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Abstract: A graph with n vertices is said to admit a prime labeling if it’s vertices are

labeled with distinct integers 1, 2, · · · , n such that for edge xy , the labels assigned to x

and y are relatively prime. The graph that admits a prime labeling is said to be prime.

G. Sethuraman has introduced concept of supersubdivision of a graph. In the light of this

concept, we have proved that supersubdivision by K2,2 of star, cycle and ladder are prime.
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§1. Introduction

We consider finite undirected graphs without loops, also without multiple edges. G Sethuraman

and P. Selvaraju [2] have introduced supersubdivision of graphs and proved that there exists

a graceful arbitrary supersubdivision of Cn, n ≥ 3 with certain conditions. Alka Kanetkar has

proved that grids are prime [1]. Some results on prime labeling for some cycle related graphs

were established by S.K. Vaidya and K.K.Kanani [6]. It was appealing to study prime labeling

of supersubdivisions of some families of graphs.

§2. Definitions

Definition 2.1(Star) A star Sn is the complete bipartite graph K1,n a tree with one internal

node and n leaves, for n > 1.

Definition 2.2(Ladder) A ladder Ln is defined by Ln = Pn ×P2 here Pn is a path of length n

, × denotes Cartesian product. Ln has 2n vertices and 3n− 2 edges.

Definition 2.3(Cycle) A cycle is a graph with an equal number of vertices and edges where

vertices can be placed around circle so that two vertices are adjacent if and only if they appear
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consecutively along the circle. The cycle is denoted by Cn.

Definition 2.4(Subdivision of a Graph) Let G be a graph with p vertices and q edges. A graph

H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once.

H is denoted by S(G). Thus, |V | = p + q and |E| = 2q.

Definition 2.5(Supersubdivision of a Graph) Let G be a graph with p vertices and q edges. A

graph H is said to be a supersubdivision of G if it is obtained from G by replacing every edge

e of G by a complete bipartite graph K2,m. H is denoted by SS(G). Thus, |V | = p + mq and

|E| = 2mq.

Definition 2.6(Prime Labelling) A prime labeling of a graph is an injective function f :

V (G)→ {1, 2, · · · , |V (G)|} such that for every pair of adjacent vertices u and v, gcd (f (u) , f (v))

= 1 i.e.labels of any two adjacent vertices are relatively prime. A graph is said to be prime if it

has a prime labeling.

Generally, a labeling is called Smarandachely prime on a graph H by Smarandachely denied

axiom ([5], [8]) if there is such a labeling f : V (G) → {1, 2, · · · , |V (G)|} on G that for every

edge uv not in subgraphs of G isomorphic to H, gcd (f (u) , f (v)) = 1.

For a complete bipartite graph K2,m, we call the part consisting of two vertices, the 2

vertices part of K(2,m) and the part consisting of m vertices, the m-vertices part of K2,m in this

paper.

§3. Main Results

Theorem 3.1 A supersubdivision of Sn, i.e. SS (Sn) is prime for m = 2.

Proof Let u be the internal node i.e.centre vertex. Let v1, v2, · · · , vn be endpoints. Let

v1
i , v2

i , i = 1, 2, · · · , n be vertices of graph K2,2 replacing edge uvi. Here, |V | = 3n + 1.

Let f : V → {1, 2, . . . , 3n + 1} be defined as follows:

f (u) = 1,

f (vi) = 3i, i = 1, 2, · · · , n,

f
(
v1

i

)
= 3i− 1, i = 1, 2, · · · , n,

f
(
v2

i

)
= 3i + 1, i = 1, 2, · · · , n.

As f (u) = 1, gcd
(
f (u) , f

(
v1

i

))
= 1 and gcd

(
f (u) , f

(
v2

i

))
= 1.

As successive integers are coprime, gcd
(
f
(
v1

i

)
, f (vi)

)
= (3i− 1, 3i) = 1 and gcd

(
f
(
v2

i

)
,

f (vi)) = (3i + 1, 3i) = 1. Thus SS (Sn) is prime. 2
Let Cn be a cycle of length n. Let c1, c2, · · · , cn be the vertices of cycle. Let ck

i,i+1, k = 1, 2

be the vertices of the bipartite graph that replaces the edge cici+1 for i = 1, 2, · · · , n − 1 Let

ck
n,1, k = 1, 2 be the vertices of the bipartite graph that replaces the edge cnc1. To illustrate

these notations a figure is shown below.
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Fig.1 Graph with n = 7 with general vertex labels

Theorem 3.2 A supersubdivision of Cn, i.e. SS (Cn) is prime for m = 2.

Proof Let p1, p2, · · · , pk be primes such that 3 ≤ p1 < p2 < p3 · · · < pk < 3n such that if

p is any prime from 3 to 3n then p = pi for some i between 1 to k.

Define S2 = {S2i
/S2i

= 2i, i ∈ N such that S2i
≤ 3n}. Choose greatest i such that pi ≤ n

and denote it by l. Let Sp1 = {Sp1i
/Sp1i

= p1× i, i ∈ {2, 3, · · · , n}\{pl, pl−1, · · · , pl−(n−k−2)}.
Define f : V → {1, 2, . . . , 3n} using following algorithm.

Case 1. n = 3 to 8.

In this case, k = n.

Step 1. f (cr) = pr for r = 1, 2, · · · , k and f
(
c1
1,2

)
= 1.

Step 2. Choose greatest i, such that 2pi < 3n and denote it by r. Define Spj
for

j = 2, 3, · · · , r such that Spji−1
< Spji

to be Spj
=
{
Spji

/Spji
= pj × i, i ∈

{
2, 3, · · · ,

⌈
3n
pj

⌉}}
.

Step 3. For i = 2, 3, · · · , n, k = 1, 2. Label ck
i,i+1 using elements of Spj

in increasing order

starting from j = 1, 2, · · · , r and then by elements of S2 in increasing order.

Step 4. Choose greatest i such that 2i ≤ 3n. Label ck
n,1, k = 1, 2 as 2i−1, 2i−2.

Step 5. Label c2
1,2 as 2i.

Case 2. n = 9 to 11

In this case, k + 1 = n.

Step 1. f (cr) = pr for r = 1, 2, . . . , k and f (cn) = 1.

Step 2. Choose greatest i, such that 2pi < 3n and denote it by r. Define Spj
for

j = 2, 3, · · · , r such that Spji−1
< Spji

to be Spj
=
{
Spji

/Spji
= pj × i, i ∈

{
2, 3, · · · ,

⌈
3n
pj

⌉}}
.
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Step 3. For i = 2, 3, · · · , n and k = 1, 2, label ck
i,i+1 using elements of Spj

in increasing

order starting from j = 1, 2, . . . , r and then by elements of S2 in increasing order.

Step 4. Choose greatest i such that 2i ≤ 3n. Label ck
n,1, k = 1, 2 as 2i−2, 2i−3.

Step 5. Label ck
1,2, k = 1, 2 as 2i and 2i−1.

Case 3. n ≥ 12.

Step 1. f (cr) = pr for r = 1, 2, · · · , k.

Step 2. f (ck+1) = 1.

For j = 1, 2, · · · , n− k − 2, f (cn−j) = 3pl−j .

Step 3. Choose greatest i, such that 2pi < 3n and denote it by r. Define Spj
for

j = 2, 3, · · · , r such that Spji−1
< Spji

to be

Spj
=

{
Spji

/Spji
= pj × i, i ∈

{
2, 3, · · · ,

⌈
3n

pj

⌉
}\

j−1⋃

r=1

{k × pr/k ∈ N

}}
.

Step 4. For i = 2, 3, · · · , n and k = 1, 2. Label ck
i,i+1 using elements of Spj

in increasing

order starting from j = 1, 2, . . . , r and then by elements of S2 in increasing order.

Step 5. Choose greatest i such that 2i ≤ 3n. Label ck
n,1, k = 1, 2 as 2i−2, 2i−3.

Step 6. Label ck
1,2, k = 1, 2 as 2i and 2i−1.

In this case, labels of vertices c1, c2, · · · , ck are prime . Vertices ck+1, to cn get labels

which are multiples by 3 of pl, pl−1, · · · , pl−(n−k−2). Apart from these labels and 3 itself, we

have k − 1 more multiples of 3. Thus k − 1 vertices of the type cj
i,i+1, 2 ≤ i ≤

⌈
k−1
2

⌉
, j = 1, 2

will get labels as multiples of 3. And hence are relatively prime to labels of corresponding c′is.

Similarly, for multiples of 5, 7 and so on. Thus, SS (Cn) is prime. 2
Theorem 3.3 A supersubdivision of Ln, i.e. SS (Ln) is prime for m = 2.

Proof Let u1, u2, · · · .un and v1, v2, · · · , vn be the vertices of the two paths in Ln. Let

uiui+1, vivi+1 for i = 1, 2, · · · , n − 1 and uivi for i = 1, 2, · · · , n − 1, n be the edges of

Ln. Let xk
i , k = 1, 2 be the vertices of bipartite graph K2,2 replacing the edge uiui+1, i =

1, 2, · · · , n− 1. Let yk
i , k = 1, 2, · · · , m be the vertices of the bipartite graph K2,2 replacing the

edge vn−ivn−i−1, i = 1, 2, · · · , n− 1. Let wk
i , k = 1, 2 be the vertices of the bipartite graph K2,2

replacing the edge uivi for i = 1, 2, · · · , n− 1, n.

Thus, |V | = 2n+ 2n + 2(n− 1)+ 2(n− 1) = 8n− 4. Let p1, p2, · · · , pk be primes such that

3 ≤ p1 < p2 < p3 · · · < pk < 3n such that if p is any prime between 3 to 3n then p = pi for

some i between 1 to k. Choose greatest i, such that 2pi < 8n− 4 and denote it by r.

Define Spj
for j = 2, 3, · · · , r such that Spji−1

< Spji
to be

Spj
=

{
Spji

/Spji
= pj × i, i ∈

{
2, 3, · · · ,

⌈
8n− 4

pj

⌉}
\

j−1⋃

r=1

{k × pr/k ∈ N}
}

.

Define S2 =
{
S2i

/S2i
= 2i, i ∈ N such that S2i

≤ 3n
}

and a labeling from V → {1, 2, · · · , 8n−
4} as follows.
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Case 1. n = 2.

In this case, k = 2n. Let X = {w1
2, w

2
2 , y

1
1 , y

2
1 , w

1
1 , w

2
1 , x

2
1} be an ordered set. Define Sp1

such that Sp1 =
{
Sp1i

/Sp1i
= p1 × i = 3× i, i ∈

{
2, 3, · · · ,

⌈
8n−4

pj

⌉}}
.

Step 1. f (ur) = pr for r = 1, 2.

Step 2. f (vn−r) = pn+r+1 for r = 0, 1.

Step 3. f
(
x1

1

)
= 1.

Step 4. Label elements of X in order by using elements of Spj
in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Case 2. n = 3 and 6.

In this case, k = 2n+1. Let X = {x1
2, x

2
2, x

1
3, · · · , x1

n−1, x
2
n−1, y

1
1 , y

2
1 , y

1
2, · · · , y1

n−1, y
2
n−1, w

1
1 ,

w2
1 , w

1
2 , · · · , w1

n, w2
n} be an ordered set. Define Sp1 such that

Sp1 =

{
Sp1i

/Sp1i
= p1 × i = 3× i, i ∈

{
2, 3, · · · ,

⌈
8n− 4

pj

⌉}}
.

Step 1. f (ur) = pr for r = 1, 2, · · · , n.

Step 2. f (vn−r) = pn+r+1 for r = 0, 1, · · · , n− 1.

Step 3. f
(
x1

1

)
= 1 and f

(
x2

1

)
= pk.

Step 4. Label elements of X in order by using elements of Spj
in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Case 3. n = 4, 5 and 7 to 11.

In this case, k = 2n. Let X = {x1
2, x

2
2, x

1
3, · · · , x1

n−1, x
2
n−1, y

1
1 , y

2
1 , y

1
2 , · · · , y1

n−1, y
2
n−1, w

1
1, w

2
1 ,

w1
2 , · · · , w1

n, w2
n, x2

1} be an ordered set. Define Sp1 such that

Sp1 =

{
Sp1i

/Sp1i
= p1 × i = 3× i, i ∈

{
2, 3, · · · ,

⌈
8n− 4

pj

⌉}}
.

Step 1. f (ur) = pr for r = 1, 2, · · · , n.

Step 2. f (vn−r) = pn+r+1 for r = 0, 1, . . . , n− 1.

Step 3. f
(
x1

1

)
= 1.

Step 4. Label elements of X in order by using elements of Spj
in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Case 4. n ≥ 12.

Let X = {x1
2, x

2
2, x

1
3, · · · , x1

n−1, x
2
n−1, y

1
1, y

2
1 , y

1
2 , · · · , y1

n−1, y
2
n−1, w

1
n, w2

n, w1
n−1, · · · , w1

1 , w
2
1}

be an ordered set. Choose greatest i, such that pi ≤
⌈

8n−4
3

⌉
and denote it by l.

Step 1. f (ur) = pr for r = 1, 2, · · · , n.

Step 2. f (vr) = 3pl−(r−1) for r = 1, 2, · · · , 2n− k.

Step 3. f (vn−r) = pn+r+1 for r = 0, 1, · · · , n− (2n− k + 1).

Step 4. Sp1 =
{
Sp1i

/Sp1i
= p1 × i, i ∈

{
2, 3, · · · ,

⌈
8n−4

3

⌉}}
\
{
pl, pl−1, · · · , pl−(2n−k−1)

}
.
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Step 5. Label elements of X in order by using elements of Spj
in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Step 6. Choose greatest i such that 2i ≤ 3n. Label x1
1, x

2
1 as 2i and 2i−1.

In the above labeling, vertices u′
is and v′is receive prime labels. Vertices x′

is, y′
is,w

′
is

adjacent to u′
is,v

′
is are labeled with numbers which are multiples of 3 followed by multiples of

5 and so on. Since m = 2(small), labels are not multiples of respective primes. Thus SS (Ln)

prime. 2
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