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NeutroAlgebraic structures and AntiAlgebraic structures

As generalizations and alternatives of classical algebraic structures Florentin
Smarandache has introduced in 2019 the NeutroAlgebraic structures (or Neu-
troAlgebras) and AntiAlgebraic structures (or AntiAlgebras). Unlike the clas-
sical algebraic structures, where all operations are well-defined and all axioms
are totally true, in NeutroAlgebras and AntiAlgebras the operations may be
partially well-defined and the axioms partially true or respectively totally outer-
defined and the axioms totally false.
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NeutroAlgebraic structures and AntiAlgebraic structures

These NeutroAlgebras and AntiAlgebras form a new field of research, which
is inspired from our real world. In this talk, we study neutrosophic quadruple
algebraic structures and NeutroQuadrupleAlgebraicStructures. NeutroQuadru-
pleGroup is studied in particular and several examples are provided. It is shown
that (NQ(Z), +) is a NeutroQuadrupleGroup.
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Operation, NeutroOperation, AntiOperation

When we define an operation on a given set, it does not automatically mean
that the operation is well-defined. There are three possibilities:

@ The operation is well-defined (or inner-defined) for all set’s elements (as
in classical algebraic structures this is classical Operation).

o The operation if well-defined for some elements, indeterminate for other
elements, and outer-defined for others elements (this is
NeutroOperation).

o The operation is outer-defined for all set’s elements (this is
AntiOperation).
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Axiom, NeutroAxiom, AntiAxiom

Similarly for an axiom, defined on a given set, endowed with some opera-
tion(s). When we define an axiom on a given set, it does not automatically
mean that the axiom is true for all set’s elements. We have three possibilities
again:
o The axiom is true for all set’s elements (totally true) (as in classical
algebraic structures; this is a classical Axiom).

@ The axiom if true for some elements, indeterminate for other elements,
and false for other elements (this is NeutroAxiom).

o The axiom is false for all set’s elements (this is AntiAxiom).
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Algebra, NeutroAlgebra, AntiAlgebra

@ An algebraic structure who’s all operations are well-defined and all
axioms are totally true is called Classical Algebraic Structure (or
Algebra).

o An algebraic structure that has at least one NeutroOperation or one
NeutroAxiom (and no AntiOperation and no AntiAxiom) is called
NeutroAlgebraic Structure (or NeutroAlgebra).

o An algebraic structure that has at least one AntiOperation or Anti Axiom

is called AntiAlgebraic Structure (or AntiAlgebra).
< Algebra, NeutroAlgebra, AntiAlgebra >.
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The Neutrosophic Quadruple Numbers and the Absorbance Law were intro-
duced by Smarandache in 2015 [1]; they have the general form:

N = a + VT + cI + dF, where a, b, ¢, d may be numbers of any type (natural,
integer, rational, irrational, real, complex, etc.), where “a" is the known part
of the neutrosophic quadruple number N, while “bT + ¢l + dF" is the un-
known part of the neutrosophic quadruple number V; then the unknown part
is split into three subparts: degree of confidence (1), degree of indeterminacy
of confidence-nonconfidence (), and degree of nonconfidence (F). N is a
four-dimensional vector that can also be written as: N = (a, b, ¢, d).

4
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There are transcendental, irrational etc. numbers that are not well known, they
are only partially known and partially unknown, they may have infinitely many
decimals. Not even the most modern supercomputers can compute more than
a few thousands decimals, but the infinitely many left decimals still remain
unknown. Therefore, such numbers are very little known (because only a finite
number of decimals are known), and infinitely unknown (because an infinite
number of decimals are unknown). Take for example: /2 = 1.4142.. ...

w
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Definition

A neutrosophic set of quadruple numbers denoted by NQ(X) is a set defined
by
NQ(X) ={(a,bT,cl,dF) : a,b,c,d € Ror C}

where 7', I, F' have their usual neutrosophic logic meanings.
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Multiplication of two neutrosophic quadruple numbers cannot be carried out
like multiplication of two real or complex numbers. In order to multiply two
neutrosophic quadruple numbers the prevalence order of {7, I, F'} is required.
Consider the following prevalence orders: Suppose in an optimistic way we
consider the prevalence order 7" - I > F'. Then we have:

TI=1IT =max{T,I} =T, TF =FT =max{T,F} =T,
IF=Fl=max{[,F} =1, TT=T?=T,

II=1*=1I, FF=F?=F.

Or we consider the prevalence order 7' < I < F'. Then we have:

TI=1IT =max{T,I} =1, TF =FT =max{T,F} =F,
IF=FI=max{[,F}=F, TT=T%=T,

II=1*>=1, FF=F?=F

Multiplication of two neutrosophic quadruple numbers
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Division of two neutrosophic quadruple numbers

Two neutrosophic quadruple numbers m = (a1,017,¢c11,d1F) and n =
(ag,b2T, cal, do F') cannot be divided as we do for real and complex numbers.
Since the literal neutrosophic components 7', I and F' are not invertible, the in-
version of a neutrosophic quadruple number or the division of a neutrosophic
quadruple number by another neutrosophic quadruple number must be carried
out a systematic way. Suppose we are to evaluate m/n. Then we must look for
a neutrosophic quadruple number p = (z, yT', zI, wF’) equivalent to m/n. In
this way, we write

m/n = p
(alablT,Cll,le)
(a2, b2T, col, doF) (x,yT, zI,wF)
& (a9, 02T, col,doF)(z,yT, 21, wF) = (a1;,iT,c1l,d1F). (1)

v
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Division of two neutrosophic quadruple numbers

Assuming the prevalence order 7' > I > F' and from the equality of two

neutrosophic quadruple numbers, we obtain from Equation (1)

asr = ap

box + (a2 + by + c2 + da)y + baz + bow = by
cox+ (a2 +co+de)z+cow = ¢

dox + (a2 + do)w = dy

a system of linear equations in unknowns z, ¢, z and w.

2
3)
4
)
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Division of two neutrosophic quadruple numbers

By similarly assuming the prevalence order 7' < I <

Equation (1)

axr = ai

box + (az + b2)y = b

cox +coy+ (a2 +ba+c2)z =

dox + doy + doz + (a2 + by + ¢y +d2)w = d;

a system of linear equations in unknowns z, ¢, z and w.

F', we obtain from

(6)
)
®)
(€))
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Example

Leta = (2,—T,1,2F)and b = (1,27, —I, F') be two neutrosophic quadruple
numbers in NQ(R).

(i) For the prevalence order T" > I > F', we obtain

(2,~T,I,2F) (2 11

——T,31,0F ) .
(1,2T,—1I, F) —g 1h3l0 )

(i1) For the prevalence order 1" < I < F', we obtain

(2,—T,1,2F) 5 2 1
o el g P Zp @)
(1,27, -1, F) 37373
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Neutrosophic quadruple set

Let NQ(X) be a neutrosophic quadruple set and let x : NQ(X) x
NQ(X) — NQ(X) be a classical binary operation on NQ(X). The cou-
ple (NQ(X), ) is called a neutrosophic quadruple algebraic structure. The
structure (NQ(X),*) is named according to the classical laws and axioms
satisfied or obeyed by .

‘
‘
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Neutrosophic quadruple hyper set

If x : NQ(X) x NQ(X) — P(NQ(X)) is the classical hyper operation
on NQ(X). Then the couple (NQ(X), ) is called a neutrosophic quadru-
ple hyper algebraic structure; and the hyper structure (NQ(X), *) is named
according to the classical laws and axioms satisfied by *.
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If (NQ(X),*) and (NQ(Y),0) are two neutrosophic quadruple algebraic
structures. The mapping ¢ : (NQ(X),*) — (NQ(Y), o) is called a neotro-
sophic quadruple homomorphism if ¢ preserves *, o and literal neutrosophic
components 7', I and F’ that is if:

(i) p(xxy) = d(x) o p(y) Va,ye NQ(X).
(ii) ¢(T) =T.
(iii) ¢(I) = 1.
(iv) ¢(F) =F.

Neutrosophic quadruple homomorphism
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() (NQ(Z),+), (NQ(Q), +), (NQ(R), +) and (NQ(C), +) are abelian
groups.

(i) (NQ(Z), +, x), (NQ(Q), +, x), (NQ(R), +, x) and (NQ(C), +, x)

are commutative rings.

(i) (NQ(Z), x) is a commutative monoid.
(iv) (NQ(Z), X) is not a group.
(v) (NQ(Z),~+) is not a group.
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Neutrosophic quadruple groups

Let NQ(G) be a nonempty set and let x : NQ(G) x NQ(G) - NQ(G) be a
binary operation on NQ(G). The couple (NQ(G), *) is called a neutrosophic
quadruple group if the following conditions hold:

(QG1)

x*xy € GVx,y € NQ(G) [closure law].

(QG2)

x* (y*xz)=(xxy)*zV,y,z € G [axiom of associativity].
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(QG3)
There exists e € NQ(G) such that z x e = exz = x Vx € NQ(G) [axiom of

existence of neutral element].

(QG4)

There exists y € NQ(G) suchthat z xy = yxz = e Vo € NQ(G) [axiom of
existence of inverse element] where e is the neutral element of NQ(G).

If in addition Vz,y € NQ(G), we have

(QG5)

x *y =y *x, then (NQ(G), %) is called a commutative neutrosophic
quadruple group.
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NeutroSophication of the law and axioms of the neutrosophic quadruple

NQG)D)

There exist some duplets (z,y), (u,v), (p,q), € NQ(G) suchthat x xy € G
(inner-defined with degree of truth T) and [u * v = indeterminate (with degree
of indeterminacy I) or px ¢ ¢ NQ(G) (outer-defined/falsehood with degree of
falsehood F)] [NeutroClosureLaw].

(NQ(G)2)

There exist some triplets (z,y, 2), (p,q,7), (u,v,w) € NQ(G) such that = x
(y*2z) = (x*y)*z (inner-defined with degree of truth T) and [[px* (gx*7)]or [(px*
q) * r] = indeterminate (with degree of indeterminacy I) or u * (v * w) #
(uxv)*w (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom
of associativity (NeutroAssociativity)].

4
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NeutroSophication of the law and axioms of the neutrosophic quadruple

(NQ(G)3)

There exists an element e € NQ(G) such that x xe = ez = z (inner-defined
with degree of truth T) and [[x * e]or[e * z] = indeterminate (with degree of
indeterminacy I) or z x e # x # e x x (outer-defined/falsehood with degree
of falsehood F)] for at least one z € NQ(G) [NeutroAxiom of existence of
neutral element (NeutroNeutralElement)].
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NeutroSophication of the law and axioms of the neutrosophic quadruple

(NQ(G)4)

There exists an element u € NQ(G) such that x x w = u * z = e (inner-
defined with degree of truth T) and [[z * u]or[u * z)] = indeterminate (with
degree of indeterminacy I) or x * u # e # u * x (outer-defined/falsehood with
degre of falsehood F)] for at least one z € G [NeutroAxiom of existence of
inverse element (NeutrolnverseElement)] where e is a NeutroNeutralElement

in NQ(G).
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NeutroSophication of the law and axioms of the neutrosophic quadruple

(NQ(G)5)

There exist some duplets (z,y), (u, v), (p,q) € NQ(G) such that zxy = y*z
(inner-defined with degree of truth T) and [[u*v]or[v*u] = indeterminate (with
degree of indeterminacy I) or pxq # ¢*p (outer-defined/falsehood with degree
of falsehood F)] [NeutroAxiom of commutativity (NeutroCommutativity)].
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NeutroQuadrupleGroup

A NeutroQuadrupleGroup NQ(G) is an alternative to the neutrosophic
quadruple group Q(G) that has at least one NeutroLaw or at least one of
{NQ(G)1,NQ(G)2, NQ(G)3, NQ(G)4} with no AntiLaw or AntiAxiom.
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NeutroCommutativeQuadrupleGroup

A NeutroCommutativeQuadrupleGroup NQ(G) is an alternative to the com-
mutative neutrosophic quadruple group Q(G) that has at least one NeutroLaw
or at least one of {NQ(G)1,NQ(G)2, NQ(G)3, NQ(G)4} and NQ(G)5
with no AntiLaw or AntiAxiom.
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Let U be a nonempty finite or infinite universe of discourse and let S be a finite
or infinite subset of U. If n classical operations (laws and axioms) are defined
on S where n > 1, then there will be (2" — 1) NeutroAlgebras and (3™ — 2™)
AntiAlgebras (see [2]).
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Let (NQ(G), %) be a neutrosophic quadruple group. Then:
(1) there are 15 types of NeutroQuadrupleGroups,
(1) there are 31 types of NeutroCommutativeQuadrupleGroups.
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For positive integers n = 2,3,4, - - -,
(1) (NQ(Zy,),—) is a NeutroQuadrupleGroup.
(i) (NQ(Zy,), x) is a NeutroCommutativeQuadrupleGroup.
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(i) (NQ(Z), —) is a NeutroQuadrupleGroup.
(i) (NQ(Z), x) is a NeutroCommutativeQuadrupleGroup.
(i) (NQ(Z), ) is a NeutroCommutativeQuadrupleGroup.
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NeutroClosure of + over NQ(Z)
For the degree of truth, let a = (0,07, 1,0F) € NQ(Z). Then

(0,07, 1,0F)
sa=10 T = (1 — ky — ko, 0T, ki1, ko F) € NQ(Z), ky, ko € Z.
¢ ¢ (070T7-[70F) ( 1 2,0 ’ 1 2 2 )E Q( )’ 1) 26
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NeutroAssociativity of + over NQ(Z)

For the degree of indeterminacy, let a = (4,57, —2I, —7F),
b= (0,—6T,I,3F) € NQ(Z). Then

a+b=

(4,5T,—2I,—7F) _ (4
~\0

0 =67 1 3F) = 2T, 71, ?F) ¢ NQ(Z).
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NeutroAssociativity of + over NQ(Z)

For the degree of falsehood, let a = (0,07, 01, F),
b= (0,0T,0I,2F) € NQ(Z). Then

, (0,07, 01, F) (1
a — = - =
2

- — 7,0, kF NQ(Z Z.
ator s = (5 - ROTOLEF) £ NQ@).k €
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NeutroAssociativity of + over NQ(Z)

For the degree of truth, let a = (6,67,61,6F), b = (2,2T,2I,2F),
= (=1,0T,0I,0F) € NQ(Z). Then

a=+(b=c) = (6,6T,61,6F)=((2,2T,2I,2F) = (—1,0T,0I,0F))
= (6,6T,61,6F) = (—2,0T,0I,0F)
(—3,0T,01,0F).
(a=b)+c = ((6,6T,6I,6F)= (2,2T,2I,2F))+ (—1,0T,01,0F)
(
(—

3,0T,0I,0F) =+ (—1,0T,0I,0F)
3,0T,01,0F).
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For the degree of indeterminacy, let a = (4, =T, 21, —7F),
b= (0,T,0I,—8F), c = (0,0T,9I, —F) € NQ(Z). Then

a+(b=c) = (4,-T,2I,—7F) <+ ((0,T,0I, —8F) = (0,0T,9I, —F))
1
= (4,-T,2I,—7F)+ (8 kg1, =91, k:F) keZ
= (?,7T,71,7F).
(a=b)+c = ((4,-T,2I,—7F) = (0,T,0I, —8F)) = (0,07, 9I, —F)

- (6,?T, 71, ?F) = (0,0T,91,—F)

= (2,7T,?1,7F).
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NeutroAssociativity of + over NQ(Z)

For the degree of falsehood, let a = (0,57,01,0F), b = (0,7,0I,0F),
c¢=(5,07,0[,0F) € NQ(Z). Then

a+(b+c) = (0,5T,0I,0F) =+ ((0,T,0I,0F) + (5,0T,0I,0F))
= (0,5T,0I,0F) = (0, %T, 0f, OF)
= (25 k1 — ko — kg, k‘lT, k‘QI, k3F) S NQ(Z),
(@+b)+c ((0,5T,0I,0F) = (0,T,0I,0F)) + (5,07, 0I,0F)
= ( — k1 — ko — k3, k1T, k?2],k33F)+(5,0T,OI,OF),

1 1 1 1
3(5 — k1 — ko — k3), 5k1T, gkg[, gng) Z NQ(Z)

ki, ko, ks € Z.

v

F. Smarandache, A. Rezaei, A.A.A. Agboola, Y.B. On NeutroQuadrupleGroups February 16-19, 2021, Kashan 36/49



Leta = (0,7,0I,0F), b= (0,07,1,0F),c= (0,07,0I,F) € NQ(Z).
Then

(0,T,01,0F)
ta = 2t = (1—ky — ko — ks, kT, kol ksF) (10
! ¢ (07T70I,0F) ( 4 2 3y V14,5 P24, 3 ) ( )
(0,07, 1,0F)
brb = s = (1 k= k2, 0T, k11, ko F 1
(0,07, 1,0F) (1= k1~ ks 1L, ko F) (11)
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c+c =
a+b =
b+a =

k, ki, ko, k3 € Z.

0,7,01,0F

(0,0T,0I, F
(0,0T,0I, F
(0,7,0I,0F
(
(
(

0,07,1,0F
0,07,1,0F

(1— k,0T,0I, kF)

) _

)

; — (= (k1 + k2), T, by I, ko F)

; - (_(k'l T k'2 ol k3)v lea kQI’ k3F)

(12)

(13)

(14)
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Existence of NeutroUnitaryElement and NeutrolnverseElement in NQ(Z)
For the degree of truth, putting k&1 = 1, ks = k3 = 0 in Equation (10), k; = 1,
ko = 0 in Equation (11) and k¥ = 1 in Equation (12) we will obtain a +
a =a,b+b=>band ¢+ c = c. These show that a, b, c are respectively
NeutroUnitaryElements and NeutrolnverseElements in NQ(Z).
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Existence of NeutroUnitaryElement and NeutrolnverseElement in NQ(Z)

For the degree of falsehood, putting k1 # 1,ko # k3 # 0 in Equation (10),
k1 # 1,ke # 0 in Equation (11) and £ # 1 in Equation (12) we will obtain
a-+a# a,b-+b=#band c+ ¢ # c. These show that a, b, c are respectively
not NeutroUnitaryElements and NeutrolnverseElements in NQ(Z).
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NeutroCommtativity of < over NQ(Z)

For the degree of truth, putting k1 = 1, k2 = k3 = 0 in Equation (10), k; = 1,
ko = 0 in Equation (11) and & = 1 in Equation (12) we will obtain a +~ a =
a,b+b="band c + ¢ = c. These show the commutativity of <+ wrt a,b and ¢
NQ(Z).

For the degree of falsehood, putting k; = ko = k3 = 1 in Equation (13)
and Equation (14), we will obtain a ~ b = (=2,7,I,F) and b ~ a =
(=3,T,1,F) # a -+ b. Hence, -+ is NeutroCommutative in NQ(Z).

F. Smarandache, A. Rezaei, A.A.A. Agboola, Y.B. On NeutroQuadrupleGroups February 16-19, 2021, Kashan 41749



NeutroQuadrupleSubgroup

Let (NQ(G),*) be a neutrosophic quadruple group. A nonempty sub-
set NQ(H) of NQ(G) is called a NeutroQuadrupleSubgroup of NQ(G)

if (NQ(H),*) is a neutrosophic quadruple group of the same type as
(NQ(G), *).

F. Smarandache, A. Rezaei, A.A.A. Agboola, Y.B. On NeutroQuadrupleGroups

February 16-19, 2021, Kashan 421749



(i) Forn =2,3,4,--- (NQ(nZ),—) is a NeutroQuadrupleSubgroup of
(NQ(Z), -).

(i) Forn =2,3,4,--- (NQ(nZ), x) is a NeutroQuadrupleSubgroup of
(NQ(Z), x).
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Example
(i) Let NQ(H) = {(a,bT,cI,dF) : a,b,c,d € {1,2,3}} be a subset of the
NeutroQuadrupleGroup (NQ(Z4),—). Then (NQ(H),—) is a
NeutroQuadrupleSubgroup of (NQ(Zy4), —).
(i) Let NQ(K) = {(w, 2T, yI,zF) : a,b,c,d € {1,3,5}} be a subset of
the NeutroQuadrupleGroup (NQ(Zg), x). Then (NQ(H), x) is a
NeutroQuadrupleSubgroup of (NQ(Zg), X).

‘
‘
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