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Aims and Scope 

Neutrosophic theory and its applications have been expanding in all directions at an 
astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets 
and Systems”. New theories, techniques, algorithms have been rapidly developed. One of 
the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set 
with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The 
different hybrid structures such as rough neutrosophic set, single valued neutrosophic 
rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are 
proposed in the literature in a short period of time. Neutrosophic set has been an important 
tool in applications to various areas such as data mining, decision making, e-learning, 
engineering, medicine, social science, and some more.  

Florentin Smarandache, Memet Şahin 
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Preface 
Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. 
Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent 
information. Neutrosophic set approaches are suitable to modeling problems with 
uncertainty, indeterminacy and inconsistent information in which human knowledge is 
necessary, and human evaluation is needed.  

Neutrosophic set theory was firstly proposed in 1998 by Florentin Smarandache, who also 
developed the concept of single valued neutrosophic set, oriented towards real world 
scientific and engineering applications. Since then, the single valued neutrosophic set 
theory has been extensively studied in books and monographs, the properties of 
neutrosophic sets and their applications, by many authors around the world. Also, an 
international journal - Neutrosophic Sets and Systems started its journey in 2013.  

Neutrosophic triplet was first defined in 2016 by Florentin Smarandache and Mumtaz Ali 
and they also introduced the neutrosophic triplet groups in the same year. For every element 
“x” in a neutrosophic triplet set A, there exist a neutral of “x” and an opposite of “x”. Also, 
neutral of “x” must be different from the classical neutral element. Therefore, the NT 
set is different from the classical set. Furthermore, a NT of “x” is showed by 
<x, neut(x), anti(x)>.  
This first volume collects original research and applications from different perspectives 
covering different areas of neutrosophic studies, such as decision making, Triplet, 
topology, and some theoretical papers.  
This volume contains three sections: NEUTROSOPHIC TRIPLET, DECISION 
MAKING, AND OTHER PAPERS. 



 Neutrosophic Triplet Structures 
 Volume I 

9 

SECTION ONE 

Neutrosophic Triplet Research 



Editors: 
 Prof. Dr. Florentin Smarandache 
 Associate Prof. Dr. Memet Şahin 

10 

Chapter One 

Neutrosophic Triplet Partial Inner Product Space 

Mehmet Şahin1, Abdullah Kargın2,* 

1,2 Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey. 
 Email: mesahin@gantep.edu.tr, abdullahkargin27@gmail.com

Abstract 

In this chapter, we obtain neutrosophic triplet partial inner product space. We give some definitions 
and examples for neutrosophic triplet partial inner product space. Then, we obtain some properties 
and we prove these properties. Furthermore, we show that neutrosophic triplet partial inner product 
space is different from neutrosophic triplet inner product space and classical inner product space. 

Keywords: neutrosophic triplet partial inner product space, neutrosophic triplet vector 
spaces, neutrosophic triplet partial normed spaces, neutrosophic triplet partial metric 
spaces 

1. Introduction

 Smarandache introduced neutrosophy in 1980, which studies a lot of scientific fields. In 
neutrosophy [1], there are neutrosophic logic, set and probability.  Neutrosophic logic is a 
generalization of a lot of logics such as fuzzy logic [2] and intuitionistic fuzzy logic [3]. 
Neutrosophic set is denoted by (t, i, f) such that “t” is degree of membership, “i” is degree 
of indeterminacy and “f” is degree of non-membership. Also, a lot of researchers have 
studied neutrosophic sets [4-9,24-28]. Furthermore, Smarandache et al. obtained 
neutrosophic triplet (NT) [10] and they introduced NT groups [11].  For every element “x” 
in neutrosophic triplet set A, there exist a neutral of “a” and an opposite of “a”. Also, 
neutral of “x” must different from the classical unitary element. Therefore, the NT set is 
different from the classical set. Furthermore, a NT “x” is denoted by by <x, neut(x), 
anti(x)>. Also, many researchers have introduced NT structures [12-20]  

Inner product is a special operator (<. , .>) built on vector spaces and it has certain 
properties. Also, if (<. , .>) is an inner product on a vector space, the vector space is called 
inner product space. The Hilbert space (every Cauchy sequence is convergent in it) is a 
special inner product space and it also has certain properties. In functional analysis, inner 
product space and Hilbert space are a broad topic with wide area of applications. Also, 
recently many researchers have introduced inner product space [21-23]. 

mailto:mesahin@gantep.edu.tr
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In this chapter, we obtain NT inner product space. In section 2; we give definitions of NT 
set [11], NT field [12], NT partial metric space [17], NT vector space [13] and NT partial 
normed space [20]. In section 3, we introduce NT partial inner product space and give 
some properties and examples for NT partial inner product space. Also, we show that NT 
partial inner product space is different from the NT inner product space and classical inner 
product space. Furthermore, we show relationship between NT partial metric spaces, NT 
partial normed space with NT partial inner product space. Also, we give definition of 
convergence of sequence, Cauchy sequence and Hilbert space in NT inner product space. 
In section 4, we give conclusions. 
 

2.Basic and fundamental concepts 

Definition 2.1: [11] Let * be a binary operation. (X, #) is a NT set (NTS) such that   

i) There must be neutral of “x” such x#neut(x) = neut(x)#x = x, x ∈ X. 

ii) There must be anti of “x” such x#anti(x) = anti(x)#x = neut(x), x ∈ X. 

Furthermore, a NT “x” is showed with (x, neut(x), anti(x)). 

Also, neut(x) must different from classical unitary element. 

Definition 2.2: [12] Let (X, &, $) be a NTS with two binary operations & and $. Then (X, 
&, $) is called NT field (NTF) such that 

1. (F, &) is a commutative NT group, 

2. (F, $) is a NT group  

3. x$ (y&z)= (x$y) & (x$z) and  (y&z)$x = (y$x) & (z$x) forv every x, y, z ∈ X.  

Definition 2.3: [17]  Let (A, #) be a NTS and m#n ∊ A, ⩝ m, n ∊ A. NT partial metric 
(NTPM) is a map 𝑝𝑁: A x A → ℝ+∪{0} such that ⩝ m, n, k ∈ A 

i) 𝑝𝑁(m, n) ≥ 𝑝𝑁(n, n)≥0 

ii) If 𝑝𝑁(m, m) = 𝑝𝑁(m, n) = 𝑝𝑁(n, n) = 0, then there exits at least one m, n pair such that  
m = n. 

iii) 𝑝𝑁(m, n) = 𝑝𝑁(n, m) 

iv) If there exists at least an element n∊A for each m, k∈ A pair such that  

𝑝𝑁(m, k)≤ 𝑝𝑁(m, k#neut(n)), then 𝑝𝑁(m, k#neut(n))≤ 𝑝𝑁(m, n) + 𝑝𝑁(n, k) - 𝑝𝑁(n, n)  

Also, ((A, #), 𝑝𝑁) is called NTPM space (NTPMS). 
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Definition 2.4: [13] Let (F, &1, $1) be a NTF and let  (V,&2, $2) be a NTS with binary 
operations “&2" and “$2”. If (V,&2, $2) is satisfied the following conditions, then it is 
called a NT vector space (NTVS),  

1) x&2y ∈ V and x $2y ∈ V; for every x, y ∈ V 

2) (x&2y) &2z= x&2 (y&2z);  for every x, y, z ∈ V 

3) x&2y = y&2x; for every x, y ∈ V  

4) (x&2y) $2m= (x$2m) &2(y$2m); for every m∈ F and every x, y ∈ V   

5) (m&1n) $2x= (m$2x) &1(n$2x); for every m, n ∈ F and every u ∈ V   

6) (m$1n) $2x= m$1(n$2x); for every m, n ∈ F and every x ∈ V  

7) For every x ∈ V, there exists at least a neut(y) ∈ F such that  

 x $2 neut(y)= neut(y) $2 x = x 

Definition 2.5: [20] Let (V,∗2, #2) be NTVS on (F,∗1, #1) NTF. ‖. ‖:V → ℝ+∪{0} is a 
map that it is called NT partial norm (NTPN) such that  

   a)  f: F X V  → ℝ+∪{0} is a function such that f(α,x) = f(anti(α), anti(x)); for all a, b ∈ V 
and m ∈ F; 

  b) ‖a‖ ≥0; 

  c) If ‖a‖=‖neut(a)‖  = 0, then a = neut(a) 

  d) ‖m#2 a‖ = f(m,a).‖a‖ 

  e) ‖anti(a)‖= ‖a‖ 

 f) If there exists at least k element for each a, b pair such that 

 ‖‖a∗2a‖+‖neut(k)‖ ≤ ‖a∗2b∗2neut(k)‖; then ‖a∗2b‖≤‖a‖+‖b‖ - ‖neut(k)‖, for any k ∈ V. 

Furthermore, ((NTV, ∗2, #2), ‖.‖) is called NTPN space (NTPNS). 

Theorem 2.6: [20] Let ((N, ∗2, #2), ‖.‖) be a NTPNS on (F,∗1, #1) NTF. Then, the function 
is  p: V x V→ ℝ, p(x, y) = ‖x∗2 anti(y)‖ is a NTPMS. 

Definition 2.7: [14] Let (V, ∗2 , #2 ) be a NTVS on (F, ∗1 , #1 ) NTF. Then,                          
<., .> :V x V → ℝ+∪{0} is a NT inner product (NTIP) on (V,∗2, #2) such that  
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 a)  f: F X V X V  → ℝ+∪{0} is a function such that f(α, a, b)= f(anti(α), anti(a), anti(a)), 
for all a, b, c ∈ NTV and m, n ∈ F,  

  b) <a, a> ≥0; 

  c) If a= neut(a), then <a, a> =0 

  d) <(m#2 a)∗2 (n#2 b), 𝑐> = f(m, a, c). <x, c>+ f(𝑛,b,z). <b, c> 

  e) <anti(a), anti(a)> = <a, a> 

  f) <a, b>=<b, a> 

Also, ((NTV, ∗2, #2), <., .>) is called NTIP space (NTIPS). 

Theorem 2.8: [14] Let (V, ∗2 , #2 ) be a NTVS on (F, ∗1 , #1 ) NTF and let                        
((V, ∗2, #2), <. , .>) be a NTIPS on (V,∗2, #2) and f: F X V X V  → ℝ+∪{0} be a map 
such that f(α, a, b)= f(anti(α), anti(a), anti(b)) for all a, b ∈ V and m, n ∈ F. Then,  

 <(m#2 a)∗2 (n#2 b), (m#2 a)∗2 (n#2 b)> = 

 f(m, (m#2 a)∗2 (n#2 b), a).f(m, a, a).<a, a> + 

[f(m, (m#2a)∗2 (n#2 b), a). f(n, a, b) + f(n, (m#2 a)∗2 (𝑛#2 b), b).f(m, a, b)].<a, b> + 

f(𝑛, (m#2 a)∗2 (n#2 b), b). f(𝑛, b, b).<b, b>. 

3. Neutrosophic Triplet Partial Inner Product Space 

Definition 3.1: Let (V, ∗2 , #2 ) be NTVS on (F, ∗1 , #1 ) NTF. Then,                                      
<., .> :V x V → ℝ+∪{0} is a NT partial inner product (NTPIP) on (V,∗2, #2) such that 

  i) f: F X V X V  → ℝ+∪{0} is a function such that f(m, a, b)= f(anti(m), anti(a), anti(b)) 
for all a, b, c ∈ V and m, n ∈ F; 

  ii) <a, b> ≥ 0 and <a, a> ≥ 0; 

  iii) If <a, a> = <neut(a), neut(a)> = 0, then a = neut(a) 

  iv) <(m#2 a)∗2 (n#2 b), 𝑐> = f(m, a, c). <a, c>+ f(𝑛,b,c). <b, c> 

  v) <anti(a), anti(a)> = <a, a> 

  vi) <a, b> = <b, a> 

 Also, ((NTV, ∗2, #2), <., .>) is called NTPIP space (NTPIPS). 
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Corollary 3.2: By Definition of NTPIPS that NTPIPS is different from the classical inner 
product spaces, since conditions i) and ii)  are different in classical inner product space. 

Corollary 3.3: In Definition 2.7, if x = neut(x) then <x, x> = 0. In Definition 3.1, <x, x> = 
<neut(x), neut(x)> = 0 then x = neut(x). Thus, NTPIPS is different from NTIPS. 

Corollary 3.4: 

i) For a NTPIPS, if a = neut(a) and <a, a> = 0, then NTPIPS is a NTIPS. 

ii) For a NTIPS, if   <a, a> = <neut(a), neut(a)> = 0 and a = neut(a), then NTIPS is a 
NTPIPS. 

Example 3.5: Let X = {∅ , {1}, {2}, {1, 2}}. From Definition 2.4, (X, ∪, ∩) is a NTVS on 
the          (X, ∪, ∩) NTF. Also, 

The NTs with respect to ∪; 

 neut(K) = K and anti(K) = K, 

The NTs with respect to ∩; 

 neut(M) = M and anti(M) = M,  

 Now, we take <. , .>:X x X → ℝ+∪{0}such that <K, L> = 𝑠(𝐾) + 𝑠(𝐿) and s(K) is 
number of elements in K ∈ X and 𝐾′ is complement of K ∈ X.  

 We show that  <. , .> is a NTPIP and ((X, ∪, ∩), <. , .>) is a NTPIPS.  

i) We can take f: X   XX → ℝ+∪{0} such that                                                                                      

f(A,B,C) = 

{
  
 

  
 
𝑠(𝐶)+2.𝑠(𝐴∩𝐵)

2(𝑠(𝐵)+𝑠(𝐶))
;                                                                                                   𝑖𝑓     𝐴 ∩  𝐵 ∩ 𝐶 =  ∅, 𝐵 = 𝐶 ≠  ∅  

𝑠(𝐶)−𝑠(𝐴)+2.𝑠(𝐴∩𝐵)

2(𝑠(𝐵)+𝑠(𝐶))
;                                                                                           𝑖𝑓   𝐴 ∩  𝐵 ∩ 𝐶 ≠  ∅, 𝐵 = 𝐶 ≠  ∅ 

0;                                                                                              𝑖𝑓         𝐵 = 𝐶 = ∅
1

2(𝑠(𝐵)+𝑠(𝐶))
;            𝑖𝑓 𝐴 ∩  𝐵 ∩ 𝐶 =  ∅, 𝐵 = 𝐶 ≠  ∅, s(𝐶) + 𝑠(𝐴 ∩ 𝐵) = 0, 𝑠(𝐶) − 𝑠(𝐴) + 2. 𝑠(𝐴 ∩ 𝐵)  

 

Also, f(A,B,C) = f(anti(A), anti(B), anti(C)) because anti(A) = A, for all A ∈ X. 

ii) <A, B> = 𝑠(𝐴) + 𝑠(𝐵)≥ 0 and <A, A> = 𝑠(𝐴) + 𝑠(𝐴)≥ 0 

iii) For A = ∅,   𝑠(𝐴) + 𝑠(𝐴) = 𝑠(𝑛𝑒𝑢𝑡(𝐴)) + 𝑠(𝑛𝑒𝑢𝑡(𝐴)) = 0, Also, ∅ = neut(∅) 

iv)  For A = ∅, B = {1}, C = {2}, D = {1, 2}, E = ∅; 

<((∅∩{1})∪ ({2} ∩ {1, 2}), ∅> = 𝑠((∅ ∩ {1}) ∪ ({2} ∩ {1, 2})) + s(∅) = 1. Also, 



                                                   
  Neutrosophic Triplet Structures   

 Volume I 
 

15 
 

f(∅, {1}, ∅) = 1 /2, 

<{1}, ∅> = 1, 

f({2}, {1,2}, ∅) = 1 / 4, 

<{1,2}, ∅> = 2. 

Thus, <(∅∩{1} )∪ ({2} ∩ {1, 2}), ∅> =  

f(∅, {1}, ∅).<{1}, ∅> + f({2}, {1,2}, ∅).<{1,2}, ∅>. 

 For A = ∅, B = {1}, C = {2}, D = {1, 2} , E = {1}; 

<((∅∩{1})∪ ({2} ∩ {1, 2}), {1}> = 𝑠((∅ ∩ {1}) ∪ ({2} ∩ {1, 2})) + s({1}) = 2. Also, 

f(∅, {1}, {1}) = 1 /2  

<{1}, {1}> = 2 

f({2}, {1,2}, {1}) = 1 / 3 

<{1,2}, {1}> = 3. 

Thus, <(∅∩{1} )∪ ({2} ∩ {1, 2}), {1}> =  

f(∅, {1}, {1}).<{1}, {1}> + f({2}, {1,2}, {1}).<{1,2}, {1}>. 

 For A = ∅, B = {1}, C = {2}, D = {1, 2} , E = {2}; 

<((∅∩{1})∪ ({2} ∩ {1, 2}), {2}> = 𝑠((∅ ∩ {1}) ∪ ({2} ∩ {1, 2})) + s({2}) = 2. Also, 

f(∅, {1}, {2}) = 1 /2  

<{1}, {2}> = 2 

f({2}, {1,2}, {2}) = 1 / 3 

<{1,2}, {2}> = 3. 

Thus, <(∅∩{1} )∪ ({2} ∩ {1, 2}), {2}> = 

 f(∅, {1}, {2}).<{1}, {2}> + f({2}, {1,2}, {2}).<{1,2}, {2}>. 

 For A = ∅, B = {1}, C = {2}, D = {1, 2}, E = {1, 2}; 

<((∅∩{1})∪ ({2} ∩ {1, 2}), {1, 2}> = 𝑠((∅ ∩ {1}) ∪ ({2} ∩ {1, 2})) + s({1, 2}) = 3. Also, 

f(∅, {1}, {1, 2}) = 2 /3 
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<{1}, {1,2}> = 3 

f({2}, {1,2}, {1,2}) = 2 / 8 = 1/4 

<{1,2}, {1, 2}> = 4. 

Thus, <(∅∩{1} )∪ ({2} ∩ {1, 2}), {1,2}> = f(∅, {1}, {1,2}).<{1}, {1,2}> + 

 f({2}, {1,2}, {1,2}).<{1,2}, {1,2}>. 

 Furthermore, condition iv is satisfies by another A, B, C, D, E elements. 

v) <anti(K), anti(K)> = s(anti(K))+ s(anti(K)) = s(K) + s(K) = <K, K> because                     
K = anti(K), for every K ∈ X. 

vi) <K, L>= s(K) + s(L) = s(L) + s(K) = <L, K>. 

Theorem 3.6:Let (V,∗2, #2) be a NTVS on (F,∗1, #1) NTF and let ((V, ∗2, #2), <. , .>) be 
a NTIPS on (V,∗2, #2) and f: F X V X V  → ℝ+∪{0}. For every a, b, c ∈ V and m, n ∈ F, 
if a ≠ b, a = c or b = c and <c, c>≥  1 and <c, c> ≤ <a, a>, <b, b>, then 

(< a, b >)2≤ <a, a>.<b, b> - <c, c> 

Proof: We suppose a ≠ b, a = c or b = c. From the Theorem 2.6; if we take 

f(m, (m#2 a)∗2 (n#2 b), a,) = <𝑎,𝑏>
2+<𝑐,𝑐>1/2

<𝑎,𝑎>3/2
 

f(m, a, b)= 
−(<𝑎,𝑏>+

<𝑐,𝑐>1/2

<𝑎,𝑏>
)

<𝑎,𝑎>1/2
  

f(n, b, b) = 1

<𝑏,𝑏>1/2
 

f(n, a, b) =  
(1+

<𝑐,𝑐>1/2

<𝑎,𝑏>
)

<𝑎,𝑎>1/2
 

 f(𝑛, (m#2 a)∗2 (n#2 b), a)= f(m, a, a) = f(n, (m#2 a)∗2 (n#2 b), b) =1, then  

<(m#2 a)∗2 (n#2 b), (m#2 a)∗2 (n#2 b)> = 

 f(m, (m#2 a)∗2 (n#2 b), a).f(m, a, a).<a, a> + 

[f(m, (m#2a)∗2 (n#2 b), a). f(n, a, b) + f(n, (m#2 a)∗2 (𝑛#2 b), b).f(m, a, b)].<a, b> + 

f(𝑛, (m#2 a)∗2 (n#2 b), b). f(𝑛, b, b).<b, b> = 
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<𝑎,𝑏>2+<𝑐,𝑐>1/2

<𝑎,𝑎>3/2
 . <a, a>- 

(<𝑎,𝑏>+
<𝑐,𝑐>1/2

<𝑎,𝑏>
)

<𝑎,𝑎>1/2
.<a, b>- 

(1+
<𝑐,𝑐>1/2

<𝑎,𝑏>
)

<𝑎,𝑎>1/2
.<a, b>+ 1

<𝑏,𝑏>1/2
 <b, b> = 

-
(1+

<𝑐,𝑐>1/2

<𝑎,𝑏>
)

<𝑎,𝑎>1/2
. <a,b>+ < 𝑏, 𝑏 >1/2  = < 𝑏, 𝑏 >1/2 - <𝑎,𝑏>+<𝑐,𝑐>

1/2

<𝑎,𝑎>1/2
. Thus, we have                                                    

< 𝑏, 𝑏 >1/2- <𝑎,𝑏>+<𝑐,𝑐>
1/2

<𝑎,𝑎>1/2
 ≥ 0 and  

< 𝑎, 𝑎 >1/2. < 𝑏, 𝑏 >1/2 - < 𝑎, 𝑎 >1/2. <𝑎,𝑏>+<𝑐 𝑐>
1/2

<𝑎,𝑎>1/2
 =  

 < 𝑎, 𝑎 >1/2. < 𝑏, 𝑏 >1/2 - < 𝑎, 𝑏 > - < 𝑐, 𝑐 >1/2≥ 0. Thus,  

< 𝑎, 𝑏 >≤< 𝑎, 𝑎 >1/2. < 𝑏, 𝑏 >1/2 - < 𝑐, 𝑐 >1/2. 

Theorem 3.7: Let (V,∗2, #2) be a NTVS on (F,∗1, #1) NTF and let ((V, ∗2, #2), <. , .>) be 
a NTPIPS on (V,∗2, #2).For every a,b,c ∈ V and m,n ∈ F, if f(m, a, a) = f(m, a) and ‖𝑎‖ = 
√< a, a >. Then, ((V, ∗2, #2), ‖. ‖) is a NTPMS on (V,∗2, #2). 

Proof: We show that ‖𝑎‖  = √< a, a >  is a NTPMS. From Definition 3.1 and                        
Definition 2.5, 

a) ‖𝑎‖ = √< a, a > ≥ 0. 
b) If ‖𝑎‖ = √< a, a > = √< neut(a), neut(a) > = ‖neut(a)‖  = 0, then a = neut(a) 
c)  ‖m#2a‖ = √< m#2a,m#2a > = √f(m, a, a). √f(m, a, a) .  √< a, a >  = 

f(m, a, a). √< a, a >= 
f(m, a). ‖𝑎‖ 

d) ‖anti(x)‖ = √< anti(x), anti(x) > =√< a, a >== ‖a‖   
e)  In Theorem 2.6; if we take m= neut(a), 𝑛 = neut(b), then  

<(m#2 a)∗2 (n#2 b), (m#2 a)∗2 (n#2 b)>  = < a ∗2 b, a ∗2 a > =                                                            

 f(neut(a),  a∗2 𝑏, a).f(neut(a), a, a).<a, a> + 

 [f(neut(a),  a∗2 𝑏, a).f(neut(b), a, b)+ f(neut(b), a∗2b, b).f(neut(a), a, b)].<a, b> + 

f(neut(b), a∗2b, b).f(neut(b), b, b).<b, b>. 
Also, if we take 
 f(neut(a),  a∗2 𝑏, a) = f(neut(a), a, a) = f(neut(b), a, b) = f(neut(b), a∗2b, b) = 
f(neut(a), a, b) = f(neut(b), b, b) = 1, then  
< a ∗2 b, a ∗2 b > = <a, a> + 2.<a, b>  + <b, b> = ‖a‖2+ 2.<a,b> + ‖a‖2. From the 
Theorem 3.6, if a ≠ b,  a = c or b = c, then 

               < 𝑎, 𝑏 >≤ √< a, a >. √< b, b > - √< c, c >.Thus, 
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 < a ∗2 b , a ∗2 b >=‖a‖2 + 2.<a, b>+ ‖b‖2 ≤  

 ‖a‖2+ 2‖a‖‖b‖+ ‖b‖2 - 2‖b‖= 

  (‖a‖ + ‖b‖)2-2‖b‖                                                                                                (1) 

  If we take neut(c) = neut(b), then 

 < a ∗2 b ∗2 neut(c)  , a ∗2 b ∗2 neut(c)> = < a ∗2 b, a ∗2 b >  

 Therefore, if we take a = b, it is clear that 

< a ∗2 b, a ∗2 b > - < neut(m), neut(m) >1 2⁄ ≤   

< a ∗2 b ∗2 neut(c)  , a ∗2 b ∗2 neut(c)>                                                                              (2) 

Furthermore, from Definition 2.5, If there exists at least k = neut(m) element for a, b such 
that ‖‖a∗2b‖-‖neut(k)‖ ≤ ‖a∗2 b∗2neut(k)‖, then ‖a∗2b‖≤‖a‖+‖b‖ - ‖neut(k)‖. Thus, we can take 
from (1), (2) 

    ‖a∗2b‖≤‖a‖+‖b‖ - ‖neut(k)‖. 

Corollary 3.8: Every NTPMS is reduced by a NTPIPS. But the opposite is not always 
true. Similarly; every NTPNS is reduced by a NTPIPS. But the opposite is not always true. 

Definition 3.9: ((X, &2 , $2 ), <. , .>) be a NTPIPS on  (Y, &1 , $1 )  NTF and                       
((X,&2, $2),   <. , .>) be a NTPIPS such that ‖𝑎‖ = √< a, a >. Then, p: X x X→ ℝ is a 
NTPM define by  

                         p(a, b)=  ‖ a ∗2 anti(b)‖ = √< a ∗2  anti(b), a ∗2  anti(b) > 

and is called NTPM reduced by ((X,&2, $2), <. , .>). 

Definition 3.10: ((X,&2 , $2), <. , .>) be a NTPIPS on  (Y,&1 , $1)  NTF, {𝑥𝑛} be a 
sequence in NTPIPS and p be a NTPM reduced by ((X,&2, $2), <. , .>). For all ε>0,            
x, k ∊ X  

 p(x, {𝑥𝑛})= < x ∗2  anti({𝑥𝑛}), x ∗2  anti({𝑥𝑛}) >
1
2⁄  < ε + p(k, k); 

if there exists a M∊ ℕ such that for all n ≥M, then {𝑥𝑛} sequence converges to a. It is 
denoted by  

lim
𝑛→∞

𝑥𝑛= a or 𝑥𝑛→ a. 
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Definition 3.11: ((X,&2 , $2), <. , .>) be a NTPIPS on  (Y,&1 , $1)  NTF, {𝑥𝑛} be a 
sequence in NTPIPS and p be a NTPM reduced by ((X,&2, $2), <. , .>). For all ε>0, x,        
k ∊ X such that for all n ≥M 

p(({𝑥𝑚}, {𝑥𝑛}) = 

 ‖x ∗2 anti({𝑥𝑛} )‖ < ({𝑥𝑚} ∗2  anti({𝑥𝑛}), ({𝑥𝑚} ∗2  anti({𝑥𝑛}) >
1
2⁄  < ε + p(k, k); 

if there exists a M∊ ℕ; {𝑥𝑛}  sequence is called Cauchy sequence. 

Definition 3.12: Let ((X,&2, $2), <. , .>) be a NTPIPS on  (Y,&1, $1)  NTF, {𝑥𝑛} be a 
sequence in this space and p be a NTPM reduced by ((X,&2, $2), <. , .>). If each {𝑥𝑛} 
Cauchy sequence in NTPIPS is convergent by p NTPM reduced by ((X,&2, $2), <. , .>), 
then ((X,&2, $2), <. , .>)  is called Hilbert space in NTPIPS.  

Conclusions 
In this chapter, we obtained NTPIPS. We also showed that NTPIPS is different from the 
NTIPS and classical inner product space. Then, we defined Hilbert space for NTPIPS. 
Thus, we have added a new structure to NT structure and gave rise to a new field or 
research called NTPIPS. Also, thanks to NTPIPS researcher we obtained new structures 
and properties. 

Abbreviations 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTF: Neutrosophic triplet field 

NTVS: Neutrosophic triplet vector space 

NTPM: Neutrosophic triplet partial metric 

NTPMS: Neutrosophic triplet partial metric 

NTPN: Neutrosophic triplet partial norm 

NTPNS: neutrosophic triplet partial norm space 

NTIPS: neutrosophic triplet inner product space 

NTPIP: neutrosophic triplet partial inner product 

NTPIPS: neutrosophic triplet partial inner product space 
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Abstract  

In this chapter, study the notion of neutrosophic triplet partial v-generalized metric space. Then, we 
give some definitions and examples for neutrosophic triplet partial v-generalized metric space and 
obtain some properties and prove these properties. Furthermore, we show that neutrosophic triplet 
partial v-generalized metric space is different from neutrosophic triplet v-generalized metric space 
and neutrosophic triplet partial metric space.  

Keywords: neutrosophic triplet metric space, neutrosophic triplet partial metric space, 
neutrosophic triplet v- generalized metric spaces, neutrosophic triplet partial v- generalized 
metric spaces  

 

     1. Introduction 

 Smarandache introduced neutrosophy in 1980, which studies a lot of scientific fields. In 
neutrosophy, there are neutrosophic logic, set and probability in [1].  Neutrosophic logic is 
a generalization of a lot of logics such as fuzzy logic in [2] and intuitionistic fuzzy logic in 
[3]. Neutrosophic set is denoted by (t, i, f) such that “t” is degree of membership, “i” is 
degree of indeterminacy and “f” is degree of non-membership. Also, a lot of researchers 
have studied neutrosophic sets in [4-9, 35-39]. Furthermore, Smarandache and Ali obtained 
neutrosophic triplet (NT) in [10] and they introduced NT groups in [11].  For every 
element “x” in neutrosophic triplet set A, there exist a neutral of “a” and an opposite of 
“a”. Also, neutral of “x” must different from the classical unitary element. Therefore, the 
NT set is different from the classical set. Furthermore, a NT “x” is denoted by <x, neut(x), 
anti(x)>. Also, many researchers have introduced NT structures in [12-20]. 

Matthew obtained partial metric spaces in [21]. The partial metric is generalization of 
classical metric space and it plays a significant role in fixed point theory and computer 
science. Also, many researchers studied partial metric space in [22-28]. 

Branciari obtained v-generalized metric in [29]. The v- generalized metric is a specific 
form of classical metric space for its triangular inequality. The most important use of         

mailto:mesahin@gantep.edu.tr
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v-generalized metric space is fixed point theory. Furthermore, researchers studied              
v- generalized metric in [30- 34].  

In this chapter, we obtain NT partial v-generalized metric space. In section 2; we give 
definitions of NT set in [11], NT partial metric space in [17] and NT v-generalized metric 
space in [18]. In section 3, we introduce NT partial v-generalized metric space and give 
some properties and examples for NT partial v-generalized metric space. Also, we show 
that NT partial v-generalized metric space is different from the NT partial metric space and 
NT v-generalized metric space. Furthermore, we show the relationship between NT partial 
metric spaces, NT v-generalized metric space with NT partial v-generalized metric space. 
Finally, we give definition of convergent sequence, Cauchy sequence and complete space 
for NT partial v-generalized metric space. In section 4, we give conclusions. 

2. Basic and Fundamental Concepts 

 
Definition 2.1: [29] Let N be a nonempty set and d:NxN→ ℝ be a function. If d is satisfied 
the following properties, then it is called a v - generalized metric. For                                  
n, m, 𝑐1, 𝑐2, … , 𝑐𝑣 ∈ N, 

i) d(n, m) ≥ 0 and  d(n, m) = 0 ⇔ n = m;  

ii) d(n, m)= d(m, n); 

iii) d(n, m) ≤ d(n, 𝑐1)+d(𝑐1, 𝑐2)+d(𝑐2, 𝑐3)+ … + d(𝑐𝑣−1, 𝑐𝑣)+ d(𝑐𝑣, n). Where a, 𝑐1, 𝑐2, … , 
𝑐𝑣, b are all different. 

Definition 2.2:[21]Let N be a nonempty set and d:NxN→ ℝ be a function. If d is satisfied 
the following properties, then it is a partial metric. For p, r, s ∈ N, 

i) d(p, p) = d(s, s) = d(p, s) ⇔ p = s; 

ii) d(p, p) ≤ d(p, s);  

iii) d(p, s) = d(s, p); 

iv) d(p, r) ≤d(p, s)+d(s, r)-d(s, s); 

Also, (N, d) is a partial metric space. 

Definition 2.3: [11] Let # be a binary operation. (X, #) is a NT set (NTS) such   

i) There must be neutral of “x” such x#neut(x) = neut(x)#x = x, x ∈ X. 

ii) There must be anti of “x” such x#anti(x) = anti(x)#x = neut(x), x ∈ X. 

Furthermore, a NT “x” is showed with (x, neut(x), anti(x)). 
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Also, neut(x) must different from classical unitary element.  

Definition 2.4: [17] Let (M, *) be a NTS and m*n ∊ M for ⩝ m, n ∊ M. NT partial metric 
(NTPM) is a function p: M x M → ℝ+∪{0} such for every s, p, r ∈ M, 

i) p(m, n) ≥p(n, n)≥0 

ii) If 𝑝𝑁(m, m) = 𝑝𝑁(m, n) = 𝑝𝑁(n, n) = 0, then there exits at least one m, n pair such that  
m = n. 

iii) p(m, n) = p(n, m) 

iv) If there exists at least an element n∊A for each m, k ∈ M pair such that  

p(m, k)≤ p(m, k*neut(n)), then p(m, k*neut(n))≤ p(m, n) + p(n, k) - p(n, n)  

Also, ((N, *), p) is called NTPM space (NTPMS). 

Definition 2.5: [13] A NT metric on a NTS (N, *) is a function d:NxN→ ℝ such that for 
every  n, m, s ∈ N, 

i) n * m ∈ N 

ii) d(n, m) ≥ 0  

iii) If n = m, then d(n, m) = 0 

iv) d(n, m)= d(n, m) 

v) If there exists at least an element s ∊ N for each n, m ∈ N pair such that  

d(n, m) ≤ d(n, m*neut(s)), then d(n, m*neut(s)) ≤ d(n, s)+ 𝑑𝑇(s, n). 

Definiton 2.6: [18] Let (N, *) be a NTS.  A NT v- generalized metric on N is a function 
𝑑𝑣:NxN→ ℝ such that for every n, m, 𝑘1, 𝑘2, … , 𝑘𝑣 ∈ N; 

i) n*m ∈ N 

ii) 0≤ 𝑑𝑣(n, m) 

iii) if   n = m, then 𝑑𝑣(n, m) = 0  

iv) 𝑑𝑣(n, m) = 𝑑𝑣(m, n) 

v) If there exists elements n, m, 𝑘1, … , 𝑘𝑣 ∊ N such that 

 𝑑𝑣(n, m)≤ 𝑑𝑣(n, m#neut(𝑘𝑣)), 
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 𝑑𝑣(n, 𝑘2 )≤ 𝑑𝑣(n, 𝑘2#neut(𝑘1)),   

𝑑𝑣(𝑘1, 𝑘3 )≤ 𝑑𝑣(𝑘1, 𝑘3#neut(𝑘2)),  

… , 

 𝑑𝑣(𝑘𝑣−1, m)≤ 𝑑𝑣(𝑘𝑣−1, m#neut(𝑘𝑣)); 

 then  𝑑𝑣(n, m*neut(𝑘𝑣))≤  𝑑𝑣(n, 𝑘1)+ 𝑑𝑣(𝑘1, 𝑘2) + … + 𝑑𝑣(𝑘𝑣−1, 𝑘𝑣) + 𝑑𝑣(𝑘𝑣, m).  

Where n, 𝑘1, … , 𝑘𝑣, m are all different.  

Furthermore, ((N, *), 𝑑𝑣) is called NTVGM space (NTVGMS). 

3. Neutrosophic Triplet Partial v – Generalized Metric Space 
 
Definition 3.1: Let (N, *) be a NTS.  A NT partial v- generalized metric on N is a function 
𝑑𝑝𝑣:NxN→ ℝ such every n, m, 𝑘1, 𝑘2, … , 𝑘𝑣 ∈ N; 

i) n*m ∈ N 

ii) 𝑑𝑝𝑣(n, m)≥ 𝑑𝑝𝑣(n, n)≥0 

iii) If 𝑑𝑝𝑣(n, n) = 𝑑𝑝𝑣(n, m) = 𝑑𝑝𝑣(m, m) = 0, then n = m. 

iv) 𝑑𝑝𝑣(n, m) = 𝑑𝑝𝑣(m, n) 

v) If there exists elements n, m, 𝑘1, … , 𝑘𝑣 ∊ N such that 

 𝑑𝑝𝑣(n, m)≤ 𝑑𝑝𝑣(n, m*neut(𝑘𝑣)), 

 𝑑𝑝𝑣(n, 𝑘2 )≤ 𝑑𝑝𝑣(n, 𝑘2*neut(𝑘1)),   

𝑑𝑝𝑣(𝑘1, 𝑘3 )≤ 𝑑𝑝𝑣(𝑘1, 𝑘3*neut(𝑘2)),  

… , 

 𝑑𝑝𝑣(𝑘𝑣−1, m)≤ 𝑑𝑝𝑣(𝑘𝑣−1, m*neut(𝑘𝑣)); 

 then  

 𝑑𝑝𝑣(n, m*neut(𝑘𝑣))≤ 𝑑𝑝𝑣(n, 𝑘1)+ 𝑑𝑝𝑣(𝑘1, 𝑘2) + … + 𝑑𝑝𝑣(𝑘𝑣−1, 𝑘𝑣) + 𝑑𝑝𝑣(𝑘𝑣, m)-                

 [𝑑𝑝𝑣(𝑘1, 𝑘1) + 𝑑𝑝𝑣(𝑘2, 𝑘2) + … + 𝑑𝑝𝑣(𝑘𝑣, 𝑘𝑣)].  

Where n, 𝑘1, … , 𝑘𝑣, m are all different.  
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Furthermore, ((N, *), 𝑑𝑝𝑣) is called NTPVGM space (NTPVGMS). 

Furthermore, if v = k, (k∈ ℕ), then NTPVGMS is showed that NTPkGMS. For example, if 
v = 2, then NTPVGMS is showed that NTP2GMS. 

Example 3.2: Let N = {∅, {k}, {l}, {k, l}} be a set and s(M) be number of elements in M 
∈ N. Also, we can take neut(M)= M, anti(M)=M for all M ∈ N since M∪M = M, for         
M ∈ N. Furthermore, (N, ∪) is a NTS. Then, we take that 𝑑𝑝𝑣: NxN→N is a function such 
that 𝑑𝑝𝑣(S, K)= 2max {𝑠(𝑆),𝑠(𝐾)}. 

Now we show that 𝑑𝑝𝑣 is a NTPVGM. 

i) S ∪ K ∈ N for S, K ∈ N. 

ii) 𝑑𝑝𝑣(S, K)= 2max {𝑠(𝑆),𝑠(𝐾)} ≥ 2max {𝑠(𝑆),𝑠(𝑆)} ≥ 0 

iii) There are not any elements S, K such that 𝑑𝑝𝑣(S, K) = 𝑑𝑝𝑣(S, S) = 𝑑𝑝𝑣(K, K) = 0                               

 iv) 𝑑𝑃𝑣(S, K) =  2max {𝑠(𝑆),𝑠(𝐾)} = 2max {𝑠(𝐾),𝑠(𝑆)} = 𝑑𝑝𝑣(K, S) 

v) 

a) 𝑑𝑝𝑣({l}, {k, l})≤ 𝑑𝑝𝑣({l}, {k, l}∪ {k} ) and  𝑑𝑝𝑣({l, k}, ∅) ≤ 𝑑𝑝𝑣({l, k}, ∅ ∪ {1}). 
Also,  

𝑑𝑝𝑣({l}, {k, l}) = 22 = 4, 𝑑𝑝𝑣({l}, {k}) = 21 = 2, 𝑑𝑝𝑣({k}, ∅) = 21 = 2, 

 𝑑𝑝𝑣(∅, {1, k}) = 22 = 4. Thus,  

𝑑𝑝𝑣({l}, {k, l}∪{k})≤ 

𝑑𝑝𝑣({l}, {k})+𝑑𝑝𝑣({k}, ∅)+𝑑𝑝𝑣(∅, {1, k})- 𝑑𝑝𝑣({k}, {k})-𝑑𝑝𝑣({1}, {1}). 

b) 𝑑𝑝𝑣({l}, {k})≤ 𝑑𝑝𝑣({l}, {k}∪ {k, 1}) and  𝑑𝑝𝑣({ k}, ∅) ≤ 𝑑𝑝𝑣({k}, ∅ ∪ {1}). Also,  

𝑑𝑝𝑣({l}, {k}) = 21 = 2, 𝑑𝑝𝑣({l}, {k, 1}) = 22 = 4, 𝑑𝑝𝑣({k, 1}, ∅) = 22 = 4,  

𝑑𝑝𝑣(∅, {k})= 21 = 2. Thus,  

𝑑𝑝𝑣({l}, {k}∪ {k,1})≤ 

𝑑𝑝𝑣({l}, {k,1})+𝑑𝑝𝑣({k,1}, ∅)+𝑑𝑝𝑣(∅, {k})- 𝑑𝑝𝑣({k, 1}, {k,1})-𝑑𝑝𝑣({1}, {1}). 

c) 𝑑𝑝𝑣({l}, ∅)≤ 𝑑𝑝𝑣({l}, ∅ ∪ {k, 1}) and  𝑑𝑝𝑣(∅, { k}) ≤ 𝑑𝑝𝑣(∅, { k}∪ {1}). Also,  
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𝑑𝑝𝑣 ({l}, ∅ ∪ {k, 1}) = 22  = 4, 𝑑𝑝𝑣 ({l}, {k, 1}) = 22  = 4, 𝑑𝑝𝑣 ({k, 1}, {k}) = 22  = 4, 
𝑑𝑝𝑣({k}, {1})= 21 = 2. Thus,  

𝑑𝑝𝑣({l}, ∅ ∪ {k, 1}) ≤  

𝑑𝑝𝑣({l}, {k,1})+𝑑𝑝𝑣({k,1}, ∅)+𝑑𝑝𝑣(∅, {k})- 𝑑𝑝𝑣({k, 1}, {k,1})-𝑑𝑝𝑣({1}, {1}). 

d) 𝑑𝑝𝑣({k}, ∅)≤ 𝑑𝑝𝑣({k}, ∅ ∪ {k, 1}) and  𝑑𝑝𝑣(∅, {l}) ≤ 𝑑𝑝𝑣(∅, { l}∪ {k}). Also,  

𝑑𝑝𝑣({k}, ∅ ∪ {k, 1}) = 22 = 4, 𝑑𝑝𝑣({k}, {k, 1}) = 22 = 4, 𝑑𝑝𝑣({k, 1}, ∅) = 22 = 4,  

𝑑𝑝𝑣(∅, {k})= 21 = 2. Thus,  

𝑑𝑝𝑣({k}, ∅ ∪  {k, 1}) ≤  

𝑑𝑝𝑣({k}, {k, 1})+𝑑𝑝𝑣({k,1}, ∅)+𝑑𝑝𝑣(∅, {k})- 𝑑𝑝𝑣({k, 1}, {k,1})-𝑑𝑝𝑣({k}, {k}). 

e) 𝑑𝑝𝑣({1, k}, ∅)≤ 𝑑𝑝𝑣({1, k}, ∅ ∪ {k}) and  𝑑𝑝𝑣(∅, {l, k}) ≤ 𝑑𝑝𝑣(∅, {l, k}∪ {l}). Also,  

𝑑𝑝𝑣({1, k}, ∅ ∪ {k}) = 22 = 4, 𝑑𝑝𝑣({1, k}, {k}) = 22 = 4, 𝑑𝑝𝑣({k}, {1}) = 21 = 2,  

𝑑𝑝𝑣({1}, ∅) = 21 = 2. Thus,  

𝑑𝑝𝑣({1, k}, ∅ ∪  {k}) ≤  

𝑑𝑝𝑣({1, k}, {k})+𝑑𝑝𝑣({k}, {1})+𝑑𝑝𝑣({1}, ∅)- 𝑑𝑝𝑣({k}, {k})-𝑑𝑝𝑣({1}, {1}). 

f) 𝑑𝑝𝑣({k}, {1, k})≤ 𝑑𝑝𝑣({k}, {1, k} ∪ {1}) and 𝑑𝑝𝑣({l, k}, ∅) ≤ 𝑑𝑝𝑣({l, k}, ∅ ∪ {k}). 
Also,  

𝑑𝑝𝑣({k}, {1, k} ∪ {1}) = 22 = 4, 𝑑𝑝𝑣({ k}, {1}) = 21 = 2, 𝑑𝑝𝑣({1}, ∅) = 21 = 2,   

𝑑𝑝𝑣({∅, {1,k}) = 22 = 4. Thus,  

𝑑𝑝𝑣({k}, {1, k}  ∪  {1}) ≤  

𝑑𝑝𝑣({ k}, {1}) +𝑑𝑝𝑣({1}, ∅)+𝑑𝑝𝑣({∅, {1,k}) - 𝑑𝑝𝑣({1}, {1})-𝑑𝑝𝑣({k}, {k}). 

Hence, (X), ∪), 𝑑𝑝𝑣 ) is a NT2GMS. 

Corollary 3.3: NTPVGMS is different from the partial metric space and NTPMS, since 
for triangle inequality and * binary operation. 

Corollary 3.4: The NTPVGMS is different from NTVMS since for triangle inequality and 
condition iii in Definition 3.1.  
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Theorem 3.5: In Definition 3.1, if it is taken such that  𝑘1 = 𝑘2 = … = 𝑘𝑣, and 𝑑𝑝𝑣(n, n)  = 
0, then each NTPVGMS is a NTVGMS. 

Proof: Let ((X, #), 𝑑𝑝𝑣) be a NTPVGMS.  

i) a#b ∈ X since ((X, #), 𝑑𝑝𝑣) is a NTPVGMS. 

ii) 0≤ 𝑑𝑝𝑣(n, m) since ((X, #), 𝑑𝑝𝑣) is a NTPVGMS. 

iii) If   n = m, then 𝑑𝑝𝑣(n, m) = 0; because 𝑑𝑝𝑣(n, n) = 0 

iv) 𝑑𝑣(n, m) = 𝑑𝑣(m, n) since ((X, #), 𝑑𝑝𝑣) is a NTPVGMS. 

v) From Definition 3.1,  

If there exists elements n, m, 𝑘1, … , 𝑘𝑣 ∊ N such that 

 𝑑𝑝𝑣(n, m)≤ 𝑑𝑝𝑣(n, m#neut(𝑘𝑣)), 

 𝑑𝑝𝑣(n, 𝑘2 )≤ 𝑑𝑝𝑣(n, 𝑘2#neut(𝑘1)),   

𝑑𝑝𝑣(𝑘1, 𝑘3 )≤ 𝑑𝑝𝑣(𝑘1, 𝑘3#neut(𝑘2)),  

… , 

 𝑑𝑝𝑣(𝑘𝑣−1, m)≤ 𝑑𝑝𝑣(𝑘𝑣−1, m#neut(𝑘𝑣)); 

 Then,  

 𝑑𝑝𝑣(n, m*neut(𝑘𝑣)) ≤  

𝑑𝑝𝑣(n, 𝑘1)+ 𝑑𝑝𝑣(𝑘1, 𝑘2) + … + 𝑑𝑝𝑣(𝑘𝑣−1, 𝑘𝑣) + 𝑑𝑝𝑣(𝑘𝑣, m) -                

 [𝑑𝑝𝑣(𝑘1, 𝑘1) + 𝑑𝑝𝑣(𝑘2, 𝑘2) + … + 𝑑𝑝𝑣(𝑘𝑣, 𝑘𝑣)]                                                                 (1) 

Then we take 𝑘1 = 𝑘2 = … = 𝑘𝑣, and 𝑑𝑝𝑣(n, n)  = 0 in (1). Thus, for a, b, 𝑢1∊ X, 

𝑑𝑝𝑣(n, m) ≤ 𝑑𝑝𝑣(n, m#neut(𝑘1)) 

𝑑𝑝𝑣(n, 𝑘1 )≤ 𝑑𝑝𝑣(n, 𝑘1#neut(𝑘1)),   

𝑑𝑝𝑣(𝑘1, 𝑘1 )≤ 𝑑𝑝𝑣(𝑘1, 𝑘1#neut(𝑘1)),  

… , 
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 𝑑𝑝𝑣(𝑘1, m)≤ 𝑑𝑝𝑣(𝑘1, m#neut(𝑘1)); 

then  

𝑑𝑝𝑣(n, m*neut(𝑘𝑣)) = 𝑑𝑝𝑣(n, m*neut(𝑘1)) ≤  

 𝑑𝑝𝑣(n, 𝑘1)+ 𝑑𝑝𝑣(𝑘1, 𝑘1) + … + 𝑑𝑝𝑣(𝑘1, 𝑘1) + 𝑑𝑝𝑣(𝑘1,m) – 

 [𝑑𝑝𝑣(𝑘1, 𝑘1)  + 𝑑𝑝𝑣(𝑘1, 𝑘1)  + … + 𝑑𝑝𝑣(𝑘1, 𝑘1) ] = 𝑑𝑝𝑣(n, 𝑘1)+ 0 + 𝑑𝑝𝑣(𝑘1,m) – 0 = 

 𝑑𝑝𝑣(n, 𝑘1) + 𝑑𝑝𝑣(𝑘1,n). 

Therefore, (𝑋, #), 𝑑𝑣) is a NTVGMS.  

Corollary 3.6: In Theorem 3.5, we can define a NTP1GMS with each NTVGMS. Also, 
from Theorem 3.5, each NTVGMS is a NTP1GMS. 

Theorem 3.7: Let ((X, #), 𝑑) be a NTVGMS and 𝑑𝑣 be a function such that 

 𝑑𝑝𝑣(n, m) = d(n,  m) + k (k ∈ ℝ+). Then ((X, #), 𝑑𝑝𝑣) is a NTPVGMS. 

Proof: 

We take 𝑑𝑝𝑣(n, m) = d(n,  m) + k. Where, 𝑑𝑝𝑣(n, n) = d(n, n) + k = k since ((X, #), 𝑑) is a 
NTVGMS.  

 i) It clear that a#b ∈ X since ((X, #), 𝑑) is a NTVGMS. 

ii) 𝑑𝑝𝑣(n, m) = d(n, m) + k≥ 𝑑𝑝𝑣(n, n) = k ≥ 0 since ((X, #), 𝑑) is a NTVGMS. 

iii) There is not any pair of element n, m such that   

𝑑𝑝𝑣(n, m) = d(n, m) + k =  𝑑𝑝𝑣(n, n) = k =  𝑑𝑝𝑣(m, m) = k = 0. Because, k ∈ ℝ+. 

iv) 𝑑𝑝𝑣(n, m) = d(n, m) + k = d(m, n) + k = 𝑑𝑝𝑣(m, n) 

v) In Definition 2.6, If there exists elements n, m, 𝑘1, … , 𝑘𝑣 ∊ X such that 

 d(n, m)≤ d(n, m#neut(𝑘𝑣)), 

 d(n, 𝑘2 )≤ d(n, 𝑘2#neut(𝑘1)),   

 d(𝑘1, 𝑘3 )≤ d(𝑘1, 𝑘3#neut(𝑘2)),  

… , 

 d(𝑘𝑣−1, m)≤ d(𝑘𝑣−1, m#neut(𝑘𝑣)); 
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 then  

 d(n, m*neut(𝑘𝑣))≤ 

d(n, 𝑘1)+d(𝑘1, 𝑘2)+ … +d(𝑘𝑣−1, 𝑘𝑣)+d(𝑘𝑣, m)                                                                   (2) 

As 𝑑𝑝𝑣(n, m) = d(n, m) + k, we can take in (2), 

𝑑𝑝𝑣(n, m) = d(n, m) + k ≤ 𝑑𝑝𝑣(n, m#neut(𝑘𝑣)) = d(n, m#neut(𝑘𝑣)) + k, 

 𝑑𝑝𝑣(n, 𝑘2 ) = d(n, 𝑘2 ) + k ≤ 𝑑𝑝𝑣(n, 𝑘2#neut(𝑘1)) =  d(n, 𝑘2#neut(𝑘1)) + k 

𝑑𝑝𝑣(𝑘1, 𝑘3 ) = d(𝑘1, 𝑘3) + k ≤ 𝑑𝑝𝑣(𝑘1, 𝑘3#neut(𝑘2)) = d(𝑘1, 𝑘3#neut(𝑘2)) + k,  

… , 

 𝑑𝑝𝑣(𝑘𝑣−1, m) = d(𝑘𝑣−1, m) + k ≤ 𝑑𝑝𝑣(𝑘𝑣−1, m#neut(𝑘𝑣)) = d(𝑘𝑣−1, m#neut(𝑘𝑣)) + k; 

 then  

 𝑑𝑝𝑣 (n, m*neut(𝑘𝑣 )) = d(n, m*neut(𝑘𝑣 )) + k ≤  d(n, 𝑘1 )+ k + d(𝑘1 , 𝑢2 ) +k + … +         
d(𝑘𝑣−1, 𝑘𝑣) +k + d(𝑘𝑣, m) +k. Thus, 

𝑑𝑝𝑣(n, m*neut(𝑘𝑣)) = d(n, m*neut(𝑘𝑣)) + k ≤   

d(n, 𝑘1)+ d(𝑘1, 𝑘2) + … + d(𝑘𝑣−1, 𝑘𝑣) +  d(𝑘𝑣, m)-v.k. Therefore, 

𝑑𝑝𝑣(n, m*neut(𝑘𝑣))≤ 𝑑𝑝𝑣(n, 𝑘1)+ 𝑑𝑝𝑣(𝑘1, 𝑘2) + … + 𝑑𝑝𝑣(𝑘𝑣−1, 𝑘𝑣) + 𝑑𝑝𝑣(𝑘𝑣, m)-             

[𝑑𝑝𝑣(𝑘1, 𝑘1) + 𝑑𝑝𝑣(𝑘2, 𝑘2) + … + 𝑑𝑝𝑣(𝑘𝑣, 𝑘𝑣)] since 𝑑𝑣(n, n) = k for all n ∈ X. 

Corollary 3.8: In Theorem 3.7, we can define a NTPVGMS with each NTVGMS.  

Definition 3.9: Let ((X, #), 𝑑𝑣) be a NTPVGMS and {𝑥𝑛} be a sequence in NTPVGMS 
and m ∊ X. If there exist N ∊ ℕ for every ε>0 such that 

𝑑𝑣(m, {𝑥𝑛}) < ε + 𝑑𝑣(m, m), 

then {𝑥𝑛} converges to m. where n ≥M. Also, it is showed that    

lim
𝑛→∞

𝑥𝑛= m or 𝑥𝑛→ m. 

Definition 3.10: Let ((X, #), 𝑑𝑣) be a NTPVGMS and {𝑥𝑛} be a sequence in NTPVGMS. 
If there exist a N ∊ ℕ for every ε>0 such that 
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𝑑𝑣({𝑥𝑚}, {𝑥𝑛})< ε + 𝑑𝑣(m, m), 

then {𝑥𝑛} is a Cauchy sequence in NTPVGMS. Where, n ≥m≥M and m ∈ X. 

Definition 3.11: Let ((X, #), 𝑑𝑣) be a NTPVGMS and {𝑥𝑛} be a sequence in NTPVGMS. 
If there exist N ∊ ℕ for every ε>0 such that 

𝑑𝑣({𝑥𝑛}, {𝑥𝑛+1+𝑗𝑘})< ε + 𝑑𝑣(m, m),    (j = 0, 1, 2, …) 

then { 𝑥𝑛} is a k - Cauchy sequence in NTPVGMS. Where, k ∊ ℕ and m ∈ X. 

Definition 3.12: Let ((X, #), 𝑑𝑣 ) be a NTPVGMS and {𝑥𝑛} be Cauchy sequence in 

NTPVGMS. NTPVGMS is complete ⇔ every {𝑥𝑛} converges in NTPVGMS.  

Definition 3.13: Let ((X, #), 𝑑𝑣) be a NTPVGMS and {𝑥𝑛} be k - Cauchy sequence in 

NTPVGMS. NTPVGMS is k - complete ⇔ every {𝑥𝑛} converges in NTPVGMS. 

Conclusions 
In this chapter, we obtained NTPVGMS. We also show that NTPVGMS is different from 
the NTVGMS and NTPMS. Also, we defined complete space and k-complete space for 
NTPIPS. Thus, we have added a new structure to NT structure and we gave rise to a new 
field or research called NTPIPS. Also, thanks to NTPIPS researcher can obtain new 
structure and properties. For example, NT partial v – generalized normed space, NT partial 
v – generalized inner product space and fixed point theorems for NTVGMS. 

Abbreviations 
NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTM: Neutrosophic triplet metric 

NTMS: Neutrosophic triplet metric space 

NTPM: Neutrosophic triplet partial metric 

NTPMS: Neutrosophic triplet partial metric space 

NTVGM: Neutrosophic triplet v-generalized metric  

NTVGMS: Neutrosophic triplet v-generalized metric space 

NTPVGM: Neutrosophic triplet partial v-generalized metric  

NTPVGMS: Neutrosophic triplet partial v-generalized metric space 
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Abstract  

In this chapter, neutrosophic triplet(NT) R-module is presented and the properties of NT R-module 
are studied. Additionaly, we conclude that the NT R-module is different from the classical R-
module. Then, we compared NT R-module  with the NT vector space and NT G – module as well. 

Keywords: NT vector space, NT G – module, NT R – module 

 

     1. Introduction 

In 1980, Smarandache presented neutrosophy which is a part of philosophy. Neutrosophy 
depends on neutrosophic logic, probability and set in [1]. Neutrosophic logic is a general 
concept of some logics such as fuzzy logic that is presented by Zadeh in [2] and 
intuitionistic fuzzy logic that is presented by Atanassov in [3]. Fuzzy set has the function 
of membership but intuitionistic fuzzy set has the function of membership and function of 
non-membership and they don’t describe the indeterminancy states. However; 
neutrosophic set includes these all functions. A lot of researchers have studied the concept 
of neutrosophic theory and its application to multi-criteria decision making problems in [4-
11]. Sahin M., and Kargın A., investigated NT metric space and NT normed space in [12]. 
Lately, Olgun at al.  introduced the neutrosophic module in [13]; Şahin at al. presented 
Neutrosophic soft lattices in [14]; soft normed rings in [15]; centroid single valued 
neutrosophic triangular number and its applications in [16]; centroid single valued 
neutrosophic number and its applications in [17].  Ji at al. searched multi – valued 
neutrosophic environments and its applications in [18]. Also, Smarandache at al. searched 
NT theory in [19] and NT groups in [20, 21]. A NT has a form <m, neut(m), anti(m)> 
where; neut(m) is neutral of “m” and anti(m) is opposite of “m”. Moreover, neut(m) is 
different from the classical unitary element and NT group is different from the classical 
group as well. Lately, Smarandache at al. investigated the NT field [22] and the NT ring 
[23]. Şahin at al. presented NT metric space, NT vector space and NT normed space in 
[24] and NT inner product in [25]. Smarandache at al. searched NT G- Module in [26]. Bal 
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at al. searched NT cosets and quotient groups in [27]. Şahin at al. presented fixed point 
theorem for NT partial metric space and Neutrosophic triplet v – generalized metric space 
in [28-29] and Çelik at al. searched fundamental homomorphism theorems for NETGs in 
[30]. 

The concept of an R – module over a ring is a stereotype of the notion of vector space, 
where the corresponding scalars are allowed to lie in an arbitrary ring.  As the basic 
structure of the abelian ring can significantly be more complex and displeasing than the 
structure of a field, the theory of modules are much more complex than the structure of a 
vector space. Lately, Ai at al. defined the irreducible modules and fusion rules for 
parafermion vertex operator algebras in [31] and Creutzig at al. introduced Braided tensor 
categories of admissible modules for affine lie algebras in [32]. 

In this work, we study the concept of NT R-Modules. So we obtain a new algebraic 
structures on NT groups and NT ring. In section 2, we give basic definitions of NT sets, 
NT groups, NT ring, NT vector space and NT G-modules. In section 3, we define NT R-
module and we present some properties of a NT R-module. We point out that NT R-
module is different from the classical R-module. Also, we define NT R-module 
homomorphism and NT coset for NT R – module. Additionally, we describe NT quotient 
R – module. Finally, we give some results in section 4. 

2. Preliminaries 

Definition 2.1: [21] Let 𝑁 be a set together with a binary operation 𝛻. Then, 𝑁 is called a 
NT set if for any 𝑘 ∈  𝑁 there exists a neutral of “𝑘” called 𝑛𝑒𝑢𝑡(𝑘) that is different from 
the classical algebraic unitary element and an opposite of “𝑘” called 𝑎𝑛𝑡𝑖(𝑘) with 𝑛𝑒𝑢𝑡(𝑘) 
and 𝑎𝑛𝑡𝑖(𝑘) belonging to 𝑁, such that 

𝑘 𝛻 𝑛𝑒𝑢𝑡(𝑘)  =  𝑛𝑒𝑢𝑡(𝑘) 𝛻 𝑘 =  𝑘, 

and 

𝑘 𝛻 𝑎𝑛𝑡𝑖(𝑘)  =  𝑎𝑛𝑡𝑖(𝑘) 𝛻 𝑘 =  𝑛𝑒𝑢𝑡(𝑘). 

Definition 2.2: [21] Let (𝑁, 𝛻) be a NT set. Then, 𝑁 is called a NT group if the following 
conditions hold. 

(1) If (𝑁, 𝛻) is well-defined, i.e., for any 𝑘, 𝑙 ∈  𝑁, one has 𝑘 𝛻 𝑙 ∈  𝑁. 

(2) If (𝑁, 𝛻) is associative, i.e., (𝑘 𝛻 𝑙)𝛻𝑚 =  𝑘 𝛻 (𝑙 𝛻 𝑚) for all 𝑘, 𝑙,𝑚 ∈  𝑁. 
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Definition 2.3: [24] Let (𝑁𝑇𝐹, 𝛻1, ∎1) be a NT field, and let  (𝑁𝑇𝑉, 𝛻2, ∎2)  be a NT set 
together with binary operations “𝛻2” and “∎2”. Then (𝑁𝑇𝑉, 𝛻2, ∎2)   is called a NT vector 
space if the following conditions hold. For all 𝑝, 𝑟 ∈  𝑁𝑇𝑉, and for all 𝑡 ∈  𝑁𝑇𝐹, such that 
𝑝𝛻2𝑟 ∈  𝑁𝑇𝑉 and 𝑝∎2𝑡 ∈  𝑁𝑇𝑉 [24]; 

(1) (𝑝𝛻2𝑟) 𝛻2𝑠 =  𝑝𝛻2 (𝑟𝛻2𝑠);  𝑝, 𝑟, 𝑠 ∈  𝑁𝑇𝑉; 

(2) 𝑝𝛻2𝑟 =  𝑟𝛻2𝑝;  𝑝, 𝑟 ∈  𝑁𝑇𝑉; 

(3) (𝑟𝛻2𝑝) ∎2𝑡 =  (𝑟∎2𝑡) 𝛻2(𝑝∎2𝑡);  𝑡 ∈  𝑁𝑇𝐹 𝑎𝑛𝑑 𝑝, 𝑟 ∈  𝑁𝑇𝑉; 

(4) (𝑡𝛻1𝑐) ∎2𝑝 =  (𝑡∎2𝑝) 𝛻1(𝑐∎2𝑝);  𝑡, 𝑐 ∈  𝑁𝑇𝐹 𝑎𝑛𝑑 𝑝 ∈  𝑁𝑇𝑉; 

(5) (𝑡∎1𝑐) ∎2𝑝 =  𝑡∎1(𝑐∎2𝑝);  𝑡, 𝑐 ∈  𝑁𝑇𝐹 𝑎𝑛𝑑 𝑝 ∈  𝑁𝑇𝑉; 

(6) There exists any 𝑡 ∈  𝑁𝑇𝐹 ∍  𝑝∎2𝑛𝑒𝑢𝑡(𝑡)  =  𝑛𝑒𝑢𝑡(𝑡) ∎2𝑝 =  𝑝;  𝑝 ∈  𝑁𝑇𝑉. 

 

Definition 2.4: [26] Let (𝐺, 𝛻) be a NT group, (𝑁𝑇𝑉, 𝛻1, ∎1)  be a NT vector space on a 
NT field (𝑁𝑇𝐹, 𝛻2, ∎2), and   𝘨 𝛻 𝑙 𝜖 𝑁𝑇𝑉 for 𝘨 𝜖 𝐺, 𝑙 𝜖 𝑁𝑇𝑉. If the following conditions 
are satisfied, then (𝑁𝑇𝑉, 𝛻1, ∎1)   is called NT G-module. 

(a) Thereexists 𝘨 ∈  𝐺 ∍  𝑘 ∗ 𝑛𝑒𝑢𝑡(𝘨) =  𝑛𝑒𝑢𝑡(𝘨) ∗ 𝑘 =

 𝑘 , for every 𝑘 ∈  𝑁𝑇𝑉; 

(b) 𝑙𝛻1(𝘨𝛻1ℎ)  =  (𝑙𝛻1𝘨) 𝛻1ℎ,    ∀ 𝑙 ∈  𝑁𝑇𝑉;  𝘨, ℎ ∈  𝐺; 

(c) (𝑟1∎1𝑠1𝛻1𝑟2 ∎1𝑠2)𝛻𝘨 =
 𝑥∎1 (ℎ𝛻𝘨)𝛻1𝑦∎1 (𝑙𝛻𝘨), ∀ 𝑥, 𝑦 𝜖 𝑁𝑇𝐹;  ℎ, 𝑙𝜖 𝑁𝑇𝑉;  𝘨 𝜖 𝐺. 

Definition 2.5: [23] The NT ring is a set endowed with two binary laws (𝑀,∗, #) such that, 

a) (𝑀,∗) is a abelian NT group; which means that: 

● (𝑀,∗) is a commutative NT with respect to the law * (i.e. if x belongs to M, then 
𝑛𝑒𝑢𝑡(𝑥) and 𝑎𝑛𝑡𝑖(𝑥), defined with respect to the law *, also belong to M) 

● The law * is well – defined, associative, and commutative on 𝑀 (as in the classical 
sense); 

b) (𝑀,∗) is a set such that the law # on M is well-defined and associative (as in the 
classical sense); 

c) The law is distributive with respect to the law * (as in the classical sense)  
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3. Neutrosophic Triplet R-Module 
In this section, we define the NT R-module, NT R-submodule, NT cosets, NT quotient R-
module, and NT R-module homomorphism. Then, we point out that NT R-module has 
more properties than the classical R – module. 

Definition 3.1: Let (NTR,𝛻, ∎) be a  commutative NT ring  and let  (NTM, ∗) be a NT 
abelian group and ° be a binary operation such that  °: NTR x NTM→ NTM. Then (NTM, 
∗, °) is called a NT R-Module on (NTR,𝛻,∎) if the following conditions are satisfied. 
where,  

1) p °(r∗s) =( p °r)∗ (p °s), ∀ r, s ∈ NTM and p ∈ NTR.  

2) (p𝛻k)°r = (p𝛻r)°(k𝛻r), ∀ p, k ∈ NTR  and  ∀ r ∈ NTM 

3) (p∎k)°r = p∎(k°r),  ∀ r, s ∈ NTR  and  ∀ m ∈ NTM  

4) For all m ∈ NTM; there exists at least a c ∈ NTR such that m°neut(c)= neut(c)°m = m. 
Where, neut(c) is neutral element of c for ∎. 

Example 3.2: Let A={x, y} be a set and P(A)={ ∅, {x}, {y}, {x, y}} be power set of  A. 
Hence, from Definition 2.2, (P(A), ∪) is a NT commutative group such that for neut(B)= 
B, anti(B)= B. Also, from Definition 2.5, (P(A), ∪, ∩) is a NT ring since for neut(B)= B, 
anti(B)= B for “∪, ∩”. Now, we show that (P(A), ∪, ∩) is a NT ring on (P(B), ∪, ∩). 
Where, it is clear that ∪ is a binary operation such that                ∩: P(B) x P(B)→ P(B) 

1) It is clear that K∩(L∪M) = (K∩L)∪(K∩M), for all ;K, L, M ∈ P(A) 

2) It is clear that (K∪L)∩M= (K∩M)∪(L∩M), for all K, L, M ∈ P(A). 

3) (K∩L)∩M= K∩(L∩M) for all K, L, M ∈ P(A) . 

4) For all B∈ P(A); such that B ∩neut(B)=neut(B) ∩B=B, there exist neut(B)= B ∈ P(A). 

 Therefore, (P(A), ∪, ∩) is a neutrosophic triplet R-module on (P(A), ∪, ∩). 

Corollary 3.3: In condition 4) of Definition 3.1, neut(c) need not be unique. Thus, NT R-
Module is generally different from the classical R-Module. 

Corollary 3.4: From Definition 3.1 and Definition 2.3, a NT vector space is a NT R-
module, But a NT R-module is not generally a NT vector space. 

Note 3.5: Let (NTR,𝛻, ∎) be a  commutative NT ring. In this paper, we define 𝑛𝑒𝑢𝑡𝛻(a) is 
neutral element of a for binary operation 𝛻, 

𝑎𝑛𝑡𝑖𝛻(a) is anti element of a for binary operation 𝛻. Also, 

𝑛𝑒𝑢𝑡∎(a) is neutral element of a for binary operation ∎, 

𝑎𝑛𝑡𝑖∎(a) is anti element of a for binary operation ∎. 
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Proposition 3.6: Let (NTM, ∗, °) be  a NT R-Module on NT ring (NTR,𝛻,∎). Then, for all 
m ∈ NTM and c ∈ NTR, there exists at least a n ∈ NTM such that                           

  𝑛𝑒𝑢𝑡𝛻(c)°m = 𝑛𝑒𝑢𝑡𝛻(n),    

Proof: From properties of NT gorup, it is clear that 

 𝑛𝑒𝑢𝑡𝛻(c)°m = (𝑛𝑒𝑢𝑡𝛻(c)𝛻 𝑛𝑒𝑢𝑡𝛻(c)) °m                                                                           (1) 

Also, from Definition 3.1,  

𝑛𝑒𝑢𝑡𝛻(c)°m = (𝑛𝑒𝑢𝑡𝛻(c)𝛻 𝑛𝑒𝑢𝑡𝛻(c)) °m = (𝑛𝑒𝑢𝑡𝛻(c) °m) 𝛻 (𝑛𝑒𝑢𝑡𝛻(c) °m)                      (2) 

Furthermore, from Definition 3.1, it is clear that 

𝑛𝑒𝑢𝑡𝛻(c)°m ∈ NTM                                                                                                          (3) 

From 3), we take 𝑛𝑒𝑢𝑡𝛻(c)°m = n. Thus, from (2), there exists at least a n∈ NTM such that 
n = n𝛻n. Therefore, n = 𝑛𝑒𝑢𝑡𝛻(n). Then we obtain 𝑛𝑒𝑢𝑡𝛻(c)°m = 𝑛𝑒𝑢𝑡𝛻(n). 

Definition 3.7: Let (NTM, ∗, °) be  a NT R-Module on NT ring (NTR,𝛻,∎) and NTSM ⊂ 
NTM. Then (NTSM, ∗, °) is called NT R - submodule of (NTM, ∗, °), if (NTSM, ∗, °) is a 
NT R – module on NT ring (NTR,𝛻,∎).  

Example 3.8: In example 3.2, for P(A)={ ∅, {x}, {y}, {x, y}}, (P(A), ∪, ∩) is a NT R-
module on NT ring (P(A), ∪, ∩). Also, S = {∅, {x}} ⊂ P(A) and it is clear that    (S, ∪, ∩) 
is a NT R-module on (P(A), ∪, ∩). Thus, (S, ∪, ∩) is a NT R-submodule of (P(A), ∪, ∩). 

Theorem 3.9: Let (NTM, ∗, °) be  a NT R-Module on NT ring (NTR,𝛻,∎) and NTSM be a 
NT subgroup of NTM. Then, (NTSM, ∗, °) is a NT R-submodule of (NTM, ∗, °) if and 
only if the following conditions hold. 

i) NTSM ≠ ∅ 

ii)For x, y ∈ NTSM,  m, n ∈ NTR; (x°m) * (y°n) ∈ NTSM 

Proof: (⇒) If NTSM is a NT R-submodule of (NTM, ∗ , °), from Definition 3.1 and 
definition 3.6, i) and ii) are hold. 

 (⇐)If condition ii) is hold, then we can take °: NTR x NTSM→ NTSM. Also, NTS 
is satisfied the condition of Definition 3.1 since NTSM is a NT subgroup of NTM and 
from i). Thus, (NTSM, ∗, °) is a NT R-submodule of (NTM, ∗, °). 

Theorem 3.10: Let (NTM, ∗, °) be  a NT R-Module on NT ring (NTR,𝛻,∎). Then, (NTM, 
∗, °) is a NT R-module on (NTM, ∗, °), if and only if the following conditions are satisfied. 

1) m°s ∈ NTM 

2) c °(m∗s) =( c °x)∗ (c °s), for all  m, s, c∈ NTM  

3) (c∗t)°m = (c°m)∗(t°m), for all c, t, m ∈ NTM 
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4) (c°t)°m = c°(t°m) for all for all c, t, m ∈ NTM  

5) ∀ m ∈ NTM; there exists at least a s ∈ NTR such that m°neut(s)= neut(s)°m = m. 
Where, neut(s) is neutral element of s for °. 

 Proof: (⇒)We assume that (NTM, ∗, °) is a NT R-module on (NTM, ∗, °). Thus, (NTM, ∗, 
°) is NT ring and we can we take 𝛻 = *, ∎ = ° and       NTM = NTR. Also, from Definition 
3.1, it is clear that (NTM, ∗, °) satisfies the conditions 1, 2, 3, 4 and 5. 

 (⇐) We assume that conditions 1, 2, 3, 4 and 5 are hold. As (NTM, ∗, °) is a NT R-
module, it is clear that (NTM, ∗) is a abelian NT group. As conditions 1 is hold, we can 
take ° : NTM→ NTM. Also, (NTM, ∗ , °) is a NT ring from    definition 2. 5  since 
conditions 1, 2, 3, 4 are hold. Then, if  we take 𝛻 = *, ∎ = °, from Definition 3.1,  (NTM, 
∗, °) is a NT R-module on (NTM, ∗, °). 

Corollary 3.11: Let (NTM, ∗, °) be  a NT R-Module on NT ring (NTR,𝛻,∎). Then, (NTM, 
∗, °) is a NT R-module on (NTM, ∗, °), if and only if the following conditions are satisfied. 

1) (NTM, ∗, °) is  a NT ring. 

2) For all m ∈ NTM; there exists at least a c ∈ NTR such that m°neut(c) = neut(c)°m = m. 
Where, neut(c) is neutral element of c for °. 

Proof: (NTM, ∗) is a abelian NT group since (NTM, ∗, °) be  a NT R-Module. So, in 
Theorem 3.8, conditions 1, 2, 3, 4 are conditions of NT ring. Also, condition 2) is equal 
conditions 5) in Theorem 3.9. Thus, from Theorem 3.9 the proof is clear. 

Definition 3.12: Let (NTM, ∗, °) be  a NT R-module on NT ring (NTR,𝛻,∎) and Let 
(NTSM, ∗, °) be  a NT R-submodule of  (NTM, ∗, °). The NT cosets of (NTSM, ∗, °) in 
(NTM, ∗, °) are denoted by 

 m*NTSM, for all m ∊ NTM. 

Also, for m*NTSM and n*NTSM cosets of (NTSM, ∗, °) in (NTM, ∗, °), 

 (m*NTSM) * (n*NTSM) = (m*n)*NTSM 

Definition 3.13: Let (NTM, ∗, °) be  a NT R-module on NT ring (NTR,𝛻,∎) and Let 
(NTSM, ∗, °) be  a NT R-submodule of  (NTM, ∗, °). The NT quotient R-module of (NTM, 
∗, °) is denoted by (NTM, ∗, °)/(NTSM, ∗, °) such that 

 (NTM, ∗, °)/(NTSM, ∗, °) = {m*NTSM: m ∊ NTM} 

Where, it is clear that NTM/NTSM is a set of NT cosets of (NTSM, ∗, °) in (NTM, ∗, °). 

Example 3.14: In Example 3.2, for P(A) = { ∅, {x}, {y}, {x, y}}, (P(A), ∪, ∩) is a NT R-
module on NT ring (P(A), ∪, ∩). Also, S = {∅, {x}} ⊂ P(A) and (S, ∪, ∩) is a NT R-
submodule of (P(A), ∪, ∩). Now, we give NT cosets of ( S,∪, ∩) in (P(A), ∪, ∩). 
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 ∅∪S = {{∅, {x}} 

 {x}∪S = {{x}} 

 {y}∪S = {{y}, {x, y}} 

 {x, y}∪S = {{x, y}}. 

Also, (P(A), ∪, ∩)/(S, ∪, ∩) = {{{∅, {x}}, {{x}}, {{y}, {x, y}}, {{x, y}}}. 

 

Definition 3.15: (NTM1, ∗1, °1) be a NT R-module on NT ring (NTR,𝛻,∎) and (NTM2, ∗2, 
°2) be  a NT R-module on NT ring (NTR,𝛻,∎). A mapping f: NTM1 → NTM2 is said to be 
NT R-module homomorphism when 

 f((r°1m) ∗1 (s°1n)) = (r°2f(m)) ∗2 (s°2f(n)), for all r, s ∊ NTR and  m, n ∊ NTM1. 

Conclusion 
In this work; we presented NT R-module. We defined NT R-module by using the NT 
group and NT ring. Moreover, we show that NT R – module is different from the classical   
R – module. We show that NT   R - module has new properties compared to the classical G 
- module. Finally, by using NT R - module, theory of representation of NT rings can be 
defined and the applications of NT structures will be expanded. 

Abbreviations  
NT: Neutrosophic triplet 

NTS:Neutrosophic triplet set 

NETG: Neutrosophic extended triplet group 

NTM: Neutrosophic triplet R-module 

NTSM: Neutrosophic triplet R-submodule 
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Abstract  

The neutrosophic triplet structures are new concept in neutrosophy. Furthermore, topology has 
many different application areas in mathematic. In this chapter, we obtain neutrosophic triplet 
topology. Then, we give some definitions and examples for neutrosophic triplet topology and we 
obtain some properties and prove these properties. Finally, we show that neutrosophic triplet 
topology is different from classical topology.  

Keywords: Neutrosophic triplet set, neutrosophic triplet structures, neutrosophic triplet 
topology  

 

     1. Introduction 

Florentin Smarandache introduced neutrosophy in 1980, which studies a lot of scientific 
fields. In neutrosophy, there are neutrosophic logic, set and probability in [1].  
Neutrosophic logic is a generalization of a lot of logics such as fuzzy logic in [2] and 
intuitionistic fuzzy logic in [3]. Neutrosophic set denoted by (t, i, f) such that “t” is degree 
of membership, “i” is degree of indeterminacy and “f” is degree of non-membership. Many 
researchers have studied neutrosophic sets in [4-9,23-27]. Furthermore, Florentin 
Smarandache and Mumtaz Ali obtained neutrosophic triplet (NT) in [10] and they 
introduced NT groups in [11].  For every element “x” in neutrosophic triplet set A, there 
exist a neutral of “a” and an opposite of “a”. Also, neutral of “x” must different from the 
classical neutral element. Therefore, the NT set is different from the classical set. 
Furthermore, a NT “x” is denoted by <x, neut(x), anti(x)>. Also, many researchers have 
introduced NT structures in [11-19].  

Topology is a branch of mathematic that deals with the specific definitions given for 
spatial structure concepts, compares different definitions and explores the connections 
between the structures described on the sets. In mathematics it is a large area of study with 
many more specific subfields. Subfields of topology include algebraic topology, geometric 
topology, differential topology, and manifold topology. Thus, topology has many different 
application areas in mathematic. For example, a curve, a surface, a family of curves, a set 

mailto:mesahin@gantep.edu.tr
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of functions or a metric space can be a topology space. Also, the topology has been studied 
on neutrosophic set, fuzzy set, intuitionistic fuzzy set and soft set. Many researchers have 
introduced the topology in [20-22]. 

In this chapter, we introduce NT topology. In section 2, we give definition of NT set in 
[11]. In section 3, we introduce NT topology and we give some properties and examples 
for NT topology. Also, we define open set, close set, inner point, a set of inner point, 
outside point, a set of outside, closure point and a set of closure in a NT topology. In 
section 4, we give some conclusions. 

2. Basic and Fundamental Concepts 

Definition 2.1: [11]  

 Let # be a binary operation. (X, #) is a NT set (NTS) such   

i) There must be neutral of “x” such x#neut(x) = neut(x)#x = x, x ∈ X. 

ii) There must be anti of “x” such x#anti(x) = anti(x)#x = neut(x), x ∈ X. 

Furthermore, a NT “x” is showed with (x, neut(x), anti(x)). 

Also, neut(x) must different from classical unitary element.  

 
3. Neutrosophic Triplet Topology 

 

Definition 3.1: Let (X, *) be a NT set, P(X) be set family of each subset of X and T   be a 
subset family of P(X). If T   is satisfied the following conditions, then T   is called a NT 
topology on X. 

i) A*B ∈ X,   A, B ∈ X 

ii)∅, X ∈ T 

iii) For ∀ i ∈ K, If 𝐴𝑖 ∈ X, then ⋃ 𝐴𝑖𝑖∈𝐾  ∈ T 

iv) For ∀ i ∈ K (K is finite), If 𝐴𝑖 ∈ X, then ⋂ 𝐴𝑖i ∈ K  ∈ T 

 Also, ((X, *), T) is called NT topology space. 

Example 3.2: Let X = {k, l} be set and P(X) = {∅, {k}, {l}, {k, l}}. We can take A∪A= A 
for A ∈ X. Thus, we can take 

 neut(A)= A, anti(A)=A. Then, (P(X), ∪) is a NT set. Also,  

i) A∪B ∈ P(X) for A, B ∈ P(X), 
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ii) ∅, X ∈ T 

iii) For ∀ i ∈ K, If 𝐴𝑖 ∈ X, then ⋃ 𝐴𝑖𝑖∈𝐾  ∈ T. 

iv) For ∀ i ∈ K (K is finite), If 𝐴𝑖 ∈ X, then ⋂ 𝐴𝑖i ∈ K  ∈ T.  

Thus, T  = P(X) is a NT topology on X and ((X, ∪), T ) is called NT topology space. 

Furthermore, If X is an arbitrary set and P(X) is set family of each subset of X, then 

(P(X), ∪) is a NT set and T  = P(X) is a NT topology and ((X, ∪), T ) is called NT 
topology space. 

Example 3.3: Let X = {x, y} be a set and T  = P(X) = {∅, {x}, {y}, {x, y}}. We can take 

A∩A= A, for   A ∈ X. Thus, we can take 

 neut(A)= A, anti(A)=A. Then, (P(X), ∩) is a NT set. Also,  

i) A∩B ∈ P(X), for A, B ∈ T, 

ii) ∅, X ∈ T 

iii) For ∀ i ∈ K, If 𝐴𝑖 ∈ X, then ⋃ 𝐴𝑖𝑖∈𝐾  ∈ T. 

iv) For ∀ i ∈ K (K is finite), If 𝐴𝑖 ∈ X, then ⋂ 𝐴𝑖i ∈ K  ∈ P(X).  

Thus, T  = P(X) is a NT topology and ((X, ∩), T ) is called NT topology space. 

Furthermore, If X is an arbitrary set and T = P(X) is set family of each subset of X, then 

(P(X), ∪) is a NT set and T  = P(X) is a NT topology. Thus, ((X, ∩), T ) is called NT 
topology space. 

Theorem 3.4: Let (Ti) (i ∈ 𝐾) be a family of NT topologies on nonempty NT set (X, #).     
∩ Ti is a NT topology. 

Proof: 

i) Since (Ti) (i ∈ 𝐾) is a family of NT topologies on nonempty NT set (X, #), it is clear that 
for A, B ∈ X  , A#B ∈ 𝑋.  

ii) Since (Ti) (i ∈ 𝐾) is a family of NT topologies on nonempty NT set (X, #) 

 X, ∅ ∈ Ti . Thus, it is clear that X, ∅ ∈ ∩ Ti . 

iii) Let 𝐴𝑖  ∈ ∩  Ti  (i ∈ 𝐼). It is clear that 𝐴𝑖  ∈  Ti . Since (Ti) (i ∈ 𝐼) is a family of NT 
topologies, ⋃ 𝐴𝑖𝑖∈𝐽  ∈ Ti . Thus, it is clear that ⋃ 𝐴𝑖𝑖∈𝐽  ∈∩Ti . 

iv) Let 𝐴1, 𝐴2  ∈ ∩ Ti . It is clear that 𝐴𝑖 ∈ Ti . Since (Ti) (i ∈ 𝐼) is a family of NT topologies,               
𝐴1 ∩ 𝐴2 ∈ Ti . Thus, it is clear that 𝐴1 ∩ 𝐴2 ∈∩Ti . 
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Definition 3.5: Let ((X, #), T )  be a NT topology. For every A∈T, A is called an open set. 

Definition 3.6: Let ((X, #), T ) be a NT topology space and A⊂X. If (X-A) ∈ T, then A is 
called close set on X. Where, “X-A“ is complement of A according to X. 

Corollary 3.7: Let ((X, *), T ) be a NT topology space. If A is an open set in this space, 
then X-A is a close set. Also, If B is a close set in this space, then X-B is an open set. 

Example 3.8: Let X = {x, y, z} be a set, P(X) = {∅, {x}, {y}, {z}, {x, y}, {y, z}, {x, z},             
{x, y, z}} be power set of X and T  = {∅, {y}, {x, y}, {y, z}, {x, y, z}}. We can take A∩A= A 

for A ∈ X. Thus, we can take neut(A)= A, anti(A)=A. Hence, (P(X), ∩) is a NT set. Also, 

((X, ∩), T )is a NT topology. a) From definition of open set ∅, {y}, {x, y}, {y, z}, {x, y, z} 

are open sets.  

b) From definition of close set {x, y, z}, {x, z}, {z}, {x}, ∅ are close sets. Because, 

 {x, y, z}-{x, y, z} = ∅ ∈ T 

 {x, y, z}-{x, z} = {y} ∈ T 

 {x, y, z}-{z} = {x, y} ∈ T 

 {x, y, z}-{x} = {y, z} ∈ T 

 {x, y, z}-∅ = {x, y, z} ∈ T 

 

Theorem 3.9: Let ((X, #), T ) be a NT topology space and K be family of close sets on X. 
Then, 

i) ∅, X ∈ K 

ii) For ∀ i ∈ K, If 𝐴𝑖 ∈ X, then ⋂ 𝐴𝑖i ∈ K  ∈ K 

iii) For ∀ i ∈ K, (K is finite) If 𝐴𝑖 ∈ X, then ⋃ 𝐴𝑖𝑖∈𝐾  ∈ K 

Proof:  

i) Since ((X, *), T ) is a NT topology space, ∅, X ∈ T   and ∅, X are open sets. From 
Corollary 3.7,  

X-X = ∅ is a close set and X - ∅ = X is a close set. Thus, we obtain ∅, X ∈ K . 

ii) Let 𝐵𝑖 ∈ K (i∈J). Since each 𝐵𝑖 is close set, 𝐴𝑖 = X - 𝐵𝑖 is open set and 𝐵𝑖 = X - 𝐴𝑖. 
From definition NT topology, A = ⋃ 𝐴𝑖𝑖∈𝐽  ∈ T . Thus, F = X- A = X – (⋃ 𝐴𝑖𝑖∈𝐽 ) = 
⋂ (X − 𝐴𝑖)i ∈ J  = ⋂ 𝐹𝑖i ∈ J ∈ K . 
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iii) Let 𝐵𝑖 ∈ K (i∈J and j is finite). Since each 𝐵𝑖 is close set, 𝐴𝑖 = X - 𝐵𝑖 is open set and 𝐵𝑖 
= X - 𝐴𝑖. From definition NT topology, A = ⋂ 𝐴𝑖i ∈ J ∈ T . Thus, F = X- A = X – (⋂ 𝐴𝑖i ∈ J ) 
= ⋃ (X − 𝐴𝑖𝑖∈𝐽 ) = ⋃ 𝐹𝑖𝑖∈𝐽  ∈ K . 

Theorem 3.10: Let ((X, *), T ) be a NT topology space and A be an open set and K be a 
close set in this space. Then, 

i) A - K is an open set. 

ii) K – A is a close set. 

Proof: 

i) It is clear that A-K = A∩(X-K). From Corollary 3.7, X-K is an open set. Thus, from 
definition of NT topology, A∩(X-K) = A-K is an open set. 

ii) It is clear that K-A = K∩(X-A). From Corollary 3.7, X-A is a close set. Thus, from 
Theorem 3.8, K∩(X-A) = A-K is a close set. 

Definition 3.11: Let ((X, *), T1) and ((X, *), T2) be two NT topology spaces and A be an 
open set according to T1. For every set A, If A is an open set according to T2, then, it is 
called that T1 is coarser than T2 or T2  is called that T2  is thinner than T1 . 

Example 3.12: Let X = {x, y, z} be a set, P(X) = {∅, {x}, {y}, {z}, {x, y}, {y, z}, {x, z},         

{x, y, z}} be power set of X, T1  = {∅, {y}, {x, y}, {x, y, z}} and T2  = {∅, {y}, {x, y}, {y, z},      
{x, y, z}}. From Example 3.2 and Example 3.3, we can take ((X,∪), T1) and ((X, ∩), T2) 

are NT topologies. Thus,          

 ∅, {y}, {x, y}, {x, y, z} are open sets according to T1 , 

 ∅, {y}, {x, y}, {y, z}, {x, y, z} are open sets according to T2 .  

Furthermore, from Definition 3.11, T1 is coarser than T2 or T2  is thinner than T1 . 

 Definition 3.13: Let ((X, #), T1) and ((X, *), T2) be two NT topology spaces. If T1  is 
coarser than T2 or T2 is coarser than T1 ,   it is called T1  and T2  are able to comparison two 
topologies. 

Example 3.14: In Example 3.12, from Definition 3.13, T1 and T2 are able to comparison 
two topologies. 

Definition 3.15: Let ((X, #), T) be a NT topology space and x ∈ X. Each open set A in X 
is called that open neighborhood of x such that x ∈ A. 

Example 3.16: From Example 3.8, ((X, ∩), T )is a NT topology such that X = {x, y, z},                                

P(X) = {∅, {x}, {y}, {z}, {x, y}, {y, z}, {x, z}, {x, y, z}} is power set of X and                                                             

T  = {∅, {y}, {x, y}, {y, z}, {x, y, z}}.  Also,  
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 {x, y}, {x, y, z} are open neighborhoods of x. 

 {y}, {x, y}, {y, z}, {x, y, z} are open neighborhoods of y. 

 {y, z}, {x, y, z} are open neighborhoods of z. 

Definition 3.17: Let ((X, #), T) be a NT topology space, x ∈  X, A be an open 
neighborhood of x and V⊂X. If A⊂V, then V is called neighborhood of x. 

Example 3.18: In Example 3.16, from Definition 3.17, it is clear that 

 {x, y}, {x, y, z} are neighborhoods of x. 

 {y}, {x, y}, {y, z}, {x, y, z} are neighborhoods of y. 

 {y, z}, {x, y, z} are neighborhoods of z. 

Definition 3.19: Let ((X, #), T) be a NT topology space and A, B ⊂ X. If there exists a 
open set T ∈ T  such that A⊂T⊂B, then B is called B is neighborhood of A. 

Example 3.20: From Example 3.3, ((X, ∩), T )is a NT topology such that X = {x, y},                                   

P(X) = {∅, {x}, {y}, {x, y }} is power set of X and   T  = {∅, {y}, {x, y}}.  Also, 

 For ∅⊂X, ∅⊂{y}⊂{x, y}. Thus, {x, y} is neighborhood of ∅. 

 For {x}⊂X, {x}⊂{x, y}⊂{x, y}.  Thus, {x, y} is neighborhood of {x}. 

 For {y}⊂X, {y}⊂{y}⊂{y}, {x, y}. Thus, {x, y} and {y} are neighborhoods of {y}. 

 For {x, y} ⊂X, {x, y}⊂{x, y}⊂{x, y}.  Thus, {x, y} is neighborhood of {x, y}. 

 

Theorem 3.21: Let ((X, #), T) be a NT topology space and A ⊂ X. A is an open set ⇔for 

every x ∈ A, A is a neighborhood of x. 

Proof: 

(⇒) Let A be an open set. For every x ∈A, it is clear that x ∈A ⊂ A and A∈T . Thus, from 
Definition 3.17, A is a neighborhood of x. 

(⇐)For every x ∈A, A is neighborhood of x. Thus, for each x ∈A, there exists an open set 

𝑇𝑥 ∈T such that x ∈ 𝑇𝑥⊂ A. Thus, we obtained  

x∈∪ 𝑇𝑥 and  A ⊂ ∪ 𝑇𝑥                                                                                                                       (1)                                                                                                                        

Also, it is clear that  

  ∪ 𝑇𝑥⊂ A because 𝑇𝑥⊂ A for every x ∈A                                                                       (2)                                                                                          
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From (1) and (2), we obtained A = ∪ 𝑇𝑥. Where, 𝑇𝑥 is an open set because 𝑇𝑥 ∈T . 
Thus, from Definition 3.1, A is an open set. 

Definition 3.22: Let ((X, #), T) be a NT topology space, A ⊂ X, x ∈  X. If A is 
neighborhood of x, x is called an inner point of A. 

Example 3.23: From example 3.16, for X = {x, y, z} and T = {∅, {y}, {x, y}, {y, z},              
{x, y, z}}, ((X, ∩), T ) is a NT topology  Also,   

 {x, y}, {x, y, z} are neighborhoods of x. Thus, x is an inner point of {x, y}, {x, y, z}. 

 {y}, {x, y}, {y, z}, {x, y, z} are neighborhoods of y. Thus, y is an inner point of                                      
{y}, {x, y}, {y, z}, {x, y, z}. 

 {y, z}, {x, y, z} are neighborhoods of z. Thus, z is an inner point of {y, z}, {x, y, z}. 

Definition 3.24: Let ((X, #), T) be a NT topology space, A ⊂ X. If B is a set of every inner 
point x of A, then B is called inner of A. Also, it is shown with 𝐴𝑜.  

Example 3.25: In Example 3.20, for X = {x, y, z} and T  = {∅, {y}, {x, y}, {y, z}, {x, y, z}}, 
((X, ∩), T ) is a NT topology  Also,  it is clear that 

 {𝑦}𝑜 = {y} 

 {𝑥, 𝑦}𝑜 = {x, y} 

 {𝑦, 𝑧}𝑜 = {y, z} 

 {𝑥, 𝑦, 𝑧}𝑜 = {x, y, z} 

Theorem 3.26: Let ((X, #), T) be a NT topology space, A ⊂ X. Then, 

i) 𝐴𝑜 = ∪B {B ⊂ X : B ∈ T  and B⊂ A} 

ii) 𝐴𝑜 ⊂ A 

iii) 𝐴𝑜 is an open set. 

iv) A is an open set if and only if A = 𝐴𝑜. 

 

 

Proof: 

i) Let C = ∪B {B ⊂ X : B ∈ T  and B⊂ A}                                                                       (3)                                                                                 

 We show that 𝐴𝑜 = C. We take x ∈ 𝐴𝑜. From Definition 3.22, there exists an open set such 
that x ∈ B ⊂ A. From (3), we obtained x∈C. Thus, 

 𝐴𝑜 ⊂ C                                                                                                                   (4)                                                                                                                            
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Then we take y ∈ C. From (1), there exists a B ∈ T such that y ∈ B ⊂ A. Thus, from 
Definition 3.22, we obtained y ∈ 𝐴𝑜. Thus,  

 C⊂ 𝐴𝑜                                                                                                                    (5)                                                                                                                                  

From (4) and (5), we obtained 𝐴𝑜 = C. 

ii) From i), we can take 𝐴𝑜  = ∪B {B ⊂ X : B ∈ T  and B⊂ A}. Also, it is clear that               
∪B ⊂ A. Thus, 𝐴𝑜 ⊂A. 

iii) From i), we can take 𝐴𝑜 = ∪B{B ⊂ X : B ∈ T  and B⊂ A}. Also, B is an open set. 
Thus, from     Definition 3.1, 𝐴𝑜 is an open set. 

iv)  

(⇒) Let A be an open set. Thus, we obtained A ∈ T . From (1), it is clear that  

 A ⊂ C = 𝐴𝑜                                                                                                                            (6)                                                                                                                                           

From ii), 

               𝐴𝑜 ⊂A                                                                                                                     (7)                                                                                                              

Thus, from (6) and (7), we obtained 𝐴𝑜=A. 

(⇐) Let 𝐴𝑜=A. From iii), it is clear that A is an open set. 

Definition 3.27: Let ((X, #), T) be a NT topology space, A ⊂ X. If x is an inner point of 
𝐴′, then x is called an outside point of A. Also, If B is a set such that every outside point x 
of A is in B, then B is called outside of A. Also, it is shown with (𝑋 − 𝐴)𝑜. 

Example 3.28: In Example 3.23, for X = {x, y, z} and T  = {∅, {y}, {x, y}, {y, z}, {x, y, z}}, 

((X, ∩), T ) is a NT topology  Also,  it is clear that 

 x is an outside point of {z} and ∅. 

 y is an outside point of {x, z}, {z}, {x} and ∅. 

 z is an outside point of {x} and ∅. 

Definition 3.29: Let ((X, *), T) be a NT topology space, A ⊂ X, x ∈ X. If there exists at 
least an element of A in every neighborhood of x, x is called closure point of A. 

Example 3.30: In Example 3.18, for X = {x, y, z} and T  = {∅, {y}, {x, y}, {y, z}, {x, y, z}}, 
((X, ∩), T ) is a NT topology  Also,   

 {x, y}, {x, y, z} are neighborhoods of x. 

 {y}, {x, y}, {y, z}, {x, y, z} are neighborhoods of y. 
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 {y, z}, {x, y, z} are neighborhoods of z. 

Thus, 

 x is closure point of {x}, {y}, {x, y} and {x, y, z}. 

 y is closure point of {y}, {x, y} and {x, y, z}. 

 z is closure point of {z}, {x, z} and {x, y, z}. 

Definition 3.31: Let ((X, #), T) be a NT topology space, A ⊂ X. If B is a set of every 
closure point x of A, then B is called closure of A. Also, it is shown with 𝐴−. 

Example 3.32: In Example 3.30, from Definition 3.31, 

 {x}− = {x} 

 {y}− = {x, y} 

 {z}− = {z} 

 {x, y}− = {x, y} 

             {x, y, z}− = {x, y, z}. 

Conclusions 
Topology has many different application areas in classical mathematic. Also, NT structures 
are a new concept in neutrosophy. In this chapter, we introduced NT topology. We gave 
some properties and definitions for NT topology. Thus, we have added a new structure to 
NT structure. Furthermore, thanks to NT topology, researchers can obtain new structure 
and properties. For example, researchers can define NT metric topology, NT group 
topology, NT algebraic topology. 
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Abstract  

In this chapter, we introduce neutrosophic triplet cosets for neutrosophic triplet G-module and 
neutrosophic triplet quotient G-module. Then, we give some definitions and examples for 
neutrosophic triplet quotient G-module and neutrosophic triplet cosets. Also, we obtain 
isomorphism theorems for neutrosophic triplet G-modules and we prove isomorphism theorems for 
neutrosophic triplet G-modules. 

Keywords: Neutrosophic triplet, neutrosophic triplet G-module, neutrosophic triplet 
quotient G-module, neutrosophic triplet isomorphism theorems  

    1. Introduction 

Smarandache introduced neutrosophy in 1980, which studies a lot of scientific fields. In 
neutrosophy, there are neutrosophic logic, set and probability in [1].  Neutrosophic logic is 
a generalization of a lot of logics such as fuzzy logic in [2] and intuitionistic fuzzy logic in 
[3]. Neutrosophic set denoted by (t, i, f) such that “t” is degree of membership, “i” is 
degree of indeterminacy and “f” is degree of non-membership. Also, a lot of researchers 
have studied neutrosophic sets in [4-9]. Furthermore, Smarandache et al. obtained 
neutrosophic triplet (NT) in [10] and they introduced NT groups in [11].  For every 
element “x” in neutrosophic triplet set A, there exist a neutral of “a” and an opposite of 
“a”. Also, neutral of “x” must different from the classical unitary element. Therefore, the 
NT set is different from the classical set. Furthermore, a NT “x” denoted by <x, neut(x), 
anti(x)>. Also, many researchers have introduced NT structures in [12-18]. 

Curties obtained G-module in [19]. G-module is an algebraic structure constructed on 
classical group and classical vector space. Also, G-module has an important place in the 
theory of group representation. Also, a lot of researchers studied G-modules. Recently, 
Fernandez obtained fuzzy G-modules in [20]; Sinho et al. obtained isomorphism theory for 
fuzzy submodules of G-modules in [21]; Şahin et al. introduced soft G-modules in [22]; 
Sharma et al. obtained injectivity of intuitionistic fuzzy G-modules in [23]; Smarandache 

mailto:mesahin@gantep.edu.tr
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et al. obtained neutrosophic triplet G-module in [24] and Şahin et. al studied isomorphism 
theorems for soft G-modules in [25]. 

In this chapter, we obtain NT cosets for NT G-module and NT quotient G-module. Also, 
we give isomorphism theorems for NT G-module. In section 2; we give definitions of G-
module in [19], NT set in [11], NT G-module in [24], and NT G-module homomorphism in 
[24]. In section 3, we introduce NT cosets for NT G-module and NT quotient G-module. 
Then, we give some properties and examples for NT quotient G-module. In section 4, we 
define kernel of a NT G-module homomorphism and we give some properties and 
examples for kernel of a NT G-module homomorphism. Furthermore, we give the 
isomorphism theorems for NT G-module and we prove these theorems. In section 5, we 
give conclusions. 

2. Basic and fundamental concepts 

Definition 2.1: [19] Let G be a finite group. A vector space V on a field F is called a        
G- module if for every m ϵ G and v ϵ V, there exists a product (called the action of G on V)   
v.g ϵ V satisfying the following  axioms.  

a) v.eG = v, ∀ m ϵ M (eG is unitary element in G) 

b) v.(m.n) = (v.m).n, ∀ v ϵ V ;  m, n ϵ G 

c) (f1v1+f2 v2).m = f1(v1.m) + f2(v2.m),  ∀ f1, f2 ϵ F ;    v1, v2ϵ V;   mϵ G. 

Definition 2.2: [11] Let # be a binary operation. (X, #) is a NT set (NTS) such that   

i) There must be neutral of “x” such x#neut(x) = neut(x)#x = x, x ∈ X. 

ii) There must be anti of “x” such x#anti(x) = anti(x)#x = neut(x), x ∈ X. 

Furthermore, a NT “x” is showed with (x, neut(x), anti(x)). 

Also, neut(x) must different from classical unitary element. 

Definition 2.3: [11] Let (X, #) be a NT set. Then, X is called a NT group such that 

a) for all x, y ∈ X, x*y ∈ X. 

b) for all x, y, z ∈ X, (x*y)*z = x*(y*z)  

 
  Definition 2.4: [12] Let (X, &, $) be a NT set with two binary operations & and $. Then   
(X, &, $) is called NT field (NTF) such that 

1. (F, &) is a commutative NT group, 

2. (F, $) is a NT group  
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3. x$ (y&z) = (x$y) & (x$z) and  (y&z)$x = (y$x) & (z$x) forv every x, y, z ∈ X.  

Definition 2.5: [13] Let (F, &1, $1) be a  NTF  and let  (V,&2, $2) be a NTS with binary 
operations &2 and $2. If (V,&2, $2) is satisfied the following conditions, then it is called a 
NT vector space (NTVS),  

1) x&2y ∈ V and x $2y ∈ V; for every  x, y ∈ V 

2) (x&2y) &2z= x&2 (y&2z);  for every  x, y, z ∈ V 

3) x&2y = y&2x; for every  x, y ∈ V  

4) (x&2y) $2m= (x$2m) &2(y$2m); for every m∈ F  and every x, y ∈ V   

5) (m&1n) $2x= (m$2x) &1(n$2x); for every m, n ∈ F  and  every   u ∈ V   

6) (m$1n) $2x= m$1(n$2x); for every  m, n ∈ F and every x ∈ V  

7) For every x ∈ V, there exists at least a neut(y) ∈ F such that  

x $2 neut(y)= neut(y) $2 x = x 

Definition 2.6: [24] Let (G, *) be a NT group and (V,∗1, #1) be a NT vector space on a NT 
field (F,∗2, #2). (V,∗1, #1) is a NT G-module such that 

  a) v*m ∈ V, for all m∈ G; v ∈ V 

  b) There exists at least an element m ∈ G such that  

for every v ∈ V, v*neut(m) = neut(m)* v = v; 

  c) v*(m*n)=(v*m)*n, for all v ∈ V;  m, n ∈  G; 

  d) [((f1#1v1) ∗1 (f2#1v2))]*m =[f1#1 (v1*m)]∗1 [f2#1(v2*m)], ∀ f1, f2  ϵ F,v1, v2ϵ V;         
mϵ G. 

Definition 2.7: [24] Let (V,∗1, #1) be a NT G-module. A NT subvector space (M,∗1, #1) 
of (V,∗1, #1) is a NT G-submodule if (M,∗1, #1) is also a NT G-module. 

Definition 2.8: [24] Let (V,∗1 , #1 ) and (V∗ ,∗3 , #3 ) be NT G-modules on NT field         
(F, ∗2 , #2 ) and (G, *) be a  NT group. A mapping g: V→ V∗  is a NTG-module 
homomorphism if  

i) g(neut(v))= neut(g(v)) 

ii) g(anti(v))= anti(g(v)) 
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iii) g((f1#1v1) ∗1 (f2 #1v2)) =( f1#3g(v1)) ∗3( f2#3g(v2)) 

iv) g(v*m)= g(v)*m;  ∀ f1, f2∊F; m, v1, v2∊V; m ∊ G. 

Also, if g is 1-1, then g is an isomorphism. The NT G-modules (V,∗1, #1) and (V∗,∗3, #3) 
are said to be isomorphic if there exists an isomorphism g : NTV→ NTV∗. Then it is 
showed by V ≅ V∗.      

     3.  Neutrosophic Triplet Quotient G-modules 

In this chapter, we show that neutral element of x according to # binary operation with 
𝑛𝑒𝑢𝑡# (x) and we show that anti element of x according to # binary operation with 
𝑎𝑛𝑡𝑖#(x). 

Definition 3.1: Let (V,∗1, #1)  be  a NT G-module on NT field (F,∗2, #2), (G,*) be a NT 
group and let       (S, ∗1, #1) be  a NT G-submodule of  (V,∗1, #1) . The NT cosets of (S, 
∗1, #1) in (V, ∗1, #1)  are denoted by 

 x∗1S, for all x ∊ V. 

Furthermore,  

 (x∗1S) ∗1 (y∗1S) = (x∗1y) ∗1S, for all x, y ∈ V. 

 ∝ #1(x∗1S) = (∝ #1x)∗1S, for all y ∈ V and ∝ ∈ F. 

 m*(x∗1S) = (x∗1S)*m = (m*x) ∗1S , for all x ∈ V, m ∈ G. 

Example 3.2: Let G = {∅, {z}, {y}, {z, y}}. We can take that (G, ∩) is a NT group such 
𝑛𝑒𝑢𝑡∩(K) = K and 𝑎𝑛𝑡𝑖∩(K) = K. Also, (G, ∪, ∩) is NT field such that 

 𝑛𝑒𝑢𝑡∪(K) = K and 𝑎𝑛𝑡𝑖∪(K) = K,  

𝑛𝑒𝑢𝑡∩(K) = K and 𝑎𝑛𝑡𝑖∩(K) = K. 

Furthermore, (G, ∪, ∩) is NT vector space on NT field (G, ∪, ∩) such that 

 𝑛𝑒𝑢𝑡∪(N) = N and 𝑎𝑛𝑡𝑖∪(N) = N,  

𝑛𝑒𝑢𝑡∩(N) = N and 𝑎𝑛𝑡𝑖∩(N) = N. 

Now, we show that (G, ∪, ∩) is NT G-module on NT field (G, ∪, ∩).  

For A, B, C, D, E ∈ G; 

a) We can take A∪B ∈ G, for all A ∈ G since G is power set of {z, y}. 
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b) It is clear that there exist A∈ G such that 𝑛𝑒𝑢𝑡∩(A) = A∪ 𝑛𝑒𝑢𝑡∩(A) = 𝑛𝑒𝑢𝑡∩(A)∪A, 
because (G, ∩) is NT group and 𝑛𝑒𝑢𝑡∩(A) = A. 

c) We can take A∪(B∪C) = (A∪B)∪C, for all A, B, C ∈ G since G is power set of {z, y}. 

d) We can take [(A∩B)∪( C∩D)] ∪ E = [(A∩B)∪ E] ∪ [(C∩D)∪ E] since G is power set 
of {z, y}. 

Hence, (G, ∪ , ∩) is NT G-module on NT field (G, ∪ , ∩). Also, (S, ∪ , ∩) is a NT               
G-submodule of (G, ∪, ∩) such that S = {∅, {z}}. Now, we show NT cosets of (S, ∪, ∩). 

∅ ∪ S = {∅, {z}}, 

{z}∪S = {{z}}, 

{y}∪S = {{y}, {y,z}}, 

{y, z}∪S = {{y,z}}, 

Definition 3.3: Let (V,∗1 , #1 )  be  a NT G-module on NT field (F,∗2 , #2 ) and Let               
(S, ∗1, #1) be  a NT G-submodule of  (V,∗1, #1). The NT quotient G-module of (V,∗1, #1) 
is denoted by (V,∗1, #1)/(S, ∗1, #1) such that 

 (V,∗1, #1)/(S, ∗1, #1) = {x∗1S: x∊V} 

Corollary 3.4:  Let (V,∗1, #1)  be  a NT G-module on NT field (F,∗2, #2), (S, ∗1, #1) be  a 
NT G-submodule of (V,∗1, #1) and (V,∗1, #1)/(S, ∗1, #1) be NT quotient G-module of 
(V,∗1, #1). From Definition 3.1 and Definition 3.3, (V,∗1, #1)/(S, ∗1, #1) is set of NT 
cosets of (S, ∗1, #1) in (V, ∗1, #1). 

Example 3.5: From Example 3.2,  

 (G, ∪, ∩) is NT G-module on NT field (G, ∪, ∩). Also, (S, ∪, ∩) is a NT G-submodule of    
(G, ∪, ∩) . Also, NT cosets of (S, ∪, ∩) are  

∅ ∪ S = {∅, {z}}, 

{z}∪S = {{z}}, 

{y}∪S = {{y}, {y, z}}, 

{y, z}∪S = {{y, z}}. Thus, from Corollary 3.4, 

(G, ∪, ∩)/(S, ∪, ∩) = {{∅, {z}},{{z}}, {{y}, {y, z}}, {{y, z}}} 
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Theorem 3.6: Let (V,∗1, #1)  be  a NT G-module on NT field (F,∗2, #2), (G,*) be a NT 
group, (S, ∗1, #1) be  a NT G-submodule of (V,∗1, #1) and (V,∗1, #1)/(S, ∗1, #1) be NT 
quotient G-module of (V,∗1, #1). Then, (V,∗1, #1)/(S, ∗1, #1) is a NT G-module on NT 
field (F,∗2, #2). 

Proof: From Definition 3.3, we can take  

(V,∗1, #1)/(S, ∗1, #1) = {x∗1S: x∊V}. 

 Also, it is clear that (V,∗1, #1)/(S, ∗1, #1) is a NT vector space on (F,∗2, #2) with  

 (x∗1S) ∗1 (y∗1S) = (x∗1y) ∗1S, for all x, y ∈ V, 

 ∝ #1(x∗1S) = (∝ #1x)∗1S, for all y ∈ V and ∝ ∈ F, 

 m*(x∗1S) = (x∗1S)*m = (m*x) ∗1S , for all x ∈ V, m ∈ G. 

Now, we show that (V,∗1, #1)/(S, ∗1, #1) is a NT G-module on NT field (F,∗2, #2).  

  a) As (V,∗1, #1) is a NT G-module, we can take g*m ∈ V, for all g∈ G; m ∈ V. Thus, we 
can take (g*m)∗1S ∈ (V,∗1, #1)/(S, ∗1, #1) 

  b) As (V,∗1, #1) is a NT G-module, there exists at least an element m ∈ G such for every 
v∈V, 

  v*neut(m) = neut(m)* v = v.  

Thus, v*neut(m) = neut(m)*v = v ∈V and we can take  

(v ∗1S )*neut(m) = neut(m)* (v ∗1S ) =  (v ∗1S ). 

  c) As (V,∗1, #1) is a NT G-module, we can take  v*(n*m)=(v*n)*m, ∀ v ∈ V;  n, m ∈  G. 
Thus, (v ∗1S )*(n*m)=[ (v ∗1S )*n]*m 

  d) As (V,∗1, #1) is a NT G-module, we can take                         

    [(f1#1v1) ∗1 (f2#1v2)]*m =[f1#1(v1*m)] ∗1 [f2#1(v2*m)], ∀ f1, f2 ϵ F; v1, v2ϵV; mϵ G. 
Thus, 

 [(f1#1(v1 ∗1 S ) ) ∗1 (f2#1(v2 ∗1 S ) )]*m = [f1#1((v1 ∗1S ) *m]∗1 [f2#1((v2 ∗1S ) *m] 
since (v1 ∗1 S ) and (v2 ∗1 S) are NT cosets. 

Theorem 3.7: Let (V,∗1, #1) be a NT G-module on NT field (F, ∗2, #2), (𝑉1,∗1, #1) and 
(𝑉2,∗1, #1) be NT G-submodules of (V,∗1, #1) and (G, *) be a NT group. Then,  

(𝑉1,∗1, #1) ∩ (𝑉2,∗1, #1) = (𝑉1 ∩ 𝑉2,∗1, #1) is a NT G-submodule of (V,∗1, #1). 
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Proof: 

  a) If v ∈ 𝑉1 ∩ 𝑉2, then v ∈𝑉1  and v ∈𝑉2. Thus, v*m ∈ 𝑉1 and v*m ∈ 𝑉2  since (𝑉1,∗1, #1) 
and (𝑉2,∗1, #1) are NT G-submodules of (V,∗1, #1). Thus, we obtain v*m ∈ 𝑉1 ∩ 𝑉2, for all 
m∈ G; v ∈ V. 

Also, (𝑉1 ∩ 𝑉2,∗1, #1) satisfies the conditions b, c and d, since 𝑉1 ⊂ V and 𝑉2 ⊂ V and     
(V,∗1, #1) is a NT G-module. 

 Theorem 3.8: Let (V,∗1, #1) be a NT G-module on NT field (F, ∗2, #2), (𝑉1,∗1, #1) and 
( 𝑉2 , ∗1 , #1 ) be NT G-submodules of ( V , ∗1 , #1 ) and (G, *) be a NT group. If                      
(𝑣1*m) ∗1 (𝑣2*m) = (𝑣1 ∗1 𝑣2)*m for 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 and m∈ G then, 

(𝑉1,∗1, #1) ∗1 (𝑉2,∗1, #1) is a NT G-submodule of (V,∗1, #1) such that  

v = 𝑣1 ∗1 𝑣2∈ (𝑉1,∗1, #1) ∗1 (𝑉2,∗1, #1), for all 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2. 

Proof: 

  a) If v ∈ (𝑉1 ,∗1 , #1) ∗1  (𝑉2 ,∗1 , #1), then v = 𝑣1  ∗1  𝑣2  for 𝑣1 ∈ 𝑉1  and 𝑣2  ∈ 𝑉2 . Thus,  
𝑣1*m ∈  𝑉1  and 𝑣2*m ∈  𝑉2   for all m∈ G since (𝑉1 ,∗1 , #1 ) and (𝑉2 ,∗1 , #1 ) be NT                   
G-submodules of (V,∗1, #1). Also, (𝑣1*m) ∗1 (𝑣2*m) ∈ (𝑉1,∗1, #1) ∗1 (𝑉2,∗1, #1). Thus, we 
obtain (𝑣1 ∗1 𝑣2)*m = v*m ∈ (𝑉1,∗1, #1) ∗1 (𝑉2,∗1, #1)  

since (𝑣1*m) ∗1 (𝑣2*m) = (𝑣1 ∗1 𝑣2)*m for 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2and m∈ G.  

Also, (𝑉1,∗1, #1) ∗1 (𝑉2,∗1, #1) satisfies the conditions b, c and d, since 𝑉1 ⊂ V and 𝑉2 ⊂ V 
and (V,∗1, #1) is a NT G-module. 

Theorem 3.9: Let (V,∗1, #1) be a NT G-module on NT field (F, ∗2, #2), (𝑉1,∗1, #1) be NT 
G-submodule of (V,∗1, #1),  (𝑉2,∗1, #1) be NT G-submodule of (𝑉1,∗1, #1) and (G, *) be a 
NT group. Then,  

(𝑉1,∗1, #1)/ (𝑉2,∗1, #1) is a NT G-submodule of (V,∗1, #1)/ (𝑉2,∗1, #1). 

Proof: It is clear that 𝑉1/𝑉2 ⊂ V/𝑉2 since (𝑉1,∗1, #1) is a NT G-submodule of (V,∗1, #1). 
Then, for x ∈ (𝑉1,∗1, #1)/ (𝑉2,∗1, #1), x = v∗1(𝑉2,∗1, #1).Where, v∈ 𝑉1. Also, it is clear that 
v*m ∈ 𝑉 since (𝑉1,∗1, #1) is NT G – submodule for m ∈ G. Also,  

x*m = (v∗1(𝑉2,∗1, #1))*m = (v*m)∗1(𝑉2,∗1, #1)) since (𝑉1,∗1, #1)/ (𝑉2,∗1, #1) is a NT 
quotient G-module. Thus, x*m ∈ (𝑉1,∗1, #1)/ (𝑉2,∗1, #1). 

Also, (𝑉1 ,∗1 , #1 )/(𝑉2 ,∗1 , #1 ) satisfies conditions b, c, and d since 𝑉1 /𝑉2 ⊂  V /𝑉2  and                                   
(V,∗1, #1)/ (𝑉2,∗1, #1) is a NT quotient G-module. 
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    4. Isomorphism Theorems for Neutrosophic Triplet G-modules 

Definition 4.1: Let (𝑉1 ,∗1 , #1 ) and Let (𝑉2 ,∗3 , #3 )  be NT G-modules on NT field           
(F, ∗2, #2), g be a NT     G-module homomorphism such that g: 𝑉1 → 𝑉2. Then, kernel of g 
is a set such that {x∈ 𝑉1: g(x) = 𝑛𝑒𝑢𝑡∗3(y), y ∈ 𝑉2} and it is denoted by kerg. 

Example 4.2: From Example 3.2, for G = {∅, {z}, {y}, {z, y}}, (G, ∩) is a NT group          
(G, ∪, ∩) is NT G-module on NT field (G, ∪, ∩). Where,  

𝑛𝑒𝑢𝑡∪(N) = N and 𝑎𝑛𝑡𝑖∪(N) = N,  

𝑛𝑒𝑢𝑡∩(N) = N and 𝑎𝑛𝑡𝑖∩(N) = N. 

Then, we take g: G→ G mapping such that g(A) = 𝑎𝑛𝑡𝑖∪(A). For all A, B, C, D ∈ G, 

i) g(𝑛𝑒𝑢𝑡∪(A))= 𝑎𝑛𝑡𝑖∪(𝑛𝑒𝑢𝑡∪(A)). From Theorem 2.4, g(𝑛𝑒𝑢𝑡∪(A))= 𝑎𝑛𝑡𝑖∪(𝑛𝑒𝑢𝑡∪(A)) = 
𝑛𝑒𝑢𝑡∪(A). Also, g(𝑛𝑒𝑢𝑡∪(A))= 𝑛𝑒𝑢𝑡∪(g(A)) since 𝑛𝑒𝑢𝑡∪(A) = A= 𝑎𝑛𝑡𝑖∪(N). 

ii) g(𝑎𝑛𝑡𝑖∪(A)) = 𝑎𝑛𝑡𝑖∪(𝑎𝑛𝑡𝑖∪(A)). From Theorem 2.4, g(𝑎𝑛𝑡𝑖∪(A))= 𝑎𝑛𝑡𝑖∪(𝑎𝑛𝑡𝑖∪(A)) = 
A. Also, g(𝑎𝑛𝑡𝑖∪(A))= 𝑎𝑛𝑡𝑖∪(g(A)) since  𝑛𝑒𝑢𝑡∪(A) = A= 𝑎𝑛𝑡𝑖∪(N) 

iii) g( (A ∩ B) ∪ (C ∩ D) ) = 𝑎𝑛𝑡𝑖∪ ( (A ∩ B) ∪ (C ∩ D) ) = ( (A ∩ B) ∪ (C ∩ D) ) =                                          
((A ∩ 𝑎𝑛𝑡𝑖∪(B)) ∪ (C ∩ 𝑎𝑛𝑡𝑖∪(D))) = ((A ∩ g(B)) ∪ (C ∩ g(D))) since A= 𝑎𝑛𝑡𝑖∪(A). 

iv) g(A∩ B) = 𝑎𝑛𝑡𝑖∪(A∩B) = A∩ B = 𝑎𝑛𝑡𝑖∪(A) ∩ B = g(A) ∩ B since A= 𝑎𝑛𝑡𝑖∪(A). 

Thus, g(A) = 𝑎𝑛𝑡𝑖∪(A) is a NT G-module homomorphism. Also, g(A) = 𝑎𝑛𝑡𝑖∪(A) is a 1-1 
NT    G-module since 𝑛𝑒𝑢𝑡∪(A) = A= 𝑎𝑛𝑡𝑖∪(N). Therefore, g(A) = 𝑎𝑛𝑡𝑖∪(A) is a NT        
G-module isomorphism. 

Also, from Definition 4.1, kerg = {A∈ G: g(A) = 𝑛𝑒𝑢𝑡∪(A) } = G, since 𝑛𝑒𝑢𝑡∪(A) = A= 
𝑎𝑛𝑡𝑖∪(N). 

Theorem 4.3: Let (𝑉1 ,∗1 , #1 ) and Let (𝑉2 ,∗3 , #3 )  be NT G-modules on NT field               
(F, ∗2, #2), g be a NT G-module homomorphism such that g: 𝑉1 → 𝑉2 and (G, *) be a NT 
group. Then,  

i) kerg⊂ 𝑉1 

ii) If 𝑛𝑒𝑢𝑡∗3(x)∗m = 𝑛𝑒𝑢𝑡∗3(x*m), then  (kerg, ∗1, #1) is a NT G-submodule of (𝑉1,∗1, #1),     
x∈ 𝑉1, m∈ G. 

Proof: 

i) It is clear that kerg⊂ 𝑉1 since kerg = {x∈ 𝑉1: g(x) = 𝑛𝑒𝑢𝑡∗3(y), y∈ 𝑉2}. 
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ii) Let m ∈  G, x ∈  kerg and 𝑛𝑒𝑢𝑡∗1 (x) ∗m = 𝑛𝑒𝑢𝑡∗1 (x*m ). Now, we show that               
(kerg, ∗1, #1) is a NT G-submodule of (𝑉1,∗1, #1).      

a) From Definition 2.9, g(x*m) = g(x)*m since g is a NT G-module homomorphism. Also, 
for y y∈ 𝑉2, g(x*m) = g(x)*m = 𝑛𝑒𝑢𝑡∗3(y)*m, if x ∈ kerg. Furthermore,  

g(x*m) = g(x)*m = 𝑛𝑒𝑢𝑡∗3(y)*m = 𝑛𝑒𝑢𝑡∗3(y*m), since 𝑛𝑒𝑢𝑡∗3(y)∗m = 𝑛𝑒𝑢𝑡∗3(y*m). Also, 
y*m ∈ 𝑉2 since (𝑉2,∗3, #3)  is a NT G-modules. Thus,  x*m ∈ kerg. 

Also, (kerg, ∗1, #1) is satisfied the conditions b, c, d in Definition 2.7, since kerg⊂ 𝑉1. 
Therefore, (kerg, ∗1, #1) is a NT G-submodule of (𝑉1,∗1, #1). 

Theorem 4.4: Let (𝑉1 ,∗1 , #1 ) and Let (𝑉2 ,∗3 , #3 )  be NT G-modules on NT field            
(F, ∗2, #2), g be a NT G-module homomorphism such that g: 𝑉1 → 𝑉2 and (G, *) be a NT 
group. If 𝑛𝑒𝑢𝑡∗1(x)∗m = 𝑛𝑒𝑢𝑡∗1(x*m) for all x∈ 𝑉1, m∈ G then, there exists a  

f: (𝑉1,∗1, #1)/kerg→ (𝑉2,∗3, #3) mapping such that f is a NT homomorphism.   

Proof: Let f: 𝑉1/kerg→ 𝑉2  be a mapping such that f(x∗1kerg) = g(x).  

i) We can take f( 𝑛𝑒𝑢𝑡∗1 (x ∗1 kerg)) = f( 𝑛𝑒𝑢𝑡∗1 (x ) ∗1 kerg) since 𝑛𝑒𝑢𝑡∗1 (x) ∗m = 
𝑛𝑒𝑢𝑡∗1(x*m). Also,        

 f( 𝑛𝑒𝑢𝑡∗1 (x ∗1 kerg)) = f( 𝑛𝑒𝑢𝑡∗1 (x ) ∗1 kerg) = g( 𝑛𝑒𝑢𝑡∗1 (x ) ) = 𝑛𝑒𝑢𝑡∗1 g(x) = 
𝑛𝑒𝑢𝑡∗1f(x∗1kerg) since g is a NT homomorphism. 

ii) We can take f(𝑎𝑛𝑡𝑖∗1(x∗1kerg)) = f(𝑎𝑛𝑡𝑖∗1(x) ∗1kerg) since ( kerg, ∗1, #1) is a NT         
G-submodule of (𝑉1,∗1, #1). Also,                       

f(𝑎𝑛𝑡𝑖∗1(x∗1kerg)) = f(𝑎𝑛𝑡𝑖∗1(x) ∗1kerg) = g(𝑎𝑛𝑡𝑖∗1(x)) = 𝑎𝑛𝑡𝑖∗1g(x) = 𝑎𝑛𝑡𝑖∗1f(x∗1kerg) 
since g is a NT homomorphism. 

iii) We can take g((k1#1(m1) ∗1 (k2 #1(m2)) = ( k1#3g(m1)) ∗3( k2#3g(m2)) since g is a 
NT homomorphism. Also,  

g((k1#1(m1) ∗1 (k2 #1(m2)) = f([(k1#1(m1) ∗1 (k2 #1(m2)] ∗1kerg] = 

f([(k1#1(m1 ∗1 kerg) ∗1 (k2 #1(m2 ∗1 kerg)] = 

( k1#3g(m1)) ∗3( k2#3g(m2)) =  

( k1#3f(m1 ∗1 kerg)) ∗3( k2#3f(m2 ∗1 kerg)) 

since f(x∗1kerg) = g(x) and m∗1kerg is NT cosets of (𝑉1,∗1, #1). 
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iv) We can take g(m*n) = g(m)*n since g is a NT homomorphism. Also,  

g(m*n) = f((m*n)∗1kerg)) = f((m∗1kerg)*n ) = g(m)*n = f(m∗1kerg)*n since m∗1kerg is 
NT cosets of (𝑉1 ,∗1 , #1 ) and g is a NT homomorphism. Thus, f is a NT G-module 
homomorphism.  

Corollary 4.5: Let (𝑉1 ,∗1 , #1 ) and Let (𝑉2 ,∗3 , #3 )  be NT G-modules on NT field        
(F, ∗2, #2), g be a NT      G-module homomorphism such that g: 𝑉1 → 𝑉2 and (G, *) be a 
NT group. If 𝑛𝑒𝑢𝑡∗1(x)∗m = 𝑛𝑒𝑢𝑡∗1(x*m) for all x∈ 𝑉1, m∈ G, g is 1-1 and surjection, then 
there exists a  

f: (𝑉1,∗1, #1)/kerg→ (𝑉2,∗3, #3) mapping such that 𝑉1/kerg ≅𝑉2. 

Proof:  If we take that f: 𝑉1/kerg→ 𝑉2  is a mapping such that f(x∗1kerg) = g(x), then from 
Theorem 4.4;       f is a NT G-module homomorphism. Also, we assume that  

f(x∗1kerg) = f(y∗1kerg). Thus, f(x∗1kerg) = g(x) = g(y) = f(y∗1kerg). Also,   x = y since f is   
1-1. Therefore, f is 1-1. 

Also, it is clear that f is surjection since g is surjection. 

Theorem 4.6: Let (V,∗1, #1) be a NT G-module on NT field (F, ∗2, #2), (𝑉1,∗1, #1) be NT      
G-submodule of (V,∗1, #1),  (𝑉2,∗1, #1) be NT G-submodule of (𝑉1,∗1, #1) and (G, *) be a 
NT group. Then, there exists a  

f: (V,∗1, #1)/(𝑉1,∗1, #1)→ [(V,∗1, #1)/ (𝑉2,∗1, #1)]/ [(𝑉1,∗1, #1)/ (𝑉2,∗1, #1)]  

mapping such that f is a NT homomorphism.    

Proof: from Theorem 3.9, it is clear that (𝑉1,∗1, #1)/ (𝑉2,∗1, #1) is a NT G-submodule of                            
(V,∗1, #1)/ (𝑉2,∗1, #1)  

Also, let f: V/𝑉1→ (V/𝑉2) / (𝑉1/𝑉2) be a mapping such that  

f(x∗1 𝑉1) = (x∗1 𝑉2) ∗1(𝑉1/𝑉2)).  

i) We can take f(𝑛𝑒𝑢𝑡∗1 (x) ∗1 𝑉1) = 𝑛𝑒𝑢𝑡∗1 (x∗1 𝑉2) ∗1(𝑉1/𝑉2)) = 𝑛𝑒𝑢𝑡∗1 f(x∗1 𝑉1) since 
(𝑉2 ∗1(𝑉1/𝑉2)) is a NT quotient G-module. 

ii) We can take f(𝑎𝑛𝑡𝑖∗1 x∗1 𝑉1 ) = 𝑎𝑛𝑡𝑖∗1(x∗1 𝑉2) ∗1 (𝑉1/𝑉2 )) = 𝑎𝑛𝑡𝑖∗1 f(x∗1 𝑉1 ) since 
(𝑉2 ∗1(𝑉1/𝑉2)) is a NT quotient G-module. 

iii) We can take 

 f([(k1#1(m1) ∗1 (k2 #1(m2)] ∗1 𝑉1) =([ k1#1(m1) ∗1 (k2 #1(m2)] ∗1 𝑉2) ∗1(𝑉1/𝑉2)) = 
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( [k1#1(m1 ∗1 𝑉2) ∗1(𝑉1/𝑉2)) ] ∗1 [k2#1(m2 ∗1 𝑉2) ∗1(𝑉1/𝑉2)) ], since (𝑉2 ∗1(𝑉1/𝑉2)) is a 
NT quotient G-module. Thus,  

f((k1#1(m1) ∗1 (k2 #1(m2) ∗1 𝑉1) =( [ k1#1(m1) ∗1 (k2 #1(m2)] ∗1 𝑉2) ∗1(𝑉1/𝑉2)) =  

[k1#1(m1 ∗1 𝑉2) ∗1(𝑉1/𝑉2)) ] ∗1 [k2#1(m2 ∗1 𝑉2) ∗1(𝑉1/𝑉2)) ] = 

 (k1#1f(m1)) ∗1 (k2#1f(m2)). 

iv) We can take f((x*g) ∗1 𝑉1 ) = ((x*g)∗1 𝑉2) ∗1 (𝑉1/𝑉2 )) = [x∗1 𝑉2) ∗1 (𝑉1/𝑉2 ))]*g = 
f(x)*g, since (𝑉2 ∗1 (𝑉1/𝑉2 )) is a NT quotient G-module. Thus, f is a NT G-module 
homomorphism.  

Corollary 4.7: From Theorem 4.6, Let (V ,∗1 , #1 ) be a NT G-module on NT field             
(F, ∗2, #2), (𝑉1,∗1, #1) be NT G-submodule of (V,∗1, #1),  (𝑉2,∗1, #1) be NT G-submodule 
of (𝑉1,∗1, #1) and (G, *) be a NT group. If there exists a  

f: (V,∗1, #1)/(𝑉1,∗1, #1)→ [(V,∗1, #1)/ (𝑉2,∗1, #1)]/ [(𝑉1,∗1, #1)/ (𝑉2,∗1, #1)]  

mapping such that f is 1-1 and surjection, then 

 (V,∗1, #1)/(𝑉1,∗1, #1)≅ [(V,∗1, #1)/ (𝑉2,∗1, #1)]/ [(𝑉1,∗1, #1)/ (𝑉2,∗1, #1)]. 

Theorem 4.8: Let (V,∗1, #1) be a NT G-module on NT field (F, ∗2, #2), (𝑉1,∗1, #1) and 
( 𝑉2 , ∗1 , #1 ) be NT G-submodules of ( V , ∗1 , #1 ) and (G, *) be a NT group. If                      
(𝑣1*m) ∗1 (𝑣2*m) = (𝑣1 ∗1 𝑣2)*m for 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2and m∈ G then,  there exists a  

f: (V,∗1, #1)/[(𝑉1,∗1, #1)∩ (𝑉2,∗1, #1)]→ (𝑉,∗1, #1) /[(𝑉1,∗1, #1) ∗1(𝑉2,∗1, #1)] 

mapping such that f is a NT homomorphism.    

Proof:  

From Theorem 3.7, (𝑉1,∗1, #1)∩ (𝑉2,∗1, #1) is a NT G- submodule of (V,∗1, #1). Also,  
from Theorem 3.8,   (𝑉1,∗1, #1) ∗1 (𝑉2,∗1, #1) is a NT G- submodule of (V,∗1, #1) since 
(𝑣1*m) ∗1 (𝑣2*m) = (𝑣1 ∗1 𝑣2)*m for 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2and m∈ G.  

Also, let f: V/(𝑉1 ∩ 𝑉2)→ V/(𝑉1 ∗1 𝑉2) be a mapping such that  

f(x∗1 (𝑉1 ∩ 𝑉2)) = x∗1 (𝑉1 ∗1 𝑉2), for x ∈V.  

i) We can take  

f( 𝑛𝑒𝑢𝑡∗1  [x ∗1 (𝑉1 ∩ 𝑉2)] ) = 𝑛𝑒𝑢𝑡∗1 x( ∗1 (𝑉1 ∗1 𝑉2))  = 𝑛𝑒𝑢𝑡∗1 f(x ∗1 (𝑉1 ∩ 𝑉2) ) since 
V/(𝑉1 ∗1 𝑉2)   is a NT quotient G-module. 
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ii) We can take f(𝑎𝑛𝑡𝑖∗1 [x∗1 (𝑉1 ∩ 𝑉2)]) = 𝑎𝑛𝑡𝑖∗1(x∗1 (𝑉1 ∗1 𝑉2)) = 𝑎𝑛𝑡𝑖∗1f(x∗1 (𝑉1 ∩ 𝑉2)) 
since V/(𝑉1 ∗1 𝑉2) is a NT quotient G-module. 

iii) We can take 

 f([(k1#1(m1) ∗1 (k2 #1(m2)] ∗1 (𝑉1 ∩ 𝑉2)) =([ k1#1(m1) ∗1 (k2 #1(m2)] ∗1 𝑉2)= 

( [k1#1(m1 ∗1  (𝑉1 ∗1 𝑉2))] ∗1 [k2#1(m2 ∗1 (𝑉1 ∗1 𝑉2))] , since 𝑉/(V ∗1 𝑉2)  is a NT 
quotient G-module. Thus,  

f([(k1#1(m1) ∗1 (k2 #1(m2)] ∗1 (𝑉1 ∩ 𝑉2)) =([ k1#1(m1) ∗1 (k2 #1(m2)] ∗1 (𝑉1 ∗1 𝑉2))= 

( [k1#1(m1 ∗1 (𝑉1 ∗1 𝑉2))] ∗1 [k2#1(m2 ∗1 (𝑉1 ∗1 𝑉2))]  =(k1#1f(m1)) ∗1 (k2#1f(m2)). 

iv) We can take f((x*g) ∗1 (𝑉1 ∩ 𝑉2)) = (x*g)∗1 (𝑉1 ∗1 𝑉2))= (x∗1 (𝑉1 ∗1 𝑉2))*g = f(x)*g, 
since V/(𝑉1 ∗1 𝑉2) is a NT quotient G-module. Thus, f is a NT G-module homomorphism.  

Corollary 4.9: From Theorem 4.8, Let (V ,∗1 , #1 ) be a NT G-module on NT field        
(F, ∗2, #2), (𝑉1,∗1, #1) and (𝑉2,∗1, #1) be NT G-submodules of (V,∗1, #1) and (G, *) be a 
NT group. If there exists a  

f: (V,∗1, #1)/[(𝑉1,∗1, #1)∩ (𝑉2,∗1, #1)]→ (𝑉,∗1, #1) /[(𝑉1,∗1, #1) ∗1(𝑉2,∗1, #1)]  

mapping such that f is1-1 and surjection, then  

 (V,∗1, #1)/[(𝑉1,∗1, #1)∩ (𝑉2,∗1, #1)]≅ (𝑉,∗1, #1) /[(𝑉1,∗1, #1) ∗1(𝑉2,∗1, #1)]. 

 
Conclusions 
In this chapter, we obtained NT cosets for NT G-modules and NT quotient G-module. 
Also, we gave isomorphism theorems for NT G-modules and we proved these theorems. 
Thus, we have added a new structure to NT structure and we gave a rise to a new field or 
research called NTPIPS. Also, thanks to NT cosets for NT G-modules and NT quotient            
G-module researchers can obtain new structures and properties. 
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Abstract  

In this chapter, we firstly introduce neutrosophic triplet lie algebra. Furthermore, we give some 
definitions and examples for neutrosophic triplet lie algebra. Then, we obtain that neutrosophic 
triplet lie algebra is different from classical lie algebra. 

Keywords: neutrosophic triplet set, lie algebra, neutrosophic triplet lie algebra 

    1. Introduction 

Smarandache introduced neutrosophy in 1980, which studies a lot of scientific fields. In 
neutrosophy, there are neutrosophic logic, set and probability in [1].  Neutrosophic logic is 
a generalization of a lot of logics such as fuzzy logic in [2] and intuitionistic fuzzy logic in 
[3]. Neutrosophic set denoted by (t, i, f) such that “t” is degree of membership, “i” is 
degree of indeterminacy and “f” is degree of non-membership. Also, a lot of researchers 
have studied neutrosophic sets in [4-9]. Furthermore, Smarandache et al. obtained 
neutrosophic triplet (NT) in [10] and they introduced NT groups in [11].  For every 
element “x” in neutrosophic triplet set A, there exist a neutral of “a” and an opposite of 
“a”. Also, neutral of “x” must different from the classical unitary element. Therefore, the 
NT set is different from the classical set. Furthermore, a NT “x” denoted by                      
<x, neut(x), anti(x)>. Also, many researchers have introduced NT structures in [12-19]. 

Sophus Lie introduced lie theory. Since the twentieth century, lie algebras have been used 
in many fields, particularly in topology, algebra, differential geometry, representation 
theory, harmonic analysis and mathematical physics. Also, many researches have done 
many studies related to lie algebra. Recently, Erdmann et al. studied lie algebras in [20], 
Cahn introduced semi-simple lie algebras and their representations in [21], Yehia obtained 
fuzzy ideals and fuzzy subalgebras of lie algebras in [22], Akram studied fuzzy soft lie 
algebras in [23].  

In this chapter, we obtain NT lie algebras and we give some definitions and examples for 
neutrosophic triplet lie algebra In section 2; we give definitions lie algebra in [20], NT set 
in [11], NT group in [11], NT field in [12], and NT vector space in [13]. In section 3, we 
introduce NT lie algebras and examples for NT lie algebra. We show that NT lie algebras 

mailto:mesahin@gantep.edu.tr
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different from classical lie algebras. Also, we show relationship between NT lie algebra 
and classical lie algebra. Furthermore, we define NT lie algebra homomorphism, NT lie 
subalgebra, NT lie coset and NT lie quotient algebras and we give examples for those 
structures. In section 4, we give conclusions. 

2. Basic and fundamental concepts 

Definition 2.1: [19] Let F be a field and M be a vector space on F. Then the mapping 
[.,.]:MxM→M is called lie algebra on M such that 

i) [x+𝛼y, z] = [x, z] + 𝛼[y, z] and [x, y+𝛽z] = [x, y] + 𝛽[x, z]; x, y, z ∈ M and 𝛼, 𝛽 ∈ F 
(bilinear mapping) 

ii) [x, x] = 0 

iii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 or [x, y], z]] + [y, z], x]] + [z, x], y]] = 0 

Definition 2.2: [11] Let # be a binary operation. (X, #) is a NTS such that   

i) There must be neutral of “x” such x#neut(x) = neut(x)#x = x, x ∈ X. 

ii) There must be anti of “x” such x#anti(x) = anti(x)#x = neut(x), x ∈ X. 

Furthermore, a NT “x” is showed with (x, neut(x), anti(x)). 

Also, neut(x) must different from classical unitary element. 

Definition 2.3: [11] Let (X, #) be a NTS. Then, X is called a NTG such that 

a) For all x, y ∈ X, x*y ∈ X. 

b) For all x, y, z ∈ X, (x*y)*z = x*(y*z)  

  Definition 2.4: [12] Let (X, &, $) be a NTS with two binary operations & and $. Then, 
(X, &, $) is called NTF such that 

1. (F, &) is a commutative NTG, 

2. (F, $) is a NTG,  

3. x$(y&z) = (x$y) & (x$z) and  (y&z)$x = (y$x) & (z$x) forv every x, y, z ∈ X.  

Definition 2.5: [13] Let (F, &1, $1) be a  NTF  and let  (V,&2, $2) be a NTS with binary 
operations “&2" and “$2”. If (V,&2, $2) is satisfied the following conditions, then it is 
called a NTVS, 

1) x&2y ∈ V and x $2y ∈ V; for every  x, y ∈ V 

2) (x&2y)&2z = x&2 (y&2z);  for every  x, y, z ∈ V 
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3) x&2y = y&2x; for every  x, y ∈ V  

4) (x&2y) $2m= (x$2m) &2(y$2m); for every m∈ F and every x, y ∈ V   

5) (m&1n) $2x= (m$2x) &1(n$2x); for every m, n ∈ F and  every u ∈ V   

6) (m$1n) $2x= m$1(n$2x); for every  m, n ∈ F and every x ∈ V  

7) For every x ∈ V, there exists at least a neut(y) ∈ F such that 

 x $2 neut(y)= neut(y) $2 x = x 

     3.  Neutrosophic Triplet Lie Algebra 

In this paper, we show that neutral element of x according to # binary operation with 
𝑛𝑒𝑢𝑡# (x) and we show that anti element of x according to # binary operation with 
𝑎𝑛𝑡𝑖#(x). 

Definition 3.1: Let (V,∗1 , #1 )  be  a NTVS on NTF (F,∗2 , #2 ). Then the mapping 
[.,.]:VxV→V is called a NT lie algebra on (V,∗1, #1)  such that 

i) [x∗1 (𝛼#1y), z] = [x, z] ∗1 ( 𝛼#1[y, z] ) and  

[x, y∗1 (𝛽#1z)] = [x, y]∗1 (𝛽#1[x, z]); ∀ x, y, z ∈ V and 𝛼, 𝛽 ∈ F (bilinear mapping) 

ii) There exists at least an element t = 𝑛𝑒𝑢𝑡∗1(t) ∈ V such that [x, x] = 𝑛𝑒𝑢𝑡∗1(t), for each   
x ∈ V. 

iii) There exists at least an element t = 𝑛𝑒𝑢𝑡∗1 (t) ∈  V such that                                                                    
 [x, [y, z]] ∗1 [y, [z, x]] ∗1 [z, [x, y]] = 𝑛𝑒𝑢𝑡∗1(t), for each x, y, z ∈ V triplet;    

or  

 [x, y], z]] ∗1 [y, z], x]] ∗1 [z, x], y]] = 𝑛𝑒𝑢𝑡∗1(t) for each x, y, z ∈ V triplet;    

Example 3.2: Let V = {∅, {a}, {b}, {a, b}}. We can take that (V, ∪, ∩) is NTF such that 

 𝑛𝑒𝑢𝑡∪(X) = X,  

  𝑎𝑛𝑡𝑖∪(X) = Y,  Y⊂X                                                                                               (1) 

and 

 𝑛𝑒𝑢𝑡∩(X) = X,  

  𝑎𝑛𝑡𝑖∩(X) = Y,    X⊂Y                                                                                             (2) 
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Also, (V, ∪, ∩) is NTVS on NTF (V, ∪, ∩) with (1) and (2). 

We take the mapping [.,.]:VxV→V such that [A, B] = A∪B. Now show that [A, B] = A∪B 
is a NT lie algebra.  

i) a) 

It is clear that if A = C = D =B or B = ∅, then It is clear that  

[A∪ (𝐵 ∩ C), D] = [A, D] ∪ (𝐵 ∩[C, D]). Also, 

[∅ ∪ ({a, b} ∩ {a}), {b}] = {a, b} =  [∅,{b}] ∪ ({a, b} ∩[{a}, {b}]). 

[∅ ∪ ({a} ∩ {a}), {b}] = {a, b} =  [∅,{b}] ∪ ({a} ∩[{a}, {b}]). 

[∅ ∪ ({ b} ∩ {a}), {b}] = { b} =  [∅,{b}] ∪ ({b} ∩[{a}, {b}]). 

[{𝑎} ∪ ({a, b} ∩ {a}), {b}] = {a, b} =  [{a},{b}] ∪ ({a, b} ∩[{a}, {b}]). 

[{𝑏} ∪ ({a, b} ∩ {a}), {b}] = {a, b} =  [{b},{b}] ∪ ({a, b} ∩[{a}, {b}]). 

[{𝑎, 𝑏} ∪ ({a, b} ∩ {a}), {b}] = {a, b} =  [{a, b},{b}] ∪ ({a, b} ∩[{a}, {b}]). 

[∅ ∪ ({a, b} ∩ {a}), ∅] = {a} =  [∅,∅ ∪ ({a, b} ∩[{a}, ∅]). 

[{𝑎} ∪ ({a, b} ∩ {a}), ∅] = {a} =  [{a},∅] ∪ ({a, b} ∩[{a}, ∅]). 

. 

. 

. 

b) It can be show similarly to a). 

ii) [A, A] = A∪A = A = 𝑛𝑒𝑢𝑡A(A). So, there exists an element A = 𝑛𝑒𝑢𝑡∪(A) ∈ V such that 
[A, A] = 𝑛𝑒𝑢𝑡∪(A), for each A ∈ V. 

iii) [A, [B, C]] ∪ [B, [C, A]] ∪ [C, [A, B]] = A∪B∪C = 𝑛𝑒𝑢𝑡∪(A∪B∪C). So, there exists 
an element A∪B∪C = 𝑛𝑒𝑢𝑡∪(A∪B∪C) ∈ V such that 

 [A, [B, C]] ∪ [B, [C, A]] ∪ [C, [A, B]] = 𝑛𝑒𝑢𝑡∪(A∪B∪C), for each A, B, C ∈ V triplet. 
Similarly, there exists an element A∪B∪C = 𝑛𝑒𝑢𝑡∪(A∪B∪C) ∈ V such that 

 [A, B], C]] ∪ [B, C], A]] ∪ [C, A], B]] = 𝑛𝑒𝑢𝑡∪(A∪B∪C), for each A, B, C ∈ V triplet. 

Therefore, [A, B] = A∪B is a NT lie algebra on (V, ∪, ∩).  
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Corollary 3.3: From Definition 3.1 and Definition 2.1, it is clear that NT lie algebra is 
different from classical lie algebra. Because, 𝑛𝑒𝑢𝑡∗1(t) is different from classical unitary 
element and 𝑛𝑒𝑢𝑡∗1(t) can be more than one. 

Corollary 3.4:  Let (V,∗1 , #1 )  be  a NTVS on NTF (F,∗2 , #2 ) and the mapping 
[.,.]:VxV→V be a NT lie algebra on (V,∗1, #1). In Definition 3.1, if we take classical 
vector space instead of (V,∗1, #1) and we take classical field instead of  (F,∗2, #2), then the 
mapping [.,.] NT lie algebra satisfies the classical lie algebra’s conditions. 

Proof: In classical vector space, it is clear that classical unitary element must be one. So, 
in Definition 3.1, 𝑛𝑒𝑢𝑡∗1(t) must be one and 𝑛𝑒𝑢𝑡∗1(t) must be equal to classical unitary 
element 0. Therefore, [.,.] NT lie algebra satisfies conditions in Definition 2.1.  

Theorem 3.5: Let (V,∗1, #1)  be  a NTVS on NTF (F,∗2, #2), the mapping [.,.]:VxV→V 
be a NT lie algebra on (V,∗1, #1) and there be at least an element 

 [y, x] = 𝑛𝑒𝑢𝑡∗1 ([y, x]) ∈ V such that [x, x] = 𝑛𝑒𝑢𝑡∗1([y, x]) for each x, y ∈ V. Then 
𝑛𝑒𝑢𝑡∗1([y, x∗1y]) = 𝑛𝑒𝑢𝑡∗1([y, x]) if and only if [x, y] = 𝑎𝑛𝑡𝑖∗1[y, x]  

Proof:  

⇒:We assume that there exists at least an element [y, x] = 𝑛𝑒𝑢𝑡∗1([y, x]) ∈ V such that           

 [x, x] = 𝑛𝑒𝑢𝑡∗1([y, x]) for each x, y ∈ V and 𝑛𝑒𝑢𝑡∗1([y, x∗1y]) = 𝑛𝑒𝑢𝑡∗1([y, x]). Thus, 

𝑛𝑒𝑢𝑡∗1([y, x∗1y]) = [x∗1y, x∗1y]. Also,  

𝑛𝑒𝑢𝑡∗1([y, x∗1y]) = [x, x] ∗1[x, y] ∗1[y, x] ∗1[y, y], since [.,.] is a bilinear mapping. 
Therefore, 

𝑛𝑒𝑢𝑡∗1([y, x∗1y]) = [x, y] ∗1[y, x], since [x, x] = 𝑛𝑒𝑢𝑡∗1([y, x]) and [y, y] = 𝑛𝑒𝑢𝑡∗1([x, y]. 
Also, 

 𝑛𝑒𝑢𝑡∗1([y, x])  = [x, y] ∗1[y, x], since 𝑛𝑒𝑢𝑡∗1([y, x∗1y]) = 𝑛𝑒𝑢𝑡∗1([y, x]). 

Thus, from Definition 2.2, [x, y] = 𝑎𝑛𝑡𝑖∗1[y, x]. 

⇐:We assume that there exists at least an element [y, x] = 𝑛𝑒𝑢𝑡∗1([y, x]) ∈ V such that           

 [x, x] = 𝑛𝑒𝑢𝑡∗1([y, x]) for each x, y ∈ V and [x, y] = 𝑎𝑛𝑡𝑖∗1[y, x]. Then,  

𝑛𝑒𝑢𝑡∗1([y, x]) = [x, y] ∗1[y, x], since [x, y] = 𝑎𝑛𝑡𝑖∗1[y, x]. Also,   
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 𝑛𝑒𝑢𝑡∗1([y, x]) = [x, x] ∗1[x, y] ∗1[y, x] ∗1[y, y],  

since [x, x] = 𝑛𝑒𝑢𝑡∗1([y, x]) and [y, y] = 𝑛𝑒𝑢𝑡∗1([x, y]. Furthermore, 

𝑛𝑒𝑢𝑡∗1([y, x]) = [x, x] ∗1[x, y] ∗1[y, x] ∗1[y, y] = [x∗1y, x∗1y], since [.,.] is a bilinear 
mapping. Thus, 

𝑛𝑒𝑢𝑡∗1([y, x]) = 𝑛𝑒𝑢𝑡∗1([y, x∗1y]), since [x, x] = 𝑛𝑒𝑢𝑡∗1([y, x]). 

Definition 3.6: Let (𝑉1 , ∗1 , #1 )  be  a NTVS on NTF (𝐹1 , ∗2 , #2 ), the mapping  
[. , . ]1: 𝑉1x𝑉1 → 𝑉1 be a NT lie algebra on (𝑉1,∗1, #1) and (𝑉2,∗3, #3)  be  a NTVS on NTF 
(𝐹2 ,∗4 , #4 ), the mapping[. , . ]2 :  𝑉2x𝑉2 → 𝑉2  be a NT lie algebra on (𝑉2 ,∗3 , #3 ). The 
mapping 𝜎: 𝑉1 → 𝑉2 is called a NT lie algebra homomorphism such that  

𝜎([a, b]1) = [𝜎(𝑎), 𝜎(𝑏)]2 

Example 3.7: In Example 3.2, for V = {∅, {a}, {b}, {a, b}}. (V, ∪, ∩) is a NTF and NTVS 
such that 

 𝑛𝑒𝑢𝑡∪(X) = X,  

  𝑎𝑛𝑡𝑖∪(X) = Y,  Y⊂X                                                                                             (1) 

and 

 𝑛𝑒𝑢𝑡∩(X) = X,  

  𝑎𝑛𝑡𝑖∩(X) = Y,    X⊂Y                                                                                           (2) 

Also,  

the mapping [. , . ]1:VxV→V, [A, B]1 = A∪B is a NT lie algebra on (V, ∪, ∩).  

Now show that [. , . ]2:VxV→V, [A, B]2 = A∩B is a NT lie algebra on (V, ∪, ∩). 

 i) a) 

 [A∪ (𝐵 ∩ C), D]2 = (A∪ (𝐵 ∩ C))∩D = (A∩D)∪(A∩ 𝐵 ∩ 𝐷) = [A, D]2 ∪ (𝐵 ∩[C, D]2).  

b) It can be show similarly to a). 

ii) [A, A]2 = A∩A = A = 𝑛𝑒𝑢𝑡A(A). So, there exists an element A = 𝑛𝑒𝑢𝑡∪(A) ∈ V such 
that [A, A]2 = 𝑛𝑒𝑢𝑡∪(A), for each A ∈ V. 

iii) [A, [B, C]2]2 ∪ [B, [C, A]2]2 ∪ [C, [A, B]2]2 = A∩B∩C = 𝑛𝑒𝑢𝑡∪(A∩B∩C). So, there 
exists an element A∩B∩C = 𝑛𝑒𝑢𝑡∪(A∩B∩C) ∈ V such that 
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 [A, [B, C]2]2 ∪ [B, [C, A]2]2 ∪ [C, [A, B]2]2 = 𝑛𝑒𝑢𝑡∪(A∩B∩C), for each A, B, C ∈ V 
triplet. Similarly, there exists an element A∩B∩C = 𝑛𝑒𝑢𝑡∪(A∩B∩C) ∈ V such that 

 [A, B], C]2 ∪ [B, C]2, A]2 ∪ [C, A]2, B]2 = 𝑛𝑒𝑢𝑡∪(A∩B∩C), for each A, B, C ∈ V triplet. 

Therefore, [A, B]2 = A∩B is a NT lie algebra on (V, ∪, ∩).  

Also, let 𝜎: V → 𝑉, 𝜑(𝐴) = 𝐴′ (𝐴′ is complement of A) be a mapping. Now we show that  

𝜎([A, B]1) = [𝜎(𝐴), 𝜎(𝐵)]2. 

𝜎([A, B]1) = 𝜎(A∪B) = (A ∪ B)′ = 𝐴′ ∩ 𝐵′ = [𝐴, 𝐵]2 = [𝜎(𝐴), 𝜎(𝐵)]2. Thus, 𝜎(𝐴) = 𝐴′ is a 
NT lie algebra homomorphism. 

Definition 3.8: Let (V,∗1, #1)  be  a NTVS on NTF (F,∗2, #2), the mapping [.,.]:VxV→V 
be a NT lie algebra on (V,∗1, #1) and (S,∗1, #1)  be a subvector space of  (V,∗1, #1). If for 
∀ x, y ∈ S, [x, y] ∈ S, then (S,∗1, #1) is called NT lie subalgebra of (V,∗1, #1). 

Example 3.9: In Example 3.2, for V = {∅, {a}, {b}, {a, b}}. (V, ∪, ∩) is a NTF and NTVS 
such that 

 𝑛𝑒𝑢𝑡∪(X) = X,  

  𝑎𝑛𝑡𝑖∪(X) = Y, Y⊂X                                                                                             (1) 

and 

 𝑛𝑒𝑢𝑡∩(X) = X,  

  𝑎𝑛𝑡𝑖∩(X) = Y,   X⊂Y                                                                                          (2) 

Also,  

the mapping [. , . ]1:VxV→V, [A, B]1 = A∪B is a NT lie algebra on (V, ∪, ∩).  

We take S = {∅, {a}}⊂ V. İt is clear that (S, ∪, ∩) is a subvector space of (V, ∪, ∩). Also,  

for ∀ A, B ∈ S, [A, B]1 = A∪B ∈ S. Thus, (S, ∪, ∩) is a NT lie subalgebra of (V, ∪, ∩).  

Definition 3.10: Let (V,∗1, #1)  be  a NTVS on NTF (F,∗2, #2), the mapping [.,.]:VxV→V 
be a NT lie algebra on (V,∗1, #1) and (S,∗1, #1)  be a subvector space of (V,∗1, #1). If for 
∀ x ∈ V and y ∈ S, [x, y] ∈ S, then (S,∗1, #1) is called NT lie ideal of (V,∗1, #1). 

Example 3.11: In Example 3.7, for V = {∅, {a}, {b}, {a, b}}. (V, ∪, ∩) is a NTF and 
NTVS such that 
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 𝑛𝑒𝑢𝑡∪(X) = X,  

  𝑎𝑛𝑡𝑖∪(X) = Y,  Y⊂X                                                                                              (1) 

and 

 𝑛𝑒𝑢𝑡∩(X) = X,  

  𝑎𝑛𝑡𝑖∩(X) = Y,    X⊂Y                                                                                            (2) 

Also,  

the mapping [. , . ]2:VxV→V, [A, B]2 = A∩B is a NT lie algebra on (V, ∪, ∩).  

We take S = {∅, {a}}⊂ V. İt is clear that (S, ∪, ∩) is a subvector space of (V, ∪, ∩). Also,  

for ∀ A ∈ S and B ∈ V, [A, B]1 = A∩B ∈ S. Thus, (S, ∪, ∩) is a NT lie ideal of (V, ∪, ∩).  

Definition 3.12: Let (V,∗1, #1)  be  a NTVS on NTF (F,∗2, #2), the mapping [.,.]:VxV→V 
be a NT lie algebra on (V,∗1, #1) and (S,∗1, #1)  be a NT lie ideal of (V,∗1, #1). Then V/S 
= {x∗1S: x∈V} is called NT lie quotient algebra of (V,∗1, #1). Also, x∗1S is called NT lie 
coset 

and  

 (x∗1S) ∗1 (y∗1S) = (x∗1y)∗1S,  x, y ∈ V; 

 𝛼#1(x∗1S) = (𝛼#1x)∗1S; 

 [x∗1S, y∗1S] = [x, y] ∗1S. 

Example 3.13: In Example 3.11,  

for V = {∅, {a}, {b}, {a, b}} and S = {∅, {a}}, (S, ∪, ∩) is a NT lie ideal of (V, ∪, ∩). 
Also, 

V/S = {A∪S: A∈V} = {∅ ∪S, {a}∪S, {b}∪S, {a, b}∪S}.    

Theorem 3.14: Let (V,∗1, #1)  be  a NTVS on NTF (F,∗2, #2), the mapping [.,.]:VxV→V 
be a NT lie algebra on (V,∗1, #1) and V/S = {x∗1S: x∈V} be a NT lie quotient algebra of 
(V,∗1, #1). Then, [.,.]  is a NT lie algebra on V/S = {x∗1S: x∈V} with 

 (x∗1S) ∗1 (y∗1S) = (x∗1y)∗1S,  x, y ∈ V; 

 𝛼#1(x∗1S) = (𝛼#1x)∗1S, 𝛼 ∈ F and x ∈ V; 

 [x∗1S, y∗1S] = [x, y] ∗1S, x, y ∈ V. 
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Proof: It is clear that (V/S,∗1, #1) is a NTVS on NTF (F,∗2, #2) with 

(x∗1S) ∗1 (y∗1S) = (x∗1y)∗1S,  x, y ∈ V; and 𝛼#1(x∗1S) = (𝛼#1x)∗1S, 𝛼 ∈ F;  x ∈ V. Also, 

i)   

a)  [(x∗1 𝑆) ∗1 (𝛼#1(y∗1S)), z∗1 𝑆] =  

     [𝛼#1(𝑥 ∗1y∗1) ∗1S, z∗1 𝑆] =  

     [𝛼#1(𝑥 ∗1y∗1) , z] ∗1S =  

     ([x, z] ∗1 ( 𝛼#1[y, z] )) ∗1S = 

     ([x, z] ∗1 ( 𝛼#1[y, z] )) ∗1S = 

     ([x, z] ∗1S) ∗1 ( 𝛼#1[y, z] ) ∗1S) = 

     ([x∗1S, z∗1S]) ∗1 ( 𝛼#1[y∗1S, z∗1S] ). 

b) It can be show similarly to a). 

ii) [x∗1S, x∗1S] = [x, x] ∗1S = 𝑛𝑒𝑢𝑡∗1(t) ∗1S since [.,.] is a NT lie algebra on (V,∗1, #1). 
Thus, there exists at least an element t∗1S = 𝑛𝑒𝑢𝑡∗1(t) ∗1S ∈ V/S such that [x∗1S, x∗1S] = 
[x, x] ∗1S = 𝑛𝑒𝑢𝑡∗1(t) ∗1S, for each x∗1S ∈ V/S. 

iii) [x∗1S, [y∗1S, z∗1S]] ∗1 [y∗1S, [z∗1S, x∗1S]] ∗1 [z∗1S, [x∗1S, y∗1S]] =  

     [x∗1S, [y, z] ∗1S] ∗1 [y∗1S, [z, x] ∗1S] ∗1 [z∗1S, [x, y] ∗1S] = 

    ([x, [y, z] ] ∗1S) ∗1 ([y, [z, x]] ∗1S )∗1 ([z, [x, y]] ∗1S) = 

   ([y, z]] ∗1 [y, [z, x]] ∗1 [z, [x, y]]) ∗1S =  𝑛𝑒𝑢𝑡∗1(t) ∗1S. 

Thus, there exists at least an element t ∗1 S = 𝑛𝑒𝑢𝑡∗1 (t)  ∗1 S ∈  V/S such that                                                                    
[x∗1S, [y∗1S, z∗1S]] ∗1 [y∗1S, [z∗1S, x∗1S]] ∗1 [z∗1S, [x∗1S, y∗1S]] = 𝑛𝑒𝑢𝑡∗1(t) ∗1S, for 
each x∗1S, y∗1S, z∗1S ∈ V/S.    

Similarly, there exists at least an element t ∗1 S = 𝑛𝑒𝑢𝑡∗1 (t)  ∗1 S ∈  V/S such that                                         
[x∗1S, y∗1S], z∗1S]] ∗1 [y∗1S, z∗1S], x∗1S]] ∗1 [z∗1S, x∗1S], y∗1S]] = 𝑛𝑒𝑢𝑡∗1(t) ∗1S  for 
each x, y, z ∈ V. Therefore, [.,.]  is a NT lie algebra on V/S = {x∗1S: x∈V}.  

  4. Conclusions 
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In this paper, we obtained NT lie algebra. Also, we defined NT lie algebra homomorphism, 
NT lie subalgebra, NT lie coset and NT lie ideal. Thus, we have added a new structure to 
NT structure and we gave rise to a new field or research called NT lie algebra. Also, thanks 
to NT lie algebras and their properties, researchers can obtain isomorphism theorems for 
NT lie algebras, NT lie groups, representation of NT lie algebras, NT simple lie algebras, 
NT free lie algebra. 

Abbreviation 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTG: Neutrosophic triplet group 

NTF: Neutrosophic triplet field 

NTVS: Neutrosophic triplet vector space 
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Chapter Seven 
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Abstract  
In this chapter, we firstly obtain neutrosophic triplet b- metric space. Also, we give some 
definitions and examples for neutrosophic triplet b - metric space. Furthermore, we obtain some 
properties and we prove these properties. Also, we show that neutrosophic triplet b - metric space is 
different from classical b - metric space and neutrosophic triplet metric space.  

Keywords: neutrosophic triplet sets, neutrosophic triplet metric spaces, b - metric space, 
neutrosophic triplet b - metric spaces  

 

     1. Introduction 

 Smarandache introduced neutrosophy in 1980, which studies a lot of scientific fields. In 
neutrosophy, there are neutrosophic logic, set and probability in [1].  Neutrosophic logic is 
a generalization of a lot of logics such as fuzzy logic in [2] and intuitionistic fuzzy logic in 
[3]. Neutrosophic set is showed by (t, i, f) such that “t” is degree of membership, “i” is 
degree of indeterminacy and “f” is degree of non-membership. Also, a lot of researchers 
have studied neutrosophic sets in [4-9]. Furthermore, Smarandache and Ali obtained 
neutrosophic triplet (NT) in [10] and they introduced NT groups in [11].  For every 
element “x” in neutrosophic triplet set A, there exist a neutral of “a” and an opposite of 
“a”. Also, neutral of “x” must different from the classical unitary element. Therefore, the 
NT set is different from the classical set. Furthermore, a NT “x” is showed by                  
<x, neut(x), anti(x)>. Also, many researchers have introduced NT structures in [12-20]. 

 Bakhtin obtained b - metric spaces in [21]. The b - metric is generalized of classical metric 
space. b - metric space is used mostly for fixed point theory. Also, researchers studied 
partial metric space in [22-27]. Recently, Alqahtani et al. studied Fisher – type fixed point 
results in b – metric spaces in [28] and Oawaqneh et al. obtained fixed point theorems for 
(a, k, ) – contractive multi – valued mapping in b – metric space and applications.  

In this chapter, we obtain NT b - metric space. In section 2; we give definitions of               
b - metric space in [21], NT set in [11], NT metric space in [13]. In section 3, we introduce 
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NT b - metric space and we give some properties and examples for NT b - metric space. 
Also, we show that NT b - metric space is different from the classical b - metric space and 
NT metric space. Furthermore, we show relationship between NT metric spaces and NT 
partial metric spaces with NT b - metric space. Also, we give definition of convergent 
sequence, Cauchy sequence and complete space for NT partial v-generalized metric space. 
In section 4, we give conclusions. 

2. Basic and Fundamental Concepts 

Definition 2.1: [21] Let N be a nonempty set and 𝑑𝑏 :NxN→ ℝ be a function. If d is 
satisfied the following properties, then (N, 𝑑𝑏 ) is called a b - metric space.                                      
For n, m, 𝑐1, 𝑐2, … , 𝑐𝑣 ∈ N, 

i) 𝑑𝑏(n, m) ≥ 0 and  𝑑𝑏(n, m) = 0 ⇔ n = m;  

ii) 𝑑𝑏(n, m)= 𝑑𝑏(m, n); 

iii) 𝑑𝑏(n, m) ≤ k.[ 𝑑𝑏(n,k)+ 𝑑𝑏(k, m)], k ∈ ℝ+ such that k ≥ 1 

Definition 2.2: [11]  Let # be a binary operation. (X, #) is a NT set (NTS) such   

i) There must be neutral of “x” such x#neut(x) = neut(x)#x = x, x ∈ X. 

ii) There must be anti of “x” such x#anti(x) = anti(x)#x = neut(x), x ∈ X. 

Furthermore, a NT “x” is showed with (x, neut(x), anti(x)). 

Also, neut(x) must different from classical unitary element.  

Definition 2.3: [13] A NT metric on a NTS (N, *) is a function d:NxN→ ℝ such for every 
n, m, s ∈ N, 

i) n * m ∈ N 

ii) d(n, m) ≥ 0  

iii) If n = m, then d(n, m) = 0 

iv) d(n, m) = d(n, m) 

v) If there exists at least an element s ∊ N for n, m ∈ N pair such that  

d(n, m) ≤ d(n, m*neut(s)), then d(n, m*neut(s)) ≤ d(n, s)+ 𝑑𝑇(s, n). 

Definition 2.4: [17] Let (A, #) be a NTS and m#n ∊ A, ⩝ m, n ∊ A. NT partial metric 
(NTPM) is a map    𝑝𝑁: A x A → ℝ+∪{0} such that ⩝ m, n, k ∈ A 

i) 𝑝𝑁(m, n) ≥ 𝑝𝑁(n, n)≥0 
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ii) If 𝑝𝑁(m, m) = 𝑝𝑁(m, n) = 𝑝𝑁(n, n) = 0, then there exits any m, n ∈ A pair such that        
m = n. 

iii) 𝑝𝑁(m, n) = 𝑝𝑁(n, m) 

iv) If there exists at least an element n∊A for each m, n ∈A pair such that  

𝑝𝑁(m, k) ≤ 𝑝𝑁(m, k#neut(n)), then 𝑝𝑁(m, k#neut(n)) ≤ 𝑝𝑁(m, n) + 𝑝𝑁(n, k) - 𝑝𝑁(n, n).  

Also, ((A, #), 𝑝𝑁) is called NTPM space (NTPMS). 

3. Neutrosophic Triplet b - Metric Space 

Definition 3.1: Let (N, *) be a NTS. A NT b – metric (NTBM) on N is a function such that 
𝑑𝑏:NxN→ ℝ such every n, m, 𝑡 ∈ N; 

i) n*m ∈ N, 

ii) If n = m, then 𝑑𝑏(m, n) = 0 and 𝑑𝑏(n, m) ≥ 0.    

iii) 𝑑𝑏(n, m) = 𝑑𝑏(m, n), 

iv) If there exists at least an element s ∊ N for each n, m ∈ N pair such that 

 𝑑𝑏(n, m) ≤ 𝑑𝑏(n, m*neut(s)), then  

 𝑑𝑏(n, m*neut(s)) ≤ k.[𝑑𝑏(n, s) + 𝑑𝑏(s, n)]. Where, k ≥ 1 and k ∈ ℝ. 

Furthermore, ((N, *), 𝑑𝑏) is called NTBM space (NTBMS). 

Also, if we take k = 2, then NTBMS is showed that NT2MS. 

Example 3.2: Let N = {0, 2, 3, 4} be a set. (N, .) is a NTS under multiplication module 12 
in (ℤ6, .). Also, NT are (0, 0, 0), (2, 2, 2), (3, 3, 3), (4, 4, 4) and (2, 4, 2).   

Then we take that 𝑑𝑏: NxN→N is a function such that 𝑑𝑏(k, m)=| 2k  −  2m|. 

Now we show that 𝑑𝑏 is a NTBM. 

i) It is clear that k.m ∈ N, for every k, m ∈ N. 

ii) If k = m, then 𝑑𝑏(k, m)=| 2k  −  2m| = | 2k  −  2k| = 0. Also, 𝑑𝑏(k, m)=| 2k  −  2m| ≥ 0. 

iii) 𝑑𝑏(k, m) =| 2k  −  2m| =| 2m  −  2k| = 𝑑𝑏(m, k). 

iv)  
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* It is clear that 𝑑𝑏(0, 0) ≤ 𝑑𝑏(0, 0.0) = 𝑑𝑏(0, 0). Also, 𝑑𝑏(0, 0) = 0. Thus, 

𝑑𝑏(0, 0) ≤ 2.[𝑑𝑏(0, 0) + 𝑑𝑏(0, 0)]. 

* It is clear that 𝑑𝑏(0, 3) ≤ 𝑑𝑏(0, 3.3) = 𝑑𝑏(0, 3). Also, 𝑑𝑏(0, 3) = 7 and 𝑑𝑏(3, 3) = 0. Thus, 

𝑑𝑏(0, 3) ≤ 2.[𝑑𝑏(0, 3) + 𝑑𝑏(3, 3)]. 

* It is clear that 𝑑𝑏(0, 2) ≤ 𝑑𝑏(0, 2.4) = 𝑑𝑏(0, 2). Also, 𝑑𝑏(0, 2) = 3, 𝑑𝑏(0, 4) = 15 and 
𝑑𝑏(2, 4) = 12. Thus, 

𝑑𝑏(0, 2) ≤ 2.[𝑑𝑏(0, 4) + 𝑑𝑏(4, 2)]. 

* It is clear that 𝑑𝑏(0, 4) ≤ 𝑑𝑏(0, 4.4) = 𝑑𝑏(0, 4). Also, 𝑑𝑏(0, 4) = 15 and 𝑑𝑏(4, 4) = 0. 
Thus, 

𝑑𝑏(0, 4) ≤ 2.[𝑑𝑏(0, 4) + 𝑑𝑏(4, 4)]. 

* It is clear that 𝑑𝑏(3, 3) ≤ 𝑑𝑏(3, 3.2) = 𝑑𝑏(3, 0). Also, 𝑑𝑏(3, 0) = 7, 𝑑𝑏(3, 2) = 4 and 
  𝑑𝑏(3, 3) = 0. Thus, 

𝑑𝑏(3, 3) ≤ 2.[𝑑𝑏(3, 2) + 𝑑𝑏(2, 3)]. 

* It is clear that 𝑑𝑏(2, 2) ≤ 𝑑𝑏(2, 2.3) = 𝑑𝑏(2, 0). Also, 𝑑𝑏(3, 2) = 4 and 𝑑𝑏(2, 2) = 0. Thus, 

𝑑𝑏(2, 2) ≤ 2.[𝑑𝑏(2, 3) + 𝑑𝑏(3, 2)]. 

* It is clear that 𝑑𝑏(4, 4) ≤ 𝑑𝑏(4, 4.2) = 𝑑𝑏(4, 2). Also, 𝑑𝑏(4, 2) = 12 and 𝑑𝑏(4, 4) = 0. 
Thus, 

𝑑𝑏(4, 4) ≤ 2.[𝑑𝑏(4, 2) + 𝑑𝑏(2, 4)]. 

* It is clear that 𝑑𝑏(3, 2) ≤ 𝑑𝑏(3, 2.3) = 𝑑𝑏(3, 0). Also, 𝑑𝑏(3, 0) = 7, 𝑑𝑏(3, 2) = 4 and     
𝑑𝑏(3, 3) = 0. Thus, 

𝑑𝑏(3, 2) ≤ 2.[𝑑𝑏(3, 3) + 𝑑𝑏(3, 2)]. 

* It is clear that 𝑑𝑏(3, 4) ≤ 𝑑𝑏(3, 4.4) = 𝑑𝑏(3, 0). Also, 𝑑𝑏(3, 0) = 7, 𝑑𝑏(3, 4) = 8 and       
𝑑𝑏(4, 4) = 0. Thus, 

𝑑𝑏(3, 4) ≤ 2.[𝑑𝑏(3, 4) + 𝑑𝑏(4, 4)]. 

* It is clear that 𝑑𝑏 (4, 2) ≤ 𝑑𝑏 (4, 2.3) = 𝑑𝑏 (4, 0). Also, 𝑑𝑏 (4, 0) = 15, 𝑑𝑏 (3, 4) = 8,         
𝑑𝑏(3, 2) = 4 and 𝑑𝑏(4, 2) = 12. Thus, 

𝑑𝑏(4, 2) ≤ 2.[𝑑𝑏(4, 3) + 𝑑𝑏(3, 2)]. 
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Therefore, ((N, .), 𝑑𝑏) is A NT2MS. 

Corollary 3.3: NTBMS is different from the classical metric space since for triangle 
inequality and * binary operation. 

Corollary 3.4: NTBMS is different from NTMS since for triangle inequality. 

Corollary 3.5: In Definition 3.1, if we take k = 1, then each NTBMS is a NTMS. 

Corollary 3.6: From Corollary 3.5, we can define a NTBMS with each NTMS.  

Corollary 3.7: From Corollary 3.6, each NTMS satisfies all properties of NTBMS. 

Example 3.8: In Example 3.2, ((N, .), 𝑑𝑏) is a NT2MS. Now we show that ((N, .), 𝑑𝑏) is a 
NTMS.  

It is clear that ((N, .), 𝑑𝑏) satisfies conditions i, ii, iii, iv in Definition 2.3. 

v)  

 * It is clear that 𝑑𝑏(0, 0) ≤ 𝑑𝑏(0, 0.0) = 𝑑𝑏(0, 0). Also, 𝑑𝑏(0, 0) = 0. Thus, 

𝑑𝑏(0, 0) ≤ 𝑑𝑏(0, 0) + 𝑑𝑏(0, 0). 

* It is clear that 𝑑𝑏(0, 3) ≤ 𝑑𝑏(0, 3.3) = 𝑑𝑏(0, 3). Also, 𝑑𝑏(0, 3) = 7 and 𝑑𝑏(3, 3) = 0. Thus, 

𝑑𝑏(0, 3) ≤ 𝑑𝑏(0, 3) + 𝑑𝑏(3, 3). 

* It is clear that 𝑑𝑏(0, 2) ≤ 𝑑𝑏(0, 2.4) = 𝑑𝑏(0, 2). Also, 𝑑𝑏(0, 2) = 3, 𝑑𝑏(0, 4) = 15 and 
𝑑𝑏(2, 4) = 12. Thus, 

𝑑𝑏(0, 2) ≤ 𝑑𝑏(0, 4) + 𝑑𝑏(4, 2). 

* It is clear that 𝑑𝑏(0, 4) ≤ 𝑑𝑏(0, 4.4) = 𝑑𝑏(0, 4). Also, 𝑑𝑏(0, 4) = 15 and 𝑑𝑏(4, 4) = 0. 
Thus, 

𝑑𝑏(0, 4) ≤ 𝑑𝑏(0, 4) + 𝑑𝑏(4, 4). 

* It is clear that 𝑑𝑏(3, 3) ≤ 𝑑𝑏(3, 3.2) = 𝑑𝑏(3, 0). Also, 𝑑𝑏(3, 0) = 7, 𝑑𝑏(3, 2) = 4 and 
  𝑑𝑏(3, 3) = 0. Thus, 

𝑑𝑏(3, 3) ≤ 𝑑𝑏(3, 2) + 𝑑𝑏(2, 3). 

* It is clear that 𝑑𝑏(2, 2) ≤ 𝑑𝑏(2, 2.3) = 𝑑𝑏(2, 0). Also, 𝑑𝑏(3, 2) = 4 and 𝑑𝑏(2, 2) = 0. Thus, 

𝑑𝑏(2, 2) ≤ 𝑑𝑏(2, 3) + 𝑑𝑏(3, 2). 
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* It is clear that 𝑑𝑏(4, 4) ≤ 𝑑𝑏(4, 4.2) = 𝑑𝑏(4, 2). Also, 𝑑𝑏(4, 2) = 12 and 𝑑𝑏(4, 4) = 0. 
Thus, 

𝑑𝑏(4, 4) ≤ 𝑑𝑏(4, 2) + 𝑑𝑏(2, 4). 

* It is clear that 𝑑𝑏(3, 2) ≤ 𝑑𝑏(3, 2.3) = 𝑑𝑏(3, 0). Also, 𝑑𝑏(3, 0) = 7, 𝑑𝑏(3, 2) = 4 and      
𝑑𝑏(3, 3) = 0. Thus, 

𝑑𝑏(3, 2) ≤ 𝑑𝑏(3, 3) + 𝑑𝑏(3, 2). 

* It is clear that 𝑑𝑏(3, 4) ≤ 𝑑𝑏(3, 4.4) = 𝑑𝑏(3, 0). Also, 𝑑𝑏(3, 0) = 7, 𝑑𝑏(3, 4) = 8 and 
   𝑑𝑏(4, 4) = 0. Thus, 

𝑑𝑏(3, 4) ≤ 𝑑𝑏(3, 4) + 𝑑𝑏(4, 4). 

* It is clear that 𝑑𝑏 (4, 2) ≤ 𝑑𝑏 (4, 2.3) = 𝑑𝑏 (4, 0). Also, 𝑑𝑏 (4, 0) = 15, 𝑑𝑏 (3, 4) = 8,         
𝑑𝑏(3, 2) = 4 and 𝑑𝑏(4, 2) = 12. Thus, 

𝑑𝑏(4, 2) ≤ 𝑑𝑏(4, 3) + 𝑑𝑏(3, 2). 

Therefore, ((N, .), 𝑑𝑏) is A NTMS. 

Theorem 3.9: Let ((N, #), 𝑑𝑏) be a NTBMS. If the following condition is satisfied, then 
((N, #), 𝑑𝑏) is a NTPMS.  

 If 𝑑𝑏(m, n) = 0, then  

there exits any m, n ∈ A pair such that m = n.                                                                  (1) 

Proof: We show that ((N, #), 𝑑𝑏) satisfies conditions of NTPMS. From Definition 2.4,  

i) From Definition 3.1, it is clear that n#m ∈ N, for every n, m ∈ N. 

ii) It is clear that 𝑑𝑏(m, n) ≥ 𝑑𝑏(n, n)≥0. Because, from Definition 3.1, 𝑑𝑏(n, n) = 0. 

iii) From Definition 3.1, 𝑑𝑏(n, n) = 𝑑𝑏(m, m) =0. Also, from (1), if 𝑑𝑏(m, n) = 0, then       
m = n. Thus, Thus, if 𝑑𝑏(m, m) = 𝑑𝑏(m, n) = 𝑑𝑏(n, n) = 0, then there exits any m, n ∈ A 
pair such that m = n. 

iv) From Definition 3.1, 𝑑𝑏(m, n) = 𝑑𝑏(n, m) 

v) From Definition 3.1, if there exists at least an element s ∊ N for each n, m ∈ N pair such 
that 𝑑𝑏(n, m) ≤ 𝑑𝑏(n, m*neut(s)), then 𝑑𝑏(n, m*neut(s)) ≤ k.[𝑑𝑏(n, s) + 𝑑𝑏(s, n)]. Where,    
k ≥ 1 and k ∈ ℝ. Thus, we can take 𝑑𝑏(n, m*neut(s)) ≤ 𝑑𝑏(n, s) + 𝑑𝑏(s, n). Because k ≥ 1 
and k ∈ ℝ. Also, we can take  
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 𝑑𝑏(n, m*neut(s)) ≤ 𝑑𝑏(n, s) + 𝑑𝑏(s, n) - 𝑑𝑏(n, n) since 𝑑𝑏(n, n) = 0.  

Therefore, ((N, #), 𝑑𝑏) is a NTPMS.  

Theorem 3.10: Let ((N, #), 𝑑𝑏) be a NTBMS. Then, d(a, b) = 𝑑𝑏(𝑎,𝑏)

𝑑𝑏(𝑎,𝑏)+1
 is a NTBMS. 

Proof:  

i) It is clear that a#b ∈ N. 

ii) If a = b, then 𝑑𝑏(a, b) = 0. Because ((N, #), 𝑑𝑏) be a NTBMS. Thus,  

if a =b, d(a, b) = 𝑑𝑏(𝑎,𝑏)

𝑑𝑏(𝑎,𝑏)+1
 = 0

0+1
 = 0. Also, d(a, b) = 𝑑𝑏(𝑎,𝑏)

𝑑𝑏(𝑎,𝑏)+1
 ≥ 0. 

iii) 𝑑𝑏(a, b) = 𝑑𝑏(b, a), since ((N, #), 𝑑𝑏) be a NTBMS. Thus,  

d(a, b) = 𝑑𝑏(𝑎,𝑏)

𝑑𝑏(𝑎,𝑏)+1
  = 𝑑𝑏(𝑏,𝑎)

𝑑𝑏(𝑏,𝑎)+1
 = d(b, a). 

iv) If there exists at least an element c ∊ N for each a, b ∈ N pair such that 𝑑𝑏(a, b) ≤ 𝑑𝑏(a, 
b*neut(c)), then  

 𝑑𝑏(a, b*neut(c)) ≤  

k.[𝑑𝑏(a, c) + 𝑑𝑏(c, b)], since ((N, #), 𝑑𝑏) be a NTBMS. Where, k ≥ 1 and k ∈ ℝ.           (2) 

Thus, if there exists at least an element c ∊ N for a, b ∈ N pair such that 𝑑𝑏(a, b) ≤ 𝑑𝑏(a, 
b*neut(c)), then 

d(a, b) = 𝑑𝑏(𝑎,𝑏)

𝑑𝑏(𝑎,𝑏)+1
 ≤ k.[𝑑𝑏(a,c) + 𝑑𝑏(c,b)]

k.[𝑑𝑏(a,c) + 𝑑𝑏(c,b)]+1
 = k.𝑑𝑏(a,c)

k.[𝑑𝑏(a,c) + 𝑑𝑏(c,b)]+1
 + k.𝑑𝑏(c,b)

k.[𝑑𝑏(a,c) + 𝑑𝑏(c,b)]+1
 

 ≤ k.𝑑𝑏(a,c)
𝑑𝑏(a,c) +1

 + k.𝑑𝑏(c,b)
 𝑑𝑏(c,b)+1

 = k.[d(a, c)+d(c, b)]. Because, k ≥ 1, k ∈ ℝ and (2). 

Thus, d(a, b) = 𝑑𝑏(𝑎,𝑏)

𝑑𝑏(𝑎,𝑏)+1
 is a NTBMS. 

Definition 3.11: Let ((N, #), 𝑑𝑏) be a NTBMS and {𝑥𝑛} be a sequence in NTBMS and m 
∊ N. If there exist  k ∊ ℕ for every ε>0 such that 

𝑑𝑏(m, {𝑥𝑛}) < ε  

then {𝑥𝑛} converges to m. where n ≥ k. Also, it is showed that    

lim
𝑛→∞

𝑥𝑛= m or 𝑥𝑛→ m. 
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Definition 3.12: Let ((N, #), 𝑑𝑏) be a NTBMS and {𝑥𝑛} be a sequence in NTBMS. If there 
exist a k ∊ ℕ for every ε>0 such that 

𝑑𝑏({𝑥𝑚}, {𝑥𝑛})< ε  

then {𝑥𝑛} is a Cauchy sequence in NTBMS. Where, n ≥m≥k. 

Definition 3.13: Let ((N, #), 𝑑𝑏 ) be a NTBMS and {𝑥𝑛 } be a Cauchy sequence in 

NTBMS. NTBMS is called complete ⇔ every {𝑥𝑛} converges in NTBMS.  

Conclusions 
In this chapter, we obtained NTBMS. We also show that NTBMS is different from the 
NTMS and classical b - metrics. Also, we gave some properties for NTBMS. Thus, we 
have added a new structure to NT structure and we gave rise to a new field or research 
called NTBMS. Also, thanks to NTBMS researcher can obtain new structure and 
properties. For example, NT partial b – metric space, NT v – generalized b – metric, NT 
partial v – generalized b – metric NT b - normed space, NT b inner product space and NT 
fixed point theorems for NTBMS. 

Abbreviations 
NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTM: Neutrosophic triplet metric 

NTMS: Neutrosophic triplet metric space 

NTPM: Neutrosophic triplet partial metric 

NTPMS: Neutrosophic triplet partial metric space 

NTBM: Neutrosophic triplet b – metric  

NTBMS: Neutrosophic triplet b – metric space 
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Chapter Eight 

Multiple Criteria Decision Making in Architecture 
Based on Q-Neutrosophic Soft Expert Multiset 
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Abstract: We will extend this further by presenting a novel concept of Q-neutrosophic soft expert multiset, 
and define the associated related concepts and basic operations of subset, intersection, union, complement, 
OR and AND along with illustrative examples, and study some related properties with supporting proofs. 
Then, we construct an algorithm based on this concept. We illustrate the feasibility of the new method by an 
example in architecture. Finally, a comparison of the proposed method to existing methods is furnished to 
verify the effectiveness of our novel concept. 

Keywords: Decision making; Neutrosophic soft expert sets; Neutrosophic soft expert multiset; Q-fuzzy set, 
architecture. 
 

1. Introduction 

 In general evaluation, architectural practice is an area where personal opinion is 
intense, and the judgments reached as a result of the perceptions and reactions that occur 
during design are shaped according to individual emotions and thoughts. In this respect, it 
is very important that the model to help the decision making process be effective in 
expressing the human dimension and uncertainties in the evaluation of the designs obtained 
after the architectural design process. Intuitionistic fuzzy sets were introduced by 
Atanassov [1], followed by Molodtsov [2] on soft set and  neutrosophy logic [3] and 
neutrosophic sets [4] by Smarandache. The term neutrosophy means knowledge of neutral 
thought and this neutral represents the main distinction between fuzzy and intuitionistic 
fuzzy logic and set. Presently, work on soft set theory is progressing rapidly. Various 
operations and applications of soft sets were developed rapidly including multi-adjoint t-
concept lattices[5], signatures: definitions, operators and applications to fuzzy modelling 
[6], fuzzy inference system optimized by genetic algorithm for robust face and pose 
detection [7], fuzzy multi-objective modeling of effectiveness and user experience in 
online advertising [8], possibility fuzzy soft set [9], soft multiset theory [10], 
multiparameterized soft set [11], soft intuitionistic fuzzy sets [12], Q-fuzzy soft sets [13–
15], and multi Q-fuzzy sets [16–18], thereby opening avenues to many applications [19, 
20]. Later, Maji [21] introduced a more generalized concept, which is a combination of 
neutrosophic sets and soft sets and studied its properties. Alkhazaleh and Salleh [22] 

mailto:derya.bakbak@tbmm.gov.tr
mailto:vulucay27@gmail.com
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defined the concept of fuzzy soft expert set, which were later extended to vague soft expert 
set theory [23], generalized vague soft expert set [24] and multi Q-fuzzy soft expert set 
[25]. Şahin et al. [26] introduced neutrosophic soft expert sets, while Hassan et al. [27] 
extended it further to Q-neutrosophic soft expert set, Broumi et al. [28] defined 
neutrosophic parametrized soft set theory and its decision making, Deli [29] introduced 
refined neutrosophic sets and refined neutrosophic soft sets. 
Since membership values are inadequate for providing complete informationin some real 
problems which has different membership values for each element, different generalization 
of fuzzy sets, intuitionistic fuzzy sets and neutrosophic sets have been introduced is called 
multi fuzzy set [30], intuitionistic fuzzy multiset [31] and neutrosophic multiset [32,33], 
respectively. In the multisets an element of a universe can be constructed more than once 
with possibly the same or different membership values. Some work on the multi fuzzy set 
[34,35], on intuitionistic fuzzy multiset [36-39] and on neutrosophic multiset [40-43] have 
been studied. The above set theories have been applied to many different areas including 
real decision making problems [44-52]. The aim of this paper, besides the objective 
evaluation, a decision making model that can be effective in expressing the subjective 
evaluations within the structure of architecture (mass, spatial, semantic, form and 
experience) has been developed. 
Finally, we apply this new concept to solve a decision-making problem in architecture and 
compare it with other existing methods. 
2. Preliminaries 

In this section we review the basic definitions of a neutrosophic set, neutrosophic soft 
expert multiset, neutrosophic soft expert sets, Q-neutrosophic soft expert sets required as 
preliminaries. 
 
 Definition 2.1 ([4]) A neutrosophic set  𝐴 on the universe of discourse 𝒰 is defined as 𝐴 =
 {<  𝑢, ( 𝜇𝐴(𝑢),   𝑣𝐴(𝑢),   𝑤𝐴(𝑢))  > : 𝑢 ∈ 𝑈,  𝜇𝐴(𝑢),   𝑣𝐴(𝑢),   𝑤𝐴(𝑢)  ∈ [0, 1]}. There is no 
restriction on the sum of  𝜇𝐴(u);   𝑣𝐴(u) and   𝑤𝐴(u), so  0− ≤ 𝜇𝒜(𝑢)+𝑣𝒜(𝑢)+𝑤𝒜(𝑢) ≤
3+. 
 
Definition 2.2 ([21]) Let 𝒰  be an initial universe set and 𝐸  be a set of parameters. 
Consider 𝐴𝐸. Let 𝑁𝑆(𝒰) denotes the set of all neutrosophic sets of  𝒰. The collection 
(𝐹, 𝐴) is termed to be the neutrosophic soft set over 𝒰 , where F is a mapping given 
by  𝐹: 𝐴 → 𝑁𝑆(𝒰). 

Definition 2.3 ([22]) 𝒰 is an initial universe, 𝐸 is a set of parameters 𝑋 is a set of experts 
(agents), and 𝑂 = {agree = 1, disagree = 0}  a set of opinions. Let 𝑍 = 𝐸 × 𝑋 × 𝑂 
and  𝐴 ⊆ 𝑍. A pair (𝐹, 𝐴) is called a soft expert set over 𝒰, where 𝐹 is mapping given by 
𝐹: 𝐴 → 𝑃(𝒰) where 𝑃(𝒰) denote  the power set of 𝒰. 

Definition 2.4 ([26])  A pair (𝐹, 𝐴) is called a neutrosophic soft expert set over 𝒰, where 𝐹 
is mapping given by 
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𝐹: 𝐴 → 𝑃(𝒰)                                                                                      (1) 

where 𝑃(𝒰) denotes the power neutrosophic set of 𝑈.  

Definition 2.5 ([26]) The complement of a neutrosophic soft expert set (𝐹, 𝐴) denoted by 
(𝐹, 𝐴)𝑐 and is defined as (𝐹, 𝐴)𝑐=(𝐹𝑐 ,￢A) where 𝐹𝑐 =￢A → 𝑃(𝒰) is mapping given by 
𝐹𝑐(𝑥) = neutrosophic soft expert complement with   𝜇𝐹𝑐(𝑥) = 𝑤𝐹(𝑥),   𝑣𝐹𝑐(𝑥) =

𝑣𝐹(𝑥),   𝑤𝐹𝑐(𝑥) = 𝜇𝐹(𝑥). 
 
Definition 2.6 ([26]) The  agree-neutrosophic soft expert set (𝐹, 𝐴)1  over 𝒰  is a 
neutrosophic soft expert subset of (𝐹, 𝐴) is defined as  

(𝐹, 𝐴)1 = {𝐹1(𝑚):𝑚 ∈ 𝐸𝑋 {1}}.                                          (2) 
 
Definition 2.7 ([26])   The disagree-neutrosophic soft expert set (𝐹, 𝐴)0  over 𝒰  is a 
neutrosophic soft expert subset of (𝐹, 𝐴) is defined as   

(𝐹, 𝐴)0 = {𝐹0(𝑚):𝑚 ∈ 𝐸𝑋 {0}}.                                          (3) 
 

Definition 2.8 ([26])   Let (𝐻, 𝐴) and (𝐺, 𝐵) be two NSESs over the common universe U. 
Then the union of (𝐻, 𝐴)  and (𝐺, 𝐵)  is denoted by “ (𝐻, 𝐴) (𝐺, 𝐵) ” and is defined 
by(𝐻, 𝐴) (𝐺, 𝐵) = (𝐾, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵 and the truth-membership, indeterminacy-
membership and falsity-membership of (K, C) are as follows: 

𝜇𝐾(𝑒)(𝑚) = {

𝜇𝐻(𝑒)(𝑚)         ,         𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

𝜇𝐺(𝑒)(𝑚)        ,        𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,

𝑚𝑎𝑥 (𝜇𝐻(𝑒)(𝑚), 𝜇𝐺(𝑒)(𝑚)) ,   𝑖𝑓 𝑒 ∈ 𝐴𝐵.

 

 𝑣𝐾(𝑒)(𝑚) =

{
 
 

 
 𝑣𝐻(𝑒)(𝑚)        ,        𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

 𝑣𝐺(𝑒)(𝑚)         ,        𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,

𝑣𝐻(𝑒)(𝑚) + 𝑣𝐺(𝑒)(𝑚)

2
       ,   𝑖𝑓 𝑒 ∈ 𝐴𝐵.

                           (4)  

𝑤𝐾(𝑒)(𝑚) = {

𝑤𝐻(𝑒)(𝑚)         ,         𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,

𝑤𝐺(𝑒)(𝑚)        ,        𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,

𝑚𝑖𝑛 (𝑤𝐻(𝑒)(𝑚), 𝑤𝐺(𝑒)(𝑚)) ,   𝑖𝑓 𝑒 ∈ 𝐴𝐵.

 

 
 

Definition 2.9 ([26]) Let (𝐻, 𝐴) and (𝐺, 𝐵) be two NSESs over the common universe 𝑈. 
Then the intersection of (𝐻, 𝐴) and (𝐺, 𝐵) is denoted by “(𝐻, 𝐴) (𝐺, 𝐵)” and is defined 
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by(𝐻, 𝐴) (𝐺, 𝐵) = (𝐾, 𝐶), where  𝐶 = 𝐴𝐵 and the truth-membership, indeterminacy-
membership and falsity-membership of (𝐾, 𝐶) are as follows:  

𝜇𝐾(𝑒)(𝑚) = min (𝜇𝐻(𝑒)(𝑚), 𝜇𝐺(𝑒)(𝑚)) , 

     𝑣𝐾(𝑒)(𝑚) =
 𝑣𝐻(𝑒)(𝑚) + 𝑣𝐺(𝑒)(𝑚)

2
,                                                (5) 

  𝑤𝐾(𝑒)(𝑚) = max (𝑤𝐻(𝑒)(𝑚), 𝑤𝐺(𝑒)(𝑚)), 

 𝑖𝑓 𝑒 ∈ 𝐴𝐵. 
Definition 2.10 ([29]) Let 𝒰 be a universe. A neutrosophic multiset set (Nms) 𝐴 on 𝒰 can 
be defined as follows : 
𝐴 = {

≺ 𝑢, (𝜇𝐴
1(𝑢), 𝜇𝐴

2(𝑢), … , 𝜇𝐴
𝑝(𝑢)) , (𝑣𝐴

1(𝑢), 𝑣𝐴
2(𝑢), … , 𝑣𝐴

𝑝(𝑢)) , (𝑤𝐴
1(𝑢), 𝑤𝐴

2(𝑢), … ,𝑤𝐴
𝑝(𝑢))

≻: 𝑢 ∈ 𝒰} 
where, 

𝜇𝐴
1(𝑢), 𝜇𝐴

2(𝑢), … , 𝜇𝐴
𝑝(𝑢):𝒰 → [0,1], 

𝑣𝐴
1(𝑢), 𝑣𝐴

2(𝑢), … , 𝑣𝐴
𝑝(𝑢):𝒰 → [0,1], 

and 
𝑤𝐴
1(𝑢), 𝑤𝐴

2(𝑢), … ,𝑤𝐴
𝑝(𝑢):𝒰 → [0,1], 

such that 
0 ≤ 𝑠𝑢𝑝𝜇𝐴

𝑖 (𝑢) + 𝑠𝑢𝑝𝑣𝐴
𝑖 (𝑢) + 𝑠𝑢𝑝𝑤𝐴

𝑖 (𝑢) ≤ 3 
(𝑖 = 1,2, … , 𝑃) and 
(𝜇𝐴

1(𝑢), 𝜇𝐴
2(𝑢), … , 𝜇𝐴

𝑝(𝑢)) , (𝑣𝐴
1(𝑢), 𝑣𝐴

2(𝑢), … , 𝑣𝐴
𝑝(𝑢)) 𝑎𝑛𝑑 (𝑤𝐴

1(𝑢), 𝑤𝐴
2(𝑢), … , 𝑤𝐴

𝑝(𝑢)) 
Is the truth-membership sequence, indeterminacy-membership sequence and falsity- 
membership sequence of the element 𝑢,  respectively. Also, P is called the dimension 
(cardinality) of Nms  𝐴, denoted  𝑑(𝐴). We arrange the truth- membership sequence in 
decreasing order but the corresponding indeterminacy- membership and falsity-
membership sequence may not be in decreasing or increasing order. 
The set of all Neutrosophic multisets on 𝒰 is denoted by NMS(𝒰). 
Definition 2.11 ([25])  Let 𝐼 be unit interval and 𝑘 be a positive integer. A multi Q -fuzzy 
set �̃�𝑄 in 𝑉 and a non-empty set Q is a set of ordered sequences �̃�𝑄 = {(𝑣. 𝑞), 𝜇𝑖(𝑣, 𝑞): 𝑣 ∈
𝑉, 𝑞 ∈ 𝑄} where  

𝜇𝑖: 𝑉 × 𝑄 → 𝐼𝑘,      𝑖 = 1,2, … , 𝑘. 
The function (𝜇1(𝑣, 𝑞), 𝜇2(𝑣, 𝑞), … , 𝜇𝑘(𝑣, 𝑞)) is called the membership function of multi 
Q- fuzzy set  �̃�𝑄: and 𝜇1(𝑣, 𝑞) + 𝜇2(𝑣, 𝑞) + ⋯+ 𝜇𝑘(𝑣, 𝑞) ≤ 1, 𝑘 is called the dimension of  
�̃�𝑄. The set of all multi Q- fuzzy sets of dimension 𝑘 in 𝑉 and Q is denoted by 𝑀𝑘𝑄𝐹(𝑉). 
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3. Q-Neutrosophic Soft Expert Multiset Sets 

We will now propose the definition of Q-neutrosophic soft expert multiset (QNSEMS) and 
propose some of its properties. Throughout this paper, 𝕌 is an initial universe, 𝐸 is a set of 
parameters, Q be a set of supply,  𝑋  is a set of experts (agents), and 𝑂 = {agree =
1, disagree = 0} a set of opinions. Let 𝑍 = 𝐸 × 𝑋 × 𝑂 and  𝐺 ⊆ 𝑍. 

Definition 3.1. (𝐹𝑄, 𝐺) is called a Q-neutrosophic soft expert multiset over 𝕌, where 𝐹𝑄 is 
the mapping   

𝐹𝑄: 𝐺 → 𝑄𝑁𝑆𝐸𝑀𝑆 such that QNSEMS is the set of all QNSEMS over 𝕌. 

Example 3.2. Assume that a construction company making new moving structures wishes 
to receive feedback of a few experts. Let 𝕌 = {𝕦1}  is a set of moving structure,  𝑄 =
{𝑞1, 𝑞2} be the set of suppliers and 𝐸 = {𝑒1 = 𝑡𝑒𝑚𝑝𝑎𝑡𝑢𝑟𝑒, 𝑒2 = 𝑡𝑖𝑚𝑒} is a set of decision 
parameters.  Let 𝑋 = {𝑝, 𝑟} be set of experts. Suppose that 

𝐹𝑄(𝑒1, 𝑝, 1)

= {(
(𝕦1, 𝑞1)

(0.4,0.3, … ,0.2), (0.5,0.7, … ,0.2), (0.6,0.1, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.7,0.2, … ,0.4), (0.4,0.6, … ,0.3), (0.2,0.3, … ,0.4)
)} 

𝐹𝑄(𝑒1, 𝑟, 1)

= {(
(𝕦1, 𝑞1)

(0.3,0.2, … ,0.5), (0.8,0.1, … ,0.4), (0.5,0.6, … ,0.2)
) , (

(𝕦1, 𝑞2)

(0.8,0.5, … ,0.3), (0.5,0.7, … ,0.2), (0.3,0.1, … ,0.2)
)} 

𝐹𝑄(𝑒2, 𝑝, 1)

= {(
(𝕦1, 𝑞1)

(0.7,0.3, … ,0.6), (0.3,0.2, … ,0.6), (0.8,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.4, … ,0.6), (0.6,0.5, … ,0.4), (0.5,0.2, … ,0.3)
)} 

𝐹𝑄(𝑒2, 𝑟, 1)

= {(
(𝕦1, 𝑞1)

(0.8,0.3, … ,0.4), (0.3,0.1, … ,0.5), (0.2,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.7,0.3, … ,0.5), (0.3,0.2, … ,0.1), (0.4,0.3, … ,0.1)
)} 

𝐹𝑄(𝑒1, 𝑝, 0)

= {(
(𝕦1, 𝑞1)

(0.5,0.1, … ,0.2), (0.6,0.3, … ,0.4), (0.7,0.2, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.6,0.5, … ,0.4), (0.5,0.1, … ,0.2), (0.6,0.1, … ,0.3)
)} 

𝐹𝑄(𝑒1, 𝑟, 0)

= {(
(𝕦1, 𝑞1)

(0.4,0.2, … ,0.1), (0.6,0.1, … ,0.3), (0.7,0.2, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.4,0.3, … ,0.2), (0.1,0.2, … ,0.3), (0.5,0.4, … ,0.2)
)} 

𝐹𝑄(𝑒2, 𝑝, 0)

= {(
(𝕦1, 𝑞1)

(0.8,0.1, … ,0.5), (0.2,0.1, … ,0.4), (0.6,0.3, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.7,0.3, … ,0.4), (0.6,0.7, … ,0.4), (0.2,0.1, … ,0.3)
)} 

𝐹𝑄(𝑒2, 𝑟, 0)

= {(
(𝕦1, 𝑞1)

(0.7,0.2, … ,0.3), (0.4,0.1, … ,0.6), (0.3,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.3,0.4, … ,0.2), (0.4,0.1, … ,0.2)
)} 
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The Q- neutrosophic soft expert multiset (𝐹𝑄, 𝑍)  is a parameterized family {𝐹(𝑒𝑖), 𝑖 =
1,2, … } of all QNSEMS of  𝕌 describing a collection of objects. 
Definition 3.3. For two QNSEMSs (𝐹𝑄, 𝐺)  and (𝐻𝑄, 𝐵)  over 𝕌 , (𝐹𝑄, 𝐺) is called a 
neutrosophic soft expert subset of (𝐻𝑄, 𝐵) if 

i. 𝐵 ⊆ 𝐺, 

ii. , 𝐻𝑄(𝜀) is Q-neutrosophic soft expert multisubset 𝐹𝑄(𝜀) for all 𝜀 ∈ 𝐵. 

Example 3.4 Consider Example 3.2  where 

𝐺 = {(𝑒1, 𝑝, 1), (𝑒2, 𝑝, 1), (𝑒2, 𝑟, 0)} 
 𝐵 = {(𝑒1, 𝑝, 1), (𝑒2, 𝑟, 0)}                    

Since 𝐵  is a Q-neutrosophic soft expert multisubset of 𝐺 , clearly 𝐵 ⊆ 𝐺 . Let (𝐻𝑄, 𝐵) 
and (𝐹𝑄, 𝐺)  be defined as follows: 

(𝐹𝑄 , 𝐺) = 

{ [(𝑒1, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.4,0.3, … ,0.2), (0.5,0.7, … ,0.2), (0.6,0.1, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.7,0.2, … ,0.4), (0.4,0.6, … ,0.3), (0.2,0.3, … ,0.4)
)] 

   [(𝑒2, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.7,0.3, … ,0.6), (0.3,0.2, … ,0.6), (0.8,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.4, … ,0.6), (0.6,0.5, … ,0.4), (0.5,0.2, … ,0.3)
)], 

   [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.7,0.2, … ,0.3), (0.4,0.1, … ,0.6), (0.3,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.3,0.4, … ,0.2), (0.4,0.1, … ,0.2)
)]}. 

(𝐻𝑄 , 𝐵) =  

{[(𝑒1, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.4,0.3, … ,0.2), (0.5,0.7, … ,0.2), (0.6,0.1, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.7,0.2, … ,0.4), (0.4,0.6, … ,0.3), (0.2,0.3, … ,0.4)
)], 

  [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.7,0.2,… ,0.3), (0.4,0.1, … ,0.6), (0.3,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.3,0.4, … ,0.2), (0.4,0.1, … ,0.2)
)]}. 

Therefore (𝐻𝜂 , 𝐵) ⊆ (𝐹𝑄, 𝐺). 

Definition 3.5. Two QNSEMSs (𝐹𝑄, 𝐺) and (𝐻𝑄, 𝐵)  over 𝕌  are said to be equal if 
(𝐹𝑄, 𝐺) is a QNSEMS subset of  (𝐻𝑄, 𝐵) and (𝐻𝑄, 𝐵) is a QNSEMS subset of  (𝐹𝑄, 𝐺). 

Definition 3.6. Agree-Q-NSEMSs (𝐹𝑄, 𝐺)1 over 𝕌 is a QNSEMS subset of (𝐹𝑄, 𝐺) defined 
as  

(𝐹𝑄, 𝐺)1 = {𝐹1
(∆): ∆∈ 𝐸 × 𝑋 × {1}}.                                                                (6) 

Example 3.7 Using our previous Example 3.2, the agree- QNSEMS (𝐹𝑄, 𝑍)1 over 𝕌 is 



Editors: 
             Prof. Dr. Florentin Smarandache 
             Associate Prof. Dr. Memet Şahin 
 
 

96 
 

(𝐹𝑄 , 𝑍)1

= {[(𝑒1, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.4,0.3, … ,0.2), (0.5,0.7, … ,0.2), (0.6,0.1, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.7,0.2, … ,0.4), (0.4,0.6, … ,0.3), (0.2,0.3, … ,0.4)
)], 

       [(𝑒1, 𝑟, 1), (
(𝕦1, 𝑞1)

(0.3,0.2, … ,0.5), (0.8,0.1, … ,0.4), (0.5,0.6, … ,0.2)
) , (

(𝕦1, 𝑞2)

(0.8,0.5, … ,0.3), (0.5,0.7, … ,0.2), (0.3,0.1, … ,0.2)
)], 

       [(𝑒2, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.7,0.3, … ,0.6), (0.3,0.2, … ,0.6), (0.8,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.4, … ,0.6), (0.6,0.5, … ,0.4), (0.5,0.2, … ,0.3)
)], 

       [(𝑒2, 𝑟, 1), (
(𝕦1, 𝑞1)

(0.8,0.3, … ,0.4), (0.3,0.1, … ,0.5), (0.2,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.7,0.3, … ,0.5), (0.3,0.2, … ,0.1), (0.4,0.3, … ,0.1)
)]}. 

 
  Definition 3.8. A disagree-QNSEMSs (𝐹𝑄, 𝐺)0 over 𝕌 is a QNSEMS subset of (𝐹𝑄, 𝐺)  is 
defined as 

(𝐹𝑄, 𝐺)0 = {𝐹0
(∆): ∆∈ 𝐸 × 𝑋 × {0}}.                                                                (7) 

  Example 3.9 Using our previous Example 3.2, the disagree-QNSEMS (𝐹𝑄 , 𝑍)0 over 𝕌 is 

(𝐹𝑄 , 𝑍)0

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.5,0.1, … ,0.2), (0.6,0.3, … ,0.4), (0.7,0.2, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.6,0.5, … ,0.4), (0.5,0.1, … ,0.2), (0.6,0.1, … ,0.3)
)], 

       [(𝑒1, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.4,0.2, … ,0.1), (0.6,0.1, … ,0.3), (0.7,0.2, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.4,0.3, … ,0.2), (0.1,0.2, … ,0.3), (0.5,0.4, … ,0.2)
)], 

       [(𝑒2, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.8,0.1, … ,0.5), (0.2,0.1, … ,0.4), (0.6,0.3, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.7,0.3, … ,0.4), (0.6,0.7, … ,0.4), (0.2,0.1, … ,0.3)
)], 

       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.7,0.2, … ,0.3), (0.4,0.1, … ,0.6), (0.3,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.3,0.4, … ,0.2), (0.4,0.1, … ,0.2)
)]}. 

 
4. Basic operations on NSEMSs 
 
Definition 4.1. The complement of a QNSEMS (𝐹𝑄, 𝐺) is  

(𝐹𝑄, 𝐺)
𝑐
= (𝐹𝑄

(𝑐), ¬𝐺) 

such that  𝐹µ(𝑐): ¬𝐺 → 𝑄𝑁𝑆𝐸𝑀𝑆(𝕌) a mapping  

𝐹𝑄
(𝑐)(∆) = {𝐷𝑖𝐹𝑄(∆)(𝑐) = 𝑌

𝑖
𝐹𝑄(∆), 𝐼

𝑖 𝐹𝑄(∆)(𝑐) = 1 − 𝐼
𝑖 𝐹𝑄(∆), 𝑌

𝑖
𝐹𝑄(∆)

(𝑐) = 𝐷𝑖𝐹𝑄(∆) }          (8) 

for each ∆∈ 𝐸. 

Example 4.2. Using our previous Example 3.2 the complement of the QNSEMS 𝐹𝑄 
denoted by 𝐹𝑄

(𝑐) is given as follows: 
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(𝐹𝑄 , 𝑍)
𝑐

= {[(¬𝑒1, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.2,0.7, … ,0.4), (0.2,0.3, … ,0.5), (0.3,0.9, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.7,0.8, … ,0.7), (0.3,0.4, … ,0.4), (0.4,0.7, … ,0.2)
)], 

       [(¬𝑒1, 𝑟, 1), (
(𝕦1, 𝑞1)

(0.5,0.8, … ,0.3), (0.4,0.9, … ,0.8), (0.2,0.4, … ,0.5)
) , (

(𝕦1, 𝑞2)

(0.3,0.5, … ,0.8), (0.2,0.3, … ,0.5), (0.2,0.9, … ,0.3)
)], 

       [(¬𝑒2, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.6,0.7, … ,0.7), (0.6,0.8, … ,0.3), (0.1,0.8,… ,0.8)
) , (

(𝕦1, 𝑞2)

(0.6,0.6,… ,0.5), (0.4,0.5, … ,0.6), (0.3,0.8, … ,0.5)
)], 

       [(¬𝑒2, 𝑟, 1), (
(𝕦1, 𝑞1)

(0.4,0.7,… ,0.8), (0.5,0.9,… ,0.3), (0.4,0.7, … ,0.2)
) , (

(𝕦1, 𝑞2)

(0.5,0.7, … ,0.7), (0.1,0.8, … ,0.3), (0.1,0.7, … ,0.4)
)], 

       [(¬𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.2,0.9, … ,0.5), (0.4,0.7, … ,0.6), (0.6,0.8, … ,0.7)
) , (

(𝕦1, 𝑞2)

(0.4,0.5, … ,0.6), (0.2,0.9, … ,0.5), (0.3,0.9, … ,0.6)
)] 

       [(¬𝑒1, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.1,0.8, … ,0.4), (0.3,0.9, … ,0.6), (0.4,0.8, … ,0.7)
) , (

(𝕦1, 𝑞2)

(0.2,0.7, … ,0.4), (0.3,0.8, … ,0.2), (0.2,0.6, … ,0.5)
)], 

       [(¬𝑒2, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.5,0.9, … ,0.8), (0.4,0.9, … ,0.2), (0.1,0.7,… ,0.6)
) , (

(𝕦1, 𝑞2)

(0.4,0.7,… ,0.7), (0.4,0.3, … ,0.6), (0.3,0.9, … ,0.2)
)], 

       [(¬𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.3,0.8,… ,0.7), (0.6,0.9,… ,0.4), (0.1,0.8, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.2,0.4, … ,0.5), (0.2,0.6, … ,0.3), (0.2,0.9, … ,0.4)
)]} 

Proposition 4.3.  If (𝐹𝑄, 𝐺) is a QNSEMS over 𝕌, then the properties below holds true.  

1.  ((𝐹𝑄, 𝐺)
𝑐
)
𝑐
= (𝐹𝑄, 𝐺) 

2. ((𝐹𝑄, 𝐺)1)
𝑐
= (𝐹𝑄, 𝐺)0 

3. ((𝐹𝑄, 𝐺)0)
𝑐
= (𝐹𝑄, 𝐺)1 

 
Proof. The proofs of the propositions are straightforward by using Definition 4.1, 
Definition 3.6 and Definition 3.8. 

Definition 4.4. The union of two QNSEMSs (𝐹𝑄, 𝐺)  and (𝐾𝑄, 𝐵)  over  𝕌 , denoted by 
(𝐹𝑄, 𝐺) (𝐾𝑄, 𝐵) is the QNSEMSs (𝐻𝑄, 𝐶)  such that 𝐶 = 𝐺 ∪ 𝐵 and  ∀ 𝑒 ∈ 𝐶, 

(𝐻𝑄, 𝐶) =

{
 
 

 
 𝑚𝑎𝑥 (𝐷

𝑖
𝐹𝑄(𝑒)

(𝑚), 𝐷𝑖𝐾𝑄(𝑒)(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑖𝑛 (𝐼𝑖𝐹𝑄(𝑒)(𝑚), 𝐼
𝑖
𝐾𝑄(𝑒)

(𝑚))        𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑖𝑛 (𝑌𝑖𝐹𝑄(𝑒)(𝑚), 𝑌
𝑖
𝐾𝑄(𝑒)

(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵.

                 (9) 

Example 4.5. Suppose that  (𝐹𝑄, 𝐺) and (𝐾𝑄, 𝐵) are two QNSEMSs over 𝕌, such that  

(𝐹𝑄 , 𝐺) =

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.7,0.3, … ,0.5), (0.6,0.2, … ,0.4), (0.4,0.5, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.4,0.3, … ,0.5), (0.6,0.1, … ,0.5), (0.4,0.3, … ,0.1)
)], 

       [(𝑒1, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.5,0.1, … ,0.7), (0.3,0.1, … ,0.2), (0.4,0.3, … ,0.2)
) , (

(𝕦1, 𝑞2)

(0.3,0.1, … ,0.2), (0.2,0.3, … ,0.6), (0.5,0.4, … ,0.2)
)], 
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       [(𝑒2, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.8,0.4, … ,0.6), (0.1,0.4, … ,0.2), (0.5,0.2, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.7,0.3, … ,0.4), (0.3,0.4, … ,0.1), (0.2,0.3, … ,0.4)
)], 

       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.6,0.3, … ,0.4), (0.5,0.6, … ,0.7), (0.1,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.2,0.4, … ,0.5), (0.3,0.1, … ,0.5)
)]} 

(𝐾𝑄, 𝐵)  = 

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.5,0.7, … ,0.3), (0.4,0.3, … ,0.7), (0.2,0.4, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.6,0.5, … ,0.4), (0.5,0.1, … ,0.2), (0.6,0.1, … ,0.3)
)], 

       [(𝑒2, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.8,0.1, … ,0.5), (0.2,0.1, … ,0.4), (0.6,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.6,0.3, … ,0.4), (0.6,0.3, … ,0.4), (0.2,0.4, … ,0.3)
)], 

       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.6,0.2, … ,0.3), (0.4,0.1, … ,0.6), (0.3,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.3), (0.3,0.4, … ,0.7), (0.4,0.2, … ,0.5)
)]}. 

Then (𝐹𝑄, 𝐺) (𝐾𝑄, 𝐵) = (𝐻𝑄, 𝐶) where 
(𝐻𝑄 , 𝐶) 

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.7,0.7, … ,0.5), (0.4,0.2, … ,0.4), (0.2,0.4, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.6,0.5, … ,0.5), (0.5,0.1, … ,0.2), (0.6,0.1, … ,0.3)
)], 

       [(𝑒2, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.8,0.4, … ,0.6), (0.1,0.1, … ,0.2), (0.5,0.2, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.7,0.3, … ,0.4), (0.3,0.3, … ,0.1), (0.2,0.3, … ,0.3)
)], 

       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.6,0.2, … ,0.3), (0.4,0.1, … ,0.6), (0.1,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.3), (0.2,0.4, … ,0.5), (0.3,0.1, … ,0.5)
)]}. 

Proposition 4.6. If  (𝐹𝑄, 𝐺), (𝐾𝑄, 𝐵)  and (𝐻𝑄, 𝐶) are three QNSEMSs over 𝕌, then 

i.  ((𝐹𝑄, 𝐺) (𝐾𝑄, 𝐵) )  (𝐻𝑄, 𝐶) = (𝐹𝑄, 𝐺) ((𝐾𝑄, 𝐵)  (𝐻𝑄, 𝐶)) 

ii (𝐹𝑄, 𝐺) (𝐹𝑄, 𝐺) ⊆ (𝐹𝑄, 𝐺).  
 
 Proof. (i) and (ii) can be easily proved. 

Definition 4.7. Suppose (𝐹𝑄, 𝐺)  and (𝐾𝑄, 𝐵)  are two QNSEMSs over the common 
universe 𝕌. The intersection of (𝐹𝑄, 𝐺) and (𝐾𝑄, 𝐵) is (𝐹𝑄, 𝐺)  (𝐾𝑄, 𝐵) = (𝑃𝑄, 𝐶) such 
that 𝐶 = 𝐺 ∩ 𝐵 and ∀ 𝑒 ∈ 𝐶, 

(𝑃𝑄, 𝐶) =

{
 
 

 
 𝑚𝑖𝑛 (𝐷

𝑖
𝐹𝑄(𝑒)

(𝑚), 𝐷𝑖𝐾𝑄(𝑒)(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑎𝑥 (𝐼𝑖𝐹𝑄(𝑒)(𝑚), 𝐼
𝑖
𝐾𝑄(𝑒)

(𝑚))        𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑎𝑥 (𝑌𝑖𝐹𝑄(𝑒)(𝑚), 𝑌
𝑖
𝐾𝑄(𝑒)

(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵.

                                     (10) 

Example 4.8. Suppose that (𝐹𝑄, 𝐺) and (𝐾𝑄, 𝐵)  are two QNSEMSs over 𝕌, such that  

(𝐹𝑄 , 𝐺) =

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.7,0.3, … ,0.5), (0.6,0.2, … ,0.4), (0.4,0.5, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.4,0.3, … ,0.5), (0.6,0.1, … ,0.5), (0.4,0.3, … ,0.1)
)], 
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       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.6,0.3, … ,0.4), (0.5,0.6, … ,0.7), (0.1,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.2,0.4, … ,0.5), (0.3,0.1, … ,0.5)
)]}. 

(𝐾𝑄, 𝐵)  = 

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.5,0.7, … ,0.3), (0.4,0.3, … ,0.7), (0.2,0.4, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.6,0.5, … ,0.4), (0.5,0.1, … ,0.2), (0.6,0.1, … ,0.3)
)], 

       [(𝑒2, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.8,0.1, … ,0.5), (0.2,0.1, … ,0.4), (0.6,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.6,0.3, … ,0.4), (0.6,0.3, … ,0.4), (0.2,0.4, … ,0.3)
)], 

       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.6,0.2, … ,0.3), (0.4,0.1, … ,0.6), (0.3,0.2, … ,0.1)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.3), (0.3,0.4, … ,0.7), (0.4,0.2, … ,0.5)
)]}. 

Then  (𝐹𝑄, 𝐺)  (𝐾𝑄, 𝐵) = (𝑃𝑄, 𝐶)  where 

(𝑃𝑄 , 𝐶)  

=

{
 
 

 
 [(𝑒1, 𝑝, 0), (

(𝕦1, 𝑞1)

(0.5,0.7, … ,0.5), (0.4,0.3, … ,0.7), (0.2,0.5, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.4,0.5, … ,0.5), (0.5,0.1, … ,0.5), (0.4,0.3, … ,0.3)
)]

[(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.6,0.3, … ,0.4), (0.4,0.6, … ,0.7), (0.1,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.3), (0.2,0.4, … ,0.7), (0.3,0.2, … ,0.5)
)]
}
 
 

 
 

. 

Proposition 4.9. If  (𝐹𝑄, 𝐺), (𝐾𝑄, 𝐵)  and (𝐻𝑄, 𝐶) are three QNSEMSs over 𝕌, then 

i.  ((𝐹𝑄, 𝐺)  (𝐾𝑄, 𝐵) )  (𝐻𝑄, 𝐶) = (𝐹𝑄, 𝐺) ((𝐾𝑄, 𝐵) (𝐻𝑄, 𝐶)). 

ii (𝐹𝑄, 𝐺) (𝐹𝑄, 𝐺) ⊆ (𝐹𝑄, 𝐺).  
 Proof. The proofs are straightforward. 

Proposition 4.10. If  (𝐹𝑄, 𝐺), (𝐾𝑄, 𝐵)  and (𝐻𝑄, 𝐶) are three QNSEMSs over 𝕌, then 

i.((𝐹𝑄, 𝐺) (𝐾𝑄, 𝐵))  (𝐻𝑄, 𝐶) = ((𝐹𝑄, 𝐺) (𝐻𝑄, 𝐶))  ((𝐾𝑄, 𝐵) (𝐻𝑄, 𝐶)). 

ii.((𝐹𝑄, 𝐺) (𝐾𝑄, 𝐵))  (𝐻𝑄, 𝐶) = ((𝐹𝑄, 𝐺) (𝐻𝑄, 𝐶))  ((𝐾𝑄, 𝐵) (𝐻𝑄, 𝐶)). 
Proof. The proofs can be easily obtained from Definition 4.4 and Definition 4.7.  

5. AND and OR operations 

Definition 5.1. If   (𝐹𝑄, 𝐺)  and (𝐾𝑄, 𝐵)  are two QNSEMSs over   𝕌 , then 
(𝐹𝑄, 𝐺)AND(𝐾𝑄, 𝐵)" is 

(𝐹𝑄, 𝐺) ∧ (𝐾𝑄, 𝐵) = (𝐻𝑄, 𝐺 × 𝐵)                                                                (11) 

such that 𝐻𝑄(𝛼, 𝛽) = 𝐹𝑄(𝛼) ∩ 𝐾𝑄(𝛽) and of (𝐻𝑄, 𝐺 × 𝐵) are as follows:  
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𝐻𝑄(𝛼, 𝛽)(𝑚) =

{
 
 

 
 𝑚𝑖𝑛 (𝐷

𝑖
𝐹𝑄(𝑒)

(𝑚), 𝐷𝑖𝐾𝑄(𝑒)(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑖𝑛 (𝐼𝑖𝐹𝑄(𝑒)(𝑚), 𝐼
𝑖
𝐾𝑄(𝑒)

(𝑚))        𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑎𝑥 (𝑌𝑖𝐹𝑄(𝑒)(𝑚), 𝑌
𝑖
𝐾𝑄(𝑒)

(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵.

   

where ∀𝛼 ∈ 𝐺, ∀𝛽 ∈ 𝐵. 

Example 5.2. Suppose that  (𝐹𝑄, 𝐺) and (𝐾𝑄, 𝐵)  are two QNSEMSs over  𝕌, such that  

(𝐹𝑄, 𝐺) =

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.2,0.3, … ,0.6), (0.2,0.1, … ,0.8), (0.3,0.2, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.4,0.3, … ,0.5), (0.6,0.1, … ,0.5), (0.4,0.3, … ,0.1)
)], 

       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.5,0.3, … ,0.4), (0.6,0.5, … ,0.4), (0.2,0.4, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.2,0.4, … ,0.5), (0.3,0.1, … ,0.5)
)]}. 

(𝐾𝑄 , 𝐵) 

= {[(𝑒1, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.3,0.2, … ,0.1), (0.5,0.2, … ,0.3), (0.8,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.3,0.2, … ,0.1), (0.5,0.2, … ,0.3), (0.8,0.3, … ,0.4)
)]} 

Then (𝐹𝑄 , 𝐺) ∧ (𝐾𝑄 , 𝐵) = (𝐻𝑄 , 𝐺 × 𝐵) where 

(𝐻𝑄 , 𝐺 × 𝐵) =

= {[(𝑒1, 𝑝, 0), (𝑒1, 𝑝, 1) (
(𝕦1, 𝑞1)

(0.2,0.2, … ,0.6), (0.2,0.1, … ,0.8), (0.3,0.2, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.3,0.2, … ,0.5), (0.5,0.1, … ,0.5), (0.4,0.3, … ,0.4)
)], 

     [(𝑒2, 𝑟, 0), (𝑒1, 𝑝, 1) (
(𝕦1, 𝑞1)

(0.3,0.2, … ,0.4), (0.5,0.2, … ,0.8), (0.2,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.3,0.2, … ,0.2), (0.2,0.2, … ,0.5), (0.3,0.1, … ,0.5)
)]}. 

Definition 5.3. If   (𝐹𝑄, 𝐺)  and (𝐾𝑄, 𝐵)  are two QNSEMSs over   𝕌 , then 
(𝐹𝑄, 𝐺)OR (𝐾𝑄, 𝐵)" is 

(𝐹𝑄, 𝐺) ∨ (𝐾𝑄, 𝐵) = (𝐻𝑄, 𝐺 × 𝐵)                                                                (12) 

such that 𝐻𝑄(𝛼, 𝛽) = 𝐹𝑄(𝛼) ∩ 𝐾𝑄(𝛽) and of (𝐻𝑄, 𝐺 × 𝐵) are as follows:  

𝐻𝑄(𝛼, 𝛽)(𝑚) =

{
 
 

 
 𝑚𝑎𝑥 (𝐷

𝑖
𝐹𝑄(𝑒)

(𝑚), 𝐷𝑖𝐾𝑄(𝑒)(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑎𝑥 (𝐼𝑖𝐹𝑄(𝑒)(𝑚), 𝐼
𝑖
𝐾𝑄(𝑒)

(𝑚))        𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵

𝑚𝑖𝑛 (𝑌𝑖𝐹𝑄(𝑒)(𝑚), 𝑌
𝑖
𝐾𝑄(𝑒)

(𝑚))       𝑖𝑓   𝑒 ∈ 𝐺 ∩ 𝐵.

                 (13)  

where ∀𝛼 ∈ 𝐺, ∀𝛽 ∈ 𝐵. 

Example 5.4. Suppose that  (𝐹𝑄, 𝐺) and (𝐾𝑄, 𝐵)  are two QNSEMSs over  𝕌, such that  
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(𝐹𝑄 , 𝐺) =

= {[(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.2,0.3, … ,0.6), (0.2,0.1, … ,0.8), (0.3,0.2, … ,0.6)
) , (

(𝕦1, 𝑞2)

(0.4,0.3, … ,0.5), (0.6,0.1, … ,0.5), (0.4,0.3, … ,0.1)
)], 

       [(𝑒2, 𝑟, 0), (
(𝕦1, 𝑞1)

(0.5,0.3, … ,0.4), (0.6,0.5, … ,0.4), (0.2,0.4, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.2), (0.2,0.4, … ,0.5), (0.3,0.1, … ,0.5)
)]}. 

(𝐾𝑄, 𝐵) 

= {[(𝑒1, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.3,0.2, … ,0.1), (0.5,0.2, … ,0.3), (0.8,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.3,0.2, … ,0.1), (0.5,0.2, … ,0.3), (0.8,0.3, … ,0.4)
)]} 

Then (𝐹𝑄, 𝐺) ∨ (𝐾𝑄, 𝐵) = (𝐻𝑄, 𝐺 × 𝐵) where 

(𝐻𝑄 , 𝐺 × 𝐵) =

= {[(𝑒1, 𝑝, 0), (𝑒1, 𝑝, 1) (
(𝕦1, 𝑞1)

(0.3,0.3, … ,0.1), (0.5,0.2, … ,0.3), (0.8,0.3, … ,0.4)
) , (

(𝕦1, 𝑞2)

(0.4,0.3, … ,0.1), (0.6,0.2, … ,0.3), (0.8,0.3, … ,0.1)
)], 

     [(𝑒2, 𝑟, 0), (𝑒1, 𝑝, 1) (
(𝕦1, 𝑞1)

(0.5,0.3, … ,0.1), (0.6,0.5, … ,0.3), (0.8,0.4, … ,0.3)
) , (

(𝕦1, 𝑞2)

(0.5,0.6, … ,0.1), (0.5,0.4, … ,0.3), (0.8,0.3, … ,0.4)
)]}. 

Proposition 5.5. If (𝐹𝑄, 𝐺) and (𝐾𝑄, 𝐵) are two QNSEMSs over  𝕌, then 

i.((𝐹𝑄, 𝐺) ∧ (𝐾𝑄, 𝐵) )
𝑐
= (𝐹𝑄, 𝐺)

𝑐
∨ (𝐾𝑄, 𝐵)

𝑐
 

ii.((𝐹𝑄, 𝐺) ∨ (𝐾𝑄, 𝐵))
𝑐
= (𝐹𝑄, 𝐺)

𝑐
∧ (𝐾𝑄, 𝐵)

𝑐
 

 
Proof The proofs are straightforward from Definition 5.1 and Definition 5.3. 

6. An Application of QNSEMSs 

In this section, we will now present an application in architecture of QNSEMS theory to 
illustrate that this concept can be successfully applied to decision-making problems with 
uncertain information. The following algorithm is suggested to solve a QNSEMS based 
decision making problem below. 

In the preventing water permeability process, the cold and hot cycles are prevented from 
damaging the structure. When choosing membrane types for insulation, it is important to 
determine the sealing thickness on the surface to be used. Therefore, this method gives the 
best type of membrane. Let us assume that the membrane application outputs used in for 
insulation structures are taken by a few experts at certain time intervals. So, let us take the 
samples at three different timings in a day (in 09:30, 14:30 and 19:30). Ezgi construction 
will make the membrane purchase. Two types of membrane (alternatives)  𝕌 = {𝕦1, 𝕦2} 
with two types of qualifications Q= {𝑞1, 𝑞2} and there are two parameters 𝐸 = {𝑒1, 𝑒2} 
where the parameters  𝑒𝑖 (𝑖 = 1,2) stand for “hot” and “cold” respectively. Let 𝑋 = {𝑝, 𝑞} 
be a set of experts. After a good application process, the experts construct the Q-NSEMS 
below. 
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(𝐹𝑄 , 𝑍) = 

{[(𝑒1, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.3,0.1,0.4), (0.2,0.1,0.5), (0.5,0.2,0.6)
) , (

(𝕦1, 𝑞2)

(0.4,0.2,0.3), (0.7,0.1,0.6), (0.3,0.2,0.6)
) , (

(𝕦2, 𝑞1)

(0.5,0.3,0.4), (0.2,0.1,0.8), (0.8,0.2,0.1)
) , (

(𝕦2, 𝑞2)

(0.9,0.3,0.4), (0.2,0.1,0.8), (0.4,0.2,0.1)
)], 

  [(𝑒1, 𝑞, 1), (
(𝕦1, 𝑞1)

(0.4,0.2,0.5), (0.3,0.1,0.2), (0.6,0.3,0.4)
) , (

(𝕦1, 𝑞2)

(0.5,0.3,0.2), (0.8,0.2,0.4), (0.5,0.3,0.2)
) , (

(𝕦2, 𝑞1)

(0.6,0.3,0.8), (0.3,0.2,0.1), (0.5,0.4,0.3)
) , (

(𝕦2, 𝑞2)

(0.6,0.3,0.8), (0.3,0.2,0.1), (0.5,0.4,0.3)
)], 

  [(𝑒2, 𝑝, 1), (
(𝕦1, 𝑞1)

(0.6,0.4,0.2), (0.3,0.1,0.4), (0.8,0.2,0.5)
) , (

(𝕦1, 𝑞2)

(0.8,0.3,0.4), (0.2,0.1,0.5), (0.4,0.3,0.1)
) , (

(𝕦2, 𝑞1)

(0.8,0.3,0.2), (0.3,0.1,0.4), (0.2,0.1,0.4)
) , (

(𝕦2, 𝑞2)

(0.4,0.3,0.7), (0.3,0.1,0.4), (0.5,0.3,0.2)
)], 

  [(𝑒2, 𝑞, 1), (
(𝕦1, 𝑞1)

(0.5,0.2,0.4), (0.3,0.2,0.5), (0.6,0.1,0.3)
) , (

(𝕦1, 𝑞2)

(0.6,0.4,0.7), (0.5,0.3,0.2), (0.6,0.2,0.4)
) , (

(𝕦2, 𝑞1)

(0.6,0.5,0.4), (0.1,0.3,0.2), (0.6,0.2,0.3)
) , (

(𝕦2, 𝑞2)

(0.8,0.2,0.3), (0.2,0.1,0.4), (0.3,0.4,0.5)
)], 

  [(𝑒1, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.5,0.1,0.7), (0.4,0.2,0.3), (0.5,0.4,0.1)
) , (

(𝕦1, 𝑞2)

(0.8,0.2,0.3), (0.2,0.1,0.4), (0.3,0.4,0.5)
) , (

(𝕦2, 𝑞1)

(0.5,0.2,0.6), (0.3,0.4,0.1), (0.2,0.3,0.1)
) , (

(𝕦2, 𝑞2)

(0.5,0.2,0.3), (0.4,0.1,0.2), (0.2,0.1,0.4)
)], 

  [(𝑒1, 𝑞, 0), (
(𝕦1, 𝑞1)

(0.7,0.1,0.4), (0.3,0.2,0.1), (0.4,0.2,0.5)
) , (

(𝕦1, 𝑞2)

(0.6,0.5,0.4), (0.4,0.2,0.1), (0.8,0.2,0.6)
) , (

(𝕦2, 𝑞1)

(0.9,0.4,0.5), (0.2,0.1,0.3), (0.6,0.2,0.3)
) , (

(𝕦2, 𝑞2)

(0.6,0.5,0.4), (0.1,0.3,0.2), (0.6,0.2,0.3)
)], 

  [(𝑒2, 𝑝, 0), (
(𝕦1, 𝑞1)

(0.6,0.5,0.7), (0.3,0.5,0.4), (0.6,0.3,0.4)
) , (

(𝕦1, 𝑞2)

(0.5,0.2,0.3), (0.2,0.1,0.3), (0.4,0.3,0.5)
) , (

(𝕦2, 𝑞1)

(0.6,0.3,0.4), (0.1,0.2,0.4), (0.5,0.3,0.2)
) , (

(𝕦2, 𝑞2)

(0.3,0.1,0.4), (0.2,0.1,0.5), (0.5,0.2,0.6)
)], 

  [(𝑒2, 𝑞, 0), (
(𝕦1, 𝑞1)

(0.3,0.1,0.2), (0.4,0.1,0.3), (0.5,0.2,0.6)
) , (

(𝕦1, 𝑞2)

(0.7,0.2,0.4), (0.4,0.3,0.6), (0.5,0.1,0.6)
) , (

(𝕦2, 𝑞1)

(0.7,0.3,0.5), (0.2,0.4,0.3), (0.5,0.2,0.3)
) , (

(𝕦2, 𝑞2)

(0.5,0.3,0.2), (0.8,0.2,0.4), (0.5,0.3,0.2)
)]}. 

 
Tables 1 presents the agree-QNSEMS while Table 2 presents the disagree-Q-NSEMS by 
using the mean of each QNSEMS. 
The following algorithm may be used to choose the most qualified membrane to 
preventing water permeability. 
 
    Input the QNSEMS (𝐹𝑄, 𝑍). 

1. Compute  the   

agree-QNSES (𝕦, 𝑞) = |𝑚𝑎𝑥{𝐷𝑖} − 𝑚𝑖𝑛{𝐼𝑖} − 𝑚𝑖𝑛{𝑌𝑖} | 

and  

disagree-QNSES (𝕦, 𝑞) = |𝑚𝑖𝑛{𝐷𝑖} − 𝑚𝑎𝑥{𝐼𝑖} − 𝑚𝑎𝑥{𝑌𝑖} | 

2. Find the agree-QNSEMS and disagree-QNSEMS. 

3. Calculate   𝑐𝑗 = ∑ (𝕦, 𝑞)𝑖𝑗𝑖  for agree-QNSEMS. 

4. Calculate   𝑘𝑗 = ∑ (𝕦, 𝑞)𝑖𝑗𝑖  for disagree-QNSEMS. 

5. Determine  𝑠𝑗 = |𝑐𝑗 − 𝑘𝑗|. 

6. Determine 𝑟, for which 𝑠𝑟 = max𝑠𝑗. If there is has more than a one value of 𝑟, then 
the membrane can have alternative choices. 
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Table 1: Agree- QNSEMS. 
 (𝕦1, 𝑞1) (𝕦1, 𝑞2) (𝕦2, 𝑞1) (𝕦2, 𝑞2) 

(𝑒1, 𝑝, 1) 0.1 0.3 0.6 0.7 
(𝑒2, 𝑝, 1) 0.5 0.6 0.5 0.2 
(𝑒1, 𝑞, 1) 0.3 0.3 0.3 0.3 
(𝑒2, 𝑞, 1) 0.2 0.1 0.2 0.4 

𝐶𝑗 =∑(𝕦, 𝑞)𝑖𝑗
𝑖

 𝑐1 = 1.1 𝑐2 = 1.3 𝑐3 = 1.6 𝑐4 = 1.6 

 
 

Table 2: Disagree- QNSEMS. 
 (𝕦1, 𝑞1) (𝕦1, 𝑞2) (𝕦2, 𝑞1) (𝕦2, 𝑞2) 

(𝑒1, 𝑝, 0) 0.7 0.7 0.9 0.4 
(𝑒2, 𝑝, 0) 0.9 0.6 0.6 0.8 
(𝑒1, 𝑞, 0) 0.6 0.7 0.6 0.6 
(𝑒2, 𝑞, 0) 0.5 0.5 0.6 0.1 

𝑘𝑗 =∑(𝕦, 𝑞)𝑖𝑗
𝑖

 𝑘1 = 2.7 𝑘2 = 2.5 𝑘3 = 2.7 𝑘4 = 1.9 

 
 

Table 3: 𝑠𝑗 = |𝑐𝑗 − 𝑘𝑗| 
𝑗 𝑉 ×Q 𝑐𝑗 𝑘𝑗 𝑠𝑗 

1 (𝕦1, 𝑞1) 1.1 2.7 1.6 

2 (𝕦1, 𝑞2) 1.3 2.5 1.2 

3 (𝕦2, 𝑞1) 1.6 2.7 1.1 

4 (𝕦2, 𝑞2) 1.6 1.9 0.3 

 

From Tables 1 and 2 we are able to calculate the values of  𝑠𝑗 = 𝑐𝑗 − 𝑘𝑗 as in Table 3. 

As can be seen, the maximum score is the score 1.6, shown in the above for the 𝕦1. Hence 
the best decision for the experts is to select membrane  𝕦2 followed by. 

7.Comparison Analysis 

A Q-neutrosophic soft expert model gives more precision, flexibility and compatibility 
compared to the classical, fuzzy and/or intuitionistic fuzzy models.  
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Table4: Comparison of fuzzy soft  set to other variants 

 Fuzzy soft  
expert  

Q-Fuzzy 
soft   

Multi Q-
fuzzy soft 

expert 

 
Q-

Neutrosophic 
soft set 

 

 
Q-

Neutrosophic 
Soft Expert  

 

Q-
Neutrosophic 

soft expert 
multiset 

Methods 
Alkhazaleh 
and Salleh 

[22] 

Adam and 
Hassan [33] 

Adam and 
Hassan [28] 

Sahin et al. 
[29] 

Hassan 
et.al[27] 

Proposed 
Method 

 
Domain 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Co-domain [0,1] [0,1] [0,1] [0,1]3 [0,1]3 [0,1]3 

True Yes Yes Yes Yes Yes Yes 

Falsity No No  No  Yes Yes Yes 

Indeterminacy No No No  Yes Yes Yes 

Expert Yes  No  Yes  No  Yes  Yes 

Q No  Yes  Yes  No  Yes  Yes 

Membership 
valued 

Single 
valued 

Single 
valued multi-valued Single 

valued 
Single-
valued Multi-valued 

 
The feasibility and effectiveness of the proposed decision-making approach are verified by 
a comparison analysis using neutrosophic soft expert multiset decision method, with those 
methods used by Sahin et al. [29], Adam and Hassan [28,33] and Alkhazaleh and Salleh 
[22],  as given in Table 4, based on the same example as in Section 4. The ranking order 
results obtained are consistent with those in [16,22,28,29,33]. 

8. Conclusion 

   We have introduced the concept of a Q -neutrosophic soft expert set along with its 
operations of equality, union, intersection, subset, OR, and AND. It is shown that this 
proposed concept is more inclusive by taking into account the membership of falsity and 
indeterminacy, expert, neutrosophy and Q -fuzzy. Thus the proposed approach is shown to 
be useful in handling realistic uncertain problems. Finally an application of the constructed 
algorithm to solve a decision-making problem is provided. This new extension will provide 
a significant addition to existing theories for handling indeterminacy, and spurs more 
developments of further research and pertinent applications. 
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Chapter Nine 
 
An outperforming approach for multi-criteria decision-making 
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ABSTRACT   

In this chapter, a different outperforming access for MCDM problems is recommended to 
approach positions pointing with in each  cluster of numbers in the absolute system interval 
and unequitable a definitive number among a bipolar neutrosophic set. Mostly, the 
procedures of inter-valued bipolar neutrosophic sets and their associated characters are 
imported. Formerly certain outperforming similarities for inter-valued bipolar neutrosophic 
numbers (IVBNNs) are described depend on ELECTRE, and the characters of the 
outperforming similarities are farther considered definitely. Furthermore, depend on the 
outperforming similarities of IVBNSs, a ranking approach is advanced that one may clarify 
MCDM problems. 

Key Words: Neutrosophic sets, bipolar neutrosophic sets, Interval-valued bipolar 
neutrosophic sets, Multicriteria decision-making, Outranking method.  

1 Introduction 
So as to overcome different kinds of confusions, the seminal theory of fuzzy sets [1] has 
been proposed in 1965 by Zadeh; meanwhile, it has been tested strongly in different areas 
[2]. Nonetheless, in a few cases it’s ambitious to define the rate of membership of a FS 
along a certain value. Because of this reason, Turksen introdued the IVFSs [3]. Afterwards, 
Atanassov [4, 5] investigated the notion of intuitionistic fuzzy sets (IFSs) to run-over the 
illiteracy of nonmembership degrees. Until now, IFS outmoded worldwide tested to figure 
out MCDM problems [6–8] in areas like medical images [9], pattern recognition [10], edge 
detection and game theory [11-12] and image fusion [13]. IFSs were afterwards 
approached to IVIFSs [14], along with to IVIFSs with triangular IFNs [15]. So to carry out 
these problems where one is doubtful in showing their choice respecting phenomenon in a 
DMP, hesitant fuzzy sets were developed [16-17] between 2009-2010. Moreover, defined 

mailto:mesahin@gantep.edu.tr
mailto:vulucay27@gmail.com
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more expansions have been suggested [18–20], and mechanisms along IFNs from a few 
unsual groups’ decision-making surveys have been advanced [21-22]. In spite of the fact 
that the concept of FSs has hold advanced and concluded, it couldn’t cope along all kinds 
of confusions, like imprecise and incompatible information, in accurate DMPs. For 
instance [23], during an authority provide the idea around a particular description, the one  
may estimate a certain probability that the description is accurate is 0.5, the rate of 
inaccurate description is 0.6, and the probability that the one isn’t sure is 0.2. The concept 
of neutrosophic logic and neutrosophic sets [24-25]  has been developed in 1995 by 
Smarandache. Since then, it is applied to various areas, such as decision making 
problems[38-43]. The NS is a set wither all member of the universe has a rate of accuracy, 
uncertainity and falsity and that deceit in ]0-, 1[, the abnormal system interval [26]. 
Obviously, this’s the extension to the normal interval [0, 1] as in the IFS. Additionally, the 
confusion present here, such that, indefinity cause, is separate of accuracy and falsity 
values, when the integrated confusion is reliant of the rates of belongingness and non-
belongingness in IFSs [27]. Furthermore, regarding the mentioned example around expert 
description, it can be shown as 𝑥(0: 5;  0: 2;  0: 6) by NSs. 
 
2. Preliminary 
In the subsection, we present defined notions containing neutrosophic sets, bipolar 
neutrosophic 
sets and interval valued bipolar neutrosophic sets. 
 
2.1 Neutrosophic Sets  [28] 
Let E be a universe. A neutrosophic sets A over E is defined by 

 , ( ), ( ), ( ) :A A AA x T x I x F x x E 
 

where ( ), ( ) ve ( )A A AT x I x F x are called truth-membership function, indeterminacy-
membership 
function and falsity-membership function, respectively. They are respectively defined by  

( ) : 0 ,1    , ( ) : 0 ,1A AT x E I x E            , ( ) : 0 ,1AF x E       

such that 

0 ( ) ( ) ( ) 3A A AT x I x F x     . 
 
2.2. Single Valued Neutrosophic Set [29] 
 
Let E be a universe. A(SVN-set) overE is a neutrosophic set over E, but the truth-
membership function, indeterminacy-membership function and falsity-membership 
function are respectively defined by 



Editors: 
             Prof. Dr. Florentin Smarandache 
             Associate Prof. Dr. Memet Şahin 
 
 

110 
 

   ( ) : 0,1 , ( ) : 0,1A AT x E I x E   ,  ( ) : 0,1AF x E   
such that 0 ( ) ( ) ( ) 3A A AT x I x F x     . 
 
2.3. Bipolar Neutrosophic Set [30] 
 
A BNS A in X is defined as an object of the form 

 , ( ), ( ), ( ), ( ), ( ), ( ), :A x T x I x F x T x I x F x x X      
 

where 

   ( ), ( ), ( ) : 0,1 , ( ), ( ), ( ) : 1,0T x I x F x X T x I x F x X         

The positive membership degree ( ), ( ), ( )T x I x F x   denotes the truth membership, 
indeterminate membership and false membership of an element x X corresponding to a 

bipolarneutrosophic set A and the negative membership degree ( ), ( ), ( )T x I x F x   denotes 
the truthmembership, indeterminate membership and false membership of an element 
x X to someimplicit counter-property corresponding to a bipolar neutrosophic set A. 
 
2.4. Interval Valued Bipolar Neutrosophic Set [31] 
 
An IVBNS A in X is defined as an object of the form 

( ), ( ) , ( ), ( ) , ( ), ( ) , ( ), ( ) , ( ), ( ) , ( ), ( )L R L R L R L R L R L RA T x T x I x I x F x F x T x T x I x I x F x F x                                  

where  , , , , , : 0,1L R L R L RT T I I F F X       and  , , , , , : 1,0L R L R L RT T I I F F X        . 

 

2.5. The Operations for IVBNNs [31]  

Let 1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , ,L R L R L R L R L R L RA T T I I F F T T I I F F                                  
 and 

2 2 2 2 2 2 2 2 2 2 2 2 2, , , , , , , , , , ,L R L R L R L R L R L RA T T I I F F T T I I F F                                  
 be two interval 

valued bipolar neutrosophic number. Then the operations for IVBNNs are defined as 
below; 

i. 

           

           
1

1 1 ,1 1 , , , , ,

, , , , (1 1 ( ) ), (1 1 ( ) )

L R L R L R

L R L R L R

T T I I F F
A

T T I I F F

     

     


     

     

        
          


                    
          
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ii. 

           

           
1

, , 1 1 ,1 1 , 1 1 ,1 1 ,

(1 1 ( ) ), (1 1 ( ) ) , , , ,

L R L R L R

L R L R L R

T T I I F F
A

T T I I F F

     



     

     

     

            
          


                    
          

 

iii.

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

. , . , . , . ,

. , . , . , . ,

( . ), ( . ) , ( . ),

L L L L R R R R L L R R

L L R R L L R R

L L L L R R R R L L L L

T T T T T T T T I I I I

A A F F F F T T T T

I I I I I I I I F F F F

           

       

           

         

         

              1 2 1 2( . )R R R RF F F F        

iv. 

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1

. , . , . , . ,

. , . , ( . ), ( . ) ,

. , . , .

L L R R L L L L R R R R

L L L L R R R R L L L L R R R R

L L R R L

T T T T I I I I I I I I

A A F F F F F F F F T T T T T T T T

I I I I F F

           

               

    

         

                   

   2 1 2, .L R RF F    

where 0   . 

 
3 Outranking relations of IVBNNs 
 
A pseudo-criterion is a criterion including preference and indifference thresholds. The 
definition of the pseudo-criterion[32-33] was provided by Roy. The pseudo-criterion is a 

function jg  such that it is linked to two criterion functions, (.)  and p (.)j jq . In other words, 

a function jg  and threshold functions together constitute the pseudo-criterion. It should 

satisfy conditions as follow: ( , )b b B B    , ( ) ( ), ( ) ( ( ))j j j j jg b g b g b p g b    and 

( ) ( ( ))j j jg b q g b are unreducing monotone functions of ( )jg b , and 

( ( )) ( ( ))j j j jp g b q g b   for all b B , where ( ( ))j jq g b and ( ( ))j jp g b  are the greatest  and 

smallest performance difference, for which the situation of indifference holds on to 

criterion jg  between two actions b  and b . According to the definition, for the pseudo-

criterion between two IVBNs we can give Definition 3.1 as follows. 
 
3.1. Relation Between  Two IVBNs 
 
Given two IVBNs 𝑎 and 𝑏, where 

, , , , , , , , , , ,aL aR aL aR aL aR aL aR aL aR aL aRa                                              
 and 
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, , , , , , , , , , ,bL bR bL bR bL bR bL bR bL bR bL bRb                                              
 . Let 

           ( ) aL aR aL aR aL aR aL aR aL aR aL aRg a                                       
     

 , 

           ( ) ,bL bR bL bR bL bR bL bR bL bR bL bRg b                                       
     

       ( )ab aL aR aL aR bL bR bL bRg T                         
   

 , 

       ( )ab bL bR bL bR aL aR aL aRg I                         
   

 and 

       ( )ab bL bR bL bR aL aR aL aRg F                         
   

 . Assume that 

( , ) ( ) ( ) ( ) ( ) ( )ab ab abg a b g a g b g T g I g F     .  
Let’s assume that p and q are respectively are the option criterion and the indifference 
criterion. Relations exist between the two IVBNs are defined as follows: 
(1) In case that p<g(a,b), suddenly  a is fully approved to  b, symbolized as P(a,b) or ba s . 
(2) In case that ( , )q g a b p  , suddenly a is defectively approved to b, symbolized as Q 
(a,b) or ba w . 
(3) In case that ( , )q g a b q   , suddenly  a is indifferent to b, symbolized as I(a,b) or

ba ı . 
Obviously, the common three circumstances with regard to similarities among two IVNNs 
a and b are a active, weak and indifference influence similarity. Here, a actively influences 
b in case that it’s fully preferred to b. Unless, a defectively influences b. 
 
Numerical Example. Let’s assume that p and q are respectively  the preference criterion 
and the indifference criterion, and let p = 0.4, q = 0.2. 
(1) If            0.5,0.8 , 0.3,0.4 , 0.1,0.2 , 0.2, 0.1 , 0.5, 0.2 , 0.8, 0.7a         and 

           0.5,0.6 , 0.4,0.5 , 0.2,0.4 , 0.4, 0.2 , 0.9, 0.5 , 0.7, 0.6b         

 are two IVBNs, then g(a,b)=0.5>p. Accordingly, a and b fascinate first condition, namely, 
a is defectively chosen to b. 

 
(2) If             0.3,0.8 , 0.3,0.9 , 0.1,0.3 , 0.7, 0.6 , 0.6, 0.2 , 0.4, 0.1a         and 

           0.4,0.7 , 0.6,0.8 , 0.3,0.4 , 0.9, 0.5 , 0.4, 0.3 , 0.8, 0.1b         

are two IVBNs, then ( , ) 0.3q g a b p   .Accordingly, a and b fascinate second condition, 
namely, a is defectively chosen, to b. 
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(3) If             0.3,0.9 , 0.1,0.8 , 0.2,0.5 , 0.8, 0.7 , 0.5, 0.1 , 0.4, 0.3a         and 

           0.3,0.8 , 0.3,0.9 , 0.1,0.3 , 0.7, 0.6 , 0.6, 0.2 , 0.4, 0.1b         

are two IVBNs, then –q<g(a,b)=-0.1<q. Accordingly, a and b satisfy I(a, b), namely,a is 
indifferent to b. 
Property 1 Assume that a, b and c are IVBNs, if ba s and cb s , then ca s : 
Proof In accordance with Definition 3.1, if ba s then g(a,b)>p,  that is, g(a)-g(b)>p. 
Similarly, if cb s then g(b)-g(c)>p.Therefore, g(a)-g(b)+g(b)-g(c)>2p. Thus, g(a)-
g(c)>p.Based on Definition 3.1, ca s is obtained and, thus, we have easily proven that the 
property 1 is true. 
Property 2 Assume that a, b and c are IVBNs, formerly the conclusions can be obtained as 
follows. 
(1) The active influence similarities are classified into: 

(1a) There is no reflexivity, that is, , aa IVBNs a s   ; 

(1b) There is no symmetry, namely, , , b aa b IVBNs a s b s     ; 

(1c)There is transitivity, namely, , , , , .b c ca b c IVBNs a s b s a s       
(2) The defective influence similarities are classified into: 

(2a) There is no reflexivity, namely, , aa IVBNs a w   ; 

(2b) There is no symmetry, that is, , , b aa b IVBNs a w b w     ; 

(2c)There is no transitivity, namely, , , , , .b c ca b c IVBNs a w b w a w       
(3) The indifference similarities are classified into: 

(3a) There is reflexivity, that is,  , aa IVBNs a ı  ; 

(3b) There is symmetry, namely,  , , b aa b IVBNs a ı b ı   ; 

(3c)There is no transitivity, namely, , , , , .b c ca b c IVBNs a ı b ı a ı    
g(a)-g(a)=0<q<p , aa s , aa w  , aa ı holds in accordance with  3.1.                                     
Hereby, (1a), (2a) and (3a) are accurate. 
Likewise, in case that ba s , formerly ( ) ( ) ( ) ( )g a g b p g b g a p      . Accordingly, 

ab s  and (1b) is correct, in the fact (2b) and (3b). In accordance with Property 1 and 
Property 2, (1c) is correct. In addition to this, (2c) and (3c) have to be proven. 
3.3. Binary Comparison of Two Sets 

Let options A and B be clusters of IVBNs,  1 2 3, , ,..., mA a a a a , and 

 1 2 3, , ,..., , , ( , 1,2,..., )m i jB b b b b a b IVBNs i j m    . Sets A and B can be binary compared 

using the following notations.: 
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The number of the criteria ( , )i jP a b  is represented by ( , )Pn A B , 

The number of the criteria  ( , )i jQ a b
 is represented by ( , )Qn A B , 

The number of the approach ( , ) ( ( , ) 0)i j i jI a b g a b   is represented by ( , )In A B ,   

When two options A and B are considered, the succeeding expressions give an idea about 
the outperforming similarity [34]: 
(1) A outperforms B, symbolized as AOB, i.e, the investigator may present adequate 
reasons to decision-makers in relation to the proposition “A is somewhat approximate B”. 
(2) A doesn’t outperform B, i.e, there is no reason enough to validate proposition ‘‘A is 
somewhat approximate B’’, but it doesn’t mean that ‘‘B is somewhat approximate A’’, 
where the symbols “I” and “R” represent indifference and incomparability, respectively. 
Moreover, There are two cases for the preference relation. They’re  active option and 
defective option, symbolized as BA s  and BA w  jointly. 

Depend on [35], the rules of influence were build up thusly. 

3.4. Number of Criteria 
 
Let’s conclude that there are m criteria in total. Then: 
(1) BA s : (a) for no threshold B is closely approved to A; 
 (b) If the number of approach for that B is defectively approved in similar to A is lesser or 
fit  the number of approach for that A is closely approved to B; and (c) and in case that the 
number of approach, for that the achievement of B is greater than that of A, is closely 
lesser to the number of approach for that the achievement of A is greater than such of 
option B. 

 ( , ) 0  ve ( , ) ( , ) ve ( , ) ( , ) ( , ) ( , ) ( , ).B
P Q P Q I I Q PA s n B A n B A n A B n B A n B A n A B n A B n A B       

(2) BA w : (a) in case that concealed by no approach B is closely approved to A; (b) in 
case that the number of approach, for that the achievement of B is preferable to such of A, 
is closely lesser to the number of criteria for which the achievement of A is preferable to 
that of option B; (c) in case that the further position needed for the similar A S B carry on 
isn’t documented; and (d) in case that there’s a particular threshold for that B is closely 
approved to A, formerly A is closely approved to B in somewhat limited of the approach. 

 ( , ) 0  ve ( , ) ( , ) ( , ) ( , ) ( , ) ve not  ( , ) 1 ve ( , ) / 2.B B
P Q I I Q P P PA w n B A n B A n B A n A B n A B n A B A s veya n B A n A B m         

 
Numerical Example. consider that the option criterion is p = 0.4 and the nonchalance 
criterion is q = 0.2. For alternatives B1 and B2, the decision maker must decide according to 
three criteria. The achievement of all threshold in similar to all option is as shown in the 
following: 
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 

           

           

           

1 11 12 13

, 0.3,0.9 , 0.1,0.8 , 0.2,0.5 , 0.8, 0.7 , 0.5, 0.1 , 0.4, 0.3 ,

 B  B , 0.3,0.8 , 0.3,0.9 , 0.1,0.3 , 0.7, 0.6 , 0.6, 0.2 , 0.4, 0.1 ,

, 0.4,0.5 , 0.5,0.6 , 0.3,0.5 , 0.4, 0.2 , 0.9, 0.5 , 0.7, 0.6

a

B B b

c

      
  

        
 

         

 

           

           

           

2 21 22 23

, 0.2,0.8 , 0.3,0.6 , 0.3,0.6 , 0.3, 0.2 , 0.6, 0.2 , 0.5, 0.4 ,

 B  B , 0.4,0.7 , 0.5,0.7 , 0.2,0.3 , 0.2, 0.1 , 0.8, 0.3 , 0.9, 0.8 ,

, 0.4,0.7 , 0.6,0.8 , 0.3,0.4 , 0.9, 0.5 , 0.4, 0.3 , 0.8, 0.1

a

B B b

c

      
  

        
 

         
 
 
In accordance with 3.1,

11 21 21 11 22 12 13 23( , ) 1,  ( , ) 1 ,  ( , ) 2.4  ve ( , ) 1.9g B B g B B p g B B p g B B p        . Hence, 

21 11 22 12 13 23( , ), ( , )ve ( , )P B B P B B P B B . That is, the relationship between alternatives 

1 2 and BB is that with regard to the former two criteria, 2B  is strictly preferred to 1B , while

1B  is closely 

approved to 2B with respect to the third threshold. For the pair 1 2( , )B B ; 

1 2 1 2 1 2 2 1 2 1 2 1( , ) 1, ( , ) 0, ( , ) 0, ( , ) 2, ( , ) 0 ve ( , ) 0.P Q I P Q In B B n B B n B B n B B n B B n B B       

As reported by definition 3.4, 1
2

BB w ; consequently 2B  is defectively afflicted  by 1B .  

For ease of presentation, let ( )s in A  show the number that has active influence relation 

among the optione iA , for which kA
iA s between the pair ( , ) (k=1,2,3,...,n)i kA A . 

Similarly, ( )w in A  represents the number for which kA
iA w ,for k=1,2,3,...,n.  

Definition 3.6.The rule of the outperforming similarity among ( , )i kA A  are build up as : 

(1) If ( ) ( )s i s jn A n A , then it implies iA  outranking jA , denoted i jA A . 

(2) If ( ) ( )s i s jn A n A , and ( ) ( )w i w jn A n A , then i jA A . 

(3) If ( ) ( )s i s jn A n A , ( ) ( )w i w jn A n A and jA
iA s  , then i jA A . 

      Afterwards, the sequence among a partly or full order of choices is settled. 
 
4 An outperforming method for MCDM with IVBNSs 
 
In this section, an outperforming approach for MCDM problems where the outperforming 
tests of IVBNSs are utilizing is suggested. 
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      Suppose such the MCDM rating/choosing problem among IVBNSs amount to n 

options  1 2 3, , ,..., nA A A A A  and all option is calculated by m criteria 

 1 2 3, , ,..., mC c c c c . The calculation of all option according to their threshold is turn into 

in the IN decision matrix ( )ij n mR A  , where , , , , ,
ij ij ij ij ij ijij A A A A A AA             is a 

threshold value , symbolized as IVBNN, where the positive membership degree 
, ,

ij ij ijA A A      shows the accuracy, uncertainity and falsity-membership function such the 

option iA  fascinates the criterion jc  , and the negative membership degree , ,
ij ij ijA A A      

shows the truth-membership, indeterminacy-membership and falsity-membership function 

that the option iA  fascinates the criterion jc . Let the option threshold for each criterion

 1 2 3, , ,..., mP p p p p  and the indifference threshold  1 2 3, , ,..., mQ q q q q  . 

       Let’s see the given  procedure used  to rate and choose the best option(s) is 
summarized. 
Procedure 1  Let G be performance matrix and jc  each criterion of every alternative iA .  

Compute G. Then, the performance value of iA  on jc  is symbolized as ( )i jg A  . By 

utilizing 3.1, G can be evaluated: 

 
Procedure 2 Let D be difference matrix. Compute D. Then,  

            The difference value ( , )i k jg A A  describes the performance difference between two 

iA  and kA  on jc .  Conforming to the score function the rate of all option as  to every jc

criterion, ( , ) ( ) ( ) ( , 1,2,.., ; 1,2,..., )i k j i j k jg A A g A g A i k n j m    . Consequently, D can 

be formulated as: 

 
Procedure 3 Achieve the binary relationship between two the IVBNNs as to jc  for iA . 

            Definitely, the difference value ( , )i k jg A A  should be analyzed along the option 

criterion jp  and  nonchalance criterion jq to regulate the similarities. By 3.1, in case that 
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( , )i k j jg A A p  , then kjA
ijA s  . Moreover, if ( , )j i k j jq g A A p   , then kjA

ijA w  and if 

( , )j i k j jq g A A q    , then kjA
ijA ı  . 

Procedure 4 By utilizing definition 3.3, count the number of outperforming relations 
( , ), ( , ) ve ( , )P i k Q i k I i kn A A n A A n A A  for the pair-wise ( , )i kA A  respecting every criteria. 

Definitely, any 

pair-wise ( , )i kA A ( , )P i kn A A  represents the number when  for j=1,2,...,mkjA
ijA s . Likewise, 

( , )Q i kn A A  represents the number when kjA
ijA ı  and ( , )I i kn A A  represents the number 

when kjA
ijA ı and ( , ) 0 for j=1,2,...,mi k jg A A  . 

Procedure 5 As reported by definition 3.4, complete the outperforming relations between 
( , )i kA A . 

Procedure 6 Count ( )s in A  and ( )w in A  for alternative iA . 
Procedure 7 As reported by definition 3.6 choose the alternative(s) with the best 

outperforming  relations and  the largest ( )s in A . If two or more have the maximum of 

( )s in A , then compare ( )w in A . consequently, the alternatives with the best outperforming 
relations are extracted. 
Procedure 8 Rerun procedure 4–7 for the halting alternatives as far as the remainder is 
empty. 
Procedure 9 Choose the alternative(s). The whole or limited order for iA   is finally 
settled. 
 
5. MCDMP 
In this section, to denote the utilization of the requested decision-making approach and its 
capability, a numerical examples of MCDMPs along options are furnished. 
5.1. Numerical Example 
 
A MCDMP familiarized from Refs. [36-37] will be utilized. There is a group along four 

desirable options to lend capital: 1 2 3 4, ,  and BB B B . The lending company must take a 

decision according to the succeeding three criteria: 1 2 3,  and c c c . The option criterion 

 0.2,0.2,0.2P   and the nonchalance criterion  0.1,0.1,0.1Q  . The four desirable 

options are to be calculated concealed by  the upon three approach, and the calculated rates 
are to be turn into IVBNNs, as indicated in the succeeding IN decision matrix D: 
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Procedure 1 Compute  G: 

  1.1  0.5     0.8
  1.2     1.1      0.7

0.7  0.3     1.6
  0.3  0.9  1.2

G

 
 
 
  
 

  

 

 
Procedure 2 Compute D. 

The difference value ( , )i k jg B B  between the two alternatives iB  and kB  on  jc fascinates

( , ) ( ) ( ) ( , 1,2,.., ; 1,2,..., )i k j i j k jg B B g B g B i k n j m    . Finally, D can be constructed  as 

indicated in Table 1. 
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Procedure 3 Achieve the binary similarity among the two IVBNNs on jc  for iA . Analyze 

( , )i k jg B B  along jp and  jq , and formely, the conclusions can be indicated in Table 2. 
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Procedure 4 Evaluate the number of all outperforming similarity of every iA   along the 

other options for every jc  , as seen in Table 3. 
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Procedure 5 
As reported by 
3.4, determine 
the 
outperforming 
relations as 
seen in Table 
4. 

 
 

Procedure 6 Count ( )s in B  for all alternative iB  as seen in Table 5. 
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Procedure 7 As reported by  3.6 choose  the  best outperforming alternative(s). 

              It is obvious to see that 2B  is the best alternative. 
 
 
Procedure 8  Rerun procedure 4 to 7 for the halting alternatives as far as the remainder is 
empty. 

             The method is repeatedly rerunned, and finally 1 3 4,  and BB B  are settled. 
 
Procedure 9 According to the above procedures, select the best alternatives and the final 

order is  as certained as 2 1 3 4B B B B . 
 
6. Conclusion 
      Interval valuable bipolar neutrosophic sets are a new branch of neutrosophic sets. 
There are some problems in real scientific and engineering utilizations such that these 
problems contain undetermined, incomplete and inconsistent information. Interval-valued 
bipolar neutrosophic sets can be applied to overcome such problems. In this chapter, an 
approach was presented to figure out MCDM problems using IVBNSs. As a result, an 
outperforming way  to solve MCDM problems using IVBNSs was developed depend on 
the ELEKTRE IV. Hence, a few outperforming relations for IVBNSs were introduced, and 
also the properties related to the outperforming relations were reviewed categorically. On 
the other hand, two examples were utilized to denote the application of the method. 
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Abstract  
A bipolar neutrosophic set (BNS) is an instance of a single- valued neutrosophic set.  To do this, we firstly 
propose distance measure between two BNSs is defined by the full consideration of positive membership 
function and negative membership function for the forward and backward differences. Then the similarity 
measure, the entropy measure and the index of distance are also presented. Then, two examples are shown to 
verify the feasibility of the proposed method. Finally, the decision results of different similarity measures 
demonstrate the practicality and effectiveness of the developed method in this paper. 

Keywords: Single-valued neutrosophic sets, Single-valued bipolar neutrosophic sets, 
decision making. 

1. Introduction 

The MCDM is an important part of modern decision science and relate to many complex 
factors, such as economics, psychological behavior, ideology, military and so on. In many 
real-life decisions making problems can be modelling with fuzzy set theory (Zadeh 1965) 
and intuitionistic fuzzy set theory (Atanassov 1986). Because of membership functions, 
these theories have some disadvantages and cannot modelling MCDM problems. Based on 
the theories, Smarandache (1998) developed the neutrosophic set theory which overcomes 
the disadvantage of fuzzy set theory and intuitionistic fuzzy set theory which 
independently has a truth-membership degree, an indeterminacy-membership degree and a 
falsity-membership degree. Also Lee (2000, 2009) bipolar fuzzy set developed to 
modelling some real problems to some implicit counter-property which has positive 
membership degree and negative membership degree. Many research treating imprecision 
and uncertainty have been developed and studied. Since then, it is applied to various areas, 
such as decision making problems (Athar 2014, Aydogdu 2015, Broumi & Smarandache 
2013, Balasubramanian, Prasad & Arjunan 2015, Broumi, Deli & Smarandache 2014, 
Chen, Li, Ma &Wang 2014, Chen 2014, Deli & Broumi 2015, Broumi, Bakali, Talea and 
Smarandache 2017, Broumi, Bakali, Talea and Smarandache 2016, Broumi, Smarandache, 
Talea and Bakali 2016, Broumi, Bakali, Talea and Smarandache 2018, Karaaslan 2016, 
Majumder 2012, Majumdar & Samanta 2014, Smarandache 2005, Santhi & Shyamala 
2015, Saeid 2009, Shen, Xu & Xu 2016, Sahin, Deli & Ulucay 2016, Wang, Wang, Zhang 

mailto:mesahin@gantep.edu.tr
mailto:vulucay27@gmail.com
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& Chen 2015, Zhang, Wang, & Chen 2016, Wu, Zhang, Yuan, Geng & Zhang 2016, Ye 
2014, Ulucay, Deli & Sahin 2016, Yang, Wang & Wang 2012, Ye 2014, Jun, Kang & Kim 
2009, Peng, Wang Zhang &Chen 2014, Devi &Yadav 2013, Figueira, Greco, Roy & 
Slowinski 2010, bakbak 2019, Ulucay et al.2018, Ulucay et al.2018a, Ulucay et al.2018b, 
Şahin et al. 2017, Şahin et al. 2018). 

Recently, Deli et al. (2015) proposed bipolar neutrosophic set theory and their operations 
based on bipolar fuzzy set theory and neutrosophic set theory. A bipolar neutrosophic set 
theory have the positive membership degrees 𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥)  and the negative 
membership degrees 𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥)  denotes the truth membership, indeterminate 
membership and false membership of an element 𝑥 ∈ 𝑋. Then Deli et al. (2016), Şahin et 
al. (2016) and Uluçay et al. (2016) presented some different similarity measure and applied 
to multi-attribute decision making problems.  
Clustering plays an important part in analyzing the real world, such as pattern recognition, 
data mining, machine learning and so on. Over the past few decades, researchers has been 
used clustering method in many fields studies (Gua, Xia, Sengür & Polat 2016, Gua & 
Sengür 2015, Koundal, Gupta & Singh 2016, Roy 1991, Wu & Chen 2011). 
The rest of paper is organized as follows. In Sect. 2, we review basic concepts about 
neutrosophic sets and bipolar neutrosophic sets. In Sect. 3, the notions of the distance 
measure, the similarity measure, the entropy measure and the index of distance are 
introduced. In Sect. 4, two illustrate examples are given to show the effectiveness of the 
new distance measure applied in clustering and decision making. In Sect. 5, a comparison 
analysis and discussion is conducted between the proposed approach and other existing 
methods, in order to verify its feasibility and effectiveness.  Finally, the conclusions are 
drawn. 
 
2. Preliminaries 
 
Definition 2.1.(Smarandache 1998) Let 𝑋 be a universe of discourse. Then a neutrosophic 
set is defined as: 
 

𝐴 =  {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈  𝑋}, 
 

which is characterized by a truth-membership function 𝑇𝐴: 𝑋 →]0−1+[, an indeterminacy-
membership function 𝐼𝐴: 𝑋 →]0−1+[ and a falsity-membership function 𝐹𝐴: 𝑋 →]0−1+[. 
 
There is no restriction on the sum of  𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 0−≤ sup 𝑇𝐴(𝑥) ≤ sup 
𝐼𝐴(𝑥) ≤ sup 𝐹𝐴(𝑥)≤ 3+ 

Definition 2.2. (Wang, Smarandache, Zhang & Sunderraman 2010) Let 𝑋 be a universe of 
discourse. Then a single valued neutrosophic set (SVNS) is defined as: 

𝐴𝑁𝑆 = {〈𝑥, 𝐹𝐴(𝑥), 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)〉: 𝑥 ∈ 𝑋}, 
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which is characterized by a truth-membership function 𝑇𝐴: 𝑋 → [0,1], an indeterminacy-
membership function 𝐼𝐴: 𝑋 → [0,1] and a falsity-membership function 𝐹𝐴: 𝑋 → [0,1]. 

There is no restriction on the sum of 𝑇𝐴(𝑥) ,  𝐼𝐴(𝑥)  and 𝐹𝐴(𝑥) , so 0 ≤ sup𝑇𝐴(𝑥) ≤

sup 𝐼𝐴(𝑥) ≤ sup𝐹𝐴(𝑥) ≤ 3 . 

Definition 2.3. (Deli et al. 2015) Let 𝑋 be a universe of discourse. A bipolar neutrosophic 
set ABNS in X  is defined as an object of the form 

    , ( ), ( ), ( ), , , ( ) :BNSA x T x I x F x T x I x F x x X       , 

where  , , : 1,0T I F X     and  , , : 1,0T I F X     . 

The positive membership degree ( ), ( ), ( )T x I x F x    denotes the truth membership, 
indeterminate membership and false membership of an element x X  corresponding to a 
bipolar neutrosophic set ABNS and the negative membership degree ( ), ( ), ( )T x I x F x    
denotes the truth membership, indeterminate membership and false membership of an 
element x X to some implicit counter-property corresponding to a bipolar neutrosophic 
set ABNS. 
Set- theoretic operations, for two bipolar neutrosophic set 
 

    1 1 1 1 1 1, ( ), ( ), ( ), , , ( ) :BNSA x T x I x F x T x I x F x x X      
 

and  
    2 2 2 2 2 2, ( ), ( ), ( ), , , ( ) :BNSB x T x I x F x T x I x F x x X        

 are given as; 
1. The subset; ABNS ⊆ BBNS if and only if 

 
      1 2( ) ( )T x T x  1 2( ) ( )I x I x  , 1 2( ) ( )F x F x  , 

and 

1 2( ) ( )T x T x  , 1 2( ) ( )I x I x  , 1 2( ) ( )F x F x   

for all x X . 
 

2.  ABNS = BBNS  if and only if ,  
 

1 2( ) ( )T x T x  , 1 2( ) ( )I x I x  , 1 2( ) ( )F x F x  , 
and 

1 2( ) ( )T x T x  , 1 2( ) ( )I x I x  , 1 2( ) ( )F x F x   

for all x X . 
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3. The complement of ABNS is denoted by ABNSo  and is defined by 
 

( ) {1 } ( )c AA
T x T x    , ( ) {1 } ( )c AA

I x I x    , ( ) {1 } ( )c AA
F x F x     

and  
( ) {1 } ( )c AA

T x T x    , ( ) {1 } ( )c AA
I x I x    , ( ) {1 } ( )c AA

F x F x    , 

for all x X . 
 

4. The intersection  
 

1 2
1 2 1 2 1 2

1 2
1 2

( ) ( ),min( ( ), ( )), ,max(( ( ), ( )),max(T ( ), ( )),
2( )( )

( ) ( ) ,min(( ( ), ( )) :
2

BNS BNS

I x I xx T x T x F x F x x T x
A B x

I x I x F x F x x X

 
     

 
 

 
  

   
 

  

 
 

5. The union  
 

1 2
1 2 1 2

1 2
1 2 1 2

( ) ( ),max( ( ), ( )), ,min(( ( ), ( )),
2( )( )

( ) ( )min(T ( ), ( )), ,max(( ( ), ( )) :
2

BNS BNS

I x I xx T x T x F x F x
A B x

I x I xx T x F x F x x X

 
   

 
   

 
  

   
 

  

. 

Definition 2.9. (Deli et al. 2015) Let �̃�1 = ⟨  𝑇1+, 𝐼1+, 𝐹1+, 𝑇1−, 𝐼1−, 𝐹1− ⟩ and �̃�2 =
 ⟨  𝑇2

+, 𝐼2
+, 𝐹2

+, 𝑇2
−, 𝐼2

−, 𝐹2
− ⟩  be two bipolar neutrosophic  number. Then the operations for 

BNNs are defined as below; 

i. 𝜆�̃�1 = ⟨  1 − (1 − 𝑇1
+)𝜆, (𝐼1

+)𝜆, (𝐹1
+)λ, −(−𝑇1

−)𝜆, −(−𝐼1
−)𝜆, −(1 − (1 − (−𝐹1

−))𝜆)⟩ 
ii. �̃�1

𝜆 = ⟨  (𝑇1
+)𝜆, 1 − (1 − 𝐼1

+)𝜆, 1 − (1 − 𝐹1
+)𝜆, −(1 − (1 −

(−𝑇1
−))𝜆), −(−𝐼1

−) 𝜆, −(−𝐹1
−)𝜆⟩ 

iii. �̃�1 + �̃�2 =

⟨ 𝑇1
++𝑇2

+−𝑇1
+𝑇2

+, 𝐼1
+𝐼2
+, 𝐹1

+𝐹2
+, −𝑇1

−𝑇2
−, −(−𝐼1

−−𝐼2
−−𝐼1

−𝐼2
−), −(−𝐹1

−−𝐹2
−−𝐹1

−𝐹2
−) ⟩ 

iv. �̃�1. �̃�2 = ⟨ 𝑇1
+𝑇2

+, 𝐼1
++𝐼2

+ − 𝐼1
+𝐼2
+, 𝐹1

++𝐹2
+ − 𝐹1

+𝐹2
+, −(−T1

− − 𝑇2
− −

𝑇2
−𝑇2

−), −𝐼1
−𝐼2
−, −𝐹1

−𝐹2
− ⟩ 

where 0  . 

 
3.  Distance Measure of Bipolar Neutrosophic Sets  
 
    In this section, we defined distance measure two between bipolar neutrosophic sets that 
are based on Clustering method by extending the studies in (Huang 2016). 
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Definition3.1. For two bipolar neutrosophic 𝐴1  and 𝐴2  in a universe of discourse   𝑋 =
{𝑥1𝑥2, … , 𝑥𝑛 } which are denoted by 𝐴1 =

⟨𝑥𝑖 ,T1
+(𝑥𝑖), I1

+(𝑥𝑖), F1
+(𝑥𝑖), T1

−(𝑥𝑖), I1
−(𝑥𝑖), F1

−(𝑥𝑖) ⟩  and  𝐴2 = ⟨𝑥𝑖 ,T2
+(𝑥𝑖), 

I2
+(𝑥𝑖), F2

+(𝑥𝑖), T2
−(𝑥𝑖), I2

−(𝑥𝑖), F2
−(𝑥𝑖) ⟩ .The bipolar neutrosophic weighted distance 

measure are defined by 
                              𝑑𝜆(𝐴1, 𝐴2)

= [∑𝜔𝑗

𝑛

𝑗=1

(∑𝛽𝑖

4

𝑖=1

𝜑𝑖(𝑥𝑗))

𝜆

]

1

𝜆

                                (1) 

where  𝜆 > 0, 𝛽𝑖 ∈ [0,1] and ∑ 𝛽𝑖
4
𝑖=1 = 1, 𝜔𝑗 ∈ [0,1] and ∑ 𝜔𝑗 = 1

𝑛
𝑗=1  

  

𝜑1(𝑥𝑗) = ( 
|𝑇1
+(𝑥𝑗) − 𝑇2

+(𝑥𝑗)|

6
+
|𝐼1
+(𝑥𝑗) − 𝐼2

+(𝑥𝑗)|

6
+
|𝐹1
+(𝑥𝑗) − 𝐹2

+(𝑥𝑗)|

6
) − 

( 
|𝑇1
−(𝑥𝑗) − 𝑇2

−(𝑥𝑗)|

6
+
|𝐼1
−(𝑥𝑗) − 𝐼2

−(𝑥𝑗)|

6
+
|𝐹1
−(𝑥𝑗) − 𝐹2

−(𝑥𝑗)|

6
)                             

𝜑2(𝑥𝑗) = (
𝑚𝑎𝑥 {

2+𝑇1
+(𝑥𝑗)−𝐼1

+(𝑥𝑗)−𝐹1
+(𝑥𝑗)

6
,
2+𝑇2

+(𝑥𝑗)−𝐼2
+(𝑥𝑗)−𝐹2

+(𝑥𝑗)

6
}

−𝑚𝑖𝑛 {
2+𝑇1

+(𝑥𝑗)−𝐼1
+(𝑥𝑗)−𝐹1

+(𝑥𝑗)

6
,
2+𝑇2

+(𝑥𝑗)−𝐼2
+(𝑥𝑗)−𝐹2

+(𝑥𝑗)

6
}
) 

 −(
𝑚𝑎𝑥 {

2+𝑇1
−(𝑥𝑗)−𝐼1

−(𝑥𝑗)−𝐹1
−(𝑥𝑗)

6
,
2+𝑇2

−(𝑥𝑗)−𝐼2
−(𝑥𝑗)−𝐹2

−(𝑥𝑗)

6
}

−𝑚𝑖𝑛 {
2+𝑇1

−(𝑥𝑗)−𝐼1
−(𝑥𝑗)−𝐹1

−(𝑥𝑗)

6
,
2+𝑇2

−(𝑥𝑗)−𝐼2
−(𝑥𝑗)−𝐹2

−(𝑥𝑗)

6
}
)           

𝜑3(𝑥𝑗) =
|𝑇1
+(𝑥𝑗) − 𝑇2

+(𝑥𝑗) + 𝐼2
+(𝑥𝑗) − 𝐼1

+(𝑥𝑗)|

4
−
|𝑇1
−(𝑥𝑗) − 𝑇2

−(𝑥𝑗) + 𝐼2
−(𝑥𝑗) − 𝐼1

−(𝑥𝑗)|

4
 

𝜑4(𝑥𝑗) =
|𝑇1
+(𝑥𝑗) − 𝑇2

+(𝑥𝑗) + 𝐹2
+(𝑥𝑗) − 𝐹1

+(𝑥𝑗)|

4

−
|𝑇1
−(𝑥𝑗) − 𝑇2

−(𝑥𝑗) + 𝐹2
−(𝑥𝑗) − 𝐹1

−(𝑥𝑗)|

4
 

Proposition3.2. The distance measure   𝑑𝜆(𝐴1, 𝐴2)  for 𝜆 > 0 satisfies the following 
properties: 

(H1) 0 ≤ 𝑑𝜆(𝐴1, 𝐴2) ≤ 1; 

(H2)  𝑑𝜆(𝐴1, 𝐴2) = 0 if and only if 𝐴1 = 𝐴2; 

(H3) 𝑑𝜆(𝐴1, 𝐴2) = 𝑑𝜆(𝐴2, 𝐴1); 
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(H4) If  𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 , 𝐴3 is a bipolar neutrosophic in X, then  𝑑𝜆(𝐴1, 𝐴3)  ≥ 𝑑𝜆(𝐴1, 𝐴2) 
and 

𝑑𝜆(𝐴1, 𝐴3)  ≥ 𝑑𝜆(𝐴2, 𝐴3). 

Proof: It is easy to see that 𝑑𝜆(𝐴1, 𝐴2) satisfies the properties (𝐻1) − (𝐻3). Therefore, we 
only prove (H4). 

Let 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3, then 

T1
+(𝑥𝑖) ≤ T2

+(𝑥𝑖) ≤ T3
+(𝑥𝑖), T1

−(𝑥𝑖) ≥ T2
−(𝑥𝑖) ≥ T3

−(𝑥𝑖) , 

I1
+(𝑥𝑖) ≤ I2

+(𝑥𝑖) ≤ I3
+(𝑥𝑖),    I1

−(𝑥𝑖) ≥  I2
−(𝑥𝑖) ≥ I3

−(𝑥𝑖) , and 

F1
+(𝑥𝑖) ≥ F2

+(𝑥𝑖) ≥ F3
+(𝑥𝑖) , F1

−(𝑥𝑖) ≤ F2
−(𝑥𝑖) ≤ F3

−(𝑥𝑖), for every 𝑥𝑖 ∈ 𝑋. Then, we obtain 
the following relations: 

|𝑇1
+(𝑥𝑖) − 𝑇2

+(𝑥𝑖)| ≤ |𝑇1
+(𝑥𝑖) − 𝑇3

+(𝑥𝑖)|, |𝑇2
+(𝑥𝑖) − 𝑇3

+(𝑥𝑖)| ≤ |𝑇1
+(𝑥𝑖) − 𝑇3

+(𝑥𝑖)|, 

|𝑇1
−(𝑥𝑖) − 𝑇2

−(𝑥𝑗)| ≤ |𝑇1
−(𝑥𝑖) − 𝑇3

−(𝑥𝑖)|, |𝑇2
−(𝑥𝑖) − 𝑇3

−(𝑥𝑖)| ≤ |𝑇1
−(𝑥𝑖) − 𝑇3

−(𝑥𝑖)|,  

|𝐼1
+(𝑥𝑖) − 𝐼2

+(𝑥𝑖)| ≤ |𝐼1
+(𝑥𝑖) − 𝐼3

+(𝑥𝑖)| , |𝐼2
+(𝑥𝑖) − 𝐼3

+(𝑥𝑖)| ≤ |𝐼1
+(𝑥𝑖) − 𝐼3

+(𝑥𝑖)|,          

|𝐼1
−(𝑥𝑖) − 𝐼2

−(𝑥𝑖)| ≤ |𝐼1
−(𝑥𝑖) − 𝐼3

−(𝑥𝑖)| , |𝐼2
−(𝑥𝑖) − 𝐼3

−(𝑥𝑖)| ≤ |𝐼1
−(𝑥𝑖) − 𝐼3

−(𝑥𝑖)|,         

|𝐹1
+(𝑥𝑖) − 𝐹2

+(𝑥𝑖)| ≤ |𝐹1
+(𝑥𝑖) − 𝐹3

+(𝑥𝑖)| , |𝐹2
+(𝑥𝑖) − 𝐹3

+(𝑥𝑖)| ≤ |𝐹1
+(𝑥𝑖) − 𝐹3

+(𝑥𝑖)|, 

|𝐹1
−(𝑥𝑖) − 𝐹2

−(𝑥𝑖)| ≤ |𝐹1
−(𝑥𝑖) − 𝐹3

−(𝑥𝑖)| , |𝐹2
−(𝑥𝑖) − 𝐹3

−(𝑥𝑖)| ≤ |𝐹1
−(𝑥𝑖) − 𝐹3

−(𝑥𝑖)|, 

hence, 

|𝑇1
+(𝑥𝑖) − 𝑇2

+(𝑥𝑖)| + |𝐼1
+(𝑥𝑖) − 𝐼2

+(𝑥𝑖)| + |𝐹1
+(𝑥𝑖) − 𝐹2

+(𝑥𝑖)| + 

|𝑇1
−(𝑥𝑖) − 𝑇2

−(𝑥𝑗)| + |𝐼1
−(𝑥𝑖) − 𝐼2

−(𝑥𝑖)| + |𝐹1
−(𝑥𝑖) − 𝐹2

−(𝑥𝑖)| ≤ 

|𝑇1
+(𝑥𝑖) − 𝑇3

+(𝑥𝑖)| + |𝐼1
+(𝑥𝑖) − 𝐼3

+(𝑥𝑖)| + |𝐹1
+(𝑥𝑖) − 𝐹3

+(𝑥𝑖)| + 

|𝑇1
−(𝑥𝑖) − 𝑇3

−(𝑥𝑖)| + |𝐼1
−(𝑥𝑖) − 𝐼3

−(𝑥𝑖)| + |𝐹1
−(𝑥𝑖) − 𝐹3

−(𝑥𝑖)|,     

|𝑇2
+(𝑥𝑖) − 𝑇3

+(𝑥𝑖)| + |𝐼2
+(𝑥𝑖) − 𝐼3

+(𝑥𝑖)| + |𝐹2
+(𝑥𝑖) − 𝐹3

+(𝑥𝑖)| + 

|𝑇2
−(𝑥𝑖) − 𝑇3

−(𝑥𝑖)| + |𝐼2
−(𝑥𝑖) − 𝐼3

−(𝑥𝑖)| + |𝐹2
−(𝑥𝑖) − 𝐹3

−(𝑥𝑖)| ≤ 

|𝑇1
+(𝑥𝑖) − 𝑇3

+(𝑥𝑖)| + |𝐼1
+(𝑥𝑖) − 𝐼3

+(𝑥𝑖)| + |𝐹1
+(𝑥𝑖) − 𝐹3

+(𝑥𝑖)| + 
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|𝑇1
−(𝑥𝑖) − 𝑇3

−(𝑥𝑖)| + |𝐼1
−(𝑥𝑖) − 𝐼3

−(𝑥𝑖)| + |𝐹1
−(𝑥𝑖) − 𝐹3

−(𝑥𝑖)|, 

2 + 𝑇1
+(𝑥𝑗) − 𝐼1

+(𝑥𝑗) − 𝐹1
+(𝑥𝑗)

6
≤
2 + 𝑇2

+(𝑥𝑗) − 𝐼2
+(𝑥𝑗) − 𝐹2

+(𝑥𝑗)

6
      

≤
2 + 𝑇3

+(𝑥𝑗) − 𝐼3
+(𝑥𝑗) − 𝐹3

+(𝑥𝑗)

6
 

2 + 𝑇1
−(𝑥𝑗) − 𝐼1

−(𝑥𝑗) − 𝐹1
−(𝑥𝑗)

6
≤
2 + 𝑇2

−(𝑥𝑗) − 𝐼2
−(𝑥𝑗) − 𝐹2

−(𝑥𝑗)

6

≤
2 + 𝑇3

−(𝑥𝑗) − 𝐼3
−(𝑥𝑗) − 𝐹3

−(𝑥𝑗)

6
 

0 ≤
𝑇2
+(𝑥𝑗) − 𝑇1

+(𝑥𝑗) + 𝐼1
+(𝑥𝑗) − 𝐼2

+(𝑥𝑗)

4
≤
𝑇3
+(𝑥𝑗) − 𝑇1

+(𝑥𝑗) + 𝐼1
+(𝑥𝑗) − 𝐼3

+(𝑥𝑗)

4
 

0 ≤
𝑇2
−(𝑥𝑗) − 𝑇1

−(𝑥𝑗) + 𝐼1
−(𝑥𝑗) − 𝐼2

−(𝑥𝑗)

4
≤
𝑇3
−(𝑥𝑗) − 𝑇1

−(𝑥𝑗) + 𝐼1
−(𝑥𝑗) − 𝐼3

−(𝑥𝑗)

4
 

0 ≤
𝑇2
+(𝑥𝑗) − 𝑇1

+(𝑥𝑗) + 𝐹1
+(𝑥𝑗) − 𝐹2

+(𝑥𝑗)

4
≤
𝑇3
+(𝑥𝑗) − 𝑇1

+(𝑥𝑗) + 𝐹1
+(𝑥𝑗) − 𝐹3

+(𝑥𝑗)

4
 

0 ≤
𝑇2
−(𝑥𝑗) − 𝑇1

−(𝑥𝑗) + 𝐹1
−(𝑥𝑗) − 𝐹2

−(𝑥𝑗)

4
≤
𝑇3
−(𝑥𝑗) − 𝑇1

−(𝑥𝑗) + 𝐹1
−(𝑥𝑗) − 𝐹3

−(𝑥𝑗)

4
 

𝜑𝑖
𝐴1𝐴2(𝑥𝑗) ≤ 𝜑𝑖

𝐴1𝐴3(𝑥𝑗),  𝜑𝑖
𝐴2𝐴3(𝑥𝑗) ≤ 𝜑𝑖

𝐴1𝐴3(𝑥𝑗), 𝑖 = 1,2,3,4  𝑗 = 1,2, … , 𝑛,  

𝑑𝜆(𝐴1, 𝐴3)  ≥ 𝑑𝜆(𝐴1, 𝐴2) and 𝑑𝜆(𝐴1, 𝐴3)  ≥ 𝑑𝜆(𝐴2, 𝐴3) for 𝜆 > 0. 

Definition3.3. For two bipolar neutrosophic 𝐴1  and 𝐴2  in a universe of discourse 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛}  which are denoted by 𝐴1 =

⟨𝑥𝑖 ,T1
+(𝑥𝑖), I1

+(𝑥𝑖), F1
+(𝑥𝑖), T1

−(𝑥𝑖), I1
−(𝑥𝑖), F1

−(𝑥𝑖) ⟩ and  𝐴2 =

⟨𝑥𝑖 ,T2
+(𝑥𝑖), I2

+(𝑥𝑖), F2
+(𝑥𝑖), T2

−(𝑥𝑖), I2
−(𝑥𝑖), F2

−(𝑥𝑖) ⟩ . The bipolar neutrosophic weighted 
similarity measure are defined by 

                                                      𝜗𝜆( 𝐴1, 𝐴2) = 1 −
𝑑𝜆(𝐴1, 𝐴2).                                                     (2) 

 
Proposition3.4. The similarity measure  𝜗𝜆( 𝐴1, 𝐴2) for 𝜆 > 0 satisfies the following 
properties; 
 
(HD1) 0 ≤ 𝜗𝜆( 𝐴1, 𝐴2) ≤ 1; 

(HD2)  𝜗𝜆( 𝐴1, 𝐴2) = 1 if and only if 𝐴1 = 𝐴2; 

(HD3) 𝜗𝜆( 𝐴1, 𝐴2) = 𝜗𝜆( 𝐴2, 𝐴1); 
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(HD4) If 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 , 𝐴3 is a bipolar neutrosophic in 𝑋, then  𝜗𝜆( 𝐴1, 𝐴2) ≥ 𝜗𝜆( 𝐴1, 𝐴3) 
and 

𝜗𝜆( 𝐴2, 𝐴3) ≥ 𝜗𝜆( 𝐴1, 𝐴3). 

Definition3.5. Let 𝐸 be a set-to-the point mapping: 𝐸: bipolar neutrosophic →[0,1], then 𝐸 
is an entropy measure if it satisfies the following conditions: 

(E1) 𝐸(𝐴1) = 0 (minimum) if and only if 𝐴 or 𝐴1𝑐 is a crisp set; 

(E2) 𝐸(𝐴1) = 1(maximum) if and only if 𝐴1 = 𝐴1𝑐  T1+(𝑥𝑖) = F1+(𝑥𝑖), T1−(𝑥𝑖) = F1−(𝑥𝑖), 
I1
+(𝑥𝑖) = I1

−(𝑥𝑖) = 0.5 for all 𝑥𝑖 ∈ 𝑋 

(E3) 𝐸(𝐴1) ≤ 𝐸(𝐴2) if 𝐴1 is less fuzzy than 𝐴2, 

T1
+(𝑥𝑖) ≤ T2

+(𝑥𝑖), F2
+(𝑥𝑖) ≤ F1

+(𝑥𝑖), for T2+(𝑥𝑖) ≤ F2
+(𝑥𝑖) and I1+(𝑥𝑖) = I2+(𝑥𝑖) = 0.5 

T1
−(𝑥𝑖) ≥ T2

−(𝑥𝑖), F2
−(𝑥𝑖) ≥ F1

−(𝑥𝑖), for T2−(𝑥𝑖) ≥ F2
−(𝑥𝑖) and I1−(𝑥𝑖) = I2−(𝑥𝑖) = 0.5 

or 

T1
+(𝑥𝑖) ≥ T2

+(𝑥𝑖), F2
+(𝑥𝑖) ≥ F1

+(𝑥𝑖), for T2+(𝑥𝑖) ≥ F2
+(𝑥𝑖) and I1+(𝑥𝑖) = I2+(𝑥𝑖) = 0.5 

T1
−(𝑥𝑖) ≤ T2

−(𝑥𝑖), F2
−(𝑥𝑖) ≤ F1

−(𝑥𝑖), for T2−(𝑥𝑖) ≤ F2
−(𝑥𝑖) and I1−(𝑥𝑖) = I2−(𝑥𝑖) = 0.5 

(E4)  𝐸(𝐴1) = 𝐸(𝐴1𝑐). 

Remark: In some cases, we do not only think about the distance between 𝐴1 𝑎𝑛𝑑 𝐴2, but 
also we need to consider the distance between 𝐴1 and 𝐴2𝑐. So we can define the index of 
distance for two bipolar neutrosophic 𝐴1 and 𝐴2 as follows. 

Definition3.6. For two bipolar neutrosophic 𝐴1 and 𝐴2, the index of distance is defined by 

𝐼𝜆(𝐴1, 𝐴2) =
𝑑𝜆(𝐴1, 𝐴2)

𝑑𝜆(𝐴1, 𝐴2
𝑐)
. 

Proposition3.7. The index of distance 𝐼𝜆(𝐴1, 𝐴2) for two bipolar neutrosophic 𝐴1 and 𝐴2 
satisfies the following properties: 

(𝐼1) 𝐼𝜆(𝐴1, 𝐴2) = 0 if and only if 𝐴1 = 𝐴2; 

(𝐼2) 𝐼𝜆(𝐴1, 𝐴2) = 0 if and only if 𝑑𝜆(𝐴1, 𝐴2) = 𝑑𝜆(𝐴1, 𝐴2𝑐); 

(𝐼3) 𝐼𝜆(𝐴1, 𝐴2) → +∞, 𝐴1 = 𝐴2
𝑐, these means 𝐴1 and 𝐴2 are completely different; 

(𝐼4) 𝑊ℎ𝑒𝑛 𝐴1 = 𝐴2 = 𝐴2
𝑐, the entropy measure of 𝐴1 and 𝐴2 reaches its maximum value; 
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(𝐼5) 𝐼𝜆(𝐴1, 𝐴2) < 1 means compare with 𝐴2𝑐𝐴1 is more similar to 𝐴2; 

(𝐼5) 𝐼𝜆(𝐴1, 𝐴2) > 1 means compare with 𝐴2𝑐𝐴1 is less similar to 𝐴2. 

4. Practical Examples 
 
In this section, two examples are given to demonstrate the application of the proposed 
distance measure. 

 
4.1. Clustering Method Based on the Distance (Similarity) Measure of BNSs and an 
Example 
 
In this subsection, we introduced a method for a MADM problem with bipolar 
neutrosophic information. Some of it is quoted from (Ye 2014). 
 
Step1. By use of Equations 1 and 2, we can calculate the similarity measure degree of 
bipolar neutrosophic set. Then we have a similarity matrix 𝐶 = (𝑠𝑖𝑗)𝑚𝑥𝑚, where 

𝑠𝑖𝑗 = 𝑠𝑗𝑖 = 𝜗𝜆(𝐴𝑖, 𝐴𝑗) for 𝑖, 𝑗 = 1,2, … ,𝑚. 
Step2. The process of building the composition matrices is repeated until it holds that   

𝐶 → 𝐶2 → 𝐶4 → ⋯ → 𝐶2
𝑘
= 𝐶2

𝑘+1
 

𝐶2
𝑘
 is an equivalent matrix, where  

𝐶2 = 𝐶 ∘ 𝐶 = (𝑠𝑖𝑗
′ )𝑚𝑥𝑚 = 𝑚𝑎𝑥𝑘{min(𝑠𝑖𝑘, 𝑠𝑘𝑗)}𝑚𝑥𝑚, 

for 𝑖, 𝑗 = 1,2, … ,𝑚. 
Step3. For the equivalent matrix 𝐶2𝑘 ≜ �̅� = (�̅�𝑖𝑗)𝑚𝑥𝑚, we can construct a 𝛼-cutting matrix 
�̅�𝛼 = (�̅�𝑖𝑗

𝛼)𝑚×𝑚 of �̅�, where 

�̅�𝑖𝑗
𝛼 = {

0 ,   �̅�𝑖𝑗 < 𝛼;

1 ,    �̅�𝑖𝑗 ≥ 𝛼 ;
 

for 𝑖, 𝑗 = 1,2, … ,𝑚 and 𝛼 is the confidence level with 𝛼 ∈ [0,1]. 

Step4. Classify 𝐴𝑖 by choosing different level 𝛼.  Line 𝑖  and 𝑘  of  �̅�𝛼  are called 𝛼 -
congruence if �̅�𝑖𝑗𝛼 = �̅�𝑘𝑗𝛼  for all 𝑗 = 1,2, … ,𝑚. Then 𝐴𝑖  should fall into the same category 
as 𝐴𝑘. 

Example4.1.1 A car seller is going to classify four different cars of 𝐴m(𝑚 = 1,2,3,4). 
Every car has four evaluation factors (attributes): (1) 𝑥1 , fuel consumption; (2) 𝑥2 , 
coefficient of friction; (3) 𝑥3, price; (4) 𝑥4, comfortable degree. The characteristics of each 
car under the four attributes are represented by the form of bipolar neutrosophic data are as 
follows: 

Step1. Construct the decision matrix provided by the customer as;  

 



Editors: 
             Prof. Dr. Florentin Smarandache 
             Associate Prof. Dr. Memet Şahin 
 
 

134 
 

Table 1: Decision matrix given by customer 

 x1 x2 x3 x4 
A1 〈0.5,0.7,0.2, −0.7, −0.3, −0.6〉 〈0.6,0.4,0.5, −0.7, −0.8, −0.4〉 〈0.7,0.7,0.5, −0.8, −0.7, −0.6〉 〈0.1,0.5,0.7, −0.5, −0.2, −0.8〉 
A2 〈0.8,0.7,0.5, −0.7, −0.7, −0.1〉 〈0.7,0.6,0.8, −0.7, −0.5, −0.1〉 〈0.9,0.4,0.6, −0.1, −0.7, −0.5〉 〈0.5,0.2,0.7, −0.5, −0.1, −0.9〉 
A3 〈0.3,0.4,0.2, −0.6, −0.3, −0.7〉 〈0.2,0.2,0.2, −0.4, −0.7, −0.4〉 〈0.9,0.5,0.5, −0.6, −0.5, −0.2〉 〈0.7,0.5,0.3, −0.4, −0.2, −0.2〉 
A4 〈0.9,0.7,0.2, −0.8, −0.6, −0.1〉 〈0.3,0.5,0.3, −0.5, −0.5, −0.2〉 〈0.5,0.4,0.5, −0.1, −0.7, −0.2〉 〈0.6,0.2,0.8, −0.5, −0.5, −0.6〉 

  

    Let 𝜆 = 2  choosing the weight vectors 𝑤𝑗 = 1 4⁄  (𝑗 = 1,2,3,4)  and   𝛽𝑖 = 1 4⁄  (𝑖 =

1,2,3,4, ), then we use similarity measure to classify the four different cars of 𝐴m(𝑚 =

1,2,3,4)  by the bipolar neutrosophic clustering algorithms. 

    First, we utilize the distance measure to calculate the distance measures between each 
pair of bipolar neutrosophic  𝐴m(𝑚 = 1,2,3,4). The results are as follows;  

𝑑(𝐴1, 𝐴2) = 0,062743, 𝑑(𝐴1, 𝐴3) = 0,072924, 𝑑(𝐴1, 𝐴4) = 0,069644, 

𝑑(𝐴2, 𝐴3) = 0,061299, 𝑑(𝐴2, 𝐴4) = 0,034264,         𝑑(𝐴3, 𝐴4) = 0,04648, 

Step2. So we construct the following similarity matrix: 

𝐶 = [

1 0,937257415 0,927075893 
0,937257415 1 0,938700771
0,927075893 0,938700771 1

0,930356189
0,965735658
0,953520184

0,930356189 0,965735658 0,953520184 1

] 

Then by Step 2 

𝐶2 = [

1 0,937257415 0,937257415 
0,937257415 1 0,953520184
0,937257415 0,953520184 1

0,937257415
0,965735658
0,953520184

0,937257415 0,965735658 0,953520184 1

] 

Due to 𝐶2 ⊈ 𝐶, 𝐶 is not an equivalent matrix, we keep/continue calculating. 

𝐶4 = [

1 0,937257415 0,937257415 
0,937257415 1 0,953520184
0,937257415 0,953520184 1

0,937257415
0,965735658
0,953520184

0,937257415 0,965735658 0,953520184 1

] 

𝐶2 = 𝐶4. That is 𝐶2 is an equivalent matrix, denoted by �̅�. 

Step3. Finally, choosing different confidence level 𝛼, we can construct a 𝛼-cutting matrix 
�̅�𝛼 ; 

�̅�𝛼 = (�̅�𝑖𝑗
𝛼)𝑚×𝑚 of �̅�, where 



                                                   
  Neutrosophic Triplet Structures   

 Volume I 
 

135 
 

�̅�𝑖𝑗
𝛼 = {

0 ,   �̅�𝑖𝑗 < 𝛼;

1 , �̅�𝑖𝑗 ≥ 𝛼 ;
 

(1) Let  0 ≤ 𝛼 ≤ 0,937257415  , �̅�𝛼 = [
1 1 1 
1 1 1
1 1 1

1
1
1

1 1 1 1

]  𝐴m(𝑚 = 1,2,3,4) can be 

divided into one category {𝐴1, 𝐴2, 𝐴3, 𝐴4}. 

(2) Let 0,937257415 < 𝛼 ≤ 0,953520184 , �̅�𝛼 = [
1 0 0 
0 1 1
0 1 1

0
1
1

0 1  1 1

] Then the cars  

 

 𝐴m(𝑚 = 1,2,3,4) can be divided into two categories {𝐴1}, {𝐴2, 𝐴3, 𝐴4}. 

(3) Let 0,953520184 < 𝛼 ≤ 0,965735658 , �̅�𝛼 = [
1 0 0 
0 1 0
0 0 1

0
1
0

0 1  0 1

] Then the cars 

𝐴m(𝑚 = 1,2,3,4) can be divided into three categories {𝐴1}, {𝐴2, 𝐴4}, {𝐴3}. 

(4) Let 0,965735658 < 𝛼 ≤ 1 , �̅�𝛼 = [
1 0 0 
0 1 0
0 0 1

0
0
0

0 0  0 1

]  

Step4. Then the cars 𝐴m(𝑚 = 1,2,3,4) can be divided into four categories 
{𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}. 

4.2. Multi-criteria Decision Making 

Example 4.2.1 A manufacturing company which wants to select the global supplier 
according to the core competencies of suppliers. Now suppose that there are a set of four   
𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4} whose core competence are evaluated by means of the following four 
criteria  {𝑥1, 𝑥2, 𝑥3, 𝑥4}. 

𝑥1: the level of technology innovation, 𝑥2: the control ability of flow, 𝑥3: the ability of 
management, 𝑥4: the level of service. Then, the weight vector for the four criteria is 𝑤 =

(0.4,0.1,0.3,0.2). When the four possible alternatives with respect to the above four criteria 
are evaluated by the similar method from the expert, we can obtain the following bipolar 
neutsophic decision matrix A: 

𝐴

= [

〈0.3,0.4,0.2, −0.6, −0.3, −0.7〉 〈0.8,0.6,0.3, −0.2, −0.6, −0.5〉 〈0.4,0.5,0.2, −0.5, −0.1, −0.7〉 
〈0.3,0.6,0.9, −0.5, −0.3, −0.5〉 〈0.3,0.3,0.1, −0.5, −0.1, −0.1〉 〈0.6,0.6,0.3, −0.6, −0.1, −0.7〉
〈0.2,0.8,0.2, −0.6, −0.8, −0.7〉 〈0.9,0.2,0.2, −0.6, −0.6, −0.3〉 〈0.8,0.8,0.4, −0.9, −0.3, −0.8〉

〈0.8,0.4,0.2, −0.6, −0.3, −0.7〉
〈0.3,0.4,0.2, −0.4, −0.2, −0.7〉
〈0.6,0.4,0.2, −0.5, −0.3, −0.7〉

〈0.6,0.4,0.5, −0.2, −0.3, −0.1〉 〈0.7,0.5,0.1, −0.9, −0.3, −0.7〉 〈0.3,0.9,0.5, −0.1, −0.3, −0.5〉 〈0.3,0.4,0.9, −0.6, −0.3, −0.1〉

] 
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by applying Definition 3.1 the distance between an alternative 𝐴𝑖 (𝑖 = 1,2,3,4) and the 
alternative 

𝐴∗ = 〈𝑚𝑎𝑥 {𝑇𝑖𝑗
+},𝑚𝑖𝑛 {𝐼𝑖𝑗

+},𝑚𝑖𝑛 {𝐹𝑖𝑗
+}, 𝑚𝑖𝑛 {𝑇𝑖𝑗

−},𝑚𝑎𝑥 {𝐼𝑖𝑗
−},𝑚𝑎𝑥 {𝐹𝑖𝑗

−}〉(𝑗 = 1,2…𝑛). 

𝐴∗ = 〈0.6,0.4,0.2, −0.6, −0.3, −0.1〉  〈0.9,0.2,0.1,−0.9, −0.1, −0.1〉  〈0.8,0.5,0.2,−0.9,−0.1, −0.5〉  
〈0.8,0.4,0.2, −0.6, −0.2,−0.1〉   

are as follows: 

𝑑(𝐴1, 𝐴
∗) = 0,03308,        𝑑(𝐴2, 𝐴

∗) = 0,0901, 

𝑑(𝐴3, 𝐴
∗) = 0,03383,         𝑑(𝐴4, 𝐴

∗) = 0,0688 

with 𝜆 = 2 and 𝛽𝑖 = 1 4⁄ (𝑖 = 1,2,3,4).  𝐴1 < 𝐴3 < 𝐴4 < 𝐴2.This implies that the ranking 
order of the four suppliers is 𝐴1, 𝐴3, 𝐴4 𝑎𝑛𝑑 𝐴2. Therefore, the best supplier is 𝐴1. 

5. Comparison Analysis and Discussion 

In order to verify the feasibility and effectiveness of the proposed decision-making 
approach, a comparison analysis with single-valued neutrosophic decision method, used by 
(Huang 2016), is given, based on the same illustrative example.  

Clearly, the ranking order results are consistent with the result obtained in (Huang 2016); 
however, the best alternative is the same as  𝐴1, because the ranking principle is different, 
these two methods produced the same best alternative whiles/whereas the bad ones differ 
from each other. 

As mentioned above, the bipolar single-valued neutrosophic information is a generalization 
of single-valued neutrosophic information, intuitionistic fuzzy information which is a 
further generalization of fuzzy information. On the one hand, a SVNS is an instance of a 
neutrosophic set, which gives us an additional possibility to represent uncertain, imprecise, 
incomplete, and inconsistent information that exist in the real world. On the other hand, the 
clustering analysis under a bipolar single-valued neutrosophic environment is suitable for 
capturing imprecise, uncertain, and inconsistent information in clustering the data. Thus, 
the clustering algorithm based on the similarity measures of BSVNSs can not only  cluster 
the bipolar single-valued neutrosophic information but also can cluster the single-valued 
neutrosophic information, intuitionistic fuzzy information and the fuzzy information. 
Obviously, the proposed bipolar single-valued neutrosophic clustering algorithm is the 
extension of fuzzy clustering algorithm, single-valued neutrosophic clustering algorithm 
and intuitionistic fuzzy clustering algorithm. Therefore, compared with the intuitionistic 
fuzzy clustering algorithm, single-valued neutrosophic clustering algorithm and the fuzzy 
clustering algorithm, the bipolar single-valued neutrosophic clustering algorithm is more 
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general. Furthermore, when we encounter some situations that are represented by 
indeterminate information and inconsistent information, the bipolar single-valued 
neutrosophic clustering algorithm can demonstrate its great superiority in clustering those 
bipolar single-valued neutrosophic data. 

6. Conclusion 

BNSs can be applied in addressing problems with uncertain, imprecise, incomplete and 
inconsistent information existing in real scientific and engineering applications. Based on 
related research achievements in BNSs, we defined a new distance measure. It is a 
generalization of the existing distance measures defined in (Huang 2016). Then, we also 
defined a new similarity measure, an entropy measure, and an index of distance under the 
single-valued neutrosophic environment. Two illustrative examples demonstrated the 
application of the proposed clustering analysis method and decision-making method. 
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Chapter Eleven 

Dice Vector Similarity Measure of Intuitionistic 
Trapezoidal Fuzzy Multi-Numbers and Its Application 

in Architecture 
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1TBMM Public relations building 2nd Floor, B206 room Ministries, Ankara06543-Turkey;  
2Köklüce neighbourhood, Araban, Gaziantep27310-Turkey 

E-mail: derya.bakbak@tbmm.gov.tr, vulucay27@gmail.com 
                                                
Abstract  

This paper presents a study on the development of a intuitionistic fuzzy multi-criteria 
decision-making model for the evaluation of end products of the architectural of material, 
design and application. The main aim of this study is to present a novel method based on 
multi-criteria decision making Intuitionistic trapezoidal fuzzy multi-number. Therefore, 
Dice vector similarity measure is defined to develop the Intuitionistic Trapezoidal Fuzzy 
Multi-Numbers, the application of architecture are presented. 

Keywords: Intuitionistic Trapezoidal Fuzzy Multi-Numbers, Dice vector similarity 
measure, multi-criteria decision making, architecture. 

1.Introduction 

In parallel with changing and developing technology, architecture and interior architecture 
areas have a rapidly rising graphic within the context of material, design and application. 
Within this context, for the purpose of producing design alternatives in a shorter time and 
introducing more preferences to the user, new expression procedures, in other words digital 
environments have been initiated to be used. Prior to designing the space, the interaction 
and communication between the space and its user should be solved, the person is 
continuously in communication with the space where he is. Therefore, the method 
proposed in this study will help decision-making in the most appropriate to space. In 1965, 
Zadeh [35] proposed fuzzy sets to handle imperfect, vague, uncertain and imprecise 
information as a fuzzy subset of the classical universe set A. Soon after the definition of 
fuzzy set, the set has been successfully applied in engineering, game theory, multi-agent 
systems, control systems, decision-making and so on. In the fuzzy sets, an element in a 
universe has a membership value in [0, 1]; however, the  membership value is inadequate 
for providing complete information in some problems as there are situations where each 
element has different membership values. For this reason, a different generalization of 

mailto:derya.bakbak@tbmm.gov.tr
mailto:vulucay27@gmail.com
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fuzzy sets, namely multi-fuzzy sets, has been introduced. Yager [38] first proposed multi-
fuzzy sets as a generalization of multisets and fuzzy sets. An element of a multi-fuzzy set 
may possess more-than-one membership value in [0, 1] (or there may be repeated 
occurrences of an element). Some Works on the multi-sets have been undertaken by 
Sebastian and Ramakrishnan [19], Syropoulos [20, 21], Maturo [8], Miyamoto [6, 7] and 
so on. Recently, research on fuzzy numbers, with the universe of discourse as the real line, 
has studied. For example, Thowhida and Ahmad [25] introduced some arithmetic 
operations on fuzzy numbers with linear membership functions. Chakrabort and Guha [4] 
developed some arithmetic operations on generalized fuzzy numbers by using extension 
principle. Alim et al. [1] developed a formula for the elementary operations on L-R fuzzy 
number. Roseline and Amirtharaj [15] proposed a method of ranking of generalized 
trapezoidal fuzzy numbers and developed generalized fuzzy Hungarian method to find the 
initial solution of generalized trapezoidal fuzzy transportation problems. Also, same 
authors in [16] introduced a method of ranking of generalized trapezoidal fuzzy numbers 
based on rank, perimeter, mode, divergence and spread. Meng et al. [9] solved a multiple 
attribute decision-making problem with attribute values within triangular fuzzy numbers 
based on the mean area measurement method. Surapati and Biswas [18] examined a multi-
objective assignment problem with imprecise costs, time and ineffectiveness instead of its 
precise information in fuzzy numbers. Wang [29] studied preference relation with 
membership function representing preference degree to compare two fuzzy numbers, and 
relative preference relation is constructed on the fuzzy preference relation to rank a set of 
fuzzy numbers. Sinova et al. [23] proposed a characterization of the distribution of some 
random elements by extending the moment-generating function in fuzzy numbers. Riera 
and Torrens [14] developed a method on discrete fuzzy numbers to model complete and 
incomplete qualitative information. Different studies for fuzzy numbers in the recent 
literature have been researched. For example; on in disaster responses, emergency decision 
makers [17], on existence, uniqueness, calculus and properties of triangular 
approximations of fuzzy numbers [2], on two-dimensional discrete fuzzy numbers [30], on 
ranking generalized exponential trapezoidal fuzzy numbers [12], on probabilistic approach 
to the arithmetics of fuzzy numbers [24], on matrix games with pay-offs of triangular fuzzy 
numbers [3], on defuzzification of generalized fuzzy numbers [11], on fuzzy linguistic 
model based on discrete fuzzy numbers [13], on possibilistic characterization function of 
fuzzy number [22] and so on. 

2. Preliminary 

Let us start with some basic concepts related to fuzzy set, multi-fuzzy set, intuitionistic 
fuzzy set[37], intuitionistic fuzzy multiset and intuitionistic fuzzy numbers. 

Definition 2.1[35] Let X  be a non-empty set. A fuzzy set F  on X  is defined as: 
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{ , (x) : x X}FF x   where : [0,1]F X  for x X . 

Definition 2.2[34] t-norms are associative, monotonic and commutative two valued 
functions t that map from [0,1] [0,1] into [0,1]. These properties are formulated with the 
following conditions: 

1. (0,0) 0t  and
1 1 1

( ,(x),1) (1, (x)) (x)x x xt t     

2. If
1 3
(x) (x)x x  and

2 4
(x) (x)x x  , then

1 2 3 4
( (x), (x)) t( (x), (x))x x x xt     , 

3. 
1 2 2 1

( (x), (x)) ( (x), (x))x x x xt t    , 

4.
1 2 3 1 2 3

( (x), t( (x), (x))) ( ( (x), )(x), (x))x x x x x xt t t       

Definition 2.3[34] s -norm are associative, monotonic and commutative two placed 
functions s which map from [0,1] [0,1] into [0,1]. These properties are formulated with 
the following conditions: 

1. (1,1) 1s  and  1 1 1
( (x),0) 0, (x) (x)x x xs s    , 

2. If
1 3
(x) (x)x x  and

2 4
(x) (x)x x  , then

1 2 3 4
( (x), (x)) ( (x), (x))x x x xs s    , 

3.
1 2 2 1

( (x), (x)) ( (x), (x))x x x xs s    , 

4. 
1 2 3 1 2 3

( (x), ( (x), (x))) ( ( (x), )(x), (x))x x x x x xs s s s      . 

t -norm and t -conorm is related in a sense of logical duality. Typical dual pairs of non-
parametrized t -norm and t -conorm are compiled below: 

1. Drastic product:
   1 2 1 2

1 2

min (x), (x) ,max (x), (x) 1
( (x), (x))

0
x x x x

w x xt
otherwise

   
 

 
 


 

2. Drastic sum:
   1 2 1 2

1 2

max (x), (x) ,min (x), (x) 0
( (x), (x))

1
x x x x

w x xs
otherwise

   
 

 
 


 

3. Bounded product: 

 1 2 1 21( (x), (x)) max 0, (x) (x) 1x x x xt        
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4. Bounded sum: 

 1 2 1 21( (x), (x)) min 1, (x) (x)x x x xs       

5. Einstein product: 

1 2

1 2

1 2 1 2

1.5

(x). (x)
( (x), (x))

2 [ (x) (x) (x). (x)]
x x

x x
x x x x

t
 

 
   


  

 

6. Einstein sum: 

1 2

1 2

1 2

1.5

(x) (x)
( (x), (x))

1 (x). (x)
x x

x x
x x

s
 

 
 





 

7. Algebraic product: 

1 2 1 22( (x), (x)) (x). (x)x x x xt      

8. Algebraic sum: 

1 2 1 2 1 22( (x), (x)) (x) (x) (x). (x)x x x x x xs          

9. Hamacher product: 

1 2

1 2

1 2 1 2

2.5

(x). (x)
( (x), (x))

(x) (x) (x). (x)
x x

x x
x x x x

t
 

 
   


 

 

10. Hamacher Sum: 

1 2 1 2

1 2

1 2

2.5

(x) (x) 2. (x). (x)
( (x), (x))

1 (x). (x)
x x x x

x x
x x

s
   

 
 

 



 

11. Minimum: 

 1 2 1 23( (x), (x)) min (x), (x)x x x xt      

12. Maximum: 

 1 2 1 23( (x), (x)) max (x), (x)x x x xs      
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Definition 2.4 [19] Let X be a non-empty set. A multi-fuzzy set G  on X  is defined as 

 1 2, (x), (x),..., (x),... :i
G G GG x x X     where : [0,1]i

G X   for all i  1,2,..., p  and 

x X  

Definition 2.5[32] Let , [0,1] i i
A Av  (i 1,2,..., )p and , , ,a b c d  such that

a b c d   . Then, an intuitionistic trapezoidal fuzzy multi-number (ITFM number) 
     1 2 1 2, , , ; , ,..., , , ,...,   p p

A A A A A Aa a b c d v v v  is a special intuitionistic fuzzy multi-set on 

the real number set , whose membership functions and non-membership functions are 
defined as follows, respectively:  

 

(x ) / ( )
,                        

(x)
( x) / ( )
0,                         








    


 
 

   



i
A

i
Ai

A i
A

a b a a x b
b x c

d d c c x d
otherwise

 

( ) ( ) ,
( )

,                           
(x)

(x ) ( )
( )

1,                              otherwise.

   
 



  

 
    

 



i
A

i
Ai

A i
A

b x v x a a x b
b a

v b x c
v

c v d x c x d
d c

 

Note that the set of all ITFM-number on will be denoted by . 

Definition 2.6 [32] Let      1 2 1 2
1 1 1 1, , , ; , ,..., , , ,...,   p p

A A A A A AA a b c d v v v , 

     1 2 1 2
2 2 2 2, , , ; , ,..., , , ,...,   p p

A A A A A AB a b c d v v v  and 0   be any real number. Then, 

     1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 21.  , , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) .           P P P P

A B A B A B A B A B A BA B a a b b c c d d s s s t v v t v v t v v

     1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 22.  , , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) .           P P P P

A B A B A B A B A B A BA B a a b b c c d d s s s t v v t v v t v v
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3. 

 

   

 

 

1 2 1 2 1 2 1 2

1 21 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

, , , ;
(d 0,d 0)

( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , )

, , , ;
.

( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( ,

     

     

 



p p P P
A B A B A B A B A B A B

p p P P
A B A B A B A B A B A B

a a b b c c d d

t t t s v v s v v s v v

a d b c c b d a
A B

t t t s v v s v v s v v 

 

   

1 2

1 2 1 2 1 2 1 2

1 21 1 2 2 1 1 2 2

(d 0,d 0)
)

, , , ;
(d 0,d 0)

( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , )     








 




 



p p P P
A B A B A B A B A B A B

d d c c b b a a

t t t s v v s v v s v v

 

4. 

 

   

 

 

1 2 1 2 1 2 1 2

1 21 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

/ , / , / , / ;
( 0, 0)

( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , )

/ , / , / , / ;
/

( , ), ( , ),..., ( , ) , ( , ), ( , ),...,

     

     

 



p p P P
A B A B A B A B A B A B

p p
A B A B A B A B A B

a d b c c b d a
d d

t t t s v v s v v s v v

d d c c b b a a
A B

t t t s v v s v v s 

 

   

1 2

1 2 1 2 1 2 1 2

1 21 1 2 2 1 1 2 2

( 0, 0)
( , )

/ , / , / , / ;
( 0, 0)

( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , )     








 




 



P P
A B

p p P P
A B A B A B A B A B A B

d d
v v

d a c b b c a d
d d

t t t s v v s v v s v v

 

5. 
     1 2 1 2

1 1 1 1, , , ; 1 (1 ) ,1 (1 ) ,...,1 (1 ) , ( ) ,( ) ,..., ( ) ( 0)                    p P
A A A A A AA a b c d v v v

 

6. 

    1 2 1 2
1 1 1 1, , , ; ( ) , ( ) ,..., ( ) , 1 (1 ) ,1 (1 ) ,...,1 (1 ) ( 0)                      

P p
A A A A A AA a b c d v v v

 

Definition 2.7 [32]  Let      1 2 1 2
1 1 1 1, , , ; , ,..., , , ,...,   p p

A A A A A AA a b c d v v v ,Then, 

normalized ITFM-number of A is given by 

   1 2 1 21 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , , ; , ,..., , , ,...,  
 

  
            

p p
A A A A A A

a b c dA v v v
a b c d a b c d a b c d a b c d
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Example 2.8 Assume that      3,5,6,7 ; 0.03,0.02,...,0.08 , 0,001,0,003,...,0,004 A . 

Then normalized ITFM-number of A can be written as 

   
3 5 6 7, , , ; 0.03,0.02,...,0.08 , 0,001,0,003,...,0,004
21 21 21 21
 

  
 

A . 

Definition 2.9[36]  Let 1 2(x ,x ,...,x )nX  and 1 2(y ,y ,...,y )nY   be the two vectors of length
n where all the coordinates are positive. Then the Dice similarity measure between two 
vectors (Dice 1945) is defined as follows: 

1
2 2

2 22 2

1 1

2
2 .(X,Y)

n

i i
İ

n n

i i
i i

x y
X YD

X Y x y



 

 






 
                                 

where X.Y=
1

n

i i
İ

x y


  is the inner product of the vectors X and Y and 2
2

1

n

İ
X x



  and

2
2

1

n

İ
Y y



  are the Euclidean norms of X and Y (also called the 2L norms).However, it 

is undefined if 0i ix y  for 1,2,...,i n . In this case, let the measure value be zero when

0i ix y  for 1,2,...,i n . 

The Dice similarity measures at isfies the following properties  

(P1) 0 (X,Y) 1D  ; 

(P2) (X,Y) D(Y,X)D   

    (P3) (X, Y) 1D  if and only if X Y  ,i.e. i ix y , for i=1,2,...,n. 

The Dice similarity measure in vector space can be extended to the following expected 
Dice similarity measure for intuitionistic trapezoidal fuzzy numbers. 

3. Dice Vector Similarity Measure Based on Multi-Criteria Decision Making with 
ITFMN 

Definition 3.1 Let      1 2 1 2
1 1 1 1, , , ; , ,..., , , ,...,   p p

A A A A A AA a b c d v v v , 

     1 2 1 2
2 2 2 2, , , ; , ,..., , , ,...,   p p

A A A A A AB a b c d v v v be two ITFMNs in the set of real 
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numbers . Then; Dice similarity measure between ITFMN A and B denoted (A, B)D is 
defined as; 

   

1 1 1 11

1 2 2 2 1 2 2 2

1 .
1 (A,B)1(A,B) 2.( ( ). ( ) ... ( ). ( )).( ( ). ( ) ... ( ). ( ))
( ) ( ) ... ( ) ( ) ( ) ( ) . ( ) ( ) ... ( ) ( ) ( ) ( )

   

  



 
 
 


    
 
      
 


n

p p p pj
A j B j A j B j A j B j A j B j

P P P P
A j A j B j A j A j B j

d
D x x x x v x v x v x v xn

x x x v x v x v x

(A,B) (A) P(B)d P   

1 2 3 42 2(A)
6

a a a aP   
 , 1 2 3 42 2(B)

6
b b b bP   

  

Example3.2 Let      1,3,5,7 ; 0.3,0.2,0.4,0.6 , 0.2,0.1,0.4,0.5 ,A  
     2,6,7,8 ; 0.1,0.5,0.7,0.8 , 0.3,0.6,0.7,0.5B  be two ITFMNs in the set of real 

numbers . Then; Dice similarity measure between ITFMN A and B  

(A,B) (A) P(B) 3 6 3    d P  

1 6 10 7 18(A) 3
6 6

  
  P  

2 10 14 8 36(B) 6
6 6

  
  P  

(A, B)D 

         
2 2 2 2 21 2 2 2

1 1 2.(0,3.0,1 0,2.0,5 0,4.0,7 0,6.0,8).(0,2.0,3 0,1.0,6 0,4.0,7 0,5.0,5).
4 1 3 (0,3) 0,2 0,4 0,6 ... (0,3) (0,6) 0,7 0,5

      
 
          


n

j

 

 2. 0,57851 1 1,157 1,157. . 0.0195
4 1 3 3,69 4.4.3,69 59,04

   


 

Proposition3.3 Let D(A, B) be a Dice similarity measure between normalized ITFMN's A 
and B. Then we have, 

i. 0 (A,B) 1 D  

ii. (A,B) (B,A)D D  
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iii. (A,B) 1D for A B  

Definition 3.4 Let      1 2 1 2
1 1 1 1, , , ; , ,..., , , ,...,   p p

A A A A A AA a b c d v v v , 

     1 2 1 2
2 2 2 2, , , ; , ,..., , , ,...,   p p

A A A A A AB a b c d v v v  two ITFMNs in the set of real numbers

and [0,1]iw  be the weight of each element jx for (1,2,..., )j n such that
1

1
n

j
i

w


 . 

Then; Dice similarity measure between normalized ITFMN A and B denoted (A,B)wD is 
defined as; 

   

1 1 1 11

1 2 2 2 1 2 2 2

1 .
1 (A,B)1(A,B) 2. .( ( ). ( ) ... ( ). ( )).( ( ). ( ) ... ( ). ( ))
( ) ( ) ... ( ) ( ) ( ) ( ) . ( ) ( ) ... ( ) ( ) ( ) ( )

   

  



 
 


 


    
 
      
 


n

p p p pw j
j j j j j j j j jA B A B A B A B

P P P P
j j j j j jA A B A A B

d
D w x x x x v x v x v x v xn

x x x v x v x v x

(A,B) (A) P(B) d P  

1 2 3 42 2(A)
6

  


a a a aP , 1 2 3 42 2(B)
6

  


b b b bP  

Example3.5 Let      0.2,0.3,0.5,0.6 ; 0.1,0.4,0.6,0.7 , 0.2,0.5,0.6,0.8A  ,  
     0.1,0.2,0.4,0.5 ; 0.2,0.3,0.4,0.7 , 0.1,0.2,0.3,0.4B  be two normalized ITFMNs in 

the set of real numbers and iw be the weight of each element ix for (1,2)i 

1 20.3, 0.7 w w such that
1

1.



n

i
i

w  Then; Dice similarity measure between normalized 

ITFMN A and B  is; 

(A,B) (A) P(B) 0.4 0.3 0.1    d P  

0.2 0.6 0.10 0.6 0.24(A) 0.4
6 6

  
  P  

0.1 0.4 0.8 0.5 0.18(B) 0.3
6 6

  
  P  
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2 2 2 2 2 2 2 2

1 2.(0,3).(0,1.0,2 0,4.0,3 0,6.0,4 0,7.0,7).(0,2.0,1 0,5.0,2 0,6.0,3 0,8.0,4)(A,B) .
(1 0.1) (0,1) (0,4) (0,6) (0,7) ... (0,1) (0,2) (0,3) (0,4)

     


        
wD

 

                

2 2 2 2 2 2 2 2

1 2.(0,7).(0,1.0,2 0,4.0,3 0,6.0,4 0,7.0,7).(0,2.0,1 0,5.0,2 0,6.0,3 0,8.0,4). .
(1 0.1) (0,1) (0,4) (0,6) (0,7) ... (0,1) (0,2) (0,3) (0,4)

     


        

 

               
1 2.(0,3).(1,19) 1 2.(0,7).(0,5394). .

1,1 3,39 1,1 3,39
 

 

               0,3938

 
Proposition3.6 Let (A,B)wD be a weighted Dice similarity measure between normalized 

ITFMN's A and B, [0,1]jw  be the weight of each element ix such that
1

1n
jj

w


 Then 

weighted Dice vector similarity measure between ITFMN’s A and B; 

i. 0 (A,B) 1wD   

ii. (A,B) (B,A)w wD D  

iii. (A,B) 1wD  for A B i.e. ( 1 1
A B  , 2 2

A B  ,…, p p
A B  ) 

Proof 3.7 

i.  It is clear from Definition 3.3 

ii. 

   

1 1 1 11

1 2 2 2 1 2 2 2

1 .
1 (A,B)1(A,B) 2. .( ( ). ( ) ... ( ). ( )).( ( ). ( ) ... ( ). ( ))
( ) ( ) ... ( ) ( ) ( ) ( ) . ( ) ( ) ... ( ) ( ) ( ) ( )

   

  



 
 


 


    
 
      
 


n

p p p pw j
j j j j j j j j jA B A B A B A B

P P P P
j j j j j jA A B A A B

d
D w x x x x v x v x v x v xn

x x x v x v x v x
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   

1 1 1 11

1 2 1 2 2 2 1 2 2 2

1 .
1 ( , )1

2. .( ( ). ( ) ... ( ). ( )).( ( ). ( ) ... ( ). ( ))
( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) . ( ) ( ) ... ( ) ( ) ( ) ( )

   

   



 
 


 


    
 
       
 


n

p p p pj
j j j j j j j j jB A B A B A B A

P P P P
j j j j j j jB A B A B B A

d B A
w x x x x v x v x v x v xn

x x x x v x v x v x

 

            (B,A)wD  

iii. 

( , ) wD A B  

   

1 1 1 11

1 2 1 2 2 2 1 2 2 2

1 .
1 (A,B)1

2. .( ( ). ( ) ... ( ). ( )).( ( ). ( ) ... ( ). ( ))
( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) . ( ) ( ) ... ( ) ( ) ( ) ( )

   

   



 
 


 
    
 
       
 


n

p p p pj
j j j j j j j j jA B A B A B A B

P P P P
j j j j j j jA B A B A A B

d
w x x x x v x v x v x v xn

x x x x v x v x v x

 

 

1 1 1 1 1 1 1 1

1 1 2 21

1 2 1 2 2 2 2 2 2 2

1 .
2 2 2 21

6 6
2 ( ( ). ( ) ( ). ( ) .... ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )
     

     



 
      
  
 
   
 
       


n

p pj
j j j j j j jA A A A A A

P P
j j j j j jA A A A A A

a b c d a b c d

w x x x x x x
x x x x x x

 

 
 

1 2 2 2 2

1 2 2 2 2
1

2 ( ) ( ) ( ) ( ) .... ( ) ( )1 .
1 0 2 ( ) ( ) ( ) ( ) .... ( ) ( )

pn
j j j jA A A

p
j j j jA A A

w x x x
x x x

  

  

   
  

    
 

  

 1.  

4. ITFM-number Multi-criteria Decision Making Method 

In this section, we define ITFMN-multi-criteria decision making method based on Dice 
vector similarity measure for intuitionistic trapezoidal fuzzy multi-numbers. 

Definition 4.1 Let 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑚)  be a set of alternatives, 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛) be the 
set of criteria, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)

𝑇 be the weight vector of the 𝑎𝑗(𝑗 = 1,2… , 𝑛) such that 
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𝑤𝑗 ≥ 0  and 
1

1n
jj

w


  and     1 2 1 2, , , ; , ,..., , , ,...,        
p p

ij ij ij ij ij ij ij ij ij ij ijmxn
b a b c d v v v  be 

the decision matrix in which the rating values of the alternatives. Then 

1 2

111 121

221 222

1 2

n

n

n

ij m n

m m m mn

a a a
bb bu
bb bu

b
u b b b



 
 
 
    
 
 
 
   

is called  a ITFM-number multi-criteria decision making matrix of the decision maker. 

Also; r is positive ideal ITFM-numbers solution of decision matrix   ij mxn
b  as form: 

     1,1,1,1 , 1,1,...,1 , 0,0,...,0 r  

and r is negative ideal ITFM-numbers solution of decision matrix   ij mxn
b as form: 

     1,1,1,1 , 0,0,...,0 , 1,1,...,1 r  

Algorithm: 

Step1. Give the decision-making matrix   ij mxn
b for decision; 

Step2.Calculate the weighted Dice vector similarity 𝑆𝑖 between positive ideal (or negative 
ideal) ITFMN solution r and    1 2 1 2, , , ; , ,..., , , ,...,     

p p
i ij ij ij ij ij ij ij ij ij iju a b c d v v v and 

 1,2,...,i m  as; 

   

1 1 1 11

1 2 2 2 1 2 2 2

1 .
1 (A,B)1(A,B) 2. .( ( ). ( ) ... ( ). ( )).( ( ). ( ) ... ( ). ( ))
( ) ( ) ... ( ) ( ) ( ) ( ) . ( ) ( ) ... ( ) ( ) ( ) ( )

   

  



 
 


 


    
 
      
 


n

p p p pw j
j j j j j j j j jA B A B A B A B

P P P P
j j j j j jA A B A A B

d
D w x x x x v x v x v x v xn

x x x v x v x v x

Step3. Determine the non-increasing order of (u , )
ii w iS D r   1,2,...,i m , 

 1,2,...,j n  

Step4. Select the best alternative. 
 
Now, we give a numerical example as follows; 
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Example 4.2 Architecture means the design of structures. It means designing and shaping 
structures in a way. It requires great imagination. Then it should be transferred to paper. At 
this stage, there may be some difficulties, and in terms of time and design, it will be 
difficult to put the design literally on paper. So it would be best to use computer-aided 
programs. Let's consider the entrance door of Gaziantep Zoo (Figure-1) drawn by Dr. 
Derya BAKBAK [39]. 

 
Figure-1: Entrance Door of Gaziantep Zoo 

Ezgi Architecture Company wants to choose computer-aided programs that will draw 
similar shapes to the entrance gate of Gaziantep zoo. Therefore, Ezgi Architecture 
Company wants to buy the best of four computer-aided programs. Four types of programs 
(alternatives) 𝑢𝑖(𝑖 = 1,2,3,4)  are available. The Ezgi architecture company takes into 
account two attributes to evaluate the alternatives; 𝑐1 =2D; 𝑐2 =3D use the ITFMN  values 
to evaluate the four possible alternatives 𝑢i(i =  1, 2, 3, 4) under the above two attributes. 
Also, the weight vector of the attributes 𝑐𝑗(𝑗 = 1,2) is ω =  (0.2,0.5,0.1,0.2)T. Then, 

Algorithm 

Step1.Constructed the decision matrix provided by the Ezgi Architecture Company as;  

Table 2: Decision matrix given by Ezgi Architecture Company 

 𝑐1 𝑐2 

u1      0.3,0.5,0.7,0.9 ; 0.4,0.5,0.6 , 0.2,0.5,0.8       0.6,0.7,0.8,0.9 ; 0.1,0.4,0.7 , 0.3,0.4,0.5  

u2      0.2,0.3,0.5,0.6 ; 0.2,0.3,0.8 , 0.1,0.4,0.6       0.1,0.3,0.4,0.5 ; 0.2,0.4,0.7 , 0.2,0.5,0.8  

u3      0.1,0.4,0.5,0.6 ; 0.3,0.4,0.5 , 0.2,0.3,0.7       0.3,0.4,0.5,0.6 ; 0.1,0.4,0.7 , 0.2,0.5,0.8  

u4      0.2,0.5,0.6,0.7 ; 0.3,0.4,0.6 , 0.2,0.1,0.3       0.2,0.3,0.5,0.6 ; 0.1,0.2,0.5 , 0.2,0.3,0.4  
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Step2.Computed the positive ideal ITFM-numbers solution as; 

     1,1,1,1 , 1,1,...,1 , 0,0,...,0 r  

 

 

Step3.Calculated the weighted Dice vector similarity measures, (u , )
ii w iS D r  as; 

The Proposed 
method 

Measure value Ranking order 

 1(u , ) 0,1302
iwD r    

(u , )
ii w iS D r  

2(u , ) 0,3341
iwD r   

3(u , ) 0,0685
iwD r   

4(u , ) 0,1197
iwD r   

2 1 4 3S S S S    

 

Step4. So the Ezgi architecture company will select the computer-aided program 2u . In any 

case if they do not want to choose 2u  due to some reasons they second choice will be 1u  . 

5. Conclusions 

In this paper, we developed a multi-criteria decision making for intuitionistic trapezoidal 
fuzzy multi-number based on weighted Dice vector similarity measures and applied to a 
numerical example in order to confirm the practicality and accuracy of the proposed 
method. In the future, the method can be extend with different similarity and distance 
measures in neutrosophic set. 
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Abstract  
In this chapter, we put forward some similarity measures for Trapezoidal Fuzzy Multi Numbers (TFMN) 
such as; Jaccard similarity measure, weighted Jacard similarity measure, Cosine similarity measure, weighted 
cosine similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. 
Also we investigate the propositions of the similarity measures. Moreover, a multi-criteria decision-making 
method for TFMN is improved based on these given similarity measures. Then, a practical example is shown 
to approve the feasibility of the new method. As a result, we compare the proposed method with the existing 
methods in order to show the effectiveness and efficiency of the developed method in this study. 

Keywords: Trapezoidal Fuzzy Multi Numbers, Jacard similarity measure, Cosine 
similarity measure, Hybrid vector similarity measure, Decision making. 

1.Introduction 

Multi attribute decision making has got much interest to the investigators because it has 
obtained excellent admission in the fields of operations research, engineering, and 
management, signal processing etc. We see multi attribute decision making problems 
under a lot of conditions, in which the number of possible options and actions need to be 
selected based on a set of predefined attributes. Many of research works have been done on 
multi attribute decision making problems, in which the ratings of alternatives and/or 
attribute values are explained in terms of crisp numbers such as interval numbers, fuzzy 
numbers, interval-valued fuzzy numbers, intuitionistic fuzzy numbers, interval-valued 
intuitionistic fuzzy numbers, etc. But, in realistic conditions, because of time pressure, 
complexity of the problem, lack of information processing capabilities, poor knowledge of 
the public domain and information, decision makers cannot provide exact evaluation of 
decision-parameters involved in multi attribute decision making problems. In such 
situation, preference information of alternatives with respect to the attributes provided by 
the decision makers may be imprecise or incomplete in nature. In the study, we suggest 
Jaccard vector similarity measures for trapezoidal fuzzy multi numbers and cosine vector 
similarity measure for trapezoidal fuzzy multi numbers by extending the concept of studied 
in [10] and [11] to trapezoidal fuzzy multi numbers and establish some of their basic 
properties. Notions of similarity, decision making, measure and algebraic etc. of 
neutrosophic sets have been introduces and their applications in several areas [12-33]. And 
we also proposed Hybrid vector similarity measure for trapezoidal fuzzy multi numbers 
and establish some of their basic properties. Additionally we also show the application of 

mailto:mesahin@gantep.edu.tr
mailto:vulucay27@gmail.com
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these suggested similarity measures. In order to do so, the rest of the chapter is organized 
as follows: Section 2 presents the preliminaries of fuzzy set, fuzzy number, multi-fuzzy set 
and similarity measures including Jaccard, Cosine and Hybrid. Section 3 represents some 
similarity measures for TFMNs including Jaccard similarity measure and Cosine similarity 
measure. Section 4 is devoted to develop the hybrid vector similarity measures for TFMNs. 
Medical diagnosis using the Jaccard, Cosine and Hybrid similarity measures is described in 
Section 5 and compared the results with other existing methods to demonstrate the 
effectiveness of the proposed similarity measures. Finally in Section 6, we proposed 
conclusions for the effectiveness and efficiency with similarity. 
 
 

2.PRELIMINARY 

In this section, we proposed some basic concepts related to fuzzy set, fuzzy number, multi-
fuzzy set and similarity measures for TFMN's including Jaccard similarity measure, Cosine 
similarity measure which will be used in the next sections. 

Definition 2.1[1]Let X  be a non-empty set. A fuzzy set F  on X  is defined as: 

{ , (x) : x X}FF x   where : [0,1]F X  for x X . 

Definition 2.2[2] t-norms are associative, monotonic and commutative two valued 
functions t that map from [0,1] [0,1] into [0,1]. These properties are formulated with the 
following conditions: 

1. (0,0) 0t   and 
1 1 1

( (x),1) (1, (x)) (x)x x xt t     

2. If
1 3
(x) (x)x x  and

2 4
(x) (x)x x   then 

1 2 3 4
( (x), (x)) t( (x), (x))x x x xt     , 

3. 
1 2 2 1

( (x), (x)) ( (x), (x))x x x xt t    , 

4.
1 2 3 1 2 3

( (x), t( (x), (x))) ( ( (x), (x)), (x))x x x x x xt t t       

Definition 2.3[2] s -norms are associative, monotonic and commutative two placed 
functions s which map from [0,1] [0,1] into [0,1]. These properties are formulated with 
the following conditions: 

1. (1,1) 1s   and  1 1 1
( (x),0) 0, (x) (x)x x xs s    , 

2. If
1 3
(x) (x)x x   and 

2 4
(x) (x)x x  , then 

1 2 3 4
( (x), (x)) ( (x), (x))x x x xs s    , 

3.
1 2 2 1

( (x), (x)) ( (x), (x))x x x xs s    , 
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4. 
1 2 3 1 2 3

( (x), ( (x), (x))) ( ( (x), (x)), (x))x x x x x xs s s s      . 

t -norm and t -conorm is related in a sense of logical duality. Typical dual pairs of non-
parametrized t -norm and t -conorm are compiled below: 

1. Drastic product:
   1 2 1 2

1 2

min (x), (x) ,max (x), (x) 1
( (x), (x))

0
x x x x

w x xt
otherwise

   
 

 
 


 

2. Drastic sum:       
   1 2 1 2

1 2

max (x), (x) ,min (x), (x) 0
( (x), (x))

1
x x x x

w x xs
otherwise

   
 

 
 


 

3. Bounded product: 

 1 2 1 21( (x), (x)) max 0, (x) (x) 1x x x xt        

4. Bounded sum: 

 1 2 1 21( (x), (x)) min 1, (x) (x)x x x xs       

5. Einstein product: 

1 2

1 2

1 2 1 2

1.5

(x). (x)
( (x), (x))

2 [ (x) (x) (x). (x)]
x x

x x
x x x x

t
 

 
   


  

 

6. Einstein sum: 

1 2

1 2

1 2

1.5

(x) (x)
( (x), (x))

1 (x). (x)
x x

x x
x x

s
 

 
 





 

7. Algebraic product: 

1 2 1 22( (x), (x)) (x). (x)x x x xt      

8. Algebraic sum: 

1 2 1 2 1 22( (x), (x)) (x) (x) (x). (x)x x x x x xs          

9. Hamacher product: 



                                                   
  Neutrosophic Triplet Structures   

 Volume I 
 

161 
 

1 2

1 2

1 2 1 2

2.5

(x). (x)
( (x), (x))

(x) (x) (x). (x)
x x

x x
x x x x

t
 

 
   


 

 

10. Hamacher Sum: 

1 2 1 2

1 2

1 2

2.5

(x) (x) 2. (x). (x)
( (x), (x))

1 (x). (x)
x x x x

x x
x x

s
   

 
 

 



 

11. Minimum: 

 1 2 1 23( (x), (x)) min (x), (x)x x x xt      

12. Maximum: 

 1 2 1 23( (x), (x)) max (x), (x)x x x xs      

Definition 2.4[3] Let X be a non-empty set. A multi-fuzzy set G  on X  is defined as 

 1 2, (x), (x),..., (x),... :i
G G GG x x X     where : [0,1]i

G X   for all i  1,2,..., p  and 

x X  

Definition 2.5[9] Let [0,1]i
A   (i 1,2,..., )p  and , , ,a b c d  such that a b c d   . 

Then, a trapezoidal fuzzy multi-number (TFM number)   1 2, , , ; , ,..., p
A A Aa a b c d     is a 

special fuzzy multi-set on the real number set , whose membership functions are defined 
as 

 

1 1 1 1 1

1 1

1 1 1 1 1

(x ) / ( )

(x)
( x) / ( )

0

i
A

i
Ai

A i
A

a b a a x b
b x c

d d c c x d
otherwise








    


 
 

   



 

Note that the set of all TFM-number on will be denoted by . 

Definition 2.6[9] Let   1 2
1 1 1 1, , , ; , ,..., p

A A AA a b c d    ,   1 2
2 2 2 2, , , ; , ,..., p

B B BB a b c d   

 and 0   be any real number. Then, 

1.   1 1 2 2
1 2 1 2 1 2 1 2, , , ; ( , ), ( , ),..., ( , )P P

A B A B A BA B a a b b c c d d s s s            
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2.   1 1 2 2
1 2 1 2 1 2 1 2, , , ; ( , ), ( , ),..., ( , )P P

A B A B A BA B a d b c c b d a s s s            

3. 

 

 

 

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

11 1 2 2

, , , ;
(d 0,d 0)

( , ), ( , ),..., ( , )

, , , ;
. (d 0,d 0)

( , ), ( , ),..., ( , )

,c , , ;
(d 0,

( , ), ( , ),..., ( , )

p p
A B A B A B

p p
A B A B A B

p p
A B A B A B

a a b b c c d d

t t t

a d b c c b d a
A B

t t t

d d c b b a a

t t t

     

     

     

 

  

 2d 0)














 

 

 

 

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2

/ , / , / , / ;
( 0, 0)

( , ), ( , ),..., ( , )

/ , / , / , / ;
4. / ( 0, 0)

( , ), ( , ),..., ( , )

/ , / , / , / ;

( , ), ( , ),..., (

     

     

   

 

  

p p
A B A B A B

p p
A B A B A B

A B A B

a d b c c b d a
d d

t t t

d d c c b b a a
A B d d

t t t

d a c b b c a d

t t t 1 2( 0, 0)
, ) 











 


p p
A B

d d

 

5.   1 2
1 1 1 1, , , ;1 (1 ) ,1 (1 ) ,...,1 (1 ) ( 0)p

A A AA a b c d                    

6.   1 2
1 1 1 1, , , ;( ) ,( ) ,...,( ) ( 0)P

A A AA a b c d             

Definition 2.7[9] Let   1 2
1 1 1 1, , , : , ,..., p

A A AA a b c d     ,Then, normalized TFM-number 

of A is given by 

1 21 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , , ; , ,..., p
A A A

a b c dA
a b c d a b c d a b c d a b c d

  
 

  
            

 

Definition 2.8: Let ( )1 2 nX x ,x ,...,x  and 1 2 nY (y , y ,..., y )  be the two vectors of length n 
where all the coordinates are positive. The Jaccard index of these two vectors (measuring 
the “similarity” of these vectors) (Jaccard 1901) is defined as 
 

1
2 2

2 22 2

1 1 1

.
.

n

i i
İ

n n n

i i i i
i i İ

x y
X YJ

X Y X Y x y x y



  

 
 

 



  
                                         [11] 
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where 
1

.
n

i i
İ

x yX Y


 is the inner product of the vectors X and Y and where 

2
2

1

n

İ
X x



  and 2
2

1

n

İ
Y y



  are the Euclidean norms of X and Y (also called the L2 

norms). 
A cosine formula (Salton and McGill 1987) is then defined as the inner product of these 
two vectors divided by the product of their lengths. This is nothing but the cosine of the 
angle between the vectors. The cosine measure is defined as 

1

2 2 2 2

1 1

.Cos

.

n

i i
İ

n n

i i
i i

x y
X Y

X Y
x y



 

 





 
                                                        [10] 

These two formulas are similar in the sense that they take values in the interval [0,l]. 
Jaccard formula are undefined if 0i ix y   holds for all the i, ( , ,..., )i 1 2 n , and then we let 

the this measure value be zero when 0i ix y   holds for all the i, ( , ,..., )i 1 2 n . However, 

the cosine formula is undefined if 0ix  and/or 0iy  holds for all the i, ( , ,..., )i 1 2 n , and 

then we let the cosine measure value be zero when 0ix   and/or 0iy  holds for all the i,
( , ,..., )i 1 2 n . 
 
3. JACCARD SIMILARITY MEASURE AND COSINE SIMILARITY MEASURE FOR    
TRAPEZOIDAL FUZZY MULTI NUMBERS 
 
In this section, we introduced some similarity measures for TFMNs including Jaccard 
similarity measure and Cosine similarity measure. 
 
Definition 3.1:Let 1 2 3 4a a a a   , 1 2 3 4, , ,a a a a R ,   1 2

1 2 3 4, , , ; , ,..., ,p
A A AA a a a a       

  1 2
1 2 3 4, , , ; , ,..., p

B B BB b b b b     be two TFMNs in the set of real numbers . Then; 

Jaccard similarity measure between TFMN A  and B  denoted ( , )J A B is defined as; 

4

1 1
2 2

1
1 1 1

( ) .( )1(A, B) 1 .
4 ( ) ( ) ( ) .( )

pk k i ip
j j A k B kj i

p p pi i i i
k A k B k A k B ki i i

a b
J

p
 

   

 


  

  
   
    
  

 


  
 

 
Note:  Let   1 2

1 2 3 4, , , ; , ,..., ,p
A A AA a a a a     

be a trapezoidal fuzzy multi number.
  

1 2 3 4a a a a    and 1 2 3 4, , ,a a a a    if   2 3a a  then this trapezoidal fuzzy multi number 
turns to triangular fuzzy multiple number. 
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Proposition 3.2 Let ( , )J A B be a Jaccard similarity measure between TFMN's A and B . 
Then we have, 

i. 0 (A, B) 1J   

ii. (A, B) (B,A)J J  

iii. (A, B) 1J  for A B ,  i.e. 
i i
A B  , (i=1,2…,p) 

Proof 3.3 

i.it is clear from Definition 3.1    

ii. 
4

1 1
2 2

1
1 1 1

( ) .( )1(A, B) 1 .
4 ( ) ( ) ( ) .( )

pk k i ip
j j A k B kj i

p p pi i i i
k A k B k A k B ki i i

a b
J

p
 

   

 


  

  
   
    
  

 


  
 

 

                    

4

1 1
2 2

1
1 1 1

( ) .( )1 1 .
4 ( ) ( ) ( ) .( )

pk k i ip
j j A k B kj i

p p pi i i i
k A k B k A k B ki i i

a b

p
 

   

 


  

  
   
    
  

 


  
 

                     

4

1 1
2 2

1
1 1 1

( ) .( )1 1 .
4 ( ) ( ) ( ) .( )

pk k i ip
j j B k A kj i

p p pi i i i
k B k A k B k A ki i i

b a

p
 

   

 


  

  
   
    
  

 


    

                     ( , )J B A . 

iii. 

4

1 1
2 2

1
1 1 1

( ) .( )1(A, B) 1 .
4 ( ) ( ) ( ) .( )

pk k i ip
j j A k B kj i

p p pi i i i
k A k B k A k B ki i i

a b
J

p
 

   

 


  

  
   
    
  

 


  
 

1 1 2 2
1 1 2 2 3 3 4 4

2 2 2 2
1

1 1 1

1 ( ) .( ) ( ) .( ) .... ( ) .( ) )1 .
4 ( ) ( ) ( ) .( )

k k k k k k k k p pp
A k B k A k B k A k B k

p p pi i i i
k A k B k A k B ki i i

a b a b a b a b
p

     

   
  

           
   
     


  
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1 1 2 2
1 1 2 2 3 3 4 4

1 2 2 1 2 2 1 2 2
1

1 ( ) .( ) ( ) .( ) .... ( ) .( ) )
1 .

4 ( ) ... ( ) ( ) ... ( ) (( ) ...( ) )

k k k k k k k k p pp
A k A k A k A k A k A k

p p p
k A k A k A k A k A k A k

a a a a a a a a

p
     

     

         
 

      

  
    
  



 

1 1 2 2

1 2 2 1 2 2 1 2 2
1

1 ( ) .( ) ( ) .( ) .... ( ) .( ) )
1 0.

( ) ... ( ) ( ) ... ( ) (( ) ...( ) )

p pp
A k A k A k A k A k A k

p p p
k A k A k A k A k A k A kp

     

     

  
 

      

  
  
  

  

1 2 2 2 2

1 2 2 2 2
1

1 ( ) ( ) ... ( )
( ) ( ) ... ( )

pp
A k A k A k

p
k A k A k A kp

  

  

  


  

 
 
 

  

==1. 

Example 3.4 Let ( , )J A B  be a Jaccard similarity measure between TFMN's  

 1,2,3,5 ;0.2,0.4,0.5,0.7A   
and  2,3,4,5 ;0.3,0.1,0.6,0.4B  . 

4

1 1
2 2

1
1 1 1

( ) .( )1(A, B) 1 .
4 ( ) ( ) ( ) .( )

pk k i ip
j j A k B kj i

p p pi i i i
k A k B k A k B ki i i

a b
J

p
 

   

 


  

  
   
    
  

 


  
 

     2 2 2 2 2 2 2 2

1 2 2 3 3 4 5 5
1 .

4
(0,2.0,3 0,4.0,1 0,5.0,6 0,7.0,4)

0,2 0,4 0,5 0,7 0,3 0,1 0,6 0,4 0,2.0,3 0,4.0,1 0,5.0,6 0,7.0,4

       
 

 
   
 

        
 

  



 

     

31 .
4

(0,06 0,04 0,30 0,28)
0,04 0,16 0,25 0,49 0,09 0,01 0,36 0,16 0,06 0,04 0,30 0,28

 
 

 
   

        
 

  



 

1 0.68.
4 0.94 0,62 0,68

 
  

  

0,68 0,193
3,52

 

 

Definition 3.5 Let   1 2
1 2 3 4, , , ; , ,..., p

A A AA a a a a     ,    1 2
1 2 3 4, , , ; , ,..., p

B B BB b b b b     be 

two TFMNs in the set of real numbers and [0,1]rw  be the weight of each element for
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(1,2,..., )r n  such that
1

1
n

r
r

w


 . Then; Jaccard similarity measure between TFMN A and

B denoted (A, B)wJ is defined as; 

4

1 1
2 2

1 1
1 1 1

. ( ) .( )1(A, B) 1 .
4 ( ) ( ) ( ) .( )

pk k i ipn j j r A k B kj i
w p p pi i i i

r k A k B k A k B ki i i

a b w
J

p
 

   

 

 
  

  
   
    
  

 


  
 

Proposition 3.6 Let (A, B)wJ be a weighted Jaccard similarity measure between TFMN's A 

and B, [0,1]rw  be the weight of each element for (1,2,..., )r n  such that
1

1n
rr

w



Then weighted Jaccard vector similarity measure between TFMN’s A and B; 

i. 0 (A, B) 1wJ   

ii. (A, B) (B,A)w wJ J  

iii. (A, B) 1wJ  for A B i.e. ( 1 1
A B  , 2 2

A B  ,…, p p
A B  ) 

Proof 3.7 
 
i. it is clear from Definition 3.5 

   ii. 
4

1 1
2 2

1 1
1 1 1

. ( ) .( )1( ) 1 .
4 ( ) ( ) ( ) .( )

pk k i ipn j j r A k B kj i
w p p pi i i i

r k A k B k A k B ki i i

a b w
J A,B

p
 

   

 

 
  

  
   
    
  

 


  
 

           
4

1 1
2 2

1 1
1 1 1

. ( ) .( )1 1 .
4 ( ) ( ) ( ) .( )

pk k i ipn j j r A k B kj i
p p pi i i i

r k A k B k A k B ki i i

a b w
p

 

   

 

 
  

  
   
    
  

 


  
 

 

         
4

1 1
2 2

1 1
1 1 1

. ( ) .( )1 1 .
4 ( ) ( ) ( ) .( )

pk k i ipn j j r B k A kj i
p p pi i i i

r k B k A k B k A ki i i

b a w
p

 

   

 

 
  

  
   
    
  

 


  
 

                             ( , ).wJ B A  
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iii. 
4

1 1
2 2

1 1
1 1 1

. ( ) .( )1( ) 1 . .
4 ( ) ( ) ( ) .( )

pk k i ipn j j r A k B kj i
w p p pi i i i

r k A k B k A k B ki i i

a b w
J A,B

p
 

   

 

 
  

  
   
    
  

 


  
 

1 1 2 2
1 1 2 2 3 3 4 4

1 2 2 1 2 2 1 1
1 1

1 .[( ) .( ) ( ) .( ) .... ( ) .( ) ]
1 .

4 ( ) ... ( ) ( ) ... ( ) (( ) .( ) ...( ) .( ) )

k k k k k k k k p ppn
r A k B k A k B k A k B k

p p p p
r k A k A k B k B k A k B k A k B k

a b a b a b a b w
p

     

        

         
 

      

  
    
  



 

1 1 2 2
1 1 2 2 3 3 4 4

1 2 2 1 2 2 1 2 2
1 1

1 .[( ) .( ) ( ) .( ) .... ( ) .( ) ]1 .
4 ( ) ... ( ) ( ) ... ( ) (( ) ...( ) )

k k k k k k k k p ppn
r A k A k A k A k A k A k

p p p
r k A k A k A k A k A k A k

a a a a a a a a w
p

     

      

           
   
        
  



 

 
1 2 2

1 2 2 1 2 2 1 2 2
1 1

1 .[( ) ... ( ) ]1 0 .
( ) ... ( ) ( ) ... ( ) (( ) ...( ) )

ppn
r A k A k

p p p
r k A k A k A k A k A k A k

w
p

 

      

  
  

       
  

1 2 2

1 2 2
1 1

1 .[( ) ... ( ) ]
( ) ... ( )

ppn
r A k A k

p
r k A k A k

w
p

 

  

  
  

  
  

1

n

r
r

w


  

=1. 

Example 3.8 Let  1.2.3.4 ;0.1,0.3,0.4,0.5A   ,   1,2,3,5 ;0.2,0.3,0.5,0.6B   be two 

TFMNs in the set of real numbers and iw be the weight of each element for (1,2)r 

1 20.3, 0.7w w   such that
1

1
n

r
r

w


 . Then; Jaccard similarity measure between TFMN A

and B  is; 
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2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 5
1 .

4
0,3.[(0,1.0,2 0,3.0,3 0,4.0,5 0,5.0,6](A, B)

(0,1 0,3 0,4 0,5 ) (0,2 0,3 0,5 0,6 ) (0,1.0,2 0,3.0,3 0,4.0,5 0,5.0,6)wJ

       
 

 
   


           
 
 
 
 

 

2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 5
1 .

4
0,7.[(0,1.0,2 0,3.0,3 0,4.0,5 0,5.0,6]

(0,1 0,3 0,4 0,5 ) (0,2 0,3 0,5 0,6 ) (0,1.0,2 0,3.0,3 0,4.0,5 0,5.0,6)

       
 

 
   

            

 
3 0,3.0,61
4 0,51 0,74 0,61


 

+
3 0,7.0,61
4 0,51 0,74 0,61 

 

 
0,549 1,281
2,56 2,56

  0,714  

Definition 3.9 Let   1 2
1 2 3 4, , , ; , ,..., p

A A AA a a a a     ,    1 2
1 2 3 4, , , ; , ,..., p

B B BB b b b b     be 

two TFMNs in the set of real numbers . Then; Cosine similarity measure between 
TFMN A and B  denoted ( , )C A B is defined as; 

              
              

4 1 1 2 2 3 3

1
1 1 2 2 3 34 42 21

1 1

(A, B)
min , min , min , ....1 .

max , max , max , ...( ) . ( )

k kp A B A B A Bi i k k k k k ki

k kk A B A B A Bi i k k k k k ki i

C
a b

p a b

     

     




 



   
 
    
 




 
 
Proposition 3.10 Let ( , )C A B be a Jaccard similarity measure between TFMN's A and B . 
Then we have, 

i. 0 (A, B) 1C   

ii. (A, B) (B,A)C C  

iii. (A, B) 1C  for A B ,  i.e. 
i i
A B  ,  i=1,2,...,p 

Proof 3.11: 

i. it is clear from Definition 3.9    
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ii. ( )C A,B   

              
              

4 1 1 2 2 3 3

1
1 1 2 2 3 34 42 21

1 1

min , min , min , ....1
.
max , max , max , ...( ) . ( )

k kp
A B A B A Bi i k k k k k ki

k kk A B A B A Bk k k k k ki ii i

a b

p a b

     

     





 

  

  

 
 
 
 




 
 

              
              

4 1 1 2 2 3 3

1
1 1 2 2 3 34 42 21

1 1

min min min ...1 .
max max max ...( ) . ( )

, , ,.
, , ,

k kp B A B A B Ai i k k k k k ki

k kk B A B A B Ai i k k k k k ki i

b a
p b a

     

     




 



   
 
    
 




 
 

( , ).C B A  

iii. 

              
              

4 1 1 2 2 3 3

1

1 1 2 2 3 34 42 21
1 1

( )
min , min , min , ....1

.
max , max , max , ...( ) . ( )

k kp
A B A B A Bi ii k k k k k k

k kk A B A B A Bk k k k k ki ii i

C A,B
a b

p a b

     

     





 


  

  

 
 
 
 




 

 

              
              

1 1 2 2 3 3 4 4

2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1 1 2 2 3 3
1

1 1 2 2 3 3

. . . .
.

( ) ( ) ( ) ( ) . ( ) ( ) ( ) ( )1
min , min , min , ...

max , max , max , ...

k k k k k k k k

k k k k k k k k
p

k A B A B A Bk k k k k k

A B A B A Bk k k k k k

a b a b a b a b

a a a a b b b b

p      

     




  

  

 
 
 
 
 
 
 

  

     

  

              
              

1 1 2 2 3 3 4 4

2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1 1 2 2 3 3
1

1 1 2 2 3 3

. . . .
.

( ) ( ) ( ) ( ) . ( ) ( ) ( ) ( )1
min , min , min , ...

max , max , max , ...

k k k k k k k k

k k k k k k k k
p

k A A A A A Ak k k k k k

A A A A A Ak k k k k k

a a a a a a a a

a a a a a a a a

p      

     




  

  

 
 
 
 
 
 
 

  

     

  

              
              

1 2 3 4

2 2 2 2
1 2 3 4

1 1 2 2 3 3
1

1 1 2 2 3 3

2 2 2 2

2
.

(( ) ( ) ( ) ( )1
min , min , min , ...

max , max , max , ...

( ) ( ) ( ) ( )
)

k k k k

k k k k
p

k A A A A A Ak k k k k k

A A A A A Ak k k k k k

a a a a

a a a a

p      

     




  

  

 
 
 
 
 
 
 

  

  

  



Editors: 
             Prof. Dr. Florentin Smarandache 
             Associate Prof. Dr. Memet Şahin 
 
 

170 
 

              
              

1 2 3 4

1 2 3 4

1 1 2 2 3 3
1

1 1 2 2 3 3

2 2 2 2

2 2 2 2 .
1

min , min , min , ...

max , max , max , ...
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p
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
  

  

 
 
 
 

  

1.  

Example 3.12 Let  0.3,0.2,0.4,0.5 ;0.1,0.2,0.3,0.4A   and

 0.1,0.3,0.5,0.6 ;0.2,0.4,0.6,0.8B   between TFMN's . Then ( , )C A B be a cosine similarity 

measure; 

              
              
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1
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k kp A B A B A Bi i k k k k k ki
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a b

p a b
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     




 



   
 
    
 




 
 

2 2 2 2 2 2 2 2

(0,3.0,1 0,2.0,3 0,4.0,5 0,5.0,6) (0,1 0,2 0,3 0,4).
(0,2 0,4 0,6 0,8)(0,3) (0,2) (0,4) (0,5) . (0,1) (0,3) (0,5) (0,6)


     

       

 

 
0,47642  

 
Definition 3.13 Let   1 2

1 2 3 4, , , ; , ,..., p
A A AA a a a a     ,    1 2

1 2 3 4, , , ; , ,..., p
B B BB b b b b     

be two TFMNs in the set of real numbers and [0,1]iw  be the weight of each element 

for (1,2,..., )i n  such that 
1

1
n

i
i

w


 . Then; Cosine similarity measure between TFMN A

and B denoted (A, B)wC is defined as; 

              
              

4 1 1 2 2 3 3
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1 1 2 2 3 34 42 21
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1
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. min , min , min , ....1

.
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k kp
i A B A B A Bi ii k k k k k k

w
k kk A B A B A Bk k k k k ki ii i

n

i

C
wa b

p a b

     

     





 




  

  

    
 
 




 

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Proposition 3.14 Let (A, B)wC be a weighted Cosine similarity measure between TFMN's A 

and B, [0,1]iw  be the weight of each element for (1,2,..., )i n  such that 
1

1n
ii

w


  
Then weighted Cosine vector similarity measure between TFMN’s A and B; 

i. 0 (A,B) 1wC   

ii. (A, B) (B,A)w wC C  

iii. (A, B) 1wC  for A B i.e. ( 1 1
A B  , 2 2

A B  ,…, p p
A B  ) 

Proof 3.15: 

i. it is clear from Definition 3.13    

ii. 

               
              

4 1 1 2 2 3 3

1

1 1 2 2 3 34 42 2
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1
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.
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k kp
i A B A B A Bi ii k k k k k k

w
k k

k A B A B A Bk k k k k ki ii i

n

i
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wa b

p a b

     

     





 




  

  

 
 
 
 




 

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n

i
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p a b

     

     





 



  

  

    
 
 





 


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p
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
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 
 

( , ).wC B A  

iii.  

               
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              
              
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 
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  

    
1


n

i
i

w   

    1.  

Example 3.16 Let  0.1,0.2,0.3,0.4 ;0.2,0.3,0.5,0.6A  and
 

 0.1,0.2,0.4,0.5 ;0.1,0.4,0.5,0.7B     be two TFMNs in the set of real numbers and iw

be the weight of each element for (1,2)i  1 20.2, 0.8w w   such that 
1

1
n

i
i

w


 . Then; 

Cosine similarity measure between TFMN A and B  is; 
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              
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4 1 1 2 2 3 3

1

1 1 2 2 3 34 42 21
1 1

1

(A, B)
. min , min , min , ....1

.
max , max , max , ...( ) . ( )

k kp
i A B A B A Bi ii k k k k k k

w
k kk A B A B A Bk k k k k ki ii i

n

i

C
wa b

p a b

     

     





 


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  

  
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 




 


 

2 2 2 2 2 2 2 2

0,2.(0,1.0,1 0,2.0,2 0,3.0,4 0,4.0,5) (0,1 0,3 0,5 0,6).
(0,2 0,4 0,5 0,7)(0,1) (0,2) (0,3) (0,4) . (0,1) (0,2) (0,4) (0,5)


     
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2 2 2 2 2 2 2 2

0,8.(0,1.0,1 0,2.0,2 0,3.0,4 0,4.0,5) (0,1 0,3 0,5 0,6).
(0,2 0,4 0,5 0,7)(0,1) (0,2) (0,3) (0,4) . (0,1) (0,2) (0,4) (0,5)

     


       

 

 
0,830  

 
4. HYBRID SIMILARITY MEASURE FOR  TRAPEZOIDAL FUZZY MULTI NUMBERS 
 
In this section, we introduced some similarity measures for TFMNs including Hybrid  
similarity measure. 
Definition 4.1:Let   1 2

1 2 3 4, , , ; , ,..., p
A A AA a a a a     ,    1 2

1 2 3 4, , , ; , ,..., p
B B BB b b b b     be 

two TFMNs in the set of real numbers . Then, hybrid vector similarity measure between 
TFMN A and B, denoted  ,  HybV A B , is defined as; 

 

4

1 1
2 2

1
1 1 1

( ) .
,  

( )1. 1 .
4 ( ) ( ) ( ) .( )

pk k i ip
j j A k B kj i

p p pi i i i
k A k B k A k B ki i i

HybV A B
a b

p
 


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 


  

   
     
      

   

 


  

 

 
              
              

4 1 1 2 2 3 3

1
1 1 2 2 3 34 42 21

1 1

min , min , min , ....11 . .
max , max , max , ...( ) . ( )

k kp A B A B A Bi i k k k k k ki

k kk A B A B A Bi i k k k k k ki i

a b
p a b

     


     




 

    
  
      

  




 
 

Example 4.2 Let  ,  HybV A B be a hybrid vector similarity measure between TFMN's  

 2,4,5,7 ;0.2,0.4,0.6,0.8A  and   1,4,5,9 ;0.5,0.6,0.7,0.8B  . Then  ,  HybV A B

be a hybrid vector similarity measure; 
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 
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0,3639  
 

Proposition 4.3 Let  ,  HybV A B be a Hybrid similarity measure between TFMN's A and

B . Then we have, 

i.   0 1, HybV A B  

ii.    , ,HybV A B HybV B A  

iii.  ,  1HybV A B for A B ,  i.e. 
i i
A B  ,  (i=1,2,...,p) 

Proof 4.4: 

i. it is clear from Definition 4.1 

ii. 
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Definition 4.5 Let   1 2
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B B BB b b b b     be 

two TFMNs in the set of real numbers and [0,1]qw  be the weight number for
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Proposition 4.7 Let  ,  wHybV A B be a hybrid vector similarity measure between TFMN's 

A and .B [0,1]qw   be the weight  number,  such that 
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i i
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1.  

5.Medical diagnosis using the Hybrid similarity measure 
 
         Fever, pain, weight change, fatigue, dizziness, cough, itching ... All these symptoms 
can have one or more meanings. Being aware of these symptoms plays a very important 
role in the early diagnosis and treatment of diseases. That is, that the individual is aware of 
the symptoms  of the body has a great importance in the early diagnosis and treatment of 
illnesses 
         So, here we are to present an example of a medical diagnosis. Let  𝑃 =
{Ali, Hasan, Ezgi}  be a our set of patients. And let there be a set of diseases 𝐷 =
{Measles, Cough, Flu}   and let S={Backache, Stomachache, Earache} be a set of 
symptoms. Our solution is to examine the patient at different time intervals (four times a 
day). Let 𝜔1 = 0.6, 𝜔2 = 0.4. 
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Table 1: Q (the relation Between Patient and Symptoms) 
Q Backache Stomachache Earache 

Ali 〈(0.1,0.3,0.3,0.4); 0.1,0.3,0.6,0,7〉 〈(0.2,0.4,0.4,0.5); 0.2,0.4,0.7,0.8〉 〈(0.1,0.2,0.2,0.3); 0.2,0.4,0.6,0.8〉 

Hasan 〈(0.2,0.4,04,0.5); 0.2,0.4,0.7,0.8〉 〈(0.1,0.2,0.2,0.3); 0.1,0.3,0.5,0,7〉 〈(0.2,0.4,0.4,0.7); 0.2,0.4,0.6,0.7〉 

Ezgi 〈(0.1,0.2,0.3,0.4); 0.2,0.4,0.6,0.8〉 〈(0.4,0.6,0.6,0.7); 0.4,0.6,0.7,0.7〉 〈(0.3,0.4,0.7,0.8); 0.1,0.3,0.6,0.9〉 

 

Let us take the samples at four different timings in a day (in 08:30, 13:30, 18:30 and 23.30) 

 
Table 2: R (the relation among Symptoms and Diseases) 

R Measles Cough Flu 
Backache 〈(0.1,0.2,0.4,0.4); 0.2,0.3,0.7,0.8〉 〈(0.1,0.2,0.5,0.6); 0.3,0.4,0.4,0.7〉 〈(0.1,0.2,0.3,0.5); 0.2,0.3,0.5,0.7〉 

Stomachache 〈(0.2,0.4,0.5,0.6); 0.1,0.4,0.5,0.7〉 〈(0.2,0.2,0.5,0.7); 0.2,0.3,03,0.4〉 〈(0.3,0.4,0.5,0.6); 0.3,0.7,0.8,0.9〉 

Earache 〈(0.5,0.6,0.7,0.8); 0.1,0.4,0.5,0.9〉 〈(0.1,0.2,0.5,0.6); 0.3,0.5,0.7,0.9〉 〈(0.3,0.5,0.6,0.8); 0.2,0.3,0.5,0.6〉 

 

 

Table 3: The Jaccard similarity measure Q and R 
Jaccard Measles Cough Flu 

Ali 0,78719 0,737372 0,800518 
Hasan 0,798176 0,752882 0,76456 
Ezgi 0,683783 0,773332 0,728903 

Optimal−Ali(Cough);Hasan(Cough); Ezgi(Measles) 
 

Table 4: The weighted Jaccard similarity measure Q and R 
Weighted Jaccard Measles Cough Flu 

Ali   0,7871 0,7373 0,8005 
Hasan 0,7981 0,75287 0,76455 
Ezgi 0,68378 0,77332 0,72888 

Optimal−Ali(Cough);Hasan(Cough); Ezgi(Measles) 
 

Table 5: The Cosine similarity measure Q and R.  
Cosine Measles Cough Flu 

Ali 0,82508 0,68566 0,81249 
Hasan 0,88142 0,70496 0,73462 
Ezgi 0,68887 0,81786 0,71412 

Optimal−Ali(Cough);Hasan(Cough); Ezgi(Measles) 
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                                      Table 6: The Weighted Cosine similarity measure Q and R  
Weighted cosine  Measles Cough Flu 

Ali 0,82507 0,68566 0,81248 
Hasan 0,88141 0,70495 0,73641 
Ezgi 0,68886 0,81786 0,71412 

Optimal−Ali(Cough);Hasan(Cough); Ezgi(Measles) 
 

                          Table 7: The Hybrid Similarty measure Q and R with 0,9  and 1 0,1   
Hybrid Measles Cough Flu 

Ali 0,790979 0,732201 0,801715 
Hasan 0,8065 0,74809 0,761566 
Ezgi 0,684292 0,777785 0,727425 

Optimal−Ali(Cough);Hasan(Cough); Ezgi(Measles) 
 

                    Table 8: The Weighted Hybrid Similarty measure Q and R with 0,9  and 1 0,1   
Weighted Hybrid Measles Cough Flu 

Ali 0,790897 0,732136 0,801698 
Hasan 0,806431 0,748078 0,761736 
Ezgi 0,684288 0,777774 0,727404 

Optimal−Ali(Cough);Hasan(Cough); Ezgi(Measles) 
 

            Table 9: Hybrid Similarity measure and Weighted Hybrid Similarity measure with optimal values 

Similarity measure Values Measure value 

 ,i HybS V P D  0,9   

 ,HybV CAli ough  0,732201 

 ,Hasan CoHybV ugh  0,74809

 ,Ezgi MeasHybV les  0,684292 

 ,
iwi HybVS P D  0,9   

 ,w Ali CoHybV ugh  0,732136 

 ,w Hasan CoHybV ugh  0,748078 

 ,wH Ezgi MeasybV les  0,684288 

 

6.Conclusions 

In this chapter, a new hybrid similarity measure and a weighted hybrid similarity 
measure for trapezoidal fuzzy multi numbers are offered and some of its basic features are 
discussed. The suggested hybrid similarity measure strenghtenes the theories and 
techniques for measuring the degree of hybrid similarity. This measure widely desreases 
the influence of uncertain measures and ensures an highly intuitive quantification. The 
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effectiveness and efficiency of the proposed hybrid similarity measure is verified in a 
numerical example with the help of measure of error and measure of performance. 
Furthermore, medical diagnosis problems have been displayed  through a hypothetical case 
study by using this proposed hybrid similarity measure. The authors hope that the 
suggested idea can be performed in solving realistic multi-criteria decision making 
problems. 
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Chapter Thirteen 

Dice Vector Similarity Measure of Trapezoidal Fuzzy 
Multi-Numbers Based On Multi-Criteria Decision 

Making 
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ABSTRACT  
The fundamental purpose of this chapter is to introduce a novel approach based on multi-criteria decision 
making(MCDM) trapezoidal fuzzy multi-number. Therefore, Dice vector similarity and weighted Dice vector 
similarity measure is defined to develop the Trapezoidal Fuzzy Multi-Numbers. In addition, the method is 
applied to a numerical example one may supposing to confirm the practicality and certainity of the submitted 
approach. 

Keywords: Neutrosophic set, Trapezoidal Fuzzy Multi-Numbers, Dice vector similarity 
measure, MCDM. 

1.Introduction 

In 1965, Zadeh [1] came up with the concept of fuzzy sets which includes claasical 
universe set A to process defective, obscure, suspicious and indefinite information of fuzzy 
sets. Then, the description of fuzzy set has been conveniently carried out in science and 
technology, artificial intellegence, multifactor systems, computational modelling ,etc. A 
membership value of fuzzy sets are [0,1] in a universe; but, it is insufficient for supplying 
exact result of some problems because it may have status with distinct membership values 
for each member. Therefore, a distinct combination of fuzzy sets, that is, it was suggested 
the concept of multi-fuzzy sets. Yager [2] initially offered multi-fuzzy sets as a 
combination of fuzzy sets with multisets. There may be more than one membership value 
in [0, 1] which is a member of a multi-fuzzy set (that is, there may be recurring cases of an 
element). Miyamoto [3, 4], Maturo [5], Sebastian and Ramakrishnan [6], Syropoulos [7, 8] 
and others run several works on the multi-sets. Lately, intensive research has been made on 
fuzzy numbers. For instance, several arithmetic processes with linear membership 
functions on fuzzy numbers are improved by Thowhida and Ahmad [9]. Chakrabort and 
Guha [10] and Alim et al [11] improved several arithmetic operations and a method for the 
basic operations on generalized fuzzy numbers and L-R fuzzy number by utilizing 
extension basis. Roseline and Amirtharaj [12] advanced generalized fuzzy Hungarian 
method and approved a formula of estimating of generalized trapezoidal fuzzy numbers. In 
addition, similar researchers in [13] proposed a technique of estimating of generalized 

mailto:mesahin@gantep.edu.tr
mailto:vulucay27@gmail.com
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trapezoidal fuzzy numbers depend on rank, perimeter, etc. Meng et al [14] analysed a 
multi-attribute decision-making problem along attribute values in triangular fuzzy 
numbers. Surapati and Biswas [15] viewed a multiple objective assignment problem along 
uncertain costs, time and ineffectiveness in place of its exact data in fuzzy numbers. Sinova 
et al. [16] put forward a classification of the handling of several haphazard factors by 
expanding the occasion-developing function in fuzzy numbers. Riera and Torrens [17] 
improved a way on discrete fuzzy numbers to pattern real and unreal qualitative data. 
There has been several studies researched with fuzzy numbers recently. For instance; on 
existence, singleness, calculus and features of triangular approachings of fuzzy numbers 
[18], t-norms and s-norms with two valued functions t and s which transform from [0, 1] * 
[0, 1] into [0, 1],  [19], data system and operations for fuzzy multi-sets [20], optimization 
by interval and fuzzy numbers [26], selecting them based on variance [27], defuzzification 
of fuzzy numbers and its application in many areas can be revealed in [28], [29], and [30]. 
Finally, the application of NET to algebraic structures and the similarity among two 
different algebraic systems can be seen in [31] and [32]. 

2. Preliminary 

This section reviews some basic facts on the fuzzy set, fuzzy number and multi-fuzzy set.  

2.1 Fuzzy Sets [1] 

Let X  be a non-empty set. A fuzzy set F  on X  is defined as: 

{ , (x) : x X}FF x   where : [0,1]F X  for x X . 

2.2 Multi-fuzzy SetS [6]  

Let X be a non-empty set. A multi-fuzzy set G  on X  is defined as 

 1 2, (x), (x),..., (x),... :i
G G GG x x X     where : [0,1]i

G X   for all i  1,2,..., p  and 

x X  

2.3 Trapezoidal Fuzzy Multi-number [21]  

Let [0,1]i
A   (i 1,2,..., )p  and , , ,a b c d  such that a b c d   . Then, a (TFM-

number)   1 2, , , ; , ,..., p
A A Aa a b c d     is a special fuzzy multi-set on the real number set 

, whose membership functions are defined as 
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1 1 1 1 1

1 1

1 1 1 1 1

(x ) / ( )

(x)
( x) / ( )

0

i
A

i
Ai

A i
A

a b a a x b
b x c

d d c c x d
otherwise








    


 
 

   



 

Note : The set of all TFM-number on is denoted by . 

2.4 Some Operation on TFM-number [21]  

Let   1 2
1 1 1 1, , , ; , ,..., p

A A AA a b c d    ,   1 2
2 2 2 2, , , ; , ,..., p

B B BB a b c d     and 0   be any 

real number. Then, 

1.   1 1 2 2
1 2 1 2 1 2 1 2, , , ; ( , ), ( , ),..., ( , )P P

A B A B A BA B a a b b c c d d s s s            

2.   1 1 2 2
1 2 1 2 1 2 1 2, , , ; ( , ), ( , ),..., ( , )P P

A B A B A BA B a d b c c b d a s s s            

3. 

 

 

 

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

11 1 2 2

, , , ;
(d 0,d 0)

( , ), ( , ),..., ( , )

, , , ;
. (d 0,d 0)

( , ), ( , ),..., ( , )

,c , , ;
(d 0,

( , ), ( , ),..., ( , )

p p
A B A B A B

p p
A B A B A B

p p
A B A B A B

a a b b c c d d

t t t

a d b c c b d a
A B

t t t

d d c b b a a

t t t

     

     

     

 

  

 2d 0)














 

4. 

 

 

 

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2

/ , / , / , / ;
( 0, 0)

( , ), ( , ),..., ( , )

/ , / , / , / ;
/ ( 0, 0)

( , ), ( , ),..., ( , )

/ , / , / , / ;

( , ), ( , ),..., (

p p
A B A B A B

p p
A B A B A B

A B A B A

a d b c c b d a
d d

t t t

d d c c b b a a
A B d d

t t t

d a c b b c a d

t t t

     

     

    

 

  

1 2( 0, 0)
, )p p

B

d d












 


 

5.   1 2
1 1 1 1, , , ;1 (1 ) ,1 (1 ) ,...,1 (1 ) ( 0)p

A A AA a b c d                    

6.   1 2
1 1 1 1, , , ;( ) ,( ) ,...,( ) ( 0)P

A A AA a b c d             

2.5 Normalized TFM-number [21]  
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Let   1 2
1 1 1 1, , , : , ,..., p

A A AA a b c d     . Then,  

1 21 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , , ; , ,..., p
A A A

a b c dA
a b c d a b c d a b c d a b c d

  
 

  
            

 is a 

normalized TFM-number of A 

Numerical example: Assume that  1,3,5,6 ;0.3,0.2,...,0.8A   . Here : 

1 3 5 6, , , ;0.3,0.2,...,0.8
15 15 15 15

A  
  

 
 is a normalized TFM-number of A . 

2.6 Dice similarity measure [22]  

Let 1 2(x ,x ,...,x )nX  and 1 2(y ,y ,...,y )nY   be the two vectors of length n where all the 
coordinates are positive. Then the DSM between two vectors are given as follows: 

 

1
2 2

2 22 2

1 1

2
2 .(X,Y)

n

i i
İ

n n

i i
i i

x y
X YD

X Y x y



 

 






 
                                (14) 

where X.Y=
1

n

i i
İ

x y


  is the inner product of the vectors X and Y and 2
2

1

n

İ
X x



  and 

2
2

1

n

İ
Y y



  are the Euclidean norms of X and Y ( 2L norms). However, it is undefined if

0i ix y  for 1,2,...,i n . In this case, let the measure value be zero when 0i ix y  for
1,2,...,i n . 

The DSM satisfies the following properties (22; 24,25:) 

(P1) 0 (X,Y) 1D  ; 

(P2) (X,Y) D(Y,X)D   

    (P3) (X, Y) 1D  if and only if X Y  ,i.e. i ix y , for i=1,2,...,n. 
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The DSM in vector space can be extended to the following expected DSM for trapezoidal 
fuzzy numbers. 

3. Dice Vector Similarity Measure Depend on MCDM with TFM -Numbers) 

3.1 DSM between TFM-number R and S  

Let   1 2
1 2 3 4, , , ; , ,..., p

R R RR r r r r     ,    1 2
1 2 3 4, , , ; , ,..., p

S S SS s s s s     be two TFMNs in 

the set of real numbers . Then; DSM between TFMN R and S denoted ( , )D R S is 
defined as; 

1 1 2 2

1 2 1 2 2 2 2 2 2 21

2( ( ). ( ) ( ). ( ) .... ( ). ( ))1 1( , ) .
1 ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )

p p
n R j S j R j S j R j S j

P Pj
R j S j R j S j R j S j

x x x x x x
D R S

n d R S x x x x x x
     

     

   
          


 

( , ) ( ) P( )d R S P R S   

1 2 3 42 2( )
6

r r r rP R   
 , 1 2 3 42 2( )

6
s s s sP S   

  

Proposition 3.1 Let D( , )R S be a DSM between TFMN's R and S. Then we have, 

i. 0 ( , ) 1D R S   

ii. ( , ) ( , )D R S D S R  

iii. ( , ) 1D R S  for R S  

Numerical Example  

Let  1,2,3,4 ;0.3,0.2,0.4,0.6R   ,   3,5,7,9 ;0.2,0.3,0.4,0.5S   be two TFMNs in 

the set of real numbers . Then; DSM between TFMN R and S  

( , ) ( ) P( ) 2,5 6 3,5d R S P R S      

1 4 6 4 15 5( ) 2,5
6 6 2

P R   
     

3 10 14 9 36( ) 6
6 6

P S   
    
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( , )D R S 

         
2 2 2 2 21 2 2 2

1 1 2(0,3.0,2 0,2.0,3 0,4.0,4 0,6.0,5).
4 1 3,5 (0,3) 0,2 0,2 0,3 (0,4) (0,4) 0,6 0,5

n

j

   
 
         

  

1 1 2.0,58 1,16 1,16. . 0.054
4 1 3,5 1,19 4.4,5.1,19 21,42

   


 

3.3 DSM within TFM-numbers  

Let   1 2
1 2 3 4, , , ; , ,..., p

R R RR r r r r     ,    1 2
1 2 3 4, , , ; , ,..., p

S S SS s s s s     be two TFMNs in 

the set of real numbers and [0,1]iw  be the weight of each element ix for (1,2,..., )i n

so as to 
1

1
n

i
i

w


 . Subsequently; DSM within TFMN R and S denoted ( , )wD R S is defined 

as; 

1 1 2 2

1 2 1 2 2 2 2 2 2 21

2 ( ( ). ( ) ( ). ( ) .... ( ) ( ))1( , ) .
1 ( , ) ( ( )) ( ( )) ( ( )) ( ( )) ... ( ( )) ( ( ))

p p
n i R j S j R j S j R j S j

w P Pi
R j S j R j S j R j S j

w x x x x x x
D R S

d R S x x x x x x
     

     

   
          


 

( , ) ( ) P( )d R S P R S   

1 2 3 42 2( )
6

r r r rP R   
 ,   1 2 3 42 2( )

6
s s s sP S   

  

 

Proposition 3.2 Let ( , )wD R S be a weighted DSM between normalized TFMN's R and S, 

[0,1]jw  be the weight of each element jx such that
1

1n
jj

w


  
Then weighted Dice 

vector similarity measure between TFMN’s R and S; 

i. 0 ( , ) 1wD R S   

ii. ( , ) ( , )w wD R S D S R  

iii. ( , ) 1wD R S  for R S i.e. ( 1 1
R S  , 2 2

R S  ,…, p p
R S  ) 
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Proof  

i.It is clear from 3.3 

ii.

1 1 2 2

1 2 1 2 2 2 2 2 2 2
1 1 1 1 1 2 2 2 2

2 ( ( ). ( ) ( ). ( ) .... ( ) ( ))1( , ) .
2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )1

6 6

p pn
j j j j j j jR R RS S S

w P P
j j j j j j jR R R RS S

w x x x x x x
D R S

r s t u r s t u x x x x x x
     

     

 
   
 

            
  

 



1 1 2 2

1 2 1 2 2 2 2 2 2 2
1 2 2 2 2 1 1 1 1

2 ( ( ). ( ) ( ). ( ) .... ( ). ( ))1( , ) .
2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )1

6 6

p pn
j j j j j j jR R RS S S

w P P
j j j j j j jR R RS S S

w x x x x x x
D R S

r s t u r s t u x x x x x x
     

     

 
   
  

            
  

 



( , )wD S R  

iii. 

( , )wD S R  

1 1 2 2

1 2 1 2 2 2 2 2 2 2
1 1 1 1 1 2 2 2 2

2 ( ( ). ( ) ( ). ( ) .... ( ) ( ))1 .
2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )1

6 6

p pn
j j j j j j jR R RS S S

P P
j j j j j j jR R RS S S

w x x x x x x
r s t u r s t u x x x x x x

     

     

 
   
 

            
  

 



1 1 2 2

1 2 1 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

2 ( ( ). ( ) ( ). ( ) .... ( ) ( ))1 .
2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )1

6 6

p pn
j j j j j j jR R R R R R

P P
j j j j j j jR R R R R R

w x x x x x x
r s t u r s t u x x x x x x

     

     

 
   
 

            
  

 



 

 
 

1 2 2 2 2

1 2 2 2 2
1

2 ( ) ( ) ( ) ( ) .... ( ) ( )1 .
1 0 2 ( ) ( ) ( ) ( ) .... ( ) ( )

pn
j j j jR R R

p
j j j jR R R

w x x x

x x x

  

  

   
 
    
 

  

=1. 

Numerical Example  

Let  2,3,5,6 ;0.2,0.5,0.6,0.9R   ,   1,2,4,5 ;0.3,0.4,0.5,0.7S   be two TFMNs in 

the set of real numbers and iw be the weight of each element ix for (1,2)i 

1 20.6, 0.4w w  such that
1

1
n

i
i

w


 . Then; Dice similarity measure between TFMN R and

S  is; 
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( , ) ( ) P( ) 4 3 1d R S P R S      

2 6 10 6 24( ) 4
6 6

P R   
    

1 4 8 5 18( ) 3
6 6

P S   
    

2 2 2 2 2 2 2 2

1 2.(0,6).(0,2.0,3 0,5.0,4 0,6.0,5 0,9.0,7)( , ) .
(1 1) (0,2) (0,3) (0,5) (0,4) (0,6) (0,5) (0,9) (0,7)wD R S   


         

2 2 2 2 2 2 2 2
1 2.(0,4).(0,2.0,3 0,5.0,4 0,6.0,5 0,9.0,7).

(1 1) (0,2) (0,3) (0,5) (0,4) (0,6) (0,5) (0,9) (0,7)
  


         

1 2.(0,6).(1,19) 1 2.(0,4).(1,19). .
2 2,45 2 2,45

 

 

0,48

 
4. TFM-number MCDM Method 

In this section, we define TFMN and MCDM method depend on Dice vector similarity 
measure for TFM-numbers. 

4.1 TFM-number MCDM Matrix  

Assume that 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑚)  be a set of alternatives, 𝑅 = (𝑟1, 𝑟2, … , 𝑟𝑛) be the set of 
criteria, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)

𝑇 be the weight vector of the 𝑟𝑗(𝑗 = 1,2… , 𝑛) such that 𝑤𝑗 ≥
0  and ∑ 𝑤𝑖 = 1

𝑛
𝑖=1  and  [𝑏𝑖𝑗]𝑚𝑥𝑛 = 〈(𝑎𝑟𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗,𝑑𝑖𝑗); 𝜂𝑖𝑗1 , 𝜂𝑖𝑗2 , … , 𝜂𝑖𝑗

𝑝 〉  be the decision 
matrix whither the ranking values of the options. Then 

1 2

111 121

221 222

1 2

n

n

n

ij m n

m m m mn

a a a
bb bu
bb bu

b
u b b b



 
 
 
    
 
 
 
   

is called  a TFM-number MCDM matrix of the decision maker. 

Also; 𝑟+ is positive ideal TFM-numbers solution of decision matrix [𝑏𝑖𝑗]𝑚×𝑛 as form: 
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𝑟+ = 〈(1, 1, 1, 1); 1, 1, … ,1〉 

and  𝑟− is negative ideal TFM-numbers solution of decision matrix [𝑏𝑖𝑗]𝑚×𝑛 as form: 

𝑟− = 〈(0, 0, 0, 0); 0, 0, … ,0〉. 

Algorithm: 

Step1. Give the decision-making matrix[𝑏𝑖𝑗]𝑚×𝑛; for decision; 

Step2.Calculate the weightedDice vector similarity 𝑆𝑖 between positive ideal (or negative 
ideal) TFMN solution 𝑟+and 𝑢𝑖 = 〈(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖); 𝜂𝐴1 , 𝜂𝐴2 , … , 𝜂𝐴

𝑝〉and (𝑖 = 1,2… ,𝑚) as; 

1 1 2 2

1 2 1 2 2 2 2 2 2 21

2 ( ( ). ( ) ( ). ( ) .... ( ) ( ))1( , ) .
1 ( , ) ( ( )) ( ( )) ( ( )) ( ( )) ... ( ( )) ( ( ))

p p
n j R j S j R j S j R j S j

w P Pj
R j S j R j S j R j S j

w x x x x x x
D R S

d R S x x x x x x
     

     

   
          


 

Step3. Determine the non-increasing order of (u , )
ii w iS D r  1,2,...,i m , 

 1,2,...,j n  

Step4. Select the best option. 
 
Let’s see the following numerical example; 

Numerical Example  

Let’s consider decision making problem adapted from Xu and Cia [23]. We consider Nizip 
Medical who intends to stretcher. Four types of stretchers (alternatives) 𝑢𝑖(𝑖 = 1,2,3,4) are 
able to be used.. The customer takes into account four attributes to evaluate the 
alternatives; 𝑎1 =collapsible stretcher; 𝑎2 =rollerstretcher; 𝑎3 =hammock stretcherand use 
the TFMN  values to calculate the four possible options 𝑢i(i =  1, 2, 3, 4) according to the 
above four attributes. Also, the weight vector of the attributes 𝑎𝑗(𝑗 = 1,2,3,4) is ω =

 (0.2,0.5,0.1,0.2)T. Then, 
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Algorithm 

Step1.Constructed the decision matrix supplied by the Nizip Medical as: 

                       Table 3: Decision matrix stated by Nizip Medical 

Step2.Computed the positive ideal TFM-numbers solution as; 

𝑟+ = 〈(1, 1, 1, 1); 1, 1, … ,1〉 

Step3.Calculated the weighted Dice vector similarity measures, (u , )
ii w iS D r as; 

The Proposed 
method 

Measure value Ranking order 

 1(u , ) 0,1302
iwD r    

(u , )
ii w iS D r  

2(u , ) 0,3341
iwD r   

3(u , ) 0,0685
iwD r   

4(u , ) 0,1197
iwD r   

2 1 4 3S S S S    

 

Step 4. So the Medical will choose the stretcher 2u . Nevertheless if they don’t select 2u as 

a result of a few causes an alternative choice will be 1u . 

6. Conclusions 

In this chapter, we developed a MCDM for trapezoidal fuzzy multi-number based on 
weighted Dice vector similarity measures and applied to a numerical example in order to 
confirm the practicality and accuracy of the proposed method. In the future, the method 

 𝑟1 𝑟2 𝑟3 

u1 〈(0.3, 0.5, 0.7, 0.9); 0.4, 0.5,0.3,0.6〉 〈(0.6, 0.7, 0.8, 0.9); 0.8, 0.9,0.6,0.3〉 〈(0.1, 0.3, 0.5, 0.8); 0.2, 0.5,0.2,0.1〉 

u2 〈(0.2, 0.3, 0.4,0.5); 0.8,0.1,0.4,0.2〉 〈(0.5, 0.6, 0.8, 0.9); 0.1, 0.9,0.3,0.7〉 〈(0.2, 0.5, 0.8, 0.9); 0.7, 0.7,0.1,0.3〉 

u3 〈(0.1, 0.5, 0.6, 0.7); 0.2, 0.6,0.2,0.5〉 〈(0.4, 0.6, 0.7, 0.9); 0.2, 0.9,0.1,0.8〉 〈(0.5, 0.6, 0.7, 0.8); 0.8, 0.8,0.5,0.1〉 

u4 〈(0.3, 0.4, 0.6, 0.8); 0.6, 0.9,0.1,0.2〉 〈(0.2, 0.3, 0.7, 0.8); 0.8, 0.3,0.2,0.4〉 〈(0.1, 0.5, 0.6, 0.8); 0.2, 0.3,0.1,0.3〉 
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can be extend with different similarity and distance measures in intuitionistic fuzzy set and 
neutrosophic set. 
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The Neutrosophic Triplets were introduced by F. Smarandache & M. Ali in 
2014 – 2016, and consequently the neutrosophic triplet group, ring, field - in 
general the neutrosophic triplet structures; while the Neutrosophic Extended 
Triplets were introduced by F. Smarandache in 2016 and consequently the 
neutrosophic extended triplet structures: 

http://fs.unm.edu/NeutrosophicTriplets.htm 
Definition of Neutrosophic Triplet (NT). 
A neutrosophic triplet is an object of the form <x, neut(x), anti(x)>, 

for x∈ N, where 
neut(x)∈  N is the neutral of x, different from the classical algebraic unitary 

element if any, such that: 
     x*neut(x) = neut(x)*x = x 

and anti(x)∈N is the opposite of x such that: 
     x*anti(x) = anti(x)*x = neut(x). 

In general, an element x may have more anti's. 
Definition of Neutrosophic Extended Triplet (NET). 
A neutrosophic extended triplet is a neutrosophic triplet, defined as above, 

but where the neutral ofx {denoted by eneut(x) and called "extended neutral"} is 
allowed to also be equal to the classical algebraic unitary element (if any). 
Therefore, the restriction "different from the classical algebraic unitary element 
if any" is released. 

As a consequence, the "extended opposite" of x, denoted by eanti(x), is also 
allowed to be equal to the classical inverse element from a classical group. 

Thus, a neutrosophic extended triplet is an object of the 
form <x, eneut(x), eanti(x)>, for x∈N, whereeneut(x)∈N is the extended 
neutral of x, which can be equal or different from the classical algebraic unitary 
element if any, such that: 

     x*eneut(x) = eneut(x)*x = x 
and eanti(x)∈N is the extended opposite of x such that: 

     x*eanti(x) = eanti(x)*x = eneut(x). 
In general, for each x∈N there are may exist many eneut's and eanti's. 

http://fs.unm.edu/NeutrosophicTriplets.htm



