̃ (σn, r) ≤ CI£

τρ̃ ˜̺η̃ ([γn]
c, r) = [γn]

c ≤ [CI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r)]c.

It implies CI£
τρ̃ ˜̺η̃ (σn, r)qCI£

τρ̃ ˜̺η̃ (ys1,t1,p1 , r)with xs,t,p ∈ σn and ys1,t1,p1 ∈ CI£
τρ̃ ˜̺η̃ (ys1,t1,p1 , r).

Thus, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIT2 1
2
.

(5c). Let xs,t,pqys1,t1,p1 . Then, by r-SVNIT2 1
2

of X̃, there exist r-SVN£O sets σn, γn ∈ ξ X̃

such that xs,t,p ∈ σn, ys1,t1,p1 ∈ γn and CI£
τρ̃ ˜̺η̃ (σn, r)qCI£

τρ̃ ˜̺η̃ (γn, r), which implies that σnqγn.
Thus, (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIT2.

(5d). Similar to the proof of (5c).

Theorem 16. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, the following statements
are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIR2.
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(2) If xs,t,p ∈ σn and σn is r-SVN£O set, then there exists r-SVN£O set γn ∈ ξ X̃ such that
xs,t,p ∈ γn ≤ CI£

τρ̃ ˜̺η̃ (γn, r) ≤ σn.

(3) If xs,t,pqσn = CI£
τρ̃ ˜̺η̃ (σn, r), then there exists r-SVN£O set [γn]j ∈ ξ X̃ , j = {1, 2} such that

xs,t,p ∈ [γn]1, σn ≤ [γn]2 and CI£
τρ̃ ˜̺η̃ ([γn]1, r)qCI£

τρ̃ ˜̺η̃ ([γn]2, r).

Proof. Similar to the proof of Theorem 14.

Theorem 17. Let (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) be an SVNITS and r ∈ ξ0. Then, the following statements
are equivalent:

(1) (X̃, τ̃ρ̃ ˜̺η̃ , I ρ̃ ˜̺η̃) is r-SVNIR3.

(2) If [σn]1q[σn]2 and [σn]1, [σn]2 are r-SVN£C sets, then there exists r-SVN£O set γn ∈ ξ X̃

such that [σn]1 ≤ γn and CI£
τρ̃ ˜̺η̃ (γn, r) ≤ [σn]2.

(3) For any [σn]1 ≤ [σn]2, where [σn]1 is an r-SVN£O set, and [σn]2 is an r-SVN£C set, then,

there exists an r-SVN£O set γn ∈ ξ X̃ such that [σn]1 ≤ γn ≤ CI£
τρ̃ ˜̺η̃ (γn, r) ≤ [σn]2.

Proof. Similar to the proof of Theorem 15.

Theorem 18. Let f : (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 ) → (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) be a £-SVNI-irresolute, bijective,

£-SVNI-irresolute open mapping and (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 ) is r-SVNIR2. Then, (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) is
r-SVNIR2.

Proof. Let ys,t,pqςn = Cl⋆(ςn, r). Then, by Definition 11, ςn is an r-SVN£C set in Ỹ. By The-
orem 3(2), f−1(ςn) is an r-SVN£C set in X̃. Put ys,t,p = f (xs,t,p). Then, xs,t,pq f−1(ςn). By r-
SVNIR2 of X̃, there exist r-SVN£O sets σn, γn ∈ ξ X̃ such that xs,t,p ∈ σn, f−1(ςn) ≤ γn and
σnqγn. Since f is bijective and £-SVNI-irresolute open, ys,t,p ∈ f (σn), ςn ≤ f ( f−1(ςn)) ≤

f (γn) and f (σn)q f (γn). Thus, (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) is r-SVNIR2.

Theorem 19. Let f : (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 ) → (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) be an £-SVNI-irresolute, bijective,

£-SVNI-irresolute open mapping and (X̃, τ̃
ρ̃ ˜̺η̃
1 , I ρ̃ ˜̺η̃

1 ) be an r-SVNIR3. Then, (Ỹ, τ̃
ρ̃ ˜̺η̃
2 , I ρ̃ ˜̺η̃

2 ) is
r-SVNIR3.

Proof. Similar to the proof of Theorem 18.

6. Conclusions

In summary, we have introduced the definition of the r-single valued neutrosophic £-
closed and r-single valued neutrosophic £-open sets over single valued neutrosophic ideal
topology space in Šostak’s sense. Many consequences have been arisen up to show that
how far topological structures are preserved by these r-single valued neutrosophic £-closed.
We also have provided some counterexamples where such properties fail to be preserved.
The most important contribution to this area of research is that we have introduced the
notion of £-single valued neutrosophic irresolute mapping, £-single valued neutrosophic
extremally disconnected spaces, £-single valued neutrosophic normal spaces and that we
defined some kinds of separation axioms, namely r-SVNIRi, where i = {0, 1, 2, 3}, and
r-SVNITj, where j = {1, 2, 2 1

2 , 3, 4}, in the sense of Šostak. Some of their characterizations,
fundamental properties, and the relations between these notions have been studied.
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Abstract: In this paper, we studied some properties of the neutrosophic multi topological group. For
this, we introduced the definition of semi-open neutrosophic multiset, semi-closed neutrosophic
multiset, neutrosophic multi regularly open set, neutrosophic multi regularly closed set, neutrosophic
multi continuous mapping, and then studied the definition of a neutrosophic multi topological group
and some of their properties. Moreover, since the concept of the almost topological group is very
new, we introduced the definition of neutrosophic multi almost topological group. Finally, for the
purpose of symmetry, we used the definition of neutrosophic multi almost continuous mapping to
define neutrosophic multi almost topological group and study some of its properties.

Keywords: neutrosophic multi continuous mapping; neutrosophic multi topological group;
neutrosophic multi almost continuous mapping; neutrosophic multi almost topological group

1. Introduction

Following the introduction of the fuzzy set (FS) [1], a variety of studies on generali-
sations of FS concepts were performed. In the sense that the theory of sets should have
been a particular case of the theory of FSs, the theory of FSs is a generalisation of the
classical theory of sets. Following the generalisation of FSs, many scholars used the theory
of generalised FSs in a variety of fields in science and technology. Fuzzy topology (FT) was
first introduced by Chang [2], and Intuitionistic fuzzy topological space (FITS) was defined
by Coker [3]. Many researchers studied topology based on neutrosophic sets (NS), such as
Lupianez [4–7] and Salama et al. [8]. Kelly [9] defined the concept of bitopological space
(BTS) in 1963. Kandil et al. [10] studied the topic of fuzzy bitopological space (FBTS). Some
characteristics of Intuitionistic Fuzzy Bitopological Space (IFBTS) were addressed by Lee
et al. [11]. Garg [12] investigated how to rank interval-valued Pythagorean FSs using a
modified score function. A Pythagorean fuzzy method for order of preference by similarity
to ideal solution (TOPSIS) method based on Pythagorean FSs was discussed, which took
the experts’ preferences in the form of interval-valued Pythagorean fuzzy decision matrices.
Moreover, different explorations of the theory of Pythagorean FSs can be seen in [13–19].
Yager [20] proposed the q-rung orthopair FSs, in which the sum of the qth powers of the
membership (MS) and non-MS degrees is restricted to one [21]. Peng and Liu [22] studied
the systematic transformation for information measures for q-rung orthopair FSs. Pinar
and Boran [23] applied a q-rung orthopair fuzzy multi-criteria group decision-making
method for supplier selection based on a novel distance measure.

Cuong et al. [24] proposed a picture FS as an extension of FS and Intuitionistic fuzzy
set (IFS) that contains the concept of an element’s positive, negative, and neutral MS de-
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gree. Cuong [25] investigated several picture FS characteristics and proposed distance
measurements between picture FS. Phong et al. [26] investigated some picture fuzzy rela-
tion compositions. Cuong et al. [27] examined the basic fuzzy logic operators: negations,
conjunctions, and disjunctions, as well as their implications on picture FSs, and also devel-
oped main operations for fuzzy inference processes in picture fuzzy systems. For picture
FSs, Cuong et al. [28] demonstrated properties of an involutive picture negator and some
related De Morgan fuzzy triples. Viet et al. [29] presented a picture fuzzy inference system
based on MS graph, and Singh [30] studied correlation coefficients of picture FS. Garg [31]
studied some picture fuzzy aggregation operations and their applications to multi-criteria
decision-making. Quek et al. [32] used T-spherical fuzzy weighted aggregation operators
to investigate the MADM problem. Garg [33] suggested interactive aggregation operators
for T-spherical FSs and used the proposed operators to solve the MADM problem. Zeng
et al. [34] studied on multi-attribute decision-making process with immediate probabilistic
interactive averaging aggregation operators of T-spherical FSs and its application in the
selection of solar cells. Munir et al. [35] investigated T-spherical fuzzy Einstein hybrid
aggregation operators and how they could be applied in multi-attribute decision-making
issues. Mahmood et al. [36] proposed the idea of a spherical FS and consequently a
T-spherical FS.

Many researchers also studied FT and then generalised it in the IFS and then to the
neutrosophic topology. Warren [37] studied the boundary of an FS in FT. Warren [37]
studied some properties of the boundary of an FS and found that some properties are not
the same as the properties of the crisp boundary of a set. Later, many authors studied
the properties of the boundary of an FS. Tang [38] made heavy use of the notion of fuzzy
boundary. Kharal [39] studied Frontier and Semifrontier in IFTSs. Salama et al. [40]
studied generalised neutrosophic topological space (NTS), where they have discussed
on properties of generalised closed sets. Azad [41] introduced the concepts of fuzzy
semi-continuity (FSC), fuzzy almost continuity (FAC), and fuzzy weakly continuity (FWC)
(FWC). Smarandache [42,43] suggested neutrosophic set (NS) theory, which generalised
FST and IFST and incorporated a degree of indeterminacy as an independent component.
Mwchahary et al. [44] studied on properties of the boundary of neutrosophic bitopological
space (NBTS). Many authors studied the properties of the boundary of an FS by several
methods (FS, IFS, and NS), but some of its properties are not the same as the properties of
the crisp boundary of a set.

Blizard [45] traced multisets back to the very origin of numbers, arguing that in
ancient times, the number was often represented by a collection of n strokes, tally marks,
or units. The idea of fuzzy multiset (FMS) was introduced by Yager [46] as fuzzy bags.
In the interest of brevity, we consider our attention to the basic concepts such as an open
FMS, closed FMS, interior, closure, and continuity of FMSs. Yager, in [46], generalised
the FS by introducing the concept of FMS (fuzzy bag), and he discussed a calculus for
them in [47]. An element of an FMS can occur more than once with possibly the same
or different MS values. If every element of an FMS can occur at most once, we go back
to FSs [48]. In [49], Onasanya et al. defined the multi-fuzzy group (FMG), and in [50,51],
the authors defined fuzzy multi-polygroups and fuzzy multi-Hv-ideals and studied their
properties. In [52], Neutrosophic Multigroup (NMG) and their applications are observed.
A new type of FS (FMS) was studied by Sebastian et al. [53]. This set makes use of ordered
sequences of MS functions to express problems that are not covered by other extensions
of FS theory, such as pixel colour. Dey et al. [54] were the first to establish the concept of
multi-fuzzy complex numbers and multi-fuzzy complex sets. Over a distributive lattice,
the authors [54] proposed multi fuzzy complex nilpotent matrices. Yong et al. [55] recently
proposed the notion of the multi-fuzzy soft set, which is a more general fuzzy soft set, for
its application to decision making.
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Motivation

There is a lot of ambiguity information in the real world that crisp values cannot
manage. The FS theory [1], proposed by Zadeh, is an age-old and excellent tool for dealing
with uncertain information; however, it can only be used on random processes. As a
result, Sebastian et al. [56] introduced FMSs, Atanassov [57] suggested the IFS theory,
and Shinoj et al. [58] launched intuitionistic FMSs, all based on FS theory. The theories
mentioned above have expanded in a variety of ways and have applications in a variety of
fields, including algebraic structures. Some of the selected papers are those on FSs [59–61],
FMSs [62–64], IFSs [65–72], and intuitionistic FMSs [73]. However, these theories are
incapable of dealing with all forms of uncertainty, such as indeterminate and inconsistent
data in various decision-making situations. To address this shortfall, Smarandache [74]
proposed the NS theory, which makes Atanassov’s [57] theory very practical and easy to
apply. In this current decade, neutrosophic environments are mainly interested by different
fields of researchers. In Mathematics, much theoretical research has also been observed
in the sense of neutrosophic environment. A more theoretical study will be required to
build a broad framework for decision-making and to define patterns for the conception
and implementation of complex networks. Deli et al. [75] and Ye [76,77] proposed the
notion of neutrosophic multiset (NMS) for modelling vagueness and uncertainty in order
to improve the NS theory further. From the literature survey, it was noticed that precisely
the properties of the neutrosophic multi topological group (NMTG) are not performed.
Now, as an update for the research in NMS, we introduced the definition of a neutrosophic
semi-open set, neutrosophic semi-closed set, neutrosophic regularly open set, neutrosophic
regularly closed set, neutrosophic continuous mapping, neutrosophic open mapping,
neutrosophic closed mapping, neutrosophic semi-continuous mapping, neutrosophic semi-
open mapping, neutrosophic semi-closed mapping. Moreover, we tried to prove some
of their properties and also cited some examples. We defined the neutrosophic multi
almost topological group by using the definition of neutrosophic multi almost continuous
mapping and investigate some properties and theorems of a neutrosophic multi almost
topological group.

2. Materials and Methods

Definition 1 ([42]). Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object
with the form A = {< x, µA , σA, γA > : x ∈ X}, where T, I, F : X −→ [0, 1] and 0 ≤ µA +
σA + γA ≤ 3 and µA (x), σA(x), and γA(x) represents the degree of MS function, the degree
indeterminacy, and the degree of non-MS function, respectively, of each element x ∈ X to set A.

Definition 2 ([78]). A neutrosophic multiset (NMS) is a type of neutrosophic set (NS) in which
one or more elements are repeated with the same or different neutrosophic components.

Example 1. Let X = {a, b, c} then

A =





< a, 0.6, 0.1, 0.2 >,< a, 0.5, 0.1, 0.3 >,< a, 0.4, 0.2, 0.4 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >





is an NMS, as the elementsa , b, care repeated.
However,B = {< a, 0.8, 0.3, 0.1 >, < b, 0.5, 0.3, 0.4 >,< c, 0.4, 0.4, 0.6 >}is an NS and

not an NMS.

Definition 3 ([52]). The Empty NMS is defined as 0NM =
{

m ∈ X;< m(0,1,1) >
}

, where m
can be repeated.
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Definition 4 ([52]). The Whole NMS is defined as 1NM =
{

m ∈ X;< m(1,0,0) >
}

, where m can
be repeated.

Definition 5 ([52]). Let X 6= φ, and a neutrosophic multiset (NMS) A on X can be expressed

as A =
{

m ∈ X;
(

m<TA(m) ,ℑA(m) ,FA(m)>

)}
, then the complement of A is defined as AC =

{
m ∈ X;

(
m<FA(m) ,1−ℑA(m) ,TA(m)>

)}
. where m can be repeated depending on its multiplicity, and

the T,ℑ,F values may or may not be equal.

Definition 6 ([52]). Let X 6= φ and A =
{

m ∈ X;
(

m<TA(m) ,ℑA(m) ,FA(m)>

)}
and B =

{
m ∈ X;

(
m<TB(m) ,ℑB(m) ,FB(m)>

)}
are NMSs. Then

(i) A ⋓ B =
{

m ∈ X; m<min(TA(m),TB(m)),max(ℑA(m),ℑB(m)),max(FA(m),FB(m))>

}
;

(ii) A ⋒ B =
{

m ∈ X; m<max(TA(m),TB(m)),min(ℑA(m),ℑB(m)),min(FA(m),FB(m))>

}
.

Definition 7 ([78]). Let X 6= φ, and a neutrosophic multiset topology (NMT) on X is a family τX
of neutrosophic multi subsets of X if the following conditions hold:

(i) 0NM, 1NM ∈ τX ;
(ii) G1 ⋓ G2 ∈ τX for G1, G2 ∈ τX ;
(iii) ⋒Gi ∈ τX , ∀

{
GNi : i ∈ J

}
4 τX .

Then (X, τX) is known as a neutrosophic multi topological space (NMTS), and any NMS in
τX is called a neutrosophic multi-open set (NMOS). The element of τX are said to be NMOSs, an
NMS F is neutrosophic multi closed set (NMCoS) if Fc is NMOS.

Definition 8 ([52]). Let X be a classical group and A be a neutrosophic multiset (NMS) on X.
Then A is said to be neutrosophic multi groupoid over X if

(i) Ti
G(mn) ≥ Ti

G(m) −→ Ti
G(n) ;

(ii) Ii
G(mn) ≤ Ii

G(m) −→ Ii
G(n) ;

(iii) Fi
G(mn) ≤ Fi

G(m) −→ Fi
G(n), ∀ m, n ∈ X and i = 1, 2, . . . , P.

Moreover, A is said to be neutrosophic multi-group (NMG) over X if the neutrosophic multi
groupoid satisfies the following:

(i) Ti
G(m−1) ≥ Ti

G(m);
(ii) Ii

G(m−1) ≤ Ii
G(m);

(iii) Fi
G(m−1) ≤ Fi

G(m), ∀ m ∈ X and i = 1, 2, . . . , P.

Definition 9 ([52]). Let G be an NMG in a group X, and e be the identity of X. We define the
NMS Ge by

Ge = {m ∈ X : TG(m) = TG(e), ℑG(m) = ℑG(e), FG(m) = FG(e)}

We note for an NMG G in a group X, for every m ∈ X : TG

(
m−1) = TG(m), ℑG

(
m−1) =

ℑG(m) and FG
(
m−1) = FG(m). Moreover, for the identity e ∈ X : TG(e) < TG(m), ℑG(e) <

ℑG(m) and FG(e) 4 FG(m).

3. Results

Definition 10. Let (X, τX) be NMTS. Then for an NMS A =
{
< x, µNi , σNi , δNi > : x ∈ X

}
,

the neutrosophic interior of A can be defined as NM ∽ Int (A) ={
< x,⋒µNi , ⋓σNi ,⋓δNi > : x ∈ X

}
.

Definition 11. Let (X, τX) be NMTS. Then for an NMS A =
{
< x, µNi , σNi , δNi > : x ∈ X

}
,

the neutrosophic closure of A can be defined as NM ∽ Cl (A) ={
< x,⋓ µNi , ⋒σNi , ⋒δNi > : x ∈ X

}
.
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Definition 12. Let G be an NMG on a group X. Let τX be a NMT on G, then (G , τX) is known
as a neutrosophic multi topological group (NMTG) if it satisfies the given conditions:

(i) α : (G , τX)× (G , τX) −→ (G , τX) defined by α(m, n) = mn, ∀ m, n ∈ X, is relatively
neutrosophic multi continuous;

(ii) β : (G , τX) −→ (G , τX) defined by β(m) = m−1, ∀ m ∈ X, is relatively neutrosophic
multi continuous.

Definition 13. Let A be an NMS of an NMTS (X, τX), then A is called a neutrosophic multi
semi-open set (NMSOS) of X if ∃ a B ∈ τX , such that A 4 MN ∽ Int(MN ∼ Cl(B)).

Example 2. Let X = {a, b}:

A =

{
< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.1, 0.3 >,< a, 0.6, 0.2, 0.4 >,
< b, 0.7, 0.2, 0.3 >,< b, 0.6, 0.3, 0.4 >,< b, 0.4, 0.2, 0.5 >

}
;

B =

{
< a, 0.9, 0.1, 0.1 >,< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.2, 0.3 >,
< b, 0.8, 0.2, 0.2 >,< b, 0.7, 0.2, 0.3 >,< b, 0.5, 0.2, 0.4 >

}
.

Then τ = {0X , 1X ,B} is neutrosophic multi topological space.
Then Cl(B) = 1X , Int(Cl(B)) = 1X .
Hence, B is NMSOS.

Definition 14. Let A be an NMS of an NMTS (X, τX), then A is called a neutrosophic multi
semi-closed set (NMSCoS) of X if ∃ a Bc ∈ τX , such that MN ∽ Cl(MN ∼ Int(B)) 4 A.

Lemma 1. Let φ : X −→ Y be a mapping and {Aα} be a family of NMSs of Y, then (1)
φ−1(⋒Aα) = ⋒ φ−1(Aα) and (ii) φ−1(⋓Aα) = ⋓φ−1(Aα).

Proof. Proof is straightforward. �

Lemma 2. Let A, B be NMSs of X and Y, then 1X −A×B = (Ac × 1X)⋒ (1X ×B
c).

Proof. Let (p, q) be any element of X×Y, (1X −A×B)(p, q)= max(1X −A(p), 1X −B(q)) =
max{(Ac × 1X)(p, q), (Bc × 1X)(p, q)} = {(Ac × 1X) ⋒ (1X ×B

c)}(p, q), for each
(p, q) ∈ X×Y. �

Lemma 3. Let φi : Xi −→ Yi andAi be NMSs of Yi, i = 1, 2; we have (φ1 × φ2)
−1(A1 ×A2) =

φ1
−1(A1)× φ2

−1(A2).

Proof. For each (p1, p2) ∈ X1 × X2, we have

(φ1 × φ2)
−1(A1 ×A2)(p1, p2) = (A1 ×A2)((φ1(p1), φ2(p2))

= min{A1φ1(p1),A2φ2(p2)}
= min

{
φ1
−1(A1)(p1), φ2

−1(A2)(p2)
}

=
(
φ1
−1(A1)× φ2

−1(A2)
)
(p1, p2).

�

Lemma 4. Let ψ : X −→ X×Y be the graph of a mapping φ : X −→ Y . Then, if A,B is NMSs
of X and Y, ψ−1(A×B) = A⋓ φ−1(B).

Proof. For each p ∈ X, we have

ψ−1(A×B)(p) = (A×B)ψ(p) = (A×B)(p, φ(p))
= min{A(p),B(φ(p))}
=

(
A⋓ φ−1(B)

)
(p).
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�

Lemma 5. For a family {A}α of NMSs of NMTS (X, τX), ⋒ NM ∽ Cl(Aα) 4 NM ∽

Cl(⋒(Aα)). In the case that B is a finite set, ⋒NM ∽ Cl(Aα) 4 NM ∽ Cl(⋒(Aα)). Moreover,
⋒NM ∽ Int(Aα) 4 NM ∽ Int(⋒(Aα)), where a subfamily B of (X, τX) is said to be subbase
for (X, τX) if the collection of all intersections of members of B forms a base for (X, τX).

Lemma 6. For an NMS A of an NMTS (X, τX), (a) 1NM − NM ∽ Int(A) = NM ∽

Cl(1NM −A), and (b) 1NM − NM ∽ Cl(A) = NM ∽ Int(1NM −A).

Proof. Proof is straightforward. �

Theorem 1. The statements below are equivalent:

(i) A is an NMCoS;
(ii) Ac is an NMOS;
(iii) NM ∽ Int(NM ∽ Cl(A)) 4 A;
(iv) NM ∽ Cl(NM ∽ Int(Ac)) < Ac.

Proof. (i) and (ii) are equivalent follows from Lemma 6, since for an NMS A of an
NMTS (X, τX) such that 1NM − NM ∽ Int(A) = NM ∽ Cl(1NM −A) and 1NM − NM ∽

Cl(A) = NM ∽ Int(1NM −A).
(i)⇒(iii). By definition, ∃ an NMCoS B such that NM ∽ Int(B) 4 A 4 B; hence,

NM ∽ Int(B) 4 A 4 NM ∽ Cl(A) 4 B. Since NM ∽ Int(B) is the largest NMOS
contained in B, we have NM ∽ Int(NM ∽ Cl(B)) 4 NM ∽ Int(B) 4 A;

(iii)⇒(i) follows by taking B = NM ∽ Cl(A);
(ii)⇔(iv) can similarly be proved. �

Theorem 2. (i) Arbitrary union of NMSOSs is an NMSOS;
(ii) Arbitrary intersection of NMSCoSs is an NMSCoS.

Proof. (i) Let {Aα} be a collection of NMSOSs of an NMTS (X, τX). Then ∃ a Bα ∈ τX such
that Bα 4 Aα 4 NM ∽ Cl(Bα) for each α. Thus, ⋓ Bα 4 ⋒Aα 4 ⋒ NM ∽ Cl(Bα) 4

NM ∽ Cl(⋒(Bα)) (Lemma 5), and ⋒Bα ∈ τX, this shows that ⋒Bα is an NMSOS;
(ii) Let {Aα} be a collection of NMSCoSs of an NMTS (X, τX). Then ∃ a Bα ∈ τX

such that NM ∽ Int(Bα) 4 Aα 4 Bα for each α. Thus, NM ∽ Int(⋓(Bα)) 4 ⋓NM ∽

Int(Bα) 4 ⋓Aα 4 ⋓Bα (Lemma 5), and ⋒Bα ∈ τX, this shows that ⋓Bα is an NMSCoS. �

Remark 1. It is clear that every NMOS (NMCoS) is an NMSOS (NMSCoS). The converse is not true.

Example 3. From Example 2, it is clear that B is a neutrosophic multi semi-open set, but B is
not NMOS.

Theorem 3. If (X, τX) and (Y, τY) are NMTSs, and X is a product related to Y. Then the
product A×B of an NMSOS A of X and an NMSOS B of Y is an NMSOS of the neutrosophic
multi-product space X×Y.

Proof. Let P 4 A 4 NM ∽ Cl(P) and Q 4 B 4 NM ∽ Cl(Q), where P ∈ τX and
Q ∈ τY. Then P ×Q 4 A×B 4 NM ∽ Cl(P)× NM ∽ Cl(Q). For NMSs P ’s of X and
Q’s of Y, we have:

(a) inf{P ,Q} = min{inf P , inf Q};
(b) inf {P × 1NM} = (inf P)× 1NM;
(c) inf {1NM ×Q} = 1NM × (inf Q).
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It is sufficient to prove Nm ∽ Cl(A×B) < NM ∽ Cl(A)× NM ∽ Cl(B). Let P ∈ τX and
Q ∈ τY. Then

NM ∽ Cl(A×B) = inf {(P ×Q)c∣∣(P ×Q)c
< A×B

= inf {(P c × 1NM)⋒ (1NM ×Q
c)|(P c × 1NM)⋒ (1NM ×Q

c)
< A×B}
= inf{(P c × 1NM)⋒ (1NM ×Q

c)| P c < A or Qc < B}

= min
[

in f {(P c × 1NM)⋒ (1NM ×Q
c)|P c < A },

in f {(P c × 1NM)⋒ (1NM ×Q
c)| Qc < B }

]

Since, inf{(P c × 1NM)⋒ (1NM ×Q
c) |P c < A } < inf{(P c × 1NM) |P c < A }

= inf{P c| P c < A }× 1NM= NM ∽ Cl(A)× 1NM

and inf{(P c × 1NM)⋒ (1NM ×Q
c) | Qc < B } < inf{(1NM ×Q

c) | Qc < B }

= 1NM × inf{Qc|Qc < B }= 1NM × NM ∽ Cl(B)

we have, NM ∽ Cl(A×B) < min{NM ∽ Cl(A)× 1NM, 1NM × NM ∽ Cl(B)} =
NM ∽ Cl(A)× NM ∽ Cl(B), hence the result. �

Definition 15. An NMS A of an NMTS (X, τX) is called a neutrosophic multi regularly open set
(NMROS) of (X, τX) if NM ∽ Int(NM ∽ Cl(A)) = A.

Example 4. Let X = {a, b} and

A =

{
< a, 0.4, 0.5, 0.5 >,< a, 0.3, 0.5, 0.6 >,< a, 0.2, 0.6, 0.7 >,
< b, 0.5, 0.7, 0.6 >,< b, 0.4, 0.5, 0.7 >,< b, 0.3, 0.5, 0.8 >

.
}

Then τ = {0X , 1X ,A} is neutrosophic multi topological space.
Clearly, Cl(A) = AC, Int(Cl(A)) = A.
Hence, A is NMROS.

Definition 16. An NMS A of an NMTS (X, τX) is called a neutrosophic multi regularly closed
set (NMRCoS) of (X, τX) if NM ∽ Cl(NM ∽ Int(A)) = A.

Theorem 4. An NMS A of NMTS (X, τX) is an NMRO if Ac is NMRCo.

Proof. It follows from Lemma 3. �

Remark 2. It is obvious that every NMROS (NMRCoS) is an NMOS (NMCoS). The converse
need not be true.

Example 5. Let X = {a, b} and

A =

{
< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.1, 0.3 >,< a, 0.6, 0.2, 0.4 >,
< b, 0.7, 0.2, 0.3 >,< b, 0.6, 0.3, 0.4 >,< b, 0.4, 0.2, 0.5 >

}
;

B =

{
< a, 0.9, 0.1, 0.1 >,< a, 0.8, 0.1, 0.2 >,< a, 0.7, 0.2, 0.3 >,
< b, 0.8, 0.2, 0.2 >,< b, 0.7, 0.2, 0.3 >,< b, 0.5, 0.2, 0.4 >

}
.

Then τ = {0X , 1X ,B} is a neutrosophic multi topological space.
Then Cl(B) = 1X , Int(Cl(B)) = 1X , which is not NMROS.

Remark 3. The union (intersection) of any two NMROSs (NMRCoS) need not be an
NMROS (NMRCoS).
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Example 6. Let X = {a, b} and
τ = {0X , 1X ,A,B,A −→ B} is a neutrosophic multi topological space, where

A =

{
< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.7, 0.5, 0.3 >,< b, 0.6, 0.5, 0.4 >,< b, 0.4, 0.5, 0.6 >

}
;

B =

{
< a, 0.6, 0.5, 0.4 >,< a, 0.7, 0.5, 0.3 >,< a, 0.8, 0.4, 0.2 >,
< b, 0.3, 0.5, 0.7 >,< b, 0.4, 0.5, 0.6 >,< b, 0.6, 0.5, 0.4 >

}
;

A
⋃
B =

{
< a, 0.6, 0.5, 0.4 >,< a, 0.7, 0.5, 0.3 >,< a, 0.8, 0.4, 0.2 >,
< b, 0.7, 0.5, 0.3 >,< b, 0.6, 0.5, 0.4 >,< b, 0.4, 0.5, 0.6 >

}
.

Here, Cl(A) = BC, Int(Cl(A)) = A, and Cl(B) = AC, Int(Cl(B)) = B.
Then Cl(A

⋃
B) = 1X .

Thus, Int(Cl(A
⋃
B)) = 1X .

Hence, A and B is NROS, but A
⋃
B is not NROS.

Theorem 5. (i) The intersection of any two NMROSs is an NMROS;
(ii) The union of any two NMRCoSs is an NMRCoS.

Proof. (i) Let A1 and A2 be any two NMROSs of an NMTS (X, τX). Since A1 ⋓ A2
is NMOS (from Remark 3), we have A1 ⋓ A2 4 NM ∽ Int(NM ∽ Cl(A1 ⋓A2)).
Now, NM ∽ Int(NM ∽ Cl(A1 ⋓A2)) 4 NM ∽ Int(NM ∽ Cl(A1)) = A1 and
NM ∽ Int(NM ∽ Cl(A1 ⋓A2)) 4 NM ∽ Int(NM ∽ Cl(A2)) = A2 implies that
NM ∽ Int(NM ∽ Cl(A1 ⋓A2)) 4 A1 ⋓A2, hence the theorem;

(ii) Let A1 and A2 be any two NMROSs of an NMTS (X, τX). Since A1 ⋒ A2 is
NMOS (from Remark 3), we have A1 ⋒A2 < NM ∽ Cl(NM ∽ Int(A1 ⋒A2)). Now,
NM ∽ Cl(NM ∽ Int(A1 ⋒A2)) < NM ∽ Cl(NM ∽ Int(A1)) = A1 and NM ∽

Cl(NM ∽ Int(A1 ⋒A2)) < NM ∽ Cl(NM ∽ Int(A2)) = A2 implies that A1 ⋒A2 4

NM ∽ Cl(NM ∽ Int(A1 ⋒A2)), hence the theorem. �

Theorem 6. (i) The closure of an NMOS is an NMRCoS;
(ii) The interior of an NMCoS is an NMROS.

Proof. (i) Let A be an NMOS of an NMTS (X, τX), clearly, NM ∽ Int(NM ∽ Cl(A))4
NM ∽ Cl(A) ⇒ NM ∽ Cl(NM ∽ Int(NM ∽ Cl(A))) 4 NM ∽ Cl(A) . Now, A is
NMOS implies that A 4 NM ∽ Int(NM ∽ Cl(A)), and hence, NM ∽ Cl(A) 4 NM ∽

Cl(NM ∽ Int(NM ∽ Cl(A))). Thus, NM ∽ Cl(A) is NMRCoS;
(ii) Let A be an NMCoS of an NMTS (X, τX), clearly, NM ∽ Cl(NM ∽ Int(A))<

NM ∽ Int(A) ⇒ NM ∽ Int(NM ∽ Cl(NM ∽ Int(A))) < NM ∽ Int(A). Now, A is
NMCoS implies that A < NM ∽ Cl(NM ∽ Int(A)), and hence, NM ∽ Int(A) < NM ∽

Int(NM ∽ Cl(NM ∽ Int(A))). Thus, NM ∽ Int(A) is NMROS. �

Definition 17. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is known as a neutrosophic multi continuous mapping (NMCM), if
φ−1(A) ∈ τX for each A ∈ τY, or equivalently φ−1(B) is an NMCoS of X for each CoNMS B
of Y.

Example 7. Let X = Y = {a, b, c} and

A =





< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >



;
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B =





< a, 0.6, 0.1, 0.2 >,< a, 0.5, 0.1, 0.3 >,< a, 0.4, 0.2, 0.4 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >



.

Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Now, define a mapping f : (X, τX) −→ (Y, τY) by f (a) = f (c) = c and f (b) = b.
Thus, f is NMCM.

Definition 18. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi open mapping (NMOM) if φ(A) ∈ τY for
each A ∈ τX .

Definition 19. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is said to be a neutrosophic multi-closed mapping (NMCoM) if φ(B) is an
NMCoS of Y for each NMCoS B of X.

Definition 20. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi semi-continuous mapping (NMSCM), if
φ−1(A) is the NMSOS of X, for each A ∈ τY.

Definition 21. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi semi-open mapping (NMSOM) if φ(A) is a
SONMS for each A ∈ τX .

Example 8. Let X = Y = {a, b, c} and

A =





< a, 0.6, 0.1, 0.2 >,< a, 0.5, 0.1, 0.3 >,< a, 0.4, 0.2, 0.4 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >



;

B =





< a, 0.3, 0.5, 0.4 >,< a, 0.2, 0.5, 0.6 >,< a, 0.1, 0.5, 0.7 >,
< b, 0.6, 0.1, 0.2 >,< b, 0.5, 0.1, 0.3 >,< b, 0.4, 0.2, 0.4 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >



.

Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Clearly, A is a semi-open set.
Then a mapping f : (X, τX) −→ (Y, τY) defined by f (a) = b, f (b) = a and f (c) = c.
Hence, f is NMSOM.

Definition 22. Let φ : (X, τX) −→ (Y, τY) be a mapping from an NMTS (X, τX) to another
NMTS (Y, τY), then φ is called a neutrosophic multi semi-closed mapping (NMSCoM) if φ(B) is
an NMSCoS for each NMCoS B of X.

Remark 4. From Remark 1, an NMCM (NMOM, NMCoM) is also an NMSCM (NMSOM,
NMSCoM).

Example 9. Let X = Y = {a, b, c} and

A =





< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.3, 0.5, 0.4 >,< b, 0.2, 0.5, 0.6 >,< b, 0.1, 0.5, 0.7 >,
< c, 0.4, 0.5, 0.6 >,< c, 0.3, 0.5, 0.7 >,< c, 0.2, 0.6, 0.8 >



;

B =





< a, 0.4, 0.5, 0.6 >,< a, 0.3, 0.5, 0.7 >,< a, 0.2, 0.6, 0.8 >,
< b, 0.4, 0.6, 0.4 >,< b, 0.3, 0.5, 0.5 >,< b, 0.2, 0.5, 0.6 >,
< c, 0.6, 0.5, 0.5 >,< c, 0.4, 0.5, 0.6 >,< c, 0.2, 0.6, 0.9 >



.
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Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Let us define a mapping f : (X, τX) −→ (Y, τY) by f (a) = f (c) = c and f (b) = b.
Thus, f is NMSCM, which is not an NMCM.

Theorem 7. Let X1, X2, Y1 and Y2 be NMTSs such that X1 is product related to X2. Then,
the product φ1 × φ2 : X1 × X2 −→ Y1 ×Y2 of NMSCMs φ1 : X1 −→ Y1 and φ2 : X2 −→ Y2
is NMSCM.

Proof. Let A ≡ ⋒
(
Aα ×Bβ

)
, where Aα’s and Bβ’s are NMOSs of Y1 and Y2, respectively,

be an NMOS of Y1 ×Y2. By using Lemma 1(i) and Lemma 3, we have

(φ1 × φ2)
−1(A) = ⋒

[
φ1
−1(Aα)× φ2

−1(Aβ

)]

where (φ1 × φ2)
−1(A) is an NMSOS follows from Theorem 3 and Theorem 2 (i). �

Theorem 8. Let X, X1 and X2 be NMTSs and pi : X1 × X2 −→ Xi (i = 1, 2) be the projection
of X1 × X2 onto Xi. Then, if φ : X −→ X1 × X2 is an NMSCM, piφ is also NMSCM.

Proof. For an NMOS A of Xi, we have (piφ)
−1(A) = φ−1(pi

−1(A)
)
. pi is an NMCM and

φ is an NMSCM, which implies that (piφ)
−1(A) is an NMSOS of X. �

Theorem 9. Let φ : X −→ Y be a mapping from an NMTS X to another NMTS Y. Then if the
graph ψ : X −→ X×Y of φ is NMSCM, φ is also NMSCM.

Proof. From Lemma 4, φ−1(A) = 1NM ⋓ φ−1(A) = ψ−1(1NM ×A), for each NMOS A of
Y. Since ψ is an NMSCM and 1NM ×A is an NMOS X×Y, φ−1(A) is an NMSOS of X and
hence φ is an NMSCM. �

Remark 5. The converse of Theorem 9 is not true.

Definition 23. A mapping φ : (X, τX) −→ (Y, τY) from an NMTS X to another NMTS Y is
known as a neutrosophic multi almost continuous mapping (NMACM), if φ−1(A) ∈ τX for each
NMROS A of Y.

Example 10. Let X = Y = {a, b} and

A =

{
< a, 0.4, 0.5, 0.5 >,< a, 0.3, 0.5, 0.6 >,< a, 0.2, 0.6, 0.7 >,
< b, 0.5, 0.7, 0.6 >,< b, 0.4, 0.5, 0.7 >,< b, 0.3, 0.5, 0.8 >

}
;

B =

{
< a, 0.5, 0.7, 0.6 >,< a, 0.4, 0.5, 0.7 >,< a, 0.3, 0.5, 0.8 >,
< b, 0.4, 0.5, 0.5 >,< b, 0.3, 0.5, 0.6 >,< b, 0.2, 0.6, 0.7 >

}
.

Then τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Clearly, Cl(B) = BC, Int(Cl(B)) = B.
Hence, B is NMROS.
Now, let us define a mapping f : (X, τX)→ (Y, τY) by f (a) = b, f (b) = a.
Thus, f is NMACM.

Theorem 10. Let φ : (X, τX)→ (Y, τY) be a mapping. Then the below statements are equivalent:

(a) φ is an NMACM;
(b) φ−1(F ) is an NMCoS, for each NMRCoS F of Y;
(c) φ−1(A) 4 NM ∽ Int(φ−1(NM ∽ Int(NM ∽ Cl(A)))), for each NMOS A of Y;
(d) NM ∽ Cl

(
φ−1(NM ∽ Cl(NM ∽ Int(F )))

)
4 φ−1(F ), for each NMCoS F of Y.
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Proof. Consider that φ−1(Ac) =
(
φ−1(A)

)c
, for any NMS A of Y, (a)⇔ (b) follows from

Theorem 4.
(a) ⇒ (c). Since A is an NMOS of Y, A 4 NM ∽ Int(Cl(A)), hence, φ−1(A) 4

φ−1(NM ∽ Int(NM ∽ Cl(A))). From Theorem 6 (ii), NM ∽ Int(NM ∽ Cl(A)) is an
NMROS of Y, hence φ−1(NM ∽ Int(NM ∽ Cl(A))) is an NMOS of X. Thus, φ−1(A) 4
φ−1(NM ∽ Int(NM ∽ Cl(A))) = NM ∽ Int(φ−1(NM ∽ Int(NM ∽ Cl(A))).

(c) ⇒ (a). Let A be an NMROS of Y, then we have φ−1(A) 4 NM ∽

Int
(
φ−1(NM ∽ Int(NM ∽ Cl(A)))

)
= NM ∽ Int

(
φ−1(A)

)
. Thus, φ−1(A) = NM ∽

Int
(
φ−1(A)

)
. This shows that φ−1(A) is an NMOS of X.

(b)⇔ (d) similarly can be proved. �

Remark 6. Clearly, an NMCM is an NMACM. The converse need not be true.

Example 11. Let X = Y = {a, b} and

A =

{
< a, 0.4, 0.5, 0.5 >,< a, 0.3, 0.5, 0.6 >,< a, 0.2, 0.6, 0.7 >,
< b, 0.5, 0.7, 0.6 >,< b, 0.4, 0.5, 0.7 >,< b, 0.3, 0.5, 0.8 >

}
;

B =

{
< a, 0.5, 0.5, 0.6 >,< a, 0.6, 0.5, 0.7 >,< a, 0.2, 0.6, 0.9 >,
< b, 0.4, 0.4, 0.7 >,< b, 0.3, 0.5, 0.5 >,< b, 0.4, 0.5, 0.6 >

}
.

Then, τX = {0X , 1X ,A} and τY = {0Y, 1Y,B} are neutrosophic multi topological spaces.
Clearly, Cl(B) = BC, Int(Cl(B)) = B.
Hence, B is NMROS in τY.
Now, a mapping f : (X, τX)→ (Y, τY) defined by f (a) = a, f (b) = b.
Then clearly, f is NMACM but not NMCM.

Theorem 11. Neutrosophic multi semi-continuity and neutrosophic multi almost continuity are
independent notions.

Definition 24. AN NMTS (X, τX) is called a neutrosophic multi semi-regularly space (NMSRS)
if and only if the collection of all NMROSs of X forms a base for NMT τX .

Theorem 12. Let φ : (X, τX)→ (Y, τY) be a mapping from an NMTS X to an NMSRS Y. Then
φ is NMACM iff φ is NMCM.

Proof. From Remark 6, it suffices to prove that if φ is NMACM, then it is NMCM. Let
A ∈ τY, then A = ⋒ Aα, where Aα’s are NMROSs of Y. Now, from Lemma 1(i), 5, and
Theorem 10 (c), we obtain

φ−1(A) = ⋒ φ−1(Aα) 4 ⋒ NM ∽ Int
(

φ−1(NM ∽ Cl(Aα))
)
= ⋒ NM ∽ Int

(
φ−1(Aα)

)
.

4 NM ∽ Int ⋒

(
φ−1(Aα)

)
= NM ∽ Int

(
φ−1(Aα)

)
.

which shows that φ−1(Aα) ∈ τX . �

Theorem 13. Let X1, X2, Y1 and Y2 be the NMTSs, such that Y1 is product related to Y2. Then
the product φ1 × φ2 : X1 × X2 → Y1 ×Y2 of NMACMs φ1 : X1 → Y1 and φ2 : X2 → Y2 is
NMACM.

Proof. Let A = ⋒
(
Aα ×Bβ

)
, where Aα’s and Bβ’s are NMOSs of Y1 and Y2, respectively,

be an NMOS of Y1 ×Y2. From Lemma 1(i), 3, 5, and Theorems 6, and 10 (c), we have

(φ1 × φ2)
−1(A) = ⋒

{
φ1
−1(Aα)× φ2

−1(Bβ

)}
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4 ⋒

[
NM ∽ Int

(
φ1
−1(NM ∽ Int(NM ∽ Cl(Aα)))

)

×NM ∽ Int
(
φ2
−1(NM ∽ Int

(
NM ∽ Cl

(
Bβ

))))
]

4 ⋒

[
NM ∽ Int

{
φ1
−1(NM ∽ Int(NM ∽ Cl(Aα)))× φ2

−1(NM ∽ Int
(

NM ∽ Cl
(
Bβ

)))}]

4 NM ∽ Int
[
⋒ (φ1 × φ2)

−1{NM ∽ Int(NM ∽ Cl(Aα))× NM ∽ Int
(

NM ∽ Cl
(
Bβ

))}]

= NM ∽ Int
[
⋒ (φ1 × φ2)

−1{NM ∽ Int
(

NM ∽ Cl
(
Aα ×Bβ

))}]

4 NM ∽ Int
[
(φ1 × φ2)

−1{NM ∽ Int
(

NM ∽ Cl
(
⋒

(
Aα ×Bβ

)))}]

= NM ∽ Int
[
(φ1 × φ2)

−1(NM ∽ Int(NM ∽ Cl(A)))
]

Thus, by Theorem 10 (c), φ1 × φ2 is NMACM. �

Theorem 14. Let X, X1 and X2 be an NMTSs and pi : X1 × X2 → Xi(i = 1, 2) be the projection
of X1 × X2 onto Xi. Then if φ : X → X1 × X2 is an NMACM, piφ is also an NMACM.

Proof. Since pi is NMCM Definition 16, for any NMS A of Xi, we have (i) NM ∽

Cl
(

pi
−1(A)

)
4 pi

−1(NM ∽ Cl(A)) and (ii) NM ∽ Int
(

pi
−1(A)

)
< pi

−1(NM ∽ Int(A)).
Again, since (i) each pi is an NMOS, and (ii) for any NMS A of Xi (a) A 4 pi

−1 pi(A)
and (b) pi

−1 pi(A) 4 A, we have pi
(

NM ∽ Int
(

pi
−1(A)

))
4 pi pi

−1(A) 4 A, and hence,
pi
(

NM ∽ Int
(

pi
−1(A)

))
4 NM ∽ Int(A). �

Thus, NM ∽ Int
(

pi
−1(A)

)
4 pi

−1 pi
(

NM ∽ Int
(

pi
−1(A)

))
4(

pi
−1(NM ∽ Int(A)

)
establishes that NM ∽ Int

(
pi
−1(A)

)
4 pi

−1(NM ∽ Int(A)).
Now, for any NMOS A of Xi,

(piφ)
−1(A) = φ−1(pi

−1(A)
)

4 NM ∽ Int
{

φ−1(NM ∽ Int
(

NM ∽ Cl
(

pi
−1(A)

)))}

4 NM ∽ Int
{

φ−1(NM ∽ Int
(

pi
−1(NM ∽ Cl(A))

))}

= NM ∽ Int
{

φ−1(pi
−1(NM ∽ Int(NM ∽ Cl(A)))

)}

= NM ∽ Int(piφ)
−1(NM ∽ Int(NM ∽ Cl(A)))

Theorem 15. Let X and Y be NMTSs such that X is product related to Y and let φ : X → Y be a
mapping. Then, the graph ψ : X → X×Y of φ is NMACM if φ is NMACM.

Proof. Consider that ψ is an NMACM and A is an NMOS of Y. Then, using Lemma 4 and
Theorems 10 (c), we have

φ−1(A) = 1NM ⋓ φ−1(A)
= ψ−1(1NM ×A) 4 NM ∽ Int

(
ψ−1(NM ∽ Int(NM ∽ Cl(1NM ×A)))

)

= NM ∽ Int
(
ψ−1(1NM × NM ∽ Int(NM ∽ Cl(A)))

)

= NM ∽ Int
(
ψ−1(NM ∽ Int(1NM × NM ∽ Cl(A)))

)

= NM ∽ Int
(
ψ−1(NM ∽ Int(NM ∽ Cl(A)))

)

Thus, by Theorem 10 (c), φ is NMACM.
Conversely, let φ be an NMACM and B = ⋒

(
Bα ×Aβ

)
, where Bα’s and Aβ’s are

NMOSs of X and Y, respectively, be an NMOS of X×Y.
Since Bα ⋓ NM ∽ Int

(
φ−1(NM ∽ Int

(
NM ∽ Cl

(
Aβ

))))
is an NMOSs of X con-

tained in

NM ∽ Int(NM ∽ Cl(Bα))⋓ φ−1(NM ∽ Int
(

NM ∽ Cl
(
Aβ

)))
,

Bα ⋓ NM ∽ Int
(

φ−1(NM ∽ Int
(

NM ∽ Cl
(
Aβ

))))
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4 NM ∽ Int
[

NM ∽ Int(NM ∽ Cl(Bα))⋓ φ−1(NM ∽ Int
(

NM ∽ Cl
(
Aβ

)))]

and hence, using Lemmas 1(i), 4 and 5, and Theorems 10 (c), we have

φ−1(B) = φ−1(⋒
(
Bα ×Aβ

))

= ⋒
[
Bα ⋓ φ−1(Aβ

)]

4 ⋒
[
Bα ⋓ NM ∽ Int

(
φ−1(NM ∽ Int

(
NM ∽ Cl

(
Aβ

))))]

4 ⋒
[
NM ∽ Int(NM ∽ Int(NM ∽ Cl(Bα)))⋓ φ−1(NM ∽ Int

(
NM ∽ Cl

(
Aβ

)))]

4 NM ∽ Int
[
⋒ ψ−1(NM ∽ Int(NM ∽ Cl(Bα)))× NM ∽ Int

(
NM ∽ Cl

(
Aβ

))]

= NM ∽ Int
[
ψ−1(⋒

(
NM ∽ Int

(
NM ∽ Cl

(
Bα ×Aβ

))))]

4 NM ∽ Int
[
ψ−1(NM ∽ Int

(
NM ∽ Cl

(
⋒
(
Bα ×Aβ

))))]

= NM ∽ Int
[
ψ−1(NM ∽ Int(NM ∽ Cl(B)))

]

Thus, by Theorem 10(c), ψ is NMACM. �

Definition 25. Let G be an NMG on a group X. Now, if τX is an NMT on G, then (G , τX) is said
to be a neutrosophic multi almost topological group (NMATG) if the given conditions are satisfied:

(i) α : (G , τX)× (G, τX) → (G , τX) :α(m, n) = mn is NMACM;
(ii) β : (G , τX) → (G , τX) : β(m) = m−1 is NMACM.

Then (G , τX) is known as an NMATG.

Remark 7. (G , τX) is an NMATG if the below conditions hold good:

(i) For g1, g2 ∈ G and every NMROS P containing g1g2 in G , ∃ open neighborhoodsR and S
of g1 and g2 in G such thatR ∗ S 4 P ;

(ii) For g ∈ G and every N in G containing g−1, ∃ open neighborhood R of g in G so that
R−1 4 S .

Remark 8. For any P ,Q 4 G, we denote P ∗ Q by PQ and defined as PQ =
{gh : g ∈ P , h ∈ Q} and P−1 =

{
g−1 : g ∈ P

}
. If P = {a} for each a ∈ G, we denote

P ∗Q by aQ and Q ∗ P by Pa.

Example 12. Let, G = (Z3,+) be a classical group and

A =





< 0, 0.4, 0.5, 0.6 >,< 0, 0.3, 0.5, 0.7 >,< 0, 0.2, 0.6, 0.8 >,
< 1, 0.3, 0.5, 0.4 >,< 1, 0.2, 0.5, 0.6 >,< 1, 0.1, 0.5, 0.7 >,
< 2, 0.4, 0.5, 0.6 >,< 2, 0.3, 0.5, 0.7 >,< 2, 0.2, 0.6, 0.8 >





Then τG = {0G, 1G,A} is NTS and the mapping α : (G , τG)× (G, τG) → (G, τG) : α(m, n) =
mn and β : (G , τG) → (G , τG) : β(m) = m−1 are NMACM. Hence, (G , τG) is NMATG.

Theorem 16. Let (G , τX) be an NMATG and let a be any element of G. Then

(a) µa : (G , τX)→ (G , τX) : µa(x) = ax , ∀x ∈ G, is NMACM;
(b) λa : (G , τX)→ (G , τX) : λa(x) = xa, ∀x ∈ G, is NMACM.

Proof. (a) Let p ∈ G and letR be an NMROS containing ap in G. By Definition 25, ∃ open
neighborhoods P ,Q of a, p in G such that PQ 4 R. Especially, aQ 4 R, i.e., µa(Q) 4 R.
This proves that µa is NMACM at p, and hence, µa is NMACM.

(b) Suppose p ∈ G and R ∈ NMRO(G) contain pa. Then ∃ open sets p ∈ P and
a ∈ Q in G such that PQ 4 R. This proves Pa 4 R. This shows that λa is NMACM at p.
Since arbitrary element p is in G, hence, λa is NMACM. �

Theorem 17. Let U be NMROS in a NMATG (G , τX). The below conditions hold good:

(a) mU ∈ NMROS(G), ∀m ∈ G;
(b) Um ∈ NMROS(G), ∀m ∈ G;
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(c) U−1 ∈ NMROS(G).

Proof. (a) We first show that mU ∈ τX. Let p ∈ mU . Then by Definition 25 of NMATGs,
∃ NMOSs m−1 ∈ W1 and p ∈ W2 in G such that W1W2 4 U . Especially, m−1W2 4 U .
That is, equivalently, W2 4 mU . This indicates that p ∈ NM ∽ Int(mU ) and thus, NM ∽

Int(mU ) = mU . That is mU ∈ τX . Consequently, mU 4 NM ∽ Int(NM ∽ Cl(mU )).
Now, we have to prove that NM ∽ Int(NM ∽ Cl(mU )) 4 mU . As U is NMOS,

NM ∽ Cl(U ) ∈ NMRCS(G). By Theorem 16, µm−1 : (G , τX) → (G , τX) is NMACM,
and therefore, mNM ∽ Cl(U ) is NMCoS. Thus, NM ∽ Int(NM ∽ Cl(mU )) 4 NM ∽

Cl(mU ) 4 mNM ∽ Cl(U ), i.e., m−1NM ∽ Int(NM ∽ Cl(mU )) 4 NM ∽ Cl(U ). Since
NM ∽ Int(NM ∽ Cl(mU )) is NMROS, it follows that m−1NM ∽ Int(NM ∽ Cl(mU )) 4
NM ∽ Int(NM ∽ Cl(U )) = U , i.e., NM ∽ Int(NM ∽ Cl(mU )) 4 mU . Thus mU =
NM ∽ Int(NM ∽ Cl(mU )). This proves that mU ∈ NMROS(G).

(b) Following the same steps as in part (1) above, we can prove that Um ∈
NMROS(G), ∀ m ∈ G.

(c) Let p ∈ U−1, then ∃ open set p ∈ W in G such that W−1 4 U ⇒W 4 U−1 .
Thus, U−1 has interior point p. Thus, U−1 is NMOS. That is, U−1 4 NM ∽

Int
(

NM ∽ Cl
(
U−1)). Now we have to prove that NM ∽ Int

(
NM ∽ Cl

(
U−1)) 4 U−1.

Since U is NMOS, NM ∽ Cl(U ) is NMRCoS and thus NM ∽ Cl(U )−1 is CoNMS
in G. Thus, NM ∽ Int

(
NM ∽ Cl

(
U−1)) 4 NM ∽ Cl

(
U−1) 4 NM∽ Cl(U )−1 ⇒

NM ∽ Int
(

NM ∽ Cl
(
U−1)) 4 (NM ∽ Cl(U ))−1

4 U−1. Thus, U−1 = NM ∽

Int
(

NM ∽ Cl
(
U−1)). This proves that U−1 ∈ NMROS(G). �

Corollary 1. Let Q be any NMRCoS in an NMATG in G. Then

(a) mQ ∈ NMRCS(G), for each m ∈ G;
(b) Q−1 ∈ NMRCS(G).

Theorem 18. Let U be any NMROS in an NMATG G. Then

(a) NM ∽ Cl(Um) = NM ∽ Cl(U )m, for each m ∈ G;
(b) NM ∽ Cl(mU ) = mNM ∽ Cl(U ), f or each m ∈ G;

(c) NM ∽ Cl
(
U−1) = NM ∽ Cl(U )−1.

Proof. (a) Assume p ∈ NM ∽ Cl(Um) and consider q = pm−1. Let q ∈ W be
NMOS in G. Then ∃ NMOSs m−1 ∈ V1 and p ∈ V2 in G, such that V1V2 4 NM ∽

Int(NM ∽ Cl(W)). By hypothesis, there is g ∈ Um ⋓ V2 ⇒ gm−1 ∈ U ⋓ V1V2 4

U ⋓ NM ∽ Int(NM ∽ Cl(W)) ⇒ U ⋓ NM ∽ Int(NM ∽ Cl(W)) 6= 0NM ⇒ U ⋓

(NM ∽ Cl(W)) 6= 0NM. Since U is NMOS, U ⋓W 6= 0NM. That is, m ∈ NM ∽ Cl(U )m.
Conversely, let q ∈ NM ∽ Cl(U )m. Then q = pg for some p ∈ NM ∽ Cl(U ).
To prove NM ∽ Cl(U )m 4 NM ∽ Cl(Um).
Let pg ∈ W be an NMOS in G. Then ∃ NMOSs m ∈ V1 in G and

p ∈ V2 in G so that V1V2 4 NM ∽ Int(NM ∽ Cl(W)). Since p ∈
NM ∽ Cl(U ), U ⋓ V2 6= 0NM. There is g ∈ U ⋓ V2. This implies
gm ∈ (Um)⋓ NM ∽ Int(NM ∽ Cl(W))⇒ (Um)⋓ (NM ∽ Cl(W)) 6= 0NM . From Theo-
rem 17, Um is NMOS and thus (Um)⋓W 6= 0NM, therefore q ∈ NM ∽ Cl(Um). Therefore
NM ∽ Cl(Um) = NM ∽ Cl(U )m.

(b) Following the same steps as in part (1) above, we can prove that NM ∽ Cl(mU ) =
mNM ∽ Cl(U ).

(c) Since NM ∽ Cl(U ) is NMRCoS, NM ∽ Cl(U )−1 is NMCoS in G. Therefore,
U−1 4 NM ∽ Cl(U )−1 this gives NM ∽ Cl

(
U−1) 4 NM ∽ Cl(U )−1. Next, let q ∈ NM ∽

Cl(U )−1. Then q = p−1, for some p ∈ NM ∽ Cl(U ). Let q ∈ V be any NMOS in G. Then ∃
open set U in G such that p ∈ U with U−1 4 NM ∽ Int(NM ∽ Cl(V)). Moreover, there is
m ∈ A ⋓ U which implies m−1 ∈ U−1 ⋓ NM ∽ Int(NM ∽ Cl(V)). That is, U−1 ⋓ NM ∽

388



Symmetry 2021, 13, 1689

Int(NM ∽ Cl(V)) 6= 0NM ⇒ U
−1 ⋓ NM ∽ Cl(V) 6= 0NM ⇒ U

−1⋓V 6= 0NM, since U−1 is
NMOS. Therefore, q ∈ NM ∽ Cl(U )−1. Hence, NM ∽ Cl

(
U−1) 4 NM ∽ Cl(U )−1. �

Theorem 19. Let Q be NMRCo subset in an NMATG G. Then the below assertions are true:

(a) NM ∽ Int(mQ) = aNM ∽ Int(Q), ∀m ∈ G;
(b) NM ∽ Int(Qm) = NM ∽ Int(Q)a, ∀m ∈ G;

(c) NM ∽ Int
(
Q−1) = NM ∽ Int(Q)−1.

Proof. (a) Since Q is NMRCoS, NM ∽ Int(Q) is NMROS in G. Consequently, mNM ∽

Int(Q) 4 NM ∽ Int(mQ). Conversely, let q ∈ NM ∽ Int(mQ) be an arbitrary element.
Suppose q = mp, for some p ∈ Q. By hypothesis, this proves mQ is NMCoS, and that is
NM ∽ Int(mQ) is NMROS in G. Assume that m ∈ U and p ∈ V be NMOSs in G, such
that UV 4 NM ∽ Int(mQ). Then mV 4 mQ, which means that mV 4 mNM ∽ Int(Q).
Thus, NM ∽ Int(mQ) 4 mNM ∽ Int(Q).

(b) Following the same steps as in part (1) above, we can prove that NM ∽ Int(Qm) 4
NM ∽ Int(Q)m.

(c) Since NM ∽ Int(Q) is NMROS, NM ∽ Int(Q)−1 is NMOS in G. Therefore,
Q−1 4 NM ∽ Int(Q)−1 implies that NM ∽ Int

(
Q−1) 4 NM ∽ Int(Q)−1. Next, let q

be an arbitrary element of NM ∽ Int(Q)−1. Then q = p−1, for some p ∈ NM ∽ Int(Q).
Let q ∈ V be NMOS in G. Then ∃ NMOS U is in G, such that p ∈ U with U−1 4 NM ∽

Cl(NM ∽ Int(V)). Moreover, there is g ∈ Q ⋓ U, which implies g−1 ∈ Q−1 ⋓ NM ∽

Cl(NM ∽ Int(V)). That is Q−1 ⋓ NM ∽ Cl(NM ∽ Int(V)) 6= 0NM ⇒ Q
−1 ⋓ NM ∽

Int(V) 6= 0NM ⇒ Q
−1⋓V 6= 0NM, since Q−1 is NMCoS. Hence, NM ∽ Int

(
Q−1) =

NM ∽ Int(Q)−1. �

Theorem 20. Let U be any NMSOS in an NMATG G. Then

(a) NM ∽ Cl(mU ) 4 mNM ∽ Cl(U ), ∀ m ∈ G;
(b) NM ∽ Cl(Um) 4 NM ∽ Cl(U )m, ∀ m ∈ G;

(c) NM ∽ Cl
(
U−1) 4 NM ∽ Cl(U )−1.

Proof. (a) As U is NMSOS, NM ∽ Cl(U ) is NMRCoS. From Theorem 16,
µm−1 : (G , τX) −→ (G , τX) is NMACM. Thus, mNM ∽ Cl(U ) is NMCoS. Hence, NM ∽

Cl(mU ) 4 mNM ∽ Cl(U ).
(b) As U is NMSOS, NM ∽ Cl(U ) is NMRCoS. From Theorem 16,

λm−1 : (G , τX) −→ (G , τX) is NMACM. Thus, NM ∽ Cl(U )m is NMCoS. Therefore,
NM ∽ Cl(Um) 4 NM ∽ Cl(U )m.

(c) Since U is NMSOS, NM ∽ Cl(U ) is NMRCoS, and hence, NM ∽ Cl(U )−1 is
NMCoS. Consequently, NM ∽ Cl(U ) 4 NM ∽ Cl(U )−1. �

Theorem 21. Let U be both NMSO and NMSCo subset of an NMATG G. Then the below
statements hold:

(a) NM ∽ Cl(mU ) = mNM ∽ Cl(U ), for each m ∈ G;
(b) NM ∽ Cl(Um) = NM ∽ Cl(U )m, f or each m ∈ G;

(c) NM ∽ Cl
(
U−1) = NM ∽ Cl(U )−1.

Proof. (a) Since U is NMSOS, NM ∽ Cl(U ) is NMRCoS, from which it implies that
NM ∽ Cl(mU ) 4 mNM ∽ Cl(U ). Further, neutrosophic multi semi-openness of U gives
NM ∽ Cl(U )= NM ∽ Cl(NM ∽ Int(U )) ⇒ mNM ∽ Cl(U ) = mNM ∽ Cl(NM ∽

Int(U ). As U is NMSCoS, NM ∽ Int(U ) is NMROS in G. From Theorem 20, mNM ∽

Cl(U ) = mNM ∽ Cl(NM ∽ Int(U )) = NM ∽ Cl(mNM ∽ Int(U )) 4 NM ∽ Cl(mU ).
Hence, NM ∽ Cl(mU ) = mNM ∽ Cl(U ).
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(b) Following the same steps as in part (1) above, we can prove that NM ∽ Cl(Um) =
NM ∽ Cl(U )m.

(c) By hypothesis, this proves NM ∽ Cl(U ) is NMRCoS and therefore NM ∽ Cl(U )−1

is NMCoS. Consequently, NM ∽ Cl
(
U−1) 4 NM ∽ Cl(U )−1. Next, since U is NMSOS,

NM ∽ Cl(U ) = NM ∽ Cl(NM ∽ Int(U ))⇒ NM ∽ Cl(U )−1 = NM ∽ Cl(NM ∽ Int(U ) .
Moreover, as U is NMSCoS, NM ∽ Int(U ) is NMROS. From Theorem 18,

NM ∽ Cl(U )−1 = NM ∽ Cl
(

NM ∽ Int(U )−1
)

4 NM ∽ Cl
(
U−1). This shows

that NM ∽ Cl
(
U−1) = NM ∽ Cl(U )−1. �

Theorem 22. From Theorem 21, the following statements hold:

(a) NM ∽ Int(mU ) = mNM ∽ Int(U ), for each m ∈ G;
(b) NM ∽ Int(Um) = NM ∽ Int(U )m, f or each m ∈ G;

(c) NM ∽ Int
(
U−1) = NM ∽ Int(U )−1.

Proof. (a) As U is NMSCoS, NM ∽ Int(U ) is NMROS. From Theorem 16,
µm−1 : (G , τX) −→ (G , τX) is NMACM. Therefore, µ−1

m−1(NM ∽ Int(U )) = mNM ∽

Int(U ) is NMOS. Thus, mNM ∽ Int(U ) 4 NM ∽ Int(mU ). Next, by assumption,
it implies that NM ∽ Int(U ) = NM ∽ Int(NM ∽ Cl(U )) ⇒ mNM ∽ Int(U ) =
mNM ∽ Int(NM ∽ Cl(U )). As U is NMSOS, NM ∽ Cl(U ) is NMRCoS. From Theo-
rem 19, mNM ∽ Int(NM ∽ Cl(U )) = NM ∽ Int(mNM ∽ Cl(U )) < NM ∽ Int(mU ).
That is, NM ∽ Int(mU ) 4 mNM ∽ Int(U ). Therefore, we have, NM ∽ Int(mU ) =
mNM ∽ Int(U ). Hence, it was proved.

(b) As U is NMSCoS, NM ∽ Int(U ) is NMROS. From Theorem 16,
µm−1 : (G , τX) −→ (G , τX) is NMACM. Thus, λ−1

m−1(NM ∽ Int(U )) = mNM ∽

Int(U ) is NMOS. Therefore, NM ∽ Int(U )m 4 NM ∽ Int(Um). Next, by assump-
tion, this proves that NM ∽ Int(U ) = NM ∽ Int(NM ∽ Cl(U )) ⇒ NM ∽ Int(U )m =
NM ∽ Int(NM ∽ Cl(U ))m. As U is NMSOS, NM ∽ Cl(U ) is NMRCoS. From Theorem
19, NM ∽ Int(NM ∽ Cl(U ))m = NM ∽ Int(NM ∽ Cl(U )m) < NM ∽ Int(Um). That
is, NM ∽ Int(Um) 4 NM ∽ Int(U )m. Therefore, NM ∽ Int(Um) = NM ∽ Int(U )m.
Hence, it was proved.

(c) From assumption, this proves that NM ∽ Int(U ) is NMROS and therefore
NM ∽ Int(U )−1 is NMOS. Consequently, NM ∽ Int

(
U−1) 4 NM ∽ Int(U )−1. Next,

as U is NMSCoS, NM ∽ Int(U ) = NM ∽ Int(NM ∽ Cl(U )) ⇒ NM ∽ Int(U )−1 =

NM ∽Int(NM ∽ Cl(U ))−1. Moreover, as U is NMSOS, NM ∽ Cl(U ) is NMRCoS. From
Theorem 19, NM ∽ Int(U )−1 = NM ∽ Int(NM ∽ Cl

(
U )−1) 4 NM ∽ Int

(
U−1). This

proves that NM ∽ Int
(
U−1) = NM ∽ Int(U )−1. �

Theorem 23. Let A be NMOS in an NMATG G. Then aA 4 NM ∽

Int(aNM ∽ Int(NM ∽ Cl(A))) for a ∈ G.

Proof. Since A is NMOS, so A 4 NM ∽ Int(NM ∽ Cl(A)) ⇒ aA 4 aNM ∽

Int(NM ∽ Cl(A)). From Theorem 17, aNM ∽ Int(NM ∽ Cl(A)) is NMOS (in fact, NM-
ROS). Hence, aA 4 NM ∽ Int(aNM ∽ Int(NM ∽ Cl(A))). �

Theorem 24. Let Q be any neutrosophic multi-closed subset in an NMATG G. Then NM ∽

Cl(aNM ∽ Cl(NM ∽ Int(A))) 4 aQ for each a ∈ G.

Proof. Since Q is NMCoS, so Q < NM ∽ Cl(NM ∽ Int(Q)) ⇒ aQ < aNM ∽

Cl(NM ∽ Int(Q)). From Theorem 17, aNM ∽ Cl(NM ∽ Int(Q)) is NMCoS (in fact,
NMRCoS). Therefore, aQ < NM ∽ Cl(aNM ∽ Cl(NM ∽ Int(A))). Hence, NM ∽

Cl(aNM ∽ Cl(NM ∽ Int(A))) 4 aQ. �
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4. Conclusions

To deal with uncertainty, the NS uses the truth membership function, indeterminacy
membership function, and falsity membership function. By discovering this concept, we
were able to generalise the idea of an almost topological group to an NMATG. First, we
developed the definitions of NMSOS, NMSCoS, NMROS, NMRCoS, NMCM, NMOM,
NMCoM, NMSCM, NMSOM, NMSCoM to propose the definition of NMATG. Some
properties of NMACM were demonstrated. Finally, we defined NMATG and demonstrated
some of their properties using the definition of NMACM. In this study, an NMATG
is conceptualised for the environments of the NS along with some of their elementary
properties and theoretic operations. Novel numerical examples are given for definitions
and remarks to study NMATG. We expect that our study may spark some new ideas for
the construction of the NMATG. Future work may include the extension of this work for:

(1) The development of the NMATG of the neutrosophic multi-vector spaces, etc.;
(2) Dealing NMATG with multi-criteria decision-making techniques.
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