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Fixed Point Theorem for Neutrosophic Triplet Partial Metric Space
Reprinted from: Symmetry 2018, 10, 240, doi:10.3390/sym10070240 . . . . . . . . . . . . . . . . . 441

Xiaohong Zhang, Xiaoying Wu, Florentin Smarandache and Minghao Hu

Left (Right)-Quasi Neutrosophic Triplet Loops (Groups) and Generalized BE-Algebras
Reprinted from: Symmetry 2018, 10, 241, doi:10.3390/sym10070241 . . . . . . . . . . . . . . . . . 448

vii





About the Special Issue Editors

Florentin Smarandache is a professor of mathematics at the University of New Mexico, USA. He got

his M.Sc. in Mathematics and Computer Science from the University of Craiova, Romania, Ph.D. in

Mathematics from the State University of Kishinev, and Post-Doctoral in Applied Mathematics from

Okayama University of Sciences, Japan. He is the founder of neutrosophic set, logic, probability and

statistics since 1995 and has published hundreds of papers on neutrosophic physics, superluminal

and instantaneous physics, unmatter, absolute theory of relativity, redshift and blueshift due to the

medium gradient and refraction index besides the Doppler effect, paradoxism, outerart, neutrosophy

as a new branch of philosophy, Law of Included Multiple-Middle, degree of dependence and

independence between the neutrosophic components, refined neutrosophic over-under-off-set,

neutrosophic overset, neutrosophic triplet and duplet structures, DSmT and so on to many

peer-reviewed international journals and many books and he presented papers and plenary lectures

to many international conferences around the world.

Xiaohong Zhang is a professor of mathematics at Shaanxi University of Science and Technology,

P. R. China. He got his bachelor’s degree in Mathematics from Shaanxi University of Technology,

P. R. China, and Ph.D. in Computer Science & Technology from the Northwestern Polytechnical

University, P. R. China. He is a member of a council of Chinese Association for Artificial Intelligence

(CAAI). He has published more than 100 international journals papers. His current research interests

include non-classical logic algebras, fuzzy sets, rough sets, neutrosophic sets, data intelligence and

decision-making theory.

Mumtaz Ali is a Ph.D. research scholar under Principal Supervision of Dr. Ravinesh Deo and also

guided by Dr. Nathan Downs. He is originally from Pakistan where he completed his double masters

(M.Sc. and M.Phil. in Mathematics) from Quaid-i-Azam University, Islamabad. Mumtaz has been

an active researcher in Neutrosophic Set and Logic; proposed the Neutrosophic Triplets. Mumtaz is

the author of three books on neutrosophic algebraic structures. Published more than 30 research

papers in prestigious journals. He also published two chapters in the edited books. Research

Interests: Currently, Mumtaz pursuing his doctoral studies in drought characteristic and atmospheric

simulation models using artificial intelligence. He intends to apply probabilistic (copula-based) and

machine learning modelling; fuzzy set and logic; neutrosophic set and logic; soft computing; decision

support systems; data mining; clustering and medical diagnosis problems.

ix





symmetryS S

Editorial

Algebraic Structures of Neutrosophic Triplets,
Neutrosophic Duplets, or Neutrosophic Multisets

Florentin Smarandache 1,* , Xiaohong Zhang 2,3 and Mumtaz Ali 4

1 Department of Mathematics and Sciences, University of New Mexico, 705 Gurley Ave.,
Gallup, NM 87301, USA

2 Department of Mathematics, Shaanxi University of Science & Technology, Xi’an 710021, China;
zxhonghz@263.net

3 Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China
4 University of Southern Queensland, Springfield Campus, QLD 4300, Australia; Mumtaz.Ali@usq.edu.au
* Correspondence: smarand@unm.edu

Received: 29 January 2019; Accepted: 29 January 2019; Published: 1 February 2019

Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (<A>, <neutA>,
<antiA>), where <A> is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), <antiA>
is the opposite of <A>, while <neutA> is the neutral (or indeterminate) between them, i.e., neither
<A> nor <antiA> [1].

Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form:
(x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set [2–4].

This book contains the successful invited submissions [5–56] to a special issue of Symmetry,
reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets,
neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but
have gained interest from world researchers, and several papers have been published in first rank
international journals.

The topics approached in the 52 papers included in this book are: neutrosophic sets; neutrosophic
logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough
set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic
single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic
computation; quantum computation; neutrosophic association rule; data mining; big data; oracle
Turing machines; recursive enumerability; oracle computation; interval number; dependent
degree; possibility degree; power aggregation operators; multi-criteria group decision-making
(MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic
number; inclusion relation; Q-linguistic neutrosophic variable set; vector similarity measure; cosine
measure; Dice measure; Jaccard measure; VIKOR model; potential evaluation; emerging technology
commercialization; 2-tuple linguistic neutrosophic sets (2TLNSs); TODIM model; Bonferroni mean;
aggregation operator; NC power dual MM (NCPDMM) operator; fault diagnosis; defuzzification;
simplified neutrosophic weighted averaging operator; linear and non-linear neutrosophic number;
de-neutrosophication methods; neutro-monomorphism; neutro-epimorphism; neutro-automorphism;
fundamental neutro-homomorphism theorem; neutro-isomorphism theorem; quasi neutrosophic
triplet loop; quasi neutrosophic triplet group; BE-algebra; cloud model; Maclaurin symmetric mean;
pseudo-BCI algebra; hesitant fuzzy set; photovoltaic plan; decision-making trial and evaluation
laboratory (DEMATEL); Choquet integral; fuzzy measure; clustering algorithm; and many more.

In the opening paper [5] of this book, the authors introduce refined concepts for neutrosophic
quantum computing such as neutrosophic quantum states and transformation gates, neutrosophic
Hadamard matrix, coherent and decoherent superposition states, entanglement and measurement
notions based on neutrosophic quantum states. They also give some observations using these

Symmetry 2019, 11, 171; doi:10.3390/sym11020171 www.mdpi.com/journal/symmetry1
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principles, and present a number of quantum computational matrix transformations based on
neutrosophic logic, clarifying quantum mechanical notions relying on neutrosophic states. The paper
is intended to extend the work of Smarandache [57–59] by introducing a mathematical framework for
neutrosophic quantum computing and presenting some results.

The second paper [6] introduces oracle Turing machines with neutrosophic values allowed in the
oracle information and then give some results when one is permitted to use neutrosophic sets and
logic in relative computation. The authors also introduce a method to enumerate the elements of a
neutrosophic subset of natural numbers.

In the third paper [7], a new approach and framework based on the interval dependent degree
for MCGDM problems with SNSs is proposed. Firstly, the simplified dependent function and
distribution function are defined. Then, they are integrated into the interval dependent function
which contains interval computing and distribution information of the intervals. Subsequently, the
interval transformation operator is defined to convert SNNs into intervals, and then the interval
dependent function for SNNs is deduced. Finally, an example is provided to verify the feasibility and
effectiveness of the proposed method, together with its comparative analysis. In addition, uncertainty
analysis, which can reflect the dynamic change of the final result caused by changes in the decision
makers’ preferences, is performed in different distribution function situations. That increases the
reliability and accuracy of the result.

Neutrosophic triplet structure yields a symmetric property of truth membership on the left,
indeterminacy membership in the center and false membership on the right, as do points of object,
center and image of reflection. As an extension of a neutrosophic set, the Q-neutrosophic set is
introduced in the subsequent paper [8] to handle two-dimensional uncertain and inconsistent situations.
The authors extend the soft expert set to the generalized Q-neutrosophic soft expert set by incorporating
the idea of a soft expert set to the concept of a Q-neutrosophic set and attaching the parameter
of fuzzy set while defining a Q-neutrosophic soft expert set. This pattern carries the benefits of
Q-neutrosophic sets and soft sets, enabling decision makers to recognize the views of specialists
with no requirement for extra lumbering tasks, thus making it exceedingly reasonable for use in
decision-making issues that include imprecise, indeterminate and inconsistent two-dimensional data.
Some essential operations, namely subset, equal, complement, union, intersection, AND and OR
operations, and additionally several properties relating to the notion of a generalized Q-neutrosophic
soft expert set are characterized. Finally, an algorithm on a generalized Q-neutrosophic soft expert
set is proposed and applied to a real-life example to show the efficiency of this notion in handling
such problems.

In the following paper [9], the authors extend the idea of a neutrosophic triplet set to
non-associative semihypergroups and define neutrosophic triplet LA-semihypergroup. They discuss
some basic results and properties, and provide an application of the proposed structure in football.

Single valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing
complex information, because of their advantage in describing the information completely, accurately
and comprehensively for decision-making problems [60]. In the next paper [10], a method based on
SVTNNs is proposed for dealing with MCGDM problems. Firstly, the new operation SVTNNs are
developed for avoiding evaluation information aggregation loss and distortion. Then the possibility
degrees and comparison of SVTNNs are proposed from the probability viewpoint for ranking
and comparing the single valued trapezoidal neutrosophic information reasonably and accurately.
Based on the new operations and possibility degrees of SVTNNs, the single valued trapezoidal
neutrosophic power average (SVTNPA) and single valued trapezoidal neutrosophic power geometric
(SVTNPG) operators are proposed to aggregate the single valued trapezoidal neutrosophic information.
Furthermore, based on the developed aggregation operators, a single valued trapezoidal neutrosophic
MCGDM method is developed. Finally, the proposed method is applied to solve the practical problem
of the most appropriate green supplier selection and the rank results compared with the previous
approach demonstrate the proposed method’s effectiveness.

2



Symmetry 2019, 11, 171

After the neutrosophic set (NS) was proposed [58], NS was used in many uncertainty problems.
The single-valued neutrosophic set (SVNS) is a special case of NS that can be used to solve real-word
problems. The next paper [11] mainly studies multigranulation neutrosophic rough sets (MNRSs)
and their applications in multi-attribute group decision-making. Firstly, the existing definition of
neutrosophic rough set (the authors call it type-I neutrosophic rough set (NRSI) in this paper) is
analyzed, and then the definition of type-II neutrosophic rough set (NRSII), which is similar to
NRSI, is given and its properties are studied. Secondly, a type-III neutrosophic rough set (NRSIII) is
proposed and its differences from NRSI and NRSII are provided. Thirdly, single granulation NRSs are
extended to multigranulation NRSs, and the type-I multigranulation neutrosophic rough set (MNRSI) is
studied. The type-II multigranulation neutrosophic rough set (MNRSII) and type-III multigranulation
neutrosophic rough set (MNRSIII) are proposed and their different properties are outlined. Finally,
MNRSIII in two universes is proposed and an algorithm for decision-making based on MNRSIII is
provided. A car ranking example is studied to explain the application of the proposed model.

Since language is used for thinking and expressing habits of humans in real life, the
linguistic evaluation for an objective thing is expressed easily in linguistic terms/values. However,
existing linguistic concepts cannot describe linguistic arguments regarding an evaluated object in
two-dimensional universal sets (TDUSs). To describe linguistic neutrosophic arguments in decision
making problems regarding TDUSs, the next article [12] proposes a Q-linguistic neutrosophic variable
set (Q-LNVS) for the first time, which depicts its truth, indeterminacy, and falsity linguistic values
independently corresponding to TDUSs, and vector similarity measures of Q-LNVSs. Thereafter, a
linguistic neutrosophic MADM approach by using the presented similarity measures, including the
cosine, Dice, and Jaccard measures, is developed under Q-linguistic neutrosophic setting. Lastly,
the applicability and effectiveness of the presented MADM approach is presented by an illustrative
example under Q-linguistic neutrosophic setting.

In the following article [13], the authors combine the original VIKOR model with a triangular fuzzy
neutrosophic set [61] to propose the triangular fuzzy neutrosophic VIKOR method. In the extended
method, they use the triangular fuzzy neutrosophic numbers (TFNNs) to present the criteria values in
MCGDM problems. Firstly, they summarily introduce the fundamental concepts, operation formulas
and distance calculating method of TFNNs. Then they review some aggregation operators of TFNNs.
Thereafter, they extend the original VIKOR model to the triangular fuzzy neutrosophic environment
and introduce the calculating steps of the TFNNs VIKOR method, the proposed method which is more
reasonable and scientific for considering the conflicting criteria. Furthermore, a numerical example
for potential evaluation of emerging technology commercialization is presented to illustrate the new
method, and some comparisons are also conducted to further illustrate advantages of the new method.

Another paper [14] in this book aims to extend the original TODIM (Portuguese acronym
for interactive multi-criteria decision making) method to the 2-tuple linguistic neutrosophic fuzzy
environment [62] to propose the 2TLNNs TODIM method. In the extended method, the authors
use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple
attribute group decision making (MAGDM) problems. Firstly, they briefly introduce the definition,
operational laws, some aggregation operators, and the distance calculating method of 2TLNNs. Then,
the calculation steps of the original TODIM model are presented in simplified form. Thereafter, they
extend the original TODIM model to the 2TLNNs environment to build the 2TLNNs TODIM model,
the proposed method, which is more reasonable and scientific in considering the subjectivity of the
decision makers’ (DMs’) behaviors and the dominance of each alternative over others. Finally, a
numerical example for the safety assessment of a construction project is proposed to illustrate the
new method, and some comparisons are also conducted to further illustrate the advantages of the
new method.

The power Bonferroni mean (PBM) operator is a hybrid structure and can take the advantage
of a power average (PA) operator, which can reduce the impact of inappropriate data given by the
prejudiced decision makers (DMs) and Bonferroni mean (BM) operator, which can take into account
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the correlation between two attributes. In recent years, many researchers have extended the PBM
operator to handle fuzzy information. The Dombi operations of T-conorm (TCN) and T-norm (TN),
proposed by Dombi, have the supremacy of outstanding flexibility with general parameters. However,
in the existing literature, PBM and the Dombi operations have not been combined for the above
advantages for interval-neutrosophic sets (INSs) [63]. In the following paper [15], the authors define
some operational laws for interval neutrosophic numbers (INNs) based on Dombi TN and TCN and
discuss several desirable properties of these operational rules. Secondly, they extend the PBM operator
based on Dombi operations to develop an interval-neutrosophic Dombi PBM (INDPBM) operator, an
interval-neutrosophic weighted Dombi PBM (INWDPBM) operator, an interval-neutrosophic Dombi
power geometric Bonferroni mean (INDPGBM) operator and an interval-neutrosophic weighted Dombi
power geometric Bonferroni mean (INWDPGBM) operator, and discuss several properties of these
aggregation operators. Then they develop a MADM method, based on these proposed aggregation
operators, to deal with interval neutrosophic (IN) information. An illustrative example is provided to
show the usefulness and realism of the proposed MADM method.

The neutrosophic cubic set (NCS) is a hybrid structure [64], which consists of INS [63] (associated
with the undetermined part of information associated with entropy) and SVNS [60] (associated with
the determined part of information). NCS is a better tool to handle complex DM problems with INS
and SVNS. The main purpose of the next article [16] is to develop some new aggregation operators
for cubic neutrosophic numbers (NCNs), which is a basic member of NCS. Taking the advantages
of Muirhead mean (MM) operator and PA operator, the power Muirhead mean (PMM) operator is
developed and is scrutinized under NC information. To manage the problems upstretched, some new
NC aggregation operators, such as the NC power Muirhead mean (NCPMM) operator, weighted NC
power Muirhead mean (WNCPMM) operator, NC power dual Muirhead mean (NCPMM) operator
and weighted NC power dual Muirhead mean (WNCPDMM) operator are proposed and related
properties of these proposed aggregation operators are conferred. The important advantage of the
developed aggregation operator is that it can remove the effect of awkward data and it considers the
interrelationship among aggregated values at the same time. Finally, a numerical example is given to
show the effectiveness of the developed approach.

Smarandache defined a neutrosophic set [57] to handle problems involving incompleteness,
indeterminacy, and awareness of inconsistency knowledge, and have further developed neutrosophic
soft expert sets. In the next paper [17] of this book, this concept is further expanded to
generalized neutrosophic soft expert set (GNSES). The authors then define its basic operations of
complement, union, intersection, AND, OR, and study some related properties, with supporting
proofs. Subsequently, they define a GNSES-aggregation operator to construct an algorithm for a
GNSES decision-making method, which allows for a more efficient decision process. Finally, they
apply the algorithm to a decision-making problem, to illustrate the effectiveness and practicality of the
proposed concept. A comparative analysis with existing methods is done and the result affirms the
flexibility and precision of the proposed method.

In the next paper [18], the authors define the neutrosophic valued (and generalized or G) metric
spaces for the first time. Besides, they determine a mathematical model for clustering the neutrosophic
big data sets using G-metric. Furthermore, relative weighted neutrosophic-valued distance and
weighted cohesion measure are defined for neutrosophic big data set [65]. A very practical method for
data analysis of neutrosophic big data is offered, although neutrosophic data type (neutrosophic big
data) are in massive and detailed form when compared with other data types.

Bol-Moufang types of a particular quasi neutrosophic triplet loop (BCI-algebra), christened
Fenyves BCI-algebras, are introduced and studied in another paper [19] of this book. 60 Fenyves
BCI-algebras are introduced and classified. Amongst these 60 classes of algebras, 46 are found to
be associative and 14 are found to be non-associative. The 46 associative algebras are shown to be
Boolean groups. Moreover, necessary and sufficient conditions for 13 non-associative algebras to be
associative are also obtained: p-semisimplicity is found to be necessary and sufficient for a F3, F5, F42,
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and F55 algebras to be associative while quasi-associativity is found to be necessary and sufficient
for F19, F52, F56, and F59 algebras to be associative. Two pairs of the 14 non-associative algebras are
found to be equivalent to associativity (F52 and F55, and F55 and F59). Every BCI-algebra is naturally
a F54 BCI-algebra. The work is concluded with recommendations based on comparison between
the behavior of identities of Bol-Moufang (Fenyves’ identities) in quasigroups and loops and their
behavior in BCI-algebra. It is concluded that results of this work are an initiation into the study of
the classification of finite Fenyves’ quasi neutrosophic triplet loops (FQNTLs) just like various types
of finite loops have been classified. This research work has opened a new area of research finding in
BCI-algebras, vis-a-vis the emergence of 540 varieties of Bol-Moufang type quasi neutrosophic triplet
loops. A ‘cycle of algebraic structures’ which portrays this fact is provided.

The uncertainty and concurrence of randomness are considered when many practical problems
are dealt with. To describe the aleatory uncertainty and imprecision in a neutrosophic environment
and prevent the obliteration of more data, the concept of the probabilistic single-valued (interval)
neutrosophic hesitant fuzzy set is introduced in the next paper [20]. By definition, the probabilistic
single-valued neutrosophic hesitant fuzzy set (PSVNHFS) is a special case of the probabilistic interval
neutrosophic hesitant fuzzy set (PINHFS). PSVNHFSs can satisfy all the properties of PINHFSs.
An example is given to illustrate that PINHFS compared to PSVNHFS is more general. Then,
PINHFS is the main research object. The basic operational relations of PINHFS are studied, and
the comparison method of probabilistic interval neutrosophic hesitant fuzzy numbers (PINHFNs) is
proposed. Then, the probabilistic interval neutrosophic hesitant fuzzy weighted averaging (PINHFWA)
and the probability interval neutrosophic hesitant fuzzy weighted geometric (PINHFWG) operators
are presented. Some basic properties are investigated. Next, based on the PINHFWA and PINHFWG
operators, a decision-making method under a probabilistic interval neutrosophic hesitant fuzzy
circumstance is established. Finally, the authors apply this method to the issue of investment options.
The validity and application of the new approach is demonstrated.

Competition among different universities depends largely on the competition for talent. Talent
evaluation and selection is one of the main activities in human resource management (HRM) which is
critical for university development [21]. Firstly, linguistic neutrosophic sets (LNSs) are introduced to
better express multiple uncertain information during the evaluation procedure. The authors further
merge the power averaging operator with LNSs for information aggregation and propose a LN-power
weighted averaging (LNPWA) operator and a LN-power weighted geometric (LNPWG) operator.
Then, an extended technique for order preference by similarity to ideal solution (TOPSIS) method
is developed to solve a case of university HRM evaluation problem. The main contribution and
novelty of the proposed method rely on that it allows the information provided by different DMs to
support and reinforce each other which is more consistent with the actual situation of university HRM
evaluation. In addition, its effectiveness and advantages over existing methods are verified through
sensitivity and comparative analysis. The results show that the proposal is capable in the domain of
university HRM evaluation and may contribute to the talent introduction in universities.

The concept of a commutative generalized neutrosophic ideal in a BCK-algebra is proposed, and
related properties are proved in another paper [22] of this book. Characterizations of a commutative
generalized neutrosophic ideal are considered. Also, some equivalence relations on the family of all
commutative generalized neutrosophic ideals in BCK-algebras are introduced, and some properties
are investigated.

Fault diagnosis is an important issue in various fields and aims to detect and identify the faults of
systems, products, and processes. The cause of a fault is complicated due to the uncertainty of the
actual environment. Nevertheless, it is difficult to consider uncertain factors adequately with many
traditional methods. In addition, the same fault may show multiple features and the same feature
might be caused by different faults. In the next paper [23], a neutrosophic set based fault diagnosis
method based on multi-stage fault template data is proposed to solve this problem. For an unknown
fault sample whose fault type is unknown and needs to be diagnosed, the neutrosophic set based on
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multi-stage fault template data is generated, and then the generated neutrosophic set is fused via the
simplified neutrosophic weighted averaging (SNWA) operator. Afterwards, the fault diagnosis results
can be determined by the application of defuzzification method for a defuzzying neutrosophic set.
Most kinds of uncertain problems in the process of fault diagnosis, including uncertain information
and inconsistent information, could be handled well with the integration of multi-stage fault template
data and the neutrosophic set. Finally, the practicality and effectiveness of the proposed method are
demonstrated via an illustrative example.

The notions of neutrosophy, neutrosophic algebraic structures, neutrosophic duplet and
neutrosophic triplet were introduced by Florentin Smarandache [57]. In another paper [24] of this
book, some neutrosophic duplets are studied. A particular case is considered, and the complete
characterization of neutrosophic duplets are given. Some open problems related to neutrosophic
duplets are proposed.

In the next paper [25], the authors provide an application of neutrosophic bipolar fuzzy sets
applied to daily life’s problem related with the HOPE foundation, which is planning to build
a children’s hospital. They develop the theory of neutrosophic bipolar fuzzy sets, which is a
generalization of bipolar fuzzy sets. After giving the definition they introduce some basic operation of
neutrosophic bipolar fuzzy sets and focus on weighted aggregation operators in terms of neutrosophic
bipolar fuzzy sets. They define neutrosophic bipolar fuzzy weighted averaging (NBFWA) and
neutrosophic bipolar fuzzy ordered weighted averaging (NBFOWA) operators. Next they introduce
different kinds of similarity measures of neutrosophic bipolar fuzzy sets. Finally, as an application, the
authors give an algorithm for the multiple attribute decision making problems under the neutrosophic
bipolar fuzzy environment by using the different kinds of neutrosophic bipolar fuzzy weighted/fuzzy
ordered weighted aggregation operators with a numerical example related with HOPE foundation.

In the following paper [26], the authors introduce the concept of neutrosophic numbers from
different viewpoints [57–65]. They define different types of linear and non-linear generalized
triangular neutrosophic numbers which are very important for uncertainty theory. They introduce the
de-neutrosophication concept for neutrosophic number for triangular neutrosophic numbers. This
concept helps to convert a neutrosophic number into a crisp number. The concepts are followed by two
applications, namely in an imprecise project evaluation review technique and a route selection problem.

In classical group theory, homomorphism and isomorphism are significant to study the
relation between two algebraic systems. Through the next article [27], the authors propose
neutro-homomorphism and neutro-isomorphism for the neutrosophic extended triplet group (NETG)
which plays a significant role in the theory of neutrosophic triplet algebraic structures. Then, they
define neutro-monomorphism, neutro-epimorphism, and neutro-automorphism. They give and prove
some theorems related to these structures. Furthermore, the Fundamental homomorphism theorem
for the NETG is given and some special cases are discussed. First and second neutro-isomorphism
theorems are stated. Finally, by applying homomorphism theorems to neutrosophic extended triplet
algebraic structures, the authors have examined how closely different systems are related.

It is an interesting direction to study rough sets from a multi-granularity perspective. In rough set
theory, the multi-particle structure was represented by a binary relation. The next paper [28] considers
a new neutrosophic rough set model, multi-granulation neutrosophic rough set (MGNRS). First, the
concept of MGNRS on a single domain and dual domains was proposed. Then, their properties and
operators were considered. The authors obtained that MGNRS on dual domains will degenerate into
MGNRS on a single domain when the two domains are the same. Finally, a kind of special multi-criteria
group decision making (MCGDM) problem was solved based on MGNRS on dual domains, and an
example was given to show its feasibility.

As a new generalization of the notion of the standard group, the notion of the NTG is derived
from the basic idea of the neutrosophic set and can be regarded as a mathematical structure describing
generalized symmetry. In the next paper [29], the properties and structural features of NTG are studied
in depth by using theoretical analysis and software calculations (in fact, some important examples in
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the paper are calculated and verified by mathematics software, but the related programs are omitted).
The main results are obtained as follows: (1) by constructing counterexamples, some mistakes in the
some literatures are pointed out; (2) some new properties of NTGs are obtained, and it is proved
that every element has a unique neutral element in any neutrosophic triplet group; (3) the notions of
NT-subgroups, strong NT-subgroups, and weak commutative neutrosophic triplet groups (WCNTGs)
are introduced, the quotient structures are constructed by strong NT-subgroups, and a homomorphism
theorem is proved in weak commutative neutrosophic triplet groups.

The aim of the following paper [30] is to introduce some new operators for aggregating
single-valued neutrosophic (SVN) information and to apply them to solve the multi-criteria
decision-making (MCDM) problems. The single-valued neutrosophic set, as an extension and
generalization of an intuitionistic fuzzy set, is a powerful tool to describe the fuzziness and
uncertainty [60], and MM is a well-known aggregation operator which can consider interrelationships
among any number of arguments assigned by a variable vector. In order to make full use of the
advantages of both, the authors introduce two new prioritized MM aggregation operators, such as
the SVN prioritized MM (SVNPMM) and SVN prioritized dual MM (SVNPDMM) under an SVN set
environment. In addition, some properties of these new aggregation operators are investigated and
some special cases are discussed. Furthermore, the authors propose a new method based on these
operators for solving the MCDM problems. Finally, an illustrative example is presented to testify the
efficiency and superiority of the proposed method by comparing it with the existing method.

Making predictions according to historical values has long been regarded as common practice
by many researchers. However, forecasting solely based on historical values could lead to inevitable
over-complexity and uncertainty due to the uncertainties inside, and the random influence outside,
of the data. Consequently, finding the inherent rules and patterns of a time series by eliminating
disturbances without losing important details has long been a research hotspot. In the following
paper [31], the authors propose a novel forecasting model based on multi-valued neutrosophic sets
to find fluctuation rules and patterns of a time series. The contributions of the proposed model
are: (1) using a multi-valued neutrosophic set (MVNS) to describe the fluctuation patterns of a time
series, the model could represent the fluctuation trend of up, equal, and down with degrees of truth,
indeterminacy, and falsity which significantly preserve details of the historical values; (2) measuring
the similarities of different fluctuation patterns by the Hamming distance could avoid the confusion
caused by incomplete information from limited samples; and (3) introducing another related time
series as a secondary factor to avoid warp and deviation in inferring inherent rules of historical values,
which could lead to more comprehensive rules for further forecasting. To evaluate the performance
of the model, the authors explore the Taiwan Stock Exchange Capitalization Weighted Stock Index
(TAIEX) as the major factor, and the Dow Jones Index as the secondary factor to facilitate the predicting
of the TAIEX. To show the universality of the model, they apply the proposed model to forecast the
Shanghai Stock Exchange Composite Index (SHSECI) as well.

The new notion of a neutrosophic triplet group (NTG) proposed by Smarandache is a new
algebraic structure different from the classical group. The aim of the next paper [32] is to further
expand this new concept and to study its application in related logic algebra systems. Some new
notions of left (right)-quasi neutrosophic triplet loops and left (right)-quasi neutrosophic triplet groups
are introduced, and some properties are presented. As a corollary of these properties, the following
important result are proved: for any commutative neutrosophic triplet group, its every element has a
unique neutral element. Moreover, some left (right)-quasi neutrosophic triplet structures in BE-algebras
and generalized BE-algebras (including CI-algebras and pseudo CI-algebras) are established, and the
adjoint semigroups of the BE-algebras and generalized BE-algebras are investigated for the first time.

In a neutrosophic triplet set, there is a neutral element and antielement for each element. In the
following study [33], the concept of neutrosophic triplet partial metric space (NTPMS) is given and
the properties of NTPMS are studied. The authors show that both classical metric and neutrosophic
triplet metric (NTM) are different from NTPM. Also, they show that NTPMS can be defined with each
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NTMS. Furthermore, the authors define a contraction for NTPMS and give a fixed point theory (FPT)
for NTPMS. The FPT has been revealed as a very powerful tool in the study of nonlinear phenomena.

Another paper [34] of this book presents a modified Technique for Order Preference by Similarity
to an Ideal Solution (TOPSIS) with maximizing deviation method based on the SVNS model [60].
A SVNS is a special case of a neutrosophic set which is characterized by a truth, indeterminacy,
and falsity membership function, each of which lies in the standard interval of [0,1]. An integrated
weight measure approach that takes into consideration both the objective and subjective weights of the
attributes is used. The maximizing deviation method is used to compute the objective weight of the
attributes, and the non-linear weighted comprehensive method is used to determine the combined
weights for each attributes. The use of the maximizing deviation method allows our proposed method
to handle situations in which information pertaining to the weight coefficients of the attributes are
completely unknown or only partially known. The proposed method is then applied to a multi-attribute
decision-making (MADM) problem. Lastly, a comprehensive comparative studies is presented, in
which the performance of our proposed algorithm is compared and contrasted with other recent
approaches involving SVNSs in literature.

One of the most significant competitive strategies for organizations is sustainable supply chain
management (SSCM). The vital part in the administration of a sustainable supply chain is the
sustainable supplier selection, which is a multi-criteria decision-making issue, including many
conflicting criteria. The valuation and selection of sustainable suppliers are difficult problems due
to vague, inconsistent, and imprecise knowledge of decision makers. In the literature on supply
chain management for measuring green performance, the requirement for methodological analysis of
how sustainable variables affect each other, and how to consider vague, imprecise and inconsistent
knowledge, is still unresolved. The next research [35] provides an incorporated multi-criteria
decision-making procedure for sustainable supplier selection problems (SSSPs). An integrated
framework is presented via interval-valued neutrosophic sets to deal with vague, imprecise and
inconsistent information that exists usually in real world. The analytic network process (ANP) is
employed to calculate weights of selected criteria by considering their interdependencies. For ranking
alternatives and avoiding additional comparisons of analytic network processes, the TOPSIS is used.
The proposed framework is turned to account for analyzing and selecting the optimal supplier.
An actual case study of a dairy company in Egypt is examined within the proposed framework.
Comparison with other existing methods is implemented to confirm the effectiveness and efficiency of
the proposed approach.

The concept of interval neutrosophic sets has been studied [63] and the introduction of a new
kind of set in topological spaces called the interval valued neutrosophic support soft set is suggested in
the next paper [36]. The authors also study some of its basic properties. The main purpose of the paper
is to give the optimum solution to decision-making in real life problems the using interval valued
neutrosophic support soft set.

In inconsistent and indeterminate settings, as a usual tool, the NCS containing single-valued
neutrosophic numbers [60] and interval neutrosophic numbers [64] can be applied in decision-making
to present its partial indeterminate and partial determinate information. However, a few researchers
have studied neutrosophic cubic decision-making problems, where the similarity measure of NCSs is
one of the useful measure methods. For the following work [37] in this book, the authors propose the
Dice, cotangent, and Jaccard measures between NCSs, and indicate their properties. Then, under an
NCS environment, the similarity measures-based decision-making method of multiple attributes is
developed. In the decision-making process, all the alternatives are ranked by the similarity measure
of each alternative and the ideal solution to obtain the best one. Finally, two practical examples are
applied to indicate the feasibility and effectiveness of the developed method.

In real-world diagnostic procedures, due to the limitation of human cognitive competence, a
medical expert may not conveniently use some crisp numbers to express the diagnostic information,
and plenty of research has indicated that generalized fuzzy numbers play a significant role in describing
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complex diagnostic information. To deal with medical diagnosis problems based on generalized fuzzy
sets (FSs), the notion of single-valued neutrosophic multisets (SVNMs) [60] is firstly used to express the
diagnostic information [38]. Then the model of probabilistic rough sets (PRSs) over two universes is
applied to analyze SVNMs, and the concepts of single-valued neutrosophic rough multisets (SVNRMs)
over two universes and probabilistic rough single-valued neutrosophic multisets (PRSVNMs) over two
universes are introduced. Based on SVNRMs over two universes and PRSVNMs over two universes,
single-valued neutrosophic probabilistic rough multisets (SVNPRMs) over two universes are further
established. Next, a three-way decision model by virtue of SVNPRMs over two universes in the context
of medical diagnosis is constructed. Finally, a practical case study along with a comparative study are
carried out to reveal the accuracy and reliability of the constructed three-way decisions model.

The next article [39] is based on new developments on a NTG and applications earlier introduced
in 2016 by Smarandache and Ali. NTG sprang up from neutrosophic triplet set X: a collection of triplets
(b,neut(b),anti(b)) for an b∈X that obeys certain axioms (existence of neutral(s) and opposite(s)). Some
results that are true in classical groups are investigated in NTG and shown to be either universally
true in NTG or true in some peculiar types of NTG. Distinguishing features between an NTG and
some other algebraic structures such as: generalized group (GG), quasigroup, loop, and group are
investigated. Some neutrosophic triplet subgroups (NTSGs) of a neutrosophic triplet group are studied.
Applications of the neutrosophic triplet set, and our results on NTG in relation to management and
sports, are highlighted and discussed.

Neutrosophic cubic sets [64] are the more generalized tool by which one can handle imprecise
information in a more effective way as compared to fuzzy sets and all other versions of fuzzy sets.
Neutrosophic cubic sets have the more flexibility, precision and compatibility to the system as compared
to previous existing fuzzy models. On the other hand, the graphs represent a problem physically in
the form of diagrams and matrices, etc., which is very easy to understand and handle. Therefore, the
authors of the subsequent paper [40] apply the neutrosophic cubic sets to graph theory in order to
develop a more general approach where they can model imprecise information through graphs. One of
very important futures of two neutrosophic cubic sets is the R-union that R-union of two neutrosophic
cubic sets is again a neutrosophic cubic set. Since the purpose of this new model is to capture the
uncertainty, the authors provide applications in industries to test the applicability of the defined model
based on present time and future prediction which is the main advantage of neutrosophic cubic sets.

Thereafter, another paper [41] presents a deciding technique for robotic dexterous hand
configurations. This algorithm can be used to decide on how to configure a robotic hand so it can grasp
objects in different scenarios. Receiving as input from several sensor signals that provide information
on the object’s shape, the DSmT decision-making algorithm passes the information through several
steps before deciding what hand configuration should be used for a certain object and task. The
proposed decision-making method for real time control will decrease the feedback time between
the command and grasped object, and can be successfully applied on robot dexterous hands. For
this, the authors have used the Dezert–Smarandache theory which can provide information even on
contradictory or uncertain systems.

The study [42] that follows introduces simplified neutrosophic linguistic numbers (SNLNs) to
describe online consumer reviews in an appropriate manner. Considering the defects of studies on
SNLNs in handling linguistic information, the cloud model is used to convert linguistic terms in
SNLNs to three numerical characteristics. Then, a novel simplified neutrosophic cloud (SNC) concept
is presented, and its operations and distance are defined. Next, a series of simplified neutrosophic
cloud aggregation operators are investigated, including the simplified neutrosophic clouds Maclaurin
symmetric mean (SNCMSM) operator, weighted SNCMSM operator, and generalized weighted
SNCMSM operator. Subsequently, a MCDM model is constructed based on the proposed aggregation
operators. Finally, a hotel selection problem is presented to verify the effectiveness and validity of our
developed approach.
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In recent years, typhoon disasters have occurred frequently and the economic losses caused by
them have received increasing attention. The next study [43] focuses on the evaluation of typhoon
disasters based on the interval neutrosophic set theory. An interval neutrosophic set (INS) [63] is a
subclass of a NS [57]. However, the existing exponential operations and their aggregation methods are
primarily for the intuitionistic fuzzy set. So, this paper mainly focus on the research of the exponential
operational laws of INNs in which the bases are positive real numbers and the exponents are interval
neutrosophic numbers. Several properties based on the exponential operational law are discussed in
detail. Then, the interval neutrosophic weighted exponential aggregation (INWEA) operator is used to
aggregate assessment information to obtain the comprehensive risk assessment. Finally, a multiple
attribute decision making (MADM) approach based on the INWEA operator is introduced and applied
to the evaluation of typhoon disasters in Fujian Province, China. Results show that the proposed new
approach is feasible and effective in practical applications.

In the coming paper [44] of this book, the authors study the neutrosophic triplet groups for a∈Z2p
and prove this collection of triplets (a,neut(a),anti(a)) if trivial forms a semigroup under product, and
semi-neutrosophic triplets are included in that collection. Otherwise, they form a group under product,
and it is of order (p−1), with (p+1,p+1,p+1) as the multiplicative identity. The new notion of pseudo
primitive element is introduced in Z2p analogous to primitive elements in Zp, where p is a prime.
Open problems based on the pseudo primitive elements are proposed. The study is restricted to Z2p
and take only the usual product modulo 2p.

Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry
properties of fuzzy graphs. With this in mind, in the next paper [45], the authors introduce new
neutrosophic graphs called complex neutrosophic graphs of type 1 (abbr. CNG1). They then present a
matrix representation for it and study some properties of this new concept. The concept of CNG1 is an
extension of the generalized fuzzy graphs of type 1 (GFG1) and generalized single-valued neutrosophic
graphs of type 1 (GSVNG1). The utility of the CNG1 introduced here is applied to a multi-attribute
decision making problem related to Internet server selection.

The purpose of the subsequent paper [46] is to study new algebraic operations and
fundamental properties of totally dependent-neutrosophic sets and totally dependent-neutrosophic
soft sets. Firstly, the in-coordination relationships among the original inclusion relations
of totally dependent-neutrosophic sets (called type-1 and typ-2 inclusion relations in this
paper) and union (intersection) operations are analyzed, and then type-3 inclusion relation of
totally dependent-neutrosophic sets and corresponding type-3 union, type-3 intersection, and
complement operations are introduced. Secondly, the following theorem is proved: all totally
dependent-neutrosophic sets (based on a certain universe) determined a generalized De Morgan
algebra with respect to type-3 union, type-3 intersection, and complement operations. Thirdly,
the relationships among the type-3 order relation, score function, and accuracy function of totally
dependent-neutrosophic sets are discussed. Finally, some new operations and properties of totally
dependent-neutrosophic soft sets are investigated, and another generalized De Morgan algebra induced
by totally dependent-neutrosophic soft sets is obtained.

In the recent years, school administrators often come across various problems while teaching,
counseling, and promoting and providing other services which engender disagreements and
interpersonal conflicts between students, the administrative staff, and others. Action learning is
an effective way to train school administrators in order to improve their conflict-handling styles. In
the next paper [47], a novel approach is used to determine the effectiveness of training in school
administrators who attended an action learning course based on their conflict-handling styles. To
this end, a Rahim Organization Conflict Inventory II (ROCI-II) instrument is used that consists of
both the demographic information and the conflict-handling styles of the school administrators. The
proposed method uses the neutrosophic set (NS) and support vector machines (SVMs) to construct
an efficient classification scheme neutrosophic support vector machine (NS-SVM). The neutrosophic
c-means (NCM) clustering algorithm is used to determine the neutrosophic memberships and then a
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weighting parameter is calculated from the neutrosophic memberships. The calculated weight value
is then used in SVM as handled in the fuzzy SVM (FSVM) approach. Various experimental works
are carried in a computer environment out to validate the proposed idea. All experimental works are
simulated in a MATLAB environment with a five-fold cross-validation technique. The classification
performance is measured by accuracy criteria. The prediction experiments are conducted based on
two scenarios. In the first one, all statements are used to predict if a school administrator is trained or
not after attending an action learning program. In the second scenario, five independent dimensions
are used individually to predict if a school administrator is trained or not after attending an action
learning program. According to the obtained results, the proposed NS-SVM outperforms for all
experimental works.

The notions of the neutrosophic hesitant fuzzy subalgebra and neutrosophic hesitant fuzzy filter
in pseudo-BCI algebras are introduced, and some properties and equivalent conditions are investigated
in the next paper [48]. The relationships between neutrosophic hesitant fuzzy subalgebras (filters)
and hesitant fuzzy subalgebras (filters) are discussed. Five kinds of special sets are constructed by
a neutrosophic hesitant fuzzy set, and the conditions for the two kinds of sets to be filters are given.
Moreover, the conditions for two kinds of special neutrosophic hesitant fuzzy sets to be neutrosophic
hesitant fuzzy filters are proved.

To solve the problems related to inhomogeneous connections among the attributes, the authors
of the following paper [49] introduce a novel multiple attribute group decision-making (MAGDM)
method based on the introduced linguistic neutrosophic generalized weighted partitioned Bonferroni
mean operator (LNGWPBM) for linguistic neutrosophic numbers (LNNs). First of all, inspired by the
merits of the generalized partitioned Bonferroni mean (GPBM) operator and LNNs, they combine
the GPBM operator and LNNs to propose the linguistic neutrosophic GPBM (LNGPBM) operator,
which supposes that the relationships are heterogeneous among the attributes in MAGDM. In addition,
aimed at the different importance of each attribute, the weighted form of the LNGPBM operator
is investigated. Then, the authors discuss some of its desirable properties and special examples
accordingly. Finally, they propose a novel MAGDM method on the basis of the introduced LNGWPBM
operator, and illustrate its validity and merit by comparing it with the existing methods.

Based on the multiplicity evaluation in some real situations, the next paper [50] firstly introduces
a single-valued neutrosophic multiset (SVNM) as a subclass of neutrosophic multiset (NM) to express
the multiplicity information and the operational relations of SVNMs. Then, a cosine measure between
SVNMs and weighted cosine measure between SVNMs are presented to measure the cosine degree
between SVNMs, and their properties are investigated. Based on the weighted cosine measure of
SVNMs, a multiple attribute decision-making method under a SVNM environment is proposed, in
which the evaluated values of alternatives are taken in the form of SVNMs. The ranking order of
all alternatives and the best one can be determined by the weighted cosine measure between every
alternative and the ideal alternative. Finally, an actual application on the selecting problem illustrates
the effectiveness and application of the proposed method.

Rooftop distributed photovoltaic projects have been quickly proposed in China because of policy
promotion. Before, the rooftops of the shopping mall had not been occupied, and it was urged to
have a decision-making framework to select suitable shopping mall photovoltaic plans. However, a
traditional MCDM method failed to solve this issue at the same time, due to the following three defects:
the interactions problems between the criteria, the loss of evaluation information in the conversion
process, and the compensation problems between diverse criteria. In the subsequent paper [51], an
integrated MCDM framework is proposed to address these problems. First of all, the compositive
evaluation index is constructed, and the application of DEMATEL method helped analyze the internal
influence and connection behind each criterion. Then, the interval-valued neutrosophic set is utilized
to express the imperfect knowledge of experts group and avoid the information loss. Next, an extended
elimination et choice translation reality (ELECTRE) III method is applied, and it succeed in avoiding
the compensation problem and obtaining the scientific result. The integrated method used maintained
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symmetry in the solar photovoltaic (PV) investment. Last but not least, a comparative analysis using
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method and VIKOR method
is carried out, and alternative plan X1 ranks first at the same. The outcome certified the correctness
and rationality of the results obtained in this study.

In the next paper [52], by utilizing the concept of a neutrosophic extended triplet (NET), the
authors define the neutrosophic image, neutrosophic inverse-image, neutrosophic kernel, and the
NET subgroup. The notion of the neutrosophic triplet coset and its relation with the classical coset are
defined and the properties of the neutrosophic triplet cosets are given. Furthermore, the neutrosophic
triplet normal subgroups, and neutrosophic triplet quotient groups are studied.

The following paper [53] in the book proposes novel skin lesion detection based on neutrosophic
clustering and adaptive region growing algorithms applied to dermoscopic images, called NCARG.
First, the dermoscopic images are mapped into a neutrosophic set domain using the shearlet transform
results for the images. The images are described via three memberships: true, indeterminate, and
false memberships. An indeterminate filter is then defined in the neutrosophic set for reducing the
indeterminacy of the images. A neutrosophic c-means clustering algorithm is applied to segment the
dermoscopic images. With the clustering results, skin lesions are identified precisely using an adaptive
region growing method. To evaluate the performance of this algorithm, a public data set (ISIC 2017) is
employed to train and test the proposed method. Fifty images are randomly selected for training and
500 images for testing. Several metrics are measured for quantitatively evaluating the performance
of NCARG. The results establish that the proposed approach has the ability to detect a lesion with
high accuracy, 95.3% average value, compared to the obtained average accuracy, 80.6%, found when
employing the neutrosophic similarity score and level set (NSSLS) segmentation approach.

Every organization seeks to set strategies for its development and growth and to do this, it must
take into account the factors that affect its success or failure. The most widely used technique in
strategic planning is SWOT analysis. SWOT examines strengths (S), weaknesses (W), opportunities
(O), and threats (T), to select and implement the best strategy to achieve organizational goals. The
chosen strategy should harness the advantages of strengths and opportunities, handle weaknesses,
and avoid or mitigate threats. SWOT analysis does not quantify factors (i.e., strengths, weaknesses,
opportunities, and threats) and it fails to rank available alternatives. To overcome this drawback,
the authors of the next paper [54] integrate it with the analytic hierarchy process (AHP). The AHP is
able to determine both quantitative and the qualitative elements by weighting and ranking them via
comparison matrices. Due to the vague and inconsistent information that exists in the real world, they
apply the proposed model in a neutrosophic environment. A real case study of Starbucks Company is
presented to validate the model.

Big Data is a large-sized and complex dataset, which cannot be managed using traditional data
processing tools. The mining process of big data is the ability to extract valuable information from
these large datasets. Association rule mining is a type of data mining process, which is intended to
determine interesting associations between items and to establish a set of association rules whose
support is greater than a specific threshold. The classical association rules can only be extracted from
binary data where an item exists in a transaction, but it fails to deal effectively with quantitative
attributes, through decreasing the quality of generated association rules due to sharp boundary
problems. In order to overcome the drawbacks of classical association rule mining, the authors of the
following research [55] propose a new neutrosophic association rule algorithm. The algorithm uses
a new approach for generating association rules by dealing with membership, indeterminacy, and
non-membership functions of items, conducting to an efficient decision-making system by considering
all vague association rules. To prove the validity of the method, they compare the fuzzy mining and
the neutrosophic mining [65]. The results show that the proposed approach increases the number of
generated association rules.

The INS is a subclass of the NS and a generalization of the interval-valued intuitionistic fuzzy
set (IVIFS), which can be used in real engineering and scientific applications. The last paper [56] in

12
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the book aims at developing new generalized Choquet aggregation operators for INSs, including the
generalized interval neutrosophic Choquet ordered averaging (G-INCOA) operator and generalized
interval neutrosophic Choquet ordered geometric (G-INCOG) operator. The main advantages of the
proposed operators can be described as follows: (i) during decision-making or analyzing process, the
positive interaction, negative interaction or non-interaction among attributes can be considered by the
G-INCOA and G-INCOG operators; (ii) each generalized Choquet aggregation operator presents a
unique comprehensive framework for INSs, which comprises a bunch of existing interval neutrosophic
aggregation operators; (iii) new multi-attribute decision making (MADM) approaches for INSs are
established based on these operators, and decision makers may determine the value of λ by different
MADM problems or their preferences, which makes the decision-making process more flexible; (iv) a
new clustering algorithm for INSs are introduced based on the G-INCOA and G-INCOG operators,
which proves that they have the potential to be applied to many new fields in the future.

The individual articles of this book can be downloaded from here:
https://www.mdpi.com/journal/symmetry/special_issues/Algebraic_Structure_

Neutrosophic_Triplet_Neutrosophic_Duplet_Neutrosophic_Multiset.
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Abstract: The interval neutrosophic set (INS) is a subclass of the neutrosophic set (NS) and a
generalization of the interval-valued intuitionistic fuzzy set (IVIFS), which can be used in real
engineering and scientific applications. This paper aims at developing new generalized Choquet
aggregation operators for INSs, including the generalized interval neutrosophic Choquet ordered
averaging (G-INCOA) operator and generalized interval neutrosophic Choquet ordered geometric
(G-INCOG) operator. The main advantages of the proposed operators can be described as follows:
(i) during decision-making or analyzing process, the positive interaction, negative interaction or
non-interaction among attributes can be considered by the G-INCOA and G-INCOG operators;
(ii) each generalized Choquet aggregation operator presents a unique comprehensive framework
for INSs, which comprises a bunch of existing interval neutrosophic aggregation operators; (iii) new
multi-attribute decision making (MADM) approaches for INSs are established based on these
operators, and decision makers may determine the value of λ by different MADM problems or
their preferences, which makes the decision-making process more flexible; (iv) a new clustering
algorithm for INSs are introduced based on the G-INCOA and G-INCOG operators, which proves
that they have the potential to be applied to many new fields in the future.

Keywords: generalized aggregation operators; interval neutrosophic set (INS); multi-attribute
decision making (MADM); Choquet integral; fuzzy measure; clustering algorithm

1. Introduction

The neutrosophic set (NS) is a powerful comprehensive framework that comprises the concepts
of the classic set, fuzzy set (FS), intuitionistic fuzzy set (IFS), hesitant fuzzy set (HFS), paraconsistent
set, paradoxist set, and interval-valued fuzzy set (IVFS) [1–4]. It was introduced by Smarandache
to deal with incomplete, indeterminate, and inconsistent decision information, which includes the
truth membership, falsity membership, and indeterminacy membership, and their functions are
non-standard subsets of ]−0, 1+[ [5]. However, without a specific description, it is difficult to apply
the NS in practical application. Therefore, scholars proposed the interval neutrosophic set (INS),
single-valued neutrosophic set (SVNS), rough neutrosophic set (RNS), multi-valued neutrosophic
set (MVNS) as some special cases of the NS, and studied their related properties in [6–9]. Recently,
numbers of new neutrosophic theories have been proposed and applied to image segmentation,
image processing, rock mechanics, stock market, computational intelligence, multi-attribute decision
making (MADM), medical diagnosis, fault diagnosis, and optimization design as described in [10–13].

The INS is a subclass of the NS and generalization of the IFS and IVIFS, which was proposed
by Wang [6]. Motivated by some aggregation operators and decision-making methods for IFSs,
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IVIFSs, and NSs [14–19], a lot of theories about INSs have been put forward successively, and their
basic concepts and aggregation tools play important roles in practical applications. For instance,
Wang et al. [6] defined the basic operational relations for INSs and Zhang et al. [20] pointed out
some drawbacks of these operational laws and improved them. Then they also put forward some
basic aggregation operators to deal with MADM problems with interval neutrosophic information.
Besides, Broumi [21] introduced the definition of correlation coefficient between INSs. Then Zhang
et al. [22] pointed out some shortcomings of the existing correlation coefficient and they also
proposed the definition of improved weighted correlation coefficient. Ye [23] defined some distance
measures and similarity measures for INSs and applied these measures in practical MADM problems,
and he also [24] proposed the interval neutrosophic ordered weighted arithmetic and geometric
averaging operators, and further constructed a possibility degree ranking method under the interval
neutrosophic environment. Moreover, Liu et al. [25–27] proposed the power generalized aggregation
operators, the prioritized ordered weighted aggregation operators and induced generalized interval
neutrosophic Shapley hybrid geometric averaging/mean operators for INSs under an interval
neutrosophic environment.

For some practical problems, there exists mutual influence and interaction among attributes,
which should be considered in decision-making or other analyzing process. The interaction between
attributes can be classified into three types, which are positive interaction, negative interaction, and
non-interaction [28,29]. Failure to consider the interactions among attributes may directly lead to errors
of decision results. To solve this problem under the interval neutrosophic environment, we first intend
to define some aggregation operators in this paper by combining the definition of Choquet integral to
process the mutual influence and interaction among attributes with respect to fuzzy measure [30,31].

Besides, cluster analysis, or clustering, is defined as the unsupervised process of group (a set of
data objects) in such a way that objects in the same group (called a cluster) are somehow more similar
to each other than those in other groups (clusters) [32]. There are many algorithms for clustering
which differ significantly in their notion of what constitutes a cluster and how to efficiently find them.
Under a hesitant fuzzy environment, Chen et al. [33] proposed an algorithm to cluster hesitant fuzzy
data into different clusters. Using the algorithm as a reference, we also intend to propose an effective
new clustering algorithm under the interval neutrosophic environment.

Moreover, the generalized aggregation operators are a new class of operators, which have been
widely applied in fuzzy areas, since they can be used to synthesize multi-dimensional evaluation
values represented by kinds of hesitant fuzzy values or intuitionstic fuzzy values into collective
values. Overall, this paper aims at proposing new generalized Choquet aggregation operators for
INSs—namely, the G-INCOA operator and G-INCOG operator—which can be applied in MADM and
clustering using interval neutrosophic information. In some special cases, each generalized aggregation
operator reduces to various existing non-generalized interval neutrosophic aggregation operators.

To do so, the rest of this paper is organized as follows: Section 2 introduces some basic definitions
about the Choquet integral and INS. In Section 3, the G-INCOA operator and G-INCOG operator
are put forward and some desirable properties of them are discussed and proved. We also consider
special cases of these operators and distinguish them in two main classes, the first class focuses on the
parameter λ, and the second class on the fuzzy measure μ

(
xj
)
. In Section 4, we put forward some novel

MADM methods based on the proposed operators to deal with interval neutrosophic information and
utilize an illustrative example to validate the proposed MADM approaches by taking different values of
parameter λ of the proposed operators. In Section 5, a new clustering algorithm for INSs is introduced
based on the G-INCOA operator and the G-INCOG operator. Then, a numerical example concerning
clustering is utilized as the demonstration of the application and effectiveness of the proposed clustering
algorithm. Finally, conclusions and future research directions are drawn in Section 6.
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2. Preliminaries

To facilitate the following discussion, some basic definitions about the Choquet integral and INS
are briefly introduced in this section.

2.1. Interval Neutrosophic Sets (INS)

The NS was firstly introduced by Smarandache [5], which is a comprehensive framework for
expressing and processing incomplete and indeterminate information.

Definition 1. ([5]) Let X be a non-empty fixed set, a NS on X is defined as:

TA(x), IA(x), FA(x) : X → ]−0, 1+[, (1)

where TA(x), IA(x), FA(x) representing the truth membership function, indeterminacy membership
function and falsity membership function, respectively, and satisfying the limit: 0− ≤ sup TA(x) +
supIA(x) + supFA(x) ≤ 3+.

It is not difficult to find that the NS is difficult to apply in the real applications. Therefore,
Wang et al. [6] proposed the interval neutrosophic set (INS) as an instance of the NS, which is
defined as:

Definition 2. ([6]) Let X be a non-empty finite set, an INS in X is expressed by:

N = {〈x, [t̃L(x), t̃U(x)], [ĩL(x), ĩU(x)], [ f̃ L(x), f̃ U(x)〉]| x ∈ X }, (2)

where t̃(x) = [̃tL(x), t̃U(x)] ⊆ [0, 1], ĩ(x) = [̃iL(x), ĩU(x)] ⊆ [0, 1], f̃ (x) = [ f̃ L(x), f̃ U(x)] ⊆ [0, 1]
representing truth, indeterminacy, and falsity membership functions of the element x ∈ X,
and satisfying limits: 0 ≤ t̃U(x) + ĩU(x) + f̃ U(x) ≤ 3.

For convenience, we call ñ = 〈[t̃L, t̃U ], [ĩL, ĩU ], [ f̃ L, f̃ U ]〉 an interval neutrosophic element (INN).
The basic operational relations of INNs are defined as:

Definition 3. ([6]) Let ñ1 = 〈[t̃L
1 , t̃U

1 ], [ĩ
L
1 , ĩU1 ], [ f̃ U

1 , f̃ U
1 ]〉 and ñ2 = 〈[t̃L

2 , t̃U
2 ], [ĩL

2 , ĩU2 ], [ f̃ U
2 , f̃ U

2 ]〉 be two
INNs, then:

1. ñ1 ⊕ ñ2 = 〈[t̃L
1 + t̃L

2 − t̃L
1 t̃L

2 , t̃U
1 + t̃U

2 − t̃U
1 t̃U

2 ], [ĩ
L
1 ĩL

2 , ĩU1 ĩU2 ], [ f̃ L
1 f̃ L

2 , f̃ U
1 f̃ U

2 ]〉;
2. ñ1 ⊕ ñ2 = 〈[t̃L

1 t̃L
2 , t̃U

1 t̃U
2 ], [ĩ

L
1 + ĩL

2 − ĩL
1 ĩL

2 , ĩU1 + ĩU2 − ĩU1 ĩU2 ], [ f̃ L
1 + f̃ L

2 − f̃ L
1 ĩL

2 , f̃ U
1 + f̃ U

2 − f̃ U
1 f̃ U

2 ]〉;
3. rñ1 = 〈[1− (1− t̃L

1 )
r, 1− (1− t̃U

1 )
r
], [(ĩL

1 )
r
, (ĩU1 )

r
], [( f̃ L

1 )
r
, ( f̃ U

1 )
r
]〉;

4. ñ1
r = 〈[(t̃L

1 )
r, (t̃U

1 )
r
], [1− (1− ĩL

1 )
r
, 1− (1− ĩU1 )

r
], [1− (1− f̃ L

1 )
r
, 1− (1− f̃ U

1 )
r
]〉.

2.2. Some Concepts of INSs

On the basis of the distance measures of INSs [23], Ye defined some similarity measures between
INSs ñ1 and ñ2, which can be given as:

Definition 4. Let ñ1 = 〈[t̃L
1 , t̃U

1 ], [ĩ
L
1 , ĩU1 ], [ f̃ U

1 , f̃ U
1 ]〉 and ñ2 = 〈[t̃L

2 , t̃U
2 ], [ĩL

2 , ĩU2 ], [ f̃ U
2 , f̃ U

2 ]〉 be two INNs,
thus, the similarity function between ñ1 and ñ2 is defined by:

C(ñ1, ñ2) = 1−
(
(t̃L

1−t̃L
2 )

2
+(ĩL

1−ĩL
2 )

2
+( f̃ L

1 − f̃ L
2 )

2
+(t̃U

1 −t̃U
2 )

2
+(ĩU1 −ĩU2 )

2
+( f̃ U

1 − f̃ U
2 )

2)
6 . (3)

According to the value range of the similarity measures, we can obtain the value range of the
cosine function, we can obtain the following property 0 ≤ C(ñ1, ñ2) ≤ 1. Suppose the best ideal
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alternative ñ+ = 〈[t̃L+

1 ,̃tU+

1 ], [ĩL+

1 , ĩU
+

1 ], [ f̃ L+

1 , f̃ U+

1 ]〉 = 〈[1, 1], [0, 0], [0, 0]〉, then, the similarity measures
between ñ1 and ñ+ can be described as:

C(ñ1, ñ2) = 1−
(
(1−t̃L

1 )
2
+(ĩL

1 )
2
+( f̃ L

1 )
2
+(1−t̃U

1 )
2
+(ĩU1 )

2
+( f̃ U

1 )
2)

6 . (4)

The score function are effective tools to rank INNs, and here we give its definition:

Definition 5. ([25]) For ñ, the score function s(ñ) is defined as:

s(ñ) =
(
(t̃L

1+t̃U
1 )

2 +

(
1− (ĩL

1+ĩU1 )
2

)
+

(
1− ( f̃ L

1 + f̃ U
1 )

2

))
/3 (5)

obviously, s(ñ) ∈ [0, 1]. If s(ñ1) > s(ñ2), then ñ1 > ñ2.

2.3. The Fuzzy Measure and Choquet Integral

The Choquet integral is a powerful operator to aggregate kinds of fuzzy information in MADM
with respect to fuzzy measure.

Definition 6. ([30]) Let (X, A, μ) be a measurable space and μ : A → [0, 1] , if it satisfies the conditions:

1. μ(∅) = 0;
2. μ(A) ≤ μ(B) whenever A ⊂ B, A, B ∈ A;
3. I f A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . , An ∈ A, then μ

(∪∞
n=1 An

)
= limn→∞μ(An) ;

4. I f A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . , An ∈ A, then μ
(∪∞

n=1 An
)
= limn→∞μ(An) ;

then, we call μ be a fuzzy measure defined by Sugeno M.

To avoid the problems with computational complexity in paractical applications, gλ fuzzy
measure also called λ-fuzzy measure, was proposed by Sugeno M [30], which satisfies an additional
properties: μ(X ∪Y) = μ(X) + μ(Y) + gλ μ(X)μ(Y), gλ ∈ (−1, ∞) for all X, Y ∈ A and X ∩ Y = ∅.
Specially, the expression of gλ fuzzy measure defined on a finite set X = {x1, x2, . . . , xm} can be
simplified as:

Theorem 1. ([30]) Let X be a set (X = {x1, x2, . . . , xm}), λ-fuzzy measure defined on X is expressed as:

μ(X) =

⎧⎪⎪⎨⎪⎪⎩
1
λg

(
∏

i∈X

(
1 + λgμ(xi)

)− 1
)

, i f λg �= 0,

∑
i∈X

μ(xi), i f λg = 0,
(6)

where xi ∩ xj = ∅ for all i, j = 1, 2, 3, . . . , m and i �= j.

Then, the Choquet integral with respect to fuzzy measures, is defined as:

Definition 7. ([31]) When μ is a fuzzy measure, X = {x1, x2, . . . , xm} is a finite set. The Choquet integral
of a function f : X → [0, 1] with respect to fuzzy measure μ can be expressed as:

∫
f dμ =

m
∑

i=1

(
μ
(

Fφ(i)

)
− μ
(

Fφ(i−1)

))
⊕ f
(

xφ(i)

)
, (7)

where (φ(1), φ(2), . . . φ(i), . . . , φ(m)) is a permutation of (1, 2, . . . i, . . . , m) such that f
(

xφ(1)

)
≤

f
(

xφ(2)

)
≤ , . . . ,≤ f

(
xφ(i)

)
≤ , . . . ,≤ f

(
xφ(m)

)
, Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)} and Fφ(0) = ∅.
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3. Generalized Interval Neutrosphic Choquet Aggregation Operators

In what follows, based on the operational relations of INNs and Choquet aggregation operator,
we shall develop new generalized Choquet aggregation operators under the interval neutrosophic
environment, such as the generalized interval neutrosophic Choquet ordered averaging (G-INCOA)
operator and generalized interval neutrosophic Choquet ordered geometric (G-INCOG) operator.

3.1. The G-INCOA and G-INCOG Operators

Definition 8. When ñj(j = 1, 2, 3, . . . , m) is a collection of INNs, X= {x1, x2, x3, . . . , xm} is the set of
attributes and μ measure on X, the G-INCOA and G-INCOG operators are defined as:

G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1

(
μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

))
ñφ(j)

λ
) 1

λ , (8)

G− INCOGμ,λ{ñ1, ñ2, . . . , ñm} =
(
⊗m

j=1

(
μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

))
ñφ(j)

λ
) 1

λ , (9)

where λ > 0, μφ(i) = μ
(

Fφ(i)

)
−μ
(

Fφ(i−1)

)
. where (φ(1), φ(2), . . . φ(i), . . . , φ(m)) is a permutation of

(1, 2, . . . i, . . . , m) such that f
(

xφ(1)

)
≤ f

(
xφ(2)

)
≤ , . . . ,≤ f

(
xφ(i)

)
≤ , . . . ,≤ f

(
xφ(m)

)
, Fφ(0) = ∅

and Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)}.

Theorem 2. When ñj(j = 1, 2, 3, . . . , m) is a collection of INNs, then the aggregated value obtained
by the G-INCOA operator is also a INN, and:

G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1

(
μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

))
ñφ(j)

λ
) 1

λ

=

⎧⎨⎩
⎡⎣(1− m

∏
j=1

(
1−
(

tL
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− m

∏
j=1

(
1−
(

tU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,

⎡⎣1−
(

1− m
∏
j=1

(
1−
(

1− iL
φ(j)

)λ
)μφ(j)

) 1
λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− iU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,

⎡⎣1−
(

1− m
∏
j=1

(
1−
(

1− f L
φ(j)

)λ
)μφ(j)

) 1
λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− f U
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦⎫⎬⎭.

(10)

Similarly, the aggregated value obtained by the G-INCOG operator is also a INN,

G− INCOGμ,λ{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1

(
μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

))
ñφ(j)

λ
) 1

λ ,

=

⎧⎨⎩
⎡⎣1−

(
1− m

∏
j=1

(
1−
(

1− tL
φ(j)

)λ
)μφ(j)

) 1
λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− tU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,

⎡⎣(1− m
∏
j=1

(
1−
(

iL
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− m

∏
j=1

(
1−
(

iU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,

⎡⎣(1− m
∏
j=1

(
1−
(

f L
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− m

∏
j=1

(
1−
(

f U
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦⎫⎬⎭.

(11)

Proof. The result of m = 1 follows quickly from Definition 8, below we prove Equations (10) and (11)
by means of mathematical induction on m, here, take Equation (11) as an example.

(a) For m = 2, based on the operation relations of INNs defined in Definition 3, we have:
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(
μφ(1)ñφ(1)

λ
) 1

λ
=

⎧⎨⎩
⎡⎣1−

(
1−
(

1−
(

1− tL
φ(1)

)λ
)μφ(1)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(1)

)λ
)μφ(1)

) 1
λ

⎤⎦,

⎡⎣(1−
(

1−
(

iL
φ(1)

)λ
)μφ(1)

) 1
λ

,
(

1−
(

1−
(

iU
φ(1)

)λ
)μφ(1)

) 1
λ

⎤⎦,

⎡⎣(1−
(

1−
(

f L
φ(1)

)λ
)μφ(1)

) 1
λ

,
(

1−
(

1−
(

f U
φ(1)

)λ
)μφ(1)

) 1
λ

⎤⎦⎫⎬⎭;

(
μφ(2)ñφ(2)

λ
) 1

λ
=

⎧⎨⎩
⎡⎣1−

(
1−
(

1−
(

1− tL
φ(2)

)λ
)μφ(2)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(2)

)λ
)μφ(2)

) 1
λ

⎤⎦,

⎡⎣(1−
(

1−
(

iL
φ(2)

)λ
)μφ(2)

) 1
λ

,
(

1−
(

1−
(

iU
φ(2)

)λ
)μφ(2)

) 1
λ

⎤⎦,

⎡⎣(1−
(

1−
(

f L
φ(2)

)λ
)μφ(2)

) 1
λ

,
(

1−
(

1−
(

f U
φ(2)

)λ
)μφ(2)

) 1
λ

⎤⎦⎫⎬⎭;

thus, for m = 2, the G− INCOGμ, λ{ñ1, ñ2} can be obtained as:

G− INCOGμ,λ{ñ1, ñ2} =
(

μφ(1)ñφ(1)
λ
) 1

λ ⊕
(

μφ(2)ñφ(2)
λ
) 1

λ
=⎧⎨⎩

⎡⎣1−
(

1−
(

1−
(

1− tL
φ(1)

)λ
)μφ(1)

(
1−
(

1− tL
φ(2)

)λ
)μφ(2)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(1)

)λ
)μφ(1)

(
1−
(

1− tU
φ(2)

)λ
)μφ(2)

) 1
λ

⎤⎦,

⎡⎣(1−
(

1−
(

iL
φ(1)

)λ
)μφ(1)

(
1−
(

iL
φ(2)

)λ
)μφ(2)

) 1
λ

,
(

1−
(

1−
(

iU
φ(1)

)λ
)μφ(1)

(
1−
(

iU
φ(2)

)λ
)μφ(2)

) 1
λ

⎤⎦,

⎡⎣(1−
(

1−
(

f L
φ(1)

)λ
)μφ(1)

(
1−
(

f L
φ(2)

)λ
)μφ(2)

) 1
λ

,
(

1−
(

1−
(

f U
φ(1)

)λ
)μφ(1)

(
1−
(

f U
φ(2)

)λ
)μφ(2)

) 1
λ

⎤⎦⎫⎬⎭,

thus, Equation (11) holds for m = 2.

(b) If Equation (11) holds for m = k, then:

G− INCOGμ,λ{ñ1, ñ2, . . . , ñk} =
⎧⎨⎩
⎡⎣1−

(
1− k

∏
j=1

(
1−
(

1− tL
φ(j)

)λ
)μφ(j)

) 1
λ

, 1−
(

1− k
∏
j=1

(
1−
(

1− tU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,

⎡⎣(1− k
∏
j=1

(
1−
(

iL
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− k

∏
j=1

(
1−
(

iU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,

⎡⎣(1−∏k
j=1

(
1−
(

f L
φ(j)

)λ
)μφ(j)

) 1
λ

,
(

1−∏k
j=1

(
1−
(

f U
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦⎫⎬⎭.

For m = k + 1,

G− INCOGμ,λ{ñ1, ñ2, . . . , ñk, ñk+1} =
(
⊕k

j=1

(
μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

))
ñφ(j)

λ
) 1

λ ⊕
(

μφ(k+1)ñφ(k+1)
λ
) 1

λ
=⎧⎨⎩

⎡⎣1−
(

1− k
∏
j=1

(
1−
(

1− tL
φ(j)

)λ
)μφ(j)

) 1
λ

, 1−
(

1− k
∏
j=1

(
1−
(

1− tU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,⎡⎣(1− k
∏
j=1

(
1−
(

iL
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− k

∏
j=1

(
1−
(

iU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,⎡⎣(1− k
∏
j=1

(
1−
(

f L
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− k

∏
j=1

(
1−
(

f U
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦⎫⎬⎭⊗⎧⎨⎩
⎡⎣1−

(
1−
(

1−
(

1− tL
φ(k+1)

)λ
)μφ(k+1)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(k+1)

)λ
)μφ(k+1)

) 1
λ

⎤⎦,⎡⎣(1−
(

1−
(

iL
φ(k+1)

)λ
)μφ(k+1)

) 1
λ

,
(

1−
(

1−
(

iU
φ(k+1)

)λ
)μφ(k+1)

) 1
λ

⎤⎦⎡⎣(1−
(

1−
(

f L
φ(k+1)

)λ
)μφ(k+1)

) 1
λ

,
(

1−
(

1−
(

f U
φ(k+1)

)λ
)μφ(k+1)

) 1
λ

⎤⎦⎫⎬⎭
=

⎧⎨⎩
⎡⎣1−

(
1− k+1

∏
j=1

(
1−
(

1− tL
φ(j)

)λ
)μφ(j)

) 1
λ

, 1−
(

1− k+1
∏
j=1

(
1−
(

1− tU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,⎡⎣(1− k+1
∏
j=1

(
1−
(

iL
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− k+1

∏
j=1

(
1−
(

iU
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦,⎡⎣(1− k+1
∏
j=1

(
1−
(

f L
φ(j)

)λ
)μφ(j)

) 1
λ

,

(
1− k+1

∏
j=1

(
1−
(

f U
φ(j)

)λ
)μφ(j)

) 1
λ

⎤⎦⎫⎬⎭.

That is, for m = k + 1, the Equation (11) still holds, by the proof Equation (11), it is not difficult to
get Equation (10).
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This completes the proof of Theorem 2. �

Theorem 4. The G-INCOA and G-INCOG operators have the following desirable properties, taking
the G-INCOA operator as:

1. (Idempotency) Let ñj = ñ for all j = 1, 2, 3, . . . , m, and ñ = {[t̃L, t̃U ],[ĩL, ĩU ], [ f̃ L, f̃ U ]}, then:

G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} = {[t̃L, t̃U ],[ĩL, ĩU ], [ f̃ L, f̃ U ]}.

2. (Boundedness) Let ñ− = {[̃tL− , t̃U− ],[̃iL+ , ĩU
+
], [ f̃ L+ , f̃ U+

]}, ñ+ = {[̃tL+ , t̃U+
],[̃iL− , ĩU

−
], [ f̃ L− , f̃ U− ]},

ñ− ≤ G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} ≤ ñ+.

3. (Commutativity) If {ñ′1, ñ′2, . . . , ñ′m} is a permutation of {ñ1, ñ2, . . . , ñm}, then,

G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} = G− INCOAμ,λ{ñ′1, ñ′2, . . . , ñ′m}.

4. (Monotonity) If ñj ≤ ñ′j for ∀j ∈ {1, 2, . . . , n}, then,

G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} ≤ G− INCOAμ,λ{ñ′1, ñ′2, . . . , ñ′m}.

Proof. Suppose (1, 2, 3, . . . , m) is a permutation such that ñ1 ≤ ñ2 ≤ ñ3 . . . ,≤ ñm.

1. For ñ = {[t̃L, t̃U ],[ĩL, ĩU ], [ f̃ L, f̃ U ]}, according to Theorem 1, it follows that:

G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} =
⎧⎨⎩
⎡⎣(1−

(
1−
(

tL
φ(j)

)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

,

(
1−
(

1−
(

tU
φ(j)

)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

⎤⎦,⎡⎣1−
(

1−
(

1−
(

1− iL
φ(j)

)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

, 1−
(

1−
(

1−
(

1− iU
φ(j)

)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

⎤⎦,⎡⎣1−
(

1−
(

1−
(

1− f L
φ(j)

)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

, 1−
(

1−
(

1−
(

1− f L
φ(j)

)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

⎤⎦⎫⎬⎭ .

Since ∑m
j=1
(
μ
(
Fj
)− μ

(
Fj−1
))

= 1, thus, G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} = {[̃tL, t̃U],[̃iL, ĩU], [ f̃ L, f̃ U]}.

2 For any t̃j = [t̃L
j , t̃U

j ], ĩj = [ĩL
j , ĩUj ] and f̃ j = [ f̃ U

j , f̃ U
j ], j = 1, 2, . . . , m, we have,

t̃L− ≤ t̃L
j ≤ t̃L+

; t̃U− ≤ t̃U
j ≤ t̃U+

; ĩL− ≤ ĩL
j ≤ ĩL+

;

ĩU
− ≤ ĩUj ≤ ĩU

+
; f̃ L− ≤ f̃ L

j ≤ f̃ L+
; f̃ U− ≤ f̃ U

j ≤ f̃ U+
.

Since y = xa(0 < a < 1) is a monotone increasing function when x > 0 and values in the G-INCOA
operator are all valued in [0, 1], therefore,

(
1−
(

1−
(

t̃L−
)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

+

(
1−
(

1−
(

t̃U−
)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

≤
(

1− m
∏
j=1

(
1−
(

tL
φ(j)

)λ
)(μ(Fj)−μ(Fj−1))

) 1
λ

+

(
1− m

∏
j=1

(
1−
(

tU
φ(j)

)λ
)(μ(Fj)−μ(Fj−1))

) 1
λ

≤
(

1−
(

1−
(

t̃L+
)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

+

(
1−
(

1−
(

t̃U+
)λ
)∑m

j=1 (μ(Fj)−μ(Fj−1))
) 1

λ

.

Since ∑m
j=1
(
μ
(

Fj
)− μ

(
Fj−1

))
= 1, the above equation is equivalent to:
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t̃L− + t̃U− ≤
(

1− m
∏
j=1

(
1−
(

tL
φ(j)

)λ
)(μ(Fj)−μ(Fj−1))

) 1
λ

+

(
1− m

∏
j=1

(
1−
(

tU
φ(j)

)λ
)(μ(Fj)−μ(Fj−1))

) 1
λ

.

≤ t̃L+
+ t̃U+

Analogously, we have:

ĩL− + ĩU
− ≥ 1−

(
1− m

∏
j=1

(
1−
(

1− iL
φ(j)

)λ
)μφ(j)

) 1
λ

+ 1−
(

1− m
∏
j=1

(
1−
(

1− iU
φ(j)

)λ
)μφ(j)

) 1
λ

≥ ĩL+
+ ĩU

+
;

and

f̃ L− + f̃ U− ≥ 1−
(

1− m
∏
j=1

(
1−
(

1− f L
φ(j)

)λ
)μφ(j)

) 1
λ

+ 1−
(

1− m
∏
j=1

(
1−
(

1− f L
φ(j)

)λ
)μφ(j)

) 1
λ

.

≥ f̃ L+
+ f̃ U+

;

Since s(ñ−) ≤ s(ñ) ≤ s(ñ+), namely, ñ− ≤ G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} ≤ ñ+.

3 Suppose (φ(1), φ(2), . . . , φ(m)) is a permutation of both {ñ′1, ñ′2, . . . , ñ′m} and {ñ1, ñ2, . . . , ñm},
such that ñφ(1) ≤ ñφ(2), . . . ,≤ ñφ(m), Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)}, then,

G− INCOAμ,λ{ñ1, ñ2, . . . , ñm} = G− INCOAμ,λ{ñ′1, ñ′2, . . . , ñ′m} = ⊕m
j=1

((
μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

))
ñφ(j)

)
.

4 In general, it can be derived from the second theorem.

This completes the proof of Theorem 4. �

3.2. Families of G-INCOA and G-INCOG Operators

In this section, we consider special cases of the G-INCOA and G-INCOG operators and distinguish
them in two main classes, the first class focuses on the parameter λ, and the second class on the fuzzy
measure μ

(
xj
)
.

3.2.1. Analyzing the Parameter λ

Like other generalized operators, both the G-INCOA and G-INCOG can reduce to some general
circumstances when the parameter λ takes different values, which are described as:

(1) When λ = 1, the G-INCOA operator reduces to the interval neutrosophic Choquet ordered
averaging (INCOA) operator,

INCOAμ{ñ1, ñ2, . . . , ñm} = ⊕m
j=1

((
μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

))
ñφ(j)

)
=

{[
1− m

∏
j=1

(
1− tL

φ(j)

)μφ(j)
, 1− m

∏
j=1

(
1− tU

φ(j)

)μφ(j)

]
,

[
m
∏
j=1

(
iL
φ(j)

)μφ(j)
,

m
∏
j=1

(
iU
φ(j)

)μφ(j)

]
,

[
m
∏
j=1

(
f L
φ(j)

)μφ(j)
,

m
∏
j=1

(
f U
φ(j)

)μφ(j)

]
.

Similarly, the G-INCOG operator reduces to the interval neutrosophic Choquet ordered geometric
(INCOG) operator when λ = 1.

(2) If λ → 0 , the G-INCOA operator reduces to the INCOG operator,

INCOGμ{ñ1, ñ2, . . . , ñm} = ⊗m
j=1

(
ñφ(j)

(μ(Fφ(j))−μ(Fφ(j−1)))
)
=

{[
m
∏
j=1

(
tL
φ(j)

)μφ(j)
,

m
∏
j=1

(
tU
φ(j)

)μφ(j)

]
,[

1− m
∏
j=1

(
1− iL

φ(j)

)μφ(j)
, 1− m

∏
j=1

(
1− iU

φ(j)

)μφ(j)

]
,

[
1− m

∏
j=1

(
1− f L

φ(j)

)μφ(j)
, 1− m

∏
j=1

(
1− f U

φ(j)

)μφ(j)

]}
.

Similarly, the G-INCOG operator reduces to the INCOA operator.
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(3) When λ = 2, the G-INCOA operator can reduce to the interval neutrosophic Choquet ordered
quadratic averaging (INCOQA) operator,

INCOQAμ{ñ1, ñ2, . . . , ñm} =
(

μφ(1)ñ
2
φ(1) ⊕ μφ(2)ñ

2
φ(2) ⊕ . . .⊕ μφ(m)ñ

2
φ(m)

)1/2
.

Similarly, then the G-INCOG operator can reduce to the interval neutrosophic Choquet ordered
quadratic geometric (INCOQG) operator.

(4) If λ = 3, then the G-INCOA operator can reduce to the interval neutrosophic Choquet ordered
cubic averaging (INCOCA) operator,

INCOCAμ{ñ1, ñ2, . . . , ñm} =
(

μφ(1)ñ
3
φ(1) ⊕ μφ(2)ñ

3
φ(2) ⊕ . . .⊕ μφ(m)ñ

3
φ(m)

)1/3
.

Similarly, then the G-INCOG operator can reduce to the interval neutrosophic Choquet ordered
cubic geometric (INCOCG) operator.

3.2.2. Analyzing the Fuzzy Measure μ
(
xj
)

When considering different circumstances of the fuzzy measure μ
(
xj
)
, some special cases of the

G-INCOA and G-INCOG operators are given as:

(1) When μ(F) ≡ 1, then G− INCOAμ, λ{ñ1, ñ2, . . . , ñm} = max{ñ1, ñ2, . . . , ñm};

(2) When μ(F) ≡ 0, then G− INCOAμ, λ{ñ1, ñ2, . . . , ñm} = min{ñ1, ñ2, . . . , ñm};

(3) The G-INCOA operator reduces to the generalized interval neutrosophic weighted averaging

(G-INWA) operator, if the independent condition μ
(

xφ(j)

)
= μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

)
holds.

G− INWA{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1μ
(
xj
)⊕ ñφ(j)

λ
) 1

λ
=⎧⎨⎩

⎡⎣(1− m
∏
j=1

(
1−
(

tL
φ(j)

)λ
)μ(xj)

) 1
λ

,

(
1− m

∏
j=1

(
1−
(

tU
φ(j)

)λ
)μ(xj)

) 1
λ

⎤⎦,⎡⎣1−
(

1− m
∏
j=1

(
1−
(

1− iL
φ(j)

)λ
)μ(xj)

) 1
λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− iU
φ(j)

)λ
)μ(xj)

) 1
λ

⎤⎦,⎡⎣1−
(

1− m
∏
j=1

(
1−
(

1− f L
φ(j)

)λ
)μ(xj)

) 1
λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− f U
φ(j)

)λ
)μ(xj)

) 1
λ

⎤⎦⎫⎬⎭.

(4) When μ
(

xj
)
= 1/m, for j = 1, 2, 3, . . . , m, both the G-INCOA and G-INWA operators reduce to

the generalized interval neutrosophic averaging (G-INA) operator, which is defined as:

G− INWA{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1
1
m ⊕ ñφ(j)

λ
) 1

λ
=⎧⎪⎨⎪⎩

⎡⎢⎣(1− m
∏
j=1

(
1−
(

tL
φ(j)

)λ
) 1

m
) 1

λ

,

(
1− m

∏
j=1

(
1−
(

tU
φ(j)

)λ
) 1

m
) 1

λ

⎤⎥⎦,

⎡⎢⎣1−
(

1− m
∏
j=1

(
1−
(

1− iL
φ(j)

)λ
) 1

m
) 1

λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− iU
φ(j)

)λ
) 1

m
) 1

λ

⎤⎥⎦,

⎡⎢⎣1−
(

1− m
∏
j=1

(
1−
(

1− f L
φ(j)

)λ
) 1

m
) 1

λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− f U
φ(j)

)λ
) 1

m
) 1

λ

⎤⎥⎦
⎫⎪⎬⎪⎭.
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(5) When μ(F) = ∑
|F|
j=1 ωj for all F ⊆ X, where |F| is the number of elements in F, then ωj =

μ
(

Fφ(j)

)
− μ
(

Fφ(j−1)

)
, j = 1, 2, . . . , m, where ω = (ω1,ω2, . . . ,ωm)T such that ωj ≥ 0 and

∑m
j=1 ωj = 1. In such a situation, the G-INCOA operator reduces to the generalized interval

neutrosophic ordered weighted averaging (G-INOWA) operator as:

G− INOWA{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1ωj ⊕ ñφ(j)
λ
) 1

λ

=

⎧⎨⎩
⎡⎣(1− m

∏
j=1

(
1−
(

tL
φ(j)

)λ
)ωj

) 1
λ

,

(
1− m

∏
j=1

(
1−
(

tU
φ(j)

)λ
)ωj

) 1
λ

⎤⎦,⎡⎣1−
(

1− m
∏
j=1

(
1−
(

1− iL
φ(j)

)λ
)ωj

) 1
λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− iU
φ(j)

)λ
)ωj

) 1
λ

⎤⎦,⎡⎣1−
(

1− m
∏
j=1

(
1−
(

1− f L
φ(j)

)λ
)ωj

) 1
λ

, 1−
(

1− m
∏
j=1

(
1−
(

1− f U
φ(j)

)λ
)ωj

) 1
λ

⎤⎦⎫⎬⎭.

Particularly, when μ(F) = |F|/m, for all F ⊆ X, then the G-INCOA operator and G-INOWA
operator can reduce to the G-INA operator. Similarly, the G-INCOG can reduce to G-INOWG operator,
the G-ING operator, the G-INOWG operator and others.

4. Application in MADM under Interval Neutrosophic Environment

This section puts forward new approaches based on the G-INCOA and G-INCOG operators for
MADM problems with interval neutrosophic information, where the characteristics of the alternatives
are represented by INSs and the interaction relationship among attributes can be considered. Thus,
the remaining issue is to use these aggregation operators in practical MADM problems to verify the
correctness and practicality of them.

4.1. Approaches Based on the G-INCOA and G-INCOG Operators for MADM

Let X = {X1, X2, . . . , Xm} be a finite set of m inter-related attributes and C = {C1, C2, . . . , Cn} be
a set of n choices. Suppose that with respect to the attributes, the alternatives C = {C1, C2, . . . , Cn}
denoted by an interval neutrosophic matrix N = (ñij = {t̃ij, ĩij, f̃ij})n×m, in detail, t̃ij, ĩij, f̃ij indicate
the truth, indeterminacy and falsity membership function of Ci satisfying xj given by decision-makers,
respectively. Next, to get the best choice, the G-INCOA and G-INCOG operators are utilized to
establish MADM methods with interval neutrosophic information, which involves the following steps:

Step 1. Reorder the decision matrix

With respect to attributes X = {X1, X2, . . . , Xm}, reorder m INNs ñij of Ci (i = 1, 2, . . . , m) from
smallest to largest, according to their score function values s

(
ñij
)

calculated by Equation (5), the reorder
sequence for i = 1, 2, . . . , m is (φ(1), φ(2), . . . , φ(m));

Step 2. Confirm fuzzy measures of m attributes

Use gλ fuzzy measure defined in Equation (6) to determine fuzzy measures μ of X, in which the
interaction relationship among attributes is considered;

Step 3. Aggregate decision information by the G-INCOA or G-INCOG operators

Aggregate m INNs ñiφ(j) of Ci based on the G-INCOA and G-INCOG operator defined in Equation
(8) or (9), with respect to attributes X = {X1, X2, . . . , Xm}, as proved by Theorem 2, the aggregated
values obtained by the G-INCOA and G-INCOG operators are also INNs;

Step 4. Rank all alternatives

Rank all alternatives to select the most desirable one by their score function values between ñi,
described in Equation (5).
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4.2. Numerical Example

An illustrative example concerning selecting is utilized to verify feasibility of the proposed MADM
approaches. Suppose that a fund manager in a wealth management firm is assessing four potential
investment opportunities, there is a panel with four possible alternatives denoted by C1, C2, C3, C4.
During MADM process, some attributes should be taken into account: (1) X1 is risk; (2) X2 is growth;
(3) X3 is socio-political issues and environmental impacts. Experts are required to evaluate the four
possible enterprises Ci(i = 1, 2, 3, 4) under these attributes, and interval neutrosophic decision matrix
N =

(
ñij
)

4×3 is constructed as:

N =

⎛⎜⎜⎜⎝
([0.4, 0.5], [0.1, 0.2], [0.2, 0.4]) ([0.3, 0.5], [0.2, 0.3], [0.3, 0.5]) ([0.5, 0.6], [0.2, 0.3], [0.2, 0.3])
([0.3, 0.5], [0.2, 0.3], [0.2, 0.4]) ([0.2, 0.4], [0.2, 0.3], [0.3, 0.3]) ([0.3, 0.4], [0.3, 0.4], [0.1, 0.4])
([0.5, 0.8], [0.1, 0.2], [0.1, 0.2]) ([0.5, 0.6], [0.1, 0.3], [0.2, 0.4]) ([0.5, 0.7], [0.1, 0.2], [0.1, 0.2])
([0.3, 0.5], [0.2, 0.4], [0.3, 0.4]) ([0.3, 0.5], [0.3, 0.4], [0.2, 0.5]) ([0.2, 0.5], [0.3, 0.4], [0.3, 0.4])

⎞⎟⎟⎟⎠.

Step 1. Get score function values of ñij calculated by Equation (5), shown as Table 1,

Table 1. Score values of ñij.

Ci

Xj X1 X2 X3

C1 0.667 0.583 0.683
C2 0.617 0.65 0.583
C3 0.817 0.683 0.767
C4 0.538 0.567 0.55

To facilitate the following calculation and accord to their score function values, the reordered
decision matrix N′ can be constructed as:

N′ =

⎛⎜⎜⎜⎝
([0.3, 0.5], [0.2, 0.3], [0.3, 0.5]) ([0.4, 0.5], [0.1, 0.2], [0.2, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.2, 0.3])
([0.3, 0.4], [0.3, 0.4], [0.1, 0.4]) ([0.3, 0.5], [0.2, 0.3], [0.2, 0.4]) ([0.2, 0.4], [0.2, 0.3], [0.3, 0.3])
([0.5, 0.6], [0.1, 0.3], [0.2, 0.4]) ([0.5, 0.7], [0.1, 0.2], [0.1, 0.2]) ([0.5, 0.8], [0.1, 0.2], [0.1, 0.2])
([0.3, 0.5], [0.2, 0.4], [0.3, 0.4]) ([0.2, 0.5], [0.3, 0.4], [0.3, 0.4]) ([0.3, 0.5], [0.3, 0.4], [0.2, 0.5])

⎞⎟⎟⎟⎠.

Step 2. First, if the fuzzy measures of all inter-related attributes are given as follows: μ(x1) = 0.25,
μ(x2) = 0.38, μ(x3) = 0.46. According to Equation (6), the value of λg is obtained: λg = −0.24. Thus,
we have μ(x1, x2) = 0.6072, μ(x2, x3) = 0.798, μ(x1, x3) = 0.6824, μ(X) = 1.

Step 3. Aggregate ñij(j = 1, 2, 3; i = 1, 2, 3, 4) by utilizing the G-INCOA operator (in which λ = 1) to
derive the comprehensive score values ñi for ai(i = 1, 2, 3, 4).

ñ1 = {[0.431, 0.549], [0.172, 0.277], [0.158, 0.367]};

ñ2 = {[0.327, 0.427], [0.267, 0.338], [0.195, 0.354]};

ñ3 = {[0.500, 0.669], [0.100, 0.228], [0.125, 0.249]};

ñ4 = {[0.260, 0.500], [0.348, 0.400], [0.264, 0.430]}.

Step 4. Ranking the comprehensive score values ñi for ai(i = 1, 2, 3, 4), we get:

s(ñ1) = 0.618, s(ñ2) = 0.6, s(ñ3) = 0.745, s(ñ4) = 0.553.

Therefore, we have a3 > a1 > a2 > a4 and a3 is the best choice.
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If we utilize the G-INCOG operator for this MADM problem, aggregate ñij(j = 1, 2, 3; i = 1, 2, 3, 4)
to derive the comprehensive score value ñi for ai(i = 1, 2, 3, 4).

ñ′1 = {[0.418, 0.544], [0.182, 0.290], [0.178, 0.379]};

ñ′2 = {[0.322, 0.454], [0.270, 0.370], [0.247, 0.360]};

ñ′3 = {[0.500, 0.689], [0.100, 0.232], [0.133, 0.267]};

ñ′4 = {[0.253, 0.500], [0.364, 0.400], [0.270, 0.434]}.

Then, ranking the score function values of INNs, we get:

s
(
ñ′1
)
= 0.656, s

(
ñ′2
)
= 0.588, s

(
ñ′3
)
= 0.743, s

(
ñ′4
)
= 0.548.

Rank ai according to the score values a3 > a1 > a2 > a4 . Therefore, we can see that a3 is the best
choice. Obviously, the above two kinds of ranking orders are the same, therefore, the above example
clearly indicates that the proposed MADM methods are applicable and effective under an interval
neutrosophic environment.

4.3. Rank Alternatives for Different Values of λ

In real life, decision makers may determine the value of λ by different MADM problems or their
preferences, which makes the decision-making process more flexible. In this section, we use different
values of parameter λ of the G-INCOA and G-INCOG operators, such as λ → 0 or λ = 1− 10, to rank
alternatives of the numerical example in Section 4.2.

Combined with the proposed approaches for MADM with interval neutrosophic information, we
can obtain their score function values of four alternatives, the ranking results for different values of
λ determined by the G-INCOA and G-INCOG operator are shown in Figures 1 and 2, respectively.
As shown in Figures 1 and 2, the best choice is always a3 and the worst alternative is always a4,
which means they have higher accuracy and greater reference value. Besides, the changing trends of
decision results with parameter λ calculated by the G-INCOA operator presents an increasing trend,
meanwhile, the changing trends of decision results with λ calculated by the G-INCOG operator shows
a declining trend, which further validates the duality of the proposed operators.

Figure 1. The changing trends of decision results with λ calculated by the G-INCOA operator.
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Figure 2. The changing trends of decision results with λ calculated by the G-INCOG operator.

5. Apply the Proposed Operators for INSs to Cluster Analysis

5.1. New Clustering Algorithm for INSs

In this section, we intend to propose a new clustering algorithm for INSs to illustrate the
efficiency of the proposed operators. Let N = (ñij = {t̃ij, ĩij, f̃ij})n×m be a matrix of INNs on
X = {X1, X2, . . . , Xm}, the algorithm can be described as:

Step 1. Using the proposed operator, here, take the G-INCOA operator as an example, to aggregate m
INNs of each alternative to an comprehensive INN ñi; Using the similarity measures function defined
in Equation (3) to calculate measures between ñj and ñk (j, k = 1, 2, . . . , m), the corresponding results
are recorded in a matrix Sm×m = Sjk;

Step 2. Check whether the measure matrix S satisfies S2 ⊆ S, where S2 = S ◦ S =
(

S′jk
)

m×m
, and

ñ′jk = maxp

{
min
{

Sjp, Spk

}}
, (j, k = 1, 2, . . . , m). If it does not hold, then construct the equivalent

matrix: S2p
: S → S2 → S4 → . . . → until S2p

= S2(p+1)
;

Step 3. For a given confident level α ∈ [0, 1], construct a α-cutting matrix Sα =
(

Sα
jk

)
m×m

, where Sα
jk is

defined as:

Sα
jk =

{
0, if Sjk < α;
1, if Sjk ≥ α.

Step 4. Classify the INSs by the rule: if all elements of the jth line in Sα are the same as the
corresponding elements of the kth line, thus, the INSs ñj and ñk are supposed as the same type.

5.2. Numerical Example

A numerical example concerning investing is utilized to demonstrate the application of these
aggregation operators, as well as the effectiveness of them. Suppose there are five attributes to
be considered: (1) X1 : profitability; (2) X2 : operating capacity; (3) X3 : market competition.
The fuzzy measures of attributes in X are given as follows: μ(x1) = 0.362, μ(x2) = 0.2,
μ(x3) = 0.438. Firstly, according to Equation (7), the value of λg is obtained: λg = 0.856 .
Thus, μ(x1, x2) = 0.626, μ(x2, x3) = 0.713, μ(x1, x3) = 0.936, μ(X) = 1. Experts are required
to evaluate 10 firms Ci(i = 1, 2, . . . , 10) under the three attributes, and interval neutrosophic decision
matrix N =

(
ñij
)

10×3 is constructed as:
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N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

([0.3, 0.5], [0.5, 0.6], [0.4, 0.6]) ([0.4, 0.5], [0.4, 0.6], [0.4, 0.5]) ([0.7, 0.8], [0.2, 0.3], [0.3, 0.5])
([0.4, 0.6], [0.3, 0.5], [0.3, 0.7]) ([0.6, 0.8], [0.3, 0.4], [0.2, 0.4]) ([0.2, 0.3], [0.8, 0.9], [0.7, 0.8])
([0.5, 0.7], [0.2, 0.3], [0.4, 0.5]) ([0.7, 0.9], [0.2, 0.4], [0.1, 0.2]) ([0.3, 0.4], [0.5, 0.7], [0.7, 0.8])
([0.3, 0.5], [0.4, 0.6], [0.5, 0.8]) ([0.8, 0.9], [0.1, 0.2], [0.2, 0.3]) ([0.7, 0.9], [0.2, 0.3], [0.2, 0.3])
([0.8, 1.0], [0.2, 0.3], [0.1, 0.3]) ([0.8, 1.0], [0.1, 0.2], [0.1, 0.3]) ([0.4, 0.6], [0.3, 0.4], [0.4, 0.6])
([0.4, 0.6], [0.4, 0.6], [0.5, 0.7]) ([0.2, 0.3], [0.6, 0.8], [0.7, 0.9]) ([0.9, 1.0], [0.1, 0.2], [0.1, 0.2])
([0.5, 0.6], [0.4, 0.5], [0.5, 0.6]) ([0.7, 0.9], [0.2, 0.3], [0.2, 0.4]) ([0.6, 0.8], [0.3, 0.4], [0.2, 0.5])
([0.9, 1.0], [0.1, 0.2], [0.1, 0.2]) ([0.7, 0.8], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.5], [0.4, 0.6], [0.5, 0.7])
([0.4, 0.6], [0.6, 0.7], [0.2, 0.4]) ([0.9, 1.0], [0.1, 0.2], [0.1, 0.2]) ([0.6, 0.7], [0.3, 0.4], [0.3, 0.5])
([0.8, 0.9], [0.2, 0.4], [0.2, 0.3]) ([0.6, 0.8], [0.3, 0.5], [0.3, 0.4]) ([0.5, 0.8], [0.3, 0.6], [0.4, 0.5])

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the following, we use the proposed clustering algorithm to cluster these alternatives:

Step 1. Aggregated the G-INCOA operator defined in Equation (8) and calculated by the similarity
measure function defined in Equation (5), the weighted measures Sjk between each pair of alternatives
are recorded in a matrix S10×10.

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5984 0.458 0.4635 0.3964 0.7100 0.5572 0.4761 0.4143 0.3984
0.5984 1 0.5 0.5136 0.4456 0.4667 0.5409 0.5456 0.5051 0.3851
0.4580 0.5 1 0.6811 0.5596 0.4080 0.6994 0.6875 0.6682 0.4753
0.4635 0.5136 0.6811 1 0.5421 0.4540 0.7236 0.6744 0.731 0.4747
0.3964 0.4456 0.5596 0.5421 1 0.3762 0.5734 0.6517 0.625 0.7511
0.7100 0.4667 0.4080 0.4540 0.3762 1 0.5431 0.4647 0.3813 0.4019
0.5572 0.5409 0.6994 0.7236 0.5734 0.5431 1 0.7023 0.6726 0.5211
0.4761 0.5456 0.6875 0.6744 0.6517 0.4647 0.7023 1 0.6615 0.6063
0.4143 0.5051 0.6682 0.7310 0.6250 0.3813 0.6726 0.6615 1 0.5372
0.3984 0.3851 0.4753 0.4747 0.7511 0.4019 0.5211 0.6063 0.5372 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Step 2. The equivalent measure matrix can be constructed as follows, as S8 = S4, therefore, S4 is an
equivalent measure matrix.

S2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5984 0.5572 0.5572 0.5572 0.5431 0.5572 0.5572 0.5572 0.5211
0.5984 1 0.5456 0.5456 0.5456 0.5984 0.5572 0.5456 0.5456 0.5456
0.5572 0.5456 1 0.6994 0.6517 0.5431 0.6994 0.6994 0.6811 0.6063
0.5572 0.5456 0.6944 1 0.6517 0.5431 0.7236 0.7023 0.7310 0.6063
0.5572 0.5456 0.6517 0.6517 1 0.5431 0.6517 0.6517 0.6517 0.7511
0.5431 0.5984 0.5431 0.5431 0.5431 1 0.5572 0.5431 0.5431 0.5211
0.5572 0.5572 0.6994 0.7236 0.6517 0.5572 1 0.7023 0.7236 0.6063
0.5572 0.5456 0.6994 0.7023 0.6517 0.5431 0.7023 1 0.6744 0.6517
0.5572 0.5456 0.6811 0.7310 0.6517 0.5431 0.7236 0.6744 1 0.6520
0.5211 0.5456 0.6063 0.6063 0.7511 0.5211 0.6063 0.6517 0.6250 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

S4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5984 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5984 1 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 1 0.6994 0.6517 0.5431 0.6994 0.6994 0.6944 0.6517
0.5572 0.5572 0.6944 1 0.6517 0.5572 0.7236 0.7023 0.7310 0.6517
0.5572 0.5572 0.6517 0.6517 1 0.5572 0.6517 0.6517 0.6517 0.7511
0.5984 0.5984 0.5572 0.5572 0.5572 1 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 0.6994 0.7236 0.6517 0.5572 1 0.7023 0.7236 0.6517
0.5572 0.5572 0.6994 0.7023 0.6517 0.5572 0.7023 1 0.7023 0.6517
0.5572 0.5572 0.6944 0.7310 0.6517 0.5572 0.7236 0.7023 1 0.6520
0.5572 0.5572 0.6517 0.6517 0.7511 0.5572 0.6517 0.6517 0.6517 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

30



Symmetry 2018, 10, 85

S8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5984 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5984 1 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 1 0.6994 0.6517 0.5431 0.6994 0.6994 0.6944 0.6517
0.5572 0.5572 0.6944 1 0.6517 0.5572 0.7236 0.7023 0.7310 0.6517
0.5572 0.5572 0.6517 0.6517 1 0.5572 0.6517 0.6517 0.6517 0.7511
0.5984 0.5984 0.5572 0.5572 0.5572 1 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 0.6994 0.7236 0.6517 0.5572 1 0.7023 0.7236 0.6517
0.5572 0.5572 0.6994 0.7023 0.6517 0.5572 0.7023 1 0.7023 0.6517
0.5572 0.5572 0.6944 0.7310 0.6517 0.5572 0.7236 0.7023 1 0.6520
0.5572 0.5572 0.6517 0.6517 0.7511 0.5572 0.6517 0.6517 0.6517 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Step 3. For a given confident level α ∈ [0, 1], we can construct a α-cutting matrix Sα =
(

Sα
jk

)
10×10

for

S8 =
(

Sjk

)
10×10

, different α produces different α-cutting matrix, for example, if α = 0, the α-cutting

matrix can be constructed as Sα =
(

Sα
jk = 1

)
10×10

, since S8 =
(

Sjk > 0
)

10×10
.

Step 4. Based on the α-cutting matrix Sα, we can classify 10 alternatives into different clusters,
the possible classification of these choices is shown in Table 2.

Table 2. Different clusters of 10 alternatives with respect to different α.

Class Confidence Level Clusters

8 0.731 < α ≤ 1 {{C1}, {C2}, {C3}, {C4}, {C5}, {C6}, {C7}, {C8}, {C9}, {C10}}
7 0.7236 < α ≤ 0.731 {{C1}, {C2}, {C3}, {C4, C9}, {C5}, {C6}, {C7}, {C8}, {C10}}
6 0.7023 < α ≤ 0.7236 {{C1}, {C2}, {C3}, {C4, C7, C9}, {C5}, {C6}, {C8}, {C10}}
5 0.6994 < α ≤ 0.7023 {{C1}, {C2}, {C3}, {C4, C7, C8, C9}, {C5}, {C6}, {C10}}
4 0.6517 < α ≤ 0.6994 {{C1}, {C2}, {C3, C4, C7, C8, C9}, {C5, C10}, {C6}}
3 0.5984 < α ≤ 0.6517 {{C1}, {C2}, {C3, C4, C5, C7, C8, C9, C10}, {C6}}
2 0.5572 < α ≤ 0.5984 {{C1, C2, C6}, {C3, C4, C5, C7, C8, C9, C10}}
1 0 < α ≤ 0.5572 {{C1, C2, C3, C4, C5, C6, C7, C8, C9, C10}}

With respect to different values of α, different clusters of 10 alternatives are shown in Table 2. When
0 < α ≤ 0.5572, all alternatives belong to the same cluster, then 0.5572 < α ≤ 0.5984, 10 alternatives are
divided in to two clusters, namely, {C3, C4, C5, C7, C8, C9, C10} and {C1, C2, C6}, until 0.731 < α ≤ 1,
each alternative is an independent cluster.

6. Conclusions

This paper studies new MADM methods and clustering algorithm under an interval neutrosophic
environment, in which the attributes are inter-related. Motivated by the idea of the generalized operator,
we proposed the G-INCOA and G-INCOG operators based on the related research of the NS and SVNS
theories, which can reduce to the existing aggregation operators of INSs and have some desirable
properties. By taking different values of the parameters and comparing them with existing methods
for MADM problems, under interval neutrosophic environment, results obtained by the proposed
operators are consistent and accurate, which illustrates their practicability in application. The new
clustering algorithm are established on the G-INCOA and G-INCOG operators, a numerical example
concerning investing is utilized as the demonstration of the application of the proposed aggregation
operators, as well as the effectiveness of them. In the future, motivated by different MADM methods
under linguistic environment [34,35], it is worth investigating the use granular computing techniques
to develop new MADM methods with interval neutrosophic linguistic information.
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Abstract: Big Data is a large-sized and complex dataset, which cannot be managed using traditional
data processing tools. Mining process of big data is the ability to extract valuable information from
these large datasets. Association rule mining is a type of data mining process, which is indented to
determine interesting associations between items and to establish a set of association rules whose
support is greater than a specific threshold. The classical association rules can only be extracted from
binary data where an item exists in a transaction, but it fails to deal effectively with quantitative
attributes, through decreasing the quality of generated association rules due to sharp boundary
problems. In order to overcome the drawbacks of classical association rule mining, we propose in
this research a new neutrosophic association rule algorithm. The algorithm uses a new approach
for generating association rules by dealing with membership, indeterminacy, and non-membership
functions of items, conducting to an efficient decision-making system by considering all vague
association rules. To prove the validity of the method, we compare the fuzzy mining and the
neutrosophic mining. The results show that the proposed approach increases the number of generated
association rules.

Keywords: neutrosophic association rule; data mining; neutrosophic sets; big data

1. Introduction

The term ‘Big Data’ originated from the massive amount of data produced every day. Each day,
Google receives cca. 1 billion queries, Facebook registers more than 800 million updates, and YouTube
counts up to 4 billion views, and the produced data grows with 40% every year. Other sources of
data are mobile devices and big companies. The produced data may be structured, semi-structured,
or unstructured. Most of the big data types are unstructured; only 20% of data consists in structured
data. There are four dimensions of big data:

(1) Volume: big data is measured by petabytes and zettabytes.
(2) Velocity: the accelerating speed of data flow.
(3) Variety: the various sources and types of data requiring analysis and management.
(4) Veracity: noise, abnormality, and biases of generated knowledge.

Consequently, Gartner [1] outlines that big data’s large volume requires cost-effective, innovative
forms for processing information, to enhance insights and decision-making processes.

Prominent domains among applications of big data are [2,3]:

(1) Business domain.
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(2) Technology domain.
(3) Health domain.
(4) Smart cities designing.

These various applications help people to obtain better services, experiences, or be healthier,
by detecting illness symptoms much earlier than before [2]. Some significant challenges of managing
and analyzing big data are [4,5]:

(1) Analytics Architecture: The optimal architecture for dealing with historic and real-time data at
the same time is not obvious yet.

(2) Statistical significance: Fulfill statistical results, which should not be random.
(3) Distributed mining: Various data mining methods are not fiddling to paralyze.
(4) Time evolving data: Data should be improved over time according to the field of interest.
(5) Compression: To deal with big data, the amount of space that is needed to store is highly relevant.
(6) Visualization: The main mission of big data analysis is the visualization of results.
(7) Hidden big data: Large amounts of beneficial data are lost since modern data is unstructured data.

Due to the increasing volume of data at a matchless rate and of various forms, we need to manage
and analyze uncertainty of various types of data. Big data analytics is a significant function of big data,
which discovers unobserved patterns and relationships among various items and people interest on a
specific item from the huge data set. Various methods are applied to obtain valid, unknown, and useful
models from large data. Association rule mining stands among big data analytics functionalities.
The concept of association rule (AR) mining already returns to H’ajek et al. [6]. Each association
rule in database is composed from two different sets of items, which are called antecedent and
consequent. A simple example of association rule mining is “if the client buys a fruit, he/she is
80% likely to purchase milk also”. The previous association rule can help in making a marketing
strategy of a grocery store. Then, we can say that association rule-mining finds all of the frequent
items in database with the least complexities. From all of the available rules, in order to determine the
rules of interest, a set of constraints must be determined. These constraints are support, confidence,
lift, and conviction. Support indicates the number of occurrences of an item in all transactions,
while the confidence constraint indicates the truth of the existing rule in transactions. The factor
“lift” explains the dependency relationship between the antecedent and consequent. On the other
hand, the conviction of a rule indicates the frequency ratio of an occurring antecedent without a
consequent occurrence. Association rules mining could be limited to the problem of finding large
itemsets, where a large itemset is a collection of items existing in a database transactions equal to or
greater than the support threshold [7–20]. In [8], the author provides a survey of the itemset methods
for discovering association rules. The association rules are positive and negative rules. The positive
association rules take the form X → Y , X ⊆ I, Y ⊆ I and X ∩ Y = ϕ, where X, Y are antecedent
and consequent and I is a set of items in database. Each positive association rule may lead to three
negative association rules, → Y , X → Y , and X → Y . Generating association rules in [9] consists
of two problems. The first problem is to find frequent itemsets whose support satisfies a predefined
minimum value. Then, the concern is to derive all of the rules exceeding a minimum confidence,
based on each frequent itemset. Since the solution of the second problem is straightforward, most of the
proposed work goes in for solving the first problem. An a priori algorithm has been proposed in [19],
which was the basis for many of the forthcoming algorithms. A two-pass algorithm is presented
in [11]. It consumes only two database scan passes, while a priori is a multi-pass algorithm and
needs up to c+1 database scans, where c is the number of items (attributes). Association rules mining
is applicable in numerous database communities. It has large applications in the retail industry to
improve market basket analysis [7]. Streaming-Rules is an algorithm developed by [9] to report an
association between pairs of elements in streams for predictive caching and detecting the previously
undetectable hit inflation attacks in advertising networks. Running mining algorithms on numerical
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attributes may result in a large set of candidates. Each candidate has small support and many rules
have been generated with useless information, e.g., the age attribute, salary attribute, and students’
grades. Many partitioning algorithms have been developed to solve the numerical attributes problem.
The proposed algorithms faced two problems. The first problem was the partitioning of attribute
domain into meaningful partitions. The second problem was the loss of many useful rules due to
the sharp boundary problem. Consequently, some rules may fail to achieve the minimum support
threshold because of the separating of its domain into two partitions.

Fuzzy sets have been introduced to solve these two problems. Using fuzzy sets make the
resulted association rules more meaningful. Many mining algorithms have been introduced to solve
the quantitative attributes problem using fuzzy sets proposed algorithms in [13–27] that can be
separated into two types related to the kind of minimum support threshold, fuzzy mining based on
single-minimum support threshold, and fuzzy mining based on multi-minimum support threshold [21].
Neutrosophic theory was introduced in [28] to generalize fuzzy theory. In [29–32], the neutrosophic
theory has been proposed to solve several applications and it has been used to generate a solution
based on neutrosophic sets. Single-valued neutrosophic set was introduced in [33] to transfer the
neutrosophic theory from the philosophic field into the mathematical theory, and to become applicable
in engineering applications. In [33], a differentiation has been proposed between intuitionistic fuzzy
sets and neutrosophic sets based on the independence of membership functions (truth-membership
function, falsity-membership function, and indeterminacy-membership function). In neutrosophic
sets, indeterminacy is explicitly independent, and truth-membership function and falsity-membership
function are independent as well. In this paper, we introduce an approach that is based on neutrosophic
sets for mining association rules, instead of fuzzy sets. Also, a comparison resulted association
rules in both of the scenarios has been presented. In [34], an attempt to express how neutrosophic
sets theory could be used in data mining has been proposed. They define SVNSF (single-valued
neutrosophic score function) to aggregate attribute values. In [35], an algorithm has been introduced
to mining vague association rules. Items properties have been added to enhance the quality of mining
association rules. In addition, almost sold items (items has been selected by the customer, but not
checked out) were added to enhance the generated association rules. AH-pair Database consisting
of a traditional database and the hesitation information of items was generated. The hesitation
information was collected, depending online shopping stores, which make it easier to collect that type
of information, which does not exist in traditional stores. In this paper, we are the first to convert
numerical attributes (items) into neutrosophic sets. While vague association rules add new items from
the hesitating information, our framework adds new items by converting the numerical attributes into
linguistic terms. Therefore, the vague association rule mining can be run on the converted database,
which contains new linguistic terms.

Research Contribution

Detecting hidden and affinity patterns from various, complex, and big data represents a significant
role in various domain areas, such as marketing, business, medical analysis, etc. These patterns are
beneficial for strategic decision-making. Association rules mining plays an important role as well
in detecting the relationships between patterns for determining frequent itemsets, since classical
association rules cannot use all types of data for the mining process. Binary data can only be used to
form classical rules, where items either exist in database or not. However, when classical association
rules deal with quantitative database, no discovered rules will appear, and this is the reason for
innovating quantitative association rules. The quantitative method also leads to the sharp boundary
problem, where the item is below or above the estimation values. The fuzzy association rules are
introduced to overcome the classical association rules drawbacks. The item in fuzzy association rules
has a membership function and a fuzzy set. The fuzzy association rules can deal with vague rules,
but not in the best manner, since it cannot consider the indeterminacy of rules. In order to overcome
drawbacks of previous association rules, a new neutrosophic association rule algorithm has been
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introduced in this research. Our proposed algorithm deals effectively and efficiently with vague
rules by considering not only the membership function of items, but also the indeterminacy and the
falsity functions. Therefore, the proposed algorithm discovers all of the possible association rules and
minimizes the losing processes of rules, which leads to building efficient and reliable decision-making
system. By comparing our proposed algorithm with fuzzy approaches, we note that the number
of association rules is increased, and negative rules are also discovered. The separation of negative
association rules from positive ones is not a simple process, and it helps in various fields. As an
example, in the medical domain, both positive and negative association rules help not only in the
diagnosis of disease, but also in detecting prevention manners.

The rest of this research is organized as follows. The basic concepts and definitions of association
rules mining are presented in Section 2. A quick overview of fuzzy association rules is described
in Section 3. The neutrosophic association rules and the proposed model are presented in Section 4.
A case study of Telecom Egypt Company is presented in Section 5. The experimental results and
comparisons between fuzzy and proposed association rules are discussed in Section 6. The conclusions
are drawn in Section 7.

2. Association Rules Mining

In this section, we formulate the |D| transactions from the mining association rules for a database
D. We used the following notations:

(i) I = {i1, i2, . . . im} represents all the possible data sets, called items.
(ii) Transaction set T is the set of domain data resulting from transactional processing such as T ⊆ I.
(iii) For a given itemset X ⊆ I and a given transaction T, we say that T contains X if and only if X ⊆ T.
(iv) σX: the support frequency of X, which is defined as the number of transactions out of D that

contain X.
(v) s: the support threshold.

X is considered a large itemset, if σX ≥ |D| × s. Further, an association rule is an implication of
the form X ⇒ Y , where X ⊆ I, Y ⊆ I and X ∩Y = ϕ.

An association rule X ⇒ Y is addressed in D with confidence c if at least c transactions out of D
contain both X and Y. The rule X ⇒ Y is considered as a large itemset having a minimum support s if:
σX∪Y ≥ |D| × s.

For a specific confidence and specific support thresholds, the problem of mining association
rules is to find out all of the association rules having confidence and support that is larger than the
corresponding thresholds. This problem can simply be expressed as finding all of the large itemsets,
where a large itemset L is:

L = {X|X ⊆ I ∧ σX ≥ |D| × s}.

3. Fuzzy Association Rules

Mining of association rules is considered as the main task in data mining. An association rule
expresses an interesting relationship between different attributes. Fuzzy association rules can deal with
both quantitative and categorical data and are described in linguistic terms, which are understandable
terms [26].

Let T = {t1, . . . , tn} be a database transactions. Each transaction consists of a number of attributes
(items). Let I = {i1, . . . , im} be a set of categorical or quantitative attributes. For each attribute ik,
(k = 1, . . . , m), we consider {n1, . . . , nk} associated fuzzy sets. Typically, a domain expert determines
the membership function for each attribute.

The tuple < X, A > is called the fuzzy itemset, where X ⊆ I (set of attributes) and A is a set of
fuzzy sets that is associated with attributes from X.

Following is an example of fuzzy association rule:
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IF salary is high and age is old THEN insurance is high
Before the mining process starts, we need to deal with numerical attributes and prepare them for

the mining process. The main idea is to determine the linguistic terms for the numerical attribute and
define the range for every linguistic term. For example, the temperature attribute is determined by the
linguistic terms {very cold, cold, cool, warm, hot}. Figure 1 illustrates the membership function of the
temperature attribute.

Figure 1. Linguistic terms of the temperature attribute.

The membership function has been calculated for the following database transactions illustrated
in Table 1.

Table 1. Membership function for Database Transactions.

Transaction Temp. Membership Degree

T1 18 1 cool
T2 13 0.6 cool, 0.4 cold
T3 12 0.4 cool, 0.6 cold
T4 33 0.6 warm, 0.4 hot
T5 21 0.2 warm, 0.8 cool
T6 25 1 warm

We add the linguistic terms {very cold, cold, cool, warm, hot} to the candidate set and calculate
the support for those itemsets. After determining the linguistic terms for each numerical attribute,
the fuzzy candidate set have been generated.

Table 2 contains the support for each itemset individual one-itemsets. The count for every
linguistic term has been calculated by summing its membership degree over the transactions. Table 3
shows the support for two-itemsets. The count for the fuzzy sets is the summation of degrees that
resulted from the membership function of that itemset. The count for two-itemset has been calculated
by summing the minimum membership degree of the 2 items. For example, {cold, cool} has count 0.8,
which resulted from transactions T2 and T3. For transaction T2, membership degree of cool is 0.6 and
membership degree for cold is 0.4, so the count for set {cold, cool} in T2 is 0.4. Also, T3 has the same
count for {cold, cool}. So, the count of set {cold, cool} over all transactions is 0.8.
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Table 2. 1-itemset support.

1-itemset Count Support

Very cold 0 0
Cold 1 0.17
Cool 2.8 0.47

Warm 1.6 0.27
Hot 0.6 0.1

Table 3. 2-itemset support.

2-itemset Count Support

{Cold, cool} 0.8 0.13
{Warm, hot} 0.4 0.07
{warm, cool} 0.2 0.03

In subsequent discussions, we denote an itemset that contains k items as k-itemset. The set of all
k-itemsets in L is referred as Lk.

4. Neutrosophic Association Rules

In this section, we overview some basic concepts of the NSs and SVNSs over the universal set X,
and the proposed model of discovering neutrosophic association rules.

4.1. Neutrosophic Set Definitions and Operations

Definition 1 ([33]). Let X be a space of points and x∈X. A neutrosophic set (NS) A in X is definite by a
truth-membership function TA(x), an indeterminacy-membership function IA(x) and a falsity-membership
function FA(x). TA(x), IA(x) and FA(x) are real standard or real nonstandard subsets of ]−0, 1+[. That is
TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[ and FA(x): X → ]−0, 1+[. There is no restriction on the sum of
TA(x), IA(x) and FA(x), so 0− ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

Neutrosophic is built on a philosophical concept, which makes it difficult to process during
engineering applications or to use it to real applications. To overcome that, Wang et al. [31], defined the
SVNS, which is a particular case of NS.

Definition 2. Let X be a universe of discourse. A single valued neutrosophic set (SVNS) A over X is an object
taking the form A = {〈x,TA(x), IA(x), FA(x)〉: x∈X}, where TA(x): X→ [0, 1], IA(x): X→ [0, 1] and FA(x):
X→ [0, 1] with 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for all x∈X. The intervals TA(x), IA(x) and FA(x) represent
the truth-membership degree, the indeterminacy-membership degree and the falsity membership degree of x to A,
respectively. For convenience, a SVN number is represented by A = (a, b, c), where a, b, c∈[0, 1] and a + b + c ≤ 3.

Definition 3 (Intersection) ([31]). For two SVNSs A = 〈TA(x), IA(x), FA(x)〉 and B = 〈TB(x), IB(x), FB(x)〉,
the intersection of these SVNSs is again an SVNSs which is defined as C = A∩ B whose truth, indeterminacy and
falsity membership functions are defined as TC(x) = min(TA(x), TB(x)), IA(x) = min(IA(x), IB(x)) and
FC(x) = max(FA(x), FB(x)).

Definition 4 (Union) ([31]). For two SVNSs A = 〈TA(x), IA(x), FA(x)〉 and B = 〈TB(x), IB(x), FB(x)〉,
the union of these SVNSs is again an SVNSs which is defined as C = A ∪ B whose truth, indeterminacy and
falsity membership functions are defined as TC(x) = max(TA(x), TB(x)), IA(x) = max(IA(x), IB(x)) and
FC(x) = min(FA(x), FB(x)).

39



Symmetry 2018, 10, 106

Definition 5 (Containment) ([31]). A single valued neutrosophic set A contained in the other SVNS B,
denoted by A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FA(x) ≥ FB(x) for all x in X.

Next, we propose a method for generating the association rule under the SVNS environment.

4.2. Proposed Model for Association Rule

In this paper, we introduce a model to generate association rules of form:
X → Y where X ∩Y = ϕ and X, Y are neutrosophic sets.
Our aim is to find the frequent itemsets and their corresponding support. Generating an

association rule from its frequent itemsets, which are dependent on the confidence threshold, are also
discussed here. This has been done by adding the neutrosophic set into I, where I is all of the
possible data sets, which are referred as items. So I = N ∪ M where N is neutrosophic set and M is
classical set of items. The general form of an association rule is an implication of the form X → Y ,
where X ⊆ I, Y ⊆ I, X ∩Y = ϕ.

Therefore, an association rule X → Y is addressed in Database D with confidence ‘c’ if at least c
transactions out of D contains both X and Y. On the other hand, the rule X → Y is considered a large
item set having a minimum support s if σX∪Y ≥ |D| × s. Furthermore, the process of converting the
quantitative values into the neutrosophic sets is proposed, as shown in Figure 2.

Figure 2. The proposed model.

The proposed model for the construction of the neutrosophic numbers is summarized in the
following steps:
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Step 1 Set linguistic terms of the variable, which will be used for quantitative attribute.
Step 2 Define the truth, indeterminacy, and the falsity membership functions for each constructed

linguistic term.
Step 3 For each transaction t in T, compute the truth-membership, indeterminacy-membership and

falsity-membership degrees.
Step 4 Extend each linguistic term l in set of linguistic terms L into TL, IL, and FL to denote truth-

membership, indeterminacy-membership, and falsity-membership functions, respectively.
Step 5 For each k-item set where k = {1, 2, . . . , n}, and n number of iterations.

• calculate count of each linguistic term by summing degrees of membership for each

transaction as Count(A) =
i=t
∑

i=1
μA(x) where μA is TA, IA or FA.

• calculate support for each linguistic term s = Count(A)
No. o f trnsactions .

Step 6 The above procedure has been repeated for every quantitative attribute in the database.

In order to show the working procedure of the approach, we consider the temperature as an
attribute and the terms “very cold”, “cold”, “cool”, “warm”, and “hot” as their linguistic terms
to represent the temperature of an object. Then, following the steps of the proposed approach,
construct their membership function as below:

Step 1 The attribute temperature’ has set the linguistic terms “very cold”, “cold”, “cool”, “warm”,
and “hot”, and their ranges are defined in Table 4.

Table 4. Linguistic terms ranges.

Linguistic Term Core Range Left Boundary Range Right Boundary Range

Very Cold −∞–0 N/A 0–5
Cold 5–10 0–5 10–15
Cool 15–20 10–15 20–25

Warm 25–30 20–25 30–35
Hot 35–∞ 30–35 N/A

Step 2 Based on these linguistic term ranges, the truth-membership functions of each linguistic
variable are defined, as follows:

Tvery−cold(x) =

⎧⎪⎨⎪⎩
1 ; f or x ≤ 0
(5− x)/5 ; f or 0 < x < 5
0 ; f or x ≥ 5

Tcold(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ; f or 5 ≤ x ≤ 10
(15− x)/5 ; f or 10 < x < 15
x/5 ; f or 0 < x < 5
0 ; f or x ≥ 15 or x ≤ 0

Tcool(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ; f or 15 ≤ x ≤ 20
(25− x)/5 ; f or 20 < x < 25
(x− 10)/5 ; f or 10 < x < 15
0 ; otherwise

Twarm(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ; f or 25 ≤ x ≤ 30
(35− x)/5 ; f or 30 < x < 35
(x− 20)/5 ; f or 20 < x < 25
0 ; otherwise
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Thot(x) =

⎧⎪⎨⎪⎩
1 ; f or x ≥ 35
(x− 30)/5 ; f or 30 < x < 35
0 ; otherwise

The falsity-membership functions of each linguistic variable are defined as follows:

Fvery−cold(x) =

⎧⎪⎨⎪⎩
0 ; f or x ≤ 0
x/5 ; f or 0 < x < 5
1 ; f or x ≥ 5

;

Fcold(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ; f or 5 ≤ x ≤ 10
(x− 10)/5 ; f or 10 < x < 15
(5− x)/5 ; f or 0 < x < 5
1 ; f or x ≥ 15 or x ≤ 0

Fcool(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ; f or 15 ≤ x ≤ 20
(x− 20)/5 ; f or 20 < x < 25
(15− x)/5 ; f or 10 < x < 15
1 ; otherwise

Fwarm(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ; f or 25 ≤ x ≤ 30
(x− 30)/5 ; f or 30 < x < 35
(25− x)/5 ; f or 20 < x < 25
1 ; otherwise

Fhot(x) =

⎧⎪⎨⎪⎩
0 ; f or x ≥ 35
(35− x)/5 ; f or 30 < x < 35
1 ; otherwise

The indeterminacy membership functions of each linguistic variables are defined as follows:

Ivery−cold(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ; f or x ≤ −2.5
(x + 2.5)/5 ; f or− 2.5 ≤ x ≤ 2.5
(7.5− x)/5 ; f or 2.5 ≤ x ≤ 7.5
0 ; f or x ≥ 7.5

Icold(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x + 2.5)/5 ; f or 2.5 ≤ x ≤ 2.5
(7.5− x)/5 ; f or 2.5 ≤ x ≤ 7.5
(x− 7.5)/5 ; f or 7.5 ≤ x ≤ 12.5
(17.5− x)/5 ; f or 12.5 ≤ x ≤ 17.5
0 ; otherwise

Icool(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x− 7.5)/5 ; f or 7.5 ≤ x ≤ 12.5
(17.5− x)/5 ; f or 12.5 ≤ x ≤ 17.5
(x− 17.5)/5 ; f or 17.5 ≤ x ≤ 22.5
(27.5− x)/5 ; f or 22.5 ≤ x ≤ 27.5
0 ; otherwise

Iwarm(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x− 17.5)/5 ; f or 17.5 ≤ x ≤ 22.5
(27.5− x)/5 ; f or 22.5 ≤ x ≤ 27.5
(x− 27.5)/5 ; f or 27.5 ≤ x ≤ 32.5
(37.5− x)/5 ; f or 32.5 ≤ x ≤ 37.5
0 ; otherwise
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Ihot(x) =

⎧⎪⎨⎪⎩
(x− 27.5)/5 ; f or 27.5 ≤ x ≤ 32.5
(37.5− x)/5 ; f or 32.5 ≤ x ≤ 37.5
0 ; otherwise

The graphical membership degrees of these variables are summarized in Figure 3. The graphical
falsity degrees of these variables are summarized in Figure 4. Also, the graphical indeterminacy
degrees of these variables are summarized in Figure 5. On the other hand, for a particular linguistic
term, ‘Cool’ in the temperature attribute, their neutrosophic membership functions are represented in
Figure 6.

Figure 3. Truth-membership function of temperature attribute.

Figure 4. Falsity-membership function of temperature attribute.

Figure 5. Indeterminacy-membership function of temperature attribute.

43



Symmetry 2018, 10, 106

Figure 6. Cool (T, I, F) for temperature attribute.

Step 3 Based on the membership grades, different transaction has been set up by taking different
sets of the temperatures. The membership grades in terms of the neutrosophic sets of these
transactions are summarized in Table 5.

Table 5. Membership function for database Transactions.

Transaction Temp. Membership Degree

T1 18

Very-cold <0,0,1>
cold <0,0,1>

cool <1,0.1,0>
warm <0,0.1,1>

hot <0,0,1>

T2 13

Very cold <0,0,1>
cold <0.4,0.9,0.6>
cool <0.6,0.9,0.4>

warm <0,0,1>
hot <0,0,1>

T3 12

Very cold <0,0,1>
cold <0.6,0.9,0.4>
cool <0.4,0.9,0.6>

warm <0,0,1>
hot <0,0,1>

T4 33

Very cold <0,0,1>
cold <0,0,1>
cool <0,0,1>

warm <0.4,0.9,0.6>
hot <0.6,0.9,0.4>

T5 21

Very cold <0,0,1>
cold <0,0,1>

cool <0.8,0.7,0.2>
warm <0.2,0.7,0.8>

hot <0,0,1>

T6 25

Very cold <0,0,1>
cold <0,0,1>
cool <0,0,1>

warm <1,0.5,0>
hot <0,0,1>
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Step 4 Now, we count the set of linguistic terms {very cold, cold, cool, warm, hot} for every element
in transactions. Since the truth, falsity, and indeterminacy-memberships are independent
functions, the set of linguistic terms can be extended to

{
Tvery−cold, Tcold, Tcool , Twarm, Thot

Fvery−cold, Fcold, Fcool , Fwarm, Fhot Ivery−cold, Icold, Icool , Iwarm, Ihot

}
where Fwarm means not worm

and Iwarm means not sure of warmness. This enhances dealing with negative association rules,
which is handled as positive rules without extra calculations.

Step 5 By using the membership degrees that are given in Table 5 for candidate 1-itemset, the count
and support has been calculated, respectively. The corresponding results are summarized in
Table 6.

Table 6. Support for candidate 1-itemset neutrosophic set.

1-itemset Count Support

Tverycold 0 0
TCold 1 0.17
TCool 2.8 0.47

TWarm 1.6 0.27
THot 0.6 0.1

Iverycold 0 0
ICold 1.8 0.3
ICool 2.6 0.43

IWarm 2.2 0.37
IHot 0.9 0.15

Fverycold 6 1
FCold 5 0.83
FCool 3.2 0.53

FWarm 4.4 0.73
FHot 5.4 0.9

Similarly, the two-itemset support is illustrated in Table 7 and the rest of itemset generation
(k-itemset for k = 3, 4 . . . 8) are obtained similarly. The count for k-item set in database record is defined
by minimum count of each one-itemset exists.

For example: {TCold, TCool} count is 0.8
Because they exists in both T2 and T3.
In T2: TCold = 0.4 and TCool = 0.6 so, count for {TCold, TCool} in T2 = 0.4
In T3: TCold = 0.6 and TCool = 0.4 so, count for {TCold, TCool} in T2 = 0.4
Thus, count of {TCold, TCool} in (Database) DB is 0.8.

Table 7. Support for candidate 2-itemset neutrosophic set.

2-itemset Count Support 2-itemset Count Support

{TCold, TCool} 0.8 0.13 {ICold, ICool} 1.8 0.30
{TCold, ICold} 1 0.17 {ICold, Fverycold} 1.8 0.30
{TCold, ICool} 1 0.17 {ICold, FCold} 1 0.17

{TCold, Fverycold} 1 0.17 {ICold, FCool} 1 0.17
{TCold, FCold} 0.8 0.13 {ICold, FWarm} 1.8 0.30
{TCold, FCool} 1 0.17 {ICold, FHot} 1.8 0.30

{TCold, FWarm} 1 0.17 {ICool, IWarm} 0.8 0.13
{TCold, FHot} 1 0.17 {ICool, Fverycold} 2.6 0.43

{TCool, TWarm} 0.2 0.03 {ICool, FCold} 1.8 0.30
{TCool, ICold} 1 0.17 {ICool, FCool} 1.2 0.20
{TCool, FCool} 1.8 0.30 {ICool, FWarm} 2.6 0.43
{TCool, IWarm} 0.8 0.13 {ICool, FHot} 2.6 0.43

{TCool, Fverycold} 2.8 0.47 {IWarm, IHot} 0.9 0.15
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Table 7. Cont.

{TCool, FCold} 2.8 0.47 {IWarm, Fverycold} 2.2 0.37
{TCool, FCool} 1 0.17 {IWarm, FCold} 2.2 0.37

{TCool, FWarm} 2.8 0.47 {IWarm, FCool} 1.6 0.27
{TCool, FHot} 2.8 0.47 {IWarm, FWarm} 1.4 0.23

{TWarm, THot} 0.4 0.07 {IWarm, FHot} 1.7 0.28
{TWarm, ICool} 0.2 0.03 {IHot, Fverycold} 0.9 0.15

{TWarm, IWarm} 1.1 0.18 {IHot, FCold} 0.9 0.15
{TWarm, IHot} 0.4 0.07 {IHot, FCool} 0.9 0.15

{TWarm, Fverycold} 1.6 0.27 {IHot, FWarm} 0.6 0.10
{TWarm, FCold} 1.6 0.27 {IHot, FHot} 0.4 0.07
{TWarm, FCool} 1.6 0.27 {Fverycold, FCold} 5 0.83

{TWarm, FWarm} 0.6 0.10 {Fverycold, FCool} 3.2 0.53
{TWarm, FHot} 1.6 0.27 {Fverycold, FWarm} 4.4 0.73
{THot, IWarm} 0.6 0.10 {Fverycold, FHot} 5.4 0.90
{THot, IHot} 0.6 0.10 {FCold, FCool} 3 0.50

{THot, Fverycold} 0.6 0.10 {FCold, FWarm} 3.4 0.57
{THot, FCold} 0.6 0.10 {FCold, FHot} 4.4 0.73
{THot, FCool} 0.6 0.10 {FCool, FWarm} 1.8 0.30

{THot, FWarm} 0.6 0.10 {FCool, FHot} 2.6 0.43
{THot, FHot} 0.4 0.07 {FWarm, FHot} 4.2 0.70

5. Case Study

In this section, the case of Telecom Egypt Company stock records has been studied. Egyptian stock
market has many companies. One of the major questions for stock market users is when to buy or
to sell a specific stock. Egyptian stock market has three indicators, EGX30, EGX70, and EGX100.
Each indicator gives a reflection of the stock market. Also, these indicators have an important impact
on the stock market users, affecting their decisions of buying or selling stocks. We focus in our study
on the relation between the stock and the three indicators. Also, we consider the month and quarter
of the year to be another dimension in our study, while the sell/buy volume of the stock per day is
considered to be the third dimension.

In this study, the historical data has been taken from the Egyptian stock market program (Mist)
during the program September 2012 until September 2017. For every stock/indicator, Mist keeps a
daily track of number of values (opening price, closing price, high price reached, low price reached,
and volume). The collected data of Telecom Egypt Stock are summarized in Figure 7.

Figure 7. Telecom Egypt stock records.
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In this study, we use the open price and close price values to get price change rate, which are
defined as follows:

price change rate =
close price − open price

open price
× 100

and change the volume to be a percentage of total volume of the stock with the following relation:

percentage of volume =
volume

total volume
× 100

The same was performed for the stock market indicators. Now, we take the attributes as “quarter”,
“month”, “stock change rate”, “volume percentage”, and “indicators change rate”. Table 8 illustrates
the segment of resulted data after preparation.

Table 8. Segment of data after preparation.

Ts_Date Month Quarter Change Volume Change30 Change70 Change100

13 September 2012 September 3 0.64 0.03 −1.11 0.01 −0.43
16 September 2012 September 3 0.07 0.02 2.82 4.50 3.67
17 September 2012 September 3 3.47 0.12 1.27 0.76 0.81
18 September 2012 September 3 1.38 0.03 −0.08 −0.48 −0.43
19 September 2012 September 3 −1.48 0.02 0.35 −1.10 −0.64
20 September 2012 September 3 0.47 0.05 −1.41 −1.64 −1.55
23 September 2012 September 3 3.64 0.02 −0.21 1.00 0.41
24 September 2012 September 3 −0.47 0.05 0.27 −0.09 0.03
25 September 2012 September 3 −2.77 0.15 2.15 1.79 1.85
26 September 2012 September 3 1.96 0.04 0.22 0.96 0.57
27 September 2012 September 3 0.90 0.05 −1.38 −0.88 −0.92
30 September 2012 September 3 −0.14 0.00 −1.11 −0.79 −0.75

1 October 2012 October 4 −1.60 0.02 −2.95 −4.00 −3.51

Based on these linguistic terms, define the ranges under the SVNSs environment. For this,
corresponding to the attribute in “change rate” and “volume”, the truth-membership functions by
defining their linguistic terms as {“high up”, “high low”, “no change”, “low down”, “high down”}
corresponding to attribute “change rate”, while for the attribute “volume”, the linguistic terms
are (low, medium, and high) and their ranges are summarized in Figures 8 and 9, respectively.
The falsity-membership function and indeterminacy-membership function have been calculated and
applied as well for change rate attribute.

Figure 8. Change rate attribute truth-membership function.
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Figure 9. Volume attribute truth-membership function.

6. Experimental Results

We proceeded to a comparison between fuzzy mining and neutrosophic mining algorithms,
and we found out that the number of generated association rules increased in neutrosophic mining.

A program has been developed to generate large itemsets for Telecom Egypt historical data.
VB.net has been used in creating this program. The obtained data have been stored in an access
database. The comparison depends on the number of generated association rules in a different
min-support threshold. It should be noted that the performance cannot be part of the comparison
because of the number of items (attributes) that are different in fuzzy vs. neutrosophic association
rules mining. In fuzzy mining, the number of items was 14, while in neutrosophic mining it is
34. This happens because the number of attributes increased. Spreading each linguistic term into
three (True, False, Indeterminacy) terms make the generated rules increase. The falsity-generated
association rules can be considered a negative association rules. As pointed out in [36], the conviction
of a rule conv(X → Y) is defined as the ratio of the expected frequency that X happened without Y
falsity-association rules to be used to generate negative association rules if T(x) + F(x) = 1. In Table 9,
the number of generated fuzzy rules in each k−itemset using different min-support threshold are
reported, while the total generated fuzzy association rule is presented in Figure 10.

Figure 10. No. of fuzzy association rules with different min-support threshold.
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Table 9. No. of resulted fuzzy rules with different min-support.

Min-Support 0.02 0.03 0.04 0.05

1-itemset 10 10 10 10
2-itemset 37 36 36 33
3-itemset 55 29 15 10
4-itemset 32 4 2 0

As compared to the fuzzy approach, by applying the same min-support threshold, we get a huge
set of neutrosophic association rules. Table 10 illustrates the booming that happened to generated
neutrosophic association rules. We stop generating itemsets at iteration 4 due to the noted expansion
in the results shown in Figure 11, which shows the number of neutrosophic association rules.

Table 10. No. of neutrosophic rules with different min-support threshold.

Min-Support 0.02 0.03 0.04 0.05

1-itemset 26 26 26 26
2-itemset 313 311 309 300
3-itemset 2293 2164 2030 1907
4-itemset 11,233 9689 8523 7768

Figure 11. No. of neutrosophic association rules with different min-support threshold.

Experiment has been re-run using different min-support threshold values and the resulted
neutrosophic association rules counts has been noted and listed in Table 11. Note the high values that
are used for min-support threshold. Figure 12 illustrates the generated neutrosophic association rules
for min-support threshold from 0.5 to 0.9.

Table 11. No. of neutrosophic rules with different min-support threshold.

Min-Support 0.5 0.6 0.7 0.8 0.9

1-itemset 11 9 9 6 5
2-itemset 50 33 30 11 10
3-itemset 122 64 50 10 10
4-itemset 175 71 45 5 5
5-itemset 151 45 21 1 1
6-itemset 88 38 8 0 0
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Figure 12. No. of neutrosophic rules for min-support threshold from 0.5 to 0.9.

Using the neutrosophic mining approach makes association rules exist for most of the min-support
threshold domain, which may be sometimes misleading. We found that using the neutrosophic
approach is useful in generating negative association rules beside positive association rules
minings. Huge generated association rules provoke the need to re-mine generated rules (mining
of mining association rules). Using suitable high min-support values may help in the neutrosophic
mining process.

7. Conclusions and Future Work

Big data analysis will continue to grow in the next years. In order to efficiently and effectively
deal with big data, we introduced in this research a new algorithm for mining big data using
neutrosophic association rules. Converting quantitative attributes is the main key for generating
such rules. Previously, it was performed by employing the fuzzy sets. However, due to fuzzy
drawbacks, which we discussed in the introductory section, we preferred to use neutrosophic sets.
Experimental results showed that the proposed approach generated an increase in the number of
rules. In addition, the indeterminacy-membership function has been used to prevent losing rules
from boundaries problems. The proposed model is more effective in processing negative association
rules. By comparing it with the fuzzy association rules mining approaches, we conclude that the
proposed model generates a larger number of positive and negative association rules, thus ensuring
the construction of a real and efficient decision-making system. In the future, we plan to extend the
comparison between the neutrosophic association rule mining and other interval fuzzy association
rule minings. Furthermore, we seized the falsity-membership function capacity to generate negative
association rules. Conjointly, we availed of the indeterminacy-membership function to prevent losing
rules from boundaries problems. Many applications can emerge by adaptions of truth-membership
function, indeterminacy-membership function, and falsity-membership function. Future work will
benefit from the proposed model in generating negative association rules, or in increasing the quality
of the generated association rules by using multiple support thresholds and multiple confidence
thresholds for each membership function. The proposed model can be developed to mix positive
association rules (represented in the truth-membership function) and negative association rules
(represented in the falsity-membership function) in order to discover new association rules, and the
indeterminacy-membership function can be put forth to help in the automatic adoption of support
thresholds and confidence thresholds. Finally, yet importantly, we project to apply the proposed model
in the medical field, due to its capability in effective diagnoses through discovering both positive
and negative symptoms of a disease. All future big data challenges could be handled by combining
neutrosophic sets with various techniques.
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Abstract: Every organization seeks to set strategies for its development and growth and to do
this, it must take into account the factors that affect its success or failure. The most widely used
technique in strategic planning is SWOT analysis. SWOT examines strengths (S), weaknesses (W),
opportunities (O) and threats (T), to select and implement the best strategy to achieve organizational
goals. The chosen strategy should harness the advantages of strengths and opportunities, handle
weaknesses, and avoid or mitigate threats. SWOT analysis does not quantify factors (i.e., strengths,
weaknesses, opportunities and threats) and it fails to rank available alternatives. To overcome this
drawback, we integrated it with the analytic hierarchy process (AHP). The AHP is able to determine
both quantitative and the qualitative elements by weighting and ranking them via comparison
matrices. Due to the vague and inconsistent information that exists in the real world, we applied
the proposed model in a neutrosophic environment. A real case study of Starbucks Company was
presented to validate our model.

Keywords: analytic hierarchy process (AHP); SWOT analysis; multi-criteria decision-making
(MCDM) techniques; neutrosophic set theory

1. Introduction

To achieve an organization’s goals, the strategic factors affecting its performance should be considered.
These strategic factors are classified as internal factors, that are under its control, and external factors, that
are not under its control.

The most popular technique for analyzing strategic cases is SWOT analysis. SWOT is considered
a decision-making tool. The SWOT acronym stands for Strengths, Weaknesses, Opportunities and
Threats [1]. Strengths and weaknesses are internal factors, while opportunities and threats are external
factors. The successful strategic plan of an organization should focus on strengths and opportunities,
try to handle weaknesses, and avoid or mitigate threats.

By using SWOT analysis, an organization can choose one of four strategic plans as follows:

• SO: The good use of opportunities through existing strengths.
• ST: The good use of strengths to eliminate or reduce the impact of threats.
• WO: Taking into account weaknesses to obtain the benefits of opportunities.
• WT: Seeking to reduce the impact of threats by considering weaknesses.

SWOT analysis can be used to build successful company strategies, but it fails to provide
evaluations and measures. Therefore, in the present research, we integrated it with the neutrosophic
analytic hierarchy process (AHP).
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The analytic hierarchy process (AHP) is a multi-criterion decision-making technique (MCDM)
used for solving and analyzing complex problems. MCDM is an important branch in operations
research, when seeking to construct mathematical and programming tools to select the superior
alternative between various choices, according to particular criteria.

The AHP consists of several steps. The first step is structuring the hierarchy of the problem to
understand it more clearly. The hierarchy of the AHP consists of a goal (objective), decision criteria,
sub-criteria, and, finally, all available alternatives.

After structuring the AHP hierarchy, pair-wise comparison matrices are constructed by decision
makers to weight criteria using Saaty’s scale [2].

Finally, the final weight of alternatives are determined and ranked.
Then, the AHP is able to estimate both qualitative and the quantitative elements. For this reason,

it is one of the most practical multi-criteria decision-making techniques [3].
In real life applications, decision criteria are often vague, complex and inconsistent in nature.

In addition, using crisp values in a comparison matrix is not always accurate due to uncertainty and
the indeterminate information available to decision makers. Many researchers have begun to use
fuzzy set theory [4]. However, fuzzy set theory considers only a truth-membership degree. Atanassov
introduced intuitionistic fuzzy set theory [5], which considers both truth and falsity degrees, but it
fails to consider indeterminacy. To deal with the previous drawbacks of fuzzy and intuitionistic fuzzy
sets, Smarandache introduced neutrosophic sets [6], which consider truth, indeterminacy and falsity
degrees altogether to represent uncertain and inconsistent information. Therefore, neutrosophic sets
are a better representation of reality. For this reason, in our research, we employed the AHP under a
neutrosophic environment.

This research represents the first attempt at combining SWOT analysis with a neutrosophic
analytic hierarchy process.

The structure of this paper is as follows: a literature review of SWOT analysis and the AHP
is presented in Section 2; the basic definitions of neutrosophic sets are introduced in Section 3;
the proposed model is discussed in Section 4; a real case study illustrates the applicability of the
model proposed in Section 5; and, finally, Section 6 concludes the paper, envisaging future work.

2. Literature Review

In this section, we present an overview of the AHP technique and SWOT analysis, which are used
across various domains.

SWOT analysis [7] is a practical methodology pursued by managers to construct successful
strategies by analyzing strengths, weaknesses, opportunities and threats. SWOT analysis is a powerful
methodology for making accurate decisions [8]. Organization’s construct strategies to enhance their
strengths, remove weaknesses, seize opportunities, and avoid threats.

Kotler et al. used SWOT analysis to attain an orderly approach to decision-making [9–11]. Many
researchers in different fields [4] apply SWOT analysis. An overview of the applications of SWOT
analysis is given by Helms and Nixon [8]. SWOT analysis has been applied in the education domain
by Dyson [12]. It has also been applied to healthcare, government and not-for-profit organizations,
to handle country-level issues [13] and for sustainable investment-related decisions [14]. It has been
recommended for use when studying the relationships among countries [15]. SWOT analysis is mainly
qualitative. This is the main disadvantage of SWOT, because it cannot assign strategic factor weights
to alternatives. In order to overcome this drawback, many researchers have integrated it with the
analytic hierarchy process (AHP).

Since the AHP is convenient and easy to understand, some managers find it a very useful
decision-making technique. Vaidya and Kumar reviewed 150 publications, published in international
journals between 1983 and 2003, and concluded that the AHP technique was useful for solving,
selecting, evaluating and making decisions [16]. Achieving a consensus decision despite the large
number of decision makers is another advantage of the AHP [17].
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Several researchers have combined SWOT analysis methodology with the analytic hierarchy
process (AHP). Leskinen et al. integrated SWOT with the AHP in an environmental domain [18–20],
Kajanus used SWOT–AHP in tourism [21], and Setwart used SWOT–AHP in project management [22].
Competitive strength, environment and company strategy, were integrated by Chan and Heide [23].
Because the classical version of the AHP fails to handle uncertainty, many researchers have integrated
SWOT analysis with the fuzzy AHP (FAHP). Demirtas et al. used SWOT with the fuzzy AHP for
project management methodology selection [24]. Lumaksono used SWOT-FAHP to define the best
strategy of expansion for a traditional shipyard [25]. Tavana et al. integrated SWOT analysis with
intuitionistic fuzzy AHP to outsource reverse logistics [26].

Fuzzy sets focus only on the membership function (truth degree) and do not take into account the
non-membership (falsity degree) and the indeterminacy degrees, so fail to represent uncertainty and
indeterminacy. To overcome these drawbacks of the fuzzy set, we integrated SWOT analysis with the
analytic hierarchy process in a neutrosophic environment.

A neutrosophic set is an extension of a classical set, fuzzy set, and intuitionistic fuzzy set,
and it effectively represents real world problems by considering all facets of a decision situation,
(i.e., truthiness, indeterminacy and falsity) [27–48]. This research attempted, for the first time, to present
the mathematical representation of SWOT analysis with an AHP in a neutrosophic environment.
The neutrosophic set acted as a symmetric tool in the proposed method, since membership was the
symmetric equivalent of non-membership, with respect to indeterminacy.

3. Definition of a Neutrosophic Set

In this section, some important definitions of neutrosophic sets are introduced.

Definition 1. [33,34] The neutrosophic set N is characterized by three membership functions, which are
the truth-membership function TNe(x), indeterminacy-membership function INe(x) and falsity-membership
function FNe(x), where x ∈ X and X are a space of points. Also, TNe(x):X→[−0, 1+], INe(x):X→[−0, 1+] and
FNe(x):X→[−0, 1+]. There is no restriction on the sum of TNe(x), INe(x) and FNe(x), so 0− ≤ sup TNe(x) +
sup INe(x) + sup FNe(x) ≤ 3+.

Definition 2. [33,35] A single valued neutrosophic set Ne over X takes the following form: A = {〈x, TNe(x),
INe(x), FNe(x)〉: x ∈ X}, where TNe(x):X→[0,1], INe(x):X→[0,1] and FNe(x):X→[0,1], with 0 ≤ TNe(x):
+ INe(x) + FNe(x) ≤ 3 for all x ∈ X. The single valued neutrosophic (SVN) number is symbolized by
Ne = (d, e, f ), where d, e, f ∈ [0,1] and d + e + f ≤ 3.

Definition 3. [36,37] The single valued triangular neutrosophic number, ã = 〈(a1, a2, a3); αã, θã, β ã〉, is
a neutrosophic set on the real line set R, whose truth, indeterminacy and falsity membership functions are
as follows:

Tã(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αã

(
x−a1
a2−a1

)
(a1 ≤ x ≤ a2 )

αã (x = a2 )

αã

(
a3−x
a3−a2

)
(a2 < x ≤ a3)

0 otherwise

(1)

Iã(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a2−x+θã(x−a1))
(a2−a1)

(a1 ≤ x ≤ a2 )

θã x = a2
(x−a2+θã(a3−x))

(a3−a2)
(a2 < x ≤ a3)

1 otherwise

(2)
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F̃a(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a2−x+β ã(x−a1))
(a2−a1)

(a1 ≤ x ≤ a2)

β ã (x = a2)
(x−a2+β ã (a3−x))

(a3−a2)
(a2 < x ≤ a3)

1 otherwise

(3)

where αã, θã, β ã ∈ [0, 1] and a1, a2, a3 ∈ R, a1 ≤ a2 ≤ a3.

Definition 4. [34,36] Let ã = 〈(a1, a2, a3); αã, θã, β ã〉 and b̃ = 〈(b1, b2, b3); αã, θã, β ã〉 be two single-valued
triangular neutrosophic numbers and γ �= 0 be any real number. Then:

1. Addition of two triangular neutrosophic numbers

ã + b̃ = 〈(a1 + b1, a2 + b2, a3 + b3); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉

2. Subtraction of two triangular neutrosophic numbers

ã− b̃ =〈(a1 − b3, a2 − b2 , a3 − b1); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉

3. Inverse of a triangular neutrosophic number

ã−1 = 〈
(

1
a3

,
1
a2

,
1
a1

)
; αã, θã, β ã〉, where (ã �= 0)

4. Multiplication of a triangular neutrosophic number by a constant value

γã =

{
〈(γa1, γa2, γa3); αã, θã, β ã〉 i f (γ > 0)
〈(γa3, γa2, γa1); αã, θã, β ã〉 i f (γ < 0)

5. Division of a triangular neutrosophic number by a constant value

ã
γ
=

⎧⎨⎩ 〈
(

a1
γ , a2

γ , a3
γ

)
; αã, θã, β ã〉 i f (γ > 0)

〈
(

a3
γ , a2

γ , a1
γ

)
; αã, θã, β ã〉 i f (γ < 0)

6. Division of two triangular neutrosophic numbers

ã
b̃
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈
(

a1
b3

, a2
b2

, a3
b1

)
; αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 > 0, b3 > 0)

〈
(

a3
b3

, a2
b2

, a1
b1

)
; αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 > 0)

〈
(

a3
b1

, a2
b2

, a1
b3

)
; αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 < 0)

7. Multiplication of two triangular neutrosophic numbers

ãb̃ =

⎧⎪⎨⎪⎩
〈(a1b1, a2b2, a3b3); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 > 0, b3 > 0)
〈(a1b3, a2b2, a3b1); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 > 0)
〈(a3b3, a2b2, a1b1); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 < 0)
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4. Neutrosophic AHP (N-AHP) in SWOT Analysis

This section describes the proposed model of integrating SWOT analysis with the neutrosophic
AHP. A step-by-step procedure for the model described is provided in this section.

Step 1 Select a group of experts at performing SWOT analysis.

In this step, experts identify the internal and the external factors of the SWOT analysis by
employing questionnaires/interviews.

Figure 1 presents the SWOT analysis diagram:

Figure 1. Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis diagram.

To transform a complex problem to a simple and easy to understand problem, the following step
is applied:

Step 2 Structure the hierarchy of the problem.

The hierarchy of the problem has four levels:

• The first level is the goal the organization wants to achieve.
• The second level consists of the four strategic criteria that are defined by the SWOT analysis

(i.e., criteria).
• The third level are the factors that are included in each strategic factor of the previous level

(i.e., sub-criteria).
• The final level includes the strategies that should be evaluated and compared.

The general hierarchy is presented in Figure 2.

Figure 2. The hierarchy of a problem.
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The next step is applied for weighting factors (criteria), sub-factors (sub-criteria) and strategies
(alternatives), according to experts’ opinions.

Step 3 Structure the neutrosophic pair-wise comparison matrix of factors, sub-factors and strategies,
through the linguistic terms which are shown in Table 1.

Table 1. Linguistic terms and the identical triangular neutrosophic numbers.

Saaty Scale Explanation Neutrosophic Triangular Scale

1 Equally influential 1̃ = 〈(1, 1, 1); 0.50, 0.50, 0.50〉
3 Slightly influential 3̃ = 〈(2, 3, 4); 0.30, 0.75, 0.70〉
5 Strongly influential 5̃ = 〈(4, 5, 6); 0.80, 0.15, 0.20〉
7 Very strongly influential 7̃ = 〈(6, 7, 8); 0.90, 0.10, 0.10〉
9 Absolutely influential 9̃ = 〈(9, 9, 9); 1.00, 0.00, 0.00〉
2

Sporadic values between two close scales

2̃ = 〈(1, 2, 3); 0.40, 0.65, 0.60〉
4 4̃ = 〈(3, 4, 5); 0.60, 0.35, 0.40〉
6 6̃ = 〈(5, 6, 7); 0.70, 0.25, 0.30〉
8 8̃ = 〈(7, 8, 9); 0.85, 0.10, 0.15〉

The neutrosophic scale is attained according to expert opinion.
The neutrosophic pair-wise comparison matrix of factors, sub-factors and strategies are as follows:

Ã =

⎡⎢⎣ 1̃ ã12 · · · ã1n
...

. . .
...

ãn1 ãn2 · · · 1̃

⎤⎥⎦ (4)

where ãji = ãij
−1, and is the triangular neutrosophic number that measures the decision

makers vagueness.

Step 4 Check the consistency of experts’ judgments.

If the pair-wise comparison matrix has a transitive relation, i.e., aik = aijajk for all i, j and k, then
the comparison matrix is consistent [38], focusing only on the lower, median and upper values of the
triangular neutrosophic number of the comparison matrix.

Step 5 Calculate the weight of the factors (S, W, O, T), sub-factors {(S1, . . . , Sn),
(W1, . . . , Wn), (O1, . . . , On), (T1, . . . , Tn)} and strategies/alternatives (Alt1, . . . ,Altn) from the
neutrosophic pair-wise comparison matrix, by transforming it to a deterministic matrix using
the following equations.

Let ãij = 〈(a1, b1, c1), αã, θã, β ã〉 be a single valued triangular neutrosophic number; then,

S
(
ãij
)
=

1
8
[a1 + b1 + c1]× (2 + αã − θã − β ã) (5)

and
A
(
ãij
)
=

1
8
[a1 + b1 + c1]× (2+αã − θã + β ã) (6)

which are the score and accuracy degrees of ãij respectively.
To get the score and the accuracy degree of ãji, we use the following equations:

S
(
ãji
)
= 1/ S

(
ãij
)

(7)
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A
(
ãji
)
= 1/A

(
ãij
)

(8)

With compensation by score value of each triangular neutrosophic number in the neutrosophic
pair-wise comparison matrix, we derive the following deterministic matrix:

A =

⎡⎢⎣ 1 a12 · · · a1n
...

. . .
...

an1 an2 · · · 1

⎤⎥⎦ (9)

Determine the ranking of priorities, namely the Eigen Vector X, from the previous matrix
as follows:

1. Normalize the column entries by dividing each entry by the sum of the column.
2. Take the total of the row averages.

Step 6 Calculate the total priority of each strategy (alternative) for the final ranking of all strategies
using Equation (10).

The total weight value of the alternative j (j = 1, . . . , n) can be written as follows:

TwAltj =wS ∗
n

∑
i=1

wSi ∗ wAltj + wW ∗
n

∑
i=1

wWi ∗ wAltj + wO ∗
n

∑
i=1

wOi ∗ wAltj + wT ∗
n

∑
i=1

wTi ∗ wAltj (10)

where (i = 1, . . . , n) and (wS, wW , wO, wT) are the weights of Strengths, Weaknesses, Opportunities
and Threats; (wSi , wWi , wOi , wTi ) are the sub-factor weights; and wAltj is the weight of the alternative j,
corresponding to its sub-factor.

From previous steps, we obtain the phases of integrating SWOT analysis with neutrosophic
analytic hierarchy processes, as shown in Figure 3.

Figure 3. SWOT-neutrosophic analytic hierarchy process (N-AHP) diagram.
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5. Illustrative Example

The model proposed in Section 3 is used to solve a real case study in this section.
Every company should analyze and dissect itself from time to time, in order to face competition.

This is important especially when a company wants to launch a new product, or open a new market,
in order to measure its presumptive success. A company can appraise itself honestly and effectively
by performing SWOT analysis, which will help it examine its performance by analyzing internal and
external factors. Once SWOT analysis is complete, a company will gain more information about its
capabilities. For the evaluation process, a multi-criteria decision-making technique should be used.
In this research, we used a neutrosophic AHP. A case study is offered in this section to illustrate this
process in detail.

The phases for implementing a N-AHP in SWOT analysis are shown in Figure 4.

Figure 4. The phases for implementing a N-AHP in SWOT analysis.

Starbucks Company is the most widely prolific marketer and retailer of coffee in the world.
The company has branches in 75 countries, with more than 254,000 employees. The company also
sells different types of coffee and tea products and has a licensed trademark. The company offers
food, in addition to coffee, and this makes it an attractive spot for snacks and breakfast. The company
has different competitors, such as Caribou Coffee Company, Costa Coffee, Green Mountain Coffee
Roasters and many others. To face competition, a group of experts perform Starbucks SWOT analysis,
as shown in Figure 5. Depending on the SWOT factors and sub-factors, a set of alternatives strategies
is developed. Our aim was to prioritize the strategies suggested by company indicators.

These strategies were:

SO strategies

• Amplifying global stores
• Seeking higher growth markets

WO strategies

• Adding different forms, new categories and diverse channels of products
• Trying to minimize the coffee price

ST strategies
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• Taking precautions to mitigate economic crises and maintain profitability

WT strategies

• Competing with other companies by offering different coffee and creating brand loyalty
• Diversifying stores around the world and minimizing raw materials prices

By applying our proposed model to Starbucks Company, the evaluation process and the selection
of different strategies was anticipated to become simpler and more valuable.

Step 1 Perform SWOT analysis.

Four experts were selected to perform Starbucks Company SWOT analysis, as they had experience
in the coffee industry.

To implement the SWOT analysis, we prepared a questionnaire (see Appendix A) and sent it out
online to experts. After obtaining the answers, the internal (Strengths and Weaknesses) and external
(Opportunities and Threats) factors were identified, as shown in Figure 5.

Figure 5. Starbucks SWOT analysis.

Step 2 Structure the hierarchy of the problem.

The hierarchical structure of Starbucks Company, according to the proposed methodology, is
presented in Figure 6.

Figure 6. The hierarchical structure of the problem.

In Figure 6, S1, . . . , S4 were the strengths sub-factors, as listed in the SWOT analysis. Also,
W1, . . . , W3, O1, . . . ,O3 and T1, . . . , T3 were the weaknesses, opportunities and threats sub-factors of
the SWOT analysis, as shown in Figure 5.
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Step 3 Structure the neutrosophic pair-wise comparison matrix of factors, sub-factors and strategies,
through the linguistic terms which are shown in Table 1. The values in Table 2 pertain to the
experts’ opinions.

The pair-wise comparison matrix of SWOT factors is presented in Table 2.

Table 2. The neutrosophic comparison matrix of factors.

Factors Strengths Weaknesses Opportunities Threats

Strengths 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(6, 7, 8); 0.90, 0.10, 0.10〉
Weaknesses 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(6, 7, 8); 0.90, 0.10, 0.10〉

Opportunities 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉

Threats 〈( 1
8 , 1

7 , 1
6 ); 0.90, 0.10, 0.10〉 〈( 1

8 , 1
7 , 1

6 ); 0.90, 0.10, 0.10〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

Step 4 Check the consistency of experts’ judgments.

The previous comparison matrix was consistent when applying the method proposed in [38].

Step 5 Calculate the weight of the factors, sub-factors and strategies.

To calculate weight, we first transformed the neutrosophic comparison matrix to its crisp form by
using Equation (5). The crisp matrix is presented in Table 3.

Table 3. The crisp comparison matrix of factors.

Factors Strengths Weaknesses Opportunities Threats

Strengths 1 1 4 7
Weaknesses 1 1 4 7

Opportunities 1
4

1
4 1 1

Threats 1
7

1
7 1 1

Then, we determined the ranking of the factors, namely the Eigen Vector X, from the previous
matrix, as illustrated previously in the detailed steps of the proposed model.

The normalized comparison matrix of factors is presented in Table 4.

Table 4. The normalized comparison matrix of factors.

Factors Strengths Weaknesses Opportunities Threats

Strengths 0.4 0.4 0.4 0.44
Weaknesses 0.4 0.4 0.4 0.44

Opportunities 0.1 0.1 0.1 0.06
Threats 0.06 0.06 0.1 0.06

By taking the total of the row averages:

X =

⎡⎢⎢⎢⎣
0.41
0.41
0.1
0.1

⎤⎥⎥⎥⎦
The neutrosophic comparison matrix of strengths is presented in Table 5.
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Table 5. The neutrosophic comparison matrix of strengths.

Strengths S1 S2 S3 S4

S1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉
S2 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉

S3 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉

S4 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp pair-wise comparison matrix of strengths is presented in Table 6 and the normalized
comparison matrix of strengths is presented in Table 7.

Table 6. The crisp comparison matrix of strengths.

Strengths S1 S2 S3 S4

S1 1 3 1 1
S2

1
3 1 1

4 1
S3 1 4 1 1
S4 1 1 1 1

Table 7. The normalized comparison matrix of strengths.

Strengths S1 S2 S3 S4

S1 0.3 0.3 0.3 0.25
S2 0.1 0.1 0.1 0.25
S3 0.3 0.4 0.3 0.25
S4 0.3 0.1 0.3 0.25

By taking the total of the row averages:

X =

⎡⎢⎢⎢⎣
0.29
0.14
0.31
0.24

⎤⎥⎥⎥⎦
The neutrosophic comparison matrix of weaknesses is presented in Table 8.

Table 8. The neutrosophic comparison matrix of weaknesses.

Weaknesses W1 W2 W3

W1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉
W2 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉
W3 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp comparison matrix of weaknesses is presented in Table 9.

Table 9. The crisp comparison matrix of weaknesses.

Weaknesses W1 W2 W3

W1 1 1
4 1

W2 4 1 4
W3 1 1

4 1

The normalized comparison matrix of weaknesses is presented in Table 10.
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Table 10. The normalized comparison matrix of weaknesses.

Weaknesses W1 W2 W3

W1 0.2 0.2 0.2
W2 0.7 0.7 0.7
W3 0.2 0.2 0.2

By taking the total of the row averages:

X =

⎡⎢⎣ 0.2
0.35
0.2

⎤⎥⎦
The neutrosophic comparison matrix of opportunities is presented in Table 11.

Table 11. The neutrosophic comparison matrix of opportunities.

Opportunities O1 O2 O3

O1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉
O2 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉
O3 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp comparison matrix of opportunities is presented in Table 12.

Table 12. The crisp comparison matrix of opportunities.

Opportunities O1 O2 O3

O1 1 1 1
4

O2 1 1 1
O3 4 1 1

The normalized comparison matrix of opportunities is presented in Table 13.

Table 13. The normalized comparison matrix of opportunities.

Opportunities O1 O2 O3

O1 0.2 0.3 0.1
O2 0.2 0.3 0.4
O3 0.7 0.3 0.4

By taking the total of the row averages:

X =

⎡⎢⎣ 0.2
0.3
0.5

⎤⎥⎦
The neutrosophic comparison matrix of threats is presented in Table 14.
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Table 14. The neutrosophic comparison matrix of threats.

Threats T1 T2 T3

T1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉
T2 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉

T3 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp comparison matrix of threats is presented in Table 15.

Table 15. The crisp comparison matrix of threats.

Threats T1 T2 T3

T1 1 1 4
T2 1 1 1
T3 4 1 1

The normalized comparison matrix of threats is presented in Table 16.

Table 16. The normalized comparison matrix of threats.

Opportunities T1 T2 T3

T1 0.2 0.3 0.7
T2 0.2 0.3 0.2
T3 0.7 0.3 0.2

By taking the total of the row averages:

X =

⎡⎢⎣ 0.4
0.2
0.4

⎤⎥⎦
Similar to the factors and sub-factors calculation methodology, the weights of alternatives

(strategies), with respect to sub-factors, were as follows:

The Eigen Vector X of strategies with respect to S1 =

⎡⎢⎢⎢⎣
0.4
0.1
0.3
0.2

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to S2 =

⎡⎢⎢⎢⎣
0.4
0.3
0.2
0.1

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to S3 =

⎡⎢⎢⎢⎣
0.5
0.3
0.1
0.1

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to S4 =

⎡⎢⎢⎢⎣
0.3
0.2
0.4
0.1

⎤⎥⎥⎥⎦
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The Eigen Vector X of strategies with respect to W1 =

⎡⎢⎢⎢⎣
0.2
0.2
0.3
0.3

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to W2 =

⎡⎢⎢⎢⎣
0.4
0.1
0.3
0.2

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to W3 =

⎡⎢⎢⎢⎣
0.6
0.1
0.2
0.1

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to O1 =

⎡⎢⎢⎢⎣
0.1
0.4
0.2
0.3

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to O2 =

⎡⎢⎢⎢⎣
0.1
0.4
0.2
0.3

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to O3 =

⎡⎢⎢⎢⎣
0.3
0.2
0.3
0.2

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to T1 =

⎡⎢⎢⎢⎣
0.1
0.4
0.2
0.3

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to T2 =

⎡⎢⎢⎢⎣
0.6
0.2
0.1
0.1

⎤⎥⎥⎥⎦

The Eigen Vector X of strategies with respect to T3 =

⎡⎢⎢⎢⎣
0.5
0.1
0.2
0.2

⎤⎥⎥⎥⎦
Step 6 Determine the total priority of each strategy (alternative) and define the final ranking of all

strategies using Equation (10).

The weights of SWOT factors, sub-factors and alternative strategies are presented in Table 17.
According to our analysis of Starbucks Company using SWOT–N-AHP, the strategies were ranked

as follows: SO, WO, ST and WT, as presented in detail in Table 17 and in Figure 7. In conclusion, SO
was the best strategy for achieving Starbuck’s goals since it had the greatest weight value.
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Table 17. The weights of SWOT factors, sub-factors, alternatives strategies and their ranking.

Factors/Sub-Factors Weight
Alternatives (Strategies)

SO ST WO WT

Strengths 0.41
S1 0.29 0.4 0.1 0.3 0.2
S2 0.14 0.4 0.3 0.2 0.1
S3 0.31 0.5 0.3 0.1 0.1
S4 0.24 0.3 0.2 0.4 0.1

Weaknesses 0.41
W1 0.2 0.2 0.2 0.3 0.3
W2 0.35 0.4 0.1 0.3 0.2
W3 0.2 0.6 0.1 0.2 0.1

Opportunities 0.1
O1 0.2 0.1 0.4 0.2 0.3
O2 0.3 0.1 0.4 0.2 0.3
O3 0.5 0.3 0.2 0.3 0.2

Threats 0.1
T1 0.4 0.1 0.4 0.2 0.3
T2 0.2 0.6 0.2 0.1 0.1
T3 0.4 0.5 0.1 0.2 0.2

Total 0.34 0.2 0.22 0.15
Rank of strategies 1 3 2 4

Figure 7. The final ranking of strategies.

To evaluate the quality of the proposed model, we compared it with other existing methods:

• The authors in [18–21] combined the AHP with SWOT analysis to solve the drawbacks of SWOT
analysis, as illustrated in the introduction section, but in the comparison matrices of the AHP
they used crisp values, which were not accurate due to the vague and uncertain information of
decision makers.

• In order to solve the drawbacks of classical AHP, several researchers combined SWOT analysis
with the fuzzy AHP [24–26]. Since fuzzy sets consider only the truth degree and fail to deal with
the indeterminacy and falsity degrees, it also does not offer the best representation of vague and
uncertain information.

• Since neutrosophic sets consider truth, indeterminacy and falsity degrees altogether, it is the best
representation for the vague and uncertain information that exists in the real world. We were the
first to integrate the neutrosophic AHP with SWOT analysis. In addition, our model considered
all aspects of vague and uncertain information by creating a triangular neutrosophic scale for
comparing factors and strategies. Due to its versatility, this method can be applied to various
problems across different fields.
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6. Conclusions and Future Works

SWOT analysis is an important tool for successful planning, but it has some drawbacks because
it fails to provide measurements and evaluations of factors (criteria) and strategies (alternatives).
In order to deal with SWOT analysis drawbacks, this research integrated the neutrosophic AHP
(N-AHP) approach. Using the N-AHP in SWOT analysis produced both quantitative and qualitative
measurements of factors. The reasons for applying an AHP in a neutrosophic environment are as
follows: due to vague, uncertain and inconsistent information, which usually exists in real world
applications, the crisp values in the classical AHP are not accurate; in the fuzzy AHP, only the
truth degree is considered, which makes it incompatible with real world applications; and the
intuitionistic AHP holds only truth and falsity degrees, therefore failing to deal with indeterminacy.
The neutrosophic AHP is useful to interpret vague, inconsistent and incomplete information by
deeming the truth, indeterminacy and falsity degrees altogether. Therefore, by integrating the N-AHP
with SWOT analysis we were able to effectively and efficiently deal with vague information better
than fuzzy and intuitionistic fuzzy set theories. The parameters of the N-AHP comparison matrices
were triangular neutrosophic numbers and a score function was used to transform the neutrosophic
AHP parameters to deterministic values. By applying our proposed model to Starbucks Company,
the evaluation process of its performance was effective, and the selection between the different
strategies became simpler and more valuable.

In the future, this research should be extended by employing different multi-criteria
decision-making (MCDM) techniques and studying their effect on SWOT analysis. In particular,
it would be useful to integrate SWOT analysis with the neutrosophic network process (ANP) to
effectively deal with interdependencies between decision criteria and handle the vague, uncertain and
inconsistent information that exists in real world applications.
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Appendix A

Four experts were selected to perform the SWOT analysis to determine the four strategic factors of
Starbucks Company. The experts were specialized in manufacturing, sales and quality. To implement
the SWOT analysis, we prepared the following questionnaire and sent it out online to the experts:

1. What is your specialty?
2. How many years of experience in coffee industry you have?
3. What are in your opinion the strengths of the Starbucks Company?
4. What are in your opinion the weaknesses of the Starbucks Company?
5. What are in your opinion the opportunities of the Starbucks Company?
6. What are in your opinion the threats of the Starbucks Company?
7. Please use the triangular neutrosophic scale introduced in Table 1 to compare all factors and

present your answers in a table format.
8. Please use the triangular neutrosophic scale introduced in Table 1 to compare all strategies and

present your answers in a table format.
9. In your opinion, which strategy from below will achieve the Starbucks goals:

◦ SO, A strategic plan involving a good use of opportunities through existing strengths.
◦ ST, A good use of strengths to remove or reduce the impact of threats.
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◦ WO, Taking into accounts weaknesses to gain benefit from opportunities.
◦ WT, Reducing threats by becoming aware of weaknesses.
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Abstract: This paper proposes novel skin lesion detection based on neutrosophic clustering
and adaptive region growing algorithms applied to dermoscopic images, called NCARG. First,
the dermoscopic images are mapped into a neutrosophic set domain using the shearlet transform
results for the images. The images are described via three memberships: true, indeterminate, and false
memberships. An indeterminate filter is then defined in the neutrosophic set for reducing the
indeterminacy of the images. A neutrosophic c-means clustering algorithm is applied to segment the
dermoscopic images. With the clustering results, skin lesions are identified precisely using an adaptive
region growing method. To evaluate the performance of this algorithm, a public data set (ISIC 2017) is
employed to train and test the proposed method. Fifty images are randomly selected for training and
500 images for testing. Several metrics are measured for quantitatively evaluating the performance
of NCARG. The results establish that the proposed approach has the ability to detect a lesion with
high accuracy, 95.3% average value, compared to the obtained average accuracy, 80.6%, found when
employing the neutrosophic similarity score and level set (NSSLS) segmentation approach.

Keywords: neutrosophic clustering; image segmentation; neutrosophic c-means clustering; region
growing; dermoscopy; skin cancer

1. Introduction

Dermoscopy is an in-vivo and noninvasive technique to assist clinicians in examining pigmented
skin lesions and investigating amelanotic lesions. It visualizes structures of the subsurface skin in
the superficial dermis, the dermoepidermal junction, and the epidermis [1]. Dermoscopic images
are complex and inhomogeneous, but they have a significant role in early identification of skin
cancer. Recognizing skin subsurface structures is performed by visually searching for individual
features and salient details [2]. However, visual assessment of dermoscopic images is subjective,
time-consuming, and prone to errors [3]. Consequently, researchers are interested in developing
automated clinical assessment systems for lesion detection to assist dermatologists [4,5]. These systems
require efficient image segmentation and detection techniques for further feature extraction and skin
cancer lesion classification. However, skin cancer segmentation and detection processes are complex
due to dissimilar lesion color, texture, size, shape, and type; as well as the irregular boundaries of
various lesions and the low contrast between skin and the lesion. Moreover, the existence of dark hair
that covers skin and lesions leads to specular reflections.
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Traditional skin cancer detection techniques implicate image feature analysis to outline the
cancerous areas of the normal skin. Thresholding techniques use low-level features, including intensity
and color to separate the normal skin and cancerous regions. Garnavi et al. [6] applied Otsu’s method
to identify the core-lesion; nevertheless, such process is disposed to skin tone variations and lighting.
Moreover, dermoscopic images include some artifacts due to water bubble, dense hairs, and gel that
are a great challenge for accurate detection. Silveira et al. [7] evaluated six skin lesions segmentation
techniques in dermoscopic images, including the gradient vector flow (GVF), level set, adaptive snake,
adaptive thresholding, fuzzy-based split and merge (FSM), and the expectation–maximization level set
(EMLV) methods. The results established that adaptive snake and EMLV were considered the superior
semi-supervised techniques, and that FSM achieved the best fully computerized results.

In dermoscopic skin lesion images, Celebi et al. [8] applied an unsupervised method using
a modified JSEG algorithm for border detection, where the original JSEG algorithm is an adjusted
version of the generalized Lloyd algorithm (GLA) for color quantization. The main idea of this method
is to perform the segmentation process using two independent stages, namely color quantization
and spatial segmentation. However, one of the main limitations occurs when the bounding box does
not entirely include the lesion. This method was evaluated on 100 dermoscopic images, and border
detection error was calculated. Dermoscopic images for the initial consultation were analyzed by
Argenziano et al. [9] and were compared with images from the last follow-up consultation and the
symmetrical/asymmetrical structural changes. Xie and Bovik [10] implemented a dermoscopic image
segmentation approach by integrating the genetic algorithm (GA) and self-generating neural network
(SGNN). The GA was used to select the optimal samples as initial neuron trees, and then the SGNF was
used to train the remaining samples. Accordingly, the number of clusters was determined by adjusting
the SD of cluster validity. Thus, the clustering is accomplished by handling each neuron tree as a cluster.
A comparative study between this method and other segmentation approaches—namely k-means,
statistical region merging, Otsu’s thresholding, and the fuzzy c-means methods—has been conducted
revealing that the optimized method provided improved segmentation and more accurate results.

Barata et al. [11] proposed a machine learning based, computer-aided diagnosis system for
melanoma using features having medical importance. This system used text labels to detect several
significant dermoscopic criteria, where, an image annotation scheme was applied to associate the
image regions with the criteria (texture, color, and color structures). Features fusion was then used to
combine the lesions’ diagnosis and the medical information. The proposed approach achieved 84.6%
sensitivity and 74.2% specificity on 804 images of a multi-source data set.

Set theory, such as the fuzzy set method, has been successfully employed into image segmentation.
Fuzzy sets have been introduced into image segmentation applications to handle uncertainty. Several
researchers have been developing efficient clustering techniques for skin cancer segmentation and other
applications based on fuzzy sets. Fuzzy c-means (FCM) uses the membership function to segment the
images into one or several regions. Lee and Chen [12] proposed a segmentation technique on different
skin cancer types using classical FCM clustering. An optimum threshold-based segmentation technique
using type-2 fuzzy sets was applied to outline the skin cancerous areas. The results established the
superiority of this method compared to Otsu’s algorithm, due its robustness to skin tone variations
and shadow effects. Jaisakthi et al. [13] proposed an automated skin lesion segmentation technique
in dermoscopic images using a semi-supervised learning algorithm. A k-means clustering procedure
was employed to cluster the pre-processed skin images, where the skin lesions were identified from
these clusters according to the color feature. However, the fuzzy set technique cannot assess the
indeterminacy of each element in the set. Zhou et al. [14] introduced the fuzzy c-means (FCM)
procedure based on mean shift for detecting regions within the dermoscopic images.

Recently, neutrosophy has provided a prevailing technique, namely the neutrosophic set (NS),
to handle indeterminacy during the image processing. Guo and Sengur [15] integrated the NS and FCM
frameworks to resolve the inability of FCM for handling uncertain data. A clustering approach called
neutrosophic c-means (NCM) clustering was proposed to cluster typical data points. The results proved
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the efficiency of the NCM for image segmentation and data clustering. Mohan et al. [16] proposed
automated brain tumor segmentation based on a neutrosophic and k-means clustering technique.
A non-local neutrosophic Wiener filter was used to improve the quality of magnetic resonance images
(MRI) before applying the k-means clustering approach. The results found detection rates of 100% with
98.37% accuracy and 99.52% specificity. Sengur and Guo [17] carried out an automated technique using
a multiresolution wavelet transform and NS. The color/texture features have been mapped on the NS
and wavelet domain. Afterwards, the c-k-means clustering approach was employed for segmentation.
Nevertheless, wavelets [18] are sensitive to poor directionality during the analysis of supplementary
functions in multi-dimensional applications. Hence, wavelets are relatively ineffectual to represent
edges and anisotropic features in the dermoscopic images. Subsequently, enhanced multi-scale
procedures have been established, including the curvelets and shearlets to resolve the limitations of
wavelet analysis. These methods have the ability to encode directional information for multi-scale
analysis. Shearlets provides a sparse representation of the two-dimensional information with edge
discontinuities [19]. Shearlet-based techniques were established to be superior to wavelet-based
methods [20].

Dermoscopic images include several artifacts such as hair, air bubbles, and other noise factors that
are considered indeterminate information. The above-mentioned skin lesion segmentation methods
either need a preprocessing to deal with the indeterminate information, or their detection results must
be affected by them. To overcome this disadvantage, we introduce the neutrosophic set to deal with
indeterminate information in dermoscopic images; we use a shearlet transform and the neutrosophic
c-means (NCM) method along with an indeterminacy filter (IF) to eliminate the indeterminacy for
accurate skin cancer segmentation. An adaptive region growing method is also employed to identify
the lesions accurately.

The rest of the paper is organized as follows. In the second section, the proposed method is
presented. Then the experimental results are discussed in the third section. The conclusions are drawn
in the final section.

2. Methodology

The current work proposes a skin lesion detection algorithm using neutrosophic clustering and
adaptive region growing in dermoscopic images. In this study, the red channel is used to detect the
lesion, where healthy skin regions tend to be reddish, while darker pixels often occur in skin lesion
regions [21]. First, the shearlet transform is employed on the red channel of dermoscopic image to
extract the shearlet features. Then, the red channel of the image is mapped into the neutrosophic
set domain, where the map functions are defined using the shearlet features. In the neutrosophic
set, an indeterminacy filtering operation is performed to remove indeterminate information, such as
noise and hair without using any de-noising or hair removal approaches. Then, the segmentation is
performed through the neutrosophic c-means (NCM) clustering algorithm. Finally, the lesions are
identified precisely using adaptive region growing on the segmentation results.

2.1. Shearlet Transform

Shearlets are based on a rigorous and simple mathematical framework for the geometric
representation of multidimensional data and for multiresolution analysis [22]. The shearlet transform
(ST) resolves the limitations of wavelet analysis; where wavelets fail to represent the geometric
regularities and yield surface singularities due to their isotropic support. Shearlets include nearly
parallel elongated functions to achieve surface anisotropy along the edges. The ST is an innovative
two-dimensional wavelet transformation extension using directional and multiscale filter banks to
capture smooth contours corresponding to the prevailing features in an image. Typically, the ST is
a function with three parameters a, s, and t denoting the scale, shear, and translation parameters,
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respectively. The shearlet can fix both the locations of singularities and the singularities’ curve tracking
automatically. For a > 0, s ∈ R, t ∈ R2, the ST can be defined using the following expression [23]:

STς p(a, s, t) =< 〈p, ςa,s,t〉, (1)

where ςa,s,t( f ) = |detNa,s|−1/2ς
(

N−1
a,s ( f − t)

)
and Na,s =

[
a s
0
√

a

]
. Each matrix Na,s can be

defined as:
Na,s = VsDa, (2)

where the shear matrix is expressed by:

Vs =

[
1 s
0 1

]
(3)

and the anisotropic dilation matrix is given by:

Da =

[
a s
0
√

a

]
. (4)

During the selection of a proper decomposition function for any τ = (τ1, τ2) ∈ R2, and τ2 �= 0,
ς can be expressed by:

�
ς (τ) =

�
ς (τ1, τ2) =

�
ς 1(τ1)

�
ς 2

(
τ1

τ2

)
, (5)

where
�
ς 1 ∈ L2(R) and ‖ς2‖L2

= 1.
From the preceding equations, the discrete shearlet transform (DST) is formed by translation,

shearing, and scaling to provide the precise orientations and locations of edges in an image. The DST is
acquired by sampling the continuous ST. It offers a decent anisotropic feature extraction. Thus, the DST
system is properly definite by sampling the continuous ST on a discrete subset of the shearlet group as
follows, where j, k, m ∈ Z× Z× Z2 [24]:

ST(ς) =
{

ς j,k,m = a−
3
4 ς
(

Da
−1Vs

−1(.− t)
)

: (j, k, m) ∈ ∧
}

. (6)

The DST can be divided into two steps: multi-scale subdivision and direction localization [25],
where the Laplacian pyramid algorithm is first applied to an image in order to obtain the
low-and-high-frequency components at any scale j, and then direction localization is achieved with
a shear filter on a pseudo polar grid.

2.2. Neutrosophic Images

Neutrosophy has been successfully used for many applications to describe uncertain or
indeterminate information. Every event in the neutrosophy set (NS) has a certain degree of truth (T),
indeterminacy (I), and falsity (F), which are independent from each other. Previously reported studies
have demonstrated the role of NS in image processing [26,27].

A pixel P(i, j) in an image is denoted as PNS(i, j) = {T(i, j), I(i, j), F(i, j)} in the NS domain,
where T(i, j), I(i, j), and F(i, j) are the membership values belonging to the brightest pixel set,
indeterminate set, and non-white set, respectively.

In the proposed method, the red channel of the dermoscopic image is transformed into the NS
domain using shearlet feature values as follows:
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T(x, y) = STL(x,y)−STLmin
STLmax−STLmin

I(x, y) = STH(x,y)−STHmin
STHmax−STHmin

(7)

where T and I are the true and indeterminate membership values in the NS. STL(x, y) is the
low-frequency component of the shearlet feature at the current pixel P(x, y). In addition, STLmax

and STLmin are the maximum and minimum of the low-frequency component of the shearlet feature
in the whole image, respectively. STH(x, y) is the high-frequency component of the shearlet feature
at the current pixel P(x, y). Moreover, STHmax and STHmin are the maximum and minimum of the
high-frequency component of the shearlet feature in the whole image, respectively. In the proposed
method, we only use T and I for segmentation because we are only interested in the degree to which
a pixel belongs to the high intensity set of the red channel.

2.3. Neutrosophic Indeterminacy Filtering

In an image, noise can be considered as indeterminate information, which can be handled
efficiently using NS. Such noise and artifacts include the existence of hair, air bubbles, and blurred
boundaries. In addition, NS can be integrated with different clustering approaches for image
segmentation [16,28], where the boundary information, as well as the details, may be blurred due to the
principal low-pass filter leading to inaccurate segmentation of the boundary pixels. A novel NS based
clustering procedure, namely the NCM has been carried out for data clustering [15], which defined
the neutrosophic membership subsets using attributes of the data. Nevertheless, when it is applied to
the image processing area, it does not account for local spatial information. Several side effects can
affect the image when using classical filters in the NS domain, leading to blurred edge information,
incorrect boundary segmentation, and an inability to combine the local spatial information with the
global intensity distribution.

After the red channel of the dermoscopic image is mapped into the NS domain, an indeterminacy
filter (IF) is defined based on the neutrosophic indeterminacy value, and the spatial information is
utilized to eliminate the indeterminacy. The IF is defined by using the indeterminate value Is(x, y),
which has the following kernel function [28]:

OI(u, v) =
1

2πσ2
I

e
− u2+v2

2σ2
I (8)

σI(x, y) = f (I(x, y)) = rI(x, y) + q, (9)

where σI represents the Gaussian distribution’s standard deviation, which is defined as a linear function
f (.) associated with the indeterminacy degree. Since σI becomes large with a high indeterminacy
degree, the IF can create a smooth current pixel by using its neighbors. On the other hand, with a low
indeterminacy degree, the value of σI is small and the IF performs less smoothing on the current pixel
with its neighbors.

2.4. Neutrosophic C-Means (NCM)

In the NCM algorithm, an objective function and membership are considered as follows [29]:

J(T, I, F, A) =
N

∑
i=1

A

∑
j=1

(�1Tij)
m||xi − aj||2 +

N

∑
i=1

(�2 Ii)
m||xi − aimax||2 +

N

∑
i=1

δ2(�3Fi)
m (10)
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aimax =
api+aqi

2

pi = argmax
j=1,2,··· ,A

(Tij)

qi = argmax
j �=pi∩j=1,2,··· ,A

(Tij)

(11)

where m is a constant and usually equal to 2. The value of aimax is calculated, since pi and qi are
identified as the cluster numbers with the largest and second largest values of T, respectively.
The parameter δ is used for controlling the number of objects considered as outliers, and �i is
a weight factor.

In our NS domain, we only defined the membership values of T and I. Therefore, the objective
function reduces to:

J(T, I, F, A) =
N

∑
i=1

A

∑
j=1

(�1Tij)
m||xi − aj||2 +

N

∑
i=1

(�2 Ii)
m||xi − aimax||2. (12)

To minimize the objective function, three membership values are updated on each iteration as:

Tij =
K

�1

(
xi − aj

)− 2
m−1

I i =
K

�2
(xi − aimax)

− 2
m−1

K =

[
1

�1

A
∑

j=1

(
xi − aj

)− 2
m−1 + 1

�2
(xi − aimax)

− 2
m−1

]−1 (13)

where aimax is calculated based on the indexes of the largest and the second largest value of Tij.

The iteration does not stop until
∣∣∣T(k+1)

ij − T(k)
ij

∣∣∣ < ε, where ε is a termination criterion between 0 and
1, and k is the iteration step. In the proposed method, the neutrosophic image after indeterminacy
filtering is used as the input for NCM algorithm, and the segmentation procedure is performed using
the final clustering results. Since the pixels whose indeterminacy membership values are higher than
their true membership values, it is hard to determine which group they belong to. To solve this problem,
the indeterminacy filter is employed again on all pixels, and the group is determined according to their
biggest true membership values for each cluster after the IF operation.

2.5. Lesion Detection

After segmentation, the pixels in an image are grouped into several groups according to their
true membership values. Due to the fact that the lesions have low intensities, especially for the core
part inside a lesion, the cluster with lowest true membership value is initially considered as the lesion
candidate pixels. Then an adaptive region growing algorithm is employed to precisely detect the
lesion boundary parts having higher intensity and lower contrast than the core ones. A contrast ratio
is defined adaptively to control the growing speed:

DR(t) =
mean(Ra − Rb)

mean(Rb)
, (14)

where DR(t) is the contrast ratio at the t-th iteration of growing, and Rb and Ra are the regions before
and after the t-th iteration of growing, respectively.

A connected component analysis is taken to extract the components’ morphological features.
Due to the fact that there is only one lesion in a dermoscopic image, the region with the biggest area is
identified as the final lesion region. The block diagram of the proposed neutrosophic clustering and
adaptive region growing (NCARG) method is illustrated in Figure 1.
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Figure 1. Flowchart of the proposed neutrosophic clustering and adaptive region growing (NCARG)
skin lesion detection algorithm.

Figure 1 illustrates the steps of the proposed skin lesion segmentation method (NCARG) using
neutrosophic c-means and region growing algorithms. Initially, the red channel of the dermoscopic
image is transformed using a shearlet transform, and the shearlet features of the image are used to
map the image into the NS domain. In the NS domain, an indeterminacy filtering operation is taken
to remove the indeterminate information. Afterward, the segmentation is performed through NCM
clustering on the filtered image. Finally, the lesion is accurately identified using an adaptive region
growing algorithm where the growing speed is controlled by a newly defined contrast ratio.

To illustrate the steps in the proposed method, we use an example to demonstrate the intermediate
results in Figure 2. Figure 2a,b are the original image and its ground truth image of segmentation.
Figure 2c is its red channel. Figure 2d,e are the results after indeterminacy filtering and the NCM.
In Figure 2f, the final detection result is outlined in blue and ground truth in red where the detection
result is very close to its ground truth result.

Figure 2. Intermediate results of an example image: ISIC_0000015: (a) Original skin lesion image;
(b) Ground truth image; (c) Red channel of the original image; (d) Result after indeterminate filtering;
(e) Result after NCM; (f) Detected lesion region after adaptive region growing, where the blue line is
for the boundary of the detection result and the red line is the boundary of the ground truth result.
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2.6. Evaluation Metrics

Several performance metrics are measured to evaluate the proposed skin cancer segmentation
approach, namely the Jaccard index (JAC), Dice coefficient, sensitivity, specificity, and accuracy [30].
Each of these metric is defined in the remainder of this section. JAC is a statistical metric to compare
diversity between the sample sets based upon the union and intersection operators as follows:

JAC(Y, Q) =
ArY ∩ ArQ

ArY ∪ ArQ
, (15)

where ∩ and ∪ are the intersection and union of two sets, respectively. In addition, ArY and ArQ
are the automated segmented skin lesion area and the reference golden standard skin lesion area
enclosed by the boundaries Y and Q; respectively. Typically, a value of 1 specifies complete similarity,
while a JAC value of 0 specifies no similarity.

The Dice index compares the similarity of two sets, which is given as following for two sets X
and Y:

DSC =
2|X ∩Y|
|X|+|Y| (16)

Furthermore, the sensitivity, specificity, and accuracy are related to the detection of the lesion region.
The sensitivity indicates the true positive rate, showing how well the algorithm successfully predicts
the skin lesion region, which is expressed as follows:

Sensitivity =
Number of true positives

Number of true positives + Number of false negatives
. (17)

The specificity indicates the true negative rate, showing how well the algorithm predicts the non-lesion
regions, which is expressed as follows:

Specificity =
Number of true negative

Number of conditionnegative
. (18)

The accuracy is the proportion of true results (either positive or negative), which measures the reliability
degree of a diagnostic test:

Accuracy =
Number of true positive + Number of true negative

Number of total population
. (19)

These metrics are measured to evaluate the proposed NCARG method compared to another
efficient segmentation algorithm that is based on the neutrosophic similarity score (NSS) and level
set (LS), called NSSLS [31]. In the NSSLS segmentation method, the three membership subsets are
used to transfer the input image to the NS domain, and then the NSS is applied to measure the
fitting degree to the true tumor region. Finally, the LS method is employed to segment the tumor
in the NSS image. In the current work, when the NSSLS is applied to the skin images, the images
are interpreted using NSS, and the skin lesion boundary is extracted using the level set algorithm.
Moreover, the statistical significance between the evaluated metrics using both segmentation methods
is measured by calculating the significant difference value (p-value) to estimate the difference between
the two methods. The p-value refers to the probability of error, where the two methods are considered
statistically significant when p ≤ 0.05.

3. Experimental Results and Discussion

3.1. Dataset

The International Skin Imaging Collaboration (ISIC) Archive [32] contains over 13,000 dermoscopic
images of skin lesions. Using the images in the ISIC Archive, the 2017 ISBI Challenge on Skin Lesion Analysis
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Towards Melanoma Detection was proposed to help participants develop image analysis tools to
enable the automated diagnosis of melanoma from dermoscopic images. Image analysis of skin lesions
includes lesion segmentation, detection and localization of visual dermoscopic features/patterns,
and disease classification. All cases contain training, and binary mask images as ground truth files.

In our experiment, 50 images were selected to tune the parameters in the proposed NCARG
algorithm and 500 images were used as the testing dataset. In the experiment, the parameters are set
to r = 1, q = 0.05, w1 = 0.75, w2 = 0.25, and ε = 0.001.

3.2. Detection Results

Skin lesions are visible by the naked eye; however, early-stage detection of melanomas is
complex and difficult to distinguish from benign skin lesions with similar appearances. Detecting
and recognizing melanoma at its earliest stages reduces melanoma mortality. Skin lesion digital
dermoscopic images are employed in the present study to detect skin lesions for accurate automated
diagnosis and clinical decision support. The ISIC images are used to test and to validate the proposed
approach of skin imaging. Figure 3 demonstrates the detection results using the proposed NCARG
approach compared to the ground truth images. In the Figure 3d, the boundary detection results are
marked in blue and the ground truth results are in red. The detection results match the ground truth
results, and their boundaries are very close. Figure 3 establishes that the proposed approach accurately
detects skin lesion regions, even with lesions of different shapes and sizes.

Figure 3. Detection results: (a) Skin cancer image number; (b) Original skin lesion image; (c) Ground
truth image; and (d) Detected lesion region using the proposed approach.

3.3. Evaluation

Table 1 reports the average values as well as the standard deviations (SD) of the evaluation metrics
on the proposed approach’s performance over 500 images.
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Table 1. The performance of computer segmentation using the proposed NCARG method with
reference to ground truth boundaries (Average ± SD).

Metric Value Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

Average 95.3 90.38 83.2 97.5 88.8

Standard deviation 6 7.6 10.5 3.5 11.4

Table 1 establishes that the proposed approach achieved a detection accuracy for the skin lesion
regions of 95.3% with a 6% standard deviation, compared to the ground truth images. In addition,
the mean values of the Dice index, Jaccard index, sensitivity, and specificity are 90.38%, 83.2%, 97.5%,
and 88.8%; respectively, with standard deviations (SD) of 7.6%, 10.5%, 3.5%, and 11.4%; respectively.
These reported experimental test results proved that the proposed NCARG approach correctly detects
skin lesions of different shapes and sizes with high accuracy. Ten dermoscopic images were randomly
selected; their segmentation results are shown in Figure 4, and the evaluation metrics are reported in
Table 2.

Figure 4. Cont.
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Figure 4. Comparative segmentation results, where (a1–a10): original dermoscopic test images;
(b1–b10): ground truth images; (c1–c10): segmented images using the neutrosophic similarity score
and level set (NSSLS) algorithm, and (d1–d10): NCARG proposed approach.

Table 2. The performance of computer segmentation using the proposed method with reference to the
ground truth boundaries (Average ± SD) of ten images during the test phase.

Image ID Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

ISIC_0012836 99.7819 93.2747 87.397 99.9909 87.851
ISIC_0013917 99.1485 90.4852 82.6237 1 82.6237
ISIC_0014647 99.4684 92.8643 86.6791 99.7929 91.2339
ISIC_0014649 98.8823 95.2268 90.8886 98.8313 99.2854
ISIC_0014773 98.9017 97.3678 94.8707 98.6294 99.9692
ISIC_0014968 89.5888 89.2267 80.5489 81.7035 99.9913
ISIC_0014994 98.9242 93.0613 87.023 1 87.023
ISIC_0015019 93.8788 93.9689 88.6239 88.6218 99.602
ISIC_0015941 99.7687 94.3589 89.3203 1 89.3203
ISIC_0015563 98.0344 83.939 72.3232 97.928 1
Average (%) 97.63777 92.3774 86.0298 96.54978 93.68998

SD (%) 3.31069 3.7373 6.2549 6.26068 6.76053

3.4. Comparative Study with NSSLS Method

The proposed NCARG approach is compared with the NSSLS algorithm [31] for detecting skin
lesions. Figure 4(a1–a10), Figure 4(b1–b10), Figure 4(c1–c10) and Figure 4(d1–d10) include the original
dermoscopic images, the ground truth images, the segmented images using the NSSLS algorithm,
and the NCARG proposed approach; respectively.

Figure 4 illustrates different samples from the test images with different size, shape,
light illumination, skin surface roughness/smoothness, and the existence of hair and/or air bubbles.
For these different samples, the segmented image using the proposed NCARG algorithm is matched
with the ground truth; while, the NSSLS failed to accurately match the ground truth. Thus, Figure 4
demonstrates that the proposed approach accurately detects the skin lesion under the different cases
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compared with the NSSLS method. The superiority of the proposed approach is due to the ability of the
NCM along with the IF to handle indeterminate information. In addition, shearlet transform achieved
the surface anisotropic regularity along the edges leading the algorithm to capture the smooth contours
corresponding to the dominant features in the image. For the same images in Figure 4, the comparative
results of the previously mentioned evaluation metrics are plotted for the NCARG and NSSLS in
Figures 5 and 6; respectively. In both figures, the X-axis denotes the image name under study, and the
Y-axis denotes the value of the corresponding metric in the bar graph.

Figure 5 along with Table 2 illustrate the accuracy of the proposed algorithm, which achieves
an average accuracy of 97.638% for the segmentation of the different ten skin lesion samples,
while Figure 6 illustrates about 44% average accuracy of the NSSLS method. Thus, Figures 5 and 6
establish the superiority of the proposed approach compared with the NSSLS method, owing to the
removal the indeterminate information and the efficiency of the shearlet transform. The same results
are confirmed by measuring the same metrics using 500 images, as reported in Figure 7.

Figure 5. Evaluation metrics of the ten test images using the proposed segmentation NCARG approach.

Figure 6. Evaluation metrics of the ten test images using the NSSLS segmentation approach
for comparison.
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Figure 7 reports that the proposed method achieves about 15% improvement on the accuracy and
about 25% improvement in the JAC over the NSSLS method. Generally, Figure 7 proves the superiority
of the proposed method compared with the NSSLS method. In addition, Table 3 reports the statistical
results on the testing images; it compares the detection performance with reference to the ground
truth segmented images for the NSSLS and the proposed NCARG method. The p-values are used to
estimate the differences between the metric results of the two methods. The statistical significance was
set at a level of 0.05; a p-value of <0.05 refers to the statistically significant relation.

Figure 7. Comparative results of the performance evaluation metrics of the proposed NCARG and
NSSLS methods.

The p-values reported in Table 3 establish a significant difference in the performance metric values
when using the proposed NCARG and NSSLS methods. The mean and standard deviation of the
accuracy, Dice, JAC, sensitivity, and specificity for the NSSLS and NCARG methods, along with the
p-values, establish that the proposed NCARG method improved skin lesion segmentation compared
with the NSSLS method. Figure 7 along with Table 3 depicts that the NCARG achieved 95.3% average
accuracy, which is superior to the 80.6% average accuracy of the NSSLS approach. Furthermore,
the proposed algorithm achieved a 90.4% average Dice coefficient value, 83.2% average JAC value,
97.5% average sensitivity value, and 88.8% average specificity value. The segmentation accuracy
improved from 80.6 ± 22.1 using the NSSLS to 95.3 ± 6 using the proposed method, which is
a significant difference. The skin lesion segmentation improvement is statistically significant (p < 0.05)
for all measured performances metrics by SPSS software.

Table 3. The average values (mean ± SD) of the evaluation metrics using the NCARG approach
compared to the NSSLS approach.

Method Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

NSSLS method 80.6 ± 22.1 66.4 ± 32.6 57.9 ± 33.7 82.1 ± 24 83.1 ± 30.4

Proposed NCARG method 95.3 ± 6 90.4 ± 7.6 83.2 ± 10.5 97.5 ± 6.3 88.8 ± 11.4

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

The cumulative percentage is used to measure the percentage of images, which have a metric
value less than a threshold value. The cumulative percentage (CP) curves of the measured metrics
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are plotted for comparing the performance of the NSSLS and NCARG algorithms. Figures 8–12 show
the cumulative percentage of images having five measurements less than a certain value; the X-axis
represents the different threshold values on the metric and the Y-axis is the percentage of the number
of images whose metric values are greater than this threshold value. These figures demonstrate the
comparison of performances in terms of the cumulative percentage of the different metrics, namely the
accuracy, Dice value, JAC, sensitivity, and specificity; respectively.

Figure 8 illustrates a comparison of performances in terms of the cumulative percentage of the
NCARG and NSSLS segmentation accuracy. About 80% of the images have a 95% accuracy for the
segmentation using the proposed NCARG, while the achieved cumulative accuracy percentage using
the NSSLS is about 65% for 80% of the images.

Figure 8. Comparison of performances in terms of the cumulative percentage of the accuracy using the
NCARG and NSSLS segmentation methods.

Figure 9 compares the performances, in terms of the cumulative percentage of the Dice index
values, of the NCARG and NSSLS segmentations. Figure 9 depicts that 100% of the images have about
82% Dice CP values using the NCARG method, while 58% of the images achieved the same 82% Dice
CP values when using the NSSLS method.

Figure 9. Comparison of performances in terms of the cumulative percentage of the Dice values using
the NCARG and NSSLS segmentation methods.
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Figure 10 compares the performances, in terms of the cumulative percentage of the JAC values,
of the NCARG and NSSLS segmentation. About 50% of the images have 83% CP JAC values using
the NCARG method, while the obtained CP JAC using the NSSLS for the same number of images is
about 72%.

Figure 10. Comparison of performances in terms of the cumulative percentage of the JAC values using
NCARG and NSSLS segmentation methods.

Figure 11 compares the performances, in terms of the cumulative percentage of the sensitivity,
using the NCARG and NSSLS segmentation methods. About 50% of the images have 97% sensitivity
value using the NCARG method, while the NSSLS achieves about 92% sensitivity value.

Figure 11. Comparison of performances in terms of the cumulative percentage of the sensitivity using
the NCARG and NSSLS segmentation methods.

Figure 12 demonstrates the comparison of performances, in terms of the cumulative percentage
of the specificity, using the NCARG and NSSLS segmentation methods. A larger number of images
have accuracies in the range of 100% to 85% when using the NSSLS compared to the proposed method.
However, about 100% of the images have 63% CP specificity values using the NCARG method,
while the NSSLS achieved about 20% cumulative specificity values with 90% of the images. Generally,
the cumulative percentage of each metric establishes the superiority of the proposed NCARG method
compared with the NSSLS method.
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Figure 12. Comparison of performances in terms of the cumulative percentage of the specificity using
the NCARG and NSSLS segmentation methods.

3.5. Comparison with Other Segmentation Methods Using the ISIC Archive

In case of lesion segmentation, variability in the images is very high; therefore, performance
results highly depend on the data set that is used in the experiments. Several studies and challenges
have been conducted to resolve such trials [33]. In order to validate the performance of the proposed
NCARG method, a comparison is conducted on the results of previously published studies on the
same ISIC dermoscopic image data set. Yu et al. [34] leveraged very deep convolutional neural
networks (CNN) for melanoma image recognition using the ISIC data set. The results proved
that deeper networks, of more than 50 layers, provided more discriminating features with more
accurate recognition. For accurate skin lesion segmentation, fully convolutional residual networks
(FCRN) with a multi-scale contextual information integration structure were applied to the further
classification stage. The network depth increase achieved enhanced discrimination capability of
CNN. The FCRNs of 38 layers achieved 0.929 accuracy, 0.856 Dice, 0.785 JAC, and 0.882 sensitivity.
Thus, our proposed NCARG provides superior performance in terms of these metrics. However,
with an increased FCRN layer depth of 50, the performance improvement increased compared to our
proposed method. However, the complexity also increases. In addition, Yu et al. have compared
their study with other studies, namely the fully convolutional VGG-16 network [34,35] and the fully
convolutional GoogleNet [34,36] establishing the superiority of our work compared to both of those
studies. Table 4 reports a comparative study between the preceding studies, which have used the same
ISIC data set, and the proposed NCARG method.

Table 4. Performance metrics comparison of different studies using the ISIC dataset for segmentation.

Method Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

FCRNs of 38 layers [34] 92.9 85.6 78.5 88.2 93.2
FCRNs of 101 layers [34] 93.7 87.2 80.3 90.3 93.5

VGG-16 [34,35] 90.3 79.4 70.7 79.6 94.5
GoogleNet [34,36] 91.6 84.8 77.6 90.1 91.6

Proposed NCARG method 95.3 90.4 83.2 97.5 88.8

The preceding results and the comparative study establish the superiority of the proposed NCARG
method compared with other methods. This superiority arises due to the effectiveness of the shearlet
transform, the indeterminacy filtering, and the adaptive region growing, yielding an overall accuracy
of 95.3%. Moreover, in comparison with previously conducted studies on the same ISIC dermoscopic
image data set, the proposed method can be considered an effective method. In addition, the studies
in References [37,38] can be improved and compared with the proposed method on the same dataset.
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4. Conclusions

In this study, a novel skin lesion detection algorithm is proposed based on neutrosophic
c-means and adaptive region growing algorithms applied to dermoscopic images. The dermoscopic
images are mapped into the neutrosophic domain using the shearlet transform results of the image.
An indeterminate filter is used for reducing the indeterminacy on the image, and the image is
segmented via a neutrosophic c-means clustering algorithm. Finally, the skin lesion is accurately
identified using a newly defined adaptive region growing algorithm. A public data set was employed
to test the proposed method. Fifty images were selected randomly for tuning, and five hundred images
were used to test the process. Several metrics were measured for evaluating the proposed method
performance. The evaluation results demonstrate the proposed method achieves better performance
to detect the skin lesions when compared to the neutrosophic similarity score and level set (NSSLS)
segmentation approach.

The proposed NCARG approach achieved average 95.3% accuracy of 500 dermoscopic images
including, ones with different shape, size, color, uniformity, skin surface roughness, light illumination
during the image capturing process, and existence of air bubbles. The significant difference in the
p-values of the measured metrics using the NSSLS and the proposed NCARG proved the superiority of
the proposed method. This proposed method determines possible skin lesions in dermoscopic images
which can be employed for further accurate automated diagnosis and clinical decision support.
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Abstract: In this paper, by utilizing the concept of a neutrosophic extended triplet (NET), we define
the neutrosophic image, neutrosophic inverse-image, neutrosophic kernel, and the NET subgroup.
The notion of the neutrosophic triplet coset and its relation with the classical coset are defined and the
properties of the neutrosophic triplet cosets are given. Furthermore, the neutrosophic triplet normal
subgroups, and neutrosophic triplet quotient groups are studied.

Keywords: neutosophic extended triplet subgroups; neutrosophic triplet cosets; neutrosophic triplet
normal subgroups; neutrosophic triplet quotient groups

1. Introduction

Neutrosophy was first introduced by Smarandache (Smarandache, 1999, 2003) as a branch of
philosophy, which studied the origin, nature, and scope of neutralities, as well as their interactions
with different ideational spectra: (A) is an idea, proposition, theory, event, concept, or entity; anti(A) is
the opposite of (A); and (neut-A) means neither (A) nor anti(A), that is, the neutrality in between the
two extremes. A notion of neutrosophic set theory was introduced by Smarandache in [1]. By using
the idea of the neutrosophic theory, Kandasamy and Smarandache introduced neutrosophic algebraic
structures in [2,3]. The neutrosophic triplets were first introduced by Florentin Smarandache and
Mumtaz Ali [4–10], in 2014–2016. Florentin Smarandache and Mumtaz Ali introduced neutrosophic
triplet groups in [6,11]. A lot of researchers have been dealing with neutrosophic triplet metric space,
neutrosophic triplet vector space, neutrosophic triplet inner product, and neutrosophic triplet normed
space in [12–22].

A neutrosophic extended triplet, introduced by Smarandache [7,20] in 2016, is defined as the
neutral of x (denoted by eneut(x) and called “extended neutral”), which is equal to the classical algebraic
unitary element (if any). As a result, the “extended opposite” of x (denoted by eanti(x)) is equal to
the classical inverse element from a classical group. Thus, the neutrosophic extended triplet (NET)
has a form

(
x, eneut(x), eanti(x)

)
for x ∈ N, where eneut(x) ∈ N is the extended neutral of x. Here,

the neutral element can be equal to or different from the classical algebraic unitary element, if any,
such that: x ∗ eneut(x) = eneut(x) ∗ x = x, and eanti(x) ∈ N is the extended opposite of x, where
x ∗ eanti(x) = eanti(x) ∗ x = eneut(x). Therefore, we used NET to define these new structures.

In this paper, we deal with neutosophic extended triplet subgroups, neutrosophic triplet cosets,
neutrosophic triplet normal subgroups, and neutrosophic triplet quotient groups for the purpose to
develop new algebraic structures on NET groups. Additionally, we define the neutrosophic triplet
image, neutrosophic triplet kernel, and neutrosophic triplet inverse image. We give preliminaries
and results with examples in Section 2, and we introduce neutrosophic extended triplet subgroups
in Section 3. Section 4 is dedicated to introduing neutrosophic triplet cosets, with some of their
properties, and we show that neutrosophic triplet cosets are different from classical cosets. In Section 5,
we introduce neutrosophic triplet normal subgroups and the neutrosophic triplet normal subgroup
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test. In Section 6, we define the neutrosophic triplet quotient groups and we examine the relationships
of these structures with each other. In Section 7, we provide some conclusions.

2. Preliminaries

In this section, the definition of neutrosophic triplets, NET’s, and the concepts of NET groups
have been outlined.

2.1. Neutrosophic Triplet

Let U be a universe of discourse, and (N, ∗) a set included in it, endowed with a well-defined
binary law ∗.

Definition 1 ([1–3]). A neutrosophic triplet has a form (x, neut(x), anti(x)), for x in N, where neut(x) and
anti(x)  N are neutral and opposite to x, which are different from the classical algebraic unitary element, if any,
such that: x ∗ neut(x) = neut(x) ∗ x = x and x ∗ anti(x) = anti(x) ∗ x = neut(x), respectively. In
general, x may have more than one neut’s and anti’s.

2.2. NET

Definition 2 ([4,7]). A neutrosophic extended triplet is a neutrosophic triplet, as defined in Definition 1,
where the neutral of x (denoted by eneut(x)and called extended neutral) is equal to the classical algebraic
unitary element, if any. As a consequence, the extended opposite of x (denoted by eanti(x)) is also equal to
the classical inverse element from a classical group. Thus, an NET has a form

(
x, eneut(x), eanti(x)

)
, for x

∈ N, where eneut(x) and eanti(x) in N are the extended neutral and opposite of x, respectively, such that:
x ∗ eneut(x) = eneut(x) ∗ x = x, which can be equal to or different from the classical algebraic unitary element,
if any, and x ∗ eanti(x) = eanti(x) ∗ x = eneut(x). In general, for each x ∈ N there are many eneut(x)’s and
eanti(x)’s.

Definition 3 ([1–3]). The element y in (N, ∗) is the second coordinate of a neutrosophic extended triplet
(denoted as neut(y) of a neutrosophic triplet), if there are other elements exist, x and z ∈ N such that:
x ∗ y = y ∗ x = x and x ∗ z = z ∗ x = y. The formed neutrosophic triplet is (x, y, z). The element
z ∈ (N, ∗), as the third coordinate, can be defined in the same way.

Example 1. Let X = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), enclosed with the classical multiplication law, (x) modulo
12, which is well defined on X, with the classical unitary element 1. X iss an NET “weak commutative set” see
“Table 1”.

Table 1. Neutrosophic triplets of (x) modulo 12.

∗ 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11
2 0 2 4 6 8 10 0 2 4 6 8 10
3 0 3 6 9 0 3 6 9 0 3 6 9
4 0 4 8 0 4 8 0 4 8 0 4 8
5 0 5 10 3 8 1 6 11 4 9 2 7
6 0 6 0 6 0 6 0 6 0 6 0 6
7 0 7 2 9 4 11 6 1 8 3 10 5
8 0 8 4 0 8 4 0 8 4 0 8 4
9 0 9 6 3 0 9 6 3 0 9 6 3
10 0 10 8 6 4 2 0 10 8 6 4 2
11 0 11 10 9 8 7 6 5 4 3 2 1
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The formed NETs of X are: (0, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, 11), (1, 1, 1), (3, 9, 3), (3, 9, 7), (3, 9, 11),
(4, 4, 4), (4, 4, 7), (4, 4, 10), (5, 1, 5), (7, 1, 7), (8, 4, 2), (8, 4, 5), (8, 4, 8), (8, 4, 11), (9, 9, 5), (9, 9, 9), (11, 1, 11).

Here, 2, 6, and 10 did not give rise to a neutrosophic triplet, as neut(2) = 1 and 7, however anti(2)
did not exist in Z12. In addition, neut(6) = 1, 3, 5, 7, 9, and 11, however anti(6) did not exist in Z12.
The neut(10) = 1, however anti(10) did not exist in Z12.

Definition 4 ([4,7]). The set N is called a strong neutrosophic extended triplet set if, for any x in N, eneut(x) ∈
N and eanti(x) ∈ N exists.

Example 2. The NET’s of (x) modulo 12 were as follows:
(0, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, 11), (1, 1, 1), (3, 9, 3), (3, 9, 7), (3, 9, 11), (4, 4, 4), (4, 4, 7), (4, 4,

10), (5, 1, 5), (7, 1, 7), (8, 4, 2), (8, 4, 5), (8, 4, 8), (8, 4, 11), (9, 9, 5), (9, 9, 9), (11, 1, 11).

Definition 5 ([4,7]). The set N is called an NET weak set if, for any x ∈ N, an NET
(

y, eneut(y), eanti(y)
)

included in N exists, such that:
x = y

or
x = eneut(y)

or
x = eanti(y).

Definition 6. A neutrosophic extended triplet (x, y, z) for x, y, z ∈ N, is called a neutrosophic perfect triplet if
both (z, y, x) and (y, y, y) are also neutrosophic triplets.

Example 3. The neutrosophic perfect triplets of (x) modulo 12 are described in “Table 1” as follows:
Here, (0, 0, 0), (1, 1, 1), (3, 9, 3), (4, 4, 4), (5, 1, 5), (7, 1, 7), (8, 4, 8), (9, 9, 9), (11, 1, 11) are neutrosophic

perfect triplets of (x) modulo 12.

Definition 7. An NET (x, y, z) for x, y, z ∈ N, is called a neutrosophic imperfect triplet if at least one of (z, y, x)
or (y, y, y) is not a neutrosophic triplet(s).

Example 4. The neutrosophic imperfect triplets of (x) modulo 12, from the above table, were as follows:

(0, 0, 1), (0, 0, 2), . . . , (0, 0, 11), (3, 9, 7), (3, 9, 11), (4, 4, 7), (4, 4, 10), (8, 4, 2), (8, 4, 5), (8, 4, 11), (9, 9, 5).

2.3. Neutrosophic Triplet Group (NTG)

Definition 8 ([1–3]). Let (N, ∗) be a neutrosophic strong triplet set. Then, (N, ∗) is called a neutrosophic strong
triplet group, if the following classical axioms are satisfied:

(1) (N, ∗) is well-defined, that is, for any x, y ∈ N, one has x ∗ y ∈ N.
(2) (N, ∗) is associative, that is, for any x, y, z ∈ N, one has x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Example 5. We let Y = (Z12, ×) be a semi-group under product 12. The neutral elements of Z12 were 4 and 9.
The elements (8, 4, 8), (4, 4, 4), (3, 9, 3), and (9, 9, 9) were NETs.

NTG, in general, was not a group in the classical sense, because it might not have had a
classical unitary element, nor the classical inverse elements. We considered that the neutrosophic
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neutrals replaced the classical unitary element, and the neutrosophic opposites replaced the classical
inverse elements.

Proposition 1 ([3]). Let (N, ∗) be an NTG with respect to ∗ and a, b, c ∈ N:

(1) a ∗ b = a ∗ c ⇔ neut(a) ∗ b = neut(a) ∗ c.
(2) b ∗ a = c ∗ a ⇔ b ∗ neut(a) = c ∗ neut(a).
(3) if anti(a) ∗ b = anti(a) ∗ c, then neut(a) ∗ b = neut(a) ∗ c.
(4) if b ∗ anti(a) = c ∗ anti(a), then b ∗ neut(a) = c ∗ neut(a).

Theorem 1 ([3]). Let (N, ∗) be a commutative NET, with respect to ∗ and a, b ∈ N:

(i) neut(a) ∗ neut(b) = neut(a ∗ b);
(ii) anti(a) ∗ anti(b) = anti(a ∗ b);

Theorem 2 ([3]). Let (N, ∗) be a commutative NET, with respect to ∗ and a ∈ N:

(i) neut(a) ∗ neut(a) = neut(a);
(ii) anti(a) ∗ neut(a) = neut(a) ∗ anti(a) = anti(a);

Definition 9 ([3]). An NET (N, ∗) is called to be cancellable, if it satisfies the following conditions:

(a)  x, y, z  N, x ∗ y = y ∗ z ⇒ y = z .
(b)  x, y, z  N, y ∗ x = z ∗ x ⇒ y = z .

Definition 10 ([3]). Let N be an NTG and x ∈ N. N is then called a neutro-cyclic triplet group if N = 〈a〉.
We can say that a is the neutrosophic triplet generator of N.

Example 6. We let N = (2, 4, 6) be an NTG with respect to (Z8, .). Then, N was clearly a neutro-cyclic triplet
group as N = 〈a〉. Therefore, 2 was the neutrosophic triplet generator of N.

2.4. Neutrosophic Extended Triplet Group (NETG)

Definition 11 ([4,7]). Let (N, ∗) be an NET strong set. Then, (N, ∗) is called an NETG, if the following classical
axioms are satisfied:

(1) (N, ∗ ) is well-defined, that is, for any x, y ∈ N, one has x ∗ y ∈ N.
(2) (N, ∗) is associative, that is, for any x, y, z ∈ N, one has

x ∗ (y ∗ z) = (x ∗ y) ∗ z.

For NETG, the neutrosophic extended neutrals replaced the classical unitary element, and the
neutrosophic extended opposites replaced the classical inverse elements. In the case where NETG
included a classical group, then NETG enriched the structure of a classical group, since there might
have been elements with more extended neutrals and more extended opposites.

Definition 12. A permutation of a set X is a function σ: x→ x that is one to one and onto, that is, a bijective
map. Permutation maps, being bijective, have anti neutrals and the maps combine neutrally under composition
of maps, which are associative. There is natural neutral permutation σ: x → x, X = (1, 2, 3, . . . , n), which
is σ(k) = k. Therefore, all of the permutations of a set X = (1, 2, 3, . . . , n) form an NETG under composition.
This group is called the symmetric NETG (eSn) of degree n.
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Example 7. We let A = (1, 2, 3). The elements of symmetric group of S3 were as follows:

σ0 =

(
1 2 3
1 2 3

)
, σ1 =

(
1 2 3
2 3 1

)
, σ2 =

(
1 2 3
3 1 2

)

μ1 =

(
1 2 3
1 2 3

)
, μ2 =

(
1 2 3
1 2 3

)
, μ3 =

(
1 2 3
1 2 3

)

The operartion of S3 is defined in Table 2 as follows:

1. (S3, � ) is well-defined, that is, for any σi, μi ∈ S3, i = 1,2,3 one has σi � μi ∈ S3.
2. (S3, �) is associative, that is, for any σ1, μ1, μ3 ∈ S3, one has the following:

(σ1 � μ1) � μ3 = σ1 � (μ1 � μ3)

(μ1 � μ3) = (σ1 � σ1) = σ2.

Table 2. Neutrosophic triplets of X.

� σ0 σ1 σ2 μ1 μ2 μ3

σ0 σ0 σ1 σ2 μ1 μ2 μ3
σ1 σ1 σ2 σ0 μ2 μ3 μ1
σ2 σ2 σ0 σ1 μ3 μ1 μ2
μ1 μ1 μ2 μ3 σ0 σ2 σ1
μ2 μ2 μ1 μ3 σ1 σ0 σ2
μ3 μ3 μ2 μ1 σ2 σ1 σ0

The NET’s of S3 (eS3) are as follows:

(σ0, σ0, σ0), (σ1, σ0, σ2), (σ2, σ0, σ1), (μ1, σ0, μ1), (μ2, σ0, μ2), (μ3, σ0, μ3).

Hence, (S3, �) is an NET strong group.

Definition 13 ([9–11]). Let (N1 ∗, N2 �) be two NETGs. A mapping f: N1 → N2 is called a
neutro-homomorphism if:

(1) For any x, y ∈ N1, we have f (x ∗ y) = f (x) f (y)
(2) If (x, neut[x], anti[x]) is an NET from N1, then,

f (neut[x]) = neut( f [x]) and f (anti[x]) = anti( f [x]).

Example 8. We let N1 be an NETG with respect multiplication modulo 6 in (Z6, ×), where N1 = (0, 2, 4),
and we let N2 be another NETG in (Z10, ×), where N2 = (0, 2, 4, 6, 8). We let f: N1 → N2 be a mapping defined
as f(0) = 0, f (2) = 4, f (4) = 6. Then, f was clearly a neutro-homomorphism, because condition (1) and (2) were
satisfied easily.

Definition 14. Let f: N1 → N2 be a neutro-homomorphism from an NETG (N1, ∗) to an NETG (N2, ∗).
The neutrosophic image of f is a subset, as follows:

Im(f) = (f(g):g ∈ N1, ∗) of N2.
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Definition 15. Let f: N1 → N2 be a neutro-homomorphism from an NETG (N1, ∗) to an NETG (N∗, �) and B
⊆ N2. Then

f −1(B) = (x ∈ N1: f(x) ∈ B)

is the neutrosophic inverse image of B under f.

Definition 16. Let f: N1 → N2 be a neutro-homomorphism from am NETG (N1, ∗) to an NETG (N2, �).
The neutrosophic kernel off is a subset

ker( f ) = {x ∈ N1 : f (x) = neut(x)}

of N1, where neut(x) denotes the neutral element of N2.

Example 9. We took D4, the symmetry NETG of the square, which consisted of four rotations and four
reflections. We took a set of the four lines through the origin at angles 0, /4, /2, and 3 /4, numbered 1, 2, 3,
4, respectively. We let S4 be the permutation NETG of the set of four lines. Each symmetry s, of the square in
particular, gave a permutation ϕ(s) of the four lines. Then we defined a mapping, as follows:

Φ: D4 → S4

whose value at the symmetry s ∈ D4 was the permutation ϕ(s) of the four lines. Such a process would always
define a neutro-homomorphism. We found the kernel and image of ϕ. The neutral permutation of the square gave
the neutral of the four lines. The rotation (1234) of the square gave the permutation (13)(24) of the four lines; the
rotation (13)(24) by 180 degrees gave the neutral permutation eneut of the four lines; the rotation (4321) of the
square gave the permutation (13)(24) of the four lines again. Thus, the neutrosophic image of the rotation NET
subgroup R4 of D4 was the NET subgroup (neut, [13][24]) of S4. The reflections of the square were given by the
compositions of the rotations of the square with a reflection, for example, the reflection (13). The reflection (13) of
the square (in the vertical axis) gave the permutation (24) of the lines. Thus, the homomorphism ϕ took the set of
reflections R4 � (13) to the following:

ϕ(R4) � φ(13) = (neut, [13][24] � [24]) = ([24], [13]).

The neutrosophic image of ϕ was the union of the neutrosophic image of the rotations and the reflections,
which was Im(ϕ) = (neut, [13][24], [13], [24]) ∈ S4. In the work above, we saw that the neutrosophic kernel of ϕ

was as follows:
ker(ϕ) = (neut, [13][24]) of D4

3. Neutrosophic Extended Triplet Subgroup

In this section, a definition of the neutrosophic extended triplet subgroup and its example have
been given.

Definition 17. Given an NETG (N, ∗), a subset H is called an NET subgroup of N, if it forms an NETG itself
under ∗. Explicitly, this means the following:

(1) The extended neutral element eneut(x) lies ∈ H.
(2) For any x, y  H, x ∗ y ∈ H (H is closed under ∗).

(3) If x ∈ H, then eanti(x) ∈ H (H has extended opposites).

We wrote H ≤ N whenever H was an NET subgroup of N. ∅ �= H ⊆ N, satisfying (2) and (3) of
Definition 17, would be an NET subgroup, as we took x ∈ H and then (2) gave eanti(x) ∈ H, after which
(3) gave x ∗ eanti(x) = eneut(x) ∈ H.
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Example 10. We let S4 = (neut, σ1, σ2, . . . , σ9, τ1, τ2, . . . , τ8, δ1, δ2, . . . , δ6) with
σ1 = (1234), σ2 = (13)(24), σ3 = (1432), σ4 = (1243), σ5 = (14)(23), σ6 = (1342), σ7 = (1324),
σ8 = (12)(34),σ9 = (1432),τ1 = (234),τ2 = (243), τ3 = (134), τ4 = (143), τ5 = (124), τ6 = (142), τ7 = (123),
τ8 = (132), δ1 = (12), δ2 = (13), δ3 = (14), δ4 = (23), δ5 = (24), δ6 = (34). The trivial neutrosophic extended
subgroups of S4 were the neutral elements, and the non-trivial neutrosophic extended subgroups S4 of order 2
were as follows: (neut, σ2), (neut, σ5), (neut, σ8), (neut, δ1), (neut, δ2), (neut, δ3), (neut, δ4), (neut, δ5), (neut,
δ6), and the neutrosophic extended subgroups, S4, of order 3 were as follows:

L11 = 〈τ1〉 = 〈τ2〉 = (neut, τ1, τ2)

L12 = 〈τ3〉 = 〈τ14〉 = (neut, τ3, τ4)

L13 = 〈τ5〉 = 〈τ6〉 = (neut, τ5, τ6)

L14 = 〈τ7〉 = 〈τ8〉 = (neut, τ7, τ8)

it was straightforward to find the neutrosophic extended subgroups of order 4, 6, 8, and 12 of S4.

4. Neutrosophic Triplet Cosets

In this section, the neutrosophic triplet coset and its properties have been outlined. Furthermore,
the difference between the neutrosophic triplet coset and the classical one have been given.

Definition 18. Let N be an NETG and H ⊆ N.  x ∈ N, the set xh/ h ∈ H, is denoted by xH, analogously,
as follows:

Hx = hx/h ∈ H

and
(xH)anti(x) = (xh)anti(x)/h ∈ H.

When h ≤ N, xH is called the left neutrosophic triplet coset of H ∈ N containing x, and Hx is called the
right neutrosophic triplet coset of H ∈ N containing x. In this case, the element x is called the neutrosophic
triplet coset representative of xH or Hx. |xH| and |Hx| are used to denote the number of elements in xH
or Hx, respectively.

Example 11. When N = S3 and H = ([1], [12]), the “Table 3” lists the left and right neutrosophic triplet
H-cosets of every element of the NETG.

Table 3. Neutrosophic triplet left and right cosets of S3.

g gH Hg

(1) ([1], [12]) ([1], [12])
(12) ([1], [12]) ([1], [12])
(13) ([13], [123]) ([13], [132])
(23) ([23], [132]) ([23], [123])

(123) ([13], [123]) ([23], [123])
(132) ([23], [132]) ([23], [123])

First of all, cosets were not usually neutrosophic extended triplet subgroups (some did not even
contain the extended neutral). In addition, since (13) �= H(13), a particular element could have different
left and right neutrosophic triplet H-cosets. Since (13)H = H(13), different elements could have the
same left neutrosophic triplet H-cosets.
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Example 12. We calculated the neutrosophic triplet cosets of N = (Z4, +) under addition and let H = (0, 2).
The elements (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (1, 1, 1), and (3, 3, 3) were NET’s of Z4 and the classical cosets
of N were as follows:

H = H + 0 = H + 2 = (0, 2).

and
H + 1 = H + 3 = (1, 3).

Here, 2 did not give rise to NET, because the neut’s of 2 were 1 and 3, however there were no anti’s. Therefore,
we could not obtain the neutrosophic triplet coset of N. In general, classical cosets were not neutrosophic triplet
cosets, because they might not have satisfied the NET conditions.

Similarly to Definition 16, we could define neutrosophic triplet cosets as follows:

Definition 19. Let N be a neutrosophic triplet group and H ≤ N. We defined a relation ≡ �(modH) on N
as follows:

if x1, x2 ∈ N and anti(x1)x2 ∈ N, Then

x1 = l x2(modH)

Or, equivalently, if there exists an h ∈ H, such that:

anti(x1) ∗ x2 = h

That is, if x2 = x1h for some h ∈ H.

Proposition 2. The relation ≡ �(modH) is a neutrosophic triplet equivalence relation. The neutrosophic triplet
equivalence class containing x is the set xH = xh/h ∈ H.

Proof.

(1)  x ∈ N1, anti(x) ∗ x = neut(x) ∈ H. Hence, x = �x1(modH)} and ≡ �(modH) is reflexive.
(2) İf x = �x2(modH), then anti(x1) ∗ x2 ∈ H. However, since an anti of an element of H is also

in H, anti(anti[x1] ∗ x2) = anti(x2) ∗ anti(anti[x1]) = anti(x2) ∗ x1 ∈ H. Thus, x2 = �x1(modH),
hence ≡ �(modH) is symmetric.

(3) Finally, if x1 = �x2(modH) and x2 = �x3(modH), then anti(x1) ∗ x2 ∈ H and anti(x2) ∗ x3 ∈ H. Since
H is closed under taking products, anti(x1)x2anti(x2)x3 = anti(x1)x3 ∈ H. Hence, x1 = �x3(modH)
so that ≡ �(modH) is transitive. Thus, ≡ �(modH) is a neutrosophic triplet equivalence relation.
�

4.1. Properties of Neutrosophic Triplet Cosets

Lemma 1. Let H ≤ N and let x, y ∈ N. Then,

(1) x ∈ xH.
(2) xH = H⇔ x ∈ H.
(3) xH = yH⇔ x ∈ yH.
(4) xH = yH or xH ∩ yH = Ø.
(5) xH = yH⇔ anti(x)y ∈ H.
(6) xH = Hx⇔ H = (xH)anti(x).
(7) xH ⊆ N⇔ x ∈ H.
(8) (xy)H = x(yH) and H(xy) = (Hx)y.
(9) |xH| = |YH|.
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Proof.

(1) x = x(neut(x)) ∈ xH
(2) ⇒ Suppose xH = H. Then x = x(neut(x)) ∈ xH = H.

⇐ Now assume x in H. Since H is closed, xH ⊆ H.

Next, also assume h  H, so anti(x)h ∈ H, since H ≤ N. Then,

h = neut(x)h = x ∗ anti(x)h = x(anti[x])h ∈ xH,

So H ⊆ xH. By mutual inclusion, xH = h.
(3) xH = Yh

⇒ x = x(neut(x)) ∈ xH = yH.

⇐ x ∈ yH⇒ x = yh, where h ∈ H⇒ h ∈ H, xH = (yh)H = y(hH) = yH.
(4) Suppose that xH ∩ yH �= ∅. Then, ∃a ∈ xH ∩ yH⇒ ∃h1h2  H a = xh1

and

a = yh2. Thus, x = a(anti(h1)) = yh2(antih1) and xH = yh2(anti(h1))H

= yh2(anti(h1)H) = yH by (2) of Lemma 1.
(5) xH = yH⇔ H = anti(x)yH⇔ (2) of Lemma 1, anti(x)y ∈ H.
(6) xH = Hx⇐ (xH)anti(x) = (Hx)anti(x) = H(x ∗ anti(x) = H⇐ xH(anti(x)) = H.
(7) (That is, xH = H)

Suppose thay xH is a neutrosophic extended triplet subgroup of N. Then

xH contains the identity, so xH = H by (3) of Lemma 1, which holds⇔ x ∈ H by (2) of Lemma 1.

Conversely, if x ∈ H, then xH = H ≤ N by (2) of Lemma 1.
(8) (xy)H = x(yH) and H(xy) = (Hx)y follows from the associative

property of group multiplication.
(9) (Find a map α: xH xH that is one to one and onto)

Consider α: xH xH defined by α (xh) = yh. This is clearly onto yH. Suppose α (xh1)

= α (xh2). Then yh1 = yh2 ⇒ h1 = h2 by left cancellation⇒ xh1 = xh2, therefore α is one to one.
Since α provides a one to one correspondence between xH and yH, |xH| = |yH|. �

In classical group theory, cosets were used in the construction of vitali sets (a type of
non-measurable set), and in computational group theory cosets were used to decode received data
in linear error-correcting codes, to prove Lagrange’s theorem. The neutrosophic triplet coset plays
a similar role in the theory of neutrosophic extended triplet group, as in the classical group theory.
Neutrosophic triplet cosets could be used in areas, such as neutrosophic computational modelling, to
prove Lagrange’s theorem in the neutrosophic extended triplet, etc.

4.2. The Index and Lagrange’s Theorem: |H| divides |N|

Theorem 3 If N is a finite neutrosophic extended triplet group and H≤ N, then | H|/| N|. Moreover, the number
of the distinct left neutrosophic triplet cosets of H in N is | N|/| H|.
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Proof. Let x1H, x2H, . . . , xrH denote the distinct left neutrosophic triplet cosets of H in N. Then,  x ∈
N. xH = xiH for some i = 1, 2, . . . , r. Considering (1) of Lemma 1, x ∈ xH. Thus, N = x1H ∪ x2H ∪, . . . ,
∪ xrH. Considering (4) of Lemma 1, this union is disjointed:

|N| = |x1H| + |x2H| + ... + |xrH = r|H|.

Therefore: |xiH| = |xH| for i = 1, 2, . . . , r. �

Example 13. We let H = ([1], [12]), it had three left neutrosophic triplet cosets in S3, see example 11,
[S3:H] = 3 = (H, [13]H, [23]H) = (H, [13]H, [23]H).

5. Neutrosophic Triplet Normal Subgroups

In this section, the neutrosophic triplet normal subgroup and neutrosophic triplet normal
subgroup test have been outlined.

Definition 20. A neutrosophic extended triplet subgroup H of a neutrosophic extended triplet group N is called
a neutrosophic triplet normal subgroup of N, if xH = Hx,  x ∈ N and we denote it as H � N.

Example 14. The set An = σ ∈ Sn/σ was even a normal subgroup of Sn. It was called the alternating neutrosophic
extended triplet group on n letters. It was enough to notice that An = ker(sgn). Since |Sn|= n!, thus,

|An| = n!/2.

Sn/An = n!/n!/2 = 2.

Neutrosophic Triplet Normal Subgroup Test

Theorem 4 A neutrosophic extended triplet subgroup H of N is normal in N if, and only if, anti(x)Hx ⊆ H,

 x ∈ N.

Proof. Let H be a neutrosphic extended triplet subgroup of N. Suppose H is neutrosophic extended triplet
subgroup of N. Then  x ∈ N, y ∈ H : z ∈ H : xy = zx. Thus (xy)anti(x) = z ∈ H implying (xH)anti(x) H.
�

Conversly, suppose  x ∈ N :(xH)anti(x) ⊆ H. Then for n  N, we have (nH)anti(n) ⊆ H,
which implies nH ⊆ Hn. Also, for anti(n)  N, we have anti(n)H(anti[anti{n}]) = anti(n)Hn ⊆ H,
which implies Hn ⊆ nH. Therefore, nH = Hn, meaning that H � N.

Example 15. We let f: N→ H be a neutro-homomorphism from a neutrosophic extended triplet group N to a
neutrosophic extended triplet group H, Kerf � N.

(1) If ∀ a, b ∈ kerf, we had to show that a(anti[b]) ∈ kerf. This meant that kerf was a neutrosophic extended
triplet subgroup of N. If a ∈ kerf, then

f(a) = neutH

and

b ∈ kerf, then
f(b) = neutH

Then, we showed that f(a(anti[b]) = neutH. (f is neutro-homomorphism)
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f(a(anti(b)) = f(a) . f(anti(b))

= f(a) . f(anti(b))

= neutH . anti(neutH)

= neutH . neutH

= neutH

⇒ a(anti(b)) ∈ kerf.
(2) We let n ∈ N and a  kerf. We had to show that n . a . (anti(n)) ∈ kerf. (f is neutro-homomorphism)

f(n . a . (anti(n) = f(n) . f(a) . f(anti(n))

= f(n) f(a) anti(f(n))

= h neutH (anti(h))

= neutH

⇒ n . a . (anti(n)) ∈ kerf

⇒ kerf � N.

Theorem 5 . A neutrosophic triplet subgroup H of N is a neutrosophic triplet normal subgroup of N if, and only
if, each left neutrosophic triplet coset of H in N is a right neutrosophic triplet coset of H ∈ N.

Proof. Let H be a neutrosophic triplet normal subgroup of N, then xH(anti[x])=H,  x ∈ N ⇒
xH(anti[x])x = Hx,  x ∈ N ⇒ xH = Hx,  x ∈ N, since each left neutrosophic triplet coset xH is the right
neutrosophic triplet coset Hx. �

Conversely, let each left neutrosophic triplet coset of H in N be a right neutrosophic triplet coset
of H in N. This means that if x is any element of N, then the left neutrosophic triplet coset xH is also
a right neutrosophic triplet coset. Now neut(x) ∈ H, therefore x ∗ neut(x) = x ∈ xH. Consequently x
must also belong to that right neutrosophic triplet coset, which is equal to left neutrosophic triplet
coset xH. However, x is a left neutrosophic triplet coset and needs to contain one common element
before they are identical. Therefore, Hx is the unique right neutrosophic triplet coset which is equal to
the left neutrosophic triplet coset xH. Therefore, we have xH = xH,  x ∈ N⇒ xH(anti(x)) = Hx(anti(x),

 x ∈ N⇒ xH(anti(x)) = H,  x ∈ N, since H is a neutrosophic triplet normal subgroup of N.

6. Neutrosophic Triplet Quotient (Factor) Groups

The notion of quotient (factor) groups was one of the central concepts of classical group theory
and played an important role in the study of the general structure of groups. Just as in a classical group
theory, quotient groups played a similar role in the theory of neutrosophic extended triplet group.
In this section, we have introduced the notion of neutrosophic triplet quotient group and its relation to
the neutrosophic extended triplet group.

Definition 21. If N is a neutrosophic extended triplet group and H � N is a neutrosophic triplet normal
subgroup, then the neutrosophic triplet quotient group N/H has elements xH: x ∈ N, the neutrosophic triplet
cosets of H in N, and an operation of (xH)(yH) = (xy)H.

Example 16. Let’s find all of the possible neutrosophic triplet quotient groups for the dihedral group D3.
D3 = (1, r, r2, s, sr, sr2), where r3= s2= rsrs = 1. A quotient set D3/N is a neutrosophic triplet group

if, and only if, N � D3. Then, all of neutrosophic triplet normal subgroups are D3 itself. We always have the
trivial ones D3/D3 = 1 ∼= 1 and D3/1 ∼= D3. The subgroup 〈r〉 = 〈r2〉 = (1, r, r2) is that of index 2 and thus is
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normal. Therefore, D3/〈r〉 is also a neutrosophic triplet quotient group. If N � D3 is a different neutrosophic
triplet normal subgroup, then 〈N〉. = 2, so either N = 〈s〉, N = 〈sr〉. or N =

〈
sr2〉. However, none of them are

normal, since (sr)s(anti(sr)) = sr2 not in 〈s〉. Hence, the only non-triavial neutrosophic triplet quotient
group is D3/〈r〉.

Theorem 6 Let N be a neutrosophic extended triplet group and H be a neutrosophic triplet normal subgroup of
N. In the set N/H = xH, x ∈ N is a neutrosophic extended triplet group under the operation of (xH)(yH) = xyH.

Proof. N/H × N/H→ N/H

1. xH = x′H and yH = y′H

Xh1 = x′ and yh2 = y′, h1, h2  H

x′y′H = xh1yh2H = xh1yH = x h1Hy = xHy = xyH.
2. The neutral, for any x  H, is neut(x)H = H. That is, xH ∗ H = xH ∗ neut(x)H = x ∗ neut(x)H = xH.
3. An anti of a neutrosophic triplet coset xH is anti(x)H, since xH∗ anti(x)H = (x ∗ anti(x)H) = neut(x)H = H.
4. Associativity, (xHyH)zH = (xy)HzH = (xy)zH = xH(yz)H = xH(yHzH),  x, y, z ∈ N. �

7. Conclusions

The main theme of this paper was to introduce the neutrosophic extended triplets and then
to utilize these neutrosophic extended triplets in order to introduce the neutrosophic triplet cosets,
neutrosophic triplet normal subgroup, and finally, the neutrosophic triplet quotient group. We also
studied some interesting properties of these newly created structures and their application to
neutrosophic extended triplet group. We further defined the neutrosophic kernel, neutrosophic-image,
and inverse image for neutrosophic extended triplets. As a further generalization, we created a
new field of research, called Neutrosophic Triplet Structures (namely, the neutrosophic triplet cosets,
neutrosophic triplet normal subgroup, and neutrosophic triplet quotient group).
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Abstract: Rooftop distributed photovoltaic projects have been quickly proposed in China because
of policy promotion. Before, the rooftops of the shopping mall had not been occupied, and it was
urged to have a decision-making framework to select suitable shopping mall photovoltaic plans.
However, a traditional multi-criteria decision-making (MCDM) method failed to solve this issue at
the same time, due to the following three defects: the interactions problems between the criteria,
the loss of evaluation information in the conversion process, and the compensation problems between
diverse criteria. In this paper, an integrated MCDM framework was proposed to address these
problems. First of all, the compositive evaluation index was constructed, and the application of
decision-making trial and evaluation laboratory (DEMATEL) method helped analyze the internal
influence and connection behind each criterion. Then, the interval-valued neutrosophic set was
utilized to express the imperfect knowledge of experts group and avoid the information loss. Next,
an extended elimination et choice translation reality (ELECTRE) III method was applied, and it
succeed in avoiding the compensation problem and obtaining the scientific result. The integrated
method used maintained symmetry in the solar photovoltaic (PV) investment. Last but not least,
a comparative analysis using Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) method and VIKOR method was carried out, and alternative plan X1 ranks first at the same.
The outcome certified the correctness and rationality of the results obtained in this study.

Keywords: shopping mall; photovoltaic plan; decision-making trial and evaluation laboratory
(DEMATEL); interval-valued neutrosophic set; extended ELECTRE III; symmetry

1. Introduction

The frequent occurrence of fog or haze and other negative types of climate change in recent
decades is the grave reality that the whole world is experiencing. The pivotal reason behind these
environmental problems is atmospheric pollutants and greenhouse gas emissions, mainly produced by
fossil fuel consumption. Fossil fuel supplies approximately 80% of the world’s energy, and it is drying
up with the rapid increase of the world energy demand [1].

To face this situation, many countries have endorsed policies to submit fossil fuel utilization
with renewable energy generation. Among diverse types of alternative energy, solar photovoltaic
(PV hereinafter) energy is recognized as promising, since sunlight is unlimited and widespread and
the converting efficiencies of photovoltaic are getting higher and higher while the manufacturing costs
are becoming lower and lower [2].
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The past five years has witnessed the astonishing increase in installed cumulative globe solar PV
capacity, which nearly quintupled from 70 GW in 2011, to 275 GW in 2016. China is following the
worldwide trend with solar PV rapid development and gained the number one cumulative PV capacity
of 65.57 GW in 2016. It is worth noting that the large-scale ground PV power station, newly installed,
had 28.45 GW capacity this year, and grew by 75% compared to the last year, accounting for 89% of
all new PV power plants in 2016, while the distributed PV, newly installed, with 3.66 GW capacity
this year, increased by 45% in comparison to last year, and accounted for 11% of capacity of new
installations in 2016. The scale of distributed PV development is significantly lower than that of the
large-scale ground PV.

Under these circumstances, the China authorities have launched the feed in tariff adjustment.
The feed in tariff of ground solar PV generation will decrease to some extent, but in contrast to that
of distributed PV, will not decrease at all. As shown in Figure 1, according to the 13th five-year
(2016–2020) solar energy planning objectives of China, the goal is to build a total installed capacity
of 150 GW solar PV, in which more than 40% of the new installed capacity will be from distributed
PV, and to build 100 distributed PV demonstration areas. In fact, China is a country with high
potential of solar radiation, and of generous policy subsidies to promote achieving the ambitious
plan. Obviously, in China, distributed solar PV generation is government encouraged, well-resourced,
environmentally friendly, and closely following the world trend. It is worth considering investment in
such a promising project.
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Figure 1. Chinese photovoltaic power structure, 2012–2016.

Numerous vacant roofs of building or structures in the cities provide the best-fitting location
for distributed solar PV, and farsighted investors have been preempting outstanding roof resources.
There are various types of buildings, such as government building, hospitals, schools, coliseums,
or residential and industrial buildings. Among all these types, the shopping centers possesses plenty
of advantages, superior to the other types of buildings, and are one of the most promising places worth
preempting for PV installation.

First of all, previous construction characters of shopping centers facilitate the rooftop PV
installation. According to literature [3], the availability rate of roof space is between 60% and 65%
in shopping malls, but just 22% and 50% in residential buildings. That is to say, double or triple PV
capacity can be installed in the former roofs, compared to the latter one. Secondly, the shopping
malls need a large amount of electricity consumption daily, the most generation can feed the
themselves-consumption. Besides, it is usually cited in downtown areas and populated areas. On the
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one hand, there have a so complete transmission and distribution network that the surplus generation
can efficiently feed local electricity consumption. On the other hand, brand advertisement and
promotion of the PV manufacturer and the rising level of awareness of the citizen towards sustainable
efforts can be greatly obtained for the large visitors there. Last but not least, facing the non-manageable
feature through electricity generation in PV facilities, technical management measures need to be taken
for protecting distribution system [4]. Fortunately, the shopping malls equipped professional staff and
equipment for energy supply, security, air conditioning, and so on. So, the previous staff in shopping
malls can condemn the whole new challenge to reduce the extra expenditure in PV management.

It is desirable to adopt a proper methodology for evaluating the shopping mall PV plan in order
to demonstrate the optimal possible selections for an investment. Since the following three problems
existed in this issue, which are the interaction problems between the criteria, the loss of evaluation
information in the conversion process, and the compensation problems between diverse criteria.
There is no doubt that traditional multi-criteria decision-making (MCDM) method failed to solve the
three problems at the same time. Nevertheless, the decision-making trial and evaluation laboratory
(DEMATEL) method can help analyze the internal influence and connection behind each criterion,
and the interval-valued neutrosophic set is accomplished in expressing the imperfect knowledge of
experts group. Besides, an extended ELECTRE III method as an outstanding outranking method can
succeed in avoiding the compensation problem, and the integrated method used maintained symmetry
in the solar PV investment. Therefore, in this context, the integrated DEMATEL method and extended
ELECTRE III method under interval-valued neutrosophic set environment for searching the optimal
shopping mall solar PV plan has been devised.

2. Literature Review

MCDM (multi-criteria decision-making) has been successfully applied in energy planning
problems. For example, a review of MCDM methods towards renewable energy development identified
MCDM methods as one of the most suitable tools to finding optimal results concerned with energy
planning progress in complex scenarios, including various indicators, and conflicting objectives and
criteria [5]. For example, Fausto Cavallaro et al. use an intuitionistic fuzzy multi-criteria approach
combined with fuzzy entropy to rank different solar-hybrid power plants successfully [6].

In a real case, it is different for decision makers to express preferences when facing inaccurate,
uncertain, or incomplete information. Although the fuzz set, intuitionistic fuzzy sets, interval-valued
intuitionistic fuzzy sets, and hesitant fuzzy sets can address the situation. However, when being
asked the evaluation on a certain statement, the experts can use the interval-valued neutrosophic set
(IVNNS) expressing the probability that the statement is true, false, and the degree of uncertainty can
be accurately described, respectively [7]. The IVNNS, combined with outrank methods, has addressed
many MCDM problems successfully [8]. For example, the IVNNS combined with VIKOR was applied
to solve selection of location for a logistic terminal problem [9]. Hong-yu Zhang et al. developed
two interval neutrosophic number aggregation operators and applied them to explore multi-criteria
decision-making problems [10].

The independence of criteria remains in most of the MCDM methodologies. In recent years, lots of
methods appeared to solve the problem, and the DEMATEL method is popularly used. According to
the statistic censused in article [11], of the use of MCDM methods in hybrid MCDM methods, the top
five methods are Analytical Network Process (ANP), DEMANTEL, Analytic Hierarchy Process(AHP),
TOPSIS, and VIKOR.

The DEMATEL methodology has been acknowledged as a proper tool for drawing the
relationships concerning interdependencies and the intensity of interdependence between complex
criteria in an evaluation index system [12,13]. As a powerful tool to describe the effect relationship,
it help evaluate the enablers in solar power developments [11] and evaluate factors which influencing
industries’ electric consumption [14]. The application of DEMATEL contributed to determining the
weight coefficient of the evaluation criteria, and successfully helped identify the suitable locations
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for installation of wind farms. It is the DEMATEL method that helped the investors improve their
decisions when there are many interrelated criteria. Thus, the connection relationship of the climate
and economy criteria that exists in this study is of great need of the application of DEMATEL method.

The commonly used outrank models are TOPSIS, AHP, ANP, preference ranking organization
method for enrichment evaluations(PROMETHE), and ELECTRE, of which ELECTRE methods
are preferred by decision makers in energy planning progress. Among the ELECTRE methods,
ELECTRE III method conveys much more information than the ELECTRE I and ELECTRE II
methods [15]. In the literature [16], economics of investment in the field of PV, an inclusive
decision-making structure using ELECTRE III that would help photo voltaic (PV) system owners,
bureaucrats, and the business communities to decide on PV technologies, financial support systems
and business strategies were featured. ELECTRE III was used to structure a multi-criteria framework
to evaluate the impact of different financial support policies on their attractiveness for domestic PV
system deployment on a multinational level [17]. Due to the compensation problem in information
processing, incomplete utilization of decision information, and information loss, ELECTRE III was
chosen to build a framework for offshore wind farm site selection decision in the intuitionistic fuzzy
environment. These literature studies improve the application of ELECTRE III method in the energy
planning process, and terrify the effectiveness of evaluation in decision making progress [18].

In conclusion, based on the mentioned evolvement, the shopping mall PV plan evaluation result
will be more scientific and reasonable than before.

3. Decision Framework of SMPV Plan Selection

The evaluation criteria are basic to the entire evaluation, so that they are of great importance to the
shopping mall photovoltaic plan selection. In view of the special characteristics of photovoltaic
plan and the shopping malls, six factors were taken into consideration, namely architectural
elements, climate, photovoltaic array, economy, risk, contribution. Table 1 shows six criteria and
twenty-one subcriteria.

Table 1. Analysis of evaluation attributes of shopping centers photovoltaic plan selection.

Criteria Subcriteria Resources

(a) Architectural elements
a1 Roof pitch and orientation [2]
a2 Covering ratio [2]
a3 PV roof space [2]

(b) Economy

b1 Total investment [19]
b2 Total profit [19]
b3 Annual rate of return [20]
b4 Payback year [20]

(c) Climate
c1 Annual average solar radiation (kwh/m2/year) [19,21]
c2 Land surface temperature (◦C) [19,21]
c3 Annual sunshine utilization hours (h) [19,21]

(d) Photovoltaic array

d1 Suitability of the local solar regime [22]
d2 PV area [2]
d3 PV generation (yearly electricity generation) MWh/year [2,19]
d4 Repair and clean rate [20]

(e) Contribution
e1 Increase in local economy and employment [22]
e2 Publicity effects Own
e3 Environment protection [23]

(f) Risk

f1 Grid connection risk [19]
f2 Rooftop ownership and occupancy disputes Own
f3 Bad climate [22]
f4 Government subsidies reduction Own
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3.1. Architectural Elements

Not all the shopping malls are suitable to allocate the photovoltaics, and architectural elements
are the primary intrinsic limitations. Steep roof pitch and wrong orientation will increase the difficulty
of allocation and maintenance. In addition, building obstructions, and vegetation shading part of
the space are not able to allow for the allocation of PV equipment, which can be measured by the
covering ratio estimated by Equation (2). Last but not least, the photovoltaic roof space needed to
be calculated by the Equation (1). Colmenar-Santos, Antonio et al. [15] assessed the photovoltaic
potential in shopping malls by calculating the photovoltaic roof space. We decided to refer to this
research method.

RSPV = RS× α (1)

RSPV is PV roof space, RS stand for roof space, α is availability ratio

CR = L/(a + b) =
tan ϕ tan (αs)

α

sin ϕ tan (αs)
α + sin ϕ tan ϕ sin (γs)

a (2)

CR is covering ratio. (αs)
α solar altitude angle (γs)

a ϕ solar azimuth angle. The value is at nine
o’clock on the winter solstice in each location.

3.2. Climate

Not all the locations of the shopping malls have the optimal climate for solar power generation.
It is undoubted that the solar resource depends on local climate. Thus, the annual average solar
radiation, land surface temperature, and annual sunshine utilization hours, are the four typical criteria
to judge whether the local solar energy resource is in abundance.

3.3. Photovoltaic Array

It is well known that the performance of photovoltaic arrays will impact the electricity generation
reliability and stability. The dust in the photovoltaic cell panel will reduce the solar energy conversion
efficiency, meanwhile, since the photovoltaic cell panel damage and faults are directly related to the
electricity supply reliability, the repair and clean rate should be pondered. In addition, it is worth
concerning whether the specified type of the photovoltaic panel is absolutely suitable to the local
solar regime. The total PV area affects the electricity generated which is calculated by Equation (3).
PV generation (yearly electricity generation) is estimated by Equation (4).

Apanel = RSPV × CR (3)

E = H × Apanel × ε× κ (4)

H is the total yearly solar irradiation. Apanel is the total area of PV panel. ε is the efficiency of the
panel. κ is the comprehensive facility performance efficiency, which is 0.8 [19], and 0.28 is the empirical
conversion coefficient of the PV module area to the horizontal area.

3.4. Economy

It is beyond doubt that the economy of the shopping mall photovoltaic plans ought to be taken
into account by the decision makers. There are plenty of studies to assess the financial aspects of
the photovoltaic projects. Indrajit Das et al. [23] presented an investor-oriented planning model for
optimum selection of solar PV investment decisions. Rodrigues Sandy et al. [24] conducted economic
analysis of photovoltaic systems under China’s new regulation. The economic assessment methods
there are so suitable and scientific that they are worth referring to in this paper. The significant

107



Symmetry 2018, 10, 150

economic attributes we considered are pay pack period, total investment, total profit, and annual rate
of return, which are calculated by Equations (5)–(7).

I = C× Apanel ×
ppanel

apanel
(5)

I is the total investment, C is the average cost of building per W roof PV projects. ppanel is the
max power pin (W) under STC situation of the solar panel, apanel is the area of per photovoltaic panels.

B = PE × tLC + PS × tS − I × tLC −O× tLC (6)

B is the total profit, PE is the electricity price buying from the power supply company, PS is the
electricity price subsidy, tLC is the time of PV projects life cycle, tS is the time subsidy lasting, O is the
cost for operation and maintenance.

ROI =
B

I × tLC
(7)

ROI is the annual rate of return.
TPB =

I
PE + PS − I −O

(8)

TPB is the pay pack year.

3.5. Contribution

Although the environmental and social contributions the SMPV projects made may not be
calculated explicitly as economic profit, there is no denying that these benefits result in increase in local
economy and employment, and environment protection and publicity effects are worth the focus of
attention. Particularly, the shopping mall holds a great number of visitors. On the one hand, it obtains,
easily, the brand advertisement and promotion when PV equipment of a particular company occupies
the rooftop of a large commercial building. On the other hand, it is effective to raise the level of
awareness of the citizen towards renewable energy and sustainable efforts.

3.6. Risk

Expect that for the above attributes, the risk faced cannot be neglected. First of all, the government
subsides policy is likely to change, and the impartiality, sufficiency, stability, and constancy of the
subsidy is unable to be ensured. Secondly, the generating capacity is influenced by the climate heavily,
so the profits will reduce when facing consecutive rainy days. Thirdly, the rooftop usage needs the
allowance from all the owners, however, the rooftop ownership and occupancy disputes are a very
common risk. Last but not least, the connected photovoltaic grid is unable to bring any benefits to the
grid enterprise because of the intermittent power output. Thus, how long the support to photovoltaic
grid connected from the grid enterprise can exist is uncertain.

All in all, the SCPV plan alternatives ought to be appraised from architectural elements, climate,
photovoltaic array performance, economy, risk, contribution attributes. The unique custom-made
framework of criteria and subcriteria is set up in view of the actual SMPV plans and national conditions.

4. Research Methodology

A decision framework of SMPV selection has been proposed in this section, and there are
four phases in this framework, as shown in Figure 2. The research framework is described in the
following subsections.
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Figure 2. The flowchart of the research methodology. DEMATEL: decision-making trial and
evaluation laboratory.

4.1. Preliminary Knowledge in the Neutrosophic Set Environment

Due to the existence of many uncertainties in real decision-making problems, such as
indeterminate and inconsistent, the neutrosophic set (NS) is used in the MCDM method, and definition
of NS is introduced in this section.

Definition 1 [25]. Let X be a space of objects with a generic element in X denoted by x. A NS A in X is
defined using three functions: truth-membership function TA(x), indeterminacy-membership function IA(x)
and falsity-membership function FA(x). These functions are real standard or nonstandard subsets of ]0−, 1+[,
that is, TA(x) : X →]0−, 1+[ , IA(x) : X →]0−, 1+[ and FA(x) : X →]0−, 1+[ . And that the sum of TA(x),
IA(x) and FA(x) satisfies the condition 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

Since the non-standard unit interval ]0−, 1+[ is hard to apply in practice, and the degree of truth,
falsity, and indeterminacy about a certain statement could not be described precisely in the practical
evaluation, the interval-valued neutrosophic set (IVNNS) of standard intervals has been proposed
by Wang [26], and a few definitions and operations of IVNNS are introduced in the GPP technology
selection MCDM problem.
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Definition 2 [26]. Let X be a space of objects with a generic element in X denoted by x. An IVNNS A can be
defined as

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X} (9)

where TA(x) : X → [0, 1] , IA(x) : X → [0, 1] , FA(x) : X → [0, 1] . For each element x in X, these functions
can be expressed as TA(x) = [infTA(x), supTA(x)] ⊆ [0, 1], IA(x) = [infIA(x), supIA(x)] ⊆ [0, 1], FA(x) =
[infFA(x), supFA(x)] ⊆ [0, 1] and 0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3, x ∈ X. For convenience,
the interval-valued neutrosophic number (IVNN) can be expressed as ã =

〈[
TL

ã , TU
ã
]
,
[
IL
ã , IU

ã
]
,
[
FL

ã , FU
ã
]〉

,
and L, U represent the inferiors and superiors of IVNN respectively.

Definition 3 [10]. Let ã =
〈[

TL
ã , TU

ã
]
,
[
IL
ã , IU

ã
]
,
[
FL

ã , FU
ã
]〉

and b̃ =
〈[

TL
b̃

, TU
b̃

]
,
[

IL
b̃

, IU
b̃

]
,
[

FL
b̃

, FU
b̃

]〉
be two

IVNNs, and λ is a real number for not less than 0. Which operational rules can be expressed as follows

ã⊕ b̃ =
〈[

TL
ã + TL

b̃
− TL

ã ·TL
b̃

, TU
ã + TU

b̃
− TU

ã ·TU
b̃

]
,
[

IL
ã ·IL

b̃
, IU

ã ·IU
b̃

]
,
[

FL
ã ·FL

b̃
, FU

ã ·FU
b̃

]〉
(10)

ã⊗ b̃ =
〈[

TL
ã ·TL

b̃
, TU

ã ·TU
b̃

]
,
[

IL
ã + IL

b̃
− IL

ã ·IL
b̃

, IU
ã + IU

b̃
− IU

ã ·IU
b̃

]
,
[

FL
ã + FL

b̃
− FL

ã ·FL
b̃

, FU
ã + FU

b̃
− FU

ã ·FU
b̃

]〉
(11)

λã =
〈[

1− (1− TL
ã )

λ
, 1− (1− TU

ã )
λ
]
,
[
(IL

ã )
λ

, (IU
ã )

λ
]
,
[
(FL

ã )
λ

, (FU
ã )

λ
]〉

(12)

ãλ =
〈[

(TL
ã )

λ
, (TU

ã )
λ
]
,
[
1− (1− IL

ã )
λ

, 1− (1− IU
ã )

λ
]
,
[
1− (1− FL

ã )
λ

, 1− (1− FU
ã )

λ
]〉

(13)

The original data of selection of SPPV are collected and processed in this phase. The alternative
plans of the GPP project are evaluated by the experts, firstly according to the local technical condition
data and practical experience. Then, the decision matrices are expressed in the form of IVNNs,
which can handle incomplete and indeterminate information. Finally, a comprehensive decision
matrix is formed based on interval-valued neutrosophic number weighted geometric operator
(IVNNWG) operator. Let Ai denote the technology alternatives (i = 1, 2, · · ·m), and Cj denote the
criteria (j = 1, 2, · · · n). It is assumed that ãk

ij can be used to represent the evaluation value of attribute
of alternative from every expert Ek(k = 1, 2, · · · h).

Definition 4 [27]. Let Ãk
ij =

(
ãk

ij

)
m×n

be the IVNN-decision matrix of the k-th DM, k = 1, 2, · · · h,

and ãk
ij =

〈[
TL

ãk
ij
, TU

ãk
ij

]
,
[

IL
ãk

ij
, IU

ãk
ij

]
,
[

FL
ãk

ij
, FU

ãk
ij

]〉
. An IVNNWG operator is a mapping: IVNNn → IVNN ,

such that

IVNNWGω

(
ã1

ij, ã2
ij, · · · , ãh

ij

)
=

k=h
∏

k=1

(
ãk

ij

)ωk

=

〈[
k=h
∏

k=1

(
TL

ãk
ij

)ωk

,
k=h
∏

k=1

(
TU

ãk
ij

)ωk
]

,
[

1− k=h
∏

k=1

(
1− IL

ãk
ij

)ωk

, 1− k=h
∏

k=1

(
1− IU

ãk
ij

)ωk
]

,
[

1− k=h
∏

k=1

(
1− FL

ãk
ij

)ωk

, 1− k=h
∏

k=1

(
1− FU

ãk
ij

)ωk
]〉 (14)

where ω = (ω1, ω2, · · · , ωh)
T represents the weight vector of DMs, satisfying Σh

k=1ωk = 1, ωk ∈ [0, 1].

4.2. Phase I Identification of Alternative SMPV Plans

At this stage, a group of experts consisting of several doctorate engineers will be constituted by
the investor. All the experts possess abundant working experience in solar energy investment field,
and are specialized in solar photovoltaic and power grid technologies.

More than twenty famous influential large-scale shopping malls located in those cities with both
abundant sunshine and general policy subsidies need to be collected, and based on that information,
less than ten alternative plans roughly screened out, based on the plentitude of documents and
investigation. After that, the investigation will be carried out by the experts group, and involve
meeting the Development and Reform Commission, the Meteorological Bureau, and the local power
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supply companies, in order to gather information about solar resources, city planning and construction,
local solar subsidy policies, distributed solar power planning, economic assessment, and approved
shopping mall rooftops for construction. Lastly, there will be less than five of the most potential
alternative places presented for the next evaluation.

4.3. Phase II Determination of the Weights of Criteria Based on DEMATEL Method

The importance of the criteria on GPP technology selection is different, so the DEMATEL method
is used to decide the weight of criteria in this phase. The direct and indirect causal relations among
criteria are considered in the DEMATEL method, and the subjective judgment of DMs is also considered.
The steps of determining the weights based on the DEMATEL method are shown as follows [28]:

Step 1. Determine the influence factors in the system

The influence factors of GPP technology selection system are determined based on expert opinions
and literature reviews, which is called the criteria, as shown in Table 1.

Step 2. Construct the direct-relation matrix among the criteria

The direct-relation matrix X =
(
xpq
)

n×n is constructed in stages, where xpq is used to represent
the degree of direct influence of pth criterion on qth criterion which is evaluated by the experts, and n
is the number of criteria.

Step 3. Normalize the direct-relation matrix

The direct-relation matrix X =
(
xpq
)

n×n is normalized into Y =
(
ypq
)

n×n. A normalization
factor [29] s is applied in the normalized calculation, and the normalized direct-relation matrix Y is
calculated by using Equations (1) and (2).

Y = s·X (15)

s = Min

(
1

Max1≤p≤n

(
∑n

q=1 xpq

) , 1
Max1≤q≤n

(
∑n

p=1 xpq

)
)

(16)

Step 4. Calculate the comprehensive-relation matrix.

The comprehensive-relation matrix T is obtained by using Equation (3).

T =
∞

∑
λ=1

Yλ = Y(I −Y)−1 (17)

where T =
(
tpq
)

n×n, p, q = 1, 2, · · · n, and tpq is used to represent the degree of total influence of pth
criterion on qth criterion. I represents for the identity matrix.

Step 5. Determine the influence relation among criteria

The influence degree and influenced degree of the criteria is determined after obtaining the
comprehensive-relation matrix T. The sum of the row and column values of matrix T can be obtained
by the Equations (4) and (5). The sum of row values of T, denoted by D, which represents the overall
influence of a given criterion on other criteria. The sum of column values of T, denoted by R, which
implies the overall influence of other criteria on a given criterion.

D =
(
dp
)

n×1 = ∑n
q=1 tpq (18)

R =
(
rq
)

1×n = ∑n
p=1 tpq (19)

The causal diagram is obtained based on the D + R and D− R values. The D + R value indicates
the importance of indicator in the SMPV plan selection system, the greater the D + R value, the more
important the corresponding indicator is. On the other hand, the D− R value indicates the influence
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between a certain indicator and the other indicators, which can be separated into cause and effect
groups. The indicator, which has positive values of D− R, belongs to the cause group, and dispatches
effects to the other indicators. Otherwise, the indicator, which has negative values of D− R, belongs to
the effect group, and receives effects to the other indicators.

Step 6. Determine the weight of criteria

The criteria are represented by j, and satisfying j = 1, · · · p, · · · q, · · · n, then the weights of criteria
are determined based on the following Equations (6) and (7) [30].

wj
′ =
[(

dj + rj
)2

+
(
dj − rj

)2
]1/2

(20)

wj =
wj
′

∑n
j=1 wj

′ (21)

where wj
′ denotes the relative importance of the indicators, and wj denotes the weights of the indicators

in SMPV technology selection.

4.4. Phase III Calculation IVNNs Performance Score

ELECTRE is a family of methods used for choosing, sorting and ranking, multi-criteria problems.
ELECTRE III was developed by Roy in 1978m, which is valued outranking relation.

A = {a1,a2, . . . , an} is the finite set of alternatives, Y = {y1, y2, . . . , ym} is the finite set of criteria,
yj(a) represents the performance of alternative a on criterion yj ∈ Y. Assume that all the criteria
are of the gain type, which means the greater the value, the better. qj is the indifference threshold,
which represents two alternatives in terms of their evaluations on criterion yj. In general, qj is a
function of attribute value qj(ai), which can be denoted as qj(yj(ai)); pj(yj(ai)) is preference threshold,
which indicates that there is a clear strict preference of one alternative over the other in terms of their
evaluations on criterion yj. In addition, vj(yj(ai)) is a veto threshold that indicates that the attribute
value yj(ai) of scheme ai is lower than the attribute value yj(ak) of scheme ak, and when it reaches or
exceeds vj(yj(ai)), it is not recognized that the ai is preferred to the ak. yj(ai)− yj(ak) which indicates
the situation of preference of ai over ak for criterion Cj. A weight wj expresses the relative importance
of criterion yj, as it can be interpreted as the voting power of each criterion to the outranking relation.

Where yj(ai) and yj(ak) are expressed in the form of IVNNs in the paper, that is,
yj(ai) =

〈[
TL

i , TU
i
]
,
[
IL
i , IU

i
]
,
[
FL

i , FU
i
]〉

, yj(ak) =
〈[

TL
k , TU

k
]
,
[
IL
k , IU

k
]
,
[
FL

k , FU
k
]〉

. In the calculation of
Equation (8), let

yj(ai) =
(
TL

i + TU
i
)− (IL

i + IU
i
)− (FL

i + FU
i
)

(22)

yj(ak) =
(
TL

k + TU
k
)− (IL

k + IU
k
)− (FL

k + FU
k
)

(23)

and so
yj(ai)− yj(ak) =

(
TL

i + TU
i − TL

k − TU
k
)
+
(

IL
i + IU

i − IL
k − IU

k
)
+
(

FL
i + FU

i − FL
k − FU

k
)

(24)

Tij =

⎧⎪⎪⎨⎪⎪⎩
δi

aij
amax

i
(i ∈ θB)

λi
amin

i
aij

(i ∈ θC, amin
i �= 0)

λi(1− aij
amax

i
)(i ∈ θC, amin

i �= 0)

Iij =

⎧⎪⎪⎨⎪⎪⎩
εi

aij
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i
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i
aij
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i
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The δ, λ refer to the certainty parameters of the benefit criteria and cost criteria, respectively [23],
while the ε, μ stand for the uncertainty parameters of the benefit criteria and cost criteria respectively,
and they obey rule 0 < δi + εi ≤ 1, 0 < λi + μi ≤ 1.

4.5. Phase IV Calculation of Outranking Relation of IVNNs Based on Extended ELECTRE-III

Step 1. Define the concordance index

The concordance index c(ai, ak) that measures the strength of the coalition of criteria the support
the hypothesis “is at least as good as”, c(ai, ak) is computed for each ordered pair ai, ak ∈ A as follows:

c(ai, ak) =
n

∑
j=1

wjcj(ai, ak)/
n

∑
i=1

wj (26)

and the partial concordance index c(ai, ak) is defined as

cj(ai, ak) =

⎧⎪⎪⎨⎪⎪⎩
0 (yj(ai)− yj(ak) ≤ qj[yj(ai)])

1 (yj(ai)− yj(ak) ≤ qj[yj(ai)])
yj(ai)−yj(ak)−qj [yj(ai)]

pj [yj(ai)]−qj [yj(ai)]
(others)

(27)

Step 2. Define the discordance index

The discordance index dj(ai, ak) is defined as follows:

dj(ai, ak) =

⎧⎪⎪⎨⎪⎪⎩
0 (yj(ak)− yj(ai) ≤ −qj[yj(ai)])

1 (yj(ak)− yj(ai) ≥ vj[yj(ai)])
yj(ak)−yj(ai)+qj [yj(ai)]

vj [yj(ai)]+qj [yj(ai)]
(others)

(28)

Step 3. Define the degree of credibility of the outranking relation

The overall concordance and partial discordance indices are combined to obtain a valued
outranking relation with credibility s(ai, ak) ∈ [0, 1] defined by:

s(ai, ak) =

⎧⎨⎩
c(ai, ak) (∀j, dj(ai, ak) ≤ c(ai, ak))

c(ai, ak) ∏
j∈J(ai ,aj)

1−dj(ai ,ak)

1−c(ai ,ak)
(others) (29)

where j(ai, ak) is the set of criteria for which dj(ai, ak) > c(ai, ak).

Step 4. Define the ranking of the alternatives

∑ s(ai � ak) means the sum degree of credibility that alternative ai outranks all the other
alternatives, and ∑ s(ak � ai) means the sum degree of credibility that all the other alternatives
outrank alternative ai. Thus, ΔS(ai) represents the ranking of the alternative ai, and the higher the
ΔS(ai) value is, the more superior the outranking order is.

ΔS(ai) = ∑ s(ai � ak)−∑ s(ak � ai) (k = 1, 2 . . . n) (30)

5. A Real Case Study

A Chinese renewable energy investment company wants to build a shopping center rooftop
photovoltaic power project. In order to seek the optimal shopping mall for rooftop photovoltaic power
plants, furthermore, one must judge the weight and the influence network of the criteria. A group
of experts consisting of three doctorate engineers (referred to as E1, E2, E3) was constituted by the
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company. All three experts possess more than 15 years’ working experience in solar energy investment
field, and are specialized in solar photovoltaic and power grid technologies. The collaboration of
the all the experts was needed, thus, a pseudo-delphi method was applied in which each expert has
no interaction.

Considering the development target and the investment capacity of the company, the famous
influential large-scale shopping malls located in those cities, with both abundant sunshine and
general policy subsidies, have been roughly screened out based on the plentitude of documents
and investigation. The investigation involved several potential shopping malls located in Beijing,
Shanghai, Guangzhou, Chengdu, Hangzhou, and Nanjing. The experts group met the Development
and Reform Commission, the Meteorological Bureau, and the local power supply companies, in order
to gather information about solar resources, city planning and construction, local solar subsidy policies,
distributed solar power planning, economic assessment, and approved shopping mall rooftops for
construction. There are four potential shopping malls picked out after the first filter, and they are the
Golden Resources shopping mall in Beijing, Super Brand Mall in Shanghai, Deji Plaza in Nanjing,
Jiangsu province, The Mixc shopping mall in Shenzhen, Guangdong province (hereafter referred to as
X1, X2, X3, X4), as shown in Figure 3.

Figure 3. The alternative shopping malls geography distribution.

Firstly, based on the evaluation criteria, the influence of each criteria to the other one criteria
was accessed by the experts. Then, the three experts discussed with each other and obtained a
consensus about the influence of each criteria, as shown in Table 2. According to the DEMANTEL
method, the weight of criteria and subcriteria was calculated based on Equations (15)–(21), and shown
in Table 2. For the intuitive and simple understanding and analysis of the criteria and subcriteria,
Figures 4 and 5 were drawn. As shown in Figure 4, the horizontal axis represents the importance of
a criteria, while the vertical axis indicates the influence between the criteria, and the arrow is from
the sender of this influence to the receiver. As we can see, the (b) economy (0.286) obtained the most
importance, but was vulnerable to other criteria. The (a) architectural element and (c) climate (0.88)
seemed not particularly important, however, they had significant direct impacts to the other four
criteria. The (f) risk (0.188), (d) photovoltaic array (0.162), and (e) contribution (0.151) were considered
of medium importance, and among them, (f) and (d) had more of an impact, while (e) received more
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impact. Horizontal histogram clearly and intuitively shows the weight of each subcriteria in Figure 5.
It is obvious that the (b1) Total investment, (b2) Total profit, and (b3). Annual rate of return acquired the
highest weight, in addition to the (f4) Government subsidies reduction, (e2) Publicity effects and (d2).
PV area was considered to be less but also very important. Therefore, it can be imagined that the SMPV
plan alternatives which obtained high scores in these criteria are more likely to win the competition.
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Figure 4. The weights of subcriteria.
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Figure 5. Influential network relationship map within systems.

Secondly, there are two types of criteria, one is quantitative, and the other is qualitative. On one
hand, for the quantitative subcriteria, searching from the NASA atmospheric science data center,
the data for c1, c2, c3 were obtained. Through using the Google earth map, the roof space data
were obtained. Then, according to Equations (1)–(8), the data for a3, b1–b4, d2, d3 were estimated.
Because the Equations (1)–(8) are just for rough estimate, these data were not highly accurate.
Considering the uncertainty and fuzziness of the data, Equation (25) was used to turn the numerical
value into an IVNN value. The performance scores of the quantitative subcriteria are shown in Table 3.
On the other hand, for the qualitative subcriteria, the experts group devoted their efforts to investigate
the alternative plans and evaluate the performance score for the subcriteria a1, a2, d1, d4, e1–e3, f1–f4.
The performance scores of the qualitative subcriteria were shown in Table 4. In addition, the subcriteria
were divided into positive and negative. The score of positive criteria higher and negative criteria
lower means the alternative better. In this paper, subcriteria b1, d4, f1, f3, f4 are negative and the others
are positive.
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Thirdly, based on the weight of the sub-criteria and the IVNN scores of each alternative on each
subcriteria, the final composite scores were calculated by improved ELECTRIC III method. After being
told that qj is the indifference threshold, pj is the preference threshold and vj is the veto threshold,
the experts group suggested that ∑ s(ai, ak)−∑ s(ak, ai) (k = 1, 2 . . . n), respectively. The concordance
index c(Xi, Xk) and the partial concordance index cj(Xi, Xk) were calculated by Equations (26) and (27),
as shown in Table 5. The discordance index dj(Xi, Xk) was achieved by Equation (28), as shown in
Table 6. Then, overall concordance and partial discordance indices was obtained by Equation (29)
as shown in Table 7. Finally, the degree of credibility of the outranking relation was calculated by
Equation (30), and the rankings of alternative X1, X2, X3, X4 was shown in Table 8.

From Table 8, the SMPV plan X1 of the Golden Resources shopping mall in Beijing is the optimal
selection. The alternative X1 is particularly superior to other alternative plans in terms of the economy,
photovoltaic array, and contribution criteria, while these three criteria weighed more than a half of the
entire criteria weights, so there is no doubt that plan X1 obtained the best position. However, plan X1
performs badly in the risk and architectural elements criteria. Respectively, Plan X2 have strength on
the economy, but are weak on photovoltaic criteria. Yet, plan X2 is much better than plan X3 and X4,
so that it can be the stand-by choice.

Table 5. The concordance index and the partial concordance index for each pair of SMPV plans.

a1 a2 a3 b1 b2 b3 b4 c1 c2 c3 d1

c(X1 ≥ X2) 0.00 0.00 1.00 0.00 1.00 0.62 0.43 0.24 0.00 0.46 0.83
c(X1 ≥ X3) 0.05 0.00 1.00 0.36 0.00 0.92 0.74 0.20 0.00 0.50 0.61
c(X1 ≥ X4) 0.00 0.00 1.00 0.00 0.93 0.68 0.74 0.19 0.00 0.41 0.45
c(X2 ≥ X1) 0.26 0.85 0.00 0.70 0.00 0.00 0.00 0.00 0.41 0.00 0.00
c(X2 ≥ X2) 0.34 0.10 0.11 1.00 0.00 0.26 0.28 0.00 0.19 0.01 0.00
c(X2 ≥ X3) 0.00 0.00 0.00 0.47 0.00 0.02 0.28 0.00 0.00 0.00 0.00
c(X3 ≥ X1) 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00
c(X3 ≥ X2) 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.00 0.00 0.19
c(X3 ≥ X4) 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00
c(X4 ≥ X1) 0.44 0.99 0.00 0.19 0.00 0.00 0.00 0.00 0.92 0.00 0.00
c(X4 ≥ X2) 0.15 0.11 0.22 0.00 0.30 0.00 0.00 0.02 0.48 0.02 0.35
c(X4 ≥ X3) 0.52 0.24 0.37 0.59 0.00 0.21 0.00 0.00 0.69 0.05 0.13

d2 d3 d4 e1 e2 e3 f1 f2 f3 f4 C

c(X1 ≥ X2) 0.91 1.00 0.00 0.74 0.00 0.12 0.00 0.03 0.00 0.00 0.38
c(X1 ≥ X3) 1.00 1.00 0.00 0.78 0.00 0.46 0.02 0.35 0.00 0.00 0.40
c(X1 ≥ X4) 0.37 0.55 0.00 0.14 0.00 0.54 0.00 0.00 0.00 0.00 0.32
c(X2 ≥ X1) 0.00 0.00 0.44 0.00 0.32 0.00 0.26 0.00 0.70 0.21 0.18
c(X2 ≥ X2) 0.28 0.23 0.00 0.01 0.00 0.30 0.32 0.29 0.00 0.00 0.19
c(X2 ≥ X3) 0.00 0.00 0.24 0.00 0.00 0.38 0.06 0.00 0.53 0.00 0.11
c(X3 ≥ X1) 0.00 0.00 0.85 0.00 0.66 0.00 0.00 0.00 0.81 1.00 0.19
c(X3 ≥ X2) 0.00 0.00 0.37 0.00 0.30 0.00 0.00 0.00 0.08 0.81 0.16
c(X3 ≥ X4) 0.00 0.00 0.65 0.00 0.00 0.05 0.00 0.00 0.65 0.00 0.13
c(X4 ≥ X1) 0.00 0.00 0.17 0.00 0.72 0.00 0.17 0.22 0.13 1.00 0.20

c(X4 ≥ X2) 0.51 0.49 0.00 0.56 0.37 0.00 0.00 0.28 0.00 0.78 0.21

c(X4 ≥ X3) 0.82 0.75 0.00 0.61 0.03 0.00 0.22 0.60 0.00 0.00 0.25
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Table 6. The discordance index for each pair of SMPV plans.

d(Xi ≥ Xj) a1 a2 a3 b1 b2 b3 b4 c1 c2 c3 d1

d(X1 ≥ X2) 0.00 0.00 1.00 0.00 0.91 0.47 0.34 0.21 0.00 0.36 0.61
d(X1 ≥ X3) 0.08 0.00 1.00 0.30 0.02 0.68 0.56 0.19 0.00 0.39 0.46
d(X1 ≥ X4) 0.00 0.00 0.88 0.00 0.68 0.51 0.56 0.17 0.00 0.33 0.35
d(X2 ≥ X1) 0.22 0.63 0.00 0.52 0.00 0.00 0.00 0.00 0.33 0.00 0.00
d(X2 ≥ X2) 0.28 0.11 0.12 0.80 0.00 0.23 0.24 0.00 0.17 0.05 0.00
d(X2 ≥ X3) 0.00 0.00 0.00 0.37 0.00 0.06 0.24 0.00 0.00 0.00 0.00
d(X3 ≥ X1) 0.00 0.54 0.00 0.00 0.02 0.00 0.00 0.00 0.18 0.00 0.00
d(X3 ≥ X2) 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.05 0.00 0.00 0.17
d(X3 ≥ X4) 0.00 0.00 0.00 0.00 0.68 0.00 0.02 0.01 0.00 0.00 0.00
d(X4 ≥ X1) 0.35 0.72 0.00 0.18 0.00 0.00 0.00 0.00 0.68 0.00 0.00
d(X4 ≥ X2) 0.15 0.12 0.20 0.00 0.25 0.00 0.00 0.06 0.37 0.06 0.29
d(X4 ≥ X3) 0.41 0.21 0.30 0.45 0.00 0.19 0.02 0.03 0.52 0.08 0.13

d(Xi ≥ Xj) d2 d3 d4 e1 e2 e3 f1 f2 f3 f4

d(X1 ≥ X2) 0.67 0.78 0.00 0.55 0.00 0.13 0.00 0.06 0.00 0.00
d(X1 ≥ X3) 0.89 0.96 0.00 0.58 0.00 0.36 0.06 0.29 0.00 0.00
d(X1 ≥ X4) 0.30 0.43 0.00 0.14 0.00 0.41 0.00 0.00 0.00 0.00
d(X2 ≥ X1) 0.00 0.00 0.35 0.00 0.27 0.00 0.23 0.00 0.52 0.19
d(X2 ≥ X2) 0.24 0.20 0.00 0.05 0.00 0.25 0.26 0.25 0.00 0.00
d(X2 ≥ X3) 0.00 0.00 0.21 0.00 0.00 0.31 0.09 0.00 0.41 0.00
d(X3 ≥ X1) 0.00 0.00 0.63 0.00 0.50 0.00 0.00 0.00 0.60 0.77
d(X3 ≥ X2) 0.00 0.00 0.30 0.00 0.25 0.00 0.00 0.00 0.10 0.60
d(X3 ≥ X4) 0.00 0.00 0.49 0.00 0.00 0.08 0.00 0.00 0.49 0.05
d(X4 ≥ X1) 0.00 0.00 0.16 0.00 0.54 0.00 0.16 0.19 0.13 0.75
d(X4 ≥ X2) 0.39 0.38 0.00 0.43 0.30 0.00 0.00 0.24 0.00 0.58
d(X4 ≥ X3) 0.61 0.56 0.00 0.46 0.07 0.00 0.20 0.46 0.00 0.00

Table 7. The overall concordance and partial discordance indices for each pair of SMPV plans.

s(Xi ≥ Xj) a1 a2 a3 b1 b2 b3 b4 c1 c2 c3 d1

s(X1 ≥ X2) 1.62 1.67 0.00 1.67 0.15 0.88 1.10 1.32 1.67 1.07 0.64
s(X1 ≥ X3) 1.54 1.67 0.00 1.18 1.63 0.54 0.74 1.36 1.67 1.02 0.90
s(X1 ≥ X4) 1.48 1.48 0.18 1.48 0.47 0.73 0.66 1.22 1.48 1.00 0.96
s(X2 ≥ X1) 0.95 0.45 1.22 0.58 1.22 1.22 1.22 1.22 0.82 1.22 1.22
s(X2 ≥ X2) 0.88 1.09 1.08 0.25 1.23 0.95 0.94 1.23 1.02 1.17 1.23
s(X2 ≥ X3) 1.12 1.12 1.12 0.70 1.12 1.05 0.85 1.12 1.12 1.12 1.12
s(X3 ≥ X1) 1.23 0.57 1.23 1.23 1.20 1.23 1.23 1.23 1.01 1.23 1.23
s(X3 ≥ X2) 1.19 1.19 1.19 1.19 0.10 1.19 1.19 1.13 1.19 1.19 0.98
s(X3 ≥ X4) 1.14 1.14 1.14 1.14 0.36 1.14 1.12 1.13 1.14 1.14 1.14
s(X4 ≥ X1) 0.82 0.34 1.25 1.03 1.25 1.25 1.25 1.25 0.40 1.25 1.25
s(X4 ≥ X2) 1.09 1.12 1.02 1.27 0.95 1.27 1.27 1.20 0.80 1.20 0.91
s(X4 ≥ X3) 0.79 1.06 0.94 0.73 1.33 1.08 1.30 1.29 0.64 1.22 1.16

s(Xi ≥ Xj) d2 d3 d4 e1 e2 e3 f1 f2 f3 f4 s

s(X1 ≥ X2) 0.55 0.36 1.67 0.75 1.67 1.45 1.67 1.56 1.67 1.67 0.38
s(X1 ≥ X3) 0.19 0.06 1.67 0.69 1.67 1.07 1.57 1.19 1.67 1.67 0.40
s(X1 ≥ X4) 1.04 0.85 1.48 1.27 1.48 0.87 1.48 1.48 1.48 1.48 0.32
s(X2 ≥ X1) 1.22 1.22 0.79 1.22 0.89 1.22 0.94 1.22 0.58 0.98 0.18
s(X2 ≥ X2) 0.94 0.98 1.23 1.16 1.23 0.92 0.91 0.93 1.23 1.23 0.19
s(X2 ≥ X3) 1.12 1.12 0.88 1.12 1.12 0.78 1.02 1.12 0.66 1.12 0.11
s(X3 ≥ X1) 1.23 1.23 0.46 1.23 0.62 1.23 1.23 1.23 0.49 0.28 0.19
s(X3 ≥ X2) 1.19 1.19 0.83 1.19 0.89 1.19 1.19 1.19 1.07 0.47 0.16
s(X3 ≥ X4) 1.14 1.14 0.58 1.14 1.14 1.06 1.14 1.14 0.58 1.09 0.13
s(X4 ≥ X1) 1.25 1.25 1.05 1.25 0.58 1.25 1.05 1.01 1.08 0.32 0.20
s(X4 ≥ X2) 0.77 0.79 1.27 0.72 0.89 1.27 1.27 0.97 1.27 0.54 0.21
s(X4 ≥ X3) 0.52 0.59 1.33 0.71 1.24 1.33 1.07 0.72 1.33 1.33 0.25
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Table 8. Final composite scores and rankings of alternative SMPV plans.

Xi ∑ s(ai � ak) ∑ s(ak � ai) ΔS(ai)

X1 0.73 0.29 0.44
X2 0.47 0.37 0.1
X3 032 0.39 −0.07
X4 0.56 1.02 −0.47

The ranking order using ELECTRI III is X1 > X2 > X3 > X4. In order to check the validity of the
results, TOPSIS and VIKOR methods were used to reorder the alternative SMPV plans as shown in
Table 9. The result obtained by TOPSIS method is X1 > X4 > X3 > X2, while the result achieved by
VIKOR method is X1 > X4 > X3 > X2. from these three rankings, alternative plan X1 is the optimal
selection, no matter what method was used. That is to say, the alternative X1 is much better than
the remaining alternatives, and there is no doubt in choosing X1 first. However, the rankings for X2,
X3, and X4 are different between these three methods. There is the veto threshold, which indicates
when the value of alternative Xi is lower than the value of alternative Xj, and the lower value exceeds
the veto threshold, and it is not recognized that Xi is preferred to the Xj in general. However, it is
the other term in TOPSIS method and VIKOR method, and some really bad performance in a certain
criterion can be tolerated and remedied by other good performances in other criteria. In that case,
an alternative with some fatal defect in a certain criterion of an alternative may be neglected, which
leads to an unsatisfactory selection. When an alternative is vetoed better than the other alternative in
ELECTRE III, it can still come out in front in the TOPSIS and VIKOR methods. That why the X2, X3,
X4 ranked differently in TOPSIS and VIKOR methods.

Table 9. The rankings of SMPV plans using TOPSIS and VIKOR.

Method TOPSIS VIKOR

y+ y− C Rankings s r Q Rankings

X1 0.62 1.43 0.70 1 −2.57 0.12 0.00 1
X2 1.17 0.47 0.29 4 1.88 1.18 0.922 4
X3 1.35 0.71 0.35 3 −1.74 1.06 0.526 2
X4 0.76 0.74 0.49 2 2.74 1.01 0.919 3

6. Conclusions

The selection of SMPV plan is crucial to the entire life of SMPV project. Although there has been
some research on this issue, several questions still need addressing. Firstly, the interaction of the criteria
lay in the evaluation criteria. Secondly, the loss of evaluation information exited in the information
conversion process. Thirdly, the compensation problem between best and worst performance in
diverse criteria was not easily to avoided.

In this paper, an integrated MCDM framework was proposed to address the SMPV plan selection
problem. First of all, the compositive evaluation index was constructed, and the application of
DEMATEL method helped analyze the internal influence and connection behind each criterion.
From the influential network-relationship map, we discovered that the criteria (b) economy obtained
the most importance but was vulnerable to other criteria as well as the (a) architectural element and (c)
climate had significant direct impacts to the other four criteria. These three criteria should be the first for
the decision maker to consider when selecting the SMPV plan. Then, the interval-valued neutrosophic
set is utilized to express the imperfect knowledge of experts group. Since the application of IVNNS,
the experts can clearly express their evaluation information, including their certainty, uncertainty,
as well as hesitation attitude. Following this, an extended ELECTRE III method as an outstanding
outranking method was applied, and it succeed in avoiding the compensation problem and obtaining
the scientific result. In the case of China, the integrated method has been successfully applied to select
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the SMPV plan X1 as the optimal selection which is particularly superior to other alternative plans in
terms of the economy, photovoltaic array, and contribution criteria. Also, the integrated method used
maintained symmetry in the solar PV investment. Last but not least, a comparative analysis using
TOPSIS method and VIKOR method was carried out, and alternative plan X1 ranks first at the same.
The outcome certified the correctness and rationality of the results obtained from this paper.

Therefore, this study has not only served to evaluate the SMPV plans, it has also demonstrated
how it is possible to combine IVNNS, DEMATEL method, and ELECTRE III method for application in
handling MCDM problems in the field of solar energy.
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Abstract: Based on the multiplicity evaluation in some real situations, this paper firstly introduces a
single-valued neutrosophic multiset (SVNM) as a subclass of neutrosophic multiset (NM) to express
the multiplicity information and the operational relations of SVNMs. Then, a cosine measure between
SVNMs and weighted cosine measure between SVNMs are presented to measure the cosine degree
between SVNMs, and their properties are investigated. Based on the weighted cosine measure of
SVNMs, a multiple attribute decision-making method under a SVNM environment is proposed,
in which the evaluated values of alternatives are taken in the form of SVNMs. The ranking order of
all alternatives and the best one can be determined by the weighted cosine measure between every
alternative and the ideal alternative. Finally, an actual application on the selecting problem illustrates
the effectiveness and application of the proposed method.

Keywords: single valued neutrosophic set (SVNS); neutrosophic multiset (NM); single valued
neutrosophic multiset (SVNM); cosine measure; multiple attribute decision-making

1. Introduction

In 1965, Zadeh [1] proposed the theory of fuzzy sets (FS), in which every fuzzy element
is expressed by the membership degree T(x) belonging to the scope of [0, 1]. While the fuzzy
membership degree of T(x) is difficult to be determined, or cannot be expressed by an exact real
number, the practicability of FS is limited. In order to avoid the above situation, Turksen [2] extended a
single-value membership to an interval-valued membership. Generally, when the membership degree
T(x) is determined, the non-membership degree can be calculated by 1 − T(x). Considering the
role of the non-membership degree, Atanassov [3] put forward the intuitionistic fuzzy sets (IFS)
and introduced the related theory of IFS. Since then, IFS has been widely used for solving the
decision-making problems. Although the FS theory and IFS theory have been constantly extended
and completed, they are not applicable to all the fuzzy problems. In 1998, Smarandache [4]
added the uncertain degree to the IFS and put forward the theory of the neutrosophic set (NS),
which is a general form of the FS and IFS. NS is composed of the neutrosophic components of truth,
indeterminacy, and falsity denoted by T, I, F, respectively. Since then, many forms of the neutrosophic
set were proposed as extensions of the neutrosophic set. Wang and Smarandache [5,6] introduced a
single-valued neutrosophic set (SVNS) and an interval neutrosophic set (INS). Smarandache [7] and
Smarandache and Ye [8] presented n-value and refined-single valued neutrosophic sets (R-SVNSs).
Fan and Ye [9] presented a refined-interval neutrosophic set (R-INS). Ye [10] presented a dynamic
single-valued neutrosophic multiset (DSVM), and so on.

Now, more researches have been done on the NS theory by experts and scholars. Ye [11,12]
proposed the correlation coefficient and the weighted coefficient correlation of SVNS and proved that
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cosine similarity is a special case of the SVNS correlation coefficient. Broumi and Smarandache [13]
proposed three vector similarity methods to simplify the similarity of SVNS, including Jaccard
similarity, Dice similarity, and cosine similarity. Majumdar and Samanta [14] gave the similarity
formula of SVNSs. Broumi and Smarandache [15] gave the correlation coefficient of INSs. Based on
the Hamming and Euclidean distances, Ye [16] defined the similarity of INSs. For the operation rules
of NSs, Smarandache, Ye, and Chi [4,16,17] gave different operation rules, respectively, where they all
have certain rationality and applicability.

Recently, Smarandache [18] introduced the neutrosophic multiset and the neutrosophic multiset
algebraic structures, in which one or more elements are repeated for some times, keeping the same
or different neutrosophic components. Its concept is different from the concept of single-valued
neutrosophic multiset in [10,19]. Until now, there are few studies and applications of neutrosophic
multisets (NM) in science and engineering fields, so we introduce a single valued neutrosophic multiset
(SVNM) as a subclass of the neutrosophic multiset (NM) to express the multiplicity information and
propose a decision-making method based on the weighted cosine measures of SVNMs, and then
provide a decision-making example to show its application under SVNM environments.

The remaining sections of this article are organized as follows. Section 2 describes some basic
concepts of SVNS, NM, and the cosine measure of SVNSs. Section 3 presents a SVNM and its basic
operational relations. Section 4 proposes a cosine measure between SVNMs and a weighted cosine
measure between SVNMs and investigates their properties. Section 5 establishes a multiple attribute
decision-making method using the weighted cosine measure of SVNMs under SVNM environment.
Section 6 presents an actual example to demonstrate the application of the proposed methods under
SVNM environment. Section 7 gives a conclusion and further research.

2. Some Concepts of SVNS and NM

Definition 1 [5]. Let X be a space of points (objects), with a generic element x in X. A SVNS R in X can
be characterized by a truth-membership function TR(x), an indeterminacy-membership function IR(x), and a
falsity-membership function FR(x), where TR(x), IR(x), FR(x) ∈ [0, 1] for each point x in X. Then, a SVNS R
can be expressed by the following form:

R = {〈x, TR(x), IR(x), FR(x)〉|x ∈ X}.

Thus, the SVNS R satisfies the condition 0 ≤ TR(x) + IR(x) + FR(x) ≤ 3.
For two SVNSs M and N, the relations of them are defined as follows [5]:

(1) M ⊆ N if and only if TM(x) ≤ TN(x), IM(x) ≥ IN(x), FM(x) ≥ FN(x) for any x in X;
(2) M = N if and only if M ⊆ N and N ⊆M;
(3) Mc = { 〈x, FM(x), 1− IM(x), TM(x)〉|x ∈ X }.

For writing convenience, an element called single-valued neutrosophic number (SVNN) in the
SVNS R can be denoted by R = 〈TR(x), IR(x), FR(x)〉 for any x in X. For two SVNNs M and N,
the operational relations of them can be defined as follows [5]:

(1) M ∪ N = <max(TM(x), TN(x)), min(IM(x), IN(x)), min(FM(x), FN(x)) > for any x in X;
(2) M ∩ N = <min(TM(x), TN(x)), max(IM(x), IN(x)), max(FM(x), FN(x)) > for any x in X.

For two SVNNs M and N, the operational rules of them can be defined as follows [5]:

M + N = 〈TM(x) + TN(x)− TM(x)TN(x), IM(x)IN(x), FM(x)FN(x)〉 for any x in X; (1)

M× N =< TM(x)TN(x), IM(x) + IN(x)− IM(x)IN(x), FM(x) + FN(x)− FM(x)FN(x)
> for any x in X;

(2)

ϕM =< 1− (1− TM(x))ϕ, (IM(x))ϕ, (FM(x))ϕ > for ϕ > 0 and any x in X; (3)
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Mϕ =< (TM(x))ϕ, (1− IM(x))ϕ, (1− FM(x))ϕ >, for ϕ > 0 and any x in X. (4)

Definition 2 [20]. Let X = {x1, x2, . . . , xn} be a space of points (objects), L and M be two SVNSs. The cosine
measure between L and M is defined as follows:

ρ(L, M) =
1
n

n

∑
i=1

cos{π

6
(|TL(xi)− TM(xi)|+ |IL(xi)− IM(xi)|+ |FL(xi)− FM(xi)|)}. (5)

Obviously, the cosine measure between L and M satisfies the following properties [20]:

1© 0 ≤ ρ(L, M) ≤ 1;
2© ρ(L, M) = 1 if and only if L = M;
3© ρ(L, M) = ρ(M, L).

Definition 3 [18]. Let X be a space of points (objects), and a neutrosophic multiset is repeated by one or more
elements with the same or different neutrosophic components.

For example, M = {(m1, 〈0.7, 0.2, 0.1 〉), (m2, 〈0.6, 0.4, 0.1 〉), (m3, 〈0.8, 0.3, 0.2 〉)}
is a neutrosophic set rather than a neutrosophic multiset; while K =
{(k1, 〈0.7, 0.2, 0.1 〉), (k1, 〈0.7, 0.2, 0.1 〉), (k1〈, 0.7, 0.2, 0.1 〉), (k2, 〈0.6, 0.4, 0.1 〉)} is a neutrosophic multiset,
where the element k1 is repeated. Then, we can say that the element k1 has neutrosophic multiplicity 3
with the same neutrosophic components.

Meanwhile, L = {(l1, 〈0.7, 0.2, 0.1 〉), (l1, 〈0.6, 0.3, 0.1 〉), (l1, 〈0.8, 0.1, 0.1 〉), (l2, 〈0.6, 0.4, 0.1 〉)} is also
a neutrosophic multiset since the element l1 is repeated, and then we can say that the element l1 has
neutrosophic multiplicity 3 with different neutrosophic components.

If the element l1 is repeated times with the same neutrosophic comonents, we say l1 has
multiplicity. If the element l1 is repeated times with different neutrosophic comonents, we say l1
has the neutrosophic multiplicity (nm). The nm function can be defined as follows:

nm: X→N = {1, 2, 3, . . . , ∞} for any r ∈ R
nm(r) = {(p1, 〈T1, I1, F1〉), (p2, 〈T2, I2, F2〉), . . . , (pi, 〈Ti, Ii, Fi〉), . . .},

which means that r is repeated by p1 times with the neutrosophic components 〈T1, I1, F1〉; r is repeated
by p2 times with the neutrosophic components 〈T2, I2, F2〉; . . . ; r is repeated by pi times with the
neutrosophic components 〈Ti, Ii, Fi〉; and so on. p1, p2, . . . , pi, . . . ∈ N, and

〈
Tj, Ij, Fj

〉 �= 〈Tk, Ik, Fk〉,
for j �= k and j, k ∈ N. Then a neutrosophic multiset R can be written as:

(R, nm(r)) or {(r, nm(r), f or r ∈ R)}. (6)

Now, with respect to the previous neutrosophic multisets K, L, we compute the neutrosophic
multiplicity function:

nmK : K → N;
nmK(k1) = {(3, 〈0.7, 0.2, 0.1 〉)};
nmK(k2) = {(1, 〈0.6, 0.4, 0.1〉)};
nmL : L → N ;
nmL(l1) = {(1, 〈0.7, 0.2, 0.1〉), (1, 〈0.6, 0.3, 0.1〉), (1, 〈0.8, 0.1, 0.1〉)};
nmL(l2) = {(1, 〈0.6, 0.4, 0.1〉)}.

3. Single Valued Neutrosophic Multiset

Definition 4. Let X be a space of points (objects) with a generic element x in X and N = {1, 2, 3, . . . , ∞}.
A SVNM R in X can be defined as follows:
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R =
{

x,
(
(pR1,〈TR1(x), IR1(x),FR1(x)〉),(pR2,〈TR2(x), IR2(x),FR2(x)〉), . . . ,

(
pRj,
〈
TRj(x), IRj(x),FRj(x)

〉
)
)∣∣x ∈ X

}
,

where TRk(x), IRk(x), FRk(x) express the truth-membership function, the indeterminacy-membership
function, and the falsity-membership function, respectively. TR1(x), TR2(x), . . . , TRk(x) ∈ [0, 1],
IR1(x), IR2(x), . . . , IRk(x) ∈ [0, 1], FR1(x), FR2(x), . . . , FRk(x) ∈ [0, 1] and 0 ≤ TRk(x) + IRk(x) +
FRk(x) ≤ 3, for k = 1, 2, . . . j, j ∈ N, pR1, pR2, . . . , pRj ∈ N and pR1 + pR2 + . . . + pRj ≥ 2.

For convenience, a SVNM R can be denoted by the following simplified form:

R = {x, (pRk, 〈TRk(x), IRk(x), FRk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . , j.

For example, with a universal set X = {x1, x2}, a SVNM R is given as:

R = {(x1, (2, 〈0.6, 0.2, 0.1〉), (1, 〈0.8, 0.2, 0.2〉)), (x2, (1, 〈0.7, 0.3, 0.1〉), (2, 〈0.7, 0.2, 0.3〉))}.

Then
nmR(x1) = {(2, 〈0.6, 0.2, 0.1〉), (1, 〈0.8, 0.2, 0.2〉)};
nmR(x2) = {(1, 〈0.7, 0.3, 0.1〉), (2, 〈0.7, 0.2, 0.3〉)}.

Definition 5. Let X be a space of points (objects) with a generic element x in X, M and L be two SVNMs,

M = {x, (pMk, 〈TMk(x), IMk(x), FMk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j,

L = {x, (pLk, 〈TLk(x), ILk(x), FLk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j,

Then the relations of them are given as follows:

1© M = L, if and only if pMk = pLk, TMk(x) = TLk(x), IMk(x) = ILk(x), FMk(x) = FLk(x),
f or k = 1, 2, . . . , j;

2© M ∪ L = {x, ((pMk ∨ pLk), 〈TMk(x) ∨ TLk(x), IMk(x) ∧ ILk(x), FMk(x) ∧ FLk(x) 〉)|x ∈ X},
f or k = 1, 2, . . . , j;

3© M ∩ L = {x, ((pMk ∧ pLk), 〈TMk(x) ∧ TLk(x), IMk(x) ∨ ILk(x), FMk(x) ∨ FLk(x) 〉)|x ∈ X},
f or k = 1, 2, . . . , j.

For convenience, we can use r = ((pr1,< Tr1(x), Ir1(x), Fr1(x) >), (pr2,< Tr2(x), Ir2(x), Fr2(x) >
), . . . , (prj,< Trj(x), Irj(x), Frj(x) >)) to express a basic element in a SVNM R and call r a single valued
neutrosophic multiset element (SVNME).

For example, with a universal set X = {x1, x2}, then two SVNMs M and L are given as:

M = {(x1, (2, 〈0.6, 0.2, 0.1〉), (1, 〈0.4, 0.1, 0.2〉)), (x2, (1, 〈0.7, 0.3, 0.1 〉))};

L = {(x1, (1, 〈0.6, 0.2, 0.1〉), (1, 〈0.8, 0.2, 0.1〉)), (x2, (1, 〈0.9, 0.3, 0.1〉))};

M ∪ L = {(x1, (2, 〈0.6, 0.2, 0.1〉), (1, 〈0.4, 0.1, 0.2〉), (1, 〈0.8, 0.2, 0.1〉)), (x2, (1, 〈0.7, 0.3, 0.1〉), (1, 〈0.9, 0.3, 0.1〉))}
M ∩ L = {x1, (1, 〈0.6, 0.2, 0.1〉)}.

Definition 6. Let X be a space of points (objects) with a generic element x in X and M be a SVNM, we can
change a SVNM M into a SVNS M̃ by using the operational rules of SVNS.

M = {x, (pMk, 〈TMk(x), IMk(x), FMk(x)〉)|x ∈ X}, f or k = 1, 2, . . . , j.
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Then

M̃ = {〈x, 1−
j

∏
k=1

(1− TMk(x))pMk ,
j

∏
k=1

(IMk(x))pMk ,
j

∏
k=1

(FMk(x))pMk 〉|x ∈ X}. (7)

Proof. Set m1, m2, . . . mj are basic elements in M.
When k = 1, we can get
m1 = (〈Tm1(x), Im1(x), Fm1(x)〉, 〈Tm1(x), Im1(x), Fm1(x)〉, . . . , 〈Tm1(x), Im1(x), Fm1(x) 〉),

which has neutrosophic multiplicity pm1.
According to the operational rules of SVNSs, we can get:

+ m1 = 1− (1− Tm1(x))pm1 , (Im1(x))pm1 , (Fm1(x))pm1 .

As the same reason, when k = 2, we can get

+ m2 = 1− (1− Tm2(x))pm2 , (Im1(x))pm2 , (Fm2(x))pm2 .

Then

m1 + m2 = 1− (1− Tm1(x))pm1(1− Tm2(x))pm2 , (Im1(x))pm1(Im1(x))pm2 , (Fm2(x))pm1(Fm2(x))pm2

= 1−∏2
k=1(1− Tmk(x))pmk , ∏2

k=1(Imk(x))pmk , ∏2
k=1(Fmk(x))pmk ;

Suppose when k = i, the Equation (7) is established, then we can get:

m1 + m2 + . . . + mi = 1−
i

∏
k=1

(−Tmk(x) )pmk ,
i

∏
k=1

(Imk(x))pmk ,
i

∏
k=1

(Fmk(x))pmk ;

Then

m1 + m2 + . . . + mi +mi+1

= 1− i
∏

k=1
(1− Tmk(x))pmk + 1−

(
1− Tm(i+1)(x)

)pm(i+1)

−
(

1− i
∏

k=1
(1− Tmk(x))pmk

)(
1−
(

1− Tm(i+1)(x)
)pm(i+1)

)
,(

i
∏

k=1
(Imk(x))pmk

)(
Im(i+1)(x)

)pm(i+1)
,(

i
∏

k=1
(Fmk(x))pmk

)(
Fm(i+1)(x)

)pm(i+1)

= 1−∏i+1
k=1(1− Tmk(x))pmk , ∏i+1

k=1(Imk(x))pmk , ∏i+1
k=1(Fmk(x))pmk .

To sum up, when k = i + 1, Equation (7) is true, and then according to the mathematical induction,
we can get that the aggregation result is also true.

Definition 7. Let X = {x1, x2, . . . , xn} be a universe of discourse, and M and N be two SVNMs, and then the
operational rules of SVNMs are defined as follows:

M = {x, (pMk, 〈TMk(x), IMk(x), FMk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j;

N = {x, (pNk, 〈TNk(x), INk(x), FNk(x) 〉)|x ∈ X}, f or k = 1, 2, . . . j ;
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M⊕ N
= {〈x, 1

−
j

∏
k=1

(1− TMk(x))pMk
j

∏
k=1

(1

−TNk(x))pNk ,
j

∏
k=1

(IMk(x))pMk
j

∏
k=1

(INk(x))pNk ,
j

∏
k=1

(FMk(x))pMk
j

∏
k=1

(FNk(x))pNk 〉|x ∈ X}

M⊗ N = {〈x,

(
1−

j
∏

k=1
(1− TMk(x))pMk

)(
1−

j
∏

k=1
(1− TNk(x))pNk

)
,

j
∏

k=1
(IMk(x))pMk

+
j

∏
k=1

(INk(x))pNk −
j

∏
k=1

(IMk(x))pMk
j

∏
k=1

(INk(x))pNk ,
j

∏
k=1

(FMk(x))pMk

+
j

∏
k=1

(FNk(x))pNk −
j

∏
k=1

(FMk(x))pMk
j

∏
k=1

(FNk(x))pNk 〉|x ∈ X}

ϕM = {〈x,

(
1−
(

j
∏

k=1
(1− TMk(x))pMk

)ϕ)
,

(
j

∏
k=1

(IMk(x))pMk

)ϕ

,

(
j

∏
k=1

(FNk(x))pNk

)ϕ

〉|x ∈ X}

Mϕ = {〈x,

(
1−

j
∏

k=1
(1− TMk(x))pMk

)ϕ

, 1−
(

1−
j

∏
k=1

(IMk(x))pMk

)ϕ

, 1

−
(

1−
j

∏
k=1

(FNk(x))pNk

)ϕ

〉|x ∈ X}

4. Cosine Measures of Single-Value Neutrosophic Multisets

Cosine measures are usually used in science and engineering applications. In this section,
we propose a cosine measure of SVNMs and a weighted cosine measure of SVNMs.

Definition 8. Let X = {x1, x2, . . . , xn} be a universe of discourse, M and N be two SVNMs,

M =
{

xi, (pM1, 〈TM1(xi), IM1(xi), FM1(xi)〉), (pM2, 〈TM2(xi), IM2(xi), FM2(xi)〉), . . . ,
(

pMj,
〈

TMj(xi), IMj(xi), FMj(xi)
〉)∣∣xi ∈ X

}
,

N =
{

xi, (pN1, 〈TN1(xi), IN1(xi), FN1(xi)〉), (pN2, 〈TN2(xi), IN2(xi), FN2(xi)〉), . . . ,
(

pNj,
〈

TNj(xi), INj(xi), FNj(xi)
〉) ∣∣∣xi ∈ X

}
Then, a cosine measure between two SVNMs M and N is defined as follows:

ρ(M, N) = 1
n

n
∑

i=1
cos

{
π
6

∣∣∣∣∣ j
∏

k=1
(1− TMk(xi))

pMk −
j

∏
k=1

(1− TNk(xi))
pNk

∣∣∣∣∣
+

∣∣∣∣∣ j
∏

k=1
(IMk(xi))

pMk −
j

∏
k=1

(INk(xi))
pNk

∣∣∣∣∣
+

∣∣∣∣∣ j
∏

k=1
(FMk(xi))

pMk −
j

∏
k=1

(FNk(xi))
pNk

∣∣∣∣∣
} (8)

Theorem 1. The cosine measure ρ(M, N) between two SVNMs M and N satisfies the following properties:

1© ρ(M, N) = ρ(N, M);
2© 0 ≤ ρ(M, N) ≤ 1;
3© ρ(M, N) = 1, i f and only i f M = N.

Proof. 1©: For
∣∣∣∏j

k=1(1−TMk(xi))
pMk −∏

j
k=1(1−TNk(xi))

pNk
∣∣∣+ ∣∣∣∏j

k=1(IMk(xi))
pMk −∏

j
k=1(INk(xi))

pNk
∣∣∣+∣∣∣∏j

k=1(FMk(xi))
pMk −∏

j
k=1(FNk(xi))

pNk
∣∣∣ =

∣∣∣∏j
k=1(1− TNk(xi))

pNk −∏
j
k=1(1− TMk(xi))

pMk
∣∣∣ +∣∣∣∏j

k=1(INk(xi))
pNk −∏

j
k=1(IMk(xi))

pMk
∣∣∣ + ∣∣∣∏j

k=1(FNk(xi))
pNk −∏

j
k=1(FMk(xi))

pMk
∣∣∣, so we can

get ρ(M, N) = ρ(N, M).
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2©: For 0 ≤ TMk(xi) ≤ 1, 0 ≤ IMk(xi) ≤ 1, 0 ≤ FMk(xi) ≤ 1, 0 ≤ TNk(xi) ≤ 1, 0 ≤ INk(xi) ≤ 1, 0 ≤
FNk(xi) ≤ 1 ;
Then, we can get

0 ≤ 1− TMk(xi) ≤ 1 and 0 ≤ 1− TNk(xi) ≤ 1;

0 ≤
j

∏
k=1

(1− TMk(xi))
pMk ≤ 1 and 0 ≤

j

∏
k=1

(1− TNk(xi))
pNk ≤ 1;

So,

0 ≤
∣∣∣∣∣

j

∏
k=1

(1− TMk(xi))
pMk −

j

∏
k=1

(1− TNk(xi))
pNk

∣∣∣∣∣ ≤ 1.

For the same reason, we can get

0 ≤
∣∣∣∣∣ j

∏
k=1

(IMk(xi))
pMk −

j
∏

k=1
(INk(xi))

pNk

∣∣∣∣∣ ≤ 1and0

≤
∣∣∣∣∣ j

∏
k=1

(FMk(xi))
pMk −

j
∏

k=1
(FNk(xi))

pNk

∣∣∣∣∣ ≤ 1

Above all, we can get 
 and

; 
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Let

, then 

}. 

According to 

, we can obtain 

 and , so we can get . 

3©: If M = N then TMk(xi) = TNk(xi), IMk(xi) = INk(xi), and FMk(xi) = FNk(xi) for any xi ∈
X and i = 1, 2, . . . n, so we can get ρ(M, N) = 1, if and only if M = N.

Now, we consider different weights for each element xi(i = 1, 2, . . . , n) in X. Then, let w =

(w1, w2, . . . , wn)
T be the weight vector of each element xi(i = 1, 2, . . . , n) with wi ∈ [0, 1], and ∑n

i=1 wi =

1. Hence, we further extend the cosine measure of Equation (8) to the following weighted cosine
measure of SVNM:

 

(9) 

Theorem 2. The cosine measure ρw(M, N) between two SVNMs M and N satisfies the following properties:

1© ρw(M, N) = ρw(N, M);
2© 0 ≤ ρw(M, N) ≤ 1;
3© ρw(M, N) = 1, i f and only i f M = N.

The proof of Theorem 2 is similar to that of the Theorem 1, so we omitted it here.

5. Cosine Measure of SVNM for Multiple Attribute Decision-Making

In this section, we use the weighted cosine measure of SVNM to deal with the multiple attribute
decision-making problems with SVNM information.

Let G = {g1, g2, . . . , gm} as a set of alternatives and X = {x1, x2, . . . , xn} as a set of attributes,
then they can be established in a decision-making problem. However, sometimes xi(i = 1, 2, . . . , n)
may have multiplicity, and then we can use the form of a SVNM to represent the evaluation value.

Let
, for r = 1, 2, …, m and i = 1, 2, …, n. Then we can establish the SVNM decision matrix D, which is 

shown in Table 1.
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Table 1. The single-valued neutrosophic multiset (SVNM) decision matrix D.

x1 . . .

g1 x1,
(

pg11,
〈

Tg11(x1), Ig11(x1), Fg11(x1)
〉)

, . . . ,
(

pg1 j,
〈

Tg1 j(x1), Ig1 j(x1), Fg1 j(x1)
〉)

. . .

g2 x1,
(

pg21,
〈

Tg21(x1), Ig21(x1), Fg21(x1)
〉)

, . . . ,
(

pg2 j,
〈

Tg2 j(x1), Ig2 j(x1), Fg2 j(x1)
〉)

. . .
. . . . . . . . .
gm x1,

(
pgm1,

〈
Tgm1(x1), Igm1(x1), Fgm1(x1)

〉)
, . . . ,

(
pgm j,

〈
Tgm j(x1), Igm j(x1), Fgm j(x1)

〉)
. . .

xn

xn,
(

pg11,
〈

Tg11(xn), Ig11(xn), Fg11(xn)
〉)

, . . . ,
(

pg1 j,
〈

Tg1 j(xn), Ig1 j(xn), Fg1 j(xn)
〉)

xn,
(

pg21,
〈

Tg21(xn), Ig21(xn), Fg21(xn)
〉)

, . . . ,
(

pg2 j,
〈

Tg2 j(xn), Ig2 j(xn), Fg2 j(xn)
〉)

. . .
xn,
(

pgm1,
〈

Tgm1(xn), Igm1(xn), Fgm1(xn)
〉)

, . . . ,
(

pgm j,
〈

Tgm j(xn), Igm j(xn), Fgm j(xn)
〉)

Step 1: By using Equation (7), we change the SVNM decision matrix D into SVNS decision
matrix D̃, which is shown in Table 2.

Table 2. The single-valued neutrosophic set (SVNS) decision matrix D̃.

x1 . . .

g̃1 〈x1, 1−
j

∏
k=1

(
1− Tg1k(x1)

)pg1k
,

j
∏

k=1

(
Ig1k(x1)

)pg1k
,

j
∏

k=1

(
Fg1k(x1)

)pg1k 〉 . . .

g̃2 〈x1, 1−
j

∏
k=1

(
1− Tg2k(x1)

)pg2k
,

j
∏

k=1

(
Ig2k(x1)

)pg2k
,

j
∏

k=1

(
Fg2k(x1)

)pg2k 〉 . . .

. . . . . . . . .

g̃m 〈x1, 1−
j

∏
k=1

(
1− Tgmk(x1)

)pgmk
,

j
∏

k=1

(
Igmk(x1)

)pgmk
,

j
∏

k=1

(
Fgmk(x1)

)pgmk 〉 . . .

xn

〈xn, 1−
j

∏
k=1

(
1− Tg1k(xn)

)pg1k
,

j
∏

k=1

(
Ig1k(xn)

)pg1k
,

j
∏

k=1

(
Fg1k(xn)

)pg1k 〉

〈xn, 1−
j

∏
k=1

(
1− Tg2k(xn)

)pg2k
,

j
∏

k=1

(
Ig2k(xn)

)pg2k
,

j
∏

k=1

(
Fg2k(xn)

)pg2k 〉
. . .

〈xn, 1−
j

∏
k=1

(
1− Tgmk(xn)

)pgm k
,

j
∏

k=1

(
Igmk(xn)

)pgmk
,

j
∏

k=1

(
Fgmk(xn)

)pgm k 〉

Step 2: Setting Tg∗(xi) is the maximum truth value in each column xi of the decision matrix D̃,
Ig∗(xi) and Fg∗(xi) are the minimum indeterminate and falsity values in each column xi of the decision
matrix D̃, respectively, the ideal solution can be determined as x∗i .

x∗i =
〈

Tg∗(xi), Ig∗(xi), Fg∗(xi)
〉
, for i = 1, 2, . . . , n.

So, we can get the ideal alternative g∗ = {x∗1,, x∗2,, . . . , x∗n}.
Step 3: When the weight vector of attributes for the different importance of each attribute

xi(i = 1, 2, . . . , n) is given by w = (w1,w2, . . . , wn)
T with wi ≥ 0 and ∑n

i=1 wi = 1, then we utilize
the weighted cosine measure to deal with multiple attribute decision-making problems with SVNM
information. The weighted cosine measure between an alternative g̃r(r = 1, 2, . . . , m) and the ideal
alternative g∗ can be calculated by using the following formula:

ρw(gr, g∗) = ρw(g̃r, g∗)

=
n
∑

i=1
wicos{π

6 (
∣∣∣Tg̃r (xi)− Tg∗(xi)

∣∣∣+ ∣∣∣Ig̃r (xi)− Ig∗(xi)
∣∣∣

+
∣∣∣Fg̃r (xi)− Fg∗(xi)

∣∣∣)}.

(10)
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Step 4: According to the values of ρw(g̃r, g∗) for r = 1, 2, . . . , m, we rank the alternatives and select
the best one.

Step 5: End.
The formalization of the steps is illustrated in Figure 1.

 
Figure 1. Flowchart of the decision steps.

6. Numerical Example and Comparative Analysis

6.1. Numerical Example

Now, we utilize a practical example for the decision-making problem adapted from the
literature [21] to demonstrate the applications of the proposed method under a SVNM environment.
Now, one customer wants to buy a car, he selects four types of cars and evaluates them according to
four attributes. Then, we build a decision model. There are four possible alternatives (g1, g2, g3, g4)

to be considered. The decision should be taken according to four attributes: fuel economy (x1),
price (x2), comfort (x3), and safety (x4). The weight vector of these four attributes is given by
w = (0.5, 0.25, 0.125, 0.125)T . Then, the customer tests the four cars on the road with less obstacles and
on the road with more obstacles, respectively, and after testing, some attributes may have two different
evaluated values or the same value. So, the customer evaluates the four cars (alternatives) under the
four attributes by the form of SVNMs.

Step 1: Establish the SVNM decision matrix D provided by the customer, which is given as the
following SVNM decision matrix D in Table 3.

Table 3. The SVNM decision matrix D.

x1 x2 x3 x4

g1 (1, 〈0.5, 0.7, 0.2〉), (1, 〈0.7, 0.3, 0.6〉) 1, 〈0.4, 0.4, 0.5〉 (1, 〈0.7, 0.7, 0.5〉), (1, 〈0.8, 0.7, 0.6〉) (1, 〈0.1, 0.5, 0.7〉), (1, 〈0.5, 0.2, 0.8〉)
g2 (1, 〈0.9, 0.7, 0.5〉), (1, 〈0.7, 0.7, 0.1〉) 1, 〈0.7, 0.6, 0.8〉 2, 〈0.9, 0.4, 0.6〉 (1, 〈0.5, 0.2, 0.7〉, (1, 〈0.5, 0.1, 0.9〉)
g3 (1, 〈0.3, 0.4, 0.2〉, (1, 〈0.6, 0.3, 0.7〉) 1, 〈0.2, 0.2, 0.2〉 (1, 〈0.9, 0.5, 0.5〉, (1, 〈0.6, 0.5, 0.2〉) (1, 〈0.7, 0.5, 0.3〉, (1, 〈0.4, 0.2, 0.2〉)
g4 (1, 〈0.9, 0.7, 0.2〉, (1, 〈0.8, 0.6, 0.1〉) 1, 〈0.3, 0.5, 0.2〉 (1, 〈0.5, 0.4, 0.5〉, (1, 〈0.1, 0.7, 0.2〉) 2, 〈0.4, 0.2, 0.8〉

Step 2: By using Equation (7), we change the SVNM decision matrix D into SVNS decision
matrix D̃, which is shown in Table 4.

Table 4. The SVNS decision matrix D̃.

x1 x2 x3 x4

g̃1 〈0.85, 0.21, 0.12〉 〈0.4, 0.4, 0.5〉 〈0.94, 0.49, 0.3〉 〈0.55, 0.1, 0.56〉
g̃2 〈0.97, 0.49, 0.05〉 〈0.7, 0.6, 0.8〉 〈0.99, 0.16, 0.36〉 〈0.75, 0.02, 0.63〉
g̃3 〈0.72, 0.12, 0.14〉 〈0.2, 0.2, 0.2〉 〈0.96, 0.25, 0.1〉 〈0.82, 0.1, 0.06〉
g̃4 〈0.98, 0.42, 0.02〉 〈0.3, 0.5, 0.2〉 〈0.55, 0.28, 0.1〉 〈0.64, 0.04, 0.64〉
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Step 3: According to the decision matrix D̃, we can get the ideal alternative g∗:

g∗ = {〈0.98, 0.12, 0.02〉〈0.7, 0.2, 0.2〉〈0.99, 0.16, 0.1〉〈0.82, 0.02, 0.06〉}. (11)

Step 4: By applying the Equation (10), we can obtain the values of the weighted cosine measure
between each alternative and the ideal alternative g∗ as follows:

ρw(g1, g∗) = 0.9535, ρw(g2, g∗) = 0.9511,
ρw(g3, g∗) = 0.9813 and ρw(g4, g∗) = 9616.

(12)

Step 5: According to the above values of weighted cosine measure, we can rank the four
alternatives: g3 � g4 � g1 � g2. Therefore, the alternative g3 is the best choice.

This example clearly indicates that the proposed decision-making method based on the
weighted cosine measure of SVNMs is relatively simple and easy for dealing with multiple attribute
decision-making problems under SVNM environment.

6.2. Comparative Analysis

In what follows, we compare the proposed method for SVNM with other existing related methods
for SVNM; all the results are shown in Table 5.

Table 5. The ranking orders by utilizing four different methods.

Method Result Ranking Order The Best Alternative

Method 1 based on
correlation coefficient
in [11]

ρw(g1, g∗) = 0.9053,
ρw(g2, g∗) = 0.9017,
ρw(g3, g∗) = 0.9516,
ρw(g4, g∗) = 0.8816.

g3 � g1 � g2 � g4 g3

Method 2 based on
similarity in [16]

ρw(g1, g∗) = 0.8204,
ρw(g2, g∗) = 0.8108,
ρw(g3, g∗) = 0.8867,
ρw(g4, g∗) = 0.8358.

g3 � g4 � g2 � g1 g3

Method 3 based on
similarity in [16]

ρw(g1, g∗) = 0.7898,
ρw(g2, g∗) = 0.7121,
ρw(g3, g∗) = 0.8125,
ρw(g4, g∗) = 0.7553.

g3 � g1 � g4 � g2 g3

The proposed method

ρw(g1, g∗) = 0.9535,
ρw(g2, g∗) = 0.9511,
ρw(g3, g∗) = 0.9813,
ρw(g4, g∗) = 9616.

g3 � g4 � g1 � g2 g3

From Table 5, these four methods have the same best alternative g3. Many methods such as
similarity measure, correlation coefficient, and cosine measure can all be used in SVNM to handle the
multiple attribute decision-making problems and can get the similar results.

The proposed decision-making method can express and handle the multiplicity evaluated data
given by decision makers or experts, while various existing neutrosophic decision-making methods
cannot deal with these problems.

7. Conclusions

Based on the multiplicity evaluation in some real situations, this paper introduced a SVNM as a
subclass of NM to express the multiplicity information and the operational relations of SVNMs.
The SVNM is expressed by its one or more elements, which may have multiplicity. Therefore,
SVNM has the desirable advantages and characteristics of expressing and handling the multiplicity
problems, while existing neutrosophic sets cannot deal with them.
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Then, we proposed the cosine measure of SVNMs and weighted cosine measure of SVNMs and
investigated their properties. Based on the weighted cosine measure of SVNMs, the multiple attribute
decision-making methods under SVNM environments was proposed, in which the evaluated values
were taken the form of SVNMEs. Through the weighed cosine measure between each alternative and
the ideal alternative, one can determine the ranking order of all alternatives and can select the best
one. Finally, a practical example adapted from the literature [21] about buying cars was presented to
demonstrate the effectiveness and practicality of the proposed method in this paper. According to the
ranking orders, we can find that the ranking result with weighted cosine measures is agreement with
the ranking results in literature [21]. Then, the proposed method is suitable for actual applications in
multiple attribute decision-making problems with single-value neutrosophic multiplicity information.

In the future, we shall extend SVNMs to interval neutrosophic multisets and develop the
application of interval neutrosophic multisets for handling the decision-making methods or
other domains.
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Abstract: To solve the problems related to inhomogeneous connections among the attributes,
we introduce a novel multiple attribute group decision-making (MAGDM) method based on the
introduced linguistic neutrosophic generalized weighted partitioned Bonferroni mean operator
(LNGWPBM) for linguistic neutrosophic numbers (LNNs). First of all, inspired by the merits
of the generalized partitioned Bonferroni mean (GPBM) operator and LNNs, we combine the
GPBM operator and LNNs to propose the linguistic neutrosophic GPBM (LNGPBM) operator,
which supposes that the relationships are heterogeneous among the attributes in MAGDM. Then,
we discuss its desirable properties and some special cases. In addition, aimed at the different
importance of each attribute, the weighted form of the LNGPBM operator is investigated, which we
call the LNGWPBM operator. Then, we discuss some of its desirable properties and special examples
accordingly. In the end, we propose a novel MAGDM method on the basis of the introduced
LNGWPBM operator, and illustrate its validity and merit by comparing it with the existing methods.

Keywords: LNGPBM operator; LNGWPBM operator; Linguistic neutrosophic sets; generalized
partitioned Bonferroni mean operator; multiple attribute group decision-making (MAGDM)

1. Introduction

The goal of the multiple attribute group decision-making (MAGDM) method is to select the
optimal scheme from finite alternatives. First of all, decision makers (DMs) evaluate each alternative
under the different attributes. Then, based on the DMs’ evaluation information, the alternatives
are ranked in a certain way. As a research hotspot in recent decades, the MAGDM theory and
methods have widely been used in all walks of life, such as supplier selection [1–3], medical diagnosis,
clustering analysis, pattern recognition, and so on [4–11]. When evaluating alternatives, DMs used to
evaluate alternatives by crisp numbers, but sometimes it is hard to use precise numbers because the
surrounding environment has too much redundant data or interfering information. As a result, DMs
have difficulty fully understanding the object of evaluation and exploiting exact information. As an
example, when we evaluate people’s morality or vehicle performance, we can easily use linguistic
term such as good, fair, or poor, or fuzzy concepts such as slightly, obviously, or mightily, to give
evaluation results. For this reason, Zadeh [12] put forward the concept of linguistic variables (LVs)
in 1975. Later, Herrera and Herrera-Viedma [5,6] proposed a linguistic assessments consensus model
and further developed the steps of linguistic decision analysis. Subsequently, it has become an area of
wide concern, and resulted in several in-depth studies, especially in MAGDM [8,11,13–15]. In addition,
for the reason of fuzziness, Atanassov [16] introduced the intuitionistic fuzzy set (IFS) on the basis of
the fuzzy set developed by Zadeh [17]. IFS can embody the degrees of satisfaction and dissatisfaction
to judge alternatives, synchronously, and has been studied by large numbers of scholars in many
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fields [1,2,9,10,18–23]. However, intuitionistic fuzzy numbers (IFNs) use the two real numbers of the
interval [0,1] to represent membership degree and non-membership degree, which is not adequate
or sufficient to quantify DMs’ opinions. Hence, Chen et al. [24] used LVs to express the degrees of
satisfaction and dissatisfaction instead of the real numbers of the interval [0,1], and proposed the
linguistic intuitionistic fuzzy number (LIFN). LIFNs contain the advantages of both linguistic term
sets and IFNs, so that it can address vague or imprecise information more accurately than LVs and
IFNs. Since the birth of LIFNs, some scholars have proposed some improved aggregation operators
and have applied them to MAGDM problems [10,25–28].

With the further development of fuzzy theory, Fang and Ye [29] noted while LIFNs can deal with
vague or imprecise information more accurately than LVs and IFNs, it can only express incomplete
information rather than indeterminate or inconsistent information. Since the indeterminacy of LIFN
IA(x) is reckoned by 1 − TA(x) − FA(x) in default, evaluating the indeterminate or inconsistent
information, i.e., IA(x) < 1− TA(x)− FA(x) or IA(x) > 1− TA(x)− FA(x), is beyond the scope of the
LIFN. Hence, a new form of information expression needs to be found. Fortunately, the neutrosophic
sets (NSs) developed by Smarandache [30] are able to quantify the indeterminacy clearly, which is
independent of truth-membership and false-membership, but NSs are not easy to apply to the MAGDM.
So, some stretched form of NS was proposed for solving MAGDM, such as single-valued neutrosophic
sets (SVNSs) [31], interval neutrosophic sets (INSs) [32], simplified neutrosophic sets (SNSs) [33], and so
on. Meanwhile, they have attracted a lot of research, especially related to MAGDM [34–41]. Due to the
characteristic of SNSs that use three crisp numbers of the interval [0,1] to depict truth-membership,
indeterminacy-membership, and false-membership, motivated by the narrow scope of the LIFN, Fang
and Ye [29] put forward the concept of linguistic neutrosophic numbers (LNNs) by combining linguistic
terms and a simplified neutrosophic number (SNN). LNNs use LVs in the predefined linguistic term
set to express the truth-membership, indeterminacy-membership, and falsity-membership of SNNs.
So, LNNs are more appropriate to depict qualitative information than SNNs, and are also an extension
of the LIFNs, obviously. Therefore, in this paper, we tend to study the MAGDM problems with LNNs.

In MAGDM, the key step is how to select the optimal alternative according to the existing
information. Usually, we adopt the traditional evaluation methods or the information aggregation
operators. The common traditional evaluation methods include TOPSIS [7,9], VIKOR [19],
ELECTRE [42], TODIM [20,43], PROMETHE [18], etc., and they can only give the priorities in order
regarding alternatives. However, the information aggregation operators first integrate DMs’ evaluation
information into a comprehensive value, and then rank the alternatives. In other words, they not only
give the prioritization orders of alternatives, they also give each alternative an integrated assessment
value, so that the information aggregation operators are more workable than the traditional evaluation
approaches in solving MAGDM problems. Hence, our study is concentrated on how to use information
aggregation operators to solve the MAGDM problems with LNNs. In addition, in real MAGDM
problems, there are often homogeneous connections among the attributes. Using a common example,
quality is related to customer satisfaction when picking goods on the Internet. In order to solve this
MAGDM problems where the attributes are interrelated, many related results have been achieved as a
result, especially information aggregation operators such as the Bonferroni mean (BM) operator [23,44],
the Maclaurin symmetric mean (MSM) operator [45], the Hamy mean operator [46], the generalized
MSM operator [47], and so forth. However, the heterogeneous connections among the attributes may
also exist in real MAGDM problems. For instance, in order to choose a car, we may consider the
following attributes: the basic requirements (G1), the physical property (G2), the brand influence (G3),
and the user appraisal (G4), where the attribute G1 is associated with the attribute G2, and the attribute
G3 is associated with the attribute G4, but the attributes G1 and G2 are independent of the attributes
G3 and G4. So, the four attributes can be sorted into two clusters, P1 and P2, namely P1 = {G1, G2}
and P2 = {G3, G4} meeting the condition where P1 and P2 have no relationship. To solve this issue,
Dutta and Guha [48] proposed the partition Bonferroni mean (PBM) operator, where all attributes
are sorted into several clusters, and the members have an inherent connection in the same clusters,
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but independence in different clusters. Subsequently, Banerjee et al. [4] extended the PBM operator
to the general form that was called the generalized partitioned Bonferroni mean (GPBM) operator,
which further clarified the heterogeneous relationship and individually processed the elements that
did not belong to any cluster of correlated elements, so the GPBM operator can model the average of
the respective satisfaction of the independent and dependent input arguments. Besides, the GPBM
operator can be translated into the BM operator, arithmetic mean operator, and PBM operator, so the
GPBM operator is a wider range of applications for solving MAGDM problems with related attributes.
Therefore, in this paper, we are further focused on how to combine the GPBM operator with LNNs to
address the MAGDM problems with heterogeneous relationships among attributes. Inspired by the
aforementioned ideas, we aim at:

(1) establishing a linguistic neutrosophic GPBM (LNGPBM) operator and the weighted form of the
LNGPBM operator (the form of shorthand is LNGWPBM).

(2) discussing their properties and particular cases.
(3) proposing a novel MAGDM method in light of the proposed LNGWPBM operator to address the

MAGDM problems with LNNs and the heterogeneous relationships among its attributes.
(4) showing the validity and merit of the developed method.

The arrangement of this paper is as follows. In Section 2, we briefly retrospect some elementary
knowledge, including the definitions, operational rules, and comparison method of the LNNs. We also
review some definitions and characteristics of the PBM operator and GPBM operator. In Section 3,
we construct the LNGPBM operator and LNGWPBM operator for LNNs, including their characteristics
and some special cases. In Section 4, we propose a novel MAGDM method based on the proposed
LNGWPBM operator to address the MAGDM problems where heterogeneous connections exist among
the attributes. In Section 5, we give a practical application related to the selection of green suppliers to
show the validity and the generality of the MAGDM method, and compare the experimental results of
the proposed MAGDM method with the ones of Fang and Ye’s MAGDM method [29] and Liang et al.’s
MAGDM method [7]. Section 6 presents the conclusions.

2. Preliminaries

To understand this article much better, this section intends to retrospect some elementary
knowledge, including the definitions, operational rules, and comparison method of the LNNs, PBM
operator, and generalized PBM operator.

2.1. Linguistic Neutrosophic Set (LNS)

Definition 1 [29]. Let Z be the universe of discourse, and z be a generic element in Z, and let L = (l0, l1, · · · , ls)
be a linguistic term set. A LNS X in Z is represented by:

X =
{(

z, lTX(z), lIX(z), lFX(z)

)∣∣∣z ∈ Z
}

(1)

where TX, IX, and FX denote the truth-membership function, indeterminacy-membership function,
and falsity-membership function of z in the set X, respectively, and TX , IX , FX : Z → [0, s] with s is an
even number.

In [29], Fang and Ye called the pair
(
lα, lβ, lγ

)
an LNN, which meets α, β, γ : Z → [0, s] , and s is an

even number.

Definition 2 [29]. Let z =
(
lα, lβ, lγ

)
be an optional LNN in L, where the score function C(z) of the LNN z

is defined as shown:

C(z) =
2s + α− β− γ

3s
(2)

where α, β, γ ∈ [0, s] and C(z) ∈ [0, 1].
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Definition 3 [29]. Let z =
(
lα, lβ, lγ

)
be an optional LNN in L, where the accuracy function A(z) of the LNN

z is defined as shown:

A(z) =
α− γ

s
(3)

where α, β, γ ∈ [0, s] and A(z) ∈ [−1, 1].

Definition 4 [29]. Let z1 =
(
lα1 , lβ1 , lγ1

)
and z2 =

(
lα2 , lβ2 , lγ2

)
be two optional LNNs in L. Then, the order

between z1 and z2 is given by the following rules:

(1) If C(z1) > C(z2), then z1 > z2;
(2) If C(z1) = C(z2), then

If A(z1) > A(z2), then z1 > z2;

If A(z1) = A(z2), then z1 = z2.

Example 1. Suppose L = (l0, l1, · · · , l6) is a linguistic term set, and z1 = (l6, l2, l3) and z2 = (l4, l1, l1)
are two LNNs in L. Then, we can calculate the values of their score functions and accuracy functions as
C(z1) = 0.7222, C(z2) = 0.7778, A(z1) = 0.5, and A(z2) = 0.5. According to Definition 4, it is easy to find
that z1 < z2.

Definition 5 [29]. Let L = (l0, l1, · · · , ls) be a linguistic term set, and z1 =
(
lα1 , lβ1 , lγ1

)
and z2 =(

lα2 , lβ2 , lγ2

)
be two haphazard LNNs in L. The basic operational laws between the two LNNs are shown

as below:
z1 ⊕ z2 =

(
lα1+α2−α1α2/s, lβ1β2/s, lγ1γ2/s

)
, (4)

z1 ⊗ z2 =
(

lα1α2/s, lβ1+β2−β1β2/s, lγ1+γ2−γ1γ2/s

)
, (5)

θz1 =
(

ls−s(1−α1/s)θ , ls(β1/s)θ , ls(γ1/s)θ

)
, where θ > 0, (6)

z1
θ =

(
ls(α1/s)θ , ls−s(1−β1/s)θ , ls−s(1−γ1/s)θ

)
, where θ > 0 (7)

It is easy to prove the following operational properties of the LNNs, according to Definition 5.
Let z1 =

(
lα1 , lβ1 , lγ1

)
and z2 =

(
lα2 , lβ2 , lγ2

)
be any two LNNs in L. Then:

z1 ⊕ z2 = z2 ⊕ z1, (8)

z1 ⊗ z2 = z2 ⊗ z1, (9)

θ(z1 ⊕ z2) = θz1 ⊕ θz2, where θ > 0, (10)

θ1z1 ⊕ θ2z1 = (θ1 + θ2)z1, where θ1, θ2 > 0, (11)

z1
θ1 ⊗ z1

θ2 = z1
θ1+θ2 , where θ1, θ2 > 0, (12)

zθ
1 ⊗ zθ

2 = (z1 ⊗ z2)
θ , where θ > 0 (13)

2.2. Generalized Partitioned Bonferroni Mean Operators

Definition 6 [48]. Suppose the non-negative real set A = {a1, a2, · · · , an} is divided into t clusters

P1, P2, · · · , Pt, which satisfies Px ∩ Py = ∅, x �= y and
t∪

r=1
Pr = A. Then, the partitioned Bonferroni mean

(PBM) operator is defined as follows:
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PBMp,q(a1, a2, · · · , an) =
1
t

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t

∑
r=1

⎛⎜⎜⎜⎜⎜⎜⎝
1
hr

hr

∑
i=1

ap
i

⎛⎜⎜⎜⎜⎜⎜⎝
1

hr − 1

hr

∑
j = 1
j �= i

aq
j

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
p+q
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(14)

where p, q ≥ 0 and p + q > 0, hr indicates the number of elements in partition Pr and
t

∑
r=1

hr = n.

The PBM operator is used to integrate the input arguments of the different clusters, which satisfies
that the data has inherent connections in the same clusters, but independence in different clusters.
However, sometimes, some of the input arguments have nothing to do with any other argument,
that is, it does not exist in any cluster. We can part these arguments and deal with them individually.
Hence, we sort the input arguments into two groups: F1 contains the relevant arguments, and F2

contains the input arguments that are irrelevant to any argument. These easily derive F1 ∩ F2 = ∅
and |F1|+ |F2| = n where |F1| and |F2| denote the numbers of arguments in F1 and F2, respectively.
According to the upper description, we suppose that the arguments of F1 are divided into t partitions
P1, P2, · · · , Pt on the basis of the interrelationship pattern [4]. To address this issue, the PBM operator
is modified, and the GPBM operator is proposed, as shown in the following.

Definition 7 [4]. Suppose that the non-negative real set A = {a1, a2, · · · , an} is sorted into two groups: F1
and F2. In F1, the elements are divided into t clusters P1, P2, · · · , Pt, which satisfies Px ∩ Py = ∅, x �= y and

t∪
r=1

Pr = F1; in F2, the elements are irrelevant to any element. Then, the GPBM operator is defined as follows:

GPBMp,q(a1, a2, · · · , an) =

⎛⎜⎜⎜⎜⎜⎜⎝
n−|F2|

n

⎛⎜⎜⎜⎜⎜⎜⎝
1
t

t
∑

r=1

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr
∑

i=1
ap

i

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr
∑

j = 1
j �= i

aq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

p
p+q
⎞⎟⎟⎟⎟⎟⎟⎠+ |F2|

n

(
1
|F2|

|F2|
∑

i=1
ap

i

)
⎞⎟⎟⎟⎟⎟⎟⎠

1
p

(15)

where p, q ≥ 0 and p + q > 0, |F2| denotes the number of elements in F2, hr indicates the number of elements

in cluster Pr and
t

∑
r=1

hr = n− |F2|.

Remark 1. If |F2| = 0, we consider the first sum, and if |F2| = n, we consider the last sum. At the same time,
we have made the convention 0

0 = 0 (we only need to define 0
0 ; its conventional real value is not important here).

The interpretation of the GPBM operator is detailed by Banerjee et al. in [4], and the GPBM
operator has the following characteristics: idempotency, monotonicity, and boundedness [4].

Based on the characteristics of F2, there are some special cases of GPBM operator, which are
described as follows [4]:

(1) When |F2| = 0, all elements belong to the group F1 and are divided into t clusters.

GPBMp,q(a1, a2, · · · , an) =
1
t

t

∑
r=1

⎛⎜⎜⎜⎜⎜⎜⎝
1
hr

hr

∑
i=1

ap
i

⎛⎜⎜⎜⎜⎜⎜⎝
1

hr − 1

hr

∑
j = 1
j �= i

aq
j

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
p+q

= PBMp,q(a1, a2, · · · , an)
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It is simplified as the PBM operator described in Formula (15).

(2) When |F2| = 0 and t = 1, all elements belong to the same cluster.

GPBMp,q(a1, a2, · · · , an) =

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr
∑

i=1
ap

i

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr
∑

j = 1
j �= i

aq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1
p+q

=

⎛⎜⎜⎜⎜⎜⎝ 1
n

n
∑

i=1
ap

i

⎛⎜⎜⎜⎜⎜⎝ 1
n−1

n
∑

j = 1
j �= i

aq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1
p+q

= BMp,q(a1, a2, · · · , an)

It becomes the BM operator [44].

(3) When |F2| = n, all elements are independent.

GPBMp,q(a1, a2, · · · , an) =

(
1
|F2|

|F2|
∑
i=1

ap
i

) 1
p

=

(
1
n

n

∑
i=1

ap
i

) 1
p

It is simplified as the power root arithmetic mean operator [4].

3. The Linguistic Neutrosophic GPBM Operators

In this section, we will construct the LNGPBM operator from the GPBM operator and LNNs.
Moreover, with respect to the different weights of different attributes in real life, we will propose the
corresponding weighted operators, and call it the LNGWPBM operator. They are defined as follows.

3.1. The LNGPBM Operator

Definition 8. Let z1, z2, · · · and zn be LNNs, which are sorted into two groups: F1 and F2. In F1, the elements

are divided into t clusters P1, P2, · · · , Pt, which satisfies Px ∩ Py = ∅, x �= y and
t∪

r=1
Pr = F1; in F2, the elements

are irrelevant to any element. The LNGPBM operator of the LNNs z1, z2, · · · and zn is defined as follows:

LNGPBMp,q(z1, z2, · · · , zn) =

⎛⎜⎜⎜⎜⎜⎜⎝
n−|F2|

n

⎛⎜⎜⎜⎜⎜⎜⎝
1
t

t⊕
r=1

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr⊕
i=1

zp
i ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr⊕
j = 1
j �= i

zq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

p
p+q
⎞⎟⎟⎟⎟⎟⎟⎠⊕

|F2|
n

(
1
|F2|

|F2|⊕
i=1

zp
i

)
⎞⎟⎟⎟⎟⎟⎟⎠

1
p

(16)

where zi =
(
lαi , lβi , lγi

)
and αi, βi, γi ∈ [0, s] (i = 1, 2, · · · , n); p, q ≥ 0 and p + q > 0; |F2| denotes the

number of elements in F2, hr indicates the number of elements in cluster Pr and
t

∑
r=1

hr = n− |F2|.

Theorem 1. Let z1, z2, · · · and zn be LNNs, where zi =
(
lαi , lβi , lγi

)
and αi, βi, γi ∈ [0, s] (i = 1, 2, · · · , n).

The synthesized result of the LNGPBM operator of the LNNs z1, z2, · · · and zn is still a LNN, which is shown
as follows:
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LNGPBMp,q(z1, z2, · · · , zn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1−(1−Hα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2 |

∏
i=1

(1−(αi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

,

l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−Hβ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−βi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

,l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−Hγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−γi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

where Hα =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (αi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

, Hβ =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (1− βi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− β j/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

and Hγ =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (1− γi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− γj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

.

Proof. According to Formula (16), first of all, we can part two steps: the processing of F1 and F2,
and then combine them to prove.

(i) The processing of F1:

Based on the operational rules of LNNs, we can get zq
j =

(
ls(αj/s)

q , ls−s(1−β j/s)
q , ls−s(1−γj/s)

q

)

and
hr⊕

j = 1
j �= i

zq
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
l
s−s

hr
∏

j = 1
j �= i

(
1−(αj/s)

q), l
s

hr
∏

j = 1
j �= i

(
1−(1−β j/s)

q), l
s

hr
∏

j = 1
j �= i

(
1−(1−γj/s)

q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, we can calculate the average satisfaction of the elements in Pr except zi:

1
hr−1

hr⊕
j = 1
j �= i

zq
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s−s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏
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j �= i

(
1−(αj/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

, l

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1−(1−β j/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

, l

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1−(1−γj/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

142



Symmetry 2018, 10, 160

and the conjunction of the satisfaction of element zi with the average satisfaction of the rest of elements
in Pr:

zp
i ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr⊕
j = 1
j �= i

zq
j

⎞⎟⎟⎟⎟⎟⎠ =
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Then, the satisfaction of the interrelated elements of Pr is:
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hr
∏

j = 1
j �= i

(
1−(1−β j/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr

, l

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−(1−γi/s)p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1−(1−γj/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So, the average satisfaction of all of the elements of the t clusters is:

A = 1
t

t⊕
r=1

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr⊕
i=1

zp
i ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr⊕
j = 1
j �= i

zq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

p
p+q

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l

s−s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t

∏
r=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−(αi/s)p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1−(αj/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p
p+q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
t
,

l

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t

∏
r=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−(1−βi/s)p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1−(1−β j/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p
p+q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
t
,l

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t

∏
r=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−(1−γi/s)p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1−(1−γj/s)

q)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p
p+q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We suppose Hα =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (αi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

,

Hβ =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (1− βi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− β j/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

and Hγ =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (1− γi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− γj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

, then the upper formula

can be rewritten as:

A = 1
t

t⊕
r=1

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr⊕
i=1

zp
i ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr⊕
j = 1
j �= i

zq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

p
p+q

=

⎛⎜⎝l
s−s
(

t
∏

r=1

(
1−(1−Hα)

p
p+q
)) 1

t
, l

s
(

t
∏

r=1

(
1−(1−Hβ)

p
p+q
)) 1

t
, l

s
(

t
∏

r=1

(
1−(1−Hγ)

p
p+q
)) 1

t

⎞⎟⎠

(ii) The processing of F2:

The average satisfaction of all the elements that are irrelevant to any element is:

B =
1
|F2|

|F2|⊕
i=1

zp
i =

⎛⎜⎜⎝l
s−s

(|F2 |
∏

i=1
(1−(αi/s)p)

) 1
|F2 |

, l
s

(|F2 |
∏

i=1
(1−(1−βi/s)p)

) 1
|F2 |

, l
s

(|F2 |
∏

i=1
(1−(1−γi/s)p)

) 1
|F2 |

⎞⎟⎟⎠
Finally, we can compute the average satisfaction of the elements z1, z2, · · · and zn:

(
n− |F2|

n
A⊕ |F2|

n
B
) 1

p
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1−(1−Hα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2 |

∏
i=1

(1−(αi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

,l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−Hβ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−βi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

,

l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−Hγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−γi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

That proves that Formula (17) is kept. Then, we prove that the aggregated result of Formula (17)
is a LNN. It is easy to prove the following inequalities:

0 ≤ s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Hα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2|

∏
i=1

(
1− (αi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

≤ s,
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0 ≤ s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hβ

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− βi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

≤ s,

and:

0 ≤ s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− γi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

≤ s.

Firstly, we prove 0 ≤ Hα ≤ 1, 0 ≤ Hβ ≤ 1 and 0 ≤ Hγ ≤ 1.
Since αj, β j, γj ∈ [0, s] and q ≥ 0, we can get 0 ≤ 1− (αj/s

)q ≤ 1, 0 ≤ 1− (1− β j/s
)q ≤ 1 and

0 ≤ 1− (1− γj/s
)q ≤ 1. Owing to hr > 0, the following inequalities are established:

0 ≤ 1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1

≤ 1,0 ≤ 1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− β j/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1

≤ 1, and 0 ≤ 1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− γj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1

≤ 1.

According to p ≥ 0, it is easy to obtain the below inequality: 0 ≤ Hα ≤ 1, 0 ≤ Hβ ≤ 1 and
0 ≤ Hγ ≤ 1.

In addition, because p + q > 0, t > 0, and |F2| > 0, we can get the following inequalities:

0 ≤
⎛⎝( t

∏
r=1

(
1− (1− Hα)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

≤ 1,0 ≤
⎛⎝( t

∏
r=1

(
1− (1− Hβ

) p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

≤ 1,and0 ≤
⎛⎝( t

∏
r=1

(
1− (1− Hγ)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

≤ 1.

0 ≤
⎛⎝(|F2|

∏
i=1

(
1− (αi/s)p)) 1

|F2 |
⎞⎠

|F2 |
n

≤ 1,0 ≤
⎛⎝(|F2|

∏
i=1

(
1− (1− βi/s)p)) 1

|F2 |
⎞⎠

|F2 |
n

≤ 1,and0 ≤
⎛⎝(|F2|

∏
i=1

(
1− (1− γi/s)p)) 1

|F2 |
⎞⎠

|F2 |
n

≤ 1.

Besides, on the basis of the upper inequalities, we can get:

0 ≤

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Hα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2|

∏
i=1

(
1− (αi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

≤ 1,

0 ≤

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hβ

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− βi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

≤ 1, and

0 ≤

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− γi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

≤ 1.
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which can derive directly:

0 ≤ s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Hα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2|

∏
i=1

(
1− (αi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

≤ s,

0 ≤ s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hβ

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− βi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

≤ s,

and 0 ≤ s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− γi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

≤ s.

Therefore, Theorem 1 is kept if some of the partitions only contain one element.

In the following, we will demonstrate the desired properties of the proposed LNGPBM operator:

(1) Idempotency: If z1, z2, · · · and zn are LNNs meeting the condition zi =
(
lαi , lβi , lγi

)
= z =(

lα, lβ, lγ
)
(i = 1, 2, · · · , n); then, LNGPBMp,q(z1, z2, · · · , zn) = z.

Proof. Since zi =
(
lαi , lβi , lγi

)
= z =

(
lα, lβ, lγ

)
, we can get:

Hα =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (αi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

=

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (α/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (α/s)q)

⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

=

(
hr
∏
i=1

(
1− (α/s)p

(
1−
((

1− (α/s)q)hr−1
) 1

hr−1
))) 1

hr

=

(
hr
∏
i=1

(
1− (α/s)p(α/s)q)) 1

hr

= 1− (α/s)p+q

.

In the same way, we can obtain Hβ = 1− (1− β/s)p+q and Hγ = 1− (1− γ/s)p+q.
According to Theorem 1, we can obtain:

LNGPBMp,q(z1, z2, · · · , zn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1−(1−Hα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2 |

∏
i=1

(1−(αi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

,

l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−Hβ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−βi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

,l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−Hγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−γi/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1−(1−(1−(α/s)p+q))

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2 |

∏
i=1

(1−(α/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

,

l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−(1−(1−β/s)p+q))

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−β/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

,l

s−s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1−(1−(1−(1−γ/s)p+q))

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2 |

∏
i=1

(1−(1−γ/s)p)

) 1
|F2 |
⎞⎟⎠
|F2 |

n
⎞⎟⎟⎟⎠

1
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s

⎛⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(1−(α/s)p)
) 1

t
⎞⎠

n−|F2 |
n
⎞⎟⎟⎠
(
(1−(α/s)p)

|F2 |
n

)⎞⎟⎟⎠
1
p

,l

s−s

⎛⎜⎜⎝1−
⎛⎝( t

∏
r=1

(1−(1−β/s)p)
) 1

t
⎞⎠

n−|F2 |
n (

(1−(1−β/s)p)
|F2 |

n

)⎞⎟⎟⎠
1
p

,l

s−s

⎛⎜⎜⎝1−
⎛⎝( t

∏
r=1

(1−(1−γ/s)p)
) 1

t
⎞⎠

n−|F2 |
n (

(1−(1−γ/s)p)
|F2 |

n

)⎞⎟⎟⎠
1
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎝l
s

(
1−
(
(1−(α/s)p)

n−|F2 |
n

)(
(1−(α/s)p)

|F2 |
n

)) 1
p

, l
s−s

(
1−
(
(1−(1−β/s)p)

n−|F2 |
n

)(
(1−(1−β/s)p)

|F2 |
n

)) 1
p

, l
s−s

(
1−
(
(1−(1−γ/s)p)

n−|F2 |
n

)(
(1−(1−γ/s)p)

|F2 |
n

)) 1
p

⎞⎟⎟⎠

=

(
l
s(1−(1−(α/s)p))

1
p

, l
s−s(1−(1−(1−β/s)p))

1
p

, l
s−s(1−(1−(1−γ/s)p))

1
p

)
=

(
l
s((α/s)p)

1
p

, l
s−s((1−β/s)p)

1
p

, l
s−s((1−γ/s)p)

1
p

)
= (lα, lβ, lγ

) .

(2) Monotonicity: If zi =
(
lαi , lβi , lγi

)
(i = 1, 2, · · · , n) and yi =

(
lδi , lηi , lσi

)
(i = 1, 2, · · · , n) are

any two sets of LNNs; they satisfy the condition αi ≥ δi, βi ≤ ηi and γi ≤ σi, then
LNGPBMp,q(z1, z2, · · · , zn) ≥ LNGPBMp,q(y1, y2, · · · , yn).

Proof. Suppose that LNGPBMp,q(z1, z2, · · · , zn) = z =
(
lα, lβ, lγ

)
and LNGPBMp,q(y1, y2, · · · , yn) =

y =
(
lδ, lη , lσ

)
, then:

α = s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Hα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2|

∏
i=1

(
1− (αi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

,

δ = s

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Hδ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝(|F2|

∏
i=1

(
1− (δi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
p

,

β = s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hβ

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− βi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

,

η = s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hη

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− ηi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

,

γ = s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− γi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

,
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σ = s− s

⎛⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Hσ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎛⎜⎝(|F2|

∏
i=1

(
1− (1− σi/s)p)) 1

|F2 |
⎞⎟⎠

|F2 |
n

⎞⎟⎟⎟⎠
1
p

.

In order to prove this property, we need to compute their score function values C(z) and C(y),
and their accuracy values A(z) and A(y) to compare their synthesized result, i.e., z ≥ y. Firstly,
on the basis of the condition αi ≥ δi, βi ≤ ηi, and γi ≤ σi, we can get the compared result
of their truth-membership degrees, indeterminacy-membership degrees, and falsity-membership
degrees, respectively.

(i) The comparison of the truth-membership degrees:

Based on αi ≥ δi, we can get:

Hα =

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (αi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

≤

⎛⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝1− (δi/s)p

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (δj/s

)q
)
⎞⎟⎟⎟⎟⎟⎠

1
hr−1
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr

= Hδ

⇒
⎛⎝( t

∏
r=1

(
1− (1− Hα)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

≤
⎛⎝( t

∏
r=1

(
1− (1− Hδ)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

and

⎛⎝(|F2|
∏
i=1

(
1− (αi/s)p)) 1

|F2 |
⎞⎠

|F2 |
n

≤
⎛⎝(|F2|

∏
i=1

(
1− (δi/s)p)) 1

|F2 |
⎞⎠

|F2 |
n

.

In accordance with the upper two inequalities, we have:

s

⎛⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Hα)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

⎞⎟⎟⎠
⎛⎜⎜⎝
⎛⎝(|F2|

∏
i=1

(
1− (αi/s)p)) 1

|F2 |
⎞⎠

|F2 |
n

⎞⎟⎟⎠
⎞⎟⎟⎠

1
p

≥ s

⎛⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Hδ)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

⎞⎟⎟⎠
⎛⎜⎜⎝
⎛⎝(|F2|

∏
i=1

(
1− (δi/s)p)) 1

|F2 |
⎞⎠

|F2 |
n

⎞⎟⎟⎠
⎞⎟⎟⎠

1
p

That is, α ≥ δ.

(ii) The comparision of indeterminacy-membership degrees and falsity-membership
degrees, respectively:

Based on βi ≤ ηi and γi ≤ σi, we can also obtain β ≤ η and γ ≤ σ; this process is similar to the
process of the truth-membership degrees.

Thus, it can be obtained that C(z) = 2s+α−β−γ
3s ≥ 2s+δ−η−σ

3s = C(y). In the following, we discuss
two cases.

(i) If C(z) > C(y), then z > y, according to Definition 2.
(ii) If C(z) = C(y), then (α− γ)− β = (δ− σ)− η. Since α− γ ≥ δ− σ in the light of α ≥ δ and

γ ≤ σ, now we assume α− γ > δ− σ, then β > η, which is in contradiction with the previous
proof β ≤ η. So, we can conclude that α − γ = δ − σ. That is, A(z) = α−γ

s = δ−σ
s = A(y),

which testifies z = y.

In conclusion, the synthesized result z ≥ y, which explains:

LNGPBMp,q(z1, z2, · · · , zn) ≥ LNGPBMp,q(y1, y2, · · · , yn)

(3) Boundedness: Let zi =
(
lαi , lβi , lγi

)
(i = 1, 2, · · · , n) be an arbitrary set of LNNs, then:

min
i

zi ≤ LNGPBMp,q(z1, z2, · · · , zn) ≤ max
i

zi
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Proof. Since zi ≥ min
i

zi, according to the monotonicity and idempotency of the proposed LNGPBM

operator, we can obtain the following result:

LNGPBMp,q(z1, z2, · · · , zn) ≥ LNGPBMp,q
(

min
i

zi, min
i

zi, · · · , min
i

zi

)
= min

i
zi

Similarly, we can obtain the corresponding result for max
i

zi:

LNGPBMp,q(z1, z2, · · · , zn) ≤ LNGPBMp,q
(

max
i

zi, max
i

zi, · · · , max
i

zi

)
= max

i
zi

Therefore, min
i

zi ≤ LNGPBMp,q(z1, z2, · · · , zn) ≤ max
i

zi.

Based on the character of F2, some special cases are discussed about the LNGPBM operator,
and shown in the following.

(1) When |F2| = 0, all arguments belong to the group F1, and are divided into t clusters; then,
the proposed LNGPBM operator is simplified as the following form:

LNGPBMp,q(z1, z2, · · · , zn) =
1
t

t⊕
r=1

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr⊕
i=1

zp
i ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr⊕
j = 1
j �= i

zq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1
p+q

= LNPBMp,q(z1, z2, · · · , zn)

The LNPBM is called the linguistic neutrosophic PBM operator.

(2) When |F2| = 0 and t = 1, all arguments belong to the same cluster, i.e., hr = n; then, the proposed
LNGPBM operator becomes the following form:

LNGPBMp,q(z1, z2, · · · , zn) =

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr⊕
i=1

zp
i ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr⊕
j = 1
j �= i

zq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1
p+q

=

⎛⎜⎜⎜⎜⎜⎝ 1
n

n⊕
i=1

zp
i ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
n−1

n⊕
j = 1
j �= i

zq
j

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1
p+q

= LNBMp,q(z1, z2, · · · , zn)

The LNBM is called the linguistic neutrosophic BM operator.

(3) When |F2| = n, there is no element in group F1 and all elements are independent; then,
the proposed LNGPBM operator reduces to the following form:

LNGPBMp,q(z1, z2, · · · , zn) =

(
1
|F2|

|F2|⊕
i=1

zp
i

) 1
p

=

(
1
n

n⊕
i=1

zp
i

) 1
p
= LNPRAMp(z1, z2, · · · , zn)

The LNPRAM is called the linguistic neutrosophic power root arithmetic mean operator.

Moreover, we can also get some special cases by distributing different values to the parameters p
and q.

(1) When q → 0 , the proposed LNGPBM operator becomes the LNPRAM operator, which was
described in the previous discussion. Since there is no inner connection in group F1, all of the
elements are independent.

149



Symmetry 2018, 10, 160

(2) When p = 1 and q → 0 , the proposed LNGPBM operator reduces to the linguistic neutrosophic
arithmetic mean (LNAM) operator, which is shown as follows:

LNGPBMp=1,q→0(z1, z2, · · · , zn) =

(
1
n

n⊕
i=1

zp
i

) 1
p
=

1
n

n⊕
i=1

zi = LNAM(z1, z2, · · · , zn)

(3) When p = 2 and q → 0 , the proposed LNGPBM operator is transformed into the linguistic
neutrosophic square root arithmetic mean (LNSRAM) operator, which is shown as follows:

LNGPBMp=2,q→0(z1, z2, · · · , zn) =

(
1
n

n⊕
i=1

z2
i

) 1
2
= LNSRAM(z1, z2, · · · , zn).

(4) When p = q = 1, the proposed LNGPBM operator is simplified as the simplest form of the
LNGPBM operator, which is shown as follows:

LNGPBMp=1,q=1(z1, z2, · · · , zn) =
n−|F2|

n

⎛⎜⎜⎜⎜⎜⎜⎝
1
t

t⊕
r=1

⎛⎜⎜⎜⎜⎜⎝ 1
hr

hr⊕
i=1

zi ⊗

⎛⎜⎜⎜⎜⎜⎝ 1
hr−1

hr⊕
j = 1
j �= i

zj

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎠⊕

|F2|
n

(
1
|F2|

|F2|⊕
i=1

zi

)

It is often used to simplify the calculation in a problem.

3.2. The LNGWPBM Operator

In Definitions 8, we assume that all the input arguments have the same position. However, in many
realistic decision-makings, every input argument may have different importance. Accordingly, we give
different values to the weights of input arguments, and propose the weighted form of the LNGPBM
operator. Let the weight of input argument zi =

(
lαi , lβi , lγi

)
(i = 1, 2, · · · , n) be ωi, where ωi ∈ [0, 1]

and
n
∑

i=1
ωi = 1. The weighted form of the LNGPBM operator is shown in the following.

Definition 9. Let z1, z2, · · · and zn be LNNs that are sorted into two groups: F1 and F2. In F1, the elements

are divided into t clusters P1, P2, · · · , Pt, which satisfy Px ∩ Py = ∅, x �= y and
t∪

r=1
Pr = F1; in F2, the elements

are irrelevant to any element. The weighted form of the LNGPBM operator of the LNNs z1, z2, · · · and zn is
defined as follows:

LNGWPBMp,q(z1, z2, · · · , zn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
n−|F2|

n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
t

t⊕
r=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

hr
∑

i=1
ωi

hr⊕
i=1

ωiz
p
i ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

hr
∑

j = 1
j �= i

ωj

hr⊕
j = 1
j �= i

ωjz
q
j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

p
p+q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊕ |F2|

n

⎛⎜⎝ 1
|F2 |
∑

i=1
ωi

|F2|⊕
i=1

ωiz
p
i

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
p

(18)

where zi =
(
lαi , lβi , lγi

)
and αi, βi, γi ∈ [0, s] (i = 1, 2, · · · , n); ωi is the weight of input argument zi meeting

ωi ∈ [0, 1] and
n
∑

i=1
ωi = 1; p, q ≥ 0 and p + q > 0; |F2| denotes the number of elements in F2; hr indicates the

number of elements in partition Pr; and
t

∑
r=1

hr = n− |F2|. Then, we call it a linguistic neutrosophic generalized

weighted PBM (LNGWPBM) operator.
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Theorem 2. Let z1, z2, · · · and zn be LNNs, where zi =
(
lαi , lβi , lγi

)
and αi, βi, γi ∈ [0, s] (i = 1, 2, · · · , n),

and let the weight of input argument zi be ωi, where ωi ∈ [0, 1] and
n
∑

i=1
ωi = 1. Then, the synthesized result of

the LNGWPBM operator of the LNNs z1, z2, · · · and zn is still a LNN, which is shown as follows:

LNGWPBMp,q(z1, z2, · · · , zn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1−(1−Kα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
(|F2 |

∏
i=1

(1−(αi/s)p)
ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

,

l

s−s

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1−
⎛⎝( t

∏
r=1

(
1−(1−Kβ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎜⎜⎝
(|F2 |

∏
i=1

(1−(1−βi/s)p)
ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

,l

s−s

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1−
⎛⎝( t

∏
r=1

(
1−(1−Kγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎜⎜⎝
(|F2 |

∏
i=1

(1−(1−γi/s)p)
ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

where Kα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−
(

1− (1− (αi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

,

Kβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−
(

1− (1− (1− βi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− β j/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎠

1
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∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

, and

Kγ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−
(

1− (1− (1− γi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (1− γj/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

.

Proof. Along the lines of Theorem 1, we also process the groups F1 and F2 separately, and then
combine them to prove.

(i) The processing of F1:

Firstly, we successively use Formulas (7), (6), and (4) to get the following formula:
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hr⊕
j = 1
j �= i

ωjz
q
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
l
s−s

hr
∏

j = 1
j �= i

(
1−(αj/s)

q)ωj
, l

s
hr
∏

j = 1
j �= i

(
1−(1−β j/s)

q)ωj
, l

s
hr
∏

j = 1
j �= i

(
1−(1−γj/s)

q)ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Then, we have:

1
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∑

j = 1
j �= i

ωj

hr⊕
j = 1
j �= i

ωjz
q
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l
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(
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q)ωj
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1
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ωj

,l

s
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hr
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(
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q)ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
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ωj

,l

s
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(
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q)ωj
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.

Since ωiz
p
i =

(
ls−s(1−(αi/s)p)

ωi , ls(1−(1−βi/s)p)
ωi , ls(1−(1−γi/s)p)

ωi

)
, we can get:

ωiz
p
i ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
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hr
∏

j = 1
j �= i

(
1−(1−γj/s)

q)ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since the expression H is too long, we suppose:

Kα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr

∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−
(

1− (1− (αi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎜⎝
hr

∏
j = 1
j �= i

(
1− (αj/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

,

Kβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr

∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−
(

1− (1− (1− βi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎜⎝
hr

∏
j = 1
j �= i

(
1− (1− β j/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

,

Kγ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr

∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−
(

1− (1− (1− γi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎜⎝
hr

∏
j = 1
j �= i

(
1− (1− γj/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

,

Then, the expression H can be written as H =
(

ls×(1−Kα), ls×Kβ
, ls×Kγ

)
. Next, we can get the

below expression:

A′ = 1
t

t⊕
r=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

hr
∑

i=1
ωi

hr⊕
i=1

ωiz
p
i ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

hr
∑

j = 1
j �= i

ωj

hr⊕
j = 1
j �= i

ωjz
q
j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

p
p+q

= 1
t

t⊕
r=1

(
H
) p

p+q =

⎛⎜⎝l
s−s
(

t
∏

r=1

(
1−(1−Kα)

p
p+q
)) 1

t
, l

s
(

t
∏

r=1

(
1−(1−Kβ)

p
p+q
)) 1

t
, l

s
(

t
∏

r=1

(
1−(1−Kγ)

p
p+q
)) 1

t

⎞⎟⎠

(ii) The processing of F2:

Based on the operational laws of LNNs, it is easy to obtain:

B′ = 1
|F2 |
∑

i=1
ωi

|F2|⊕
i=1

ωiz
p
i =

⎛⎜⎜⎜⎜⎜⎝l

s−s

(|F2 |
∏

i=1
(1−(αi/s)p)

ωi

) 1
|F2 |
∑

i=1
ωi

, l

s

(|F2 |
∏

i=1
(1−(1−βi/s)p)

ωi

) 1
|F2 |
∑

i=1
ωi

, l

s

(|F2 |
∏

i=1
(1−(1−γi/s)p)

ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎟⎟⎟⎠
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Finally, we compute the synthesized result of the LNGWPBM operator:

(
n−|F2|

n A′ ⊕ |F2|
n B′

) 1
p
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

s

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1−(1−Kα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n
⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
(|F2 |

∏
i=1

(1−(αi/s)p)
ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

,

l

s−s

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1−
⎛⎝( t

∏
r=1

(
1−(1−Kβ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎜⎜⎝
(|F2 |

∏
i=1

(1−(1−βi/s)p)
ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

,l

s−s

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1−
⎛⎝( t

∏
r=1

(
1−(1−Kγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎜⎜⎝
(|F2 |

∏
i=1

(1−(1−γi/s)p)
ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
That proves that Formula (19) is kept. Then, we prove that the aggregated result of Formula (19)

is an LNN. It is easy to prove the following inequalities:

0 ≤ s

⎛⎜⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Kα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (αi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
p

≤ s,

0 ≤ s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Kβ

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (1− βi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

≤ s,

and 0 ≤ s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Kγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (1− γi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

≤ s.

Firstly, we prove 0 ≤ Kα ≤ 1, 0 ≤ Kβ ≤ 1, and 0 ≤ Hγ ≤ 1.
Based on the previous conditions such as αj ∈ [0, s], p ≥ 0, q ≥ 0, ωi ∈ [0, 1], and so on, we can

get 0 ≤ (1− (αi/s)p)ωi ≤ 1 and 0 ≤

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

≤ 1, which can deduce the

following inequality:
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0 ≤
(

1− (1− (αi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎜⎝
hr

∏
j = 1
j �= i

(
1− (αj/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 1.

So, we can easily obtain 0 ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
hr
∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−
(

1− (1− (αi/s)p)ωi
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎝
hr
∏

j = 1
j �= i

(
1− (αj/s

)q
)ωj

⎞⎟⎟⎟⎟⎟⎠

1
hr
∑

j = 1
j �= i

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
hr
∑

i=1
ωi

≤ 1,

i.e., 0 ≤ Kα ≤ 1.
Similarly, we also have 0 ≤ Kβ ≤ 1 and 0 ≤ Hγ ≤ 1.

Next, we put the first to prove 0 ≤ s

⎛⎜⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Kα)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
(
|F2|
∏
i=1

(
1− (αi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
p

≤ s.

According to 0 ≤ Kα ≤ 1, p + q > 0 and t > 0, we can illustrate 0 ≤
(

t
∏

r=1

(
1− (1− Kα)

p
p+q
)) 1

t

≤ 1

and 0 ≤
(
|F2|
∏
i=1

(
1− (αi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi ≤ 1, which can deduce the following inequality:

0 ≤

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Kα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (αi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠ ≤ 1

Then, we find that 0 ≤ s

⎛⎜⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Kα)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
(
|F2|
∏
i=1

(
1− (αi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
p

≤ s.

Likewise, we can illustrate 0 ≤ s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Kβ

) p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

⎛⎜⎜⎝
(
|F2|
∏
i=1

(
1− (1− βi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

≤ s

and 0 ≤ s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Kγ)

p
p+q
)) 1

t

⎞⎠
n−|F2 |

n

⎛⎜⎜⎝
(
|F2|
∏
i=1

(
1− (1− γi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

≤ s.

Therefore, Theorem 2 is kept.

In the following, we demonstrate the desired properties of the proposed LNGWPBM operator:

(1) Monotonicity: If zi =
(
lαi , lβi , lγi

)
(i = 1, 2, · · · , n) and yi =

(
lδi , lηi , lσi

)
(i = 1, 2, · · · , n) are any

two sets of LNNs, they satisfy the conditions αi ≥ δi, βi ≤ ηi and γi ≤ σi, then:

LNGWPBMp,q(z1, z2, · · · , zn) ≥ LNGWPBMp,q(y1, y2, · · · , yn).
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Proof. Similar to the monotonicity property of the LNGPBM operator, we also suppose that
LNGWPBMp,q(z1, z2, · · · , zn) = z =

(
lα, lβ, lγ

)
and LNGWPBMp,q(y1, y2, · · · , yn) = y =

(
lδ, lη , lσ

)
.

Then:

α = s

⎛⎜⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
r=1

(
1− (1− Kα)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
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∏
i=1

(
1− (αi/s)p)ωi

) 1
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∑
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ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
p

δ = s

⎛⎜⎜⎜⎜⎝1−

⎛⎜⎜⎝
⎛⎝( t

∏
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(
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p
p+q
)) 1

t
⎞⎠
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n

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
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∏
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(
1− (δi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
p

,

β = s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Kβ

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (1− βi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

,

η = s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Kη

) p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (1− ηi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

,

γ = s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
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(
1− (1− Kγ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (1− γi/s)p)ωi

) 1
|F2 |
∑
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ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

, and

σ = s− s

⎛⎜⎜⎜⎜⎝1−
⎛⎝( t

∏
r=1

(
1− (1− Kσ)

p
p+q
)) 1

t
⎞⎠

n−|F2 |
n

⎛⎜⎜⎝
(|F2|

∏
i=1

(
1− (1− σi/s)p)ωi

) 1
|F2 |
∑

i=1
ωi

⎞⎟⎟⎠
|F2 |

n

⎞⎟⎟⎟⎟⎠
1
p

.

In order to prove this property, we need to compute their score function values C(z) and
C(y), and their accuracy values A(z) and A(y) to compare their synthesized result, i.e., z ≥ y.
Firstly, on the basis of the condition αi ≥ δi, βi ≤ ηi and γi ≤ σi, we can get the compared result
of their truth-membership degrees, indeterminacy-membership degrees, and falsity-membership
degrees, respectively.

(i) The comparison of the truth-membership degrees:

Based on αi ≥ δi, we can get:
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Kα =
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1
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ωi

= Kδ

⇒
⎛⎝( t

∏
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(
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p
p+q
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t
⎞⎠

n−|F2 |
n

≤
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∏
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(
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p
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)) 1
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∏
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(
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∑

i=1
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⎞⎟⎟⎠
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n

≤
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(|F2|

∏
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(
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n
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In accordance with the upper two inequalities, we have:

s
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That is, α ≥ δ.

(ii) The comparison of indeterminacy-membership degrees and falsity-membership
degrees, respectively:

Based on βi ≤ ηi and γi ≤ σi, we can also obtain β ≤ η and γ ≤ σ, which is similar to the process
of the truth-membership degrees.

Thus, it can be obtained that C(z) = 2s+α−β−γ
3s ≥ 2s+δ−η−σ

3s = C(y). In the following, we discuss
two cases.

(i) If C(z) > C(y), then z > y according to Definition 2.
(ii) If C(z) = C(y), then (α− γ)− β = (δ− σ)− η. Since α− γ ≥ δ− σ in the light of α ≥ δ and

γ ≤ σ, now we assume α− γ > δ− σ, then β > η, which is in contradiction with the previous
proof β ≤ η. So, we can conclude that α − γ = δ − σ. That is A(z) = α−γ

s = δ−σ
s = A(y),

which testifies z = y.

In conclusion, the synthesized result is z ≥ y, which explains LNGWPBMp,q(z1, z2, · · · , zn) ≥
LNGWPBMp,q(y1, y2, · · · , yn).

(2) Boundedness: Let zi =
(
lαi , lβi , lγi

)
(i = 1, 2, · · · , n) be any set of LNNs, then:

LNGWPBMp,q
(

min
i

zi, min
i

zi, · · · , min
i

zi

)
≤ LNGWPBMp,q(z1, z2, · · · , zn) ≤ LNGWPBMp,q

(
max

i
zi, max

i
zi, · · · , max

i
zi

)
.
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Based on the monotonicity property of the LNGWPBM operator, it is easy to prove, and the
detailed process is omitted here.

Based on the character of F2, some special cases are discussed about the LNGPBM operator,
as shown in the following.

(1) When |F2| = 0, all of the arguments belong to the group F1, and are divided into t partitions;
then, the proposed LNGWPBM operator is simplified as the linguistic neutrosophic weighted
PBM (LNWPBM) operator:

LNGWPBMp,q(z1, z2, · · · , zn) =
1
t

t⊕
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

hr
∑

i=1
ωi

hr⊕
i=1
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1
p+q

= LNWPBMp,q(z1, z2, · · · , zn)

(2) When |F2| = 0 and t = 1, all of the arguments belong to the same partition, i.e., hr= n; then,
the proposed LNGWPBM operator is translated into the linguistic neutrosophic normalized
weighted BM (LNNWBM) operator:

LNGWPBMp,q(z1, z2, · · · , zn) =
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1
p+q

= LNNWBMp,q(z1, z2, · · · , zn).

(3) When |F2| = n, there is no element in group F1 and all of the elements are independent; then,
the proposed LNGWPBM operator reduces to the linguistic neutrosophic power root weighted
mean (LNPRWM) operator:

LNGWPBMp,q(z1, z2, · · · , zn) =

⎛⎜⎝ 1
|F2 |
∑

i=1
ωi

|F2|⊕
i=1

ωiz
p
i
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1
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⎛⎝ 1
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ωiz
p
i
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1
p

=

(
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ωiz

p
i

) 1
p
= LNPRWMp(z1, z2, · · · , zn)

Moreover, we can also get some special cases by distributing different values to the parameters p
and q.

(1) When q → 0 , the LNGWPBM operator is translated into the LNPRWM operator, as described
in the previous discussion. Since there are no inner connections in group F1, all of the elements
are unrelated.

(2) When p = 1 and q → 0 , the LNGWPBM operator becomes the LNNWAA operator, as defined by
Fang and Ye [29]:

LNGWPBMp=1,q→0(z1, z2, · · · , zn) =

(
n⊕

i=1
ωiz

p
i

) 1
p
=

n⊕
i=1

ωizi = LNNWAA(z1, z2, · · · , zn).

(3) When p = 2 and q → 0 , the LNGWPBM operator is transformed into the linguistic neutrosophic
square root weighted mean (LNSRWM) operator, which is shown as follows:

LNGWPBMp=2,q→0(z1, z2, · · · , zn) =

(
n⊕

i=1
ωiz

p
i

) 1
p
=

(
n⊕
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ωiz2

i

) 1
2
= LNSRWA(z1, z2, · · · , zn).
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(4) When p = q = 1, the LNGWPBM operator is simplified as the simplest form of the LNGWPBM
operator, which is shown as follows:

LNGWPBMp=1,q=1(z1, z2, · · · , zn) =
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It is often used to simplify the calculation in a problem with different weights.

4. A Novel MAGDM Method by the Introduced LNGWPBM Operator

In this section, we develop a novel MAGDM method based on the proposed LNGWPBM operator
to address the kind of problems where the attributes are sorted into two groups: one group contains
several clusters where the attributes are relevant in same cluster, but independent in different clusters,
and another contains the attributes that are irrelevant to any other attribute. Firstly, we put this
kind of problem in a nutshell. Then, we detail the procedures of the proposed method to solve the
above problems.

Suppose X = {X1, X2, · · · , Xm} is a set of alternatives, and G = {G1, G2, · · · , Gn} is a set of
attributes, ωj is the weight of the attribute Gj(j = 1, 2, · · · , n), where 0 ≤ ωj ≤ 1 (j = 1, 2, · · · , n),

n
∑

j=1
ωj = 1. Experts Dk (k = 1, 2, · · · , d) can use the LNNs to judge the alternative Xi for attribute

Gj and denote it as zk
ij =

(
lαk

ij
, lβk

ij
, lγk

ij

)
in a linguistic term set L = (l0, l1, · · · , ls), which meets

αk
ij, βk

ij, γk
ij ∈ [0, s], and s is an even number. The experts’ weight vector is π = (π1, π2, · · · , πd)

T

satisfying with 0 ≤ πk ≤ 1 (k = 1, 2, · · · , d),
d
∑

k=1
πk = 1. Thus, we form the evaluation values given by

expert Dk into a decision matrix Zk =
[
zk

ij

]
m×n

(k = 1, 2, · · · , d).

We further hypothesize that the set of attributes G = {G1, G2, · · · , Gn} is sorted into two groups:
F1 and F2. In F1, the attributes are divided into t clusters P1, P2, · · · , Pt, which satisfies Px ∩ Py = ∅, x �=
y and

t∪
r=1

Pr = F1. It means that the group F1 contains several clusters, where the attributes are relevant

in same cluster, but independent in different clusters; in F2, the attributes are irrelevant to any attribute.
Afterwards, we decide the priority of alternatives according to the information provided above.

The procedures of the proposed method are designed as follows.

Step 1. Normalize the LNNs.

Since the attributes generally fall into two types, the corresponding attribute values have the
two types. In order to achieve normalization, we generally transform the cost attribute values
into benefit attribute values. First of all, we assume that Yk =

[
yk

ij

]
m×n

is the normalized

matrix of Zk =
[
zk

ij

]
m×n

, where yk
ij =

(
lδk

ij
, lηk

ij
, lσk

ij

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ d.

Then, the standardizing method is described in the following [7]:

(1) For benefit attribute values:

yk
ij = zk

ij =

(
lαk

ij
, lβk

ij
, lγk

ij

)
(20)
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(2) For cost attribute values:

yk
ij = zk

ij =

(
ls−αk

ij
, ls−βk

ij
, ls−γk

ij

)
(21)

Step 2. Calculate the collective decision information by the LNGWPBM operator fixed with |F2| = 0
and t = 1 (i.e., the LNNWBM operator discussed in Section 3.2), because there is no need to
divide the experts into different clusters. Then, we can get the unfolding form:
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(
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(22)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, p, q ≥ 0, and p + q > 0.

Step 3. Compute the comprehensive value of each alternative based on the LNGWPBM operator;
the unfolding form is detailed in the following:
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(23)

where 1 ≤ i ≤ m, p, q ≥ 0, and p + q > 0; |F2| denotes the number of attributes in F2, hr

indicates the number of attributes in cluster Pr, and
t

∑
r=1

hr = n− |F2|.
Step 4. Calculate the score value C(yi) and the accuracy value A(yi) of the synthesized evaluation

value yi in the light of Definitions 2 and 3, where 1 ≤ i ≤ m.
Step 5. Compare the obtained score values C(y1), C(y2), . . . , and C(ym) based on Definition 4.

The larger the value of C(yi), the more front the order of alternative Xi, where 1 ≤ i ≤ m.
If the value of C(yi) is the same, then compare the obtained accuracy values A(y1), A(y2),
. . . , and A(ym) to determine the ranking orders of alternatives.

Step 6. Ends.

5. A Practical Application on Selecting Green Suppliers

In this section, we use a realistic example to illustrate the effectiveness and advantage of the
proposed MAGDM method by the proposed LNGWPBM operator.
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Example 2. The example is about the selection of green suppliers. A car manufacturer wants to choose parts,
and there are four alternative green suppliers expressed by {X1, X2, X3, X4}, which can be seen as evaluation
objects. The car manufacturer establishes seven criteria to assess the four green suppliers and the measured
evaluation criteria G = {G1, G2, G3, G4, G5, G6, G7} are shown as follows: price ( G1), green degree ( G2 ),
quality ( G3), service level ( G4), environment for development ( G5), response time ( G6), and innovation ability
( G7). Their weight vector is ω = (0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.1)T. Since the green degree shows the influence
degree of the green suppliers on the environment and resources, the criterion G2 has nothing to do with the other
criteria. Besides, according to the interrelationship patterns, we are able to divide the other evaluation criteria
into three partition structures: P1 = {G1, G3}, P2 = {G4, G6}, and P3 = {G5, G7}. The car manufacturer
assembled a panel of three related principals to conduct field explorations and surveys in depth, so that the
optimal green supplier can be selected. We use Dk (k = 1, 2, 3) to denote each related principal and their weight
vector π = (0.4, 0.3, 0.3)T. On the basis of their investigation, professional knowledge and experience, every
related principal Dk (k = 1, 2, 3) needs to assess each green supplier Xi (i = 1, 2, 3, 4) under each evaluation
criterion Gj (j = 1, 2, · · · , 7) by using scores or linguistic information directly. Suppose the linguistic term
set L = {l0, l1, l2, l3, l4, l5, l6, l7, l8}, which expresses, from left to right: extremely low, very low, low, slightly
low, medium, slightly high, high, very high, and extremely high, respectively. The corresponding relationships
between score and LV are detailed in Table 1 [7]. Therefore, we can unify evaluation information with LNNs
to depict the fuzziness and uncertainty of evaluation criteria. Finally, these related principals’ evaluation
information constructs the three following decision matrices Zk = [zk

ij]m×n
(k = 1, 2, 3) described in Tables 2–4,

where zk
ij can be depicted as

(
lαk

ij
, lβk

ij
, lγk

ij

)
.

Table 1. The corresponding relationships between score and linguistic values (LV).

Score 0~19 20~29 30~39 40~49 50~59 60~69 70~79 80~89 90~100

Evaluation extremely
low

very
low low slightly

low medium slightly
high high very

high
very
high

Linguistic
value l0 l1 l2 l3 l4 l5 l6 l7 l8

Table 2. Evaluation matrix Z1 given by the related principal D1.

G1 G2 G3 G4 G5 G6 G7

X1 (l4, l4, l3) (l3, l5, l1) (l6, l3, l4) (l7, l1, l2) (l4, l1, l3) (l2, l1, l3) (l4, l4, l3)
X2 (l4, l3, l2) (l5, l4, l2) (l5, l3, l2) (l6, l3, l1) (l5, l4, l3) (l2, l7, l2) (l2, l4, l1)
X3 (l5, l1, l2) (l3, l1, l1) (l7, l1, l2) (l7, l1, l2) (l4, l6, l1) (l4, l3, l3) (l1, l4, l1)
X4 (l3, l4, l3) (l6, l3, l3) (l6, l4, l2) (l5, l1, l1) (l5, l2, l2) (l3, l1, l2) (l4, l6, l3)

Table 3. Evaluation matrix Z2 given by the related principal D2.

G1 G2 G3 G4 G5 G6 G7

X1 (l3, l5, l2) (l3, l1, l4) (l5, l2, l3) (l6, l2, l1) (l5, l1, l3) (l3, l1, l2) (l3, l2, l3)
X2 (l5, l1, l2) (l4, l4, l3) (l6, l1, l1) (l7, l2, l2) (l7, l4, l4) (l3, l3, l4) (l3, l1, l1)
X3 (l4, l3, l1) (l3, l5, l1) (l7, l4, l3) (l5, l3, l1) (l6, l1, l2) (l4, l1, l2) (l2, l3, l3)
X4 (l3, l4, l3) (l5, l2, l2) (l7, l2, l4) (l7, l3, l4) (l4, l2, l1) (l2, l3, l4) (l4, l4, l3)

161



Symmetry 2018, 10, 160

Table 4. Evaluation matrix Z3 given by the related principal D3.

G1 G2 G3 G4 G5 G6 G7

X1 (l4, l1, l2) (l4, l2, l3) (l6, l3, l2) (l6, l1, l4) (l6, l3, l1) (l3, l4, l5) (l4, l1, l2)
X2 (l5, l3, l4) (l5, l4, l3) (l5, l1, l2) (l5, l3, l5) (l5, l3, l3) (l2, l1, l2) (l3, l2, l1)
X3 (l3, l1, l2) (l3, l1, l1) (l7, l1, l3) (l5, l2, l2) (l4, l1, l1) (l3, l2, l3) (l2, l2, l1)
X4 (l4, l1, l4) (l4, l2, l3) (l5, l3, l5) (l6, l1, l5) (l7, l2, l4) (l3, l1, l2) (l3, l2, l1)

5.1. The Evaluation Procedures

[Step 1] Normalize the LNNs in the evaluation matrix. Since the price (G1) and the response time (G6)
belong to the cost attributes, we need to transform the corresponding LNNs of the attributes
G1 and G6 into the benefit attributes values according to Formula (21) in the evaluation
matrices Zk (k = 1, 2, 3). The normalized matrices are Yk =

[
yk

ij

]
4×7

(k = 1, 2, 3), which are

displayed in Tables 5–7.

Table 5. The normalized matrix Y1.

G1 G2 G3 G4 G5 G6 G7

X1 (l4, l4, l5) (l3, l5, l1) (l6, l3, l4) (l7, l1, l2) (l4, l1, l3) (l6, l7, l5) (l4, l4, l3)
X2 (l4, l5, l6) (l5, l4, l2) (l5, l3, l2) (l6, l3, l1) (l5, l4, l3) (l6, l1, l6) (l2, l4, l1)
X3 (l3, l7, l6) (l3, l1, l1) (l7, l1, l2) (l7, l1, l2) (l4, l6, l1) (l4, l5, l5) (l1, l4, l1)
X4 (l5, l4, l5) (l6, l3, l3) (l6, l4, l2) (l5, l1, l1) (l5, l2, l2) (l5, l7, l6) (l4, l6, l3)

Table 6. The normalized matrix Y2.

G1 G2 G3 G4 G5 G6 G7

X1 (l5, l3, l6) (l3, l1, l4) (l5, l2, l3) (l6, l2, l1) (l5, l1, l3) (l5, l7, l6) (l3, l2, l3)
X2 (l3, l7, l6) (l4, l4, l3) (l6, l1, l1) (l7, l2, l2) (l7, l4, l4) (l5, l5, l4) (l3, l1, l1)
X3 (l4, l5, l7) (l3, l5, l1) (l7, l4, l3) (l5, l3, l1) (l6, l1, l2) (l4, l7, l6) (l2, l3, l3)
X4 (l5, l4, l5) (l5, l2, l2) (l7, l2, l4) (l7, l3, l4) (l4, l2, l1) (l6, l5, l4) (l4, l4, l3)

Table 7. The normalized matrix Y3.

G1 G2 G3 G4 G5 G6 G7

X1 (l4, l7, l6) (l4, l2, l3) (l6, l3, l2) (l6, l1, l4) (l6, l3, l1) (l5, l4, l3) (l4, l1, l2)
X2 (l3, l5, l4) (l5, l4, l3) (l5, l1, l2) (l5, l3, l5) (l5, l3, l3) (l6, l7, l6) (l3, l2, l1)
X3 (l5, l7, l6) (l3, l1, l1) (l7, l1, l3) (l5, l2, l2) (l4, l1, l1) (l5, l6, l5) (l2, l2, l1)
X4 (l4, l7, l4) (l4, l2, l3) (l5, l3, l5) (l6, l1, l5) (l7, l2, l4) (l5, l7, l6) (l3, l2, l1)

[Step 2] Calculate the collective decision information by the LNNWBM operator in Formula (22).
In order to reduce the complexity of computing, we fix p = q = 1.

As an example, we can calculate the collective decision value y11, and the below is its
calculative process:

y11 = LNNWBMp,q(y1
11, y2

11, y3
11
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The other collective decision values yij are shown in the following:

y21 = (l3.5344, l5.5586, l5.2871); y31 = (l4.1699, l6.4201, l6.2805); y41 = (l4.9669, l4.7841, l4.5176);

y12 = (l3.4824, l2.2406, l2.1420); y22 = (l4.9669, l3.7793, l2.3128);
y32 = (l3.1424, l1.5104, l0.7488); y42 = (l5.3832, l2.0407, l2.3634);

y13 = (l6.0202, l2.3634, l2.7300); y23 = (l5.6366, l1.2948, l1.3362);
y33 = (l7.2512, l1.3489, l2.3128); y43 = (l6.4202, l2.7300, l3.2926);

y14 = (l6.7107, l0.9833, l1.7986); y24 = (l6.4202, l2.3634, l1.9954);
y34 = (l6.1444, l1.5443, l1.3362); y44 = (l6.3515, l1.1760, l2.8122);

y15 = (l5.2700, l1.1760, l1.9394); y25 = (l6.0606, l3.4315, l3.0331);
y35 = (l4.9485, l2.0139, l0.9833); y45 = (l5.7982, l1.6889, l1.7986);

y16 = (l5.6872, l6.1687, l4.5018); y26 = (l6.0202, l4.0018, l5.2871);
y36 = (l4.5685, l5.9320, l5.2005); y46 = (l5.6366, l6.4201, l5.2871);

y17 = (l3.8863, l1.9465, l2.3634); y27 = (l2.7306, l1.9465, l0.7488);
y37 = (l1.6456, l2.7300, l1.1760); y47 = (l3.8863, l3.8560, l1.9394).

[Step 3] According to Formula (23), we can get the comprehensive value yi of each alternative Xi
(i = 1, 2, 3, 4) (suppose p = q = 1); the results are shown below:

y1 = (l5.5760, l0.0007, l0.0016); y2 = (l5.4447, l0.0019, l0.0009);
y3 = (l5.0616, l0.0036, l0.0004); y4 = (l5.8684, l0.0046, l0.0017).

[Step 4] According to Formula (2), we can obtain the score values C(y1), C(y2), C(y3), and C(y4) of
the comprehensive values y1, y2, y3, and y4, respectively, which are displayed as follows:

C(y1) = 0.8989;C(y2) = 0.8934; C(y3) = 0.8774; C(y4) = 0.9109.

[Step 5] Since C(y4) > C(y1) > C(y2) > C(y3), which is based on Definition 4, we can see that the
ranking order of the alternatives X1, X2, X3 and X4 is: X4 � X1 � X2 � X3, where the most
suitable alternative is X4.

According to the upper computation of the proposed method, we can find that the most suitable
green supplier is X4, the second is X1, and the worst is X2 or X3. So, we recommend that the car
manufacturer choose green supplier X4.

5.2. Exploration of the Parameters’ Influence

In the above steps, we fix parameters p and q with 1, but we can easily find that the parameters
p and q play an important role in the procedures of the proposed method, based on the LNGWPBM
operator. When we change the values of parameters p and q, the integration results are usually
different, so that the ranking order may be changed accordingly. Table 8 shows the ranking orders
of the green suppliers when we assign the parameters p and q to different values. Then, we further
explore the influence of parameters p and q on the ranking order.

163



Symmetry 2018, 10, 160

Table 8. Ranking orders of the green suppliers under different values of the parameters p and q.

Parameters p and q Score Value yi (i = 1, 2, 3, 4) Ranking Orders

p = 1, q = 1 C(y1) = 0.8989; C(y2) = 0.8934;
C(y3) = 0.8774; C(y4) = 0.9109. X4 � X1 � X2 � X3

p = 1, q = 0.01 C(y1) = 0.8775; C(y2) = 0.8796;
C(y3) = 0.8742; C(y4) = 0.8921. X4 � X2 � X1 � X3

p = 0.01, q = 1 C(y1) = 0.9977; C(y2) = 0.9969;
C(y3) = 0.9951; C(y4) = 0.9984. X4 � X1 � X2 � X3

p = 1, q = 2 C(y1) = 0.9019; C(y2) = 0.8954;
C(y3) = 0.8765; C(y4) = 0.9136. X4 � X1 � X2 � X3

p = 1, q = 5 C(y1) = 0.9009; C(y2) = 0.8993;
C(y3) = 0.8840; C(y4) = 0.9140. X4 � X1 � X2 � X3

p = 1, q = 10 C(y1) = 0.9028; C(y2) = 0.9073;
C(y3) = 0.9007; C(y4) = 0.9200. X4 � X2 � X1 � X3

p = 2, q = 1 C(y1) = 0.8835; C(y2) = 0.8800;
C(y3) = 0.8694; C(y4) = 0.8938. X4 � X1 � X2 � X3

p = 5, q = 1 C(y1) = 0.8792; C(y2) = 0.8790;
C(y3) = 0.8828; C(y4) = 0.8872. X4 � X3 � X1 � X2

p = 10, q = 1 C(y1) = 0.8914; C(y2) = 0.8923;
C(y3) = 0.9061; C(y4) = 0.8999. X3 � X4 � X2 � X1

p = 2, q = 2 C(y1) = 0.8846; C(y2) = 0.8788;
C(y3) = 0.8634; C(y4) = 0.8938. X4 � X1 � X2 � X3

p = 5, q = 5 C(y1) = 0.8734; C(y2) = 0.8683;
C(y3) = 0.8583; C(y4) = 0.8780. X4 � X1 � X2 � X3

p = 9, q = 9 C(y1) = 0.8788; C(y2) = 0.8781;
C(y3) = 0.8659; C(y4) = 0.8820. X4 � X1 � X2 � X3

p = 10, q = 10 C(y1) = 0.8806; C(y2) = 0.8809;
C(y3) = 0.8677; C(y4) = 0.8835. X4 � X2 � X1 � X3

From Table 8, it is easy to find that the bigger the value of parameter p or q is, the more chaotic
the ranking order. Let’s explain with an example. When p = 1 q = 10, the ranking order is X4 � X2 �
X1 � X3; when p = 5 q = 1, the ranking order is X4 � X3 � X1 � X2; however, when p = 10 q = 1,
the ranking order is X3 � X4 � X2 � X1. So, it’s hard to get the regularity of arrangements under this
situation. However, when the parameters p and q are equal and less than 10, the ranking orders are
relatively stable, and the best green supplier is X4, and the worst is X3.

Generally, the bigger the values of parameters p and q, the more complex the calculation becomes,
and the more the interrelations between the attributes are emphasized. DMs usually choose the right
parameters p and q according to their preferences. However, there is a special case, i.e., q = 0, and the
proposed method cannot reflect inner connections between attributes, which is similar to another case
such as |F2| = n. Hence, this is not in conformity with this example, and we only allow q to be close to
0 infinitely when discussing. When p = 1 q = 0.01, the ranking order is X4 � X2 � X1 � X3, and the
best green supplier is still X4. Therefore, in real decision making, we generally recommend that the
parameter values be 1 from a practical point of view, which is not only intuitionistic and simple, but is
also able to consider the inner connections between attributes.

5.3. Comparison with Other Existing Methods

In this subsection, in order to illustrate the validity and advantage of the proposed MAGDM
method related to the LNGWPBM operator, we plan to compare it with Fang and Ye’s MAGDM
method [29], which is related to the LNNWAA operator, and Liang et al.’s MAGDM method [7],
which is about improving classical TOPSIS with LNNs based on Example 2; their ranking results are
displayed in Table 9.
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Table 9. A comparison of the ranking results of the alternatives for different multiple attribute group
decision-making (MAGDM) methods for Example 2. LNGWPBM: linguistic neutrosophic generalized
weighted partitioned Bonferroni mean operator.

Methods Score Values Ranking Orders

Fang and Ye’s MAGDM method [29] by the
LNNWAA operator

C1 = 0.6403, C2 = 0.6508,
C3 = 0.6748, C4 = 0.6300. X3 � X2 � X1 � X4

Liang et al.’s MAGDM method [7] by
improving classical TOPSIS No X3 � X2 � X1 � X4

Our proposed MAGDM method by the
LNGWPBM operator (when p = q = 1)

C1 = 0.8989, C2 = 0.8934,
C3 = 0.8774, C4 = 0.9109. X4 � X1 � X2 � X3

Our proposed MAGDM method by the
LNGWPBM operator (when p = 1, q = 0 and
|F2| = 7)

C1 = 0.6403, C2 = 0.6508,
C3 = 0.6748, C4 = 0.6300. X3 � X2 � X1 � X4

Note: Ci is the abbreviation of the score value C(yi) of the collective decision information yi
(i = 1, 2, 3, 4), respectively.

(1) Since Fang and Ye’s method [29] by the LNNWAA operator can only address the MAGDM
problems where the attributes are not associated with each other, in order to complete the
comparison between it and our proposed MAGDM method by the LNGWPBM operator,
we suppose that the seven attributes are independent of each other in Example 2, i.e., |F2|=7;
then, we compare their ranking results. In terms of Table 9, we can find that the ranking order of
Fang and Ye’s method [29] by the LNNWAA operator is consistent with the one of our proposed
MAGDM method by the LNGWPBM operator (when p = 1, q = 0 and |F2|=7), which is
X3 � X2 � X1 � X4. However, the ranking order of Fang and Ye’s method [13] by the LNNWAA
operator has a great difference from the one of our proposed MAGDM method by the LNGWPBM
operator (when p = q = 1); even the best alternatives are not the same. In the following,
we explain the reason for the ranking results.

Fang and Ye’s method [29] by the LNNWAA operator cannot capture inner connections between
attributes. In this practical application about the selection of green suppliers, if our assumption is that
the attributes have nothing to do with any other attribute, then, i.e., |F2| = 7. Besides, we take p = 1,
q = 0 to make the LNNWBM operator become the LNNWAA operator in integrating the evaluation
information given by DMs, which is consistent with step 1 in Fang and Ye’s method [29]. Then,
the ranking result of Fang and Ye’s method [29] by the LNNWAA operator should be consistent with
the one of our proposed MAGDM method by the LNGWPBM operator (when p = 1, q = 0 and |F2| =
7). By using the two methods to deal with Example 2, respectively, we find that the ranking result of
Fang and Ye’s method [29] by the LNNWAA operator is equal to the one of our proposed MAGDM
method by the LNGWPBM operator (when p = 1, q = 0 and |F2| = 7), which is X3 � X2 � X1 � X4.
Therefore, this can explain that our proposed MAGDM method is tried and true. However, the ranking
result of Fang and Ye’s method [29] by the LNNWAA operator has a great difference from the one of our
proposed MAGDM method by the LNGWPBM operator (when p = q = 1); even the best alternatives
are not the same. In Example 2, we can find that inner connections exist between the attributes and a
special condition where the criterion G2 has nothing to do with other criteria, i.e., |F2| = 1; this can be
solved by the LNGWPBM operator well, but the LNNWAA operator does not have the same ability. It
is easy to compute in our proposed MAGDM method; we assume p = q = 1, and then the ranking
result by the LNGWPBM operator is X4 � X1 � X2 � X3, which is very different from Fang and Ye’s
method [29] by the LNNWAA operator. In addition, DMs can choose the right value of the parameters
p and q according to the actual decision-making situation and their personal preferences, so our
proposed MAGDM method is universal and elastic. Meanwhile, Fang and Ye’s method [29] can only
solve the MAGDM problems with independent attributes, and is not suitable for this kind of question,
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such as in Example 2. Therefore, our proposed MAGDM method by the LNGWPBM operator is more
workable and elastic than Fang and Ye’s method [29] by the LNNWAA operator.

(2) From Table 9, we find that the ranking result of Liang et al.’s MAGDM method [7] by improving
classical TOPSIS is the same as the one of our proposed MAGDM method by the LNGWPBM
operator (when p = 1, q = 0 and |F2|=7), which is X3 � X2 � X1 � X4; however, it is
inconsistent with the one of our proposed MAGDM method by the LNGWPBM operator (when
p = q = 1). Then, we elaborate what leads to the ranking results.

Liang et al.’s MAGDM method [7] uses the LNNWAA operator to integrate the evaluation
information given by DMs, and then adopts the extended TOPSIS model to rank the alternatives.
To compare our proposed MAGDM method with Liang et al.’s MAGDM method [7], we also take p = 1,
q = 0, and |F2| = 7 similar to in the previous analysis; so, the ranking result of Liang et al.’s MAGDM
method [7] should be consistent with the one of our proposed MAGDM method. It is important to
note that when using Liang et al.’s MAGDM method [7] to solve Example 2, we use the weights of the
attributes given in Example 2. By calculating separately, the ranking result of Liang et al.’s MAGDM
method [7] by improving classical TOPSIS is the same as the one of our proposed MAGDM method by
the LNGWPBM operator (when p = 1, q = 0 and |F2| = 7), which is X3 � X2 � X1 � X4. This proves
the validity of our proposed MAGDM method again. However, Liang et al.’s MAGDM method [7]
cannot integrate evaluation information, and does not reflect inner connections between attributes,
while our proposed MAGDM method by the LNGWPBM operator can easily achieve these two points.
Furthermore, in the extended TOPSIS model used by Liang et al.’s MAGDM method [7], the correlation
coefficient cannot guarantee that the best solution should have the closest distance from the positive
ideal solution and the farthest distance from the negative ideal solution, simultaneously [49]. At the
same time, Liang et al.’s MAGDM method [7] by improving the classical TOPSIS model neglects DMs’
utilities or preferences, whereas our proposed MAGDM method can draw attention to the influence of
DMs’ utilities or preferences on the final results, and select the appropriate parameters p and q. When
p = q = 1, the ranking result of our proposed MAGDM method is X4 � X1 � X2 � X3, which is even
the opposite result of Liang et al.’s MAGDM method [7]. Therefore, our proposed MAGDM method is
more appropriate and effective than Liang et al.’s MAGDM method [7] in solving the problem, such as
in Example 2.

(3) To further interpret the effectiveness of our proposed MAGDM method by the LNGWPBM
operator, we use our proposed MAGDM method to solve the illustrative examples in [29] and [7],
and compare our proposed MAGDM method by the LNGWPBM operator with Fang and Ye’s
MAGDM method [29] by the LNNWAA operator and Liang et al.’s MAGDM method [7] by
improving the classical TOPSIS model. Of course, because the attributes are independent of
each other in these two illustrative examples, we still fix with p = 1, q = 0 and |F2| = n,
where n denotes the numbers of the attributes. By applying our proposed MAGDM method to
these two illustrative examples, we can find that the ranking result of our proposed MAGDM
method is consistent with that of Fang and Ye’s MAGDM method [29] and Liang et al.’s MAGDM
method [7], respectively, which are detailed in Tables 10 and 11. This further illustrate the
effectiveness of our proposed MAGDM method by the LNGWPBM operator.
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Table 10. A ranking comparison of the alternatives for different MAGDM methods for example
described by Fang and Ye in [29].

Methods Score Values Ranking Order

Fang and Ye’s MAGDM method [29] by the
LNNWAA operator

C1 = 0.7528, C2 = 0.7777,
C3 = 0.7613, C4 = 0.8060. X4 � X2 � X3 � X1

Our proposed MAGDM method by the
LNGWPBM operator (when p = 1, q = 0 and
|F2| = 3)

C1 = 0.7528, C2 = 0.7777,
C3 = 0.7613, C4 = 0.8060. X4 � X2 � X3 � X1

Note: Ci is abbreviation of score value C(yi) of the collective decision information yi (i = 1, 2, 3, 4), respectively.

Table 11. A ranking comparison of the alternatives for different MAGDM methods for example
described by Liang et al. in [7].

Methods Score Values Ranking Order

Liang et al.’s MAGDM method [7] by
improving classical TOPSIS No X4 � X2 � X3 � X1

Our proposed MAGDM method by the
LNGWPBM operator (when p = 1, q = 0 and
|F2| = 5)

C1 = 0.4941, C2 = 0.7901,
C3 = 0.6495, C4 = 0.7925. X4 � X2 � X3 � X1

Note: Ci is abbreviation of score value C(yi) of the collective decision information yi (i = 1, 2, 3, 4), respectively.

In the following, we compare the desirable properties of our proposed MAGDM method with the
ones of Fang and Ye’s MAGDM method [29] and Liang et al.’s MAGDM method [7] to go even further
in the advantages of our proposed MAGDM method. Table 12 describes the final comparison results.

Table 12. A comparison of the properties for different MAGDM methods. DM: decision makers.

Properties
Methods Fang and Ye’s MAGDM Method

[29] by the LNNWAA Operator
Liang et al.’s MAGDM Method [7]

by Improving Classical TOPSIS
Our proposed MAGDM Method

by the LNGWPBM Operator
Integrate evaluation information Yes No Yes
Reflect DMs’ preferences No No Yes
Consider inner relations between
attributes in the same cluster No No Yes

Consider the clusters of the input
arguments No No Yes

From Table 12, the following conclusions are drawn:

(1) Our proposed MAGDM method and Fang and Ye’s MAGDM method [29] can integrate
evaluation information, while Liang et al.’s MAGDM method [7] cannot do this and only rank the
alternatives by comparing the relative closeness of the positive ideal alternative and the negative
ideal alternative.

(2) Although Fang and Ye’s MAGDM method [29] can integrate evaluation information, it ignores
DMs’ preferences, and does not capture the inherent relation pattern between attributes. Besides,
Liang et al.’s MAGDM method [7] also cannot reflect DMs’ preferences and the inherent relation
patterns between attributes.

(3) Our proposed MAGDM method contains regulatory factors that are determined by DMs’
preferences, and considers the clusters of the input arguments and the inner relations between
the attributes in the same cluster. So, our proposed MAGDM method can effectively address the
problems with the heterogeneous relationship among attributes. However, the other two methods
do not have these advantages, which show that the application scopes of the two methods are
relatively narrow.
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In summary, the contrastive analysis further illustrates the validity and merit of our proposed
MAGDM method, compared with Fang and Ye’s MAGDM method [29] and Liang et al.’s MAGDM
method [7].

6. Conclusions

The GPBM operator can model the average of the respective satisfaction of the independent
and dependent inputs, and is an extended form of the PBM operator, the arithmetic mean operator,
and the BM operator. Its merit is to capture the heterogeneous relationship among attributes where
all of the attributes are sorted into two groups: F1 and F2. In F1, the elements are divided into
several clusters, and the members have inherent connections in the same cluster, but independence in
different clusters; in F2, the elements do not belong to any cluster of the correlated input arguments
in F1. Besides, LNNs can depict the qualitative information more appropriately than the SNNs,
and are also an extension of the LIFNs. However, now, based on LNNs, we yet have not seen any
studies addressing the MAGDM problems with the heterogeneous relationships among attributes.
Therefore, in order to fill this gap, we have expanded the GPBM operator to adapt the linguistic
neutrosophic environment, and have proposed the LNGPBM operator in this paper. At the same
time, its desired properties and special cases have been discussed. Moreover, aiming at the condition
where different attributes have different weights in practical applications, we also have introduced
its weighted version, namely the LNGWPBM operator, including discussing its desired properties
and special cases. Then, based on the developed LNGWPBM operator, we have developed a novel
MAGDM method with LNNs to solve the MAGDM problems with the heterogeneous relationship
among attributes. By comparing with Fang and Ye’s MAGDM method [29] and Liang et al.’s MAGDM
method [7], we find that the developed MAGDM method is more valid and general for solving the
MAGDM problems with co-dependent attributes. This is because the developed MAGDM method can
intuitively and realistically depict qualitative information and reflect the heterogeneous relationship
among attributes. In further research, our developed operators can be improved by considering
the unknown weights, objective data, or other forms of information, such as unbalanced linguistic
information [50]. Besides, we can apply our developed operators to the other practices such as medical
diagnosis, clustering analysis, pattern recognition, discordance analysis, and so on.
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Abstract: The notions of the neutrosophic hesitant fuzzy subalgebra and neutrosophic hesitant fuzzy
filter in pseudo-BCI algebras are introduced, and some properties and equivalent conditions are
investigated. The relationships between neutrosophic hesitant fuzzy subalgebras (filters) and hesitant
fuzzy subalgebras (filters) is discussed. Five kinds of special sets are constructed by a neutrosophic
hesitant fuzzy set, and the conditions for the two kinds of sets to be filters are given. Moreover, the
conditions for two kinds of special neutrosophic hesitant fuzzy sets to be neutrosophic hesitant fuzzy
filters are proved.
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1. Introduction

G. Georgescu and A. Iogulescu presented pseudo-BCKalgebras, which was an extension of the
famous BCK algebra theory. In [1], the notion of the pseudo-BCI algebra was introduced by W.A. Dudek
and Y.B. Jun. They investigated some properties of pseudo-BCI algebras. In [2], Y.B. Jun et al. presented
the concept of the pseudo-BCI ideal in pseudo-BCI algebras and researched its characterizations. Then,
some classes of pseudo-BCI algebras and pseudo-ideals (filters) were studied; see [3–14].

In 1965, Zadeh introduced fuzzy set theory [15]. In the study of modern fuzzy logic theory,
algebraic systems played an important role, such as [16–22]. In 2010, Torra introduced hesitant fuzzy
set theory [23]. The hesitant fuzzy set was a useful tool to express peoples’ hesitancy in real life,
and uncertainty problems were resolved. Furthermore, hesitant fuzzy sets have been applied to
decision making and algebraic systems [24–31]. As a generalization of fuzzy set theory, Smarandache
introduced neutrosophic set theory [32]; the neutrosophic set theory is a useful tool to deal with
indeterminate and inconsistent decision information [33,34]. The neutrosophic set includes the truth
membership, indeterminacy membership and falsity membership. Then, Wang et al. [35,36] introduced
the interval neutrosophic set and single-valued neutrosophic set. Ye [37] introduced the single-valued
neutrosophic hesitant fuzzy set as an extension of the single-valued neutrosophic set and hesitant
fuzzy set. Recently, the neutrosophic triplet structures were introduced and researched [38–40].

In this paper, some preliminary concepts in pseudo-BCI algebras, hesitant fuzzy set theory and
neutrosophic set theory are briefly reviewed in Section 2. In Section 3, the notion of neutrosophic
hesitant fuzzy subalgebras in pseudo-BCI algebras is introduced. The relationships between
neutrosophic hesitant fuzzy subalgebras and hesitant fuzzy subalgebras are investigated. Five kinds
of special sets are constructed. Some properties are studied. Third, the two kinds of sets to be filters
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are given. In Section 4, the concept of neutrosophic hesitant fuzzy filters in pseudo-BCI algebras is
proposed. The equivalent conditions of the neutrosophic hesitant fuzzy filters in the construction of
hesitant fuzzy filters are given. The conditions for two kinds of special neutrosophic hesitant fuzzy
sets to be neutrosophic hesitant fuzzy filters are given.

2. Preliminaries

Let us review some fundamental notions of pseudo-BCI algebra and interval-valued hesitant
fuzzy filter in this section.

Definition 1. ([13]) A pseudo-BCI algebra is a structure (X; →, ↪→, 1), where “→” and “↪→” are binary
operations on X and “1” is an element of X, verifying the axioms: ∀x, y, z ∈ X,

(1) (y → z)→ ((z → x) ↪→ (y → x)) = 1, (y ↪→ z) ↪→ ((z ↪→ x)→ (y ↪→ x)) = 1;
(2) x → ((x → y) ↪→ y) = 1, x ↪→ ((x ↪→ y)→ y) = 1;
(3) x → x = 1;
(4) x → y = y → x = 1 =⇒ x = y;
(5) x → y = 1 ⇐⇒ x ↪→ y = 1.

If (X;→, ↪→, 1) is a pseudo-BCI algebra satisfying ∀x, y ∈ X, x → y = x ↪→ y, then (X;→, 1) is a
BCI algebra. If (X;→, ↪→, 1) is a pseudo-BCI algebra satisfying ∀x ∈ X, x → 1 = 1, then (X;→, ↪→, 1)
is a pseudo-BCK algebra.

Remark 1. ([1]) In any pseudo-BCI algebra (X;→, ↪→), we can define a binary relation ‘≤’ by putting:

x ≤ y if and only if x → y (or x ↪→ y).

Proposition 1. ([13]) Let (X;→, ↪→) be a pseudo-BCI algebra, then X satisfies the following properties,
∀x, y, z ∈ X,

(1) 1 ≤ x ⇒ x = 1;
(2) x ≤ y ⇒ y → z ≤ x → z, y ↪→ z ≤ x ↪→ z;
(3) x ≤ y, y ≤ z ⇒ x ≤ z;
(4) x ↪→ (y → z) = y → (x ↪→ z);
(5) x ≤ y → z ⇒ y ≤ x ↪→ z;
(6) x → y ≤ (z → x)→ (z → y), x ↪→ y ≤ (z ↪→ x) ↪→ (z ↪→ y);
(7) x ≤ y ⇒ z → x ≤ z → y, z ↪→ x ≤ z ↪→ y;
(8) 1 → x = x, 1 ↪→ x = x;
(9) ((y → x) ↪→ x)→ x = y → x, ((y ↪→ x)→ x) ↪→ x = y ↪→ x;
(10) x → y ≤ (y → x) ↪→ 1, x ↪→ y ≤ (y ↪→ x)→ 1;
(11) (x → y)→ 1 = (x → 1) ↪→ (y ↪→ 1), (x ↪→ y) ↪→ 1 = (x ↪→ 1)→ (y → 1);
(12) x → 1 = x ↪→ 1.

Definition 2. ([13]) A subset F of a pseudo-BCI algebra X is called a filter of X if it satisfies:
(F1) 1 ∈ F;
(F2) x ∈ F, x → y ∈ F ⇒ y ∈ F;
(F3) x ∈ F, x ↪→ y ∈ F ⇒ y ∈ F.

Definition 3. ([1]) By a pseudo-BCI subalgebra of a pseudo-BCI algebra X, we mean a subset S of X that
satisfies ∀x, y ∈ S, x → y ∈ S, x ↪→ y ∈ S.

Definition 4. ([12]) A pseudo-BCK algebra is called a type-2 positive implicative if it satisfies:

x → (y ↪→ z) = (x → y) ↪→ (x → z),
x ↪→ (y → z) = (x ↪→ y)→ (x ↪→ z).
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If X is a type-2 positive implicative pseudo-BCK algebra, then x → y = x ↪→ y for all x ∈ X.

Definition 5. ([23]) Let X be a reference set. A hesitant fuzzy set A on X is defined in terms of a function
hA(x) that returns a subset of [0, 1] when it is applied to X, i.e.,

A = {(x, hA(x))|x ∈ X}.

where hA(x) is a set of some different values in [0, 1], representing the possible membership degrees of the element
x ∈ X. hA(x) is called a hesitant fuzzy element, a basis unit of the hesitant fuzzy set.

Example 1. Let X = {a, b, c} be a reference set, hA(a) = [0.1, 0.2], hA(b) = [0.3, 0.6], hA(c) = [0.7, 0.8].
Then, A is considered as a hesitant fuzzy set,

A = {(a, [0.1, 0.2]), (b, [0.3, 0.6]), (c, [0.7, 0.8])}.

Definition 6. ([13]) A fuzzy set μ : X → [0, 1] is called a fuzzy pseudo-filter (fuzzy filter) of a pseudo-BCI
algebra X if it satisfies:

(FF1) μ(1) ≥ μ(x), ∀x ∈ X;
(FF2) μ(y) ≥ μ(x → y) ∧ μ(x), ∀x, y ∈ X;
(FF3) μ(y) ≥ μ(x ↪→ y) ∧ μ(x), ∀x, y ∈ X.

Definition 7. ([32]) Let X be a non-empty fixed set, a neutrosophic set A on X is defined as:

A = {(x, TA(x), IA(x), FA(x))|x ∈ X},

where TA(x), IA(x), FA(x) ∈ [0, 1], denoting the truth, indeterminacy and falsity membership degree of the
element x ∈ X, respecting, and satisfying the limit: 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 8. ([34]) Let X be a fixed set; a neutrosophic hesitant fuzzy set N on X is defined as

N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X},

in which t̃N(x), ĩN(x), f̃N(x) ∈ P([0, 1]), denoting the possible truth membership hesitant degrees,
indeterminacy membership hesitant degrees and falsity membership hesitant degrees of x ∈ X to the set
N, respectively, with the conditions 0 ≤ δ, γ, η ≤ 1 and 0 ≤ δ+ + γ+ + η+ ≤ 3, where γ ∈ t̃N(x), δ ∈ ĩN(x),
η ∈ f̃N(x), γ+ ∈ ⋃γ∈t̃N(x) max{γ}, δ+ ∈ ⋃δ∈ĩN(x) max{δ}, η+ ∈ ⋃η∈ f̃N(x) max{η} for x ∈ X.

Example 2. Let X = {a, b, c} be a reference set, hA(a) = ([0.4, 0.5], [0.1, 0.2], [0.2, 0.4]), hA(b) =

([0.5, 0.6], {0.2, 0.3}, [0.3, 0.4]), hA(c) = ([0.5, 0.8], [0.2, 0.4], {0.3, 0.5}). Then, A is considered as a neutrosophic
hesitant fuzzy set,

A = {(a, [0.4, 0.5], [0.1, 0.2], [0.2, 0.4]), (b, [0.5, 0.6], {0.2, 0.3}, [0.3, 0.4]), (c, [0.5, 0.8], [0.2, 0.4], {0.3, 0.5})}.

Conveniently, N(x) = {t̃N(x), ĩN(x), f̃N(x)} is called a neutrosophic hesitant fuzzy element,
which is denoted by the simplified symbol N(x) = {t̃N , ĩN , f̃N}.

Definition 9. ([34]) Let N1 = {t̃N1 , ĩN1 , f̃N1} and N2 = {t̃N2 , ĩN2 , f̃N2} be two neutrosophic hesitant fuzzy
sets, then:

N1 ∪ N2 = {t̃N1 ∪ t̃N2 , ĩN1 ∩ ĩN2 , f̃N1 ∩ fN2};
N1 ∩ N2 = {t̃N1 ∩ t̃N2 , ĩN1 ∪ ĩN2 , f̃N1 ∪ fN2}.
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3. Neutrosophic Hesitant Fuzzy Subalgebras of Pseudo-BCI Algebras

In the following, let X be a pseudo-BCI algebra, unless otherwise specified.

Definition 10. A hesitant fuzzy set A = {(x, hA(x))|x ∈ X} is called a hesitant fuzzy pseudo-subalgebra
(hesitant fuzzy subalgebra) of X if it satisfies:

(HFS2) hA(x) ∩ hA(y) ⊆ hA(x → y), ∀x, y ∈ X;
(HFS3) hA(x) ∩ hA(y) ⊆ hA(x ↪→ y), ∀x, y ∈ X.

Definition 11. A neutrosophic hesitant fuzzy set N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is called
a neutrosophic hesitant fuzzy pseudo-subalgebra (neutrosophic hesitant fuzzy subalgebra) of X if it satisfies:

(1) t̃N(x) ∩ t̃N(y) ⊆ t̃N(x → y), t̃N(x) ∩ t̃N(y) ⊆ t̃N(x ↪→ y), ∀x, y ∈ X;
(2) ĩN(x) ∪ ĩN(y) ⊇ ĩN(x → y), ĩN(x) ∪ ĩN(y) ⊇ ĩN(x ↪→ y), ∀x, y ∈ X;
(3) f̃N(x) ∪ f̃N(y) ⊇ f̃N(x → y), f̃N(x) ∪ f̃N(y) ⊇ f̃N(x ↪→ y), ∀x, y ∈ X.

Example 3. Let X = {a, b, c, d, 1} with two binary operations in Tables 1 and 2.

Table 1. →.

→ a b c d 1
a 1 c 1 1 1
b d 1 1 1 1
c d c 1 1 1
d c c c 1 1
1 a b c d 1

Table 2. ↪→.

↪→ a b c d 1
a 1 d 1 1 1
b d 1 1 1 1
c d d 1 1 1
d c b c 1 1
1 a b c d 1

Then, (X;→, ↪→, 1) is a pseudo-BCI algebra. Let:

N = {(1, [0, 1], {0, 1
16}, [0, 1

6 ]), (a, [ 1
3 , 1

4 ], [0, 1
2 ], [0, 5

6 ]), (b, [0, 1
2 ], [0, 2

3 ], [0, 2
3 ]),

(c, [ 1
3 , 2

3 ], [0, 1
6 ], [0, 1

5 ]), (d, [ 1
3 , 1], [0, 1

3 ], [0, 1
5 ])}.

then, N is a neutrosophic hesitant fuzzy subalgebra of X.

Considering three hesitant fuzzy sets Ht̃N
, HĩN

, Hf̃N
by:

Ht̃N
= {(x, t̃N(x))|x ∈ X}, HĩN

= {(x, 1− ĩN(x))|x ∈ X}, Hf̃N
= {(x, 1− f̃N(x))|x ∈ X}.

Therefore, Ht̃N
is called a generated hesitant fuzzy set by function t̃N(x); HĩN

is called a generated
hesitant fuzzy set by function ĩN(x); Hf̃N

is called a generated hesitant fuzzy set by function f̃N(x).

Theorem 1. Let N = {(x, t̃N(x), ĩN(y), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. Then, N
is a neutrosophic hesitant fuzzy subalgebra of X if and only if it satisfies the conditions: ∀x ∈ X, Ht̃N

and HĩN
,

Hf̃N
are hesitant fuzzy subalgebras of X.

Proof. Necessity: (i) By Definition 10 and Definition 11, we can obtain that Ht̃N
is a hesitant fuzzy

subalgebra of X.
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(ii) ∀x, y ∈ X, (1− ĩN(x)) ∩ (1− ĩN(y)) = 1− (ĩN(x) ∪ ĩN(y)) ⊆ 1− ĩN(x → y), (1− ĩN(x)) ∩
(1− ĩN(y)) = 1− (ĩN(x) ∪ ĩN(y)) ⊆ 1− ĩN(x ↪→ y).

Similarly, (1− f̃N(x))∩ (1− f̃N(y)) ⊆ 1− f̃N(x → y), (1− f̃N(x))∩ (1− f̃N(y)) ⊆ 1− f̃N(x → y).
Therefore, ∀x ∈ X, HĩN

= {(x, 1− ĩ(x))|x ∈ X} and Hf̃N
= {(x, 1− f̃N(x))|x ∈ X} are hesitant fuzzy

subalgebras of X.
Sufficiency: (i) Let x, y ∈ Ht̃N

. Obviously, t̃N(x) ∩ t̃N(y) ⊆ t̃N(x → y), t̃N(x) ∩ t̃N(y) ⊆
t̃N(x ↪→ y).

(ii) Let x, y ∈ HĩN
. By Definition 10, we have (1− ĩN(x)) ∩ (1− ĩN(y)) ⊆ 1− ĩN(x → y), (1−

ĩN(x)) ∩ (1− ĩN(y)) ⊆ 1− ĩN(x → y), thus ĩN(x) ∪ ĩN(y) ⊇ ĩN(x → y), ĩN(x) ∪ ĩN(y) ⊇ ĩN(x ↪→ y).
Similarly, Let x, y ∈ Hf̃N

; we have f̃N(x) ∪ f̃N(y) ⊇ f̃N(x → y), f̃N(x) ∪ f̃N(y) ⊇ f̃ (x ↪→ y).
That is, N is a neutrosophic hesitant fuzzy subalgebra of X.

Theorem 2. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. Then,
the following conditions are equivalent:

(1) N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is a neutrosophic hesitant fuzzy subalgebra of X;
(2) ∀λ1, λ2, λ3 ∈ P([0, 1]), the nonempty hesitant fuzzy level sets Ht̃N

(λ1), HĩN
(λ2), Hf̃N

(λ3) are
subalgebras of X, where P([0, 1]) is the power set of [0, 1],

Ht̃N
(λ1) = {x ∈ X|λ1 ⊆ t̃N(x)},

HĩN
(λ2) = {x ∈ X|λ2 ⊆ 1− ĩN(x)},

Hf̃N
(λ3) = {x ∈ X|λ3 ⊆ 1− f̃N(x)}.

Proof. (1)⇒(2) Suppose Ht̃N
(λ1), HĩN

(λ2), Hf̃N
(λ3) are nonempty sets. If x, y ∈ Ht̃N

(λ1), then
λ1 ⊆ t̃N(x), λ1 ⊆ t̃N(y). Since N is a neutrosophic hesitant fuzzy subalgebra of X, by Definition
11, we can obtain:

λ1 ⊆ t̃N(x) ∩ t̃N(y) ⊆ t̃N(x → y), λ1 ⊆ t̃N(x) ∩ t̃N(y) ⊆ t̃N(x ↪→ y);

then x → y, x ↪→ y ∈ Ht̃N
(λ1), Ht̃N

(λ1) is a subalgebra of X.
If x, y ∈ HĩN

(λ2), then λ2 ⊆ 1− ĩN(x), λ2 ⊆ 1− ĩN(y). Since N is a neutrosophic hesitant fuzzy
subalgebra of X, by Definition 11, we can obtain:

λ2 ⊆ (1− ĩN(x)) ∩ (1− ĩN(y)) = 1− (ĩN(x) ∪ ĩN(y)) ⊆ 1− ĩN(x → y),
λ2 ⊆ (1− ĩN(x)) ∩ (1− ĩN(y)) = 1− (ĩN(x) ∪ ĩN(y)) ⊆ 1− ĩN(x ↪→ y);

Thus, x → y, x ↪→ y ∈ HĩN
(λ2), HĩN

(λ2) is a subalgebra of X.
Similarly, we can obtain then that Hf̃N

(λ3) is a subalgebra of X.
(2)⇒(1) Suppose that Ht̃N

(λ1), HĩN
(λ2), Hf̃N

(λ3) are nonempty subalgebras of X, ∀λ1, λ2, λ3 ∈
P([0, 1]). Let x, y ∈ X with t̃N(x) = μ1, t̃N(y) = μ2. Let μ1 ∩ μ2 = λ1. Therefore, we have
x, y ∈ H(1)

X (λ1). Since H(1)
X (λ1) is a subalgebra, we can obtain x → y, x ↪→ y ∈ Ht̃N

(λ1). Hence,
we can obtain:

t̃N(x) ∩ t̃N(y) ⊆ t̃N(x → y), t̃N(x) ∩ t̃N(y) ⊆ t̃N(x ↪→ y);

Let x, y ∈ X with ĩ(x) = μ3, ĩ(y) = μ4. Let (1− μ3) ∩ (1− μ4) = λ2. Then, we have x, y ∈
HĩN

(λ2). Since HĩN
(λ2) is a subalgebra, we can obtain x → y, x ↪→ y ∈ Hf̃N

(λ2). Hence, we can
obtain (1− ĩN(x)) ∩ (1− ĩN(y)) = 1− (ĩN(x) ∪ ĩN(y)) = λ2 ⊆ 1− ĩN(x → y), (1− ĩN(x)) ∩ (1−
ĩN(y)) = 1− (ĩN(x) ∪ ĩN(y)) = λ2 ⊆ 1− ĩN(x ↪→ y). Then, we have ĩN(x) ∪ ĩN(y) ⊇ ĩN(x → y),
ĩN(x) ∪ ĩN(y) ⊇ ĩN(x ↪→ y).

Similarly, let x, y ∈ X with f̃N(x) = μ5, f̃N(y) = μ6; we can obtain f̃N(x) ∪ f̃N(y) ⊇ f̃N(x → y),
f̃N(x) ∪ f̃N(y) ⊇ f̃N(x ↪→ y).

Thus, N is a neutrosophic hesitant fuzzy subalgebra of X.
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Definition 12. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X.
X(1)

N (ak, b), X(2)
N (ak, b), X(3)

N (ak, b), X(4)
N (ak, b), X(5)

N (a) are called generated subsets by N: ∀a, b ∈ X, k ∈ N,

X(1)
N (ak, b) = {x ∈ X|t̃N(ak ∗ (b ∗ x)) = t̃N(1),

ĩN(ak ∗ (b ∗ x)) = ĩN(1), f̃N(ak ∗ (b ∗ x)) = f̃N(1)};

X(2)
N (ak, b) = {x ∈ X|t̃N(ak → (b ↪→ x)) = t̃N(1),

ĩN(ak → (b ↪→ x)) = t̃N(1), f̃N(ak → (b ↪→ x)) = f̃N(1)};

X(3)
N (ak, b) = {x ∈ X|t̃N(ak ↪→ (b → x)) = t̃N(1),

ĩN(ak ↪→ (b → x)) = t̃N(1), f̃N(ak ↪→ (b → x)) = f̃N(1)};

X(4)
N (ak, b) = {x ∈ X|t̃N(ak → (b → x)) = t̃N(1),

ĩN(ak → (b → x)) = ĩN(1), f̃N(ak → (b → x)) = f̃N(1),

t̃N(ak ↪→ (b ↪→ x)) = t̃N(1), ĩN(ak ↪→ (b ↪→ x)) = ĩN(1), f̃N(ak ↪→ (b ↪→ x)) = f̃N(1)};

X(5)
N (a) = {x ∈ X|t̃N(a) ⊆ t̃N(x),

ĩN(a) ⊇ ĩN(x), f̃N(a) ⊇ f̃N(x)}.

where "a" appears "k" times, "∗" represents any binary operation "→" or "↪→" on X,

ak ∗ (b ∗ x) = a ∗ (a ∗ (· · · (a ∗ (b ∗ x)) · · · ));
ak → (b ↪→ x)) = a → (a → (· · · (a → (b ↪→ x)) · · · ));
ak ↪→ (b → x)) = a ↪→ (a ↪→ (· · · (a ↪→ (b → x)) · · · ));
ak → (b → x)) = a → (a → (· · · (a → (b → x)) · · · ));
ak ↪→ (b ↪→ x) = a ↪→ (a ↪→ (· · · (a ↪→ (b ↪→ x)) · · · )).

Theorem 3. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. If N
satisfies the following conditions:

(1) t̃N(x) ⊆ t̃N(1), t̃N(x ↪→ y) = t̃N(x) ∪ t̃N(y), ∀x, y ∈ X;
(2) ĩN(x) ⊇ ĩN(1), ĩN(x ↪→ y) = ĩN(x) ∩ ĩN(y), ∀x, y ∈ X;
(3) f̃N(x) ⊇ f̃N(1), f̃N(x ↪→ y) = f̃N(x) ∩ f̃N(y), ∀x, y ∈ X;

then X(1)
N (ak, b) = X, k ∈ N.

Proof. By Proposition 1, we can obtain ∀x ∈ X,

t̃N(ak ∗ (b ∗ x) = t̃N(1 ↪→ (ak ∗ (b ∗ x)))

=t̃N(1) ∪ t̃N(ak ∗ (b ∗ x))) = t̃N(1).

ĩN(ak ∗ (b ∗ x)) = ĩN(1 ↪→ (ak ∗ (b ∗ x)))

=ĩN(1) ∩ t̃N(ak ∗ (b ∗ x))) = ĩN(1).

f̃N(ak ∗ (b ∗ x)) = f̃N(1 ↪→ (ak ∗ (b ∗ x)))

= f̃N(1) ∩ t̃N(ak ∗ (b ∗ x))) = f̃N(1).

Thus, x ∈ X(1)
N (ak, b), X ⊆ X(1)

N (ak, b).

Conversely, it is easy to check that X(1)
N (ak, b) ⊆ X.

Finally, we can obtain X = X(1)
N (ak, b).

Corollary 1. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. If N
satisfies the following conditions:

(1) t̃N(x) ⊆ t̃N(1), t̃N(x → y) = t̃N(x) ∪ t̃N(y), ∀x, y ∈ X;
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(2) ĩN(x) ⊇ ĩN(1), ĩN(x → y) = ĩN(x) ∩ ĩN(y), ∀x, y ∈ X;
(3) f̃N(x) ⊇ f̃N(1), f̃N(x → y) = f̃N(x) ∩ f̃N(y), ∀x, y ∈ X;

then X(1)
N (ak, b) = X, k ∈ N.

Theorem 4. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. N satisfies
the following conditions:

(1) t̃N(1) ⊇ t̃N(x), ĩN(1) ⊆ ĩN(x), f̃N(1) ⊆ f̃N(x), ∀x ∈ X;
(2) x ↪→ y = 1 ⇒ t̃N(x) ⊆ t̃N(y), ĩN(x) ⊇ ĩN(y), f̃N(x) ⊇ f̃N(y), ∀x, y ∈ X.

If ∀a, b, c ∈ X, k ∈ N, b ≤ c, then X(2)
N (ak, c) ⊆ X(2)

N (ak, b).

Proof: Let x ∈ X(2)
N (ak, c). If b ≤ c, by Proposition 1, we can obtain:

t̃N(1) =t̃N(ak → (c ↪→ x))

=t̃N(c ↪→ (ak → x))

⊆t̃N(b ↪→ (ak → x))

=t̃N(ak → (b ↪→ x)).

Similarly, we can obtain:

ĩN(ak → (b ↪→ x)) ⊆ ĩN(ak → (c ↪→ x)) ⊆ ĩN(1);
f̃N(ak → (b ↪→ x)) ⊆ f̃N(ak → (c ↪→ x)) ⊆ f̃N(1).

That is, x ∈ X(2)
N (ak, b), X(2)

N (ak, c) ⊆ X(2)
N (ak, b).

Corollary 2. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. N satisfies
the following conditions:

(1) t̃N(1) ⊇ t̃N(x), ĩN(1) ⊆ ĩN(x), f̃N(1) ⊆ f̃N(x), ∀x ∈ X;
(2) x → y = 1 ⇒ t̃N(x) ⊆ t̃N(y), ĩN(x) ⊇ ĩN(y), f̃N(x) ⊇ f̃N(y), ∀x, y ∈ X.

If ∀a, b, c ∈ X, k ∈ N, b ≤ c, then X(3)
N (ak, c) ⊆ X(3)

N (ak, b).

The following example shows that X(4)
N (ak, b) may not be a filter of X.

Example 4. Let X = {a, b, c, d, 1} with two binary operations in Tables 3 and 4.

Table 3. →.

→ a b c d 1
a 1 1 1 1 1
b d 1 1 1 1
c d c 1 1 1
d c c c 1 1
1 a b c d 1

Table 4. ↪→.

↪→ a b c d 1
a 1 d 1 1 1
b d 1 1 1 1
c d d 1 1 1
d c b c 1 1
1 a b c d 1

Then, (X;→, ↪→, 1) is a pseudo-BCI algebra. Let:
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N = {(1, [0, 1], [ 1
6 , 1

5 ], [0, 1
5 ]), (a, [ 1

3 , 1
4 ], [0, 5

6 ], [0, 3
4 ]), (b, [0, 1

2 ], [
1
6 , 3

4 ], [0, 1
3 ]),

(c, [ 1
3 , 2

3 ], [0, 3
5 ], [0, 1

4 ]), (d, [ 1
3 , 1], [ 1

6 , 1
3 ], [0, 5

6 ])}.

then X(4)
N (c, d) = {a, c, d, 1} is not a filter of X. Since c → b = c ∈ X(4)

N (c, d), but b /∈ X(4)
N (c, d).

Theorem 5. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. Let X
be a type-2 positive implicative pseudo-BCK algebra. If functions t̃N(x), ĩN(x) and f̃N(x) are injective, then
X(4)

N (ak, b) is a filter of X for all a, b ∈ X, k ∈ N.

Proof. (1) If X is a pseudo-BCK algebra, then by Definition 1 and Proposition 1, we can obtain
1 ∈ X(4)

N (ak, b).

(2) Let x, y ∈ X with x, x → y ∈ X(4)
N (ak, b). Thus, ak ↪→ (b ↪→ x) = 1, ak ↪→ (b ↪→ (x → y)) = 1.

Since functions t̃N , ĩN and f̃N are injective, by Definition 5, we have:

t̃N(1) = t̃N(ak ↪→ (b ↪→ (x → y)))

= t̃N(ak ↪→ ((b ↪→ x)→ (b ↪→ y)))

= t̃N((ak ↪→ (b ↪→ x))→ (ak ↪→ (b ↪→ y)))

= t̃N(1 → (ak ↪→ (b ↪→ y)))

= t̃N(ak ↪→ ((b ↪→ y)).

Similarly, we can obtain ĩN(ak ↪→ ((b ↪→ y)) = ĩN(1), f̃N(ak ↪→ ((b ↪→ y)) = f̃N(1). Thus, we have
y ∈ X(4)

N (ak, b).

(3) Similarly, let x, y ∈ X with x, x ↪→ y ∈ X(4)
N (ak, b); we have y ∈ X(4)

N (ak, b).

This means that X(4)
N (ak, b) is a filter of X for all a, b ∈ X, k ∈ N.

Theorem 6. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} be a neutrosophic hesitant fuzzy set on X. Let X be
a type-2 positive implicative pseudo-BCK algebra. If functions t̃N(x), ĩN(x) and f̃N(x) satisfy the following
identifies: ∀x, y ∈ X,

(1) t̃N(x) ⊆ t̃N(1), ĩN(x) ⊇ iN(1), f̃N(x) ⊇ fN(1);
(2) t̃N(x → y) = t̃N(x) ∩ t̃N(y), ĩN(x → y) = ĩN(x) ∪ ĩN(y), f̃N(x → y) = f̃N(x) ∪ f̃N(y);
(3) t̃N(x ↪→ y) = t̃N(x) ∩ t̃N(y), ĩN(x ↪→ y) = ĩN(x) ∪ ĩN(y), f̃N(x ↪→ y) = f̃N(x) ∪ f̃N(y);

then X(4)
N (ak, b) is a filter of X for all a, b ∈ X, k ∈ N.

Proof. (1) If X is a pseudo-BCK algebra, by Definition 1 and Proposition 1, 1 ∈ X(4)
N (ak, b).

(2) Let x, y ∈ X with x, x → y ∈ X(4)
N (ak, b). We have t̃N(ak ↪→ (b ↪→ x)) = t̃N(1), t̃N(ak ↪→ (b ↪→

(x → y))) = t̃N(1). By Definition 5, we have:

t̃N(1) = t̃N(ak ↪→ (b ↪→ (x → y)))

= t̃N(ak ↪→ ((b ↪→ x)→ (b ↪→ y)))

= t̃N((ak ↪→ (b ↪→ x))→ (ak ↪→ (b ↪→ y)))

= t̃N(ak ↪→ (b ↪→ x)) ∩ t̃(ak ↪→ (b ↪→ y))

= t̃N(1) ∩ t̃(ak ↪→ (b ↪→ y))

= t̃N(ak ↪→ (b ↪→ y)).

Similarly, we can obtain ĩN(ak ↪→ (b ↪→ y)) = ĩN(1), f̃N(ak ↪→ (b ↪→ y)) = f̃N(1). Thus, we have
y ∈ X(4)

N (ak, b).

(3) Similarly, let x, y ∈ X with x, x ↪→ y ∈ X(4)
N (ak, b); we have y ∈ X(4)

N (ak, b).
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This means that X(4)
N (ak, b) is a filter of X for all a, b ∈ X, k ∈ N.

Theorem 7. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} be a neutrosophic hesitant fuzzy set on X and F be
a filter of X. If functions t̃N(x), ĩN(x) and f̃N(x) are injective, then

⋃
X(4)

N (ak, b) = F for all a, b ∈ F, k ∈ N.

Proof. (1) Let x ∈ ⋃
X(4)

N (ak, b). By Definition 12, we have t̃N(a → (ak−1 → (b → x))) =

t̃N(1), ĩN(a → (ak−1 → (b → x))) = ĩN(1), f̃N(a → (ak−1 → (b → x))) = f̃N(1). Since F is a filter of
X and t̃N , ĩN , f̃N are injective, thus we can obtain a → (ak−1 → (b → x)) = 1 and ak−1 → (b → x) ∈ F.
Continuing, we can obtain b → x ∈ F. Since b ∈ F, thus x ∈ F,

⋃
X(4)

N (ak, b) ⊆ F.
(2) Let x ∈ F. When a = 1, b = x, we can obtain t̃N(1k → (x → x)) = t̃N(1k ↪→ (x ↪→ x)) = t̃N(1).

Similarly, we have ĩN(1k → (x → x)) = ĩN(1k ↪→ (x ↪→ x)) = ĩN(1), f̃N(1k → (x → x)) = f̃N(1k ↪→
(x ↪→ x)) = f̃N(1). Thus, we have F ⊆ ⋃X(4)

N (ak, b).

This means that
⋃

X(4)
N (ak, b) = F for all a, b ∈ F, k ∈ N.

Theorem 8. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} be a neutrosophic hesitant fuzzy set on X.
(1) If X(5)

N (a) is a filter of X, then N satisfies: ∀x, y ∈ X,
(i) t̃N(a) ⊆ t̃N(x → y) ∩ t̃N(x), ĩN(a) ⊇ ĩN(x → y) ∪ ĩN(x), f̃N(a) ⊇ f̃N(x → y) ∪ f̃N(x) ⇒

t̃N(a) ⊆ t̃N(y), ĩN(a) ⊇ ĩN(y), f̃N(a) ⊇ f̃N(y);
(ii) t̃N(a) ⊆ t̃N(x ↪→ y) ∩ t̃N(x), ĩN(a) ⊇ ĩN(x ↪→ y) ∪ ĩN(x), f̃N(a) ⊇ f̃N(x ↪→ y) ∪ f̃N(x) ⇒

t̃N(a) ⊆ t̃N(y), ĩN(a) ⊇ ĩN(y), f̃N(a) ⊇ f̃N(y).
(2) If N satisfies Conditions (i), (ii) and t̃N(x) ⊆ t̃N(1), ĩN(x) ⊇ ĩN(1), f̃N(x) ⊇ f̃N(1) for all x, y ∈ X,

then X(5)
N (a) is a filter of X.

Proof. (1) (i) Let x, y ∈ X with t̃N(a) ⊆ t̃N(x → y) ∩ t̃N(x), ĩN(a) ⊇ ĩN(x → y) ∪ ĩN(x), f̃N(a) ⊇
f̃N(x → y) ∪ f̃N(x); we have x ∈ X(5)

N (a), x → y ∈ X(5)
N (a). Since X(5)

N (a) is a filter, thus we can have

y ∈ X(5)
N (a), t̃N(a) ⊆ t̃N(y), ĩN(a) ⊇ ĩN(y), f̃N(a) ⊇ f̃N(y).

(ii) Similarly, we know that (ii) is correct.
(2) Since t̃N(x) ⊆ t̃N(1), ĩN(x) ⊇ ĩN(1), f̃N(x) ⊇ f̃N(1) for all x ∈ X, thus 1 ∈ X(5)

N (a). Let x, y ∈ X

with x, x → y ∈ X(5)
N (a); we can obtain t̃N(a) ⊆ t̃N(x), t̃N(a) ⊆ t̃N(x → y), ĩN(a) ⊇ ĩN(x), ĩN(a) ⊇

ĩN(x → y), f̃N(a) ⊇ f̃N(x), f̃N(a) ⊇ f̃N(x → y). By Condition (i), we have t̃N(a) ⊆ t̃N(y), ĩN(a) ⊇
ĩN(y), f̃N(a) ⊇ f̃N(y). Thus, we can obtain y ∈ X(5)

N (a). Similarly, let x, y ∈ X with x, x ↪→ y ∈ X(5)
N (a),

by Condition (1)(ii); we can obtain y ∈ X(5)
N (a).

This means that X(5)
N (a) is a filter of X.

4. Neutrosophic Hesitant Fuzzy Filters of Pseudo-BCI Algebras

In the following, let X be a pseudo-BCI algebra, unless otherwise specified.

Definition 13. ([22]) A hesitant fuzzy set A = {(x, hA(x))|x ∈ X} is called a hesitant fuzzy pseudo-filter
(briefly, hesitant fuzzy filter) of X if it satisfies:

(HFF1) hA(x) ⊆ hA(1), ∀x ∈ X;
(HFF2) hA(x) ∩ hA(x → y) ⊆ hA(y), ∀x, y ∈ X;
(HFF3) hA(x) ∩ hA(x ↪→ y) ⊆ hA(y), ∀x, y ∈ X.

Definition 14. A neutrosophic hesitant fuzzy set N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is called a
neutrosophic hesitant fuzzy pseudo-filter (neutrosophic hesitant fuzzy filter) of X if it satisfies:

(NHFF1) t̃N(x) ⊆ t̃N(1), ĩN(x) ⊇ ĩN(1), f̃N(x) ⊇ f̃N(1), ∀x ∈ X;
(NHFF2) t̃N(x → y) ∩ t̃N(x) ⊆ t̃N(y), ĩN(x → y) ∪ ĩN(x) ⊇ ĩN(y), f̃N(x → y) ∪ f̃N(x) ⊇ f̃N(y),

∀x, y ∈ X;
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(NHFF3) t̃N(x ↪→ y) ∩ t̃N(x) ⊆ t̃N(y), ĩN(x ↪→ y) ∪ ĩN(x) ⊇ ĩN(y), f̃N(x ↪→ y) ∪ f̃N(x) ⊇ f̃N(y),
∀x, y ∈ X.

A neutrosophic hesitant fuzzy set N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} is called a neutrosophic
hesitant fuzzy closed filter of X if it is a neutrosophic hesitant fuzzy filter such that:

t̃N(x → 1) ⊇ t̃N(x), ĩN(x → 1) ⊆ ĩN(x), f̃N(x → 1) ⊆ f̃N(x).

Example 5. Let X = {a, b, c, d, 1} with two binary operations in Tables 5 and 6. Then, (X;→, ↪→, 1) is
a pseudo-BCI algebra. Let:

N = {(1, [0, 1], [0, 3
7 ], [0, 1

10 ]), (a, [0, 1
4 ], [0, 3

4 ], [0, 1
2 ]), (b, [0, 1

4 ], [0, 3
4 ], [0, 1

2 ]), (c, [0, 1
3 ],

[0, 3
5 ], [0, 1

4 ]), (d, [0, 3
4 ]), [0, 3

6 ], [0, 1
5 ])}.

Then, N is a neutrosophic hesitant fuzzy filter of X.

Table 5. →.

→ a b c d 1
a 1 1 1 1 1
b c 1 1 1 1
c a b 1 d 1
d b b c 1 1
1 a b c d 1

Table 6. ↪→.

↪→ a b c d 1
a 1 1 1 1 1
b d 1 1 1 1
c b b 1 d 1
d a b c 1 1
1 a b c d 1

Theorem 9. Let N = {(x, t̃N(x), ĩN(y), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. Then, N
is a neutrosophic hesitant fuzzy filter of X if and only if it satisfies the following conditions: ∀x ∈ X, Ht̃N

, HĩN
,

Hf̃N
are hesitant fuzzy filters of X.

Proof. Necessity: If N is a neutrosophic hesitant fuzzy filter:
(1) Obviously, Ht̃N

is a hesitant fuzzy filter of X.
(2) By Definition 14, we have (1− ĩN(x)) ⊆ (1− ĩN(1)), 1− (ĩN(x)∪ ĩN(x → y)) = (1− ĩN(x))∩

(1− ĩN(x → y)) ⊆ (1− ĩN(y)); similarly, by Definition 14, we have (1− ĩN(x)) ∩ (1− ĩN(x ↪→ y)) ⊆
(1− ĩN(y)). Thus, HĩN

is hesitant fuzzy filter of X.
(3) Similarly, we have that Hf̃N

is a hesitant fuzzy filter of X.
Sufficiency: If Ht̃N

, HĩN
, Hf̃N

are hesitant fuzzy filters of X. It is easy to prove that t̃N(x), ĩN(x),
f̃N(x) satisfies Definition 14. Therefore, N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is a neutrosophic
hesitant fuzzy filter of X.

Theorem 10. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy set on X. Then,
the following are equivalent:

(1) N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is a neutrosophic hesitant fuzzy filter of X;

180



Symmetry 2018, 10, 174

(2) ∀λ1, λ2, λ3 ∈ P([0, 1]), the nonempty hesitant fuzzy level sets Ht̃N
(λ1), HĩN

(λ2), Hf̃N
(λ3) are filters

of X, where P([0, 1]) is the power set of [0, 1],

Ht̃N
(λ1) ={x ∈ X|λ1 ⊆ t̃N(x)};

HĩN
(λ2) ={x ∈ X|λ2 ⊆ 1− ĩN(x)};

Hf̃N
(λ3) ={x ∈ X|λ3 ⊆ 1− f̃N(x)}.

Proof. (1)⇒(2) (i) Suppose Ht̃N
(λ1) �= ∅. Let x ∈ Ht̃N

(λ1), then λ1 ⊆ t̃N(x). Since N is a neutrosophic
hesitant fuzzy filter of X, by Definition 14, we have λ1 ⊆ t̃N(x) ⊆ t̃N(1). Thus, 1 ∈ Ht̃N

(λ1).
Let x, y ∈ X with x, x → y ∈ Ht̃N

(λ1), then λ1 ⊆ t̃N(x), λ1 ⊆ t̃N(x → y). Since N is
a neutrosophic hesitant fuzzy filter of X, by Definition 14, we have λ1 ⊆ t̃N(x → y) ∩ t̃N(x) ⊆ t̃N(y).
Thus y ∈ Ht̃N

(λ1). Similarly, let x, y ∈ X with x, x ↪→ y ∈ Ht̃N
(λ1). We have y ∈ Ht̃N

(λ1).
Thus, we can obtain that Ht̃N

(λ1) is a filter of X.
(ii) Suppose HĩN

(λ2) �= ∅. Let x ∈ HĩN
(λ2), then λ2 ⊆ 1− ĩN(x). Since N is a neutrosophic

hesitant fuzzy filter of X, we have ĩN(1) ⊆ ĩN(x). Thus, λ2 ⊆ 1− ĩN(x) ⊆ 1− ĩN(1), 1 ∈ HĩN
(λ2).

Let x, y ∈ X with x, x → y ∈ HĩN
(λ2), then λ2 ⊆ 1− ĩN(x), λ2 ⊆ 1− ĩN(x → y). Since N is

a neutrosophic hesitant fuzzy filter of X, we have ĩN(x → y) ∪ ĩN(x) ⊇ ĩN(y). Thus, 1− (ĩN(x →
y) ∪ ĩN(x)) = (1− ĩN(x → y)) ∩ (1− ĩN(x)) ⊆ (1− ĩN(y)), λ2 ⊆ (1− ĩN(y)), y ∈ HĩN

(λ2). Similarly,
let x, y ∈ X with x, x ↪→ y ∈ HĩN

(λ2). We have y ∈ HĩN
(λ2).

Thus, we can obtain that HĩN
(λ2) is a filter of X.

(iii) We have that Hf̃N
(λ3) is a filter of X. The progress of proof is similar to (ii).

(2)⇒(1) Suppose Ht̃N
(λ1) �= ∅, HĩN

(λ2) �= ∅, Hf̃N
(λ3) �= ∅ for all λ1, λ2, λ3 ∈ P([0, 1]).

(i’) Let x ∈ X with t̃N(x) = μ1. Let λ1 = μ1. Since Ht̃N
(λ1) is a filter of X, we have 1 ∈ Ht̃N

(λ1).
Thus, λ1 = μ1 = t̃N(x) ⊆ t̃N(1).

Let x, y ∈ X with t̃N(x) = μ1, t̃N(x → y) = μ4. Let μ1 ∩ μ4 = λ1. Since Ht̃N
(λ1) is a filter of X for

all λ1 ∈ P([0, 1]), we have y ∈ Ht̃N
(λ1). Thus, λ1 = t̃N(x) ∩ t̃N(x → y) ⊆ t̃N(y).

Similarly, let x, y ∈ X with t̃N(x) = μ1, t̃N(x ↪→ y) = μ′4. We can obtain t̃N(x ↪→ y) ∩ t̃N(x) ⊆
t̃N(y).

(ii’) Let x ∈ X with ĩN(x) = μ2. Let λ2 = 1− μ2. Since HĩN
(λ2) is a filter of X for all λ2 ∈ P([0, 1]),

we have 1 ∈ HĩN
(λ2), λ2 ⊆ 1− ĩN(1). Thus, 1− λ2 = μ2 = ĩN(x) ⊇ ĩN(1).

Let x, y ∈ X with ĩN(x) = μ2, ĩN(x → y) = μ5. Let (1− μ2) ∩ (1− μ5) = λ2. Since HĩN
(λ2) is a

filter of X for all λ2 ∈ P([0, 1]), we have y ∈ HĩN
(λ2), λ2 ⊆ 1− ĩN(y). Thus, λ2 = (1− μ2)∩ (1− μ5) =

(1− ĩN(x)) ∩ (1− ĩN(x → y)) = 1− (ĩN(x) ∪ ĩN(x → y)) ⊆ (1− ĩN(y)), ĩN(x) ∪ ĩN(x → y) ⊇ ĩN(y).
Similarly, let x, y ∈ X with ĩN(x) = μ2, ĩN(x ↪→ y) = μ′5; we have ĩN(x) ∪ ĩN(x ↪→ y) ⊇ ĩN(y).
(iii’) Similarly, we can obtain f̃N(x) ⊇ f̃N(1), f̃N(x) ∪ f̃N(x → y) ⊇ f̃N(y), f̃N(x) ∪

f̃N(x ↪→ y) ⊇ f̃N(y).
Therefore, N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is a neutrosophic hesitant fuzzy filter of X.

Definition 15. N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is a neutrosophic hesitant fuzzy set on X. Define a
neutrosophic hesitant fuzzy set N∗ = {(x, t̃∗N(x), ĩ∗N(x), f̃ ∗N(x))|x ∈ X} by:

t̃∗N : X =⇒ P([0, 1]), x !→
{

t̃N(x), x ∈ Ht̃N
(λ1)

ϕ1, x /∈ Ht̃N
(λ1)

ĩ∗N : X =⇒ P([0, 1]), x !→
{

ĩN(x), x ∈ HĩN
(λ2)

1− ϕ2, x /∈ HĩN
(λ2)

f̃ ∗N : X =⇒ P([0, 1]), x !→
{

f̃N(x), x ∈ Hf̃N
(λ3)

1− ϕ3, x /∈ Hf̃N
(λ3)
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where λ1, λ2, λ3, ϕ1, ϕ2, ϕ3 ∈ P([0, 1]), ϕ1 ⊆ λ1, ϕ2 ⊆ λ2, ϕ3 ⊆ λ3. Then, N∗ is called a generated
neutrosophic hesitant fuzzy set by hesitant fuzzy level sets Ht̃N

(λ1), HĩN
(λ2) and Hf̃N

(λ3).

Theorem 11. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy filter of X. Then,
N∗ is a neutrosophic hesitant fuzzy filter of X.

Proof. (1) If N is a neutrosophic hesitant fuzzy filter of X, by Theorem 10, we know that
Ht̃N

(λ1), HĩN
(λ2), Hf̃N

(λ3) are filters of X. Thus, 1 ∈ Ht̃N
(λ1), 1 ∈ HĩN

(λ2), 1 ∈ Hf̃N
(λ3), t̃∗N(1) =

t̃N(1) ⊇ t̃∗N(x), ĩ∗N(1) = ĩN(1) ⊆ ĩ∗N(x), f̃ ∗N(1) = f̃N(1) ⊆ f̃ ∗N(x), ∀x ∈ X
(2) (i) Let x, y ∈ X with x, x → y ∈ Ht̃N

(λ1). By Theorem 9, Theorem 10 and Definition 15, we
know λ1 ⊆ t̃∗N(x → y) ∩ t̃∗N(x) = t̃N(x → y) ∩ t̃N(x) ⊆ t̃N(y) = t̃∗N(y).

Let x, y ∈ X with x, x → y ∈ HĩN
(λ2). By Theorem 9, Theorem 10 and Definition 15, we know

λ2 ⊆ (1− ĩ∗N(x → y))∩ (1− t̃∗N(x)) = (1− ĩN(x → y))∩ (1− t̃N(x)) = 1− (ĩN(x → y)∪ ĩN(x)) ⊆ 1−
ĩN(y) = 1− t̃∗N(y). Thus, we have 1− λ2 ⊇ ĩ∗N(x → y) ∪ ĩ∗N(x) = ĩN(x → y) ∪ ĩN(x) ⊇ iN(y) = ĩ∗N(y).

Similarly, let x, y ∈ X with x, x → y ∈ Hf̃N
(λ3); we have 1− λ3 ⊇ f̃ ∗N(x → y) ∪ f̃ ∗N(x) = f̃N(x →

y) ∪ f̃N(x) ⊇ fN(y) = f̃ ∗N(y).
(ii) Let x, y ∈ X with x /∈ Ht̃N

(λ1) or x → y /∈ Ht̃N
(λ1). By Definition 15, we have t̃∗N(x) = ϕ1 or

t̃∗N(x → y) = ϕ1. Thus, we can obtain t̃∗N(x) ∩ t̃∗N(x → y) = ϕ1 ⊆ t̃∗N(y).
Let x, y ∈ X with x /∈ HĩN

(λ2) or x → y /∈ HĩN
(λ2). By Definition 15, we have ĩ∗N(x) = 1− ϕ2 or

ĩ∗N(x → y) = 1− ϕ2. Since 1− λ2 ⊆ 1− ϕ2; thus, we can obtain ĩ∗N(x) ∪ ĩ∗N(x → y) = 1− ϕ2 ⊇ t̃∗N(y).
Similarly, let x, y ∈ X with x /∈ Hf̃N

(λ3) or x → y /∈ Hf̃N
(λ3); we have f̃ ∗(x) ∪ f̃ ∗(x → y) =

1− ϕ3 ⊇ f̃ ∗(y).
(3) We can obtain t̃∗(x) ∩ t̃∗(x ↪→ y) ⊆ t̃∗(y), ĩ∗(x) ∪ ĩ∗(x ↪→ y) ⊇ ĩ∗(y), f̃ ∗(x) ∪ f̃ ∗(x ↪→ y) ⊇

f̃ ∗(y). The process of proof is similar to (2).
Thus N∗ is a neutrosophic hesitant fuzzy filter of X.

Theorem 12. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} be a neutrosophic hesitant fuzzy filter of X. Then,
N satisfies the following properties, ∀x, y, z ∈ X,

(1) x ≤ y ⇒ t̃N(x) ⊆ t̃N(y), ĩN(x) ⊇ ĩN(y), f̃N(x) ⊇ f̃N(y);
(2) t̃N(x → z) ⊇ t̃N(x → (y ↪→ z)) ∩ t̃N(y), t̃N(x ↪→ z) ⊇ t̃N(x ↪→ (y → z)) ∩ t̃N(y);

ĩN(x → z) ⊆ ĩN(x → (y ↪→ z)) ∪ ĩN(y), ĩN(x ↪→ z) ⊆ ĩN(x ↪→ (y → z)) ∪ ĩN(y);
f̃N(x → z) ⊆ f̃N(x → (y ↪→ z)) ∪ f̃N(y), f̃N(x ↪→ z) ⊆ f̃N(x ↪→ (y → z)) ∪ f̃N(y);

(3) t̃N((x → y) ↪→ y) ⊇ t̃N(x), t̃N((x ↪→ y)→ y) ⊇ t̃N(x);
ĩN((x → y) ↪→ y) ⊆ ĩN(x), ĩN((x ↪→ y)→ y) ⊆ ĩN(x);
f̃N((x → y) ↪→ y) ⊆ f̃N(x), f̃N((x ↪→ y)→ y) ⊆ f̃N(x);

(4) z ≤ x → y ⇒ t̃N(x) ∩ t̃N(z) ⊆ t̃N(y), ĩN(x) ∪ ĩN(z) ⊇ ĩN(y), f̃N(x) ∪ f̃N(z) ⊇ f̃N(y);
z ≤ x ↪→ y ⇒ t̃N(x) ∩ t̃N(z) ⊆ t̃N(y), ĩN(x) ∪ ĩN(z) ⊇ ĩN(y), f̃N(x) ∪ f̃N(z) ⊇ f̃N(y).

Proof. (1) Let x, y ∈ X with x ≤ y. By Proposition 1, we know x → y = 1 (or x ↪→ y = 1). If N is
a neutrosophic hesitant fuzzy filter of X, by Definition 14, we have t̃N(x) = t̃N(1) ∩ t̃N(x) = t̃N(x →
y) ∩ t̃N(x) ⊆ t̃N(y) (t̃N(x) = t̃N(1) ∩ t̃N(x) = t̃N(x ↪→ y) ∩ t̃N(x) ⊆ t̃N(y)). Thus, t̃N(x) ⊆ t̃N(y).

Similarly, we have ĩN(x) ⊇ ĩN(y), f̃N(x) ⊇ f̃N(y).
(2) By Proposition 1, Definition 14, we know, ∀x, y, z ∈ X,

t̃N(x → z) ⊇ t̃N(y ↪→ (x → z)) ∩ t̃N(y) = t̃N(x → (y ↪→ z)) ∩ t̃N(y),
t̃N(x ↪→ z) ⊇ t̃N(y → (x ↪→ z)) ∩ t̃N(y) = t̃N(x ↪→ (y → z)) ∩ t̃N(y).

Similarly, we have, ∀x, y, z ∈ X:

ĩN(x → z) ⊆ ĩN(x → (y ↪→ z)) ∪ ĩN(y), ĩN(x ↪→ z) ⊆ ĩN(x ↪→ (y → z)) ∪ ĩN(y);
f̃N(x → z) ⊆ f̃N(x → (y ↪→ z)) ∪ f̃N(y), f̃N(x ↪→ y) ⊆ f̃N(x ↪→ (y → z)) ∪ f̃N(y).
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(3) By Definition 1 and Definition 14, with regard to the function t̃N(x), we can obtain, ∀x, y ∈ X,

t̃N((x → y) ↪→ y) ⊇ t̃N(x → ((x → y) ↪→ y)) ∩ t̃N(x)

= t̃N((x → y) ↪→ (x → y)) ∩ t̃N(x)

= t̃N(1) ∩ t̃N(x)

= t̃N(x).

Similarly, we have t̃N((x ↪→ y)→ y) ⊇ t̃N(x).
With regard to the function ĩN(x), we can obtain, ∀x, y ∈ X,

ĩN((x → y) ↪→ y) ⊆ ĩN(x → ((x → y) ↪→ y)) ∪ ĩN(x)

= ĩN((x → y) ↪→ (x → y)) ∪ ĩN(x)

= ĩN(1) ∪ ĩN(x)

= ĩN(x).

Similarly, we have ĩN((x ↪→ y)→ y) ⊆ ĩN(x).
Similarly, with regard to the function f̃N(x), we can obtain f̃N((x → y) ↪→ y) ⊆ f̃N(x), f̃N((x ↪→

y)→ y) ⊆ f̃N(x).
(4) Let x, y, z ∈ X with z ≤ x → y. By Remark 1 and Definition 14, we can obtain:

t̃N(x) ∩ t̃N(z) = t̃N(x) ∩ (t̃N(1) ∩ t̃N(z))

= t̃N(x) ∩ (t̃N(z ↪→ (x → y)) ∩ t̃N(z))

⊆ t̃N(x) ∩ t̃N(x → y),

⊆ t̃N(y).

ĩN(x) ∪ ĩN(z) = ĩN(x) ∪ (ĩN(1) ∪ ĩN(z))

= ĩN(x) ∪ (ĩN(z → (x → y)) ∪ ĩN(z))

⊇ ĩN(x) ∪ ĩN(x → y),

⊇ ĩN(y).

Similarly, we can obtain f̃N(x) ∪ f̃N(z) ⊇ f̃N(y).
Let x, y, z ∈ X with z ≤ x ↪→ y. We can obtain t̃N(x) ∩ t̃N(z) ⊆ t̃N(y), ĩN(x) ∪ ĩN(z) ⊇ ĩN(y),

f̃N(x) ∪ f̃N(z) ⊇ f̃N(y). The process of the proof is similar to the above.

Theorem 13. A neutrosophic hesitant fuzzy set N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} is a
neutrosophic hesitant fuzzy filter of X if and only if hesitant fuzzy sets Ht̃N

, HĩN
, Hf̃N

satisfy the following
conditions, respectively.

(1) t̃N(x) ⊆ t̃N(1), t̃N(x → (y ↪→ z)) ∩ t̃N(y) ⊆ t̃N(x → z), t̃N(x ↪→ (y → z)) ∩ t̃N(y) ⊆ t̃N(x ↪→
z), ∀x, y, z ∈ X;

(2) ĩN(x) ⊇ ĩN(1), ĩN(x → (y ↪→ z)) ∪ ĩN(y) ⊇ ĩN(x → z), ĩN(x ↪→ (y → z)) ∪ ĩN(y) ⊇ ĩN(x ↪→
z), ∀x, y, z ∈ X;

(3) f̃N(x) ⊇ f̃N(1), f̃N(x → (y ↪→ z)) ∪ f̃N(y) ⊇ f̃N(x → z), f̃N(x ↪→ (y → z)) ∪ f̃N(y) ⊇
f̃N(x ↪→ z), ∀x, y, z ∈ X.

Proof. Necessity: By Theorem 9, Theorem 12 and Definition 14, (1)∼(3) holds.
Sufficiency: (1) ∀x, y, z ∈ X, by Proposition 1, we can obtain t̃N(y) = t̃N(1 → y) ⊇ t̃N(1 → (x ↪→

y)) ∩ t̃N(x) = t̃N(x ↪→ y) ∩ t̃N(x) and t̃N(y) = t̃N(1 ↪→ y) ⊇ t̃N(1 ↪→ (x → y)) ∩ t̃N(x) = t̃N(x →
y) ∩ t̃N(x). We have ĩN(x) ⊇ ĩN(1) for all x ∈ X. Thus, Ht̃N

is a hesitant fuzzy filter of X.
(2) ∀x, y, z ∈ X, by Proposition 1, we can obtain ĩN(y) = ĩN(1 → y) ⊆ ĩN(1 → (x ↪→ y))∪ ĩN(x) =

ĩN(x ↪→ y) ∪ ĩN(x); thus, we have (1− ĩN(x ↪→ y)) ∩ (1− ĩN(x)) ⊆ (1− ĩN(y)).
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Similarly, we can have (1− ĩN(x → y)) ∩ (1− ĩN(x)) ⊆ (1− ĩN(y)).
It is easy to obtain (1− ĩN(x)) ⊆ (1− t̃N(1)) for all x ∈ X. Thus, HĩN

is a hesitant fuzzy filter
of X.

(3) We have that Hf̃N
is a hesitant fuzzy filter of X. The process of the proof is similar (2).

Therefore, Ht̃N
, HĩN

, Hf̃N
are hesitant fuzzy filters of X. By Theorem 9, we know that N is

a neutrosophic hesitant fuzzy filter of X.

Theorem 14. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} be a neutrosophic hesitant fuzzy filter of X. Then:

n
∏

k=1
xk → y = 1 ⇒ t̃N(y) ⊇

n⋂
k=1

t̃N(xk), ĩN(y) ⊆
n⋃

i=k
ĩN(xk), f̃N(y) ⊆

n⋃
k=1

f̃N(xk).

where n ∈ N,
n
∏

k=1
xk → y = xn → (xn−1 → (· · · (x1 → y) · · · )).

Proof. If N is a neutrosophic hesitant fuzzy filter of X:
(i) By Theorem 12, we know that t̃N(x1) ⊆ t̃N(y), ĩN(x1) ⊇ ĩN(y), f̃N(x1) ⊇ f̃N(y) for n = 1.
(ii) By Theorem 12, we know that t̃N(x2) ⊆ t̃N(x1 → y), ĩN(x2) ⊇ ĩN(x1 → y), f̃N(x2) ⊇

f̃N(x1 → y) for n = 2. By Definition 14, we have t̃N(x1) ∩ t̃N(x1 → y) ⊆ t̃N(y), ĩN(x1) ∪ ĩN(x1 →
y) ⊇ ĩN(y), f̃N(x1) ∪ f̃N(x1 → y) ⊇ f̃N(y). Thus, t̃N(x1) ∩ t̃N(x2) ⊆ t̃N(y), ĩN(x1) ∪ ĩN(x2) ⊇
ĩN(y), f̃N(x1) ∪ f̃N(x2) ⊇ f̃N(y).

(iii) Suppose that the above formula is true for n = j; thus,
j

∏
k=1

xk → y = 1, ∀xj, · · · , x1, y ∈ X,

and we can obtain
j⋂

k=1
t̃N(xk) ⊆ t̃N(y),

j⋃
k=1

ĩN(xk) ⊇ ĩN(y),
j⋃

k=1
f̃N(xk) ⊇ f̃N(y). Therefore, suppose that

j+1
∏

k=1
xk → y = 1, ∀xj+1, · · · , x1, y ∈ X, then we have

j+1⋂
k=2

t̃N(xk) ⊆ t̃N(x1 → y),
j+1⋃
k=2

ĩN(xk) ⊇ ĩN(x1 →

y),
j+1⋃
k=2

f̃N(xk) ⊇ f̃N(x1 → y). By Definition 14, we can obtain:

t̃N(y) ⊇ t̃N(x1) ∩ t̃N(x1 → y) ⊇ t̃N(x1) ∩ (
j+1⋂
k=2

t̃N(xk)) =
j+1⋂
k=1

t̃N(xk),

ĩN(y) ⊆ ĩN(x1) ∪ ĩN(x1 → y) ⊆ ĩN(x1) ∪ (
j+1⋃
k=2

ĩN(xk)) =
j+1⋃
k=1

ĩN(xk),

f̃N(y) ⊆ f̃N(x1) ∪ f̃N(x1 → y) ⊆ f̃N(x1) ∪ (
j+1⋃
k=2

f̃N(xk)) =
j+1⋃
k=1

f̃N(xk),

which complete the proof.

Corollary 3. Let N = {(x, t̃N(x), ĩN(x), f̃N(x)))|x ∈ X)} be a neutrosophic hesitant fuzzy filter of X. Then:

n
∏

k=1
xk ∗ y = 1 ⇒ t̃N(y) ⊇

n⋂
k=1

t̃N(xk), ĩN(y) ⊆
n⋃

k=1
ĩN(xk), f̃N(y) ⊆

n⋃
k=1

f̃N(xk).

where "∗" represents any binary operation "→" or "↪→" on X, n ∈ N,

n
∏

k=1
xk ∗ y = xn ∗ (xn−1 ∗ (· · · (x1 ∗ y) · · · )).

Theorem 15. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} be a neutrosophic hesitant fuzzy filter of X and X
be a pseudo-BCK algebra, then N is a neutrosophic hesitant fuzzy subalgebra of X.
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Proof. If N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} is a neutrosophic hesitant fuzzy filter of X, then we
can obtain ∀x, y ∈ X,

t̃N(x → y) ⊇ t̃N(y ↪→ (x → y)) ∩ t̃N(y)

= t̃N(x → (y ↪→ y)) ∩ t̃N(y)

= t̃N(x → 1) ∩ t̃N(y)

⊇ t̃N(x) ∩ t̃N(y).

ĩN(x → y) ⊆ ĩN(y ↪→ (x → y)) ∪ ĩN(y)

= ĩN(x → (y ↪→ y)) ∪ ĩN(y)

= ĩN(x → 1) ∪ ĩN(y)

⊆ ĩN(x) ∪ ĩN(y).

f̃N(x → y) ⊆ f̃N(y ↪→ (x → y)) ∪ f̃ (y)

= f̃N(x → (y ↪→ y)) ∪ f̃N(y)

= f̃N(x → 1) ∪ f̃N(y)

⊆ f̃N(x) ∪ f̃N(y).

Similarly, we can obtain t̃N(x ↪→ y) ⊇ t̃N(x) ∩ t̃N(y), ĩN(x ↪→ y) ⊆ ĩN(x) ∪ ĩN(y), f̃N(x ↪→ y) ⊆
f̃N(x) ∪ f̃N(y). Thus, N is a neutrosophic hesitant fuzzy subalgebra of X.

Theorem 16. Let N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} be a neutrosophic hesitant fuzzy closed filter of X.
Then, N is a neutrosophic hesitant fuzzy subalgebra of X.

Proof. The process of proof is similar to Theorem 15.

If N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} is a neutrosophic hesitant fuzzy subalgebra of X, then
N may not be a neutrosophic hesitant fuzzy filter of X.

Example 6. Let X = {a, b, c, d, 1} with two binary operations in Tables 1 and 2. Then, (X;→, ↪→, 1) is
a pseudo-BCI algebra. N is a neutrosophic hesitant fuzzy subalgebra of X. However, N is not a neutrosophic
hesitant fuzzy filter of X. Since t̃(b → a) ∩ t̃(b) = [ 1

3 , 1
2 ], t̃(a) = [ 1

3 , 1
4 ], we cannot obtain t̃(b → a) ∩ t̃(b) ⊆

t̃(a).

Definition 16. N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X)} is a neutrosophic hesitant fuzzy set on X. Define a
neutrosophic hesitant fuzzy set N(a,b) = {(x, t̃(a,b)

N (x), ĩ(a,b)
N (x), f̃ (a,b)

N (x))|x ∈ X} by ∀a, b ∈ X,

t̃(a,b)
N : X =⇒ P([0, 1]), x !→

{
ψ1, a → (b → x) = 1, a ↪→ (b ↪→ x) = 1;
ψ2, otherwise :

ĩ(a,b)
N : X =⇒ P([0, 1]), x !→

{
ψ3, a → (b → x) = 1, a ↪→ (b ↪→ x) = 1;
ψ4, otherwise :

f̃ (a,b)
N : X =⇒ P([0, 1]), x !→

{
ψ5, a → (b → x) = 1, a ↪→ (b ↪→ x) = 1;
ψ6, otherwise :

where ψ1, ψ2, ψ3, ψ4, ψ5, ψ6 ∈ P([0, 1]), ψ1 ⊇ ψ2, ψ3 ⊆ ψ4, ψ5 ⊆ ψ6. Then, N(a,b) is called a generated
neutrosophic hesitant fuzzy set.

A generated neutrosophic hesitant fuzzy set N(a,b) may not be a neutrosophic hesitant fuzzy filter
of X.
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Example 7. Let X = {a, b, c, d, 1} with two binary operations in Tables 1 and 2. Then, (X;→, ↪→, 1) is
a pseudo-BCI algebra. N is a neutrosophic hesitant fuzzy set of X. However, N(a,b) is not a neutrosophic
hesitant fuzzy filter of X. Since t̃(1,a)(a → b) ∩ t̃(1,a)(a) = [0, 1], t̃(1,a)(b) = [ 1

3 , 2
3 ], we cannot obtain

t̃(1,a)(a → b) ∩ t̃(1,a)(a) ⊆ t̃(1,a)(b).

Theorem 17. Let X be a pseudo-BCK algebra. If X is a type-2 positive implicative pseudo-BCK algebra, then
N(a,b) is a neutrosophic hesitant fuzzy filter of X for all a, b ∈ X.

Proof. If X is a pseudo-BCK algebra, (1) by Definition 1 and Proposition 1, we can obtain a → (b →
1) = 1 (a ↪→ (b ↪→ 1) = 1). t̃(a,b)

N (1) = ψ1 ⊇ t̃(a,b)
N (x), ĩ(a,b)

N (1) = ψ3 ⊆ ĩ(a,b)
N (x), f̃ (a,b)

N (1) = ψ5 ⊆
f̃ (a,b)
N (x) for all x ∈ X.

(2) (i) Let x, y ∈ X with a → (b → x) �= 1 or a ↪→ (b ↪→ x) �= 1 or a → (b → (x → y)) �= 1 or
a ↪→ (b ↪→ (x → y)) �= 1. Thus, we can obtain:

t̃(a,b)
N (x) ∩ t̃(a,b)

N (x → y) = ψ2 ⊆ t̃(a,b)
N (y), t̃(a,b)

N (x) ∩ t̃(a,b)
N (x ↪→ y) = ψ2 ⊆ t̃(a,b)

N (y);

ĩ(a,b)
N (x) ∪ ĩ(a,b)

N (x → y) = ψ4 ⊇ ĩ(a,b)
N (y), ĩ(a,b)

N (x) ∪ ĩ(a,b)
N (x ↪→ y) = ψ4 ⊇ ĩ(a,b)

N (y);

f̃ (a,b)
N (x) ∪ f̃ (a,b)

N (x → y) = ψ6 ⊇ f̃ (a,b)
N (y), f̃ (a,b)

N (x) ∪ f̃ (a,b)
N (x ↪→ y) = ψ6 ⊇ f̃ (a,b)

N (y).

(ii) Let x, y ∈ X with a → (b → x) = 1, a ↪→ (b ↪→ x) = 1 and a → (b → (x → y)) = 1,
a ↪→ (b ↪→ (x ↪→ y)) = 1. Then, by Proposition 1 and Definition 4, we can obtain:

t̃(a,b)
N (a ↪→ (b ↪→ y))

=t̃(a,b)
N (1 → (a ↪→ (b ↪→ y)))

=t̃(a,b)
N ((a ↪→ (b ↪→ x))→ (a ↪→ (b ↪→ y)))

=t̃(a,b)
N (a ↪→ ((b ↪→ x)→ (b ↪→ y)))

=t̃(a,b)
N (a ↪→ (b ↪→ (x → y)))

=t̃(a,b)
N (1).

t̃(a,b)
N (a → (b → y))

=t̃(a,b)
N (1 ↪→ (a → (b → y)))

=t̃(a,b)
N (((a → (b → x)) ↪→ (a → (b → y)))

=t̃(a,b)
N (a → ((b → x) ↪→ (b → y)))

=t̃(a,b)
N (a → (b → (x ↪→ y)))

=t̃(a,b)
N (1).

Therefore, we can obtain,

t̃(a,b)
N (y) = ψ1 = t̃(a,b)

N (x) ∩ t̃(a,b)
N (x → y), t̃(a,b)

N (y) = ψ1 = t̃(a,b)
N (x) ∩ t̃(a,b)

N (x ↪→ y).

Similarly, we can obtain,

ĩ(a,b)
N (y) = ψ3 = ĩ(a,b)

N (x) ∪ ĩ(a,b)
N (x → y), ĩ(a,b)

N (y) = ψ3 = ĩ(a,b)
N (x) ∪ ĩ(a,b)

N (x ↪→ y);

f̃ (a,b)
N (y) = ψ5 = f̃ (a,b)

N (x) ∪ f̃ (a,b)
N (x → y), f̃ (a,b)

N (y) = ψ5 = f̃ (a,b)
N (x) ∪ f̃ (a,b)

N (x ↪→ y).

This means that N(a,b) is a neutrosophic hesitant fuzzy filter of X.

Example 8. Let X = {a, b, c, d, 1} with two binary operations in Tables 7 and 8. Then, (X;→, ↪→, 1) is
a type-2 positive implicative pseudo-BCI algebra. Let N be a neutrosophic hesitant fuzzy set. We take b, c as
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an example; thus, we have {b, c, d, 1} satisfy d → (c → x) = 1, d ↪→ (c ↪→ x) = 1. Let ψ1 = [0.1, 0.4],
ψ2 = [0.2, 0.3], ψ3 = [0.4, 0.5], ψ4 = [0.3, 0.6], ψ5 = [0.2, 0.8], ψ6 = [0.1, 0.9],

N(d,c) = {(1, ψ1, ψ3, ψ5), (a, ψ2, ψ4, ψ6), (b, ψ1, ψ3, ψ5), (c, ψ1, ψ3, ψ5), (e, ψ1, ψ3, ψ5)} =
{(1, [0.1, 0.4], [0.4, 0.5], [0.2, 0.8]), (a, [0.2, 0.3], [0.3, 0.6], [0.1, 0.9]), (b, [0.1, 0.4], [0.4, 0.5], [0.2, 0.8]),

(c, [0.1, 0.4], [0.4, 0.5], [0.2, 0.8]), (d, [0.1, 0.4], [0.4, 0.5], [0.2, 0.8])}.

Then, we can obtain that N(d,c) is a neutrosophic hesitant fuzzy filter of X.

Table 7. →.

→ a b c d 1
a 1 b c d 1
b a 1 1 1 1
c a d 1 d 1
d a b c 1 1
1 a b c d 1

Table 8. ↪→.

↪→ a b c d 1
a 1 b c d 1
b a 1 1 1 1
c a d 1 d 1
d a b c 1 1
1 a b c d 1

Theorem 18. Let N = {(x, t̃N(x), ĩ(x), f̃ (x))|x ∈ X} be a neutrosophic hesitant fuzzy filter of X. Then,
X(5)

N (a) = {x|t̃N(a) ⊆ t̃N(x), ĩN(a) ⊇ ĩN(x), f̃N(a) ⊇ f̃N(x)} is a filter of X for all a ∈ X.

Proof. (1) Let x, y ∈ X with x, x → y ∈ X5
N(a). Then, we have t̃N(a) ⊆ t̃N(x), t̃N(a) ⊆ t̃N(x → y).

Since N = {(x, t̃N(x), ĩN(x), f̃N(x))|x ∈ X} is a neutrosophic hesitant fuzzy filter, thus we have
t̃N(a) ⊆ t̃N(x) ∩ t̃N(x → y) ⊆ t̃N(y) ⊆ t̃N(1). Similarly, we can get ĩN(a) ⊇ ĩN(x) ∪ ĩ(x → y) ⊇
ĩN(y) ⊇ ĩN(1), f̃N(a) ⊇ f̃N(x) ∪ f̃N(x → y) ⊇ f̃N(y) ⊇ f̃N(1).

(2) Similarly, let x, y ∈ X with x, x ↪→ y ∈ X(5)
N (a); we have t̃N(a) ⊆ t̃N(x)∩ t̃N(x ↪→ y) ⊆ t̃N(y) ⊆

t̃N(1), ĩN(a) ⊇ ĩN(x) ∪ ĩN(x ↪→ y) ⊇ ĩN(y) ⊇ ĩN(1), f̃N(a) ⊇ f̃N(x) ∪ f̃N(x ↪→ y) ⊇ f̃N(y) ⊇ f̃N(1).
This means that X(5)

N (a) satisfies the conditions of Definition 2 (F1), (F2) and (F3); X(5)
N (a) is a filter

of X.

Example 9. Let X = {a, b, c, d, 1} with two binary operations in Tables 5 and 6. Then, (X;→, ↪→, 1) is
a pseudo-BCI algebra. Let:

N = {(1, [0, 1], [0, 3
7 ], [0, 1

10 ]), (a, [0, 1
4 ], [0, 3

4 ], [0, 1
2 ]), (b, [0, 1

4 ], [0, 3
4 ], [0, 1

2 ]),
(c, [0, 1

3 ], [0, 3
5 ], [0, 1

4 ]), (d, [0, 3
4 ]), [0, 3

6 ], [0, 1
5 ])}.

Then, N is a neutrosophic hesitant fuzzy filter of X. Let X(5)
N (c) = {c, d, 1}. It is easy to get that X(5)

N (a) is
a filter.

5. Conclusions

In this paper, the neutrosophic hesitant fuzzy set theory was applied to pseudo-BCI algebra,
and the neutrosophic hesitant fuzzy subalgebras (filters) in pseudo-BCI algebras were developed.
The relationships between neutrosophic hesitant fuzzy subalgebras (filters) and hesitant fuzzy
subalgebras (filters) was discussed, and some properties were demonstrated. In future work, different
types of neutrosophic hesitant fuzzy filters will be defined and discussed.
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Abstract: In the recent years, school administrators often come across various problems while
teaching, counseling, and promoting and providing other services which engender disagreements and
interpersonal conflicts between students, the administrative staff, and others. Action learning is an
effective way to train school administrators in order to improve their conflict-handling styles. In this
paper, a novel approach is used to determine the effectiveness of training in school administrators
who attended an action learning course based on their conflict-handling styles. To this end, a Rahim
Organization Conflict Inventory II (ROCI-II) instrument is used that consists of both the demographic
information and the conflict-handling styles of the school administrators. The proposed method uses
the Neutrosophic Set (NS) and Support Vector Machines (SVMs) to construct an efficient classification
scheme neutrosophic support vector machine (NS-SVM). The neutrosophic c-means (NCM) clustering
algorithm is used to determine the neutrosophic memberships and then a weighting parameter is
calculated from the neutrosophic memberships. The calculated weight value is then used in SVM as
handled in the Fuzzy SVM (FSVM) approach. Various experimental works are carried in a computer
environment out to validate the proposed idea. All experimental works are simulated in a MATLAB
environment with a five-fold cross-validation technique. The classification performance is measured
by accuracy criteria. The prediction experiments are conducted based on two scenarios. In the first
one, all statements are used to predict if a school administrator is trained or not after attending an
action learning program. In the second scenario, five independent dimensions are used individually
to predict if a school administrator is trained or not after attending an action learning program.
According to the obtained results, the proposed NS-SVM outperforms for all experimental works.

Keywords: action learning; school administrator; SVM; neutrosophic classification

1. Introduction

Support Vector Machine (SVM) is a widely used supervised classifier, which has provided better
achievements than traditional classifiers in many pattern recognition applications in the last two
decades [1]. SVM is also known as a kernel-based learning algorithm where the input features are
transformed into a high-dimensional feature space to increment the class separability of the input
features. Then SVM seeks a separating optimal hyperplane that maximizes the margin between two

Symmetry 2018, 10, 176; doi:10.3390/sym10050176 www.mdpi.com/journal/symmetry190
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classes in high-dimensional feature space [2]. Maximizing the margin is an optimization problem
which can be solved using the Lagrangian multiplier [2]. In addition, some of the input features,
which are called support vectors, can also be used to determine the optimal hyperplane [2].

Although SVM outperforms many classification applications, in some applications, some of the input
data points may not be truly classified [3]. This misclassification may arise due to noises or other conditions.
To handle such a problem, Lin et al. proposed Fuzzy SVMs (FSVMs), in which a fuzzy membership is
assigned to each input data point [3]. Thus, a robust SVM architecture is constructed by combining the fuzzy
memberships into the learning of the decision surface. Another fuzzy-based improved SVMs approach was
proposed by Wang et al. The authors applied it to a credit risk analysis of consumer lending [4]. Ilhan et al.
proposed a hybrid method where a genetic algorithm (GA) and SVM were used to predict Single Nucleotide
Polymorphisms (SNP) [5]. In other words, GA was used to select the optimum C and γ parameters in order
to predict the SNP. The authors also used a particle swarm optimization (PSO) algorithm to optimize C and
γ parameters of SVMs. Peng et al. proposed an improved SVM for heterogeneous datasets [6]. To do so,
the authors used a mapping procedure to map nominal features to another space via the minimization of the
predicted generalization errors. Ju et al. proposed neutrosophic logic to improve the efficiency of the SVMs
classifier (N-SVM) [7]. More specifically, the proposed N-SVM approach was applied to image segmentation.
The authors used the diverse density support vector machine (DD-SVM) to improve its efficiency with
neutrosophic set theory [8]. Almasi et al. proposed a new fuzzy SVM method, which was based on an
optimization method [9]. The proposed method simultaneously generated appropriate fuzzy memberships
and solved the model selection problem for the SVM family in linear/nonlinear and separable/non-separable
classification problems. In Reference [10], Tang et al. proposed a novel fuzzy membership function for linear
and nonlinear FSVMs. The structural information of two classes in the input space and in the feature space
was used for the calculation of the fuzzy memberships. Wu et al. used an artificial immune system (AIS) in the
optimization of SVMs [11]. The authors used the AIS algorithm to optimize the C and γ parameters of SVMs
and developed an efficient scheme called AISSVM. Chen et al. optimized the parameters of the SVM by using
the artificial bee colony (ABC) approach [12]. Specifically, the authors used an enhanced ABC algorithm where
cat chaotic mapping initialization and current optimum were used to improve the ABC approach. Zhao et al.
used an ant colony algorithm (ACA) to improve the efficiency of SVMs [13]. The ACA optimization method
was used to select the kernel function parameter and soft margin constant C penalty parameter. Guraksin et al.
used particle swarm optimization (PSO) to tune SVM parameters to improve its efficiency [14]. The improved
SVM approach was applied to a bone age determination system.

In this paper, a new approach is proposed: Neutrosophic SVM (NS-SVM). The neutrosophic set
(NS) is defined as the generalization of the fuzzy set [15]. NS is quite effective in dealing with outliers
and noises. The noises and outlier samples in a dataset can be treated as a kind of indeterminacy. NS has
been successfully applied for indeterminate information processing, and demonstrates advantages
to deal with the indeterminacy information of data [16–18]. NS employs three memberships to
measure the degree of truth (T), indeterminacy (I), and falsity (F) of each dataset. The neutrosophic
c-means (NCM) algorithm is used to produce T, I, and F memberships [16,17]. In recent years, school
administrators often come across various problems while teaching, counseling, and promoting and
providing other services which engender disagreements and interpersonal conflicts between students,
the administrative staff, and others. Action learning is an effective way to train school administrators in
order to improve their conflict-handling styles. To this end, the developed NS-SVM approach is applied
to determine the effectiveness of training in school administrators who attended an action learning
course based on their conflict-handling styles. A Rahim Organization Conflict Inventory II (ROCI-II)
instrument is used that consists of both the demographic information and the conflict-handling styles
of the school administrators. A five-fold cross-validation test is applied to evaluate the proposed
method. The classification accuracy is calculated for performance measure. The proposed method is
also compared with SVM and FSVM.
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The paper is organized as follows. In the next section, a summarization of the present works on
this topic is given. The proposed NS-SVM is introduced in Section 3. Section 4 gives the experimental
work and results. We conclude the paper in Section 5.

2. Related Works

As mentioned earlier, there have been a number of presented works about the feature weighting for
improving the efficiency of classifiers. To this end, Akbulut et al. proposed an NS-based Extreme Learning
Machine (ELM) approach for imbalanced data classification [18]. They initially employed an NS-based
clustering algorithm to assign a weight for each input data point and then the obtained weights were
linked to the ELM formulation to improve its efficiency. In the experiments, the proposed scheme highly
improved the classification accuracy. Ju et al. proposed a similar work and applied it to improve image
segmentation performance [7]. The authors opted to construct the NS weights based on the formulations
given in Reference [7]. The obtained weights were then used in SVM equations. In other words, the authors
used the DD-SVM to improve its efficiency with neutrosophic logic. Guo et al. proposed an unsupervised
approach for data clustering [16]. The authors combined NS theory in an unsupervised data clustering
which can be seen as a weighting procedure. Thus, the indeterminate data points were also considered in
the classification process more efficiently. An NS-based k-NN approach was proposed by Akbulut et al. [19].
The authors used the NS memberships to improve the classification performance of the k-NN classifier.
The proposed scheme calculated the NS memberships based on a supervised neutrosophic c-means (NCM)
algorithm. A final belonging membership U was calculated from the NS triples. A final voting scheme as
given in fuzzy k-NN was considered for class label determination. Budak et al. proposed an NS-based
efficient Hough transform [20]. The authors initially transferred the Hough space into the NS space by
calculating the NS membership triples. An indeterminacy filtering was constructed where the neighborhood
information was used to remove the indeterminacy in the spatial neighborhood of the neutrosophic Hough
space. The potential peaks were detected based on thresholding on the neutrosophic Hough space, and these
peak locations were then used to detect the lines in the image domain.

3. Proposed Neutrosophic Set Support Vector Machines (NS-SVM)

In this section, we briefly introduce the theories of SVM and NS. The readers may refer to related
references for detailed information [1,3]. Then, the proposed neutrosophic set support vector machine
is presented in detail below.

3.1. Support Vector Machine (SVM)

SVM is an important and efficient supervised classification algorithm [1,2]. Given a set of N
training data points {(xi, yi)

N
n=1} where xi is a multidimensional feature vector and yi ∈ {−1, 1} is

the corresponding label, an SVM models a decision boundary between classes of training data as
a separating hyperplane. SVM aims to find an optimal solution by maximizing the margin around the
separating hyperplane, which is equivalent to minimizing ||w|| with the constraint:

yi(w.xi + b) ≥ 1 (1)

SVM employs non-linear mapping to transform the input data into a higher dimensional space.
Thus, the hyperplane can be found in the higher dimensional space with a maximum margin as:

w.ϕ(x) + b = 0 (2)

such that for each data sample (ϕ(xi), yi):

yi(w.ϕ(xi) + b) ≥ 1, i = 1, . . . , N. (3)
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when the input dataset is not linearly separable, then the soft margin is allowed by defining N
non-negative variables, denoted by ξ = (ξ1, ξ2, . . . , ξN), such that the constraint for each sample in
Equation (3) is rewritten as:

yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (4)

where the optimal hyperplane is determined as;

minimum

(
1
2

w2 + C
N

∑
i=1

ξi

)
(5)

subjected to yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (6)

where C is a constant parameter that tunes the balance between the maximum margin and the minimum
classification error.

3.2. Neutrosophic c-Means Clustering

In this section, a weighting function is defined by samples using the neutrosophic c-means (NCM)
clustering. Let A = {A1, A2, , . . . ., Am} be a set of alternatives in the neutrosophic set. A sample Ai
is represented as {T(Ai), I(Ai), F(Ai)}/Ai, where T(Ai), I(Ai) and F(Ai) are the membership values
to the true, indeterminate, and false sets. T(Ai) is used to measure the belonging degree of the sample
to the center of the labeled class, I(Ai) for indiscrimination degree between two classes, and F(Ai) for
the belonging degree to the outliers.

The NCM clustering overcomes the disadvantages of handling indeterminate points in other
algorithms [16]. Here we improve the NCM by only computing neutrosophic memberships to the true
and indeterminate sets based on the samples’ distribution.

Using NCM, the truth and indeterminacy memberships are defined as:

K =

[
1

�1

C

∑
j=1

(
xi − cj

)− 2
m−1 +

1
�2

(xi − cimax)
−( 2

m−1 ) +
1

�3
δ−(

2
m−1 )

]
(7)

Tij =
K
�1

(xi − cj)
−( 2

m−1 ) (8)

Ii =
K
�2

(xi − cimax)
−( 2

m−1 ) (9)

where Tij and Ii are the true and indeterminacy membership values of point i, and the cluster center
is denoted as cj. cimax is obtained from indexes of the largest and second largest value of Tij. �1, �2,

and �3 are constant weights. Tij and Ii are updated at each iteration until
∣∣∣T(k+1)

ij − T(k)
ij

∣∣∣ < ε, where ε is
a termination criterion.

3.3. Proposed Neutrosophic Set Support Vector Machine (NS-SVM)

In the fuzzy support vector machine (FSVM), a membership gi is assigned for each input data
point {(xi, yi)

N
n=1}, where 0 < gi < 1 [3]. As gi and ξi shows the membership and the error of SVM for

input data point xi , respectively, the term giξi shows the measure of error with different weighting.
Thus, the optimal hyperplane problem can be re-solved as;

minimum

(
1
2

w2 + C
N

∑
i=1

giξi

)
(10)

subjected to yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (11)
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In the proposed method, a weighting function is defined in the NS based on the memberships
to truth and indeterminacy and then used to remove the effect of indeterminacy information
for classification.

gNi =
C

∑
j=1

Tij·Ii (12)

Then we use the newly defined weight function gNi to replace the weight function in Equation (4),
and an optimization procedure is employed to minimize the cost function as:

minimum

(
1
2

w2 + C
N

∑
i=1

gNi·ξi

)
(13)

subjected to yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (14)

Finally, the support vectors are identified and their weights are obtained for classification. The semantic
algorithm of the proposed method is given as:

Input: Labeled training dataset.
Output: Predicted class labels.
Step 1: Calculate the cluster centers according to the labeled dataset and employ NCM algorithm

to determine NS memberships T and I for each data point.
Step 2: Calculate gNi by using T and I components according to Equation (8).
Step 3: Optimize NS-SVM by minimizing the cost function according to Equation (9).
Step 4: Calculate the labels of test data.

4. Experimental Work and Results

In this study, a new approach NS-SVM is proposed and applied to determine if an action learning
experience resulted in school administrators being more productive in their conflict-management skills [21].
To this end, an experimental organization was constructed where 38 administrators from various schools in
Elazig/Turkey were administered a pre-test and a post-test of the Rahim Organization Conflict Inventory II
(ROCI-II) [22]. The pre-test was applied to the administrators before the action learning experience and the
post-test was applied after the action learning experience. The ROCI-II contains 28 scale items. These scale
items are grouped into five dimensions: integrating, obliging, dominating, avoiding, and compromising.
The dataset, which was used in this work, is given in Appendix A. The MATLAB software is used in
construction of the NS-SVM approach. In the evaluation of the proposed method, a five-fold cross-validation
test is used and the mean accuracy value is recorded. During the experimental work, two different scenarios
are considered. In the first one, all 28 scale items are used to determine the trained and non-trained
school administrators. In the second scenario, each dimension of ROCI-II is used to determine trained and
non-trained administrators in order to determine the relationship between the dimensions and the trained
and non-trained school administrators. The NS-SVM parameter C is searched in the range of [10−3, 102] at
a step size of 10−1. In addition, for NCM the following parameters are chosen: ε= 10−3, �1= 0.75, �2= 0.125,
�3= 0.125, which were obtained from trial and error. The δ parameter of NCM method is also searched in
the range of

{
2−10, 2−8, . . . , 28, 210}. The dataset is normalized with zero mean and unit variance. Table 1

shows the obtained accuracy scores for the first scenario. The obtained results are further compared with
FSVM and other SVM types such as Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse
Gaussian SVMs.

As seen in Table 1, 81.2% accuracy is obtained with the proposed NS-SVM method, which is
the highest among all compared classifier types. The second highest accuracy, 76.9%, is obtained by
the FSVM method. An accuracy score of 73.7% is produced by both linear and medium Gaussian
SVM methods. In addition, quadratic and cubic SVM techniques produce 68.4% accuracy scores.
An accuracy score of 63.2% is obtained by the coarse Gaussian SVM method and finally, the worst
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accuracy score, 48.7%, is obtained by the fine Gaussian SVM method. Generally speaking, contributing
memberships as weighting to SVM highly increases the efficiency. Both FSVM and NS-SVM produce
better results than traditional SVM methods. The experimental results that cover the second scenario
are given in Tables 2–6. Table 2 shows the obtained accuracy scores when the integrating dimension is
used as input. The integrating dimension has six scale items.

Table 1. Prediction accuracies for the first scenario. The bold case shows the highest accuracy. SVM:
Support Vector Machines; FSVM: Fuzzy Support Vector Machines; NS-SVM: Neutrosophic Support
Vector Machines.

Classifier Type Accuracy (%)

Linear SVM 73.7
Quadratic SVM 68.4

Cubic SVM 68.4
Fine Gaussian SVM 48.7

Medium Gaussian SVM 73.7
Coarse Gaussian SVM 63.2

FSVM 76.9
NS-SVM 81.2

As seen in Table 2, the highest accuracy score, 80.3%, is obtained by the proposed method.
This score is 4% better than that achieved by FSVM. The FSVM method produces a 76.3% accuracy
score, which is the second highest. Linear and medium Gaussian SVM methods produce 73.7%
accuracy scores, which are the third highest. In addition, linear and medium Gaussian SVM methods
achieve the best accuracy among the ordinary SVM techniques. It is worth mentioning that cubic SVM
has the lowest accuracy score, with an achievement of 53.9%.

Table 2. Prediction accuracies for the second scenario. The integrating dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 73.7
Quadratic SVM 57.9

Cubic SVM 53.9
Fine Gaussian SVM 60.5

Medium Gaussian SVM 73.7
Coarse Gaussian SVM 67.1

FSVM 76.3
NS-SVM 80.3

Table 3 shows the achievements obtained when the obliging dimension is used as input to the
classifiers. The obliging dimension covers five scale items and 73.8% accuracy score, which is the
highest, obtained by the NS-SVM method. FSVM also produces a 71.3% accuracy score, which is
the second-best achievement. The worst accuracy score is obtained by quadratic SVM, for which the
accuracy score is 50.0%. One important inference from Table 3 is that ordinary SVM techniques produce
almost similar achievements, while weighting with memberships highly improves the accuracy.

The dominating dimension also covers five scale items and the produced results are shown in
Table 4. As seen in Table 4, the highest accuracy, 70.0%, is produced by the proposed NS-SVM method.
In addition, the second-best accuracy score, 65.0%, is obtained by the FSVM method. The linear
SVM obtains 59.2% accuracy, which is the third highest accuracy score. When one considers the
ordinary SVM’s achievements, an obvious improvement can be seen easily that is achieved by the
NS-SVM method.
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Table 3. Prediction accuracies for the second scenario. The obliging dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 61.8
Quadratic SVM 50.0

Cubic SVM 51.3
Fine Gaussian SVM 52.6

Medium Gaussian SVM 61.8
Coarse Gaussian SVM 55.3

FSVM 71.3
NS-SVM 73.8

Table 4. Prediction accuracies for the second scenario. The dominating dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 59.2
Quadratic SVM 57.9

Cubic SVM 52.6
Fine Gaussian SVM 55.3

Medium Gaussian SVM 52.6
Coarse Gaussian SVM 55.3

FSVM 65.0
NS-SVM 70.0

The avoiding dimension covers six scale items and the produced results are given in Table 5. As one
evaluates the obtained results given in Table 5, it can be observed that the avoiding dimension is not
efficient enough in discriminating trained and non-trained participants. In other words, the ordinary SVM
techniques do not achieve better accuracy scores. Among them, the highest accuracy, 53.9%, is produced
by the cubic SVM method. On the other hand, both FSVM and the proposed NS-SVM methods produce
better accuracy scores, with achievements of 63.8% and 66.3%, respectively. Once more, the best accuracy
is obtained by the proposed NS-SVM method.

Table 5. Prediction accuracies for the second scenario. The avoiding dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 50.0
Quadratic SVM 43.4

Cubic SVM 53.9
Fine Gaussian SVM 48.7

Medium Gaussian SVM 44.7
Coarse Gaussian SVM 42.1

FSVM 63.8
NS-SVM 66.3

Finally, the compromising dimension covers six scale items and the produced results are given
in Table 6. As seen in Table 6, the compromising dimension is quite efficient in the determination of
trained and non-trained participants, where better accuracy scores are visible when compared with
the avoiding dimension’s accuracy scores. A 75.0% accuracy score, the highest among all methods,
is obtained by NS-SVM. A 73.8% accuracy score is obtained by the FSVM method. The highest third
accuracy score is produced by medium Gaussian SVM.
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Table 6. Prediction accuracies for the second scenario. The compromising dimension is used as input.
The bold case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 67.1
Quadratic SVM 67.1

Cubic SVM 57.9
Fine Gaussian SVM 65.8

Medium Gaussian SVM 71.1
Coarse Gaussian SVM 68.4

FSVM 73.8
NS-SVM 75.0

We further analyze the results obtained from the first scenario by considering a statistical measure
and the running time. To this end, the f-measure metric was considered. The f-measure calculates the
weighted harmonic mean of recall and precision [23]. The results are tabulated in Table 7.

Table 7. Calculated f-measure and running times for the first scenario. The bold cases show the
better achievements.

Classifier Type f-Measure (%) Time (s)

Linear SVM 73.50 0.314
Quadratic SVM 68.50 0.129

Cubic SVM 68.50 0.122
Fine Gaussian SVM 48.50 0.119

Medium Gaussian SVM 71.00 0.130
Coarse Gaussian SVM 61.00 0.129

FSVM 76.50 0.089
NS-SVM 80.00 0.065

In Table 7, the best f-measure achievement score, 80.00%, was achieved by the proposed NS-SVM
method. The second-best f-measure score, 76.50%, was produced by FSVM. The other SVM techniques
also produced reasonable f-measure scores when their accuracy achievements were considered (Table 1).
In addition, the running time of the proposed method was less than those of the other SVM methods.
The proposed method achieved its process at 0.065 s. In other words, this running time is almost half
the running times of the non-weighted SVM methods. Thus, it is evident that the proposed NS-SVM
performed more accurate results in a very short time, demonstrating its efficiency.

5. Conclusions

In this paper, neutrosophic set theory and SVM is used to construct an efficient classification approach
called NS-SVM. It is then applied to an educational problem. More specifically, the determination of
the effectiveness of training in school administrators who attended an action learning course based on
their conflict-handling styles is achieved. To this end, a ROCI-II instrument is used that consists of both
the demographic information and the conflict-handling styles of the school administrators. Six various
SVM approaches and FSVM are used in performance comparison. The experimental works are carried
out with a five-fold cross-validation technique and the classification accuracy is measured to evaluate
the performance of the proposed NS-SVM approach. The experiments are conducted based on two
scenarios. In the first one, all statements are used to predict if a school administrator is trained or not
after attending an action learning program. In the second scenario, five independent dimensions are
used individually to predict if a school administrator is educated or not after attending an action learning
program. According to the obtained results, the first scenario achieves the best performance with the
NS-SVM method, resulting in an accuracy score of 81.2%. In addition, for all experiments in the second
scenario, the proposed NS-SVM achieves the highest accuracy scores as given in Tables 2–6. Furthermore,
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FSVM achieved the second highest accuracy scores for all experiments that are handled in scenarios
1 and 2. This situation shows that embedding the membership degrees into the SVM method highly
improves its discriminatory ability. To further analyze the efficiency of the proposed method, we used
the f-measure test and the running times of the methods. The proposed NS-SVM yielded the highest
f-measure score. In addition, the running time of the proposed method was much less than those of the
traditional SVM techniques.

This study revealed important results for both educational research and determining the effectiveness
of educational practices. First, this research showed that the NS-SVM technique can be used in pre-test
and post-test comparisons in experimental educational research. In addition, this study demonstrated that
the effectiveness levels of training courses can be determined by examining the NS-SVM discrimination
accuracy of individuals who attended training courses compared to those who did not.

Author Contributions: M.T., D.Ş., S.K., Y.G. and F.S. conceived and worked together to achieve this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The dataset was used in the experimental works is given in Figure A1. The features are in the
columns and the last column shows the class labels. Moreover, the rows show the number of samples.

This dataset was originally constructed based on the questionnaire that was based on the ROCI-II
instrument [24]. As mentioned earlier, the ROCI-II instrument contains 28 scale items which are
grouped into five dimensions; integrating (six scale items, Features 1–6), obliging (five scale items,
Features 7–11), dominating (five scale items, Features 12–16), avoiding (six scale items, Features 17–22),
and compromising (six scale items, Features 23–28). The school administrators were asked to fill out
this questionnaire by assigning a five-point Likert scale (1–5) for each feature before and after a action
learning course. Thus, 76 questionnaires were obtained. In scenario 1, the 28 scale items were used in
the prediction of trained and non-trained school administrators and in scenario 2, each dimension of
the ROCI-II instrument was used to predict trained and non-trained school administrators.
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Abstract: The purpose of the paper is to study new algebraic operations and fundamental properties
of totally dependent-neutrosophic sets and totally dependent-neutrosophic soft sets. First, the
in-coordination relationships among the original inclusion relations of totally dependent-neutrosophic
sets (called type-1 and typ-2 inclusion relations in this paper) and union (intersection) operations are
analyzed, and then type-3 inclusion relation of totally dependent-neutrosophic sets and corresponding
type-3 union, type-3 intersection, and complement operations are introduced. Second, the following
theorem is proved: all totally dependent-neutrosophic sets (based on a certain universe) determined
a generalized De Morgan algebra with respect to type-3 union, type-3 intersection, and complement
operations. Third, the relationships among the type-3 order relation, score function, and accuracy
function of totally dependent-neutrosophic sets are discussed. Finally, some new operations and
properties of totally dependent-neutrosophic soft sets are investigated, and another generalized De
Morgan algebra induced by totally dependent-neutrosophic soft sets is obtained.

Keywords: neutrosophic set; soft set; totally dependent-neutrosophic set; totally dependent-neutrosophic
soft set; generalized De Morgan algebra

1. Introduction

In the real world, uncertainty exists universally, so uncertainty becomes the research object of
many branches of science. In order to express and deal with uncertainty, many mathematical tools and
methods have been put forward, for example, probability theory, fuzzy set theory [1], intuitionistic
fuzzy set [2], and soft set theory [3], and these theories have been widely used in many fields [4–17].

As a general framework, F. Smarandache proposed the concept of a neutrosophic set to deal with
incomplete, indeterminate, and inconsistent decision information [18]. A neutrosophic set includes
truth membership, falsity membership, and indeterminacy membership. In this paper, we only discuss
single-valued neutrosophic sets [19]. Recently, the neutrosophic set theory has been applied to many
scientific fields (see [20–25]).

In 2006, F. Smarandache introduced, for the first time, the degree of dependence (and consequently
the degree of independence) between the components of the fuzzy set, and also between the
components of the neutrosophic set [26]. In 2016, the refined neutrosophic set was generalized
to the degree of dependence or independence of subcomponets [26]. In this paper, we will discuss a
special kind of neutrosophic set, that is, a totally dependent-neutrosophic set. A neutrosophic set A
on the universe X is called totally dependent if TA, IA, FA are 100% dependent, that is TA(x) + IA(x) +
FA(x) ≤ 1 for any x in X.

Symmetry 2018, 10, 187; doi:10.3390/sym10060187 www.mdpi.com/journal/symmetry201
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It should be noted that a “totally dependent-neutrosophic set” is also known as a picture fuzzy
set (see [27–29]) or standard neutrosophic set (see [30]). But, F. Smarandache, for the first time, used
the name “totally dependent”, so this name will be used from the beginning of this article.

This paper tried to prove the new ordering relation on D* that is given in paper [29] (it is
named as type-3 ordering relation in this paper) as a partial ordering relation and consider some
new operations on totally dependent-neutrosophic sets and totally dependent-neutrosophic soft sets.
In Section 2, we first review some basic notions of intuitionistic fuzzy sets, fuzzy soft sets, totally
dependent-neutrosophic sets, and so on. Moreover, we analyze the in-coordination relationships
among the original inclusion relations of totally dependent-neutrosophic sets (picture fuzzy sets),
called type-1 inclusion relation, and type-2 inclusion relation in this paper; and union (intersection)
operations. In Section 3, we prove that the type-3 ordering relation is a partial ordering relation
and D* makes up a lattice about type-3 intersection and type-3 union relations. In Section 4, new
algebraic operations (called type-3 union and type-3 intersection) of totally dependent-neutrosophic
sets are given with their operations rules. Additionally, we point out that all totally dependent-
neutrosophic sets on a certain universe make up generalized De Morgan algebra about the type-3
intersection operation, type-3 union operation, and complement operation. In Section 5, we study
some new operations and properties of totally dependent-neutrosophic soft sets (that is, picture fuzzy
soft sets) and show that, for the appointed parameter set, totally dependent-neutrosophic soft sets over
a certain universe make up generalized De Morgan algebra about type-3 intersection, type-3 union,
and complement operations.

2. Preliminaries and Motivation

2.1. Some Basic Concepts

We will now review several basic concepts of intuitionistic fuzzy sets, fuzzy soft sets, standard
neutrosophic sets (picture fuzzy sets), and so on.

Definition 1 [2]. Let X be a nonempty set (universe). An intuitionistic fuzzy set A on X is an object of the
form:

A = {(x, μA(x), νA(x))|x ∈ X},

where μA(x), νA(x) ∈ [0, 1], μA(x) + νA(x)≤ 1 for all x in X. μA(x) ∈ [0, 1] is named the “degree of membership
of x in A”, and νA(x) is named the “degree of non-membership of x in A”.

Definition 2 [6]. Assume that F(U) is the set of all fuzzy sets on U, and E is a set of parameters, A ⊆ E. If F is
a mapping given by F:A→ F(U), then the pair 〈F, A〉 is known as a fuzzy soft set over U.

Definition 3 [26,27]. Let X be a nonempty set (universe). A totally dependent-neutrosophic set (or picture
fuzzy set) A on X is an object of the form:

A = {(x, μA(x), ηA(x), νA(X))|x ∈ X},

where μA(x), ηA(x), νA(x) ∈ [0, 1], μA(x) + ηA(x) + νA(x) ≤ 1, for all x in X. μA(x) is named as the “degree of
positive membership of x in A”, ηA(x) is named as the “degree of neutral membership of x in A”, and νA(x) is
named the “degree of negative membership of x in A”.

Let TDNS(X) denote the set of all totally dependent-neutrosophic sets (or picture fuzzy sets) on X.

Definition 4 [26,28]. Assume that U is an initial universe set and E is a set of parameters, A ⊆ E. If F is a
mapping given by F:A→ TDNS(U), then the pair (F, A) is called a totally dependent-neutrosophic soft set (or
picture fuzzy soft set) over U.
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Obviously, a totally dependent-neutrosophic soft set (TDNSSs) is a mapping from parameters to
TDNS(U). It is a parameterized family of totally dependent-neutrosophic sets of U. Clearly, ∀e ∈ A, F(e)
can be written as a totally dependent-neutrosophic set such that:

F(e) =
{(

x, μF(e)(x), ηF(e)(x), νF(e)(x)
)
|x ∈ U

}
,

where μF(e)(x), ηF(e)(x), and νF(e)(x) are the positive membership, neutral membership, and negative
membership functions, respectively.

Remark 1. For inclusion relation and basic algebraic operations of totally dependent-neutrosophic sets (or
picture fuzzy sets), we can define them as special simple-valued neutrosophic sets, that is (see [18,19], we will
call them type-1 operations): for every two totally dependent-neutrosophic sets (TDNSs) A and B,

(1) A ⊆1 B if ∀x ∈ X, μA(x) ≤ μB(x), ηA(x) ≥ ηB(x), νA(x) ≥ νB(x);
(2) A = B if A ⊆1 B and B ⊆1 A;
(3) A ∪1 B = {(x, max(μA(x), μB(x)), min(ηA(x), ηB(x)), min(νA(x), νB(x)))|x ∈ X};
(4) A ∩1 B = {(x, min(μA(x), μB(x)), max(ηA(x), ηB(x)), max(νA(x), νB(x)))|x ∈ X};
(5) co(A) = Ac = {(x, νA(x), ηA(x), μA(x))|x ∈ X}.

In [27], inclusion relation and basic algebraic operations of totally dependent-neutrosophic sets
(or picture fuzzy sets) are defined using another approach, and we will call them type-2 operations.

Definition 5 [27]. For every two totally dependent-neutrosophic sets (TDNSs) A and B, type-2 inclusion
relation, union, intersection operations, and the complement operation are defined as follows:

(1) A ⊆2 B if ∀x ∈ X, μA(x) ≤ μB(x), ηA(x) ≤ ηB(x), νA(x) ≥ νB(x);
(2) A = B if A ⊆2 B and B ⊆2 A;
(3) A ∪2 B = {(x, max(μA(x), μB(x)), min(ηA(x), ηB(x)), min(νA(x), νB(x)))|x ∈ X};
(4) A ∩2 B = {(x, min(μA(x), μB(x)), min(ηA(x), ηB(x)), max(νA(x), νB(x)))|x ∈ X};
(5) co(A) = Ac = {(x, νA(x), ηA(x), μA(x))|x ∈ X}.

Remark 2. It should be noted that the type-2 operations here (for totally dependent-neutrosophic sets) are not
the same as in the literature [25] (for neutrosophic sets).

Proposition 1 [27]. For every TDNS’s A, B, and C, the following assertions are true:

(1) If A ⊆2 B and B ⊆2 C, then A ⊆2 C;
(2) (Ac)c = A;
(3) A ∩2 B = B ∩2 A, A ∪2 B = B ∪2 A;
(4) (A ∩2 B) ∩2 C = A ∩2 (B ∩2 C), (A ∪2 B) ∪2 C = A ∪2 (B ∪2 C);
(5) (A ∩2 B) ∪2 C = (A ∪2 C) ∩2 (B ∪2 C), (A ∪2 B) ∩2 C = (A ∩2 C) ∪2 (B ∩2 C);
(6) (A ∩2 B)c = Ac ∪2 Bc, (A ∪2 B)c = Ac ∩2 Bc.

Definition 6 [31]. Assume that α = (μα, ηα, να, ρα) is a totally dependent-neutrosophic number (picture fuzzy
number), where μα + ηα + να ≤ 1 and ρα = 1 − μα − ηα − να. The mapping S(α) = μα − να is called the score
function, and the mapping H(α) = μα + ηα + να is called the accuracy function, where S(α) ∈ [−1, 1], H(α) ∈
[0, 1]. Moreover, for any two totally dependent-neutrosophic numbers (picture fuzzy number) α and β,

(1) when S(α) > S(β), we say that α is superior to β, and it is expressed by α � β;
(2) when S(α) = S(β), then
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(i) when H(α) = H(β), we say that α is equivalent to β, and it is expressed by α ∼ β;
(ii) when H(α) > H(β), we say that α is superior to β, and it is expressed by α � β.

Definition 7 [32]. Let (M, ∨, ∧, −, 0, 1) be a universal algebra. Then (M, ∨, ∧, −, 0, 1) is called a generalized
De Morgan algebra (or GM-algebra), if (M, ∨, ∧, 0, 1) is a bounded lattice and the unary operation satisfies the
identities:

(1) (x−)− = x;
(2) (x ∧ y)− = x− ∨ y−;
(3) 1− = 0.

2.2. On Inclusion Relations of Totally Dependent-Neutrosophic Sets (Picture Fuzzy Sets)

In Ref. [29], the set D* is defined as follows:

D∗ =
{

x = (x1, x2, x3)
∣∣∣x ∈ [0, 1]3, x1 + x2 + x3 ≤ 1

}
.

When x ∈ D*, it is denoted by x = (x1, x2, x3), that is, the first component of x is expressed by
x1, the second component of x is expressed by x2, and the third component of x is expressed by x3.

Moreover, the units of D* are expressed by 1D* = (1, 0, 0) and 0D* = (0, 0, 1), respectively.
It can easily be seen that a totally dependent-neutrosophic set

A = {(x, μA(x), ηA(x), νA(x))|x ∈ X },

can be regarded as a D*-fuzzy set, that is, a mapping of:

A : X → D∗ : x → (μA(x), ηA(x), νA(x)).

By Definition 5(1), the original inclusion relation of totally dependent-neutrosophic sets is built
on the following order relation on D* (it is named a type-2 inclusion relation in this paper):

∀x, y ∈ D∗, x ≤2 y ⇔ (x1 ≤ y1) ∧ (x2 ≤ y2) ∧ (x3 ≥ y3).

The above “∧” denotes “and”. Then,
A ⊆2 B if and only if (∀x ∈ X) (μA(x), ηA(x), νA(x)) ≤2 (μB(x), ηB(x), νB(x)).
Accordingly, type-2 union, intersection, and complement operations in Definition 5 are denoted

as the following:

A ∪2 B = {(max(μA(x), μB(x)), min(ηA(x), ηB(x)), min(νA(x), νB(x)))|x ∈ X}
= {(μA(x), ηA(x), νA(x)) ∨2 (μB(x), ηB(x), νB(x))|x ∈ X};

A ∩2 B = {(min(μA(x), μB(x)), min(ηA(x), ηB(x)), max(νA(x), νB(x)))|x ∈ X}
= {(μA(x), ηA(x), νA(x)) ∧2 (μB(x), ηB(x), νB(x))|x ∈ X};

Ac2 = { (νA(x), ηA(x), μA(x))|x ∈ X} = {
(μA(x), ηA(x), νA(x))c2

∣∣x ∈ X
}

.

Now, we discuss the in-coordination relationships among type-2 inclusion relations of
totally dependent-neutrosophic sets and type-2 union (intersection) operations. Consider the
following examples.
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Example 1. Let x = (0.3, 0.4, 0.1), y = (0.4, 0.3, 0.2) ∈ D*. Then,

x ∨2 y = (0.4, 0.3, 0.1), x ∧2 y = (0.3, 0.3, 0.2).

Therefore, x �2 x ∨2 y. This means that x ∨1 y is not an upper bound of x and y. Moreover,

x ∨2 (x ∧2 y) = (0.3, 0.3, 0.1) �= x.

It follows that the absorption law is not true for ∨2 and ∧2.

Example 2. Let x = (0.3, 0.4, 0.2), y = (0.4, 0.35, 0.1) ∈ D*. Then,

x ≤2 y, x ∨2 y = (0.4, 0.35, 0.1) �= y.

This means that x ≤2 y � x ∨2 y = y.

The above examples show that the type-2 inclusion relation of totally dependent-neutrosophic
sets is inconsistent with the union and intersection operations. Now, we introduce a new inclusion of
totally dependent-neutrosophic sets.

Definition 8. Assume that A and B are two totally dependent-neutrosophic sets on X. Then, the relation ⊆3
defined as the following is called a type-3 inclusion relation: A ⊆3 B when and only when

for all x in X, (μA(x) < μB(x), νA(x) ≥ νB(x)), or (μA(x) = μB(x), νA(x) > νB(x)),
or (μA(x) = μB(x), νA(x) = νB(x) and ηA(x) ≤ ηB(x)).

It should be noted that the relation ⊆3 is built on the following order relation on D* (see [29], it is
named a type-3 order relation):

x ≤3 y ⇔ ((x1 < y1) ∧ (x3 ≥ y3)) ∨ ((x1 = y1) ∧ (x3 > y3)) ∨ ((x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2)).

Here, “∧” represents the logic and operation, and “∨” represents the logic or operation.

Remark 3. To avoid confusion, type-3 order relation on D* is represented by the symbol “≤3”. The strict proof
process of the basic properties of the order relation “≤3” is not given in the literature [29], and these proofs are
presented in this article (see next section). In addition, if x ≤3 y and y ≤3 x are not true for x, y ∈ D*, then x is
not comparable to y, which is expressed by x||≤3 y .

3. On Type-3 Ordering Relation

In this section, we first prove that (D*, ≤3) is a partial ordered set. Then, we prove that D* makes
up a lattice through type-3 intersection and type-3 union operations.

Proposition 2. Let D∗ =
{

x = (x1, x2, x3)
∣∣∣x ∈ [0, 1]3, x1 + x2 + x3 ≤ 1

}
. Then (D*, ≤3) is a partial

ordered set.

Proof. Suppose x, y, z ∈ D*.

(1) By the definition of ≤3, we have x ≤3 x.
(2) Assume that x ≤3 y and y ≤3 x, then

Case 1: x1 < y1 and x3 ≥ y3. According to the definition of y ≤3 x, we can get x1 ≥ y1, which
is contradictory.
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Case 2: x1 = y1 and x3 > y3. According to the definition of y ≤3 x, we can get x3 ≤ y3, which
is contradictory.

Case 3: x1 = y1 and x3 = y3. From x ≤3 y, we have x2 ≤ y2; also from y ≤3 x, we have x2 ≥ y2.
Thus, x2 = y2.

It follows that, (x ≤3 y and y ≤3 x)⇒ (x1 = y1, x2 = y2 and x3 = y3)⇒ x = y.
(3) Assume that x ≤3 y, y ≤3 z, then

Case 1: (x1 < y1, x3 ≥ y3) and (y1 < z1, y3 ≥ z3). It follows that x1 < z1 and x3 ≥ z3, thus x ≤3 z.
Case 2: (x1 = y1, x3 > y3) and (y1 = z1, y3 > z3). It follows that x1 = z1 and x3 > z3, thus x ≤3 z.
Case 3: (x1 = y1, x3 = y3, x2 ≤ y2) and (y1 = z1, y3 = z3, y2 ≤ z2). It follows that x1 = z1, x3 = z3 and

x2 ≤ z2, thus x ≤3 z.
Case 4: (x1 < y1, x3 ≥ y3) and (y1 = z1, y3 ≥ z3). It follows that x1 < z1 and x3 ≥ z3, thus x ≤3 z.
Case 5: (x1 < y1, x3 ≥ y3) and (y1 = z1, y3 = z3, y2 ≤ z2). It follows that x1 < z1, x3 ≥ z3 and y2 ≤

z2, thus x ≤3 z.
Case 6: (x1 = y1, x3 ≥ y3) and (y1 < z1, y3 ≥ z3). It follows that x1 < z1 and x3 ≥ z3, thus x ≤3 z.
Case 7: (x1 = y1, x3 ≥ y3) and (y1 = z1, y3 = z3, y2 ≤ z2). It follows that x1 = z1, x3 ≥ z3 and y2 ≤

z2, thus x ≤3 z.
Case 8: (x1 = y1, x3 = y3, x2 ≤ y2) and (y1 < z1, y3≥z3). It follows that x1 < z1, x3 ≥ z3 and x2 ≤ y2,

thus x ≤3 z.
Case 9: (x1 = y1, x3 = y3, x2 ≤ y2) and (y1 = z1, y3>z3), then x1 = z1, x3>z3 and x2 ≤ y2, thus x ≤3 z.

It follows that, (x ≤3 y and y ≤3 z)⇒ x ≤3 z.
Therefore, (D*, ≤3) is a partial ordered set. �

Remark 4. It is important to note that the set D* in this paper is different from the set D* of the literature [25].
It follows that the corresponding type-3 intersection, type-3 union, and type-3 complement operations in this
paper and related operations in [25] are not the same, respectively. So, the relevant results of this paper are not
the direct inference of the results in [25] (although the research ideas are similar), and the readers must pay
attention to it.

Proposition 3. Two operations are defined on D* as follows: ∀x, y ∈ D*,

x ∧3 y =

⎧⎪⎨⎪⎩
x, whenx ≤3 y
y, wheny ≤3 x
(min(x1, y1), 1−min(x1, y1)−max(x3, y3), max(x3, y3)), otherwise

x ∨3 y =

⎧⎪⎨⎪⎩
y, whenx ≤3 y
x, wheny ≤3 x
(max(x1, y1), 0, min(x3, y3)), otherwise

Then, x ∧3 y = inf(x, y), x ∨3 y = sup(x, y), and (D*, ≤3) is a lattice.

Proof. Suppose that x ≤3 y or y ≤3 x, then, by the definition of “∧3”, x ∧3 y is the largest lower bound
of x, y, i.e., x ∧3 y = inf(x, y). Moreover, suppose that x ≤3 y or y ≤3 x, then x ∨3 y is the smallest upper
bound of x, y, i.e., x ∨3 y = sup(x, y).

Next, assume that x||≤3 y . Then, from the definitions of “∧3” and “∨3”, we have:

x ∧3 y = (min(x1, y1), 1−min(x1, y1)−max(x3, y3), max(x3, y3)),

x ∨3 y = (max(x1, y1), 0, min(x3, y3)).
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(1) To prove x ∧3 y = inf(x, y): Let

z = (z1, z2, z3) = (min(x1, y1), 1 −min(x1, y1) −max(x3, y3), max(x3, y3)).

Then, x1 ≥min(x1, y1) = z1, x3 ≤max(x3, y3) = z3.
If x1 > z1 and x3 ≤ z3, then z ≤3 x.
If x1 = z1 and x3 < z3, then z ≤3 x.
If x1 = z1 and x3 = z3, then y1 ≥ x1, y3 ≤ x3, and x ≤3 y or y ≤3 x. This is contradictory to the

assumed condition x||≤3 y .
Therefore, z ≤3 x. In the same way, we can obtain z ≤3 y. That is, z is a lower bound of x and y.
The next goal is to prove that z is the largest lower bound of x and y.
Suppose a = (a1, a2, a3) ∈ D* such that a ≤3 x and a ≤3 y.

Case 1: (a1 < x1, a3 ≥ x3) and (a1 < y1, a3 ≥ y3). It follows that a1 < min(x1, y1) = z1 and a3 ≥ max(x3,
y3) = z3, thus a ≤3 z.

Case 2: (a1 = x1, a3 > x3) and (a1 = y1, a3 > y3). It follows that a1 = min(x1, y1) = z1 and a3 > max(x3, y3)
= z3, thus a ≤3 z.

Case 3: (a1 = x1, a3 = x3, a2 ≤ x2) and (a1 = y1, a3 = y3, a2 ≤ y2). It follows that a1 = min(x1, y1) = z1, a3 =
max(x3, y3) = z3 and a2 ≤ min(x2, y2). Since a1 + a2 + a3 ≤ 1, so a2 ≤ 1 − min(x1, y1) − max(x3,
y3) = z2, thus a ≤3 z.

Case 4: (a1 = x1, a3 > x3) and (a1 < y1, a3 ≥ y3). It follows that a1 ≤ min(x1, y1) and a3 ≥ max(x3, y3). If
(a1 < min(x1, y1), a3 ≥ max(x3, y3)) or (a1 = min(x1, y1), a3 > max(x3, y3)), then a ≤3 z; If a1 =
min(x1, y1) and a3 = max(x3, y3), from this and the hidden condition a1 + a2 + a3 ≤ 1, we get a2

≤ 1 −min(x1, y1) −max(x3, y3) = z2, hence a ≤3 z.
Case 5: (a1 < x1, a3 ≥ x3) and (a1 = y1, a3 > y3). It follows that a1 ≤ min(x1, y1) = z1 and a3 ≥ max(x3,

y3) = z3. Similar to Case 4, we can get a ≤3 z.
Case 6: (a1 < x1, a3 ≥ x3) and (a1 = y1, a3 = y3, a2 ≤ y2). It follows that y1 < x1 and y3 ≥ x3, so y ≤3 x, it

is a contradiction with hypothesis x||≤3 y .
Case 7: (a1 = x1, a3 > x3) and (a1 = y1, a3 = y3, a2 ≤ y2). It follows that y1 = x1 and y3 > x3, so y ≤3 x,

which is a contradiction with hypothesis x||≤3 y .
Case 8: (a1 = x1, a3 = x3, a2 ≤ x2) and (a1 < y1, a3 ≥ y3). It follows that x1 < y1 and x3 ≥ y3, so x ≤3 y,

which is a contradiction with hypothesis x||≤3 y .
Case 9: (a1 = x1, a3 = x3, a2 ≤ x2) and (a1 = y1, a3 > y3). It follows that x1 = y1 and x3 > y3, so x ≤3 y,

which is a contradiction with hypothesis x||≤3 y .

Hence, a ≤3 z. That is, z = (min(x1, y1), 1 −min(x1, y1) −max(x3, y3), max(x3, y3)) is the largest
lower bound of x, y.
(2) To prove x ∨3 y = sup(x, y): Let

w = (w1, w2, w3) = (max(x1, y1), 0, min(x3, y3)).

Then x1 ≤max(x1, y1) = w1, x3 ≥min(x3, y3) = w3.
If x1 < w1 and x3 ≥ w3, then x ≤3 w.
If x1 = w1 and x3 > w3, then x ≤3 w.
If x1 = w1 and x3 = w3, then y1 ≤ x1, y3 ≥ x3, so y ≤3 x or x ≤3 y, which is contradictory to the

assumed condition x||≤3 y . Thus, x ≤3 w.
In the same way, we can obtain y ≤3 w. Hence, w is an upper bound of x and y.
The next goal is to prove that w is the smallest upper bound of x and y.
Assume a = (a1, a2, a3) ∈ D* such that x ≤3 a, y ≤3 a.

Case 1: (x1 < a1, x3 ≥ a3) and (y1 < a1, y3 ≥ a3). It follows that a1 > max(x1, y1) = w1 and a3 ≤min(x3,
y3) = w3. Thus, w ≤3 a.
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Case 2: (a1 = x1, x3 > a3) and (a1 = y1, y3 > a3). It follows that a1 = max(x1, y1) = w1, a3 < min(x3, y3) =
w3, thus w ≤3 a.

Case 3: (a1 = x1, a3 = x3, x2 ≤ a2) and (a1 = y1, a3 = y3, y2 ≤ a2). It follows that a1 = max(x1, y1) = w1, a3

= min(x3, y3) = w3 and a2 ≥max(x2, y2) ≥ 0, thus w ≤3 a.
Case 4: (a1 = x1, x3 > a3) and (y1 < a1, y3 ≥ a3). It follows that a1 ≥max(x1, y1) = w1 and a3 ≤min(x3,

y3) = w3. If (a1 > max(x1, y1) = w1, a3 ≤ min(x3, y3) = w3) or ((a1 = max(x1, y1) = w1, a3< min(x3,
y3) = w3), then w ≤ 3a; If a1 = max(x1, y1) = w1 and a3 = min(x3, y3) = w3, according the hidden
condition a2 ≥ 0, we can get w ≤3 a.

Case 5: (x1 < a1, x3 ≥ a3) and (a1 = y1, y3 > a3). It follows that a1 ≥max(x1, y1) = w1 and a3 ≤min(x3,
y3) = w3, similar to Case 4, so we can get w ≤3 a.

Case 6: (x1 < a1, x3 ≥ a3) and (a1 = y1, a3 = y3, y2 ≤ a2). It follows that x1 < y1 and x3 ≥ y3, so x ≤3 y,
which is a contradiction with hypothesis x||≤3 y .

Case 7: (a1 = x1, x3 > a3) and (a1 = y1, a3 = y3, y2 ≤ a2). It follows that y1 = x1 and y3 < x3, so x ≤3 y,
which is a contradiction with hypothesis x||≤3 y .

Case 8: (a1 = x1, a3 = x3, x2 ≤ a2) and (y1 < a1, y3 ≥ a3). It follows that y1 < x1 and y3 ≥ x3, so y ≤3 x,
which is a contradiction with hypothesis x||≤3 y .

Case 9: (a1 = x1, a3 = x3, x2 ≤ a2) and (a1 = y1, y3 > a3). It follows that y1 = x1 and y3 > x3, so y ≤3 x,
which is a contradiction with hypothesis x||≤3 y .

Hence, w ≤3 a. That is, w = (max(x1, y1), 0, min(x3, y3)) is the smallest upper bound of x, y.
Integrating (1) and (2), x ∧3 y = inf(x, y), x ∨3 y = sup(x, y), and (D*, ≤3) is a lattice. �

4. New Operations and Properties of Totally Dependent-Neutrosophic Sets (Picture Fuzzy Sets)

In this section, we investigate the properties of the type-3 inclusion relation of totally
dependent- neutrosophic sets, and give some new operations named type-3 union, type-3 intersection,
and type-3 complement of totally dependent-neutrosophic sets and study their basic properties.
Moreover, we discuss the relationship between type-3 ordering relation ≤3 and the rank of totally
dependent-neutrosophic sets determined by score function and accuracy function (see Definition 6).

For any totally dependent-neutrosophic sets A and B on X, applying Definition 8, we see that:

A⊆3B if and only if (μA(x), ηA(x), νA(x)) ≤3 (μB(x), ηB(x), νB(x)), ∀x∈X.

From this, using Proposition 2, we can get the following proposition.

Proposition 4. If A, B, and C are totally dependent-neutrosophic sets on X, then

(1) A ⊆3 A;
(2) (A ⊆3 B, B ⊆3 A)⇒ A = B;
(3) (A ⊆3 B, B ⊆3 C)⇒ A ⊆3 C.

Definition 9. Assume that A and B are totally dependent-neutrosophic sets on X. The operations defined as
follows are called a type-3 union, type-3 intersection, and type-3 complement, respectively:

(1) (A ∪3 B)(x) =

⎧⎪⎨⎪⎩
(μA(x), ηA(x), νA(x)), if(μB(x), ηB(x), νB(x)) ≤3 (μA(x), ηA(x), νA(x))
(μB(x), ηB(x), νB(x)), if (μA(x), ηA(x), νA(x)) ≤3 (μB(x), ηB(x), νB(x))
(max(μA(x), μB(x)), 0, min(νA(x), νB(x))), otherwise

(2) (A ∩3 B)(x) =

{
(μA(x), ηA(x), νA(x)), if (μA(x), ηA(x), νA(x)) ≤3 (μB(x), ηB(x), νB(x))
(μB(x), ηB(x), νB(x)), if(μB(x), ηB(x), νB(x)) ≤3 (μA(x), ηA(x), νA(x))
(min(μA(x), μB(x)), 1−min(μA(x), μB(x))−max(νA(x), νB(x)), max(νA(x), νB(x))), otherwise

(3) Ac3 = {(x, νA(x), 1− μA(x)− ηA(x)− νA(x), μA(x)) |x ∈ X )}.
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By Definition 9 and Proposition 3, we have:

Proposition 5. If A and B are totally dependent-neutrosophic sets on X, then

(1) A ∪3 B = {(μA(x), ηA(x), νA(x))∨3 (μB(x), ηB(x), νB(x))|x ∈ X};
(2) A ∩3 B = {(μA(x), ηA(x), νA(x))∧3 (μB(x), ηB(x), νB(x))|x ∈ X}.

Proposition 6. If A, B, and C are totally dependent-neutrosophic sets on X, then

(1) A ∩3 A = A, A ∪3 A = A;
(2) A ∩3 B = B ∩3 A, A ∪3 B = B ∪3 A;
(3) (A ∩3 B) ∩3 C = A ∩3 (B ∩3 C), (A ∪3 B) ∪3 C = A ∪3 (B ∪3 C);
(4) A ∩3 (B ∪3 A) = A, A ∪3 ( B ∩3 A) = A;
(5) A ⊆3 B⇔ A ∪3 B = B; A ⊆3 B⇔ A ∩3 B = A.

By Definition 9(3), we have:

Proposition 7. For any totally dependent-neutrosophic sets on X,(A c3)c3 = A.

Proposition 8. If A and B are totally dependent-neutrosophic sets on X, then:

(1) (A∩3B)c3 = A c3 ∪3 B c3 ;
(2) (A∪3B)c3 = A c3 ∩3 B c3 .

Proof. By Definition 9(3), we have:

Ac3 = {(x, νA(x), 1− μA(x)− ηA(x)− νA(x), μA(x))|x ∈ X}

Bc3 = {(x, νB(x), 1− μB(x)− ηB(x)− νB(x), μB(x))|x ∈ X}
(1) If B ⊆3 A, then:

Case 1: μB(x) < μA(x) and νB(x) ≥ νA(x). It follows that A c3 ⊆3 B c3 . Thus (A∩3B)c3 = Ac3 ∪3 B c3 .
Case 2: μB(x) = μA(x) and νB(x) > νA(x). It follows that Ac3 ⊆3 Bc3 . Thus (A ∩3 B)c3 = Ac3 ∪3 B c3 .
Case 3: μB(x) < μA(x), νB(x) = νA(x) and ηB(x) ≤ ηA(x). Then 1 − μA(x) − ηA(x) − νA(x) ≤ 1 − μB(x)

− ηB(x) − νB(x). Thus Ac3 ⊆3 B c3 , and (A ∩3 B)c3 = Bc3 = Ac3 ∪3 B c3 .

Similarly, if A ⊆3 B, then (A ∩3 B)c3 = Ac3 ∪3 Bc3 .
If neither B ⊆3 A nor A ⊆3 B, then:

A∩ 3B = {(x, min(μA(x), μB(x), 1−min(μA(x), μB(x))−max(νA(x), νB(x)), max(νA(x),
νB(x)))|x ∈ X},

A∪ 3B = {(x, max(μA(x), μB(x)), 0, min(νA(x), νB(x)))|x ∈ X}.

Thus
(A∩ 3B)c3 = {(x, max(νA(x), νB(x)), 0, min(μA(x), μB(x)))|x ∈ X}.

Ac3 ∪ 3Bc3 = {(x, max(νA(x), νB(x)), 0, min(μA(x), μB(x)))|x ∈ X}.

Hence (A∩3B)c3 = Ac3 ∪3 Bc3 .

(2) By (1) and Proposition 7, we can get that (A∪3B)c3 = Ac3 ∩3 Bc3 . �
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Theorem 1. Let TDNS(X) be the set of all totally dependent-neutrosophic sets on X, and

0TDNS = {(x, 0, 0, 1) | x∈X}, 1TDNS={(x, 1, 0, 0) | x∈X}.

Then, (TDNS(X), ∪3, ∩3, c
3, 0TDNS, 1TDNS) is a GM-algebra (i.e., generalized De Morgan algebra).

Proof. Applying Proposition 6–8 and Definition 7, we can see that (TDNS(X), ∪3, ∩3, c
3, 0TDNS, 1TDNS)

is a GM-algebra.
We can verify that the distributive law is not true for (TDNS(X), ∪3, ∩3, c

3, 0TDNS, 1TDNS), that is,
it is not a De Morgan algebra. �

Example 3. Let X = {a, b} and

A = {(a, 0.1, 0.4, 0.3), (b, 0, 0, 1)}, B = {(a, 0.3, 0.1, 0.5), (b, 0, 0, 1)}, C = {(a, 0.2, 0.2, 0.4), (b, 1, 0, 0)}.

Then:

(A ∩3 B) ∪3 C = {(a, 0.2, 0.2, 0.4), (b, 1, 0, 0)}; (A ∪3 C) ∩3 (B ∪3 C) = {(a, 0.2, 0.4, 0.4), (b, 1, 0, 0)};

(A ∪3 B) ∩3 C = {(a, 0.2, 0.2, 0.4), (b, 0, 0, 1)}; (A ∩3 C) ∪3 (B ∩3 C) = {(a, 0.2, 0, 0.4), (b, 0, 0, 1)}.

Therefore,

(A ∩3 B) ∪3 C �= (A ∪3 C) ∩3 (B ∪3 C), (A ∪3 B) ∩3 C �= (A ∩3 C) ∪3 (B ∩3 C).

Proposition 9. If α = (μα, ηα, να, ρα), β = (μβ, ηβ, νβ, ρβ) are two totally dependent-neutrosophic numbers,
and (μα, ηα, να) ≤3 (μβ, ηβ, νβ), then α ≺ β or α ∼ β.

Proof. Assume (μα, ηα, να) ≤3 (μβ, ηβ, νβ). By the definition of type-3 order relation ≤3, we have

Case 1: (μα < μβ, να ≥ νβ) or (μα = μβ, να > νβ). It follows that S(α) = μα − να < μβ − νβ = S(β). Thus,
α ≺ β.

Case 2: (μα = μβ, να = νβ and ηα < ηβ. It follows that S(α) = S(β), H(α) < H(β). Thus, α ≺ β.

Case 3: μα = μβ, να = νβ and ηα = ηβ. It follows that S(α) = S(β), H(α) = H(β). Thus, α ∼ β.

Therefore, the proof is completed. �

Example 4. Let α = (0.3, 0.4, 0.1, 0.2) and β = (0.5, 0.2, 0.2, 0.1) be two totally dependent-neutrosophic
numbers, then S(α) < S(β), α ≺ β, but (0.3, 0.4, 0.1)||≤3(0.5, 0.2, 0.2) . That is, the inverse of Proposition 9 is
not true.

5. New Operations and Properties of Totally Dependent-Neutrosophic Soft Sets

In this section, we investigate some new operations on totally dependent-neutrosophic soft sets
(picture fuzzy soft sets), including type-3 intersection (type-3 union, type-3 complement).

The notions of intersection, union, and complement of totally dependent-neutrosophic (picture
fuzzy) soft sets are introduced in [28]. To avoid confusion, these operations are called a type-2
intersection, type-2 union, and type-2 complement in this paper.

Remark 5. Note that, for type-1 operations of totally dependent-neutrosophic soft sets (picture fuzzy soft sets),
we denote the operations in neutrosophic soft sets (see [33,34]), that is, the corresponding operations of totally
dependent-neutrosophic soft sets, as a kind of special neutrosophic soft sets.
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Definition 10 [28]. The type-2 complement of a totally dependent-neutrosophic soft set (F, A) over U is denoted
as (F, A) c2 and is defined by (F, A) c2 = (Fc2 , A), where Fc2 : A→ SNS(U) is a mapping given by:

Fc2(e) = (F(e))c2 =
{(

x, νF(e)(x), ηF(e)(x), μF(e)(x)
)∣∣∣x ∈ U

}
, ∀e ∈ A.

Definition 11 [28]. The type-2 intersection of two totally dependent-neutrosophic soft sets (F, A) and (G, B)
over a common universe U is a totally dependent-neutrosophic soft set (H, C), where C = A ∪ B and for all e ∈ C,

H(e) =

⎧⎪⎨⎪⎩
F(e), if e ∈ A− B
G(e), if e ∈ B− A

F(e) ∩2 G(e), if e ∈ A ∩ B

That is, ∀e ∈ A ∩ B, H(e) = {(x, min(μF(e)(x), μG(e)(x)), min(ηF(e)(x), ηG(e)(x)), max(νF(e)(x), νG(e)(x)|x ∈
U}. This relation is denoted by (F, A) ∩2 (G, B) = (H, C).

Definition 12 [28]. The type-2 union of two totally dependent-neutrosophic soft sets (F, A) and (G, B) over a
common universe U is a totally dependent-neutrosophic soft set (H, C), where C = A ∪ B and for all e ∈ C,

H(e) =

⎧⎪⎨⎪⎩
F(e), if e ∈ A− B
G(e), if e ∈ B− A

F(e) ∪2 G(e), if e ∈ A ∩ B

That is, ∀e ∈ A ∩ B, H(e) = {(x, max(μF(e)(x), μG(e)(x)), min(ηF(e)(x), ηG(e)(x)), min(νF(e)(x), νG(e)(x)|x ∈
U}. This relation is denoted by (F, A) ∪2 (G, B) = (H, C).

Now, we discuss the type-3 complement, type-3 intersection, and type-3 union of totally
dependent-neutrosophic soft sets. First, we introduce type-3 inclusion relation on totally dependent
neutrosophic soft sets.

Definition 13. Let (F, A) and (G, B) be two totally dependent-neutrosophic soft sets over U. Then, (F, A) is
called a totally dependent-neutrosophic soft subset of (G, B), denoted by (F, A) ⊆3 (G, B), if:

(1) A ⊆ B;
(2) ∀e ∈ A, F(e) ⊆3 G(e), that is, ∀x ∈ U, (μF(e)(x) < μG(e)(x), νF(e)(x) ≥ νG(e)(x)), or (μF(e)(x) = μG(e)(x),

νF(e)(x) > νG(e)(x)), or (μF(e)(x) = μG(e)(x), νF(e)(x) = νG(e)(x) and ηF(e)(x) ≤ ηG(e)(x)).

Example 5. Let U = {x1, x2, x3, x4} and E = {e1, e2, e3, e4, e5}. Suppose that (F, A) and (G, B) are two SNSSs
over U, A = {e1, e2}, B = {e1, e2, e5} and

(F, A) =

⎛⎜⎜⎜⎜⎜⎝
e1 e2

x1 (0.1, 0.2, 0.5) (0.2, 0.1, 0.6)
x2 (0.4, 0.2, 0.3) (0.2, 0.2, 0.5)
x3 (0.2, 0.3, 0.4) (0.1, 0.4, 0.2)
x4 (0.3, 0.3, 0.2) (0.4, 0.0, 0.5)

⎞⎟⎟⎟⎟⎟⎠,

(G, B) =

⎛⎜⎜⎜⎜⎜⎝
e1 e2 e5

x1 (0.3, 0.2, 0.4) (0.2, 0.2, 0.4) (0.7, 0.1, 0.2)
x2 (0.6, 0.0, 0.3) (0.2, 0.1, 0.3) (0.5, 0.3, 0.1)
x3 (0.3, 0.4, 0.2) (0.1, 0.4, 0.2) (0.8, 0.0, 0.1)
x4 (0.5, 0.2, 0.2) (0.4, 0.1, 0.5) (0.2, 0.5, 0.1)

⎞⎟⎟⎟⎟⎟⎠
Then, (F, A) is a totally dependent-neutrosophic soft subset of (G, B).
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Definition 14. Let (F, A) and (G, B) be two totally dependent-neutrosophic soft sets over U. (F, A) and (G, B)
are said totally dependent-neutrosophic soft equals, denoted (F, A) = (G, B), if (F, A) ⊆3 (G, B) and (G, B) ⊆3
(F, A).

By Proposition 4, we know that (F, A) = (G, B)⇔ A = B and F(e) = G(e), ∀e ∈ A.

Definition 15. Let (F, A) be a totally dependent-neutrosophic soft set over U. Type-3 complement of (F, A) is
denoted as (F, A)c3 and is defined by (F, A)c3 = (Fc3 , A), where Fc3 : A→ TDNS(U) is a mapping given by:

Fc3(e) = (F(e))c3 =
{(

x, νF(e)(x), 1− μF(e)(x)− ηF(e)(x)− νF(e)(x), μF(e)(x)
)∣∣∣x ∈ U

}
, ∀e ∈ A.

Definition 16. Type-3 union of two totally dependent-neutrosophic soft sets (F, A) and (G, B) over U can be
defined as (F, A) ∪3 (G, B) = (H, C), where C = A ∪ B, and ∀e ∈ C,

H(e) =

⎧⎪⎨⎪⎩
F(e), if e ∈ A− B
G(e), if e ∈ B− A

F(e) ∪3 G(e), if e ∈ A ∩ B

Example 6. Let U = {x1, x2, x3, x4}, E = {e1, e2, e3, e4, e5}, A = {e1, e2}, B = {e1, e3, e5}, and

(F, A) =

⎛⎜⎜⎜⎜⎜⎝
e1 e2

x1 (0.1, 0.2, 0.6) (0.4, 0.2, 0.3)
x2 (0.2, 0.1, 0.1) (0.3, 0.1, 0.6)
x3 (0.7, 0.3, 0.0) (0.5, 0.2, 0.3)
x4 (0.4, 0.0, 0.3) (0.8, 0.0, 0.1)

⎞⎟⎟⎟⎟⎟⎠,

(G, B) =

⎛⎜⎜⎜⎜⎜⎝
e1 e3 e5

x1 (0.4, 0.3, 0.2) (0.2, 0.7, 0.1) (0.6, 0.1, 0.2)
x2 (0.7, 0.1, 0.1) (0.8, 0.0, 0.2) (0.3, 0.2, 0.4)
x3 (0.3, 0.5, 0.1) (0.2, 0.4, 0.2) (0.5, 0.3, 0.0)
x4 (0.6, 0.1, 0.2) (0.4, 0.3, 0.1) (0.1, 0.1, 0.6)

⎞⎟⎟⎟⎟⎟⎠.

Then, (F, A) ∪3 (G, B) = (H, C), where C = A ∪ B = {e1, e2, e3, e5} and

(F, A) ∪3 (G, B) = (H, C) =⎛⎜⎜⎜⎜⎜⎝
e1 e2 e3 e5

x1 (0.4, 0.3, 0.2) (0.4, 0.2, 0.3) (0.2, 0.7, 0.1) (0.6, 0.1, 0.2)
x2 (0.7, 0.1, 0.1) (0.7, 0.1, 0.1) (0.3, 0.1, 0.6) (0.3, 0.2, 0.4)
x3 (0.7, 0.3, 0.0) (0.5, 0.2, 0.3) (0.2, 0.4, 0.2) (0.5, 0.3, 0.0)
x4 (0.6, 0.1, 0.2) (0.8, 0.0, 0.1) (0.4, 0.3, 0.1) (0.1, 0.1, 0.6)

⎞⎟⎟⎟⎟⎟⎠.

Definition 17. Assume that A, B⊆ E and A∩ B �= ∅. Type-3 intersection of two totally dependent-neutrosophic
soft sets (F, A) and (G, B) over U can be defined as (F, A) ∩3 (G, B) = (H, C), where C = A ∩ B, and ∀e ∈ C,
H(e) = F(e) ∩3 F(e).
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Example 7. Consider the totally dependent-neutrosophic soft sets (F, A), (G, B) in Example 6. We have (F, A)
∩3 (G, B) = (H, C), where C = A ∩ B = {e1} and

(F, A) ∩3 (G, B) = (H, C) =

⎛⎜⎜⎜⎜⎜⎝
e1

x1 (0.1, 0.2, 0.6)
x2 (0.2, 0.1, 0.1)
x3 (0.3, 0.5, 0.1)
x4 (0.4, 0.0, 0.3)

⎞⎟⎟⎟⎟⎟⎠.

Proposition 10. If (F, A), (G, B), and (H, C) are totally dependent-neutrosophic soft sets over U, then:

(1)
(
(F, A)c3

)c3 = (F, A);
(2) (F, A) ∪3 (F, A) = (F, A), (F, A) ∩3 (F, A) = (F, A);
(3) (F, A) ∪3 (G, B) = (G, B) ∪3 (F, A), (F, A) ∩3 (G, B) = (G, B) ∩3 (F, A);
(4) ((F, A) ∪3 (G, B)) ∪3 (H, C) = (F, A) ∪3 ((G, B) ∪3 (H, C));
(5) ((F, A) ∩3 (G, B)) ∩3 (H, C) = (F, A) ∩3 ((G, B) ∩3 (H, C)), when A ∩ B ∩ C �= ∅.

Proof. (1) It is easy to verify from Proposition 7 and Definition 15.
(2) and (3) It is obvious from Definitions 16 and 17.
(4) The proof is similar to Proposition 3.9 in [15].
(5) The proof is similar to Proposition 3.10 in [15].

Proposition 11. If (F, A) and (G, A) are two totally dependent-neutrosophic soft sets over U, then:

(1) ((F, A) ∪3 (G, A))c3 = (F, A)c3 ∩3 (G, A)c3;
(2) ((F, A) ∩3 (G, A))c3 = (F, A)c3 ∪3 (G, A)c3.

Proof.

(1) Assume that (F, A) ∪3 (G, A) = (H, A) and (F, A)c3 ∩3 (G, A)c3 = (I, A). Then:

∀e ∈ A, H(e) = F(e) ∪3 G(e) (by Definition 16);

∀e ∈ A, I(e)= F c3 (e) ∩3 Gc3(e) = (F(e))c3 ∩3 (G(e))c3 = (F(e) ∪3 G(e))c3

(by Definitions 15, 17 and Proposition 8).

Thus ∀e ∈ A, Hc3(e) = (H(e))c3 = (F(e) ∪3 G(e))c3 = I(e). Since ((F, A) ∪3 (G, A))c3 = (Hc3, A), it
follows that ((F, A) ∪3 (G, A))c3 = (Hc3, A) = (I, A) = (F, A)c3 ∩3 (G, A)c3.

(2) By (1), and using Proposition 10(1) we can get ((F, A) ∩3 (G, A))c3 = (F, A)c3 ∪3 (G, A)c3. �

Proposition 12. If (F, A) and (G, A) are two totally dependent-neutrosophic soft sets over U, then:

(1) (F, A) ∩3 ((F, A) ∪3 (G, A)) = (F, A);
(2) (F, A) ∪3 ((F, A) ∩3 (G, A)) = (F, A);
(3) (F, A) ⊆3 (G, A)⇔ (F, A) ∪3 (G, A) = (G, A);
(4) (F, A) ⊆3 (G, A)⇔ (F, A) ∩3 (G, A) = (F, A).

Proof.
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(1) Assume that (F, A) ∪3 (G, A) = (H, A) and (F, A) ∩3 ((F, A) ∪3 (G, A)) = (I, A). Then:

∀e ∈ A, H(e) = F(e) ∪3 G(e) (by Definition 16);

∀e ∈ A, I(e) = F(e) ∩3 H(e) = F(e) ∩3 (F(e) ∪3 G(e)) = F(e)
(by Definition 17 and Proposition 6(3)).

Thus, ∀e ∈ A, I(e) = F(e), and it follows that (F, A) ∩3 ((F, A) ∪3 (G, A)) = (F, A).
(2) The proof is similar to (1).
(3) From Proposition 6(4) and Definition 16, we get that (F, A) ⊆3 (G, A)⇔ (F, A) ∪3 (G, A) = (G, A).
(4) From Proposition 6(4) and Definition 17, we get that (F, A)⊆3 (G, A)⇔ (F, A) ∩3 (G, A) = (F, A). �

Theorem 2. Let TDNSS(U, A) be the set of all totally dependent-neutrosophic soft sets over universe U with a
fixed parameter set A. Denote:

(0TDNSS, A) ∈ TDNSS(U, A); ∀e ∈ A, 0TDNSS(e) = {(x, 0, 0, 1)|x ∈ U};

(1TDNSS, A) ∈ TDNSS(U, A); ∀e ∈ A, 1TDNSS(e) = {(x, 1, 0, 0)|x ∈ U}.

Then (TDNSS(U, A), ∪3, ∩3, c3, (0TDNSS, A), (1TDNSS, A)) is a GM-algebra.

Proof. By Definition 13, we have (F, A)⊆3 (1TDNSS, A) and (0TDNSS, A)⊆3 (F, A), ∀(F, A) ∈ TDNSS(U, A).
By Propositions 10 and 12, we know that (TDNSS(U, A), ∪3, ∩3, (0TDNSS, A), (1TDNSS, A)) is a

bounded lattice. Therefore, by Propositions 10(1), 12 and Definition 7, we get that (TDNSS(U, A), ∪3,
∩3, c3, (0TDNSS, A), (1TDNSS, A)) is a GM-algebra. �

We can verify that the distributive law (with respect to ∪3 and ∩3 ) in TDNSS(U, A) is not satified.

Example 8. Let U = {x1, x2, x3, x4}, E = {e1, e2, e3, e4}, and A = {e1, e2}. Suppose that (F, A), (G, A), and (H,
A) are totally dependent-neutrosophic soft sets over U, and

F(e1) = {(x1, 0.1, 0.4, 0.3), (x2, 0.4, 0.2, 0.3), (x3, 0.2, 0.3, 0.4), (x4, 0.3, 0.3, 0.2)},
F(e2) = {(x1, 0.1, 0.1, 0.1), (x2, 0.2, 0.2, 0.2), (x3, 0.3, 0.3, 0.3), (x4, 0.4, 0.4, 0.2)};

G(e1) = {(x1, 0.3, 0.1, 0.5), (x2, 0.6, 0.0, 0.3), (x3, 0.3, 0.4, 0.2), (x4, 0.5, 0.2, 0.2)},
G(e2) = {(x1, 0.2, 0.2, 0.4), (x2, 0.2, 0.1, 0.3), (x3, 0.1, 0.4, 0.2), (x4, 0.4, 0.1, 0.5)};

H(e1) = {(x1, 0.2, 0.2, 0.4), (x2, 0.2, 0.1, 0.1), (x3, 0.7, 0.3, 0.0), (x4, 0.4, 0.0, 0.3)},
H(e2) = {(x1, 0.4, 0.2, 0.3), (x2, 0.3, 0.1, 0.6), (x3, 0.5, 0.2, 0.3), (x4, 0.8, 0.0, 0.1)}.

Then:

((F, A) ∪3 (G, A)) ∩3 (H, A) =

⎛⎜⎜⎜⎜⎜⎝
e1 e2

x1 (0.2, 0.2, 0.4) (0.2, 0.5, 0.3)
x2 (0.2, 0.5, 0.3) (0.2, 0.2, 0.6)
x3 (0.3, 0.4, 0.2) (0.3, 0.4, 0.3)
x4 (0.4, 0.0, 0.3) (0.4, 0.4, 0.2)

⎞⎟⎟⎟⎟⎟⎠,

((F, A) ∩3 (H, A)) ∪3 ((G, A) ∩3 (H, A) =

⎛⎜⎜⎜⎜⎜⎝
e1 e2

x1 (0.2, 0.0, 0.4) (0.2, 0.0, 0.3)
x2 (0.2, 0.5, 0.3) (0.2, 0.2, 0.6)
x3 (0.3, 0.4, 0.2) (0.3, 0.3, 0.3)
x4 (0.4, 0.0, 0.3) (0.4, 0.4, 0.2)

⎞⎟⎟⎟⎟⎟⎠;
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((F, A) ∩3 (G, A)) ∪3 (H, A) =

⎛⎜⎜⎜⎜⎜⎝
e1 e2

x1 (0.2, 0.2, 0.4) (0.4, 0.2, 0.3)
x2 (0.4, 0.0, 0.1) (0.3, 0.0, 0.3)
x3 (0.7, 0.3, 0.0) (0.5, 0.2, 0.3)
x4 (0.4, 0.0, 0.2) (0.8, 0.0, 0.1)

⎞⎟⎟⎟⎟⎟⎠,

((F, A) ∪3 (H, A)) ∩3 ((G, A) ∪3 (H, A) =

⎛⎜⎜⎜⎜⎜⎝
e1 e2

x1 (0.2, 0.4, 0.4) (0.4, 0.2, 0.3)
x2 (0.4, 0.0, 0.1) (0.3, 0.0, 0.3)
x3 (0.7, 0.3, 0.0) (0.5, 0.2, 0.3)
x4 (0.4, 0.0, 0.2) (0.8, 0.0, 0.1)

⎞⎟⎟⎟⎟⎟⎠.

Hence
((F, A) ∪3 (G, A)) ∩3 (H, A) �= ((F, A) ∩3 (H, A)) ∪3 ((G, A)) ∩3 (H, A));

((F, A) ∩3 (G, A)) ∪3 (H, A) �= ((F, A) ∪3 (H, A)) ∩3 ((G, A)) ∪3 (H, A)).

6. Conclusions

In this paper, we prove that the type-3 ordering relation ≤3 is a partial ordering relation
and D* makes up a lattice with respect to type-3 intersection and type-3 union operations. Then,
we give some new operations of totally dependent-neutrosophic (picture fuzzy) sets and totally
dependent-neutrosophic (picture fuzzy) soft sets, and their properties are presented. At the same time,
we point out all of the totally dependent-neutrosophic (picture fuzzy) sets on X make up generalized De
Morgan algebra with respect to type-3 intersection, type-3 union, and type-3 complement operations.
Moreover, we prove that for appointed parameter sets, all of the totally dependent-neutrosophic
(picture fuzzy) soft sets over U can also generate a generalized De Morgan algebra based on type-3
algebraic operations.

It can be seen from the results of this paper that the type-3 algebraic operations of the totally
dependent-neutrosophic (picture fuzzy) sets have good properties and a new property which is
different from the fuzzy sets and the intuitionistic fuzzy sets (because the distribution law is not
established). This theoretically shows that although the totally dependent-neutrosophic (picture fuzzy)
set is a generalization of the fuzzy set and intuitionistic fuzzy set, it has different characteristics. In fact,
the type-1 and type-2 algebraic operations of totally dependent-neutrosophic (picture fuzzy) sets
(including the order relations, see Remark 1 and Definition 5) simply imitate the corresponding
operations of the intuitionistic fuzzy sets, which cannot truly reflect the original idea of totally
dependent-neutrosophic (picture fuzzy) sets. For example, for type-2 inclusion relation Definition
5, A ⊆2 B if (∀x∈X, μA(x) ≤ μB(x), ηA(x) ≤ ηB(x), νA(x) ≥ νB(x)), which means that the first two
membership functions (μ, η) have the same effect, but the three membership functions in the original
definition of neutrosophic sets are completely independent, which is incongruous. For the type-1
inclusion relation, there is a similar problem. From Definition 8, we know that the type-3 inclusion
relation has overcome this defect.

As further research topics, we will discuss the applications of the new algebraic operations in
multiple attribute decision making and uncertainty reasoning. At the same time, it is a meaningful
topic for reviewers to suggest developing new directions, such as drawing on new ideas in [35].
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Abstract: Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry
properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs
called complex neutrosophic graphs of type 1 (abbr. CNG1). We then present a matrix representation
for it and study some properties of this new concept. The concept of CNG1 is an extension of the
generalized fuzzy graphs of type 1 (GFG1) and generalized single-valued neutrosophic graphs of
type 1 (GSVNG1). The utility of the CNG1 introduced here are applied to a multi-attribute decision
making problem related to Internet server selection.

Keywords: complex neutrosophic set; complex neutrosophic graph; fuzzy graph; matrix representation

1. Introduction

Smarandache [1] introduced a new theory called neutrosophic theory, which is basically a branch
of philosophy that focuses on the origin, nature, and scope of neutralities and their interactions
with different ideational spectra. On the basis of neutrosophy, Smarandache defined the concept
of a neutrosophic set (NS) which is characterized by a degree of truth membership T, a degree of
indeterminacy membership I, and a degree of falsity membership F. The concept of neutrosophic set
theory generalizes the concept of classical sets, fuzzy sets by Zadeh [2], intuitionistic fuzzy sets by
Atanassov [3], and interval-valued fuzzy sets by Turksen [4]. In fact, this mathematical tool is apt for
handling problems related to imprecision, indeterminacy, and inconsistency of data. The indeterminacy
component present in NSs is independent of the truth and falsity membership values. To make it more
convenient to apply NSs to real-life scientific and engineering problems, Smarandache [1] proposed
the single-valued neutrosophic set (SVNS) as a subclass of neutrosophic sets. Later on, Wang et al. [5]
presented the set-theoretic operators and studied some of the properties of SVNSs. The NS model and
its generalizations have been successfully applied in many diverse areas, and these can be found in [6].

Graphs are among the most powerful and convenient tools to represent information involving
the relationship between objects and concepts. In crisp graphs, two vertices are either related or not
related to one another so, mathematically, the degree of relationship is either 0 or 1. In fuzzy graphs
on the other hand, the degree of relationship takes on values from the interval [0, 1]. Subsequently,
Shannon and Atanassov [7] defined the concept of intuitionistic fuzzy graphs (IFGs) using five types
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of Cartesian products. The concept fuzzy graphs and their extensions have a common property that
each edge must have a membership value of less than, or equal to, the minimum membership of the
nodes it connects.

In the event that the description of the object or their relations or both is indeterminate and
inconsistent, it cannot be handled by fuzzy, intuitionistic fuzzy, bipolar fuzzy, vague, or interval-valued
fuzzy graphs. For this reason, Smarandache [8] proposed the concept of neutrosophic graphs based
on the indeterminacy (I) membership values to deal with such situations. Smarandache [9,10] then
gave another definition for neutrosophic graph theory using the neutrosophic truth-values (T, I, F)
and constructed three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic
vertex graphs and neutrosophic vertex-edge graphs. Subsequently, Smarandache [11] proposed new
versions of these neutrosophic graphs, such as the neutrosophic off graph, neutrosophic bipolar graph,
neutrosophic tripolar graph, and neutrosophic multipolar graph. Presently, works on neutrosophic
vertex-edge graphs and neutrosophic edge graphs are progressing rapidly. Broumi et al. [12] combined
the SVNS model and graph theory to introduce certain types of SVNS graphs (SVNG), such as strong
SVNG, constant SVNG, and complete SVNG, and proceeded to investigate some of the properties of
these graphs with proofs and examples. Broumi et al. [13] then introduced the concept of neighborhood
degree of a vertex and closed neighborhood degree of a vertex in SVNG as a generalization of the
neighborhood degree of a vertex and closed neighborhood degree of a vertex found in fuzzy graphs
and intuitionistic fuzzy graphs. In addition, Broumi et al. [14] proved a necessary and sufficient
condition for a SVNG to be an isolated SVNG.

Recently, Smarandache [15] initiated the idea of the removal of the edge degree restriction for
fuzzy graphs, intuitionistic fuzzy graphs and SVNGs. Samanta et al. [16] proposed a new concept called
generalized fuzzy graphs (GFG) and defined two types of GFG. Here the authors also studied some of
the major properties of GFGs, such as the completeness and regularity of GFGs, and verified the results.
In [16], the authors claim that fuzzy graphs and their extensions are limited to the representations of
only certain systems, such as social networks. Broumi et al. [17] then discussed the removal of the edge
degree restriction of SVNGs and presented a new class of SVNG, called generalized SVNG of type 1,
which is an extension of generalized fuzzy graphs of type 1 proposed in [16]. Since the introduction
of complex fuzzy sets (CFSs) by Ramot et al. in [18], several new extensions of CFSs have been
proposed in literature [19–25]. The latest model related to CFS is the complex neutrosophic set (CNS)
model which is a combination of CFSs [18] and complex intuitionistic fuzzy sets [21] proposed by Ali
and Smarandache [26]. The CNS model is defined by three complex-valued membership functions
which represent the truth, indeterminate, and falsity components. Therefore, a complex-valued
truth membership function is a combination of the traditional truth membership function with the
addition of the phase term. Similar to fuzzy graphs, complex fuzzy graphs (CFG) introduced by
Thirunavukarasu et al. [27] have a common property that each edge must have a membership value of
less than or equal to the minimum membership of the nodes it connects.

In this paper, we extend the research works mentioned above, and introduce the novel concept
of type 1 complex neutrosophic graphs (CNG1) and a matrix representation of CNG1. To the best
of our knowledge, there is no research on CNGs in the literature at present. We also present an
investigation pertaining to the symmetric properties of CNG1 in this paper. In the study of fuzzy
graphs, a symmetric fuzzy graph refers to a graph structure with one edge (i.e., two arrows on opposite
directions) or no edges, whereas an asymmetric fuzzy graph refers to a graph structure with no arcs or
only one arc present between any two vertices. Motivated by this, we have dedicated an entire section
in this paper (Section 7) to study the symmetric properties of our proposed CNG1.

The remainder of this paper is organized as follows: in Section 2, we review some basic concepts
about NSs, SVNSs, CNSs, and generalized SVNGs of type 1; in Section 3, the formal definition of CNG1
is introduced and supported with illustrative examples; in Section 4 a representation matrix of CNG1
is introduced; some advanced theoretical results pertaining to our CNG1 is presented in Section 5,
followed by an investigation on the shortest CNG1 in Section 6; the symmetric properties of ordinary
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simple CNG1 is presented in Section 7; and Section 8 outlines the conclusion of this paper and suggests
directions for future research. This is followed by the acknowledgments and the list of references.

2. Preliminaries

In this section, we present brief overviews of NSs, SVNSs, SVNGs, and generalize fuzzy graphs
that are relevant to the present work. We refer the readers to [1,5,17,18,27] for further information
related to these concepts.

The key feature that distinguishes the NS from the fuzzy and intuitionistic fuzzy set (IFS) models
is the presence of the indeterminacy membership function. In the NS model the indeterminacy
membership function is independent from the truth and falsity membership functions, and we are able
to tell the exact value of the indeterminacy function. In the fuzzy set model this indeterminacy function
is non-existent, whereas in the IFS model, the value of the indeterminacy membership function is
dependent on the values of the truth and falsity membership functions. This is evident from the
structure of the NS model in which T + I + F ≤ 3, whereas it is T + F ≤ 1 and I = 1− T− F in the IFS
model. This structure is reflective of many real-life situations, such as in sports (wining, losing, draw),
voting (for, against, abstain from voting), and decision-making (affirmative, negative, undecided),
in which the proportions of one outcome is independent of the others. The NS model is able to model
these situations more accurately compared to fuzzy sets and IFSs as it is able to determine the degree of
indeterminacy from the truth and falsity membership function more accurately, whereas this distinction
cannot be done when modelling information using the fuzzy sets and IFSs. Moreover, the NS model
has special structures called neutrosophic oversets and neutrosophic undersets that were introduced
by Smarandache in [11], in which the values of the membership functions can exceed 1 or be below 0,
in order to cater to special situations. This makes the NS more flexible compared to fuzzy sets and
IFSs, and gives it the ability to cater to a wider range of applications. The flexibility of this model and
its ability to clearly distinguish between the truth, falsity, and indeterminacy membership functions
served as the main motivation to study a branch of graph theory of NSs in this paper. We refer the
readers to [28,29] for more information on the degree of dependence and independence of neutrosophic
sets, and [11] for further information on the concepts of neutrosophic oversets and undersets.

Definition 1 [1]. Let X be a space of points and let x ∈ X. A neutrosophic set A ∈ X is characterized by a
truth membership function T, an indeterminacy membership function I, and a falsity membership function F.
The values of T, I, F are real standard or nonstandard subsets of ]−0, 1+[, and T, I, F : X →]−0, 1+[. A
neutrosophic set can therefore be represented as:

A = {(x, TA(x), IA(x), FA(x)) : x ∈ X} (1)

Since T, I, F ∈ [0, 1], the only restriction on the sum of T, I, F is as given below:

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+ (2)

Although theoretically the NS model is able to handle values from the real standard or
non-standard subsets of ]−0, 1+[, it is often unnecessary or computationally impractical to use values
from this non-standard range when dealing with real-life applications. Most problems in engineering,
and computer science deal with values from the interval [0, 1] instead of the interval ]−0, 1+[, and this
led to the introduction of the single-valued neutrosophic set (SVNS) model in [5]. The SVNS model is
a special case of the general NS model in which the range of admissible values are from the standard
interval of [0, 1], thereby making it more practical to be used to deal with most real-life problems.
The formal definition of the SVNS model is given in Definition 2.

Definition 2 [5]. Let X be a space of points (objects) with generic elements in X denoted by x.
A single-valued neutrosophic set A (SVNS A) is characterized by a truth-membership function TA(x),
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an indeterminacy-membership function IA(x), and a falsity-membership function FA(x). For each point x ∈ X,
TA(x), IA(x), FA(x) ∈ [0, 1]. The SVNS A can therefore be written as:

A = {(x, TA(x), IA(x), FA(x)) : x ∈ X} (3)

Definition 3 [26]. Denote i =
√−1. A complex neutrosophic set A defined on a universe of discourse X, which

is characterized by a truth membership function TA(x), an indeterminacy-membership function IA(x), and a
falsity-membership function FA(x) that assigns a complex-valued membership grade to TA(x), IA(x), FA(x)
for any x ∈ X. The values of TA(x), IA(x), FA(x) and their sum may be any values within a unit circle
in the complex plane and is therefore of the form TA(x) = pA(x)eiμA(x), IA(x) = qA(x)eiνA(x), and
FA(x) = rA(x)eiωA(x). All the amplitude and phase terms are real-valued and pA(x), qA(x), rA(x) ∈ [0, 1],
whereas μA(x), νA(x), ωA(x) ∈ (0, 2π], such that the condition:

0 ≤ pA(x) + qA(x) + rA(x) ≤ 3 (4)

is satisfied. A complex neutrosophic set A can thus be represented in set form as:

A = {〈x, TA(x) = aT , IA(x) = aI , FA(x) = aF〉 : x ∈ X}, (5)

where TA : X→ {aT : aT ∈ C, |aT| ≤ 1}, IA : X→ {aI : aI ∈ C, |aI| ≤ 1}, FA : X→ {aF : aF ∈ C, |aF| ≤ 1},
and also:

|TA(x) + IA(x) + FA(x)| ≤ 3. (6)

Definition 4 [26]. Let A = {(x, TA(x), IA(x), FA(x)) : x ∈ X} and B = {(x, TB(x), IB(x), FB(x)) : x ∈ X} be
two CNSs in X. The union and intersection of A and B are as defined below.

(i) The union of A and B, denoted as A∪N B, is defined as:

A∪N B = {(x, TA∪B(x), IA∪B(x), FA∪B(x)) : x ∈ X}, (7)

where TA∪B(x), IA∪B(x), FA∪B(x) are given by:

TA∪B(x) = max(pA(x), pB(x)).eiμA∪B(x),
IA∪B(x) = min(qA(x), qB(x)).eiνA∪B(x),
FA∪B(x) = min(rA(x), rB(x)).eiωA∪B(x) .

(ii) The intersection of A and B, denoted as A∩N B, is defined as:

A∩N B = {(x, TA∩B(x), IA∩B(x), FA∩B(x)) : x ∈ X}, (8)

where TA∩B(x), IA∩B(x), FA∩B(x) are given by:

TA∩B(x) = min(pA(x), pB(x)).eiμA∩B(x),
IA∩B(x) = max(qA(x), qB(x)).eiνA∩B(x),
FA∩B(x) = max(rA(x), rB(x)).eiωA∩B(x).

The union and the intersection of the phase terms of the complex truth, falsity and indeterminacy
membership functions can be calculated from, but not limited to, any one of the following operations:
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(a) Sum:
μA∪B(x) = μA(x) + μB(x),
νA∪B(x) = νA(x) + νB(x),

ωA∪B(x) = ωA(x) + ωB(x).

(b) Max:
μA∪B(x) = max(μA(x), μB(x)),
νA∪B(x) = max(νA(x), νB(x)),

ωA∪B(x) = max(ωA(x), ωB(x)).

(c) Min:
μA∪B(x) = min(μA(x), μB(x)),
νA∪B(x) = min(νA(x), νB(x)),

ωA∪B(x) = min(ωA(x), ωB(x)).

(d) “The game of winner, neutral, and loser”:

μA∪B(x) =

{
μA(x) i f pA > pB
μB(x) i f pB > pA

,

νA∪B(x) =

{
νA(x) i f qA < qB
νB(x) i f qB < qA

,

ωA∪B(x) =

{
ωA(x) i f rA < rB
ωB(x) i f rB < rA

.

Definition 5 [17]. Let the following statements hold:

(a) V is a non-void set.
(b) ρ̆T, ρ̆I , ρ̆F are three functions, each from V to [0, 1].
(c) ω̆T, ω̆I , ω̆F are three functions, each from V ×V to [0, 1].
(d) ρ̆ = (ρ̆T , ρ̆I , ρ̆F) and ω̆ = (ω̆T , ω̆I , ω̆F).

Then the structure ξ̆ = 〈V, ρ̆, ω̆〉 is said to be a generalized single valued neutrosophic graph of type 1
(GSVNG1).

Remark 1.

(i) ρ̆ depends on ρ̆T , ρ̆I , ρ̆F and ω̆ depends on ω̆T, ω̆I , ω̆F. Hence there are seven mutually independent
parameters in total that make up a CNG1: V, ρ̆T , ρ̆I , ρ̆F, ω̆T, ω̆I , ω̆F.

(ii) For each x ∈ V, x is said to be a vertex of ξ̆. The entire set V is thus called the vertex set of ξ̆.
(iii) For each u, v ∈ V, (u, v) is said to be a directed edge of ξ̆. In particular, (v, v) is said to be a loop of ξ̆

(iv) For each vertex: ρ̆T(v), ρ̆I(v), ρ̆F(v) are called the truth-membership value, indeterminate membership
value, and false-membership value, respectively, of that vertex v. Moreover, if ρ̆T(v) = ρ̆I(v) =

ρ̆F(v) = 0, then v is said to be a void vertex.
(v) Likewise, for each edge (u, v) : ω̆T(u, v), ω̆I(u, v), ω̆F(u, v) are called the truth-membership value,

indeterminate-membership value, and false-membership value, respectively of that directed edge (u, v).
Moreover, if ω̆T(u, v) = ω̆I(u, v) = ω̆F(u, v) = 0, then (u, v) is said to be a void directed edge.

Here we shall restate the concept of complex fuzzy graph of type 1. Moreover, for all the remaining
parts of this paper, we shall denote the set {z ∈ C: |z| ≤ 1} as O1.

Definition 6 [27]. Let the following statements hold:
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(a) V is a non-void set.
(b)

.
ρ is a function from V to O1.

(c)
.

ω is a function from V ×V to O1.

Then:

(i) the structure
.
ξ = 〈V,

.
ρ,

.
ω〉 is said to be a complex fuzzy graph of type 1 (abbr. CFG1).

(ii) For each x ∈ V, x is said to be a vertex of
.
ξ. The entire set V is thus called the vertex set of

.
ξ.

(iii) For each u, v ∈ V, (u, v) is said to be a directed edge of
.
ξ. In particular, (v, v) is said to be a loop of

.
ξ.

3. Complex Neutrosophic Graphs of Type 1

By using the concept of complex neutrosophic sets [26], the concept of complex fuzzy graph of
type 1 [27], and the concept of generalized single valued neutrosophic graph of type 1 [17], we define
the concept of complex neutrosophic graph of type 1 as follows:

Definition 7. Let the following statements hold:

(a) V is a non-void set.
(b) ρT, ρI , ρF are three functions, each from V to O1.
(c) ωT, ωI , ωF are three functions, each from V ×V to O1.
(d) ρ = (ρT , ρI , ρF) and ω = (ωT , ωI , ωF).

Then the structure ξ = 〈V, ρ, ω〉 is said to be a complex neutrosophic graph of type 1 (abbr. CNG1).

Remark 2. ρ depends on ρT, ρI , ρF, and ω depends on ωT, ωI , ωF. Hence there are seven mutually independent
parameters in total that make up a CNG1: V, ρT, ρI , ρF, ωT, ωI , ωF. Furthermore, in analogy to a GSVNG1:

(i) For each x ∈ V, x is said to be a vertex of ξ. The entire set V is thus called the vertex set of ξ.
(ii) For each u, v ∈ V, (u, v) is said to be a directed edge of ξ. In particular, (v, v) is said to be a loop of ξ.
(iii) For each vertex: ρT(v), ρI(v), ρF(v) are called the complex truth, indeterminate, and falsity membership

values, respectively, of the vertex v. Moreover, if ρT(v) = ρI(v) = ρF(v) = 0, then v is said to be a
void vertex.

(iv) Likewise, for each directed edge (u, v) : ωT(u, v), ωI(u, v), ωF(u, v) are called the complex truth,
indeterminate and falsity membership value, of the directed edge (u, v). Moreover, if ωT(u, v) =

ωI(u, v) = ωF(u, v) = 0, then (u, v) is said to be a void directed edge.

For the sake of brevity, we shall denote ω(u, v) = (ωT(u, v), ωI(u, v), ωF(u, v)) and ρ(v) =

(ρT(v), ρI(v), ρF(v)) for all the remaining parts of this paper.
As mentioned, CNG1 is generalized from both GSVNG1 and CFG1. As a result, we have ωT , ωI

and ωT being functions themselves. This further implies that ωT(u, v), ωI(u, v) and ωT(u, v) can only
be single values from O1. In particular, ωT(v, v), ωI(v, v), and ωT(v, v) can only be single values.

As a result, each vertex v in a CNG1 possess a single, undirected loop, whether void or not.
And each of the two distinct vertices u, v in a CNG1 possess two directed edges, resulting from (u, v)
and (v, u), whether void or not.

Recall that in classical graph theory, we often deal with ordinary (or undirected) graphs, and also
simple graphs. To further relate our CNG1 with it, we now proceed with the following definition.

Definition 8. Let ξ = 〈V, ρ, ω〉 be a CNG1.

(a) If ω(a, b) = ω(b, a), then {a, b} = {(a, b), (b, a)} is said to be an (ordinary) edge of ξ. Moreover,
{a, b} is said to be a void (ordinary) edge if both (a, b) and (b, a) are void.
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(b) If ω(u, v) = ω(v, u) holds for all u, v ∈ V, then ξ is said to be ordinary (or undirected), otherwise it is
said to be directed.

(c) If all the loops of ξ are void, then ξ is said to be simple.

Definition 9. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. If for all u, v ∈ V with u �= v, there exist non-void
edges {u = w1, w2}, {w2, w3}, . . . , {wn−1, wn = v} for some n ≥ 2, then ξ is said to be connected.

Definition 10. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let u, v ∈ V. Then:

(a) {u, v} is said to be adjacent to u (and to v).
(b) u (and v as well) is said to be an end-point of {u, v}.

We now discuss a real life scenario that can only be represented by a CNG1.

3.1. The Scenario

Note: All the locations mentioned are fictional
Suppose there is a residential area in Malaysia with four families: a, b, c, d. All of them have

Internet access. In other words, they are Internet clients, which will access the Internet servers from
around the world (including those servers located within Malaysia) depending on which website they
are visiting.

If they access the internet on their own, the outcomes can be summarized as given in the Table 1
and Figure 1.

Table 1. The outcomes of individuals, for Scenario 3.1.

Activities a b c d

Some members will
seek excitement
(e.g., playing
online games)

Happens on 80% of the day, and
those will be connecting
towards 0◦ (because that server
is located in China �)

Happens on 70% of
the day, and those
will be connecting
towards 30◦

Happens on 90% of
the day, and those
will be connecting
towards 120◦

Happens on 80% of
the day, and those
will be connecting
towards 250◦

Some members will
want to surf around
(e.g.,
online shopping)

Happens on 50% of the day, and
those will be connecting
towards 130◦ (because that
server is located in Australia �)

Happens on 60% of
the day, and those
will be connecting
towards 180◦

Happens on 20% of
the day, and those
will be connecting
towards 340◦

Happens on 40% of
the day, and those
will be connecting
towards 200◦

Some members will
need to relax
(e.g., listening
to music)

Happens on 20% of the day, and
those will be connecting
towards 220◦ (because that
server is located in Sumatra
�, Indonesia)

Happens on 30% of
the day, and those
will be connecting
towards 200◦

Happens on 50% of
the day, and those
will be connecting
towards 40◦

Happens on 10% of
the day, and those
will be connecting
towards 110◦

(�) as illustrated in Figure 1.

Moreover, the following (unordered) pairs of the four families are close friends or relatives:

{a, b},{a, c}, {a, d}, {b, d}.

Thus, each pair of family mentioned (e.g., {a, b}) may invite one another for a visit, accessing the
Internet as one team. In particular:

(i) When {a, b} or {a, d} access the internet together, they will simply search for “a place of common
interest”. This is regardless of who initiates the invitation.

(ii) a and c rarely meet. Thus, each time they do, everyone (especially the children) will be so excited
that they would like to try something fresh, so all will seek excitement and connect towards to
a local broadcasting server at 240◦ to watch soccer matches (that server will take care of which
country to connect to) for the entire day. This is also regardless of who initiates the visitation.
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(iii) The size and the wealth of d far surpasses b. Thus, it would always be d who invites b to their
house, never the other way, and during the entire visit, members of b will completely behave like
members of d and, therefore, will visit the same websites as d.

Denote the first term of the ordered pair (u, v) as the family who initiates the invitation, and the
second term as family who receives the invitation and visit the other family. The outcomes of the seven
possible teams (a, b), (a, c), (a, d), (b, a), (c, a), (d, a), (d, b) are, thus, summarized by Table 2.

 

Figure 1. The illustration of the servers’ relative positions using a public domain map, for Scenario 3.1.

Table 2. The outcomes of teams in pairs, for the scenario.

Activities (a, b),(b, a) (a, c),(c, a) (a, d),(d, a) (d, b)

Some members will
seek excitement

Happens on 80% of
the day, and those
will be connecting

towards 15◦

Happens on the
entire day, all will

be connecting
towards 240◦

Happens on 80% of
the day, and those
will be connecting

towards 305◦

Happens on 80% of
the day, and those
will be connecting

towards 250◦

Some members
will want to surf

around

Happens on 60% of
the day, and those
will be connecting

towards 155◦
Does not happen

Happens on 50% of
the day, and those
will be connecting

towards 165◦

Happens on 40% of
the day, and those
will be connecting

towards 200◦

Some members
will need to relax

Happens on 30% of
the day, and those
will be connecting

towards 210◦
Does not happen

Happens on 50% of
the day, and those
will be connecting

towards 40◦

Happens on 10% of
the day, and those
will be connecting

towards 110◦

On the other hand, {c, b} and {d, c} are mutual strangers. So c and b will visit each other. The same
goes to d and c.
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3.2. Representation of the Scenario with CNG1

We now follow all the steps from (a) to (e) in Definition 7, to represent the scenario with a
particular CNG1.

(a) Take V0 = {a, b, c, d}.
(b) In accordance with the scenario, define the three functions on V0: ρT , ρI , ρF, as illustrated in

Table 3.

Table 3. k(v) , where k represents any of the 3 functions on V0 ρT , ρI , ρF, for the scenario.
Also mentioned in Section 4.2.

k
v a b c d

ρT 0.8ei2π 0.7ei π
6 0.9ei 2π

3 0.8ei 25π
18

ρI 0.5ei 13π
18 0.6eiπ 0.2ei 17π

9 0.4ei 10π
9

ρF 0.2ei 11π
9 0.3ei 10π

9 0.5ei 2π
9 0.1ei 11π

18

(c) In accordance with the scenario, define the three functions ωT , ωI , ωF, as illustrated in Tables 4–6.

Table 4. The outcomes of ωT(u, v) , for the scenario. Also mentioned in Section 4.2.

u
v a b c d

a 0 0.8ei π
12 1ei 4π

3 0.8ei 61π
36

b 0.8ei π
12 0 0 0

c 1ei 4π
3 0 0 0

d 0.8ei 61π
36 0.8ei 25π

18 0 0

Table 5. The outcomes of ωI(u, v) , for the scenario. Also mentioned in Section 4.2.

u
v a b c d

a 0 0.6ei 31π
36 0 0.5ei 33π

36

b 0.6ei 31π
36 0 0 0

c 0 0 0 0
d 0.5ei 33π

36 0.4ei 10π
9 0 0

Table 6. The outcomes of ωF(u, v) , for the scenario. Also mentioned in Section 4.2.

u
v a b c d

a 0 0.3ei 7π
6 0 0.5ei 2π

9

b 0.3ei 7π
6 0 0 0

c 0 0 0 0
d 0.5ei 2π

9 0.1ei 11π
18 0 0

(d) By statement (d) from Definition 7, let ρ0 = (ρT , ρI , ρF), and ω0 = (ωT , ωI , ωF). We have now
formed a CNG1 〈V0, ρ0, ω0〉.

One of the way of representing the entire 〈V0, ρ0, ω0〉 is by using a diagram that is analogous
with graphs as in classical graph theory, as shown in the Figure 2.
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Figure 2. A diagram representing 〈V0, ρ0, ω0〉, for the scenario.

In other words, only the non-void edges (whether directed or ordinary) and vertices are to be
drawn in such a diagram.

Hence, we have shown how a CGN1 can be constructed from a data set with four homes. The same
concept mentioned can certainly be used on a larger dataset, such as one with thousands of locations
and thousands of homes, which will result in a more complicated diagram being generated. However,
one will definitely require computer algebraic systems, such as SAGE, to process the data and to
display the data in diagram form.

Additionally, recall that, in classical graph theory, a graph can be represented by an adjacency
matrix, for which the entries are either a positive integer (connected) or 0 (not connected).

This motivates us to represent CNG1 using a matrix as well, in a similar manner. Nonetheless,
instead of a single value that is either 0 or 1, we have three values to deal with: ωT , ωI , ωF, with each
of them capable of being anywhere in O1. Moreover, each of the vertices themselves also contain ρT ,
ρI , ρF, which must be taken into account as well.

4. Representation of a CNG1 by an Adjacency Matrix

4.1. Two Methods of Representation

In this section, we discuss the representation of CNG1 in two ways, which are both analogous to
the one encountered in classical literature.

Let ξ = 〈V, ρ, ω〉 be a CNG1 where vertex set V = {v1,v2, . . . ,vn} (i.e., CNG1 has finite vertices).
We first form an n × n matrix as shown:

M =
[
ai,j
]

n =

⎛⎜⎜⎜⎜⎝
a1,1 a1,2

a2,1 a2,2
· · · a1,n

a2,n
...

. . .
...

an,1 an,2 · · · an,n

⎞⎟⎟⎟⎟⎠,

where ai,j = ω
(
vi, vj

)
for all i, j.

In other words, each element of the matrix M is itself an ordered set of three elements, instead of
just a number of either 0 or 1 in the classical literature.

Remark 3. Since ξ can only possess undirected loops, we decided not to multiply the main diagonal elements of
M by 2, as seen in adjacency matrices for graphs classical literature (2 for undirected, 1 for directed, 0 for void).
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Meanwhile, also recall that each of the vertices in ξ contains ρT , ρI , ρF, which must be taken into
account as well.

Thus, we form another matrix K as shown:

K = [ki]n,1 =

⎛⎜⎜⎜⎜⎝
k1

k2
...

kn

⎞⎟⎟⎟⎟⎠,where ki = ρ(vi)foralli.

To accomplish one of our methods of representing the entire ξ we, therefore, augment the matrix
K with M, forming the adjacency matrix of CNG1, [K|M], as shown:

[K|M] =

⎛⎜⎜⎜⎜⎝
k1 a1,1 a1,2

k2 a2,1 a2,2
· · · a1,n

a2,n
...

. . .
...

kn an,1 an,2 · · · an,n

⎞⎟⎟⎟⎟⎠,

where ai,j = ω
(
vi, vj

)
, and ki = ρ(vi), for all i, j.

Although [K|M] is an n × (n + 1) matrix and therefore not a square, this representation will save
us another separate ordered set to represent the ρT , ρI , ρF values of the vertices themselves.

Sometimes it is more convenient to separately deal with each of the three kinds of membership
values for both edges and vertices. As a result, here we provide another method of representing the
entire ξ: using three n × (n + 1) matrices, [K|M] T , [K|M] I , and [K|M] F, each derived from [K|M] by
taking only one kind of the membership values from its elements:

[K|M] T = [KT |MT ]

⎛⎜⎜⎜⎜⎝
ρT(v1) ωT(v1, v1) ωT(v1, v2)

ρT(v2) ωT(v2, v1) ωT(v2, v2)
· · · ωT(v1, vn)

ωT(v2, vn)
...

. . .
...

ρT(vn) ωT(vn, v1) ωT(vn, v2) · · · ωT(vn, vn)

⎞⎟⎟⎟⎟⎠,

[K|M] I = [KI |MI ]

⎛⎜⎜⎜⎜⎝
ρI(v1) ωI(v1, v1) ωI(v1, v2)

ρI(v2) ωI(v2, v1) ωI(v2, v2)
· · · ωI(v1, vn)

ωI(v2, vn)
...

. . .
...

ρI(vn) ωI(vn, v1) ωI(vn, v2) · · · ωI(vn, vn)

⎞⎟⎟⎟⎟⎠,

[K|M] F = [KF|MF]

⎛⎜⎜⎜⎜⎝
ρF(v1) ωF(v1, v1) ωF(v1, v2)

ρF(v2) ωF(v2, v1) ωF(v2, v2)
· · · ωF(v1, vn)

ωF(v2, vn)
...

. . .
...

ρF(vn) ωF(vn, v1) ωF(vn, v2) · · · ωF(vn, vn)

⎞⎟⎟⎟⎟⎠.

[K|M] T , [K|M] I , and [K|M] F shall, thus, be called, respectively, the truth-adjacency matrix,
the indeterminate-adjacency matrix, and the false-adjacency matrix of ξ.

Remark 4. If [K|M] I = [K|M] F = [0]n,n+1, KT = [1]n,1, all the entries of MT are either 1 or 0, then ξ is
reduced to a graph in classical literature. Furthermore, if that MT is symmetrical and with main diagonal
elements being zero, then ξ is further reduced to a simple ordinary graph in the classical literature.

Remark 5. If [K|M] I = [K|M] F = [0]n,n+1, and all the entries of [K|M] T are real values from the interval
[0, 1], then ξ is reduced to a generalized fuzzy graph type 1 (GFG1).

Remark 6. If all the entries of [K|M] T, [K|M] I , and [K|M] F are real values from the interval [0, 1], then ξ is
reduced to a generalized single valued neutrosophic graphs of type 1 (GSVNG1).
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Remark 7. If MT, MI , and MF are symmetric matrices, then ξ is ordinary.

4.2. Illustrative Example

For the sake of brevity, we now give representation for our example for the scenario in 3.1 by the
latter method using three matrices: [K|M] T , [K|M] I , and [K|M] F:

[K|M] T =

⎛⎜⎜⎜⎝
0.8ei2π 0 0.8ei π12 1ei 4π

3 0.8ei 61π
36

0.7ei π6 0.8ei π12 0 0 0
0.9ei 2π

3 1ei 4π
3 0 0 0

0.8ei 25π
18 0.8ei 61π

36 0.8ei 25π
18 0 0

⎞⎟⎟⎟⎠

[K|M] I =

⎛⎜⎜⎜⎜⎝
0.5ei 13π

18 0 0.6ei 31π
36 0 0.5ei 33π

36

0.6eiπ 0.6ei 31π
36 0 0 0

0.2ei 17π
9 0 0 0 0

0.4ei 10π
9 0.5ei 33π

36 0.4ei 10π
9 0 0

⎞⎟⎟⎟⎟⎠

[K|M] F =

⎛⎜⎜⎜⎜⎝
0.2ei 11π

9 0 0.3ei 7π
6 0 0.5ei 2π

9

0.3ei 10π
9 0.3ei 7π

6 0 0 0
0.5ei 2π

9 0 0 0 0
0.1ei 11π

18 0.5ei 2π
9 0.1ei 11π

18 0 0

⎞⎟⎟⎟⎟⎠
As in Section 3, we have shown how a matrix representation of a CNG1 with |V| = 4 can be

constructed. Likewise, the same concept mentioned can certainly be used on a larger CNG1 but, again,
one will definitely require computer algebraic systems, such as SAGE to process the data and to display
such a matrix representation.

5. Some Theoretical Results on Ordinary CNG1

We now discuss some theoretical results that follows from the definition of ordinary CNG1,
as well as its representation with adjacency matrix. Since we are concerned about ordinary CNG1, all
the edges that we will be referring to are ordinary edges.

Definition 11. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} be the vertex
set of ξ. Then, for each i, the resultant degree of vi, denoted as D(vi), is defined to be the ordered set
(DT(vi), DI(vi), DF(vi)), for which:

(a) DT(vi) =
n
∑

r=1
ωT(vi, vr) + ωT(vi, vi),

(b) DI(vi) =
n
∑

r=1
ωI(vi, vr) + ωI(vi, vi),

(c) DF(vi) =
n
∑

r=1
ωF(vi, vr) + ωF(vi, vi).

Remark 8. In analogy to classical graph theory, each undirected loop has both its ends connected to the same
vertex, so is counted twice.

Remark 9. Each of the values of DT(vi), DI(vi), and DF(vi) need not be an integer as in a classical graph.

Definition 12. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} be the vertex set of ξ.
Then, the resultant amount of edges of ξ, denoted as Eξ , is defined to be the ordered set (ET , EI , EF) for which:

(a) ET = ∑
{r,s}⊆{1,2,...,n}

ωT(vr, vs),
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(b) EI = ∑
{r,s}⊆{1,2,...,n}

ωI(vr, vs),

(c) EF = ∑
{r,s}⊆{1,2,...,n}

ωF(vr, vs).

Remark 10. As in classical graph theory, each edge is counted only once, as shown by {r, s} ⊆ {1, 2, . . . , n} in
the expression. For example, if ωT(va, vb) is added, we will not add ωT(vb, va) again since {a, b} = {b, a}.

Remark 11. Each of the values of ET, EI and EF need not be an integer as in a classical graph. As a result,
we call it the “amount” of edges, instead of the “number” of edges as in the classical literature.

For each vertex vi, just because D(vi) equals 0, that does not mean that all the edges connect
to vi are void. It could be two distinct edges {vi, v1} and {vi, v2} with ωT(vi, v1) = −ωT(vi, v2),
ωI(vi, v1) = −ωI(vi, v2) and ωF(vi, v1) = −ωF(vi, v2) (i.e., equal in magnitude, but opposite in phase).
The same goes to the value of Eξ. This differs from the classical theory of graphs and, therefore,
it motivates us to look at a CNG1 in yet another approach. We, thus, further define the following:

Definition 13. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} be the vertex
set of ξ. Then, for each i, the absolute degree of vi, denoted as |D|(vi), is defined to be the ordered set
(|D|T(vi), |D|I(vi), |D|F(vi)), for which:

(a) |D|T(vi) =
n
∑

r=1
|ωT(vi, vr)| + |ωT(vi, vi)|,

(b) |D|I(vi) =
n
∑

r=1
|ωI(vi, vr)| + |ωI(vi, vi)|,

(c) |D|F(vi) =
n
∑

r=1
|ωF(vi, vr)| + |ωF(vi, vi)|.

Definition 14. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} be the vertex set of ξ.
Then, the absolute amount of edges of ξ, denoted as |E|ξ , is defined to be the ordered set (|E|T , |E|I , |E|F) for
which:

(a) |E|T = ∑
{r,s}⊆{1,2,...,n}

|ωT(vr, vs)|,

(b) |E|I = ∑
{r,s}⊆{1,2,...,n}

|ωI(vr, vs)|,

(c) |E|F = ∑
{r,s}⊆{1,2,...,n}

|ωF(vr, vs)|.

On the other hand, sometimes we are particularly concerned about the number of non-void edges
in an ordinary CNG1. In other words, we just want to know how many edges

{
vi, vj

}
with:

ω
(
vi, vj

) �= (0, 0, 0).

Instead of a mere visual interpretation, we must however form a precise definition as follows:

Definition 15. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} to be the vertex set of ξ.
Then, the number of non-void edges of ξ, denoted as Mξ , is defined to be the cardinality of the set:{ {

vi, vj
} ⊆ V

∣∣ ω
(
vi, vj

) �= (0, 0, 0)
}

.

Definition 16. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} to be the vertex set of ξ.
Then, the number of vertices of ξ, denoted as Nξ , is defined to be the cardinality of the set V itself.
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Remark 12. In this paper, we often deal with both Mξ and Nξ at the same time. Thus, we will not denote Nξ

as |V|.

Remark 13. By Definition 7, V is non-void, so Nξ ≥ 1 follows.

Lemma 1. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} be the vertex set of ξ. Then,
for each i:

(a) DT(vi) =
n
∑

r=1
ωT(vr, vi) + ωT(vi, vi),

(b) DI(vi) =
n
∑

r=1
ωI(vr, vi) + ωI(vi, vi),

(c) DF(vi) =
n
∑

r=1
ωF(vr, vi) + ωF(vi, vi).

Proof . Since ξ is ordinary, ω(vr, vi) = ω(vi, vr) for all i and r. The lemma thus follows. �

Lemma 2. Let ξ = 〈V, ρ, ω〉 to be an ordinary CNG1. If ξ is simple. then, for each i:

(a) DT(vi) = ∑
r∈{1,2,...,n}−{i}

ωT(vi, vr),

(b) DI(vi) = ∑
r∈{1,2,...,n}−{i}

ωI(vi, vr),

(c) DF(vi) = ∑
r∈{1,2,...,n}−{i}

ωF(vi, vr).

Proof . Since ξ is simple, ω(vi, vi) = (0, 0, 0) for all i. The lemma thus follows. �

Lemma 3. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Let V = {v1, v2, . . . , vn} be the vertex set of ξ. Then,
for each i:

(a) |D|T(vi) =
n
∑

r=1
|ωT(vr, vi)| + |ωT(vi, vi)|,

(b) |D|I(vi) =
n
∑

r=1
|ωI(vr, vi)| + |ωI(vi, vi)|,

(c) |D|F(vi) =
n
∑

r=1
|ωF(vr, vi)| + |ωF(vi, vi)|.

Proof . The arguments are similar to Lemma 1. �

Lemma 4. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. If ξ is simple. then, for each i:

(a) |D|T(vi) = ∑
r∈{1,2,...,n}−{i}

|ωT(vi, vr)|,

(b) |D|I(vi) = ∑
r∈{1,2,...,n}−{i}

|ωI(vi, vr)|,

(c) |D|F(vi) = ∑
r∈{1,2,...,n}−{i}

|ωF(vi, vr)|.

Proof . The arguments are similar to Lemma 2. �

Lemma 5. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Then
n
∑

r=1
|D|(vr) = (0, 0, 0) if and only if

|D|(vi) = (0, 0, 0) for all i.
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Proof . Without loss of generality, since |D|T(vi) =
n
∑

r=1
|ωT(vi, vr)| + |ωT(vi, vi)| by Definition 13,

it is always a non-negative real number. Thus, in order that
n
∑

r=1
|D|T(vr) = 0, there can be only one

possibility: all |D|T(vi) must be zero. �

Remark 14. A similar statement does not hold for the resultant degree.

We now proceed with two of our theorems which both serve as generalizations of the well-known
theorem in classical literature:

“For an ordinary graph, the sum of the degree of all its vertices is always twice the number of
its edges”.

Theorem 1. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Then
n
∑

r=1
D(vr) = 2Eξ .

Proof . As D(vi) = (DT(vi), DI(vi), DF(vi)) for all i, and Eξ = (ET , EI , EF). Without loss of generality,

it suffices to prove that 2ET =
n
∑

r=1
DT(vr):

ET =∑{r,s}⊆{1,2,...,n} ωT(vr, vs) = ∑ {r, s} ⊆ {1, 2, . . . , n}
r �= s

ωT(vr, vs) + ∑n
r=1 ωT(vr, vr).

Since {r, s} = {s, r} for all s and r, it follows that:

2ET= 2∑ {r, s} ⊆ {1, 2, . . . , n}
r �= s

ωT(vr, vs) + 2∑n
r=1 ωT(vr, vr)

= ∑ r ∈ {1, 2, . . . , n}
s ∈ {1, 2, . . . , n}

r �= s

ωT(vr, vs) + 2∑n
r=1 ωT(vr, vr)

= ∑ r ∈ {1, 2, . . . , n}
s ∈ {1, 2, . . . , n}

ωT(vr, vs) + ∑n
r=1 ωT(vr, vr)

= ∑n
r=1

n

∑
s=1

ωT(vr, vs) + ∑n
r=1 ωT(vr, vr)

= ∑n
r=1( ∑n

s=1 ωT(vr, vs) + ωT(vr, vr))

= ∑n
r=1 DT(vr).

This completes the proof. �

Theorem 2. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. Then
n
∑

r=1
|D|(vr) = 2|E|ξ .

Proof . The arguments are similar to Theorem 1 and can be easily proven by replacing all the terms
ωT
(
vi, vj

)
with

∣∣ωT
(
vi, vj

)∣∣. �

Lemma 6. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1, with
n
∑

r=1
D(vr) = (0, 0, 0). If Mξ > 0, then Mξ ≥ 2.

Proof . By Theorem 1,
n
∑

r=1
D(vr) = 2Eξ , so Eξ = (0, 0, 0) as well.
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If only one edge is non-void, then ω(vr0 , vs0) �= (0, 0, 0) only for one particular set {r0, s0}.
This implies that:

ET = ∑{r,s}⊆{1,2,...,n} ωT(vr, vs) = ωT(vr0 , vs0),

EI = ∑{r,s}⊆{1,2,...,n} ωI(vr, vs) = ωI(vr0 , vs0),

EF = ∑{r,s}⊆{1,2,...,n} ωF(vr, vs) = ωF(vr0 , vs0),

which contradicts the statement that Eξ = (0, 0, 0). �

Since Mξ ≥ 2, one may have thought either Mξ or Nξ must be even. However, this is proven to be
false, even by letting ξ to be simple and by letting D(v) = (0, 0, 0) for all i, as shown by the following
counter-example (Figure 3):

Figure 3. A counterexample, showing that Mξ or Nξ need not be even. a =
(

1
5 e𝒻2π , 1

5 e𝒻
4
3 π , 1

5 e𝒻
2
3 π
)

,

b =
(

1
5 e𝒻

4
3 π , 1

5 e𝒻
2
3 π , 1

5 e𝒻2π
)

, c =
(

1
5 e𝒻

2
3 π , 1

5 e𝒻2π , 1
5 e𝒻

4
3 π
)

.

for which Mξ = 7, Nξ = 5, and with all vertices being end-points of some edges. Moreover, such
a result is not related to the value of ρ(v) for any of the vertex v.

This motivates to consider what is the least possible values of Mξ and Nξ , for the special case of
an ordinary ξ being simple, with D(v) = (0, 0, 0) and ρ(v) = (1, 0, 0) for all of its vertices v.

6. The Shortest CNG1 of Certain Conditions

We now proceed with the following definitions.

Definition 17. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1. ξ is said to be net if all of the following are satisfied:

(a) ξ is simple.
(b) ξ is connected.
(c) for all v ∈ V, D(v) = (0, 0, 0) and ρ(v) = (1, 0, 0).

Furthermore, ξ is said to be trivial if the entire ξ consist of one single vertex v with ρ(v) = (1, 0, 0).
On the other hand, ξ is said to be gross if it is not net.

Lemma 7. Let ξ = 〈V, ρ, ω〉 be a non-trivial net CNG1. Then each vertex must have least two non-void edges
adjacent to it.

Proof . Let v ∈ V. Since Nξ ≥ 2 and ξ is connected, there must exist a non-void edge {v, u} for some
u ∈ V − {v}.

If {v, u} is the only non-void edge adjacent to v, then D(v) = ω(v, u) �= (0, 0, 0). This a
contradiction. �
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Theorem 3. Let ξ = 〈V, ρ, ω〉 be a non-trivial net CNG1. Then Mξ ≥ 4. Moreover, two of those non-void
edges must be {a, b} and {a, c}, for some mutually distinct vertices a, b, c.

Proof . Since Nξ ≥ 2 and ξ is connected, non-void edge(s) must exist, so Mξ > 0. Furthermore,
D(v) = (0, 0, 0) for all v ∈ V would imply ∑

v∈V
D(v) = (0, 0, 0). Mξ ≥ 2 now follows by Lemma 6.

Let a be an end-point of some of those non-void edges. From Lemma 7, we conclude that at least
two non-void edges must be adjacent to a.

Since ξ is simple, it now follows that those 2 non-void edges must be {a, b} and {a, c}, with a, b, c
being 3 mutually distinct vertices of ξ.

If Mξ = 2:
{a, b} and {a, c} are therefore the only two non-void edges. By Lemma 7, both {a, b} and {a, c}

must be adjacent to b. This is a contradiction.
If Mξ = 3:
There can only be one more non-void edges besides {a, b} and {a, c}.
By Lemma 7: b must be an end-point of another non-void edge besides {a, b}; and c must also be

an end-point of another non-void edge besides {a, c}.
We now deduce that the third non-void edge must therefore be adjacent to both b and c. This yields

Figure 4:

Figure 4. The triangle formed when {a, b}, {a, c} and {b, c} are all non-void. Mentioned in Theorem
3, 6.

Since {a, b} and {c, a} are non void, ω(a, b) = k = −ω(c, a) for some k �= (0,0,0).
Since {b, c} is adjacent to both b and c, ω(b, c) = k = −k. This is again a contradiction.
Mξ ≥ 4 now follows. �

Theorem 4. Let ξ = 〈V, ρ, ω〉 be a non-trivial net CNG1. Then Mξ ≥ 4 and Nξ ≥ 4.

Proof . By Theorem 3, Mξ ≥ 4, and two of those non-void edges must be {a, b} and {a, c}, for some
mutually distinct vertices a, b, c.

Suppose Nξ < 4. Since ξ is simple, the maximum possible number of edges (whether it is void
or not) is 3 + 3

2 (3− 3) = 3 < 4, which is a contradiction. Nξ ≥ 4 now follows. �

Theorem 5. The smallest non-trivial net CNG1 must be of the structure in Figure 5:

Proof . Let ξ = 〈V, ρ, ω〉 be a non-trivial net CNG1. By Theorem 4, Mξ ≥ 4 and Nξ ≥ 4. By Theorem 3,
two of those non-void edges must be {a, b} and {a, c}, with a, b, c being three mutually distinct vertices
of ξ.

Consider the scenario where Mξ = 4 and Nξ = 4 (i.e., the least possible number).
If the edge {b, c} is non-void, then we would have formed Figure 4, as mentioned in the proof of

Theorem 3
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That leaves us with only one vertex d and only one extra non-void edge being adjacent to d. This is
a contradiction.

Figure 5. The smallest non-trivial net CNG1. Mentioned in Theorem 5 and Example 4. k �= (0, 0, 0).

There is now only one choice left: both the edges {d, b} and {d, c}must be non-void. This gives
rise to the following structure in Figure 6:

 
Figure 6. The only choices left because eace vertex must have at least 2 adjacent non void edges.
Mentioned in Theorem 5, 6.

Without loss of generality, let ω(a, b) = k. Then both ω(b, d) = −k and ω(a, c) = −k must follow,
leaving us with ω(c, d) = k as the only valid option.

We are therefore left with the only way of assigning ω as shown by the theorem. �

Lemma 8. Let ξ = 〈V, ρ, ω〉 be a non-trivial net CNG1. Then Mξ ≥ Nξ .

Proof . Every single non-void edge is connected to two vertices. Thus, if we count the total number of
adjacent non-void edges for each vertex, and then summing the results for all the vertices together, the
result will be 2Mξ (note: this paragraph is analogous to classical graph theory).

By Lemma 7, each vertex must have at least two non-void edges connect to it. We now have
2Mξ ≥ 2Nξ , so Mξ ≥ Nξ follows. �

Theorem 6. Let ξ = 〈V, ρ, ω〉 be a non-trivial net CNG1 with both Mξ and Nξ being odd numbers.
Then Mξ ≥ 7 and Nξ ≥ 5.

Proof. Let ξ = V, ρ, ω be a non-trivial net CNG1. By Theorem 4, Mξ ≥ 4 and Nξ ≥ 4. By Theorem 3,
two of those non-void edges must be {a, b} and {a, c}, for some a, b and c being three mutually distinct
vertices of ξ.

Since both Mξ and Nξ are odd, it follows that Mξ ≥ 5 and Nξ ≥ 5. So in addition to a, b, c, there
exist another 2 vertices d, e.
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Consider the scenario where Mξ = 5 and Nξ = 5 (i.e., the least possible number).
Case 1. Suppose the edge {b, c} is non-void. Then we would have formed Figure 4, as mentioned

in the proof of Theorem 3.
That leaves us with two vertices d and e, and two extra non-void edge, which both of them must

be adjacent to d. Even if {d, e} is non-void, the other non-void edge adjacent to d cannot possibly be
{d, e} itself. Therefore, we have, at most, one non-void edge being adjacent to e. This is a contradiction.

Case 2. Without loss of generality, suppose the edges {b, d} and {c, d} are non-void. Then we
would have formed Figure 6, as mentioned in the proof of Theorem 5.

That leaves us with only one vertex e and only one extra edge being adjacent to e, which is, again,
a contradiction.

Case 3. Without loss of generality, suppose the edges {b, d} and {c, e} are non-void. Then, besides
{b, d}, another edge must be adjacent to d. Likewise, besides {c, e}, another edge must be adjacent to e.
Since we are left with one edge, it must, therefore, be {d, e}. This gives rise to the following structure
in Figure 7:

Figure 7. The only choice left for the case of 5 non-void edges connecting to 5 vertices. Mentioned in
Theorem 6.

Without loss of generality, let ω(a, b) = k. Then both ω(b, d) = −k and ω(a, c) = −k must follow,
leaving us with both ω(c, e) = k and ω(d, e) = k.

We have, thus, arrived at D(e) = 2k �= (0, 0, 0), again a contradiction.
Hence, it is either Mξ > 5 or Nξ > 5.
Since both Mξ and Nξ are odd, either one of the following must hold:

(a) Mξ ≥ 7 and Nξ ≥ 7.
(b) Mξ = 7 and Nξ = 5.
(c) Mξ = 5 and Nξ = 7.

Furthermore, by Lemma 8, Mξ ≥ Nξ . Hence (c) will not occur, which implies that Mξ ≥ 7 and
Nξ ≥ 5. This completes the proof. �

Theorem 7. The smallest non-trivial net CNG1 ξ, with both Mξ and Nξ being odd numbers, must be of the
structure as shown in Figure 8:

Proof . Let ξ = 〈V, ρ, ω〉 be a non-trivial net CNG1 with both Mξ and Nξ being odd numbers.
Then Mξ ≥ 7 and Nξ ≥ 5.

Consider the scenario where Mξ = 7 and Nξ = 5 (i.e., the least possible number).
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Since ξ is an ordinary CNG1, each vertex must have 5 edges adjacent to it (whether void or not).
Since ξ is simple, one of the five edges for each vertex, which is a loop, must be void. As a result,
we now conclude that each vertex must have at most 4 non-void edges adjacent to it.

On the other hand, by Lemma 7, each vertex must have at least two non-void edges adjacent to it.

Figure 8. The smallest non-trivial net CNG1, with both Mξ and Nξ being odd numbers. . Mentioned
in Theorem 7 and Example 5. p + q + r = (0, 0, 0); |p + r| , |q + r| ≤ 1.

Since every single non-void edge is adjacent to two vertices. Thus, if we count the total number of
adjacent non-void edges for each vertex, and then summing the results for all the vertices together, the
result will be 7× 2 = 14 (note: this paragraph is analogous to classical graph theory).

Hence, the set representing the number of non-void edges adjacent to each of the five vertices,
must be one of the following:

(a) {2, 3, 3, 3, 3} (most “widely spread” possibility)
(b) {2, 2, 3, 3, 4}
(c) {2, 2, 2, 4, 4} (most “concentrated” possibility)

We now consider each the three cases:
Case 1. {2, 3, 3, 3, 3}
Without loss of generality:

Let a be that one vertex which is an end-point to only 2
non-void edges {a, b} and {a, c}. (i.e., {a, d}, {a, e} are void)(Figure 9).

(9)

Figure 9. The 2 non-void edges {a, b} and {a, c}, for all the 3 cases of Theorem 7.

Then, each one among b, c, d, e must be an end-point of three non-void edges.
Besides {d, a} and {d, d}, which are both void, there are three more edges adjacent to d: {d, b},

{d, c}, {d, e}.
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Since d is an end-point of exactly three non-void edges, we conclude that:

{d, b},{d, c}, {d, e} areallnon− void (10)

Similarly, besides {e, a} and {e, e}, which are both void, there are three more edges adjacent to e:
{e, b}, {e, c}, {e, d}.

Since e is also an end-point of exactly three non-void edges, we conclude that:

{e, b},{e, c}, {e, d} areallnon− void (11)

From (10) and (11), we conclude that:

{d, b},{d, c}, {e, b}, {e, c}, {d, e} = {e, d} areallnon− void (12)

From (9) and (12), we have obtained all the seven non-void edges:

{d, b},{d, c}, {e, b}, {e, c}, {d, e}, {a, b}, {a, c}.

Hence, {b, c}, {a, d}, {a, e}must be all void. We, thus, obtain the following structure (Figure 10):

Figure 10. The only possible way of connection for {2, 3, 3, 3, 3}.

Let ω(a, b) = p, ω(b, d) = q, ω(b, e) = r, ω(c, d) = s, ω(c, e) = t, ω(d, e) = u.
Since {a, b} and {a, c} are the only two non-void edges adjacent to a, we now have ω(a, c) = −p

(Figure 11).

 

Figure 11. The labeling of the non-void edges for {2, 3, 3, 3, 3}.

We how have: r + q + p = s + t− p = s + q + u = r + t + u = (0, 0, 0).
This further implies that: r + q + p + s + t− p = s + q + u + r + t + u = (0, 0, 0).
Therefore, q + r + s + t = q + r + s + t + 2u, which implies that u = (0, 0, 0). This is

a contradiction.
Case 2. {2, 2, 3, 3, 4}
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Without loss of generality:

Let a be that one vertex which is an end-point to only two non-void
edges {a, b} and {a, c}. (i. e., {a, d } , {a, e} are void)

(13)

as shown in Figure 9.
Since {a, d}, {a, e} are void, both d and e cannot be that vertex which is an end-point to four

non-void edges.
By symmetry, fix b to be that vertex which is an end-point to four non-void edges. Then:

{b, a},{b, c}, {b, d}, {b, e} areallnon− void. (14)

From (13) and (14), we have now arrived at the following structure (Figure 12):

Figure 12. The first 5 non-void edges for {2, 2, 3, 3, 4}.

Suppose {d, e} is void. Then exactly one out of {d, c} and {d, a} must be non-void. Similarly,
exactly one out of {e, c} and {e, a}must be non-void. By symmetry and the rules of graph isomorphism,
fix {d, a} to be non-void, then a would have been an end-point of three non-void edges: {d, a}, {b, a},
{c, a}. So {e, a}must be void and, therefore, {e, c} is non-void. We, thus, obtain the following structure
(Figure 13):

Figure 13. The only possible way of connection for {2, 2, 3, 3, 4}, if {d, e} is void.

Suppose {d, e} is non-void. Then we now arrived at the following structure (Figure 14):

Figure 14. The first 6 non-void edges for {2, 2, 3, 3, 4}, for the case of non-void {d, e}.
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By symmetry, fix a to be a vertex which is an end-point of three non-void edges. Then exactly one
edge out of {a, d} and {a, e}must be non-void. By the rules of graph isomorphism, we can fix {a, d} to
be non-void. Again we obtain the following structure (Figure 15):

  

Figure 15. The only possible way of connection for {2, 2, 3, 3, 4}, if {d, e} is non-void.

Let ω(a, b) = g, ω(c, b) = h, ω(a, c) = k, ω(b, d) = p, ω(b, e) = q.
Since {a, d} and {b, d} are the only two non-void edges adjacent to d, we now have ω(a, d) = −p.
Likewise, since {c, e} and {b, e} are the only two non-void edges adjacent to e, we now have

ω(c, e) = −q (Figure 16).

Figure 16. The labeling of the non-void edges for {2, 2, 3, 3, 4}.

We how have: p + q + g + h = g + k− p = h + k− q = (0, 0, 0).
Therefore, g = p− k, h = q− k . As a result: p + q + p− k + q− k = 2p + 2q− 2k = (0, 0, 0),

which implies p + q− k = (0, 0, 0).
Denote −k = r. Then g = p + r, h = q + r, and p + q + r = (0, 0, 0) follows. We have, thus,

formed the structure as mentioned in this theorem.
Case 3. {2, 2, 2, 4, 4}
Without loss of generality:
Let a be one of that two vertices which is an end-point to four non-void edges. Then:

{a, b},{a, c}, {a, d}, {a, e} arenon− void. (15)

Let b be the other one vertices which is also an end-point to four non-void edges. Then:

{b, a},{b, c}, {b, d}, {b, e} arenon− void. (16)

From (15) and (16), we have obtained the seven non-void edges:

{a, c},{a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {a, b}.

Hence, {c, d}, {c, e}, {d, e} are all void. We, thus, obtain the following structure (Figure 17):
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Figure 17. The only possible way of connection for {2, 2, 2, 4, 4}.

Let ω(b, d) = p, ω(b, e) = q, ω(b, c) = r, ω(b, a) = s,
Since {a, d} and {b, d} are the only two non-void edges adjacent to d, we now have = −p.
Since {a, e} and {b, e} are the only two non-void edges adjacent to e, we now have ω(a, e) = −q.
Since {a, c} and {b, c} are the only two non-void edges adjacent to c, we now have ω(a, c) = −r

(Figure 18).

Figure 18. The labeling of the non-void edges for {2, 2, 2, 4, 4}.

We how have: s + p + q + r = s− p− q− r = (0, 0, 0).
This further implies that: s + p + q + r + s− p− q− r = (0, 0, 0).
We now have 2s = (0, 0, 0), which implies that s = (0, 0, 0). This is a contradiction.
Our proof is now complete. �

Note that both 5 and 7 are not divisible even by 3, the next prime number after 2. This yields the
following corollary:

Corollary 1. The smallest non-trivial net CNG1 ξ, with both Mξ and Nξ not divisible by 2 or 3, must also be of
the structure as shown in Figure:

7. Symmetric Properties of Ordinary Simple CNG1

Definition 18. Let V and W be two non-void sets. Let ξ = 〈V, ρ, ω〉 and ζ = 〈W, ς, ψ〉 be two ordinary
CNG1s. If V = W, ρ = ς and ω = ψ, then ξ and ζ are said to be equal, and shall be denoted by ξ ≡ ζ.

Definition 19. Let V and W be a non-void set. Let ξ = 〈V, ρ, ω〉 and ζ = 〈W, ς, ψ〉 be two ordinary CNG1s.
If there exist a bijection 𝒻 : V → W such that:

(a) ρ(u) = ς(𝒻(u)) for all u ∈ V.
(b) ω(u, v) = ψ(𝒻(u),𝒻(v)) for all u, v ∈ V.

Then:
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(i) Such 𝒻 is said to be an isomorphism from ξ to ζ, and we shall denote such case by 𝒻[ξ] ≡ ζ.
(ii) ξ and ζ are said to be isomorphic, and shall be denoted by ξ ∼= ζ.

Remark 15. As both ξ and ζ are ordinary, ω(u, v) = ω(v, u) and ψ(𝒻(u),𝒻(v)) = ψ(𝒻(v),𝒻(u)) follow
for all u, v ∈ V.

Example 1. Consider ξ0 = V0, ρ0, ω0 and ζ0 = W0, ς0, ψ0 as follows:

V0 = {v1, v2, v3, v4, v5, v6}. W0 = {w1, w2, w3, w4, w5, w6}.
ρ0(v1) = p, ρ0(v2) = q, ρ0(v3) = t, ς0(w1) = t, ς0(w3) = p, ς0(w4) = s,
ρ0(v4) = ρ0(v6) = r, ρ0(v5) = s. ς0(w2) = ς0(w4) = r, ς0(w6) = q.
ω0(v1, v2) = ω0(v2, v1) = ω0(v2, v2) = a, ψ0(w1, w2) = ψ0(w2, w1) = d,
ω0(v1, v3) = ω0(v3, v1) = c, ψ0(w1, w3) = ψ0(w3, w1) = c,
ω0(v2, v3) = ω0(v3, v2) = b, ψ0(w1, w4) = ψ0(w4, w1) = e,
ω0(v3, v4) = ω0(v4, v3) = d, ψ0(w4, w5) = ψ0(w5, w4) = f,
ω0(v3, v5) = ω0(v5, v3) = e, ψ0(w1, w6) = ψ0(w6, w1) = b,
ω0(v5, v6) = ω0(v6, v5) = f, ψ0(w3, w6) = ψ0(w6, w3) = ψ0(w6, w6) = a,
otherwise, ω0(u, v) = (0, 0, 0). otherwise, ψ0(w, ν) = (0, 0, 0).

Moreover, |{p, q, r, s, t}| = 5 and |{a, b, c, d, e, f}| = 6 (Figure 19).

 

Figure 19. Two isomorphic CNG1’s, as mentioned in Example 1.

Thus, we define the bijection 𝒻0 : V → W as:

𝒻0(v1) = v3,𝒻0(v2) = v6,𝒻0(v3) = v1,𝒻0(v4) = v2,𝒻0(v5) = v4,𝒻0(v6) = v5.

It now follows that 𝒻0 is an isomorphism from ξ0 to ζ0, so ξ0 ∼= ζ0. Still, ξ0ζ0 in accordance with
Definition 18.

In all the following passages of this paper, let ℐ : V → V be the identity mapping from V to itself.
Like classical graph theory, whenever ζ ≡ ξ, ℐ is an isomorphism from ξ to ξ itself in accordance

with Definition 19. It is, therefore, motivational to investigate if there are other non-identity bijections
from V to itself, which is also an isomorphism from ξ to ξ itself. Additionally, recall that, in classical
graph theory, an isomorphism from a graph to itself will be called an automorphism on that graph.
Thus, we proceed with the following definition:
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Definition 20. Let V be a non-void set. Let ξ = 〈V, ρ, ω〉 be an ordinary CNG1’s. Let 𝒻 : V → V be a
bijection such that:

(a) ρ(u) = ρ(𝒻(u)) for all u ∈ V.
(b) ω(u, v) = ω(𝒻(u),𝒻(v)) for all u, v ∈ V.

Then 𝒻 is said to be an automorphism of ξ.

Remark 16. As ξ is ordinary, ω(u, v) = ω(v, u) follows for all u, v ∈ V.

Remark 17. Just because ρ(u) = ρ(𝒻(u)) and ω(u, v) = ω(𝒻(u),𝒻(v)), does not mean that u = 𝒻(u) or
v = 𝒻(v).

Remark 18. ℐ is thus called the trivial automorphism of ξ.

Example 2. Consider ξ1 = 〈V1, ρ1, ω1〉 as shown in Figure 20:
V1 = {a, b, c, d}. ρ1(a) = ρ1(b) = ρ1(d) = p, ρ1(c) = q.
ω1(a, c) = ω1(c, a) = h, ω1(b, c) = ω1(c, b) = ω1(d, c) = ω1(c, d) = g, otherwise, ω1(u, v) = (0, 0, 0).
|{p, q}| = |{g, h}| = 2.

Figure 20. ξ1 as mentioned in Example 2.

Let 𝒻1,𝒷1,𝒽1 : V1 → V1 be three bijections defined as follows:

(a) 𝒻1(c) = a,𝒻1(a) = d,𝒻1(d) = c,𝒻1(b) = b.
(b) 𝒷1(b) = a,𝒷1(d) = d,𝒷1(c) = c,𝒷1(a) = b.
(c) 𝒽1(b) = d,𝒽1(a) = a,𝒽1(c) = c,𝒽1(d) = b.

Then:

(i) 𝒻1 is an isomorphism from V1 to the following ordinary CNG1 (Figure 21).

which is not equal to ξ1 in accordance with Definition 18. 𝒻1 is therefore not an automorphism of ξ1.
(ii) 𝒷1 is an isomorphism from V1 to the following ordinary CNG1 (Figure 22).

which is also not equal to ξ1 in accordance with Definition 18. Likewise 𝒷1 is, therefore, not an
automorphism of ξ1.

(iii) 𝒽1 is an isomorphism from V1 to itself and, therefore, it is an automorphism of ξ1. Note that, even if
𝒽1(b) = d and 𝒽1(d) = b, as ρ1(b) = ρ1(d) = p and ω1(b, c) = ω1(d, c) = g, so 𝒽1[ξ1] ≡ ξ1

still holds.
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Figure 21. This is not an automorphism of ξ1 as mentioned in Example 2.

Figure 22. This is not an automorphism of ξ1 as mentioned in Example 2.

Definition 21. Let ξ = 〈V, ρ, ω〉 be an ordinary simple CNG1. ξ is said to be total symmetric if, for
all {u1, v1}, {u2, v2} ⊆ V, with |{u1, v1}| = |{u2, v2}|, there exist an automorphism of ξ, 𝒻, such that
u2 = 𝒻(u1), v2 = 𝒻(v1).

Remark 19. In other words, {u1, v1}, {u2, v2} can either be two edges, or two vertices as when u1 = v1 and
u2 = v2.

Example 3. With this definition, the following CNG1 (Figure 23) is, thus, totally-symmetric.

However, unlike symmetry of classical graphs, the concept of total symmetry takes all the edges into account,
whether void or not. As a result, the following graph (Figure 24), though looks familiar to the classical literature,
is not totally-symmetric.

As a result, the concept of total-symmetry in ordinary simple CNG1 proves even more stringent
than the concept of symmetry in classical ordinary simple graphs. Additionally, recall that edges
and vertices in CNG1 have three membership values instead of only 0 (disconnected, void) and 1
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(connected). To give more characterization of symmetry among ordinary simple CNG1, we now proceed
with the following definitions.

 

Figure 23. A totally-symmetric CNG1, as mentioned in Example 3.

 

Figure 24. This graph is not totally-symmetric. Mentioned in Example 3.

Definition 22. Let ξ = 〈V, ρ, ω〉 be an ordinary simple CNG1. ξ is said to be strong edge-wise symmetric
(abbr. SES) if: For all {u1, v1}, {u2, v2} ⊆ V with both ω(u1, v1) and ω(u2, v2) non-void, there exist an
automorphism 𝒻 of ξ, such that u2 = 𝒻(u1), v2 = 𝒻(v1).

Remark 20. As ξ is simple, it follows that |{u1, v1}| = |{u2, v2}| = 2.

Remark 21. An ordinary simple CNG1 with all edges being void is classified as strong edge-wise symmetric
as well.

Definition 23. Let ξ = 〈V, ρ, ω〉 be an ordinary simple CNG1. ξ is said to be strong point-wise(or vertex-wise)
symmetric (abbr. SPS) if: For all u1, u2 ∈ V with both ρ(u1) and ρ(u2) non-void, there exists an automorphism
𝒻 of ξ, such that u2 = 𝒻(u1).

Remark 22. An ordinary simple CNG1 with all vertices being void is classified as strong point-wise symmetric
as well.
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Definition 24. Let ξ = 〈V, ρ, ω〉 be an ordinary simple CNG1. ξ is said to be strong symmetric (abbr. SS) if
it is both strong edge-wise symmetric and strong point-wise symmetric.

Definition 25. Let ξ = 〈V, ρ, ω〉 be an ordinary simple CNG1. ξ is said to be weak edge-wise symmetric (abbr.
wES) if: For all {u1, v1}, {u2, v2} ⊆ V with ω(u1, v1) = ω(u2, v2) �= (0, 0, 0), there exists an automorphism
𝒻 of ξ, such that u2 = 𝒻(u1), v2 = 𝒻(v1). Otherwise, ξ is said to be edge-wise asymmetric (abbr. EA).

Remark 23. Again, as ξ is simple, it follows that |{u1, v1}| = |{u2, v2}| = 2.

Remark 24. An ordinary simple CNG1 with all non-void edges having different membership value is classified
as weak edge-wise symmetric as well.

Definition 26. Let ξ = V, ρ, ω be an ordinary simple CNG1. ξ is said to be weak point-wise (or vertex-wise)
symmetric (abbr. wPS) if: For all u1, u2 ∈ V with ρ(u1) = ρ(u2) �= (0, 0, 0), there exists an automorphism 𝒻
of ξ, such that u2 = 𝒻(u1). Otherwise, ξ is said to be point-wise asymmetric (abbr. PA).

Remark 25. An ordinary simple CNG1 with all non-void vertices having different membership value is classified
as weak point-wise symmetric as well.

Definition 27. Let ξ = 〈V, ρ, ω〉 be an ordinary simple CNG1. ξ is said to be asymmetric if it is both
edge-wise asymmetric and point-wise asymmetric.

Based on the definition, we now state such symmetric properties on the smallest non-trivial net
CNG1, as mentioned in Theorem 5, as well as the smallest non-trivial net CNG1 with both Mξ and Nξ

being odd numbers, as mentioned in Theorem 7.

Example 4. With regards to the structure of Figure 5, as mentioned in Theorem 5, with ρ(a) = ρ(b) =

ρ(c) = ρ(d) = (1, 0, 0).
Consider the following three automorphisms 𝒻,𝒷,𝒽 of ξ4,4:

(a) 𝒻(a) = b,𝒻(b) = a,𝒻(c) = d,𝒻(d) = c,
(b) 𝒷(a) = c,𝒷(b) = d,𝒷(c) = a,𝒷(d) = b,
(c) 𝒽(a) = d,𝒽(b) = c,𝒽(c) = b,𝒽(d) = a,

together with ℐ, the trivial automorphism of ξ.
As a result, ξ4,4 is thus strong point-wise symmetric (SPS) and weak edge-wise symmetric (wES).

Example 5. With regards to the structure of Figure 8, as mentioned in Theorem in Theorem 7, with p+q+ r =

(0, 0, 0); |p + r|, |q + r| ≤ 1; and ρ(a) = ρ(b) = ρ(c) = ρ(d) = ρ(e) = (1, 0, 0).
In this case, as non-void vertices having different membership values, only one automorphism of ξ5,7, which

is the identity mapping ℐ : V → V where ℐ(v) = v for all v ∈ V. As ℐ(a) �= b, ξ5,7 is, thus, point-wise
asymmetric (PA). It is, nonetheless, weak edge-wise symmetric (wES).

We now give an example of CNG1 which is asymmetric (i.e., both edge-wise and point-wise).

Example 6. ξ̃ = 〈V, ρ, ω〉 has the structure as shown in Figure 25:

Figure 25. A ξ̃ which is both point-wise asymmetric and edge asymmetric, as mentioned in Example 6.
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with |{p, q, r}| = 3, |{a, b}| = 2.
Only the trivial automorphism ℐ can be formed. As ℐ(a) �= d, ξ̃ is point-wise asymmetric. Moreover,

as ℐ(a) �= b, ξ̃ is edge asymmetric.

We end this section by giving a conjecture, which shall be dealt with in our future work:

Conjecture 1. The smallest non-trivial net CNG1 ξ, with both Mξ and Nξ being odd numbers, and is both SPS
and wES, must be of the structure as shown in Figure 26:

Figure 26. ξ for conjecture 1. p + q + r = (0, 0, 0).

8. Conclusions

In this article, we presented a new concept of the neutrosophic graph called complex neutrosophic
graphs of type 1 (CNG1), and also proceeded to present a matrix representation of it.

The strength of CNG1 lies in the presence of both magnitude and direction for the parameters
involved, as has been illustrated in Section 3. As the parameters have directions, even when the
resultant degree of a vertex is zero, the edges to that vertex need not necessarily be void. Thus the
concept of CNG1 may also be used in engineering, such as in metal frameworks, for example in the
construction of power lines, so that even when the beams are under tension, the resultant force at a
point (possibly being a cornerstone) joining all those beams are zero.

The concept of CNG1 can also be applied to the case of bipolar complex neutrosophic graphs
(BCNG1). We have plans to expand on this interesting concept in the near future, and plan to study
the concept of completeness, regularity, and CNGs of type 2.

As we can see in Section 6, when the choices of Mξ and Nξ becomes more restrictive, the smallest
non-trivial net CNG1 ξ increases in complexity. This makes us wonder what will be the smallest
non-trivial net CNG1 ξ in the case when both Mξ and Nξ are not divisible by all primes up to 5 (7, 11,
etc.), as well as whether their symmetric properties, as outlined in Section 7. However, the proof
of such cases will become much more tedious and, therefore, we would have to utilize computer
programs, such as MATLAB and SAGE, in order to find those non-trivial net CNG1 ξ. Therefore
our future research in this area involves plans to deal with those non-trivial net CNG1 ξ. We are
motivated by the interest to know if there exist some general patterns or general theorems governing
such smallest non-trivial net CNG1 as Mξ and Nξ become more restrictive.

We are currently working on developing a more in-depth theoretical framework concerning the
symmetric properties of CNG1, and have plans to extend this to other types of fuzzy graphs in the
future. We are also motivated by the works presented in [30–32], and look forward to extending
our work to other generalizations of neutrosophic sets, such as interval complex neutrosophic sets,
and apply the work in medical imaging problems and recommender systems.
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Abstract: In this paper we study the neutrosophic triplet groups for a ∈ Z2p and prove this collection
of triplets (a, neut(a), anti(a)) if trivial forms a semigroup under product, and semi-neutrosophic
triplets are included in that collection. Otherwise, they form a group under product, and it is of
order (p− 1), with (p + 1, p + 1, p + 1) as the multiplicative identity. The new notion of pseudo
primitive element is introduced in Z2p analogous to primitive elements in Zp, where p is a prime.
Open problems based on the pseudo primitive elements are proposed. Here, we restrict our study to
Z2p and take only the usual product modulo 2p.

Keywords: neutrosophic triplet groups; semigroup; semi-neutrosophic triplets; classical group of
neutrosophic triplets; S-semigroup of neutrosophic triplets; pseudo primitive elements

1. Introduction

Fuzzy set theory was introduced by Zadeh in [1] and was generalized to the Intuitionistic Fuzzy
Set (IFS) by Atanassov [2]. Real-world, uncertain, incomplete, indeterminate, and inconsistent data
were presented philosophically as a neutrosophic set by Smarandache [3], who also studied the notion
of neutralities that exist in all problems. Many [4–7] have studied neutralities in neutrosophic algebraic
structures. For more about this literature and its development, refer to [3–10].

It has not been feasible to relate this neutrosophic set to real-world problems and the engineering
discipline. To implement such a set, Wang et al. [11] introduced a Single-Valued Neutrosophic Set
(SVNS), which was further developed into a Double Valued Neutrosophic Set (DVNS) [12] and a Triple
Refined Indeterminate Neutrosophic Set (TRINS) [13]. These sets are capable of dealing with the real
world’s indeterminate data, and fuzzy sets and IFSs are not.

Smarandache [14] presents recent developments in neutrosophic theories, including the neutrosophic
triplet, the related triplet group, the neutrosophic duplet, and the duplet set. The new, innovative,
and interesting notion of the neutrosophic triplet group, which is a group of three elements, was
introduced by Florentin Smarandache and Ali [10]. Since then, neutrosophic triplets have been a field of
interest that many researchers have worked on [15–22]. In [21], cancellable neutrosophic triplet groups
were introduced, and it was proved that it coincides with the group. The paper also discusses weak
neutrosophic duplets in BCI algebras. Notions such as the neutrosophic triplet coset and its connection
with the classical coset, neutrosophic triplet quotient groups, and neutrosophic triplet normal subgroups
were defined and studied by [20].

Using the notion of neutrosophic triplet groups introduced in [10], which is different from
classical groups, several interesting structural properties are developed and defined in this paper.
Here, we study the neutrosophic triplet groups using only {Z2p,×}, p is a prime and the operation ×
is product modulo 2p. The properties as a neutrosophic triplet group under the inherited operation ×

Symmetry 2018, 10, 194; doi:10.3390/sym10060194 www.mdpi.com/journal/symmetry250
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is studied. This leads to the definition of a semi-neutrosophic triplet. However, it has been proved
that semi-neutrosophic triplets form a semigroup under ×, but the neutrosophic triplet groups, which
are nontrivial and are not semi-neutrosophic triplets, form a classical group of neutrosophic triplets
under ×.

This paper is organized into five sections. Section 2 provides basic concepts. In Section 3,
we study neutrosophic triplets in the case of Z2p, where p is an odd prime. Section 4 defines the
semi-neutrosophic triplet and shows several interesting properties associated with the classical group
of neutrosophic triplets. The final section provides the conclusions and probable applications.

2. Basic Concepts

We recall here basic definitions from [10].

Definition 1. Consider (S,×) to be a nonempty set with a closed binary operation. S is called a neutrosophic
triplet set if for any x ∈ S there will exist a neutral of x called neut (x), which is different from the algebraic
unitary element (classical), and an opposite of x called anti (x), with both neut (x) and anti (x) belonging to S
such that

x ∗ neut (x) = neut (x) ∗ x = x

and
x ∗ anti (x) = anti (x) ∗ x = neut (x) .

The elements x, neut (x), and anti (x) are together called a neutrosophic triplet group, denoted by
(x, neut (x) , anti (x)).

neut (x) denotes the neutral of x. x is the first coordinate of a neutrosophic triplet group and not
a neutrosophic triplet. y is the second component, denoted by neut (x), of a neutrosophic triplet if
there are elements x and z ∈ S such that x ∗ y = y ∗ x = x and x ∗ z = z ∗ x = y. Thus, (x, y, z) is the
neutrosophic triplet.

We know that (neut (x) , neut (x) , neut (x)) is a neutrosophic triplet group. Let {S, ∗} be the
neutrosophic triplet set. If (S, ∗) is well defined and for all x, y ∈ S, x ∗ y ∈ S, and (x ∗ y) ∗ z = x ∗ (y ∗ z)
for all x, y, z ∈ S, then {S, ∗} is defined as the neutrosophic triplet group. Clearly, {S, ∗} is not a group
in the classical sense.

In the following section, we define the notion of a semi-neutrosophic triplet, which is different
from neutrosophic duplets and the classical group of neutrosophic triplets of {Z2p,×}, and derive
some of its interesting properties.

3. The Classical Group of Neutrosophic Triplet Groups of {Z2p,×} and Its Properties

Here we define the classical group of neutrosophic triplets using {Z2p,×}, where p is an odd
prime. The collection of all nontrivial neutrosophic triplet groups forms a classical group under the
usual product modulo 2p, and the order of that group is p− 1. We also derive interesting properties of
such groups.

We will first illustrate this situation with some examples.

Example 1. Let S = {Z22,×} be the semigroup under × modulo 22. Clearly, 11 and 12 are the only
idempotents or neutral elements of Z22. The idempotent 11 ∈ Z22 yields only a trivial neutrosophic triplet
(11, 11, 11) for 11× 21 = 11, where 21 is a unit in Z22. The other nontrivial neutrosophic triplets associated
with the neutral element 12 are H = {(2, 12, 6) , (6, 12, 2) , (4, 12, 14) , (14, 12, 4) , (16, 12, 20) , (20, 12, 16) ,
(12, 12, 12) , (10, 12, 10) , (8, 12, 18) , (18, 12, 8)}. It is easily verified that {H,×} is a classical group of order
10 under component-wise multiplication modulo 22, with (12, 12, 12) as the identity element. (12, 12, 12)×
(12, 12, 12) = (12, 12, 12) product modulo 22. Likewise,

(2, 12, 6)× (2, 12, 6) = (4, 12, 14) ,
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and (2, 12, 6)× (4, 12, 14) = (8, 12, 18) ;
(2, 12, 6)× (8, 12, 18) = (16, 12, 20) ,

and (2, 12, 6)× (16, 12, 20) = (10, 12, 10) ;
(10, 12, 10)× (2, 12, 6) = (20, 12, 16) ,

and (2, 12, 6)× (20, 12, 16) = (18, 12, 8) ;
(2, 12, 6)× (18, 12, 8) = (14, 12, 4) ,

and (2, 12, 6)× (14, 12, 4) = (6, 12, 2) ;
(6, 12, 2)× (2, 12, 6) = (12, 12, 12) ,

and (2, 12, 6)10 = (12, 12, 12) .

Thus, H is a cyclic group of order 10.

Example 2. Let S = {Z14,×} be the semigroup under product modulo 14. The neutral elements or idempotents
of Z14 are 7 and 8. The neutrosophic triplets are

H = {(2, 8, 4) , (4, 8, 2) , (6, 8, 6) , (10, 8, 12) , (12, 8, 10) , (8, 8, 8)},

associated with the neutral element 8. H is a classical group of order 6. Clearly,

(10, 8, 12)× (10, 8, 12) = (2, 8, 4),
(10, 8, 12)× (2, 8, 4) = (6, 8, 6),
(10, 8, 12)× (6, 8, 6) = (4, 8, 2),

(10, 8, 12)× (4, 8, 2) = (12, 8, 10), and
(10, 8, 12)× (12, 8, 10) = (8, 8, 8).

Thus, H is generated by (10, 8, 12) as (10, 8, 12)6 = (8, 8, 8), and (8, 8, 8) is the multiplicative identity of
the classical group of neutrosophic triplets.

Example 3. Let S = {Z38,×} be the semigroup under product modulo 38. 19, 20 ∈ Z38 are the idempotents
of Z38.

H = {(2, 20, 10) , (10, 20, 2) , (4, 20, 24) , (24, 20, 4) , (20, 20, 20) , (8, 20, 12) ,
(12, 20, 8) , (16, 20, 6) , (6, 20, 16) , (32, 20, 22) , (22, 20, 32) , (18, 20, 18) ,

(34, 20, 14) , (14, 20, 34) , (26, 20, 28) , (28, 20, 26) , (30, 2036) , (36, 20, 30)}
is the classical group of neutrosophic triplets with (20, 20, 20) as the identity element of H.

In view of all these example, we have the following results.

Theorem 1. Every semigroup {Z2p,×}, where p is an odd prime, has only two idempotents: p and p + 1.

Proof. Clearly, p is a prime of the form 2n + 1 in Z2p.

p2 = (2n + 1)2 = 4n2 + 4n + 1

= 4n2 + 2n + 2n + 1

= 4n2 + 2n + p

= 2n (2n + 1) + p

= 2np + p

= p.
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Thus, p is an idempotent in Z2p. Consider p + 1 ∈ Z2p :

(p + 1)2 = p2 + 2p + 1

= p2 + 1

= p + 1 as p2 = p.

Thus, p and p + 1 are the only idempotents of Z2p. In fact, Z2p has no other nontrivial idempotent.
Let x ∈ Z2p be an idempotent. This implies that x must be even as all odd elements other than p are

units.
Let x = 2n (where n is an integer), and 2 < n < p− 1 such that x2 = 4n2 = x = 2n, which implies

that 2n (2n− 1) = 0.
This is zero only if 2n− 1 = p as 2n− 1 is odd. Otherwise, 2n = 0, which is not possible, as n

is even and n is not equal to 0, x �= 0, so 2n− 1 = p. That is, x = 2n = p + 1 is the only possibility.
Otherwise, x = 0, which is a contradiction.

Thus, Z2p has only two idempotents, p and p + 1.

Theorem 2. Let G = {Z2p,×}, where p is an odd prime, be the semigroup under ×, product modulo 2p.

1. If a ∈ Z2p has neut (a) and anti (a), then a is even.
2. The only nontrivial neutral element is p + 1 for all a, which contributes to neutrosophic triplet groups

in G.

Proof. Let a in G be such that a× neut (a) = a if a is odd and a �= p. Then a−1 exists in Z2p and we
have neut (a) = 1, but neut (a) �= 1 by definition. Hence the result is true.

Further, we know neut (a)× neut (a) = neut (a), that is neut (a) is an idempotent. This is possible
if and only if a = p + 1 or p.

Clearly, a = p is ruled out because ap = 0 for all even a in Z2p, hence the claim.
Thus, neut (a) = p + 1 is the only neutral element for all relevant a in Z2p.

Definition 2. Let {Z2p,×} be the semigroup under multiplication modulo 2p, where p is an odd prime.
H = {(a, neut (a) , anti (a)) |a ∈ 2Z2p \ {0}}. {H,×} is the collection of all neutrosophic triplet groups. H
has the multiplicative identity (p + 1, p + 1, p + 1) under the component-wise product modulo 2p. H is defined
as the classical group of neutrosophic triplets.

We have already given examples of them. It is important to mention this definition is valid only
for Z2p under the product modulo 2p where p is an odd prime.

Example 4. Let S = {Z46,×} be the semigroup under product modulo 46. Let

H = {(24, 24, 24) , (2, 24, 12) , (12, 24, 2) , (4, 24, 6) , (6, 24, 4) , (8, 24, 26) ,
(26, 24, 8) , (16, 24, 36) , (36, 24, 16) , (32, 24, 18) , (18, 24, 32) , (22, 24, 22) ,
(10, 24, 30) , (14, 24, 28) , (28, 24, 14) , (30, 24, 10) , (20, 24, 38) , (38, 24, 20) ,

(34, 24, 44) , (44, 24, 34) , (40, 24, 42) , (42, 24, 40)}

be the classical group of neutrosophic triplets, with (24, 24, 24) as the identity under ×. o (H) = 22.

In view of all of this, we have to define the following for Z2p.

Definition 3. Let {Z2p,×} be the semigroup under product modulo 2p, where p is an odd prime. Let
K = {2, 4, . . . , 2p− 2} be the set of all even elements of Z2p. For p + 1 ∈ K, x × p + 1 = x,∀ x ∈ K.
There also exists a y ∈ K such that yp−1 = p + 1. We define this y as the pseudo primitive element of K ⊆ Z2p.
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Note: We can define pseudo primitive elements only for Z2p where p is an odd prime and not for
any Zn, where n is an even integer that is analogous to primitive elements in Zp, where p is a prime.

We will illustrate this situation with some examples.

Example 5. Let {Z6,×} be the modulo semigroup. For K = {2, 4}, 2 is the pseudo primitive element of K ⊆ Z6.

Example 6. Let {Z14,×} be the modulo semigroup under product ×, modulo 14. Consider K =

{2, 4, 6, 8, 10, 12} ⊆ Z14. Then 10 is the pseudo primitive element of K ⊆ Z14.

Example 7. Let {Z34,×} be the semigroup under product modulo integer 34. 10 is the pseudo primitive
element of K = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32} ⊆ Z34.

Similarly, for {Z38,×}, 10 is the pseudo primitive element of K = 2Z38 \ {0} ⊆ Z38.
However, in the case of Z22, Z58, and Z26, 2 is the pseudo primitive element for these semigroups.

We leave it as an open problem to find the number of such pseudo primitive elements of
K = {2, 4, 6, . . . , 2(p− 1)} of Z2p.

We have the following theorem.

Theorem 3. Let S = {Z2p,×} be the semigroup under product modulo 2p, where p is an odd prime.

1. K = {2, 4, . . . , 2p− 2} ⊆ Z2p has a pseudo primitive element x ∈ K with xp−1 = p + 1, where p + 1 is
the multiplicative identity of K.

2. K is a cyclic group under × of order p− 1 generated by that x, and p + 1 is the identity element of K.
3. S is a Smarandache semigroup.

Proof. Consider Z2p, where p is an odd prime. Let K = {2, 4, 6, . . . , 2p− 2} ⊆ Z2p. For any x ∈ K,
(p + 1)x = px + x = x ispx = 0(mod 2p), where x is even. Thus, p + 1 is the identity element of Z2p.
There is a x ∈ K such that xp−1 = p + 1 using the principle of 2p ≡ 0, where x is even. This x is the
pseudo primitive element of K.

This x ∈ K proves part (2) of the claim.
Since K is a group under × and K ⊆ {Z2p,×}, by the definition of Smarandache semigroup [4],

S is an S-semigroup, so (3) is true.

Next, we prove that the following theorem for our research pertains to the classical group of
neutrosophic triplets and their structure.

Theorem 4. Let S = {Z2p,×} be the semigroup. Then

H = {(a, neut(a), anti(a)) |a ∈ 2Z2p \ {0}},

is the classical group of neutrosophic triplets, which is cyclic and of the order p− 1.

Proof. Clearly, from the earlier theorem, K = 2Z2p \ {0} is a cyclic group of the order p− 1, and p + 1
acts as the identity element of K.

H = {(a, neut(a), anti(a)) |a ∈ K} is a neutrosophic triplet groups collection and neut(a) = p + 1
acts as the identity and is the unique element (neutral element) for all a ∈ K.

(neut(a), neut(a), neut(a)) = (p + 1, p + 1, p + 1) acts as the unique identity element of every
neutrosophic triplet group h in H.

Since K ⊆ Z2p \ {0} is a cyclic group of order p − 1 with p + 1 as the identity element of K,
we have H = {(a, neut (a) , anti (a)) |a ∈ K}, to be cyclic. If x ∈ K is such that xp−1 = p + 1, then that
neutrosophic triplet group element (x, p + 1, anti(x)) in H will generate H as a cyclic group of order
p− 1 as a× anti(a) = neut(a).
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Hence, H is a cyclic group of order p− 1.

Next, we proceed to describe the semi-neutrosophic triplets in the following section.

4. Semi-Neutrosophic Triplets and Their Properties

In this section, we define the notion of semi-neutrosophic triplet groups and trivial neutrosophic
triplet groups and show some interesting results.

Example 8. Let {Z26,×} = S be the semigroup under product modulo 26.
We see that 13 ∈ Z26 is an idempotent, but 13× 25 = 13, where 25 is a unit of Z26. Therefore, for this

25, we cannot find anti(13), but 13× 13 = 13 is an idempotent, and (13, 13, 13) is a neutrosophic triplet
group. We do not accept it as a neutrosophic triplet, as it cannot yield any other nontrivial triplet other than
(13, 13, 13).

Further, the authors of [10] defined (0, 0, 0) as a trivial neutrosophic triplet group.

Definition 4. Let S = {Z2p,×} be the semigroup under product modulo 2p. p ∈ Z2p is an idempotent
of Z2p. However, p is not a neutrosophic triplet group as p × (2p− 1) = 2p − p = p. Hence,
(p, neut(p), anti(p)) = (p, p, p) is defined as a semi-neutrosophic triplet group.

Proposition 1. Let S = {Z2p,×} be the semigroup under product modulo 2p. (p, p, p) is the
semi-neutrosophic triplet group of Z2p.

Proof. This is obvious from the definition and the fact p2 = p in Z2p under product modulo 2p.

Example 9. Let S = {Z46,×} be the semigroup under product modulo 46. T = {(23, 23, 23) , (0, 0, 0)} is the
semi-neutrosophic triplet group and the zero neutrosophic triplet group. Clearly, T is a semigroup under ×, and
T is defined as the semigroup of semi-neutrosophic triplet groups of order two as (23, 23, 23)× (23, 23, 23) =

(23, 23, 23). K = {(a, neut (a) , anti (a)) |a ∈ 2Z46 \ {0} = {2, 4, 6, 8, 10, 12, 14, 16, . . . , 42, 44}} is a classical
group of neutrosophic triplets.

Let P = 〈K ∪ T〉 = K ∪ T. For every x ∈ K and for every y ∈ T, x× y = y× x = (0, 0, 0).
Thus, P is a semigroup under product, and P is defined as the semigroup of neutrosophic triplets.
Further, we define T as the annihilating neutrosophic triplet semigroup of the classical group of

neutrosophic triplets.

Definition 5. Let S = {Z2p,×}, where p is an odd prime, be the semigroup under product modulo
2p. Let K = {(a, neut (a) , anti (a)) |a ∈ 2Z2p \ {0},×} be the classical group of neutrosophic triplets.
Let T = {(p, p, p) , (0, 0, 0)} be the semigroup of semi-neutrosophic triplets (as a minomer, we call the trivial
neutrosophic triplet (0, 0, 0) as a semi-neutrosophic triplet). Clearly, 〈T ∪ K〉 = T ∪ K = P is defined as the
semigroup of neutrosophic triplets with o (P) = o (T) + o (K) = p− 1 + 2 = p + 1.

Further, T is defined as the annihilating semigroup of the classical group of neutrosophic triplets K.

We have seen examples of classical group of neutrosophic triplets, and we have defined and
studied this only for Z2p under the product modulo 2p for every odd prime p.

In the following section, we identify open problems and probable applications of these concepts.

5. Discussions and Conclusions

This paper studies the neutrosophic triplet groups introduced by [10] only in the case of {Z2p,×},
where p is an odd prime, under product modulo 2p. We have proved the triplets of Z2p are contributed
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only by elements in 2Z2p \ {0} = {2, 4, . . . , 2p− 2}, and these triplets under product form a group of
order p− 1, defined as the classical group of neutrosophic triplets.

Further, the notion of pseudo primitive element is defined for elements K1 = 2Z2p \ {0} =

{2, 4, 6, . . . , 2p− 2} ⊆ Z2p. This K1 is a cyclic group of order p− 1 with p + 1 as its multiplicative
identity. Based on this,

K = {(a, neut(a), anti(a)) |a ∈ K1,×}
is proved to be a cyclic group of order p− 1.

We suggest the following problems:

1. How many pseudo primitive elements are there in {Z2p,×}, where p is an odd prime?
2. Can {Zn,×}, where n is any composite number different from 2p, have pseudo primitive

elements? If so, which idempotent serves as the identity?

For future research, one can apply the proposed neutrosophic triplet group to SVNS and develop
it for the case of DVNS or TRINS. These neutrosophic triplet groups can be applied to problems
where neut(a) and anti(a) are fixed once a is chosen, and vice versa. It can be realized as a special
case of Single Valued Neutrosophic Sets (SVNSs) where neutral is always fixed. For every a in K1,
the other factor anti(a) is automatically fixed, thereby eliminating the arbitrariness in determining
anti(a); however, there is only one case in which a = anti(a). The set 2Z2p \ {0} can be used to model
this sort of problem and thereby reduce the arbitrariness in determining anti(a), which is an object of
future study.
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Abstract: In recent years, typhoon disasters have occurred frequently and the economic losses caused
by them have received increasing attention. This study focuses on the evaluation of typhoon disasters
based on the interval neutrosophic set theory. An interval neutrosophic set (INS) is a subclass of a
neutrosophic set (NS). However, the existing exponential operations and their aggregation methods
are primarily for the intuitionistic fuzzy set. So, this paper mainly focus on the research of the
exponential operational laws of interval neutrosophic numbers (INNs) in which the bases are positive
real numbers and the exponents are interval neutrosophic numbers. Several properties based on
the exponential operational law are discussed in detail. Then, the interval neutrosophic weighted
exponential aggregation (INWEA) operator is used to aggregate assessment information to obtain
the comprehensive risk assessment. Finally, a multiple attribute decision making (MADM) approach
based on the INWEA operator is introduced and applied to the evaluation of typhoon disasters in
Fujian Province, China. Results show that the proposed new approach is feasible and effective in
practical applications.

Keywords: neutrosophic sets (NSs); interval neutrosophic numbers (INNs); exponential operational
laws of interval neutrosophic numbers; interval neutrosophic weighted exponential aggregation
(INWEA) operator; multiple attribute decision making (MADM); typhoon disaster evaluation

1. Introduction

Natural hazards attract worldwide attention. Typhoons are one of the main natural hazards in
the world. When a typhoon makes landfall, the impacted coastal areas experience torrential rain,
strong winds, storm surges, and other weather-related disasters [1]. Typhoons can cause extremely
serious harm, frequently generating heavy economic losses and personnel casualty [2]. In the last
50 years, economic damage from typhoon disasters around the coastal regions of China has increased
dramatically. The Yearbook of Tropical Cyclones in China shows that from 2000 to 2014, on average,
typhoon disasters caused economic losses of 45.784 billion yuan (RMB), 244 deaths, and affected
37.77 million people per year [3]. Effective evaluation of typhoon disasters can improve the typhoon
disaster management efficacy, preventing or reducing disaster loss. Furthermore, precise evaluation of
typhoon disasters is critical to the timely allocation and delivery of aid and materials to the disaster
area. Therefore, in-depth studies of typhoon disaster evaluation are of great value.

The evaluation of typhoon disasters is a popular research topic in disaster management.
Researchers have made contributions to this topic from several different perspectives [1]. Wang et al. [4]
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proposed a typhoon disaster evaluation model based on an econometric and input-output joint model
to evaluate the direct and indirect economic loss caused by typhoon disasters for related industrial
departments. Zhang et al. [5] proposed a typhoon disaster evaluation model for the rubber plantations
of Hainan Island which is based on extension theory. Lou et al. [6] adopted a back-propagation neural
network method to evaluate typhoon disasters, and a real case in Zhejiang Province of China was
studied in detail. Lu et al. [7] used the multi-dimensional linear dependence model to evaluate typhoon
disaster losses in China. Yu et al. [1] and Lin [8] asserted that establishing a decision support system is
crucial to improving data analysis capabilities for decision makers.

Since the influencing factors of the typhoon disasters are completely hard to describe accurately,
the typhoon disasters may include economic loss and environmental damage. Taking economic
loss for example, it includes many aspects such as the building’s collapse, the number and extent
of damage to housing, and the affected local economic conditions [1]. Therefore, it is impossible to
describe the economic loss precisely because the estimation is based on incomplete and indeterminate
data. Therefore, fuzzy set (FS) and intuitionistic fuzzy set (IFS) have been used for typhoon disaster
assessment in recent years. Li et al. [9] proposed evaluating typhoon disasters with a method that
applied an extension of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
method with intuitionistic fuzzy theory. Ma [10] proposed a fuzzy synthetic evaluation model for
typhoon disasters. Chen et al. [11] provided an evaluation model based on a discrete Hopfield neural
network. Yu et al. [1] studied typhoon disaster evaluation in Zhejiang Province, China, using new
generalized intuitionistic fuzzy aggregation operators. He [12] proposed a typhoon disaster assessment
method based on Dombi hesitant fuzzy information aggregation operators. However, this review
reveals that the application of the neutrosophic sets theory in typhoon disaster assessment has yet to
be examined. We believe that neutrosophic sets (NSs) offer a powerful technique to enhance typhoon
disaster assessment.

Neutrosophic sets can express and handle incomplete, indeterminant, and inconsistent
information. NSs were originally defined by Smarandache [13,14], who added an independent
indeterminacy-membership on the basis of IFS. Neutrosophic sets are a generalization of set theories
including the classic set, the fuzzy set [15] and the intuitionistic fuzzy set [16]. Neutrosophic
sets are characterized by a truth-membership function (T), an indeterminacy-function (I), and a
falsity-membership function (F). This theory is very important in many application areas because
indeterminacy is quantified explicitly and the three primary functions are all independent. Since
Smarandache’s initial proposal of NSs in 1998, the concept has attracted broad attention and achieved
several successful implementations. For example, Wang et al. [17] proposed single-valued neutrosophic
sets (SVNSs), a type of NS. Ye [18] introduced simplified neutrosophic sets (SNSs) and defined the
operational laws of SNSs, as well as some aggregation operators. Wang et al. [19] and Peng et al. [20]
defined multi-valued neutrosophic sets and the multi-valued neutrosophic number, as well as
proposing the application of the TODIM (a Portuguese acronym of interactive and multi-criteria
decision making) method in a multi-valued neutrosophic number environment. Wang et al. [21]
proposed interval neutrosophic sets (INSs) along with their set-theoretic operators and Zhang et al. [22]
proposed an improved weighted correlation coefficient measure for INSs for use in multi-criteria
decision making. Ye [23] offered neutrosophic hesitant fuzzy sets with single-valued neutrosophic
sets. Tian et al. [24] defined simplified neutrosophic linguistic sets, which combine the concepts of
simplified neutrosophic sets and linguistic term sets, and have enabled great progress in describing
linguistic information. Biswas [25] and Ye [26] defined the trapezoidal fuzzy neutrosophic number,
and applied it to multi-criteria decision making. Deli [27] defined the interval valued neutrosophic soft
set (ivn-soft set), which is a combination of an interval valued neutrosophic set and a soft set, and then
applied the concept as a decision making method. Broumi et al. [28–30] combined the neutrosophic
sets and graph theory to introduce various types of neutrosophic graphs.

When Smarandache proposed the concept of NSs [13], he also introduced some basic NS
operations rules. Ye [16] defined some basic operations of simplified neutrosophic sets. Wang et al. [21]
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defined some basic operations of interval neutrosophic sets, including “containment”, “complement”,
“intersection”, “union”, “difference”, “addition”, “Scalar multiplication” and “Scalar division”.
Based on these operations, Liu et al. [31] proposed a simplified neutrosophic correlated averaging
(SNCA) operator and a simplified neutrosophic correlated geometric (SNCG) operator for multiple
attribute group decision making. Ye [32] and Zhang et al. [33] introduced interval neutrosophic
number ordered weighted aggregation operators, the interval neutrosophic number weighted
averaging (INNWA) operator, and the interval neutrosophic number weighted geometric (INNWG)
operator for multi-criteria decision making. Liu et al. [34] proposed a single-valued neutrosophic
normalized weighted Bonferroni mean (SVNNWBM) operator and analyzed its properties. Ye [35]
proposed interval neutrosophic uncertain linguistic variables, and further proposed the interval
neutrosophic uncertain linguistic weighted arithmetic averaging (INULWAA) and the interval
neutrosophic uncertain linguistic weighted arithmetic averaging (INULWGA) operator. Peng et al. [36]
introduced multi-valued neutrosophic sets (MVNSs) and proposed the multi-valued neutrosophic
power weighted average (MVNPWA) operator and the multi-valued neutrosophic power weighted
geometric (MVNPWG) operator. A trapezoidal neutrosophic number weighted arithmetic averaging
(TNNWAA) operator and a trapezoidal neutrosophic number weighted geometric averaging
(TNNWGA) operator have also been proposed and applied to multiple attribute decision making
(MADM) with trapezoidal neutrosophic numbers [26]. Tan et al. [37] proposed the trapezoidal
fuzzy neutrosophic number ordered weighted arithmetic averaging (TFNNOWAA) operator and
the trapezoidal fuzzy neutrosophic number hybrid weighted arithmetic averaging (TFNNHWAA)
operator for multiple attribute group decision making. Sahin [38] proposed generalized prioritized
weighted aggregation operators, including the normal neutrosophic generalized prioritized weighted
averaging (NNGPWA) operator and the normal neutrosophic generalized prioritized weighted
geometric (NNGPWG) operator for normal neutrosophic multiple attribute decision making.

As the study of the NS theory has expanded in both depth and scope, effective aggregation and
handling of neutrosophic number information have become increasingly imperative. In response,
many techniques for aggregating neutrosophic number information have been developed [18,26,31–38].
However, an important operational law is lacking, we are unable to handle information aggregation in
which the bases are positive real numbers and the exponents are neutrosophic numbers. For example,
when decision makers determine the attribute importance under a complex decision environment,
the attribute weights are characterized by incompleteness, uncertainty, and inconsistency, while the
attribute values are real numbers. In the existing literature about exponential operational laws and
exponential aggregation operator, Gou et al. [39] introduced a new exponential operational law about
intuitionistic fuzzy numbers (IFNs), in which the bases are positive real numbers and the exponents
are IFNs. Gou et al. [40] defined exponential operational laws of interval intuitionistic fuzzy numbers
(IIFNs), in which the bases are positive real numbers and the exponents are IFNs. Lu et al. [41] defined
new exponential operations of single-valued neutrosophic numbers (NNs), in which the bases are
positive real numbers, and the exponents are single-valued NNs. In addition, they also proposed the
single-valued neutrosophic weighted exponential aggregation (SVNWEA) operator and the SVNWEA
operator-based decision making method. Sahin [42] proposed two new operational laws in which the
bases are positive real numbers and interval numbers, respectively; the exponents in both operational
laws are simplified neutrosophic numbers (SNNs), and they introduce the simplified neutrosophic
weighted exponential aggregation (SNWEA) operator and the dual simplified neutrosophic weighted
exponential aggregation (DSNWEA) operator for multi-criteria decision making. Unfortunately, to
date, there are not enough theoretical and applied researches on the exponential operational laws
and exponential aggregation operators of interval neutrosophic numbers [43]. This is what we need
to do. In order to perfect the existing neutrosophic aggregation methods, we further enriched the
theoretical research of the exponential operational laws of interval neutrosophic numbers (INNs)
and the applied research of the corresponding interval neutrosophic aggregation method based
on [43]. In this paper, we discussed in detail several properties of the exponential operation laws
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of interval neutrosophic numbers, in which the bases are positive real numbers and the exponents
are interval neutrosophic numbers. Then, we investigated in detail several properties of the interval
neutrosophic weighted exponential aggregation (INWEA) operator, and applied the operator to
aggregate assessment information to obtain comprehensive evaluation value. Additionally, a MADM
method based on the INWEA operator is proposed. In the MADM problem, the attribute values in
the decision matrix are expressed as positive real numbers and the attribute weights are expressed as
INNs. Although traditional aggregation operators of INNs cannot address the above decision problem,
the exponential aggregation operators of INNs can effectively resolve this issue.

The remainder of this paper is organized as follows: Section 2 briefly introduces some basic
definitions dealing with NSs, INSs and so on. Section 3 discusses the exponential operational
properties of INSs and INNs in detail. Moreover, this paper investigates in detail the properties
of the interval neutrosophic exponential aggregation (INWEA) operator in Section 4. After that,
a MADM method based on the INWEA operator is given in Section 5. Section 6 uses a typhoon
disaster evaluation example to illustrate the applicability of the exponential operational laws and the
information aggregation method proposed in Sections 3 and 4. Finally, in Section 7, the conclusions are
drawn.

2. Preliminaries

In this section, we review some basic concepts related to neutrosophic sets, single-valued
neutrosophic sets, and interval neutrosophic sets. We will also introduce the operational rules.

Definition 1 [13]. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic
set (NS) A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x). The function TA(x), IA(x) and FA(x) are
real standard or nonstandard subsets of ]0−, 1+[ , i.e., TA(x) : X → ]0−, 1+[ , IA(x) : X → ]0−, 1+[ ,
and FA(x) : X → ]0−, 1+[ . Therefore, the sum of TA(x), IA(x) and FA(x) satisfies the condition
0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

Definition 2 [21]. Let X be a space of point (objects) with generic elements in X denoted by x.
An interval neutrosophic set (INS) Ã in X is characterized by a truth-membership functionT̃Ã(x),
an indeterminacy-membership function ĨÃ(x), and a falsity-membership function F̃Ã(x). There are T̃Ã(x),
ĨÃ(x), F̃Ã(x) ⊆ [0, 1] for each point x in X. Thus, an INS Ã can be denoted by

Ã = {< x, T̃Ã(x), ĨÃ(x), F̃Ã(x) > |x ∈ X }
= {< x, [infTÃ(x), supTÃ(x)], [infIÃ(x), supIÃ(x)], [infFÃ(x), supFÃ(x)] > |x ∈ X }.

(1)

Then, the sum of T̃Ã(x), ĨÃ(x), and F̃Ã(x) satisfies the condition of 0 ≤ supTÃ(x) + supIÃ(x) +
supFÃ(x) ≤ 3.

For convenience, we can use a =< [TL, TU ], [IL, IU ], [FL, FU ] > to represent an interval
neutrosophic number (INN) in an INS.

Definition 3 [33]. Let a1 =< [TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ] > and a2 =< [TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ] > be
two INNs and λ > 0. Then, the operational rules are defined as follows:

1. a1 ⊕ a2 =
〈[

TL
1 + TL

2 − TL
1 · TL

2 , TU
1 + TU

2 − TU
1 · TU

2
]
,
[
IL
1 · IL

2 , IU
1 · IU

2
]
,
[
FL

1 · FL
2 , FU

1 · FU
2
] 〉

;
2. a1⊗ a2 =

〈[
TL

1 ·TL
2 ,TU

1 ·TU
2
]
,
[
IL
1 + IL

2 − IL
1 · IL

2 , IU
1 + IU

2 − IU
1 · IU

2
]
,
[
FL

1 +FL
2 −FL

1 ·FL
2 ,FU

1 +FU
2 −FU

1 ·FU
2
]〉

;

3. λa1 =
〈[

1− (1− TL
1 )

λ, 1− (1− TU
1 )

λ
]
,
[
(IL

1 )
λ, (IU

1 )
λ
]
,
[
(FL

1 )
λ, (FU

1 )
λ
]〉

;

4. aλ
1 =

〈[
(TL

1 )
λ, (TU

1 )
λ
]
,
[
1− (1− IL

1 )
λ, 1− (1− IU

1 )
λ
]
,
[
1− (1− FL

1 )
λ, 1− (1− FU

1 )
λ
]〉

.
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Furthermore, for any three INNs a1 =< [TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ] >, a2 =< [TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ] >,
a3 =< [TL

3 , TU
3 ], [IL

3 , IU
3 ], [FL

3 , FU
3 ] > and any real numbers λ, λ1 > 0, λ2 > 0, then, there are the

following properties:

1. a1 ⊕ a2 = a2 ⊕ a1;
2. a1 ⊗ a2 = a2 ⊗ a1;
3. λ(a1 ⊕ a2) = λa2 ⊕ λa1;

4. (a1 ⊗ a2)
λ = aλ

1 ⊕ aλ
2 ;

5. λ1a1 + λ2a1 = (λ1 + λ2)a1;

6. aλ1 ⊗ aλ2 = a(λ1+λ2);
7. (a1 ⊕ a2)⊕ a3 = a1 ⊕ (a2 ⊕ a3);
8. (a1 ⊗ a2)⊗ a3 = a1 ⊗ (a2 ⊗ a3).

Definition 4 [44]. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN, a score function S of an
interval neutrosophic value, based on the truth-membership degree, indeterminacy-membership degree, and
falsity-membership degree is defined by

S(a) =
2 + TL + TU − 2IL − 2IU − FL − FU

4
(2)

where S(a) ∈ [−1, 1].

Definition 5. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN. Then an accuracy function A of
an interval neutrosophic value, based on the truth-membership degree, indeterminacy-membership degree,
and falsity-membership degree is defined by

A(a) =
1
2

(
TL + TU − IU

(
1− TU

)
− IL

(
1− TL

)
− FU

(
1− IL

)
− FL

(
1− IU

))
, (3)

where A(a) ∈ [−1, 1].

Definition 6. Let a1 =< [TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ] >, and a2 =< [TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ] > be two
INNs, then the ranking method is defined by

1. If S(a1) > S(a2), then a1 > a2;
2. If S(a1) = S(a2), and then A(a1) = A(a2), then a1 > a2.

Definition 7 [33]. Let aj(j = 1, 2, · · · , n) be a collection of INNs, and ω = (ω1, ω2, · · · , ωn)
T be the weight

vector of aj(j = 1, 2, · · · , n), with ωj ∈ [0, 1], and
n
∑

j=1
ωj = 1. Then the interval neutrosophic number

weighted averaging (INNWA) operator of dimension n is defined by

INNWA(a1, a2, · · · , an) = ω1a1 + ω2a2 + · · ·ωnan =
n
∑

j=1
ωjaj

=< [1− n
∏
j=1

(1− TL
j )

ωj , 1− n
∏
j=1

(1− TU
j )

ωj ], [
n
∏
j=1

(IL
j )

ωj ,
n
∏
j=1

(IU
j )

ωj ], [
n
∏
j=1

(FL
j )

ωj ,
n
∏
j=1

(FU
j )

ωj ] > .
(4)
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Definition 8 [33]. Let aj(j = 1, 2, · · · , n) be a collection of INNs, and ω = (ω1, ω2, · · · , ωn)
T be the weight

vector of aj(j = 1, 2, · · · , n), with ωj ∈ [0, 1], and
n
∑

j=1
ωj = 1. Then the interval neutrosophic number

weighted geometric (INNWG) operator of dimension n is defined by

INNWG(a1, a2, · · · , an) = a1
ω1 ⊗ a2

ω2 ⊗ · · · an
ωn =

n
∏
j=1

aj
ωj

=< [
n
∏
j=1

(TL
j )

ωj ,
n
∏
j=1

(TU
j )

ωj ], [1− n
∏
j=1

(1− IL
j )

ωj , 1− n
∏
j=1

(1− IU
j )

ωj ], [1− n
∏
j=1

(1− FL
j )

ωj , 1− n
∏
j=1

(1− FU
j )

ωj ] > .
(5)

3. The Exponential Operational Laws of INSs and INNs

As a supplement, we discussed in detail several properties of the exponential operational laws
about INSs and INNs, respectively, in which the bases are positive real numbers and the exponents are
INSs or INNs.

Lu and Ye [41] and Ye [43] introduced the exponential operations of SVNSs as follows:

Definition 9 [41]. Let A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ U } be a SVNS in a universe of discourse X.
Then an exponential operational law of the SVNS A is defined as

λA =

⎧⎨⎩
{〈

x, λ1−TA(x), 1− λIA(x), 1− λFA(x)
〉
|x ∈ X } , λ ∈ (0, 1),{〈

x, ( 1
λ )

1−TA(x)
, 1− ( 1

λ )
IA(x)

, 1− ( 1
λ )

FA(x)
〉
|x ∈ X } , λ ≥ 1.

(6)

Definition 10 [43]. Let X be a fixed set, Ã = {< x, T̃Ã(x), ĨÃ(x), F̃Ã(x) > |x ∈ X } be an INS, then we can
define the exponential operational law of INSs as:

λÃ =

⎧⎪⎨⎪⎩
{〈

x,
[
λ1−infTÃ(x), λ1−supTÃ(x)

]
,
[
1− λinfIÃ(x), 1− λsupIÃ(x)

]
,
[
1− λinfFÃ(x), 1− λsupFÃ(x)

]〉
|x ∈ X } , λ ∈ (0, 1),{〈

x,
[(

1
λ

)1−infTÃ(x)
,
(

1
λ

)1−supTÃ(x)
]

,
[

1−
(

1
λ

)infIÃ(x)
, 1−

(
1
λ

)supIÃ(x)
]

,
[

1−
(

1
λ

)infFÃ(x)
, 1−

(
1
λ

)supFÃ(x)
]〉
|x ∈ X } , λ ≥ 1.

(7)

Theorem 1. The value of λÃ is an INS.

Proof.

(1) Let λ ∈ (0, 1), and Ã = {< x, T̃Ã(x), ĨÃ(x), F̃Ã(x) > |x ∈ X } be an INS, where T̃Ã(x) ⊆ [0, 1],
ĨÃ(x) ⊆ [0, 1] and F̃Ã(x) ⊆ [0, 1] with the condition: 0 ≤ supTÃ(x) + supIÃ(x) + supFÃ(x) ≤ 3.

So we can get
[
λ1−infTÃ(x), λ1−supTÃ(x)

]
⊆ [0, 1],

[
1− λinfIÃ(x), 1− λsupIÃ(x)

]
⊆ [0, 1] and[

1− λinfFÃ(x), 1− λsupFÃ(x)
]
⊆ [0, 1]. Then, we get 0 ≤ λ1−supTÃ(x) + 1 − λsupIÃ(x) + 1 −

λsupFÃ(x) ≤ 3. So λÃ is an INS.
(2) Let λ ∈ (0, 1), and 0 ≤ 1

λ ≤ 1, it is easy to proof that λÃ is an INS.

Combining (1) and (2), it follows that the value of λÃ is an INS. Similarly, we propose an
operational law for an INN. �

Definition 11 [43]. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN, then the exponential operational law
of the INN a is defined as follows:

λa =

⎧⎪⎨⎪⎩
〈[

λ1−TL
, λ1−TU

]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉

, λ ∈ (0, 1),〈[(
1
λ

)1−TL

,
(

1
λ

)1−TU]
,
[

1−
(

1
λ

)IL

, 1−
(

1
λ

)IU]
,
[

1−
(

1
λ

)FL

, 1−
(

1
λ

)FU]〉
, λ ≥ 1.

(8)
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It is obvious that λa is also an INN. Let us consider the following example.
Example 1. Let a =< [0.4, 0.6], [0.1, 0.3], [0.2, 0.4] > be an INN, and λ1 = 0.3 and λ2 = 2 are two real
numbers. Then, according to Definition 11, we obtain

λa
1 = 0.3<[0.4,0.6],[0.1,0.3],[0.2,0.4]> =

〈 [
0.31−0.4, 0.31−0.6], [1− 0.30.1, 1− 0.30.3] ,

[
1− 0.30.2, 1− 0.30.4]〉

=
〈 [

0.30.6, 0.30.4], [1− 0.30.1, 1− 0.30.3] ,
[
1− 0.30.2, 1− 0.30.4]〉

= 〈 [0.4856, 0.6178], [0.1134, 0.3032] , [0.2140, 0.3822]〉.

λa
2 = 2<[0.4,0.6],[0.1,0.3],[0.2,0.4]> =

〈 [(
1
2

)1−0.4
,
(

1
2

)1−0.6
]

,
[

1−
(

1
2

)0.1
, 1−

(
1
2

)0.3
]

,
[

1−
(

1
2

)0.2
, 1−

(
1
2

)0.4
]〉

=
〈 [

0.50.6, 0.50.4], [1− 0.50.1, 1− 0.50.3], [1− 0.50.2, 1− 0.50.4]〉
= 〈 [0.6598, 0.7579], [0.0670, 0.1877], [0.1294, 0.2421]〉.

Here, when TL = TU , IL = IU and FL = FU , the exponential operational law for INNs is equal
to the exponential operational law of SVNNs [41]. When 0− ≤ TU + IU + FU ≤ 1, the exponential
operational law for INNs is equivalent to the exponential operational law of IIFNs [40]. When TL = TU ,
IL = IU , FL = FU and 0− ≤ TU + IU + FU ≤ 1, the exponential operational law for INSs is equivalent
to the exponential operational law of IFNs [39]. So the exponential operational laws of INNs is a
more generalized representation, and the exponential operational laws of SVNNs, IIFNs and IFNs are
special cases.

Next, we investigate in detail some basic properties of the exponential operational laws of INNs.
We notice that when λ ∈ (0, 1), the operational process and the form of λa are similar to the case when
λ ≥ 1. So, below we only discuss the case when λ ∈ (0, 1).

Theorem 2. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2) be two INNs, λ ∈ (0, 1) , then

(1) λa1 ⊕ λa2 = λa2 ⊕ λa1 ;
(2) λa1 ⊗ λa2 = λa2 ⊗ λa1 .

Proof. By Definition 3 and Definition 11, we have

(1)

λa1 ⊕ λa2

=
〈 [

λ1−TL
1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU
1

]
,
[
1− λFL

1 , 1− λFU
1

]〉
⊕
〈 [

λ1−TL
2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU
2

]
,
[
1− λFL

2 , 1− λFU
2

]〉
=

〈 [
λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2 , λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)]
,
[(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)] 〉
= λa2 ⊕ λa1 .

(2)

λa1 ⊗ λa2

=
〈[

λ1−TL
1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU
1

]
,
[
1− λFL

1 , 1− λFU
1

]〉
⊕
〈 [

λ1−TL
2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU
2

]
,
[
1− λFL

2 , 1− λFU
2

]〉

=

〈 [
λ1−TL

1 · λ1−TL
2 , λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉

= λa2 ⊗ λa1 . �

Theorem 3. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, 3) be three INNs, λ ∈ (0, 1), then

(1) (λa1 ⊕ λa2)⊕ λa3 = λa1 ⊕ (λa2 ⊕ λa3);
(2) (λa1 ⊗ λa2)⊗ λa3 = λa1 ⊗ (λa2 ⊗ λa3).

Proof. By Definition 3 and Definition 11, we have
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(1)

(λa1 ⊕ λa2)⊕ λa3

=

〈 [
λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2 , λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉

⊕
〈 [

λ1−TL
3 , λ1−TU

3

]
,
[
1− λIL

3 , 1− λIU
3

]
,
[
1− λFL

3 , 1− λFU
3

]〉

=

〈
⎡⎣ (λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2

)
+ λ1−TL

3 −
(

λ1−TL
1 + λ1−TL

2 − λ1−TL
1 · λ1−TL

2

)
· λ1−TL

3 ,(
λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

)
+ λ1−TU

3 −
(

λ1−TU
1 + λ1−TU

2 − λ1−TU
1 · λ1−TU

2

)
· λ1−TU

3

⎤⎦,[(
1− λIL

1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

)]
〉

=

〈 [
λ1−TL

1 + λ1−TL
2 + λ1−TL

3 − λ1−TL
1 · λ1−TL

2 − λ1−TL
1 · λ1−TL

3 − λ1−TL
2 · λ1−TL

3 + λ1−TL
1 · λ1−TL

2 · λ1−TL
3 ,

λ1−TU
1 + λ1−TU

2 + λ1−TU
3 − λ1−TU

1 · λ1−TU
2 − λ1−TU

1 · λ1−TU
3 − λ1−TU

2 · λ1−TU
3 + λ1−TU

1 · λ1−TU
2 · λ1−TU

3

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

)]
〉

=

〈
⎡⎣ λ1−TL

1 +
(

λ1−TL
2 + λ1−TL

3 − λ1−TL
2 · λ1−TL

3

)
− λ1−TL

1 ·
(

λ1−TL
2 + λ1−TL

3 − λ1−TL
2 · λ1−TL

3

)
,

λ1−TU
1 +

(
λ1−TU

2 + λ1−TU
3 − λ1−TU

2 · λ1−TU
3

)
− λ1−TU

1 ·
(

λ1−TU
2 + λ1−TU

3 − λ1−TU
2 · λ1−TU

3

) ⎤⎦,[(
1− λIL

1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

)]
〉

=
〈 [

λ1−TL
1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU
1

]
,
[
1− λFL

1 , 1− λFU
1

]〉
⊕〈 [

λ1−TL
2 + λ1−TL

3 − λ1−TL
2 · λ1−TL

3 , λ1−TU
2 + λ1−TU

3 − λ1−TU
2 · λ1−TU

3

]
,[(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
2

)
·
(

1− λIU
3

)]
,
[(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
2

)
·
(

1− λFU
3

)] 〉
= λa1 ⊕ (λa2 ⊕ λa3).

(2)

(λa1 ⊗ λa2)⊗ λa3

=

〈 [
λ1−TL

1 · λ1−TL
2 , λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉

⊗
〈 [

λ1−TL
3 , λ1−TU

3

]
,
[
1− λIL

3 , 1− λIU
3

]
,
[
1− λFL

3 , 1− λFU
3

]〉

=

〈
[
λ1−TL

1 · λ1−TL
2 · λ1−TL

3 , λ1−TU
1 · λ1−TU

2 · λ1−TU
3

]
,⎡⎣ (1− λIL

1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
+
(

1− λIL
3

)
−
((

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

))
·
(

1− λIL
3

)
,(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)
+
(

1− λIU
3

)
−
((

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

))
·
(

1− λIU
3

) ⎤⎦,⎡⎣ (1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
+
(

1− λFL
3

)
−
((

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

))
·
(

1− λFL
3

)
,(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)
+
(

1− λFU
3

)
−
((

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

))
·
(

1− λFU
3

) ⎤⎦
〉

=

〈
[
λ1−TL

1 · λ1−TL
2 · λ1−TL

3 , λ1−TU
1 · λ1−TU

2 · λ1−TU
3

]
,⎡⎣ (1− λIL

1

)
+
(

1− λIL
2

)
+
(

1− λIL
3

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
3

)
−
(

1− λIL
2

)
·
(

1− λIL
3

)
+
(

1− λIL
1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,(

1− λIU
1

)
+
(

1− λIU
2

)
+
(

1− λIU
3

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
3

)
−
(

1− λIU
2

)
·
(

1− λIU
3

)
+
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

) ⎤⎦,⎡⎣ (1− λFL
1

)
+
(

1− λFL
2

)
+
(

1− λFL
3

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
3

)
+
(

1− λFL
2

)
·
(

1− λFL
3

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,(

1− λFU
1

)
+
(

1− λFU
2

)
+
(

1− λFU
3

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
3

)
+
(

1− λFU
2

)
·
(

1− λFU
3

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

) ⎤⎦
〉

=

〈
[
λ1−TL

1 · λ1−TL
2 · λ1−TL

3 , λ1−TU
1 · λ1−TU

2 · λ1−TU
3

]
,⎡⎣ (1− λIL

1

)
+
(

1− λIL
2

)
+
(

1− λIL
3

)
−
(

1− λIL
2

)
·
(

1− λIL
3

)
−
(

1− λIL
1

)
·
((

1− λIL
2

)
+
(

1− λIL
3

)
−
(

1− λIL
2

)
·
(

1− λIL
3

))
,(

1− λIU
1

)
+
(

1− λIU
2

)
+
(

1− λIU
3

)
−
(

1− λIU
2

)
·
(

1− λIU
3

)
−
(

1− λIU
1

)
·
((

1− λIU
2

)
+
(

1− λIU
3

)
−
(

1− λIU
2

)
·
(

1− λIU
3

)) ⎤⎦,⎡⎣ (1− λFL
1

)
+
(

1− λFL
2

)
+
(

1− λFL
3

)
−
(

1− λFL
2

)
·
(

1− λFL
3

)
−
(

1− λFL
1

)
·
((

1− λFL
2

)
+
(

1− λFL
3

)
−
(

1− λFL
2

)
·
(

1− λFL
3

))
,(

1− λFU
1

)
+
(

1− λFU
2

)
+
(

1− λFU
3

)
−
(

1− λFU
2

)
·
(

1− λFU
3

)
−
(

1− λFU
1

)
·
((

1− λFU
2

)
+
(

1− λFU
3

)
−
(

1− λFU
2

)
·
(

1− λFU
3

)) ⎤⎦
〉

= λa1 ⊗ (λa2 ⊗ λa3). �

Theorem 4. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > and ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2) be
three INNs, λ ∈ (0, 1), k, k1, k2 > 0, then

(1) k(λa1 ⊕ λa2) = kλa1 ⊕ kλa2 ;

(2) (λa1 ⊗ λa2)k = (λa2)k ⊗ (λa1)k;
(3) k1λa ⊕ k2λa = (k1 + k2)λ

a;

(4) (λa)k1 ⊗ (λa)k2 = (λa)k1+k2 ;
(5) (λ1)

a ⊗ (λ2)
a = (λ1λ2)

a.

Proof. By Definition 3 and Definition 11, we have
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(1)

k(λa1 ⊕ λa2)

= k

〈 [
λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2 , λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)]
,
[(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)] 〉

=

〈 [
1−
(

1−
(

λ1−TL
1 + λ1−TL

2 − λ1−TL
1 · λ1−TL

2

))k
, 1−

(
1−
(

λ1−TU
1 + λ1−TU

2 − λ1−TU
1 · λ1−TU

2

))k
]

,[((
1− λIL

1

)
·
(

1− λIL
2

))k
,
((

1− λIU
1

)
·
(

1− λIU
2

))k
]

,
[((

1− λFL
1

)
·
(

1− λFL
2

))k
,
((

1− λFU
1

)
·
(

1− λFU
2

))k
] 〉

=

〈[
1− (1− λ1−TL

1 )
k
, 1− (1− λ1−TU

1 )
k
]

,
[
(1− λIL

1 )
k
, (1− λIU

1 )
k
]

,
[
(1− λFL

1 )
k
, (1− λFU

1 )
k
]〉

⊕
〈[

1− (1− λ1−TL
2 )

k
, 1− (1− λ1−TU

2 )
k
]

,
[
(1− λIL

2 )
k
, (1− λIU

2 )
k
]

,
[
(1− λFL

2 )
k
, (1− λFU

2 )
k
]〉

= kλa1 ⊕ kλa2 .

(2)

(λa1 ⊗ λa2)k

=

〈 [
λ1−TL

1 · λ1−TL
2 , λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉k

=

〈
[
(λ1−TL

1 · λ1−TL
2 )

k
, (λ1−TU

1 · λ1−TU
2 )

k
]

,[
1− (1−

(
1− λIL

1

)
−
(

1− λIL
2

)
+
(

1− λIL
1

)
·
(

1− λIL
2

)
)

k
, 1− (1−

(
1− λIU

1

)
−
(

1− λIU
2

)
+
(

1− λIU
1

)
·
(

1− λIU
2

)
)

k
]

,[
1− (1−

(
1− λFL

1

)
−
(

1− λFL
2

)
+
(

1− λFL
1

)
·
(

1− λFL
2

)
)

k
, 1− (1−

(
1− λFU

1

)
−
(

1− λFU
2

)
+
(

1− λFU
1

)
·
(

1− λFU
2

)
)

k
]
〉

=

〈
[
(λ1−TL

2 )
k · (λ1−TL

1 )
k
, (λ1−TU

2 )
k · (λ1−TU

1 )
k
]

,⎡⎢⎢⎣
(

1− (1−
(

1− λIL
2

)
)

k
)
+

(
1− (1−

(
1− λIL

1

)
)

k
)
−
(

1− (1−
(

1− λIL
2

)
)

k
)
·
(

1− (1−
(

1− λIL
1

)
)

k
)

,(
1− (1−

(
1− λIU

2

)
)

k
)
+

(
1− (1−

(
1− λIU

1

)
)

k
)
−
(

1− (1−
(

1− λIU
2

)
)

k
)
·
(

1− (1−
(

1− λIU
1

)
)

k
)
⎤⎥⎥⎦,

⎡⎢⎢⎣
(

1− (1−
(

1− λFL
2

)
)

k
)
+

(
1− (1−

(
1− λFL

1

)
)

k
)
−
(

1− (1−
(

1− λFL
2

)
)

k
)
·
(

1− (1−
(

1− λFL
1

)
)

k
)

,(
1− (1−

(
1− λFU

2

)
)

k
)
+

(
1− (1−

(
1− λFU

1

)
)

k
)
−
(

1− (1−
(

1− λFU
2

)
)

k
)
·
(

1− (1−
(

1− λFU
1

)
)

k
)
⎤⎥⎥⎦

〉

= (λa2)k ⊗ (λa1)k.

(3)

k1λa ⊕ k2λa

= k1

〈 [
λ1−TL

, λ1−TU
]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉

⊕k2

〈 [
λ1−TL

, λ1−TU
]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉

=

〈[
1− (1− λ1−TL

)
k1 , 1− (1− λ1−TU

)
k1
]

,
[
(1− λIL

)
k1 , (1− λIU

)
k1
]

,
[
(1− λFL

)
k1 , (1− λFU

)
k1
]〉

⊕
〈[

1− (1− λ1−TL
)

k2 , 1− (1− λ1−TU
)

k2
]

,
[
(1− λIL

)
k2 , (1− λIU

)
k2
]

,
[
(1− λFL

)
k2 , (1− λFU

)
k2
]〉

=

〈
⎡⎢⎢⎣ 1− (1− λ1−TL

)
k1
+ 1− (1− λ1−TL

)
k2 −

(
1− (1− λ1−TL

)
k1
)
·
(

1− (1− λ1−TL
)

k2
)

,

1− (1− λ1−TU
)

k1
+ 1− (1− λ1−TU

)
k2 −

(
1− (1− λ1−TU

)
k1
)
·
(

1− (1− λ1−TU
)

k2
)
⎤⎥⎥⎦,

[
(1− λIL

)
k1 · (1− λIL

)
k2 , (1− λIU

)
k1 · (1− λIU

)
k2
]

,
[
(1− λFL

)
k1 · (1− λFL

)
k2 , (1− λFU

)
k1 · (1− λFU

)
k2
]
〉

=

〈 ⎡⎣ 1− (1− λ1−TL
)

k2
(1− λ1−TL

)
k1 ,

1− (1− λ1−TU
)

k2
(1− λ1−TU

)
k1

⎤⎦,[
(1− λIL

)
k1 · (1− λIL

)
k2 , (1− λIU

)
k1 · (1− λIU

)
k2
]

,
[
(1− λFL

)
k1 · (1− λFL

)
k2 , (1− λFU

)
k1 · (1− λFU

)
k2
]
〉

= (k1 + k2)λ
a.
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(4)

(λa)k1 ⊗ (λa)k2

=
〈 [

λ1−TL
, λ1−TU

]
,
[
1− λIL

, 1− λIU
]
,
[
1− λFL

, 1− λFU
]〉k1

⊗
〈 [

λ1−TL
, λ1−TU

]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉k2

=

〈[
(λ1−TL

)
k1 , (λ1−TU

)
k1
]

,
[

1− (1−
(

1− λIL
)
)

k1
, 1− (1−

(
1− λIU

)
)

k1
]

,
[

1− (1−
(

1− λFL
)
)

k1
, 1− (1−

(
1− λFU

)
)

k1
]〉

⊗
〈[

(λ1−TL
)

k2 , (λ1−TU
)

k2
]

,
[

1− (1−
(

1− λIL
)
)

k2
, 1− (1−

(
1− λIU

)
)

k2
]

,
[

1− (1−
(

1− λFL
)
)

k2
, 1− (1−

(
1− λFU

)
)

k2
]〉

=

〈
[
(λ1−TL

)
k1 · (λ1−TL

)
k2 , (λ1−TU

)
k1 · (λ1−TU

)
k2
]

,⎡⎢⎢⎣ 1− (1−
(

1− λIL
)
)

k1
+ 1− (1−

(
1− λIL

)
)

k2 −
(

1− (1−
(

1− λIL
)
)

k1
)
·
(

1− (1−
(

1− λIL
)
)

k2
)

,

1− (1−
(

1− λIU
)
)

k1
+ 1− (1−

(
1− λIU

)
)

k2 −
(

1− (1−
(

1− λIU
)
)

k1
)
·
(

1− (1−
(

1− λIU
)
)

k2
)
⎤⎥⎥⎦,

⎡⎢⎢⎣ 1− (1−
(

1− λFL
)
)

k1
+ 1− (1−

(
1− λFL

)
)

k2 −
(

1− (1−
(

1− λFL
)
)

k1
)
·
(

1− (1−
(

1− λFL
)
)

k2
)

,

1− (1−
(

1− λFU
)
)

k1
+ 1− (1−

(
1− λFU

)
)

k2 −
(

1− (1−
(

1− λFU
)
)

k1
)
·
(

1− (1−
(

1− λFU
)
)

k2
)
⎤⎥⎥⎦

〉

=

〈
[
(λ1−TL

)
k1 · (λ1−TL

)
k2 , (λ1−TU

)
k1 · (λ1−TU

)
k2
]

,[
1− (λIL

)
k2
(λIL

)
k1 , 1− (λIU

)
k2
(λIU

)
k1
]

,[
1− (λFL

)
k2
(λFL

)
k1 , 1− (λFU

)
k2
(λFU

)
k1
]

〉

= (λa)k1+k2 .

(5)

(λ1)
a ⊗ (λ2)

a

=
〈 [

λ1−TL

1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU

1

]
,
[
1− λFL

1 , 1− λFU

1

]〉
⊗
〈 [

λ1−TL

2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU

2

]
,
[
1− λFL

2 , 1− λFU

2

]〉

=

〈 [
λ1−TL

1 · λ1−TL

2 , λ1−TU

1 · λ1−TU

2

]
,[

1− λIL

1 + 1− λIL

2 −
(

1− λIL

1

)
·
(

1− λIL

2

)
, 1− λIU

1 + 1− λIU

2 −
(

1− λIU

1

)
·
(

1− λIU

2

)]
,[

1− λFL

1 + 1− λFL

2 −
(

1− λFL

1

)
·
(

1− λFL

2

)
, 1− λFU

1 + 1− λFU

2 −
(

1− λFU

1

)
·
(

1− λFU

2

)]
〉

=

〈 [
λ1−TL

1 · λ1−TL

2 , λ1−TU

1 · λ1−TU

2

]
,[

1− λIL

1 λIL

2 , 1− λIU

1 λIU

2

]
,[

1− λFL

1 λFL

2 , 1− λFU

1 λFU

2

]
〉

=
〈 [

(λ1λ2)
1−TL

, (λ1λ2)
1−TU]

,
[
1− (λ1λ2)

IL
, 1− (λ1λ2)

IU]
,
[
1− (λ1λ2)

FL
, 1− (λ1λ2)

FU]〉
= (λ1λ2)

a. �

Theorem 5. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN. If λ1 ≥ λ2, then one can obtain
(λ1)

a ≥ (λ2)
a for λ1, λ2 ∈ (0, 1), and (λ1)

a ≤ (λ2)
a for λ1, λ2 ≥ 1.

Proof. When λ1 ≥ λ2 and λ1, λ2 ∈ (0, 1), based on Definition 11, we can obtain

(λ1)
a =

〈[
λ1−TL

1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU

1

]
,
[
1− λFL

1 , 1− λFU

1

]〉
,

(λ2)
a =

〈[
λ1−TL

2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU

2

]
,
[
1− λFL

2 , 1− λFU

2

]〉
,

Since λ1 ≥ λ2, then λ1−TL

1 ≥ λ1−TL

2 , λ1−TU

1 ≥ λ1−TU

2 , and 1− λIL

1 ≤ 1− λIL

2 , 1− λIU

1 ≤ 1− λIU

2 ,
and 1− λFL

1 ≥ 1− λFL

2 , 1− λFU

1 ≥ 1− λFU

2 .

S((λ1)
a) =

2+λ1−TL
1 +λ1−TU

1 −2
(

1−λIL
1

)
−2
(

1−λIU
1

)
−
(

1−λFL
1

)
−
(

1−λFU
1

)
4

=
λ1−TL

1 +λ1−TU
1 +2λIL

1 +2λIU
1 +λFL

1 +λFU
1 −4

4 ,

S((λ2)
a) =

2+λ1−TL
2 +λ1−TU

2 −2
(

1−λIL
2

)
−2
(

1−λIU
2

)
−
(

1−λFL
2

)
−
(

1−λFU
2

)
4

=
λ1−TL

2 +λ1−TU
2 +2λIL

2 +2λIU
2 +λFL

2 +λFU
2 −4

4 ,
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S((λ1)
a)− S((λ2)

a)

=
λ1−TL

1 +λ1−TU
1 +2λIL

1 +2λIU
1 +λFL

1 +λFU
1 −4

4 − λ1−TL
2 +λ1−TU

2 +2λIL
2 +2λIU

2 +λFL
2 +λFU

2 −4
4

=

(
λ1−TL

1 −λ1−TL
2

)
+
(

λ1−TU
1 −λ1−TU

2

)
+
(

2λIL
1 −2λIL

2

)
+
(

2λIU
1 −2λIU

2

)
+
(

λFL
1 −λFL

2

)
+
(

λFU
1 −λFU

2

)
4

≥ 0.

Then S((λ1)
a) ≥ S((λ2)

a), (λ1)
a ≥ (λ2)

a.
Then, when λ1, λ2 ≥ 1 and λ1 ≥ λ2, we can know 0 ≤ 1

λ1
≤ 1

λ2
≤ 1. As discussed above, we can

obtain (λ1)
a ≤ (λ2)

a. This completes the proof. �

In what follows, let us take a look at some special values about λa:

(1) If λ = 1, then λa = 〈[1, 1], [0, 0], [0, 0]〉 = 〈1, 0, 0〉;
(2) If a = 〈[1, 1], [0, 0], [0, 0]〉 = 〈1, 0, 0〉, then λa = 〈[1, 1], [0, 0], [0, 0]〉 = 〈1, 0, 0〉;
(3) If a = 〈[0, 0][1, 1], [1, 1],〉 = 〈0, 1, 1〉, then

λa = 〈[λ, λ], [1− λ, 1− λ], [1− λ, 1− λ]〉

4. Interval Neutrosophic Weighted Exponential Aggregation (INWEA) Operator

Aggregation operators have been commonly used to aggregate the evaluation information in
decision making. Here, we utilize the INNs rather than real numbers as weight of criterion, which
is more comprehensive and reasonable. In this section, we introduced the interval neutrosophic
weighted exponential aggregation (INWEA) operator. Furthermore, some characteristics of the
proposed aggregation operator, such as boundedness and monotonicity are discussed in detail.

Definition 12. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n) be a collection of INNs, and λi ∈
(0, 1) (i = 1, 2, · · · , n) be the collection of real numbers, and let INWEA: Θn → Θ . If

INWEA(a1, a2, · · · , an) = λ1
a1 ⊗ λ2

a2 ⊗ · · · ⊗ λn
an . (9)

Then the function INWEA is called an interval neutrosophic weighted exponential aggregation (INWEA)
operator, where ai (i = 1, 2, · · · , n) are the exponential weighting vectors of attribute values λi(i = 1, 2, · · · , n).

Theorem 6 [43]. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n) be a collection of INNs, the
aggregated value by using the INWEA operator is also an INN, where

INWEA(a1, a2, · · · , an)

=

⎧⎪⎪⎨⎪⎪⎩
〈[

n
∏
i=1

λ
1−TL

i
i ,

n
∏
i=1

λ
1−TU

i
i

]
,
[

1− n
∏
i=1

λ
IL
i

i , 1− n
∏
i=1

λ
IU
i

i

]
,
[

1− n
∏
i=1

λ
FL

i
i , 1− n

∏
i=1

λ
FU

i
i

]〉
, λi ∈ (0, 1)〈[

n
∏
i=1

(
1
λi

)1−TL
i ,

n
∏
i=1

(
1
λi

)1−TU
i
]

,
[

1− n
∏
i=1

(
1
λi

)IL
i , 1− n

∏
i=1

(
1
λi

)IU
i
]

,
[

1− n
∏
i=1

(
1
λi

)FL
i , 1− n

∏
i=1

(
1
λi

)FU
i
]〉

, λi ≥ 1

(10)

and ai (i = 1, 2, · · · , n) are the exponential weights of λi (i = 1, 2, · · · , n).

Proof. By using mathematical induction, we can prove the Equation (10).
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(1) When n = 2, we have

INWEA(a1, a2) = λ1
a1 ⊗ λ2

a2

=

〈 [
λ

1−TL
1

1 , λ
1−TU

1
1

]
,
[

1− λ
IL
1

1 , 1− λ
IU
1

1

]
,
[

1− λ
FL

1
1 , 1− λ

FU
1

1

]〉
⊗
〈[

λ
1−TL

2
2 , λ

1−TU
2

2

]
,
[

1− λ
IL
2

2 , 1− λ
IU
2

2

]
,
[

1− λ
FL

2
2 , 1− λ

FU
2

2

]〉

=

〈
[

λ
1−TL

1
1 · λ1−TL

2
2 , λ

1−TU
1

1 · λ1−TU
2

2

]
,[

1− λ
IL
1

1 + 1− λ
IL
2

2 −
(

1− λ
IL
1

1

)
·
(

1− λ
IL
2

2

)
, 1− λ

IU
1

1 + 1− λ
IU
2

2 −
(

1− λ
IU
1

1

)
·
(

1− λ
IU
2

2

)]
,[

1− λ
FL

1
1 + 1− λ

FL
2

2 −
(

1− λ
FL

1
1

)
·
(

1− λ
FL

2
2

)
, 1− λ

FU
1

1 + 1− λ
FU

2
2 −

(
1− λ

FU
1

1

)
·
(

1− λ
FU

2
2

)]
〉

=

〈 [
2

∏
i=1

λ
1−TL

i
i ,

2
∏
i=1

λ
1−TU

i
i

]
,
[

1− 2
∏
i=1

λ
IL
i

i , 1− 2
∏
i=1

λ
IU
i

i

]
,
[

1− 2
∏
i=1

λ
FL

i
i , 1− 2

∏
i=1

λ
FU

i
i

]〉
.

(11)

(2) When n = k, according to Equation (10) there is the following formula:

INWEA(a1, a2, · · · , ak)

=

〈 [
k

∏
i=1

λ
1−TL

i
i ,

k
∏
i=1

λ
1−TU

i
i

]
,
[

1− k
∏
i=1

λ
IL
i

i , 1− k
∏
i=1

λ
IU
i

i

]
,
[

1− k
∏
i=1

λ
FL

i
i , 1− k

∏
i=1

λ
FU

i
i

]〉
.

(12)

When n = k + 1, we have the following results based on the operational rules of Definition 3 and
combining (2) and (3).

INWEA(a1, a2, · · · , ak, ak+1)

=

〈 [
k

∏
i=1

λ
1−TL

i
i ,

k
∏
i=1

λ
1−TU

i
i

]
,
[

1− k
∏
i=1

λ
IL
i

i , 1− k
∏
i=1

λ
IU
i

i

]
,
[

1− k
∏
i=1

λ
FL

i
i , 1− k

∏
i=1

λ
FU

i
i

]〉
⊗ ak+1

=

〈 [
k

∏
i=1

λ
1−TL

i
i ,

k
∏
i=1

λ
1−TU

i
i

]
,
[

1− k
∏
i=1

λ
IL
i

i , 1− k
∏
i=1

λ
IU
i

i

]
,
[

1− k
∏
i=1

λ
FL

i
i , 1− k

∏
i=1

λ
FU

i
i

]〉
⊗
〈 [

λ
1−TL

k+1
k+1 , λ

1−TU
k+1

k+1

]
,
[

1− λ
IL
k+1

k+1 , 1− λ
IU
k+1

k+1

]
,
[

1− λ
FL

k+1
k+1 , 1− λ

FU
k+1

k+1

]〉
=

〈 [
n
∏
i=1

λ
1−TL

i
i ,

n
∏
i=1

λ
1−TU

i
i

]
,
[

1− n
∏
i=1

λ
IL
i

i , 1− n
∏
i=1

λ
IU
i

i

]
,
[

1− n
∏
i=1

λ
FL

i
i , 1− n

∏
i=1

λ
FU

i
i

]〉
. �

Therefore, for the above results we determine that Equation (10) holds for any n. Thus, the proof
is completed. When λi ≥ 1, and 0 < 1

λi
≤ 1, we can also obtain

INWEA(α1, α2, · · · , αn)

=

〈 [
n
∏
i=1

(
1
λi

)1−TL
i ,

n
∏
i=1

(
1
λi

)1−TU
i
]

,
[

1− n
∏
i=1

(
1
λi

)IL
i , 1− n

∏
i=1

(
1
λi

)IU
i
]

,
[

1− n
∏
i=1

(
1
λi

)FL
i , 1− n

∏
i=1

(
1
λi

)FU
i
]〉

.

and the aggregated value is an INN.
Here, we discuss the relationship between the INWEA operator and other exponential

aggregation operators. When TL = TU , IL = IU and FL = FU , the INWEA operator of INNs is
equivalent to the SVNWEA operator of SVNNs [41].

INWEA(a1, a2, · · · , an) =

〈 [
n

∏
i=1

λ
1−Ti
i

]
,

[
1−

n

∏
i=1

λ
Ii
i

]
,

[
1−

n

∏
i=1

λ
Fi
i

]〉
= SVNWEA(a1, a2, · · · , an)

When 0− ≤ TU + IU + FU ≤ 1, the INWEA operator of INNs is equivalent to the I IFWEA
operator of IIFNs [40]. When TL = TU , IL = IU , FL = FU and 0− ≤ TU + IU + FU ≤ 1, the INWEA
operator of INNs is equivalent to the IFWEA operator of IFNs [39]. So the INWEA operator of INNs
is a more generalized representation, and the other exponential aggregation operators of SVNNs, IIFNs
and IFNs are special cases.
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Theorem 7. The INWEA operator has the following properties:

(1) Boundedness: Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n) be a collection
of INNs, and let amin =< [min

i
TL

i , min
i

TU
i ], [max

i
IL
i , max

i
IU
i ], [max

i
FL

i , max
i

FU
i ] >,

amax =< [max
i

TL
i , max

i
TU

i ], [min
i

IL
i , min

i
IU
i ], [min

i
FL

i , min
i

FU
i ] > for i = 1, 2, · · · , n,

a− = INWEA(amin, amin, · · · , amin)

=

〈 [
n
∏
i=1

λ
1−min

i
TL

i

i ,
n
∏
i=1

λ
1−min

i
TU

i

i

]
,

[
1− n

∏
i=1

λ
max

i
IL
i

i , 1− n
∏
i=1

λ
max

i
IU
i

i

]
,

[
1− n

∏
i=1

λ
max

i
FL

i

i , 1− n
∏
i=1

λ
max

i
FU

i

i

]〉
,

a+ = INWEA(amax, amax, · · · , amax)

=

〈 [
n
∏
i=1

λ
1−max

i
TL

i

i ,
n
∏
i=1

λ
1−max

i
TU

i

i

]
,

[
1− n

∏
i=1

λ
min

i
IL
i

i , 1− n
∏
i=1

λ
min

i
IU
i

i

]
,

[
1− n

∏
i=1

λ
min

i
FL

i

i , 1− n
∏
i=1

λ
min

i
FU

i

i

]〉
,

Then a− ≤ INWEA(a1, a2, · · · , an) ≤ a+.

Proof. For any i, we have min
i

TL
i ≤ TL

i ≤ max
i

TL
i , min

i
TU

i ≤ TU
i ≤ max

i
TU

i , min
i

IL
i ≤ IL

i ≤ max
i

IL
i ,

min
i

IU
i ≤ IU

i ≤ max
i

IU
i , min

i
FL

i ≤ FL
i ≤ max

i
FL

i , min
i

FU
i ≤ FU

i ≤ max
i

FU
i .

n
∏
i=1

λ
1−TL

i
i ≥ n

∏
i=1

λ
1−min

i
TL

i

i ,
n
∏
i=1

λ
1−TU

i
i ≥ n

∏
i=1

λ
1−min

i
TU

i

i ,

1− n
∏
i=1

λ
IL
i

i ≤ 1− n
∏
i=1

λ
max

i
IL
i

i , 1− n
∏
i=1

λ
IU
i

i ≤ 1− n
∏
i=1

λ
max

i
IU
i

i ,

1− n
∏
i=1

λ
FL

i
i ≤ 1− n

∏
i=1

λ
max

i
FL

i

i , 1− n
∏
i=1

λ
FU

i
i ≤ 1− n

∏
i=1

λ
max

i
FU

i

i ,

n
∏
i=1

λ
1−TL

i
i ≤ n

∏
i=1

λ
1−mxa

i
TL

i

i ,
n
∏
i=1

λ
1−TU

i
i ≤ n

∏
i=1

λ
1−mxa

i
TU

i

i ,

1− n
∏
i=1

λ
IL
i

i ≥ 1− n
∏
i=1

λ
min

i
IL
i

i , 1− n
∏
i=1

λ
IU
i

i ≥ 1− n
∏
i=1

λ
min

i
IU
i

i ,

1− n
∏
i=1

λ
FL

i
i ≥ 1− n

∏
i=1

λ
min

i
FL

i

i , 1− n
∏
i=1

λ
FU

i
i ≥ 1− n

∏
i=1

λ
min

i
FU

i

i ,

Let INWEA(a1, a2, · · · , an) = a, a− =< [TL−, TU−], [IL−, IU−], [FL−, FU−] >,
and a+ =< [TL+, TU+], [IL+, IU+], [FL+, FU+] >, then based on the score function, where

S(a)

=
2+

n
∏

i=1
λ

1−TL
i

i +
n
∏

i=1
λ

1−TU
i

i −2

(
1− n

∏
i=1

λ
IL
i

i

)
−2

(
1− n

∏
i=1

λ
IU
i

i

)
−
(

1− n
∏

i=1
λ

FL
i

i

)
−
(

1− n
∏

i=1
λ

FU
i

i

)
4

≥
2+

n
∏

i=1
λ

1−min
i

TL
i

i +
n
∏

i=1
λ

1−min
i

TU
i

i −2

⎛⎝1− n
∏

i=1
λ

max
i

IL
i

i

⎞⎠−2

⎛⎝1− n
∏

i=1
λ

max
i

IU
i

i

⎞⎠−
⎛⎝1− n

∏
i=1

λ
max

i
FL
i

i

⎞⎠−
⎛⎝1− n

∏
i=1

λ
max

i
FU
i

i

⎞⎠
4

= S(α−),

S(a)

=
2+

n
∏

i=1
λ

1−TL
i

i +
n
∏

i=1
λ

1−TU
i

i −2

(
1− n

∏
i=1

λ
IL
i

i

)
−2

(
1− n

∏
i=1

λ
IU
i

i

)
−
(

1− n
∏

i=1
λ

FL
i

i

)
−
(

1− n
∏

i=1
λ

FU
i

i

)
4

≥
2+

n
∏

i=1
λ

1−max
i

TL
i

i +
n
∏

i=1
λ

1−max
i

TU
i

i −2

⎛⎝1− n
∏

i=1
λ

min
i

IL
i

i

⎞⎠−2

⎛⎝1− n
∏

i=1
λ

min
i

IU
i

i

⎞⎠−
⎛⎝1− n

∏
i=1

λ
min

i
FL
i

i

⎞⎠−
⎛⎝1− n

∏
i=1

λ
min

i
FU
i

i

⎞⎠
4

= S(α+). �
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In what follows, we discuss three cases:

(I) If S(a−) < S(a) < S(a+), then a− < INWEA(a1, a2, · · · , an) < a+ holds obviously.
(II) If S(a) = S(a−), then there is

TL + TU − 2IL− 2IU − FL− FU = TL−+ TU− − 2IL− − 2IU− − FL− − FU−. Thus, we can obtain
TL = TL−, TU = TU−, IL = IL−, IU = IU−, FL = FL−, FU = FU−. Hence, there is

A(a) = 1
2
(
TL + TU − IU(1− TU)− IL(1− TL)− FU(1− IL)− FL(1− IU))

= 1
2
(
TL− + TU− − IU−(1− TU−)− IL−(1− TL−)− FU−(1− IL−)− FL−(1− IU−))

= A(a−).

So we have INWEA(a1, a2, · · · , an) = a−.
(III) If S(a) = S(a+), then there is

TL + TU − 2IL− 2IU − FL− FU = TL+ + TU+− 2IL+− 2IU+− FL+− FU+. Thus, we can obtain
TL = TL+, TU = TU+, IL = IL+, IU = IU+, FL = FL+, FU = FU+. Hence, there is

A(a) = 1
2
(
TL + TU − IU(1− TU)− IL(1− TL)− FU(1− IL)− FL(1− IU))

= 1
2
(
TL+ + TU+ − IU+

(
1− TU+

)− IL+(1− TL+)− FU+
(
1− IL+)− FL+(1− IU+

))
= A(a+).

Hence, we have INWEA(a1, a2, · · · , an) = a+.
Based on the above three cases, there is a− ≤ INWEA(a1, a2, · · · , an) ≤ a+.

(2) Monotonity: Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n)
and a∗i =< [TL∗

i , TU∗
i ], [IL∗

i , IU∗
i ], [FL∗

i , FU∗
i ] > be two collections of INNs. If ai ≤ a∗i ,

then INWEA(a1, a2, · · · , an) ≤ INWEA
(
a∗1, a∗2, · · · , a∗n

)
.

Proof. Let a = INWEA(a1, a2, · · · , an) =

〈 [
n
∏
i=1

λ
1−TL

i
i ,

n
∏
i=1

λ
1−TU

i
i

]
,
[

1− n
∏
i=1

λ
IL
i

i , 1− n
∏
i=1

λ
IU
i

i

]
,
[

1− n
∏
i=1

λ
FL

i
i , 1− n

∏
i=1

λ
FU

i
i

]〉
,

a∗ = INWEA
(
a∗1, a∗2, · · · , a∗n

)
=

〈[
n
∏
i=1

λ
1−TL∗

i
i ,

n
∏
i=1

λ
1−TU∗

i
i

]
,
[

1− n
∏
i=1

λ
IL∗
i

i , 1− n
∏
i=1

λ
IU∗
i

i

]
,
[

1− n
∏
i=1

λ
FL∗

i
i , 1− n

∏
i=1

λ
FU∗

i
i

]〉
,

If ai ≤ a∗i , then TL
i ≤ TL∗

i , TU
i ≤ TU∗

i , IL
i ≥ IL∗

i , IU
i ≥ IU∗

i , FL
i ≥ FL∗

i , FU
i ≥ FU∗

i for any i.

So we have
n
∏
i=1

λ
1−TL

i
i ≤ n

∏
i=1

λ
1−TL∗

i
i ,

n
∏
i=1

λ
1−TU

i
i ≤ n

∏
i=1

λ
1−TU∗

i
i , 1− n

∏
i=1

λ
IL
i

i ≥ 1− n
∏
i=1

λ
IL∗
i

i , 1− n
∏
i=1

λ
IU
i

i ≥

1− n
∏
i=1

λ
IU∗
i

i , 1− n
∏
i=1

λ
FL

i
i ≥ 1− n

∏
i=1

λ
FL∗

i
i , 1− n

∏
i=1

λ
IU
i

i ≥ 1− n
∏
i=1

λ
IU∗
i

i .

Thus,

S(a)

=
2+

n
∏

i=1
λ

1−TL
i

i +
n
∏

i=1
λ

1−TU
i

i −2

(
1− n

∏
i=1

λ
IL
i

i

)
−2

(
1− n

∏
i=1

λ
IU
i

i

)
−
(

1− n
∏

i=1
λ

FL
i

i

)
−
(

1− n
∏

i=1
λ

FU
i

i

)
4

≤
2+

n
∏

i=1
λ

1−TL∗
i

i +
n
∏

i=1
λ

1−TU∗
i

i −2

(
1− n

∏
i=1

λ
IL∗
i

i

)
−2

(
1− n

∏
i=1

λ
IU∗
i

i

)
−
(

1− n
∏

i=1
λ

FL∗
i

i

)
−
(

1− n
∏

i=1
λ

FU∗
i

i

)
4

= S(α∗).

Hence, there are the following two cases:

(1) If S(a) < S(a∗), then we can get INWEA(a1, a2, · · · , an) < INWEA
(
a∗1, a∗2, · · · , a∗n

)
;

(2) If S(a) = S(a∗), then

n
∏
i=1

λ
1−TL

i
i +

n
∏
i=1

λ
1−TU

i
i − 2

(
1− n

∏
i=1

λ
IL
i

i

)
− 2
(

1− n
∏
i=1

λ
IU
i

i

)
−
(

1− n
∏
i=1

λ
FL

i
i

)
−
(

1− n
∏
i=1

λ
FU

i
i

)
=

n
∏
i=1

λ
1−TL∗

i
i +

n
∏
i=1

λ
1−TU∗

i
i − 2

(
1− n

∏
i=1

λ
IL∗
i

i

)
− 2
(

1− n
∏
i=1

λ
IU∗
i

i

)
−
(

1− n
∏
i=1

λ
FL∗

i
i

)
−
(

1− n
∏
i=1

λ
FU∗

i
i

)
.
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Therefore, by the condition TL
i ≤ TL∗

i , TU
i ≤ TU∗

i , IL
i ≥ IL∗

i , IU
i ≥ IU∗

i , FL
i ≥ FL∗

i , FU
i ≥ FU∗

i for
any i, we can get

n
∏
i=1

λ
1−TL

i
i =

n
∏
i=1

λ
1−TL∗

i
i ,

n
∏
i=1

λ
1−TU

i
i =

n
∏
i=1

λ
1−TU∗

i
i , 1 − n

∏
i=1

λ
IL
i

i = 1 − n
∏
i=1

λ
IL∗
i

i , 1 − n
∏
i=1

λ
IU
i

i = 1 −
n
∏
i=1

λ
IU∗
i

i , 1− n
∏
i=1

λ
FL

i
i = 1− n

∏
i=1

λ
FL∗

i
i , 1− n

∏
i=1

λ
IU
i

i = 1− n
∏
i=1

λ
IU∗
i

i .

Thus,

A(a)

= 1
2

(
n
∏
i=1

λ
1−TL

i
i +

n
∏
i=1

λ
1−TU

i
i −

(
1− n

∏
i=1

λ
IU
i

i

)(
1− n

∏
i=1

λ
1−TU

i
i

)
−
(

1− n
∏
i=1

λ
IL
i

i

)(
1− n

∏
i=1

λ
1−TL

i
i

)
−
(

1− n
∏
i=1

λ
FU

i
i

)(
1−
(

1− n
∏
i=1

λ
IL
i

i

))
−
(

1− n
∏
i=1

λ
FL

i
i

)(
1−
(

1− n
∏
i=1

λ
IU
i

i

)))
= 1

2

(
n
∏
i=1

λ
1−TL∗

i
i +

n
∏
i=1

λ
1−TU∗

i
i −

(
1− n

∏
i=1

λ
IU∗
i

i

)(
1− n

∏
i=1

λ
1−TU∗

i
i

)
−
(

1− n
∏
i=1

λ
IL∗
i

i

)(
1− n

∏
i=1

λ
1−TL∗

i
i

)
−
(

1− n
∏
i=1

λ
FU∗

i
i

)(
1−
(

1− n
∏
i=1

λ
IL∗
i

i

))
−
(

1− n
∏
i=1

λ
FL∗

i
i

)(
1−
(

1− n
∏
i=1

λ
IU∗
i

i

)))
= A(a∗).

Therefore, INWEA(a1, a2, · · · , an) = INWEA
(
a∗1, a∗2, · · · , a∗n

)
.

Based on (1) and (2), there is INWEA(a1, a2, · · · , an) ≤ INWEA
(
a∗1, a∗2, · · · , a∗n

)
. �

5. Multiple Attribute Decision Making Method Based on the INWEA Operator

To better understand the new operational law and the new operational aggregation operator,
we will address some MADM problems, where the attribute weights will be expressed as INNs,
and the attribute values for alternatives are represented as positive real numbers. So, we establish a
MADM method.

In MADM problems, let X = {x1, x2, · · · xm} be a discrete set of m alternatives,
and C = {c1, c2, · · · cn} be the set of n attributes. The evaluation values of attribute
cj(j = 1, 2, · · · , n) for alternative xi(i = 1, 2, · · · , m) is expressed by a positive real number
λij ∈ (0, 1), (i = 1, 2, · · · , m, j = 1, 2, · · · , n). So, the decision matrix R = (λij)m×n can be given.
The INN aj =< [TL

j , TU
j ], [IL

j , IU
j ], [FL

j , FU
j ] > is represented as the attribute weight of the

cj(j = 1, 2, · · · , n), here [TL
j , TU

j ] ⊆ [0, 1] indicates the degree of certainty of the attribute cj supported

by the experts, [IL
j , IU

j ] ⊆ [0, 1] indicates the degree of uncertainty of the attribute cj supported by the

experts, and [FL
j , FU

j ] ⊆ [0, 1] indicates the negative degree of the attribute cj supported by the experts.
Then, we can rank the alternatives and obtain the best alternatives based on the given information; the
specific steps are as follows:

Step 1 Utilize the INWEA operator di = INWEA(a1, a2, · · · , am) (i = 1, 2, · · · , m; j = 1, 2, · · · n) to
aggregate the characteristic λij of the alternative xi.

Step 2 Utilize the score function to calculate the scores S(di) (i = 1, 2, · · · , m) of the alternatives
xi (i = 1, 2, · · · , m).

Step 3 Utilize the scores S(di) (i = 1, 2, · · · , m) to rank and select the alternatives xi (i = 1, 2, · · · , n),
if the two scores S(di) and S

(
dj
)

are equal, then we need to calculate the accuracy degrees
A(di) and A

(
dj
)

of the overall criteria values di and dj, then we rank the alternatives xi and xj
by using A(di) and A

(
dj
)
.

Step 4 End.

6. Typhoon Disaster Evaluation Based on Neutrosophic Information

6.1. Illustrative Example

In China, typhoons are among the most serious types of natural disasters. They primarily impact
the eastern coastal regions of China, where the population is extremely dense, the economy is highly
developed, and social wealth is notably concentrated. Fujian Province is one of the most severely
impacted typhoon disaster areas in both local and global contexts, routinely enduring substantial
economic losses caused by typhoon disasters. For example, in 2017, a total of 208,900 people in
59 counties of Fujian Province were affected by the successive landings of twin typhoons No. 9 “Nassa”
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and No. 10 “Haicang.” There were 434 collapsed houses and 273,300 people were urgently displaced;
26.73 thousand hectares of crops were affected, 101.9 thousand hectares affected, and 2.19 thousand
hectares were lost. The typhoon also led to the cancellation of 507 Fujian flights and 139 trains.
According to incomplete statistics, the total direct economic loss was 966 million yuan (RNB).
We examine the problem of typhoon disaster evaluation in Fujian Province.

We will use several indices to evaluate the typhoon disaster effectively. The assessment indicators
C = {c1, c2, c3, c4} include economic loss c1, social impact c2, environmental damage c3, and other
impact c4 proposed by Yu [1]. Several experts are responsible for this assessment, and the evaluation
information is expressed by positive real numbers and INNs. The assessment decision matrix based
on this is constructed R = (λij)m×n(see Table 1), and the λij is positive real numbers. The λij in the
matrix indicates the degree of damage to the city in the typhoon. The data between 0 and 1 is used
to indicate the degree of disaster received. 0 means that the city is basically unaffected by disasters,
0.2 means that the extent of the disaster is relatively small, 0.4 means that the extent of the disaster is
middle, 0.6 means that the degree of disaster is slightly larger, 0.8 means the extent of the disaster is
relatively large. 1 means that the extent of the disaster is extremely large. The rest of the data located
in the middle of the two data indicates that the extent of the disaster is between the two. The interval
neutrosophic weights ω1, ω2, ω3, ω4 for the four attributes voted by experts. Take ω1 as an example
to explain its meaning, [0.6, 0.8] indicates the degree of certainty of the attribute c1 supported by the
experts is between 0.6 and 0.8, [0.2, 0.4] indicates the uncertainty of the expert’s support for attribute c1

is between 0.2 and 0.4, and [0.1, 0.2] indicates the negative degree of expert’s support for attribute c1 is
between 0.1 and 0.2.

ω1 =< [0.6, 0.8], [0.2, 0.4], [0.1, 0.2] >, ω2 =< [0.5, 0.9], [0.2, 0.5], [0.1, 0.3] >
ω3 =< [0.4, 0.7], [0.3, 0.6], [0.3, 0.5] >, ω4 =< [0.2, 0.4], [0.4, 0.8], [0.6, 0.7] > .

Table 1. Decision matrix.

Cities

Attributes c1 c2 c3 c4

Nanping (NP) 0.2 0.2 0.2 0.2
Ningde (ND) 0.9 0.8 0.7 0.4
Sanming (SM) 0.2 0.2 0.2 0.2
Fuzhou (FZ) 0.8 0.5 0.5 0.3
Putian (PT) 0.7 0.7 0.6 0.3

Longyan (LY) 0.4 0.3 0.3 0.2
Quanzhou (QZ) 0.3 0.4 0.2 0.3

Xiamen (XM) 0.3 0.3 0.3 0.2
Zhangzhou (ZZ) 0.6 0.5 0.8 0.3

According to Section 5, Typhoon disaster evaluation using the MADM model contains the
following steps:

Step 1 Using the INWEA operator defined by equation (10) to aggregate all evaluation information
to obtain a comprehensive assessment value di for each city as follows:

When i = 2, we can get

dND
2 = INWEA(α1, α2, · · · , αn)

=

〈 [
4

∏
i=1

λ
1−TL

i
i ,

4
∏
i=1

λ
1−TU

i
i

]
,
[

1− 4
∏
i=1

λ
IL
i

i , 1− 4
∏
i=1

λ
IU
i

i

]
,
[

1− 4
∏
i=1

λ
FL

i
i , 1− 4

∏
i=1

λ
FU

i
i

]〉
=<

[
0.9(1−0.6) × 0.8(1−0.5) × 0.7(1−0.4) × 0.4(1−0.2), 0.9(1−0.8) × 0.8(1−0.9) × 0.7(1−0.7) × 0.4(1−0.4)

]
,[

1− 0.90.2 × 0.80.2 × 0.70.3 × 0.40.4, 1− 0.90.4 × 0.80.5 × 0.70.6 × 0.40.8],[
1− 0.90.1 × 0.80.1 × 0.70.3 × 0.40.6, 1− 0.90.2 × 0.80.3 × 0.70.5 × 0.40.7],

=< [0.333, 0.497], [0.417, 0.667], [0.498, 0.597] >
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In a similar way, we can get

dNP
1 =< [0.025, 0.145], [0.830, 0.975], [0.830, 0.935] >,

dND
2 =< [0.333, 0.497], [0.417, 0.667], [0.498, 0.597] >,

dSM
3 =< [0.025, 0.145], [0.830, 0.975], [0.830, 0.935] >,

dFZ
4 =< [0.163, 0.352], [0.582, 0.837], [0.640, 0.764] >,

dPT
5 =< [0.204, 0.374], [0.540, 0.796], [0.612, 0.721] >,

dLY
6 =< [0.051, 0.196], [0.760, 0.949], [0.785, 0.897] >,

dQZ
7 =< [0.057, 0.215], [0.751, 0.943], [0.758, 0.885] >,

dXM
8 =< [0.045, 0.185], [0.774, 0.955], [0.791, 0.903] >,

dZZ
9 =< [0.192, 0.383], [0.546, 0.808], [0.597, 0.718] >.

Step 2 Using Definition 4 to calculate the score function value of the comprehensive assessment value
di for each city as follows:

S
(
dNP

1
)
= −0.801, S

(
dND

2
)
= −0.109, S

(
dSM

3
)
= −0.801, S

(
dFZ

4
)
= −0.432,

S
(
dPT

5
)
= −0.357, S

(
dLY

6
)
= −0.714, S

(
dQZ

7

)
= −0.690, S

(
dXM

8
)
= −0.730,

S
(
dZZ

9
)
= −0.360.

Step 3 According to Definition 6, the ranking order of the nine cities is dND
2 � dPT

5 � dZZ
9 � dFZ

4 �
dQZ

7 � dLY
6 � dXM

8 � dSM
3 ~dNP

1 . The ranking results of the cities are shown in Figure 1.
Step 4 End.

6.2. Comparative Analysis Based on Different Sorting Methods

To illustrate the stability of the ranking results, the degree of possibility-based ranking method
proposed in [33,45] is used in this paper. We obtain the matrix of degrees of possibility of the
comprehensive assessment values of nine cities as follows:

P =

NP
ND
SM
FZ
PT
LY
QZ
XM
ZZ

NP ND SM FZ PT LY QZ XM ZZ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.500 0.000 0.500 0.000 0.000 0.344 0.302 0.371 0.000
1.000 0.500 1.000 0.944 0.854 1.000 1.000 1.000 0.843
0.500 0.000 0.500 0.000 0.000 0.344 0.302 0.371 0.000
1.000 0.056 1.000 0.500 0.402 0.913 0.862 0.943 0.406
1.000 0.146 1.000 0.598 0.500 1.000 0.980 1.000 0.501
0.656 0.000 0.656 0.087 0.000 0.500 0.456 0.527 0.000
0.698 0.000 0.698 0.138 0.020 0.544 0.500 0.570 0.038
0.629 0.000 0.629 0.057 0.000 0.473 0.430 0.500 0.000
1.000 0.157 1.000 0.594 0.499 1.000 0.962 0.100 0.500

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here, ND � PT � ZZ � FZ � QZ � LY � XM � SM~NP. The ranking order of the nine cities

is also dND
2 � dPT

5 � dZZ
9 � dFZ

4 � dQZ
7 � dLY

6 � dXM
8 � dSM

3 ~dNP
1 . The ranking results of the cities are

shown in Figure 2. As can be seen from the above results, the two sorting results are the same.

6.3. Comparative Analysis of Different Aggregation Operators

In order to illustrate the rationality and predominance of the proposed method, we compare this
method with other methods [33]. The comparative analysis is shown in Table 2 and Figure 3.

274



Symmetry 2018, 10, 196

Figure 1. Ranking results based on the score function.

Figure 2. Ranking results based on the degree of possibility.

Table 2. Comparative analysis of different aggregation operators.

Different Aggregation Method Ranking Result

INWEA operator of our method dND
2 � dPT

5 � dZZ
9 � dFZ

4 � dQZ
7 � dLY

6 � dXM
8 � dSM

3 ~dNP
1

INNWA operator of [33] dND
2 � dPT

5 � dFZ
4 � dZZ

9 � dLY
6 � dQZ

7 � dXM
8 � dSM

3 ~dNP
1

Figure 3. Comparative analysis of different aggregation operators. (a) Ranking results of two operators
based on the score function; (b) Ranking results of two operators based on the possibility degree.
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First in Step 1, using the INNWA operator proposed by [33] instead of the INWEA operator
to aggregate all evaluation information to obtain a comprehensive assessment value di for each city,
then using Definition 4 to calculate the score function value of di as follows:

S
(
dNP

1
)
= 0.092, S

(
dND

2
)
= 0.853, S

(
dSM

3
)
= 0.092, S

(
dFZ

4
)
= 0.750, S

(
dPT

5
)
= 0.782, S

(
dLY

6
)
= 0.418,

S
(

dQZ
7

)
= 0.389, S

(
dXM

8
)
= 0.340, S

(
dZZ

9
)
= 0.742.

Here, we compare and analyze several aggregation methods to illustrate the advantages of the
proposed method.

(1) Can be seen from Table 2 and Figure 3, the two ranking results based on the INWEA operator
and the INNWA operator are different. The main reason is that the positions and meanings of the
attribute values and the attribute weights are different. For the INWEA operator, its bases are positive
real numbers and the exponents are interval neutrosophic numbers. It can deal with the decision
making problem, in which attribute values are positive real numbers, and the attribute weights are
interval neutrosophic numbers. However, the INNWA operator is just the opposite. It needs to
exchange the roles of the attribute values and the attribute weights because its bases are interval
neutrosophic numbers and its exponents are positive real numbers. Therefore, it cannot be used to
solve the typhoon disaster assessment problem in this paper, and the second ranking results in Table 2
and Figure 3 are unreasonable.

(2) Compared with the existing SVNWAA operator introduced in an SVNN environment [41], our
method is a more generalized representation, and the SVNWAA operator is a special case. When the
upper limit and lower limit of the INNs are the same, the INWEA operator is equivalent to the
SVNWEA operator.

(3) Compared with the existing I IFWEA operator of IIFNs [40] and the IFWEA operator of
IFNs [39], our method uses interval neutrosophic weights, which include truth degree, falsity degree,
and indeterminacy degree, and can deal with the indeterminate, incomplete, and inconsistent problems.
However, the I IFWEA operator and IFWEA operator use intuitionistic fuzzy weights, which only
contain truth degree and falsity degree, and cannot handle the assessment problem in this paper.
Since IFN and IIFN are only special cases of interval NN, our exponential aggregation operator is the
extension of the existing exponential operators [39–41].

7. Conclusions

In this paper, a typhoon disaster evaluation approach based on exponential aggregation operators
of interval neutrosophic numbers under the neutrosophic fuzzy environment, is proposed. First,
this paper introduced the exponential operational laws of INSs and INNs, which are a useful
supplement to the existing neutrosophic fuzzy aggregation techniques. Then, we investigated a
series of properties of these operational laws. Next, we discussed in detail some favorable properties
of the interval neutrosophic weighted exponential aggregation (INWEA) operator. Finally, we applied
the proposed decision making method successfully to the evaluation of typhoon disaster assessment.
The research in this paper will be helpful to deepen the study of typhoon disaster evaluation and
improve decision making for disaster reduction and disaster prevention. In addition, it provides
methodological guidance for the handling of typhoon disasters and can improve the government’s
ability to effectively improve disaster reduction. In future research, we will expand the proposed
method and apply it to other natural disaster assessment problems. We will continue to study
related theories of exponential aggregation operators in a neutrosophic fuzzy environment and
their application in typhoon disaster assessment. The authors will also study the related theory
of single-valued neutrosophic sets, interval-valued neutrosophic sets, bipolar neutrosophic sets,
neutrosophic hesitant fuzzy sets, multi-valued neutrosophic sets, simplified neutrosophic linguistic
sets, and their applications in typhoon disaster evaluation problems.
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Abstract: This study introduces simplified neutrosophic linguistic numbers (SNLNs) to describe
online consumer reviews in an appropriate manner. Considering the defects of studies on SNLNs
in handling linguistic information, the cloud model is used to convert linguistic terms in SNLNs
to three numerical characteristics. Then, a novel simplified neutrosophic cloud (SNC) concept is
presented, and its operations and distance are defined. Next, a series of simplified neutrosophic
cloud aggregation operators are investigated, including the simplified neutrosophic clouds Maclaurin
symmetric mean (SNCMSM) operator, weighted SNCMSM operator, and generalized weighted
SNCMSM operator. Subsequently, a multi-criteria decision-making (MCDM) model is constructed
based on the proposed aggregation operators. Finally, a hotel selection problem is presented to verify
the effectiveness and validity of our developed approach.

Keywords: simplified neutrosophic linguistic numbers; cloud model; Maclaurin symmetric mean;
multi-criteria decision-making

1. Introduction

Nowadays, multi-criteria decision-making (MCDM) problems are attracting more and more
attention. Lots of studies suggest that it is difficult to describe decision information completely because
the information is usually inconsistent and indeterminate in real-life problems. To address this issue,
Smarandache [1] put forward neutrosophic sets (NSs). Now, NSs have been applied to many fields
and extended to various forms. Wang et al. [2] presented the concept of single-valued neutrosophic
sets (SVNSs) and demonstrated its application, Ye [3] proposed several kinds of projection measures of
SVNSs, and Ji et al. [4] proposed Bonferroni mean aggregation operators of SVNSs. Wang et al. [5] used
interval numbers to extend SVNSs, and proposed the interval-valued neutrosophic set (IVNS). Ye [6]
introduced trapezoidal neutrosophic sets (TrNSs), and proposed a series of trapezoidal neutrosophic
aggregation operators. Liang et al. [7] introduced the preference relations into TrNSs. Peng et al. [8]
combined the probability distribution with NSs to propose the probability multi-valued neutrosophic
sets. Wu et al. [9] further extended this set to probability hesitant interval neutrosophic sets. All of the
aforementioned sets are the descriptive tools of quantitative information.

Zhang et al. [10] proposed a method of using NSs to describe online reviews posted by consumers.
For example, a consumer evaluates a hotel with the expressions: ‘the location is good’, ‘the service
is neither good nor bad’, and ‘the room is in a mess’. Obviously, there is active, neutral, and passive
information in this review. According to the NS theory, such review information can be characterized by
employing truth, neutrality, and falsity degrees. This information presentation method has been proved
to be feasible [11]. However, in practical online reviews, the consumer usually gives a comprehensive
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evaluation before posting the text reviews. NSs can describe the text reviews, but they cannot represent
the comprehensive evaluation. To deal with this issue, many scholars have studied the combination
of NSs and linguistic term sets [12,13]. The semantic of linguistic term set provides precedence on a
qualitative level, and such precedence is more sensitive for decision-makers than a common ranking
due to the expression of absolute benchmarks [14–16]. Based on the concepts of NSs and linguistic
term sets, Ye [17] proposed interval neutrosophic linguistic sets (INLSs) and interval neutrosophic
linguistic numbers (INLNs). Then, many interval neutrosophic linguistic MCDM approaches were
developed [18,19]. Subsequently, Tian et al. [20] introduced the concepts of simplified neutrosophic
linguistic sets (SNLSs) and simplified neutrosophic linguistic numbers (SNLNs). Wang et al. [21]
proposed a series of simplified neutrosophic linguistic Maclaurin symmetric mean aggregation
operators and developed a MCDM method. The existed studies on SNLNs simply used the linguistic
functions to deal with linguistic variables in SNLNs. This strategy is simple, but it cannot effectively
deal with qualitative information because it ignores the randomness of linguistic variables.

The cloud model is originally proposed by Li [22] in the light of probability theory and fuzzy set
theory. It characterizes the randomness and fuzziness of a qualitative concept rely on three numerical
characters and makes the conversion between qualitative concepts and quantitative values becomes
effective. Since the introduction of the cloud model, many scholars have conducted lots of studies
and applied it to various fields [23–25], such as hotel selection [26], data detection [27], and online
recommendation algorithms [28]. Currently, the cloud model is considered as the best way to handle
linguistic information and it is used to handle multiple qualitative decision-making problems [29–31],
such as linguistic intuitionistic problems [32] and Z-numbers problems [33]. Considering the
effectiveness of the cloud model in handling qualitative information, we utilize the cloud model
to deal with linguistic terms in SNLNs. In this way, we propose a new concept by combining SNLNs
and cloud model to solve real-life problems.

The aggregation operator is one of the most important tool of MCDM method [34–37].
Maclaurin symmetric mean (MSM) operator, defined by Maclaurin [38], possess the prominent
advantage of summarizing the interrelations among input variables lying between the maximum
value and minimum value. The MSM operator can not only take relationships among criteria into
account, but it can also improve the flexibility of aggregation operators in application by adding
parameters. Since the MSM operator was proposed, it has been expanded to various fuzzy sets [39–43].
For example, Liu and Zhang [44] proposed many MSM operators to deal with single-valued trapezoidal
neutrosophic information, Ju et al. [45] proposed a series of intuitionistic linguistic MSM aggregation
operators, and Yu et al. [46] proposed the hesitant fuzzy linguistic weighted MSM operator.

From the above analysis, the motivation of this paper is presented as follows:

1. The cloud model is a reliable tool for dealing with linguistic information, and it has been
successfully applied to handle multifarious linguistic problems, such as probabilistic linguistic
decision-making problems. The existing studies have already proved the effectiveness and
feasibility of using the cloud model to process linguistic information. In view of this, this paper
introduces the cloud model to process linguistic evaluation information involved in SNLNs.

2. As an efficient and applicable aggregation operator, MSM not only takes into account the
correlation among criteria, but also adjusts the scope of the operator through the transformation
of parameters. Therefore, this paper aims to accommodate the MSM operator to simplified
neutrosophic linguistic information environments.

The remainder of this paper is organized as follows. Some basic definitions are introduced
in Section 2. In Section 3, we propose a new concept of SNCs and the corresponding operations
and distance. In Section 4, we propose some simplified neutrosophic cloud aggregation operators.
In Section 5, we put forward a MCDM approach in line with the proposed operators. Then, in Section 6,
we provide a practical example concerning hotel selection to verify the validity of the developed
method. In Section 7, a conclusion is presented.
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2. Preliminaries

This section briefly reviews some basic concepts, including linguistic term sets, linguistic scale
function, NSs, SNSs, and cloud model, which will be employed in the subsequent analyses.

2.1. Linguistic Term Sets and Linguistic Scale Function

Definition 1 ([47]). Let H = {hτ |τ =1, 2, · · · , 2t + 1, t ∈ N∗} be a finite and totally ordered discrete term
set, where N∗ is a set of positive integers, and hτ is interpreted as the representation of a linguistic variable.
Then, the following properties should be satisfied:

(1) The linguistic term set is ordered: hτ < hυ if and only if τ < υ, where (hτ , hυ ∈ H);
(2) If a negation operator exists, then neg(hτ) = h(2t+1−τ) (τ, υ = 1, 2, · · · , 2t + 1).

Definition 2 ([48]). Let hτ ∈ H be a linguistic term. If θτ ∈ [0, 1] is a numerical value, then the linguistic
scale function f that conducts the mapping from hτ to θτ (τ = 1, 2, · · · , 2t + 1) can be defined as

f : sτ → θτ (τ = 1, 2, · · · , 2t + 1), (1)

where 0 ≤ θ1 < θ2 < · · · < θ2t+1 ≤ 1.

Based on the existed studies, three types of linguistic scale functions are described as

f1(hx) = θx =
x
2t

, (x = 1, 2, · · · , 2t + 1), θx ∈ [0, 1]; (2)

f2
(
hy
)
= θy =

{
αt−αt−y

2αt−2 , (y = 1, 2, · · · , t + 1),
αt+αy−t−2

2αt−2 , (y = t + 2, t + 3, · · · , 2t + 1);
(3)

f3(hz) = θz =

⎧⎨⎩ tβ−(t−z)β

2tβ , (z = 1, · · · , t + 1),
tγ+(z−t)γ

2tγ , (z = t + 2, · · · , 2t + 1).
(4)

2.2. SNSs and SNLSs

Definition 3 ([1]). Let X be a space of points (objects), and x be a generic element in X. A NS A in X
is characterized by a truth-membership function TA(x), a indeterminacy-membership function IA(x), and a
falsity-membership function FA(x). TA(x), IA(x), and FA(x) are real standard or nonstandard subsets ]0−, 1+[.
That is, TA(x) : x → ]0−, 1+[ , IA(x) : x → ]0−, 1+[ , and FA(x) : x → ]0−, 1+[ . There is no restriction on
the sum of TA(x), IA(x), and FA(x), so 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

In fact, NSs are very difficult for application without specification. Given this, Ye [34] introduced
SNSs by reducing the non-standard intervals of NSs into a kind of standard intervals.

Definition 4 ([17]). Let X be a space of points with a generic element x. Then, an SNS
B in X can be defined as B = {(x, TB(x), IB(x), FB(x))|x ∈ X }, where TB(x) : X → [0, 1] ,
IB(x) : X → [0, 1] , and FB(x) : X → [0, 1] . In addition, the sum of TB(x), IB(x), and FB(x) satisfies
0 ≤ TB(x) + IB(x) + FB(x) ≤ 3. For simplicity, B can be denoted as B = 〈TB(x), IB(x), FB(x)〉, which is a
subclass of NSs.

Definition 5 ([20]). Let X be a space of points with a generic element x, and
H = {hτ |τ =1, 2, · · · , 2t + 1, t ∈ N∗} be a linguistic term set. Then an SNLS C in X is defined as
C = { 〈x, hC(x), (TC(x), IC(x), FC(x))〉|x ∈ X}, where hC(x) ∈ H, TC(x) ∈ [0, 1], IC(x) ∈ [0, 1],
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FC(x) ∈ [0, 1] and 0 ≤ TC(x) + IC(x) + FC(x) ≤ 3 for any x ∈ X. In addition, TC(x), IC(x),
and FC(x) represent the degree of truth-membership, indeterminacy-membership, and falsity-membership
of the element x in X to the linguistic term hC(x), respectively. For simplicity, a SNLN is expressed as
〈hC(x), (TC(x), IC(x), FC(x))〉.

2.3. The Cloud Model

Definition 6 ([22]). Let U be a universe of discourse and T be a qualitative concept in U. x ∈ U is a random
instantiation of the concept T, and x satisfies x ∼ N

(
Ex, (En∗)2

)
, where En∗ ∼ N

(
En, He2), and the degree

of certainty that x belongs to the concept T is defined as

μ = e
− (x−Ex)2

2(En∗)2 ,

then the distribution of x in the universe U is called a normal cloud, and the cloud C is presented as
C = (Ex, En, He).

Definition 7 ([33]). Let M(Ex1, En1, He1) and N(Ex2, En2, He2) be two clouds, then the operations between
them are defined as

(1) M + N =
(

Ex1 + Ex2,
√

En1
2 + En22,

√
He1

2 + He22
)

;

(2) M− N =
(

Ex1 − Ex2,
√

En1
2 + En22,

√
He1

2 + He22
)

;

(3) M× N =

(
Ex1Ex2,

√
(En1Ex2)

2 + (En2Ex1)
2,
√
(He1Ex2)

2 + (He2Ex1)
2
)

;

(4) λM =
(

λEx1,
√

λEn1,
√

λHe1

)
; and

(5) Mλ =
(

Ex1
λ,
√

λEx1
λ−1En1,

√
λEx1

λ−1He1

)
.

2.4. Transformation Approach of Clouds

Definition 8 ([33]). Let Hi be a linguistic term in H = {Hi|i = 1, 2, ..., 2t + 1}, and f be a linguistic scale
function. Then, the procedures for converting linguistic variables to clouds are presented below.

(1) Calculate θi: Map Hi to θi employing Equation (2) or (3) or (4).
(2) Calculate Exi: Exi = Xmin + θi(Xmax − Xmin).
(3) Calculate Eni: Let (x, y) be a cloud droplet. Since x ∼ N

(
Exi, En′2i

)
, we have

3En′i = max{Xmax − Exi, Exi − Xmin} in the light of 3σ principle of the normal distribution curve.

Then, En′i =
{

(1−θi)(Xmax−Xmin)
3 1 ≤ i ≤ t + 1

θi(Xmax−Xmin)
3 t + 2 ≤ i ≤ 2t + 1

. Thus Eni =
En′i−1+En′i+En′i+1

3 , (1 < i < 2t + 1),

Eni =
En′i+En′i+1

2 , (i = 1) and Eni =
En′i−1+En′i

2 , (i = 2t + 1) can be obtained.

(4) Calculate Hei: Hei =
(En′+−Eni)

3 , where En′+ = max
{

En′i
}

.

3. Simplified Neutrosophic Clouds and the Related Concepts

Based on SNLNs and the cloud transformation method, a novel concept of SNCs is proposed.
Motivated by the existing studies, we provide the operations and comparison method for SNCs and
investigate the distance measurement of SNCs.
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3.1. SNCs and Their Operational Rules

Definition 9. Let X be a space of points with a generic element x, H = {hτ |τ =1, 2, · · · , 2t + 1, t ∈ N∗} be
a linguistic term set, and 〈hC(x), (TC(x), IC(x), FC(x))〉 be a SNLN. In accordance with the cloud conversion
method described in Section 2.4, the linguistic term hC(x) ∈ H can be converted into the cloud 〈Ex, En, He〉.
Then, a simplified neutrosophic cloud (SNC) is defined as

Y = (〈Ex, En, He〉, 〈T, I, F〉)

Definition 10. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉 and b = 〈(Ex2, En2, He2), (T2, I2, F2)〉 be two SNCs,
then the operations of SNC are defined as

(1)
a⊕ b =

(〈
Ex1 + Ex2,

√
En1

2 + En22,
√

He1
2 + He22

〉
,
〈

T1(Ex1+En1
2+He1

2)+T2(Ex2+En2
2+He2

2)
Ex1+Ex2+En1

2+He1
2+En2

2+He2
2 ,

I1(Ex1+En1
2+He1

2)+I2(Ex2+En2
2+He2

2)
Ex1+Ex2+En1

2+He1
2+En2

2+He2
2 ,

F1(Ex1+En1
2+He1

2)+F2(Ex2+En2
2+He2

2)
Ex1+Ex2+En1

2+He1
2+En2

2+He2
2

〉)
;

(2) a⊗ b = (〈Ex1Ex2, En1En2, He1He2〉, 〈〈T1T2, I1 + I2 − I1 I2, F1 + F2 − F1F2〉);
(3) λa =

(〈
λEx1,

√
λEn1,

√
λHe1

〉
, 〈T1, I1, F1〉

)
; and

(4) aλ =
(〈

Ex1
λ, En1

λ, He1
λ
〉
,
〈

T1
λ, 1− (1− I1)

λ, 1− (1− F1)
λ
〉)

.

Theorem 1. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉, b = 〈(Ex2, En2, He2), (T2, I2, F2)〉 and
c = 〈(Ex3, En3, He3), (T3, I3, F3)〉 be three SNCs. Then, the following properties should be satisfied

(1) a + b = b + a;
(2) (a + b) + c = a + (b + c);
(3) λa + λb = λ(a + b);
(4) λ1a + λ2a = (λ1 + λ2)a;
(5) a× b = b× a;
(6) (a× b)× c = a× (b× c);
(7) aλ1 × aλ2 = aλ1+λ2 ;

(8) (a× b)λ = aλ × bλ.

3.2. Distance for SNCs

Definition 11. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉 and b = 〈(Ex2, En2, He2), (T2, I2, F2)〉 be two SNCs,
then the generalized distance between a and b is defined as

d(a, b) = |(1− β1)Ex1 − (1− β2)Ex2|+
(

1
3

(
|(1− β1)Ex1T1 − (1− β2)Ex2T2|λ +

|(1− β1)Ex1(1− I1)− (1− β2)Ex2(1− I2)|λ + |(1− β1)Ex1(1− F1)− (1− β2)Ex2(1− F2)|λ
)) 1

λ ,
(5)

where β1 =

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2
and β2 =

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2
. When λ = 1 and 2, the generalized

distance above becomes the Hamming distance and the Euclidean distance, respectively.

Theorem 2. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉, b = 〈(Ex2, En2, He2), (T2, I2, F2)〉, and
c = 〈(Ex3, En3, He3), (T3, I3, F3)〉 be three SNCs. Then, the distance given in Definition 11 satisfies the
following properties:

(1) d(a, b) ≥ 0;
(2) d(a, b) = d(b, a); and
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(3) If Ex1 ≤ Ex2 ≤ Ex3, En1 ≥ En2 ≥ En3, He1 ≥ He2 ≥ He3, T1 ≤ T2 ≤ T3, I1 ≥ I2 ≥ I3, and
F1 ≥ F2 ≥ F3, then d(a, b) ≤ d(a, c), and d(b, c) ≤ d(a, c).

Proof. It is easy to prove that (1) and (2) in Theorem 2 are true. The proof of (3) in Theorem 2 is
depicted in the following.

Let β(a,b)1 =

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2
, β(a,b)2 =

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2
,

β(a,c)1 =

√
En1

2+He1
2√

En1
2+He1

2+
√

En3
2+He3

2
, and β(a,c)2 =

√
En3

2+He3
2√

En1
2+He1

2+
√

En3
2+He3

2
, then there are

d(a, c) =
∣∣∣(1− β(a,c)1

)
Ex1 −

(
1− β(a,c)2

)
Ex3

∣∣∣
+
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

,

d(a, b) =
∣∣∣(1− β(a,b)1

)
Ex1 −

(
1− β(a,b)2

)
Ex2

∣∣∣
+
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ +
∣∣∣(1− β(a,b)1

)
+Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

.

Thus, we have

d(a, c)− d(a, b) =
(

1− β(a,b)1

)
Ex1 −

(
1− β(a,c)1

)
Ex1

+
(

1− β(a,c)2

)
Ex3 −

(
1− β(a,b)2

)
Ex2

+
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

−
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

.

Let

p =
(

1− β(a,b)1

)
Ex1 −

(
1− β(a,c)1

)
Ex1 +

(
1− β(a,c)2

)
Ex3 −

(
1− β(a,b)2

)
Ex2

=

(
1−

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2

)
Ex1 −

(
1−

√
En1

2+He1
2√

En1
2+He1

2+
√

En3
2+He3

2

)
Ex1

+

(
1−

√
En3

2+He3
2√

En1
2+He1

2+
√

En3
2+He3

2

)
Ex3 −

(
1−

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2

)
Ex2.
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q =
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

−
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

,

then d(a, c)− d(a, b) = p + q.
Simplifying the above equations, the following results can be obtained.

p =

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2
Ex1 −

√
En3

2+He3
2√

En1
2+He1

2+
√

En3
2+He3

2
Ex1

+

√
En1

2+He1
2√

En1
2+He1

2+
√

En3
2+He3

2
Ex3 −

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2
Ex2.

Since Ex1 ≤ Ex2 ≤ Ex3, En1 ≥ En2 ≥ En3, and He1 ≥ He2 ≥ He3, we have√
En22 + He22√

En1
2 + He1

2 +
√

En22 + He22
Ex1 −

√
En32 + He32√

En1
2 + He1

2 +
√

En32 + He32
Ex1 ≥ 0,

√
En1

2 + He1
2√

En1
2 + He1

2 +
√

En32 + He32
Ex3 −

√
En1

2 + He1
2√

En1
2 + He1

2 +
√

En22 + He22
Ex2 ≥ 0.

Thus, p ≥ 0 is determined.
According to p =

∣∣∣(1− β(a,c)1

)
Ex1−

(
1− β(a,c)2

)
Ex3

∣∣∣− ∣∣∣(1− β(a,b)1

)
Ex1−

(
1− β(a,b)2

)
Ex2

∣∣∣ ≥ 0,
the following inequalities can be deduced.∣∣∣(1− β(a,c)1

)
Ex1 −

(
1− β(a,c)2

)
Ex3

∣∣∣ ≥ ∣∣∣(1− β(a,b)1

)
Ex1 −

(
1− β(a,b)2

)
Ex2

∣∣∣,
∣∣∣(1− β(a,c)1

)
Ex1 −

(
1− β(a,c)2

)
Ex3

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1 −

(
1− β(a,b)2

)
Ex2

∣∣∣λ.

Since T1 ≤ T2 ≤ T3, the following inequality is true.∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ.

In a similar manner, we can also obtain∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ,

∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ.
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Thus, there is

q =
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

−
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

≥ 0.

Thus, d(a, c)− d(a, b) ≥ 0 ⇒ d(a, c) ≥ d(a, b) . The inequality d(a, c) ≥ d(b, c) can be proved
similarly. Hence, the proof of Theorem 2 is completed. �

Example 1. Let a = 〈(0.5, 0.2, 0.1), (0.7, 0.3, 0.5)〉, and b = 〈(0.6, 0.1, 0.1), (0.8, 0.2, 0.4)〉 be two SNCs.
Then, according to Definition 11, the Hamming distance dHamming(a, b) and Euclidean distance dEuclidean(a, b)
are calculated as

dHamming(a, b) = 0.4304, and dEuclidean(a, b) = 0.3224.

4. SNCs Aggregation Operators

Maclaurin [38] introduced the MSM aggregation operator firstly. In this section, the MSM operator
is expanded to process SNC information, and the SNCMSM operator and the weighted SNCMSM
operator are then proposed.

Definition 12 ([38]). Let xi (i = 1, 2, · · · , n) be the set of nonnegative real numbers. A MSM aggregation
operator of dimension n is mapping MSM(m) : (R+)

n → R+ , and it can be defined as

MSM(m)(x1, x2, · · · , xn) =

⎛⎜⎜⎜⎝
∑

1≤i1<···<im≤n

m
∏
j=1

xij

Cm
n

⎞⎟⎟⎟⎠
1
m

, (6)

where (i1, i2, · · · , im) traverses all the m-tuple combination of (i = 1, 2, · · · , n), Cm
n = n!

m!(n−m)! is the binomial
coefficient. In the subsequent analysis, assume that i1 < i2 <, ...,< im. In addition, xij refers to the ij th element
in a particular arrangement.

It is clear that MSM(m) has the following properties:

(1) Idempotency. If x ≥ 0 and xi = x for all i, then MSM(m)(x, x, ..., x) = x.

(2) Monotonicity. If xi ≤ yi, for all i, MSM(m)(x1, x2, ..., xn) ≤ MSM(m)(y1, y2, ..., yn), where xi and yi
are nonnegative real numbers.

(3) Boundedness. MIN{x1, x2, ..., xn} ≤ MSM(m)(x1, x2, ..., xn) ≤ MAX{x1, x2, ..., xn}.

4.1. SNCMSM Operator

In this subsection, the traditional MSM(m) operator is extended to accommodate the situations
where the input variables are made up of SNCs. Then, the SNCMSM operator is developed.
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Definition 13. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs.
Then, the SNCMSM operator can be defined as

SNCMSM(m)(a1, a2, · · · , an) =

⎛⎜⎜⎜⎜⎝
⊕

1≤i1<···<im≤n

(
m⊗

j=1
aij

)
Cm

n

⎞⎟⎟⎟⎟⎠
1
m

, (7)

where m = 1, 2, ..., n and (i1, i2, · · · , im) traverses all the m-tuple combination of (i = 1, 2, · · · , n),
Cm

n = n!
m!(n−m)! is the binomial coefficient.

In light of the operations of SNCs depicted in Definition 10, Theorem 3 can be acquired.

Theorem 3. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs, the aggregated value
acquired by the SNCMSM operator is also a SNC and can be expressed as

SNCMSM(m)(a1, a2, · · · , an)

=

⎛⎜⎜⎜⎜⎜⎝
〈⎛⎜⎜⎝

Cm
n

∑
k=1

m
∏
j=1

Ex
i(k)j

Cm
n

⎞⎟⎟⎠
1
m

,

⎛⎜⎜⎜⎝
√√√√Cm

n
∑

k=1

(
m
∏
j=1

En
i(k)j

)2

√
Cm

n

⎞⎟⎟⎟⎠
1
m

,

⎛⎜⎜⎜⎝
√√√√Cm

n
∑

k=1

(
m
∏
j=1

He
i(k)j

)2

√
Cm

n

⎞⎟⎟⎟⎠
1
m〉

,

〈⎛⎜⎜⎜⎝
Cm

n
∑

k=1

⎛⎝ m
∏
j=1

T
ikj

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m

,

1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−I

ikj

))⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m

,

1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−F

ikj

))⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m〉⎞⎟⎟⎟⎟⎠.

(8)

Proof.

a
i(k)j

=

(〈
Ex

i(k)j
, En

i(k)j
, He

i(k)j

〉
,
〈

T
i(k)j

, I
i(k)j

, F
i(k)j

〉)
, ((j = 1, 2, ..., m) .

⇒ m⊗
j=1

a
i(k)j

=

(〈
m
∏
j=1

Ex
i(k)j

,
m
∏
j=1

En
i(k)j

,
m
∏
j=1

He
i(k)j

〉
,〈

m
∏
j=1

T
i(k)j

, 1− m
∏
j=1

(
1− I

i(k)j

)
, 1− m

∏
j=1

(
1− F

i(k)j

)〉)

⇒ ⊕
1≤t1<···<tm≤n

(
m⊗

j=1
aij

)
=

⎛⎝〈 Cm
n

∑
k=1

m
∏
j=1

Ex
i(k)j

,

√√√√ Cm
n

∑
k=1

(
m
∏
j=1

En
i(k)j

)2

,

√√√√ Cm
n

∑
k=1

(
m
∏
j=1

He
i(k)j

)2〉
,

〈 Cm
n

∑
k=1

⎛⎝ m
∏
j=1

T
ikj

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠ ,
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Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−I

ikj

))⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j
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⎞⎠⎞⎠
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k=1

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠ ,

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−F

ikj

))⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j
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⎞⎠⎞⎠

Cm
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k=1

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠

〉⎞⎟⎟⎟⎠

⇒

⎛⎜⎜⎝ ⊕
1≤i1<···<im≤n

(
m⊗

j=1

(
aij

))
Cm

n

⎞⎟⎟⎠
1
m

=

⎛⎜⎜⎜⎜⎜⎝
〈⎛⎜⎜⎝

Cm
n

∑
k=1

m
∏
j=1

Ex
i(k)j

Cm
n

⎞⎟⎟⎠
1
m

,

⎛⎜⎜⎜⎝
√√√√Cm

n
∑

k=1

(
m
∏
j=1

En
i(k)j

)2

√
Cm

n

⎞⎟⎟⎟⎠
1
m

,

⎛⎜⎜⎜⎝
√√√√Cm

n
∑

k=1

(
m
∏
j=1

He
i(k)j

)2

√
Cm

n

⎞⎟⎟⎟⎠
1
m〉

,

〈⎛⎜⎜⎜⎝
Cm

n
∑

k=1

⎛⎝ m
∏
j=1

T
ikj

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠⎞⎠

Cm
n
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⎛⎝ m
∏
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i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m

,

1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−I

ikj

))⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠⎞⎠

Cm
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∏
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+

(
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∏
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En
i(k)j
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+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m

,

1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−F

ikj

))⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
m
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j=1

En
i(k)j

)2

+

(
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∏
j=1

He
i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

Ex
i(k)j

+

(
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∏
j=1

En
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+

(
m
∏
j=1

He
i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m〉⎞⎟⎟⎟⎟⎠.

The proof of Theorem 3 is completed. �

Theorem 4. (Idempotency) If ai = a = (〈Exa, Ena, Hea〉, 〈Ta, Ia, Fa〉) for all i = 1, 2, ..., n, then
SNCMSM(m)(a, a, · · · , a) = a = (〈Exa, Ena, Hea〉, 〈Ta, Ia, Fa〉).

Proof. Since ai = a, there are

SNCMSM(m)(a, a, · · · , a)

=

⎛⎜⎜⎜⎜⎜⎝
〈⎛⎜⎜⎝

Cm
n

∑
k=1

m
∏
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Cm
n
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1
m
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⎛⎜⎜⎜⎝
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(
m
∏
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√
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⎞⎟⎟⎟⎠
1
m

,

⎛⎜⎜⎜⎝
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n
∑
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(
m
∏
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√
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1
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,
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⎞⎠⎞⎠
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1
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1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−I

ikj

))⎛⎝ m
∏
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(
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∏
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)2
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(
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,

1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
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⎛⎝(1− m
∏
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(
1−I

ikj
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∏
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(
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∏
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Ena

)2

+

(
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Hea

)2
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⎞⎠

⎞⎟⎟⎟⎠
1
m〉⎞⎟⎟⎟⎟⎠

= (〈Exa, Ena, Hea〉, 〈Ta, Ia, Fa〉) = a.

�

Theorem 5. (Commutativity). Let (a′1, a′2, · · · , a′n) be any permutation of (a1, a2, · · · , an). Then,
SNCMSM(m)(a′1, a′2, · · · , a′n) = SNCMSM(m)(a1, a2, · · · , an).

Theorem 5 can be proved easily in accordance with Definition 13 and Theorem 3.
Three special cases of the SNCMSM operator are discussed below by selecting different values for

the parameter m.

(1) If m = 1, then the SNCMSM operator becomes the simplest arithmetic average aggregation
operator as follows:

SNCMSM(1)(a1, a2, · · · , an) =
⊕n

i=1ai
n

=

(〈
n
∑

i=1
Exi,

√
n
∑
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Eni

2,

√
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∑

i=1
Hei

2

〉
,
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∑
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∑
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∑
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〉⎞⎠.

(9)

(2) If m = 2, then the SNCMSM operator is degenerated to the following form:

SNCMSM(2)(a1, a2, · · · , an) =
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(10)

(3) If m = n, then the SNCMSM operator becomes the geometric average aggregation operator as
follows:

SNCMSM(n)(a1, a2, · · · , an) =
(⊗n

i=1ai
) 1
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=
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∏
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(
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∏
i=1

Eni

) 1
n

,
(
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∏
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Hei

) 1
n
〉

,〈(
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∏
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) 1
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,
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∏
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(1− Ii)

) 1
n

,
(

1− n
∏
i=1

(1− Fi)

) 1
n
〉)

.

(11)

4.2. Weighted SNCMSM Operator

In this subsection, a weighted SNCMSM operator is investigated. Moreover, some desirable
properties of this operator are analyzed.

Definition 14. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs, and w =

(w1, w2, ...wn)
T be the weight vector, with wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then, the weighted simplified
neutrosophic clouds Maclaurin symmetric mean (WSNCMSM) operator is defined as

WSNCMSMw
(m)(a1, a2, · · · , an) =

⎛⎜⎜⎜⎜⎝
⊕

1≤i1<···<im≤n

(
m⊗

j=1

(
nwij · aij

))
Cm

n

⎞⎟⎟⎟⎟⎠
1
m

, (12)

where m = 1, 2, ..., n and (i1, i2, · · · , im) traverses all the m-tuple combination of (i = 1, 2, · · · , n),
Cm

n = n!
m!(n−m)! is the binomial coefficient.

The specific expression of the WSNCMSM operator can be obtained in accordance with the
operations provided in Definition 10.

Theorem 6. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs, and m = 1, 2, ..., n.
Then, the aggregated value acquired by the WSNCMSM operator can be expressed as

WSNCMSMw
(m)(a1, a2, · · · , an)

=

⎛⎜⎜⎜⎜⎜⎝
〈⎛⎜⎜⎝
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n

∑
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∏
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,
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,
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〈⎛⎜⎜⎜⎝
Cm

n
∑

k=1

⎛⎝ m
∏
j=1

T
ikj

⎛⎝ m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m

,

1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−I

ikj

))⎛⎝ m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m

,

1−

⎛⎜⎜⎜⎝1−

Cm
n

∑
k=1

⎛⎝(1− m
∏
j=1

(
1−F

ikj

))⎛⎝ m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2
⎞⎠⎞⎠

Cm
n

∑
k=1

⎛⎝ m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2
⎞⎠

⎞⎟⎟⎟⎠
1
m〉⎞⎟⎟⎟⎟⎠.

(13)

Theorem 6 can be proved similarly according to the proof procedures of Theorem 3.

Theorem 7. (Reducibility) Let w =
(

1
n , 1

n , ..., 1
n

)T
, then, WSNCMSMw

(m)(a1, a2, . . . , an) =

SNCMSM(m)(a1, a2, . . . , an).

Proof. When w =
(

1
n , 1

n , ..., 1
n

)T
,

WSNCMSMw
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=
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= SNCMSM(m)(a1, a2, · · · , an).

The proof of Theorem 7 is completed. �

Definition 15. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉 (i = 1, 2, ..., n) be a collection of SNCs, and

w = (w1, w2, ..., wn)
T be the weight vector, which satisfies

n
∑

i=1
wi = 1, and wi > 0 (i = 1, 2, ..., n). Then the
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generalized weighted simplified neutrosophic clouds Maclaurin symmetric mean (GWSNCMSM) operator is
defined as

GWSNCMSM(m,p1,p2,...,pm)(a1, ..., an) =

⎛⎜⎝⊕1≤i1<···<im≤n

(
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j=1

(
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)pj
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, (14)

where m = 1, 2, ..., n.

The specific expression of the GWSNCMSM operator can be obtained in accordance with the
operations provided in Definition 10.

Theorem 8. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉 (i = 1, 2, ..., n) be a collection of SNCs, and m = 1, 2, ..., n.
Then, the aggregated value acquired by the GWSNCMSM operator can be expressed as
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(15)

Theorem 8 can be proved similarly according to the proof procedures of Theorem 3.

5. MCDM Approach under Simplified Neutrosophic Linguistic Circumstance

In this section, a MCDM approach is developed on the basis of the proposed simplified
neutrosophic cloud aggregation operators to solve real-world problems. Consider a MCDM problem
with simplified neutrosophic linguistic evaluation information, which can be converted to SNCs.
Then, let A = {a1, a2, ..., am} be a discrete set of alternatives, and C = {c1, c2, ..., cn} be the set of

criteria. Suppose that the weight of the criteria is w = (w1, w2, ..., ws)
T , where wk ≥ 0, and

s
∑

k=1
wk = 1.

The original evaluation of alternative ai under criterion cj is expressed as SNLNs γij =
〈
sij,
(
Tij, Iij, Fij

)〉
(i = 1, 2, . . . , m; j = 1, 2, . . . , n). The primary procedures of the developed method are presented in
the following.
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Step 1: Normalize the evaluation information.

Usually, two kinds of criteria—benefit criteria and cost criteria—exist in MCDM problems.
Then, in accordance with the transformation principle of SNLNs [42], the normalization of original
evaluation information can be shown as

γ̃ij =

{ 〈
sij,
(
Tij, Iij, Fij

)〉
, for benifit criterion,〈

h(2t+1−sub(sij))
,
(
Tij, Iij, Fij

)〉
, for cos t criterion.

(16)

Step 2: Convert SNLNs to SNCs.

Based on the transformation method described in Section 2.4 and Definition 9,
we can convert SNLNs to SNCs. The SNC evaluation information can be obtained as
aij =

〈(
Exij, Enij, Heij

)
,
(
Tij, Iij, Fij

)〉
(i = 1, 2, . . . , m; j = 1, 2, . . . , n).

Step 3: Acquire the comprehensive evaluation for each alternative.

The WSNCMSM operator or the GWSNCMSM operator can be employed to integrate the
evaluation of aij(j = 1, 2, ..., n) under all criteria and acquire the comprehensive evaluation
ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉 for the alternative ai.

Step 4: Compute the distance between the comprehensive evaluation of ai and the PIS/NIS.

First, in accordance with the obtained overall evaluation values, the positive ideal solution (PIS)
a+ and negative ideal solution (NIS) a− are determined as

a+ = 〈(maxi(Exi), mini(Eni), mini(Hei)), (maxi(Ti), mini(Ii), mini(Fi))〉,

a− = 〈(mini(Exi), maxi(Eni), maxi(Hei)), (mini(Ti), maxi(Ii), maxi(Fi))〉.
Second, in accordance with the proposed distance of SNCs, the distance d(ai, a+) between ai and

a+, and the distance d(ai, a−) between ai and a− can be calculated.

Step 5: Compute the relative closeness of each alternative.

In the following, the relative closeness of each alternative can be calculated as

Ii =
d(ai, a+)

d(ai, a+) + d(ai, a−)
(17)

where d(ai, a+) and d(ai, a−) are obtained in Step 4.

Step 6: Rank all the alternatives.

In accordance with the relative closeness Ii of each alternative, we can rank all the alternatives.
The smaller the value of Ii, the better the alternative ai is.

6. Illustrative Example

This section provides a real-world problem of hotel selection (adapted from Wang et al. [49]) to
demonstrate the validity and feasibility of the developed approach.

6.1. Problem Description

Nowadays, consumers often book hotels online when traveling or on business trip. After they
leave the hotel, they may evaluate the hotel and post the online reviews on the website. In this
case, the online reviews are regard as the most important reference for the hotel selection decision of
potential consumers. In order to enhance the accuracy of hotel recommendation in line with lots of
online reviews, this study devotes to applying the proposed method to address hotel recommendation
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problems effectively. In practical hotel recommendation problems, many hotels (e.g., 10 hotels) need
to be recommended for consumers. In order to save space, we select five hotels from a tourism
website for recommendation here. The developed approach can be similarly applied to address hotel
recommendation problems with many hotels. The five hotels are represented as a1, a2, a3, a4 and a5.
The employed linguistic term set is described as follows:

S = {s1, s2, s3, s4, s5, s6, s7} = {extremely poor, very poor, poor, fair good, very good, extremely good}

In this paper, we focus on the four hotel evaluation criteria including, c1, location (such as near
the downtown and is the traffic convenient or not); c2, service (such as friendly staff and the breakfast);
c3, sleep quality (such as the soundproof effect of the room); and c4, comfort degree (such as the softness
of the bed and the shower). Wang et al. [49] introduced a text conversion technique to transform online
reviews to neutrosophic linguistic information. Motivated by this idea, the online reviews of five
hotels under four criteria can be described as SNLNs, as shown in Table 1. For simplicity, the weight
information of the four criteria is assumed to be w = (0.25, 0.22, 0.35, 0.18)T.

Table 1. Evaluation values in SNLNs.

ai c1 c2 c3 c4

a1 〈s4, (0.6, 0.6, 0.1)〉 〈s5, (0.6, 0.4, 0.3)〉 〈s4, (0.8, 0.5, 0.1)〉 〈s2, (0.8, 0.3, 0.1)〉
a2 〈s2, (0.7, 0.5, 0.1)〉 〈s4, (0.6, 0.4, 0.2)〉 〈s3, (0.6, 0.2, 0.4)〉 〈s4, (0.7, 0.4, 0.3)〉
a3 〈s3, (0.5, 0.1, 0.2)〉 〈s4, (0.6, 0.5, 0.3)〉 〈s6, (0.7, 0.6, 0.1)〉 〈s2, (0.5, 0.5, 0.2)〉
a4 〈s2, (0.4, 0.5, 0.3)〉 〈s3, (0.5, 0.3, 0.4)〉 〈s4, (0.6, 0.8, 0.2)〉 〈s5, (0.9, 0.3, 0.1)〉
a5 〈s5, (0.6, 0.4, 0.4)〉 〈s5, (0.8, 0.3, 0.1)〉 〈s3, (0.7, 0.5, 0.1)〉 〈s4, (0.6, 0.5, 0.2)〉

6.2. Illustration of the Developed Methods

According to the steps of the developed method presented in Section 5, the optimal alternative
from the five hotels can be determined.

6.2.1. Case 1—Approach based on the WSNCMSM Operator.

Let linguistic scale function be f 1(hx), and m = 2 in Equation (13) in the subsequent calculation.
Then, the hotel selection problem can be addressed according to the following procedures.

Step 1: Normalize the evaluation information.

Obviously, the four criteria are the benefit type in the hotel selection problem above.
Thus, the evaluation information does not need to be normalized.

Step 2: Convert SNLNs to SNCs.

Utilize the transformation method presented in Section 2.4, we transform the linguistic term si in
SNLNs to the cloud model (Exi, Eni, Hei). The obtained results are shown as follows:

s1 → (Ex1, En1, He1) = (0.833, 1.25, 0.231),
s2 → (Ex2, En2, He2) = (1.667, 1.11, 0.278) ,
s3 → (Ex3, En3, He3) = (2.5, 0.833, 0.37) ,

s4 → (Ex4, En4, He4) = (3.33, 0.556, 0.463) ,
s5 → (Ex5, En5, He5) = (4.167, 0.278, 0.556) ,

s6 → (Ex6, En6, He6) = (5, 0.741, 0.401) ,
s7 → (Ex7, En7, He7) = (5.833, 0.972, 0.324) .

Then, according to Definition 9, SNLNs can be converted to SNCs, as presented in Table 2.
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Table 2. Evaluation information in SNCs.

ai c1 c2 c3 c4

a1 〈(3.33, 0.556, 0.463), (0.6, 0.6, 0.1)〉 〈(4.167, 0.278, 0.556), (0.6, 0.4, 0.3)〉 〈(3.33, 0.556, 0.463), (0.8, 0.5, 0.1)〉 〈(1.667, 1.11, 0.278), (0.8, 0.3, 0.1)〉
a2 〈(1.667, 1.11, 0.278), (0.7, 0.5, 0.1)〉 〈(3.33, 0.556, 0.463), (0.6, 0.4, 0.2)〉 〈(2.5, 0.833, 0.37), (0.6, 0.2, 0.4)〉 〈(3.33, 0.556, 0.463), (0.7, 0.4, 0.3)〉
a3 〈(2.5, 0.833, 0.37), (0.5, 0.1, 0.2)〉 〈(3.33, 0.556, 0.463), (0.6, 0.5, 0.3)〉 〈(5, 0.741, 0.401), (0.7, 0.6, 0.1)〉 〈(1.667, 1.11, 0.278), (0.5, 0.5, 0.2)〉
a4 〈(1.667, 1.11, 0.278), (0.4, 0.5, 0.3)〉 〈(2.5, 0.833, 0.37), (0.5, 0.3, 0.4)〉 〈(3.33, 0.556, 0.463), (0.6, 0.8, 0.2)〉 〈(4.167, 0.278, 0.556), (0.9, 0.3, 0.1)〉
a5 〈(4.167, 0.278, 0.556), (0.6, 0.4, 0.4)〉 〈(4.167, 0.278, 0.556), (0.8, 0.3, 0.1)〉 〈(2.5, 0.833, 0.37), (0.7, 0.5, 0.1)〉 〈(3.33, 0.556, 0.463), (0.6, 0.5, 0.2)〉

Step 3: Acquire the comprehensive evaluation for each alternative.

The WSNCMSM operator is employed to integrate the evaluations of alternative ai under all the
criteria. Then, the overall evaluation a∗i for each alternative are obtained as

a∗1 = 〈(3.1311, 0.6228, 0.4509), (0.6866, 0.4765, 0.1589)〉,
a∗2 = 〈(2.5946, 0.7909, 0.3881), (0.642, 0.3621, 0.2638)〉,
a∗3 = 〈(3.1691, 0.801, 0.3835), (0.5986, 0.4584, 0.1895)〉,
a∗4 = 〈(2.6569, 0.727, 0.4159), (0.6231, 0.5308, 0.2358)〉,

a∗5 = 〈(3.4126, 0.5065, 0.4786), (0.6766, 0.4208, 0.2091)〉.

Step 4: Compute the distance between the comprehensive evaluation of ai and the PIS/NIS.

First, the PIS a+ and the NIS a− are determined as a+ = 〈(3.4126, 0.5065, 0.3835),
(0.6866, 0.3621, 0.1586)〉, and a− = 〈(2.5946, 0.801, 0.4786), (0.5986, 0.5308, 0.2638)〉, respectively.
Then, based on Equation (5), the distance d

(
a∗i , a+

)
, and the distance d

(
a∗i , a−

)
are computed as

d
(
a∗1, a+

)
= 0.8324, d(a∗2, a+) = 1.5966, d(a∗3, a+) = 1.2447, d

(
a∗4, a+

)
= 1.4864, and

d(a∗5, a+) = 0.3361; d
(
a∗1, a−

)
= 1.0135, d(a∗2, a−) = 0.2137, d(a∗3, a−) = 0.6535,

d
(
a∗4, a−

)
= 0.3012, and d(a∗5, a−) = 1.5101.

Step 5: Calculate the relative closeness of each alternative.

By using Equation (17), the relative closeness of each alternative is computed as

I1 = 0.4509, I2 = 0.882, I3 = 0.6557, I4 = 0.8315, and I5 = 0.1821.

Step 6: Rank all the alternatives.

On the basis of the comparison rule, the smaller the value of Ii, the better the alternative ai is.
We can rank the alternatives as a5 � a1 � a3 � a4 � a2. The best one is a5.

When m = 3 is used in Equation (13), the overall assessment value for each alternative ai are
derived as follows:

a∗1 = 〈(5.2615, 0.454, 0.2915), (0.5675, 0.6174, 0.229)〉,
a∗2 = 〈(4.1045, 0.6629, 0.2384), (0.5177, 0.503, 0.3688)〉,

a∗3 = 〈(5.1405, 0.6986, 0.2307), (0.4449, 0.5936, 0.2832)〉,
a∗4 = 〈(4.0855, 0.5792, 0.2593), (0.468, 0.6791, 0.3475)〉,
a∗5 = 〈(6.2421, 0.3334, 0.328), (0.5531, 0.5645, 0.2977)〉.

And the positive ideal point is determined as a+ = 〈(6.2421, 0.3334, 0.2307),
(0.5675, 0.503, 0.229)〉, the negative ideal point is determined as a− = 〈(4.0855, 0.6986, 0.328),
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(0.4449, 0.6791, 0.3688)〉. Then, the results of the distance between a∗i and a+, and the distance between
a∗i and a− are obtained as

d
(
a∗1, a+

)
= 2.1919, d(a∗2, a+) = 4.064, d(a∗3, a+) = 3.7056, d

(
a∗4, a+

)
= 3.7812, and

d(a∗5, a+) = 0.8571; d
(
a∗1, a−

)
= 2.4095, d(a∗2, a−) = 0.4656, d(a∗3, a−) = 1.085,

d
(
a∗4, a−

)
= 0.6172, and d(a∗5, a−) = 3.8179.

Therefore, the relative closeness of each alternative is calculated as

I1 = 0.4764, I2 = 0.8972, I3 = 0.7735, I4 = 0.8597, and I5 = 0.1833

According to the results of Ii, we can rank the alternatives as a5 � a1 � a3 � a4 � a2.
The best one is a5, which is the same as the obtained result in the situation m = 2.

6.2.2. Case 2—Approach Based on the GWSNCMSM Operator

Let the linguistic scale function be f1(hx), and m = 2, p1 = 1, p2 = 2 in Equation (15) in
the subsequent calculation. Then, the hotel selection problem can be addressed according to the
following procedures.

Step 1: Normalize the evaluation information.

Obviously, the four criteria are the benefit type in the hotel selection problem above. Thus, the
evaluation information does not need to normalize.

Step 2: Convert SNLNs to SNCs.

The obtained SNCs are the same as those in Case 1.

Step 3: Acquire the comprehensive evaluation for each alternative.

The GWSNCMSM operator is employed to integrate the evaluations of alternative ai under all
the criteria. Then, the overall evaluation a∗i for each alternative are obtained as

a∗1 = 〈(3.2899, 0.7006, 0.4668), (0.7068, 0.4812, 0.1544)〉,
a∗2 = 〈(2.693, 0.805, 0.3968), (0.6395, 0.3374, 0.29)〉,

a∗3 = 〈(3.7063, 0.8318, 0.3958), (0.6366, 0.5081, 0.1637)〉,
a∗4 = 〈(2.9311, 0.7165, 0.4401), (0.6654, 0.5197, 0.2125)〉,
a∗5 = 〈(3.3078, 0.5638, 0.4675), (0.6871, 0.4227, 0.1846)〉

Step 4: Compute the distance between the comprehensive evaluation of ai and the PIS/NIS.

First, the PIS a+ and the NIS a− are determined as a+ = 〈(3.7063,0.5638,0.3958), (0.7068,0.3374,0.1544)〉,
and a− = 〈(2.693, 0.8318, 0.4675), (0.6366, 0.5197, 0.29)〉 respectively. Then, based on Equation (5),
the distance d

(
a∗i , a+

)
, and the distance d

(
a∗i , a−

)
are computed as

d
(
a∗1, a+

)
= 1.0407, d(a∗2, a+) = 1.6913, d(a∗3, a+) = 1.0619, d

(
a∗4, a+

)
= 1.371, and

d(a∗5, a+) = 0.6054; d
(
a∗1, a−

)
= 0.9235, d(a∗2, a−) = 0.2183, d(a∗3, a−) = 0.9925,

d
(
a∗4, a−

)
= 0.5323, and d(a∗5, a−) = 1.2871.

Step 5: Calculate the relative closeness of each alternative.

By using Equation (17), the relative closeness of each alternative is calculated as

I1 = 0.5298, I2 = 0.8857, I3 = 0.5169, I4 = 0.7203, and I4 = 0.7203
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Step 6: Rank all the alternatives.

On the basis of the comparison rule, the smaller the value of Ii, the better the alternative ai is.
We can rank the alternatives as a5 � a3 � a1 � a4 � a2, the best one is a5.

Using the parameters m = 2, p1 = 1, and p2 = 2 in the aggregation operators, the ranking results
acquired by the developed methods with the WSNCMSM operator and the GWSNCMSM operator are
almost identical, and these rankings are described in Table 3. The basically identical ranking results
indicate that the developed methods in this paper have a strong stability.

Table 3. Ranking results based on different operators.

Proposed Operators m p1 p2 Rankings

WSNCMSM 2 \ \ a5 � a1 � a3 � a4 � a2
WSNCMSM 3 \ \ a5 � a1 � a3 � a4 � a2

GWSNCMSM 2 1 2 a5 � a3 � a1 � a4 � a2

6.3. Comparative Analysis and Sensitivity Analysis

This subsection implements a comparative study to verify the applicability and feasibility
of the developed method. The developed method aims to improve the effectiveness of handling
simplified neutrosophic linguistic information. Therefore, the proposed method can be demonstrated
by comparing with the approaches in Wang et al. [21] and Tian et al. [20] that deal with SNLNs merely
depend on the linguistic functions. The comparison between the developed method and two existed
approaches is feasible because these three methods are based on the same information description tool
and the aggregation operators developed in these methods have the same parameter characteristics.
Two existing methods are employed to address the same hotel selection problem above, and the
ranking results acquired by different approaches are described in Table 4.

Table 4. Ranking results obtained by different methods.

Methods Rankings

Wang et al.’s method [21] (m = 2) a5 � a1 � a3 � a2 � a4
The proposed approach based on WSNCMSMw

(m)(m = 2) a5 � a1 � a3 � a4 � a2
Wang et al.’s method [21] (m = 2, p1 = 1, p2 = 1) a5 � a3 � a1 � a2 � a4
Tian et al.’s method [20] (m = 2, p1 = 1, p2 = 1) a5 � a3 � a1 � a4 � a2

The proposed approach based on
GWSNCMSM(m,p1,p2,...,pm)(m = 2, p1 = 1, p2 = 1)

a5 � a1 � a3 � a4 � a2

As described in Table 4, the rankings acquired by the developed approaches and that obtained
by the existed approaches have obvious difference. However, the best alternative is always a5, which
demonstrates that the developed approach is reliable and effective for handling decision-making
problems under simplified neutrosophic linguistic circumstance. There are still differences between the
approaches developed in this paper and the methods presented by Wang et al. [21] and Tian et al. [20],
which is that the proposed approaches use the cloud model instead of linguistic function to deal with
linguistic information. The advantages of the proposed approaches in handling practical problems are
summarized as follows:

First, comparing with the existing methods with SNLNs, the proposed approaches uses the cloud
model to process qualitative evaluation information involved in SNLNs. The existing methods handle
linguistic information merely depending on the relevant linguistic functions, which may result in loss
and distortion of the original information. However, the cloud model depicts the randomness and
fuzziness of a qualitative concept with three numerical characteristics perfectly, and it is more suitable
to handle linguistic information than the linguistic function because it can reflect the vagueness and
randomness of linguistic variables simultaneously.
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Second, being compared with the simplified neutrosophic linguistic Bonferroni mean aggregation
operator given in Tain et al. [20], the simplified neutrosophic clouds Maclaurin symmetric mean
operator provided in this paper take more generalized forms and contain more flexible parameters
that facilitate selecting the appropriate alternative.

In addition, being compared with SNLNs, SNCs not only provide the truth, indeterminacy,
and falsity degrees for the evaluation object, but also utilize the cloud model to characterize linguistic
information effectively.

The ranking results may vary with different values of parameters in the proposed aggregation
operators. Thus, a sensitivity analysis will be implemented to analyze the influence of the parameter pj
on ranking results. The obtained results are presented in Table 5.

Table 5. Ranking results with different pj under m = 2.

p1 p2 Rankings Based on GWSNCMSM

1 0 a5 � a1 � a3 � a2 � a4
0 1 a4 � a5 � a3 � a2 � a1
1 2 a5 � a3 � a1 � a4 � a2
1 3 a3 � a5 � a1 � a4 � a2
1 4 a3 � a5 � a1 � a4 � a2
1 5 a3 � a1 � a5 � a4 � a2
2 1 a5 � a1 � a3 � a4 � a2
3 1 a5 � a1 � a3 � a4 � a2
4 1 a1 � a5 � a3 � a4 � a2
5 1 a1 � a3 � a5 � a4 � a2

0.5 0.5 a5 � a1 � a3 � a4 � a2
1 1 a5 � a1 � a3 � a4 � a2
2 2 a5 � a1 � a3 � a4 � a2
3 3 a5 � a1 � a3 � a4 � a2
4 4 a5 � a1 � a3 � a4 � a2
5 5 a5 � a1 � a3 � a4 � a2

The data in Table 5 indicates that the best alternative is a5 or a1, and the worst one is a2 when using
the GWSNCMSM operator with different pj under m = 2 to fuse evaluation information. When p1 = 0,
we can find the ranking result has obvious differences with other results. Therefore, p1 = 0 is not used
in practice. The data in Table 5 also suggests that the ranking vary obviously when the value of p1 far
exceeds the value of p2. Thus, it can be concluded that the values of p1 and p2 should be selected as
equally as possible in practical application. The difference of ranking results in Table 5 reveals that
the values of p1 and p2 have great impact on the ranking results. As a result, selecting the appropriate
parameters is a significant action when handling MCDM problems. In general, the values can be set as
p1 = p2 = 1 or p1 = p2 = 2, which is not only simple and convenient but it also allows the interrelationship
of criteria. It can be said that p1 and p2 are correlative with the thinking mode of the decision-maker;
the bigger the values of p1 and p2, the more optimistic the decision-maker is; the smaller the values of
p1 and p2, the more pessimistic the decision-maker is. Therefore, decision-makers can flexibly select
the values of parameters based on the certain situations and their preferences and identify the most
precise result.

7. Conclusions

SNLNs take linguistic terms into account on the basis of NSs, and they make the data description
more complete and consistent with practical decision information than NSs. However, the cloud model,
as an effective way to deal with linguistic information, has never been considered in combination with
SNLNs. Motivated by the cloud model, we put forward a novel concept of SNCs based on SNLNs.
Furthermore, the operation rules and distance of SNCs were defined. In addition, considering distinct
importance of input variables, the WSNCMSM and GWSNCMSM operators were proposed and their
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properties and special cases were discussed. Finally, the developed approach was successfully applied
to handle a practical hotel selection problem, and the validity of this approach was demonstrated.

The primary contributions of this paper can be summarized as follows. First, to process linguistic
evaluation information involved in SNLNs, the cloud model is introduced and used. In this way, a new
concept of SNCs is presented, and the operations and distance of SNCs are proposed. Being compared
with other existing studies on SNLNs, the proposed method is more effective because the cloud model
can comprehensively reflect the uncertainty of qualitative evaluation information. Second, based on
the related studies, the MSM operator is extended to simplified neutrosophic cloud circumstances, and
a series of SNCMSM aggregation operators are proposed. Third, a MCDM method is developed in
light of the proposed aggregation operators, and its effectiveness and stability are demonstrated using
the illustrative example, comparative analysis, and sensitivity analysis.

In some situations, asymmetrical and non-uniform linguistic information exists in practical
problems. For example, customers pay more attention to negative comments when selecting hotels.
In future study, we are going to introduce the unbalanced linguistic term sets to depict online linguistic
comments and propose the hotel recommendation method.
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Abstract: In this paper, we present a deciding technique for robotic dexterous hand configurations.
This algorithm can be used to decide on how to configure a robotic hand so it can grasp objects
in different scenarios. Receiving as input, several sensor signals that provide information on the
object’s shape, the DSmT decision-making algorithm passes the information through several steps
before deciding what hand configuration should be used for a certain object and task. The proposed
decision-making method for real time control will decrease the feedback time between the command
and grasped object, and can be successfully applied on robot dexterous hands. For this, we have
used the Dezert–Smarandache theory which can provide information even on contradictory or
uncertain systems.

Keywords: neutrosophy; DSmT; decision-making algorithms; robotic dexterous hands; grasping
configurations; grasp type

1. Introduction

The purpose of autonomous robotics is to build systems that can fulfill all kinds of tasks
without human intervention, in different environments which were not specially build for robot
interaction. A major challenge for this autonomous robotics field comes from high uncertainty within
real environments. This is because the robot designer cannot know all the details regarding the
environment. Most of the environment parameters are unknown, the position of humans and objects
cannot be previously anticipated and the motion path might be blocked. Beside these, the accumulated
sensor information can be uncertain and error prone. The quality of this information is influenced by
noise, visual field limitations, observation conditions, and the complexity of interpretation technique.

The artificial intelligence and the heuristic techniques were used by many scientists in the field of
robot control [1] and motion planning. Regarding grasping and object manipulations, the main research
activities were to design a mechanism for hand [2–4] and dexterous finger motion [5], which are a high
complexity research tasks in controlling robotic hands.

Currently, in the research area of robotics, there is a desire to develop robotic systems with
applications in dynamic and unknown environments, in which human lives would be at risk,
like natural or nuclear disaster areas, and also in different fields of work, ranging from house chores
or agriculture to military applications. In any of these research areas, the robotic system must fulfill
a series of tasks which implies object manipulation and transportation, or using equipment and tools.
From here arises the necessity of development grasping systems [6] to reproduce, as well as possible
human hand motion [7–9].

To achieve an accurate grasping system, a grasp taxonomy of the human hand was analyzed by
Feix et al. [10] who found 33 different grasp types, sorted by opposition type, virtual finger assignments;
type in terms of power, precision, or intermediate grasp; and the position of the thumb. While
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Alvarez et al. [11] researched human grasp strategies within grasp types, Fermuller et al. [12] focused
on manipulation action for human hand on different object types including hand pre-configuration.
Tsai et al. [13] found that classifying objects into primitive shapes can provide a way to select
the best grasping posture, but a general approach can also be used for hand–object geometry
fitting [14]. This classification works well for grasping problems in constrained work space using visual
data combined with force sensors [15] and also for under-actuated grasping which uses rotational
stiffness [16]. However, for unknown objects, scientists found different approaches to solve the hand
grasping problem. Choi et al. [17] used two different neural networks and data fusion to classify objects,
Seredynski et al. [18] achieved fast grasp learning with probabilistic models, while Song et al. [19] used
a tactile-based blind grasping along with a discrete-time controller. The same approach is used by
Gu et al. [20] which proposed a blind haptic exploration of unknown objects for grasp planning of
dexterous robotic hand. Using grasping methods, Yamakawa et al. [21] developed a robotic hand for
knot manipulation, while Nacy et al. [22] used artificial neural network algorithms for slip prevention
and Zaidi et al. [23] used a multi-fingered robot hand to grasp 3D deformable objects, applying the
method on spheres and cubes.

While other scientists developed grasping strategies for different robotic hands [21–23],
an anthropomorphic robotic hand has the potential to grasp regular objects of different shapes and
sizes [24,25], but selecting the grasping method for a certain object is a difficult problem. A series of
papers have approached this problem by developing algorithms for classifying the grasping by the
contact points [26,27]. These algorithms are focused on finding a fix number of contact areas without
taking into consideration the hand geometry. Other methods developed grasping systems for a certain
robotic hand architecture, scaling down the problem to finding a grasping method with the tip of
the fingers [27]. These methods are useful in certain object manipulation, but cannot be applied for
a wide range of objects because it does not provide a stable grasping due to the face that it is not
used, the finger’s interior surface or the palm of the hand. A method for filtering the high number
of hand configurations is to use predefined grasping hand configurations. Before grasping an object,
humans, unconsciously simplify the grasping action, choosing one of the few hand positions which
match the object’s shape and the task to accomplish. In the scientific literature there are papers which
have tried to log in the positioning for grasping and taxonomy, and one of the most known papers
is [28]. Cutkosky and Weight [29] have extended Napier’s [28] classification by adding the required
taxonomy in the production environment, by studying the way in which the weight and geometry
of the object affects choosing the grasping positioning. Iberall [30] has analyzed different grasping
taxonomies and generalized them by using the virtual finger concept. Stransfield [31] has chosen
a simpler classification and built a system based on rules which provided a grasping positioning set,
starting from a simplified description of the object gained from a video system.

The developed algorithm presented in this paper has the purpose to determine the grasping
position according to the object’s shape. To prove the algorithm’s efficiency we have chosen three types
of objects for grasping: cylindrical, spherical, and prismatic. For this, we start from the hypothesis
that the environment data are captured through a stereovision system [32] and a Kinect sensor [33].
On this data, which the two system observers provide, we apply a template matching algorithm [34].
This algorithm will provide a matching percentage of the object that needs to be grasped with a template
object. Thus, each of the two sources will provide three matching values, for each of the three grasping
types. These values represent the input for our detection algorithm, based of Dezert–Smarandache
Theory (DSmT) [35] for data fusion. This algorithm has as input data from two or multiple observers
and in the first phase they are processed through a process of neutrosofication which is similar with
the fuzzification process. Then, the neutrosophic observers’ data are passed through an algorithm
which applies the classic DSm theory [35] in order to obtain a single data set on the system’s states,
by combining the observers’ neutrosophic values. On this obtained data set, we apply the developed
DSmT decision-making algorithm that decides on the category from which the target object is part of.
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This decision facilitates the detection–recognition–grasping process which a robotic hand must follow,
obtaining in the end a real-time decision that does not stop or delay the robot’s task.

In recent years, using more sensors for a certain applications and then using data fusion is becoming
more common in the military and nonmilitary research fields. The data fusion techniques combine
the information received from different sensors with the purpose of eliminating disturbances and to
improve precision compared to the situations when a single sensor is used [36,37]. This technique works
on the same principle used by humans to feel the environment. For example, a human being cannot
see over the corner or through vegetation, but with his hearing he can detect certain surrounding
dangers. Beside the statistical advantage build from combining the details for a certain object (through
redundant observations), using more types of sensors increases the precision with which an object can
be observed and characterized. For example, an ultrasonic sensor can detect the distance to an object,
but a video sensor can estimate its shape, and combining these two information sources will provide
two distinct data on the same object.

The evolution on the new sensors, the hardware’s processing techniques and capacity
improvements facilitate more and more the real time data fusion. The latest progress were made in the
area of computational and detection systems, and provide the ability to reproduce, in hardware and
software, the data fusion capacity of humans and animals. The data fusion systems are used for target
tracking [38], automatic target identification [39], and automated reasoning applications [40]. The data
fusion applications are widespread, ranging from the military [41] applications (target recognition,
autonomous moving vehicles, distance detection, battlefield surveillance, automatic danger detection)
to civilian application (monitoring the production processes, complex tools maintenance based on
certain conditions, robotics [42], and medical applications [43]). The data fusion techniques undertake
classic elements like digital signal processing, statistical estimation, control theory, artificial intelligence,
and numeric methods [44].

Combined data interpretation requires automated reasoning techniques taken from the area of
artificial intelligence. The purpose of developing the recognition based systems, was to analyze issues
like the data gathering context, the relationship between observed entities, hierarchical grouping of
targets or objects and to predict future actions of these targets or entities. This kind of reasoning
is encountered in humans, but the automated reasoning techniques can only closely reproduce it.
Regardless of the used technique, for a knowledge based system, three elements are required: one or more
reasoning diagrams, an automated evaluation process and a control diagram. The reasoning diagrams are
techniques of facts representation, logical relations, procedural knowledge, and uncertainty. For these
techniques, uncertainty from the observed data and from the logical relations can be represented
using probabilities, fuzzy theory [45,46], Dempster–Shafer [47] evidence intervals or other methods.
Dezert–Smarandache theory [35] comes to extend these methods, providing advanced techniques of
uncertainty manipulation. The automated reasoning system’s developing purpose is to reproduce the
human capability of reasoning and decision making, by specifying rules and frames that define the
studied situation. Having at hand an information database, an evaluation process is required so this
information can be used. For this, there are formal diagrams developed on the formal logic, fuzzy logic,
probabilistic reasoning, template based methods, case based reasoning, and many others. Each of these
reasoning diagrams has a consistent internal formalism which describes how to use the knowledge
database for obtaining the final conclusion. An automated reasoning system needs a control diagram to
fulfill the thinking process. The used techniques include searching methods, systems for maintaining
the truth based on assumptions and justifications, hierarchical decomposition, control theory, etc.
Each of these methods has the purpose of controlling the reasoning evolution process.

The results presented in this paper, were obtained using the classic Dezert–Smarandache theory
(DSmT) to combine inputs from two different observers that want to classify objects into three categories:
sphere, parallelepiped, and cylinder. These categories were chosen to include most of the objects that
a manipulator can grasp. The algorithm’s inputs were transformed into belief values of certainty, falsity,
uncertainty, and contradiction values. Using these four values and their combinations according to
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DSmT, we applied Petri net diagram logic for taking decisions on the shape type of the analyzed objects.
This type of algorithm has never been used before for real time decision on hand grasping taxonomy.
Compared to other algorithms [13–15] and methods [16–18], ours has the advantage to detect high
uncertainties and contradictions which in practice has a very low encounter rate but can have drastic
effects on the decision type or robot, because if the object’s shape is not detected properly, then the
robot might not be able to grasp it, which can lead to serious consequences. In deciding how to
grasp objects, researchers have used different methods to choose the grasping taxonomy using a blind
haptic exploration [20] or in different applications for tying knots [21] or grasp deformable objects [23].
Because the proposed algorithm can detect anomalies of contradicting and uncertain input values,
we can say that the proposed method transforms the deciding process into a less difficult problem of
grasping method [24,25].

2. Objects Grasping and Its Classification

Mechanical hands have been developed to provide the robots with the ability of grasping objects
with different geometrical and physical properties [48]. To make an anthropomorphic hand seem
natural, its movement and the grasping type must match the human hand.

In this regard, grasping position taxonomy for human hands has been long studied and applied
for robotic hands. Seventeen different categories of human hands grasping positions were studied.
However, we must consider two important things: the first thing is that these categories are derived
from human hand studies, which proves that they are more flexible and able to perform a multitude
of movements than any other robotic hand, so that the grasping taxonomy for robot hands can be
only a simple subset of the human hand. The second is that the human behavior studies of real object
grasping have shown some differences between the real observations and the classified properties [49].

In conclusion, any proposed taxonomy is only a reference point which the robot hand must
attain. Below the most used grasping positions are described (extracted from [50]), which should be
considered when developing an able robotic hand:

1. Power grasping: The contact with the objects is made on large surfaces of the hand, including
hand phalanges and the palm of the hand. For this kind of grasping, high forces can be exerted
on the object.

• Spherical grasping: used to grasp spherical objects;
• Cylindrical grasping: used to grasp long objects which cannot be completely surrounded by

the hand;
• Lateral grasping: the thumb exerts a force towards the lateral side of the index finger.

2. Precision grasping: the contact is made only with the tip of the fingers.

• Prismatic grasping (pinch): used to grasp long objects (with small diameter) or very small.
Can be achieved with two to five fingers.

• Circular grasping (tripod): used in grasping circular or round objects. Can be achieved with
three, four, or five fingers.

3. No grasping:

• Hook: the hand forms a hook on the object and the hand force is exerted against an external
force, usually gravity.

• Button pressing or pointing
• Pushing with open hand.

In the Table 1, manipulation activities that the robotic hand can achieve are shown, correlated
with the required activity grasping positions [51].
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Table 1. Grasping position for certain tasks.

Object Activity Grasping Position

Bottles, cups, and mugs Transport, pouring/filling Force: Cylindrical grasping (from the side or the top)

Cups (using handles) Pouring/filling Force: Lateral grasping
Precision: Prismatic grasping

Plates/trays Transport
Receiving from humans

Power: Lateral grasping
Precision: Prismatic grasping

No grasp: pushing (open hand)

Pens, cutlery Transport Precision: Prismatic grasping

Door handle Open/Close Force: Cylindrical grasping
No grasp: Hook

Small objects Transport Power: Spherical grasping
Precision: Circular grasping (tripod)

Switches, buttons Pushing No grasp: Button pressing

Round switches, bottle caps Rotation Force: Lateral grasping
Precision: Circular grasping (tripod)

3. Object Detection Using Stereo-Vision and Kinect Sensor

Object recognition in artificial sight represents the task of searching a certain object in a picture
or a video sequence. This problem can be approached as a learning problem. At first, the system is
trained with sample images which belong to the target group, the system being taught to spot these
among other pictures. Thus, when the system receives new images, it can ‘feel’ the presence of the
searched object/sample/template.

Template matching is a techniques used to sort objects in an image. A model is an image
region, and the goal is to find instances of this model in a larger picture. The template matching
techniques represent a classic approach for localization problems and object recognition in a picture.
These methods are used in applications like object tracking, image compression, stereograms, image
segmentation [52], and other specific problems of artificial vision [53].

Object recognition is very important for a robot that must fulfill a certain task. To complete its task,
the robot must avoid obstacles, obtain the size of the object, manipulate it, etc. For the case of detected
object manipulation, the robot must detect the object’s shape, size, and position in the environment.
The main methods for achieving the depth information use stereoscopic cameras, laser scanners,
and depth cameras.

To achieve the proposed decision-making algorithm, we assumed that the environment
information is captured with a stereoscopic system and a Kinect sensor.

Stereovision systems [32] represents a passive technique of achieving a virtual 3D image of
the environment in which the robot moves, by matching the common features of an image set of
the same scene. Because this method works with images, it needs a high computational power.
The depth information can be noisy in certain cases, because the method depends on the texture of the
environment objects and on the ambient light.

Kinect [33] is a fairly easy to obtain platform, which makes it widespread. It uses a depth sensor
based on structured light. By using an ASIC board, the Kinect sensor generates a depth map on 11 bits
with a resolution of 640 × 480 pixels, at 30 Hz. Given the price of the device, the information quality is
pretty good, but it has both advantages and disadvantages, meaning that the depth images contain
areas where the depth reading could not be achieved. This problem appears from the fact that some
materials do not reflect infrared light. When the device is moved really fast, like any other camera,
it records blurry pictures, which also leads to missing information from the acquired picture.
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4. Neutrosophic Logic and DSm Theory

4.1. Neutrosophic Logic

The neutrosophic triplet (truth, falsity, and uncertainty) idea appeared in 1764 when J.H.
Lambert investigates a witness credibility which was affected by the testimony of another person.
He generalized Hooper’s rule of sample combination (1680), which was a non-Bayesian approach for
finding a probabilistic model. Koopman in 1940 introduces the low and high probability, followed by
Good and Dempster (1967) who gave a combination rule of two arguments. Shafer (1976) extended
this rule to Dempster–Shafer Theory for trust functions by defining the trust and plausibility functions
and using the inference rules of Dempster for combining two samples from two different sources.
The trust function is a connection between the fuzzy reasoning and probability. Dempster–Shafer
theory for trust functions is a generalization of Bayesian probability (Bayes 1760, Laplace 1780). It uses
the mathematical probability in a more general way and it is based on the probabilistic combination of
artificial intelligence samples.

Lambert one said that “there is a chance p that the witness can be trustworthy and fair, a chance q
that he will be deceiving and a chance 1-p-q that he will be indifferent”. This idea was taken by Shafer
in 1986 and later, used by Smarandache to further develop the neutrosophic logic [54,55].

4.1.1. Neutrosophic Logic Definition

A logic in which each proposition has its percentage of truth in a subset T, its percentage of
uncertainty in a subset I, and its percentage of falsity in a subset F is called neutrosophic logic [54,55].

This paper extends the general structure of the neutrophic robot control (RNC), known as the
Vladareanu–Smarandache method [55–57] for the robot hybrid force-position control in a virtual
platform [58,59], which applies neutrosophic science to robotics using the neutrosophic logic and set
operators. Thus, using two observers, a stereovision system and a Kinect sensor, will provide three
matching values for DSmT decision-making algorithms. A subset of truth, uncertainty and falsity is
used instead of a single number because in many cases one cannot know with precision the percentage
of truth or falsity, but these can be approximated. For example, a supposition can be 30% to 40% true
and 60% to 70% false [60].

4.1.2. Neutrosophic Components Definition

Let T, I, F be three standard or non-standard subsets of ]−0, 1+[ with

supT = tsup infT = tin f
supI = isup infI = iin f
supF = fsup infF = fin f

and
nsup = tsup + isup + fsup

nin f = tin f + iin f + fin f

The T, I, and F sets are not always intervals, but can be subsets: discrete or continuum; with a single
element; finite or infinite (the elements are countable or uncountable); subsets union or intersection.
Also, these subsets can overlap, and the real subsets represent the relative errors in finding the t, i,
and f values (when the T, I, and F subsets are reduced to single points).

T, I, and F are called the neutrosophic components and represent the truth, uncertainty, and falsity
values, when referring to neutrosophy, neutrosophic logic, neutrosophic sets, neutrosophic probability,
or neutrosophic statistics.

This representation is closer to the human reasoning and defines knowledge imprecision or
linguistic inaccuracy received from different observers (this is why T, I, and F are subsets and can be
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more that a set of points), the uncertainty given by incomplete knowledge or data acquisition errors
(for this we have the set I) and the vagueness caused by missing edges or limits.

After defining the sets, we need to specify their superior (xsup) and inferior (xin f ) limits because
in most of the cases they will be needed [61,62].

4.2. Dezert–Smarandache Theory (DSmT)

To develop artificial cognitive systems a good management of sensor information is required.
When the input data are gathered by different sensors, according to the environment certain situations
may appear when one of the sensors cannot give correct information or the information is contradictory
between sensors. To resolve this issue a strong mathematical model is required, especially when the
information is inaccurate or uncertain.

The Dezert–Smarandache Theory (DSmT) [53,54,60] can be considered an extension of
Dempster–Shafer theory (DST) [46]. DSmT allows information combining, gathered from different
and independent sources as trust functions. DSmT can be used for solving information fusion on static
or dynamic complex problems, especially when the information differences between the observers are
very high.

DSmT starts by defining the notion of a DSm free model, denoted byM f (Θ) and says that Θ is
a set of exhaustive elements θi, i = 1, . . . , n which cannot overlap. This model is free because there are
no other suppositions over the hypothesis. As long as the DSm free model is fulfilled, we can apply
the associative and commutative DSm rule of combination.

DSm theory [62] is based on defining the Dedekind lattice, known as the hyper power set of
frame Θ. In DSmT, Θ is considered a set {θ1, . . . , θn} of n exhaustive elements, without adding
other constraints.

DSmT can tackle information samples, gathered from different information sources which do not
allow the same interpretation of the set Θ elements. Let Θ = θ1, θ2 be the simple case, made of two
assumption, then [54]:

• the probability theory works (assuming exclusivity and completeness assumptions) with basic
probability assignments (bpa) m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) = 1

• the Dempster–Shafer theory works, (assuming exclusivity and completeness assumptions) with
basic belief assignments (bba) m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

• the DSm theory works (assuming exclusivity and completeness assumptions) with basic belief
assignment (bba) m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) + m(θ1 ∩ θ2) = 1

4.2.1. The DΘ Hyperpower Set Notion

One of the base elements of DSm theory is the notion of hyper power set. Let Θ = {θ1, . . . , θn} be
a finite set (called frame) with n exhaustive elements. The Dedekind lattice, called hyper power set DΘ

within DSmT frame, is defined as the set of all built statements from the elements of set Θ with the ∪
and ∩ operators such that:

1. ∅, θ1, . . . , θn ∈ DΘ

2. If A, B ∈ DΘ, then A ∩ B ∈ DΘ and A ∪ B ∈ DΘ.
3. No other element is included in DΘ with the exception of those mentioned at 1 and 2.
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DΘ duals (obtained by changing within expressions the operator ∩ with the operator ∪) is DΘ.
In DΘ there are elements that are dual with themselves. The cardinality of DΘ increases with 2n when
the cardinality of Θ is n. Generating the DΘ hyper power set is close connected with the Dedekind [54,
55] known problem of isotone Boolean function set. Because for any finite set Θ, |DΘ| ≥ |2Θ|, we call
DΘ the hyper power set of Θ.

The θi, i = 1, . . . , n elements from Θ form the finite set of suppositions/concepts that characterize
the fusion problem. DΘ represents the free model of DSm M f (Θ) and allows working with fuzzy
concepts that describe the intrinsic and relative character. This kind of concept cannot be accurately
distinguished within an absolute interpretation because of the unapproachable universal truth.

With all of this, there are certain particular fusion problems that imply discrete concepts, where the
θi elements are exclusively true. In this case, all the exclusivity constraints of θi, i = 1, . . . , n must be
included in the previous model to properly characterize the truthiness character of the fusion problem
and to match reality. For this, the hyper power set DΘ is decreased to the classic power set 2Θ, forming
the smallest hybrid DSm model, noted withM0(Θ), and coincides with Shafer’s model.

Besides the problem types that correspond with the Shaffer’s model M0(Θ) and those that
correspond with the DSm free model M f (Θ), there is an extensive class of fusion problems that
include in Θ states, continuous fuzzy concepts and discrete hypothesis. In this case we must take into
consideration certain exclusivity constraints and some non-existential constraints. Each fusion hybrid
problem is described by a DSm hybrid modelM(Θ) withM(Θ) �=M f (Θ) andM(Θ) �=M0(Θ).

4.2.2. Generalized Belief Functions

Starting from a general frame Θ, we define a DΘ → [0, 1] transformation associated with
an information source B like [54]

m(∅) = 0 and ∑A∈DΘ m(A) = 1. (1)

The m(A) value is called generalized basic belief assignment of A.
The generalized trust and plausibility are defined in the same way as in Dempster–Shafer theory [47]

Bel(A) = ∑ B ⊆ A
B ∈ DΘ

m(B), (2)

Pl(A) = ∑ B ∩ A �= ∅
B ∈ DΘ

m(B). (3)

These definitions are compatible with the classic trust function definition from the
Dempster–Shafer theory when DΘ is reduced to 2Θ for fusion problems where the Shafer model
M0(Θ) can be applied. We still have ∀ A ∈ DΘ, Bel(A) ≤ Pl(A). To notice that when we work with
the free DSmM f (Θ) model, we will always have Pl(A) = 1, ∀ A �= ∅ ∈ DΘ, which is normal [54].

4.2.3. DSm Classic Rule of Combination

When the DSm free model M f (Θ) can be applied, the combination rule mM f (Θ) ≡ m(.) �
[m1 ⊗m2](.) of two independent sources B1 and B2 that provide information on the same frame Θ
with the belief functions Bel1(.) and Bel2(.) associated to gbba m1(.) and m2(.) correspond to the
conjunctive consensus of sources. Data combinations are done by using the formula [54]

∀C ∈ DΘ, mM f (Θ)(C) ≡ m(C) = ∑ A, B ∈ DΘ

A ∩ B = C

m1(A)m2(B). (4)
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Because DΘ is closed under ∩ and ∪ operators, this new combination rule guarantees that m(.) Is
a generalized trust value, meaning that m(.) : DΘ → [0, 1] . This rule of combination is commutative
and associative and can be used all the time for sources fusion which implies fuzzy concepts. This rule
can be extended with ease for combining k > 2 independent information sources [55,56].

Because of the high number of elements in DΘ, when the cardinality of Θ increases, the need of
computational resources also increases for processing the DSm combination rule. This observation is
true only if the core (the set of generalized basic belief assignment for the needed elements) K1(m1)

and K2(m2) coincide with DΘ, meaning that when m1(A) > 0 and m2(A) > 0 for any A �= ∅ ∈ DΘ.
For most practical applications, the K1(m1) and K2(m2) dimensions are much smaller than

∣∣DΘ
∣∣

because the information sources provide most of the time the generalized basic belief assignment for
only one subset of hyper power set. This facilitates the DSm classic rule implementation.

Figure 1 presents the DSm combination rule architecture. The first layer is formed by all the
generalized basic belief assignment values of the needed elements Ai, i = 1, . . . , n of m1(.). The second
layer is made out of all the generalized basic belief assignment values Bi, i = 1, . . . , k of m2(.).
Each node from the first layer is connected with each node of the second layer. The output layer is
created by combining the generalized basic belief assignment values of all the possible intersections
Ai ∩ Bj, i = 1, . . . , n and j = 1, . . . , k. If we would have a third source to provide generalized basic
belief assignment values m3(.), this would have been combined by placing it between the output layer
and the second one that provides the generalized basic belief assignment values m2(.). Due to the
commutative and associative properties of DSm classic rule of combination, in developing the DSm
network, a particular order of layers is not required [54].

 

Figure 1. Graphical representation of DSm classic rule of combination forM f (Θ) [35].

5. Decision-Making Algorithm

As observed in this paper, according to the object shape and assigned task, grasping is divided into
eight categories [63]: spherical grasping, cylindrical grasping, lateral grasp, prismatic grasp, circular
grasping, hook grasping, button pressing, and pushing. From these grasping types, the most used
ones are cylindrical and prismatic grasping (see Table 1). These can be used in almost any situation
and we can say that spherical grasping is a particular grasping of these two. The spherical grasp is
used for power grasping, when the contact with the object is achieved with all the fingers’ phalanges
and the hand’s palm. This is why a requirement for classification by the shape of the object is needed.
Due to the fact that these types are more often encountered, they were taken into consideration for the
studied fusion problems.

The fusion problem aims to achieve a classification, by shape of objects to grasp, so that these
can match with the other three types of grasping studied. The target objects are classified into three
categories: sphere, parallelepiped, and cylinder. For each category, a grasping type is assigned [56].

Following the presented theory in Section 4, the information is provided by two independent
sources (observers): a stereovision system and a Kinect sensor. The observers are presented in Section 3,
and are used to scan the robot’s work environment. By using the information provided by the two
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observers, a 3D virtual image of the environment is achieved, from which the human operator choses
the object to be grasped, thus defining the grasping task that must be achieved by the robot. The 3D
image of the object, isolated from the scene, is compared with three templates—formed by similar
methods—which represent a sphere, a parallelepiped, and a cylinder. Afterwards, a template matching
algorithm is applied to place the object in one of the three categories, with a certain matching percentage.
This percentage can vary according to the conditions in which the images are obtained (weak light,
object from which the light is reflected, etc.). The data taken from each sensor are then individual
processed with a neutrosophication algorithm, with the purpose of obtaining the generalized basic
belief assignment values for each hypothesis that can characterize the system. In the next step, having
the basic belief assignment values, we combine the data provided by the two observers by using the
classic DSm rule of combination. The next step is to apply a deneutrosophication algorithm on the
obtained values, to achieve the decision on the shape of the object by placing it into the three categories
mentioned above. The entire process is visually represented in Figure 2.

 

Figure 2. Diagram of the proposed algorithm.

5.1. Data Neutrosophication

Each observer provides a truth percentage for each system’s state. The state set Θ = {θ1, θ2, θ3}
that characterizes the fusion problem is

Θ = {Sp, Pa, Cy}, (5)

where Sp = sphere, Pa = parallelepiped, and Cy = cylinder.
To compute the belief values for the hyper power set DΘ elements we developed an algorithm

based on the neutrosophic logic. The hyper power set DΘ is formed by using the method presented in
Section 4.2.1 and has the form

DΘ =
{
∅, Sp, Pa, Cy, Sp ∪ Pa, Sp ∪ Cy, Cy ∪ Pa, Sp ∩ Pa, Sp ∩ Cy, Cy ∩ Pa, Sp∩

(Cy ∪ Pa), Cy ∩ (Sp ∪ Pa), Pa ∩ (Cy ∪ Sp), Sp ∪ Cy ∪ Pa, Sp ∩ Cy ∩ Pa
}

.
(6)
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The statements of each observer are handled in ways of truth (T), uncertainty (I), and falsity (F),
specific to the neutrosophic logic. Due to the fact that F = 1− T − I, the statements of falsity are not
taken into consideration.

The neutrosophic algorithm has as input the certainty probabilities (truth) provided by the
observers on the system’s states. These probabilities are then processed using the described rules in
Figure 3. If the difference between the certainties probabilities used at a certain point by the processing
algorithm is larger than a certain threshold found by trial and error, then we will consider that the
uncertainty percentage between the compared states is null, and the probability that one of the states
is true increases. In the case where this difference is not a set threshold, we compute the uncertainty
probability by using the formula

m(A ∪ B) = 1− m(A)−m(B)
const

(7)

where A, B ∈ Θ, and “const” depends of the chosen threshold. While the point determined by
the two probabilities approaches the main diagonal, the uncertainty approaches the maximum
probability value.

Figure 3. Data neutrosophication rule for the observer’s data.

From the hyper power set DΘ, we can determine the belief masses only for the values Obsi
(

DΘ)
(information obtained after observer’s data interpretation) presented below, because the intersection
operation ∩ represents contradiction in DSm theory and we cannot compute the contradiction values
for a single observer using

Obsi

(
DΘ
)
= {Sp, Pa, Cy, Sp ∪ Pa, Sp ∪ Cy, Cy ∪ Pa, Sp ∪ Cy ∪ Pa}. (8)

The neutrosophic probabilities are detailed in Table 2.

Table 2. Grasping position for certain tasks.

Mathematical Representation Description

Sp Certainty that the target object is a ‘sphere’

Pa Certainty that the target object is a ‘parallelepiped’

Cy Certainty that the target object is a ‘cylinder’

Sp ∪ Pa Uncertainty that the target object is a ‘sphere’ or ‘parallelepiped’

Sp ∪ Cy Uncertainty that the target object is a ‘sphere’ or ‘cylinder’

Cy ∪ Pa Uncertainty that the target object is a ‘cylinder’ or ‘parallelepiped’

Sp ∪ Cy ∪ Pa Uncertainty that the target object is a ‘sphere’, ‘cylinder’, or ‘parallelepiped’

313



Symmetry 2018, 10, 198

5.2. Information Fusion

Having known the trust values of the hyper power set elements Obsi
(

DΘ), presented in Table 2,
we apply the fusion algorithm, using the classic DSm combination rule, detailed in Section 4.2.3.

Appling Equation (4), we get the following formulas for the combination values:

m(Sp) = m1(Sp) ·m2(Sp) + m1(Sp) ·m2(Sp ∪ Pa) + m1(Sp ∪ Pa) ·m2(Sp) + m1(Sp) ·m2(Sp ∪ Cy)
+ m1(Sp ∪ Cy) ·m2(Sp) + m1(Sp) ·m2(Sp ∪ Cy ∪ Pa) + m1(Sp ∪ Cy ∪ Pa) ·m2(Sp)
+ m1(Sp ∪ Pa) ·m2(Sp ∪ Cy) + m1(Sp ∪ Cy) ·m2(Sp ∪ Pa)

(9)

m(Pa) = m1(Pa) ·m2(Pa) + m1(Pa) ·m2(Sp ∪ Pa) + m1(Sp ∪ Pa) ·m2(Pa) + m1(Pa)
·m2(Cy ∪ Pa) + m1(Cy ∪ Pa) ·m2(Sp) + m1(Pa) ·m2(Sp ∪ Cy ∪ Pa)
+ m1(Sp ∪ Cy ∪ Pa) ·m2(Pa) + m1(Sp ∪ Pa) ·m2(Cy ∪ Pa)
+ m1(Cy ∪ Pa) ·m2(Sp ∪ Pa)

(10)

m(Cy) = m1(Cy) ·m2(Cy) + m1(Cy) ·m2(Cy ∪ Pa) + m1(Cy ∪ Pa) ·m2(Cy) + m1(Cy)
·m2(Sp ∪ Cy) + m1(Sp ∪ Cy) ·m2(Cy) + m1(Cy) ·m2(Sp ∪ Cy ∪ Pa)
+ m1(Sp ∪ Cy ∪ Pa) ·m2(Cy) + m1(Sp ∪ Cy) ·m2(Cy ∪ Pa)
+ m1(Cy ∪ Pa) ·m2(Sp ∪ Cy)

(11)

m(Sp ∪ Pa) = m1(Sp ∪ Pa) ·m2(Sp ∪ Pa) + m1(Sp ∪ Pa) ·m2(Sp ∪ Cy ∪ Pa)
+m1(Sp ∪ Cy ∪ Pa) ·m2(Sp ∪ Pa)

(12)

m(Sp ∪ Cy) = m1(Sp ∪ Cy) ·m2(Sp ∪ Cy) + m1(Sp ∪ Cy) ·m2(Sp ∪ Cy ∪ Pa)
+m1(Sp ∪ Cy ∪ Pa) ·m2(Sp ∪ Cy)

(13)

m(Cy ∪ Pa) = m1(Cy ∪ Pa) ·m2(Cy ∪ Pa) + m1(Cy ∪ Pa) ·m2(Sp ∪ Cy ∪ Pa)
+m1(Sp ∪ Cy ∪ Pa) ·m2(Cy ∪ Pa)

(14)

m(Sp ∪ Cy ∪ Pa) = m1(Sp ∪ Cy ∪ Pa) ·m2(Sp ∪ Cy ∪ Pa) (15)

During the fusion process, between the information provided by the two observers contradiction
situations may appear. These are included in the hyper power set DΘ and are described in Table 3.

Table 3. Contradictions that may appear between the neutrosophic probabilities.

Mathematical Representation Description

Sp ∩ Pa Contradiction between the certainties that the target object is a ‘sphere’ and
‘parallelepiped’

Sp ∩ Cy Contradiction between the certainties that the target object is a ‘sphere’ and
‘cylinder’

Cy ∩ Pa Contradiction between the certainties that the target object is a ‘cylinder’ and
‘parallelepiped’

Sp ∩ (Cy ∪ Pa) Contradiction between the certainty that the target object is a ‘sphere’ and the
uncertainty that the target object is a ‘cylinder’ or ‘parallelepiped’

Pa ∩ (Sp ∪ Cy) Contradiction between the certainty that the target object is a ‘parallelepiped’
and the uncertainty that the target object is a ‘sphere’ or ‘cylinder’

Cy ∩ (Pa ∪ Sp) Contradiction between the certainty that the target object is ‘cylinder’ and the
uncertainty that the target object is a ‘parallelepiped’ or ‘sphere’

Sp ∩ Cy ∩ Pa Contradiction between the certainties that the target object is a ‘sphere’,
‘cylinder’, and ‘parallelepiped’

Fusion values for contradiction are determined as

m(Sp ∩ Pa) = m1(Sp) ·m2(Pa) + m1(Pa) ·m2(Sp) (16)
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m(Sp ∩ Cy) = m1(Sp) ·m2(Cy) + m1(Cy) ·m2(Sp) (17)

m(Cy ∩ Pa) = m1(Cy) ·m2(Pa) + m1(Pa) ·m2(Cy) (18)

m(Sp ∩ (Cy ∪ Pa)) = m1(Sp) ·m2(Cy ∪ Pa) + m1(Cy ∪ Pa) ·m2(Sp) (19)

m(Pa ∩ (Sp ∪ Cy)) = m1(Pa) ·m2(Sp ∪ Cy) + m1(Sp ∪ Cy) ·m2(Pa) (20)

m(Cy ∩ (Sp ∪ Pa)) = m1(Cy) ·m2(Sp ∪ Pa) + m1(Sp ∪ Pa) ·m2(Cy) (21)

5.3. Data Deneutrosophication and Decision-Making

The combination values found in the previous section are deneutrosophicated using the logic
diagram presented in Figure 4. For the decision-making algorithm we opted to use Petri nets [64],
for it is easier to notice the system’s states transitions. The decision-making diagram proved to have
a certain difficulty level, which required adding three sub diagrams:

1. sub_p1 (Figure 5)—this sub diagram deals with the contradiction between:

• the certainty that the target object is a ‘sphere’ and the uncertainty that the target object is
either a ‘parallelepiped’ or a ‘cylinder’.

• the certainty that the target object is a ‘parallelepiped’ and the uncertainty that the target
object is either a ‘sphere’ or a ‘cylinder’.

• the certainty that the target object is a ‘cylinder’ and the uncertainty that the target object is
either a ‘parallelepiped’ or a ‘sphere’.

2. sub_p2 (Figure 6)—this sub diagram deals with the contradiction between:

• The certainty that the target object is a ‘sphere’ and a ‘parallelepiped’.
• The certainty that the target object is a ‘sphere’ and a ‘cylinder’.
• The certainty that the target object is a ‘cylinder’ and a ‘parallelepiped’.

3. sub_p3 (Figure 7)—this sub diagram deals with the uncertainty that the target object is:

• a ‘sphere’ or a ‘parallelepiped’
• a ‘sphere’ or a ‘cylinder’
• a ‘cylinder’ or a ‘parallelepiped’

To not overload Figures 4–7 we have the following notations:

A = {m(Sp ∩ (Cy ∪ Pa)), m(Pa ∩ (Sp ∪ Cy)), m(Cy ∩ (Pa ∪ Sp))},
B = {m(Sp ∩ Pa), m(Sp ∩ Cy), m(Cy ∩ Pa)},
C = {m(Sp ∪ Pa), m(Sp ∪ Cy), m(Cy ∪ Pa)},
D = {m(Sp), m(Pa), m(Cy)},
a = m(Sp ∪ Cy),
b = m(Pa ∪ Sp),
c = m(Cy ∪ Pa).

With the help of the Petri diagram (Figure 4), we take the decision of sorting the target object in
one of the three categories, as follows:

1. Determine max(m(Sp ∩ (Cy ∪ Pa)), m(Pa ∩ (Sp ∪ Cy)), m(Cy ∩ (Pa ∪ Sp))).

• If max(m(Sp ∩ (Cy ∪ Pa)), m(Pa ∩ (Sp ∪ Cy)), m(Cy ∩ (Pa ∪ Sp))) = m(Sp ∩ (Cy ∪ Pa)),
the contradiction between the certainty value that the target object is a ‘sphere’ and the
uncertainty value that the target object is a ‘cylinder’ or ‘parallelepiped’ is compared with
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a threshold determined through an experimental trial-error process. If this is higher than or
equal to the chosen threshold, the target object is a ‘sphere’.

• If max(m(Sp ∩ (Cy ∪ Pa)), m(Pa ∩ (Sp ∪ Cy)), m(Cy ∩ (Pa ∪ Sp))) = m(Pa ∩ (Sp ∪ Cy)),
the contradiction between the certainty value that the target object is ‘parallelepiped’ and
the uncertainty value that the target object is a ‘sphere’ or ‘cylinder’ is compared with the
threshold mentioned above. If this is higher than or equal to the chosen threshold, the target
object is a ‘parallelepiped’.

• If max(m(Sp ∩ (Cy ∪ Pa)), m(Pa ∩ (Sp ∪ Cy)), m(Cy ∩ (Pa ∪ Sp))) = m(Cy ∩ (Pa ∪ Sp)),
the contradiction between the certainty value that the target object is a ‘cylinder’ and
the uncertainty value that the target object is a ‘parallelepiped’ or ‘sphere’ is compared
with the threshold mentioned above. If this is higher than or equal to the chosen threshold,
the target object is a ‘cylinder’.

If none of the three conditions are met, we proceed to the next step:
2. Determine max(m(Sp ∩ Pa), m(Sp ∩ Cy), m(Cy ∩ Pa))

• If max(m(Sp ∩ Pa), m(Sp ∩ Cy), m(Cy ∩ Pa)) = m(Sp ∩ Pa), the contradiction between the
certainty values that the target object is a ‘sphere’ and ‘parallelepiped’ is compared with
a threshold determined through an experimental trial-error process. If this is higher or equal
with the chosen threshold, we check if m(Sp) + m(Sp ∪ Cy) > m(Pa) + m(Cy ∪ Pa). If this
condition if fulfilled, then the target objects is a ‘sphere’. Otherwise, the target object is
‘parallelepiped’.

• If max(m(Sp ∩ Pa), m(Sp ∩ Cy), m(Cy ∩ Pa)) = m(Sp ∩ Cy), the contradiction between the
certainty values that the target object is a ‘sphere’ and ‘cylinder’ is compared with the
threshold mentioned above. If this is higher or equal with the chosen threshold, we check
if (Sp) + m(Sp ∪ Pa) > m(Cy) + m(Cy ∪ Pa). If this condition if fulfilled, then the target
objects is a ‘sphere’. Otherwise, the target object is a ‘cylinder’.

• If max(m(Sp ∩ Pa), m(Sp ∩ Cy), m(Cy ∩ Pa)) = m(Cy ∩ Pa), the contradiction between the
certainty values that the target object is a ‘cylinder’ and a ‘parallelepiped’ is compared with
the threshold mentioned above. If this is higher or equal with the chosen threshold, we check
if m(Cy) + m(Sp ∪ Cy) > m(Pa) + m(Sp ∪ Pa). If this condition if fulfilled, then the target
objects is a ‘cylinder’. Otherwise, the target object is a ‘parallelepiped’.

If in none of the situations, the contradiction is not larger that the chosen threshold, we go to the
next step:

3. Determine max(m(Sp ∪ Pa), m(Sp ∪ Cy), m(Cy ∪ Pa))

• If max(m(Sp ∪ Pa), m(Sp ∪ Cy), m(Cy ∪ Pa)) = m(Sp ∪ Pa), the uncertainty probability
that the target object is a ‘sphere’ or ‘ parallelepiped’ is larger than a threshold determined
through an experimental trial-error process, we check if m(Sp) > m(Pa). If the condition is
fulfilled, the target object is a ‘sphere’. Otherwise, the target object is a ‘parallelepiped’.

• If max(m(Sp ∪ Pa), m(Sp ∪ Cy), m(Cy ∪ Pa)) = m(Sp ∪ Cy), the uncertainty probability
that the target object is a ‘sphere’ or ‘cylinder’ is larger than the threshold mentioned above,
we check if m(Sp) > m(Cy). If the condition is fulfilled, the target object is a ‘sphere’.
Otherwise, the target object is a ‘cylinder’.

• If max(m(Sp ∪ Pa), m(Sp ∪ Cy), m(Cy ∪ Pa)) = m(Cy ∪ Pa), the uncertainty probability
that the target object is a ‘cylinder’ or ‘ parallelepiped’ is larger than the threshold mentioned
above, we check if m(Cy) > m(Pa). If the condition is fulfilled, the target object is a ‘cylinder’.
Otherwise, the target object is a ‘parallelepiped’.

If none of the hypotheses mentioned above are not fulfilled, we go to the next step:
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4. Determine max(m(Sp), m(Pa), m(Cy))

• If max(m(Sp), m(Pa), m(Cy)) = m(Sp), the target object is a ‘sphere’.
• If max(m(Sp), m(Pa), m(Cy)) = m(Pa), the target object is a ‘parallelepiped’.
• If max(m(Sp), m(Pa), m(Cy)) = m(Cy), the target object is a ‘cylinder’.

 

Figure 4. Petri diagram for decision-making algorithm.
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Figure 5. Petri net for sub_p1.

 

Figure 6. Petri net for sub_p2.

 

Figure 7. Petri net for sub_p3.
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6. Discussion

As mentioned in the introduction chapter, the main goal of this paper is to find a way to grasp
objects according to their shape. This is done by classifying the target objects into three main classes:
sphere, parallelepiped, and cylinder.

To determine the shape of the target objects, the robot work environment was scanned with
a stereovision system and a Kinect sensor, with the purpose of creating a 3D image of the surrounding
space in which the robot must fulfill its task. From the two created images, the target object is selected
and then it is compared with three templates, which represent a sphere, a cube, and a cylinder.
With a template matching algorithm the matching percentage is determined for each of the templates.
These percentages (Figure 8), represents the data gathered from the observers, for the fusion problem.
Because we wanted to test and verify the decision-making algorithm for as many cases as possible,
the observers’ values were simulated using sine signals with different frequency and amplitude
of 1 (Figure 8). This amplitude represents the maximum probability percentage that a certain type of
object is found by the template matching algorithm.

 
(a) 

 
(b) 

Figure 8. Simulation of the information provided by the two sensors/observers: (a) first observer
detection; (b) second observer detection.

On these input data, we then apply a neutrosophication algorithm with the purpose of obtaining
the generalized belief assignment values for each of the statements an observer is doing:

The certainty probability that the object is a ‘sphere’ (Figure 9a,h)
The certainty probability that the object is a ‘parallelepiped’ (Figure 9b,i)
The certainty probability that the object is a ‘cylinder’ (Figure 9c,j)
The uncertainty probability that the object is a ‘sphere’ or a ‘parallelepiped’ (Figure 9d,k)
The uncertainty probability that the object is a ‘sphere’ or a ‘cylinder’ (Figure 9e,l)
The uncertainty probability that the object is a ‘cylinder’ or a ‘parallelepiped’ (Figure 9f,m)
The uncertainty probability that the object is a ‘sphere’, a ‘cylinder’, or a ‘parallelepiped’
(Figure 9g,n).
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(a) (h) 

  
(b) (i) 

  
(c) (j) 

  
(d) (k) 

  
(e) (l) 

  
(f) (m) 

  
(g) (n) 

Figure 9. Generalized trust values. From a to g correspond to Observer 1 and from h to n for Observer
2 as follows: (a) m1(Sp); (b) m1(Pa); (c) m1(Cy); (d) m1(Sp∪Pa); (e) m1(Sp∪Cy); (f) m1(Pa∪Cy);
(g) m1(Sp∪Pa∪Cy); (h) m2(Sp); (i) m2(Pa); (j) m2(Cy); (k) m2(Sp∪Pa); (l) m2(Sp∪Cy); (m) m2(Pa∪Cy);
(n) m2(Sp∪Pa∪Cy).

After the belief values were computed for each statements of the observers, we go to the data
fusion step (Figure 10).

With the help of belief values presented in Figure 10 and computed using the neutrosophication
method presented in Sections 5.1 and 5.2, we find the fusion values, presented in Figure 11.
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(a) 

(b) 

 
(c) 

Figure 10. Data fusion: (a) Observer 1 vs. Observer 2 for sphere objects; (b) Observer 1 vs. Observer 2
for parallelepiped objects; (c) Observer 1 vs. Observer 2 for cylinder objects.

(a) 

(b) 

(c) 

Figure 11. Cont.
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(d) 

(e) 

Figure 11. Fusion values: (a) Fusion values of m(Sp), m(Pa) and m(Cy); (b) Fusion values of
m(Sp∪ Pa), m(Sp∪Cy), m(Pa∪Cy); (c) Fusion value of m(Sp∪ Pa∪Cy); (d) Fusion values of
m(Sp∪ Pa), m(Sp∪Cy), m(Pa∪Cy); (e) Fusion values of m(Sp∪ (Pa∪Cy)), m(Pa∪ (Sp∪Cy)),
m(Cy∪ (Sp∪ Pa)).

Using the fusion values and the decision-making diagram (Figure 4), from Section 5.2, we can
sort the desired object into the three categories: sphere, parallelepiped, and cylinder. The obtained
results are presented in Figure 12.

Figure 12. Object category decision, obtained from the proposed algorithm. Value 1 represents decision
for sphere, Value 2 represents decision for parallelepiped, and Value 3 represents decision for cylinder.

As one can see in Figure 11, the fusion values for certainty, uncertainty and contradiction are
minimum. The only exception is the fusion value for the uncertainty that the target object is “sphere” or
“parallelepiped” or “cylinder”, m(Sp ∪ Cy ∪ Pa), when the data received from the observers are identical
and not contradicting, the uncertainty is maximum. This means

Obs1 : 50% sphere, 50% parallelepiped, 50% cylinder and
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Obs2 : 50% sphere, 50% parallelepiped, 50% cylinder.

Therefore, the system cannot decide on a single state. This is why the robotic hand will maintain
its starting position until the system will decide the target object’s category. This indecision period of
time takes about 0.07 s. When the sensor values about the target object are changed from the equal
values presented above, the algorithm is able to provide a solution.

The indecision also reaches high values at the time 3.14s, 6.28s, and 9.42s of the simulation, in the
conditions that the observer’s statements are close in value with the already presented case from above

Obs1 : 50.08% sphere, 50.24% parallelepiped, 49.84% cylinder

Obs2 : 49.68% sphere, 49.52% parallelepiped, 50.4% cylinder

for the moment 3.14 s

Obs1 : 49.84% sphere, 49.52% parallelepiped, 49.68% cylinder

Obs2 : 49.36% spehere, 49.04% parallelepiped, 49.2% cylinder

for the moment 6.28 s and

Obs1 : 50.24% spehere, 50.72% parallelepiped, 49.52% cylinder

Obs2 : 49.04% spehere, 48.57% parallelepiped, 51.19% cylinder

for the moment 9.42 s.
In Table 4, we present the general belief assignment values, the fusion values and the decision

made by the algorithm for the situations previously mentioned.

Table 4. Generalized trust values, fusion values, and decisions for the analyzed situations.

Time 3.14 s 6.28 s 9.42 s

Hypothesis

Source State Obs. 1 Obs. 2 Obs. 1 Obs. 2 Obs. 1 Obs. 2

Sp 50.08% 49.68% 49.84% 49.36% 50.24% 49.04%
Pa 50.24% 49.52% 49.52% 49.04% 50.72% 48.57%
Cy 49.84% 50.4% 49.68% 49.2% 49.52% 51.19%
Generalized belief assignment values

mi(Sp) 0.0001 0.0001 0.0001 0.0001 0.0005 0.0007
mi(Pa) 0.0001 0 0 0 0.0011 0.0067
mi(Cy) 0 0.0008 0 0 0 0

mi(Sp ∪ Pa) 0.0106 0.0234 0.0085 0.0085 0.0317 0.0692
mi(Sp ∪ Cy) 0.0106 0.0231 0.0085 0.0085 0.0315 0.0669
mi(Cy ∪ Pa) 0.0106 0.0231 0.0085 0.0085 0.0312 0.0662

mi(Sp ∪ Cy ∪ Pa) 0.9680 0.9296 0.9744 0.9744 0.9040 0.7904

Fusion values

m(Sp) 0.0006 0.0001 0.0054
m(Pa) 0.0006 0.0003 0.0053
m(Cy) 0.0012 0.0002 0.0106

m(Sp ∪ Pa) 0.0328 0.0166 0.0898
m(Sp ∪ Cy) 0.0325 0.0166 0.0875
m(Cy ∪ Pa) 0.0324 0.0166 0.0866

m(Sp ∪ Cy ∪ Pa) 0.8999 0.9495 0.7145
m(Sp ∩ Pa) 0 0 0
m(Sp ∩ Cy) 0 0 0
m(Cy ∩ Pa) 0 0 0

m(Sp ∩ (Cy ∪ Pa)) 0 0 0.0001
m(Pa ∩ (Sp ∪ Cy)) 0 0 0.0001
m(Cy ∩ (Sp ∪ Pa)) 0 0 0.0002

Decision Cylinder Sphere Cylinder
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In all three cases, the uncertainty is quite large, and the algorithm ask for restarting the decision
process and keeps the decision taken in previous decision process. In our case the decision was that
the object is a ‘cylinder’, ‘sphere’, and ‘cylinder’ for the three analyzed points.

Analyzing Figure 11a, at the time of 4.08 s the object is decided to be a ‘cylinder’ because the
probability that the target object is a cylinder is very high, m(Cy) = 0.7777.

For the time interval of 4.3–4.9 s, where in Figure 11d the contradiction between the target object
being a ‘sphere’ or a ‘parallelepiped’ is larger than that the target object is a ‘sphere’ or a ‘cylinder’
respectively a ‘cylinder’ or a ‘parallelepiped’, the object is decided to be a ‘parallelepiped’ at first
because the probability for it being a ‘parallelepiped’ is larger than the probability of it being a ‘sphere’
or a ‘cylinder’. This situation is changed starting with second 5 of the simulation, when the probability
that the target object is a ‘sphere’ increase, the probability that the same object is a ‘cylinder’ remains
low and the probability that the target object is a ‘parallelepiped’ decrease below the value of the
‘sphere’ probability.

7. Conclusions

Any robot, no mater of its purpose, has a task to fulfill. That task can be either of grasping and
manipulation or just a transport task. To successfully complete its task, the robot must be equipped
with a number of sensors that will provide enough information about the work environment in which
the work is being done.

In this paper, we studied the situation in which the robot is equipped with a stereovision
system and a Kinect sensor to detect the environment. The robot’s job was to grab and manipulate
certain objects. With the help of two different systems, two 3D images of the environment can be
created, each one for the two sensor type. In these images, we isolated the target object and it is
compared with three template images, obtained through similar methods as the environment images.
The three template images represent the 3D virtual model of a sphere, a parallelepiped, and a cylinder.
The comparison is achieved with a template matching method, and following that we obtain a matching
percentage for each template tested against the desired image.

Because we wanted to develop the decision-making algorithm based on information received from
certain template matching methods, we considered as known the information that these algorithms
can provide. Moreover, to test different cases, we selected several sine signals that can provide all the
different cases that can occur in practice as input for our decision-making algorithm and output for the
template matching methods.

The goal of this paper is in part a data fusion problem with the purpose of classifying the objects in
visual range of a humanoid robot, so it can fulfill his grasping and manipulation task. We also wanted
to label the target object in one of three categories mentioned above, so that during the approach phase
on the target object, the robotic hand can prepare for grasping the object, lowering the time needed to
complete the task.

The stereovision system and the Kinect sensor presented in Section 3, represent the information
sources, called in this paper, the observers, name taken from the neutrosophic logic. These observers
specify the state in which the system is. One observer can specify seven states for the searched object.

With the help of neutrosophic logic, we determine the generalized belief values for each of the
seven states. The neutrosophic algorithm is applied to information gathered from both of the sensors.
We have chosen the neutrosophic logic, because it extends fuzzy logic, providing instruments for also
approaching the uncertain situations besides the true and false ones.

Using these belief values, we compute the fusion values on which we apply the classic DSm
combination rule, and build the decision-making algorithm presented in Section 5. To help develop
this decision-making algorithm we used a Petri net which provided us a clear method of switching
through system states under certain conditions.
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The decision-making algorithm analyzes the probability of completing all the possible tasks that
may appear in sensor data fusion and tackles these possibilities so that for every input the system will
have an output.

The presented method can be used successfully in real time applications, because it provides
a decision in all the cases in a very short time (Table 5). The algorithm can be extended so that it can
use information received from multiple sources or provide a decision starting from a high number of
system states. The number of observer/data sources is not limited nor is the system’s states. However,
while increasing the number of observers and system’s states, the data to be processed is increased
and the decision-making algorithm design is becoming a highly difficult task to achieve.

Table 5. Average execution time of the presented algorithm.

Method Execution Time (s)

Data neutrosophication for Obs. 1 0.0026
Data neutrosophication for Obs. 2 0.0026

Data fusion using DSmT 0.0002
Data deneutrosophication/decision-making 0.0092

Total time 0.0146

In the case of autonomous robots, these must be taught what to do and how to complete their tasks.
From this, the necessity of developing new intelligent and reasoning system arises. The developed
algorithm in this paper can be used successfully for target identification applications, object sorting,
image labeling, motion tracking, obstacle avoidance, edge detection, etc.
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Abstract: This article is based on new developments on a neutrosophic triplet group (NTG) and
applications earlier introduced in 2016 by Smarandache and Ali. NTG sprang up from neutrosophic
triplet set X: a collection of triplets (b, neut(b), anti(b)) for an b ∈ X that obeys certain axioms
(existence of neutral(s) and opposite(s)). Some results that are true in classical groups were
investigated in NTG and were shown to be either universally true in NTG or true in some peculiar
types of NTG. Distinguishing features between an NTG and some other algebraic structures such as:
generalized group (GG), quasigroup, loop and group were investigated. Some neutrosophic triplet
subgroups (NTSGs) of a neutrosophic triplet group were studied. In particular, for any arbitrarily
fixed a ∈ X, the subsets Xa = {b ∈ X : neut(b) = neut(a)} and ker fa = {b ∈ X| f (b) = neut( f (a))}
of X, where f : X → Y is a neutrosophic triplet group homomorphism, were shown to be NTSG and
normal NTSG, respectively. Both Xa and ker fa were shown to be a-normal NTSGs and found to
partition X. Consequently, a Lagrange-like formula was found for a finite NTG X; |X| = ∑

a∈X
[Xa :

ker fa]| ker fa| based on the fact that | ker fa|
∣∣|Xa|. The first isomorphism theorem X/ ker f ∼= Im f

was established for NTGs. Using an arbitrary non-abelian NTG X and its NTSG Xa, a Bol structure
was constructed. Applications of the neutrosophic triplet set, and our results on NTG in relation to
management and sports, are highlighted and discussed.

Keywords: generalized group; neutrosophic triplet set; neutrosophic triplet group; group

MSC: Primary 20N02; Secondary 20N05

1. Introduction

1.1. Generalized Group

Unified gauge theory has the algebraic structure of a generalized group abstrusely, in its physical
background. It has been a challenge for physicists and mathematicians to find a desirable unified
theory for twistor theory, isotopies theory, and so on. Generalized groups are instruments for
constructions in unified geometric theory and electroweak theory. Completely simple semigroups
are precisely generalized groups (Araujo et al. [1]). As recorded in Adeniran et al. [2], studies on
the properties and structures of generalized groups have been carried out in the past, and these have
been extended to smooth generalized groups and smooth generalized subgroups by Agboola [3,4],
topological generalized groups by Molaei [5], Molaei and Tahmoresi [6], and quotient space of
generalized groups by Maleki and Molaei [7].
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Definition 1 (Generalized Group(GG)). A generalized group X is a non-void set with a binary operation
called multiplication obeying the set of rules given below.

(i) (ab)c = a(bc) for all a, b, c ∈ X.
(ii) For each a ∈ X there is a unique e(a) ∈ X such that ae(a) = e(a)a = a (existence and uniqueness of

identity element).
(iii) For each a ∈ X, there is a−1 ∈ X such that aa−1 = a−1a = e(a) (existence of inverse element).

Definition 2. Let X be a non-void set. Let (·) be a binary operation on X. Whenever a · b ∈ X for all a, b ∈ X,
then (X, ·) is called a groupoid.

Whenever the equation c · x = d (or y · c = d) have unique solution with respect to x (or y) i.e., satisfies
the left (or right) cancellation law, then (X, ·) is called a left (or right) quasigroup. If a groupoid (X, ·) is both
a left quasigroup and right quasigroup, then it is called a quasigroup. If there is an element e ∈ X called the
identity element such that for all a ∈ X, a · e = e · a = a, then a quasigroup (X, ·) is called a loop.

Definition 3. A loop is called a Bol loop whenever it satisfies the identity

((ab)c)b = a((bc)b).

Remark 1. One of the most studied classes of loops is the Bol loop.

For more on quasigroups and loops, interested readers can check [8–15].
A generalized group X has the following properties:

(i) For each a ∈ X, there is a unique a−1 ∈ X.
(ii) e(e(a)) = e(a) and e(a−1) = e(a) if a ∈ X.

(iii) If X is commutative, then X is a group.

1.2. Neutrosophic Triplet Group

Neutrosophy is a novel subdivision of philosophy that studies the nature, origination, and ambit of
neutralities, including their interaction with ideational spectra. Florentin Smarandache [16] introduced
the notion of neutrosophic logic and neutrosophic sets for the first time in 1995. As a matter of fact,
the neutrosophic set is the generalization of classical sets [17], fuzzy sets [18], intuitionistic fuzzy
sets [17,19], and interval valued fuzzy sets [17], to cite a few. The growth process of neutrosophic
sets, fuzzy sets, and intuitionistic fuzzy sets are still evolving, with diverse applications. Some recent
research findings in these directions are [20–27].

Smarandache and Ali [28] were the first to introduce the notion of the neutrosophic triplet, which
they had earlier talked about at a conference. These neutrosophic triplets were used by them to
introduce the neutrosophic triplet group, which differs from the classical group both in fundamental
and structural properties. The distinction and comparison of the neutrosophic triplet group with the
classical generalized group were given. They also drew a brief outline of the potential applications
of the neutrosophic triplet group in other research fields. For discussions of results on neutrosophic
triplet groups, neutrosophic quadruples, and neutrosophic duplets of algebraic structures, as well as
new applications of neutrosophy, see Jaiyéo. lá and Smarandache [29]. Jaiyéo. lá and Smarandache [29]
were the first to introduce and study inverse property neutrosophic triplet loops with applications to
cryptography for the first time.
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Definition 4 (Neutrosophic Triplet Set-NTS). Let X be a non-void set together with a binary operation �

defined on it. Then X is called a neutrosophic triplet set if, for any a ∈ X, there is a neutral of ‘a’ denoted by
neut(a) (not necessarily the identity element) and an opposite of ‘a’ denoted by anti(a), with neut(a), anti(a) ∈
X such that

a � neut(a) = neut(a) � a = a and a � anti(a) = anti(a) � a = neut(a).

The elements a, neut(a) and anti(a) are together called neutrosophic triplet, and represented by
(a, neut(a), anti(a)).

Remark 2. For an a ∈ X, each of neut(a) and anti(a) may not be unique. In a neutrosophic triplet set (X, �),
an element b (or c) is the second (or third) component of a neutrosophic triplet if a, c ∈ X (a, b ∈ X) such that
a � b = b � a = a and a � c = c � a = b. Thus, (a, b, c) is a neutrosophic triplet.

Example 1 (Smarandache and Ali [28]). Consider (Z6,×6) such that Z6 = {0, 1, 2, 3, 4, 5} and ×6 is
multiplication in modulo 6. (2, 4, 2), (4, 4, 4), and (0, 0, 0) are neutrosophic triplets, but 3 will not give rise to a
neutrosophic triplet.

Definition 5 (Neutrosophic Triplet Group—NTG). Let (X, �) be a neutrosophic triplet set. Then (X, �) is
referred to as a neutrosophic triplet group if (X, �) is a semigroup. Furthermore, if (X, �) obeys the commutativity
law, then (X, �) is referred to as a commutative neutrosophic triplet group.

Let (X, �) be a neutrosophic triplet group. Whenever neut(ab) = neut(a)neut(b) for all a, b ∈ X,
then X is referred to as a normal neutrosophic triplet group.

Let (X, �) be a neutrosophic triplet group and let H ⊆ X. H is referred to as a neutrosophic triplet
subgroup (NTSG) of X if (H, �) is a neutrosophic triplet group. Whence, for any fixed a ∈ X, H is called
a-normal NTSG of X, written H

a
� X if ay anti(a) ∈ H for all y ∈ H.

Remark 3. An NTG is not necessarily a group. However, a group is an NTG where neut(a) = e, the general
identity element for all a ∈ X, and anti(a) is unique for each a ∈ X.

Example 2 (Smarandache and Ali [28]). Consider (Z10,⊗) such that c⊗ d = 3cd mod 10. (Z10,⊗) is a
commutative NTG but neither a GG nor a classical group.

Example 3 (Smarandache and Ali [28]). Consider (Z10, �) such that c � d = 5c + d mod 10. (Z10, �) is a
non-commutative NTG but not a classical group.

Definition 6 (Neutrosophic Triplet Group Homomorphism). Let f : X → Y be a mapping such that X
and Y are two neutrosophic triplet groups. Then f is referred to as a neutrosophic triplet group homomorphism
if f (cd) = f (c) f (d) for all c, d ∈ X. The kernel of f at a ∈ X is defined by

ker fa = {x ∈ X : f (x) = neut( f (a))}.

The Kernel of f is defined by
ker f =

⋃
a∈X

ker fa

such that fa = f |Xa , where Xa = {x ∈ X : neut(x) = neut(a)}.

Remark 4. The definition of neutrosophic triplet group homomorphism above is more general than that
in Smarandache and Ali [28]. In Theorem 5, it is shown that, for an NTG homomorphism f : X → Y,
f (neut(a)) = neut( f (a)) and f (anti(a)) = anti( f (a)) for all a ∈ X.
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The present work is a continuation of the study of a neutrosophic triplet group (NTG) and its
applications, which was introduced by Smarandache and Ali [28]. Some results that are true in classical
groups were investigated in NTG and will be proved to be either generally true in NTG or true in
some classes of NTG. Some applications of the neutrosophic triplet set, and our results on NTG in
relation to management and sports will be discussed.

The first section introduces GG and NTG and highlights existing results that are relevant to
the present study. Section 2 establishes new results on algebraic properties of NTGs and NTG
homomorphisms, among which are Lagrange’s Theorem and the first isomorphism theorem,
and presents a method of the construction of Bol algebraic structures using an NTG. The third section
describes applications of NTGs to human management and sports.

2. Main Results

We shall first establish the relationship among generalized groups, quasigroups, and loops with
a neutrosophic triplet group assumed.

Lemma 1. Let X be a neutrosophic triplet group.

1. X is a generalized group if it satisfies the left (or right) cancellation law or X is a left (or right) quasigroup.
2. X is a generalized group if and only if each element x ∈ X has a unique neut(x) ∈ X.
3. Whenever X has the cancellation laws (or is a quasigroup), then X is a loop and group.

Proof. 1. Let x have at least two neutral elements, say neut(x), neut(x)′ ∈ X. Then xx = xx ⇒
xx anti(x) = xx anti(x)⇒ x neut(x) = x neut(x)′

left quasigroup
=⇒

left cancellation law
neut(x) = neut(x)′. Therefore,

X is a generalized group. Similarly, X is a generalized group if it is has the right cancellation law
or if it is a right quasigroup.

2. This follows by definition.
3. This is straightforward because every associative quasigroup is a loop and group.

2.1. Algebraic Properties of Neutrosophic Triplet Group

We now establish some new algebraic properties of NTGs.

Theorem 1. Let X be a neutrosophic triplet group. For any a ∈ X, anti
(
anti(a)

)
= a.

Proof. anti
(
anti(a)

)
anti(a) = neut

(
anti(a)

)
= neut(a) by Theorem 1 ([29]). After multiplying by a,

we obtain [
anti
(
anti(a)

)
anti(a)

]
a = neut(a)a = a. (1)

LHS = anti
(
anti(a)

)(
anti(a)a

)
= anti

(
anti(a)

)
neut(a)

= anti
(
anti(a)

)
neut

(
anti(a)

)
= anti

(
anti(a)

)
neut

(
anti
(
anti(a)

))
= anti

(
anti(a)

)
.

(2)

Hence, based on Equations (1) and (2), anti
(
anti(a)

)
= a.

Theorem 2. Let X be a neutrosophic triplet group such that the left cancellation law is satisfied,
and neut(a) = neut

(
a anti(b)

)
if and only if a anti(b) = a. Then X is an idempotent neutrosophic triplet

group if and only if neut(a)anti(b) = anti(b)neut(a) ∀ a, b ∈ X.

Proof. neut(a)anti(b) = anti(b)neut(a) ⇔ (a neut(a))anti(b) = a anti(b)neut(a) ⇔ a anti(b) =

a anti(b)neut(a) ⇔ neut(a) = neut
(
a anti(b)

) ⇔ a anti(b) = a ⇔ a anti(b)b = ab ⇔ a neut(b) =

ab ⇔ anti(a)a neut(b) = anti(a)ab ⇔ neut(a)neut(b) = neut(a)b ⇔ neut(b) = b ⇔ b = bb.
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Theorem 3. Let X be a normal neutrosophic triplet group in which neut(a)anti(b) = anti(b)neut(a) ∀ a, b ∈ X.
Then, anti(ab) = anti(b)anti(a) ∀ a, b ∈ X.

Proof. Since anti(ab)(ab) = neut(ab), then by multiplying both sides of the equation on the right by
anti(b)anti(a), we obtain[

anti(ab)ab
]
anti(b)anti(a) = neut(ab)anti(b)anti(a). (3)

Going by Theorem 1([29]),[
anti(ab)ab

]
anti(b)anti(a) = anti(ab)a

(
b anti(b)

)
anti(a) = anti(ab)a(neut(b)anti(a))

= anti(ab)(a anti(a))neut(b) = anti(ab)
(
neut(a)neut(b)

)
= anti(ab)neut(ab) = anti(ab)neut

(
anti(ab)) = anti(ab).

(4)

Using Equations (3) and (4), we obtain[
anti(ab)ab

]
anti(b)anti(a) = anti(ab)⇒

neut(ab)
(
anti(b)anti(a)

)
= anti(ab)⇒ anti(ab) = anti(b)anti(a).

It is worth characterizing the neutrosophic triplet subgroup of a given neutrosophic triplet group
to see how a new NTG can be obtained from existing NTGs.

Lemma 2. Let H be a non-void subset of a neutrosophic triplet group X. The following are equivalent.

(i) H is a neutrosophic triplet subgroup of X.
(ii) For all a, b ∈ H, a anti(b) ∈ H.

(iii) For all a, b ∈ H, ab ∈ H, and anti(a) ∈ H.

Proof. (i)⇒ (ii) If H is an NTSG of X and a, b ∈ H, then anti(b) ∈ H. Therefore, by closure property,
a anti(b) ∈ H ∀ a, b ∈ H.

(ii)⇒ (iii) If H �= ∅, and a, b ∈ H, then we have b anti(b) = neut(b) ∈ H, neut(b)anti(b) = anti(b) ∈ H,
and ab = a anti(anti(b)) ∈ H, i.e., ab ∈ H.

(iii)⇒ (i) H ⊆ X, so H is associative since X is associative. Obviously, for any a ∈ H, anti(a) ∈ H.
Let a ∈ H, then anti(a) ∈ H. Therefore, a anti(a) = anti(a)a = neut(a) ∈ H. Thus, H is an
NTSG of X.

Theorem 4. Let G and H be neutrosophic triplet groups. The direct product of G and H defined by

G× H = {(g, h) : g ∈ G and h ∈ H}

is a neutrosophic triplet group under the binary operation ◦ defined by

(g1, h1) ◦ (g2, h2) = (g1g2, h1h2).

Proof. This is simply done by checking the axioms of neutrosophic triplet group for the pair (G×H, ◦),
in which case neut(g, h) =

(
neut(g), neut(h)

)
and anti(g, h) =

(
anti(g), anti(h)

)
.

Lemma 3. Let H = {Hi}i∈Ω be a family of neutrosophic triplet subgroups of a neutrosophic triplet group
X such that

⋂
i∈Ω

Hi �= ∅. Then
⋂

i∈Ω

Hi is a neutrosophic triplet subgroup of X.
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Proof. This is a routine verification using Lemma 2.

2.2. Neutrosophic Triplet Group Homomorphism

Let us now establish results on NTG homomorphisms, its kernels, and images, as well as
a Lagrange-like formula and the First Isomorphism Theorem for NTGs.

Theorem 5. Let f : X → Y be a homomorphism where X and Y are two neutrosophic triplet groups.

1. f (neut(a)) = neut( f (a)) for all a ∈ X.
2. f (anti(a)) = anti( f (a)) for all a ∈ X.
3. If H is a neutrosophic triplet subgroup of X, then f (H) is a neutrosophic triplet subgroup of Y.
4. If K is a neutrosophic triplet subgroup of Y, then ∅ �= f−1(K) is a neutrosophic triplet subgroup of X.
5. If X is a normal neutrosophic triplet group and the set Xf = {(neut(a), f (a)) : a ∈ X} with the product

(neut(a), f (a))(neut(b), f (b)) := (neut(ab), f (ab)), then

X f is a neutrosophic triplet group.

Proof. Since f is an homomorphism, f (ab) = f (a) f (b) for all a, b ∈ X.

1. Place b = neut(a) in f (ab) = f (a) f (b) to obtain f
(
a neut(a)

)
= f (a) f (neut(a)) ⇒ f (a) =

f (a) f (neut(a)). Additionally, place b = neut(a) in f (ba) = f (b) f (a) to obtain f
(
neut(a)a

)
=

f (neut(a)) f (a)⇒ f (a) = f (neut(a)) f (a). Thus, f (neut(a)) = neut( f (a)) for all a ∈ X.
2. Place b = anti(a) in f (ab) = f (a) f (b) to obtain f

(
a anti(a)

)
= f (a) f (anti(a)) ⇒

f (neut(a)) = f (a) f (anti(a)) ⇒ neut( f (a)) = f (a) f (anti(a)). Additionally, place b = anti(a)
in f (ba) = f (b) f (a) to obtain f

(
anti(a)a

)
= f (anti(a)) f (a) ⇒ f (neut(a)) = f (a) f (anti(a)) ⇒

neut( f (a)) = f (anti(a)) f (a). Thus, f (anti(a)) = anti( f (a)) for all a ∈ X.
3. If H is an NTSG of G, then f (H) = { f (h) ∈ Y : h ∈ H}. We shall prove that f (H) is an NTSG of

Y by Lemma 2.
Since f (neut(a)) = neut( f (a)) ∈ f (H) for a ∈ H, f (H) �= ∅. Let a′, b′ ∈ f (H). Then a′ = f (a)
and b′ = f (b). Thus, a′ anti(b′) = f (a)anti( f (b)) = f (a) f (anti(b)) = f (a anti(b)) ∈ f (H).
Therefore, f (H) is an NTSG of Y.

4. If K is a neutrosophic triplet subgroup of Y, then ∅ �= f−1(K) = {a ∈ X : f (a) ∈ K}. We shall
prove that f (H) is an NTSG of Y by Lemma 2.
Let a, b ∈ f−1(K). Then a′, b′ ∈ K such that a′ = f (a) and b′ = f (b). Thus, a′ anti(b′) =

f (a)anti( f (b)) = f (a) f (anti(b)) = f (a anti(b)) ∈ K ⇒ a anti(b) ∈ f−1(K). Therefore, f−1(K) is
an NTSG of X.

5. Given the neutrosophic triplet group X and the set X f = {(neut(a), f (a)) : a ∈ X} with the
product (neut(a), f (a))(neut(b), f (b)) := (neut(ab), f (ab)). X f is a groupoid.
(neut(a), f (a))(neut(b), f (b)) · (neut(z), f (z)) = (neut(ab), f (ab))(neut(z), f (z)) =

(neut(abz), f (abz))
= (neut(a), f (a))(neut(bz), f (bz)) = (neut(a), f (a)) · (neut(b), f (b))(neut(z), f (z)).
Therefore, X f is a semigroup.
For (neut(a), f (a)) ∈ X f , let neut(neut(a), f (a)) =

(
neut(neut(a)), neut( f (a))

)
. Then

neut(neut(a), f (a)) =
(
neut(a), ( f (neut(a))

) ∈ X f . Additionally, let anti(neut(a), f (a)) =(
anti(neut(a)), anti( f (a))

)
. Then anti(neut(a), f (a)) =

(
neut(a), f (anti(a))

) ∈ X f .
Thus, (neut(a), f (a))neut(neut(a), f (a)) = (neut(a), f (a))

(
neut(a), ( f (neut(a))

)
=

(neut(a), f (a))
(
neut(anti(a)), ( f (neut(a))

)
=

(
neut(a anti(a)), f (a neut(a))

)
=(

neut(neut(a)), f (a neut(a))
)

= (neut(a), f (a)) ⇒ (neut(a), f (a))neut(neut(a), f (a)) =

(neut(a), f (a)) and similarly, neut(neut(a), f (a))(neut(a), f (a)) = (neut(a), f (a)).
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On the other hand, (neut(a), f (a))anti(neut(a), f (a)) = (neut(a), f (a)) · (neut(a), f (anti(a))
)
=

(neut(a), f (a))
(
neut(anti(a)), ( f (anti(a))

)
=

(
neut(a anti(a)), f (a anti(a))

)
=(

neut(neut(a)), f (neut(a))
)
=
(
neut(a), ( f (neut(a))

)
= neut(neut(a), f (a)) ⇒ (neut(a), f (a)) ·

anti(neut(a), f (a)) = neut(neut(a), f (a)) and similarly, anti(neut(a), f (a)) · (neut(a), f (a)) =

neut(neut(a), f (a)).

Therefore, X f is a neutrosophic triplet group.

Theorem 6. Let f : X → Y be a neutrosophic triplet group homomorphism.

1. ker fa
a
� X.

2. Xa
a
� X.

3. Xa is a normal neutrosophic triplet group.
4. anti(cd) = anti(d)anti(c) ∀ c, d ∈ Xa.
5. Xa =

⋃
c∈Xa

c ker fa for all a ∈ X.

6. If X is finite, |Xa| = ∑c∈Xa |c ker fa| = [Xa : ker fa]| ker fa| for all a ∈ X where [Xa : ker fa] is the
index of ker fa in Xa, i.e., the number of distinct left cosets of ker fa in Xa.

7. X =
⋃

a∈X
Xa.

8. If X is finite, |X| = ∑
a∈X

[Xa : ker fa]| ker fa|.

Proof. 1. f (neut(a)) = neut( f (a)) = neut(neut( f (a))) = neut( f (neut(a))) ⇒ neut(a) ∈ ker fa ⇒
ker fa �= ∅. Let c, d ∈ ker fa, then f (c) = f (d) = neut( f (a)). We shall use Lemma 2.
f (c anti(d)) = f (c) f (anti(d)) = f (c)anti( f (d)) = neut( f (a))anti(neut( f (a))) =

neut( f (a))neut( f (a)) = neut( f (a))⇒ c anti(d) ∈ ker fa.
Thus, ker fa is a neutrosophic triplet subgroup of X. For the a-normality, let d ∈
ker fa, then f (d) = neut( f (a)). Therefore, f (ad anti(a)) = f (a) f (d) f (anti(a)) =

f (a)neut( f (a))anti( f (a)) = f (a)anti( f (a)) = neut( f (a))⇒ ad anti(a) ∈ ker fa for all d ∈ ker fa.
Therefore, ker fa

a
� X.

2. Xa = {c ∈ X : neut(c) = neut(a)}. neut(neut(a)) = neut(a)⇒ neut(a) ∈ Xa. Therefore, Xa �= ∅.
Let c, d ∈ Xa. Then neut(c) = neut(a) = neut(d). (cd)neut(a) = c(d neut(a)) = c(d neut(d)) =
cd, and neut(a)(cd) = (neut(a)c)d = (neut(c)c)d = cd. Therefore, neut(cd) = neut(a).
neut(anti(c)) = anti(neut(c)) = anti(neut(a)) = neut(a) ⇒ anti(c) ∈ Xa. Thus, Xa is
a neutrosophic triplet subgroup of X.
neut(anti(a)) = neut(a) ⇒ anti(a) ∈ Xa. Therefore, (ac anti(a))neut(a) =

(ac)
(
anti(a)neut(a)

)
= ac anti(a), and neut(a)(ac anti(a)) = neut(a)a(c anti(a)) = ac anti(a).

Thus, neut(ac anti(a)) = neut(a)⇒ ac anti(a) ∈ Xa. Therefore, Xa
a
� X.

3. Let c, d ∈ Xa. Then neut(c) = neut(a) = neut(d). Therefore, neut(cd) = neut(a) =

neut(a)neut(a) = neut(c)neut(d). Thus, Xa is a normal NTG.
4. For all c, d ∈ Xa, neut(c)anti(d) = neut(a)anti(d) = neut(d)anti(d) = anti(d) =

anti(d)neut(d) = anti(d)neut(a) = anti(d). Therefore, based on Point 3 and Theorem 3,
anti(cd) = anti(d)anti(c) ∀ c, d ∈ Xa.

5. Define a relation # on Xa as follows: c # d if anti(c)d ∈ ker fa for all c, d ∈ Xa. anti(c)c =

neut(c) = neut(a)⇒ anti(c)c ∈ ker fa ⇒ c # c. Therefore, # is reflexive.

c # d ⇒ anti(c)d ∈ ker fa
by 4.⇒ anti(anti(c)d) ∈ ker fa ⇒ anti(d)c ∈ ker fa ⇒ d # c. Therefore,

# is symmetric.
c # d, d # z ⇒ anti(c)d, anti(d)z ∈ ker fa ⇒ anti(c)d anti(d)z = anti(c)neut(d)z =

anti(c)neut(a)z = anti(c)z ∈ ker fa ⇒ c # z. Therefore, # is transitive and # is an
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equivalence relation.
The equivalence class [c] fa = {d : anti(c)d ∈ ker fa} = {d : c anti(c)d ∈ c ker fa} = {d :
neut(c)d ∈ c ker fa} = {d : neut(a)d ∈ c ker fa} = {d : d ∈ c ker fa} = c ker fa. Therefore,
Xa/ #= {[c] fa}c∈Xa = {c ker fa}c∈Xa .
Thus, Xa =

⋃
c∈Xa

c ker fa for all a ∈ X.

6. If X is finite, then | ker fa| = |c ker fa| for all c ∈ Xa. Thus, |Xa| = ∑c∈Xa |c ker fa| = [Xa :
ker fa]| ker fa| for all a ∈ X where [Xa : ker fa] is the index of ker fa in Xa, i.e., the number of
distinct left cosets of ker fa in Xa.

7. Define a relation ∼ on X: c ∼ d if neut(c) = neut(d). ∼ is an equivalence relation on X, so
X/ ∼= {Xc}c∈X and, therefore, X =

⋃
a∈X

Xa.

8. Hence, based on Point 7, if X is finite, then |X| = ∑
a∈X

|Xa| = ∑
a∈X

[Xa : ker fa]| ker fa|.

Theorem 7. Let a ∈ X and f : X → Y be a neutrosophic triplet group homomorphism. Then

1. f is a monomorphism if and only if ker fa = {neut(a)} for all a ∈ X;
2. the factor set X/ ker f =

⋃
a∈X

Xa/ ker fa is a neutrosophic triplet group (neutrosophic triplet factor group)

under the operation defined by
c ker fa · d ker fb = (cd) ker fab.

Proof. 1. Let ker fa = {neut(a)} and let c, d ∈ X. If f (c) = f (d), this implies that f (c anti(d)) =
f (d)anti( f (d)) = f (d anti( f (d)))⇒ f (c anti(d)) = neut( f (d))⇒ c anti(d) ∈ ker fd ⇒

c anti(d) = neut(d) = neut(anti(d)). (5)

Similarly, f (anti(d)c) = neut( f (d))⇒ anti(d)c ∈ ker fd ⇒

anti(d)c = neut(anti(d)). (6)

Using Equations (5) and (6), c = anti(anti(d)) = d. Therefore, f is a monomorphism.

Conversely, if f is mono, then f (d) = f (c) ⇒ d = c. Let k ∈ ker fa, a ∈ X.
Then f (k) = neut( f (a)) = f (neut(a))⇒ k = neut(a). Therefore, ker fa = {neut(a)} for all
a ∈ X.

2. Let c ker fa, d ker fb, z ker fc ∈ X/ ker f =
⋃

a∈X Xa/ ker fa.

Groupoid: Based on the multiplication c ker fa · d ker fb = (cd) ker fab, the factor set X/ ker f is
a groupoid.

Semigroup:
(
c ker fa · d ker fb

) · z ker fc = (cdz) ker fabc = c ker fa
(
d ker fb · z ker fc

)
.

Neutrality: Let neut(c ker fa) = neut(c) ker fneut(a). Then c ker fa · neut(c ker fa) = c ker fa ·
neut(c) ker fneut(a) = (c neut(c)) ker fa neut(a) = c ker fa and similarly, neut(c ker fa) ·
c ker fa = c ker fa.

Opposite: Let anti(c ker fa) = anti(c) ker fanti(a). Then c ker fa · anti(c ker fa) = c ker fa ·
anti(c) ker fanti(a) = (c anti(c)) ker fa anti(a) = neut(c) ker fneut(a). Similarly,
anti(c ker fa)) · c ker fa = neut(c) ker fneut(a).

∴
(
X/ ker f , ·) is an NTG.
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Theorem 8. Let φ : X → Y be a neutrosophic triplet group homomorphism. Then X/ ker φ ∼= Im φ.

Proof. Based on Theorem 6(7), X =
⋃

a∈X
Xa. Similarly, define a relation≈ on φ(X) = Im φ: φ(c) ≈ φ(d)

if neut(φ(c)) = neut(φ(d)). ≈ is an equivalence relation on φ(X), so φ(X)/ ≈= {φ(Xc)}c∈X and

Im φ =
⋃

c∈X
φ(Xc). It should be noted that Xa

a
� X in Theorem 6(2).

Let φ̄a : Xa/ ker φa → φ(Xa) given by φ̄a(c ker φa) = φ(c). It should be noted that, by Theorem 6(1),

ker φa
a
� X. Therefore, c ker φa = d ker φa ⇒ anti(d)c ker φa = anti(d)d ker φa = neut(d) ker φa =

ker φa ⇒ anti(d)c ker φa = ker φa ⇒ φ(anti(d)c) = neut(φ(a)) ⇒ anti(φ(d))φ(c) = neut(φ(a)) ⇒
φ(d)anti(φ(d))φ(c) = φ(d)neut(φ(a)) ⇒ neut(φ(d))φ(c) = φ(d)neut(φ(a)) ⇒ φ(neut(d))φ(c) =

φ(d)φ(neut(a)) ⇒ φ(neut(d) c)) = φ(d neut(a)) ⇒ φ(neut(a) c)) = φ(d neut(a)) ⇒ φ(neut(c) c)) =
φ(d neut(c))⇒ φ(c) = φ(d)⇒ φ̄a(c ker φa) = φ̄a(d ker φa). Thus, φ̄a is well defined.

φ̄a(c ker φa) = φ̄a(d ker φa)⇒ φ(c) = φ(d)⇒ anti(φ(d))φ(c) = anti(φ(d))φ(d) = neut(φ(d))⇒
φ(anti(d))φ(c) = neut(φ(d)) = φ(neut(d)) = φ(neut(a)) = neut(φ(a)) ⇒ φ(anti(d) c) =

neut(φ(a)) ⇒ anti(d) c ∈ ker φa ⇒ d anti(d) c ∈ d ker φa ⇒ neut(d) c ∈ d ker φa ⇒ neut(a) c ∈
d ker φa ⇒ c ∈ d ker φa

Theorem 6(1)
=⇒ c ker φa = d ker φa. This means that φ̄a is 1-1. φ̄a is obviously onto.

Thus, φ̄a is bijective.
Now, based on the above and Theorem 7(2), we have a bijection

Φ =
⋃

a∈X
φ̄a : X/ ker φ =

⋃
a∈X

Xa/ ker φa → Im φ = φ(X) =
⋃

a∈X
φ(Xa)

defined by Φ(c ker φa) = φ(c). Thus, if c ker φa, d ker φb ∈ X/ ker φ, then

Φ
(

c ker φa · d ker φb

)
= Φ

(
cd ker φab

)
= φ(cd) = φ(c)φ(d) = Φ

(
c ker φa

)
Φ
(
d ker φb

)
.

∴ X/ ker φ ∼= Im φ.

2.3. Construction of Bol Algebraic Structures

We now present a method of constructing Bol algebraic structures using an NTG.

Theorem 9. Let X be a non-abelian neutrosophic triplet group and let A = Xa × X for any fixed a ∈ X.
For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. Let a, b, c ∈ A. By checking, it is true that a ◦ (b ◦ c) �= (a ◦ b) ◦ c. Therefore, (A, ◦) is
non-associative. Xa is a normal neutrosophic triplet group by Theorem 6(3). A is a groupoid.

Let us now verify the Bol identity:

((a ◦ b) ◦ c) ◦ b = a ◦ ((b ◦ c) ◦ b)

LHS = ((a ◦ b) ◦ c) ◦ b =
(

h1h2h3h2, h2h3h2g1 anti(h2)g2 anti(h3)g3 anti(h2)g2

)
.
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Following Theorem 6(4),

RHS = a ◦ ((b ◦ c) ◦ b) =(
h1h2h3h2, h2h3h2g1 anti

(
h2h3h2

)
h2h3g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) anti(h2)h2h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) neut(h2)h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) neut(a)h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)anti(h3)h3g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)neut(h3)g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)neut(a)g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)g2 anti(h3)g3 anti(h2)g2

)
.

Therefore, LHS = RHS. Hence, (A, ◦) is a Bol groupoid.

Corollary 1. Let H be a subgroup of a non-abelian neutrosophic triplet group X, and let A = H × X.
For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. A subgroup H is a normal neutrosophic triplet group. The rest of the claim follows from
Theorem 9.

Corollary 2. Let H be a neutrosophic triplet subgroup (which obeys the cancellation law) of a non-abelian
neutrosophic triplet group X, and let A = H × X. For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. By Theorem 1(3), H is a subgroup of X. Hence, following Corollary 1, (A,◦) is a Bol groupoid.

Corollary 3. Let H be a neutrosophic triplet subgroup of a non-abelian neutrosophic triplet group X that has
the cancellation law and let A = H × X. For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol loop.

Proof. By Theorem 1(3), X is a non-abelian group and H is a subgroup of X. Hence, (A, ◦) is a loop
and a Bol loop by Theorem 9.
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3. Applications in Management and Sports

3.1. One-Way Management and Division of Labor

Consider a company or work place consisting of a set of people X with |X| number of people.
A working unit or subgroup with a leader ‘a’ is denoted by Xa.

neut(x) for any x ∈ X represents a co-worker (or co-workers) who has (have) a good (non-critical)
working relationship with x, while anti(x) represents a co-worker (or co-workers) whom x considers
as his/her personal critic(s) at work.

Hence, Xa can be said to include both critics and non-critics of each worker x. It should be
noted that in Xa, neut(a) = neut(x) for all x ∈ Xa. This means that every worker in Xa has a good
relationship with the leader ‘a’.

Thus, by Theorem 6(7)—X =
⋃

a∈X
Xa and |X| = Σa∈X |Xa|—the company or work place X can be

said to have a good division of labor for effective performance and maximum output based on the
composition of its various units (Xa). See Figure 1.

X (company)

Xa1

Working Unit Working Unit

Xa2

a2

Leader

neut(x) x anti(x) . . .

Xa3 . . .

Working Unit

Figure 1. One-way management and division of labor.

3.2. Two-Way Management Division of Labor

Consider a company or work place consisting of a set of people X with |X| number of people at
a location A and another company or work place consisting of people Y with |Y| number of people at
another location B. Assume that both companies are owned by the same person f . Hence, f : X → Y
can be considered as a movement (transfer) or working interaction between workers at A and at B.
The fact that f is a neutrosophic triplet group homomorphism indicates that the working interaction
between X and Y is preserved.

Let ‘a’ be a unit leader at A whose work correlates to another leader f (a) at B.
Then Ker fa represents the set of workers x in a unit at A under the leadership of ‘a’ such that there are
other, corresponding workers f (x) at B under the leadership of f (a). Here, f (x) = neut( f (a)) means
that workers f (x) at B under the leadership of f (a) are loyal and in a good working relationship.
The mapping fa shows that the operation of a subgroup leader (the operation is denoted by ‘a’) is
subject to the modus operandi of the owner of the two companies, where the owner is denoted by f .

The final formula |X| = ∑
x∈X

[Xa : ker fa]|ker fa| in Theorem 6(8) shows that the overall performance

of the set of people X is determined by how the unit leaders ‘a’ at A properly harmonize with the unit
leaders at B in the effective administration of ker fa and Xa (Figure 2).
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X (Company)

Xa1

Working Unit

ker f

ker fa1 ker fa2

a2

Leader

neut(x) x anti(x) . . .

ker fa3 . . .

Xa2 . . .

Location A

Location B

Company Owner f

Y (Company)

Im f

f (x) f (a1)

Leader

f (a2) . . .

Figure 2. Two-way management division of labor.

3.3. Sports

In the composition of a team, a coach can take Xa as the set of players who play in a particular
department (e.g., forward, middle field, or defence), where a is the leader of that department.
Let neut(x) represent player(s) whose performance is the same as that of player x, and let anti(x)
represent player(s) that can perform better than player x. It should be noted that the condition
neut(x) = neut(a) for all x ∈ Xa means that the department Xa has player(s) who are equal in
performance; i.e., those whose performance are equal to that of the departmental leader a. Hence,
a neutrosophic triplet (x, neut(x), anti(x)) is a triple from which a coach can make a choice of his/her
starting player and make a substitution. The neutrosophic triplet can also help a coach to make
the best alternative choice when injuries arise. For instance, in the goal keeping department (for
soccer/football), three goal keepers often make up the team for any international competition. Imagine
an incomplete triplet (x, neut(x), ?), i.e., no player is found to be better than x, which reduces to
a duplet.

Xa can also be used for grouping teams in competitions in the preliminaries. If x = team,
then anti(x) = teams that can beat x and neut(x) = teams that can play draw with x. Therefore,
neutrosophic triplet (x, neut(x), anti(x)) is a triplet with which competition organizers can draw teams
into groups for a balanced competition. The Fédération Internationale de Football Association (FIFA)
often uses this template in drawing national teams into groups for its competitions. Club teams from
various national leagues, to qualify for continental competitions (e.g., Union of European Football
Associations (UEFA) Champions League and Confederation of African Football (CAF) Champions
League), have to be among the five. This implies the application of duplets, triplets, quadruples,
etc. (Figure 3).
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x neut(x)

anti(x)

Figure 3. Sports.
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Abstract: Neutrosophic cubic sets are the more generalized tool by which one can handle imprecise
information in a more effective way as compared to fuzzy sets and all other versions of fuzzy
sets. Neutrosophic cubic sets have the more flexibility, precision and compatibility to the system as
compared to previous existing fuzzy models. On the other hand the graphs represent a problem
physically in the form of diagrams, matrices etc. which is very easy to understand and handle. So the
authors applied the Neutrosophic cubic sets to graph theory in order to develop a more general
approach where they can model imprecise information through graphs. We develop this model by
introducing the idea of neutrosophic cubic graphs and introduce many fundamental binary operations
like cartesian product, composition, union, join of neutrosophic cubic graphs, degree and order of
neutrosophic cubic graphs and some results related with neutrosophic cubic graphs. One of very
important futures of two neutrosophic cubic sets is the R−union that R−union of two neutrosophic
cubic sets is again a neutrosophic cubic set, but here in our case we observe that R−union of two
neutrosophic cubic graphs need not be a neutrosophic cubic graph. Since the purpose of this new
model is to capture the uncertainty, so we provide applications in industries to test the applicability
of our defined model based on present time and future prediction which is the main advantage of
neutrosophic cubic sets.

Keywords: neutrosophic cubic set; neutrosophic cubic graphs; applications of neutrosophic
cubic graphs

MSC: 68R10; 05C72; 03E72

1. Introduction

In 1965, Zadeh [1] published his seminal paper “Fuzzy Sets” which described fuzzy set theory and
consequently fuzzy logic. The purpose of Zadeh’s paper was to develop a theory which could deal with
ambiguity and imprecision of certain classes or sets in human thinking, particularly in the domains of
pattern recognition, communication of information and abstraction. This theory proposed making the
grade of membership of an element in a subset of a universal set a value in the closed interval [0, 1]
of real numbers. Zadeh’s ideas have found applications in computer sciences, artificial intelligence,
decision analysis, information sciences, system sciences, control engineering, expert systems, pattern
recognition, management sciences, operations research and robotics. Theoretical mathematics has
also been touched by fuzzy set theory. The ideas of fuzzy set theory have been introduced into

Symmetry 2018, 10, 203; doi:10.3390/sym10060203 www.mdpi.com/journal/symmetry343
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topology, abstract algebra, geometry, graph theory and analysis. Further, he made the extension of
fuzzy set to interval-valued fuzzy sets in 1975, where one is not bound to give a specific membership
to a certain element. In 1975, Rosenfeld [2] discussed the concept of fuzzy graphs whose basic idea was
introduced by Kauffmann [3] in 1973. The fuzzy relations between fuzzy sets were also considered
by Rosenfeld and he developed the structure of fuzzy graphs obtaining analogs of several graph
theoretical concepts [4]. Bhattacharya provided further studies on fuzzy graphs [5]. Akram and
Dudek gave the idea of interval valued fuzzy graphs in 2011 where they used interval membership for
an element in the vertex set [6]. Akram further extended the idea of interval valued fuzzy graphs to
Interval-valued fuzzy line graphs in 2012. More detail of fuzzy graphs, we refer the reader to [7–12].
In 1986, Atanassov [13] use the notion of membership and non-membership of an element in a set X
and gave the idea of intuitionistic fuzzy sets. He extended this idea to intuitionistic fuzzy graphs and
for more detail in this direction, we refer the reader to [14–20]. Akram and Davvaz [21] introduced the
notion of strong intuitionistic fuzzy graphs and investigated some of their properties. They discussed
some propositions of self complementary and self weak complementary strong intuitionistic fuzzy
graphs. In 1994, Zhang [22] started the theory of bipolar fuzzy sets as a generality of fuzzy sets. Bipolar
fuzzy sets are postponement of fuzzy sets whose membership degree range is [−1, 1]. Akram [23,24]
introduced the concepts of bipolar fuzzy graphs, where he introduced the notion of bipolar fuzzy
graphs, described various methods of their construction, discussed the concept of isomorphisms of
these graphs and investigated some of their important properties. He then introduced the notion of
strong bipolar fuzzy graphs and studied some of their properties. He also discussed some propositions
of self complementary and self weak complementary strong bipolar fuzzy graphs and applications,
for example see [25]. Smarandache [26–28] extended the concept of Atanassov and gave the idea of
neutrosophic sets. He proposed the term “neutrosophic” because “neutrosophic” etymologically comes
from “neutrosophy” This comes from the French neutre < Latin neuter, neutral, and Greek sophia,
skill/wisdom, which means knowledge of neutral thought, and this third/neutral represents the main
distinction between “fuzzy” and “intuitionistic fuzzy” logic/set, i.e., the included middle component
(Lupasco-Nicolescu’s logic in philosophy), i.e., the neutral/indeterminate/unknown part (besides
the “truth”/“membership” and “falsehood”/“non-membership” components that both appear in
fuzzy logic/set). See the Proceedings of the First International Conference on Neutrosophic Logic,
The University of New Mexico, Gallup Campus, 1–3 December 2001, at http://www.gallup.unm.edu/
~smarandache/FirstNeutConf.htm.

After that, many researchers used the idea of neutrosophic sets in different directions. The idea
of neutrosophic graphs is provided by Kandasamy et al. in the book title as Neutrosophic graphs,
where they introduce idea of neutrosophic graphs [29]. This study reveals that these neutrosophic
graphs give a new dimension to graph theory. An important feature of this book is that it contains
over 200 neutrosophic graphs to provide better understandings of these concepts. Akram and others
discussed different aspects of neutrosophic graphs [30–33]. Further Jun et al. [34] gave the idea of cubic
set and it was characterized by interval valued fuzzy set and fuzzy set, which is more general tool to
capture uncertainty and vagueness, while fuzzy set deals with single value membership and interval
valued fuzzy set ranges the membership in the form of interval. The hybrid platform provided by
the cubic set is the main advantage, in that it contains more information then a fuzzy set and interval
valued fuzzy set. By using this concept, we can solve different problems arising in several areas and
can pick finest choice by means of cubic sets in various decision making problems. This hybrid nature
of the cubic set attracted these researchers to work in this field. For more detail about cubic sets and
their applications in different research areas, we refer the reader to [35–37]. Recently, Rashid et al. [38]
introduced the notion of cubic graphs where they introduced many new types of graphs and provided
their application. More recently Jun et al. [39,40] combined neutrosophic set with cubic sets and gave
the idea of Neutrosophic cubic set and defined different operations.

Therefore, the need was felt to develop a model for neutrosophic cubic graphs which is a more
generalized tool to handle uncertainty. In this paper, we introduce the idea of neutrosophic cubic
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graphs and introduce the fundamental binary operations, such as the cartesian product, composition,
union, join of neutrosophic cubic graphs, degree, order of neutrosophic cubic graphs and some results
related to neutrosophic cubic graphs. We observe that R-union of two neutrosophic cubic graphs
need not to be a neutrosophic cubic graph. At the end, we provide applications of neutrosophic cubic
graphs in industries to test the applicability of our presented model.

2. Preliminaries

We recall some basic definitions related to graphs, fuzzy graphs and neutrosophic cubic sets.

Definition 1. A graph is an ordered pair G∗ = (V, E), where V is the set of vertices of G∗ and E is the set of
edges of G∗.

Definition 2. A fuzzy graph [2–4] with an underlying set V is defined to be a pair G = (μ, ν) where μ is
a fuzzy function in V and ν is a fuzzy function in E ⊆ V × V such that ν({x, y}) ≤ min(μ(x), μ(y)) for all
{x, y} ∈ E.

We call μ the fuzzy vertex function of V, ν the fuzzy edge function of E, respectively. Please note
that ν is a symmetric fuzzy relation on μ. We use the notation xy for an element {x, y} of E. Thus,
G = (μ, ν) is a fuzzy graph of G∗ = (V, E) if ν(xy) ≤ min(μ(x), μ(y)) for all xy ∈ E.

Definition 3. Let G = (μ, ν) be a fuzzy graph. The order of a fuzzy graph [2–4] is defined by O(G) =

∑x∈V μ(x). The degree of a vertex x in G is defined by deg(x) = ∑xy∈E ν(xy).

Definition 4. Let μ1 and μ2 be two fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1

and E2, respectively. The Cartesian product of two fuzzy graphs G1 and G2 [2–4] of the graphs G∗1 and G∗2 is
denoted by G1 × G2 = (μ1 × μ2, ν1 × ν2) and is defined as follows:

(i) (μ1 × μ2)(x1, x2) = min(μ1(x1), μ2(x2)), for all (x1, x2) ∈ V.
(ii) (ν1 × ν2)((x, x2)(x, y2)) = min(μ1(x), ν2(x2y2)), for all x ∈ V1, for all x2y2 ∈ E2.
(iii) (ν1 × ν2)((x1, z)(y1, z)) = min(ν1(x1y1), μ2(z)), for all z ∈ V2, for all x1y1 ∈ E1.

Definition 5. Let μ1 and μ2 be fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1 and
E2, respectively. The composition of two fuzzy graphs G1 and G2 of the graphs G∗1 and G∗2 [2–4] is denoted by
G1[G2] = (μ1 ◦ μ2, ν1 ◦ ν2) and is defined as follows:

(i) (μ1 ◦ μ2)(x1, x2) = min(μ1(x1), μ2(x2)), for all (x1, x2) ∈ V.
(ii) (ν1 ◦ ν2)((x, x2)(x, y2)) = min(μ1(x), ν2(x2y2)), for all x ∈ V1, for all x2y2 ∈ E2.
(iii) (ν1 ◦ ν2)((x1, z)(y1, z)) = min(ν1(x1y1), μ2(z)), for all z ∈ V2, for all x1y1 ∈ E1.
(iv) (ν1 ◦ ν2)((x1, x2)(y1, y2)) = min(μ2(x2), μ2(y2), ν1(x1y1)), for all z ∈ V2, for all(x1, x2)(y1, y2) ∈ E0− E.

Definition 6. Let μ1 and μ2 be fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1 and
E2, respectively. Then union of two fuzzy graphs G1 and G2 of the graphs G∗1 and G∗2 [2–4] is denoted by
G1 ∪ G2 = (μ1 ∪ μ2, ν1 ∪ ν2) and is defined as follows:

(i) (μ1 ∪ μ2)(x) = μ1(x) if x ∈ V1 ∩V2,
(ii) (μ1 ∪ μ2)(x) = μ2(x) if x ∈ V2 ∩V1,
(iii) (μ1 ∪ μ2)(x) = max(μ1(x), μ2(x)) if x ∈ V1 ∩V2,
(iv) (ν1 ∪ ν2)(xy) = ν1(xy) if xy ∈ E1 ∩ E2,
(v) (ν1 ∪ ν2)(xy) = ν2(xy) if xy ∈ E2 ∩ E1,
(vi) ( ν1 ∪ ν2)(xy) = max( ν1(xy), ν2(xy)) if xy ∈ E1 ∩ E2.

Definition 7. Let μ1 and μ2 be fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1

and E2, respectively. Then join of two fuzzy graphs G1 and G2 of the graphs G∗1 and G∗2 [2–4] is denoted by
G1 + G2 = (μ1 + μ2, ν1 + ν2) and is defined as follows:
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(i) (μ1 + μ2)(x) = (μ1 ∪ μ2)(x) if x ∈ V1 ∪V2,
(ii) (ν1 + ν2)(xy) = (ν1 ∪ ν2)(xy) = ν1(xy) if xy ∈ E1 ∪ E2,
(iii) (ν1 + ν2)(xy) = min(μ1(x), μ2(y)) if xy ∈ E′.

Definition 8. Let X be a non-empty set. A neutrosophic cubic set (NCS) in X [39] is a pair
A = (A, Λ) where A = { 〈x, AT(x), AI(x), AF(x)〉 |x ∈ X} is an interval neutrosophic set in X and
Λ = { 〈x, λT(x), λI(x), λF(x)〉 |x ∈ X} is a neutrosophic set in X.

3. Neutrosophic Cubic Graphs

The motivation behind this section is to combine the concept of neutrosophic cubic sets
with graphs theory. We introduce the concept of neutrosophic cubic graphs, order and degree
of neutrosophic cubic graph and different fundamental operations on neutrosophic cubic graphs
with examples.

Definition 9. Let G∗ = (V, E) be a graph. By neutrosophic cubic graph of G∗, we mean a pair G = (M, N)

where M = (A, B) = ((T̃A, TB), ( ĨA, IB), (F̃A, FB)) is the neutrosophic cubic set representation of vertex set V
and N = (C, D) = ((T̃C, TD), ( ĨC, ID), (F̃C, FD)) is the neutrosophic cubic set representation of edges set E
such that;

(i)
(

T̃C(uivi) % rmin{T̃A(ui), T̃A(vi)}, TD(uivi) ≤ max{TB(ui), TB(vi)}
)

,

(ii)
(

ĨC(uivi) % rmin{ ĨA(ui), ĨA(vi)}, ID(uivi) ≤ max{IB(ui), IB(vi)}
)

,

(iii)
(

F̃C(uivi) % rmax{F̃A(ui), F̃A(vi)}, FD(uivi) ≤ min{FB(ui), FB(vi)}
)

.

Example 1. Let G∗ = (V, E) be a graph where V = {a, b, c, d} and E = {ab, bc, ac, ad, cd}, where

M =

〈 {a, ([0.2, 0.3], 0.5), ([0.1, 0.4], 0.6), ([0.5, 0.6], 0.3)},
{b, ([0.1, 0.2], 0.4), ([0.4, 0.5], 0.6), ([0.7, 0.8], 0.4)},
{c, ([0.4, 0.7], 0.1), ([0.7, 0.8], 0.9), ([0.3, 0.4]), 0.5)},
{d, ([0.3, 0.5], 0.2), ([0.9, 1], 0.5), ([0.2, 0.4], 0.1)}

〉

N =

〈 {ab, ([0.1, 0.2], 0.5), ([0.1, 0.4], 0.6), ([0.7, 0.8], 0.3)},
{ac, ([0.2, 0.3], 0.5), ([0.1, 0.4], 0.9), ([0.5, 0.6], 0.3)},
{ad, ([0.2, 0.3], 0.5), ([0.1, 0.4], 0.6), ([0.5, 0.6]), 0.1)},
{bc, ([0.1, 0.2], 0.4), ([0.4, 0.5], 0.9), ([0.7, 0.8], 0.4)},
{bd, ([0.1, 0.2], 0.4), ([0.4, 0.5], 0.6), ([0.7, 0.8], 0.1)},
{cd, ([0.3, 0.5], 0.2), ([0.7, 0.8], 0.9), ([0.3, 0.4], 0.1)}

〉

Then clearly G = (M, N) is a neutrosophic cubic graph of G∗ = (V, E) as showin in Figure 1.

Remark 1.

1. If n ≥ 3 in the vertex set and n ≥ 3 in the set of edges then the graphs is a neutrosophic cubic polygon
only when we join each vertex to the corresponding vertex through an edge.

2. If we have infinite elements in the vertex set and by joining the each and every edge with each other we get
a neutrosophic cubic curve.

Definition 10. Let G = (M, N) be a neutrosophic cubic graph. The order of neutrosophic cubic graph is
defined by O(G) = ΣxεV{(T̃A, TB)(x), ( ĨA, IB)(x), (F̃A, FB)(x)} and degree of a vertex x in G is defined by
deg(x) = ΣxyεE{(T̃C, TD)(xy), ( ĨC, ID)(xy), (F̃C, FD)(xy))}.
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Figure 1. Neutrosophic Cubic Graph.

Example 2. In Example 1, Order of a neutrosophic cubic graph is

O(G) = {([1.0, 1.7], 1.2), ([2.1, 1.8], 2.6), ([1.7, 2.2], 1.3)}

and degree of each vertex in G is

deg(a) = {([0.5, 0.8], 1.5), ([0.3, 1.2], 2.1), ([1.7, 2.0], 0.7)}
deg(b) = {([0.3, 0.6], 1.3), ([0.9, 1.4], 2.1), ([2.1, 2.4], 0.8)}
deg(c) = {([0.6, 1.0], 1.1), ([1.2, 1.7], 2.7), ([1.5, 1.8], 0.8)}
deg(d) = {([0.6, 1.0], 1.1), ([1.2, 1.7], 2.1), ([1.5, 1.8], 0.3)}

Definition 11. Let G1 = (M1, N1) be a neutrosophic cubic graph of G∗1 = (V1, E1), and G2 = (M2, N2) be
a neutrosophic cubic graph of G∗2 = (V2, E2). Then Cartesian product of G1 and G2 is denoted by

G1 × G2 = (M1 ×M2, N1 × N2) = ((A1, B1)× (A2, B2), (C1, D1)× (C2, D2))

= ((A1 × A2, B1 × B2), (C1 × C2, D1 × D2))

=

〈
((T̃A1×A2 , TB1×B2), ( ĨA1×A2 , IB1×B2), (F̃A1×A2 , FB1×B2)),
((T̃C1×C2 , TD1×D2), ( ĨC1×C2 , ID1×D2), (F̃C1×C2 , FD1×D2))

〉

and is defined as follow

(i)
(

T̃A1×A2(x, y) = rmin(T̃A1(x), T̃A2(y)), TB1×B2(x, y) = max(TB1(x), TB2(y))
)

,

(ii)
(

ĨA1×A2(x, y) = rmin( ĨA1(x), ĨA2(y)), IB1×B2(x, y) = max(IB1(x), IB2(y))
)

,

(iii)
(

F̃A1×A2(x, y) = rmax(F̃A1(x), F̃A2(y)), FB1×B2(x, y) = min(FB1(x), FB2(y))
)

,

(iv)

(
T̃C1×C2((x, y1)(x, y2)) = rmin(T̃A1(x), T̃C2(y1y2)),
TD1×D2((x, y1)(x, y2)) = max(TB1(x), TD2(y1y2))

)
,

(v)

(
ĨC1×C2((x, y1)(x, y2)) = rmin( ĨA1(x), ĨC2(y1y2)),
ID1×D2((x, y1)(x, y2)) = max(IB1(x), ID2(y1y2))

)
,
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(vi)

(
F̃C1×C2((x, y1)(x, y2)) = rmax(F̃A1(x), F̃C2(y1y2)),
FD1×D2((x, y1)(x, y2)) = min(FB1(x), FD2(y1y2))

)
,

(vii)

(
T̃C1×C2((x1, y)(x2, y)) = rmin(T̃C1(x1x2), T̃A2(y)),
TD1×D2((x1, y)(x2, y)) = max(TD1(x1x2), TB2(y))

)
,

(viii)

(
ĨC1×C2((x1, y)(x2, y)) = rmin( ĨC1(x1x2), ĨA2(y)),
ID1×D2((x1, y)(x2, y)) = max(ID1(x1x2), IB2(y))

)
,

(ix)

(
F̃C1×C2((x1, y)(x2, y)) = rmax(F̃C1(x1x2), F̃A2(y)),
FD1×D2((x1, y)(x2, y)) = min(FD1(x1x2), FB2(y))

)
, ∀ (x, y) ∈ (V1, V2) = V for (i) −

(iii), ∀x ∈ V1 and y1y2 ∈ E2 for (iv)− (vi), ∀y ∈ V2 and x1x2 ∈ E1 for (vi)− (ix).

Example 3. Let G1 = (M1, N1) be a neutrosophic cubic graph of G∗1 = (V1, E1) as showin in Figure 2, where
V1 = {a, b, c}, E1 = {ab, bc, ac}

M1 =

〈 {a, ([0.1, 0.2], 0.5), ([0.4, 0.5], 0.3), ([0.6, 0.7], 0.2)},
{b, ([0.2, 0.4], 0.1), ([0.5, 0.6], 0.4), ([0.1, 0.2], 0.3)},
{c, ([0.3, 0.4], 0.2), ([0.1, 0.3], 0.7), ([0.4, 0.6], 0.3)}

〉

N1 =

〈 {ab, ([0.1, 0.2], 0.5), ([0.4, 0.5], 0.4), ([0.6, 0.7], 0.2)},
{bc, ([0.2, 0.4], 0.2), ([0.1, 0.3], 0.7), ([0.4, 0.6]), 0.3)},
{ac, ([0.1, 0.2], 0.5), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.2)}

〉

and G2 = (M2, N2) be a neutrosophic cubic graph of G∗2 = (V2, E2) as showin in Figure 3, where V2 = {x, y, z}
and E2 = {xy, yz, xz}

M2 =

〈 {x, ([0.7, 0.8], 0.6), ([0.2, 0.4], 0.5), ([0.3, 0.4], 0.7)},
{y, ([0.2, 0.3], 0.4), ([0.6, 0.7], 0.3), ([0.9, 1.0], 0.5)},
{z, ([0.4, 0.5], 0.2), ([0.3, 0.4], 0.1), ([0.6, 0.7], 0.4)}

〉

N2 =

〈 {xy, ([0.2, 0.3], 0.6), ([0.2, 0.4], 0.5), ([0, 9, 1.0], 0.5)},
{yz, ([0.2, 0.3], 0.4), ([0.3, 0.4], 0.3), ([0.9, 1.0], 0.4)},
{xz, ([0.4, 0.5], 0.6), ([0.2, 0.4], 0.5), ([0.6, 0.7], 0.4)}

〉

then G1 × G2 is a neutrosophic cubic graph of G∗1 × G∗2 , as showin in Figure 4, where V1 × V2 =

{(a, x), (a, y), (a, z), (b, x), (b, y), (b, z), (c, x), (c, y), (c, z)} and

M1 ×M2 =

〈
{(a, x), ([0.1, 0.2], 0.6), ([0.2, 0.4], 0.5), ([0.6, 0.7], 0.2)},
{(a, y), ([0.1, 0.2], 0.5), ([0.4, 0.5], 0.3), ([0.9, 1.0], 0.2)},
{(a, z), ([0.1, 0.2], 0.5), ([0.3, 0.4], 0.3), ([0.6, 0.7], 0.2)},
{(b, x), ([0.2, 0.4], 0.6), ([0.2, 0.4], 0.5), ([0.3, 0.4], 0.3)},
{(b, y), ([0.2, 0.3], 0.4), ([0.5, 0.6], 0.4), ([0.9, 1.0], 0.3)},
{(b, z), ([0.2, 0.4], 0.2), ([0.3, 0.4], 0.4), ([0.6, 0.7], 0.3)},
{(c, x), ([0.3, 0.4], 0.6), ([0.1, 0.3], 0.7), ([0.4, 0.6]), 0.3)},
{(c, y), ([0.2, 0.3], 0.4), ([0.1, 0.3], 0.7), ([0.9, 1.0], 0.3)},
{(c, z), ([0.3, 0.4], 0.2), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.3)}

〉

N1 × N2 =

〈
{((a, x)(a, y)), ([0.1, 0.2], 0.6), ([0.2, 0.4], 0.5), ([0.9, 1.0], 0.2)},
{((a, y)(a, z)), ([0.1, 0.2], 0.5), ([0.3, 0.4], 0.3), ([0.9, 1.0], 0.2)},
{((a, z)(b, z)), ([0.1, 0.2], 0.5), ([0.3, 0.4], 0.4), ([0.6, 0.7], 0.2)},
{((b, x)(b, z)), ([0.2, 0.4], 0.6), ([0.2, 0.4], 0.5), ([0.6, 0.7], 0.3)},
{((b, x)(b, y)), ([0.2, 0.3], 0.6), ([0.2, 0.4], 0.5), ([0.9, 1.0], 0.3)},
{((b, y)(c, y)), ([0.2, 0.3], 0.4), ([0.1, 0.3], 0.7), ([0.9, 1.0], 0.3)},
{((c, y)(c, z)), ([0.2, 0.3], 0.4), ([0.1, 0.3], 0.7), ([0.9, 1.0], 0.3)},
{((c, x)(c, z)), ([0.3, 0.4], 0.6), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.3)},
{((a, x)(c, x)), ([0.1, 0.2], 0.6), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.2)}

〉
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Figure 2. Neutrosophic Cubic Graph G1.

Figure 3. Neutrosophic Cubic Graph G2.

Figure 4. Cartesian Product of G1 and G2.
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Proposition 1. The cartesian product of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

Proof. Condition is obvious for M1 × M2. Therefore we verify conditions only for N1 × N2,
where N1 × N2 = {((T̃C1×C2 , TD1×D2), ( ĨC1×C2 , ID1×D2), (F̃C1×C2 , FD1×D2))}. Let x ∈ V1 and
x2y2 ∈ E2. Then

T̃C1×C2((x, x2)(x, y2)) = rmin{(T̃A1(x), T̃C2(x2y2))}
% rmin{(T̃A1(x), rmin((T̃A2(x2), (T̃A2(y2))}
= rmin{rmin((T̃A1(x), (T̃A2(x2)), rmin((T̃A1(x), (T̃A2(y2))}
= rmin{(T̃A1 × T̃A2)(x, x2), ((T̃A1 × T̃A2)(x, y2)}

TD1×D2((x, x2)(x, y2)) = max{(TB1(x), TD2(x2y2))}
≤ max{(TB1(x), max((TB2(x2), (TB2(y2))}
= max{max((TB1(x), (TB2(x2)), max((TB1(x), (TB2(y2))}
= max{(TB1 × TB2)(x, x2), ((TB1 × TB2)(x, y2)}

ĨC1×C2((x, x2)(x, y2)) = rmin{( ĨA1(x), ĨC2(x2y2))}
% rmin{( ĨA1(x), rmin(( ĨA2(x2), ( ĨA2(y2))}
= rmin{rmin(( ĨA1(x), ( ĨA2(x2)), rmin(( ĨA1(x), ( ĨA2(y2))}
= rmin{( ĨA1 × ĨA2)(x, x2), (( ĨA1 × ĨA2)(x, y2)}

ID1×D2((x, x2)(x, y2)) = max{(IB1(x), ID2(x2y2))}
≤ max{(IB1(x), max((IB2(x2), (IB2(y2))}
= max{max((IB1(x), (IB2(x2)), max((IB1(x), (IB2(y2))}
= max{(IB1 × IB2)(x, x2), ((IB1 × IB2)(x, y2)}

F̃C1×C2((x, x2)(x, y2)) = rmax{(F̃A1(x), F̃C2(x2y2))}
% rmax{(F̃A1(x), rmax((F̃A2(x2), (F̃A2(y2))}
= rmax{rmax((F̃A1(x), (F̃A2(x2)), rmax((F̃A1(x), (F̃A2(y2))}
= rmax{(F̃A1 × F̃A2)(x, x2), ((F̃A1 × F̃A2)(x, y2)}

FD1×D2((x, x2)(x, y2)) = min{(FB1(x), FD2(x2y2))}
≤ min{(FB1(x), min((FB2(x2), (FB2(y2))}
= min{min((FB1(x), (FB2(x2)), min((FB1(x), (FB2(y2))}
= min{(FB1 × FB2)(x, x2), (FB1 × FB2)(x, y2)}

similarly we can prove it for z ∈ V2 and x1y1 ∈ E1.

Definition 12. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs. The degree of
a vertex in G1 × G2 can be defined as follows, for any (x1, x2) ∈ V1 ×V2

deg(T̃A1 × T̃A2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
rmax(T̃C1 × T̃C2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 rmax(T̃A1(x), T̃C2(x2y2))

+Σx2=y2=z,x1y1∈Ermax(T̃A2(z), T̃C1(x1y1))

+Σx1y1∈E1,x2y2∈E2 rmax(T̃C1(x1y1), T̃C2(x2y2))
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deg(TB1 × TB2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
min(TD1 × TD2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 min(TB1(x), TD2(x2y2))

+Σx2=y2=z,x1y1∈E min(TB2(z), TD1(x1y1))

+Σx1y1∈E1,x2y2∈E2 min(TD1(x1y1), TD2(x2y2))

deg( ĨA1 × ĨA2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
rmax( ĨC1 × ĨC2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 rmax( ĨA1(x), ĨC2(x2y2))

+Σx2=y2=z,x1y1∈Ermax( ĨA2(z), ĨC1(x1y1))

+Σx1y1∈E1,x2y2∈E2 rmax( ĨC1(x1y1), ĨC2(x2y2))

deg(IB1 × IB2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
min(ID1 × ID2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 min(IB1(x), ID2(x2y2))

+Σx2=y2=z,x1y1∈E min(IB2(z), ID1(x1y1))

+Σx1y1∈E1,x2y2∈E2 min(ID1(x1y1), ID2(x2y2))

deg(F̃A1 × F̃A2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
rmin(F̃C1 × F̃C2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 rmin(FB1(x), FD2(x2y2))

+Σx2=y2=z,x1y1∈Ermin(FB2(z), FD1(x1y1))

+Σx1y1∈E1,x2y2∈E2 rmin(FD1(x1y1), FD2(x2y2))

deg(FB1 × FB2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
max(FD1 × FD2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 max(FB1(x), FD2(x2y2))

+Σx2=y2=z,x1y1∈E max(FB2(z), FD1(x1y1))

+Σx1y1∈E1,x2y2∈E2 max(FD1(x1y1), FD2(x2y2))

Example 4. In Example 3

dG1×G2 (a, x) = {([0.9, 1.1], 1.0), ([0.6, 0.9], 0.8), ([0.9, 1.1], 1.2)}
dG1×G2 (a, y) = {([0.4, 0.6], 0.9), ([0.8, 1.0], 0.6), ([1.2, 1.4], 0.9)}
dG1×G2 (a, z) = {([0.6, 0.8], 0.6), ([0.8, 1.0], 0.4), ([1.2, 1.4], 0.8)}
dG1×G2 (b, z) = {([0.8, 1.0], 0.3), ([0.9, 1.1], 0.5), ([0.7, 0.9], 1.1)}
dG1×G2 (b, x) = {([0.6, 0.9], 0.6), ([1.0, 1.2], 0.7), ([0.2, 0.4], 1.2)}
dG1×G2 (b, y) = {([0.4, 0.8], 0.7), ([1.1, 1.3], 0.6), ([0.5, 0.8], 1.0)}
dG1×G2 (c, y) = {([0.5, 0.8], 0.4), ([0.9, 1.1], 0.6), ([0.8, 1.2], 0.9)}
dG1×G2 (c, z) = {([0.7, 0.9], 0.4), ([0.5, 0.8], 0.8), ([0.8, 1.2], 1.1)}
dG1×G2 (c, x) = {([1.1, 1.3], 0.7), ([0.4, 0.8], 1.0), ([0.7, 1.0], 1.4)}

Definition 13. Let G1 = (M1, N1) be a neutrosophic cubic graph of G∗1 = (V1, E1) and G2 = (M2, N2) be
a neutrosophic cubic graph of G∗2 = (V2, E2). Then composition of G1 and G2 is denoted by G1[G2] and defined
as follow

G1[G2] = (M1, N1)[(M2, N2)] = {M1[M2], N1[N2]} = {(A1, B1)[(A2, B2)], (C1, D1)[(C2, D2)]}
= {(A1[A2], B1[B2]), (C1[C2], D1[D2])}

=

{ 〈
((T̃A1 ◦ T̃A2), (TB1 ◦ TB2)), (( ĨA1 ◦ ĨA2), (IB1 ◦ IB2)), ((F̃A1 ◦ F̃A2), (FB1 ◦ FB2))

〉
,〈

((T̃C1 ◦ T̃C2), (TD1 ◦ TD2)), (( ĨC1 ◦ ĨC2), (ID1 ◦ ID2)), (F̃C1 ◦ F̃C2)), (FD1 ◦ FD2))
〉 }

where
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(i) ∀(x, y) ∈ (V1, V2) = V,

(T̃A1 ◦ T̃A2)(x, y) = rmin(T̃A1(x), T̃A2(y)), (TB1 ◦ TB2)(x, y) = max(TB1(x), TB2(y))

( ĨA1 ◦ ĨA2)(x, y) = rmin( ĨA1(x), ĨA2(y)), (IB1 ◦ IB2)(x, y) = max(IB1(x), IB2(y))

(F̃A1 ◦ F̃A2)(x, y) = rmax(F̃A1(x), F̃A2(y)), (FB1 ◦ FB2)(x, y) = min(FB1(x), FBF2
(y))

(ii) ∀x ∈ V1 and y1y2 ∈ E

(T̃C1 ◦ T̃C2)((x, y1)(x, y2)) = rmin(T̃A1(x), T̃C2(y1y2)), (TD1 ◦ TD2)((x, y1)(x, y2)) = max(TB1(x), TD2(y1y2))

( ĨC1 ◦ ĨC2)((x, y1)(x, y2)) = rmin( ĨA1(x), ĨC2(y1y2)), (ID1 ◦ ID2)((x, y1)(x, y2)) = max(IB1(x), ID2(y1y2))

(F̃C1 ◦ F̃C2)((x, y1)(x, y2)) = rmax(F̃A1(x), F̃C2(y1y2)), (FD1 ◦ FD2)((x, y1)(x, y2)) = min(FB1(x), FD2(y1y2))

(iii) ∀y ∈ V2 and x1x2 ∈ E1

(T̃C1 ◦ T̃C2)((x1, y)(x2, y)) = rmin(T̃C1(x1x2), T̃A2(y)), (TD1 ◦ TD2)((x1, y)(x2, y)) = max(TD1(x1x2), TB2(y))

( ĨC1 ◦ ĨC2)((x1, y)(x2, y)) = rmin( ĨC1(x1x2), ĨA2(y)), (ID1 ◦ ID2)((x1, y)(x2, y)) = max(ID1(x1x2), IB2(y))

(F̃C1 ◦ F̃C2)((x1, y)(x2, y)) = rmax(F̃C1(x1x2), F̃A2(y)), (FD1 ◦ FD2)((x1, y)(x2, y)) = min(FD1(x1x2), FB2(y))

(iv) ∀(x1, y1)(x2, y2) ∈ E0 − E

(T̃C1 ◦ T̃C2)((x1, y1)(x2, y2)) = rmin(T̃A2(y1), T̃A2(y2), T̃C1(x1x2)), (TD1 ◦ TD2)((x1, y1)(x2, y2))

= max(TB2(y1), TB2(y2), TD1(x1x2))

( ĨC1 ◦ ĨC2)((x1, y1)(x2, y2)) = rmin( ĨA2(y1), ĨA2(y2), ĨC1(x1x2)), (ID1 ◦ ID2)((x1, y1)(x2, y2))

= max(IB2(y1), IB2(y2), ID1(x1x2))

(F̃C1 ◦ F̃C2)((x1, y1)(x2, y2)) = rmax(F̃A2(y1), F̃A2(y2), F̃C1(x1x2)), (FD1 ◦ FD2)((x1, y1)(x2, y2))

= min(FB2(y1), FB2(y2), FD1(x1x2))

Example 5. Let G∗1 = (V1, E1) and G∗1 = (V2, E2) be two graphs as showin in Figure 5, where V1 = (a, b)
and V2 = (c, d). Suppose M1 and M2 be the neutrosophic cubic set representations of V1 and V2. Also N1 and
N2 be the neutrosophic cubic set representations of E1 and E2 defined as

M1 =

〈 {a, ([0.5, 0.6], 0.1), ([0.1, 0.2], 0.5), ([0.8, 0.9], 0.3)},
{b, ([0.4, 0.5], 0.3), ([0.2, 0.3], 0.2), ([0.5, 0.6], 0.6)}

〉
N1 =

〈
{ab, ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.5), ([0.8, 0.9], 0.3)}

〉
and

M2 =

〈 {c, ([0.6, 0.7], 0.4), ([0.8, 0.9], 0.8), ([0.1, 0.2], 0.6)},
{d, ([0.3, 0.4], 0.7), ([0.6, 0.7], 0.5), ([0.9, 1.0], 0.9)}

〉
N2 =

〈
{cd, ([0.3, 0.4], 0.7), ([0.6, 0.7], 0.8), ([0.9, 1.0], 0.6)}

〉
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Figure 5. Neutrosophic Cubic Graph G1 and G2.

Clearly G1 = (M1, N1) and G2 = (M2, N2) are neutrosophic cubic graphs. So, the composition of two
neutrosophic cubic graphs G− 1 and G− 2 is again a neutrosophic cubic graph as shown in Figure 6, where

M1 [M2] =

〈 {(a, c), ([0.5, 0.6], 0.4), ([0.1, 0.2], 0.8), ([0.8, 0.9], 0.3)},
{(a, d), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.5), ([0.9, 1.0], 0.3)},
{(b, c), ([0.4, 0.5], 0.4), ([0.2, 0.3], 0.8), [0.5, 0.6], 0.6)},
{(b, d), ([0.3, 0.4], 0.7), ([0.2, 0.3], 0.5), ([0.9, 1.0], 0.6)}

〉

N1 [N2] =

〈 {((a, c)(a, d)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.8), ([0.9, 1.0], 0.3)},
{((a, d)(b, d)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.5), [0.9, 1.0], 0.3)},
{((b, d)(b, c)), ([0.3, 0.4], 0.7), ([0.2, 0.3], 0.8), ([0.9, 1.0], 0.6)},
{((b, c)(a, c)), ([0.4, 0.5], 0.4), ([0.1, 0.2], 0.8), ([0.8, 0.9], 0.3)},
{((a, c)(b, d)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.8), ([0.9, 1.0], 0.3)},
{((a, d)(b, c)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.8), ([0.9, 1.0], 0.3)}

〉

Figure 6. Composition of G1 and G2.
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Proposition 2. The composition of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

Definition 14. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs of the graphs G∗1
and G∗2 respectively. Then P-union is denoted by G1 ∪P G2 and is defined as

G1 ∪P G2 = {(M1, N1) ∪P (M2, N2)} = {M1 ∪P M2, N1 ∪P N2}
= {〈((T̃A1 ∪p T̃A2 ), (TB1 ∪p TB2 )), (( ĨA1 ∪p ĨA2 ), (IB1 ∪p IB2 )), ((F̃A1 ∪p F̃A2 ), (FB1 ∪p FB2 ))

〉
,〈

((T̃C1 ∪p T̃C2 ), (TD1 ∪p TD2 )), (( ĨC1 ∪p ĨC2 ), (ID1 ∪p ID2 )), ((F̃C1 ∪p F̃C2 ), (FD1 ∪p FD2 ))
〉}

where

(T̃A1 ∪p T̃A2)(x) =

⎧⎪⎨⎪⎩
T̃A1(x) if x ∈ V1 −V2

T̃A2(x) if x ∈ V2 −V1

rmax{T̃A1(x), T̃A2(x)} if x ∈ V1 ∩V2

(TB1 ∪p TB2)(x) =

⎧⎪⎨⎪⎩
TB1(x) if x ∈ V1 −V2

TB2(x) if x ∈ V2 −V1

max{TB1(x), TB2(x)} if x ∈ V1 ∩V2

( ĨA1 ∪p ĨA2)(x) =

⎧⎪⎨⎪⎩
ĨA1(x) if x ∈ V1 −V2

ĨA2(x) if x ∈ V2 −V1

rmax{ ĨA1(x), ĨA2(x)} if x ∈ V1 ∩V2

(IB1 ∪p IB2)(x) =

⎧⎪⎨⎪⎩
IB1(x) if x ∈ V1 −V2

IB2(x) if x ∈ V2 −V1

max{IB1(x), IB2(x)} if x ∈ V1 ∩V2

(F̃A1 ∪p F̃A2)(x) =

⎧⎪⎨⎪⎩
F̃A1(x) if x ∈ V1 −V2

F̃A2(x) if x ∈ V2 −V1

rmax{F̃A1(x), F̃A2(x)} if x ∈ V1 ∩V2

(FB1 ∪p FB2)(x) =

⎧⎪⎨⎪⎩
FB1(x) if x ∈ V1 −V2

FB2(x) if x ∈ V2 −V1

max{FB1(x), FB2(x)} if x ∈ V1 ∩V2

(T̃C1 ∪p T̃C2)(x2y2) =

⎧⎪⎨⎪⎩
T̃C1(x2y2) if x2y2 ∈ V1 −V2

T̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{T̃C1(x2y2), T̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(TD1 ∪p TD2)(x2y2) =

⎧⎪⎨⎪⎩
TD1(x2y2) if x2y2 ∈ V1 −V2

TD2(x2y2) if x2y2 ∈ V2 −V1

max{TD1(x2y2), TD2(x2y2)} if x2y2 ∈ E1 ∩ E2

( ĨC1 ∪p ĨC2)(x2y2) =

⎧⎪⎨⎪⎩
ĨC1(x2y2) if x2y2 ∈ V1 −V2

ĨC2(x2y2) if x2y2 ∈ V2 −V1

rmax{ ĨC1(x2y2), ĨC2(x2y2)} if x2y2 ∈ E1 ∩ E2

(ID1 ∪p ID2)(x2y2) =

⎧⎪⎨⎪⎩
ID1(x2y2) if x2y2 ∈ V1 −V2

ID2(x2y2) if x2y2 ∈ V2 −V1

max{ID1(x2y2), ID2(x2y2)} if x2y2 ∈ E1 ∩ E2
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(F̃C1 ∪p F̃C2)(x2y2) =

⎧⎪⎨⎪⎩
F̃C1(x2y2) if x2y2 ∈ V1 −V2

F̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{F̃C1(x2y2), F̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(FD1 ∪p FD2)(x2y2) =

⎧⎪⎨⎪⎩
FD1(x2y2) if x2y2 ∈ V1 −V2

FD2(x2y2) if x2y2 ∈ V2 −V1

max{FD1(x2y2), FD2(x2y2)} if x2y2 ∈ E1 ∩ E2

and R-union is denoted by G1 ∪R G2 and is defined by

G1 ∪R G2 = {(M1, N1) ∪R (M2, N2)} = {M1 ∪R M2, N1 ∪R N2}
= {〈((T̃A1 ∪R T̃A2 ), (TB1 ∪R TB2 )), (( ĨA1 ∪R ĨA2 ), (IB1 ∪R IB2 )), ((F̃A1 ∪R F̃A2 ), (FB1 ∪R FB2 ))

〉
,〈

((T̃C1 ∪R T̃C2 ), (TD1 ∪R TD2 )), (( ĨC1 ∪R ĨC2 ), (ID1 ∪R ID2 )), ((F̃C1 ∪R F̃C2 ), (FD1 ∪R FD2 ))
〉}

where

(T̃A1 ∪R T̃A2)(x) =

⎧⎪⎨⎪⎩
T̃A1(x) if x ∈ V1 −V2

T̃A2(x) if x ∈ V2 −V1

rmax{T̃A1(x), T̃A2(x)} if x ∈ V1 ∩V2

(TB1 ∪R TB2)(x) =

⎧⎪⎨⎪⎩
TB1(x) if x ∈ V1 −V2

TB2(x) if x ∈ V2 −V1

min{TB1(x), TB2(x)} if x ∈ V1 ∩V2

( ĨA1 ∪R ĨA2)(x) =

⎧⎪⎨⎪⎩
ĨA1(x) if x ∈ V1 −V2

ĨA2(x) if x ∈ V2 −V1

rmax{ ĨA1(x), ĨA2(x)} if x ∈ V1 ∩V2

(IB1 ∪R IB2)(x) =

⎧⎪⎨⎪⎩
IB1(x) if x ∈ V1 −V2

IB2(x) if x ∈ V2 −V1

min{IB1(x), IB2(x)} if x ∈ V1 ∩V2

(F̃A1 ∪R MTF2
)(x) =

⎧⎪⎨⎪⎩
F̃A1(x) if x ∈ V1 −V2

F̃A2(x) if x ∈ V2 −V1

rmax{F̃A1(x), F̃A2(x)} if x ∈ V1 ∩V2

(FB1 ∪R FB2)(x) =

⎧⎪⎨⎪⎩
FB1(x) if x ∈ V1 −V2

FB2(x) if x ∈ V2 −V1

min{FB1(x), FB2(x)} if x ∈ V1 ∩V2

(T̃C1 ∪R T̃C2)(x2y2) =

⎧⎪⎨⎪⎩
T̃C1(x2y2) if x2y2 ∈ V1 −V2

T̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{T̃C1(x2y2), T̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(TD1 ∪R ND2
)(x2y2) =

⎧⎪⎨⎪⎩
TD1(x2y2) if x2y2 ∈ V1 −V2

TD2(x2y2) if x2y2 ∈ V2 −V1

min{TD1(x2y2), TD2(x2y2)} if x2y2 ∈ E1 ∩ E2
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(F̃C1 ∪R F̃C2)(x2y2) =

⎧⎪⎨⎪⎩
F̃C1(x2y2) if x2y2 ∈ V1 −V2

F̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{F̃C1(x2y2), F̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(FD1 ∪R FD2)(x2y2) =

⎧⎪⎨⎪⎩
FD1(x2y2) if x2y2 ∈ V1 −V2

FD2(x2y2) if x2y2 ∈ V2 −V1

min{FD1(x2y2), FD2(x2y2)} if x2y2 ∈ E1 ∩ E2

Example 6. Let G1 and G2 be two neutrosophic cubic graphs as represented by Figures 7 and 8, where

M1 =

〈 {a, ([0.2, 0.3], 0.5), ([0.4, 0.5], 0.9), ([0.1, 0.3], 0.2)} ,
{b, ([0.3, 0.4], 0.2), [0.1, 0.2], 0.1), [0.4, 0.6], 0.5)},
{c, ([0.2, 0.4], 0.6), ([0.7, 0.8], 0.8), ([0.3, 0.5], 0.7)}

〉

N1 =

〈 {ab, ([0.2, 0.3], 0.5), ([0.1, 0.2], 0.9), ([0.4, 0.6], 0.2)} ,
{bc, ([0.2, 0.4], 0.6), ([0.1, 0.2], 0.8), ([0.4, 0.6], 0.5)} ,
{ac, ([0.2, 0.3], 0.6), ([0.4, 0.5], 0.9), ([0.3, 0.5], 0.2)}

〉

and

M2 =

〈 {a, ([0.5, 0.6], 0.3), ([0.1, 0.2], 0.6), ([0.3, 0.4], 0.5)} ,
{b, ([0.6, 0.7], 0.6), ([0.7, 0.8], 0.4), ([0.1, 0.2], 0.5)} ,
{c, ([0.4, 0.5], 0.1), ([0.2, 0.5], 0.5), ([0.5, 0.6], 0.3)}

〉

N2 =

〈 {ab, ([0.5, 0.6], 0.6), ([0.1, 0.2], 0.6), ([0.3, 0.4], 0.5)} ,
{bc, ([0.4, 0.5], 0.6), ([0.2, 0.5], 0.5), ([0.5, 0.6], 0.3)} ,
{ac, ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.6), ([0.5, 0.6], 0.3)}

〉

then G1 ∪p G2 will be a neutrosophic cubic graph as shown in Figure 9, where

M1 ∪p M2 =

〈 {a, ([0.5, 0.6], 0.5), ([0.4, 0.5], 0.9), ([0.3, 0.4], 0.5)} ,
{b, ([0.6, 0.7], 0.6), ([0.7, 0.8], 0.4), ([0.4, 0.6], 0.5)} ,
{c, ([0.4, 0.5], 0.6), ([0.7, 0.8], 0.8), ([0.5, 0.6], 0.7)}

〉

N1 ∪P N2 =

〈 {ab, ([0.5, 0.6], 0.6), ([0.1, 0.2], 0.9), ([0.4, 0.6], 0.5)} ,
{bc, ([0.4, 0.5], 0.6), ([0.2, 0.5], 0.8), [0.5, 0.6], 0.5)} ,
{ac, ([0.4, 0.5], 0.6), ([0.4, 0.5], 0.9), ([0.5, 0.6], 0.3)}

〉

and G1 ∪R G2 will be a neutrosophic cubic graph as shown in Figure 10, where

M1 ∪R M2 =
{a, ([0.5, 0.6], 0.3), ([0.4, 0.5], 0.6), ([0.3, 0.4], 0.2)} ,
{b, ([0.6, 0.7], 0.2), ([0.7, 0.8], 0.1), [0.4, 0.6], 0.5)} ,
{c, ([0.4, 0.5], 0.1), ([0.7, 0.8], 0.5), ([0.5, 0.6], 0.3)}

N1 ∪R N2 =
{ab, ([0.5, 0.6], 0.5), ([0.1, 0.2], 0.6), ([0.4, 0.6], 0.2)} ,
{bc, ([0.4, 0.5], 0.6), ([0.2, 0.5], 0.5), ([0.5, 0.6], 0.3)} ,
{ac, ([0.4, 0.5], 0.3), ([0.4, 0.5], 0.6), ([0.5, 0.6], 0.2)}

Proposition 3. The P-union of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

Remark 2. The R-union of two neutrosophic cubic graphs may or may not be a neutrosophic cubic graph as in
the Example 6 we see that

TD1∪RD2(ab) = 0.5 � max{0.3, 0.2} = 0.3 = max{TD1∪RD2(a), TD1∪RD2(b)}
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Figure 7. Neutrosophic Cubic Graph G1.

Figure 8. Neutrosophic Cubic Graph G2.

Figure 9. P-Union of G1 and G2.
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Figure 10. R-Union of G1 and G2.

Definition 15. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs of the graphs G∗1
and G∗2 respectively then P-join is denoted by G1 +P G2 and is defined by

G1 +P G2 = (M1, N1) +P (M2, N2) = (M1 +P M2, N1 +P N2)

= {〈((T̃A1 +P T̃A2 ), (TB1 +P TB2 )), (( ĨA1 +P ĨA2 ), (IB1 +P IB2 )), ((F̃A1 +P F̃A2 ), (FB1 +P FB2 ))
〉

,〈
((T̃C1 +P T̃C2 ), (TD1 +P TD2 )), (( ĨC1 +P ĨC2 ), (ID1 +P ID2 )), ((F̃C1 +P F̃C2 ), (FD1 +P FD2 ))

〉}
where

(i) if x ∈ V1 ∪V2

(T̃A1 +P T̃A2)(x) = (T̃A1 ∪P T̃A2)(x), (TB1 +P TB2)(x) = (TB1 ∪P TB2)(x)

( ĨA1 +P ĨA2)(x) = ( ĨA1 ∪P ĨA2)(x), (IB1 +P IB2)(x) = (IB1 ∪P IB2)(x)

(F̃A1 +P F̃A2)(x) = (F̃A1 ∪P F̃A2)(x), (FB1 +P FB2)(x) = (FB1 ∪P FB2)(x)

(ii) if xy ∈ E1 ∪ E2

(T̃C1 +P T̃C2)(xy) = (T̃C1 ∪P T̃C2)(xy), (TD1 +P TD2)(xy) = (TD1 ∪P TD2)(xy)

( ĨC1 +P ĨC2)(xy) = ( ĨC1 ∪P ĨC2)(xy), (ID1 +P ID2)(xy) = (ID1 ∪P ID2)(xy)

(F̃C1 +P F̃C2)(xy) = (F̃C1 ∪P F̃C2)(xy), (FD1 +P FD2)(xy) = (FD1 ∪P FD2)(xy)

(iii) if xy ∈ E∗, where E∗ is the set of all edges joining the vertices of V1 and V2

(T̃C1 +P T̃C2)(xy) = rmin{T̃A1(x), T̃A2(y)}, (TD1 +P TD2)(xy) = min{TB1(x), TB2(y)}
( ĨC1 +P ĨC2)(xy) = rmin{ ĨA1(x), ĨA2(y)}, (ID1 +P ID2)(xy) = min{IB1(x), IB2(y)}
(F̃C1 +P F̃C2)(xy) = rmin{F̃A1(x), F̃A2(y)}, (FD1 +P FD2)(xy) = min{FB1(x), FB2(y)}

Definition 16. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs of the graphs G∗1
and G∗2 respectively then R-join is denoted by G1 +R G2 and is defined by

G1 +R G2 = (M1, N1) +R (M2, N2) = (M1 +R M2, N1 +R N2)

= {〈((T̃A1 +R T̃A2 ), (TB1 +R TB2 )), (( ĨA1 +R ĨA2 ), (IB1 +R IB2 )), ((F̃A1 +R F̃A2 ), (FB1 +R FB2 ))
〉

,〈
((T̃C1 +R T̃C2 ), (TD1 +R TD2 )), (( ĨC1 +R ĨC2 ), (ID1 +R ID2 )), ((F̃C1 +R F̃C2 ), (FD1 +R FD2 ))

〉}
where
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(i) if x ∈ V1 ∪V2

(T̃A1 +R T̃A2)(x) = (T̃A1 ∪R T̃A2)(x), (TB1 +R TB2)(x) = (TB1 ∪R TB2)(x)

( ĨA1 +R ĨA2)(x) = ( ĨA1 ∪R ĨA2)(x), (IB1 +R IB2)(x) = (IB1 ∪R IB2)(x)

(F̃A1 +R F̃A2)(x) = (F̃A1 ∪R F̃A2)(x), (FB1 +R FB2)(x) = (FB1 ∪R FB2)(x)

(ii) if xy ∈ E1 ∪ E2

2a.
{
(T̃C1 +R T̃C2)(xy) = (T̃C1 ∪R T̃C2)(xy), (TD1 +R TD2)(xy) = (TD1 ∪R TD2)(xy)

2b.
{
( ĨC1 +R ĨC2)(xy) = ( ĨC1 ∪R ĨC2)(xy), (ID1 +R ID2)(xy) = (ID1 ∪R ID2)(xy)

2c.
{
(F̃C1 +R F̃C2)(xy) = (F̃C1 ∪R F̃C2)(xy), (FD1 +R FD2)(xy) = (FD1 ∪R FD2)(xy)

(iii) if xy ∈ E∗, where E∗ is the set of all edges joining the vertices of V1 and V2

3a.

{
(T̃C1 +R T̃C2)(xy) = rmin{T̃A1(x), T̃A2(y)},
(TD1 +R TD2)(xy) = max{TB1(x), TB2(y)}

3b.

{
( ĨC1 +R ĨC2)(xy) = rmin{ ĨA1(x), ĨA2(y)},
(ID1 +R ID2)(xy) = max{IB1(x), IB2(y)}

3c.

{
(F̃C1 +R F̃C2)(xy) = rmin{F̃A1(x), F̃A2(y)},
(FD1 +R FD2)(xy) = max{FB1(x), FB2(y)}

Proposition 4. The P-join and R-join of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

4. Applications

Fuzzy graph theory is an effective field having a vast range of applications in Mathematics.
Neutrosophic cubic graphs are more general and effective approach used in daily life very effectively.

Here in this section we test the applicability of our proposed model by providing applications
in industries.

Example 7. Let us suppose a set of three industries representing a vertex set V = {A, B, C} and let the
truth-membership of each vertex in V denotes “win win” situation of industry, where they do not harm each
other and do not capture other’s customers. Indetermined-membership of members of vertex set represents
the situation in which industry works in a diplomatic and social way, that is, they are ally being social and
competitive being industry. Falsity-membership shows a brutal competition where price war starts among
industries. We want to observe the effect of one industry on other industry with respect to their business power
and strategies. Let we have a neutrosophic cubic graph for industries having the following data with respect to
business strategies

M =

〈 {A, ([0.3, 0.4], 0.3), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{B, ([0.4, 0.5], 0.4), ([0.7, 0.8], 0.5), ([0.2, 0.3], 0.3)},
{C, ([0.6, 0.8], 0.8), ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.1)}

〉

where interval memberships indicate the business strength and strategies of industries for the present time
while fixed membership indicates the business strength and strategies of industries for future based on given
information. So on the basis of M we get a set of edges defined as

N =

〈 {AB, ([0.3, 0.4], 0.4), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{BC, ([0.4, 0.5], 0.8), ([0.4, 0.5], 0.5), ([0.2, 0.3], 0.1)},
{AC, ([0.3, 0.4], 0.8), ([0.4, 0.5], 0.6), ([0.4, 0.5], 0.1)}

〉
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where interval memberships indicate the business strength and strategies of industries for the present time while
fixed membership indicate the business strength and strategies of industries for future when it will be the time of
more competition. It is represented in Figure 11.

Finally we see that the business strategies of one industry strongly affect its business with other industries. Here

order(G) = {([1.3, 1.7], 1.5), ([1.6, 2.0], 1.4), ([0.7, 1.0], 0.6)}

and

deg(A) = {([0.6, 0.8], 1.2), ([0.9, 1.2], 1.2), ([0.8, 1.0], 0.3)}
deg(B) = {([0.7, 0.9], 1.2), ([0.9, 1.2], 1.1), ([0.6, 0.8], 0.3)}
deg(C) = {([0.7, 0.9], 1.6), ([0.8, 1.0], 1.1), ([0.6, 0.8], 0.2)}

Order of G represents the overall effect on market of above given industries A, B and C. Degree of A
represents the effect of other industries on A link through an edge with the industry A. The minimum degree of
A is 0 when it has no link with any other.

Figure 11. Neutrosophic Cubic Graph.

Example 8. Let us take an industry and we want to evaluate its overall performance. There are a lot of factors
affecting it. However, some of the important factors influencing industrial productivity are with neutrosophic
cubic sets as under, where the data is provided in the form of interval based on future prediction and data given
in the form of a number from the unit interval [0, 1] is dependent on the present time after a careful testing of
different models as a sample in each case,

1. Technological Development A = ((T̃A, TA), ( ĨA, IA), (F̃A, FA)) = ((degree of mechanization), (technical
know-how), (product design)) = {A, ([0.3, 0.4], 0.3), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},

2. Quality of Human Resources B = ((T̃B, TB), ( ĨB, IB), (F̃B, FB)) = ((ability of the
worker), (willingness of the worker), (the environment under which he has to work)) =

{B, ([0.4, 0.5], 0.4), ([0.7, 0.8], 0.5), ([0.2, 0.3], 0.3)},
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3. Availability of Finance C = ((T̃C, TC), ( ĨC, IC), (F̃C, FC)) = ((advertisement campaign),
(better working conditions to the workers), (up-keep of plant and machinery)) =

{C, ([0.6, 0.8], 0.8), ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.1)},
4. Managerial Talent D = ((T̃D, TD), ( ĨD, ID), (F̃D, FD)) = ((devoted towards their profession),

(Links with workers, customers and suppliers), (conceptual, human relations and technical skills))
= {D, ([0.3, 0.6], 0.4), ([0.2, 0.7], 0.9), ([0.3, 0.5], 0.6)},

5. Government Policy= E = ((T̃E, TE), ( ĨE, IE), (F̃E, FE)) =Government Policy= ((favorable
conditions for saving), (investment), (flow of capital from one industrial sector to another)) =

{E, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.1), ([0.4, 0.5], 0.2)},
6. Natural Factors= F = ((T̃F, TF), ( ĨF, IF), (F̃F, FF)) = ((physical), (geographical), (climatic exercise)) =
{F, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.2), ([0.4, 0.5], 0.2)}. As these factors affecting industrial productivity are
inter-related and inter-dependent, it is a difficult task to evaluate the influence of each individual factor on
the overall productivity of industrial units. The use of neutrosophic cubic graphs give us a more reliable
information as under. Let X = {A, B, C, D, F, E} we have a neutrosophic cubic set for the vertex set
as under

M =

〈 {A, ([0.3, 0.4], 0.3), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{B, ([0.4, 0.5], 0.4), ([0.7, 0.8], 0.5), ([0.2, 0.3], 0.3)},
{C, ([0.6, 0.8], 0.8), ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.1)},
{D, ([0.3, 0.6], 0.4), ([0.2, 0.7], 0.9), ([0.3, 0.5], 0.6)},
{E, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.1), ([0.4, 0.5], 0.2)},
{F, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.2), ([0.4, 0.5], 0.2)}

〉

Now, in order to find the combined effect of all these factors we need to use neutrosophic cubic sets for edges
as under

N =

〈

{AB, ([0.3, 0.4], 0.4), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{AC, ([0.3, 0.4], 0.8), ([0.4, 0.5], 0.6), ([0.4, 0.5], 0.1)},
{AD, ([0.3, 0.4], 0.4), ([0.2, 0.7], 0.9), ([0.4, 0.5], 0.2)},
{AE, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.6), ([0.4, 0.5], 0.2)},
{AF, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{BC, ([0.4, 0.5], 0.8), ([0.4, 0.5], 0.5), ([0.2, 0.3], 0.1)},
{BD, ([0.3, 0.5], 0.4), ([0.2, 0.7], 0.9), ([0.3, 0.5], 0.3)},
{BE, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.5), ([0.4, 0.5], 0.2)},
{BF, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.5), ([0.4, 0.5], 0.2)},
{CD, ([0.3, 0.6], 0.8), ([0.2, 0.5], 0.9), ([0.3, 0.5], 0.1)},
{CE, ([0.2, 0.4], 0.8), ([0.4, 0.5], 0.3), ([0.4, 0.5], 0.1)},
{CF, ([0.1, 0.4], 0.8), ([0.4, 0.5], 0.3), ([0.4, 0.5], 0.1)},
{DE, ([0.2, 0.4], 0.5), ([0.2, 0.6], 0.9), ([0.4, 0.5], 0.2)},
{DF, ([0.1, 0.4], 0.8), ([0.2, 0.7], 0.9), ([0.4, 0.5], 0.2)},
{EF, ([0.1, 0.4], 0.8), ([0.5, 0.6], 0.2), ([0.4, 0.5], 0.2)}

〉

where the edge {AB, ([0.3, 0.4], 0.4), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)} denotes the combined effect of
technological development and quality of human resources on the productivity of the industry. Now, if we are
interested to find which factors are more effective to the productivity of the industry, we may use the score and
accuracy of the neutrosophic cubic sets, which will give us a closer view of the factors. It is represented in
Figure 12.

Remark. We used degree and order of the neutrosophic cubic graphs in an application see Example 7 and if
we have two different sets of industries having finite number of elements, we can easily find the applications of
cartesian product, composition, union, join, order and degree of neutrosophic cubic graphs.
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Figure 12. Neutrosophic Cubic Graph.

5. Comparison Analysis

In 1975, Rosenfeld discussed the concept of fuzzy graphs whose basic idea was introduced
by [3] Kauffmann in 1973. Atanassov extended this idea to intuitionistic fuzzy graphs [14] in 1995.
The idea of neutrosophic graphs provided by Kandasamy et al. in the book [29]. [38] Recently
Rashid et al., introduced the notion of cubic graphs. In this paper, we introduced the study of
neutrosophic cubic graphs. We claim that our model is more generalized from the previous models,
as if we both indeterminacy and falsity part of neutrosophic cubic graphs G = (M, N) where
M = (A, B) = ((T̃A, TB), ( ĨA, IB), (F̃A, FB)) is the neutrosophic cubic set representation of vertex set V
and N = (C, D) = ((T̃C, TD), ( ĨC, ID), (F̃C, FD)) is the neutrosophic cubic set representation of edges
set E vanishes we get a cubic graph provided by Rashid et al., in [38]. Similarly, by imposing certain
conditions on cubic graphs, we may obtain intuitionistic fuzzy graphs provided by Atanassov in 1995
and after that fuzzy graphs provided by Rosenfeld in 1975. So our proposed model is a generalized
model and it has the ability to capture the uncertainty in a better way.

6. Conclusions

A generalization of the old concepts is the main motive of research. So in this paper, we proposed
a generalized model of neutrosophic cubic graphs with different binary operations. We also provided
applications of neutrosophic cubic graphs in industries. We also discussed conditions under which our
model reduces to the previous models. In future, we will try to discuss different types of neutrosophic
cubic graphs such as internal neutrosophic cubic graphs, external neutrosophic cubic graphs and many
more with applications.
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Abstract: In real-world diagnostic procedures, due to the limitation of human cognitive competence,
a medical expert may not conveniently use some crisp numbers to express the diagnostic information,
and plenty of research has indicated that generalized fuzzy numbers play a significant role in
describing complex diagnostic information. To deal with medical diagnosis problems based on
generalized fuzzy sets (FSs), the notion of single-valued neutrosophic multisets (SVNMs) is firstly
used to express the diagnostic information in this article. Then the model of probabilistic rough
sets (PRSs) over two universes is applied to analyze SVNMs, and the concepts of single-valued
neutrosophic rough multisets (SVNRMs) over two universes and probabilistic rough single-valued
neutrosophic multisets (PRSVNMs) over two universes are introduced. Based on SVNRMs over
two universes and PRSVNMs over two universes, single-valued neutrosophic probabilistic rough
multisets (SVNPRMs) over two universes are further established. Next, a three-way decisions
model by virtue of SVNPRMs over two universes in the context of medical diagnosis is constructed.
Finally, a practical case study along with a comparative study are carried out to reveal the accuracy
and reliability of the constructed three-way decisions model.

Keywords: single-valued neutrosophic multisets; medical diagnosis; probabilistic rough sets over
two universes; three-way decisions

1. Introduction

In medical science and technology, it is acknowledged that disease diagnosis is a rather
complicated activity for medical experts who are faced with tasks in handling varieties of uncertain
diagnostic information. In order to seek the accurate diagnosis for the considered patients, it is essential
for medical experts to take into account a number of related symptoms simultaneously, and this
procedure might take a long time to reach a final diagnostic outcome. Considering it is meaningful to
cope with the above complex decision making situation within the background of medical diagnosis,
plenty of practitioners are likely to focus on the relationship between the diagnosis set and the symptom
set, and varieties of achievements have been made on the basis of fuzzy approaches [1–3]. According to
the FS theory established by Zadeh [4], fuzzy approaches have been extensively used in lots of medical
diagnosis situations. However, the modeling tools of classical FSs are confined when multiple kinds of
uncertainties emerge at the same time. Thus, several new notions of generalized FSs were put forward
one after another during the past decades [5].
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Among various generalized FSs, in view of intuitionistic fuzzy sets (IFSs) [6] lack a reasonable
scheme to effectively process inconsistent and indeterminate information embedded in realistic
scenarios, Smarandache [7] initiated the framework of neutrosophic sets (NSs) and neutrosophic logic,
which could be seen as a generalized form of FSs, IFSs, fuzzy logic and intuitionistic fuzzy logic [8–10].
Compared with IFSs, through adding an indeterminacy membership function which is focused on
separately, NSs are able to express incomplete, inconsistent and indeterminate information efficiently.
Further, in order to utilize the idea of NSs to solve a broader range of practical issues, Wang et al. [11]
presented a novel branch of NSs called single-valued neutrosophic sets (SVNSs), whose values of three
membership functions belong to [0, 1]. Ever since the establishment of SVNSs, many enlightening
research results have been made in many real-world areas [12–21]. Recently, inspired by one typical
solution to obtain an accurate diagnosis for a patient is to arrange the medical examination at different
parts on a day to day basis (e.g., morning, noon and evening), Ye [22] introduced the notion of SVNMs
by taking advantage of fuzzy multisets (FMs) [23] and n-valued refined neutrosophic logic [24].
With the support of SVNMs, the SVN membership values occur one or multiple times, which is
favourable to the expression of the above SVN diagnostic information at different time intervals, hence
SVNMs could process the uncertain information well, and offer medical experts a rather powerful
tool to record a complicated medical diagnosis knowledge base. Until now, the studies of SVNMs
are mainly concentrated on algebraic properties, similarity measures, neutrosophic multiple relations,
cosine measures, and so on [25–28].

In general, medical experts are often confronted with the following two challenges in practical
medical diagnosis, one is to make an accurate diagnostic conclusion for the considered patients,
another one is to provide a reasonable explanation on how to obtain the result under uncertain
scenarios [29–31]. Through designing possible and deterministic decision rules, rough set theory has
illustrated its powerful performances for solving various decision making situations in the above
challenges [32–42]. In addition, among varieties of specific rough set models, it is worth noticing
that lots of them are often too strict and might require additional information when constructing
approximations originated from the classical rough set theory. In order to effectively handle the above
issue, by combining the rough sets with probability theory, the concept of PRSs is initiated by Wong
and Ziarko [43] to let rough set models possess the error tolerance capability when processing the noisy
data. Further, PRSs are developed by virtue of more powerful soft computing tools such as Bayesian
decision theory, graded set inclusions, Bayesian confirmation measures, etc [44–48]. Compared with
other types of rough sets, through introducing the probability theory to estimate the rough membership,
PRSs permit the existence of the error tolerance by means of the introduction of thresholds. In recent
years, motivated by the notion of three-way decisions [49,50], several decision making methods by
means of PRSs-based three-way decisions have been put forward to promote the solving efficiency of
real-world problems [51–54].

In this paper, inspired by the idea of PRSs-based three-way decisions, we systematically study
various probabilistic rough approximations in the background of SVNMs information by integrating
SVNMs with PRSs over two universes, and propose the model of SVNPRMs over two universes.
Then, we aim to investigate a three-way decisions method by utilizing the proposed SVNPRMs over
two universes under the context of medical diagnosis. In light of the above discussion, we arrange the
structure of the article below. In Section 2, we revisit several fundamental notions about SVNMs and
PRSs. In the next section, we present the notion of SVNRMs over two universes and PRSVNMs over
two universes at first, then present the notion of SVNPRMs over two universes. Section 4 constructs
a medical diagnosis algorithm based on SVNPRMs over two universes, then a case study and its
corresponding comparative study are carried out to show the validity of the constructed medical
diagnosis algorithm. The last section concludes the contributions of the work.
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2. Preliminaries

In the following, we revisit several fundamental concepts which will be utilized in the latter part
of the paper.

2.1. SVNMs

As a generalization of many concepts such as FSs, IFSs, SVNSs, etc., the definition of SVNMs and
their related operations are presented below.

Definition 1. [22] Suppose that U is a finite and nonempty set, a SVNM A is featured by count
truth-membership of CTA, count indeterminacy-membership of CIA, count falsity-membership of CFA,
where CTA, CIA, CFA : U → R for all x ∈ U. Then a SVNM A is given by

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈 x,

(
T1

A (x) , T2
A (x) , . . . , Tq

A (x)
)

,(
I1
A (x) , I2

A (x) , . . . , Iq
A (x)

)
,(

F1
A (x) , F2

A (x) , . . . , Fq
A (x)

)
〉
|x ∈ U

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where the truth-membership sequence, the indeterminacy-membership sequence and the
falsity-membership sequence

(
T1

A (x) , T2
A (x) , . . . , Tq

A (x)
)

,
(

I1
A (x) , I2

A (x) , . . . , Iq
A (x)

)
and(

F1
A (x) , F2

A (x) , . . . , Fq
A (x)

)
are arranged in an increasing or decreasing order. Additionally,

for each i = 1, 2, . . . , q, the sum of Ti
A (x) , Ii

A (x) , Fi
A (x) ∈ [0, 1] fulfills the requirement

0 ≤ Ti
A (x) + Ii

A (x) + Fi
A (x) ≤ 3. For the sake of convenience, a simplified form of SVNM could be

expressed as A =
{〈

x, Ti
A (x) , Ii

A (x) , Fi
A (x)

〉 |x ∈ U, i = 1, 2, . . . , q
}

. Furthermore, we represent the set of
all SVNMs on U as SVNM (U). For all x ∈ U, A is called a full SVNM if and only if x = 〈1, 0, 0〉, while A
is called an empty SVNM if and only if x = 〈0, 1, 1〉.

Definition 2. [22] The length of x in a SVNM A is represented by L (x : A), where L (x : A) = |CTA (x)| =
|CIA (x)| = |CFA (x)| (|CTA (x)|, |CIA (x)| and |CFA (x)| represent the cardinality of CTA (x), CIA (x)
and CFA (x)). In addition, for any A, B ∈ SVNM (U), L (x : A, B) = max {L (x : A) , L (x : B)}.

For any two SVNMs A and B, it is noted that L (x : A) might be different from L (x : B) in many
situations. Through adding the maximum number for the indeterminacy-membership value and the
falsity-membership value, and further adding the minimum number for the truth-membership value,
we could make L (x : A) = L (x : B).

Definition 3. [22] For any two SVNMs A and B in the universe U, we have

1. A⊕ B =
{〈

x, Ti
A (x) + Ti

B (x)− Ti
A (x) Ti

B (x) , Ii
A (x) Ii

B (x) , Fi
A (x) Fi

B (x)
〉 |x ∈ U, i = 1, 2, . . . , q

}
;

2. A⊗B =
{〈

x, Ti
A (x) Ti

B (x) , Ii
A (x) + Ii

B (x)− Ii
A (x) Ii

B (x) , Fi
A (x) + Fi

B (x)− Fi
A (x) Fi

B (x)
〉 |x ∈ U,

i = 1, 2, . . . , q};
3. the complement of A is represented by Ac such that ∀x ∈ U,

Ac =
{〈

x, Fi
A (x) , 1− Ii

A (x) , Ti
A (x)

〉 |x ∈ U, i = 1, 2, . . . , q
}

;
4. the union of A and B is represented by A ∪ B such that ∀x ∈ U,

A ∪ B =
{〈

x, Ti
A (x) ∨ Ti

B (x) , Ii
A (x) ∧ Ii

B (x) , Fi
A (x) ∧ Fi

B (x)
〉 |x ∈ U, i = 1, 2, . . . , q

}
;

5. the intersection of A and B is represented by A ∩ B such that ∀x ∈ U,
A ∩ B =

{〈
x, Ti

A (x) ∧ Ti
B (x) , Ii

A (x) ∨ Ii
B (x) , Fi

A (x) ∨ Fi
B (x)

〉 |x ∈ U, i = 1, 2, . . . , q
}

.

2.2. PRSs

In view of classical rough sets being rather rigorous when constructing lower/upper
approximations and often requiring some additional information, Wong and Ziarko [43] took
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advantage of the probabilistic measure theory, and presented a probabilistic model of rough sets
to update the method for obtaining a related rough set region.

Definition 4. [43] Suppose that U is the universe of discourse, and P is the probabilistic measure based on
the σ algebra. Then (U, R, P) is named a probabilistic approximation space. For any 0 ≤ β ≤ α ≤ 1, X ⊆ U,
the lower and upper approximations of X are given by

Pα (X) = {P (X |[x] ) ≥ α |x ∈ U } ,

Pβ (X) = {P (X |[x] ) > β |x ∈ U } ,

where the pair
(

Pα (X) , Pβ (X)
)

is named a PRS. Moreover, by virtue of the above approximations, the positive
region, negative region and boundary region of X are further given by

POS (X, α, β) = Pα (X) = {P (X |[x] ) ≥ α |x ∈ U } ,

NEG (X, α, β) = U − Pβ (X) = {P (X |[x] ) ≤ β |x ∈ U } ,

BND (X, α, β) = Pβ (X)− Pα (X) = {β < P (X |[x] ) < α |x ∈ U } ,

it is noted that the above approximations reduce to classical rough sets when α = 1 and β = 0, thus classical
rough sets act as a special case of PRSs.

3. Probabilistic Rough Approximations of a SVNM under the Background of Two Universes

In this section, we aim to put forward the probabilistic rough approximations of a SVNM under
the background of two universes, and eventually develop the model of SVNPRMs over two universes.
To facilitate our discussion, based on the proposed relation on SVNMs from the universe U to the
universe V and some operations, we first discuss the general rough approximations of a SVNM
under the background of two universes and present the model of SVNRMs over two universes.
Then, we investigate rough single-valued neutrosophic multisets on a probabilistic approximation
space over two universes and propose the model of PRSVNMs over two universes. Lastly, the definition
of SVNPRMs over two universes is put forward and several significant propositions of the presented
model are explored.

3.1. Relations on SVNMs Based on Two Universes and Some Operations

In what follows, we introduce the arbitrary relation on SVNMs based on two related universes.

Definition 5. Suppose that U, V are two universes of discourse, and R is a relation on SVNMs. Then R is
given by

R =
{〈

(x, y) , Ti
R (x, y) , Ii

R (x, y) , Fi
R (x, y)

〉
|(x, y) ∈ U ×V, i = 1, 2, . . . , q

}
,

Moreover, we denote the family of all relations on SVNMs from U to V as SVNM (U ×V).

In order to facilitate the latter discussions of the paper, we present subtraction and division
operations, and the corresponding score functions for SVNMs as follows.

Definition 6. For any two SVNMs A and B in the universe U, we have

1. A & B =

{〈
x, Ti

A(x)−Ti
B(x)

1−Ti
B(x)

, Ii
A(x)

Ii
B(x)

, Fi
A(x)

Fi
B(x)

〉
|x ∈ U, i = 1, 2, . . . , q

}
, which is valid under the

requirements A ≥ B, Ti
B (x) �= 1, Ii

B (x) �= 0 and Fi
B (x) �= 0;

368



Symmetry 2018, 10, 213

2. A ' B =

{〈
x, Ti

A(x)
Ti

B(x)
, Ii

A(x)−Ii
B(x)

1−Ii
B(x)

, Fi
A(x)−Fi

B(x)
1−Fi

B(x)

〉
|x ∈ U, i = 1, 2, . . . , q

}
, which is valid under the

requirements A ≤ B, Ti
B (x) �= 0, Ii

B (x) �= 1 and Fi
B (x) �= 1.

In the following, the corresponding score function is proposed to rank different elements
in SVNMs.

Definition 7. Suppose that x =
〈

Ti
A (x) , Ii

A (x) , Fi
A (x)

〉
is an element in a SVNM, the corresponding score

function of x is defined below.

s (x) =
[
∑q

i=1 Ti
A (x) +∑q

i=1

(
1− Ii

A (x)
)
+∑q

i=1

(
1− Fi

A (x)
)]

/3q.

For two elements in a SVNM x1 and x2, we have

1. If s (x1) < s (x2), then x1 < x2;
2. If s (x1) = s (x2), then x1 = x2;
3. If s (x1) > s (x2), then x1 > x2.

3.2. SVNRMs over Two Universes

By virtue of the above presented relations on SVNMs based on two universes, the definition of
SVNRMs over two universes is put forward below.

Definition 8. Suppose that U, V are two universes of discourse, and R ∈ SVNM (U ×V) is a relation
on SVNMs. Then (U, V, R) is named a general approximation space over two universes based on SVNMs.
For any A ∈ SVNM (V), x ∈ U, y ∈ V, the lower and upper approximations of A with respect to (U, V, R)
are given by

R (A) =
{〈

x, Ti
R(A) (x) , Ii

R(A) (x) , Fi
R(A) (x)

〉
|x ∈ U, i = 1, 2, . . . , q

}
,

R (A) =
{〈

x, Ti
R(A)

(x) , Ii
R(A)

(x) , Fi
R(A)

(x)
〉
|x ∈ U, i = 1, 2, . . . , q

}
,

where Ti
R(A) (x) = ∧y∈V

[
Fi

R (x, y) ∨ Ti
A (y)

]
, Ii

R(A) (x) = ∨y∈V
[(

1− Ii
R (x, y)

) ∧ Ii
A (y)

]
, Fi

R(A) (x) =

∨y∈V
[
Ti

R (x, y) ∧ Fi
A (y)

]
, Ti

R(A)
(x) = ∨y∈V

[
Ti

R (x, y) ∧ Ti
A (y)

]
, Ii

R(A)
(x) = ∧y∈V

[
Ii
R (x, y) ∨ Ii

A (y)
]

and Fi
R(A)

(x) = ∧y∈V
[
Fi

R (x, y) ∨ Fi
A (y)

]
. Based on the above statements, the pair

(
R (A) , R (A)

)
is named

a SVNRM over two universes.

3.3. PRSVNMs over Two Universes

Considering the various advantages of PRSs, we then extend the presented SVNRMs over
two universes to the context of PRSs. In what follows, we first investigate rough single-valued
neutrosophic multisets on a probabilistic approximation space over two universes.

Definition 9. Suppose that U, V are two universes of discourse, R ⊆ U × V is a binary relation on two
universes, and P is a probabilistic measure based on the σ algebra. Then (U, V, R, P) is named a probabilistic
approximation space over two universes.

Next, we develop the approach to obtain the conditional probability P (A |R (x) ) of an event
expressed by SVNMs given the description R (x) ∈ 2V .
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Definition 10. Suppose that (U, V, R, P) is a probabilistic approximation space. For any A ∈ SVNM (V),
x ∈ U, y ∈ V, the conditional probability P (A |R (x) ) is given by

P (A |R (x) ) =
∑y∈R(x) A (y)
|R (x)| .

By virtue of the proposed conditional probability P (A |R (x) ), the definition of PRSVNMs over
two universes is put forward as follows.

Definition 11. Suppose that (U, V, R, P) is a probabilistic approximation space over two universes. For any
0 ≤ β ≤ α ≤ 1, A ∈ SVNM (V), x ∈ U, y ∈ V, the lower and upper approximations of A with respect to
(U, V, R, P) are given by

SVNMα
P
(A) = {P (A |R (x) ) ≥ α |x ∈ U, y ∈ V } =

{
∑y∈R(x) A (y)
|R (x)| ≥ α |x ∈ U, y ∈ V

}
,

SVNMβ

P
(A) = {P (A |R (x) ) > β |x ∈ U, y ∈ V } =

{
∑y∈R(x) A (y)
|R (x)| > β |x ∈ U, y ∈ V

}
,

where the pair
(

SVNMα
P
(A) , SVNMβ

P
(A)
)

is named a PRSVNM over two universes. Moreover, by virtue
of the above approximations, the positive region, negative region and boundary region of A are further given by

POSSVNM (A, α, β) = SVNMα
P
(A) =

{
∑y∈R(x) A (y)
|R (x)| ≥ α |x ∈ U, y ∈ V

}
,

NEGSVNM (A, α, β) = U − SVNMβ

P
(A) =

{
∑y∈R(x) A (y)
|R (x)| < β |x ∈ U, y ∈ V

}
,

BNDSVNM (A, α, β) = SVNMβ

P
(A)− SVNMα

P
(A) =

{
β <

∑y∈R(x) A (y)
|R (x)| < α |x ∈ U, y ∈ V

}
.

3.4. SVNPRMs over Two Universes

In the previous descriptions, we explore rough single-valued neutrosophic multisets on
a probabilistic approximation space over two universes. However, the probabilistic approximation
space over two universes (U, V, R, P) could only express the crisp relation of the elements from the
universe U to the universe V. Since there exist lots of relations based on SVNMs, it is necessary to study
SVNPRMs over two universes. In what follows, we extend the general probabilistic approximation
space over two universes to the probabilistic approximation space over two universes on SVNMs,

Definition 12. Suppose that U, V are two universes of discourse, R ∈ SVNM (U ×V) is a relation on
SVNMs, and P is a probabilistic measure based on the σ algebra. Then (U, V, R, P) is named a probabilistic
approximation space over two universes based on SVNMs.

Definition 13. Suppose that (U, V, R, P) is a probabilistic approximation space over two universes based on
SVNMs. For any A ∈ SVNM (V), x ∈ U, y ∈ V, the conditional probability P (A |R (x, y) ) is given by

P (A |R (x, y) ) =
∑y∈V A (y) R (x, y)

∑y∈V R (x, y)
.

By virtue of the proposed conditional probability P (A |R (x, y) ), the definition of SVNPRMs over
two universes is put forward as follows.
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Definition 14. Suppose that (U, V, R, P) is a probabilistic approximation space over two universes based on
SVNMs. For any 0 ≤ β ≤ α ≤ 1, A ∈ SVNM (V), x ∈ U, y ∈ V, the lower and upper approximations of A
with respect to (U, V, R, P) are given by

SVNMRα
P
(A) = {P (A |R (x, y) ) ≥ α |x ∈ U, y ∈ V } =

{
∑y∈V A (y) R (x, y)

∑y∈V R (x, y)
≥ α |x ∈ U, y ∈ V

}
,

SVNMRβ

P
(A) = {P (A |R (x, y) ) > β |x ∈ U, y ∈ V } =

{
∑y∈V A (y) R (x, y)

∑y∈V R (x, y)
> β |x ∈ U, y ∈ V

}
,

where the pair
(

SVNMRα
P
(A) , SVNMRβ

P
(A)
)

is named a SVNPRM over two universes. Moreover,
by virtue of the above approximations, the positive region, negative region and boundary region of A are
further given by

POSSVNMR (A, α, β) = SVNMRα
P
(A) =

{
∑y∈V A(y)R(x,y)

∑y∈V R(x,y) ≥ α |x ∈ U, y ∈ V
}

,

NEGSVNMR (A, α, β) = U − SVNMRβ

P
(A) =

{
∑y∈V A(y)R(x,y)

∑y∈V R(x,y) ≤ β |x ∈ U, y ∈ V
}

,

BNDSVNMR (A, α, β) = SVNMRβ

P
(A)− SVNMRα

P
(A) =

{
β <

∑y∈V A(y)R(x,y)
∑y∈V R(x,y) < α |x ∈ U, y ∈ V

}
.

It is noted that the parameters α and β in the above definitions can be determined in advance by
experts based on their experience and knowledge in realistic decision making situations.

According to the above definitions, a simple example is offered as follows.

Example 1. Suppose that U = {x1.x2, x3} and V = {x1.x2, x3} are two universes, R ∈ SVNM (U ×V) is
a relation on SVNMs based on two related universes, where

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 y2 y3

x1

〈 (0.6, 0.5, 0.4) ,
(0.3, 0.2, 0.2) ,
((0.2, 0.1, 0.1))

〉 〈 (0.4, 0.3, 0.2) ,
(0.7, 0.6, 0.6) ,
((0.8, 0.7, 0.7))

〉 〈 (0.8, 0.8, 0.7) ,
(0.2, 0.2, 0.1) ,
((0.1, 0.1, 0.0))

〉

x2

〈 (0.3, 0.3, 0.2) ,
(0.4, 0.4, 0.3) ,
((0.6, 0.5, 0.4))

〉 〈 (0.8, 0.7, 0.6) ,
(0.3, 0.2, 0.1) ,
((0.2, 0.2, 0.1))

〉 〈 (0.5, 0.5, 0.4) ,
(0.3, 0.3, 0.2) ,
((0.6, 0.6, 0.5))

〉

x3

〈 (0.7, 0.7, 0.6) ,
(0.3, 0.2, 0.1) ,
((0.1, 0.1, 0.0))

〉 〈 (0.4, 0.4, 0.3) ,
(0.5, 0.5, 0.4) ,
((0.6, 0.6, 0.5))

〉 〈 (0.3, 0.2, 0.2) ,
(0.6, 0.6, 0.5) ,
((0.9, 0.9, 0.7))

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

A SVNM A in the universe V is provided below.

A = {〈y1, (0.5) , (0.5) , (0.2)〉 , 〈y2, (0.8) , (0.3) , (0.1)〉 , 〈y3, (0.3) , (0.6) , (0.7)〉} .

By virtue of Definition 13, we obtain

P (A |R (x1, y) ) =
∑y∈V A (y) R (x1, y)

∑y∈V R (x1, y)
= 〈(0.67, 0.61, 0.55) , (0.32, 0.28, 0.27) , (0.20, 0.14, 0.14)〉 ,

P (A |R (x2, y) ) =
∑y∈V A (y) R (x2, y)

∑y∈V R (x2, y)
= 〈(0.80, 0.76, 0.73) , (0.23, 0.20, 0.16) , (0.10, 0.09, 0.07)〉 ,

P (A |R (x3, y) ) =
∑y∈V A (y) R (x3, y)

∑y∈V R (x3, y)
= 〈(0.69, 0.68, 0.64) , (0.29, 0.29, 0.24) , (0.13, 0.13, 0.10)〉 .
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If we assume α = 〈(0.76, 0.74, 0.72) , (0.28, 0.27, 0.26) , (0.13, 0.12, 0.12)〉 and β =

〈(0.68, 0.65, 0.6) , (0.32, 0.31, 0.26) , (0.18, 0.14, 0.12)〉, we obtain SVNMRα
P
(A) = {x2} and

SVNMRβ

P
(A) = {x2, x3}. Then it is not difficult to obtain POSSVNMR (A, α, β) = {x2},

NEGSVNMR (A, α, β) = {x1} and BNDSVNMR (A, α, β) = {x3}.

In what follows, we show some common properties that are owned by the presented SVNPRMs
over two universes.

Proposition 1. Suppose that (U, V, R, P) is a probabilistic approximation space over two universes based on
SVNMs. For any 0 ≤ β ≤ α ≤ 1, A ∈ SVNM (V), x ∈ U, y ∈ V, we have the following propositions:

1. A ⊆ B ⇒ SVNMRα
P
(A) ⊆ SVNMRα

P
(B), SVNMRβ

P
(A) ⊆ SVNMRβ

P
(B);

2. SVNMRα
P
(∅) = ∅, SVNMRβ

P
(V) = U;

3. SVNMRα
P
(A) ⊆ SVNMRβ

P
(A);

4. SVNMRα
P
(A ∩ B) ⊆ SVNMRα

P
(A) ∩ SVNMRα

P
(B), SVNMRβ

P
(A ∪ B) ⊇ SVNMRβ

P
(A) ∪

SVNMRβ

P
(B);

5. α1 ≤ α2 ⇒ SVNMRα2
P
(A) ⊆ SVNMRα1

P
(A), β1 ≤ β2 ⇒ SVNMRβ2

P
(A) ⊆ SVNMRβ1

P
(A).

The detailed proofs of Proposition 1 are included in the Appendix A at the end of the paper.

4. Medical Diagnosis Based on SVNPRMs over Two Universes

4.1. Medical Diagnosis Model

In the following, we explore a reasonable and effective medical diagnosis approach by means of
SVNPRMs over two universes. As pointed out in the earlier statements, SVNPRMs over two universes
take advantage of SVNMs and PRSs at the same time. For one thing, SVNMs are able to provide
medical experts with a more powerful tool to describe a complicated medical diagnosis knowledge
base, i.e., the SVNMs information could not only handle the uncertain situation well, but also record
the diagnostic information at different time intervals reasonably. For another, PRSs-based three-way
decisions could further overcome the drawbacks of classical rough sets, and provide a robust decision
result by considering the decision risk, hence PRSs-based three-way decisions act as an effectual way
to analyze the above SVNMs information.

In the medical diagnosis procedures, suppose that U = {x1, x2, . . . , xm} is a diagnosis set,
and V = {y1, y2, . . . , yn} is a symptom set. Then based on the universe U and the universe V, medical
experts are likely to construct the relationship between the diagnosis set and the symptom set by means
of the SVNMs information, which is represented by R ∈ SVNM (U ×V). Moreover, suppose that P is
a probabilistic measure based on the σ algebra. Hence we establish a medical diagnosis probabilistic
approximation space over two universes based on SVNMs (U, V, R, P).

For a given patient, the symptoms of the patient are expressed by a SVNM A in the universe V.
Next suppose that α and β are the thresholds provided in advance by medical experts according
to their experience and knowledge in realistic medical diagnosis situations. In light of the above
statements, it is not difficult to calculate the two approximations of A in terms of (U, V, R, P), which are

denoted by SVNMRα
P
(A) and SVNMRβ

P
(A). Further, we obtain the positive region, negative region

and boundary region of A according to Definition 14, which are expressed as POSSVNMR (A, α, β),
NEGSVNMR (A, α, β) and BNDSVNMR (A, α, β). Lastly, the following medical diagnosis rule could be
concluded by virtue of the three-way decisions theory originated by Yao [49,50].

(P) If xi ∈ POSSVNMR (A, α, β), i = 1, 2, . . . , m, then xi is the determined diagnostic conclusion;
(N) If xi ∈ NEGSVNMR (A, α, β), i = 1, 2, . . . , m, then xi is the excluded diagnostic conclusion;
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(B) If xi ∈ BNDSVNMR (A, α, β), i = 1, 2, . . . , m, then medical experts are unable to confirm whether
xi is the determined or excluded diagnostic conclusion, they need more additional medical
examinations to confirm the final diagnostic conclusion

4.2. Algorithm for Medical Diagnosis Model

To summarize, we conclude the medical diagnosis approach for a given patient based on
SVNPRMs over two universes (Algorithm 1).

Algorithm 1 Medical diagnosis based on SVNPRMs over two universes.

Require: (U, V, R, P) and A.
Ensure: The determined diagnostic conclusion.

Step 1. Calculating the conditional probability P (A |R (x, y) );
Step 2. Presenting the thresholds α and β;
Step 3. Calculating the lower and upper approximations of A in terms of (U, V, R, P).
i.e., SVNMRα

P
(A) and SVNMRβ

P
(A);

Step 4. Calculating the positive region, negative region and boundary region of A,
i.e., POSSVNMR (A, α, β), NEGSVNMR (A, α, β) and BNDSVNMR (A, α, β);
Step 5. Confirming the determined diagnostic conclusion on the basis of the proposed medical
diagnosis rule (P), (N) and (B).

4.3. An Illustrative Example

In the following, a case study within the context of medical diagnosis is illustrated as the
demonstration of the presented medical diagnosis approach based on SVNPRMs over two universes.
The content of the illustrative example (adapted from [26]) is shown as follows.

Let U = {x1, x2, x3, x4} be a diagnosis set (where xi (i = 1, 2, 3, 4) denotes “viral fever”,
“tuberculosis”, “typhoid”, and “throat disease”, respectively), and V = {y1, y2, y3, y4, y5} be
a symptom set (where yi (i = 1, 2, 3, 4, 5) denotes “temperature”, “cough”, “throat pain”, “headache”,
and “body pain”, respectively). Let R ∈ SVNM (U ×V) be a relation on SVNMs based on two related
universes, which is recorded in the Table 1.

Table 1. Relationship between the considered diseases and symptoms represented by SVNMs.

R y1 y2 y3 y4 y5

x1 〈(0.8) , (0.1) , (0.1)〉 〈(0.2) , (0.7) , (0.1)〉 〈(0.3) , (0.5) , (0.2)〉 〈(0.5) , (0.3) , (0.2)〉 〈(0.5) , (0.4) , (0.1)〉
x2 〈(0.2) , (0.7) , (0.1)〉 〈(0.9) , (0.0) , (0.1)〉 〈(0.7) , (0.2) , (0.1)〉 〈(0.6) , (0.3) , (0.1)〉 〈(0.7) , (0.2) , (0.1)〉
x3 〈(0.5) , (0.3) , (0.2)〉 〈(0.3) , (0.5) , (0.2)〉 〈(0.2) , (0.7) , (0.1)〉 〈(0.2) , (0.6) , (0.2)〉 〈(0.4) , (0.4) , (0.2)〉
x4 〈(0.1) , (0.7) , (0.2)〉 〈(0.3) , (0.6) , (0.1)〉 〈(0.8) , (0.1) , (0.1)〉 〈(0.1) , (0.8) , (0.1)〉 〈(0.1) , (0.8) , (0.1)〉

Suppose that the symptoms of the patient is denoted by a SVNM A in the universe V below.

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

〈 y1, (0.8, 0.6, 0.5) ,
(0.3, 0.2, 0.1) ,
(0.4, 0.2, 0.1)

〉
,

〈 y2, (0.5, 0.4, 0.3) ,
(0.4, 0.4, 0.3) ,
(0.6, 0.3, 0.4)

〉
,

〈 y3, (0.2, 0.1, 0.0) ,
(0.3, 0.2, 0.2) ,
(0.8, 0.7, 0.7)

〉
,

〈 y4, (0.7, 0.6, 0.5) ,
(0.3, 0.2, 0.1) ,
(0.4, 0.3, 0.2)

〉
,

〈 y5, (0.4, 0.3, 0.2) ,
(0.6, 0.5, 0.5) ,
(0.6, 0.4, 0.4)

〉
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

.
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According to the steps of the proposed medical diagnosis approach (Algorithm 1), we first
calculate the conditional probability as follows.

P (A |R (x1, y) ) =
∑y∈V A (y) R (x1, y)

∑y∈V R (x1, y)
= 〈(0.87, 0.74, 0.64) , (0.07, 0.04, 0.02) , (0.08, 0.02, 0.01)〉 ,

P (A |R (x2, y) ) =
∑y∈V A (y) R (x2, y)

∑y∈V R (x2, y)
= 〈(0.84, 0.74, 0.61) , (0.05, 0.03, 0.02) , (0.07, 0.01, 0.01)〉 ,

P (A |R (x3, y) ) =
∑y∈V A (y) R (x3, y)

∑y∈V R (x3, y)
= 〈(0.75, 0.62, 0.5) , (0.13, 0.09, 0.06) , (0.1, 0.03, 0.02)〉 ,

P (A |R (x4, y) ) =
∑y∈V A (y) R (x4, y)

∑y∈V R (x4, y)
= 〈(0.46, 0.34, 0.22) , (0.15, 0.1, 0.08) , (0.08, 0.02, 0.01)〉 .

Then we present the thresholds α and β below.

α = 〈(0.85, 0.74, 0.63) , (0.06, 0.03, 0.02) , (0.075, 0.02, 0.01)〉 ,

β = 〈(0.5, 0.4, 0.3) , (0.13, 0.1, 0.07) , (0.09, 0.02, 0.01)〉 .

Next the two approximations of A in terms of (U, V, R, P) could be obtained.

SVNMRα
P
(A) = {P (A |R (x, y) ) ≥ α |x ∈ U, y ∈ V } = {x1} ,

SVNMRβ

P
(A) = {P (A |R (x, y) ) > β |x ∈ U, y ∈ V } = {x1, x2, x3} .

Based on the above calculated data, we further obtain

POSSVNMR (A, α, β) = SVNMRα
P
(A) = {x1} ,

NEGSVNMR (A, α, β) = U − SVNMRβ

P
(A) = {x4} ,

BNDSVNMR (A, α, β) = SVNMRβ

P
(A)− SVNMRα

P
(A) = {x2, x3} .

Finally, we could obtain the diagnostic conclusion by means of the proposed medical diagnosis
rule (P), (N) and (B).

(P) The patient is suffering from viral fever, medical experts need to pay close attention to the
diagnosis;

(N) The same patient shows no signs of having throat disease, which does not need close attention at
the current stage;

(B) Medical experts are unable to confirm whether the considered patient is suffering from
tuberculosis and typhoid or not due to insufficient diagnostic information, they might organize
an expert consultation to confirm the determined diagnostic conclusion at a later stage.

4.4. Comparative Analysis

In what follows, in order to show the applicability and validity of the constructed medical
diagnosis approach, we compare the approach based on SVNPRMs over two universes with
two significant and common approaches (similarity measures and cosine measures) presented in
literature [26,28] respectively.

4.4.1. Comparison with Other Approaches in Literature [26]

As presented by Ye et al. [26], suppose that any two SVNMs in the universe U = {x1, x2, . . . , xm}
could be expressed by A =

{〈
xj, Ti

A
(

xj
)

, Ii
A
(
xj
)

, Fi
A
(

xj
)〉 ∣∣xj ∈ U, i = 1, 2, . . . , q

}
and B =
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{〈
xj, Ti

B
(

xj
)

, Ii
B
(
xj
)

, Fi
B
(
xj
)〉 ∣∣xj ∈ U, i = 1, 2, . . . , q

}
, then the generalized distance measure between

A and B is defined as

dp (A, B) =

⎡⎣ 1
m

m

∑
j=1

1
3lj

lj

∑
i=1

(∣∣∣Ti
A
(
xj
)− Ti

B
(

xj
)∣∣∣p + ∣∣∣Ii

A
(

xj
)− Ii

B
(

xj
)∣∣∣p + ∣∣∣Fi

A
(

xj
)− Fi

B
(

xj
)∣∣∣p)

⎤⎦1/p

,

where lj = L (x : A, B) = max {L (x : A) , L (x : B)}, j = 1, 2, . . . , m. Then based on the generalized
distance measure between A and B, two similarity measures are defined as

s1 (A, B) = 1− dp (A, B)

= 1−
⎡⎣ 1

m

m

∑
j=1

1
3lj

lj

∑
i=1

(∣∣∣Ti
A
(

xj
)− Ti

B
(
xj
)∣∣∣p + ∣∣∣Ii

A
(
xj
)− Ii

B
(
xj
)∣∣∣p + ∣∣∣Fi

A
(
xj
)− Fi

B
(

xj
)∣∣∣p)

⎤⎦1/p

,

s2 (A, B) =
1− dp (A, B)
1 + dp (A, B)

=

1−
[

1
m

m
∑

j=1

1
3lj

lj

∑
i=1

(∣∣Ti
A
(

xj
)− Ti

B
(

xj
)∣∣p + ∣∣Ii

A
(

xj
)− Ii

B
(

xj
)∣∣p + ∣∣Fi

A
(

xj
)− Fi

B
(

xj
)∣∣p)]1/p

1 +

[
1
m

m
∑

j=1

1
3lj

lj

∑
i=1

(∣∣Ti
A
(

xj
)− Ti

B
(

xj
)∣∣p + ∣∣Ii

A
(

xj
)− Ii

B
(

xj
)∣∣p + ∣∣Fi

A
(

xj
)− Fi

B
(

xj
)∣∣p)]1/p .

According to the above stated similarity measures, if we take p = 2, the largest value of similarity
measures between the symptoms of the patient and each potential diagnosis could be regarded as
the determined diagnostic conclusion. Since the overall ranking result of the similarity measure
shows x1 � x3 � x2 � x4, the results of two similarity measures indicate the patient is suffering
from viral fever, which is identical with the determined diagnostic conclusion obtained from our
proposed approach.

4.4.2. Comparison with Other Approaches in Literature [28]

In literature [28], the authors mainly proposed a novel decision making method based on cosine
measures of SVNMs. We also suppose that any two SVNMs in the universe U = {x1, x2, . . . , xm} are
described as A =

{
xj,
(

pA1,
〈

TA1
(
xj
)

, IA1
(
xj
)

, FA1
(

xj
)〉)

,
(

pA2,
〈

TA2
(

xj
)

, IA2
(
xj
)

, FA2
(

xj
)〉)

, . . . ,(
pA1,

〈
TAi
(

xj
)

, IAi
(
xj
)

, FAi
(

xj
)〉) ∣∣xj ∈ U

}
and B =

{
xj,
(

pB1,
〈

TB1
(
xj
)

, IB1
(

xj
)

, FB1
(

xj
)〉)

,(
pB2,

〈
TB2
(

xj
)

, IB2
(

xj
)

, FB2
(
xj
)〉)

, . . . ,
(

pB1,
〈

TBi
(
xj
)

, IBi
(

xj
)

, FBi
(

xj
)〉) ∣∣xj ∈ U

}
, where p denotes

the repeated times with the same neutrosophic components. Based on that, the cosine measure between
two SVNMs A and B is defined as

ρ (A, B) =
1
m

m

∑
i=1

cos

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
π

6

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣ i
∏

k=1

(
1− TAk

(
xj
))pAk − i

∏
k=1

(
1− TBk

(
xj
))pBk

∣∣∣∣+∣∣∣∣ i
∏

k=1

(
IAk
(

xj
))pAk − i

∏
k=1

(
IBk
(
xj
))pBk

∣∣∣∣+∣∣∣∣ i
∏

k=1

(
FAk
(
xj
))pAk − i

∏
k=1

(
FBk
(

xj
))pBk

∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

As described in the case study section in literature [28], one customer intends to purchase a car,
let U = {x1, x2, x3, x4} be a car set with four possible alternatives. Then we let V = {y1, y2, y3, y4}
be an attribute set (where yi (i = 1, 2, 3, 4) denotes “fuel economy”, “price”, “comfort”, and “safety”,
respectively). Let R ∈ SVNM (U ×V) be a relation on SVNMs based on two related universes,
which is recorded in the Table 2.

375



Symmetry 2018, 10, 213

Table 2. Relationship between alternatives and attributes represented by SVNMs for purchasing a car.

R y1 y2 y3 y4

x1 〈(0.7, 0.5) , (0.7, 0.3) , (0.6, 0.2)〉 〈(0.5) , (0.4) , (0.4)〉 〈(0.8, 0.7) , (0.7, 0.7) , (0.6, 0.5)〉 〈(0.5, 0.1) , (0.5, 0.2) , (0.8, 0.7)〉
x2 〈(0.9, 0.7) , (0.7, 0.7) , (0.5, 0.1)〉 〈(0.8) , (0.7) , (0.6)〉 〈(0.9, 0.9) , (0.6, 0.6) , (0.4, 0.4)〉 〈(0.5, 0.5) , (0.2, 0.1) , (0.9, 0.7)〉
x3 〈(0.6, 0.3) , (0.4, 0.3) , (0.7, 0.2)〉 〈(0.2) , (0.2) , (0.2)〉 〈(0.9, 0.6) , (0.5, 0.5) , (0.5, 0.2)〉 〈(0.7, 0.4) , (0.5, 0.2) , (0.3, 0.2)〉
x4 〈(0.9, 0.8) , (0.7, 0.6) , (0.2, 0.1)〉 〈(0.5) , (0.3) , (0.2)〉 〈(0.5, 0.1) , (0.7, 0.4) , (0.5, 0.2)〉 〈(0.8, 0.8) , (0.4, 0.4) , (0.2, 0.2)〉

Suppose that the ideal attribute set is denoted by a SVNM A in the universe V below.

A =

{
〈y1, (0.98) , (0.12) , (0.02)〉 , 〈y2, (0.7) , (0.2) , (0.2)〉 ,
〈y3, (0.99) , (0.16) , (0.1)〉 , 〈y4, (0.82) , (0.02) , (0.06)〉

}
.

Based on the steps of our proposed approach, we first calculate the conditional probability
as follows.

P (A |R (x1, y) ) =
∑y∈V A (y) R (x1, y)

∑y∈V R (x1, y)
= 〈(1, 0.97) , (0.05, 0.02) , (0.06, 0.02)〉 ,

P (A |R (x2, y) ) =
∑y∈V A (y) R (x2, y)

∑y∈V R (x2, y)
= 〈(1, 0.99) , (0.02, 0.02) , (0.04, 0.01)〉 ,

P (A |R (x3, y) ) =
∑y∈V A (y) R (x3, y)

∑y∈V R (x3, y)
= 〈(1, 0.98) , (0.03, 0.01) , (0.03, 0)〉 ,

P (A |R (x4, y) ) =
∑y∈V A (y) R (x4, y)

∑y∈V R (x4, y)
= 〈(0.99, 0.97) , (0.04, 0.03) , (0, 0)〉 .

Then we present the thresholds α and β below.

α = 〈(1, 0.99) , (0.02, 0.02) , (0.025, 0.02)〉 ,

β = 〈(0.98, 0.97) , (0.03, 0.02) , (0.02, 0.01)〉 .

Next we further calculate the two approximations of A in terms of (U, V, R, P) and the three
divided regions.

SVNMRα
P
(A) = {P (A |R (x, y) ) ≥ α |x ∈ U, y ∈ V } = {x3} ,

SVNMRβ

P
(A) = {P (A |R (x, y) ) > β |x ∈ U, y ∈ V } = {x2, x3, x4} ,

POSSVNMR (A, α, β) = SVNMRα
P
(A) = {x3} ,

NEGSVNMR (A, α, β) = U − SVNMRβ

P
(A) = {x1} ,

BNDSVNMR (A, α, β) = SVNMRβ

P
(A)− SVNMRα

P
(A) = {x2, x4} .

Lastly, we could obtain the decision making recommendation by means of the proposed three-way
decisions rule (P), (N) and (B).

(P) The customer is suggested to purchase the third car;
(N) The same customer is not suggested to by the first car at present;
(B) The same customer is not sure whether the second car and the forth car are the ideal selections,

he or she might collect some additional information to make a final conclusion at a later stage.

According to the above stated cosine measures of SVNMs, the largest value of cosine measures
between the alternatives and attributes for purchasing a car could be regarded as the final decision
making conclusion. It is noted that the overall ranking result of the cosine measure shows x3 � x4 �
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x1 � x2, which indicates the customer should buy the third car, the decision making result is also the
same as the determined decision making conclusion obtained from our proposed approach.

In conclusion, it is noted that in the above two comparative analyses, though the final decision
making result by virtue of our proposed method is the same as the approaches of similarity measures
and cosine measures, the overall ranking result by using our proposed method is slightly different
from the approaches of similarity measures and cosine measures based on SVNMs. To be specific, if we
rank alternatives according to the corresponding values of conditional probability in our presented
approach, all the results are shown in the following Tables 3 and 4.

Table 3. The ranking orders by utilizing two different methods in the first comparison analysis.

Different Methods Ranking Results of Alternatives The Best Alternative

Method 1 based on similarity measures in [26] x1 � x3 � x2 � x4 x1
The proposed method x1 � x2 � x3 � x4 x1

Table 4. The ranking orders by utilizing two different methods in the second comparison analysis.

Different Methods Ranking Results of Alternatives The Best Alternative

Method 2 based on cosine measures in [28] x3 � x4 � x1 � x2 x3
The proposed method x3 � x2 � x4 � x1 x3

Compared with the approaches of similarity measures and cosine measures based on SVNMs,
the approaches of similarity measures and cosine measures lack the ability of processing decision
risks and noisy decision making data. In addition, the proposed approach based on SVNPRMs
over two universes offers a reasonable and efficient tool for analyzing the SVNMs information,
which not only considers the decision risks by introducing a three-way decision tactic, but also
enhances the performance of handling various noisy SVNMs data by introducing the thresholds.
Moreover, our presented medical diagnosis approach could be seen as another similarity measures
approach, i.e., the conditional probability expresses the similarity of the symptoms of the patient A
with the relationship between the considered diseases and symptoms, by further adding the thresholds
α and β, the ability of processing risk preferences of medical experts could be improved. Thus,
the constructed approach based on SVNPRMs over two universes is able to enhance the reliability and
accuracy of medical diagnosis efficiently.

5. Conclusions

In this article, we mainly investigate a PRSs-based method to analyze the SVNMs information
within the medical diagnosis context. Specifically, after revisiting several fundamental concepts about
SVNMs and PRSs, we first put forward the notion of SVNRMs over two universes and PRSVNMs
over two universes. Based on that, the notion of SVNPRMs over two universes is further established.
Then some common propositions of the presented SVNPRMs over two universes are further explored.
Next, based on the proposed SVNPRMs over two universes, we construct a medical diagnosis
approach by means of the three-way decisions strategy. At last, an illustrative case analysis along
with a comparative study is carried out to reveal the practicability and effectiveness of the constructed
medical diagnosis approach. In future work, it is necessary to establish some more PRSs-based
theoretical models based on neutrosophic triplet structures and neutrosophic duplet structures, and it
is also meaningful to apply other valid decision making tools to handle various complicated decision
making situations.
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Appendix A

The proofs of Proposition 1 are listed as follows.

Proof.

1. Since A ⊆ B, according to Definition 14, we have

SVNMRα
P
(A) =

{
∑y∈V A(y)R(x,y)

∑y∈V R(x,y) ≥ α |x ∈ U, y ∈ V
}
⊆
{

∑y∈V B(y)R(x,y)
∑y∈V R(x,y) ≥ α |x ∈ U, y ∈ V

}
=

SVNMRα
P
(B).

Thus we obtain A ⊆ B ⇒ SVNMRα
P
(A) ⊆ SVNMRα

P
(B). Similarly, we could also obtain

SVNMRβ

P
(A) ⊆ SVNMRβ

P
(B).

2. SVNMRα
P
(∅) =

{
∑y∈V ∅R(x,y)
∑y∈V R(x,y) ≥ α |x ∈ U, y ∈ V

}
= ∅,

SVNMRβ

P
(V) =

{
∑y∈V VR(x,y)
∑y∈V R(x,y) > β |x ∈ U, y ∈ V

}
= U.

Hence SVNMRα
P
(∅) = ∅ and SVNMRβ

P
(V) = U could be obtained.

3. Since 0 ≤ β ≤ α ≤ 1, it is not difficult to obtain

SVNMRα
P
(A) =

{
∑y∈V A(y)R(x,y)

∑y∈V R(x,y) ≥ α |x ∈ U, y ∈ V
}
⊆
{

∑y∈V B(y)R(x,y)
∑y∈V R(x,y) > β |x ∈ U, y ∈ V

}
=

SVNMRβ

P
(B).

Therefore, SVNMRα
P
(A) ⊆ SVNMRβ

P
(A) could be obtained.

4. If SVNMRα
P
(A ∩ B) holds, we have P ((A ∩ B) |R (x, y) ) ≥ α, then it is not difficult to obtain

α ≤ ∑y∈V (A∩B)(y)R(x,y)
∑y∈V R(x,y) ≤ ∑y∈V A(y)R(x,y)

∑y∈V R(x,y) and α ≤ ∑y∈V (A∩B)(y)R(x,y)
∑y∈V R(x,y) ≤ ∑y∈V B(y)R(x,y)

∑y∈V R(x,y) .

Hence we obtain SVNMRα
P
(A ∩ B) ⊆ SVNMRα

P
(A) ∩ SVNMRα

P
(B). In an identical fashion,

SVNMRβ

P
(A ∪ B) ⊇ SVNMRβ

P
(A) ∪ SVNMRβ

P
(B) could also be obtained.

5. Since α1 ≤ α2, we have

SVNMRα2
P
(A) =

{
∑y∈V A(y)R(x,y)

∑y∈V R(x,y) ≥ α2 |x ∈ U, y ∈ V
}
⊆
{

∑y∈V A(y)R(x,y)
∑y∈V R(x,y) ≥ α1 |x ∈ U, y ∈ V

}
=

SVNMRα1
P
(A).

Hence we have α1 ≤ α2 ⇒ SVNMRα2
P
(A) ⊆ SVNMRα1

P
(A), and β1 ≤ β2 ⇒ SVNMRβ2

P
(A) ⊆

SVNMRβ1
P
(A) could be proved in a similar way.
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Abstract: In inconsistent and indeterminate settings, as a usual tool, the neutrosophic cubic set
(NCS) containing single-valued neutrosophic numbers and interval neutrosophic numbers can be
applied in decision-making to present its partial indeterminate and partial determinate information.
However, a few researchers have studied neutrosophic cubic decision-making problems, where the
similarity measure of NCSs is one of the useful measure methods. For this work, we propose the
Dice, cotangent, and Jaccard measures between NCSs, and indicate their properties. Then, under an
NCS environment, the similarity measures-based decision-making method of multiple attributes is
developed. In the decision-making process, all the alternatives are ranked by the similarity measure
of each alternative and the ideal solution to obtain the best one. Finally, two practical examples are
applied to indicate the feasibility and effectiveness of the developed method.

Keywords: similarity measures; neutrosophic cubic set; decision-making

1. Introduction

The classic fuzzy set [1] is expressed by its membership degree in the unit interval [0,1].
But in many complicated cases of the real world, the data often are vague and uncertain, and are
difficult to express as classic fuzzy sets. Thus, the neutrosophic set (NS) concept was presented by
Smarandache [2], which is an extension of the fuzzy set and (interval-valued) intuitionistic fuzzy
sets. He defined the indeterminacy, falsity, and truth degrees of NS in the nonstandard interval
]−0,1+ [and standard interval [0,1]. However, the nonstandard interval is difficult to apply in real
situations, so a simplified neutrosophic set (SNS), including single-valued and interval neutrosophic
sets, was presented by Ye [3], which is depicted by the truth, indeterminacy, and falsity degrees in the
interval [0,1], to conveniently apply it in science and engineering fields, such as decision-making [4–8],
medical diagnoses [9,10], image processing [11,12], and clustering analyses [13]. Meanwhile, different
measures were constantly proposed, such as similarity measures, cross entropy measures, correlation
coefficients, and various aggregation operators for multiple attribute decision-making (MADM)
problems [14–21]. Then, various simplified neutrosophic decision-making methods were presented,
such as the technique for order preference by similarity to an ideal solution (TOPSIS) method [22],
the projection and bidirectional projection measures [23], and the VIKOR method [24].

In recent years, (fuzzy) cubic sets (CSs) presented by Jun et al. [25] have received much attention
due to the vague properties of human hesitant judgments. Since CS implies its partial certain and
partial uncertain information, it is depicted by the hybrid form composed of an exact value and an
interval value. Hence, CSs are very well suited for the representation of its partial indeterminate
and partial determinate information in fuzzy environments. But many scientific problems in the
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real world are very complex. To handle more complicated problems with incomplete, inconsistent,
and indeterminate information, Jun et al. [26] and Ali et al. [27] have introduced neutrosophic cubic
sets (NCSs) which contain both single-valued neutrosophic information and interval neutrosophic
information, as introduced in References [2,28,29]. Lu and Ye [30] used cosine measures for NCSs for
the first time to handle decision-making problems in an NCS setting. Banerjee et al. [31] presented
MADM problems regarding grey relational analysis in an NCS setting. Pramanik et al. [32] introduced
a multiple attribute group decision-making method regarding the distance-based similarity measure of
NCSs. Ye [33] put forward the operational laws and weighted aggregation operators of NCSs and their
MADM method in an NCS setting. Then, Shi and Ye [34] further proposed the Dombi aggregation
operators of NCSs and their MADM method. However, few researchers have studied neutrosophic
cubic MADM problems, where the similarity measure of NCSs is one of the useful measure methods.
On the other hand, Ye proposed the cosine, Dice, and Jaccard measures of single-valued and interval
neutrosophic sets [35], the generalized Dice measure of SNSs [36], and the single-valued neutrosophic
cotangent measures [37]. Since NCS is combined with an interval neutrosophic set (INS) and
a single-valued neutrosophic set (SVNS), we can extend them to NCSs. Motivated by the similarity
measures of INSs and SVNSs in the literature [35,37], we propose the Dice, cotangent, and Jaccard
measures between NCSs to enrich the existing similarity measures of NCSs. Then, a MADM method
is developed based on the proposed similarity measures in an NCS setting. Their difference is that
the similarity measures in the literature [30] only use three cosine measures for MADM problems,
but this work proposes the Dice, cotangent, and Jaccard measures for MADM problems in an NCS
setting. By comparison with existing decision-making methods [30], the decision results show that our
similarity measures have better decision-making robustness and discrimination than existing cosine
measures [30].

The contents of this paper are organized as follows: Section 2 introduces basic definitions of CSs
and NCSs. The similarity measures of NCSs and their properties are presented in Section 3. A MADM
method is developed by using the three measures of the Dice, cotangent, and Jaccard measures in
Section 4. In Section 5, a practical example is given in an NCS setting to present the applications and
the effectiveness of the developed method. Finally, Section 6 indicates conclusions and future work.

2. Basic Definitions of CSs and NCSs

Based on the combination of both a fuzzy value and an interval-valued fuzzy number (IVFN),
a CS was defined by Jun et al. [25].

The CS Z in a universe of discourse Y is defined by the following form [25]:

Z = {y, T(y), μ(y)|y ∈ Y},

where μ(y) is a fuzzy value and T(y) = [T−(y), T+(y)] is an IVFN for y ∈ Y. Then, we define

(i) Z = {y, T(y), μ(y)|y ∈ Y} as an internal CS if T−(y) ≤ μ(y) ≤ T+(y) for y ∈ Y;
(ii) Z = {y, T(y), μ(y)|y ∈ Y} as an external CS if μ(y) /∈ [T−(y), T+(y)] for y ∈ Y.

When combining a single-valued neutrosophic number (SVNN) with an interval neutrosophic
number (INN), CS was extended to NCS by Jun et al. [26] and Ali et al. [27], which is constructed as an
NCS Z in Y by the following form [26,27]:

R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y},

where < T(y), U(y), F(y) > is an INN for the truth-interval T(y) = [T−(y), T+(y)] ⊆[0,1], the falsity-
interval F(y) = [F−(y), F+(y)] ⊆[0,1], the indeterminacy-interval U(y) = [U−(y), U+(y)] ⊆[0,1],
y ∈ Y and < t(y), u(y), f(y) > is an SVNN for the truth, falsity, and indeterminacy degrees
t(y), f (y), u(y) ∈ [0, 1] and y ∈ Y.

An NCS R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y} is called [26,27]:
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(i) An internal NCS R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y} if T−(y) ≤ t(y) ≤
T+(y), U−(y) ≤ u(y) ≤ U+(y), and F−(y) ≤ f (y) ≤ F+(y) for y ∈ Y;

(ii) An external NCS R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y} if t(y) /∈
[T−(y), T+(y)], u(y) /∈ [U−(y), U+(y)], and f (y) /∈ [F−(y), F+(y)] for y ∈ Y.

For the simplified expression, a basic element (y,< T(y), U(y), F(y) > t(y), u(y), f (y) > in
an NCS R is denoted as r = (< T, U, F > t, u, f >, which is called a neutrosophic cubic number
(NCN), where T, U, F ⊆[0,1] and t, u, f ∈[0,1], satisfying 0 ≤ T+(y) + U+(y) + F+(y) ≤ 3 and
0 ≤ t + u + f ≤ 3.

Let r1 = (< T1, U1, F1 > t1, u1, f1 > and r2 = (< T2, U2, F2 > t2, u2, f2 > be two NCNs. We can
indicate the following relations [26,27]:

(1) rc
1 = (< F−1 , F+

1
]
,
[
1−U+

1 , 1−U−1
]
,
[
T−1 , T+

1
]
> f1, 1− u1, t1) (the complement of r1);

(2) r1 ⊆ r2 if and only if T1 ⊆ T2, U1 ⊇ U2, F1 ⊇ F2, t1 ≤ t2, u1 ≥ u2, and f1 ≥ f2 (P-order);
(3) r1 = r2 if and only if r1 ⊆ r2 and r2 ⊆ r1, i.e., < T1, U1, F1 > T2, U2, F2 > and< t1, u1, f1 > t2, u2, f2 >.

3. Similarity Measures of NCSs

Based on the Dice and Jaccard measures of SVNSs and INSs (SNSs) [35], and the single-valued
neutrosophic cotangent measures [37] proposed by Ye, we can extend them to NCSs to present the
Dice, Jaccard, and cotangent measures between NCSs in this section.

Definition 1. Let two NCSs beR = {r1, r2, r3, · · · , rn} and H = {h1, h2, h3, · · · , hn} in the universe of
discourse Y = {y1, y2, y3, · · · , yn} , where ri = (< Tri, Uri, Fri > tri, uri, fri > and hi = (< Thi, Uhi, Fhi >

thi, uhi, fhi > are two NCNs for i = 1, 2, . . . , n. Thus, the similarity measures of the NCSs R and H are
presented as follows:

(1) Dice Measure between the NCSs R and H

(2) Cotangent Measure between the NCSs R and H
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(3) Jaccard Measure between the NCSs R and H

Theorem 1. The three measuresZm(R, H) (m = 1, 2, 3) satisfy the three properties (I)–(III):

(I) 0 ≤ Zm(R, H) ≤ 1;
(II) Zm(R, H) = Zm(H, R);
(III) Zm(R, H) = 1 if R = H, i.e., < Tri, Uri, Fri >=< Thi, Uhi, Fhi > and < tri, uri, fri >< thi, uhi, fhi >.

Proof.

Firstly, we prove the properties (I)–(III) of Z1(R, H)).

(I) The inequality Z1(R, H) ≥ 0 is obvious. Then, we only prove Z1(R, H) ≤ 1.

Based on the basic inequality 2xiyi ≤ x2
i + y2

i for i = 1, 2, . . . , n, where (x1, x2, x3, . . . , xn) ∈ Rn

and (y1, y2, y3, . . . , yn) ∈ Rn, it is extended to the NCNs, and then the following inequality is obtained:

2(T−ri T−hi ) ≤
(
T−ri
)2

+
(
T−hi
)2

When T−ri and T−hi are not equal to zero, we obtain the following inequality:

2(T−ri T−hi )(
T−ri
)2

+
(
T−hi
)2 ≤ 1

Similarly, we have these inequalities 2(T+
ri T+

hi ) ≤
(
T+

ri
)2

+
(
T+

hi
)2, 2(U−ri U−hi ) ≤

(
U−ri
)2

+
(
U−hi
)2,

2(U+
ri U+

hi ) ≤
(
U+

ri
)2

+
(
U+

hi
)2, 2(F−ri F−hi ) ≤

(
F−ri
)2

+
(

F−hi
)2, and 2(F+

ri F+
hi ) ≤

(
F+

ri
)2

+
(

F+
hi
)2.

Then, we get the following sum of the six inequalities with both sides.

2(T−ri T−hi ) + 2(T+
ri T+

hi ) + 2(U−ri U−hi ) + 2(U+
ri U+

hi ) + 2(F−ri F−hi ) + 2(F+
ri F+

hi ) ≤(
T−ri
)2

+
(
T−hi
)2

+
(
T+

ri
)2

+
(
T+

hi
)2

+
(
U−ri
)2

+
(
U−hi
)2

+
(
U+

ri
)2

+
(
U+

hi
)2

+
(

F−ri
)2

+
(

F−hi
)2

+
(

F+
ri
)2

+
(

F+
hi
)2 .

Thus, we have the following result:

2(T−ri T−hi ) + 2(T+
ri T+

hi ) + 2(U−ri U−hi ) + 2(U+
ri U+

hi ) + 2(F−ri F−hi ) + 2(F+
ri F+

hi ){ (
T−ri
)2

+
(
T−hi
)2

+
(
T+

ri
)2

+
(
T+

hi
)2

+
(
U−ri
)2

+
(
U−hi
)2

+
(
U+

ri
)2

+
(
U+

hi
)2

+
(

F−ri
)2

+
(

F−hi
)2

+
(

F+
ri
)2

+
(

F+
hi
)2

} ≤ 1.

So, we can further get the result:

1
n

n

∑
i=1

2(T−ri T−hi ) + 2(T+
ri T+

hi ) + 2(U−ri U−hi ) + 2(U+
ri U+

hi ) + 2(F−ri F−hi ) + 2(F+
ri F+

hi ){ (
T−ri
)2

+
(
T−hi
)2

+
(
T+

ri
)2

+
(
T+

hi
)2

+
(
U−ri
)2

+
(
U−hi
)2

+
(
U+

ri
)2

+
(
U+

hi
)2

+
(

F−ri
)2

+
(

F−hi
)2

+
(

F+
ri
)2

+
(

F+
hi
)2

} ≤ 1.
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Similarly, we have the following inequalities:

1
n

n

∑
i=1

2(trithi + uriuhi + fri fhi)

t2
ri + u2

ri + f 2
ri + t2

hi + u2
hi + f 2

hi
≤ 1.

Thus, we have Z1(R, H) ≤ 1, and then 0 ≤ Z1(R, H) ≤ 1 holds.

(II) The equality is obvious.
(III) When R = H, we have 〈Tri, Uri, Fri〉 = 〈Thi, Uhi, Fhi〉 and < tri, uri, fri >< thi, uhi, fhi >.

Thus Tri = Thi, Uri = Uhi, Fri = Fhi, tri = thi, uri = uhi, and fri = fhi for i = 1, 2, . . . , n.
Hence Z1(R, H) = 1 holds.

Secondly, the properties (I)–(III) of Z2(R, H) can be proved as follows:

(I) The inequality 0 ≤∣∣T−ri − T−hi

∣∣≤ 1 is obvious. Similarly, we obtain other inequalities
0 ≤∣∣T+

ri − T+
hi

∣∣≤ 1 , 0 ≤∣∣U−ri −U−hi

∣∣≤ 1 , 0 ≤∣∣U+
ri −U+

hi

∣∣≤ 1 , 0 ≤∣∣F−ri − F−hi

∣∣≤ 1 ,
and 0 ≤∣∣F+

ri − F+
hi

∣∣≤ 1 .

Based on these inequalities, we get the inequality:

0 ≤∣∣T−ri − T−hi

∣∣+∣∣T+
ri − T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+
ri − F+

hi

∣∣≤ 6 ,

and then obtain the inequality:

0 ≤ 1
24 (
∣∣∣T−ri − T−hi

∣∣∣+∣∣∣T+
ri − T+

hi

∣∣∣+∣∣∣U−ri −U−hi

∣∣∣+∣∣∣U+
ri −U+

hi

∣∣∣+∣∣∣F−ri − F−hi

∣∣∣+∣∣∣F+
ri − F+

hi

∣∣∣) ≤ 1
4

and the following inequality:

0 ≤ π
24 (
∣∣T−ri − T−hi

∣∣+∣∣T+
ri − T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+
ri − F+

hi

∣∣) ≤ π
4 .

Hence, the result is obtained as follows:

cot(π
2 ) ≤ cot

[
π
4 + π

24(
∣∣T−ri −T−hi

∣∣+∣∣T+
ri −T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+ri − F+hi

∣∣)] ≤ cot(π
4 ).

Simplifying the above inequality, we get the simplified inequality:

0 ≤ cot
[

π
4 + π

24(
∣∣T−ri − T−hi

∣∣+∣∣T+
ri − T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+
ri − F+

hi

∣∣)] ≤ 1.

Let us prove the other inequality 0 ≤ cot
[

π
4 + π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|)
] ≤ 1.

Because there are the inequalities 0 ≤|tri − thi|≤ 1 , 0 ≤|uri − uhi|≤ 1 , and 0 ≤| fri − fhi|≤ 1 , we get
the inequality 0 ≤|tri − thi|+|uri − uhi|+| fri − fhi|≤ 1 and 0 ≤ π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|) ≤
3π
12 , and then cot(π

2 ) ≤ cot
[

π
4 + π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|)
] ≤ cot(π

4 ). Thus, the other form
is 0 ≤ cot

[
π
4 + π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|)
] ≤ 1. Hence 0 ≤ Z2(R, H) ≤ 1 holds.

Thirdly, the properties (I)–(III) of Z3(R, H) can be proved below.

Based on the inequality xy ≤ x2 +y2− xy, we get such an inequality T−ri T−hi ≤
(
T−ri
)2
+
(
T−hi
)2−T−ri T−hi .

When T−ri and T−hi are not equal to zero, we obtain the inequality:

T−ri T−hi(
T−ri
)2

+
(
T−hi
)2 − T−ri T−hi

≤ 1.

Thus, we can get the following inequality:

T−ri T−hi + T+
ri T+

hi + U−ri U−hi + U+
ri U+

hi + F−ri F−hi + F+
ri F+

hi⎧⎪⎨⎪⎩
(
T−ri
)2

+
(
T+

ri
)2

+
(
U−ri
)2

+
(
U+

ri
)2

+
(

F−ri
)2

+
(

F+
ri
)2

+
(
T−hi
)2

+
(
T+

hi
)2

+
(
U−hi
)2

+
(
U+

hi
)2

+
(

F−hi
)2

+
(

F+
hi
)2

−T−ri T−hi − T+
ri T+

hi −U−ri U−hi −U+
ri U+

hi − F−ri F−hi − F+
ri F+

hi

⎫⎪⎬⎪⎭
≤ 1.
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Similarly, because the inequality tri thi
t2
ri+t2

hi−tri thi
≤ 1 holds, the inequality

tri thi+uriuhi+ fri fhi
t2
ri+u2

ri+ f 2
ri+t2

hi+u2
hi+ f 2

hi−tri thi−uriuhi− fri fhi
≤ 1 also holds. Hence, there is the following inequality:

Thus, we have Z3(R, H) ≤ 1. Then, 0 ≤ Z3(R, H) ≤ 1 holds.

If we consider θ = {θ1, θ2, · · · , θn} as the weights of the elements ri and hi with θi ∈ [0, 1] and
∑n

i=1 θi = 1, the corresponding three measures Zθm(R, H) (m = 1, 2, 3) are given as follows:

Obviously, the three measures Zθm(R, H) (m = 1, 2, 3) also conform to the following properties (I)–(III):

(I) 0 ≤ Zθm(R, H) ≤ 1;
(II) Zθm(R, H) = Zθm(H, R);
(III) Zθm(R, H) = 1 if R = H, i.e., 〈tri, uri, fri〉 = 〈thi, uhi, fhi〉 and 〈Tri, Uri, Fri〉 = 〈Thi, Uhi, Fhi〉. �

The proofs of the three properties are similar, so we omitted them here.
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4. MADM Method Using the Proposed Measures of NCSs

The proposed weighted measures of NCSs are applied in MADM problems with NCSs in
this section.

In a MADM problem, there are the set of m alternatives R = {R1, R2, . . . , Rm} and the set of n
attributes B = {B1, B2, . . . , Bn}. Then, the weight of the attributes θt with θt ∈ [0,1] and ∑n

t=1 θt = 1 is
considered. The evaluation information of each alternative on each attribute in the MADM problem
can be represented by a NCN rst = (< Tst, Ust, Fst >,< tst, ust, fst >) (t = 1, 2, . . . , n; s = 1, 2, . . . ,
m) with Tst, Ust, Fst ⊆ [0, 1] and tst, ust, fst ⊆ [0, 1]. So, the decision matrix with neutrosophic cubic
information can be expressed as R = (rst)m×n. Thus the decision procedures are listed in the following:

Step 1: By considering the benefit and cost types of attributes, setup an ideal solution (ideal alternative)
r∗ =

{
r∗1 , r∗2 , · · · , r∗n

}
, where the desired NCNs r∗t (t = 1, 2, . . . , n) are expressed by

r∗t =

(
< [max

s
(T−st ), max

s
(T+

st )], [min
s
(U−st ), min

s
(U+

st )],

[min
s
(F−st ), min

s
(F+

st )] >,< max
s

(tst), min
s
(ust), min

s
( fst) >

)
for the benefit attributes

or

r∗t =

(
< [min

s
(T−st ), min

s
(T+

st )], [max
s

(U−st ), max
s

(U+
st )], [max

s
(F−st ), max

s
(F+

st )] >,

< min
s
(tst), max

s
(ust), max

s
( fst) >

)
for the cost attributes.

Step 2: Compute the measure value between an alternative Rs (s = 1, 2, . . . , m) and the ideal solution
R* by using Equation (4) or Equation (5) or Equation (6), and then obtain the values of Zθ1(Rs, R∗) or
Zθ2(Rs, R∗) or Zθ3(Rs, R∗) (s = 1, 2, . . . , m).
Step 3: Corresponding to the measure values of Zθ1(Rs, R∗) or Zθ2(Rs, R∗) or Zθ3(Rs, R∗), rank the
alternatives in descending order and choose the best one regarding the bigger measure value.
Step 4: End.

5. Decision-Making Example

Two practical decision-making examples in real environments are given in this section to illustrate
the applications of the developed MADM method in an NCS setting.

5.1. Practical Example 1

We consider the practical decision-making example adapted from Reference [30] for convenient
comparison. Suppose that a sum of money is invested by an investment company for one of four potential
alternatives: R1 (a food company), R2 (a transportation company), R3 (a software company), and R4

(a manufacturing company). Then the four alternatives are evaluated over the set of the three attributes:
H1 (the potential risk as the benefit type), H2 (the growth as the benefit type), and H3 (the environmental
impact as the cost type). Then the importance of the three attributes is indicated by the weight vector
θ = (0.32, 0.38, 0.3). The evaluation values of the four alternatives over the three attributes are given by
NCSs rst = (< Tst, Ust, Fst >,< tst, ust, fst >) (t = 1, 2, 3; s = 1, 2, 3, 4). Thus, the neutrosophic cubic
decision matrix can be constructed as follows:

R = (rst)4×3

=

⎡⎢⎢⎢⎣
(< [0.5, 0.6], [0.1, 0.3], [0.2, 0.4] >,< 0.6, 0.2, 0.3 >) (< [0.5, 0.6], [0.1, 0.3], [0.2, 0.4] >,< 0.6, 0.2, 0.3 >) (< [0.6, 0.8], [0.2, 0.3], [0.1, 0.2] >,< 0.7, 0.2, 0.1 >)

(< [0.6, 0.8], [0.1, 0.2], [0.2, 0.3] >,< 0.7, 0.1, 0.2 >) (< [0.6, 0.7], [0.1, 0.2], [0.2, 0.3] >,< 0.6, 0.1, 0.2 >) (< [0.6, 0.7], [0.3, 0.4], [0.1, 0.2] >,< 0.7, 0.4, 0.1 >)

(< [0.4, 0.6], [0.2, 0.3], [0.1, 0.3] >,< 0.6, 0.2, 0.2 >) (< [0.5, 0.6], [0.2, 0.3], [0.3, 0.4] >,< 0.6, 0.3, 0.4 >) (< [0.5, 0.7], [0.2, 0.3], [0.3, 0.4] >,< 0.6, 0.2, 0.3 >)

(< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >,< 0.8, 0.1, 0.2 >) (< [0.6, 0.7], [0.1, 0.2], [0.1, 0.3] >,< 0.7, 0.1, 0.2 >) (< [0.6, 0.7], [0.3, 0.4], [0.2, 0.3] >,< 0.7, 0.3, 0.2 >)

⎤⎥⎥⎥⎦ .

By the following steps, we use the proposed MADM method to judge which one is the best
investment under an NCS environment.

First, when the ideal NCNs r∗t (t = 1, 2, 3) of three attributes H1, H2, H3 are obtained by
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r∗t =

(
< [max

s
(T−st ), max

s
(T+

st )], [min
s
(U−st ), min

s
(U+

st )], [min
s
(F−st ), min

s
(F+

st )] >,

< max
s

(tst), min
s
(ust), min

s
( fst) >

)
for the benefit

attributes H1, H2

or

r∗t =

(
< [min

s
(T−st ), min

s
(T+

st )], [max
s

(U−st ), max
s

(U+
st )], [max

s
(F−st ), max

s
(F+

st )] >,

< min
s
(tst), max

s
(ust), max

s
( fst) >

)
for the cost

attribute H3.
We can obtain an ideal solution (an ideal alternative) as follows:

R∗ = {r∗1 , r∗2 , r∗3} =

⎧⎪⎨⎪⎩
(< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >,< 0.8, 0.1, 0.2 >),
(< [0.6, 0.7], [0.1, 0.2], [0.1, 0.3] >,< 0.7, 0.1, 0.2 >),
(< [0.5, 0.7], [0.3, 0.4], [0.3, 0.4] >,< 0.6, 0.4, 0.3 >)

⎫⎪⎬⎪⎭.

Second, by Equation (4) or Equation (5) or Equation (6), we compute the measure value between
an alternative Rs (s = 1, 2, 3, 4) and the ideal solution R*. Then the measure values of Zθ1(Rs,R*) or
Zθ2(Rs,R*) or Zθ3(Rs,R*) (s = 1, 2, 3, 4) and the ranking of the alternatives are indicated in Table 1.

Table 1. Measure results between the two NCSs Rs and R* and ranking.

Zθm(Rs,R*) Measure Result Ranking The Best One

Zθ1(Rs,R*) 0.9517,0.9822,0.9498,0.9945 Z4 > Z2 > Z1 > Z3 Z4
Zθ2(Rs,R*) 0.8246,0.9248,0.8474,0.9668 Z4 > Z2 > Z3 > Z1 Z4
Zθ3(Rs,R*) 0.9085,0.9654,0.9054,0.9893 Z4 > Z2 > Z1 > Z3 Z4

According to the results of Table 1, the two alternatives Z4 and Z2 have the same ranking orders
in all the measures, and Z4 is the best choice.

5.2. Related Comparison

For convenient comparison, we select the MADM method introduced in the literature [30] as the
related comparison. Then, we can get the measure values between Rs and R* by the cosine measure
Sws(Rs,R*) (s = 1, 2, 3, 4) in [30], the standard deviation (SD), and the best choice, which are given in
Table 2. Obviously, the SD values of our measures are bigger than the SD values of existing cosine
measures. Therefore, our measures not only have good discrimination, but also get the same as the
best choice (Z4), while existing cosine measures [30] indicate the different best choices (Z4 or Z2).
Thus, our measures have better decision-making robustness and discrimination than existing cosine
measures [30].

Table 2. Related comparison of our measure results with existing cosine measure results.

Measure Measure Value Ranking Order SD The Best One

Zθ1(Rs,R*) 0.9945,0.9822,0.9517,0.9498 Z4 > Z2 > Z1 > Z3 0.0193 Z4
Zθ2(Rs,R*) 0.9668,0.9248,0.8474,0.8246 Z4 > Z2 > Z3 > Z1 0.0574 Z4
Zθ3(Rs,R*) 0.9085,0.9654,0.9054,0.9893 Z4 > Z2 > Z1 > Z3 0.0362 Z4

Sw1(R1,R*) [30] 0.9451, 0.9794, 0.9524, 0.9846 Z4 > Z2 > Z3 > Z1 0.0169 Z4
Sw2(R2,R*) [30] 0.9700, 0.9906, 0.9732, 0.9877 Z2 > Z4 > Z3 > Z1 0.0089 Z2
Sw2(R2,R*) [30] 0.9867, 0.9942, 0.9877, 0.9968 Z4 > Z2 > Z3 > Z1 0.0043 Z4

5.3. Practical Example 2

Further, we give a real case about a punching machine to clearly demonstrate the usefulness of
the proposed measures. There are four alternatives (design schemes), R1, R2, R3, and R4 in Table 3.
Then the four alternatives are evaluated over the set of three attributes: H1 (manufacturing cost),
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H2 (structure complexity), and H3 (reliability). Then, the importance of the three attributes is indicated
by the weight vector θ = (0.36, 0.3, 0.34). By the suitable evaluation of the four alternatives over the
three attributes regarding NCNs rst = (< Tst, Ust, Fst >,< tst, ust, fst >) (t = 1, 2, 3; s = 1, 2, 3, 4),
the neutrosophic cubic decision matrix which is adapted from the literature [23] can be constructed
as follows:

R = (rst)4×3

=

⎡⎢⎢⎢⎣
(< [0.7, 0.8], [0.0, 0.2], [0.3, 0.5] >,< 0.75, 0.1, 0.4 >) (< [0.7, 0.9], [0.0, 0.3], [0.2, 0.4] >,< 0.80, 0.1, 0.3 >) (< [0.8, 0.9], [0.0, 0.2], [0.2, 0.4] >,< 0.85, 0.1, 0.3 >)

(< [0.6, 0.8], [0.0, 0.2], [0.4, 0.6] >,< 0.70, 0.1, 0.5 >) (< [0.7, 0.8], [0.0, 0.3], [0.0, 0.2] >,< 0.75, 0.1, 0.1 >) (< [0.7, 0.8], [0.0, 0.2], [0.0, 0.2] >,< 0.80, 0.1, 0.1 >)

(< [0.7, 0.9], [0.1, 0.3], [0.2, 0.4] >,< 0.80, 0.2, 0.3 >) (< [0.7, 0.8], [0.0, 0.2], [0.1, 0.3] >,< 0.78, 0.1, 0.2 >) (< [0.7, 0.9], [0.1, 0.3], [0.1, 0.3] >,< 0.80, 0.2, 0.2 >)

(< [0.8, 1.0], [0.0, 0.2], [0.1, 0.3] >,< 0.90, 0.1, 0.2 >) (< [0.8, 0.9], [0.0, 0.2], [0.0, 0.2] >,< 0.85, 0.1, 0.1 >) (< [0.8, 0.9], [0.0, 0.2], [0.2, 0.4] >,< 0.85, 0.1, 0.3 >)

⎤⎥⎥⎥⎦ .

Table 3. Four alternatives (design schemes) of a punching machine [23].

Alternative R1 R2 R3 R4

Reducing mechanism Gear reducer Gear head motor Gear reducer Gear head motor

Punching mechanism Crank-slider mechanism Six bar
punching mechanism

Six bar
punching mechanism Crank-slider mechanism

Dial feed
intermittent mechanism Sheave mechanism Ratchet feed mechanism

By the following steps, we use the proposed MADM method to judge which one is the best design
scheme under an NCS environment.

First, because we use a suitable evaluation of the four alternatives over the three
attributes, all the benefit attributes are given in this decision problem. Thus, when the
ideal NCNs r∗t (t = 1, 2, 3) of the three attributes H1, H2, H3 are obtained by

r∗t =

(
< [max

s
(T−st ), max

s
(T+

st )], [min
s
(U−st ), min

s
(U+

st )], [min
s
(F−st ), min

s
(F+

st )] >,

< max
s

(tst), min
s
(ust), min

s
( fst) >

)
, we can obtain an

ideal solution (an ideal alternative) as follows:

R∗ = {r∗1 , r∗2 , r∗3} =

⎧⎪⎨⎪⎩
(< [0.8, 1.0], [0.0, 0.2], [0.1, 0.3] >,< 0.90, 0.1, 0.2 >),
(< [0.8, 0.9], [0.0, 0.2], [0.0, 0.2] >,< 0.85, 0.1, 0.1 >),
(< [0.8, 0.9], [0.0, 0.2], [0.0, 0.2] >,< 0.85, 0.1, 0.1 >)

⎫⎪⎬⎪⎭.

According to Equation (4) or Equation (5) or Equation (6), we can obtain the measure values of
Zθ1(Rs,R*) or Zθ2(Rs,R*) or Zθ3(Rs,R*) (s = 1, 2, 3, 4) and the ranking of all the alternatives, which are
indicated in Table 4.

Table 4. Measure values between the two NCSs Rs and R* and ranking.

Zθm(Rs,R*) Measure Value Ranking The Best One

Zθ1(Rs,R*) 0.9683,0.9704,0.9847,0.9924 Z4 > Z3 > Z2 > Z1 Z4
Zθ2(Rs,R*) 0.8652,0.8937,0.8813,0.9701 Z4 > Z2 > Z3 > Z1 Z4
Zθ3(Rs,R*) 0.9386,0.9445,0.9699,0.9853 Z4 > Z3 > Z2 > Z1 Z4

According to the decision results in Table 4, they show that the two alternatives Z4 and Z1 have
the same ranking orders in all the measures, with the best choice Z4 and the worst choice Z1.

If we set the same importance (θt = 1/3 for t = 1, 2, 3) of three attributes without considering the
three attribute weights, we also obtained the same ranking with the attribute weights and without
considering the three attribute weights in Table 5. It is obvious that the decision results of the proposed
measures imply better robustness and lower sensitivity regarding attribute weights.
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Table 5. Measure values based on the different weights of the three attributes and ranking.

Zθm(Rs,R*)
Measure Value

Based on θ = (0.36, 0.3, 0.34)
Measure Value

Based on θ = (1/3, 1/3, 1/3)
Ranking The Best One

Zθ1(Rs,R*) 0.9683,0.9704,0.9847,0.9924 0.9684,0.9697,0.9845,0.991 Z4 > Z3 > Z2 > Z1 Z4
Zθ2(Rs,R*) 0.8652,0.8937,0.8813,0.9701 0.8659,0.8927,0.8795,0.966 Z4 > Z2 > Z3 > Z1 Z4
Zθ3(Rs,R*) 0.9386,0.9445,0.9699,0.9853 0.9387,0.9432,0.9695,0.983 Z4 > Z3 > Z2 > Z1 Z4

6. Conclusions

This work proposed the Dice measure, cotangent measure, and Jaccard measure between
two NCSs and discussed their properties. Then, we developed a MADM method based on one
of three measures and applied it in real cases with neutrosophic cubic information. By comparison
with an existing related MADM method, the proposed measures imply better robustness and lower
sensitivity regarding attribute weights.

In this work, our main contributions are to enrich the neutrosophic cubic similarity measures and
their decision-making method under NCS environments. In future work, the developed measures will
be extended to medical/fault diagnosis and image processing.
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1. Introduction

To deal with uncertainties, many theories have been recently developed, including the theory
of probability, the theory of fuzzy sets, the theory of rough sets, and so on. However, difficulties are
still arising due to the inadequacy of parameters. The concept of fuzzy sets, which deals with the
nonprobabilistic uncertainty, was introduced by Zadeh [1] in 1965. Since then, many researchers have
defined the concept of fuzzy topology that has been widely used in the fields of neural networks,
artificial intelligence, transportation, etc.The intuitionistic fuzzy set (IFS for short) on a universe X was
introduced by K. Atanaasov [2] in 1983 as a generalization of the fuzzy set in addition to the degree of
membership and the degree of nonmembership of each element.

In 1999, Molodtsov [3] successfully proposed a completely new theory called soft set theory using
classical sets. This theory is a relatively new mathematical model for dealing with uncertainty from a
parametrization point of view. After Molodtsov, many researchers have shown interest in soft sets
and their applications. Maji [4,5] introduced neutrosophic soft sets with operators, which are free
from difficulties since neutrosophic sets [6–9] can handle indeterminate information. However, the
neutrosophic sets and operators are hard to apply in real life applications. Therefore, Smarandache [10]
proposed the concept of interval valued neutrosophic sets which can represent uncertain, imprecise,
incomplete, and inconsistent information.

Nguyen [11] introduced the new concept in a type of soft computing, called the
support-neutrosophic set. Deli [12] defined a generalized concept of the interval-valued neutrosophic
soft set. In this paper, we combine interval-valued neutrosophic soft sets and support sets to yield the
interval-valued neutrosophic support soft set, and we study some of its basic operations. Our main aim
of this paper is to make decisions using interval-valued neutrosophic support soft topological spaces.
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2. Preliminaries

In this paper, we provide the basic definitions of neutrosophic and soft sets. These are very useful
for what follows.

Definition 1. ([13]) Let X be a non-empty set. A neutrosophic set, A, in X is of the form
A = {〈x, μA(x), σA(x), ωA(x), γA(x); x ∈ X〉}, where μA : X → [0, 1], σA : X → [0, 1] and

γA : X → [0, 1] represent the degree of membership function, degree of indeterminacy, and degree of
non-membership function, respectively and 0 ≤ sup μA(x) + sup σA(x) + sup γA(x) ≤ 3, ∀x ∈ X.

Definition 2. ([5]) Let X be a non-empty set , let P(X) be the power set of X, and let E be a set of parameters,
and A ⊆ E. The soft set function, fX, is defined by

fX : A → P(X) such that fX(x) = ∅ i f x /∈ X.

The function fX may be arbitrary. Some of them may be empty and may have non-empty intersections. A
soft set over X can be represented as the set of order pairs FX = {(x, fX(x)) : x ∈ X, fX(x) ∈ P(X)}.

Example 1. Consider the soft set 〈F, A〉, where X is a set of six mobile phone models under consideration
to be purchased by decision makers, which is denoted by X = {x1, x2, x3, x4, x5, x6}, and A is the parameter
set, where A = {y1, y2, y3, y4, y5} = {price, look, camera, e f f iciency, processsor}. A soft set, FX, can
be constructed such that fX(y1) = {x1, x2}, fX(y2) = {x1, x4, x5, x6}, fX(y3) = ∅, fX(y4) = X, and
fX(y5) = {x1, x2, x3, x4, x5}. Then,

FX = {(y1, x1, x2), (y2, x1, x4, x5, x6), (y3, ∅), (y4, X), (y5, x1, x2, x3, x4, x5)}.

X x1 x2 x3 x4 x5 x6

y1 1 1 0 0 0 0
y2 1 0 0 1 1 1
y3 0 0 0 0 0 0
y4 1 1 1 1 1 1
y5 1 1 1 1 1 0

Definition 3. ([4]) Let X be a non-empty set, and A = {y1, y2, y3, ........., yn}, the subset of X and FX is a soft
set over X. For any yi ∈ A, fX(yi) is a subset of X. Then, the choice value of an object, xi ∈ X, is CVi = ∑j xij,
where xij are the entries in the table of FX:

xij =

{
1, if xi ∈ fX(yj)

0, if xi �∈ fX(yj).

Example 2. Consider Example 2. Clearly, CV1 = ∑5
j=1 x1j = 4, CV3 = CV6 = ∑5

j=1 x3j = ∑5
j=1 x6j = 2,

CV2 = CV4 = CV5 = ∑5
j=1 x2j = ∑5

j=1 x4j = ∑5
j=1 x5j = 3.

Definition 4. ([13]) Let FX and FY be two soft sets over X and Y. Then,

(1) The complement of FX is defined by FXc(x) = X \ fX(x) for allx ∈ A;
(2) The union of two soft sets is defined by fX∪Y(x) = fX(x) ∪ fY(x) for all x ∈ A;
(3) The intersection of two soft sets is defined by fX∩Y(x) = fX(x) ∩ fY(x) for all x ∈ A.

3. Interval Valued Neutrosophic Support Soft Set

In this paper, we provide the definition of a interval-valued neutrosophic support soft set and
perform some operations along with an example.
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Definition 5. Let X be a non-empty fixed set with a generic element in X denoted by a. An interval-valued
neutrosophic support set, A, in X is of the form

A = {〈x, μA(x), σA(x), ωA(x), γA(x)〉/a; a ∈ X}.

For each point, a ∈ X, x, μA(x), σA(x), ωA(x), and γA(x) ∈ [0, 1].

Example 3. Let X = {a, b} be a non-empty set, where a, b ⊆ [0, 1]. An interval valued neutrosophic support
set, A ⊆ X, constructed according to the degree of membership function, (μA(x)), indeterminacy (σA(x)),
support function (ωA(x)), and non-membership function (γA(x)) is as follows:
A = {〈(0.2, 1.0), (0.2, 0.4), (0.1, 0.7), (0.5, 0.7)〉/a, 〈(0.6, 0.8), (0.8, 1.0), (0.4, 0.6), (0.4, 0.6)〉/b}.

Definition 6. Let X be a non-empty set; the interval-valued neutrosophic support set A in X is of the form
A = {〈x, μA(x), σA(x), ωA(x), γA(x); x ∈ X〉}.

(i) An empty set A, denoted by A = ∅, is defined by
∅ = {〈(0, 0), (1, 1), (0, 0), (1, 1)〉/x : x ∈ X}.

(ii) The universal set is defined by
U = {〈(1, 1), (0, 0), (1, 1), (0, 0)〉/x : x ∈ X}.

(iii) The complement of A is defined by
Ac = {〈(inf γA(x), sup γA(x)), (1− sup σA(x), 1− inf σA(x)), (1− sup ωA(x), 1− inf ωA(x)),
(inf μA(x), sup μA(x))〉/x : x ∈ X}.

(iv) A and B are two interval-valued neutrosophic support sets of X. A is a subset of B if
μA(x) ≤ μB(x), σA(x) ≥ σB(x), ωA(x) ≤ ωB(x), γA(x) ≥ γB(x).

(v) Two interval-valued neutrosophic support sets A and B in X are said to be equal if A ⊆ B and B ⊆ A.

Definition 7. Let A and B be two interval-valued neutrosophic support sets. Then, for every x ∈ X

(i) The intersection of A and B is defined by
A ∩ B = {〈(min[inf μA(x), inf μB(x)], min[sup μA, sup μB(x)]), (max[inf σA(x), inf σB(x)],
max[sup σA(x), sup σB(x)]), (min[inf ωA(x), inf ωB(x)], min[sup ωA(x), sup ωB(x)]),
(max[inf γA(x), inf γB(x)], max[sup
γA(x), sup γB(x)])〉/x : x ∈ X}.

(ii) The union of A and B is defined by
A ∪ B = {〈(max[inf μA(x), inf μB(x)], max[sup μA(x), sup μB(x)]), (min[inf σA(x),
inf σB(x)], min[sup σA(x), σB(x)]), (max[inf ωA(x), inf ωB(x)], max[sup ωA(x),
sup ωB(x)]), (min[inf γA(x), inf γB(x)], min[sup γA(x), sup γB(x)])〉/x : x ∈ X}.

(iii) A difference, B, is defined by
A \ B={〈(min[inf μA(x), inf γB(x)], min[sup μA(x), sup γB(x)]), (max[inf σA(x), 1− sup σB(x)],
max[sup σA(x), 1− inf σB(x)]), (min[inf ωA(x), 1− sup ωB(x)], min[sup ωA(x), 1− inf ωB(x)]),
(max[inf γA(x), inf μB(x)], max[sup γB(x), sup μB(x)])〉/x : x ∈ X}.

(iv) Scalar multiplication of A is defined by
A.a = {〈(min[inf μA(x).a, 1], min[sup μA(x).a, 1]), (min[inf σA(x).a, 1], min[sup σA(x).a, 1]),
(min[inf ωA(x).a, 1], min[sup ωA(x).a, 1]), (min[inf γA(x).a, 1], min[sup γA(x).a, 1])〉/x : x ∈ X}.

(v) Scalar division of A is defined by
A/a = {〈(min[inf μA(x)/a, 1], min[sup μA(x)/a, 1]), (min[inf σA(x)/a, 1], min[sup σA(x)/a, 1]),
(min[inf ωA(x)/a, 1], min[sup ωA(x)/a, 1]), (min[inf γA(x)/a, 1], min[sup γA(x)/a, 1])〉/x : x ∈ X}.

Definition 8. Let X be a non-empty set; IVNSS(X) denotes the set of all interval-valued neutrosophic support
soft sets of X and a subset, A, of X . The soft set function is

gi : A → IVNSS(x).
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The interval valued neutrosophic support soft setover X can be represented by

Gi = {(y, gi(y)) : y ∈ A}, such that gi(y) = ∅ i f x /∈ X.

Example 4. Consider the interval-valued neutrosophic support soft set, 〈Gi, A〉, where X is a set of two brands
of mobile phones being considered by a decision maker to purchase, which is denoted by X = {a, b}, and A
is a parameter set, where A = {y1 = price, y2 = camera speci f ication, y3 = E f f icency, and y4 = size,
y5 = processsor}. In this case, we define a set Gi over X as follows:

Gi a b
y1 [0.6,0.8],[0.8,0.9][0.5,0.6][0.1,0.5] [0.6,0.8][0.1,0.8][0.3,0.7][0.1,0.7]
y2 [0.2,0.4][0.5,0.8][0.4,0.3][0.3,0.8] [0.2,0.8][0.6,0.9][0.5,0.8][0.2,0.3]
y3 [0.1,0.9][0.2,0.5][0.5,0.7][0.6,0.8] [0.4,0.9][0.2,0.6][0.5,0.6][0.5,0.7]
y4 [0.6,0.8][0.8,0.9][0.1,0.9][0.8,0.9] [0.5,0.7][0.6,0.8][0.7,0.9][0.1,0.8]
y5 [0.0,0.9][1.0,0.1][1.0,0.9][1.0,1.0] [0.0,0.9][0.8,1.0][0.3,0.5][0.2,0.5]

Clearly, we can see that the exact evaluation of each object on each parameter is unknown, while the lower
limit and upper limit of such an evaluation are given. For instance, we cannot give the exact membership degree,
support, indeterminacy and nonmembership degree of price ’a’; however, the price of model ’a’ is at least on the
membership degree of 0.6 and at most on the membership degree of 0.8.

Definition 9. Let Gi be a interval valued neutrosophic support soft set of X. Then, Gi is known as an empty
interval valued neutrosophic support soft set, if gi(y) = ∅.

Definition 10. Let Gi be a interval valued neutrosophic support soft set of X. Then, Gi is known as the
universal interval valued neutrosophic support soft set, if gi(y) = X.

Definition 11. Let Gi ,Gj be two interval valued neutrosophic support soft set of X. Then, Gi is said to be
subset of Gj, if gi(y) ⊆ gj(y).

Example 5. Two interval-valued neutrosophic support soft sets, Gi and Gj, are constructed as follows:

Gi a b
y1 [0.6,0.8],[0.8,0.9][0.5,0.6][0.1,0.5] [0.6,0.8][0.1,0.8][0.3,0.7][0.1,0.7]
y2 [0.2,0.4][0.5,0.8][0.4,0.3][0.3,0.8] [0.2,0.8][0.6,0.9][0.5,0.8][0.2,0.3]
y3 [0.1,0.9][0.2,0.5][0.5,0.7][0.6,0.8] [0.4,0.9][0.2,0.6][0.5,0.6][0.5,0.7]
y4 [0.6,0.8][0.8,0.9][0.1,0.9][0.8,0.9] [0.5,0.7][0.6,0.8][0.7,0.9][0.1,0.8]
y5 [0.0,0.9][1.0,0.1][1.0,0.9][1.0,1.0] [0.0,0.9][0.8,1.0][0.3,0.5][0.2,0.5]

Gj a b
y1 [0.7,0.8],[0.7,0.9][0.6,0.6][0.1,0.5] [0.7,0.9][0.0,0.8][0.4,0.8][0.1,0.6]
y2 [0.3,0.6][0.5,0.5][0.5,0.3][0.2,0.6] [0.4,0.8][0.6,0.9][0.5,0.8][0.1,0.2]
y3 [0.2,1.0][0.2,0.5][0.5,0.7][0.5,0.7] [0.5,0.9][0.2,0.6][0.6,0.6][0.5,0.5]
y4 [0.6,0.8][0.8,0.9][0.1,0.7][0.8,0.9] [0.6,0.8][0.6,0.8][0.9,0.9][0.1,0.4]
y5 [0.1,1.0][0.9,0.1][1.0,1.0][0.9,0.8] [0.2,0.9][0.7,0.9][0.3,0.5][0.2,0.5]

Following Definition 11, Gi is a subset of Gj.

Definition 12. The two interval valued neutrosophic support soft sets, Gi, Gj, such that Gi ⊆ Gj, is said to be
classical subset of X where every element of Gi does not need to be an element of Gj

Proposition 1. Let Gi, Gj, Gk be an interval valued neutrosophic support soft set of X. Then,

(1) Each Gn is a subset of GX, where n= i,j,k;
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(2) Each Gn is a superset of G∅, where n= i,j,k;
(3) If Gi is a subset of Gj and Gj is a subset of Gk, then, Gi is a subset of Gk.

Proof. The proof of this proposition is obvious.

Definition 13. The two interval valued neutrosophic support soft sets of X are said to be equal, if and only if
gi = gj, for all i, j ∈ X

Proposition 2. Let X be a non-empty set and Gi, Gj be an interval valued neutrosophic support soft set of X.
Gi is a subset of Gj, and Gj is a subset of Gi, if and only if Gi is equal to Gj

Definition 14. The complement of the interval valued neutrosophic support soft set, Gi, of X is denoted by Gic ,
for all i ∈ A

(i) The complement of the empty interval valued neutrosophic support soft set of X is the universal interval
valued neutrosophic support soft setof X.

(ii) The complement of the universal interval valued neutrosophic support soft set of X is the empty interval
valued neutrosophic support soft set of X.

Theorem 1. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then, Gi is a subset of Gj and
the complement of Gj is a subset of the complement of Gi.

Proof. Let Gi, and Gj be an interval valued neutrosophic support soft set of X. By definition, 3.7 Gi
is a subset of Gj if gi(y) ⊆ gj(y). Then, the complement of gi(y) ⊆ gj(y) is gc

i (y) ⊇ gc
j (y). Hence, the

complement of Gj is a subset of the complement of Gi.

Example 6. From Example 4, the complement of Gi is constructed as follows:

Gic a b
y1 [0.1,0.5],[0.1,0.2][0.4,0.5][0.6,0.8] [0.1,0.7][0.2,0.9][0.3,0.7][0.6,0.8]
y2 [0.3,0.8][0.2,0.5][0.6,0.7][0.2,0.4] [0.2,0.3][0.1,0.4][0.2,0.5][0.2,0.8]
y3 [0.6,0.8][0.5,0.8][0.3,0.5][0.1,0.9] [0.5,0.7][0.4,0.8][0.4,0.5][0.4,0.9]
y4 [0.8,0.9][0.1,0.2][0.3,0.9][0.6,0.8] [0.1,0.8][0.2,0.4][0.1,0.3][0.5,0.7]
y5 [1.0,1.0]0.0,0.9][0.0,0.1][0.0,0.9] [0.2,0.5][0.0,0.2][0.5,0.7][0.0,0.8]

Definition 15. The union of the interval valued neutrosophic support soft set of X is denoted by Gi ∪ Gj and is
defined by gi(y) ∪ gj(y) = gj(y) ∪ gi(y) for all y ∈ A.

Proposition 3. Let Gi,Gj,Gk be an interval valued neutrosophic support soft set of X. Then,

(i) Gi ∪ G∅ = Gi.
(ii) Gi ∪ GX = GX.

(iii) Gi ∪ Gj = Gj ∪ Gi.
(iv) (Gi ∪ Gj) ∪ Gk = Gi ∪ (Gj ∪ Gk).

Example 7. From Example 4, the union of two sets is represented as follows:

Gi ∪ Gj a b
y1 [0.7,0.8],[0.7,0.9][0.6,0.6][0.1,0.5] [0.7,0.9][0.0,0.8][0.4,0.8][0.1,0.6]
y2 [0.3,0.6][0.5,0.5][0.5,0.3][0.2,0.6] [0.4,0.8][0.6,0.9][0.5,0.8][0.1,0.2]
y3 [0.2,1.0][0.2,0.5][0.5,0.7][0.5,0.7] [0.5,0.9][0.2,0.6][0.6,0.6][0.5,0.5]
y4 [0.6,0.8][0.8,0.9][0.1,0.7][0.8,0.9] [0.6,0.8][0.6,0.8][0.9,0.9][0.1,0.4]
y5 [0.1,1.0]0.1,0.9][1.0,1.0][0.8,0.9] [0.2,0.9][0.7,0.9][0.3,0.5][0.2,0.5]
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Definition 16. Let Gi,Gj be an interval valued neutrosophic support soft set of X. Then, the intersection of two
sets denoted by Gi ∩ Gj is defined as gi(y) ∩ gj(y) = gj(y) ∩ gi(y) for all y ∈ A.

Proposition 4. Let Gi,Gj,Gk be an interval valued neutrosophic support soft set of X. Then,

(i) Gi ∩ G∅ = G∅.
(ii) Gi ∩ GX = Gi.

(iii) Gi ∩ Gj = Gj ∩ Gi.
(iv) (Gi ∩ Gj) ∩ Gk = Gi ∩ (Gj ∩ Gk).

Proof. The proof is obvious.

Example 8. In accordance with Example 4, the intersection operation is performed as follows:

Gi ∩ Gj a b
y1 [0.6,0.8],[0.8,0.9][0.5,0.6][0.1,0.5] [0.6,0.8][0.1,0.8][0.3,0.7][0.1,0.7]
y2 [0.2,0.4][0.5,0.8][0.3,0.4][0.3,0.8] [0.2,0.8][0.6,0.9][0.5,0.8][0.2,0.3]
y3 [0.1,0.9][0.2,0.5][0.5,0.7][0.6,0.8] [0.4,0.9][0.2,0.6][0.5,0.6][0.5,0.7]
y4 [0.6,0.8][0.8,0.9][0.1,0.7][0.8,0.9] [0.5,0.7][0.6,0.8][0.7,0.9][0.1,0.8]
y5 [0.0,0.9]0.1,0.9][0.9,1.0][1.0,1.0] [0.0,0.8][0.8,1.0][0.3,0.5][0.2,0.5]

Definition 17. Let Gi be an interval valued neutrosophic support soft set of X. Then, the union of interval
valued neutrosophic support soft setand its complement is not a universal set and it is not mutually disjoint.

Proposition 5. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then, the D’Margan
Laws hold.

(i) (Gi ∪ Gj)
c = Gc

i ∩ Gc
j .

(ii) (Gi ∩ Gj)
c = Gc

i ∪ Gc
j .

Proposition 6. Let Gi,Gj, Gk be an interval valued neutrosophic support soft set of X. Then, the following hold.

(i) Gi ∪ (Gj ∩ Gk) = (Gi ∪ Gj) ∩ (Gi ∩ Gk).
(ii) Gi ∩ (Gi ∪ Gj) = (Gi ∩ Gj) ∪ (Gi ∩ Gk)

Definition 18. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then, the difference between
two sets is denoted by Gi/Gj and is defined by

gi/j(y) = gi(y)/gj(y)

for all y ∈ A.

Definition 19. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then the addition of two
sets are denoted by Gi + Gj and is defined by

gi+j(y) = gi(y) + gj(y)

for all y ∈ A.

Definition 20. Let Gi be an interval valued neutrosophic support soft set of X. Then, the scalar division of GI
is denoted by Gi/a and is defined by

gi/a(y) = gi(y)/a

for all y ∈ A.
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4. Decision-Making

In this paper, we provide the definition of relationship between the interval valued neutrosophic
support soft set, the average interval valued neutrosophic support soft setand the algorithm to get the
optimum decision.

Definition 21. Let Gi be an interval valued neutrosophic support soft set of X. Then, the relationship, R, for Gi
is defined by

RGi = {rGi (y, a) : rGi (y, a) ∈ interval valued neutrosophic support set. y ∈ A, a ∈ X}

where rGi : A \ X ⇒ interval valued neutrosophic support so f t set (X) and rGi (y, a) = gi(y)(a) for all
y ∈ A and a ∈ X

Example 9. From Example 4, the relationship for the interval valued neutrosophic support soft set of X is given
below.
gi(y1)

(a) = 〈[0.6, 0.8], [0.8, 0.9], [0.5, 0.6], [0.1, 0.5]〉,
gi(y1)

(b) = 〈[0.6, 0.8], [0.1, 0.8], [0.3, 0.7], [0.1, 0.7]〉,
gi(y2)

(a) = 〈[0.2, 0.4], [0.5, 0.8], [0.4, 0.3], [0.3, 0.8]〉,
gi(y2)

(b) = 〈[0.2, 0.8], [0.6, 0.9], [0.5, 0.8], [0.4, 0.3]〉,
gi(y3)

(a) = 〈[0.1, 0.9], [0.2, 0.5], [0.5, 0.7], [0.6, 0.8]〉,
gi(y3)

(b) = 〈[0.4, 0.9], [0.2, 0.6], [0.5, 0.6], [0.5, 0.7]〉,
gi(y4)

(a) = 〈[0.6, 0.8], [0.8, 0.9], [0.1, 0.7], [0.8, 0.9]〉,
gi(y4)

(b) = 〈[0.5, 0.7], [0.6, 0.8], [0.7, 0.9], [0.1, 0.8]〉,
gi(y5)

(a) = 〈[0.0, 0.9], [1.0, 0.1], [1.0, 0.9], [1.0, 1.0]〉,
gi(y5)

(b) = 〈[0.0, 0.8], [0.8, 1.0], [0.3, 0.5], [0.2, 0.5]〉.

Definition 22. Let Gi be an interval valued neutrosophic support soft set of X. For μ, σ, ω, γ ⊆ [0, 1],
the (μ, σ, ω, γ)-level support soft set of Gi defined by 〈Gi; (μ, σ, ω, γ)〉 = {(yi,{aij:aij ∈ X, μ(aij) =

1}):y ∈ A}, where

μ(aij) =

{
1, if (μ, σ, ω, γ) ≤ gi(yi)(aj)

0, if otherwise
. For all aj ∈ X.

Definition 23. Let Gi be an interval valued neutrosophic support soft set of X. The average interval valued
neutrosophic support soft set is defined by 〈μ, σ, ω, γ〉AvgGi (yi) = ∑

a∈X
gi(yi)

(a)/|X| for all y ∈ A

Example 10. Considering Example 4, the average interval valued neutrosophic support soft set is calculated
as follows:

〈μ, σ, ω, γ〉AvgGi (y1) =
2

∑
i=1

gi(y1)
(a)/|X| = 〈[0.6, 0.8], [0.45, 0.85], [0.4, 0.65], [0.1, 0.6]〉

〈μ, σ, ω, γ〉AvgGi (y2) =
2

∑
i=1

gi(y2)
(a)/|X| = 〈[0.2, 0.6], [0.55, 0.85], [0.45, 0.55], [0.25, 0.55]〉

〈μ, σ, ω, γ〉AvgGi (y3) =
2

∑
i=1

gi(y3)
(a)/|X| = 〈[0.25, 0.9], [0.2, 0.55], [0.5, 0.65], [0.55, 0.75]〉

〈μ, σ, ω, γ〉AvgGi (y4) =
2

∑
i=1

gi(y4)
(a)/|X| = 〈[0.55, 0.75], [0.7, 0.85], [0.4, 0.8], [0.45, 0.85]〉
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〈μ, σ, ω, γ〉AvgGi (y5) =
2

∑
i=1

gi(y5)
(a)/|X| = 〈[0.0, 0.85], [0.9, 0.55], [0.65, 0.7], [0.6, 0.75]〉

Theorem 2. Let X be a non-empty set and Gi, Gj be an interval valued neutrosophic support soft set
of X. {Gi; 〈μ1, σ1, ω1, γ1〉} and {Gi; 〈μ2, σ2, ω2, γ2〉} are level support soft sets if 〈μ1, σ1, ω1, γ1〉 ≤
〈μ2, σ2, ω2, γ2〉. Then, {Gi; 〈μ1, σ1, ω1, γ1〉} ≤ {Gi; 〈μ2, σ2, ω2, γ2〉}.

Proof. Let Gi and Gj be an interval valued neutrosophic support soft set of X. In accordance with
Definition 3.2 (iv), each function is μ1 ≤ μ2, σ1 ≤ σ2, ω1 ≤ ω2, γ1 ≥ γ2. Thus, the corresponding
interval valued neutrosophic support soft set is {Gi; 〈μ1, σ1, ω1, γ1〉} ≤ {Gj; 〈μ2, σ2, ω2, γ2〉}. Hence,
the proof.

The following algorithm is used to make decisions in an interval-valued neutrosophic support
soft set.

Algorithm 1:

(1) Enter the interval valued neutrosophic support soft set, Gi;
(2) Enter the average interval valued neutrosophic support soft set, 〈μ, σ, ω, γ〉AvgGi , using

average-level decision rules to make decisions;
(3) Determine the average-level support soft set, Gi; 〈μ, σ, ω, γ〉AvgGi ;
(4) Present the level support soft set in tabular form;
(5) Determine the choice value, Cvi , of ai for any a ∈ X;
(6) Select the optimum value for the optimum decision, Cvi = maxai∈X Cvi .

Example 11. People who are affected by cancer, have a combination of treatments, such as surgery with
chemotherapy and/or radiation therapy, hormone therapy, and immunotherapy. Our main objective is to find the
best treatment from the above mentioned therapies. However, all the treatments can cause side effects. Our goal
is to find the best treatment which cause the least side effects, reduce the cost of the treatment, extend the patient’s
life, cure the cancer and control its growth using an interval-valued neutrosophic support soft set.

Gi a b
y1 [0.4,0.7][0.8,0.8][0.4,0.8][0.3,0.5] [0.3,0.6][0.3,0.8][0.3,0.7][0.3,0.8]
y2 [0.1,0.3][0.6,0.7][0.2,0.3][0.3,0.8] [0.2,0.7][0.7,0.9][0.3,0.6][0.3,0.4]
y3 [0.2,0.6][0.4,0.5][0.1,0.5][0.7,0.8] [0.4,0.9][0.1,0.6][0.3,0.8][0.5,0.7]
y4 [0.6,0.9][0.6,0.9][0.6,0.9][0.6,0.9] [0.5,0.9][0.6,0.8][0.2,0.8][0.1,0.7]
y5 [0.0,0.9]1.0,1.0][1.0,1.0][1.0,1.0] [0.0,0.9][0.8,1.0][0.1,0.4][0.2,0.5]

Gi c d
y1 [0.5,0.7][0.8,0.9][0.4,0.8][0.2,0.5] [0.3,0.6][0.3,0.9][0.2,0.8][0.2,0.8]
y2 [0.0,0.3][0.6,0.8][0.1,0.4][0.3,0.9] [0.1,0.8][0.8,0.9][0.2,0.9][0.3,0.5]
y3 [0.1,0.7][0.4,0.5][0.2,0.8][0.8,0.9] [0.2,0.5][0.5,07][0.3,0.6][0.6,0.8]
y4 [0.2,0.4][0.7,0.9][0.6,0.8][0.6,0.9] [0.3,0.9][0.6,0.9][0.2,0.8][0.3,0.9]
y5 [0.0,0.2][1.0,1.0][1.0,1.0][1.0,1.0] [0.0,0.1][0.9,1.0][0.2,0.2][0.2,0.9]

1. The average interval valued neutrosophic support soft set is determined as follows:

〈μ, σ, ω, γ〉AvgGi = {〈(0.375, 0.65), (0.55, 0.85), (0.325, 0.775), (0.25, 0.6), 〉/y1, 〈(0.125, 0.575),

(0.675, 0.825), (0.2, 0.5), (0.3, 0.65)〉/y2, 〈(0.225, 0.675), (0.35, 0.575), (0.225, 0.675), (0.65, 0.8)〉
/y3, 〈(0.4, 0.775), (0.625, 0.875), (0.4, 0.825), (0.4, 0.85)〉/y4, 〈(0.0, 0.525), (0.825, 1.0),
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(0.575, 0.625), (0.6, 0.85)〉/y5};

2. {Gi; 〈μ, σ, ω, γ〉AvgGi} = {(y2, b), (y3, b), (y4, a), (y5, b)};
3. The average-level support soft set, {Gi; 〈μ, σ, ω, γ〉AvgGi} is represented in tabular form.

X a b c d
y1 0 0 0 0
y2 0 1 0 0
y3 0 1 0 0
y4 1 0 0 0
y5 0 1 0 0

4. Compute the choice value, Cvi , of ai for all ai ∈ X as

Cv3 = Cv4 =
4

∑
j=1

a3j =
4

∑
j=1

a4j = 0, Cv1 =
4

∑
j=1

a1j = 1, Cv2 =
4

∑
j=1

a2j = 3;

5. Cv2 gives the maximum value. Therefore b is the optimum choice.

Now, we conclude that there are a few ways to get rid of cancer, but surgery chemotherapy is preferred by
most of the physicians with respect to the cost of treatment and extending the life of the patient with the
least side effects. Moreover, side effects will be reduced or vanish completely after finished chemotherapy,
and the cancer and its growth will be controlled.

5. Conclusions and Future Work

Fuzzy sets are inadequate for representing some parameters. Therefore, intuitionistic fuzzy
sets were introduced to overcome this inadequacy. Further, neutrosophic sets were introduced to
represent the indeterminacy. In order to make decisions efficiently, we offer this new research work
which does not violate the basic definitions of neutrosophic sets and their properties. In this paper,
we add one more function called the support function in interval-valued neutrosophic soft set, and we
also provide the basic definition of interval valued neutrosophic support soft set and some of its
properties. Further, we framed an algorithm for making decisions in medical science with a real-life
problem. Here, we found the best treatment for cancer under some constraints using interval valued
neutrosophic support soft set. In the future, motivated by the interval valued neutrosophic support
soft set, we aim to develop interval valued neutrosophic support soft set in ideal topological spaces.
In addition, weaker forms of open sets, different types of functions and theorems can be developed
using interval valued neutrosophic support soft set to allow continuous function. This concept may be
applied in operations research, data analytics, medical sciences, etc. Industry may adopt this technique
to minimize the cost of investment and maximize the profit.
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Abstract: One of the most significant competitive strategies for organizations is sustainable supply
chain management (SSCM). The vital part in the administration of a sustainable supply chain is
the sustainable supplier selection, which is a multi-criteria decision-making issue, including many
conflicting criteria. The valuation and selection of sustainable suppliers are difficult problems due
to vague, inconsistent and imprecise knowledge of decision makers. In the literature on supply
chain management for measuring green performance, the requirement for methodological analysis of
how sustainable variables affect each other, and how to consider vague, imprecise and inconsistent
knowledge, is still unresolved. This research provides an incorporated multi-criteria decision-making
procedure for sustainable supplier selection problems (SSSPs). An integrated framework is presented
via interval-valued neutrosophic sets to deal with vague, imprecise and inconsistent information that
exists usually in real world. The analytic network process (ANP) is employed to calculate weights
of selected criteria by considering their interdependencies. For ranking alternatives and avoiding
additional comparisons of analytic network processes, the technique for order preference by similarity
to ideal solution (TOPSIS) is used. The proposed framework is turned to account for analyzing and
selecting the optimal supplier. An actual case study of a dairy company in Egypt is examined within
the proposed framework. Comparison with other existing methods is implemented to confirm the
effectiveness and efficiency of the proposed approach.

Keywords: sustainable supplier selection problems (SSSPs); analytic network process; interdependency of
criteria; TOPSIS; neutrosophic set

1. Introduction

The major priority for decision makers and managers in many fields such as agriculture, tourism,
business development or manufacturing is the management of environmental and social issues, and
the emergency to address them with the economic factors [1]. The sustainability is the synthesis
of social, environmental and economic development [2]. The sustainability applies to all pertinent
supply chain sides in supply chain management [3]. In sustainable supply chain management,
managers seek to enhance the economic realization of their organization not only to survive, but also
to succeed in close and distant future. The social and environmental activities that can enhance
economic goals of organizations should be undertaken by managers in sustainable supply chain
management [4]. Selecting the sustainable suppliers is very significant when designing new strategies
and models in the case of lack of available knowledge and resources. Thus, the most important part
in sustainable supply chain management is to construct and implement an effective and efficient
supplier section process [5]. The supplier selection problems, combining social and environmental
factors for estimating and ranking suppliers to select the best, can be regarded as a sustainable supplier
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selection problems (SSSPs). The selection process of sustainable suppliers involves several conflicting
criteria. The evaluation and selection of suppliers is very difficult due to vague, inconsistent and
imprecise knowledge of decision makers. In order to deal with vague information, Zadeh introduced
the theory of fuzzy sets in 1965 [6]. It is difficult to identify the truth-membership degree of a fuzzy set
to a specific value. Therefore, Turksen introduced interval-valued fuzzy sets in 1986 [7]. Because fuzzy
set only considers the truth-membership (membership) degree and fails to consider falsity-membership
(non-membership) degree, Atanassov introduced intuitionistic fuzzy sets [8]. Moreover, intuitionistic
fuzzy sets were expanded to interval-valued intuitionistic fuzzy sets [9]. The intuitionistic fuzzy
sets have been exercised to disband multi-criteria decision-making problems [10–12]. The fuzzy and
intuitionistic fuzzy sets fail to treat all types of uncertainties such as indeterminacy and inconsistency
that exist usually in natural decision-making processes. For instance, when a decision maker gives
his/her judgment toward anything, he/she may say that: this statement is 50% correct, 60% false
and 20% I am not sure [13]. From this concept, Smarandache suggested the neutrosophic logic,
probability and sets [14–16]. In neutrosophy, the indeterminacy degree is independent of truth and
falsity degrees [17]. To facilitate the practical side of neutrosophic sets, a single-valued neutrosophic
set (SVNS) was presented [13,18]. In real life problems, the statement could not be accurately defined
by a certain degree of truth, indeterminacy and falsity, but indicated by various interval values.
Therefore, interval neutrosophic set (INS) was conceptualized. The interval neutrosophic set (INS) was
introduced by Wang et al. [19]. The authors in [17] used interval-valued neutrosophic set to present
multi-criteria decision-making (MCDM) problems using aggregation operators. The neutrosophic
linguistic environment was used by Broumi and Smarandache [20] to deal with multi-criteria
decision-making problems. Zhang et al. [21] introduced an outranking technique to solve MCDM
problems by using an interval-valued neutrosophic set. However, the current literature did not advance
the integration of ANP and TOPSIS using INS for solving sustainable supplier selection problems.
Consequently, we are the first to use an interval-valued neutrosophic set for representing a group
ANP-TOPSIS framework for sustainable supplier selection.

Research Contribution

Our contribution can be summed up as follows:

• The sustainable supplier selection is a multi-criteria decision-making issue including many
conflicting criteria. The valuation and selection of sustainable suppliers is a difficult problem
due to vague, inconsistent and imprecise knowledge of decision makers. The literature on
supply chain management for measuring green performance, the requirement for methodological
analysis of how sustainable variables affect each other and of how to consider vague, imprecise
and inconsistent knowledge is somehow inconclusive, but these drawbacks have been treated in
our research.

• In most cases, the truth, falsity and indeterminacy degrees cannot be defined precisely in the
real selection of sustainable suppliers, but denoted by several possible interval values. Therefore,
we presented ANP TOPSIS, and combined them with interval-valued neutrosophic sets to select
sustainable suppliers for the first time.

• The integrated framework leads to accurate decisions due to the way it treats uncertainty.
The sustainable criteria for selecting suppliers are determined from the cited literature and the
features of organizations under analysis. Then, the decision makers gather data and information.

• We select ANP and TOPSIS for solving sustainable supplier selection problems for the following
reasons:

- Since the independent concept of criteria is not constantly right and in actual life, there exist
criteria dependent on each other, and we used ANP for precise weighting of criteria.
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- The ANP needs many pairwise comparison matrices based on numerals and interdependence
of criteria and alternatives, and, to escape this drawback, the TOPSIS was used to
rank alternatives.

- The main problem of sustainable supplier selection problems is how to design and implement
a flexible model for evaluating all available suppliers; since it considers the uncertainty that
usually exists in real life, our model is the best.

- The proposed framework is used to study the case of a dairy and foodstuff company in
Egypt, and can be employed to solve any sustainable supplier selection problem of any
other company.

- Comparison with other existing methods, which are popular and attractive, was presented to
validate our model.

The plan of this research is as follows: a literature review on the multi-criteria decision-making
techniques to disband sustainable supplier selection problems is presented in Section 2. The basic
concepts and definitions of interval-valued neutrosophic sets and its operations are discussed in
Section 3. The ANP and TOPSIS methods are described in Section 4. The proposed framework for
selecting optimal suppliers is presented in Section 5. An actual case study of a dairy and foodstuff
company in Egypt is examined in Section 6. The conclusion and future directions are presented in
Section 7.

2. Literature Review

Many research works intensify a supplier selection problem using various MCDM methods.
For listing the optimal supplier under environmental factors, Govindan et al. [22] proposed a fuzzy
TOPSIS framework. For evaluating sustainable suppliers’ performance in a supply chain, Erol et al. [23]
validated a multi-criteria setting based on fuzzy multi-attribute utility. The fuzzy inference system,
the fuzzy logic and ranking method are used to address the subjectivity of DM estimation.

To handle sustainable supplier selection in a group decision environment, Wen et al. [24]
proposed a fuzzy intuitionistic TOPSIS model. To analyze sustainability criteria and select the optimal
sustainable supplier, Orji and Wei [25] used fuzzy logic, decision-making trial and evaluation laboratory
(DEMATEL) and TOPSIS.

To bridge the gap between numerous existing research works on supplier selection and others who
depend on environmental issues, Shaw et al. [26] were the first to employ AHP in fuzzy environment
for green supplier selection. The fuzzy ANP and multi-person decision-making schema through
imperfect preference relations are used by Buyukozkan and Cifci [27].

The requirements of company stakeholders are translated into multiple criteria for supplier
selection by Ho et al. [28] by using a QFD approach. A family group decision-making model was
developed by Dursun and Karsak [29] by using a QFD method to determine the characteristics that
a product must hold to achieve customer needs and construct the assessment criteria for suppliers.
A two-stage structure including data envelopment analysis (DEA) and rough set theory was proposed
by Bai and Sarkis [30] to determine and evaluate relative performance of suppliers.

To rank sustainable suppliers, Kumar et al. [31] proposed a unified green DEA model. A fuzzy
DEA model was used by Azadi et al. [32] to measure the efficiency, effectiveness and productivity of
sustainable suppliers. To optimize supplier selection processes, numerous models have been integrated.
The integrated analytic frameworks were combined through the recent research: ANP and/or AHP
integrated with QFD by many researchers [33–38]. The DEMATEL was integrated with fuzzy ANP
and TOPSIS as in [39]. Kumaraswamy et al. [40] integrated QFD with TOPSIS.

The integration of a fuzzy Delphi approach, ANP and TOPSIS were proposed by Chung et al. [41]
for supplier selection. A review of multi-attribute decision-making techniques for evaluating and
selecting suppliers in fuzzy environment is presented in [42]. In addition, the ANP was integrated with

404



Symmetry 2018, 10, 226

intuitionistic fuzzy TOPSIS by Rouyendegh [43] for selecting an optimal supplier. Tavana et al. [44]
integrated ANP with QFD for sustainable supplier selection.

A neutrosophic group decision-making technique based on TOPSIS was proposed by Şahin and
Yiğider for a supplier selection problem [45]. A hybrid multi-criteria group decision-making technique
based on interval-valued neutrosophic sets was proposed by Reddy et al. [46] for lean supplier
selection. An extended version of EDAS using an interval valued neutrosophic set for a supplier
selection problem is presented in [47]. A quality function deployment technique for supplier selection
and evaluation based on an interval neutrosophic set is presented in [48]. To develop supplier selection
criteria, the DEMATEL technique is presented in neutrosophic environment, as in [49].

The main criteria for supplier selection problems have been identified in many studies.
The economic factors, which were considered in traditional supplier selection methods, are as follows:

• Cost,
• Quality,
• Flexibility,
• Technology capability.

There exist environmental factors for sustainable supplier selection as follows:

• Defilement production,
• Resource exhaustion,
• Eco-design and environmental administration.

The critical aspects of selecting green sustainable factors of supply chain design were provided by
Dey and Ho [38] in a review of the recent research development.

3. Preliminaries

The significant definitions of interval-valued neutrosophic sets and its operations are presented in
this section.

3.1. Interval-Valued Neutrosophic Sets (INS)

The interval-valued neutrosophic set V in X is described by truth TV(x), indeterminacy IV(x)
and falsity FV(x) membership degrees for each x ∈ X. Here, TV(x)=

[
TL

V(x), TU
V (x) ⊆ [0, 1]

]
,

IV(x)=
[
IL
V(x), IU

V (x) ⊆ [0, 1]
]

and FV(x)=
[
FL

V(x), FU
V (x) ⊆ [0, 1]

]
. Then, we can write interval-valued

neutrosophic set as V = <
[
TL

V(x), TU
V (x)

]
,
[
IL
V(x), IU

V (x)
]
,
[
FL

V(x), FU
V (x)

]
>.

The INS is a neutrosophic set.

3.2. The Related Operations of Interval-Valued Neutrosophic Sets

• Addition

Let A1, A2 be two INSs, where

A1 = <
[

TL
A1

, TU
A1

]
,
[

IL
A1

, IU
A1

]
,
[

FL
A1

, FU
A1

]
>, A2 = <

[
TL

A2
, TU

A2

]
,
[

IL
A2

, IU
A1

]
,
[

FL
A2

, FU
A2

]
> then

A1 + A2 = <
[

TL
A1

+ TL
A2
− TL

A1
TL

A2
, TU

A1
+ TU

A2
− TU

A1
TU

A2

]
,
[

IL
A1

IL
A2

, IU
A1

IU
A2

]
,
[

FL
A1

FL
A2

, FU
A1

FU
A2

]
>.

• Subset

A1 ⊆ A2 if and only if TL
A1
≤ TL

A2
,TU

A1
≤ TU

A2
; IL

A1
≥ IL

A2
, IU

A1
≥ IU

A2
;FL

A1
≥ FL

A2
, FU

A1
≥ FU

A2
.

• Equality

A1 = A2 if and only if A1 ⊆ A2 and A2 ⊆ A1.
• Complement

Let V = <
[
TL

V(x), TU
V (x)

]
,
[
IL
V(x), IU

V (x)
]
,
[
FL

V(x), FU
V (x)

]
>, then
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Vc = <
[
FL

V(x), FU
V (x)

]
,
[
1− IU

V (x), 1− IL
V(x)

]
,
[
TL

V(x), TU
V (x)

]
>.

• Multiplication

A1 × A2 =<
[

TL
A1

TL
A2

, TU
A1

TU
A2

]
,
[

IL
A1

+ IL
A2
− IL

A1
IL
A2

, IU
A1

+ IU
A2
− IU

A1
IU
A2

]
,[

FL
A1

+ FL
A2
− FL

A1
FL

A2
, FU

A1
+ FU

A2
− FU

A1
FU

A2

]
> .

• Subtraction

A1 − A2 = <
[
TL

A1
− FU

A2
, TU

A1
− FL

A2

]
,
[
max

(
IL
A1

, Il
A2

)
, max

(
IU
A1

, IU
A2

)]
,
[

FL
A1
− TU

A2
, FU

A1
− TL

A2

]
>.

• Multiplication by a constant value

λ A1 = <

[
1−
(

1− TL
A1

)λ
, 1−

(
1− TU

A1

)λ]
,
[(

IL
A1

)λ
,
(

IU
A1

)λ]
,
[(

FL
A1

)λ
,
(

FU
A1

)λ]
>,

where λ >0.

• Addition

Let A1, A2 two INSs where

A1 = <
[

TL
A1

, TU
A1

]
,
[

IL
A1

, IU
A1

]
,
[

FL
A1

, FU
A1

]
>, A2 = <

[
TL

A2
, TU

A2

]
,
[

IL
A2

, IU
A1

]
,
[

FL
A2

, FU
A2

]
> then

A1 + A2 = <
[

TL
A1

+ TL
A2
− TL

A1
TL

A2
, TU

A1
+ TU

A2
− TU

A1
TU

A2

]
,
[

IL
A1

IL
A2

, IU
A1

IU
A2

]
,
[

FL
A1

FL
A2

, FU
A1

FU
A2

]
>.

• Subset

A1 ⊆ A2 if and only if TL
A1
≤ TL

A2
,TU

A1
≤ TU

A2
; IL

A1
≥ IL

A2
, IU

A1
≥ IU

A2
;FL

A1
≥ FL

A2
, FU

A1
≥ FU

A2
.

• Equality

A1 = A2 if and only if A1 ⊆ A2 and A2 ⊆ A1.
• Complement

Let V = <
[
TL

V(x), TU
V (x)

]
,
[
IL
V(x), IU

V (x)
]
,
[
FL

V(x), FU
V (x)

]
>,

then Vc = <
[
FL

V(x), FU
V (x)

]
,
[
1− IU

V (x), 1− IL
V(x)

]
,
[
TL

V(x), TU
V (x)

]
>.

• Multiplication

A1×A2 =<
[
TL

A1
TL

A2
,TU

A1
TU

A2

]
,
[
IL
A1
+ IL

A2
− IL

A1
IL
A2

, IUA1
+ IUA2

− IUA1
IUA2

]
,
[
FL

A1
+FL

A2
−FL

A1
FL

A2
,FU

A1
+FU

A2
−FU

A1
FU

A2

]
>.

• Subtraction

A1− A2 = <
[

TL
A1
− FU

A2
, TU

A1
− FL

A2

]
,
[
max

(
IL
A1

, Il
A2

)
, max

(
IU
A1

, IU
A2

)]
,
[

FL
A1
− TU

A2
, FU

A1
− TL

A2

]
>.

• Multiplication by a constant value

λ A1 = <

[
1−
(

1− TL
A1

)λ
, 1−

(
1− TU

A1

)λ]
,
[(

IL
A1

)λ
,
(

IU
A1

)λ]
,
[(

FL
A1

)λ
,
(

FU
A1

)λ]
>, where

λ >0.

3.3. Weighted Average for Interval-Valued Neutrosophic Numbers (INN)

Let yj = <
[

TL
j , TU

j

]
,
[

IL
j , IU

j

]
,
[

FL
j , FU

j

]
> be a group of interval-valued neutrosophic numbers,

j = 1, 2 . . . , n is the number of decision makers. The weighted arithmetic average of interval-valued
neutrosophic number

INNWAA (y1, y2, . . . , yn) =
n
∑

k=1
wkyj =

<
[
1−∏n

k=1

(
1− TL

j

)wk
, 1

−∏n
k=1(1

−TU
j )wk ,

][
∏n

k=1

(
IL
j

)wk
, ∏n

k=1

(
IU
j

)wk
]
,
[
∏n

k=1

(
FL

j

)wk
, ∏n

k=1

(
FU

j

)wk
]
>,

(1)
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where wk is the decision maker’s weight vector.

3.4. INS Deneutrosophication Function

The deneutrosophication function converts each interval-valued neutrosophic number into
crisp number. Let A = <

[
TL

A, TU
A
]
,
[
IL
A, IU

A
]
,
[
FL

A, FU
A
]
> be an interval-valued neutrosophic number,

then the deneutrosophication function D(A) will be defined by

D(A) = 10(
2+(TL

A+TU
A )−2(IL

A+IU
A )−(FL

A ,FU
A )

4 ). (2)

3.5. Ranking Method for Interval-Valued Neutrosophic Numbers

Let A1, A2 be interval-valued neutrosophic numbers, then,

• if D(A1) greater than D(A2), then A1 > A2;
• if D(A1) less than D(A2), then A1 < A2;
• if D(A1) equals D(A2), then A1 = A2.

4. The ANP and TOPSIS Methods

In this section, we present an overview of the two techniques used in our proposed research.

4.1. The Analytic Network Process (ANP)

The ANP is a development of analytic hierarchy process (AHP), and it was advanced by Saaty
in 1996 for considering dependency and feedback among decision-making problem’s elements.
The ANP structures the problem as a network, not as hierarchies as with the AHP. In the analytic
hierarchy process, it is assumed that the alternatives depend on criteria and criteria depend on goal.
Therefore, in AHP, the criteria do not depend on alternatives, criteria do not affect (depend on) each
other, and alternatives do not depend on each other. Nevertheless, in the analytic network process,
the dependencies between decision-making elements are allowed. The differences between ANP and
AHP are presented with the structural graph in Figure 1. The upper side of Figure 1 shows the hierarchy
of AHP in which elements from the lower level have an influence on the higher level or, in other words,
the upper level depends on the lower level. However, in the lower side of Figure 1, which shows
the network model of ANP, we have a cluster network, and there exists some dependencies between
them. The dependencies may be inner-dependencies when the cluster influence itself or may be
outer-dependencies when cluster depends on another one. The complex decision-making problem in
real life may contain dependencies between problem’s elements, but AHP does not consider them, so
it may lead to less optimal decisions, and ANP is more appropriate.

The general steps of ANP [50]:

1. The decision-making problem should be structured as a network that consists of a main objective,
criteria for achieving this objective and can be divided to sub-criteria, and finally all available
alternatives. The feedback among network elements should be considered here.

2. To calculate criteria’s and alternatives’ weights, the comparisons matrices should be constructed
utilizing the 1–9 scale of Saaty. After then, we should check the consistency ratio of these matrices,
and it must be ≤ 0.1 for each comparison matrix. The comparison matrix’s eigenvector should
be calculated after that by summing up the columns of comparison matrix. A new matrix is
constructed by dividing each value in a column by the summation of that column, and then
taking the average of new matrix rows. For more information, see [51]. The ANP comparison
matrices may be constructed for comparing:

• Criteria with respect to goal,
• Sub-criteria with respect to criterion from the same cluster,
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• Alternatives with respect to each criterion,
• Criteria that belong to the same cluster with respect to each alternative.

3. Use the eigenvectors calculated in the previous step for constructing the super-matrix columns.
For obtaining a weighted super-matrix, a normalization process must be established. Then, raise
the weighted matrix to a larger power until the raw values will be equal to each column values of
super-matrix for obtaining the limiting matrix.

4. Finally, choose the best alternative by depending on weight values.

Figure 1. The structural difference between hierarchy and network model.

4.2. The TOPSIS Technique

The technique for order preference by similarity to ideal solution (TOPSIS) is proposed by
Hwang and Yoon for aiding decision makers in determining positive (A+) and negative (A−) ideal
solutions [52]. The chosen alternative is the one with the least distance from the positive ideal solution
and the greatest distance from the negative ideal solution. The TOPSIS steps summarized as follows:

1. The decision makers should construct the evaluation matrix that consists of m alternatives and
n criteria. The intersection of each alternative and criterion is denoted as xij, and then we have(

xij
)

m∗n matrix.

2. Use the following equation for obtaining the normalized evaluation matrix:

rij =
xij√

∑m
i=1 xij

2
; i = 1, 2, . . . , m; j = 1, 2, . . . , n. (3)

408



Symmetry 2018, 10, 226

3. Structure the weighted matrix through multiplying criteria’s weights wj, by the normalized
decision matrix rij as follows:

vij = wj × rij. (4)

4. Calculate the positive A+ and negative ideal solution A− using the following:

A+ =
{
< max

(
vij
∣∣i = 1, 2, . . . , m

)∣∣j ∈ J+ >, < min
(
vij
∣∣i = 1, 2, . . . , m

)∣∣j ∈ J− >
}

, (5)

A− =
{
< min

(
vij
∣∣i = 1, 2, . . . , m

)∣∣j ∈ J+ >, < max
(
vij
∣∣i = 1, 2, . . . , m

)∣∣j ∈ J− >
}

, (6)

where J+ associated with the criteria that have a beneficial influence and J− associated with the
criteria that have a non-beneficial influence.

5. Calculate the Euclidean distance among positive (d+i ) and negative ideal solution (d−i ) as follows:

d+i =

√√√√ n

∑
j=1

(
vij − v+j

)2
i = 1, 2, . . . , m, (7)

d−i =

√√√√ n

∑
j=1

(
vij − v−j

)2
i = 1, 2, . . . , m. (8)

6. Calculate the relative closeness to the ideal solution and make the final ranking of alternatives

ci =
d−i

d+i +d−i
for i = 1, 2, . . . , m, and based on the largest ci value, begin to rank alternatives. (9)

7. According to your rank of alternatives, take your final decision.

5. The Proposed Framework

The steps of the proposed interval-valued neutrosophic ANP-TOPSIS framework are presented
with details in this section.

The proposed framework consists of four phases, which contains a number of steps as follows:

Phase 1: For better understanding of a complex problem, we must firstly breakdown it.

Step 1.1. Select a group of experts to share in making decisions. If we select n experts, then we have the
panel = [e1, e2, . . . , en].

Step 1.2. Use the literature review to determine problem’s criteria and ask experts for confirming
these criteria.

Step 1.3. Determine the alternatives of the problem.
Step 1.4. Begin to structure the hierarchy of the problem.

In an analytic hierarchy process, it is assumed that the alternatives depend on criteria, criteria
affects goal, and in real complex problems, there likely is a dependency between a problem’s elements.
In order to overcome this drawback of AHP, we utilized ANP for solving the problem. Figure 2
presents a sample of an ANP network.

Phase 2: Calculate the weight of problem’s elements as follows:

Step 2.1. The interval-valued comparison matrices should be constructed according to each expert and
then aggregate experts’ matrices by using Equation (1).

In this step, we compare criteria according to overall goals, sub-criteria according to criteria,
and alternatives according to criteria. In addition, the interdependencies among problem’s elements
must be pair-wisely compared. The 9-point scale of Saaty [53] was used to represent comparisons in
traditional ANP.
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In our research, we used the interval-valued neutrosophic numbers for clarifying pair-wise
comparisons as presented in Table 1, and these values returned to authors’ opinions. When comparing
alternative 1 with alternative 2, and the first alternative was “Very strongly significant” than second
one, then the truth degree is high and indeterminacy degree is very small because the term “Very
strongly important” means that the decision makers are very confident of comparison results in a large
percentage. Therefore, we represented this linguistic term using interval-neutrosophic number equals
([0.8, 0.9], [0.0, 0.1], [0.0, 0.1]), as it appears in Table 1. All other values in Table 1 were scaled with the
same approach.

Step 2.2. Use the de-neutrosophication function for transforming the interval-valued neutrosophic
numbers to crisp numbers as in Equation (2).

Step 2.3. Use super decision software, which is available here (http://www.superdecisions.com/
downloads/) to check the consistency of comparison matrices.

Step 2.4. Calculate the eigenvectors for determining weight that will be used in building a super-matrix.
Step 2.5. The super-matrix of interdependencies should be constructed after then.
Step 2.6. Multiply the local weight, which was obtained from experts’ comparison matrices of criteria

according to goal, by the weight of interdependence matrix of criteria for calculating global
weight of criteria. In addition, calculate the global weights of sub-criteria by multiplying its local
weight by the inner interdependent weight of the criterion to which it belongs.

Table 1. The interval-valued neutrosophic scale for comparison matrix.

Linguistic Variables
Interval-Valued Neutrosophic Numbers for

Relative Importance <T,I,F>

Evenly significant ([0.5,0.5], [0.5,0.5], [0.5,0.5])
Low significant ([0.4,0.5], [0.1,0.2], [0.2,0.3])

Basically important ([0.6,0.7], [0.0,0.1], [0.0,0.1])
Very strongly significant ([0.8,0.9], [0.0,0.1], [0.0,0.1])

Absolutely significant ([1,1], [0.0,0.1], [0.0,0.0])

Intermediate values

([0.3,0.4], [0.1,0.2], [0.6,0.7]),
([0.6,0.7], [0.1,0.2], [0.0,0.1]),
([0.7,0.8], [0.0,0.1], [0.0,0.1]),
([0.9,1], [0.0,0.1], [0.0,0.1]).

Figure 2. An example of ANP interdependencies.

Phase 3: Rank alternatives of problems.

Step 3.1.Make the evaluation matrix, and then a normalization process must be performed for obtaining
the normalized evaluation matrix using Equation (3).
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Step 3.2. Multiply criteria’s weights, which was obtained from ANP by the normalized evaluation
matrix as in Equation (4) to construct the weighted matrix.

Step 3.3. Determine positive and negative ideal solutions using Equations (5) and (6).
Step 3.4. Calculate the Euclidean distance between positive solution (d+i ) and negative ideal solution

(d−i ) using Equations (7) and (8).
Step 3.5.Make the final ranking of alternatives based on closeness coefficient.

Phase 4: Compare the proposed method with other existing methods for validating it. The framework
of the suggested method is presented in Figure 3.

Figure 3. The framework’s proposed phases.

6. The Case Study: Results and Analysis

The proposed framework has been applied to a real sustainable supplier selection problem,
and the results are analyzed in this section.

An Egyptian dairy and foodstuff corporation was founded in 1999 and is based in 10th of
Ramadan City, Egypt. The corporation products include cream and skimmed milk, flavored milk, juice
nectars, junior milk and juices, and tomato paste. The procurement department of the corporation is
responsible for providing the required raw materials with the lowest possible cost, and purchasing
corporation’s required equipment. The types of equipment are material-handling, laboratory, technical
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parts and machinery. The procurement department supplies packaging pure materials, pure materials
and manufacturing technology. The dairy and foodstuff corporation must evaluate available suppliers
and their sustainability to improve their productivity and be more competitive. Therefore, improving
a system to assess and identify the superior suppliers is a significant component of this corporation’s
objectives. The corporation consulted the executive manager and asked three experts to help in
gathering required information for this study. The experts are in marketing, manufacturing and
strategy with more than five years of experience. There are four suppliers, denoted in this study by
A1 . . . A4.

Phase 1: Breakdown the complex problem for understanding it better.

The criteria and available suppliers which are relevant to our case study are identified from the
literature review. The experts vote to confirm the information. The criteria, sub-criteria and available
suppliers are presented in Figure 4. In order to determine how criteria and sub-criteria influence each
other and correlate, for being able to apply the ANP and weighting them, we interviewed the experts.

Phase 2: Calculate the weights of problem elements.

The verdicts of experts were applied through using the interval-valued neutrosophic numbers in
Table 1. We used interval-valued neutrosophic numbers because they are more realistic and accurate
than crisp values, and can deal efficiently and effectively with vague and inconsistent information.

Let experts express their judgments by constructing the pairwise comparison matrices using
the presented scale in Table 1—after that, aggregate comparison matrices using Equation (1).
The aggregated comparison matrices of experts are presented in Tables 2–11.

Figure 4. Hierarchy for dairy and foodstuff corporation to select the optimal supplier.
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Table 2. The pairwise comparison matrix of criteria with respect to goal.

Goal C1 C2 C3

C1 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.7,0.8], [0.0,0.1], [0.0,0.1]
C2 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.6,0.7], [0.1,0.2], [0.0,0.1]
C3 [0.5,0.5], [0.5,0.5], [0.5,0.5]

By using the deneutrosophication function through Equation (2), we will obtain the crisp matrix
of comparison as in Table 3.

Table 3. The equivalent crisp matrix of criteria with respect to goal.

Goal C1 C2 C3 Weights

C1 1 2 6 0.59
C2 0.5 1 4 0.32
C3 0.17 0.25 1 0.09

By checking consistency of the previous matrix using super decision software, we noted that the
matrix is consistent with consistency ratio (CR) = 1%.

The inner interdependency of main criteria according to C1 is presented in Table 4.

Table 4. Internal interdependencies of criteria with respect to C1 .

C1 C2 C3

C2 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.7,0.8], [0.0,0.1], [0.0,0.1]
C3 [0.5,0.5], [0.5,0.5], [0.5,0.5]

Table 5. The crisp interdependencies values of factors with respect to C1 .

C1 C2 C3 Weights

C2 1 6 0.86
C3 0.17 1 0.14

Table 6. Internal interdependencies of criteria with respect to C2 .

C2 C1 C3

C1 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.6,0.7], [0.1,0.2], [0.0,0.1]
C3 [0.5,0.5], [0.5,0.5], [0.5,0.5]

Table 7. The crisp interdependencies values of factors with respect to C2.

C2 C1 C3 Weights

C1 1 4 0.8
C3 0.25 1 0.2

Table 8. Internal interdependencies of criteria with respect to C3 .

C3 C1 C2

C1 [0.5,0.5], [0.5,0.5], [0.5,0.5] [1,1], [0.0,0.1], [0.0,0.0]
C2 [0.5,0.5], [0.5,0.5], [0.5,0.5]

413



Symmetry 2018, 10, 226

Table 9. The crisp interdependencies values of factors with respect to C3 .

C3 C1 C2 Weights

C1 1 9 0.9
C2 0.11 1 0.1

Table 10. The relative impact of decision criteria.

C1 C2 C3

C1 1 0.8 0.9
C2 0.86 1 0.1
C3 0.14 0.2 1

Table 11. The normalized relative impact of decision criteria.

C1 C2 C3

C1 0.5 0.4 0.45
C2 0.43 0.5 0.05
C3 0.07 0.1 0.5

Then, the weights of decision criteria based on their inner interdependencies are as follows:

wcriteria =

⎡⎢⎣ economical
environmental

social

⎤⎥⎦ =

⎡⎢⎣ 0.5 0.4 0.45
0.43 0.5 0.05
0.07 0.1 0.5

⎤⎥⎦×
⎡⎢⎣ 0.59

0.32
0.09

⎤⎥⎦ =

⎡⎢⎣ 0.46
0.42
0.12

⎤⎥⎦.

It is obvious that the economic factors are the most significant factors when evaluating suppliers,
followed by environmental and social factors, according to experts’ opinions.

We should also note the influence of inner interdependencies of criteria on its weights. It changed
the weights of main criteria from (0.59, 0.32, 0.09) to (0.46, 0.42, 0.12).

The comparison matrices and local weights of sub-criteria relevant to their clusters are expressed
in Tables 12–17.

Table 12. The comparison matrix and local weight of C1 indicators.

C1 C11 C12 C13 C14

C11 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.4,0.5], [0.1,0.2], [0.2,0.3] [0.6,0.7], [0.1,0.2], [0.0,0.1] [0.6,0.7], [0.0,0.1], [0.0,0.1]
C12 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.6,0.7], [0.1,0.2], [0.0,0.1]
C13 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7]
C14 [0.5,0.5], [0.5,0.5], [0.5,0.5]

Table 13. The crisp comparison matrix and local weight of C1 indicators.

C1 C11 C12 C13 C14 Weights

C11 1 3 4 5 0.54
C12 0.33 1 2 4 0.23
C13 0.25 0.50 1 2 0.13
C14 0.20 0.25 0.5 1 0.08

The consistency ratio (CR) of previous matrix = 0.03.
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Table 14. The comparison matrix and local weight of C2 indicators.

C2 C21 C22 C23 C24

C21 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.4,0.5], [0.1,0.2], [0.2,0.3] [0.8,0.9], [0.0,0.1], [0.0,0.1] [1,1], [0.0,0.1], [0.0,0.0]
C22 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.6,0.7], [0.0,0.1], [0.0,0.1] [0.8,0.9], [0.0,0.1], [0.0,0.1]
C23 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7]
C24 [0.5,0.5], [0.5,0.5], [0.5,0.5]

Table 15. The crisp comparison matrix and local weight of C2 indicators.

C2 C21 C22 C23 C24 Weights

C21 1 3 7 9 0.59
C22 0.33 1 5 7 0.29
C23 0.14 0.20 1 2 0.08
C24 0.11 0.14 0.50 1 0.05

The consistency ratio (CR) of previous matrix = 0.04.

Table 16. The comparison matrix and local weight of C3 indicators.

C3 C31 C32 C33 C34

C31 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.4,0.5], [0.1,0.2], [0.2,0.3] [1,1], [0.0,0.1], [0.0,0.0]
C32 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.7,0.8], [0.0,0.1], [0.0,0.1]
C33 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.4,0.5], [0.1,0.2], [0.2,0.3]
C34 [0.5,0.5], [0.5,0.5], [0.5,0.5]

Table 17. The crisp comparison matrix and local weight of C3 indicators.

C3 C31 C32 C33 C34 Weights

C31 1 2 3 9 0.50
C32 0.50 1 2 6 0.29
C33 0.33 0.50 1 3 0.15
C34 0.11 0.17 0.33 1 0.05

The consistency ratio (CR) of previous matrix = 0.004.
Each sub-criteria global weight is calculated via multiplying its local weight by the inner

interdependent weight of the criterion to which it belongs as in Table 18.

Table 18. The sub-criteria global weights.

Criteria Local Weight Sub-Criteria Local Weight Global Weight

Economic factors (0.46)

C11 0.54 0.25
C12 0.23 0.11
C13 0.13 0.06
C14 0.08 0.04

Environmental factors (0.42)

C21 0.59 0.25
C22 0.29 0.12
C23 0.08 0.03
C24 0.05 0.02

Social factors (0.12)

C31 0.50 0.06
C32 0.29 0.03
C33 0.15 0.02
C34 0.05 0.006
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Phase 3: Rank alternatives of problems.

Let each expert build the evaluation matrix via comparing the four alternatives relative to
each criterion, by utilizing the interval-valued scale, which is presented in Table 1. After that,
use Equation (1) to aggregate the evaluation matrices and obtain the final evaluation matrix relevant
to experts’ committee. Proceed to deneutrosophication function to convert the interval-valued
neutrosophic evaluation matrix to its crisp form using Equation (2). Then, make a normalization
process to obtain the normalized evaluation matrix using Equation (3), as observed in Table 19.

Table 19. The normalized evaluation matrix.

C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34

A1 0.53 0.46 0.46 0.43 0.52 0.54 0.45 0.58 0.48 0.59 0.59 0.51
A2 0.46 0.58 0.53 0.48 0.43 0.58 0.59 0.52 0.54 0.54 0.46 0.64
A3 0.44 0.43 0.56 0.53 0.49 0.45 0.36 0.46 0.49 0.38 0.47 0.47
A4 0.56 0.52 0.43 0.55 0.54 0.41 0.56 0.43 0.48 0.45 0.46 0.32

Then, build the weighted matrix by multiplying the weights of criteria, obtained from ANP by
the normalized evaluation matrix using Equation (4), as in Table 20.

Table 20. The weighted evaluation matrix.

C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34

A1 0.13 0.05 0.03 0.02 0.13 0.06 0.01 0.01 0.03 0.02 0.01 0.003
A2 0.11 0.06 0.03 0.02 0.11 0.07 0.02 0.01 0.03 0.02 0.01 0.004
A3 0.11 0.05 0.03 0.02 0.12 0.05 0.01 0.01 0.03 0.01 0.01 0.003
A4 0.14 0.06 0.03 0.02 0.13 0.05 0.02 0.01 0.03 0.01 0.01 0.002

Determine the ideal solutions using Equations (5) and (6) as follows:

A+ = {0.14, 0.06, 003, 0.02, 0.13, 0.07, 0.02, 0.01, 0.03, 0.02, 0.01, 0.004} ,

A− = {0.11, 0.05, 0.03, 0.02, 0.11, 0.05, 0.01, 0.01, 0.03, 0.01, 0.01, 0.002} .

After that, measure the Euclidean distance between positive solution (d+i ) and negative ideal
solution (d−i ) using Equations (7) and (8) as follows:

d+1 = {0.020}, d+2 = {0.036}, d+3 = {0.041} , d+4 = {0.022},

d−1 = {0.032}, d−2 = {0.026}, d−3 = {0.010}, d−4 = {0.040}.

Step 3.6.Calculate the closeness coefficient using Equation (9), and make the final ranking of alternatives
as in Table 21.

Table 21. TOPSIS results and ranking of alternatives.

d+i d−i ci Rank

A1 0.020 0.032 0.615 2
A2 0.036 0.026 0.419 3
A3 0.041 0.010 0.196 4
A4 0.022 0.040 0.645 1

The ranking for the optimal sustainable suppliers of dairy and foodstuff corporation is
Alternative 4, Alternative 1, Alternative 2 and Alternative 3, as shown in Figure 5.
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Figure 5. The ranking for the optimal alternatives of dairy and foodstuff corporation.

Phase 4: Validate the model and make comparisons with other existing methods.

In this phase, the obtained ranking of optimal suppliers by the proposed framework is compared
with the obtained results by the analytic hierarchy process, the analytic network process, MOORA and
MOOSRA techniques.

The obtained ranking of suppliers by using an AHP technique is as follows:
Since AHP does not consider inner interdependency between problem’s elements, then weights

of sub-criteria are as follows: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.32
0.14
0.08
0.47
0.19
0.09
0.03
0.02
0.04
0.03
0.01
0.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The comparison matrix of alternatives relevant to each sub-criterion is as follows:⎡⎢⎢⎢⎣
0.53 0.46 0.46 0.43 0.52 0.54 0.45 0.58 0.48 0.59 0.59 0.51
0.46 0.58 0.53 0.48 0.43 0.58 0.59 0.52 0.54 0.54 0.46 0.64
0.44 0.43 0.56 0.53 0.49 0.45 0.36 0.46 0.49 0.38 0.47 0.47
0.56 0.52 0.43 0.55 0.54 0.41 0.56 0.43 0.48 0.45 0.46 0.32

⎤⎥⎥⎥⎦.

The final weights of alternatives after multiplying two previous matrices and making
normalization of results are as in Table 22.

Table 22. Ranking alternatives relevant to AHP.

Alternatives Weights Rank

A1 0.245 3
A2 0.250 2
A3 0.244 4
A4 0.267 1
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Our proposed framework and the analytic hierarchy process agreed that the Alternative 3 is the
worst alternative for the company. The two methods are different in ranking the optimal alternative
due to the inner interdependencies between the problem’s criteria effect on the global weight of
alternatives, and, in our case study, it reduced weights of main criteria from (0.59, 0.32, 0.09) to (0.46,
0.42, 0.12), and this surely regarded the global weight of sub-criteria and also ranking of alternatives.

The weights of sub-criteria when we applied the analytic network process are as follows (see also
Table 18): ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25
0.11
0.06
0.04
0.25
0.12
0.03
0.02
0.06
0.03
0.02

0.006

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In addition, the comparison matrix of alternatives relevant to each sub-criterion is as follows:⎡⎢⎢⎢⎣
0.53 0.46 0.46 0.43 0.52 0.54 0.45 0.58 0.48 0.59 0.59 0.51
0.46 0.58 0.53 0.48 0.43 0.58 0.59 0.52 0.54 0.54 0.46 0.64
0.44 0.43 0.56 0.53 0.49 0.45 0.36 0.46 0.49 0.38 0.47 0.47
0.56 0.52 0.43 0.55 0.54 0.41 0.56 0.43 0.48 0.45 0.46 0.32

⎤⎥⎥⎥⎦.

After proceeding to the normalization process, the ranking of alternatives relevant to the ANP
technique is presented in Table 23.

Table 23. Ranking alternatives relevant to ANP.

Alternatives Weights Rank

A1 0.26 1
A2 0.25 2
A3 0.23 3
A4 0.26 1

By using the ANP technique for solving the same case study, we noted that Alternative 1 and
Alternative 4 have the same rank and are the best alternatives, followed by Alternative 2 and finally
Alternative 3. The proposed framework and the ANP agreed that Alternative 3 is the worst alternative.

We not only used the AHP and ANP techniques for solving the case study of a dairy and foodstuff
corporation, but also two other multi-objective decision-making techniques.

The first technique is the multi-objective optimization based on simple ratio analysis (MOORA),
proposed by Brauers and Zavadskas [54]. There are two approaches under the MOORA: the ratio
system and the reference point approaches [53]. Here, we used the ratio system method of the MOORA
to validate our proposed framework.

The normalized weighted matrix and ranking of alternatives using the MOORA technique are
presented in Tables 24 and 25. The equations that we used in our calculation of MOORA normalized
weighted matrix, and the equations that we employed in the ranking process are available with
details in [53].
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Table 24. The weighted normalized matrix under the MOORA technique.

C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34

A1 0.13 0.05 0.03 0.02 0.13 0.06 0.01 0.01 0.03 0.02 0.01 0.003
A2 0.11 0.06 0.03 0.02 0.11 0.07 0.02 0.01 0.03 0.02 0.01 0.004
A3 0.11 0.05 0.03 0.02 0.12 0.05 0.01 0.01 0.03 0.01 0.01 0.003
A4 0.14 0.06 0.03 0.02 0.13 0.05 0.02 0.01 0.03 0.01 0.01 0.002

Table 25. The ranking of alternatives using the MOORA technique.

∑
g
j=1xij∗ ∑n

j=g+1xij∗ p∗i Ranking

A1 0.43 0.073 0.357 2
A2 0.41 0.084 0.326 4
A3 0.39 0.063 0.327 3
A4 0.44 0.072 0.368 1

The fourth column in Table 25 is the index of the total performance p∗i and equals the difference
between beneficial criteria summation and non-beneficial criteria summation. The beneficial and
non-beneficial criteria were determined according to experts’ weights of criteria. In other words,
the total performance p∗i is the difference between the second column and third column values in
Table 25.

The other technique we applied to the same case study for validating our proposed framework is
MOOSRA. The MOOSRA technique determines the simple ratio of beneficial and non-beneficial criteria.
The MOOSRA is a multi-objective optimization technique. The steps of the MOOSRA technique are
similar to the MOORA technique, except in calculating total performance index p∗i . For more details,
see [53]. The ranking of alternatives using MOOSRA technique is presented in Table 26.

Table 26. The ranking of alternatives using the MOOSRA technique.

∑
g
j=1xij∗ ∑n

j=g+1xij∗ p∗i Ranking

A1 0.43 0.073 5.89 3
A2 0.41 0.084 4.88 4
A3 0.39 0.063 6.19 1
A4 0.44 0.072 6.11 2

The ranking of suppliers using the proposed framework and the other four techniques are
aggregated in Table 27. The correlation coefficient between the proposed framework and other
techniques is presented in Table 28; we calculated it using Microsoft Excel (version, Manufacturer, City,
US State abbrev. if applicable, Country) by using the CORREL() function.

Table 27. The ranking of alternatives relevant to various applied techniques.

Suppliers Proposed Technique (1) AHP (2)
ANP

(3)
MOORA (4) MOOSRA (5)

A1 2 3 1 2 3
A2 3 2 2 4 4
A3 4 4 3 3 1
A4 1 1 1 1 2

Table 28. The correlation coefficients between the proposed model and other applied techniques.

Correlation (1, 2) Correlation (1, 3) Correlation (1, 4) Correlation (1, 5)

0.8 0.9 0.8 0.2
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The proposed framework and the first three applied techniques (i.e., AHP, ANP, MOORA) agreed
that Alternative 4 is the best alternative. The correlation coefficients help to measure the efficiency of
various MCDM techniques. The correlation coefficients between our proposed framework and AHP,
ANP, MOORA are very high, as shown in Table 28. The high value of Spearman correlation coefficients
reflects the high consistency and validity of the proposed framework. However, the correlation
coefficient between our proposed model and MOOSRA is low. Our framework is valid and consistent
because the proposed framework and the first three applied techniques agreed that Alternative 4 is the
optimal supplier for the dairy and foodstuff corporation.

7. Conclusions and Future Directions

For solving the sustainable supplier selection problem, many steps must be performed:
the sustainability criteria must be determined; the interdependencies between these criteria must be
identified—ranking and evaluating supplier performance. For more accuracy, we have suggested
a framework consisting of four phases, by integrating ANP with TOPSIS using the interval-valued
neutrosophic numbers. The ANP is used to weight problem criteria and sub-criteria because of its
capability to consider interdependencies between problem’s elements. The TOPSIS is used to rank
available suppliers for avoiding additional comparisons of analytic network process. The suggested
method provides a reliable and easy to implement procedure, which is suitable for a broad range of
real life applications. A case study of a dairy and foodstuff corporation has been solved employing the
proposed framework. The dairy corporation trying to earn an important market share and competitive
benefits faces competition from other corporations. The objectives of food corporation are to improve
the green food process, to get the standard certificate. Many customers consider the ISO standard
as a priority for them. Suppliers are a great part of the production process; consequently, they must
be sorted and analyzed carefully using efficient framework. The selection process of experts is not
an easy matter. Therefore, the provided data and information from experts must be more accurate;
otherwise, it will affect the selection process of optimal suppliers. Because real life has a great amount of
vague and inconsistent information and surely affects experts’ judgment, we presented our suggested
framework using interval-valued neutrosophic numbers. Neutrosophic sets make a simulation of
natural decision-making process, since it considers all aspects of making a decision (i.e., agree, not
sure and falsity). In the future, we plan to solve the sustainable supplier selection problem with more
difficult and complex dependencies between criteria using different multi-criteria decision-making
techniques and presenting them in a neutrosophic environment using the alpha cut method.
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Abstract: A single-valued neutrosophic set (SVNS) is a special case of a neutrosophic set which is
characterized by a truth, indeterminacy, and falsity membership function, each of which lies in the
standard interval of [0, 1]. This paper presents a modified Technique for Order Preference by Similarity
to an Ideal Solution (TOPSIS) with maximizing deviation method based on the single-valued
neutrosophic set (SVNS) model. An integrated weight measure approach that takes into consideration
both the objective and subjective weights of the attributes is used. The maximizing deviation
method is used to compute the objective weight of the attributes, and the non-linear weighted
comprehensive method is used to determine the combined weights for each attributes. The use
of the maximizing deviation method allows our proposed method to handle situations in which
information pertaining to the weight coefficients of the attributes are completely unknown or only
partially known. The proposed method is then applied to a multi-attribute decision-making (MADM)
problem. Lastly, a comprehensive comparative studies is presented, in which the performance of our
proposed algorithm is compared and contrasted with other recent approaches involving SVNSs
in literature.

Keywords: 2ingle-valued neutrosophic set; Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS); integrated weight; maximizing deviation; multi-attribute decision-making
(MADM)

1. Introduction

The study of fuzzy set theory proposed by Zadeh [1] was an important milestone in the study
of uncertainty and vagueness. The widespread success of this theory has led to the introduction
of many extensions of fuzzy sets such as the intuitionistic fuzzy set (IFS) [2], interval-valued fuzzy set
(IV-FS) [3], vague set [4], and hesitant fuzzy set [5]. The most widely used among these models is the
IFS model which has also spawned other extensions such as the interval-valued intuitionistic fuzzy
set [6] and bipolar intuitionistic fuzzy set [7]. Smarandache [8] then introduced an improvement to
IFS theory called neutrosophic set theory which loosely refers to neutral knowledge. The study of the
neutrality aspect of knowledge is the main distinguishing criteria between the theory of fuzzy sets,
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IFSs, and neutrosophic sets. The classical neutrosophic set (NS) is characterized by three membership
functions which describe the degree of truth (T), the degree of indeterminacy (I), and the degree
of falsity (F), whereby all of these functions assume values in the non-standard interval of ]0−,
1+[. The truth and falsity membership functions in a NS are analogous to the membership and
non-membership functions in an IFS, and expresses the degree of belongingness and non-belongingness
of the elements, whereas the indeterminacy membership function expresses the degree of neutrality in
the information. This additional indeterminacy membership function gives NSs the ability to handle
the neutrality aspects of the information, which fuzzy sets and its extensions are unable to handle.
Another distinguishing factor between NSs and other fuzzy-based models is the fact that all the three
membership functions in a NS are entirely independent of one another, unlike the membership and
non-membership functions in an IFS or other fuzzy-based models in which values of the membership
and non-membership functions are dependent on one another. This gives NSs the ability to handle
uncertain, imprecise, inconsistent, and indeterminate information, particularly in situations whereby
the factors affecting these aspects of the information are independent of one another. This also makes
the NS more versatile compared to IFSs and other fuzzy- or IF-based models in literature.

Smarandache [8] and Wang et al. [9] pointed out that the non-standard interval of ]0−, 1+[ in which
the NS is defined in, makes it impractical to be used in real-life problems. Furthermore, values in this
non-standard interval are less intuitive and the significance of values in this interval can be difficult
to be interpreted. This led to the conceptualization of the single-valued neutrosophic set (SVNS).
The SVNS is a straightforward extension of NS which is defined in the standard unit interval of [0, 1].
As values in [0, 1] are compatible with the range of acceptable values in conventional fuzzy set theory
and IFS theory, it is better able to capture the intuitiveness of the process of assigning membership
values. This makes the SVNS model easier to be applied in modelling real-life problems as the results
obtained are a lot easier to be interpreted compared to values in the interval ]0−, 1+[.

The SVNS model has garnered a lot of attention since its introduction in [9], and has been actively
applied in various multi-attribute decision-making (MADM) problems using a myriad of different
approaches. Wang et al. [9] introduced some set theoretic operators for SVNSs, and studied some
additional properties of the SVNS model. Ye [10,11] introduced a decision-making algorithm based on
the correlation coefficients for SVNSs, and applied this algorithm in solving some MADM problems.
Ye [12,13] introduced a clustering method and also some decision-making methods that are based on
the similarity measures of SVNSs, whereas Huang [14] introduced a new decision-making method for
SVNSs and applied this method in clustering analysis and MADM problems. Peng and Liu [15] on the
other hand proposed three decision-making methods based on a new similarity measure, the EDAS
method and level soft sets for neutrosophic soft sets, and applied this new measure to MADM
problems set in a neutrosophic environment. The relations between SVNSs and its properties were first
studied by Yang et al. [16], whereas the graph theory of SVNSs and bipolar SVNSs were introduced by
Broumi et al. in [17–19] and [20–22], respectively. The aggregation operators of simplified neutrosophic
sets (SNSs) were studied by Tian et al. [23] and Wu et al. [24]. Tian et al. [23] introduced a generalized
prioritized aggregation operator for SNSs and applied this operator in a MADM problem set in an
uncertain linguistic environment, whereas Wu et al. [24] introduced a cross-entropy measure and
a prioritized aggregation operator for SNSs and applied these in a MADM problem. Sahin and
Kucuk [25] proposed a subsethood measure for SVNSs and applied these to MADM problems.

The fuzzy Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method
for SVNSs were studied by Ye [26] and Biswas et al. [27]. Ye [26] introduced the TOPSIS method for
group decision-making (MAGDM) that is based on single-valued neutrosophic linguistic numbers,
to deal with linguistic decision-making. This TOPSIS method uses subjective weighting method
whereby attribute weights are randomly assigned by the users. Maximizing deviation method or any
other objective weighting methods are not used. Biswas et al. [27] proposed a TOPSIS method for
group decision-making (MAGDM) based on the SVNS model. This TOPSIS method is based on the
original fuzzy TOPSIS method and does not use the maximizing deviation method to calculate the
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objective weights for each attribute. The subjective weight of each attribute is determined by using
the single-valued neutrosophic weighted averaging aggregation operator to calculate the aggregated
weights of the attributes using the subjective weights that are assigned by each decision maker.

The process of assigning weights to the attributes is an important phase of decision making.
Most research in this area usually use either objective or subjective weights. However, considering the
fact that different values for the weights of the attributes has a significant influence on the ranking
of the alternatives, it is imperative that both the objective and subjective weights of the attributes
are taken into account in the decision-making process. In view of this, we consider the attributes’
subjective weights which are assigned by the decision makers, and the objective weights which are
computed using the maximizing deviation method. These weights are then combined using the
non-linear weighted comprehensive method to obtain the integrated weight of the attributes.

The advantages and drawbacks of the methods that were introduced in the works described above
served as the main motivation for the work proposed in this paper, as we seek to introduce an effective
SVNS-based decision-making method that is free of all the problems that are inherent in the other
existing methods in literature. In addition to these advantages and drawbacks, the works described
above have the added disadvantage of not being able to function (i.e., provide reasonable solutions)
under all circumstances. In view of this, the objective of this paper is to introduce a novel TOPSIS
with maximizing deviation method for SVNSs that is able to provide effective solutions under any
circumstances. Our proposed TOPSIS method is designed to handle MADM problems, and uses the
maximizing deviation method to calculate the objective weights of attributes, utilizing an integrated
weight measure that takes into consideration both the subjective and objective weights of the attributes.
The robustness of our TOPSIS method is verified through a comprehensive series of tests which proves
that our proposed method is the only method that shows compliance to all the tests, and is able to
provide effective solutions under all different types of situations, thus out-performing all of the other
considered methods.

The remainder of this paper is organized as follows. In Section 2, we recapitulate some
of the fundamental concepts related to neutrosophic sets and SVNSs. In Section 3, we define an
SVNS-based TOPSIS and maximizing deviation methods and an accompanying decision-making
algorithm. The proposed decision-making method is applied to a supplier selection problem in
Section 4. In Section 5, a comprehensive comparative analysis of the results obtained via our proposed
method and other recent approaches is presented. The similarities and differences in the performance
of the existing algorithms and our algorithm is discussed, and it is proved that our algorithm is
effective and provides reliable results in every type of situation. Concluding remarks are given in
Section 6, followed by the acknowledgements and list of references.

2. Preliminaries

In this section, we recapitulate some important concepts pertaining to the theory of neutrosophic
sets and SVNSs. We refer the readers to [8,9] for further details pertaining to these models.

The neutrosophic set model [8] is a relatively new tool for representing and measuring uncertainty
and vagueness of information. It is fast becoming a preferred general framework for the analysis
of uncertainty in data sets due to its capability in the handling big data sets, as well as its ability
in representing all the different types of uncertainties that exists in data, in an effective and concise
manner via a triple membership structure. This triple membership structure captures not only the
degree of belongingness and non-belongingness of the objects in a data set, but also the degree of
neutrality and indeterminacy that exists in the data set, thereby making it superior to ordinary fuzzy
sets [1] and its extensions such as IFSs [2], vague sets [4], and interval-valued fuzzy sets [3]. The formal
definition of a neutrosophic set is as given below.

Let U be a universe of discourse, with a class of elements in U denoted by x.
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Definition 1. [8] A neutrosophic set A is an object having the form A = {x, TA(x), IA(x), FA(x) : x ∈ U},
where the functions T, I, F : U →]−0, 1+[ denote the truth, indeterminacy, and falsity membership functions,
respectively, of the element x ∈ U with respect to A. The membership functions must satisfy the condition
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2. [8] A neutrosophic set A is contained in another neutrosophic set B, if TA(x) ≤ TB(x), IA(x) ≥
IB(x), and FA(x) ≥ FB(x), for all x ∈ U. This relationship is denoted as A ⊆ B.

Wang et al. [9] then introduced a special case of the NS model called the single-valued
neutrosophic set (SVNS) model, which is as defined below. This SVNS model is better suited to
applied in real-life problems compared to NSs due to the structure of its membership functions which
are defined in the standard unit interval of [0, 1].

Definition 3. [9] A SVNS A is a neutrosophic set that is characterized by a truth-membership
function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x),
where TA(x), IA(x), FA(x) ∈ [0, 1]. This set A can thus be written as

A = {〈 x, TA(x), IA(x), FA(x)〉 : x ∈ U} . (1)

The sum of TA(x), IA(x) and FA(x) must fulfill the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
For a SVNS A in U, the triplet (TA(x), IA(x), FA(x)) is called a single-valued neutrosophic number
(SVNN). For the sake of convenience, we simply let x = (Tx, Ix, Fx) to represent a SVNN as an element
in the SVNS A.

Next, we present some important results pertaining to the concepts and operations of SVNSs.
The subset, equality, complement, union, and intersection of SVNSs, and some additional operations
between SVNSs were all defined by Wang et al. [9], and these are presented in Definitions 4 and
5, respectively.

Definition 4. [9] Let A and B be two SVNSs over a universe U.

(i) A is contained in B, if TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x), for all x ∈ U.
This relationship is denoted as A ⊆ B.

(ii) A and B are said to be equal if A ⊆ B and B ⊆ A.
(iii) Ac = (x, (FA(x), 1− IA(x), TA(x))), for all x ∈ U.
(iv) A ∪ B = (x, (max(TA, TB), min(IA, IB), min(FA, FB))), for all x ∈ U.
(v) A ∩ B = (x, (min(TA, TB), max(IA, IB), max(FA, FB))), for all x ∈ U.

Definition 5. [9] Let x = (Tx, Ix, Fx) and y =
(
Ty, Iy, Fy

)
be two SVNNs. The operations for SVNNs can

be defined as follows:

(i) x
⊕

y =
(
Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗ Fy

)
(ii) x

⊗
y =

(
Tx ∗ Ty, Ix + Iy − Ix ∗ Iy, Fx + Fy − Fx ∗ Fy

)
(iii) λx =

(
1− (1− Tx)

λ, (Ix)
λ, (Fx)

λ
)

, where λ > 0

(iv) xλ =
(
(Tx)

λ, 1− (1− Ix)
λ, 1− (1− Fx)

λ
)

, where λ > 0.

Majumdar and Samanta [28] introduced the information measures of distance, similarity,
and entropy for SVNSs. Here we only present the definition of the distance measures between
SVNSs as it is the only component that is relevant to this paper.

Definition 6. [28] Let A and B be two SVNSs over a finite universe U = {x1, x2, . . . , xn}. Then the various
distance measures between A and B are defined as follows:
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(i) The Hamming distance between A and B are defined as:

dH(A, B) =
n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (2)

(ii) The normalized Hamming distance between A and B are defined as:

dN
H(A, B) =

1
3n

n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (3)

(ii) The Euclidean distance between A and B are defined as:

dE(A, B) =

√
n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(4)

(iv) The normalized Euclidean distance between A and B are defined as:

dN
E (A, B) =

√
1

3n

n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(5)

3. A TOPSIS Method for Single-Valued Neutrosophic Sets

In this section, we present the description of the problem that is being studied followed by our
proposed TOPSIS method for SVNSs. The accompanying decision-making algorithm which is based
on the proposed TOPSIS method is presented. This algorithm uses the maximizing deviation method
to systematically determine the objective weight coefficients for the attributes.

3.1. Description of Problem

Let U = {u1, u2, . . . , um} denote a finite set of m alternatives, A = {e1, e2, . . . , en} be a set of n
parameters, with the weight parameter wj of each ej completely unknown or only partially known,

wj ∈ [0, 1], and
n
∑

j=1
wj = 1.

Let A be an SVNS in which xij =
(
Tij, Iij, Fij

)
represents the SVNN that represents the information

pertaining to the ith alternative xi that satisfies the corresponding jth parameter ej. The tabular
representation of A is as given in Table 1.

Table 1. Tabular representation of the Single Valued Neutrosophic Set (SVNS) A.

U e1 e2 . . . en

x1 (T11, I11, F11) (T12, I12, F12) . . . (T1n, I1n, F1n)
x2 (T21, I21, F21) (T22, I22, F22) . . . (T2n, I2n, F2n)
...

...
...

. . .
...

xm. (Tm1, Im1, Fm1) (Tm2, Im2, Fm2) . . . (Tmn, Imn, Fmn)

3.2. The Maximizing Deviation Method for Computing Incomplete or Completely Unknown Attribute Weights

The maximizing deviation method was proposed by Wang [29] with the aim of applying it in
MADM problems in which the weights of the attributes are completely unknown or only partially
known. This method uses the law of input arguments i.e., it takes into account the magnitude of
the membership functions of each alternative for each attribute, and uses this information to obtain
exact and reliable evaluation results pertaining to the weight coefficients for each attribute. As such,
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this method is able to compute the weight coefficients of the attributes without any subjectivity, in a
fair and objective manner.

The maximizing deviation method used in this paper is a modification of the original version
introduced in Wang [29] that has been made compatible with the structure of the SVNS model.
The definitions of the important concepts involved in this method are as given below.

Definition 7. For the parameter ej ∈ A, the deviation of the alternative xi to all the other alternatives is
defined as:

Dij
(
wj
)
=

m

∑
k=1

wj d
(

xij, xkj

)
, (6)

where xij, xkj are the elements of the SVNS A, i = 1, 2, . . . , m, j = 1, 2, . . . , n and d
(

xij, xkj

)
denotes the

distance between elements xij and xkj.

The other deviation values include the deviation value of all alternatives to other alternatives,
and the total deviation value of all parameters to all alternatives, both of which are as defined below:

(i) The deviation value of all alternatives to other alternatives for the parameter ej ∈ A, denoted by
Dj
(
wj
)
, is defined as:

Dj
(
wj
)
=

m

∑
i=1

Dij
(
wj
)
=

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (7)

where j = 1, 2, . . . , n.
(ii) The total deviation value of all parameters to all alternatives, denoted by D

(
wj
)
, is defined as:

(
wj
)
=

n

∑
j=1

Dj
(
wj
)
=

n

∑
j=1

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (8)

where wj represents the weight of the parameter ej ∈ A.

(iii) The individual objective weight of each parameter ej ∈ A, denoted by θj, is defined as:

θj =
∑m

i=1 ∑m
k=1 d

(
xij, xkj

)
∑n

j=1 ∑m
i=1 ∑m

k=1 d
(

xij, xkj

) (9)

It should be noted that any valid distance measure between SVNSs can be used in Equations (6)–(9).
However, to improve the effective resolution of the decision-making process, in this paper, we use the
normalized Euclidean distance measure given in Equation (5) in the computation of Equations (6)–(9).

3.3. TOPSIS Method for MADM Problems with Incomplete Weight Information

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was originally
introduced by Hwang and Yoon [30], and has since been extended to fuzzy sets, IFSs, and other
fuzzy-based models. The TOPSIS method works by ranking the alternatives based on their distance
from the positive ideal solution and the negative ideal solution. The basic guiding principle is that
the most preferred alternative should have the shortest distance from the positive ideal solution and
the farthest distance from the negative ideal solution (Hwang and Yoon [30], Chen and Tzeng [31]).
In this section, we present a decision-making algorithm for solving MADM problems in single-valued
neutrosophic environments, with incomplete or completely unknown weight information.
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3.3.1. The Proposed TOPSIS Method for SVNSs

After obtaining information pertaining to the weight values for each parameter based on the
maximizing deviation method, we develop a modified TOPSIS method for the SVNS model. To achieve
our goal, we introduce several definitions that are the important components of our proposed
TOPSIS method.

Let the relative neutrosophic positive ideal solution (RNPIS) and relative neutrosophic negative
ideal solution (RNNIS) be denoted by b+ and b−, respectively, where these solutions are as
defined below:

b+ =

{(
max

i
Tij, min

i
Iij, min

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

, (10)

and

b− =

{(
min

i
Tij, max

i
Iij, max

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

(11)

The difference between each object and the RNPIS, denoted by D+
i , and the difference between

each object and the RNNIS, denoted by D−i , can then be calculated using the normalized Euclidean
distance given in Equation (5) and by the formula given in Equations (12) and (13).

D+
i =

n

∑
j=1

wj dNE

(
bij, b+j

)
, i = 1, 2, . . . , m (12)

and

D−i =
n

∑
j=1

wj dNE

(
bij, b−j

)
, i = 1, 2, . . . , m (13)

Here, wj denotes the integrated weight for each of the attributes.
The optimal alternative can then be found using the measure of the relative closeness coefficient

of each alternative, denoted by Ci, which is as defined below:

Ci =
D−i

max
j

D−j
− D+

i
min

j
D+

j
, i, j = 1, 2, . . . , m (14)

From the structure of the closeness coefficient in Equation (14), it is obvious that the larger
the difference between an alternative and the fuzzy negative ideal object, the larger the value of
the closeness coefficient of the said alternative. Therefore, by the principal of maximum similarity
between an alternative and the fuzzy positive ideal object, the objective of the algorithm is to determine
the alternative with the maximum closeness coefficient. This alternative would then be chosen as
the optimal alternative.

3.3.2. Attribute Weight Determination Method: An Integrated WEIGHT MEASure

In any decision-making process, there are two main types of weight coefficients, namely the
subjective and objective weights that need to be taken into consideration. Subjective weight refers to
the values assigned to each attribute by the decision makers based on their individual preferences
and experience, and is very much dependent on the risk attitude of the decision makers. Objective
weight refers to the weights of the attributes that are computed mathematically using any appropriate
computation method. Objective weighting methods uses the law of input arguments (i.e., the input
values of the data) as it determines the attribute weights based on the magnitude of the membership
functions that are assigned to each alternative for each attribute.

Therefore, using only subjective weighting in the decision-making process would be inaccurate as
it only reflects the opinions of the decision makers while ignoring the importance of each attribute that
are reflected by the input values. Using only objective weighting would also be inaccurate as it only
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reflects the relative importance of the attributes based on the law of input arguments, but fails to take
into consideration the preferences and risk attitude of the decision makers.

To overcome this drawback and improve the accuracy and reliability of the decision-making
process, we use an integrated weight measure which combines the subjective and objective weights
of the attributes. This factor makes our decision-making algorithm more accurate compared to most
of the other existing methods in literature that only take into consideration either the objective or
subjective weights.

Based on the formula and weighting method given above, we develop a practical and effective
decision-making algorithm based on the TOPSIS approach for the SVNS model with incomplete weight
information. The proposed Algorithm 1 is as given below.

Algorithm 1. (based on a modified TOPSIS approach).

Step 1. Input the SVNS A which represents the information pertaining to the problem.
Step 2. Input the subjective weight hj for each of the attributes ej ∈ A as given by the decision makers.
Step 3. Compute the objective weight θj for each of the attributes ej ∈ A, using Equation (9).
Step 4. The integrated weight coefficient wj for each of the attributes ej ∈ A, is computed using Equation
as follow:

wj =
hj θj

∑n
j=1 hj θj

Step 5. The values of RNPIS b+ and RNNIS b− are computed using Equations (10) and (11).
Step 6. The difference between each alternative and the RNPIS, D+ and the RNNIS D− are computed using
Equations (12) and (13), respectively.
Step 7. The relative closeness coefficient Ci for each alternative is calculated using Equation (14).
Step 8. Choose the optimal alternative based on the principal of maximum closeness coefficient.

4. Application of the Topsis Method in a Made Problem

The implementation process and utility of our proposed decision-making algorithm is illustrated
via an example related to a supplier selection problem.

4.1. Illustrative Example

In today’s extremely competitive business environment, firms must be able to produce good
quality products at reasonable prices in order to be successful. Since the quality of the products is
directly dependent on the effectiveness and performance of its suppliers, the importance of supplier
selection has become increasingly recognized. In recent years, this problem has been handled using
various mathematical tools. Some of the recent research in this area can be found in [32–38].

Example 1. A manufacturing company is looking to select a supplier for one of the products manufactured by
the company. The company has shortlisted ten suppliers from an initial list of suppliers. These ten suppliers
form the set of alternatives U that are under consideration,

U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.

The procurement manager and his team of buyers evaluate the suppliers based on a set of
evaluation attributes E which is defined as:

E = {e1 = service quality, e2 = pricing and cos t structure, e3 = financial stability,
e4 = environmental regulation compliance, e5 = reliability,

e6 = relevant experience}.

The firm then evaluates each of the alternatives xi (i = 1, 2, . . . , 10), with respect to the attributes
ej (j = 1, 2, . . . , 6). The evaluation done by the procurement team is expressed in the form of SVNNs
in a SVNS A.
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Now suppose that the company would like to select one of the five shortlisted suppliers to be
their supplier. We apply the proposed Algorithm 1 outlined in Section 3.3 to this problem with the aim
of selecting a supplier that best satisfies the specific needs and requirements of the company. The steps
involved in the implementation process of this algorithm are outlined below (Algorithm 2).

Algorithm 2. (based on the modified TOPSIS approach).

Step 1. The SVNS A constructed for this problem is given in tabular form in Table 2
Step 2. The subjective weight hj for each attribute ej ∈ A as given by the procurement team (the decision
makers) are h = {h1 = 0.15, h2 = 0.15, h3 = 0.22, h4 = 0.25, h5 = 0.14, h6 = 0.09}.
Step 3. The objective weight θj for each attribute ej ∈ A is computed using Equation (9) are as given below:
θ = {θ1 = 0.139072, θ2 = 0.170256, θ3 = 0.198570, θ4 = 0.169934 , θ5 = 0.142685,

θ6 = 0.179484}.
Step 4. The integrated weight wj for each attribute ej ∈ A is computed using Equation (15). The integrated
weight coefficent obtained for each attribute is:
w = {w1 = 0.123658, w2 = 0.151386, w3 = 0.258957, w4 = 0.251833, w5 = 0.118412,

w6 = 0.0957547}.
Step 5. Use Equations (10) and (11) to compute the values of b+ and b− from the neutrosophic numbers given
in Table 2. The values are as given below:
b+ =

{
b+1 = [0.7, 0.2, 0.1], b+2 = [0.9, 0, 0.1], b+3 = [0.8, 0, 0], b+4 = [0.9, 0.3, 0],

b+5 = [0.7, 0.2, 0.2], b+6 = [0.8, 0.2 0.1
}

and
b− =

{
b−1 = [0.5, 0.8, 0.5], b−2 = [0.6, 0.8, 0.5], b−3 = [0.1, 0.7, 0.5], b−4 = [0.3, 0.8, 0.7],

b−5 = [0.5, 0.8, 0.7], b−6 = [0.5, 0.8, 0.9]
}

.
Step 6. Use Equations (12) and (13) to compute the difference between each alternative and the RNPIS and the
RNNIS, respectively. The values of D+ and D− are as given below:
D+ =

{
D+

1 = 0.262072, D+
2 = 0.306496, D+

3 = 0.340921, D+
4 = 0.276215, D+

5 = 0.292443,
D+

6 = 0.345226, D+
7 = 0.303001, D+

8 = 0.346428, D+
9 = 0.271012, D+

10 = 0.339093
}

.
and
D− =

{
D−1 = 0.374468, D−2 = 0.307641, D−3 = 0.294889, D−4 = 0.355857, D−5 = 0.323740

D−6 = 0.348903, D−7 = 0.360103, D−8 = 0.338725, D−9 = 0.379516, D−10 = 0.349703
}

.
Step 7. Using Equation (14), the closeness coefficient Ci for each alternative is:
C1 = −0.0133, C2 = −0.3589, C3 = −0.5239, C4 = −0.1163, C5 = −0.2629,
C6 = −0.3980, C7 = −0.2073, C8 = −0.4294, C9 = −0.0341, C10 = −0.3725.
Step 8. The ranking of the alternatives obtained from the closeness coefficient is as given below:

x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3.

Therefore the optimal decision is to select supplier x1.

Table 2. Tabular representation of SVNS A.

U e1 e2 e3

x1 (0.7, 0.5, 0.1) (0.7, 0.5, 0.3) (0.8, 0.6, 0.2)
x2 (0.6, 0.5, 0.2) (0.7, 0.5, 0.1) (0.6, 0.3, 0.5)
x3 (0.6, 0.2, 0.3) (0.6, 0.6, 0.4) (0.7, 0.7, 0.2)
x4 (0.5, 0.5, 0.4) (0.6, 0.4, 0.4) (0.7, 0.7, 0.3)
x5 (0.7, 0.5, 0.5) (0.8, 0.3, 0.1) (0.7, 0.6, 0.2)

U e1 e2 e3

x6 (0.5, 0.5, 0.5) (0.7, 0.8, 0.1) (0.7, 0.3, 0.5)
x7 (0.6, 0.8, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.4)
x8 (0.7, 0.8, 0.3) (0.6, 0.6, 0.5) (0.8, 0, 0.5)
x9 (0.6, 0.7, 0.1) (0.7, 0, 0.1) (0.6, 0.7, 0)
x10 (0.5, 0.7, 0.4) (0.9, 0, 0.3) (1, 0, 0)
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Table 2. Cont.

U e4 e5 e6

x1 (0.9, 0.4, 0.2) (0.6, 0.4, 0.7) (0.6, 0.5, 0.4)
x2 (0.6, 0.4, 0.3) (0.7, 0.5, 0.4) (0.7, 0.8, 0.9)
x3 (0.5, 0.5, 0.3) (0.6, 0.8, 0.6) (0.7, 0.2, 0.5)
x4 (0.9, 0.4, 0.2) (0.7, 0.3, 0.5) (0.6, 0.4, 0.4)
x5 (0.7, 0.5, 0.2) (0.7, 0.5, 0.6) (0.6, 0.7, 0.8)

U e4 e5 e6

x6 (0.4, 0.8, 0) (0.7, 0.4, 0.2) (0.5, 0.6, 0.3)
x7 (0.3, 0.5, 0.1) (0.6, 0.3, 0.6) (0.5, 0.2, 0.6)
x8 (0.7, 0.3, 0.6) (0.6, 0.8, 0.5) (0.6, 0.2, 0.4)
x9 (0.7, 0.4, 0.3) (0.6, 0.6, 0.7) (0.7, 0.3, 0.2)
x10 (0.5, 0.6, 0.7) (0.5, 0.2, 0.7) (0.8, 0.4, 0.1)

4.2. Adaptation of the Algorithm to Non-Integrated Weight Measure

In this section, we present an adaptation of our algorithm introduced in Section 4.1 to cases
where only the objective weights or subjective weights of the attributes are taken into consideration.
The results obtained via these two new variants are then compared to the results obtained via the
original algorithm in Section 4.1. Further, we also compare the results obtained via these two new
variants of the algorithm to the results obtained via the other methods in literature that are compared
in Section 5.

To adapt our proposed algorithm in Section 3 for these special cases, we hereby represent
the objective-only and subjective-only adaptations of the algorithm. This is done by taking only
the objective (subjective) weight is to be used, then simply take wj = θj (wj = hj). The two adaptations
of the algorithm are once again applied to the dataset for SVNS A given in Table 2.

4.2.1. Objective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the objective weights of the
attributes are used, i.e., we take wj = θj.

The results of applying this variant of the algorithm produces the ranking given below:

x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2.

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x9.

4.2.2. Subjective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the subjective weights
of the attributes are used, i.e., we take wj = hj.

The results of applying this variant of the algorithm produces the ranking given below:

x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x1.

From the results obtained above, it can be observed that the ranking of the alternatives are clearly
affected by the decision of the decision maker to use only the objective weights, only the subjective
weights of the attributes, or an integrated weight measure that takes into consideration both the
objective and subjective weights of the attributes.
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5. Comparatives Studies

In this section, we present a brief comparative analysis of some of the recent works in this area
and our proposed method. These recent approaches are applied to our Example 1, and the limitations
that exist in these methods are elaborated, and the advantages of our proposed method are discussed
and analyzed. The results obtained are summarized in Table 3.

5.1. Comparison of Results Obtained Through Different Methods

Table 3. The results obtained using different methods for Example 1.

Method The Final Ranking The Best Alternative

Ye [39]
(i) WAAO *

(ii) WGAO **

x1 > x4 > x9 > x5 > x7 > x2 > x10 > x8 > x3 > x6
x10 > x9 > x8 > x1 > x5 > x7 > x4 > x2 > x6 > x3

x1
x10

Ye [10]
(i) Weighted correlation coefficient

(ii) Weighted cosine similarity measure

x1 > x4 > x5 > x9 > x2 > x8 > x7 > x3 > x6 > x10
x1 > x9 > x4 > x5 > x2 > x10 > x8 > x3 > x7 > x6

x1
x1

Ye [11] x1 > x9 > x4 > x7 > x5 > x2 > x8 > x6 > x3 > x10 x1

Huang [14] x1 > x9 > x4 > x5 > x2 > x7 > x8 > x6 > x3 > x10 x1

Peng et al. [40]
(i) GSNNWA ***

(ii) GSNNWG ****

x9 > x10 > x8 > x6 > x1 > x7 > x4 > x5 > x2 > x3
x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10

x9
x1

Peng & Liu [15]
(i) EDAS

(ii) Similarity measure

x1 > x4 > x6 > x9 > x10 > x3 > x2 > x7 > x5 > x8
x10 > x8 > x7 > x4 > x1 > x2 > x5 > x9 > x3 > x6

x1
x10

Maji [41] x5 > x1 > x9 > x6 > x2 > x4 > x3 > x8 > x7 > x10 x5

Karaaslan [42] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Ye [43] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Biswas et al. [44] x10 > x9 > x7 > x1 > x4 > x6 > x5 > x8 > x2 > x3 x10

Ye [45] x9 > x7 > x1 > x4 > x2 > x10 > x5 > x8 > x3 > x6 x9

Adaptation of our algorithm (objective
weights only) x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2 x9

Adaptation of our algorithm (subjective
weights only) x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3 x1

Our proposed method (using integrated
weight measure) x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3 x1

* WAAO = weighted arithmetic average operator; ** WGAO = weighted geometric average operator; *** GSNNWA =
generalized simplified neutrosophic number weighted averaging operator; **** GSNNWG = generalized simplified
neutrosophic number weighted geometric operator.

5.2. Discussion of Results

From the results obtained in Table 3, it can be observed that different rankings and optimal
alternatives were obtained from the different methods that were compared. This difference is due to a
number of reasons. These are summarized briefly below:

(i) The method proposed in this paper uses an integrated weight measure which considers both the
subjective and objective weights of the attributes, as opposed to some of the methods that only
consider the subjective weights or objective weights.

(ii) Different operators emphasizes different aspects of the information which ultimately leads
to different rankings. For example, in [40], the GSNNWA operator used is based on an
arithmetic average which emphasizes the characteristics of the group (i.e., the whole information),
whereas the GSNNWG operator is based on a geometric operator which emphasizes the
characteristics of each individual alternative and attribute. As our method places more importance
on the characteristics of the individual alternatives and attributes, instead of the entire information
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as a whole, our method produces the same ranking as the GSNNWG operator but different results
from the GSNNWA operator.

5.3. Analysis of the Performance and Reliability of Different Methods

The performance of these methods and the reliability of the results obtained via these methods
are further investigated in this section.

Analysis

In all of the 11 papers that were compared in this section, the different authors used different
types of measurements and parameters to determine the performance of their respective algorithms.
However, all of these inputs always contain a tensor with at least three degrees. This tensor can refer to
different types of neutrosophic sets depending on the context discussed in the respective papers, e.g.,
simplified neutrosophic sets, single-valued neutrosophic sets, neutrosophic sets, or INSs. For the sake
of simplicity, we shall denote them simply as S.

Furthermore, all of these methods consider a weighted approach i.e., the weight of each attribute
is taken into account in the decision-making process. The decision-making algorithms proposed
in [10,11,14,39,40,43,45] use the subjective weighting method, the algorithms proposed in [42,44] use
the objective weighting method, whereas only the decision-making methods proposed in [15] use
an integrated weighting method which considers both the subjective and objective weights of the
attributes. The method proposed by Maji [41] did not take the attribute weights into consideration in
the decision-making process.

In this section, we first apply the inputs of those papers into our own algorithm. We then compare
the results obtained via our proposed algorithm with their results, with the aim of justifying the
effectiveness of our algorithm. The different methods and their algorithms are analyzed below:

(i) The algorithms in [10,11,39] all use the data given below as inputs

S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[0.4, 0.2, 0.3], [0.4, 0.2, 0.3], [0.2, 0.2, 05]
[0.6, 0.1, 0.2], [0.6, 0.1, 0.2], [0.5, 0.2, 0.2]
[0.3, 0.2, 0.3], [0.5, 0.2, 0.3], [0.5, 0.3, 0.2]
[0.7, 0.0, 0.1], [0.6, 0.1, 0.2], [0.4, 0.3, 0.2]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The subjective weights wj of the attributes are given by w1 = 0.35, w2 = 0.25, w3 = 0.40. All the
five algorithms from papers [10,11,39] yields either one of the following rankings:

A4 > A2 > A3 > A1 or A2 > A4 > A3 > A1

Our algorithm yields the ranking A4 > A2 > A3 > A1 which is consistent with the results
obtained through the methods given above.

(ii) The method proposed in [44] also uses the data given in S above as inputs but ignores the opinions
of the decision makers as it does not take into account the subjective weights of the attributes.
The algorithm from this paper yields the ranking of A4 > A2 > A3 > A1. To fit this data into our
algorithm, we randomly assigned the subjective weights of the attributes as wj =

1
3 for j = 1, 2, 3.

A ranking of A4 > A2 > A3 > A1 was nonetheless obtained from our algorithm.
(iii) The methods introduced in [14,43,45] all use the data given below as input values:

S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[0.5, 0.1, 0.3], [0.5, 0.1, 0.4], [0.7, 0.1, 02], [0.3, 0.2, 0.1]
[0.4, 0.2, 0.3], [0.3, 0.2, 0.4], [0.9, 0.0, 0.1], [0.5, 0.3, 0.2]
[0.4, 0.3, 0.1], [0.5, 0.1, 0.3], [0.5, 0.0, 0.4], [0.6, 0.2, 0.2]
[0.6, 0.1, 0.2], [0.2, 0.2, 0.5], [0.4, 0.3, 0.2], [0.7, 0.2, 0.1]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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The subjective weights wj of the attributes are given by w1 = 0.30, w2 = 0.25, w3 = 0.25 and
w4 = 0.20.

In this case, all of the three algorithms produces a ranking of A1 > A3 > A2 > A4.
This result is however not very reliable as all of these methods only considered the subjective

weights of the attributes and ignored the objective weight which is a vital measurement of the
relative importance of an attribute ej relative to the other attributes in an objective manner i.e.,
without “prejudice”.

When we calculated the objective weights using our own algorithm we have the following
objective weights:

aj = [0.203909, 0.213627, 0.357796, 0.224667]

In fact, it is indeed <0.9, 0.0, 0.1> that mainly contributes to the largeness of the objective weight
of attribute e3 compared to the other values of ej. Hence, when we calculate the integrated weight,
the weight of attribute e3 is still the largest.

Since [0.9, 0.0, 0.1] is in the second row, our algorithm yields a ranking of A2 > A1 > A3 > A4

as a result.
We therefore conclude that our algorithm is more effective and the results obtained via our

algorithm is more reliable than the ones obtained in [14,43,45], as we consider both the objective and
subjective weights.

(iv) It can be observed that for the methods introduced in [10,11,39,44], we have 0.8 ≤ Tij + Iij + Fij ≤ 1
for all the entries. A similar trend can be observed in [14,43,45], where 0.6 ≤ Tij + Iij + Fij ≤ 1
for all the entries. Therefore, we are not certain about the results obtained through the decision
making algorithms in these papers when the value of Tij + Iij + Fij deviates very far from 1.

Another aspect to be considered is the weighting method that is used in the decision making
process. As mentioned above, most of the current decision making methods involving SVNSs use
subjective weighting, a few use objective weighting and only two methods introduced in [15] uses an
integrated weighting method to arrive at the final decision. In view of this, we proceeded to investigate
if all of the algorithms that were compared in this section are able to produce reliable results when
both the subjective and objective weights are taken into consideration. Specifically, we investigate
if these algorithms are able to perform effectively in situations where the subjective weights clearly
prioritize over the objective weights, and vice-versa. To achieve this, we tested all of the algorithms
with three sets of inputs as given below:

Test 1: A scenario containing a very small value of Tij + Iij + Fij.

S1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A1 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.000])

A2 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.0001])

A3 = ([0.5, 0.5, 0.5], [0.9999, 0.0000, 0.0001])

A4 = ([0.5, 0.5, 0.5], [0.0001, 0.0000, 0.000])

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The subjective weight in this case is assigned as: aj = [0.5, 0.5].
By observation alone, it is possible to tell that an effective algorithm should produce A4 as the

least favoured alternative, and A2 should be second least-favoured alternative.
Test 2: A scenario where subjective weights prioritize over objective weight.

S2 =

{
A1 = ([0.80, 0.10, 0.10], [0.19, 0.50, 0.50])
A2 = ([0.20, 0.50, 0.50], [0.81, 0.10, 0.10])

}

The subjective weight in this case is assigned as: aj = [0.99, 0.01].
By observation alone, we can tell that an effective algorithm should produce a ranking of A1 > A2.
Test 3: This test is based on a real-life situation.
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Suppose a procurement committee is looking to select the best supplier to supply two raw
materials e1 and e2. In this context, the triplet [T, I, F] represents the following:

T : the track record of the suppliers that is approved by the committee
I : the track record of the suppliers that the committee feels is questionable
F : the track record of the suppliers that is rejected by the committee

Based on their experience, the committee is of the opinion that raw material e1 is slightly more
important than raw material e2, and assigned subjective weights of wsub

1 = 0.5001 and wsub
2 = 0.4999.

After an intensive search around the country, the committee shortlisted 20 candidates (A1 to
A20). After checking all of the candidates’ track records and analyzing their past performances, the
committee assigned the following values for each of the suppliers.

S3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = ([0.90, 0.00, 0.10], [0.80, 0.00, 0.10]), A2 = ([0.80, 0.00, 0.10], [0.90, 0.00, 0.10])
A3 = ([0.50, 0.50, 0.50], [0.00, 0.90, 0.90]), A4 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.80])
A5 = ([0.50, 0.50, 0.50], [0.20, 0.90, 0.70]), A6 = ([0.50, 0.50, 0.50], [0.30, 0.90, 0.60])
A7 = ([0.50, 0.50, 0.50], [0.40, 0.90, 0.50]), A8 = ([0.50, 0.50, 0.50], [0.50, 0.90, 0.40])
A9 = ([0.50, 0.50, 0.50], [0.60, 0.90, 0.30]), A10 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.90])

A11 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.30]), A12 = ([0.50, 0.50, 0.50], [0.00, 0.30, 0.30])
A13 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.90]), A14 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.30])
A15 = ([0.50, 0.50, 0.50], [0.60, 0.40, 0.30]), A16 = ([0.50, 0.50, 0.50], [0.50, 0.50, 0.30])
A17 = ([0.50, 0.50, 0.50], [0.40, 0.60, 0.30]), A18 = ([0.50, 0.50, 0.50], [0.30, 0.70, 0.30])
A19 = ([0.50, 0.50, 0.50], [0.20, 0.80, 0.30]), A20 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.30])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The objective weights for this scenario was calculated based on our algorithm and the values are

wobj
1 = 0.1793 and wobj

2 = 0.8207.
Now it can be observed that suppliers A1 and A2 are the ones that received the best evaluation

scores from the committee. Supplier A1 received better evaluation scores from the committee compared
to supplier A2 for attribute e1. Attribute e1 was deemed to be more important than attribute e2 by
the committee, and hence had a higher subjective weight. However, the objective weight of attribute
e2 is much higher than e1. This resulted in supplier A2 ultimately being chosen as the best supplier.
This is an example of a scenario where the objective weights are prioritized over the subjective weights,
and has a greater influence on the decision-making process.

Therefore, in the scenario described above, an effective algorithm should select A2 as the optimal
supplier, followed by A1. All of the remaining choices have values of T < 0.8, I > 0.0 and F > 0.1.
As such, an effective algorithm should rank all of these remaining 18 choices behind A1.

We applied the three tests mentioned above and the data set for S3 given above to the
decision-making methods introduced in the 11 papers that were compared in the previous section.
The results obtained are given in Table 4.

Thus it can be concluded that our proposed algorithm is the most effective algorithm and the
one that yields the most reliable results in all the different types of scenario. Hence, our proposed
algorithm provides a robust framework that can be used to handle any type of situation and data, and
produce accurate and reliable results for any type of situation and data.

Finally, we look at the context of the scenario described in Example 1. The structure of our data
(given in Table 2) is more generalized, by theory, having 0 ≤ Tij + Iij + Fij ≤ 1 and 0 ≤ Tij + Iij + Fij ≤ 3,
and is similar to the structure of the data used in [15,40–42]. Hence, our choice of input data serves as
a more faithful indicator of how each algorithm works under all sorts of possible conditions.
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Table 4. Compliance to Tests 1, 2, and 3.

Paper
Test 1

Compliance
Test 2

Compliance
Test 3

Compliance

Ye [39]
WAAO * Y Y N
WGAO * N Y N

Ye [10]
Weighted correlation coefficient Y Y N
Weighted cosine similarity measure N Y N

Ye [11] Y Y N
Huang [14] Y Y N

Peng et al. [40] GSNNWA ** Y Y N
GSNNWG ** Y Y N

Peng & Liu [15] EDAS Y Y N
Similarity measure N Y Y

Maji [41] N N N
Karaaslan [42] Y Y N
Ye [43] Y Y N
Biswas et al. [44] Y N Y
Ye [45] Y Y N
Adaptation of our proposed algorithm (objective weights only) Y N Y
Adaptation of our proposed algorithm (subjective weights only) Y Y N
Our proposed algorithm Y Y Y

Remarks: Y = Yes (which indicates compliance to Test); N = No (which indicates non-compliance to Test); * WAAO =
weighted arithmetic average operator; * WGAO = weighted geometric average operator; ** GSNNWA = generalized
simplified neutrosophic number weighted averaging operator; ** GSNNWG = generalized simplified neutrosophic
number weighted geometric operator.

6. Conclusions

The concluding remarks and the significant contributions that were made in this paper are
expounded below.

(i) A novel TOPSIS method for the SVNS model is introduced, with the maximizing deviation
method used to determine the objective weight of the attributes. Through thorough analysis,
we have proven that our algorithm is compliant with all of the three tests that were discussed in
Section 5.3. This clearly indicates that our proposed decision-making algorithm is not only an
effective algorithm but one that produces the most reliable and accurate results in all the different
types of situation and data inputs.

(ii) Unlike other methods in the existing literature which reduces the elements from single-valued
neutrosophic numbers (SVNNs) to fuzzy numbers, or interval neutrosophic numbers (INNs)
to neutrosophic numbers or fuzzy numbers, in our version of the TOPSIS method the input
data is in the form of SVNNs and this form is maintained throughout the decision-making
process. This prevents information loss and enables the original information to be retained,
thereby ensuring a higher level of accuracy for the results that are obtained.

(iii) The objective weighting method (e.g., the ones used in [10,11,14,39,40,43,45]) only takes into
consideration the values of the membership functions while ignoring the preferences of the
decision makers. Through the subjective weighting method (e.g., the ones used in [42,44]),
the attribute weights are given by the decision makers based on their individual preferences and
experiences. Very few approaches in the existing literature (e.g., [15]) consider both the objective
and subjective weighting methods. Our proposed method uses an integrated weighting model
that considers both the objective and subjective weights of the attributes, and this accurately
reflects the input values of the alternatives as well as the preferences and risk attitude of the
decision makers.
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Abstract: Neutrosphic triplet is a new theory in neutrosophy. In a neutrosophic triplet set, there is a
neutral element and antielement for each element. In this study, the concept of neutrosophic triplet
partial metric space (NTPMS) is given and the properties of NTPMS are studied. We show that both
classical metric and neutrosophic triplet metric (NTM) are different from NTPM. Also, we show that
NTPMS can be defined with each NTMS. Furthermore, we define a contraction for NTPMS and we
give a fixed point theory (FPT) for NTPMS. The FPT has been revealed as a very powerful tool in the
study of nonlinear phenomena. This study is also part of the “Algebraic Structures of Neutrosophic
Triplets, Neutrosophic Duplets, or Neutrosophic Multisets” which is a special issue.

Keywords: neutrosophic triplet set (NTS); partial metric spaces (PMS); fixed point theory (FPT)

1. Introduction

Neutrosophy was first studied by Smarandache in [1]. Neutrosophy consists of neutrosophic logic,
probability, and sets. Actually, neutrosophy is generalization of fuzzy set in [2] and intuitionistic fuzzy set
in [3]. Also, researchers have introduced neutrosophic theory in [4–6]. Recently, Olgun and Bal introduced
the neutrosophic module in [7], Şahin, Uluçay, Olgun, and Kılıçman introduced neutrosophic soft lattices
in [8], and Uluçay, Şahin, and Olgun studied soft normed rings in [9]. Furthermore, Smarandache and Ali
studied NT theory in [10] and NT groups (NTG) in [11,12]. The greatest difference between NTG and
classical groups is that there can be more than one unit element. That is, each element in a neutrosophic
triplet group can be a separate unit element. In addition, the unit elements in the NTG must be different
from the unit elements in the classical group. Also, a lot of researchers have introduced NT theory
in [13–16]. Recently, Smarandache, Şahin, and Kargın studied neutrosophic triplet G-module in [17],
and Bal, Shalla, and Olgun introduced neutrosophic triplet cosets and quotient groups in [18].

Matthew introduced the concept of partial metric spaces (PMS) in [19]. It is a generalization of
usual metric space since self-distance cannot be zero in PMS. The most important use of PMS is to
transfer mathematical techniques to computer science. Also, Matthew introduced Banach contraction
theorem for PMS and a lot of researchers introduced PMS and its topological properties and FPT for
PMS in [20–23]. If f is a mapping from a set E into itself, any element x of E, such that f (x) = x, is called
a fixed point of f. Many problems, including nonlinear partial differential equations problems, may be
recast as problems of finding a fixed point of a mapping in a space. Recently, Shukla introduced FPT
for ordered contractions in partial b-metric space in [24]. Kim, Okeke, and Lim introduced common
coupled FPT for w-compatible mappings in PMS in [25]. Pant, Shukla, and Panicker introduced new
FPT in PMS in [26].

In this paper, we first introduced PMS and contraction in NT theory. So, we obtained a new
structure for developing NT theory. Thus, researchers can arrive at nonlinear partial differential
equations problem solutions in NT theory. In Section 2, we give some basic results and definitions
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for NTPM and NTM. In Section 3, NTPMS is defined and some properties of a NTPMS are given.
It was shown that both the classical metric and NTM are different from the NTPM, and NTPMS can be
defined with each NTMS. Furthermore, the convergent sequence and Cauchy sequence in NTPMS
are defined. Also, complete NTPMS are defined. Later, we define contractions for NTPM and we
give some properties of these contractions. Furthermore, we give a FPT for NTPMS. In Section 4,
we give conclusions.

2. Preliminaries

We give some basic results and definitions for NTPM and NTM in this section.

Definition 1 ([19]). Let A be nonempty set. If the function pm:AxA→ R+ satisfies the conditions given below;
p is called a PM. a, b, c ∈ A;

(i) pm(a, a) = pm(b, b) = pm(a, b) = pm(b, a)⇐⇒ a = b;
(ii) pm(a, a) ≤ pm(a, b);
(iii) pm(a, b) = pm(b, a);
(iv) pm(a, c) ≤ pm(a, b) + pm(b, c) − pm(b, b);

Also, (A, pm) is called a PMS.

Definition 2 ([12]). Let N be a nonempty and # be a binary operation. Then, N is called a NT if the given below
conditions are satisfied.

(i) There is neutral element (neut(x)) for x ∈ N such that x*neut(x) = neut(x)* x = x.
(ii) There is anti element (anti(x)) for x ∈ N such that x*anti(x) = anti(x)* x = neut(x).

NT is shown by (x, neut(x), anti(x)).

Definition 3 ([15]). Let (M, #) be a NTS and a#b ∈ N, a, b ∈M. NTM is a map dT:MxM→R+ ∪ {0} such
that a, b, c ∈M,

(a) dT(a, b) ≥ 0
(b) If a = b, then dT(a, b) = 0
(c) dT(a, b) = dT(a, b)
(d) If there exists any element c in M such that dT(a, c) ≤ dT(a, c*neut(b)), then dT(a, c*neut(b)) ≤

dT(a, b) + dT(b, c).

Also, ((M,*), dT) space is called NTMS.

3. Neutrosophic Triplet Partial Metric Space

Partial metric is the generalization of usual metric space, since self-distance cannot be zero
in partial metric space. The most important use of PMS is to transfer mathematical techniques to
computer science. Also, If f is a mapping from a set E into itself, any element x of E such that f (x)
= x is called a fixed point of f. Many problems, including nonlinear partial differential equations
problems, may be recast as problems of finding a fixed point of a mapping in a space. In this section,
we introduced firstly PMS and FPT in NT theory. So, we obtained a new structure for developing NT
theory. Thus, researchers can arrive at nonlinear partial differential equations problem solutions in
NT theory.
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Definition 4. Let (A, #) be a NTS and a#b in A, a, b in A. NTPM is a map pN: AxA→ R+∪{0} such that
a, b, c ∈ A

(i) 0 ≤pN(a, a) ≤ pN(a, b)
(ii) If pN(a, a) = pN(a, b) = pN(b, b) = 0, then there exits any a, b such that a = b.
(iii) pN(a, b) = pN(a, b)
(iv) If there exists any element b in A such that pN(a, c) ≤ pN(a, c#neut(b)), then pN(a, c#neut(b)) ≤ pN(a, b)

+ pN(b, c) − pN(b, b)

Additionally, ((A, #), pN) is called NTPMS.

Example 1. Let A be a nonempty set and P(A) be power set of A and m(X) be cardinal of X ∈ P(A). Where, it is
clear that X ∪ X = X. Thus; we give that neut(X) = X and anti(X) = X for X ∈ P(A). So, (P(A), ∪) is a NTS.
We give the function pN: P(A)x P(A)→ R+ ∪ {0} such that pN(X,Y) = max{m(X), m(Y)}. From Definition 4,

(i), (ii) and (iii) are apparent.
(iv) Let ∅ be empty element of P(X). Then, pN(X, Y) = pN(X, Y ∪ ∅) since for pN(X, Y ∪ ∅) = pN(X, Y) =
max{m(X), m(Y)}. Also, it is clear that
max{m(X), m(Y)} ≤ max{m(X), m(Z)}+ max{m(Z), m(Y)} – max {m(∅), m(∅)}.

Therefore, pN(X, Y∪∅) ≤ pN (X, ∅) + pN(∅, Y) – pN(∅, ∅). Thus, ((P(A), ∪), pN) is a NTPMS.

Corollary 1. NTPM is different from the partial metric. Because there isn’t a “#”binary operation and neutral
of x in PMS.

Corollary 2. Generally the NTPM is different from NT metric, since for pN(x, x) ≥ 0.

Theorem 1. Let A be a nonempty set and P(A) be power set of A and m(X) be cardinal of X ∈ P (A) and (P(A),
#), d) be a NT metric space (NTMS). If there exists any Z ∈ P(A) such that m(Y#neut(Z) = m(Y); then ((P(A),
#), pN) is a NTPMS such that

pN(X, Y) =
d(X, Y) + m(X) + m(Y)

2

Proof.

(i) pN(X, X) = d(X, X)+m(X)+m(X)
2 = m(X) ≤ d(X, Y)+m(X)+m(Y)

2 = pN(X, Y), since for d(X,X) = 0.
Thus; 0 ≤ pN(X, X) ≤ pN(X, Y) for X, Y ∈ P(A).

(ii) If pN(X, X) = pN(X, Y) = pN(Y, Y) = 0, then

(iii) d(X, X)+m(X)+m(X)
2 = d(X, Y)+m(X)+m(Y)

2 = d(Y, Y)+m(Y)+m(Y)
2 = 0 and d(X, Y) + m(X) + m(Y) = 0.

Where, m(X) = 0, m(Y) = 0 and d(X, Y) = 0. Thus, X = Y = ∅ (empty set).

(iv) pN(X, Y) = d(X, Y)+m(X)+m(Y)
2 = d(Y, X)+m(Y)+m(X)

2 = pN(Y, X), since for d(X, Y)= d(Y, X).
(v) We suppose that there exists any Z ∈ P(A) such that m(Y#neut(Z)) = m(Y) and pN(X, Y) ≤

pN(X, Y#neut(Z)). Thus,

d(X, Y) + m(X) + m(Y)
2

≤ d(X, Y#neut(Z)) + m(X) + m(Y#neut(Z))
2

(1)

From (1), d(X, Y) ≤ d(X, Y#neut(Z)). Since (P(A), #), d) is a NTMS,

d(X, Y#neut(Z)) ≤ d(X, Z) + d(X, Z) (2)
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From (1), (2)

d(X, Y) + m(X) + m(Y)
2

≤ d(X, Y#neut(Z)) + m(X) + m(Y#neut(Z))
2

≤ d(X, Z) + d(Z, Y) + m(X) + m(Y) + m(Z)
2

=

d(X, Z) + m(X) + m(Z)
2

+
d(Z, Y) + m(Z) + m(Y)

2
−m(Z). Where, pN(Z, Z) = m(Z).

Thus, pN(X, Y*neut(Z)) ≤ pN(X, Z) + pN(Z, Y) − pN(Z, Z). Hence, ((P(A), #), pN) is a NTPMS.

Theorem 2. Let (A, #) be a NT set, k ∈ R+ and ((A, #), dT) be a NTMS. Then; ((A, #), pN) is a NTPMS
such that

pN(a, b) = dT(a, b) + k, ∀ a, b ∈ A.

Proof.

(i) Since for dT(a, a) = 0, 0 ≤ pN(a, a) = dT(a, a) + k = k ≤ pN(a, b) = dT(a, b) + k. Thus;
(ii) 0 ≤ pN(a, a) ≤ pN(a, b).
(iii) There do not exists a, b ∈ A such that pN(a, a) = pN(a, b) = pN(b, b) = 0 since for k ∈ R+ and

dT(a, a) = 0.
(iv) pN(a, b) = dT(a, b) + k = dT(b, a) + k, since for dT(a, b) = dT(b, a).
(v) Suppose that there exists any element c in A such that pN(a, b) ≤ pN(a, b#neut(c)). Then dT(a, b) +

k ≤ dT(a, b#neut(c)) + k. Thus,

dT(a, b) ≤ dT(a, b#neut(c)) (3)

Also,
dT(a, b#neut(c)) ≤ dT(a, c) + dT(c, b) (4)

since for ((A, #), dT) is a NTMS.
From (3) and (4),

pN(a, b) ≤ pN(a, b#neut(c)) = dT(a, b#neut(c)) + k≤ dT(a, c) + dT(c, b) = pN(a, c) + pN(c, b)− k

where, pN(c, c) = k. Thus;
pN(a, b#neut(c)) ≤ pN(a, c) + pN(c, b) − pN(c, c). Hence, ((A, #), pN) is a NTPMS.

Corollary 3. From Theorem 2, we can define NTPMS with each NTMS.

Definition 5. Let ((A, #), pN) be a NTPMS, {xn} be a sequence in NTPMS and a in A. If for ε > 0 and n≥M,
there exist a M in  such that pN(a, {xn}) < ε + pN(a, a), then {xn} converges to a in A. It is shown by

lim
n→∞

xn = a or xn → a.

Definition 6. Let ((A, #), pN) be a NTPMS, {xn} be a sequence in NTPMS and a in A. If for ε > 0 and n, m≥M,
there exist a M in  such that pN({xm}, {xn}) < ε + pN(a, a); then {xn} is a Cauchy sequence in ((A, #), pN).

Theorem 3. Let ((A, #), pN) be a NTPMS, {xn} be a convergent sequence in NTPMS and pN({xm}, {xn}) ≤
pN({xm}, {xn}) *neut(a)) for any a in A. Then {xn} is a Cauchy sequence in NTPMS.

Proof. It is clear that
pN(a, {xn})< ε/2 + pN(a, a) (5)
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for each n ≥M or
pN(a, {xm})< ε/2 + pN(a, a) (6)

for each m ≥M
Because {xn} is a convergent. Then, we suppose that pN({xm}, {xn}) ≤ pN({xm}, {xn}) *neut(a)) for

any a in A. It is clear that for n, m ≥M;

pN({xm }, {xn }) ≤ pN({xm }, {xn }) ∗ neut(a)) ≤ pN(a, {xn }) + pN(a, {xm }) − pN(a, a) (7)

Because ((A, #), pN) is a NTPMS. From (5)–(7),
pN({xm}, {xn}) < ε/2 + pN(a, a) + ε/2 + pN(a, a) − pN(a, a) = ε+ pN(a, a). Thus; {xn} is a Cauchy

sequence in ((A, #), pN).

Definition 7. Let ((A, #), pN) be a NTPMS and {xn} be a Cauchy sequence in NTPMS. If every {xn} is
convergent in ((A, #), pN), then ((A, #), pN) is called a complete NTPMS.

Definition 8. Let ((A, #), pN) be a NTPMS and m: A→ A be a map. If the map m and the NTPM pN satisfy
the conditions given below, then m is called a contraction for ((A, #), pN).

(i) There exists any element c in A such that pN(a, b) ≤ pN (a, b*neut(c)); a, b in A.
(ii) There exists k in [0, 1) such that pN(m(a), m(b)) ≤ k. pN(a, b); a, b in A.

Example 2. Let A = {∅, {x}, {x, y}} be a set and m(X) be cardinal of X in A. Where, it is clear that X∩X = X.
Thus, we give that neut(X) = X and anti(X) = X. So, (A, ∩) is a NTS. We give the function pN: AxA→ R+∪
{0} such that pN(X, Y)= max{22−m(X) − 1, 22−m(Y) − 1}. From Definition 4,

(i), (ii) and (iii) are apparent.
(iv) pN(X, {x, y})= pN(X, Y ∩ {x, y}) since for X, YinA. Furthermore, it is clear that
max{22−m(X) − 1, 22−m(Y) − 1}≤ max{22−m(X) − 1, 22−m({x, y}) − 1} + max{22−m(Z) − 1, 22−m({x,y})

− 1} − max{22−m({x,y}) − 1, 22−m({x,y}) − 1}. Thus,
pN(X, Y ∩ {x, y})≤ pN(X, {x, y})+ pN({x, y},B)− pN({x, y},{x, y}). Furthermore, ((A, ∩), pN) is a NTPMS.

Let m: A→ A be a map such that m(X) =

⎧⎪⎨⎪⎩
{x, y}, X = {x, y}
{x}, X = ∅
{x, y}, X = {x}

For k = 0, 2

pN(m(∅), m(∅)) = pN({x}, {x}) = 1 ≤ 0, 2. pN(∅, ∅) = 1, 5
pN(m(∅), m({x})) = pN({x}, {x, y}) = 1 ≤ 0, 2. pN(∅, {x}) = 1, 5
pN(m(∅), m({x, y})) = pN({x}, {x, y}) = 1 ≤ 0, 2. pN(∅, {x, y}) = 1, 5
pN(m({x}), m({x})) = pN({x, y}, {x, y}) = 0 ≤ 0, 2. pN({x}, {x}) = 0, 5
pN(m({x}), m({x, y})) = pN({x, y}, {x, y}) = 0 ≤ 0, 2. pN({x}, {x,y}) = 0, 5
pN(m({x, y}), m({x, y})) = pN({x, y}, {x, y}) = 0 ≤ 0, 2. pN({x, y}, {x, y}) = 0, 5
Thus, m is a contraction for ((A, ∩), pN)

Theorem 4. For each contraction m over a complete NTPMS ((A, #), pN), there exists a unique x in A such
that x = m(x). Also, pN(x, x) = 0.

Proof. Let m be a contraction for ((A, #), pN) complete NTPMS and xn = m(xn−1) and x0 ∈ A be a
unique element. Also, we can take

pN(xn, xk) ≤pN (xn, xk∗neut(xn−1)) (8)

since for m is a contraction over ((A, #), pN) complete NTPMS. Then,
pN(x2, x1) = pN(m(x1), m(x0)) ≤ c. pN(x1, x0) and
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pN(x3, x2) = pN(m(x2), m(x1)) ≤ c. pN(x2, x1) ≤ c2. pN(x1, x0). From mathematical induction, n ≥ m;
pN(xm+1, xm) = pN(m(xm), m(xm−1))≤ c. pN(xm, xm−1) ≤ cm. pN(x1, x0). Thus; from (8) and definition
of NTPMS,

pN(xn, xm) ≤pN(xnxm ∗ neut(xn−1)) ≤ pN(xn, xn−1) + pN(xn−1, xm)− pN(xn−1, xn−1)

≤ cn−1.pN(x1, x0) + pN(xn−1, xm)− pN(xn−1, xn−1)

≤ cn−1. pN(x1, x0) + pN(xn−1, xn−2) + . . . + pN(xm, xm−1
)

≤ (cn−1+ cn−2+ . . . + cm−1+cm). pN(x1, x0) − ∑n−1
i=m pN(xi, xi)

≤ ∑n−1
i=m ci.pN(x1, x0) − ∑n−1

i=m pN(xi, xi)

≤ ∑n−1
i=m ci.pN(x1, x0) + pN(x0, x0)

= ∑n−1
i=m ci.pN(x1, x0) + pN(x0, x0) (For n, m → ∞ )

= cm

1−c pN(x1, x0)+ pN(x0, x0 ) → pN(x0, x0)

Thus {xn} is a cauchy sequence. Also {xn} is convergent such that xn → x . Because ((A, #), pN)
is complete NTPMS. Thus; m(xn) → m(x) since for xn = m(xn−1); m(xn) = xn+1 → x . Thus; m(x) = x.
Suppose that m(x) = x or m(y) = y for x, y ∈ xn. Where;

pN(x, y)= pN(m(x), m(y)) ≤c. pN(x, y). pN(x, y)> 0, c ≥ 1 and it is a contradiction. Thus; pN(x, y) =
pN(x, x) = pN(y, y) = 0 and x = y. Therefore, pN(x, x) = 0.

4. Conclusions

In this paper, we introduced NTPMS. We also show that both the classical metric and NTM are
different from the NT partial metric. This NT notion has more features than the classical notion. We also
introduced contraction for PMS and we give a fixed point theory for PMS in NT theory. So, we obtained
a new structure for developing NT theory. Thus, researchers can arrive at nonlinear partial differential
equations problem solutions in NT theory thanks to NTPMS and FPT for NTPMS.
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Funding: This research received no external funding.

Conflicts of Interest: The authors are not report a conflict of interest.

References

1. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set and Logic; ProQuest Information & Learning:
Ann Arbor, MI, USA, 1998; p. 105.

2. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
3. Atanassov, T.K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
4. Kandasamy, W.B.V.; Smarandache, F. Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic

Structures; Hexis: Phoenix, AZ, USA, 2006; p. 209.
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Abstract: The new notion of a neutrosophic triplet group (NTG) is proposed by Florentin
Smarandache; it is a new algebraic structure different from the classical group. The aim of this
paper is to further expand this new concept and to study its application in related logic algebra
systems. Some new notions of left (right)-quasi neutrosophic triplet loops and left (right)-quasi
neutrosophic triplet groups are introduced, and some properties are presented. As a corollary of
these properties, the following important result are proved: for any commutative neutrosophic
triplet group, its every element has a unique neutral element. Moreover, some left (right)-quasi
neutrosophic triplet structures in BE-algebras and generalized BE-algebras (including CI-algebras and
pseudo CI-algebras) are established, and the adjoint semigroups of the BE-algebras and generalized
BE-algebras are investigated for the first time.

Keywords: neutrosophic triplet; quasi neutrosophic triplet loop; quasi neutrosophic triplet group;
BE-algebra; CI-algebra

1. Introduction

The symmetry exists in the real world, and group theory is a mathematical tool for describing
symmetry. At the same time, in order to describe the generalized symmetry, the concept of group is
popularized in different ways, for example, the notion of a generalized group is introduced (see [1–4]).
Recently, F. Smarandache [5,6] introduced another new algebraic structure, namely: neutrosophic
triplet group, which comes from the theory of the neutrosophic set (see [7–11]). As a new extension
of the concept of group, the neutrosophic triplet group has attracted the attention of many scholars,
and a series of related papers have been published [12–15].

On the other hand, in the last twenty years, the non-classical logics, such as various fuzzy logics,
have made great progress. At the same time, the research on non-classical logic algebras that are
related to it have also made great achievements [16–26]. As a generalization of BCK-algebra, H.S. Kim
and Y.H. Kim [27] introduced the notion of BE-algebra. Since then, some scholars have studied ideals
(filters), congruence relations of BE-algebras, and various special BE-algebras have been proposed,
these research results are included in the literature [28–31] and monograph [32]. In 2013 and 2016,
the new notions of pseudo BE-algebra and commutative pseudo BE-algebra were introduced, and some
new properties were obtained [33,34]. Similar to BCI-algebra as a generalization of BCK-algebra,
B.L. Meng introduced the concept of CI-algebra, which is as a generalization of BE-algebra, and studied
the structures and closed filters of CI-algebras [35–37]. After that, the CI-algebras and their related
algebraic structures (such as Q-algebras, pseudo Q-algebras, pseudo CI-algebras, and pseudo BCH-
algebras) have been extensively studied [38–46].

Symmetry 2018, 10, 241; doi:10.3390/sym10070241 www.mdpi.com/journal/symmetry448
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This paper will combine the above two directions to study general neutrosophic triplet structures
and the relationships between these structures and generalized BE-algebras. On the one hand,
we introduce various general neutrosophic triplet structures, such as (l-l)-type, (l-r)-type, (r-l)-type,
(r-r)-type, (l-lr)-type, (r-lr)-type, (lr-l)-type, and (lr-r)-type quasi neutrosophic triplet loops (groups),
and investigate their basic properties. Moreover, we get an important corollary, namely: that for any
commutative neutrosophic triplet group, its every element has a unique neutral element. On the other
hand, we further study the properties of (pseudo) BE-algebras and (pseudo) CI-algebras, and the
general neutrosophic triplet structures that are contained in a BE-algebra (CI-algebra) and pseudo
BE-algebra (pseudo CI-algebra). Moreover, for the first time, we introduce the concepts of adjoint
semigroups of BE-algebras and generalized BE-algebras (including CI-algebras, pseudo BE-algebras,
and pseudo CI-algebras) and discuss some interesting topics.

2. Basic Concepts

Definition 1. ([5,6]) Let N be a set together with a binary operation *. Then, N is called a neutrosophic triplet
set if, for any a∈N, there exists a neutral of ‘a’, called neut(a), and an opposite of ‘a’, called anti(a), with neut(a)
and anti(a), belonging to N, such that:

a * neut(a) = neut(a) * a = a;

a * anti(a) = anti(a) * a = neut(a).

It should be noted that neut(a) and anti(a) may not be unique here for some a∈N. We call (a, neut(a),
and anti(a)) a neutrosophic triplet for the determined neut(a) and anti(a).

Remark 1. In the original definition, the neutral element is different from the unit element in the traditional
group theory. The above definition of this paper takes away such restriction, please see the Remark 3 in Ref. [12].

Definition 2. ([5,6,13]) Let (N, *) be a neutrosophic triplet set.

(1) If * is well-defined, that is, for any a, b ∈ N, one has a * b ∈ N. Then, N is called a neutrosophic triplet loop.
(2) If N is a neutrosophic triplet loop, and * is associative, that is, (a * b) * c= a * (b * c) for all a, b, c ∈ N. Then,

N is called a neutrosophic triplet group.
(3) If N is a neutrosophic triplet group, and * is commutative, that is, a * b = b * a for all a, b ∈ N. Then, N is

called a commutative neutrosophic triplet group.

Definition 3. ([27,35,41,42]) A CI-algebra (dual Q-algebra) is an algebra (X;→, 1) of type (2, 0), satisfying
the following conditions:

(i) x→ x = 1,
(ii) 1→ x = x,
(iii) x→ (y→ z) = y→ (x→ z), for all x, y, z ∈ X.

A CI-algebra (X;→, 1)is called a BE-algebra, if it satisfies the following axiom:

(iv) x→ 1 = 1, for all x ∈ X.

A CI-algebra (X;→, 1)is called a dual BCH-algebra, if it satisfies the following axiom:

(v) x→ y = y→x = 1⇒ x = y.

A binary relation ≤ on CI-algebra (BE-algebra) X, is defined by x ≤ y if, and only if, x→ y = 1.
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Definition 4. ([33,43,45]) An algebra (X;→, �, 1) of type (2, 2, 0) is called a dual pseudo Q-algebra if, for all
x, y, z ∈ X, it satisfies the following axioms:

(dpsQ1) x→ x = x � x = 1,
(dpsQ2) 1→ x = 1 � x = x,
(dpsQ3) x→ (y � z) = y � (x→ z).

A dual pseudo Q-algebra X is called a pseudo CI-algebra, if it satisfies the following condition:

(psCI) x→ y = 1⇔ x � y = 1.

A pseudo CI-algebra X is called a pseudo BE-algebra, if it satisfies the following condition:

(psBE) x→ 1 = x � 1 = 1, for all x ∈ X.

A pseudo CI-algebra X is called a pseudo BCH-algebra, if it satisfies the following condition:

(psBCH) x→ y = y � x = 1⇒ x = y.

In a dual pseudo-Q algebra, one can define the following binary relations:

x ≤→ y⇔ x→ y = 1. x ≤� y⇔ x � y = 1.

Obviously, a dual pseudo-Q algebra X is a pseudo CI-algebra if, and only if, ≤→ = ≤�.

3. Various Quasi Neutrosophic Triplet Loops (Groups)

Definition 5. Let N be a set together with a binary operation * (that is, (N, *) be a loop) and a ∈ N.

(1) If exist b, c ∈ N, such that a * b = a and a * c = b, then a is called an NT-element with (r-r)- property;
(2) If exist b, c ∈ N, such that a * b = a and c * a = b, then a is called an NT-element with (r-l)- property;
(3) If exist b, c ∈ N, such that b * a = a and c * a = b, then a is called an NT-element with (l-l)- property;
(4) If exist b, c ∈ N, such that b * a = a and a * c = b, then a is called an NT-element with (l-r)- property;
(5) If exist b, c ∈ N, such that a * b = b * a = a and c * a = b, then a is called an NT-element with (lr-l)-property;
(6) If exist b, c ∈ N, such that a * b = b * a = a and a * c = b, then a is called an NT-element with (lr-r)-property;
(7) If exist b, c ∈ N, such that b * a = a and a * c = c * a = b, then a is called an NT-element with (l-lr)-property;
(8) If exist b, c ∈ N, such that a * b = a and a * c = c * a = b, then a is called an NT-element with (r-lr)-property;
(9) If exist b, c ∈ N, such that a * b = b * a = a and a * c = c * a = b, then a is called an NT-element with

(lr-lr)-property.

It is easy to verify that, (i) if a is an NT-element with (l-lr)-property, then a is an NT-element with
(l-l)-property and (l-r)-property; if a is an NT-element with (lr-l)-property, then a is an NT-element with
(l-l)-property and (r-l)-property; and so on; (ii) a neutrosophic triplet loop (N, *) is a neutrosophic triplet
group if, and only if, every element in N is an NT-element with (lr-lr)-property; (iii) if * is commutative,
then the above properties coincide. Moreover, the following example shows that (r-l)-property and
(r-r)-property cannot infer to (r-lr)-property, and (r-r)-property and (l-lr)-property cannot infer to
(lr-lr)-property.

Example 1. Let N = {a, b, c, d}. The operation * on N is defined as Table 1. Then, (N, *) is a loop, and a is an
NT-element with (lr-lr)-property; b is an NT-element with (lr-r)-property; c is an NT-element with (r-l)-property
and (r-r)-property, but c is not an NT-element with (r-lr)-property; and d is an NT-element with (r-r)-property
and (l-lr)-property, but d is not an NT-element with (lr-lr)-property.
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Table 1. Neutrosophic triplet (NT)-elements in a loop.

* a b c d

a a a a d
b c a b c
c c b d a
d a d b a

Definition 6. Let (N, *) be a loop (semi-group). If for every element a in N, a is an NT-element with
(r-r)-property, then (N, *) is called (r-r)-quasi neutrosophic triplet loop (group). Similarly, if for every element
a in N, a is an NT-element with (r-l)-, (l-l)-, (l-r)-, (lr-l)-, (lr-r)-, (l-lr)-, (r-lr)-property, then (N, *) is called
(r-l)-, (l-l)-, (l-r)-, (lr-l)-, (lr-r)-, (l-lr)-, (r-lr)-quasi neutrosophic triplet loop (group), respectively. All of these
generalized neutrosophic triplet loops (groups) are collectively known as quasi neutrosophic triplet loops (groups).

Remark 2. For quasi neutrosophic triplet loops (groups), we will use the notations like neutrosophic triplet loops
(groups), for example, to denote a (r-r)-neutral of ‘a’ by neut(r-r)(a), denote a (r-r)-opposite of ‘a’ by anti(r-r)(a),
where ‘a’ is an NT-element with (r-r)-property. If neut(r-r)(a) and anti(r-r)(a) are not unique, then denote the set
of all (r-r)-neutral of ‘a’ by {neut(r-r)(a)}, denote the set of all (r-r)-opposite of ‘a’ by {anti(r-r)(a)}.

For the loop (N, *) in Example 1, we can verify that (N, *) is a (r-r)-quasi neutrosophic triplet loop,
and we have the following:

neut(r-r)(a) = a, anti(r-r)(a) = a; neut(r-r)(b) = c, {anti(r-r)(b)} = {a, d};

neut(r-r)(c) = a, anti(r-r)(c) = d; neut(r-r)(d) = b, anti(r-r)(d) = c.

Theorem 1. If (N, *) is a (l-lr)-quasi neutrosophic triplet group, then (N, *) is a neutrosophic triplet group.
Moreover, if (N, *) is a (r-lr)-quasi neutrosophic triplet group, then (N, *) is a neutrosophic triplet group.

Proof. Suppose that (N, *) is a (l-lr)-quasi neutrosophic triplet group. For any a ∈ N, by Definitions 5
and 6, we have the following:

neut(l-lr)(a) * a = a, anti(l-lr)(a) * a = a * anti(l-lr)(a) = neut(l-lr)(a).

Here, neut(l-lr)(a) ∈ {neut(l-lr)(a)}, anti(l-lr)(a) ∈ {anti(l-lr)(a)}. Applying associative law we get
the following:

a * neut(l-lr)(a) = a * (anti(l-lr)(a) * a) = (a * anti(l-lr)(a)) * a = neut(l-lr)(a) * a = a.

This means that neut(l-lr)(a) is a right neutral of ‘a’. From the arbitrariness of a, it is known that
(N, *) is a neutrosophic triplet group.

Another result can be proved similarly. �

Theorem 2. Let (N, *) be a (r-lr)-quasi neutrosophic triplet group such that:

(s * p) * a = a * (s * p), ∀ s ∈ {neut(r-lr)(a)}, ∀ p ∈ {anti(r-lr)(a)}.

Then,

(1) for any a ∈ N, s ∈ {neut(r-lr)(a)}⇒ s * s = s.
(2) for any a ∈ N, s, t ∈{neut(r-lr)(a)}⇒ s * t = t.
(3) when * is commutative, for any a ∈ N, neut(r-lr)(a) is unique.
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Proof. (1) Assume s∈{neut(r-lr)(a)}, then a * s = a, and exist p ∈ N, such that p * a = a *p = s. Thus,

(s * p) * a = s * (p * a) = s * s,

a * (s * p) = (a * s) * p = a * p = s.

According to the hypothesis, (s * p) * a = a * (s * p), it follows that s * s = s.
(2) Assume s, t∈{neut(r-lr)(a)}, then a * s = a, a * t = a, and exist p, q ∈ N, such that p * a = a * p = s, q *

a = a * q = t. Thus,
(s * q) * a = s * (q * a) = s * t,

a * (s * q) = (a * s) * q = a * q = t.

According to the hypothesis, (s * p) * a = a * (s * p), it follows that s * t = t.
(3) Suppose a ∈ N, s, t∈{neut(r-lr)(a)}. Applying Theorem (2) to s and t we have s * t = t. Moreover,

applying Therorem (2) to t and s we have t * s = s. Hence, when * is commutative, s * t = t * s. Therefore,
s = t, that is, neut(r-lr)(a) is unique. �

Corollary 1. Let (N, *) be a commutative neutrosophic triplet group. Then neut(a) is unique for any a ∈ N.

Proof. Since all neutrosophic triplet groups are (r-lr)-quasi neutrosophic triplet groups, and * is
commutative, then the assumption conditions in Theorem 2 are valid for N, so applying Theorem 2 (3),
we get that neut(a) is unique for any a ∈ N. �

The following examples show that the neutral element may be not unique in the neutrosophic
triplet loop.

Example 2. Let N = {1, 2, 3}. Define binary operation * on N as following Table 2. Then, (N, *) is a commutative
neutrosophic triplet loop, and {neut(1)} = {1, 2}. Since (1 * 3) * 3 �= 1 * (3 * 3), so (N, *) is not a neutrosophic
triplet group.

Table 2. Commutative neutrosophic triplet loop.

* 1 2 3

1 1 1 2
2 1 2 3
3 2 3 3

Example 3. Let N = {1, 2, 3, 4}. Define binary operation * on N as following Table 3. Then, (N, *) is a
neutrosophic triplet loop, and {neut(4)} = {2, 3}. Since (4 * 1) * 1 �= 4 * (1 * 1), so (N, *) is not a neutrosophic
triplet group.

Table 3. Non-commutative neutrosophic triplet loop.

* 1 2 3 4

1 3 1 1 3
2 4 2 2 4
3 1 3 3 4
4 3 4 4 2
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4. Quasi Neutrosophic Triplet Structures in BE-Algebras and CI-Algebras

From the definition of BE-algebra and CI-algebra (see Definition 3), we can see that ‘1’ is a left
neutral element of every element, that is, BE-algebras and CI-algebras are directly related to quasi
neutrosophic triplet structures. This section will reveal the various internal connections among them.

4.1. BE-Algebras (CI-Algebras) and (l-l)-Quasi Neutrosophic Triplet Loops

Theorem 3. Let (X;→, 1) be a BE-algebra. Then (X,→) is a (l-l)-quasi neutrosophic triplet loop. And, when
|X|>1, (X,→) is not a (lr-l)-quasi neutrosophic triplet loop with neutral element 1.

Proof. By Definition 3, for all x ∈ X, 1→ x = x and x→ x = 1. According Definition 6, we know that
(X,→) is a (l-l)-quasi neutrosophic triplet loop, such that:

1 ∈ {neut(l-l)(x)}, x ∈ {anti(l-l)(x)}, for any x ∈ X.

If |X| > 1, then exist x ∈ X, such that x �= 1. Using Definition 3 (iv), x→ 1 =1 �= x, this means that
1 is not a right neutral element of x. Hence, (X,→) is not a (lr-l)-quasi neutrosophic triplet loop with
neutral element 1. �

Example 4. Let X = {a, b, c, 1}. Define binary operation * on N as following Table 4. Then, (X; →, 1) is a
BE-algebra, and (X,→) is a (l-l)-quasi neutrosophic triplet loop, such that:

{neut(l-l)(a)} = {1}, {anti(l-l)(a)} = {a, c}; {neut(l-l)(b)} = {1}, {anti(l-l)(b)} = {b, c};

{neut(l-l)(c)} = {1}, {anti(l-l)(c)} = {c}; {neut(l-l)(1)} = {1}, {anti(l-l)(1)} = {1}.

Table 4. BE-algebra and (l-l)-quasi neutrosophic triplet loop (1).

→ a b c 1

a 1 b b 1
b a 1 a 1
c 1 1 1 1
1 a b c 1

Example 5. Let X = {a, b, c, 1}. Define binary operation * on N as following Table 5. Then, (X; →, 1) is a
BE-algebra, and (X,→) is a (l-l)-quasi neutrosophic triplet loop such that:

{neut(l-l)(a)} = {1}, {anti(l-l)(a)} = {a}; {neut(l-l)(b)} = {1}, {anti(l-l)(b)} = {b};

{neut(l-l)(c)} = {1}, {anti(l-l)(c)} = {c}; {neut(l-l)(1)} = {1}, {anti(l-l)(1)} = {1}.

Table 5. BE-algebra and (l-l)-quasi neutrosophic triplet loop (2).

→ a b c 1

a 1 b c 1
b a 1 c 1
c a b 1 1
1 a b c 1
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Definition 7. ([36]) Let (X;→, 1) be a CI-algebra and a ∈ X. If for any x ∈X, a→ x = 1 implies a = x, then a is
called an atom in X. Denote A(X) = {a ∈ X| a is an atom in X}, it is called the singular part of X. A CI-algebra
(X;→, 1) is said to be singular if every element of X is an atom.

Lemma 1. ([35–37]) If (X;→, 1) is a CI-algebra, then for all x, y ∈ X:

(1) x→ ((x→ y)→ y) = 1,
(2) 1→ x = 1 (or equivalently, 1 ≤ x) implies x = 1,
(3) (x→ y)→ 1 = (x→ 1)→ (y→ 1).

Lemma 2. ([36]) Let (X;→, 1) be a CI-algebra. If a, b ∈ X are atoms in X, then the following are true:

(1) a = (a→ 1)→ 1,
(2) (a→ b)→ 1 = b→ a,
(3) ((a→ b)→ 1)→ 1 = a→ b,
(4) for any x ∈ X, (a→ x)→ (b→ x) = b→ a,
(5) for any x ∈ X, (a→ x)→ b = (b→ x)→ a,
(6) for any x ∈ X, (a→ x)→ (y→ b) = (b→ x)→ (y→ a).

Definition 8. Let (X;→, 1) be a CI-algebra. If for any x ∈X, x→ 1 = x, then (X;→, 1) is said to be a strong
singular.

Proposition 1. If (X;→, 1) is a strong singular CI-algebra. Then (X;→, 1) is a singular CI-algebra.

Proof. For any x ∈ X, assume that a→ x = 1, where a ∈ X. By Definition 8, we have x→ 1 = x, a→ 1 =
a. Hence, applying Definition 3,

a = a→ 1 = a→ (x→ x) = x→ (a→ x) = x→ 1 = x.

By Definition 7, x is an atom. Therefore, (X;→, 1) is singular CI-algebra. �

Proposition 2. Let (X; →, 1) be a CI-algebra. Then (X; →, 1) is a strong singular CI-algebra if, and only if,
(X;→, 1) is an associative BCI-algebra.

Proof. Obviously, every associative BCI-algebra is a strong singular CI-algebra (see [36] and Proposition
1 in Ref. [12]).

Assume that (X;→, 1) is a strong singular CI-algebra.

(1) For any x, y ∈ X, if x→ y = y→ x = 1, then, by Definitions 8 and 3, we have the following:

x = x→ 1 = x→ (y→ x) = y→ (x→ x) = y→ 1 = y.

(2) For any x, y, z ∈ X, by Proposition 1 and Lemma 2 (4), we can get the following:

(y→ z)→ ((z→ x)→ (y→ x)) = (y→ z)→ (y→ z) = 1.

Combining Proof (1) and (2), we know that (X; →, 1) is a BCI-algebra. From this, applying
Definition 8 and Proposition 1 in Ref. [12], (X;→, 1) is an associative BCI-algebra. �

Theorem 4. Let (X;→, 1) be a CI-algebra. Then, (X,→) is a (l-l)-quasi neutrosophic triplet loop. Moreover,
(X, →) is a neutrosophic triplet group if, and only if, (X; →, 1) is a strong singular CI-algebra (associative
BCI-algebra).
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Proof. It is similar to the proof of Theorem 3, and we know that (X, →) is a (l-l)-quasi neutrosophic
triplet loop.

If (X; →, 1) is a strong singular CI-algebra, using Proposition 2, (X; →, 1) is an associative
BCI-algebra. Hence, → is associative and commutative, it follows that (X, →) is a neutrosophic
triplet group.

Conversely, if (X,→) is a neutrosophic triplet group, then→ is associative, thus

x→ 1 = x→ (x→ x) = (x→ x)→ x = 1→ x = x.

By Definition 8 we know that (X;→, 1) is a strong singular CI-algebra. �

Example 6. Let X = {a, b, c, d, e,1}. Define operation → on X, as following Table 6. Then, (X; →, 1) is a
CI-algebra, and (X,→) is a (l-l)-quasi neutrosophic triplet loop, such that

{neut(l-l)(a)} = {1}, {anti(l-l)(a)} = {a,b}; {neut(l-l)(b)} = {1}, {anti(l-l)(b)} = {a,b,c};

{neut(l-l)(c)} = {1}, {anti(l-l)(c)} = {c,d,e}; {neut(l-l)(d)} = {1}, {anti(l-l)(d)} = {d,e};

{neut(l-l)(e)}={1}, {anti(l-l)(e)}={d,e}; {neut(l-l)(1)}={1}, {anti(l-l)(1)}={1}.

Table 6. CI-algebra and (l-l)-quasi neutrosophic triplet loop.

→ a b c d e 1

a 1 1 c c c 1
b 1 1 c c c 1
c d 1 1 a b c
d c c 1 1 1 c
e c c 1 1 1 c
1 a b c d e 1

4.2. BE-Algebras (CI-Algebras) and Their Adjoint Semi-Groups

I. Fleischer [16] studied the relationship between BCK-algebras and semigroups, and W.
Huang [17] studied the close connection between the BCI-algebras and semigroups. In this section,
we have studied the adjoint semigroups of the BE-algebras and CI-algebras, and will give some
interesting examples.

For any BE-algebra or CI-algebra (X; →, 1), and any element a in X, we use pa to denote the
self-map of X defined by the following:

pa: X → X; !→ a→ x, for all x ∈ X.

Theorem 5. Let (X;→, 1) be a BE-algebra (or CI-algebra), and M(X) be the set of finite products pa * . . . * pb
of self-map of X with a, . . . , b ∈X, where * represents the composition operation of mappings. Then, (M(X), *) is
a commutative semigroup with identity p1.

Proof. Since the composition operation of mappings satisfies the associative law, (M(X), *) is a
semigroup. Moreover, since

p1: X→X !→ 1→ x, for all x ∈ X.

Applying Definition 3 (ii), we get that p1(x)=x for any x∈X. Hence, p1*m= p1*m=m for any m∈M(X).
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For any a, b∈X, using Definition 3 (iii) we have (∀x∈X) the following:

(pa* pb)(x) = pa(b→ x) = a→ (b→ x) = b→ (a→ x) = pb(a→ x) = (pb* pa)(x).

Therefore, (M(X), *) is a commutative semigroup with identity p1. �

Now, we call (M(X), *) the adjoint semigroup of X.

Example 7. Let X = {a, b, c, 1}. Define operation → on X, as following Table 7. Then, (X; →, 1) is a
BE-algebra, and

pa: X → X; a !→ 1, b !→ 1, c !→ 1, 1 !→ 1. It is abbreviated to pa = (1, 1, 1, 1).
pb: X → X; a !→ c, b !→ 1, c !→ a, 1 !→ 1. It is abbreviated to pb = (c, 1, a, 1).
pc: X → X; a !→ 1, b !→ 1, c !→ 1, 1 !→ 1. It is abbreviated to pc = (1, 1, 1, 1).
p1: X → X; a !→ a, b !→ b, c !→ c, 1 !→ 1. It is abbreviated to p1 = (a, b, c, 1).

We can verify that pa * pa = pa, pa * pb = pa, pa * pc = pa; pb * pb = (a, 1, c, 1), pb * pc = pc = pa; pa *
(pb * pb) = pa, pb * (pb * pb) = pb, pc * (pb * pb) = pc = pa. Denote pbb = pb* pb = (a, 1, c, 1), then M(X) = {pa,
pb, pbb, p1}, and its Cayley table is Table 8. Obviously, (M(X), *) is a commutative neutrosophic triplet
group and

neut(pa) = pa, anti(pa) = pa; neut(pb) = pbb, anti(pb) = pb; neut(pbb) = pbb, anti(pbb) = pbb; neut(p1) = p1, anti(p1) = p1.

Table 7. BE-algebra.

→ a b c 1

a 1 1 1 1
b c 1 a 1
c 1 1 1 1
1 a b c 1

Table 8. Adjoint semigroup of the above BE-algebra.

* pa pb pbb p1

pa pa pa pa pa
pb pa pbb pb pb
pbb pa pb pbb pbb
p1 pa pb pbb p1

Example 8. Let X = {a, b, 1}. Define operation→ on X, as following Table 9. Then, (X;→, 1) is a CI-algebra, and

pa: X → X; a !→ 1, b !→ a, 1 !→ b. It is abbreviated to pa = (1, a, b).
pb: X → X; a !→ b, b !→ 1, 1 !→ a. It is abbreviated to pb = (b, 1, a).
p1: X → X; a !→ a, b !→ b, 1 !→ 1. It is abbreviated to p1 = (a, b, 1).

We can verify that pa * pa = pb, pa * pb = p1; pb * pb = pa. Then M(X) = {pa, pb, p1} and its Cayley table
is Table 10. Obviously, (M(X), *) is a commutative group with identity p1 and (pa)−1 = pb, (pb)−1 = pa.
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Table 9. CI-algebra.

→ a b 1

a 1 a b
b b 1 a
1 a b 1

Table 10. Adjoint semigroup of the above CI-algebra.

* pa pb p1

pa pb p1 pa
pb p1 pa pb
p1 pa pb p1

Theorem 6. Let (X;→, 1) be a singular CI-algebra, and M(X) be the adjoint semigroup. Then (M(X), *) is a
commutative group with identity p1, where M(X) = {pa | a ∈X} and |M(X)| = |X|.

Proof. (1) First, we prove that for any singular CI-algebra, a → (b → x) = ((a → 1) → b) → x, ∀ a, b,
x ∈ X.

In fact, by Definition 7 and Lemma 2, we have the following:

((a→ 1)→ b)→ x = ((a→ 1)→ b)→ ((x→ 1)→ 1)
= (x→ 1)→ (((a→ 1)→ b)→ 1)
= (x→ 1)→ (((a→ 1)→ 1)→ (b→ 1))
= (x→1)→ (a→ (b→ 1))
= a→ ((x→ 1)→ (b→ 1))
= a→ (b→ x).

(2) Second, we prove that for any singular CI-algebra, a �= b⇒ pa �= pb, ∀ a, b ∈ X.
Assume pa = pb, a, b ∈ X. Then, for all x in X, pa(x) = pb(x). Hence,

a→ b = pa(b) = pb(b) = b→ b = 1.

From this, applying Lemma 2 (1) and (6) we get

a = (a→ 1)→ 1 = (a→ 1)→ (a→ b) = (b→ 1)→ (a→ a) = (b→ 1)→ 1 = b.

(3) Using Lemma 2 (1), we know that for any a, b ∈ X, there exist c ∈ X, such that pa * pb = pc,
where c = (a → 1) → b. This means that M(X) ⊆ {pa|a ∈ X}. By the definition of M(X), {pa a ∈ X} ⊆
M(X). Hence, M(X) = {pa|a ∈ X}.

(4) Using Lemma 2 (2) and (3), we know that |M(X)|=|X|. �

5. Quasi Neutrosophic Triplet Structures in Pseudo BE-Algebras and Pseudo CI-Algebras

Like the above Section 4, we can discuss the relationships between pseudo BE-algebras (pseudo
CI-algebras) and quasi neutrosophic triplet structures. This section will give some related results and
examples, but part of the simple proofs will be omitted.
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5.1. Pseudo BE-Algebras (Pseudo CI-Algebras) and (l-l)-Quasi Neutrosophic Triplet Loops

Theorem 7. Let (X; →, �, 1) be pseudo BE-algebra. Then (X, →) and (X, �) are (l-l)-quasi neutrosophic
triplet loops. And, when |X| > 1, (X,→) and (X, �) are not (lr-l)-quasi neutrosophic triplet loops with neutral
element 1.

Example 9. Let X = {a, b, c, 1}. Define operations→ and � on X as following Tables 11 and 12. Then, (X;→,
�, 1) is a pseudo BE-algebra, and (X,→) and (X, �) are (l-l)-quasi neutrosophic triplet loops.

Table 11. Pseudo BE-algebra (1).

→ a b c 1

a 1 1 b 1
b a 1 c 1
c 1 1 1 1
1 a b c 1

Table 12. Pseudo BE-algebra (2).

� a b c 1

a 1 1 a 1
b a 1 a 1
c 1 1 1 1
1 a b c 1

Definition 9. ([44,46]) Let a be an element of a pseudo CI-algebra (X;→, �, 1). a is said to be an atom in X if
for any x ∈ X, a→ x = 1 implies a = x.

Applying the results in Ref. [44–46] we have the following propositions (the proofs are omitted).

Proposition 3. If (X;→,�, 1) is a pseudo CI-algebra, then for all x, y ∈X

(1) x ≤ (x→ y) � y, x ≤ (x � y)→ y,
(2) x ≤ y→ z⇔ y ≤ x � z,
(3) (x→ y)→ 1 = (x→ 1) � (y � 1), (x � y) � 1 = (x � 1)→ (y→ 1),
(4) x→ 1 = x � 1,
(5) x ≤ y implies x→ 1 = y→ 1.

Proposition 4. Let (X;→,�, 1) be a pseudo CI-algebra. If a, b ∈X are atoms in X, then the following are true:

(1) a = (a→ 1)→ 1,
(2) for any x ∈ X, (a→ x) � x = a, (a � x)→ x = a,
(3) for any x ∈ X, (a→ x) � 1 = x→ a, (a � x)→ 1 = x� a,
(4) for any x ∈ X, x→ a = (a→ 1) � (x→ 1), x � a = (a � 1)→ (x � 1).

Definition 10. A pseudo CI-algebra (X; →,�, 1) is said to be singular if every element of X is an atom.
A pseudo CI-algebra (X;→,�, 1) is said to be strong singular if for any x ∈X, x→ 1 = x = x� 1.

Proposition 5. If (X;→,�, 1) is a strong singular pseudo CI-algebra. Then (X;→,�, 1) is singular.
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Proof. For any x ∈ X, assume that a→ x = 1, where a ∈ X. It follows from Definition 10,

x→ 1 = x= x � 1, a→ 1 = a = a � 1.

Hence, applying Definition 4 and Proposition 3,

a = a→ 1 = a→ (x � x) = x � (a→ x) = x � 1 =x.

By Definition 9, x is an atom. Therefore, (X;→, �, 1) is singular pseudo CI-algebra. �

Applying Theorem 3.11 in Ref. [46], we can get the following:

Lemma 3. Let (X;→, �, 1) be a pseudo CI-algebra. Then the following statements are equivalent:

(1) x→ (y→ z) = (x→ y)→ z, for all x, y, z in X;
(2) x→ 1 = x= x� 1, for every x in X;
(3) x→ y= x � y = y→ x, for all x, y in X;
(4) x � (y � z) = (x � y) � z, for all x, y, z in X.

Proposition 6. Let (X; →,�, 1) be a pseudo CI-algebra. Then (X; →,�, 1) is a strong singular pseudo
CI-algebra if, and only if,→ =� and (X;→, 1) is an associative BCI-algebra.

Proof. We know that every associative BCI-algebra is a strong singular pseudo CI-algebra. �

Now, suppose that (X;→, 1) is a strong singular pseudo CI-algebra. By Definition 10 and Lemma 3
(3), x→ y = x � y, ∀x, y ∈ X. That is,→ = �. Hence, (X;→, 1) is a strong singular CI-algebra. It follows
that (X;→, 1) is an associative BCI-algebra (using Proposition 2).

Theorem 8. Let (X; →,�, 1) be a pseudo CI-algebra. Then (X, →) and (X,�) are(l-l)-quasi neutrosophic
triplet loops. Moreover, (X, →) and (X,�) are neutrosophic triplet groups if, and only if, (X; →,�, 1) is a
strong singular pseudo CI-algebra (associative BCI-algebra).

Proof. Applying Lemma 3, and the proof is omitted. �

5.2. Pseudo BE-Algebras (Pseudo CI-Algebras) and Their Adjoint Semi-Groups

For any pseudo BE-algebra or pseudo CI-algebra (X; →, �, 1) as well as any element a in X,
we use pa

→ and pa
� to denote the self-map of X, which is defined by the following:

pa
→: X → X; !→ a→ x, for all x ∈ X.

pa
�: X → X; !→ a � x, for all x ∈ X.

Theorem 9. Let (X;→, �, 1) be a pseudo BE-algebra (or pseudo CI-algebra), and

M→(X) = {finite products pa
→ * . . . * pb

→ of self-map of X | a, . . . , b ∈ X},

M�(X) = {finite products pa
� * . . . * pb

� of self-map of X | a, . . . , b ∈ X},

M(X) = {finite products pa
→ (or pa

�) * . . . * pb
→ (or pb

�) of self-map of X | a, . . . , b ∈ X},

where * represents the composition operation of mappings. Then (M→(X), *), (M�(X), *), and (M(X), *)
are all semigroups with the identity p1 = p1

→ = p1
�.
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Proof. It is similar to Theorem 5. �

Now, we call (M→(X), *), (M�(X), *), and (M(X), *) the adjoint semigroups of X.

Example 10. Let X = {a, b, c, 1}. Define operations→ and � on X as following Tables 13 and 14. Then, (X;
→, �, 1) is a pseudo BE-algebra, and

pa
→ = (1, b, b, 1), pb

→ = (a, 1, c, 1), pc
→ = (1, 1, 1, 1), p1

→ = (a, b, c, 1).

We can verify the following:

pa
→ * pa

→ = pa
→, pa

→ * pb
→ = (1, 1, b, 1), pa

→ * pc
→ = pc

→, pa
→ * p1

→ = pa
→;

pb
→ * pa

→ = pc
→, pb

→ * pb
→ = pb

→, pb
→ * pc

→ = pc
→, pb

→ * p1
→ = pb

→;

pc
→ * pa

→ = pc
→, pc

→ * pb
→ =pc

→, pc
→ * pc

→ =pc
→, pc

→ * p1
→ = pc

→;

p1
→ * pa

→ = pa
→, p1

→ * pb
→ = pb

→, p1
→ * pc

→ = pc
→, p1

→ * p1
→ = p1

→.

Denote pab
→ = pa

→ * pb
→ = (1, 1, b, 1), then pab

→ * pa
→ = pc

→, pab
→ * pb

→ = pab
→, pab

→ * pab
→ =

p→, pab
→ * pc

→ = pc
→. Hence, M→(X) = {pa

→, pb
→, pab

→, pc
→, p1

→} and its Cayley table is Table 15.
Obviously, (M→(X), *) is a non-commutative semigroup, but it is not a neutrosophic triplet group.

Table 13. Pseudo BE-algebra and adjoint semigroups (1).

→ a b c 1

a 1 b b 1
b a 1 c 1
c 1 1 1 1
1 a b c 1

Table 14. Pseudo BE-algebra and adjoint semigroups (2).

� a b c 1

a 1 b c 1
b a 1 a 1
c 1 1 1 1
1 a b c 1

Table 15. Pseudo BE-algebra and adjoint semigroups (3).

* pa
→ pb

→ pab
→ pc

→ p1
→

pa
→ pa

→ pab
→ pab

→ pc
→ pa

→
pb
→ pc

→ pb
→ pc

→ pc
→ pb

→
pab

→ pc
→ pab

→ pc
→ pc

→ pab
→

pc
→ pc

→ pc
→ pc

→ pc
→ pc

→
p1
→ pa

→ pb
→ pab

→ pc
→ p1

→

Similarly, we can verify that

pa
� = (1, b, c, 1), pb

� = (a, 1, a, 1), pc
� = (1, 1, 1, 1), p1

� = (a, b, c, 1).

pa
� * pa

� = pa
�, pa

� * pb
� = pa

� * pc
� = (1, 1, 1, 1), pa

� * p1
� = pa

�;

pb
� * pa

� = (1, 1, a, 1), pb
� * pb

� = pb
�, pb

� * pc
� = pc

�, pb
� * p1

� = pb
�;
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pc
� * pa

� = pc
�, pc

� * pb
� = pc

�, pc
� * pc

� = pc
�, pc

� * p1
� = pc

�.

Denote pba
� = pb

� * pa
� = (1, 1, a, 1), then pba

� * pa
� = pba

�, pa
� * pba

� = pc
�; pba

� * pb
� =

pc
�, pb

� * pba
� = pba

�; pba
� * pba

� = pc
�; pba

� * pc
� = pc

�, pc
� * pba

� = pc
�. Hence, M�(X) = {pa

�,
pb

�, pba
�, pc

�, p1
�} and its Cayley table is Table 16. Obviously, (M�(X), *) is a non-commutative

semigroup, but it is not a neutrosophic triplet group.

Table 16. Pseudo BE-algebra and adjoint semigroups (4).

* pa
� pb

� pba
� pc

� p1
�

pa
� pa

� pc
� pc

� pc
� pa

�

pb
� pba

� pb
� pba

� pc
� pb

�

pba
� pba

� pc
� pc

� pc
� pba

�

pc
� pc

� pc
� pc

� pc
� pc

�

p1
� pa

� pb
� pba

� pc
� p1

�

Now, we consider M(X). Since

pc
→ = (1, 1, 1, 1) = pc

�, p1
→ = (a, b, c, 1) = p1

�;

pa
→ * pa

� = pa
→, pa

� * pa
→ = pa

→;

pa
→ * pb

� = (1, 1, 1, 1) = pc
→, pb

� * pa
→ = (1, 1, 1, 1) = pc

→;

pa
� * pb

→= pb
→ * pa

� = (1, 1, c, 1);

pa
� * pab

→ = pab
→, pab

→ * pa
� = pab

→; pb
→ * pb

� = pb
�, pb

� * pb
→ = pb

�;

pab
→ * pb

� = (1, 1, 1, 1) = pc
→, pb

� * pab
→ = (1, 1, 1, 1) = pc

→;

pa
→ * pba

� = (1, 1, 1, 1) = pc
→, pba

� * pa
→ = (1, 1, 1, 1) = pc

→;

pb
→ * pba

� = pba
�, pba

� * pb
→ = pba

� ;

pab
→ * pba

� = (1, 1, 1, 1) = pc
→, pba

� * pab
→ = (1, 1, 1, 1) = pc

→.

Denote p = (1, 1, c, 1), then M(X) = {pa
→, pa

�, pb
→, pb

�, pab
→, pba

�, p, pc
→, p1

→}, and Table 17 is
its Cayley table (it is a non-commutative semigroup, but it is not a neutrosophic triplet group).

Table 17. Pseudo BE-algebra and adjoint semigroups (5).

* pa
→ pa

� pb
→ pb

� pab
→ pba

� p pc
→ p1

→

pa
→ pa

→ pa
→ pab

→ pc
→ pab

→ pc
→ pab

→ pc
→ pa

→
pa

� pa
→ pa

� p pc
→ pab

→ pba
� p pc

→ pa
�

pb
→ pc

→ p pb
→ pb

� pc
→ pba

� p pc
→ pb

→
pb

� pc
→ pba

� pb
� pb

� pc
→ pba

� pba
� pc

→ pb
�

pab
→ pc

→ pab
→ pab

→ pc
→ pc

→ pc
→ pab

→ pc
→ pab

→
pba

� pc
→ pba

� pba
� pc

→ pc
→ pc

→ pba
� pc

→ pba
�

p pc
→ p p pc

→ pc
→ pc

→ p pc
→ p

pc
→ pc

→ pc
→ pc

→ pc
→ pc

→ pc
→ pc

→ pc
→ pc

→
p1
→ pa

→ pa
� pb

→ pb
� pab

→ pba
� p pc

→ p1
→

The following example shows that the adjoint semigroups of a pseudo BE-algebra may be a
commutative neutrosophic triplet group.
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Example 11. Let X= {a, b, c, d, 1}. Define operations→ and � on X as Tables 18 and 19. Then, (X;→, �, 1)
is a pseudo BE-algebra, as well as the following:

pa
→ = (1, c, c, 1, 1), pb

→ = (d, 1, 1, d, 1), pc
→ = (d, 1, 1, d, 1), pd

→ = (1, c, c, 1, 1), p1
→ = (a, b, c, d, 1).

We can verify the following:

pa
→ * pa

→ = pa
→, pa

→ * pb
→ = pa

→ * pc
→ = (1, 1, 1, 1, 1), pa

→ * pd
→ = pa

→, pa
→ * p1

→ = pa
→;

pb
→ * pa

→ = (1, 1, 1, 1, 1), pb
→ * pb

→ = pb
→ * pc

→ =pb
→, pb

→ * pd
→ = (1, 1, 1, 1, 1), pb

→ * p1
→ = pb

→;

pc
→ * pa

→ = (1, 1, 1, 1, 1), pc
→ * pb

→ = pc
→ * pc

→ =pc
→, pc

→ * pd
→ = (1, 1, 1, 1, 1), pc

→ * p1
→ = pb

→;

pd
→ * pa

→ = pd
→, pd

→ * pb
→ = pd

→ * pc
→ = (1, 1, 1, 1, 1), pd

→ * pd
→ = pd

→, pd
→ * p1

→ = pd
→.

Denote pab
→ = pa

→ * pb
→ = (1, 1, 1, 1, 1), then pab

→ * pa
→ = pab

→ * pb
→ = pab

→ * pc
→ = pab

→ * pd
→

= pab
→ * pab

→ = pab
→ * p1

→ = pab
→. Hence, M→(X) = {pa

→, pb
→, pab

→, p1
→} and its Cayley table is

Table 20. Obviously, (M→(X), *) is a commutative neutrosophic triplet group.

Table 18. Pseudo BE-algebra and commutative neutrosophic triplet groups (1).

→ a b c d 1

a 1 c c 1 1
b d 1 1 d 1
c d 1 1 d 1
d 1 c c 1 1
1 a b c d 1

Table 19. Pseudo BE-algebra and commutative neutrosophic triplet groups (2).

� a b c d 1

a 1 b c 1 1
b d 1 1 d 1
c d 1 1 d 1
d 1 b c 1 1
1 a b c d 1

Table 20. Pseudo BE-algebra and commutative neutrosophic triplet groups (3).

* pa
→ pb

→ pab
→ p1

→

pa
→ pa

→ pab
→ pab

→ pa
→

pb
→ pab

→ pb
→ pab

→ pb
→

pab
→ pab

→ pab
→ pab

→ pab
→

p1
→ pa

→ pb
→ pab

→ p1
→

Similarly, we can verify the following:

pa
� = (1, b, c, 1, 1), pb

� = (d, 1, 1, d, 1), pc
� = (d, 1, 1, d, 1), pd

� = (1, b, c, 1, 1), p1
� = (a, b, c, d, 1).

pa
� * pa

� = pa
�, pa

� * pb
� = pa

� * pc
� = (1, 1, 1, 1, 1), pa

� * pd
� = pa

�;

pb
� * pa

� = (1, 1, 1, 1, 1), pb
� * pb

� = pb
� * pc

� = pb
�, pb

� * pd
� = (1, 1, 1, 1, 1).

Denote pab
� = pa

� * pb
� = (1, 1, 1, 1, 1), then M�(X) = {pa

�, pb
�, pab

�, p1
�} and its Cayley table

is Table 21. Obviously, (M�(X), *) is a commutative neutrosophic triplet group.
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Table 21. Pseudo BE-algebra and commutative neutrosophic triplet groups (4).

* pa
� pb

� pab
� p1

�

pa
� pa

� pab
� pab

� pa
�

pb
� pab

� pb
� pab

� pb
�

pab
� pab

� pab
� pab

� pab
�

p1
� pa

� pb
� pab

� p1
�

Now, we consider M(X). Since the following:

pb
→ = pc

→ = (d, 1, 1, d, 1) = pb
� = pc

�, pa
→ = pd

→ = (1, c, c, 1, 1), pa
� = pd

� = (1, b, c, 1, 1);

pa
→ * pa

� = pa
→, pa

� * pa
→ = pa

→; pa
→ * pb

� = (1, 1, 1, 1, 1) = pab
→ = pab

�, pb
� * pa

→ = (1, 1, 1, 1, 1).

Hence, M(X) = {pa
→, pa

�, pb
→, pab

→, p1
→}, and Table 22 is its Cayley table (it is a commutative

neutrosophic triplet group).

Table 22. Pseudo BE-algebra and commutative neutrosophic triplet groups (5).

* pa
→ pa

� pb
→ pab

→ p1
→

pa
→ pa

→ pa
→ pab

→ pab
→ pa

→
pa

� pa
→ pa

� pab
→ pab

→ pa
�

pb
→ pab

→ pab
→ pb

→ pab
→ pb

→
pab

→ pab
→ pab

→ pab
→ pab

→ pab
→

p1
→ pa

→ pa
� pb

→ pab
→ p1

→

Remark 3. Through the discussions of Examples 10 and 11 above, we get the following important revelations:
(1) (M→(X), *), (M�(X), *), and (M(X), *) are usually three different semi-groups; (2) (M→(X), *) and (M�(X),
*) are all sub-semi-groups of (M(X), *), which can also be proved from their definitions; (3) (M→(X), *), (M�(X),
*), and (M(X), *) may be neutrosophic triplet groups. Under what circumstances they will become neutrosophic
triplet groups, will be examined in the next study.

6. Conclusions

In this paper, the concepts of neutrosophic triplet loops (groups) are further generalized, and
some new concepts of generalized neutrosophic triplet structures are proposed, including (l-l)-type,
(l-r)-type, (r-l)-type, (r-r)-type, (l-lr)-type, (r-lr)-type, (lr-l)-type, and (lr-r)-type quasi neutrosophic
triplet loops (groups), and their basic properties are discussed. In particular, as a corollary of these new
properties, an important result is proved. For any commutative neutrosophic triplet group, its every
element has only one neutral element. At the same time, the BE-algebras and its various extensions
(including CI-algebras, pseudo BE-algebras, and pseudo CI-algebras) have been studied, and some
related generalized neutrosophic triplet structures that are contained in these algebras are presented.
Moreover, the concept of adjoint semigroups of (generalized) BE-algebras are proposed for the first
time, abundant examples are given, and some new results are obtained.
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