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Abstract: Let G = (V, E) be a connected graph. The distance eccentricity neighborhood

of u ∈ V (G) denoted by NDe(u) is defined as NDe(u) = {v ∈ V (G) : d(u, v) = e(u)}, where

e(u) is the eccentricity of u. The cardinality of NDe(u) is called the distance eccentricity

degree of the vertex u in G and denoted by degDe(u). In this paper, we introduce the first

and second distance eccentricity Zagreb indices of a connected graph G as the sum of the

squares of the distance eccentricity degrees of the vertices, and the sum of the products of

the distance eccentricity degrees of pairs of adjacent vertices, respectively. Exact values for

some families of graphs and graph operations are obtained.

Key Words: First distance eccentricity Zagreb index, Second distance eccentricity Zagreb
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§1. Introduction

In this research work, we concerned about connected, simple graphs which are finite, undirected

with no loops and multiple edges. Throughout this paper, for a graph G = (V, E), we denote

p = |V (G)| and q = |E(G)|. The complement of G, denoted by G, is a simple graph on the

same set of vertices V (G) in which two vertices u and v are adjacent if and only if they are not

adjacent in G. The open neighborhood and the closed neighborhood of u are denoted by N(u) =

{v ∈ V : uv ∈ E} and N [u] = N(u)∪{u}, respectively. The degree of a vertex u in G, is denoted

by deg(u), and is defined to be the number of edges incident with u, shortly deg(u) = |N(u)|.
The maximum and minimum degrees of G are defined by ∆(G) = max{deg(u) : u ∈ V (G)}
and δ(G) = min{deg(u) : u ∈ V (G)}, respectively. If δ = ∆ = k for any graph G, we say G

is a regular graph of degree k. The distance between any two vertices u and v in G denoted

by d(u, v) is the number of edges of the shortest path joining u and v. The eccentricity e(u)

of a vertex u in G is the maximum distance between u and any other vertex v in G, that is

e(u) = max{d(u, v), v ∈ V (G)}.
The path, wheel, cycle, star and complete graphs with p vertices are denoted by Pp, Wp,

Cp, Sp and Kp, respectively, and Kr,m is the complete bipartite graph on r + m vertices. All

the definitions and terminologies about graph in this paper available in [6].
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The Zagreb indices have been introduced by Gutman and Trinajestic [5].

M1(G) =
∑

u∈V (G)

[
deg(u)

]2
=

∑

u∈V (G)

∑

v∈N(u)

deg(v) =
∑

uv∈E(G)

[
deg(u) + deg(v)

]
.

M2(G) =
∑

uv∈E(G)

deg(u)deg(v) =
1

2

∑

u∈V (G)

deg(u)
∑

v∈N(u)

deg(v).

Here, M1(G) and M2(G) denote the first and the second Zagreb indices, respectively. For more

details about Zagreb indices, we refer to [2, 4, 9, 13, 11, 12, 7, 10, 8].

Let u ∈ V (G). The distance eccentricity neighborhood of u denoted by NDe(u) is defined

as NDe(u) = {v ∈ V (G) : d(u, v) = e(u)}. The cardinality of NDe(u) is called the distance

eccentricity degree of the vertex u in G and denoted by degDe(u), and NDe[u] = NDe(u)∪ {u},
note that if u has a full degree in G, then deg(u) = degDe(u). And generally, a Smarandachely

distance eccentricity neighborhood NS
De(u) of u on subset S ⊂ V (G) is defined to be NS

De(u) =

{v ∈ V (G)\S : dG\S(u, v) = e(u)} with Smarandachely distance eccentricity
∣∣NS

De(u)
∣∣. Clearly,∣∣N∅

De(u)
∣∣ = degDe(u). The maximum and minimum distance eccentricity degree of a vertex

in G are denoted respectively by ∆De(G) and δDe(G), that is ∆De(G) = maxu∈V |NDe(u)|,
δDe(G) = minu∈V |NDe(u)|. Also, we denote to the set of vertices of G which have eccentricity

equal to α by V α
e (G) ⊆ V (G), where α = 1, 2, · · · , diam(G). In this paper, we introduce the

distance eccentricity Zagreb indices of graphs. Exact values for some families of graphs and

some graph operations are obtained.

§2. Distance Eccentricity Zagreb Indices of Graphs

In this section, we define the first and second distance eccentricity Zagreb indices of connected

graphs and study some standard graphs.
v1

v2

v3 v4

Fig.1

Definition 2.1 Let G = (V, E) be a connected graph. Then the first and second distance

eccentricity Zagreb indices of G are defined by

MDe
1 (G) =

∑

u∈V (G)

[
degDe(u)

]2
,

MDe
2 (G) =

∑

uv∈E(G)

degDe(u)degDe(v).
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Example 2.2 Let G be a graph as in Fig.1. Then

(i) MDe
1 (G) =

∑

u∈V (G)

[
degDe(u)

]2
=

4∑

i=1

(
degDe(vi)

)2

=
(
degDe(v1)

)2
+
(
degDe(v2)

)2
+
(
degDe(v3)

)2
+
(
degDe(v4)

)2

=
(
2
)2

+
(
3
)2

+
(
1
)2

+
(
1
)2

= 15.

(ii) MDe
2 (G) =

∑

uv∈E(G)

degDe(u)degDe(v)

=degDe(v1)degDe(v2) + degDe(v2)degDe(v3) + degDe(v2)degDe(v4)

+ degDe(v3)degDe(v4) = 13.

Calculation immediately shows results following.

Proposition 2.3 (i) For any path Pp with p ≥ 2, MDe
1 (Pp) =





p + 3, p is odd,

p, p is even;

(ii) For p ≥ 3, MDe
1 (Cp) =





4p, p is odd,

p, p is even;

(iii) MDe
1 (Kp) = M1(Kp) = p

(
p− 1

)2
;

(iv) For r, m ≥ 2, MDe
1 (Kr,m) = r

(
r − 1

)2
+ m

(
m− 1

)2
;

(v) For p ≥ 3, MDe
1 (Sp) = (p− 1)

(
p− 2

)2
+
(
p− 1

)2
;

(vi) For p ≥ 5, MDe
1 (Wp) = (p− 1)

(
p− 4

)2
+
(
p− 1

)2
.

Proposition 2.4 (i) For p ≥ 2, MDe
2 (Pp) =





p + 1, p is odd,

p− 1, p is even;

(ii) For p ≥ 3, MDe
2 (Cp) =





4p, p is odd,

p, p is even;

(iii) MDe
2 (Kp) = M2(Kp) = p(p−1)

2

(
p− 1

)2
;

(iv) For r, m ≥ 2, MDe
2 (Kr,m) = rm

(
r − 1

)(
m− 1

)
;

(v) For p ≥ 3, MDe
2 (Sp) =

(
p− 1

)2
(p− 2);

(vi) For p ≥ 5, MDe
2 (Wp) = (p− 1)(p− 4)(2p− 5).

Proposition 2.5 For any graph G with e(v) = 2, ∀ v ∈ V (G),

(i) MDe
1 (G) = M1(G);

(ii) MDe
2 (G) = q(p− 1)2 − (p− 1)M1(G) + M2(G).

Proof Since e(v) = 2, ∀v ∈ V (G), then degDe
G (v) = degG(v). Hence the result. 2

Corollary 2.6 For any k-regular (p, q)-graph G with diameter two,

(i) MDe
1 (G) = p(p− k − 1)2;

(ii) MDe
2 (G) = 1

2pk(p− k − 1)2.
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§3. Distance Eccentricity Zagreb Indices for Some Graph Operations

In this section, we compute the first and second distance eccentricity Zagreb indices for some

graph operations.

Cartesian Product. The Cartesian product of two graphs G1 and G2, where |V (G1)| =
p1, |V (G2)| = p2 and |E(G1)| = q1, |E(G2)| = q2 is denoted by G1� G2 has the vertex set

V (G1)×V (G2) and two vertices (u, u′) and (v, v′) are connected by an edge if and only if either

([u = v and u′v′ ∈ E(G2)]) or ([u′ = v′ and uv ∈ E(G1)]). By other words, |E(G1� G2)| =
q1p2 + q2p1. The degree of a vertex (u, u′) of G1� G2 is as follows:

degG1� G2
(u, u′) = degG1(u) + degG2(u

′).

The Cartesian product of more than two graphs is denoted by
∏n

i=1 Gi

(∏n
i=1 Gi =

G1� G2� . . . � Gn = (G1� G2� . . .� Gn−1)� Gn

)
, in which any two vertices u = (u1, u2, . . . , un)

and v = (v1, v2, . . . , vn) are adjacent in
∏n

i=1 Gi if and only if ui = vi, ∀i 6= j and ujvj ∈ E(Gj),

where i, j = 1, 2, . . . , n. If G1 = G2 = · · · = Gn = G, we have the n-th Cartesian power of G,

which is denoted by Gn.

Lemma 3.1([8]) Let G =
∏n

i=1 Gi and let u = (u1, u2, · · · , un) be a vertex in V (G). Then

e(u) =

n∑

i=1

e(ui).

Lemma 3.2 Let G =
∏n

i=1 Gi and let u = (u1, u2, . . . , un) be a vertex in G. Then

degDe
G (u) =

n∏

i=1

degDe
Gi

(ui).

Proof Since e(u) =
∑n

i=1 e(ui) (Lemma 3.1), then each distance eccentricity neighbor of

u1 in G1 corresponds degDe
G2

(u2) vertices in G2 and each distance eccentricity neighbor of u2 in

G2 corresponds degDe
G3

(u3) vertices in G3 and so on. Thus by using the Principle of Account

degDe
G (u) = degDe

G1
(u1)degDe

G2
(u2) · · · degDe

Gn
(un). 2

Theorem 3.3 Let G =
∏n

i=1 Gi. Then

(i) MDe
1 (G) =

n∏

i=1

MDe
1 (Gi);

(ii) MDe
2 (G) =

n∑

j=1

n∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj).

Proof Let u = (u1, u2, · · · , un) and v = (v1, v2, · · · , vn) be any two vertices in V (G). Then
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(i) MDe
1 (G) =

∑

u∈V (G)

(
degDe

G (u)
)2

=
∑

u∈V (G)

(
degDe

G1
(u1)degDe

G2
(u2) . . . degDe

Gn
(un)

)2

=
∑

u1∈V (G1)

∑

u2∈V (G2)

. . .
∑

un∈V (Gn)

(
degDe

G1
(u1)

)2(
degDe

G2
(u2)

)2
. . .
(
degDe

Gn
(un)

)2

=

n∏

i=1

MDe
1 (Gi).

(ii) To prove the second distance eccentricity Zagreb index we will use the mathematical

induction. First, if n = 2, then

MDe
2 (G1� G2) =

∑

(u1,u2)(v1,v2)∈E(G1� G2)

degDe
G1

(u1)degDe
G1

(v1)degDe
G2

(u2)degDe
G2

(v2)

=
∑

u1∈V (G1)

∑

(u1,u2)(u1,v2)∈E(G1� G2)

(
degDe

G1
(u1)

)2
degDe

G2
(u2)degDe

G2
(v2)

+
∑

u2∈V (G2)

∑

(u1,u2)(v1,u2)∈E(G1� G2)

(
degDe

G2
(u2)

)2
degDe

G1
(u1)degDe

G1
(v1)

=MDe
1 (G1)M

De
2 (G2) + MDe

1 (G2)M
De
2 (G1)

=
2∑

j=1

2∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj).

Now, suppose the claim is true for n− 1. Then

MDe
2

(
�

n−1
i=1 Gi� Gn

)
=MDe

1

(
�

n−1
i=1 Gi

)
MDe

2 (Gn) + MDe
1 (Gn)MDe

2

(
�

n−1
i=1 Gi

)

=

n−1∏

i=1

MDe
1 (Gi)M

De
2 (Gn) + MDe

1 (Gn)

n−1∑

j=1

n−1∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj)

=

n∑

j=1

n∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj). 2

Composition. The composition G = G1[G2] of two graphs G1 and G2 with disjoint vertex

sets V (G1) and V (G2) and edge sets E(G1) and E(G2), where |V (G1)| = p1, |E(G1)| = q1 and

|V (G2)| = p2, |E(G2)| = q2 is the graph with vertex set V (G1)× V (G2) and any two vertices

(u, u′) and (v, v′) are adjacent whenever u is adjacent to v in G1 or u = v and u′ is adjacent

to v′ in G2. Thus, |E(G1[G2])| = q1p
2
2 + q2p1. The degree of a vertex (u, u′) of G1[G2] is as

follows:

degG1[G2](u, u′) = p2degG1(u) + degG2(u
′).

Lemma 3.4([8]) Let G = G1[G2] and e(v) 6= 1, ∀ v ∈ V (G1). Then eG((u, u′)) = eG1(u).

Lemma 3.5 Let G = G1[G2] and e(v) 6= 1, ∀ v ∈ V (G1). Then

degDe
G (u, u′) =





p2degDe

G1
(u) + degG2

(u′), if u ∈ V 2
e (G1);

p2degDe
G1

(u), otherwise.
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Proof From Lemma 3.4, we have eG(u, u′) = eG1(u). Therefore, NDe
G (u, u′) = {(x, x′) ∈

V (G) : d
(
(u, u′), (x, x′)

)
= eG1(u)}. Now, if u /∈ V 2

e (G1), then NDe
G (u, u′) = {(x, x′) ∈ V (G) :

x ∈ NDe
G1

(u)} and hence, degDe
G (u, u′) = p2degDe

G1
(u) and if u ∈ V 2

e (G1), then degDe
G (u, u′) =

p2degDe
G1

(u) + degG2
(u′) (note that all the vertices of the copy of G2 with the projection u ∈

V (G1) which are not adjacent to (u, u′) have distance two from (u, u′)). 2
Theorem 3.6 Let G = G1[G2] and e(v) 6= 1, ∀ v ∈ V (G1). Then

MDe
1 (G) = p3

2M
De
1 (G1) + |V 2

e (G1)|M1(G2) + 4p2q2

∑

u∈V 2
e (G1)

degDe
G1

(u).

Proof By definition, we know that

MDe
1 (G) =

∑

(u,u′)∈V (G)

(
degDe

G (u, u′)
)2

=
∑

u∈V (G1)

∑

u′∈V (G2)

(
degDe

G (u, u′)
)2

=
∑

u∈V 2
e (G1)

∑

u′∈V (G2)

(
p2degDe

G1
(u) + degG2

(u′)
)2

+
∑

u∈V (G1)−V 2
e (G1)

∑

u′∈V (G2)

(
p2degDe

G1
(u)
)2

=
∑

u∈V (G1)

∑

u′∈V (G2)

(
p2degDe

G1
(u)
)2

+
∑

u∈V 2
e (G1)

M1(G2)

+
∑

u∈V 2
e (G1)

∑

u′∈V (G2)

2p2degG2
(u′)degDe

G1
(u)

=p3
2M

De
1 (G1) + |V 2

e (G1)|M1(G2) + 4p2q2

∑

u∈V 2
e (G1)

degDe
G1

(u). 2
Theorem 3.7 Let G = G1[G2] and e(v) 6= 1 or 2, ∀ v ∈ V (G1). Then

MDe
2 (G) = p4

2M
De
2 (G1) + p2

2q2M
De
1 (G1).

Proof By deifnition, we know that

M
De
2 (G) =

1

2

∑

(u,u′)∈V (G)

deg
De
G (u, u

′)
∑

(v,v′)∈NG(u,u′)

deg
De
G (v, v

′)

=
1

2

∑

u∈V (G1)

∑

u′∈V (G2)

deg
De
G (u, u

′)

[ ∑

v∈NG1
(u)

∑

v′∈V (G2)

deg
De
G (v, v

′) +
∑

v′∈NG2
(u′)

deg
De
G (u, v

′)

]

=
1

2

∑

u∈V (G1)

∑

u′∈V (G2)

p2deg
De
G1

(u)

[ ∑

v∈NG1
(u)

∑

v′∈V (G2)

p2deg
De
G1

(v) +
∑

v′∈NG2
(u′)

p2deg
De
G1

(u)

]

=p
4
2M

De
2 (G1) + p

2
2q2M

De
1 (G1).

This completes the proof. 2
Disjunction and Symmetric Difference. The disjunction G1 ∨ G2 of two graphs G1

and G2 with |V (G1)| = p1, |E(G1)| = q1 and |V (G2)| = p2, |E(G2)| = q2 is the graph with
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vertex set V (G1) × V (G2) in which (u, u′) is adjacent to (v, v′) whenever u is adjacent to v in

G1 or u′ is adjacent to v′ in G2. So, |E(G1 ∨G2)| = q1p
2
2 + q2p

2
1− 2q1q2. The degree of a vertex

(u, u′) of G1 ∨G2 is as follows:

degG1∨G2(u, u′) = p2degG1(u) + p1degG2(u
′)− degG1(u)degG2(u

′).

Also, the symmetric difference G1⊕G2 of G1 and G2 is the graph with vertex set V (G1)×V (G2)

in which (u, u′) is adjacent to (v, v′) whenever u is adjacent to v in G1 or u′ is adjacent to v′ in

G2, but not both. From definition one can see that, |E(G1 ⊕G2)| = q1p
2
2 + q2p

2
1 − 4q1q2. The

degree of a vertex (u, u′) of G1 ⊕G2 is as follows:

degG1⊕G2(u, u′) = p2degG1(u) + p1degG2(u
′)− 2degG1(u)degG2(u

′).

The distance between any two vertices of a disjunction or a symmetric difference cannot exceed

two. Thus, if e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2), the eccentricity of all vertices is constant and

equal to two. We know the following lemma.

Lemma 3.8 Let G1 and G2 be two graphs with e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2). Then

(i) degDe
G1∨G2

(u, u′) = degG1∨G2
(u, u′);

(ii) degDe
G1⊕G2

(u, u′) = degG1⊕G2
(u, u′).

Theorem 3.9 Let G1 and G2 be two graphs with e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2). Then

(i) MDe
1 (G1 ∨ G2) = M1(G1 ∨ G2);

(ii) MDe
2 (G1 ∨ G2) = qG1∨G2(p1p2 − 1)2 − (p1p2 − 1)M1(G1 ∨ G2) + M2(G1 ∨ G2).

Proof The proof is straightforward by Proposition 2.5. 2
Theorem 3.10 Let G1 and G2 be any two graphs with e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2). Then

(i) MDe
1 (G1 ⊕ G2) = M1(G1 ⊕ G2);

(ii) MDe
2 (G1 ⊕ G2) = qG1⊕G2(p1p2 − 1)2 − (p1p2 − 1)M1(G1 ⊕ G2) + M2(G1 ⊕ G2).

Proof The proof is straightforward by Proposition 2.5. 2
Join. The join G1 + G2 of two graphs G1 and G2 with disjoint vertex sets |V (G1)| =

p1, |V (G2)| = p2 and edge sets |E(G1)| = q1, |E(G2)| = q2 is the graph on the vertex set

V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2) ∪ {u1u2 : u1 ∈ V (G1); u2 ∈ V (G2)}. Hence,

the join of two graphs is obtained by connecting each vertex of one graph to each vertex of the

other graph, while keeping all edges of both graphs. The degree of any vertex u ∈ G1 + G2 is

given by

degG1+G2(u) =





degG1(u) + p2, if u ∈ V (G1);

degG2(u) + p1, if u ∈ V (G2).

By using the definition of the join graph G =
n∑

i=1

Gi, we get the following lemma.
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Lemma 3.11 Let G =
n∑

i=1

Gi and u ∈ V (G). Then

degDe
G (u) =





|V (G)| − 1, u ∈ V 1

e (Gi);

pi − 1− degGi
(u), u ∈ V (Gi)− V 1

e (Gi), for i = 1, 2, . . . , n.

Theorem 3.12 Let G =

n∑

i=1

Gi. Then

MDe
1 (G) =

(
|V (G)| − 1

)2 n∑

i=1

|V 1
e (Gi)|+

n∑

i=1

[
M1(Gi) + pi

(
pi − 1

)2 − 4qi(pi − 1)

]
.

Proof By definition,

MDe
1 (G) =

∑

u∈V (G)

[
degDe

G (u)
]2

=

n∑

i=1

∑

u∈V (Gi)

[
degDe

G (u)
]2

=

n∑

i=1

∑

u∈V 1
e (Gi)

[
degDe

G (u)
]2

+

n∑

i=1

∑

u∈V (Gi)−V 1
e (Gi)

[
pi − 1− degGi

(u)
]2

=
(
|V (G)| − 1

)2 n∑

i=1

|V 1
e (Gi)|+

n∑

i=1

M1(Gi).

This completes the proof. 2
Theorem 3.13 Let G =

n∑

i=1

Gi. Then

MDe
2 (G) =

1

2

(
|V (G)| − 1

) n∑

i=1

|V 1
e (Gi)|

[
(|V (G)| − 1)

(
− 1 +

n∑

j=1

|V 1
e (Gj)|

)

+ 2

n∑

j=1

(
p2

j − pj − 2qj

)]
+

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

+

n−1∑

i=1

(
p2

i − pi − 2qi

) n∑

j=i+1

(
p2

j − pj − 2qj

)
.

Proof By definition, we get that

M
De
2 (G) =

∑

uv∈E(G)

deg
De
G (u)deg

De
G (v) =

1

2

∑

u∈V (G)

deg
De
G (u)

∑

v∈NG(u)

deg
De
G (v)



118 Akram Alqesmah, Anwar Alwardi and R. Rangarajan

=
1

2

n∑

i=1

∑

u∈V (Gi)

deg
De
G (u)

[ ∑

v∈NGi
(u)

deg
De
G (v) +

n∑

j=1
j 6=i

∑

v∈V (Gj)

deg
De
G (v)

]

=
1

2

n∑

i=1

∑

u∈V 1
e (Gi)

(
|V (G)| − 1

)[(
|V (G)| − 1

)(
|V 1

e (Gi)| − 1
)

+
∑

v∈V (Gi)−V 1
e (Gi)

degGi
(v)

+

n∑

j=1
j 6=i

[(
|V (G)| − 1

)
|V 1

e (Gj)| +
∑

v∈V (Gj )−V 1
e (Gj )

degGj
(v)
]]

+
1

2

n∑

i=1

∑

u∈V (Gi)−V 1
e (Gi)

degGi
(u)

[(
|V (G)| − 1

)
|V 1

e (Gi)| +
∑

v∈NGi
(u)−V 1

e (Gi)

degGi
(v)

+
n∑

j=1
j 6=i

[(
|V (G)| − 1

)
|V 1

e (Gj)| +
∑

v∈V (Gj )−V 1
e (Gj )

degGj
(v)
]]

=
1

2

(
|V (G)| − 1

) n∑

i=1

|V 1
e (Gi)|

[
(|V (G)| − 1)

(
− 1 +

n∑

j=1

|V 1
e (Gj)|

)

+
n∑

j=1

(
p
2
j − pj − 2qj

)]
+

1

2

n∑

i=1

(
p
2
i − pi − 2qi

)[(
|V (G)| − 1

) n∑

j=1

|V 1
e (Gj)|

+
n∑

j=1
j 6=i

(
p
2
j − pj − 2qj

)]
+

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

=
1

2

(
|V (G)| − 1

) n∑

i=1

|V 1
e (Gi)|

[
(|V (G)| − 1)

(
− 1 +

n∑

j=1

|V 1
e (Gj)|

)

+ 2

n∑

j=1

(
p
2
j − pj − 2qj

)]
+

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

+
n−1∑

i=1

(
p
2
i − pi − 2qi

) n∑

j=i+1

(
p
2
j − pj − 2qj

)
.

Note that, the equality

1

2

n∑

i=1

(
p2

i − pi − 2qi

) n∑

j=1
j 6=i

(
p2

j − pj − 2qj

)
=

n−1∑

i=1

(
p2

i − pi − 2qi

) n∑

j=i+1

(
p2

j − pj − 2qj

)
,

is applied in the previous calculation. 2
Corollary 3.14 If Gi (i = 1, 2, · · · , n) has no vertices of full degree (V 1

e (Gi) = φ), then

(i) MDe
1

( n∑

i=1

Gi

)
=

n∑

i=1

M1(Gi);

(ii) MDe
2

( n∑

i=1

Gi

)
=

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

+

n−1∑

i=1

(
p2

i − pi − 2qi

) n∑

j=i+1

(
p2

j − pj − 2qj

)
.
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Corona Product. The corona product G1◦G2 of two graphs G1 and G2, where |V (G1)| =
p1, |V (G2)| = p2 and |E(G1)| = q1, |E(G2)| = q2 is the graph obtained by taking |V (G1)|
copies of G2 and joining each vertex of the i-th copy with vertex u ∈ V (G1). Obviously,

|V (G1 ◦ G2)| = p1(p2 + 1) and |E(G1 ◦ G2)| = q1 + p1(q2 + p2). It follows from the definition

of the corona product G1 ◦ G2, the degree of each vertex u ∈ G1 ◦ G2 is given by

degG1◦G2(u) =





degG1(u) + p2, if u ∈ V (G1);

degG2(u) + 1, if u ∈ V (G2).

We therefore know the next lemma.

Lemma 3.15 Let G = G1 ◦ G2 be a connected graph and let u ∈ V (G). Then

degDe
G (u) =





p2degDe

G1
(u), u ∈ V (G1);

p2degDe
G1

(v), u ∈ V (G)− V (G1), where v ∈ V (G1) is adjacent to u.

Theorem 3.16 Let G = G1 ◦ G2 be a connected graph. Then

(i) MDe
1 (G) = p2

2(p2 + 1)MDe
1 (G1);

(ii) MDe
2 (G) = p2

2M
De
2 (G1) + p2

2(q2 + p2)M
De
1 (G1).

Proof By definition, calculation shows that

(i) MDe
1 (G) =

∑

u∈V (G)

[
degDe

G (u)
]2

=
∑

u∈V (G1)

[
degDe

G (u)
]2

+
∑

v∈V (G1)

∑

u∈V (G2)

[
degDe

G (u)
]2

=
∑

u∈V (G1)

[
p2degDe

G1
(u)
]2

+
∑

v∈V (G1)

∑

u∈V (G2)

[
p2degDe

G1
(v)
]2

=p2
2M

De
1 (G1) + p3

2M
De
1 (G1).

(ii) MDe
2 (G) =

1

2

∑

u∈V (G)

degDe(u)
∑

v∈N(u)

degDe(v)

=
1

2

∑

u∈V (G1)

degDe
G (u)

[ ∑

v∈NG1(u)

degDe
G (v) +

∑

v∈V (G2)

degDe
G (v)

]

+
1

2

∑

v∈V (G1)

∑

u∈V (G2)

degDe
G (u)

[ ∑

w∈NG2(u)

degDe
G (w) + degDe

G (v)

]

=
1

2

∑

u∈V (G1)

p2degDe
G1

(u)

[ ∑

v∈NG1(u)

p2degDe
G1

(v) + p2
2degDe

G1
(u)

]

+
1

2

∑

v∈V (G1)

∑

u∈V (G2)

p2degDe
G1

(v)

[
p2degDe

G1
(v)degG2(u) + p2degDe

G1
(v)

]

=p2
2M

De
2 (G1) + p2

2(q2 + p2)M
De
1 (G1).

This completes the proof. 2
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Example 3.17 For any cycle Cp1 and any path Pp2 ,

(i) MDe
1 (Cp1 ◦ Pp2) =





4p1p

2
2(p2 + 1), p1 is odd;

p1p
2
2(p2 + 1), p1 is even.

(ii) MDe
2 (Cp1 ◦ Pp2 ) =





8p1p

3
2, p1 is odd;

2p1p
3
2, p1 is even.

Example 3.18 For any two cycles Cp1 and Cp2 ,

(i) MDe
1 (Cp1 ◦ Cp2) =





4p1p

2
2(p2 + 1), p1 is odd;

p1p
2
2(p2 + 1), p1 is even.

(ii) MDe
2 (Cp1 ◦ Cp2 ) =





4p1p

2
2(2p2 + 1), p1 is odd;

p1p
2
2(2p2 + 1), p1 is even.
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