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Abstract. In this paper we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy 

Set (IFS) no matter if the sum of single-valued neutrosophic components is < 1, or > 1, or = 1. For 

the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation 

operators one gets a different result from that of applying the intuitionistic fuzzy operators, since 

the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation 

operators take into consideration the indeterminacy at the same level as truth-membership and 

falsehood-nonmembership are taken. NS is also more flexible and effective because it handles, 

besides independent components, also partially independent and partially dependent components, 

while IFS cannot deal with these. Since there are many types of indeterminacies in our world, we 

can construct different approaches to various neutrosophic concepts. 

Neutrosophic Set (NS) is also a generalization of Inconsistent Intuitionistic Fuzzy Set (IIFS) 

{ which is equivalent to the Picture Fuzzy Set (PFS) and Ternary Fuzzy Set (TFS) }, Pythagorean 

Fuzzy Set (PyFS) {Atanassov’s Intuitionistic Fuzzy Set of second type}, Spherical Fuzzy Set 

(SFS), n-HyperSpherical Fuzzy Set (n-HSFS), and q-Rung Orthopair Fuzzy Set (q-ROFS). And 

Refined Neutrosophic Set (RNS) is an extension of Neutrosophic Set. And all these sets are more 

general than Intuitionistic Fuzzy Set.  

We prove that Atanassov’s Intuitionistic Fuzzy Set of second type (AIFS2), and Spherical Fuzzy 

Set (SFS) do not have independent components. And we show that n-HyperSphericalFuzzy Set that 

we now introduce for the first time, Spherical Neutrosophic Set (SNS) and n-HyperSpherical 

Neutrosophic Set (n-HSNS) {the last one also introduced now for the first time} are generalizations 

of IFS2 and SFS. 

The main distinction between Neutrosophic Set (NS) and all previous set theories are:  a) the 

independence of all three neutrosophic components {truth-membership (T), indeterminacy-
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membership (I), falsehood-nonmembership (F)} with respect to each other in NS – while in the 

previous set theories their components are dependent of each other; and b) the importance of 

indeterminacy in NS - while in previous set theories indeterminacy is completely or partially 

ignored. 

Neutrosophy is a particular case of Refined Neutrosophy, and consequently Neutrosophication is a 

particular case of Refined Neutrosophication. Also, Regret Theory, Grey System Theory, and 

Three-Ways Decision are particular cases of Neutrosophication and of Neutrosophic Probability. 

We have extended the Three-Ways Decision to n-Ways Decision, which is a particular case of 

Refined Neutrosophy. 

In 2016 Smarandache defined for the first time the Refined Fuzzy Set (RFS) and Refined Fuzzy 

Intuitionistic Fuzzy Set (RIFS). We now, further on, define for the first time: Refined Inconsistent 

Intuitionistic Fuzzy Set (RIIFS){Refined Picture Fuzzy Set (RPFS), Refined Ternary Fuzzy Set 

(RTFS)}, Refined Pythagorean Fuzzy Set (RPyFS) {Refined Atanassov’s Intuitionistic Fuzzy Set 

of type 2 (RAIFS2)}, Refined Spherical Fuzzy Set (RSFS), Refined n-HyperSpherical Fuzzy Set 

(R-n-HSFS), and Refined q-Rung Orthopair Fuzzy Set (R-q-ROFS). 

Keywords: Neutrosophic Set, Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set, Picture 

Fuzzy Set, Ternary Fuzzy Set, Pythagorean Fuzzy Set, Atanassov’s Intuitionistic Fuzzy Set of 

second type, Spherical Fuzzy Set, n-HyperSpherical Neutrosophic Set, q-Rung Orthopair Fuzzy 

Set, truth-membership, indeterminacy-membership, falsehood-nonmembership, Regret Theory, 

Grey System Theory, Three-Ways Decision, n-Ways Decision, Neutrosophy, Neutrosophication, 

Neutrosophic Probability, Refined Neutrosophy, Refined Neutrosophication. 

1. Introduction

This paper recalls ideas about the distinctions between neutrosophic set and intuitionistic fuzzy set 

presented in previous versions of this paper [1, 2, 3, 4, 5]. 

Mostly, in this paper we respond to Atanassov and Vassiliev’s paper [6] about the fact that 

neutrosophic set is a generalization of intuitionistic fuzzy set. 

We use the notations employed in the neutrosophic environment [1, 2, 3, 4, 5] since they are better 

descriptive than the Greek letters used in intuitionistic fuzzy environment, i.e.:  

truth-membership (T), indeterminacy-membership (I), and falsehood-nonmembership (F). 

We also use the triplet components in this order: (T, I, F). 

Neutrosophic “Fuzzy” Set (as named by Atanassov and Vassiliev [6]) is commonly called “Single-

Valued” Neutrosophic Set (i.e. the neutrosophic components are single-valued numbers) by the 

neutrosophic community that now riches about 1,000 researchers, from 60 countries around the 

world, which have produced about 2,000 publications (papers, conference presentations, book 

chapters, books, MSc theses, and PhD dissertations).  
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The NS is more complex and more general than previous (crisp / fuzzy / intuitionistic fuzzy / 

picture fuzzy / ternary fuzzy set / Pythagorean fuzzy / Atanassov’s intuitionistic fuzzy set of second 

type / spherical fuzzy / q-Rung orthopair fuzzy) sets, because:  

- A new branch of philosophy was born, called Neutrosophy [7], which is a generalization of 

Dialectics (and of YinYang Chinese philosophy), where not only the dynamics of opposites 

are studied, but the dynamics of opposites together with their neutrals as well, i.e. (<A>, 

<neutA>, <antiA>), where <A> is an item, <antiA> its opposite, and <neutA> their neutral 

(indeterminacy between them).  

Neutrosophy show the significance of neutrality/indeterminacy (<neutA>) that gave birth to 

neutrosophic set / logic / probability / statistics / measure / integral and so on, that have 

many practical applications in various fields. 

- The sum of the Single-Valued Neutrosophic Set/Logic components was allowed to be up to 

3 (this shows the importance of independence of the neutrosophic components among 

themselves), which permitted the characterization of paraconsistent/conflictual 

sets/propositions (by letting the sum of components > 1), and of paradoxical 

sets/propositions, represented by the neutrosophic triplet (1, 1, 1). 

- NS can distinguish between absolute truth/indeterminacy/falsehood and relative 

truth/indeterminacy/falsehood using nonstandard analysis, which generated the 

Nonstandard Neutrosophic Set (NNS). 

- Each neutrosophic component was allowed to take values outside of the interval [0, 1], that 

culminated with the introduction of the neutrosophic overset/underset/offset [8]. 

- NS was enlarged by Smarandache to Refined Neutrosophic Set (RNS), where each 

neutrosophic component was refined / split into sub-components [9]., i.e. T was 

refined/split into T1, T2, …, Tp; I was refined / split into I1, I2, …, Ip; and F was refined split 

into F1, F2, …, Fs; where p, r, s ≥ 1 are integers and p + r + s ≥ 4; all Tj, Ik, Fl are subsets of 

[0, 1] with no other restriction. 

- RNS permitted the extension of the Law of Included Middle to the neutrosophic Law of 

Included Multiple-Middle [10]. 

- Classical Probability and Imprecise Probability were extended to Neutrosophic Probability 

[11], where for each event E one has: the chance that event E occurs ( ch(E) ), 

indeterminate-chance that event E occurs or not ( ch(neutE) ), and the chance that the event 

E does not occur ( ch(antiE) ), with: 0 ≤ sup{ch(E)} + sup{ch(neutE)} + sup{ch(antiE)} ≤ 3. 

- Classical Statistics was extended to Neutrosophic Statistics [12] that deals with 

indeterminate / incomplete / inconsistent / vague data regarding samples and populations. 

And so on (see below more details). Several definitions are recalled for paper’s self-

containment.  

2. Refinements of Fuzzy Types Sets

In 2016 Smarandache [8] introduced for the first time the Refined Fuzzy Set (RFS) and Refined 

Fuzzy Intuitionistic Fuzzy Set (RIFS). 

Let 𝒰 be a universe of discourse, and let 𝐴 ⊂ 𝒰 be a subset. 
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We give general definitions, meaning that the components may be any subsets of [0, 1]. In 

particular cases, the components may be single numbers, hesitant sets, intervals and so on included 

in [0, 1]. 

3. Fuzzy Set (FS)

AFS = { 𝑥(𝑇A(𝑥)), 𝑥 ∈ 𝒰 }, where 𝑇A: U ⟶ P([0, 1]) is the membership degree of the generic

element x with respect to the set A, and P([0, 1]) is the powerset of [0, 1], is called a Fuzzy Set. 

4. Refined Fuzzy Set (RFS)

We have split/refined the membership degree 𝑇A(𝑥) into sub-membership degrees. Then: 

1 2{ ( ( ), ( ),..., ( )), 2, }p

RFS A A AA x T x T x T x p x U   , where 
1( )AT x  is a sub-membership degree of type 1 

of the element x with respect to the set A, 2( )AT x  is a sub-membership degree of type 2 of the 

element x with respect to the set A, …, ( )p

AT x is a sub-membership degree of type p of the element 

x with respect to the set A, and ( ) [0,1]j

AT x   for 1 ≤ j ≤ p, and ∑ 𝑠𝑢𝑝𝑇𝑥
𝑗𝑝

𝑗=1 ≤ 1 for all x ∊ U. 

5. Intuitionistic Fuzzy Set (IFS)

Let 𝒰 be a universe of discourse, and let 𝐴 ⊂ 𝒰 be a subset. Then: 

AIFS = { 𝑥(𝑇A(𝑥), FA(𝑥)), 𝑥 ∈ 𝒰 }, where 𝑇A(x), FA(x): U ⟶ P ([0, 1]) are the membership degree

respectively the nonmembership of the generic element x with respect to the set A, and P ([0, 1]) is

the powerset of [0, 1], and sup𝑇A(𝑥) + supFA(𝑥) ≤ 1 for all x ∊ U, is called an Intuitionistic Fuzzy 

Set.  

6. Refined Intuitionistic Fuzzy Set (RIFS)

We have split/refined the membership degree 𝑇A(𝑥) into sub-membership degrees, and the 

nonmembership degree FA(x). Then: 

1 2 1 2{ ( ( ), ( ),..., ( ); ( ), ( ),..., ( )), 3, },p s

RIFS A A A A A AA x T x T x T x F x F x F x p s x U     with p, s positive 

nonzero integers,  ∑ 𝑠𝑢𝑝𝑇𝑥
𝑗

+
𝑝
𝑗=1 ∑ 𝑠𝑢𝑝𝐹𝑥

𝑙 ≤ 1𝑠
𝑙=1 , and ( ), ( ) [0,1]j l

A AT x F x   for 1 ≤ j ≤ p 

and 1 ≤ l ≤ s. 

Where 
1( )AT x  is a sub-membership degree of type 1 of the element x with respect to the set A, 

2( )AT x  is a sub-membership degree of type 2 of the element x with respect to the set A, …, ( )p

AT x is 

a sub-membership degree of type p of the element x with respect to the set A. 

And 
1( )AF x is a sub-nonmembership degree of type 1 of the element x with respect to the set A, 

2( )AF x  is a sub-nonmembership degree of type 2 of the element x with respect to the set A, …, 

( )s

AF x  is a sub-nonmembership degree of type s of the element x with respect to the set A. 

7. Inconsistent Intuitionistic Fuzzy Set (IIFS) { Picture Fuzzy Set (PFS),

Ternary Fuzzy Set (TFS) } 



5 

 

Are defined as below: 

𝐴𝐼𝐼𝐹𝑆 = 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥),  𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 〉|𝑥 ∈ 𝒰},  

where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ P([0,1]) and the sum 0 ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) +  𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 1, for 

all 𝑥 ∈ 𝒰. 

In these sets, the denominations are: 

𝑇𝐴(𝑥) is called degree of membership (or validity, or positive membership); 

𝐼𝐴(𝑥) is called degree of neutral membership; 

𝐹𝐴(𝑥) is called degree of nonmembership (or nonvalidity, or negative membership). 

The refusal degree is: RA(x) = 1 − 𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥) ∈ [0, 1], for all 𝑥 ∈ 𝒰. 

8. Refined Inconsistent Intuitionistic Fuzzy Set (RIIFS) { Refined Picture Fuzzy Set 

(RPFS), Refined Ternary Fuzzy Set (RTFS) } 

1 2 1 2

1 2

{ ( ( ), ( ),..., ( ); ( ), ( ),..., ( );

( ), ( ),..., ( )), 4, },

p r

RIIFS RPFS RTFS A A A A A A

s

A A A

A A A x T x T x T x I x I x I x

F x F x F x p r s x U

  

   
 

with p, r, s positive nonzero integers, and ( ), ( ), ( ) [0,1]j k l

A A AT x I x F x  , for 1 ≤ j ≤ p, 1 ≤ k ≤ r, and 1 

≤ l ≤ s, 
1 1 1

0 sup ( ) sup ( ) sup ( ) 1
p r s

j k l

A A AT x I x F x      .  

( )j

AT x is called degree of sub-membership (or sub-validity, or positive sub-membership) of type j of 

the element x with respect to the set A; 

( )k

AI x is called degree of sub-neutral membership of type k of the element x with respect to the set 

A; 

( )l

AF x is called degree of sub-nonmembership (or sub-nonvalidity, or negative sub-membership) of 

type l of the element x with respect to the set A; 

and the refusal degree is:  

RA(x) = 
1 1 1

[1,1] ( ) ( ) ( ) [0,1]
p r s

j k l

A A AT x I x F x      , for all 𝑥 ∈ 𝒰. 

9. Definition of single-valued Neutrosophic Set (NS) 

Introduced by Smarandache [13, 14, 15] in 1998. Let U be a universe of discourse, and a set ANS   

U.  

Then ANS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, where TA(x), IA(x), FA(x) : U → [0, 1] represent the 

degree of truth-membership, degree of indeterminacy-membership, and degree of false-

nonmembership respectively, with 0 ≤  TA(x) + IA(x) + FA(x) ≤ 3.  
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The neutrosophic components TA(x), IA(x), FA(x) are independent with respect to each other. 

10. Definition of single-valued Refined Neutrosophic Set (RNS)

Introduced by Smarandache [9] in 2013. Let U be a universe of discourse, and a set ARNS   U.  

Then  

ARNS = {<x, T1A(x), T2A(x), …, TpA(x);  I1A(x), I2A(x), …, IrA(x);  F1A(x), F2A(x), …, FsA(x)> | x ∊ 

U}, where all TjA(x), 1 ≤ j ≤ p, IkA(x), 1 ≤ k ≤ r, FlA(x), 1 ≤ l ≤ s, : U → [0, 1], and 

TjA(x) represents the j-th sub-membership degree, 

IkA(x) represents the k-th sub-indeterminacy degree, 

FlA(x) represents the l-th sub-nonmembership degree, 

with 𝑝, 𝑟, 𝑠 ≥ 1 integers, where 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 4, and: 

0 ≤ ∑ 𝑇𝑗𝐴(𝑥) + ∑ 𝐼𝑘𝐴(𝑥) + ∑ 𝑇𝑗𝐴(𝑥) ≤ 𝑛𝑠
𝑙=1

𝑟
𝑘=1

𝑝
𝑗=1 .

All neutrosophic sub-components TjA(x), IkA(x), FlA(x) are independent with respect to each other. 

Refined Neutrosophic Set is a generalization of Neutrosophic Set. 

11. Definition of single-valued Intuitionistic Fuzzy Set (IFS)

Introduced by Atanassov [16, 17, 18] in 1983. Let U be a universe of discourse, and a set AIFS   

U.  Then AIFS = {<x, TA(x), FA(x)> | x ∊ U}, where TA(x), FA(x) : U → [0, 1] represent the degree 

of membership and degree of nonmembership respectively, with TA(x) + FA(x) ≤ 1, and IA(x) = 1 - 

TA(x) - FA(x) represents degree of indeterminacy (in previous publications it was called degree of 

hesitancy). 

The intuitioinistic fuzzy components TA(x), IA(x), FA(x) are dependent with respect to each other. 

12. Definition of single-valued Inconsistent Intuitionistic Fuzzy Set (equivalent to single-

valued Picture Fuzzy Set, and with single-valued Ternary Fuzzy Set)

The single-valued Inconsistent Intuitionistic Fuzzy Set (IIFS), introduced by Hindde and Patching 

[19] in 2008, and the single-valued Picture Fuzzy Set (PFS), introduced by Cuong [20] in 2013, 

indeed coincide, as Atanassov and Vassiliev have observed; also we add that single-valued Ternary 

Fuzzy Set, introduced by Wang, Ha and Liu [21] in 2015 also coincide with them. All these three 

notions are defined as follows. 

Let 𝒰 be a universe of discourse, and let’s consider a subset 𝐴 ⊆ 𝒰. 

Then 𝐴𝐼𝐼𝐹𝑆 = 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥),  𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 〉|𝑥 ∈ 𝒰},  

where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], and the sum 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 1, for all 𝑥 ∈ 𝒰.

In these sets, the denominations are: 

𝑇𝐴(𝑥) is called degree of membership (or validity, or positive membership); 

𝐼𝐴(𝑥) is called degree of neutral membership; 
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𝐹𝐴(𝑥) is called degree of nonmembership (or nonvalidity, or negative membership). 

The refusal degree is: RA(x) = 1 − 𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥) ∈ [0, 1], for all 𝑥 ∈ 𝒰. 

The IIFS (PFS, TFS) components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), RA(x) are dependent with respect to each other. 

Wang, Ha and Liu’s [21] assertion that “neutrosophic set theory is difficult to handle the voting 

problem, as the sum of the three components is greater than 1” is not true, since the sum of the 

three neutrosophic components is not necessarily greater than 1, but it can be less than or equal to 

any number between 0 and 3, i.e. 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 3, so for example the sum of the

three neutrosophic components can be less than 1, or equal to 1, or greater than 1 depending on 

each application. 

13. Inconsistent Intuitionistic Fuzzy Set and the Picture Fuzzy Set and Ternary Fuzzy

Set are particular cases of the Neutrosophic Set

The Inconsistent Intuitionistic Fuzzy Set and the Picture Fuzzy Set and Ternary Fuzzy Set are 

particular cases of the Neutrosophic Set (NS). Because, in neutrosophic set, similarly taking single-

valued components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], one has the sum 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 3, which 

means that 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) can be equal to or less than any number between 0 and 3. 

Therefore, in the particular case when choosing the sum equal to 1 ∈ [0, 3] and getting 𝑇𝐴(𝑥) +

𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 1, one obtains IIFS and PFS and TFS. 

14. Single-valued Intuitionistic Fuzzy Set is a particular case of single-valued

Neutrosophic Set

Single-valued Intuitionistic Fuzzy Set is a particular case of single-valued Neutrosophic Set, 

because we can simply choose the sum to be equal to 1: 

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) = 1. 

15. Inconsistent Intuitionistic Fuzzy Set and Picture Fuzzy Set and Ternary Fuzzy Set

are also particular cases of single-valued Refined Neutrosophic Set.

The Inconsistent Intuitionistic Fuzzy Set (IIFS), Picture Fuzzy Set (PFS), and Ternary Fuzzy Set 

(TFS), that coincide with each other, are in addition particular case(s) of Single-Valued Refined 

Neutrosophic Set (RNS). 

We may define: 

𝐴𝐼𝐼𝐹𝑆 ≡ 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 =  {𝑥, 𝑇𝐴(𝑥), 𝐼1𝐴
(𝑥), 𝐼2𝐴

(𝑥), 𝐹𝐴(𝑥)|𝑥 ∈ 𝒰},

with 𝑇𝐴(𝑥), 𝐼1𝐴
(𝑥), 𝐼2𝐴

(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1],

and the sum 𝑇𝐴(𝑥) + 𝐼1𝐴
(𝑥) + 𝐼2𝐴

(𝑥) + 𝐹𝐴(𝑥) = 1, for all 𝑥 ∈ 𝒰;

where: 

𝑇𝐴(𝑥) is the degree of positive membership (validity, etc.); 

𝐼1𝐴
 is the degree of neutral membership;
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𝐼2𝐴
(𝑥) is the refusal degree;

𝐹𝐴(𝑥) is the degree of negative membership (non-validity, etc.). 

𝑛 = 4, and as a particular case of the sum 𝑇𝐴(𝑥) + 𝐼1𝐴
(𝑥) + 𝐼2𝐴

(𝑥) + 𝐹𝐴(𝑥) ≤ 4, where the sum can

be any positive number up to 4, we take the positive number 1 for the sum: 

𝑇𝐴(𝑥) + 𝐼1𝐴
(𝑥) + 𝐼2𝐴

(𝑥) + 𝐹𝐴(𝑥) = 1.

16. Independence of Neutrosophic Components vs. Dependence of Intuitionistic Fuzzy

Components

Section 4, equations (46) - (51) in Atanassov’s and Vassiliev’s paper [6] is reproduced below: 

“4. Interval valued intuitionistic fuzzy sets, intuitionistic fuzzy sets, and neutrosophic fuzzy 

sets 

(…) the concept of a Neutrosophic Fuzzy Set (NFS) is introduced, as follows: 

,  (46) 

where , , , and have the same sense as IFS. 

Let 

.  (47) 

Then we define: 

;       (48) 

;  (49) 

;        (50) 

.    (51)” 

Using the neutrosophic component common notations, , , and 

, the refusal degree , and  for the neutrosophic set, and 
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considering the triplet’s order (T, I, F), with the universe of discourse , we can re-write the 

above formulas as follows: 

,         (46)’ 

where , for all . 

Neutrosophic Fuzzy Set is commonly named Single-Valued Neutrosophic Set (SVNS), i.e. the 

components are single-valued numbers. 

The authors, Atanassov and Vassiliev, assert that  “have the same sense as 

IFS” (Intuitionistic Fuzzy Set). 

But this is untrue, since in IFS one has , therefore the IFS 

components  are dependent, while in SVNS (Single-Valued Neutrosophic 

Set), one has , what the authors omit to mention, therefore the 

SVNS components  are independent, and this makes a big difference, as 

we’ll see below. 

In general, for the dependent components, if one component’s value changes, the other components 

values also change (in order for their total sum to keep being up to 1). While for the independent 

components, if one component changes, the other components do not need to change since their 

total sum is always up to 3. 

Let’s re-write the equations (47) - (51) from authors’ paper: 

Assume 

. (47)’ 

The authors have defined: 

; (48)’ 

; (50)’ 

. (49)’ 



10 

These mathematical transfigurations, which transform [change in form] the neutrosophic 

components  whose sum  

 into inconsistent intuitionistic fuzzy components: 

, , , 

whose sum  +  + , 

and the refusal degree 

( ) 1 ( ) ( ) ( ) [0,1]IIFS IIFS IIFS IIFS

A A A AR x T x I x F x     ,             (51)’ 

distort the original application, i.e. the original neutrosophic application and its intuitioinistic  fuzzy 

transformed application are not equivalent, see below. 

This is because, in this case, the change in form brings a change in content. 

17. By Transforming the Neutrosophic Components into Intuitionistic Fuzzy

Components the Independence of the Neutrosophic Components is Lost

In reference paper [6], Section 4, Atanassov and Vassilev convert the neutrosophic components 

into intuitionistic fuzzy components. 

But, converting a single-valued neutrosophic triplet (T1, I1, F1), with T1, I1, F1 ∊ [0, 1] and  

T1 + I1 + F1 ≤ 3 that occurs into a neutrosophic application αN, to a single-valued intuitionistic

triplet (T2, I2, F2), with T2, I2, F2 ∊ [0, 1] and T2 + F2 ≤ 1 (or T2 + I2 + F2 = 1) that would occur into 

an intuitionistic fuzzy application αIF, is just a mathematical artifact, and there could be

constructed many such mathematical operators [the authors present four of them], even more: it is 

possible to convert from the sum T1 + I1 + F1 ≤ 3 to the sum  

T2 + I2 + F2 equals to any positive number – but they are just abstract transformations.  

The neutrosophic application αN  will not be equivalent to the resulting intuitionistic fuzzy

application αIF, since while in αN the neutrosophic components T1, I1, F1 are independent (because

their sum is up to 3), in αIF the intuitionistic fuzzy components T2, I2, F2 are dependent (because

their sum is 1). Therefore, the independence of components is lost. 

And the independence of the neutrosophic components is the main distinction between 

neutrosophic set vs. intuitionistic fuzzy set. 

Therefore, the resulted intuitionistic fuzzy application αIF after the mathematical transformation is

just a subapplication (particular case) of the original neutrosophic application αN.

18. Degree of Dependence/Independence between the Components
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The degree of dependence/independence between components was introduced by Smarandache 

[22] in 2006. 

In general, the sum of two components x and y that vary in the unitary interval [0, 1] is: 

0 ≤ x+y ≤ 2-d(x,y), where d(x,y) is the degree of dependence between x and y, while 1-d(x,y) is the 

degree of independence between x and y. 

NS is also flexible because it handles, besides independent components, also partially independent 

and partially dependent components, while IFS cannot deal with these. 

For example, if T and F are totally dependent, then 0 ≤ T + F ≤ 1, while if component I is 

independent from them, thus 0 ≤  I ≤ 1, then 0 ≤ T + I + F ≤ 2. Therefore the components T, I, F in 

general are partially dependent and partially independent. 

19. Intuitionistic Fuzzy Operators ignore the Indeterminacy, while Neutrosophic

Operators give Indeterminacy the same weight as to Truth-Membership and

Falsehood-Nonmembership

Indeterminacy in intuitioniostic fuzzy set is ignored by the intuitionistic fuzzy aggregation 

operators, while the neutrosophic aggregation operators treats the indeterminacy at the same weight 

as the other two neutrosophic components (truth-membership and falsehood-membership). 

Thus, even if we have two single-valued triplets, with the sum of each three components equal to 1 

{ therefore triplets that may be treated both as intuitionistic fuzzy triplet, and neutrosophic triplet in 

the same time (since in neutrosophic environment the sum of the neutrosophic components can be 

any number between 0 and 3, whence in particular we may take the sum 1) }, after applying the 

intuitionistic fuzzy aggregation operators we get a different result from that obtained after applying 

the neutrosophic aggregation operators. 

20. Intuitionistic Fuzzy Operators and Neutrosophic Operators

Let the intuitioniostic fuzzy operators be denoted as:  negation ( IF ), intersection ( IF ), union       

( IF ), and implication ( IF ), and 

the neutrosophic operators [complement, intersection, union, and implication respectively] be 

denoted as: negation ( N ), intersection ( N ), union ( N ), and implication ( N ). 

Let A1 = (a1, b1, c1) and A2 = (a2, b2, c2) be two triplets such that a1, b1, c1, a2, b2, c2 ∊ [0, 1] and 

a1 + b1 + c1 = a2 + b2 + c2 = 1. 

The intuitionistic fuzzy operators and neutrosophic operators are based on fuzzy t-norm ( F ) and 

fuzzy t-conorm ( F ). We’ll take for this article the simplest ones: 

1 2 1 2min{ , }Fa a a a   and 1 2 1 2max{ , }Fa a a a  , 

where F is the fuzzy intersection (t-norm) and F is the fuzzy union (t-conorm). 

For the intuitionistic fuzzy implication and neutrosophic implication, we extend the classical 

implication:  
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1 2A A  that is classically equivalent to  1 2A A  , 

where   is the classical implication,   the classical negation (complement),  

and   the classical union, 

to the intuitionistic fuzzy environment and respectively to the neutrosophic environment. 

But taking other fuzzy t-norm and fuzzy t-conorm, the conclusion will be the same, i.e. the results 

of intuitionistic fuzzy aggregation operators are different from the results of neutrosophic 

aggregation operators applied on the same triplets. 

Intuitionistic Fuzzy Aggregation Operators { the simplest used intuitionistic fuzzy operations }: 

Intuitionistic Fuzzy Negation: 

IF  (a1, b1, c1) = (c1, b1, a1) 

Intuitionistic Fuzzy Intersection: 

1 1 1 2 2 2 1 2 1 2 1 2 1 2( , , ) ( , , ) (min{ , },1 min{ , } max{ , },max{ , })IFa b c a b c a a a a c c c c     

Intuitionistic Fuzzy Union: 

1 1 1 2 2 2 1 2 1 2 1 2 1 2( , , ) ( , , ) (max{ , },1 max{ , } min{ , },min{ , })IFa b c a b c a a a a c c c c     

Intuitionistic Fuzzy Implication: 

1 1 1 2 2 2( , , ) ( , , )IFa b c a b c  is intuitionistically fuzzy equivalent to 1 1 1 2 2 2( , , ) ( , , )IF IFa b c a b c   

Neutrosophic Aggregation Operators { the simplest used neutrosophic operations }: 

Neutrosophic Negation: 

N  (a1, b1, c1) = (c1, 1-b1, a1)   

Neutrosophic Intersection: 

1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) (min{ , },max{ , },max{ , })Na b c a b c a a b b c c   

Neutrosophic Union: 

1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) (max{ , },min{ , },min{ , })Na b c a b c a a b b c c   

Neutrosophic Implication: 

1 1 1 2 2 2( , , ) ( , , )Na b c a b c  is neutrosophically equivalent to 1 1 1 2 2 2( , , ) ( , , )N Na b c a b c   

21. Numerical Example of Triplet Components whose Summation is 1 

Let A1 = (0.3, 0.6, 0.1) and A2 = (0.4, 0.1, 0.5) be two triplets, each having the sum:   

0.3 + 0.6 + 0.1 = 0.4 + 0.1 + 0.5 = 1. 
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Therefore, they can both be treated as neutrosophic triplets and as intuitionistic fuzzy triplets 

simultaneously. We apply both, the intuitionistic fuzzy operators and then the neutrosophic 

operators and we prove that we get different results, especially with respect with Indeterminacy 

component that is ignored by the intuitionistic fuzzy operators. 

      21.1. Complement/Negation 

Intuitionistic Fuzzy: 

IF (0.3, 0.6, 0.1) = (0.1, 0.6, 0.3),

and IF (0.4, 0.1, 0.5) = (0.5, 0.1, 0.4).

Neutrosophic: 

(0.3,  0.6,  0.1) (0.1,1 0.6,0.3) (0.1,0.4,0.3) (0.1,0.6,0.3),N      

and  0.4,  0.1,  0.5 (0.5,1 0.1,0.4) (0.5,0.9,0.4) (0.5,0.1,0.4).N      

21.2. Intersection: 

Intuitionistic Fuzzy 

(0.3,0.6,0.1) (0.4,0.1,0.5) (min{0.3,0.4},1 min{0.3,0.4} max{0.1,0.5},max{0.1,0.5}) (0.3,0.2,0.5)IF    

As we see, the indeterminacies 0.6 of A1 and 0.1 of A2 were completely ignored into the above 

calculations, which is unfair. Herein, the resulting indeterminacy from intersection is just what is 

left from truth-membership and falsehood-nonmembership {1 - 0.3 - 0.5 = 0.2 }. 

Neutrosophic 

(0.3,0.6,0.1) (0.4,0.1,0.5) (min{0.3,0.4},max{0.6,0.1},max{0.1,0.5}) (0.3,0.6,0.5) (0.3,0.2,0.5)N   

In the neutrosophic environment the indeterminacies 0.6 of A1 and 0.1 of A2 are given full 

consideration in calculating the resulting intersection’s indeterminacy:  max{0.6, 0.1} = 0.6. 

21.3. Union: 

Intuitionistic Fuzzy: 

(0.3,0.6,0.1) (0.4,0.1,0.5) (max{0.3,0.4},1 max{0.3,0.4} min{0.1,0.5},max{0.1,0.5}) (0.4,0.5,0.1)IF      

Again, the indeterminacies 0.6 of A1 and 0.1 of A2 were completely ignored into the above 

calculations, which is not fair. Herein, the resulting indeterminacy from the union is just what is left 

from truth-membership and falsehood-nonmembership { 1 - 0.4 - 0.1 = 0.5 }. 

Neutrosophic: 

(0.3,0.6,0.1) (0.4,0.1,0.5) (max{0.3,0.4},min{0.6,0.1},min{0.1,0.5}) (0.4,0.1,0.1) (0.4,0.5,0.1)N     
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Similarly, in the neutrosophic environment the indeterminacies 0.6 of A1 and 0.1 of A2 are given 

full consideration in calculating the resulting union’s indeterminacy:  min{0.6, 0.1} = 0.1. 

21.4. Implication: 

  Intuitionistic Fuzzy 

(0.3,0.6,0.1) (0.4,0.1,0.5) (0.3,0.6,0.1) (0.4,0.1,0.5) (0.1,0.6,0.3) (0.4,0.1,0.5) (0.4,0.3,0.3)IF IF IF IF       

Similarly, indeterminacies of A1 and A2 are completely ignored. 

Neutrosophic 

(0.3,0.6,0.1) (0.4,0.1,0.5) (0.3,0.6,0.1) (0.4,0.1,0.5) (0.1,0.4,0.3) (0.4,0.1,0.5) (0.4,0.1,0.3) (0.4,0.3,0.3)N N N N      

While in the neutrosophic environment the indeterminacies of A1 and A2 are taken into 

calculations. 

21.5. Remark: 

We have proven that even when the sum of the triplet components is equal to 1, as 

demanded by intuitionistic fuzzy environment, the results of the intuitionistic fuzzy operators are 

different from those of the neutrosophic operators – because the indeterminacy is ignored into the 

intuitionistic fuzzy operators. 

22. Simple Counterexample 1, Showing Different Results between Neutrosophic

Operators and Intuitionistic Fuzzy Operators Applied on the Same Sets (with

component sums > 1 or < 1)

Let the universe of discourse , and two neutrosophic sets included in : 

, and 

. 

Whence, for  one has, after using Atanassov and Vassiliev’s transformations (48)’ - (51)’: 

; 

; 

. 

The refusal degree for  with respect to  is: 

. 
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Then: 

; 

; 

. 

The refusal degree for  with respect to  is: 

. 

Then: 

. 

For  one has: 

; 

; 

. 

The refusal degree for  with respect to  is: 

. 

; 

; 

. 

The refusal degree for  with respect to the set  is: 

. 



16 

 

Therefore: 

. 

Therefore, the neutrosophic sets: 

 and 

, 

where transformed (restricted), using Atanassov and Vassiliev’s transformations (48)-(51), into 

inconsistent intuitionistic fuzzy sets respectively as follows: 

 and 

, 

where the upper script (t) means “after Atanassov and Vassiliev’s transformations”. 

We shall remark that the set , as neutrosophic set (where the sum of the components is allowed 

to also be strictly less than 1 as well), happens to be in the same time an inconsistent intuitionistic 

fuzzy set, or . 

Therefore,  transformed into  was a distortion of , since we got different IIFS 

components: 

. 

Similarly: 

. 

Further on, we show that the NS operators and IIFS operators, applied on these sets, give different 

results. For each individual set operation (intersection, union, complement/negation, 

inclusion/implication, and equality/equivalence) there exist classes of operators, not a single one. 

We choose the simplest one in each case, which is based on min / max (fuzzy t-norm / fuzzy t-

conorm). 

22.1. Intersection 

Neutrosophic Sets ( min / max / max ) 
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Therefore: 

. 

Inconsistent Intuitionistic Fuzzy Set ( min / max / max ) 

. 

Since in IIFS the sum of components is not allowed to surpass 1, we normalize: 

. 

Therefore: 

. 

Also: 

1 1( ) 0.2 0.3 ( )
N N N N N NA B A BT x I x    , 

while 

1 1( ) 0.18 0.17 ( )
IIFS IIFS IIFS IIFS IIFS IIFSA B A BT x I x    , 

and other discrepancies can be seen. 

Inconsistent Intuitionistic Fuzzy Set ( with min / min / max, as used by Cuong [20] in order to avoid 

the sum of components surpassing 1; but this is in discrepancy with the IIFS/PFS union that uses 

max / min / min, not max /max / min ): 
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. 

Therefore: 

We see that: 

, or ; 

and , . Also

Let’s transform the above neutrosophic set , resulted from the application of the neutrosophic 

intersection operator, 

, 

into an inconsistent intuitionistic fuzzy set, employing the same equations (48) – (50) of 

transformations [denoted by (t)], provided by Atanassov and Vassiliev, which are equivalent {using 

(T, I, F)-notations} to (48)’-(50)’ 

; 

; 

. 

; 

; 

. 
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Whence the results of neutrosophic and IIFS/PFS are totally different: 

  

and  

≠  

22.2. Union 

Neutrosophic Sets ( max / min / min ) 

 

 

Therefore: 

. 

Inconsistent Intuitionistic Fuzzy Sets ( max / min / min [3] ) 

 

 

Therefore: 

 

a) We see that the results are totally different: 

, or . 

b) Let’s transform the above neutrosophic set, , resulted from the application of 

neutrosophic union operator, 
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, 

into an inconsistent intuitionistic fuzzy set, employing the same equations (48) -(50) of 

transformation [ denoted by (t) ], provided by Atanassov and Vassiliev, which are equivalent [using 

(T, I, F) notations] to (48)’-(50)’: 

; 

; 

. 

; 

; 

. 

Whence: 

 

The results again are totally different. 

22.3. Corollary 

Therefore, no matter if we first transform the neutrosophic components into inconsistent 

intuitionistic fuzzy components (as suggested by Atanassov and Vassiliev) and then apply the IIFS 

operators, or we first apply the neutrosophic operators on neutrosophic components, and then later 

transform the result into IIFS components, in both ways the obtained results in the neutrosophic 

environment are totally different from the results obtained in the IIFS environment.  

24. Normalization 

Further on, the authors propose the normalization of the neutrosophic components, where 

Atanassov and Vassiliev’s [6] equations (57) – (59) are equivalent, using neutrosophic notations, to 

the following. 

Let  be a universe of discourse, a set , and a generic element , with the 

neutrosophic components: 
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, where 

, and 

for all x ∊ U. 

Suppose for all x ∊ U. 

Then, by the below normalization of neutrosophic components, Atanassov and Vassiliev obtain the 

following intuitionistic fuzzy components : 

(57)’ 

(58)’ 

(59)’ 

and 

, for all x ∊ U. 

16.1. Counterexample 2 

Let’s come back to the previous Counterexample 1. 

 be a universe of discourse, and let two neutrosophic sets included in : 

, and 

. 

Let’s normalize their neutrosophic components, as proposed by Atanassov and Vassiliev, in order 

to restrain them to intuitionistic fuzzy components: 

since the indeterminacy (called hesitant degree in IFS) is neglected. 
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since the indeterminacy (hesitance degree) is again neglected. 

The intuitionistic fuzzy operators are applied only on truth-membership and false-nonmembership 

(but not on indeterminacy). 

24.1.1. Intersection 

Intuitionistic Fuzzy Intersection ( min / max ) 

, 

after adding the indeterminacy which is what’s left up to 1, i.e. . 

after adding the indeterminacy. 

The results of NS and IFS intersections are clearly very different: 

Even more distinction, between the NS intersection and IFS intersection of the same elements 

(whose sums of components equal 1) 

one obtains unequal results, using the (min / max / max) operator:  

, 

while 

 {after ignoring the indeterminacy in IFS} 
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24.1.2. Union 

Intuitionistic Fuzzy Union ( max / min / min ) 

after adding the indeterminacy. 

after adding the indeterminacy. 

The results of NS and IFS unions are clearly very different: 

Even more distinction, for the NS and IFS union of the same elements: 

, 

while 

 = 

(0.50,0.31)  {after adding indeterminacy} 

25. Indeterminacy Makes a Big Difference between NS and IFS

The authors [6] assert that, 

“Therefore, the NFS can be represented by an IFS” (page 5), 

but this is not correct, since it should be: 

The NFS (neutrosophic fuzzy set  single-valued neutrosophic set) can be restrained (degraded) to 

an IFS (intuitionistic fuzzy set), yet the independence of components is lost and the results of the 
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aggregation operators are totally different between the neutrosophic environment and intuitionistic 

fuzzy environment, since Indeterminacy is ignored by IFS operators. 

Since in single-valued neutrosophic set the neutrosophic components are independent (their sum 

can be up to 3, and if a component increases or decreases, it does not change the others), while in 

intuitionistic fuzzy set the components are dependent (in general if one changes, one or both the 

other components change in order to keep their sum equal to 1). Also, applying the neutrosophic 

operators is a better aggregation since the indeterminacy (I) is involved into all neutrosophic 

(complement/negation, intersection, union, inclusion/inequality/implication, equality/equivalence) 

operators while all intuitionistic fuzzy operators ignore (do not take into calculation) the 

indeterminacy. 

That is why the results after applying the neutrosophic operators and intuitionistic fuzzy operators 

on the same sets are different as proven above. 

26. Paradoxes cannot be Represented by the Intuitionistic Fuzzy Logic

No previous set/logic theories, including IFS or Intuitionistic Fuzzy Logic (IFL), since the 

sum of components was not allowed above 1, could characterize a paradox, which is a 

proposition that is true (T = 1) and false (F = 1) simultaneously, therefore the paradox is 

100% indeterminate (I = 1). In Neutrosophic Logic (NL) a paradoxical proposition PNL is 

represented as: PNL(1, 1, 1).  

If one uses Atanassov and Vassiliev’s transformations (for example the normalization) [6], 

we get PIFL(1/3, 1/3, 1/3), but this one cannot represent a paradox, since a paradox is 100% 

true and 100% false, not 33% true and 33% false. 

27. Single-Valued Atanassov’s Intuitionistic Fuzzy Set of second type, also called Single-

Valued Pythagorean Fuzzy Set

Single-Valued Atanassov’s Intuitionistic Fuzzy Sets of second type (AIFS2) [23], also called 

Single-Valued Pythagorean Fuzzy Set (PyFS) [24], is defined as follows (using T, I, F notations for 

the components): 

Definition of IFS2 (PyFS) 

It is a set AAIFS2 ≡ APyFS from the universe of discourse U such that: 

AAIFS2 ≡ APyFS = {<x, TA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), FA(x) : U → [0, 1], represent the degree of membership 

(truth) and degree on nonmembership (falsity) respectively, that satisfy the conditions: 
2 20 ( ) ( ) 1A AT x F x   ,

whence the hesitancy degree is: 
2 2( ) 1 ( ) ( ) [0,1]A A AI x T x F x    . 

28. Single-Valued Refined Pythagorean Fuzzy Set (RPyFS)

We propose now for the first time the Single-Valued Refined Pythagorean Fuzzy Set (RPyFS): 
1 2 1 2

2 { ( ( ), ( ),..., ( ); ( ), ( ),..., ( )), 3, }p s

RAIFS RPyFS A A A A A AA A x T x T x T x F x F x F x p s x U      

where p and s are positive nonzero integers, and for all x ∊ U, the functions 
1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( )p s

A A A A A AT x T x T x F x F x F x : U → [0, 1], represent the degrees of sub-

membership (sub-truth) of types 1, 2, …, p, and degrees on sub-nonmembership (sub-falsity) of 

types 1, 2, …, s respectively, that satisfy the condition: 
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2 2

1 1

0 ( ) ( ) 1
p s

j l

A AT F    ,

whence the refined hesitancy degree is: 

2 2

1 1

( ) 1 ( ) ( ) [0,1]
p s

j l

A A AI x T F     . 

The Single-Valued Refined Pythagorean Fuzzy Set is a particular case of the Single-Valued 

Refined Neutrosophic Set.  

29. The components of Atanassov’s Intuitionistic Fuzzy Set of second type (Pythagorean

Fuzzy Set) are not Independent

Princy R and Mohana K assert in [23] that: 

“the truth and falsity values and hesitancy value can be independently considered as 

membership and non-membership and hesitancy degrees respectively”. 

But this is untrue, since in IFS2 (PyFS) the components are not independent, because they are 

connected (dependent on each other) through this inequality:  
2 2( ) ( ) 1A AT x F x  . 

30. Let's see a Counterexample 3:

If T = 0.9, then T2 = 0.92 = 0.81, whence F2 ≤ 1 - T2 = 1 - 0.81 = 0.19, 

or 0.19 0.44F   . 

Therefore, if T = 0.9, then F is restricted to be less than equal to 0.19 . 

While in NS if T = 0.9, F can be equal to any number in [0, 1], F can be even equal to 1. 

Also, hesitancy degree clearly depends on T and F, because the formula of hesitancy degree is an 

equation depending on T and F, as below: 
2 2( ) 1 ( ) ( ) [0,1]A A AI x T x F x    . 

If T = 0.9 and F = 0.2, then hesitancy 
2 21 0.9 0.2 0.15 0.39I      . 

Again, in NS if T = 0.9 and F = 0.2, I can be equal to any number in [0, 1], not only to 0.15 . 

31. Neutrosophic Set is a Generalization of Pythagorean Fuzzy Set

In the definition of PyFS, one has TA(x), FA(x) ∊ [0, 1], which involves that

TA(x)2, FA(x)2 ∊ [0, 1] too;

we denote 
2 2( ) ( ) , ( ) ( )NS NS

A A A AT x T x F x F x  , and 

2 2 2( ) ( ) 1 ( ) ( ) [0,1]NS

A A A AI x I x T x F x     , where “NS” stands for Neutrosophic Set. 

Therefore, one gets: ( ) ( ) ( ) 1NS NS NS

A A AT x I x F x   , 

which is a particular case of the neutrosophic set, since in NS the sum of the components

can be any number between 0 and 3, hence into PyFS has been chosen the sum of the

components be equal to 1.

32. Spherical Fuzzy Set (SFS)

Definition of Spherical Fuzzy Set 

A Single-Valued Spherical Fuzzy Set (SFS) [25, 26], of the universe of discourse U, is defined as 

follows: 

ASFS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 
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where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 1], represent the degree of 

membership (truth), the degree of hesitancy, and degree on nonmembership (falsity) respectively, 

that satisfy the conditions: 
2 2 20 ( ) ( ) ( ) 1A A AT x I x F x    ,

whence the refusal degree is: 
2 2 2( ) 1 ( ) ( ) ( ) [0,1]A A A AR x T x I x F x     . 

33. Single-Valued n-HyperSpherical Fuzzy Set (n-HSFS)

Smarandache (2019) generalized for the first time the spherical fuzzy set to

n-hyperspherical fuzzy set.

Definition of n-HyperSpherical Fuzzy Set.

A Single-Valued n-HyperSpherical Fuzzy Set (n-HSFS), of the universe of discourse U, is defined 

as follows: 

An-HSFS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 1], represent the degree of 

membership (truth), the degree of hesitancy, and degree on nonmembership (falsity) respectively, 

that satisfy the conditions: 

0 ( ) ( ) ( ) 1n n n

A A AT x I x F x    , for n ≥ 1, 

whence the refusal degree is: 

( ) 1 ( ) ( ) ( ) [0,1]n n n

A A A AR x T x I x F x     . 

It is clear that 2-HyperSpherical Fuzzy Set (i.e. when n = 2) is a spherical fuzzy set. 

34. The n-HyperSpherical Fuzzy Set is a particular case of the Neutrosophic Set.

Because, TA(x), IA(x), FA(x) ∊ [0, 1] implies that, for n ≥ 1 one has

( ), ( ), ( ) [0,1]n n n

A A AT x I x F x   too, so they are neutrosophic components as well; therefore 

each n-HSFS is a NS.

But the reciprocal is not true, since if at least one component is 1 and from the other two

components at least one is > 0, for example TA(x) = 1, and IA(x) > 0, FA(x) ∊ [0, 1], then

( ) ( ) ( ) 1n n n

A A AT x I x F x    for n ≥ 1. Therefore, there are infinitely many triplets T, I, F

that are NS components, but they are not n-HSFS components.

35. The components of the Spherical Fuzzy Set are not Independent

Princy R and Mohana K assert in [23] that: 

“In spherical fuzzy sets, while the squared sum of membership, non-membership 

and hesitancy parameters can be between 0 and 1, each of them can be defined 

between 0 and 1 independently.” 

But this is again untrue, the above parameters cannot be defined independently. 

36. Counterexample 4

If T = 0.9 then F cannot be for example equal to 0.8, 

since 0.92 + 0.82 = 1.45 > 1, 

but the sum of the squares of components is not allowed to be greater than 1. 

So F depends on T in this example. 
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Two components are independent if no matter what value gets one component will not affect the 

other component’s value. 

37. Neutrosophic Set is a generalization of the Spherical Fuzzy Set

In [25] Gündoğlu and Kahraman assert about:

“superiority of SFS [i.e. Spherical Fuzzy Set] with respect to Pythagorean, intuitionistic 

fuzzy and neutrosophic sets”; 

also: 

“SFSs are a generalization of Pythagorean Fuzzy Sets (PFS) and neutrosophic sets”. 

While it is true that the spherical fuzzy set is a generalizations of Pythagorean fuzzy set 

and of intuitionistic fuzzy set, it is false that spherical fuzzy set is a generalization of 

neutrosophic set.  

Actually it’s the opposite: neutrosophic set is a generalization of spherical fuzzy set. We 

prove it bellow. 

Proof 

In the definition of the spherical fuzzy set one has: 

TA(x), IA(x), FA(x) ∊ [0, 1], which involves that TA(x)2, IA(x)2, FA(x)2 ∊ [0, 1] too. 

Let’s denote: 
2 2 2( ) ( ) , ( ) ( ) , ( ) ( )NS NS NS

A A A A A AT x T x I x I x F x F x   , where “NS” stands for 

neutrosophic set, whence we obtain, using SFS definition: 

0 ( ) ( ) ( ) 1NS NS NS

A A AT x I x F x    , 

which is a particular case of the single-valued neutrosophic set, where the sum of the 

components T, I, F can be any number between 0 and 3. So now we can choose the sum 

up to 1. 

38. Counterexample 5

If we take TA(x) = 0.9, IA(x) = 0.4, FA(x) = 0.5, for some given element x, which are

neutrosophic components, they are not spherical fuzzy set components because 0.92 +

0.42 + 0.52 = 1.22 > 1.

There are infinitely many values for TA(x), IA(x), FA(x) in [0, 1] whose sum of squares is

strictly greater than 1, therefore they are not spherical fuzzy set components, but they are

neutrosophic components.

The elements of a spherical fuzzy set form a 1/8 of a sphere of radius 1, centred into the origin 

O(0,0,0) of the Cartesian system of coordinates, on the positive Ox (T), Oy (I), Oz (F) axes.  

While the standard neutrosophic set is a cube of side 1, that has the vertexes: (0,0,0), (1,0,0), 

(0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1). 

The neutrosophic cube strictly includes the 1/8 fuzzy sphere. 

39. Single-Valued Refined Spherical Fuzzy Set (RSFS)

We introduce now for the first time the Single-Valued Refined Spherical Fuzzy Set.
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1 2 1 2

1 2

{ ( ( ), ( ),..., ( ); ( ), ( ),..., ( );

( ), ( ),..., ( )), 4, },

p r

RSFS A A A A A A

s

A A A

A x T x T x T x I x I x I x

F x F x F x p r s x U



   

where p, r, s are nonzero positive integers, and for all x ∊ U, the functions 
1 2 1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( )p r s

A A A A A A A A AT x T x T x I x I x I x F x F x F x :  U → [0, 1], 

represent the degrees of sub-membership (sub-truth) of types 1, 2, …, p, the degrees of 

sub-hesitancy of types 1, 2, …, r, and degrees on sub-nonmembership (sub-falsity) of 

types 1, 2, …, s respectively, that satisfy the condition: 

2 2 2

1 1 1

0 ( ) ( ) ( ) 1
p s s

j k l

A A AT I F      ,

whence the refined refusal degree is: 

2 2 2

1 1 1

( ) 1 ( ) ( ) ( ) [0,1]
p s s

j k l

A A A AR x T I F       . 

The Single-Valued Refined Spherical Fuzzy Set is a particular case of the Single-Valued 

Refined Neutrosophic Set. 

40. Single-Valued Spherical Neutrosophic Set

Spherical Neutrosophic Set (SNS) was introduced by Smarandache [27] in 2017.

A Single-Valued Spherical Neutrosophic Set (SNS), of the universe of discourse U, is defined as 

follows: 

ASNS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 3 ], represent the degree of 

membership (truth), the degree of indeterminacy, and degree on nonmembership (falsity) 

respectively, that satisfy the conditions: 
2 2 20 ( ) ( ) ( ) 3A A AT x I x F x    . 

The Spherical Neutrosophic Set is a generalization of Spherical Fuzzy Set, because we may 

restrain the SNS’s components to the unit interval TA(x), IA(x), FA(x) ∊ [0, 1],  

and the sum of the squared components to 1, i.e. 
2 2 20 ( ) ( ) ( ) 1A A AT x I x F x    . 

Further on, if replacing IA(x) = 0 into the Spherical Fuzzy Set, we obtain as particular case the 

Pythagorean Fuzzy Set. 

41. Single-Valued n-HyperSpherical Neutrosophic Set (n-HSNS)

Definition of n-HyperSpherical Neutrosophic Set (Smarandache, 2019)

We introduce now for the first time the Single-Valued n-HyperSpherical Neutrosophic Set (n-

HSNS), which is a generalization of the Spherical Neutrosophic Set and of n-HyperSpherical Fuzzy 

Set, of the universe of discourse U, for n ≥ 1, is defined as follows: 

An-HNS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 3n ], represent the degree of 

membership (truth), the degree of indeterminacy, and degree on nonmembership (falsity) 

respectively, that satisfy the conditions: 

0 ( ) ( ) ( ) 3n n n

A A AT x I x F x    . 
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42. Single-Valued Refined Refined n-HyperSpherical Neutrosophic Set (R-n-HSNS)

We introduce now for the first time the Single-Valued Refined n-HyperSpherical

Neutrosophic Set (R-n-HSNS), which is a generalization of the n-HyperSpherical

Neutrosophic Set and of Refined n-HyperSpherical Fuzzy Set.

On the universe of discourse U, for n ≥ 1, we define it as:

1 2 1 2

1 2

{ ( ( ), ( ),..., ( ); ( ), ( ),..., ( );

( ), ( ),..., ( )), 4, },

p r

R n HSNS A A A A A A

s

A A A

A x T x T x T x I x I x I x

F x F x F x p r s x U

  

   

where p, r, s are nonzero positive integers, and for all x ∊ U, the functions 
1 2 1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( )p r s

A A A A A A A A AT x T x T x I x I x I x F x F x F x :  U → [0, 1/nm ], 

represent the degrees of sub-membership (sub-truth) of types 1, 2, …, p, the degrees of 

sub-indeterminacy of types 1, 2, …, r, and degrees on sub-nonmembership (sub-falsity) of 

types 1, 2, …, s respectively, that satisfy the condition: 

1 1 1

0 ( ) ( ) ( )
p r s

j n k n l n

A A AT I F m      , where p + r + s = m.

43. Neutrosophic Set is a Generalization of q-Rung Orthopair Fuzzy Set (q-ROFS).

Definition of q-Rung Orthopair Fuzzy Set.

Using the same T, I, F notations one has as follows. 

A Single-Valued q-Rung Orthopair Fuzzy Set (q-ROFS) [28], of the universe of discourse U, for a 

given real number q ≥ 1, is defined as follows: 

Aq-ROFS = {<x, TA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), FA(x) : U → [0, 1], represent the degree of membership 

(truth), and degree on nonmembership (falsity) respectively, that satisfy the conditions: 

0 ( ) ( ) 1q q

A AT x F x   . 

Since TA(x), FA(x) ∊ [0, 1], then for any real number q ≥ 1 one has ( ) , ( ) [0,1]q q

A AT x F x   too. 

Let’s denote: ( ) ( ) , ( ) ( )NS q NS q

A A A AT x T x F x F x  , whence it results that: 

0 ( ) ( ) 1NS NS

A AT x F x   , where what’s left may be Indeterminacy. 

But this is a particular case of the neutrosophic set, where the sum of components T, I, F can 

be any number between 0 and 3, and for q-ROFS is it taken to be up to 1. Therefore, any Single-

Valued q-Rung Orthopair Fuzzy Set is also a Neutrosophic Set, but the reciprocal is not true. See the 

next counterexample. 

44. Counterexample 6.

Let’s consider a real number 1 ≤ q < ∞, and a set of single-valued triplets of the form
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 (T, I, F), with T, I, F ∊ [0, 1] that represent the components of the elements of a given set. 

The components of the form (1, F), with F > 0, and of the form (T, 1), with T > 0, constitute NS 

components as follows: (1, I, F), with F > 0 and any I ∊ [0, 1], and respectively  

(T, I, 1), with T > 0 and any I ∊ [0, 1], since the sum of the components is allowed to be greater 

than 1, i.e. 1 + I + F > 1 and respectively T + I + 1 > 1. 

But they cannot be components of the elements of a q-ROFS set, since: 

1q + Fq = 1 + Fq > 1, because F > 0 and 1 ≤ q < ∞;  but in q-ROFS the sum has to be ≤ 1. 

Similarly, Tq + 1q = Tq + 1 > 1, because T > 0 and 1 ≤ q < ∞;  but in q-ROFS the sum has to be ≤ 1. 

45. Refined q-Rung Orthopair Fuzzy Set (R-q-ROFS)

We propose now for the first time the Single-Valued Refined q-Rung Orthopair Fuzzy Set (R-q-

ROFS): 
1 2 1 2{ ( ( ), ( ),..., ( ), ( ), ( ),..., ( )), 3, },p s

R q ROFS A A A A A AA x T x T x T x F x F x F x p s x U       

where p and s are positive nonzero integers, and for all x ∊ U, the functions 
1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( )p s

A A A A A AT x T x T x F x F x F x : U → [0, 1], represent the degrees of sub-

membership (sub-truth) of types 1, 2, …, p, and degrees on sub-nonmembership (sub-falsity) of 

types 1, 2, …, s respectively, that satisfy the condition: 

1 1

0 ( ) ( ) 1
p s

j q l q

A AT F    , for q ≥ 1,

whence the refined hesitancy degree is: 

1/

1 1

( ) [1  ( ) ( ) ] [0,1].
p s

j q l q q

A A AI x T F      

The Single-Valued Refined q-Rung Fuzzy Set is a particular case of the Single-Valued 

Refined Neutrosophic Set. 

46. Regret Theory is a Neutrosophication Model

Regret Theory (2010) [29] is actually a Neutrosophication (1998) Model, when the decision 

making area is split into three parts, the opposite ones (upper approximation area, and lower 

approximation area) and the neutral one (border area, in between the upper and lower area). 

47. Grey System Theory as a Neutrosophication

A Grey System [30] is referring to a grey area (as <neutA> in neutrosophy), between

extremes (as <A> and <antiA> in neutrosophy).

According to the Grey System Theory, a system with perfect information (<A>) may have

a unique solution, while a system with no information (<antiA>) has no solution. In the

middle (<neutA>), or grey area, of these opposite systems, there may be many available
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solutions (with partial information known and partial information unknown) from which 

an approximate solution can be extracted. 

48. Three-Ways Decision as particular cases of Neutrosophication and of Neutrosophic

Probability [31, 32, 33, 34, 35, 36]

48.1. Neutrosophication 

Let <A> be an attribute value, <antiA> the opposite of this attribute value, and <neutA> 

the neutral (or indeterminate) attribute value between the opposites <A> and <antiA>. 

For examples: <A> = big, then <antiA> = small, and <neutA> = medium; we may rewrite: 

(<A>, <neutA>, <antiA>) = (big, medium, small); 

or (<A>, <neutA>, <antiA>) = (truth (denoted as T), indeterminacy (denoted as I), falsehood 

(denoted as F) ) as in Neutrosophic Logic, 

or (<A>, <neutA>, <antiA>) = ( membership, indeterminate-membership, monmembership ) as in 

Neutrosophic Set, 

or (<A>, <neutA>, <antiA>) = ( chance that an event occurs,  indeterminate-chance that the event 

occurs or not,  chance that the event does not occur ) as in Neutrosophic Probability, 

and so on. 

And let’s by “Concept” to mean: an item, object, idea, theory, region, universe, set, notion 

etc. that is characterized by this attribute. 

The process of neutrosophication {Smarandache, 2019, [37]} means: 

a) converting a Classical Concept

{ denoted as (1<A>, 0<neutA>, 0<antiA>)-ClassicalConcept, or ClassicalConcept(1<A>, 0<neutA>, 0<antiA>) 

}, which means that the concept is, with respect to the above attribute,  

100% <A>, 0% <neutA>, and 0% <antiA>, 

into a Neutrosophic Concept 

{ denoted as (T<A>, I<neutA>, F<antiA>)-NeutrosophicConcept, or NeutrosophicConcept(T<A>, 

I<neutA>, F<antiA>) }, which means that the concept is, with respect to the above attribute, 

T% <A>, I% <neutA>, and F% <antiA>, 

which more accurately reflects our imperfect, non-idealistic reality, 

where all T, I, F are subsets of [0, 1] with no other restriction; 

- using Triangular / Pentagonal / Polygonal (etc. other function) Numbers. 

- employing neutrosophic IF-THEN rules into reasoning. 
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b) or converting a Fuzzy Concept, or Intuitionistic Fuzzy Concept into a Neutrosophic

Concept;

c) or converting other Concepts such as Inconsistent Intuitionistic Fuzzy (Picture Fuzzy,

Ternary Fuzzy) Concept, or Pythagorean Fuzzy Concept, or Spherical Fuzzy Concept,

or q-Rung Orthopair Fuzzy etc.

into a Neutrosophic Concept or into a Refined Neutrosophic Concept (i.e. T1% <A1>, T2 % 

<A2>, …;  I1 % <neutA1>, I2 % <neutA2>, …; and F1 % <antiA1>, F2 % <antiA2>, …),  

where all T1, T2, …; I1, I2, …; F1, F2, … are subsets of [0, 1] with no other restriction. 

d) or converting a crisp real number ( r ) into a neutrosophic real number of the form

r = a + bI, where “I” means (literal or numerical) indeterminacy, a and b are real numbers, 

and “a” represents the determinate part of the crisp real number r, while bI the 

indeterminate part of r; 

e) or converting a crisp complex number ( c ) into a neutrosophic complex number of the

form c = a1+ b1i +(a2 + b2i)I = a1+a2I + (b1 +b2I)i, where “I” means (literal or

numerical) indeterminacy, 1i   , with a1, a2, b1, b2 real numbers, and “a1+ b1i”

represents the determinate part of the complex real number c, while a2 + b2i the

indeterminate part of c;

(we may also interpret that as:  a1 is the determinate part of the real-part of c, and b1 is

the determinate part of the imaginary-part of c; while a2 is the indeterminate part of the

real-part of c, and b2 is the indeterminate part of the imaginary-part of c);

f) converting a crisp, fuzzy, or intuitionistic fuzzy, or inconsistent intuitionistic fuzzy

(picture fuzzy, ternary fuzzy set), or Pythagorean fuzzy, or spherical fuzzy, or q-rung

orthopair fuzzy number and other numbers into a quadruple neutrosophic number of the

form a + bT + cI + dF, where a, b, c, d are real or complex numbers, while T, I, F are

the neutrosophic components.

g) splitting a set (or a region) into three parts (two opposites <A> and <antiA>, and one

neutral <neutA> in between them), with respect to a given attribute.

h) splitting a set (or a region) into n ≥4 parts (one group of parts <A1>, <A2>, … opposite

to another group of parts <antiA1>, <antiA1>, …, and a third group of parts <neutA1>,

<neutA2>, … as a neutral group of parts in between the opposite groups), with respect to

a given attribute.

While the process of deneutrosophication means going backwards with respect to any of 

the above processes of neutrosophication. 

Example 1: 

Let the attribute <A> = cold temperature, then <antiA> = hot temperature, and <neutA> = medium 

temperature. 

Let the concept be a country M, such that its northern part (30% of country’s territory) is cold, its 

southern part is hot (50%), and in the middle there is a buffer zone with medium temperature 

(20%). We write: 

M( 0.3cold temperature, 0.2medium temperature, 0.5hot temperature ) 
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where we took single-valued numbers for the neutrosophic components TM = 0.3, IM = 0.2, FM = 

0.5, and the neutrosophic components are considered dependent so their sum is equal to 1. 

48.2. Three-Ways Decision is a particular case of Neutrosophication 

Neutrosophy (based on <A>, <neutA>, <antiA>) was proposed by Smarandache [1] in 1998, and 

Three-Ways Decision by Yao [31] in 2009. 

In Three-Ways Decision, the universe set is split into three different distinct areas, in regard to the 

decision process, representing: 

Acceptance, Noncommitment, and Rejection respectively. 

In this case, the decision attribute value <A> = Acceptance, whence <neutA> = 

Noncommitment, and <antiA> = Rejection. 

The classical concept = UniverseSet. 

Therefore, we got the NeutrosophicConcept( T<A>, I<neutA>, F<antiA> ), denoted as: 

UniverseSet( TAcceptance, INoncommitment, FRejection ), 

where TAcceptance = universe set’s zone of acceptance, INoncommitment = universe set’s zone of 

noncomitment (indeterminacy),  FRejection= = universe set’s zone of rejection. 

48.3. Three-Ways Decision as a particular case of Neutrosophic Probability 

Let’s consider the event, taking a decision on a universe set.  

According to Neutrosophic Probability (NP) [1, 11] one has: 

NP(decision) = ( the universe set’s elements for which the chance of the decision may be 

accept;   the universe set’s elements for which there may be an indeterminate-chance of the 

decision;  the universe set’s elements for which the chance of the decision may be reject ). 

48.4. Refined Neutrosophy 

Refined Neutrosophy was introduced by Smarandache [9] in 2013 and it is described as 

follows:  

<A> is refined (split) into subcomponents <A1>, <A2>, …, <Ap>; 

<neutA> is refined (split) into subcomponents <neutA1>, <neutA2>, …, <neutAr>;  

and <antiA> is refined (split) into subcomponents <antiA1>, <antiA2>, …, <antiAs>; 

where p, r, s ≥ 1 are integers, and p + r + s ≥ 4. 

Refined Neutrosophy is a generalization of Neutrosophy. 

Example 2. 

If <A> = voting in country M, them <A1> = voting in Region 1 of country M for a given candidate, 

<A2> = voting in Region 2 of country M for a given candidate, and so on. 



34 

Similarly, <neutA1> = not voting (or casting a white or a black vote) in Region 1 of country M, 

<A2> = not voting in Region 2 of country M, and so on. 

And <antiA1> = voting in Region 1 of country M against the given candidate, <A2> = voting in 

Region 2 of country M against the given candidate, and so on. 

48.5.  Extension of Three-Ways Decision to n-Ways Decision 

n-Way Decision was introduced by Smarandache [37] in 2019. 

In n-Ways Decision, the universe set is split into n ≥ 4 different distinct areas, in regard to the 

decision process, representing: 

Levels of Acceptance, Levels of Noncommitment, and Levels of Rejection respectively. 

Levels of Acceptance may be: Very High Level of Acceptance (<A1>), High Level of Acceptance 

(<A2>), Medium Level of Acceptance (<A3>), etc. 

Similarly, Levels of Noncommitment may be: Very High Level of Noncommitment (<neutA1>), 

High Level of Noncommitment (<neutA2>), Medium Level of Noncommitment (<neutA3>), etc. 

And Levels of Rejection may be: Very High Level of Rejection (<antiA1>), High Level of 

Rejection (<antiA2>), Medium Level of Rejection (<antiA3>), etc. 

Then the Refined Neutrosophic Concept 

{ denoted as (T1<A1>, T2<A2>, …, Tp<Ap>;  I1<neutA1>, I2<neutA2>, …, Ir<neutAr>;  

F1<antiA1>, F2<antiA2>, Fs<antiAs>)-RefinedNeutrosophicConcept, 

or RefinedNeutrosophicConcept(T1<A1>, T2<A2>, …, Tp<Ap>;  I1<neutA1>, I2<neutA2>, …, Ir<neutAr>;  

F1<antiA1>, F2<antiA2>, Fs<antiAs>)},  

which means that the concept is, with respect to the above attribute value levels, 

T1% <A1>, T2% <A2>, …, Tp% <Ap>;  

I1% <neutA1>, I2% <neutA2>, …, Ir% <neutAr>;  

F1% <antiA1>, F2% <antiA2>, Fs% <antiAs>; 

which more accurately reflects our imperfect, non-idealistic reality,  

with where p, r, s ≥ 1 are integers, and p + r + s ≥ 4, 

where all T1, T2, …, Tp, I1, I2, …, Ir, F1, F2, …, Fs are subsets of [0, 1] with no other restriction. 

49. Many More Distinctions between Neutrosophic Set (NS) and Intuitionistic Fuzzy Set

(IFS) and other type sets 

49.1. Neutrosophic Set can distinguish between absolute and relative 
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 absolute membership (i.e. membership in all possible worlds; we have extended

Leibniz’s absolute truth to absolute membership), and

 relative membership (membership in at least one world, but not in all), because

while 

 . 

This has application in philosophy (see the neutrosophy). That’s why the unitary standard 

interval  used in IFS has been extended to the unitary non-standard interval  in NS.  

Similar distinctions for absolute or relative non-membership, and absolute or relative 

indeterminate appurtenance are allowed in NS. 

While IFS cannot distinguish the absoluteness from relativeness of the components. 

49.2. In NS, there is no restriction on T, I, F other than they be subsets of , thus: 

. 

The inequalities (2.1) and (2.4) [17] of IFS are relaxed in NS. 

This non-restriction allows paraconsistent, dialetheist, and incomplete information to be 

characterized in NS {i.e. the sum of all three components if they are defined as points, or sum of 

superior limits of all three components if they are defined as subsets can be >1 (for paraconsistent 

information coming from different sources), or < 1 for incomplete information}, while that 

information cannot be described in IFS because in IFS the components T (membership), I 

(indeterminacy), F (non-membership) are restricted either to t + i + f = 1 or to t
2

 + f
2 

≤ 1, if T, I, F are 

all reduced to the points (single-valued numbers) t, i, f respectively, or to sup T + sup I + sup F = 1 

if T, I, F are subsets of [0, 1].  Of course, there are cases when paraconsistent and incomplete 

informations can be normalized to 1, but this procedure is not always suitable. 

In IFS paraconsistent, dialetheist, and incomplete information cannot be characterized. 

This most important distinction between IFS and NS is showed in the below Neutrosophic 

Cube A’B’C’D’E’F’G’H’ introduced by J. Dezert [38] in 2002. 
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Because in technical applications only the classical interval  0,1  is used as range for the

neutrosophic parameters , ,t i f , we call the cube ABCDEDGH the technical neutrosophic cube and 

its extension ' ' ' ' ' ' ' 'A B C D E D G H  the neutrosophic cube (or nonstandard neutrosophic cube), 

used in the fields where we need to differentiate between absolute and relative (as in philosophy) 

notions. 

F’   E’(-0,-0,1+) 

 F E(0,0,1)  

       G’     H’

G  H 

  i 

B(1,0,0) t       A(0,0,0) 

B’(1+,-0,-0) f A’(-0,-0,-0) 

C D(0,1,0)  

C’        D’(-0,1+,-0) 

Fig. 1. Neutrosophic Cube 

Let’s consider a 3D Cartesian system of coordinates, where t  is the truth axis with value 

range in 0,1    , f  is the false axis with value range in 0,1    , and similarly i   is the

indeterminate axis with value range in 0,1    .

We now divide the technical neutrosophic cube ABCDEDGH  into three disjoint regions: 

a) The shaded equilateral triangle BDE , whose sides are equal to 2 , which represents the

geometrical locus of the points whose sum of the coordinates is 1.

If a point Q  is situated on the sides or inside of the triangle BDE , then 1Q Q Qt i f    as in 

Atanassov-intuitionistic fuzzy set  A IFS . 
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It is clear that IFS triangle is a restriction of (strictly included in) the NS cube. 

b) The pyramid EABD  {situated in the right side of the EBD , including its faces ABD

(base), EBA , and EDA  (lateral faces), but excluding its face BDE } is the locus of

the points whose sum of coordinates is less than 1.

If P EABD  then 1P P Pt i f    as in inconsistent intuitionistic fuzzy set (with incomplete 

information). 

c) In the left side of BDE  in the cube there is the solid EFGCDEBD  ( excluding BDE

) which is the locus of points whose sum of their coordinates is greater than 1 as in the

paraconsistent set.

If a point R EFGCDEBD , then 1R R Rt i f   . 

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than 1. For 

example having three independent sources of information: 

- We have a source which is capable to find only the degree of membership of an element; but 

it is unable to find the degree of non-membership; 

- Another source which is capable to find only the degree of non-membership of an element; 

- Or a source which only computes the indeterminacy. 

Thus, when we put the results together of these sources, it is possible that their sum is not 1, but 

smaller or greater.  

Also, in information fusion, when dealing with indeterminate models (i.e. elements of the fusion 

space which are indeterminate/unknown, such as intersections we don’t know if they are empty or 

not since we don’t have enough information, similarly for complements of indeterminate elements, 

etc.): if we compute the believe in that element (truth), the disbelieve in that element (falsehood), 

and the indeterminacy part of that element, then the sum of these three components is strictly less 

than 1 (the difference to 1 is the missing information). 

49.3) Relation (2.3) from interval-valued intuitionistic fuzzy set is relaxed in NS, i.e. the intervals 

do not necessarily belong to Int[0,1] but to [0,1], even more general to ]-0, 1+[. 

49.4) In NS the components T, I, F can also be nonstandard subsets included in the unitary non-

standard interval ]
-

0, 1
+

[, not only standard subsets included in the unitary standard interval 

[0, 1] as in IFS. 

49.5) NS, like dialetheism, can describe paradoxist elements, NS(paradoxist element) = (1, 1, 1), 

while IFL cannot describe a paradox because the sum of components should be 1 in IFS.  

49.6) The connectors/operators in IFS are defined with respect to T and F only, i.e. membership 

and nonmembership only (hence the Indeterminacy is what’s left from 1), while in NS they can be 

defined with respect to any of them (no restriction).  

But, for interval-valued intuitionistic fuzzy set one cannot find any left indeterminacy. 
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49.7) Component “I”, indeterminacy, can be split into more subcomponents in order to better catch 

the vague information we work with, and such, for example, one can get more accurate answers to 

the Question-Answering Systems initiated by Zadeh (2003).   

{In Belnap’s four-valued logic (1977) indeterminacy is split into Uncertainty (U) and Contradiction 

(C), but they were interrelated.} 

Even more, one can split "I" into Contradiction, Uncertainty, and Unknown, and we get a five-

valued logic. 

In a general Refined Neutrosophic Logic, T can be split into subcomponents T1, T2, ..., Tp, and I 

into I1, I2, ..., Ir, and F into F1, F2, ...,Fs, where p, r, s ≥ 1 and p + r + s = n ≥ 3.  Even more:  T, I, 

and/or F (or any of their subcomponents Tj , Ik, and/or Fl) can be countable or uncountable infinite 

sets.  

49.8) Indeterminacy is independent from membership/truth and non-membership/falsehood in 

NS/Nl, while in IFS/IFL it is not. 

In neutrosophics there are two types of indeterminacies: 

a) Numerical Indeterminacy (or Degree of Indeterminacy), which has the form (t, i, f)  ≠ (1,

0, 0), where t, i, f are numbers, intervals, or subsets included in the unit interval   [0, 1], and 

it is the base for the (t, i, f)-Neutrosophic Structures.  

b) Non-numerical Indeterminacy (or Literal Indeterminacy), which is the letter “I” standing

for unknown (non-determinate), such that I2 = I, and used in the composition of the 

neutrosophic number N = a + bI, where a and b are real or complex numbers, and a is the 

determinate part of number N, while bI is the indeterminate part of N. The neutrosophic 

numbers are the base for the I-Neutrosophic Structures. 

49.9) NS has a better and clear terminology (name) as "neutrosophic" (which means the neutral 

part: i.e. neither true/membership nor false/nonmembership), while IFS's name "intuitionistic" 

produces confusion with Intuitionistic Logic, which is something different (see the article by Didier 

Dubois et al. [39], 2005).  

49.10)  The Neutrosophic Set was extended [Smarandache, 2007] to Neutrosophic Overset (when 

some neutrosophic component is > 1), and to Neutrosophic Underset (when some neutrosophic 

component is < 0), and to and to Neutrosophic Offset (when some neutrosophic components are 

off the interval [0, 1], i.e. some neutrosophic component > 1 and some neutrosophic component < 

0). In IFS the degree of a component is not allowed to be outside of the classical interval [0, 1]. 

This is no surprise with respect to the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or 

classical and imprecise probability where the values are not allowed outside the interval [0, 1], 

since our real-world has numerous examples and applications of over/under/off neutrosophic 

components. 

Example: 
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In a given company a full-time employer works 40 hours per week. Let’s consider the last week 

period. 

Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; 

hence, her membership degree was 30/40 = 0.75 < 1. 

John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this 

company.  

But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 

1. Thus, we need to make distinction between employees who work overtime, and those who work

full-time or part-time. That’s why we need to associate a degree of membership greater than 1 to 

the overtime workers. 

Now, another employee, Jane, was absent without pay for the whole week, so her degree of 

membership was 0/40 = 0. 

Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 

worked hours), but he produced, by accidentally starting a devastating fire, much damage to the 

company, which was estimated at a value half of his salary (i.e. as he would have gotten for 

working 20 hours). Therefore, his membership degree has to be less that Jane’s (since Jane 

produced no damage). Whence, Richard’s degree of membership with respect to this company was 

- 20/40 = - 0.50 < 0. 

Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them into 

consideration. 

Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to 

respectively Neutrosophic Over/Under/Off Logic, Measure, Probability, Statistics etc. 

{Smarandache, 2007 [8]}. 

49.11) Neutrosophic Tripolar (and in general Multipolar) Set and Logic {Smarandache, 2007 

[8]} of the form: 

( <T+
1, T+

2, …, T+
n; T0; T-

-n, …, T—
-2, T-

-1 >, <I+
1, I+

2, …, I+
n; I0; I-

-n, …, I—
-2, I-

-1 >, 

<F+
1, F+

2, …, F+
n; F0; F-

-n, …, F—
-2, F-

-1 > ) 

where we have multiple positive/neutral/negative degrees of T, I, and F respectively. 

49.12) The Neutrosophic Numbers have been introduced by W.B. Vasantha Kandasamy and F. 

Smarandache [40] in 2003, which are numbers of the form N = a + bI, where a, b are real or 

complex numbers, while “I” is the indeterminacy part of the neutrosophic number N, such that I2 = 

I and αI+βI = (α+β)I. 

Of course, indeterminacy “I” is different from the imaginary unit i = 1 . 

In general one has In = I if n > 0, and it is undefined if n ≤ 0. 

49.13) Also, Neutrosophic Refined Numbers were introduced (Smarandache [31], 2015) as: 
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a + b1I1 + b2I2 + … + bmIm, where a, b1, b2, …, bm are real or complex numbers, while the I1, I2, …, 

Im are types of sub-indeterminacies, for m ≥ 1. 

49.14) The algebraic structures using neutrosophic numbers gave birth to the I-Neutrosophic 

Algebraic Structures [see for example “neutrosophic groups”, “neutrosophic rings”, 

“neutrosophic vector space”, “neutrosophic matrices, bimatrices, …, n-matrices”, etc.], introduced 

by W.B. Vasantha Kandasamy, Ilanthenral K., F. Smarandache [41] et al. since 2003. 

Example of Neutrosophic Matrix: 





















I56I41

I3/10

5I21

. 

Example of Neutrosophic Ring: ({a+bI, with a, b ϵ R}, +, ·), where of course (a+bI)+(c+dI) = 

(a+c)+(b+d)I, and (a+bI) · (c+dI) = (ac) + (ad+bc+bd)I. 

49.15) Also, to Refined I-Neutrosophic Algebraic Structures, which are structures using sets of 

refined neutrosophic numbers [41]. 

49.16) Types of Neutrosophic Graphs (and Trees): 

a-c) Indeterminacy “I” led to the definition of the Neutrosophic Graphs (graphs which have: 

either at least one indeterminate edge, or at least one indeterminate vertex, or both some 

indeterminate edge and some indeterminate vertex), and Neutrosophic Trees (trees which have: 

either at least one indeterminate edge, or at least one indeterminate vertex, or both some 

indeterminate edge and some indeterminate vertex), which have many applications in social 

sciences.  

Another type of neutrosophic graph is when at least one edge has a neutrosophic (t, i, f) truth-value. 

As a consequence, the Neutrosophic Cognitive Maps (Vasantha & Smarandache, 2003]) and 

Neutrosophic Relational Maps (Vasantha & Smarandache, 2004) are generalizations of fuzzy 

cognitive maps and respectively fuzzy relational maps, Neutrosophic Relational Equations 

(Vasantha & Smarandache, 2004), Neutrosophic Relational Data (Wang, Smarandache,  

Sunderraman, Rogatko - 2008), etc. 
A Neutrosophic Cognitive Map is a neutrosophic directed graph with concepts like policies, events etc. 

as vertices, and causalities or indeterminates as edges. It represents the causal relationship between 

concepts. 

An edge is said indeterminate if we don’t know if it is any relationship between the vertices it 

connects, or for a directed graph we don’t know if it is a directly or inversely proportional 

relationship. We may write for such edge that (t, i, f) = (0, 1, 0). 

A vertex is indeterminate if we don’t know what kind of vertex it is since we have incomplete 

information. We may write for such vertex that (t, i, f) = (0, 1, 0). 

Example of Neutrosophic Graph (edges V1V3, V1V5, V2V3 are indeterminate and they are drawn as 

dotted): 
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Fig. 2. Neutrosophic Graph { with I (indeterminate) edges }

and its neutrosophic adjacency matrix is: 























0110I

10100

110II

00I01

I0I10

Fig. 3. Neutrosophic Adjacency Matrix of the Neutrosophic Graph 

The edges mean: 0 = no connection between vertices, 1 = connection between vertices, I = 

indeterminate connection (not known if it is, or if it is not). 

Such notions are not used in the fuzzy theory. 

Example of Neutrosophic Cognitive Map (NCM), which is a generalization of the Fuzzy Cognitive 

Maps. 

Let’s have the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practicing/encouraging Child Labor 

C7 - Good Non-Governmental Organizations (NGOs) 
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Fig. 4. Neutrosophic Cognitive Map 

The corresponding neutrosophic adjacency matrix related to this neutrosophic cognitive map is: 

Fig. 4. Neutrosophic Adjacency Matrix of the Neutrosophic Cognitive Map 

The edges mean: 0 = no connection between vertices, 1 = directly proportional connection,  

-1 = inversely proportionally connection, and I = indeterminate connection (not knowing what kind 

of relationship is between the vertices that the edge connects). 

Such literal indeterminacy (letter I) does not occur in previous set theories, including 

intuitionistic fuzzy set; they had only numerical indeterminacy. 

d) Another type of neutrosophic graphs (and trees) [Smarandache, 2015, [41]]:

An edge of a graph, let's say from A to B (i.e. how A influences B), 

may have a neutrosophic value (t, i, f), 

where t means the positive influence of A on B, 

  i means the indeterminate influence of A on B, 

 and f means the negative influence of A on B.  

Then, if we have, let's say: A->B->C such that A->B has the neutrosophic value (t1, i1, f1) 

and B->C has the neutrosophic value (t2, i2, f2), then A->C has the neutrosophic value (t1, 

i1, f1)/\(t2, i2. f2), where /\ is the AND neutrosophic operator. 
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e) Also, again a different type of graph: we can consider a vertex A as: t% belonging/membership

to the graph, i% indeterminate membership to the graph, and f% nonmembership 

to the graph. 

13.f)  Any of the previous types of graphs (or trees) put together. 

13.g) Tripolar (and Multipolar) Graph, which is a graph whose vertexes or edges have the form 

(<T+, T0, T->, <I+, I0, I->, <F+, F0, F->) and respectively: (<T+
j, T0, T-

j>, <I+
j, I0, I-

j>, <F+
j, F0, F-

j>). 

49.17) The Neutrosophic Probability (NP), introduced in 1995, was extended and developed as a 

generalization of the classical and imprecise probabilities {Smarandache, 2013 [11]}.  NP of an 

event E  is the chance that event E occurs, the chance that event E doesn’t occur, and the chance of

indeterminacy (not knowing if the event E occurs or not).

In classical probability nsup ≤ 1, while in neutrosophic probability nsup ≤  3+. 

In imprecise probability: the probability of an event is a subset T in [0, 1], not a number p in     [0, 

1], what’s left is supposed to be the opposite, subset F (also from the unit interval [0, 1]); there is 

no indeterminate subset I in imprecise probability. 

In neutrosophic probability one has, besides randomness, indeterminacy due to construction 

materials and shapes of the probability elements and space. 

In consequence, neutrosophic probability deals with two types of variables: random variables and 

indeterminacy variables, and two types of processes: stochastic process and respectively 

indeterminate process. 

49.18) And consequently the Neutrosophic Statistics, introduced in 1995 and developed in 

{Smarandache, 2014, [12]}, which is the analysis of the neutrosophic events. 

Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate 

(imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample 

size might not be exactly determinate because of some individuals that partially belong to the 

population or sample, and partially they do not belong, or individuals whose appurtenance is 

completely unknown. Also, there are population or sample individuals whose data could be 

indeterminate. It is possible to define the neutrosophic statistics in many ways, because there are 

various types of indeterminacies, depending on the problem to solve.  

Neutrosophic statistics deals with neutrosophic numbers, neutrosophic probability distribution, 

neutrosophic estimation, neutrosophic regression. 

The function that models the neutrosophic probability of a random variable x is called neutrosophic 

distribution: NP(x) = ( T(x), I(x), F(x) ), where T(x) represents the probability that value x occurs, 

F(x) represents the probability that value x does not occur, and I(x) represents the indeterminate / 

unknown probability of value x. 

49.19) Also, Neutrosophic Measure and Neutrosophic Integral were introduced {Smarandache,  

2013, [11]}. 

49.20) Neutrosophy {Smarandache, 1995, [1, 2, 3, 4, 5, 7]} opened a new field in philosophy. 
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Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, 

as well as their interactions with different ideational spectra. 

This theory considers every notion or idea <A> together with its opposite or negation <Anti-A> 

and the spectrum of "neutralities" <Neut-A> (i.e. notions or ideas located between the two 

extremes, supporting neither <A> nor <Anti-A>). The <Neut-A> and <Anti-A> ideas together are 

referred to as <Non-A>. 

According to this theory every idea <A> tends to be neutralized and balanced by <Anti-A> and 

<Non-A> ideas - as a state of equilibrium. 

In a classical way <A>, <Neut-A>, <Anti-A> are disjoint two by two. 

But, since in many cases the borders between notions are vague, imprecise, Sorites, it is 

possible that <A>, <Neut-A>, <Anti-A> (and <Non-A> of course) have common parts two by two 

as well. 

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability and 

statistics used in engineering applications (especially for software and information fusion), 

medicine, military, cybernetics, physics. 

We have extended dialectics (based on the opposites <A> and <antiA>) to neutrosophy (based on 

<A>, <antiA> and <neutA>. 

49.21) In consequence, we extended the thesis-antithesis-synthesis to thesis-antithesis-neutrothesis-

neutrosynthesis {Smarandache, 2015 [41]}. 

49.22) Neutrosophy extended the Law of Included Middle to the Law of Included Multiple-

Middle {Smarandache, 2014 [10]} in accordance with the n-valued refined neutrosophic logic. 

49.23) Smarandache (2015 [41]) introduced the Neutrosophic Axiomatic System and 

Neutrosophic Deducibility. 

49.24) Then he introduced the (t, i, f)-Neutrosophic Structure (2015 [41]), which is a structure 

whose space, or at least one of its axioms (laws), has some indeterminacy of the form (t, i, f)  ≠ (1, 

0, 0). 

Also, we defined the combined (t, i, f)-I-Neutrosophic Algebraic Structures, i.e. algebraic structures 

based on neutrosophic numbers of the form a + bI, but also having some indeterminacy [ of the 

form (t, i, f)  ≠ (1, 0, 0) ] related to the structure space (i.e. elements which only partially belong to 

the space, or elements we know nothing if they belong to the space or not) or indeterminacy     [ of 

the form (t, i, f)  ≠ (1, 0, 0) ] related to at least one axiom (or law) acting on the structure space) . 

Even more, we generalized them to Refined (t, i, f)- Refined I-Neutrosophic Algebraic Structures, 

or (tj, ik, fl)-is-Neutrosophic Algebraic Structures; where tj means that t has been refined to j 

subcomponents t1, t2, …, tj; similarly for ik, fl and respectively is.   



45 

49.25)  Smarandache and Ali [2014-2016] introduced the Neutrosophic Triplet Structures [42, 43, 

44]. 

A Neutrosophic Triplet, is a triplet of the form: 

< a, neut(a), anti(a) >, 

where neut(a) is the neutral of a, i.e. an element (different from the identity element of the 

operation *) such that a*neut(a) = neut(a)*a = a, 

while anti(a) is the opposite of a, i.e. an element such that a*anti(a) = anti(a)*a = neut(a). 

Neutrosophy means not only indeterminacy, but also neutral (i.e. neither true nor false). 

For example we can have neutrosophic triplet semigroups, neutrosophic triplet loops, etc. 

Further on Smaradnache extended the neutrosophic triplet < a, neut(a), anti(a) > to a 

m-valued refined neutrosophic triplet, 

in a similar way as it was done for T1, T2, ...;  I1, I2, ...;  F1, F2, ... (i.e. the refinement of 

neutrosophic components). 

It will work in some cases, depending on the composition law *. It depends on each * how many 

neutrals and anti's there is for each element "a". 

   We may have an m-tuple with respect to the element “a” in the following way: 

( a;  neut1(a), neut2(a), ..., neutp(a);  anti1(a), anti2(a), ..., antip(a) ),  

where m = 1+2p,  

such that: 

- all neut1(a), neut2(a), ..., neutp(a) are distinct two by two, and each one is different from the 

unitary element with respect to the composition law *; 

- also: 

a*neut1(a) = neut1(a)*a = a 

a*neut2(a) = neut2(a)*a = a 

........................................... 

a*neutp(a) = neutp(a)*a = a; 

- and 

a*anti1(a) = anti1(a)*a = neut1(a) 

a*anti2(a) = anti2(a)*a = neut2(a) 

.................................................... 

a*antip(a) = antip(a)*a = neutp(a); 

- where all anti1(a), anti2(a), ..., antip(a) are distinct two by two, and in case when there are 

duplicates, the duplicates are discarded. 

49.26) As latest minute development, the crisp, fuzzy, intuitionistic fuzzy, inconsistent 

intuitionistic fuzzy (picture fuzzy, ternary fuzzy), and neutrosophic sets were extended by 

Smarandache [45] in 2017 to plithogenic set, which is:  

A set P whose elements are characterized by many attributes’ values. An attribute value v 

has a corresponding (fuzzy, intuitionistic fuzzy, picture fuzzy, or neutrosophic) degree of 

appurtenance d(x,v) of the element x, to the set P, with respect to some given criteria. In order to 

obtain a better accuracy for the plithogenic aggregation operators in the plithogenic set, and for a 

more exact inclusion (partial order), a (fuzzy, intuitionistic fuzzy, picture fuzzy, or neutrosophic) 

contradiction (dissimilarity) degree is defined between each attribute value and the dominant (most 

important) attribute value. The plithogenic intersection and union are linear combinations of the 

fuzzy operators t-norm and t-conorm, while the plithogenic complement (negation), inclusion 
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(inequality), equality (equivalence) are influenced by the attribute values contradiction 

(dissimilarity) degrees. 

35. Conclusion

In this paper we proved that neutrosophic set is a generalization of intuitionistic fuzzy set and 

inconsistent intuitionistic fuzzy set (picture fuzzy set, ternary fuzzy set).  

By transforming (restraining) the neutrosophic components into intuitionistic fuzzy components, as 

Atanassov and Vassiliev proposed, the independence of the components is lost and the 

indeterminacy is ignored by the intuitionistic fuzzy aggregation operators. Also, the result after 

applying the neutrosophic operators is different from the result obtained after applying the 

intuitionistic fuzzy operators (with respect to the same problem to solve). 

We presented many distinctions between neutrosophic set and intuitionistic fuzzy set, and we 

showed that neutrosophic set is more general and more flexible than previous set theories. 

Neutrosophy’s applications in various fields such neutrosophic probability, neutrosophic statistics, 

neutrosophic algebraic structures and so on were also listed {see also [46]}. 

Neutrosophic Set (NS) is also a generalization of Inconsistent Intuitionistic Fuzzy Set (IIFS)

{ which is equivalent to the Picture Fuzzy Set (PFS) and Ternary Fuzzy Set (TFS) }, Pythagorean 

Fuzzy Set (PyFS) {Atanassov’s Intuitionistic Fuzzy Set of second type}, Spherical Fuzzy Set 

(SFS), n-HyperSpherical Fuzzy Set (n-HSFS), and q-Rung Orthopair Fuzzy Set (q-ROFS). And 

Refined Neutrosophic Set (RNS) is an extension of Neutrosophic Set. And all these sets are more 

general than Intuitionistic Fuzzy Set.  

Neutrosophy is a particular case of Refined Neutrosophy, and consequently Neutrosophication is a 

particular case of Refined Neutrosophication. Also, Regret Theory, Grey System Theory, and 

Three-Ways Decision are particular cases of Neutrosophication and of Neutrosophic Probability. 

We have extended the Three-Ways Decision to n-Ways Decision, which is a particular case of 

Refined Neutrosophy. 

Acknowledgement  

The author deeply thanks Dr. Said Broumi for revealing Atanassov and Vassiliev’s paper [6] and 

for his comments. 

References 

[1] Florentin Smarandache, Definition of Neutrosophic Logic – A Generalization of the 

Intuitionistic Fuzzy Logic, Proceedings of the Third Conference of the European Society for Fuzzy 

Logic and Technology, EUSFLAT 2003, September 10-12, 2003, Zittau, Germany; University of 

Applied Sciences at Zittau/Goerlitz, 141-146.  

[2-3-4] Florentin Smarandache, Neutrosophic Set, A Generalization of the Intuitionistic Fuzzy Set 



47 

a. in International Journal of Pure and Applied Mathematics, Vol. 24, No. 3, 287-297,

2005; 

b. also in Proceedings of 2006 IEEE International Conference on Granular Computing,

edited by Yan-Qing Zhang and Tsau Young Lin, Georgia State University, Atlanta, 

pp. 38-42, 2006; 

c. second version in Journal of Defense Resources Management, Brasov, Romania, No.

1, 107-116, 2010. 

[5] Florentin Smarandache, A Geometric Interpretation of the Neutrosophic Set – A Generalization 

of the Intuitionistic Fuzzy Set, 2011 IEEE International Conference on Granular Computing, edited 

by Tzung-Pei Hong, Yasuo Kudo, Mineichi Kudo, Tsau-Young Lin, Been-Chian Chien, Shyue-

Liang Wang, Masahiro Inuiguchi, GuiLong Liu, IEEE Computer Society, National University of 

Kaohsiung, Taiwan, 602-606, 8-10 November 2011, http://fs.unm.edu/IFS-generalized.pdf  

[6] Krassimir Atanassov and Peter Vassilev, Intuitionistic fuzzy sets and other fuzzy sets extensions 

representable by them, Journal of Intelligent & Fuzzy Systems, xx (20xx) x–xx, 2019, IOS Press, 

DOI: 10.3233/JIFS-179426 (under press). 

[7] Florentin Smarandache, Neutrosophy, A New Branch of Philosophy, Multiple-Valued Logic / 

An International Journal, Vol. 8, No. 3, 297-384, 2002. This whole issue of this journal is dedicated 

to Neutrosophy and Neutrosophic Logic, http://fs.unm.edu/Neutrosophy-A-New-Branch-of-

Philosophy.pdf  

[8] Florentin Smarandache, Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic 

Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics, 168 p., 

Pons Editions, Bruxelles, Belgique, 2016; https://arxiv.org/ftp/arxiv/papers/1607/1607.00249.pdf 

[9] Florentin Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications in Physics, 

Progress in Physics, 143-146, Vol. 4, 2013; https://arxiv.org/ftp/arxiv/papers/1407/1407.1041.pdf 

[10] Florentin Smarandache, Law of Included Multiple-Middle & Principle of Dynamic 

Neutrosophic Opposition, by Florentin Smarandache, EuropaNova & Educational, Brussels-

Columbus (Belgium-USA), 136 p., 2014; http://fs.unm.edu/LawIncludedMultiple-Middle.pdf 

[11] Florentin Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral and 

Neutrosophic Probability, Sitech, 2013,  

http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbability.pdf 

[12] Florentin Smarandache, Introduction to Neutrosophic Statistics, Sitech, 2014, 

http://fs.gallup.unm.edu/NeutrosophicStatistics.pdf.  

[13] Florentin Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic. ProQuest 

Information and Learning, Ann Arbor, Michigan, USA, 105 p., 1998, 2000, 2002, 2005, 2006. 

[14] Florentin Smarandache, A Unifying Field in Logics: Neutrosophic Logic, Multiple-Valued 

Logic / An International Journal, Vol. 8, No. 3, 385-438, 2002, http://fs.unm.edu /eBook-

Neutrosophics6.pdf 

http://fs.unm.edu/IFS-generalized.pdf
http://fs.unm.edu/Neutrosophy-A-New-Branch-of-Philosophy.pdf
http://fs.unm.edu/Neutrosophy-A-New-Branch-of-Philosophy.pdf
https://arxiv.org/ftp/arxiv/papers/1607/1607.00234.pdf
https://arxiv.org/ftp/arxiv/papers/1407/1407.1041.pdf
http://fs.unm.edu/LawIncludedMultiple-Middle.pdf
http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbability.pdf
http://fs.gallup.unm.edu/NeutrosophicStatistics.pdf


48 

[15] Florentin Smarandache, editor, Proceedings of the First International Conference on 

Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, 

University of New Mexico, Gallup Campus, Xiquan, Phoenix, 147 p., 2002, http://fs.unm.edu 

/NeutrosophicProceedings.pdf. 

[16] Krassimir Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20: 87-96, 1986. 

[17] Krassimir T. Atanassov, Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg, N.Y., 1999. 

[18] Krassimir Atanassov, Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed 

in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian); Reprinted: Int J 

Bioautomation 20(S1) (2016), pp. S1-S6. 

[19] C. Hinde and R. Patching, Inconsistent intuitionistic fuzzy sets. Developments in Fuzzy Sets, 

Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics 1 (2008), 133–153. 

[20] B.C. Cuong and V. Kreinovich, Picture fuzzy sets - a new concept for computational 

intelligence problems, Proceedings of the Third World Congress on Information and 

Communication Technologies WICT’2013, Hanoi, Vietnam, December 15-18, 2013, pp. 1-6. 

[21] Chao Wang, Minghu Ha and Xiaqowei Liu, A mathematical model of ternary fuzzy set for 

voting, Journal of Intelligent & Fuzzy Systems, 29 (2015), 2381-2386. 

[22] Florentin Smarandache, Degree of Dependence and Independence of the (Sub)Components of 

Fuzzy Set and Neutrosophic Set, Neutrosophic Sets and Systems, vol. 11, 2016, pp. 95-97, 

doi.org/10.5281/zenodo.571359, 

http://fs.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf  

[23] Princy R, Mohana K, Spherical Bipolar Fuzzy Sets and its Application in Multi Criteria 

Decision Making Problem, Journal of New Theory, 2019 (under press). 

[24] R. R. Yager, Pythagorean fuzzy subsets, Joint IFSA World Congress and NAFIPS Annual 

Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, pp. 57-61. 

[25] Fatma Kutlu Gündoğdu, Cengiz Kahraman, A novel spherical fuzzy QFD method and its 

application to the linear delta robot technology development, Engineering Applications of 

Artificial Intelligence, 87 (2020) 103348. 

[26] Abhishek Guleria, Rakesh Kumar Bajaj, T-Spherical Fuzzy Graphs: Operations and 

Applications in Various Selection Processes, Arabian Journal for Science and Engineering, 

https://doi.org/10.1007/s13369-019-04107-y 

[27] Florentin Smarandache, Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid 

Operators, Modal Logic, Hedge Algebras. And Applications, Second extended and improved 

edition, Pons Publishing House Brussels, 2017, http://fs.unm.edu/NeutrosophicPerspectives-

ed2.pdf 

http://fs.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf
http://fs.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf
https://doi.org/10.5281/zenodo.571359
http://fs.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf
http://fs.unm.edu/NeutrosophicPerspectives-ed2.pdf
http://fs.unm.edu/NeutrosophicPerspectives-ed2.pdf


49 

[28] Ronald R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., vol. 25, no. 5, 

pp. 1222-1230, Oct. 2017. 

[29] H. Bleichrodt, A. Cillo, E. Diecidue, A quantitative measurement of regret theory, Manage. 

Sci. 56(1) (2010) 161-175. 

[30] J. L. Deng, Introduction to Grey System Theory, The Journal of Grey System, 1(1): 1-24, 

1989. 

[31] Y. Yao, Three-way decision: an interpretation of rules in rough set theory, in Proceeding of 

4th International Conference on Rough Sets and Knowledge Technology, LNAI, Vol. 5589, 

Springer Berlin Heidelberg, 2009, pp. 642–649. 

[32] Florentin Smarandache, Three-Ways Decision is a particular case of Neutrosophication, in 

volume Nidus Idearum. Scilogs, VII: superluminal physics, vol. vii, Pons Ed., Brussels, pp. 97 - 

102, 2019. 

[33] Prem Kumar Singh, Three-way fuzzy concept lattice representation using neutrosophic set, 

International Journal of Machine Learning and Cybernetics, 2017, Vol 8, Issue 1, pp. 69-79. 

[34] Prem Kumar Singh, Three-way n-valued neutrosophic concept lattice at different 

granulation, International Journal of Machine Learning and Cybernetics, November 2018, Vol 9, 

Issue 11, pp. 1839-1855. 

[35] Prem Kumar Singh, Complex neutrosophic concept lattice and its applications to Air quality 

analysis, Chaos, Solitons and Fractals, Elsevier, 2018, Vol 109, pp. 206-213. 

[36] Prem Kumar Singh, Interval-valued neutrosophic graph representation of concept lattice and 

its (α, β, γ)-decomposition, Arabian Journal for Science and Engineering, Springer, 2018, Vol. 43, 

Issue 2, pp. 723-740. 

[37] Florentin Smarandache, Extension of Three-Ways Decision to n-Ways Decision, in NIDUS 

IDEARUM. scilogs, VII: superluminal physics Brussels, 2019, 

http://fs.unm.edu/NidusIdearum7.pdf 

[38] Jean Dezert, Open Questions to Neutrosophic Inferences, Multiple-Valued Logic / An 

International Journal, Vol. 8, No. 3, 439-472, June 2002. 

[39] Didier Dubois, S. Gottwald, P. Hajek, Henry Prade, Terminological difficulties in fuzzy set 

theory – The case of intuitionistic fuzzy sets, Fuzzy Sets and Systems, 156 (2005), 585-491. 

[40] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Cognitive Maps and Neutrosophic 

Cognitive Maps, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 2003.  

[41] Florentin Smarandache, Symbolic Neutrosophic Theory, Europa Nova, Bruxelles, 194 p., 

2015; https://arxiv.org/ftp/arxiv/papers/1512/1512.00047.pdf  

http://fs.unm.edu/NidusIdearum7.pdf
https://arxiv.org/ftp/arxiv/papers/1512/1512.00047.pdf


50 

[42] Florentin Smarandache, Mumtaz Ali, The Neutrosophic Triplet Group and its Application to 

Physics, presented by F. S. to Universidad Nacional de Quilmes, Department of Science and 

Technology, Bernal, Buenos Aires, Argentina, 02 June 2014. 

[43] Florentin Smarandache and Mumtaz Ali, Neutrosophic Triplet Group, Neural Computing and 

Applications, Springer, 1-7, 2016, DOI: 10.1007/s00521-016-2535-x, 

http://fs.unm.edu/NeutrosophicTriplets.htm 

[44] F. Smarandache, M. Ali, Neutrosophic triplet as extension of matter plasma, unmatter plasma, 

and antimatter plasma, 69th annual gaseous electronics conference, Bochum, Germany, 

Veranstaltungszentrum & Audimax, Ruhr-Universitat, 10–14 Oct. 2016, 

http://meetings.aps.org/Meeting/GEC16/Session/HT6.111 

[45] Florentin Smarandache, Plithogeny, Plithogenic Set, Logic, Probability, and Statistics, Infinite 

Study Publ. Hse., GoogleLLC, Mountain View, California, USA, 2017, 

https://arxiv.org/ftp/arxiv/papers/1808/1808.03948.pdf Harvard SAO/NASA ADS: 

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1808.03948 

[46] Florentin Smarandache, Neutrosophic Set as Generalization of Intuitioonistic Fuzzy Set, 

Picture Fuzzy Set and Spherical Fuzzy Set, and its Physical Applications, 2019 Joint Fall Meeting 

of the Texas Sections of American Physical Society (APS), AAPT and Zone 13 of the SPS, Friday–

Saturday, October 25–26, 2019; Lubbock, Texas, USA, 

http://meetings.aps.org/Meeting/TSF19/scheduling?ukey=1480464-TSF19-otUQvu 

[ This version is slightly updated with respect to the previously published versions. ] 

http://fs.unm.edu/NeutrosophicTriplets.htm
http://meetings.aps.org/Meeting/GEC16/Session/HT6.111
https://arxiv.org/ftp/arxiv/papers/1808/1808.03948.pdf
http://adsabs.harvard.edu/
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1808.03948
http://meetings.aps.org/Meeting/TSF19/scheduling?ukey=1480464-TSF19-otUQvu
https://arxiv.org/ftp/arxiv/papers/1911/1911.07333.pdf
https://digitalrepository.unm.edu/math_fsp/21



