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Abstract: An r-dynamic coloring of a graph G is a proper coloring c of the vertices such

that |c(N(v))| ≥ min {r, d(v)}, for each v ∈ V (G). The r-dynamic chromatic number of a

graph G is the minimum k such that G has an r-dynamic coloring with k colors. In this paper

we investigate the r-dynamic chromatic number of the central graph, middle graph, total

graph and line graph of the triple star graph K1,n,n,n denoted by C(K1,n,n,n), M(K1,n,n,n),

T (K1,n,n,n) and L(K1,n,n,n) respectively.
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§1. Introduction

Graphs in this paper are simple and finite. For undefined terminologies and notations see [5,

17]. Thus for a graph G, δ(G), ∆(G) and χ(G) denote the minimum degree, maximum degree

and chromatic number of G respectively. When the context is clear we write, δ, ∆ and χ for

brevity. For v ∈ V (G), let N(v) denote the set of vertices adjacent to v in G and d(v) = |N(v)|.
The r-dynamic chromatic number was first introduced by Montgomery [14].

An r-dynamic coloring of a graph G is a map c from V (G) to the set of colors such that

(i) if uv ∈ E(G), then c(u) 6= c(v) and (ii) for each vertex v ∈ V (G), |c(N(v))| ≥ min {r, d(v)},
where N(v) denotes the set of vertices adjacent to v, d(v) its degree and r is a positive integer.

Generally, for a subgraph G′ ≺ G and a coloring c on G if |c(N(v))| ≥ min {r, d(v)} for

v ∈ V (G \ G′) but |c(N(v))| ≤ min {r, d(v)} for u ∈ V (G′), such a r coloring is called a

Smarandachely r-dynamic coloring on G. Clearly, if G′ = ∅, a Smarandachely r-dynamic

coloring is nothing else but the r-dynamic coloring.

The first condition characterizes proper colorings, the adjacency condition and second con-

dition is double-adjacency condition. The r-dynamic chromatic number of a graph G, written

χr(G), is the minimum k such that G has an r-dynamic proper k-coloring. The 1-dynamic chro-

matic number of a graph G is equal to its chromatic number. The 2-dynamic chromatic number

of a graph has been studied under the name dynamic chromatic number denoted by χd(G) [1-4,

8]. By simple observation, we can show that χr(G) ≤ χr+1(G), however χr+1(G) − χr(G) can
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be arbitrarily large, for example χ(Petersen) = 2, χd(Petersen) = 3, but χ3(Petersen) = 10.

Thus, finding an exact values of χr(G) is not trivially easy.

There are many upper bounds and lower bounds for χd(G) in terms of graph parameters.

For example, for a graph G with ∆(G) ≥ 3, Lai et al. [8] proved that χd(G) ≤ ∆(G) + 1.

An upper bound for the dynamic chromatic number of a d-regular graph G in terms of χ(G)

and the independence number of G, α(G), was introduced in [7]. In fact, it was proved that

χd(G) ≤ χ(G) + 2log2α(G) + 3. Taherkhani gave in [15] an upper bound for χ2(G) in terms of

the chromatic number, the maximum degree ∆ and the minimum degree δ. i.e., χ2(G)−χ(G) ≤
⌈

(∆e)/δlog
(

2e
(

∆2 + 1
))⌉

.

Li et al. proved in [10] that the computational complexity of χd(G) for a 3-regular graph is

an NP-complete problem. Furthermore, Li and Zhou [9] showed that to determine whether there

exists a 3-dynamic coloring, for a claw free graph with the maximum degree 3, is NP-complete.

N.Mohanapriya et al. [11, 12] studied the dynamic chromatic number for various graph

families. Also, it was proven in [13] that the r− dynamic chromatic number of line graph of a

helm graph Hn is

χr(L(Hn)) =



















































n − 1, δ ≤ r ≤ n − 2,

n + 1, r = n − 1,

n + 2, r = n and n ≡ 1 mod 3,

n + 3, r = n and n 6≡ 1 mod 3,

n + 4, r = n + 1 = ∆, n ≥ 6 and 2n − 2 ≡ 0 mod 5,

n + 5, r = n + 1 = ∆, n ≥ 6 and 2n − 2 6≡ 0 mod 5.

In this paper, we study χr(G), the r- dynamic chromatic number of the middle, central,

total and line graphs of the triple star graphs are discussed.

§2. Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). The middle graph [6] of G, denoted

by M(G) is defined as follows. The vertex set of M(G) is V (G) ∪ E(G). Two vertices x, y of

M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and x, y

are adjacent in G. (ii) x is in V (G), y is in E(G), and x, y are incident in G.

The central graph [16] C(G) of a graph G is obtained from G by adding an extra vertex

on each edge of G, and then joining each pair of vertices of the original graph which were

previously non-adjacent.

Let G be a graph with vertex set V (G) and edge set E(G). The total graph [6, 16] of G,

denoted by T (G) is defined in the following way. The vertex set of T (G) is V (G) ∪E(G). Two

vertices x, y of T (G) are adjacent in T (G) in case one of the following holds: (i) x, y are in

V (G) and x is adjacent to y in G. (ii) x, y are in E(G) and x, y are adjacent in G. (iii) x is in

V (G), y is in E(G), and x, y are incident in G.

The line graph [13] of G denoted by L(G) is the graph with vertices are the edges of G
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with two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

Theorem 2.1 For any triple star graph K1,n,n,n, the r-dynamic chromatic number

χr(C(K1,n,n,n)) =















2n + 1, r = 1

3n + 1, 2 ≤ r ≤ ∆ − 1

4n + 1, r ≥ ∆

Proof First we apply the definition of central graph on K1,n,n,n. Let the edge vvi, viwi

and wiui be subdivided by the vertices ei(1 ≤ i ≤ n), e′i(1 ≤ i ≤ n) and e′′i (1 ≤ i ≤ n) in

K1,n,n,n.

Clearly V (C(K1,n,n,n)) = {v} ⋃ {vi : 1 ≤ i ≤ n} ⋃ {wi : 1 ≤ i ≤ n} ⋃ {ui : 1 ≤ i ≤ n}
⋃ {ei : 1 ≤ i ≤ n} ⋃ {e′i : 1 ≤ i ≤ n} ⋃ {e′′i : 1 ≤ i ≤ n}. The vertices vi(1 ≤ i ≤ n) induce a

clique of order n (say Kn) and the vertices v, ui(1 ≤ i ≤ n) induce a clique of order n + 1 (say

Kn+1) in C(K1,n,n,n) respectively. Thus, we have χr(C(K1,n,n,n)) ≥ n + 1.

Case 1. r = 1.

Consider the color class C1 = {c1, c2, c3, · · · , c(2n+1)} and assign the r-dynamic coloring to

C(K1,n,n,n) by Algorithm 2.1.1. Thus, an easy check shows that the r− adjacency condition is

fulfilled. Hence, χr(C(K1,n,n,n)) = 2n + 1.

Case 2. 2 ≤ r ≤ ∆ − 1.

Consider the color class C2 = {c1, c2, c3, · · · , c(3n+1)} and assign the r-dynamic coloring to

C(K1,n,n,n) by Algorithm 2.1.2. Thus, an easy check shows that the r− adjacency condition is

fulfilled. Hence, χr(C(K1,n,n,n)) = 3n + 1.

Case 3. r ≥ ∆.

Consider the color class C3 = {c1, c2, c3, · · · , c(4n+1)} and assign the r-dynamic coloring to

C(K1,n,n,n) by Algorithm 2.1.3. Thus, an easy check shows that the r− adjacency condition is

fulfilled. Hence χr(C(K1,n,n,n)) = 4n + 1. 2
Algorithm 2.1.1

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in C(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;
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for i = 1 to n

{
V3 = {vi};
C(vi) = n + i + 1;

}
for i = 1 to n

{
V4 = {e′i};
C(e′i) = n + 1;

}
for i = 1 to n

{
V5 = {wi};
C(wi) = i;

}
for i = 1 to n

{
V6 = {e′′i };
C(e′′i ) = n + 1;

}
for i = 1 to n

{
V7 = {ui};
C(ui) = i;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Algorithm 2.1.2

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in C(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ui};
C(ui) = i;

}
for i = 1 to n

{
V2 = {e′′i };
C(e′′i ) = n + 1;

}
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for i = 1 to n

{
V3 = {wi};
C(wi) = n + i + 1;

}
for i = 1 to n

{
V4 = {e′i};
C(e′i) = i;

}
for i = 1 to n

{
V5 = {vi};
C(vi) = 2n + i + 1;

}
for i = 1 to n − 1

{
V6 = {ei};
C(ei) = 2n + i + 2;

}
C(en) = 2n + 2;

V7 = {v};
C(v) = n + 1;

V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Algorithm 2.1.3

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in C(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ui};
C(ui) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n

{
V3 = {wi};
C(wi) = n + i + 1;

}
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for i = 1 to n

{
V4 = {vi};
C(vi) = 2n + i + 1;

}
for i = 1 to n

{
V5 = {ei};
C(ei) = 3n + i + 1;

}
for i = 1 to n

{
V6 = {e′i};
C(e′i) = i;

}
for i = 1 to n

{
V7 = {e′′i };
C(e′′i ) = 3n + 2;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Theorem 2.2 For any triple star graph K1,n,n,n, the r-dynamic chromatic number

χr(M(K1,n,n,n)) =















n + 1, 1 ≤ r ≤ n

n + 2, r = n + 1

n + 3, r ≥ ∆

Proof By definition of middle graph, each edge vvi, viwi and wiui be subdivided by the

vertices ei(1 ≤ i ≤ n) , e′i(1 ≤ i ≤ n) and e′′i (1 ≤ i ≤ n) in K1,n,n,n and the vertices v, ei induce

a clique of order n + 1(say Kn+1) in M(K1,n,n,n). i.e.,V (M(K1,n,n,n)) = {v}⋃{vi : 1 ≤ i ≤
n}⋃{wi : 1 ≤ i ≤ n}⋃{ui : 1 ≤ i ≤ n}⋃{ei : 1 ≤ i ≤ n}⋃{e′i : 1 ≤ i ≤ n}⋃{e′′i : 1 ≤ i ≤ n}.
Thus we have χr(M(K1,n,n,n)) ≥ n + 1.

Case 1. 1 ≤ r ≤ n.

Consider the color class C1 = {c1, c2, c3, · · · , c(n+1)} and assign the r-dynamic coloring to

M(K1,n,n,n) by Algorithm 2.2.1. Thus, an easy check shows that the r− adjacency condition

is fulfilled. Hence, χr(M(K1,n,n,n)) = n + 1, for 1 ≤ r ≤ n.

Case 2. r = n + 1.
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Consider the color class C2 = {c1, c2, c3, · · · , c(n+1), c(n+2)} and assign the r-dynamic col-

oring to M(K1,n,n,n) by Algorithm 2.2.2. Thus, an easy check shows that the r− adjacency

condition is fulfilled. Hence, χr(M(K1,n,n,n)) = n + 2, for r = n + 1 .

Case 3. r = ∆.

Consider the color class C3 = {c1, c2, c3, · · · , cn, c(n+1), c(n+2), c(n+3)} and assign the r-

dynamic coloring to M(K1,n,n,n) by Algorithm 2.2.3. Thus, an easy check shows that the r−
adjacency condition is fulfilled. Hence, χr(M(K1,n,n,n)) = n + 3, for r ≥ ∆. 2
Algorithm 2.2.1

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in M(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n

{
V3 = {vi};
C(vi) = n + 1;

}
for i = 1 to n − 1

{
V4 = {e′i};
C(e′i) = i + 1;

}
C(e′n) = 1;

for i = 1 to n − 2

{
V5 = {wi};
C(wi) = i + 2;

}
C(wn−1) = 1;

C(wn) = 2;

for i = 1 to n

{
V6 = {e′′i };
C(e′′i ) = n + 1;
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}
for i = 1 to n

{
V7 = {ui};
C(ui) = i;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Algorithm 2.2.2

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in M(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n

{
V3 = {vi};
C(vi) = n + 2;

}
for i = 1 to n

{
V4 = {e′i};
C(e′i) = n + 1;

}
for i = 1 to n − 1

{
V5 = {wi};
C(wi) = i + 1;

}
C(wn) = 1;

for i = 1 to n − 2

{
V6 = {e′′i };
C(e′′i ) = i + 2;

}
C(e′′n−1) = 1;
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C(e′′n) = 2;

for i = 1 to n

{
V7 = {ui};
C(ui) = n + 1;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Algorithm 2.2.3

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in M(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n

{
V3 = {vi};
C(vi) = n + 2;

}
for i = 1 to n

{
V4 = {e′i};
C(e′i) = n + 3;

}
for i = 1 to n

{
V5 = {wi};
C(wi) = n + 1;

}
for i = 1 to n − 1

{
V6 = {e′′i };
C(e′′i ) = i + 1;

}
C(e′′n) = 1;

for i = 1 to n
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{
V7 = {ui};
C(ui) = n + 2;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Theorem 2.3 For any triple star graph K1,n,n,n, the r-dynamic chromatic number,

χr(T (K1,n,n,n)) =



























n + 1, 1 ≤ r ≤ n

r + 1, n + 1 ≤ r ≤ ∆ − 2

2n, r = ∆ − 1

2n + 1, r ≥ ∆

Proof By definition of total graph, each edge vvi, viwi and wiui be subdivided by the

vertices ei(1 ≤ i ≤ n) , e′i(1 ≤ i ≤ n) and e′′i (1 ≤ i ≤ n) in K1,n,n,n and the vertices v, ei induce

a clique of order n + 1(say Kn+1) in T (K1,n,n,n). i.e.,V (T (K1,n,n,n)) = {v}⋃{vi : 1 ≤ i ≤
n}⋃{wi : 1 ≤ i ≤ n}⋃{ui : 1 ≤ i ≤ n}⋃{ei : 1 ≤ i ≤ n}⋃{e′i : 1 ≤ i ≤ n}⋃{e′′i : 1 ≤ i ≤ n}.
Thus, we have χr(T (K1,n,n,n)) ≥ n + 1.

Case 1. 1 ≤ r ≤ n.

Consider the color class C1 = {c1, c2, c3, · · · , c(n+1)} and assign the r-dynamic coloring to

T (K1,n,n,n) by Algorithm 2.3.1. Thus, an easy check shows that the r− adjacency condition is

fulfilled. Hence, χr(T (K1,n,n,n)) = n + 1, for 1 ≤ r ≤ n.

Case 2. n + 1 ≤ r ≤ ∆ − 2.

Consider the color class C2 = {c1, c2, c3, · · · , c(2n−1)} and assign the r-dynamic coloring to

T (K1,n,n,n) by Algorithm 2.3.2. Thus, an easy check shows that the r− adjacency condition is

fulfilled. Hence, χr(T (K1,n,n,n)) = r + 1, for n + 1 ≤ r ≤ ∆ − 2.

Case 3. r = ∆ − 1.

Consider the color class C3 = {c1, c2, c3, · · · , c2n} if r = ∆ − 1 and assign the r-dynamic

coloring to T (K1,n,n,n) by Algorithm 2.3.3. Thus, an easy check shows that the r− adjacency

condition is fulfilled. Hence, χr(T (K1,n,n,n)) = 2n for r = ∆ − 1.

Case 4. r = ∆.

Consider the color class C4 = {c1, c2, c3, · · · , c2n+1} if r = ∆ and assign the r-dynamic

coloring to T (K1,n,n,n) by Algorithm 2.3.4. Thus, an easy check shows that the r− adjacency

condition is fulfilled. Hence, χr(T (K1,n,n,n)) = 2n + 1 for r ≥ ∆. 2
Algorithm 2.3.1

Input: The number ”n” of K1,n,n,n.
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Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n − 3

{
V3 = {vi};
C(vi) = i + 3;

}
C(vn−2) = 1;

C(vn−1) = 2;

C(vn) = 3;

for i = 1 to n − 2

{
V4 = {e′i};
C(e′i) = i + 2;

}
C(e′n−1) = 1;

C(e′n) = 2;

for i = 1 to n − 1

{
V5 = {wi};
C(wi) = i + 1;

}
C(wn) = 1;

for i = 1 to n

{
V6 = {e′′i };
C(e′′i ) = n + 1;

}
for i = 1 to n

{
V7 = {ui};
C(ui) = i;

}



108 T.Deepa and M. Venkatachalam

V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Algorithm 2.3.2

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n − 2

{
V3 = {vi};
C(vi) = r + 1;

}
C(vn−1) = n + 2;

C(vn) = n + 3;

for i = 1 to n − 3

{
V4 = {e′i};
C(e′i) = n + i + 2;

}
C(e′n−2) = n + 2;

C(e′n−1) = n + 3;

C(e′n) = n + 4;

for i = 1 to n − 1

{
V5 = {wi};
C(wi) = i + 1;

}
C(wn) = 1;

for i = 1 to n

{
V6 = {e′′i };
C(e′′i ) = n + 1;

}
for i = 1 to n
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{
V7 = {ui};
C(ui) = i;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Algorithm 2.3.3

Input: The number ”n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n − 1

{
V3 = {vi};
C(vi) = n + i + 1;

}
C(vn) = n + 2;

for i = 1 to n − 2

{
V4 = {e′i};
C(e′i) = n + i + 2;

}
C(e′n−1) = n + 2;

C(e′n) = n + 3;

for i = 1 to n − 1

{
V5 = {wi};
C(wi) = i + 1;

}
C(wn) = 1;

for i = 1 to n

{
V6 = {e′′i };
C(e′′i ) = n + 1;

}
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for i = 1 to n

{
V7 = {ui};
C(ui) = i;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Algorithm 2.3.4

Input: The number “n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in T (K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
V2 = {v};
C(v) = n + 1;

for i = 1 to n

{
V3 = {vi};
C(vi) = n + i + 1;

}
for i = 1 to n − 1

{
V4 = {e′i};
C(e′i) = n + i + 2;

}
C(e′n) = n + 2;

for i = 1 to n − 1

{
V5 = {wi};
C(wi) = i + 1;

}
C(wn) = 1;

for i = 1 to n

{
V6 = {e′′i };
C(e′′i ) = n + 1;

}
for i = 1 to n
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{
V7 = {ui};
C(ui) = i;

}
V = V1

⋃

V2

⋃

V3

⋃

V4

⋃

V5

⋃

V6

⋃

V7;

end

Theorem 2.4 For any triple star graph K1,n,n,n, the r-dynamic chromatic number,

χr(L(K1,n,n,n)) =







n, 1 ≤ r ≤ n − 1

n + 1, r ≥ ∆

Proof First we apply the definition of line graph on K1,n,n,n. By the definition of line

graph, each edge of K1,n,n,n taken to be as vertex in L(K1,n,n,n).The vertices e1, e2,· · · , en

induce a clique of order n in L(K1,n,n,n). i.e., V (L(K1,n,n,n)) = E(K1,n,n,n) = {ei : 1 ≤ i ≤
n}⋃{e′i : 1 ≤ i ≤ n}⋃{e′′i : 1 ≤ i ≤ n}. Thus, we have χr(L(K1,n,n,n)) ≥ n.

Case 1. 1 ≤ r ≤ ∆ − 1.

Now consider the vertex set V (L(K1,n,n,n)) and color class C1 = {c1, c2, · · · , cn}, assign r

dynamic coloring to L(K1,n,n,n) by Algorithm 2.4.1. Thus, an easy check shows that the r−
adjacency condition is fulfilled. Hence, χr(L(K1,n,n,n)) = n, for 1 ≤ r ≤ ∆ − 1.

Case 2. r ≥ ∆.

Now consider the vertex set V (L(K1,n,n)) and color class C2 = {c1, c2, · · · , cn, cn+1}, assign

r dynamic coloring to L(K1,n,n,n) by Algorithm 2.4.2. Thus, an easy check shows that the r−
adjacency condition is fulfilled. Hence, χr(L(K1,n,n,n)) = n + 1 for r ≥ ∆. 2
Algorithm 2.4.1

Input: The number “n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in L(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
for i = 1 to n − 1

{
V2 = {e′i};
C(e′i) = i + 1;

}
C(e′n) = 1;
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for i = 1 to n − 2

{
V3 = {e′′i };
C(e′′i ) = i + 2;

}
C(e′′n−1) = 1;

C(e′′n) = 2;

V = V1

⋃

V2

⋃

V3;

end

Algorithm 2.4.2

Input: The number “n” of K1,n,n,n.

Output: Assigning r-dynamic coloring for the vertices in L(K1,n,n,n).

begin

for i = 1 to n

{
V1 = {ei};
C(ei) = i;

}
for i = 1 to n

{
V2 = {e′i};
C(e′i) = n + 1;

}
for i = 1 to n − 1

{
V3 = {e′′i };
C(e′′i ) = i + 1;

}
C(e′′n) = 1;

V = V1

⋃

V2

⋃

V3;

end
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