On r-Dynamic Coloring of the Triple Star Graph Families

T.Deepa and M. Venkatachalam

(Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamilnadu, India)

E-mail: deepathangavelu88@gmail.com, venkatmaths@gmail.com

Abstract: An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \ge \min\{r, d(v)\}$, for each $v \in V(G)$. The r-dynamic chromatic number of a graph G is the minimum k such that G has an r-dynamic coloring with k colors. In this paper we investigate the r-dynamic chromatic number of the central graph, middle graph, total graph and line graph of the triple star graph $K_{1,n,n,n}$ denoted by $C(K_{1,n,n,n})$, $M(K_{1,n,n,n})$, $T(K_{1,n,n,n})$ and $L(K_{1,n,n,n})$ respectively.

Key Words: Smarandachely r-dynamic coloring, r-dynamic coloring, triple star graph, central graph, middle graph, total graph and line graph.

AMS(2010): 05C15.

§1. Introduction

Graphs in this paper are simple and finite. For undefined terminologies and notations see [5, 17]. Thus for a graph G, $\delta(G)$, $\Delta(G)$ and $\chi(G)$ denote the minimum degree, maximum degree and chromatic number of G respectively. When the context is clear we write, δ , Δ and χ for brevity. For $v \in V(G)$, let N(v) denote the set of vertices adjacent to v in G and d(v) = |N(v)|. The r-dynamic chromatic number was first introduced by Montgomery [14].

An r-dynamic coloring of a graph G is a map c from V(G) to the set of colors such that (i) if $uv \in E(G)$, then $c(u) \neq c(v)$ and (ii) for each vertex $v \in V(G)$, $|c(N(v))| \geq \min\{r, d(v)\}$, where N(v) denotes the set of vertices adjacent to v, d(v) its degree and r is a positive integer. Generally, for a subgraph $G' \prec G$ and a coloring c on G if $|c(N(v))| \geq \min\{r, d(v)\}$ for $v \in V(G \setminus G')$ but $|c(N(v))| \leq \min\{r, d(v)\}$ for $u \in V(G')$, such a r coloring is called a Smarandachely r-dynamic coloring on G. Clearly, if $G' = \emptyset$, a Smarandachely r-dynamic coloring is nothing else but the r-dynamic coloring.

The first condition characterizes proper colorings, the adjacency condition and second condition is double-adjacency condition. The r-dynamic chromatic number of a graph G, written $\chi_r(G)$, is the minimum k such that G has an r-dynamic proper k-coloring. The 1-dynamic chromatic number of a graph G is equal to its chromatic number. The 2-dynamic chromatic number of a graph has been studied under the name dynamic chromatic number denoted by $\chi_d(G)$ [1-4, 8]. By simple observation, we can show that $\chi_r(G) \leq \chi_{r+1}(G)$, however $\chi_{r+1}(G) - \chi_r(G)$ can

¹Received September 9, 2017, Accepted May 26, 2018.

be arbitrarily large, for example $\chi(Petersen) = 2$, $\chi_d(Petersen) = 3$, but $\chi_3(Petersen) = 10$. Thus, finding an exact values of $\chi_r(G)$ is not trivially easy.

There are many upper bounds and lower bounds for $\chi_d(G)$ in terms of graph parameters. For example, for a graph G with $\Delta(G) \geq 3$, Lai et al. [8] proved that $\chi_d(G) \leq \Delta(G) + 1$. An upper bound for the dynamic chromatic number of a d-regular graph G in terms of $\chi(G)$ and the independence number of G, $\alpha(G)$, was introduced in [7]. In fact, it was proved that $\chi_d(G) \leq \chi(G) + 2log_2\alpha(G) + 3$. Taherkhani gave in [15] an upper bound for $\chi_2(G)$ in terms of the chromatic number, the maximum degree Δ and the minimum degree δ . i.e., $\chi_2(G) - \chi(G) \leq \lceil (\Delta e)/\delta log (2e(\Delta^2 + 1)) \rceil$.

Li et al. proved in [10] that the computational complexity of $\chi_d(G)$ for a 3-regular graph is an NP-complete problem. Furthermore, Li and Zhou [9] showed that to determine whether there exists a 3-dynamic coloring, for a claw free graph with the maximum degree 3, is NP-complete.

N.Mohanapriya et al. [11, 12] studied the dynamic chromatic number for various graph families. Also, it was proven in [13] that the r- dynamic chromatic number of line graph of a helm graph H_n is

$$\chi_r(L(H_n)) = \begin{cases} n-1, & \delta \le r \le n-2, \\ n+1, & r=n-1, \\ n+2, & r=n \text{ and } n \equiv 1 \mod 3, \\ n+3, & r=n \text{ and } n \not\equiv 1 \mod 3, \\ n+4, & r=n+1=\Delta, n \ge 6 \text{ and } 2n-2 \equiv 0 \mod 5, \\ n+5, & r=n+1=\Delta, n \ge 6 \text{ and } 2n-2 \not\equiv 0 \mod 5. \end{cases}$$

In this paper, we study $\chi_r(G)$, the r- dynamic chromatic number of the middle, central, total and line graphs of the triple star graphs are discussed.

§2. Preliminaries

Let G be a graph with vertex set V(G) and edge set E(G). The middle graph [6] of G, denoted by M(G) is defined as follows. The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices x, y of M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and x, y are adjacent in G. (ii) x is in V(G), y is in E(G), and x, y are incident in G.

The central graph [16] C(G) of a graph G is obtained from G by adding an extra vertex on each edge of G, and then joining each pair of vertices of the original graph which were previously non-adjacent.

Let G be a graph with vertex set V(G) and edge set E(G). The total graph [6, 16] of G, denoted by T(G) is defined in the following way. The vertex set of T(G) is $V(G) \cup E(G)$. Two vertices x, y of T(G) are adjacent in T(G) in case one of the following holds: (i) x, y are in V(G) and x is adjacent to y in G. (ii) x, y are in E(G) and x, y are adjacent in G. (iii) x is in V(G), y is in E(G), and x, y are incident in G.

The line graph [13] of G denoted by L(G) is the graph with vertices are the edges of G

with two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

Theorem 2.1 For any triple star graph $K_{1,n,n,n}$, the r-dynamic chromatic number

$$\chi_r(C(K_{1,n,n,n})) = \begin{cases} 2n+1, & r=1\\ 3n+1, & 2 \le r \le \Delta - 1\\ 4n+1, & r \ge \Delta \end{cases}$$

Proof First we apply the definition of central graph on $K_{1,n,n,n}$. Let the edge vv_i , v_iw_i and w_iu_i be subdivided by the vertices $e_i(1 \le i \le n)$, $e_i'(1 \le i \le n)$ and $e_i''(1 \le i \le n)$ in $K_{1,n,n,n}$.

Clearly $V(C(K_{1,n,n,n})) = \{v\} \bigcup \{v_i : 1 \le i \le n\} \bigcup \{w_i : 1 \le i \le n\} \bigcup \{u_i : 1 \le i \le n\}$ $\bigcup \{e_i : 1 \le i \le n\} \bigcup \{e'_i : 1 \le i \le n\} \bigcup \{e''_i : 1 \le i \le n\}$. The vertices $v_i(1 \le i \le n)$ induce a clique of order n (say K_n) and the vertices $v, u_i(1 \le i \le n)$ induce a clique of order n + 1 (say K_{n+1}) in $C(K_{1,n,n,n})$ respectively. Thus, we have $\chi_r(C(K_{1,n,n,n})) \ge n + 1$.

Case 1. r = 1.

Consider the color class $C_1 = \{c_1, c_2, c_3, \dots, c_{(2n+1)}\}$ and assign the r-dynamic coloring to $C(K_{1,n,n,n})$ by Algorithm 2.1.1. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(C(K_{1,n,n,n})) = 2n+1$.

Case 2. $2 \le r \le \Delta - 1$.

Consider the color class $C_2 = \{c_1, c_2, c_3, \dots, c_{(3n+1)}\}$ and assign the r-dynamic coloring to $C(K_{1,n,n,n})$ by Algorithm 2.1.2. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(C(K_{1,n,n,n})) = 3n+1$.

Case 3. $r \geq \Delta$.

Consider the color class $C_3 = \{c_1, c_2, c_3, \cdots, c_{(4n+1)}\}$ and assign the r-dynamic coloring to $C(K_{1,n,n,n})$ by Algorithm 2.1.3. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence $\chi_r(C(K_{1,n,n,n})) = 4n + 1$.

Algorithm 2.1.1

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $C(K_{1,n,n,n})$.

begin for i = 1 to n{ $V_1 = \{e_i\};$ $C(e_i) = i;$ } $V_2 = \{v\};$ C(v) = n + 1;

```
for i = 1 to n
V_3 = \{v_i\};
C(v_i) = n + i + 1;
for i = 1 to n
V_4 = \{e_i'\};
C(e_i') = n + 1;
for i=1 to n
V_5 = \{w_i\};
C(w_i) = i;
for i = 1 to n
V_6 = \{e_i''\};
C(e_i^{\prime\prime}) = n + 1;
for i = 1 to n
V_7 = \{u_i\};
C(u_i) = i;
V = V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7;
end
```

Algorithm 2.1.2

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $C(K_{1,n,n,n})$.

```
begin
for i = 1 to n
{
V_1 = \{u_i\};
C(u_i) = i;
}
for i = 1 to n
{
V_2 = \{e_i''\};
C(e_i'') = n + 1;
}
```

```
for i=1 to n
V_3 = \{w_i\};
C(w_i) = n + i + 1;
for i = 1 to n
V_4 = \{e_i'\};
C(e_i') = i;
for i = 1 to n
V_5 = \{v_i\};
C(v_i) = 2n + i + 1;
for i = 1 to n - 1
V_6 = \{e_i\};
C(e_i) = 2n + i + 2;
}
C(e_n) = 2n + 2;
V_7 = \{v\};
C(v) = n + 1;
V = V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7;
end
```

Algorithm 2.1.3

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $C(K_{1,n,n})$.

```
begin for i = 1 to n {  V_1 = \{u_i\}; \\ C(u_i) = i; \}   V_2 = \{v\}; \\ C(v) = n+1; \\ \text{for } i = 1 \text{ to } n  {  V_3 = \{w_i\}; \\ C(w_i) = n+i+1; \}
```

```
for i=1 to n {  V_4=\{v_i\}; \\ C(v_i)=2n+i+1; \}  for i=1 to n {  V_5=\{e_i\}; \\ C(e_i)=3n+i+1; \}  for i=1 to n {  V_6=\{e_i'\}; \\ C(e_i')=i; \}  for i=1 to n {  V_7=\{e_i''\}; \\ C(e_i'')=3n+2; \}  }  V=V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7;  end
```

Theorem 2.2 For any triple star graph $K_{1,n,n,n}$, the r-dynamic chromatic number

$$\chi_r(M(K_{1,n,n,n})) = \begin{cases} n+1, & 1 \le r \le n \\ n+2, & r=n+1 \\ n+3, & r \ge \Delta \end{cases}$$

Proof By definition of middle graph, each edge vv_i , v_iw_i and w_iu_i be subdivided by the vertices $e_i(1 \le i \le n)$, $e_i'(1 \le i \le n)$ and $e_i''(1 \le i \le n)$ in $K_{1,n,n,n}$ and the vertices v, e_i induce a clique of order n+1(say K_{n+1}) in $M(K_{1,n,n,n})$. i.e., $V(M(K_{1,n,n,n}))=\{v\}\bigcup\{v_i:1\le i\le n\}\bigcup\{w_i:1\le i \le n\}\bigcup\{e_i':1\le i \le n\}\bigcup\{e_i':1\le i \le n\}\bigcup\{e_i'':1\le i \le n\}$. Thus we have $\chi_r(M(K_{1,n,n,n}))\ge n+1$.

Case 1. $1 \le r \le n$.

Consider the color class $C_1 = \{c_1, c_2, c_3, \cdots, c_{(n+1)}\}$ and assign the r-dynamic coloring to $M(K_{1,n,n,n})$ by Algorithm 2.2.1. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(M(K_{1,n,n,n})) = n+1$, for $1 \le r \le n$.

Case 2. r = n + 1.

Consider the color class $C_2 = \{c_1, c_2, c_3, \cdots, c_{(n+1)}, c_{(n+2)}\}$ and assign the r-dynamic coloring to $M(K_{1,n,n,n})$ by Algorithm 2.2.2. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(M(K_{1,n,n,n})) = n+2$, for r=n+1.

Case 3. $r = \Delta$.

Consider the color class $C_3 = \{c_1, c_2, c_3, \cdots, c_n, c_{(n+1)}, c_{(n+2)}, c_{(n+3)}\}$ and assign the r-dynamic coloring to $M(K_{1,n,n,n})$ by Algorithm 2.2.3. Thus, an easy check shows that the r-adjacency condition is fulfilled. Hence, $\chi_r(M(K_{1,n,n,n})) = n+3$, for $r \geq \Delta$.

Algorithm 2.2.1

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $M(K_{1,n,n,n})$.

```
begin
for i = 1 to n
{
V_1 = \{e_i\};
C(e_i) = i;
V_2 = \{v\};
C(v) = n + 1;
for i = 1 to n
{
V_3 = \{v_i\};
C(v_i) = n + 1;
for i = 1 to n - 1
V_4 = \{e_i'\};
C(e'_i) = i + 1;
C(e'_n) = 1;
for i = 1 to n - 2
V_5 = \{w_i\};
C(w_i) = i + 2;
C(w_{n-1}) = 1;
C(w_n) = 2;
for i = 1 to n
V_6 = \{e_i''\};
C(e_i^{\prime\prime}) = n + 1;
```

```
} for i=1 to n {  V_7=\{u_i\}; \\ C(u_i)=i; \\ \} \\ V=V_1\bigcup V_2\bigcup V_3\bigcup V_4\bigcup V_5\bigcup V_6\bigcup V_7; \\ \text{end}
```

Algorithm 2.2.2

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $M(K_{1,n,n,n})$.

```
begin
for i = 1 to n
V_1 = \{e_i\};
C(e_i) = i;
V_2 = \{v\};
C(v) = n + 1;
for i = 1 to n
{
V_3 = \{v_i\};
C(v_i) = n + 2;
for i=1 to n
V_4 = \{e_i'\};
C(e_i') = n + 1;
for i = 1 to n - 1
V_5 = \{w_i\};
C(w_i) = i + 1;
C(w_n) = 1;
for i = 1 to n - 2
{
V_6 = \{e_i''\};
C(e_i'') = i + 2;
C(e_{n-1}^{\prime\prime}) = 1;
```

```
C(e_n'')=2; for i=1 to n \{ V_7=\{u_i\}; C(u_i)=n+1; \} V=V_1\bigcup V_2\bigcup V_3\bigcup V_4\bigcup V_5\bigcup V_6\bigcup V_7; end
```

Algorithm 2.2.3

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $M(K_{1,n,n,n})$.

```
begin
for i = 1 to n
V_1 = \{e_i\};
C(e_i) = i;
V_2 = \{v\};
C(v) = n + 1;
for i = 1 to n
{
V_3 = \{v_i\};
C(v_i) = n + 2;
for i=1 to n
V_4 = \{e_i'\};
C(e_i') = n + 3;
for i=1 to n
V_5 = \{w_i\};
C(w_i) = n + 1;
for i = 1 to n - 1
V_6 = \{e_i''\};
C(e_i'') = i + 1;
C(e_n^{\prime\prime}) = 1;
for i = 1 to n
```

```
 \{ \\ V_7 = \{u_i\}; \\ C(u_i) = n+2; \\ \} \\ V = V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7; \\ \text{end}
```

Theorem 2.3 For any triple star graph $K_{1,n,n,n}$, the r-dynamic chromatic number,

$$\chi_r(T(K_{1,n,n,n})) = \begin{cases} n+1, & 1 \le r \le n \\ r+1, & n+1 \le r \le \Delta - 2 \\ 2n, & r = \Delta - 1 \\ 2n+1, & r \ge \Delta \end{cases}$$

Proof By definition of total graph, each edge vv_i , v_iw_i and w_iu_i be subdivided by the vertices $e_i(1 \le i \le n)$, $e_i'(1 \le i \le n)$ and $e_i''(1 \le i \le n)$ in $K_{1,n,n,n}$ and the vertices v, e_i induce a clique of order n+1(say K_{n+1}) in $T(K_{1,n,n,n})$. i.e., $V(T(K_{1,n,n,n}))=\{v\}\bigcup\{v_i:1\le i\le n\}\bigcup\{v_i:1\le i\le n\}\bigcup\{e_i':1\le i\le n\}\bigcup\{e_i':1\le i\le n\}\bigcup\{e_i'':1\le i\le n\}$. Thus, we have $\chi_r(T(K_{1,n,n,n}))\ge n+1$.

Case 1. $1 \le r \le n$.

Consider the color class $C_1 = \{c_1, c_2, c_3, \dots, c_{(n+1)}\}$ and assign the r-dynamic coloring to $T(K_{1,n,n,n})$ by Algorithm 2.3.1. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(T(K_{1,n,n,n})) = n+1$, for $1 \le r \le n$.

Case 2. $n+1 \le r \le \Delta - 2$.

Consider the color class $C_2 = \{c_1, c_2, c_3, \cdots, c_{(2n-1)}\}$ and assign the r-dynamic coloring to $T(K_{1,n,n,n})$ by Algorithm 2.3.2. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(T(K_{1,n,n,n})) = r+1$, for $n+1 \le r \le \Delta-2$.

Case 3. $r = \Delta - 1$.

Consider the color class $C_3 = \{c_1, c_2, c_3, \dots, c_{2n}\}$ if $r = \Delta - 1$ and assign the r-dynamic coloring to $T(K_{1,n,n,n})$ by Algorithm 2.3.3. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(T(K_{1,n,n,n})) = 2n$ for $r = \Delta - 1$.

Case 4. $r = \Delta$.

Consider the color class $C_4 = \{c_1, c_2, c_3, \dots, c_{2n+1}\}$ if $r = \Delta$ and assign the r-dynamic coloring to $T(K_{1,n,n,n})$ by Algorithm 2.3.4. Thus, an easy check shows that the r- adjacency condition is fulfilled. Hence, $\chi_r(T(K_{1,n,n,n})) = 2n+1$ for $r \geq \Delta$.

Algorithm 2.3.1

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $T(K_{1,n,n,n})$.

```
begin
for i = 1 to n
V_1 = \{e_i\};
C(e_i) = i;
V_2 = \{v\};
C(v) = n + 1;
for i = 1 to n - 3
V_3 = \{v_i\};
C(v_i) = i + 3;
C(v_{n-2}) = 1;
C(v_{n-1}) = 2;
C(v_n) = 3;
for i = 1 to n - 2
V_4 = \{e_i'\};
C(e_i') = i + 2;
C(e'_{n-1}) = 1;
C(e'_n) = 2;
for i = 1 to n - 1
V_5 = \{w_i\};
C(w_i) = i + 1;
C(w_n) = 1;
for i = 1 to n
V_6 = \{e_i''\};
C(e_i^{\prime\prime}) = n+1;
for i=1 to n
V_7 = \{u_i\};
C(u_i) = i;
}
```

```
V = V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7;end
```

Algorithm 2.3.2

```
Input: The number "n" of K_{1,n,n,n}.
```

Output: Assigning r-dynamic coloring for the vertices in $T(K_{1,n,n,n})$.

```
begin
for i = 1 to n
V_1 = \{e_i\};
C(e_i) = i;
V_2 = \{v\};
C(v) = n + 1;
for i = 1 to n - 2
V_3 = \{v_i\};
C(v_i) = r + 1;
C(v_{n-1}) = n+2;
C(v_n) = n + 3;
for i = 1 to n - 3
{
V_4 = \{e_i'\};
C(e_i') = n + i + 2;
C(e'_{n-2}) = n+2;
C(e'_{n-1}) = n+3;
C(e'_n) = n + 4;
for i = 1 to n - 1
V_5 = \{w_i\};
C(w_i) = i + 1;
C(w_n) = 1;
for i = 1 to n
{
V_6 = \{e_i''\};
C(e_i^{\prime\prime}) = n+1;
for i = 1 to n
```

```
V_7 = \{u_i\};
       C(u_i) = i;
       V = V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7;
       end
Algorithm 2.3.3
```

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $T(K_{1,n,n,n})$.

```
begin
for i = 1 to n
V_1 = \{e_i\};
C(e_i) = i;
V_2 = \{v\};
C(v) = n + 1;
for i = 1 to n - 1
V_3 = \{v_i\};
C(v_i) = n + i + 1;
C(v_n) = n + 2;
for i = 1 to n - 2
V_4 = \{e_i'\};
C(e_i') = n + i + 2;
C(e_{n-1}^{\prime})=n+2;
C(e'_n) = n + 3;
for i = 1 to n - 1
V_5 = \{w_i\};
C(w_i) = i + 1;
C(w_n) = 1;
for i = 1 to n
V_6 = \{e_i''\};
C(e_i'') = n + 1;
}
```

 $V_6 = \{e_i''\};$ $C(e_i'') = n + 1;$

for i = 1 to n

```
for i=1 to n
     V_7 = \{u_i\};
     C(u_i) = i;
     V = V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7;
     end
Algorithm 2.3.4
     Input: The number "n" of K_{1,n,n,n}.
     Output: Assigning r-dynamic coloring for the vertices in T(K_{1,n,n}).
     begin
     for i = 1 to n
     V_1 = \{e_i\};
     C(e_i) = i;
     V_2 = \{v\};
     C(v) = n + 1;
     for i = 1 to n
     V_3 = \{v_i\};
     C(v_i) = n + i + 1;
     for i = 1 to n - 1
     V_4 = \{e_i'\};
     C(e_i') = n + i + 2;
     C(e'_n) = n + 2;
     for i = 1 to n - 1
     {
     V_5 = \{w_i\};
     C(w_i) = i + 1;
     }
     C(w_n) = 1;
     for i=1 to n
```

```
 \{ \\ V_7 = \{u_i\}; \\ C(u_i) = i; \\ \}   V = V_1 \bigcup V_2 \bigcup V_3 \bigcup V_4 \bigcup V_5 \bigcup V_6 \bigcup V_7; \\ \text{end}
```

Theorem 2.4 For any triple star graph $K_{1,n,n,n}$, the r-dynamic chromatic number,

$$\chi_r(L(K_{1,n,n,n})) = \begin{cases} n, & 1 \le r \le n-1\\ n+1, & r \ge \Delta \end{cases}$$

Proof First we apply the definition of line graph on $K_{1,n,n,n}$. By the definition of line graph, each edge of $K_{1,n,n,n}$ taken to be as vertex in $L(K_{1,n,n,n})$. The vertices e_1, e_2, \dots, e_n induce a clique of order n in $L(K_{1,n,n,n})$. i.e., $V(L(K_{1,n,n,n})) = E(K_{1,n,n,n}) = \{e_i : 1 \le i \le n\} \cup \{e_i' : 1 \le i \le n\} \cup \{e_i'' : 1 \le i \le n\}$. Thus, we have $\chi_r(L(K_{1,n,n,n})) \ge n$.

Case 1. $1 \le r \le \Delta - 1$.

Now consider the vertex set $V(L(K_{1,n,n,n}))$ and color class $C_1 = \{c_1, c_2, \dots, c_n\}$, assign r dynamic coloring to $L(K_{1,n,n,n})$ by Algorithm 2.4.1. Thus, an easy check shows that the r-adjacency condition is fulfilled. Hence, $\chi_r(L(K_{1,n,n,n})) = n$, for $1 \le r \le \Delta - 1$.

Case 2. $r \geq \Delta$.

Now consider the vertex set $V(L(K_{1,n,n}))$ and color class $C_2 = \{c_1, c_2, \dots, c_n, c_{n+1}\}$, assign r dynamic coloring to $L(K_{1,n,n,n})$ by Algorithm 2.4.2. Thus, an easy check shows that the r-adjacency condition is fulfilled. Hence, $\chi_r(L(K_{1,n,n,n})) = n+1$ for $r \geq \Delta$.

Algorithm 2.4.1

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $L(K_{1,n,n,n})$.

```
begin

for i = 1 to n

{

V_1 = \{e_i\};

C(e_i) = i;

}

for i = 1 to n - 1

{

V_2 = \{e'_i\};

C(e'_i) = i + 1;

}

C(e'_n) = 1;
```

```
for i=1 to n-2 {  V_3=\{e_i''\}; \\ C(e_i'')=i+2; \\ \} \\ C(e_{n-1}'')=1; \\ C(e_n'')=2; \\ V=V_1\bigcup V_2\bigcup V_3; \\ \text{end}
```

Algorithm 2.4.2

Input: The number "n" of $K_{1,n,n,n}$.

Output: Assigning r-dynamic coloring for the vertices in $L(K_{1,n,n})$.

```
begin for i=1 to n { V_1=\{e_i\};\ C(e_i)=i;\ \} for i=1 to n { V_2=\{e_i'\};\ C(e_i')=n+1;\ \} for i=1 to n-1 { V_3=\{e_i''\};\ C(e_i'')=i+1;\ \} C(e_i'')=i+1; } C(e_n'')=i; V=V_1\bigcup V_2\bigcup V_3; end
```

References

- [1] A. Ahadi, S. Akbari, A. Dehghana, M. Ghanbari, On the difference between chromatic number and dynamic chromatic number of graphs, *Discrete Math.* 312 (2012), 2579–2583.
- [2] S. Akbari, M. Ghanbari, S. Jahanbakam, On the dynamic chromatic number of graphs, *Contemp. Math.* (Amer. Math. Soc.), 531 (2010), 11–18.
- [3] S. Akbari, M. Ghanbari, S. Jahanbekam, On the list dynamic coloring of graphs, *Discrete Appl. Math.* 157 (2009), 3005–3007

- [4] M. Alishahi, Dynamic chromatic number of regular graphs, *Discrete Appl. Math.* 160 (2012), 2098–2103.
- [5] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, 2008.
- [6] Danuta Michalak, On middle and total graphs with coarseness number equal 1, Springer Verlag, Graph Theory, Lagow Proceedings, Berlin Heidelberg, New York, Tokyo, (1981), 139–150.
- [7] A. Dehghan, A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, *Discrete Appl. Math.* 160(15) (2012), 2142–2146.
- [8] H. J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003), 193–201.
- [9] X. Li, W. Zhou, The 2nd-order conditional 3-coloring of claw-free graphs, *Theoret. Comput. Sci.* 396 (2008), 151–157.
- [10] X. Li, X. Yao, W. Zhou, H. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett. 22 (2009), 320–324.
- [11] N. Mohanapriya, J. Vernold Vivin and M. Venkatachalam, δ dynamic chromatic number of helm graph families, *Cogent Mathematics*, 3(2016), No. 1178411.
- [12] N. Mohanapriya, J. Vernold Vivin and M. Venkatachalam, On dynamic coloring of Fan graphs, Int J of Pure Appl Math, 106(2016), 169-174.
- [13] N. Mohanapriya, Ph.D thesis, A Study on Dynamic Coloring of Graphs, Bharathiar University, (2017), Coimbatore, India.
- [14] B. Montgomery, Dynamic Coloring of Graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.
- [15] A. Taherkhani, r-Dynamic chromatic number of graphs, Discrete Appl. Math., 201(2016), 222–227.
- [16] J. Vernold Vivin, Ph.D Thesis, Harmonious Coloring of Total Graphs, n-Leaf, Central Graphs and Circumdetic Graphs, Bharathiar University, (2007), Coimbatore, India.
- [17] A. T. White, Graphs, Groups and Surfaces, American Elsevier, New York, 1973.