Primeness of Supersubdivision of Some Graphs

Ujwala Deshmukh

(Department of Mathematics, Mithibai College, Vile Parle(West), Mumbai, India)

Smita A. Bhatavadekar

(Department of Applied Mathematics, Lokmanya Tilak College of Engineering, University of Mumbai, India)

 $E\text{-mail: ujwala_-deshmukh@rediffmail.com, smitasj1@gmail.com}$

Abstract: A graph with *n* vertices is said to admit a prime labeling if it's vertices are labeled with distinct integers $1, 2, \dots, n$ such that for edge xy, the labels assigned to x and y are relatively prime. The graph that admits a prime labeling is said to be prime. G. Sethuraman has introduced concept of supersubdivision of a graph. In the light of this concept, we have proved that supersubdivision by $K_{2,2}$ of star, cycle and ladder are prime.

Key Words: Star, ladder, cycle, subdivision of graphs, supersubdivision of graphs, prime labeling, Smarandachely prime labeling.

AMS(2010): 05C78.

§1. Introduction

We consider finite undirected graphs without loops, also without multiple edges. G Sethuraman and P. Selvaraju [2] have introduced supersubdivision of graphs and proved that there exists a graceful arbitrary supersubdivision of $C_n, n \ge 3$ with certain conditions. Alka Kanetkar has proved that grids are prime [1]. Some results on prime labeling for some cycle related graphs were established by S.K. Vaidya and K.K.Kanani [6]. It was appealing to study prime labeling of supersubdivisions of some families of graphs.

§2. Definitions

Definition 2.1(Star) A star S_n is the complete bipartite graph $K_{1,n}$ a tree with one internal node and n leaves, for n > 1.

Definition 2.2(Ladder) A ladder L_n is defined by $L_n = P_n \times P_2$ here P_n is a path of length n, \times denotes Cartesian product. L_n has 2n vertices and 3n - 2 edges.

Definition 2.3(Cycle) A cycle is a graph with an equal number of vertices and edges where vertices can be placed around circle so that two vertices are adjacent if and only if they appear

¹Received January 9, 2017, Accepted November 28, 2017.

consecutively along the circle. The cycle is denoted by C_n .

Definition 2.4(Subdivision of a Graph) Let G be a graph with p vertices and q edges. A graph H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once. H is denoted by S(G). Thus, |V| = p + q and |E| = 2q.

Definition 2.5(Supersubdivision of a Graph) Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision of G if it is obtained from G by replacing every edge e of G by a complete bipartite graph $K_{2,m}$. H is denoted by SS(G). Thus, |V| = p + mq and |E| = 2mq.

Definition 2.6(Prime Labelling) A prime labeling of a graph is an injective function f: $V(G) \rightarrow \{1, 2, \dots, |V(G)|\}$ such that for every pair of adjacent vertices u and v, gcd(f(u), f(v)) = 1 i.e.labels of any two adjacent vertices are relatively prime. A graph is said to be prime if it has a prime labeling.

Generally, a labeling is called Smarandachely prime on a graph H by Smarandachely denied axiom ([5], [8]) if there is such a labeling $f : V(G) \to \{1, 2, \dots, |V(G)|\}$ on G that for every edge uv not in subgraphs of G isomorphic to H, gcd(f(u), f(v)) = 1.

For a complete bipartite graph $K_{2,m}$, we call the part consisting of two vertices, the 2 vertices part of $K_{(2,m)}$ and the part consisting of m vertices, the m-vertices part of $K_{2,m}$ in this paper.

§3. Main Results

Theorem 3.1 A supersubdivision of S_n , i.e. $SS(S_n)$ is prime for m = 2.

Proof Let u be the internal node i.e.centre vertex. Let v_1, v_2, \dots, v_n be endpoints. Let $v_i^1, v_i^2, i = 1, 2, \dots, n$ be vertices of graph $K_{2,2}$ replacing edge uv_i . Here, |V| = 3n + 1.

Let $f: V \to \{1, 2, \dots, 3n+1\}$ be defined as follows:

f(u) = 1, $f(v_i) = 3i, \qquad i = 1, 2, \cdots, n,$ $f(v_i^1) = 3i - 1, \qquad i = 1, 2, \cdots, n,$ $f(v_i^2) = 3i + 1, \qquad i = 1, 2, \cdots, n.$ As $f(u) = 1, \ gcd(f(u), f(v_i^1)) = 1$ and $\ gcd(f(u), f(v_i^2)) = 1.$

As successive integers are coprime, $gcd\left(f\left(v_{i}^{1}\right), f\left(v_{i}\right)\right) = (3i - 1, 3i) = 1$ and $gcd\left(f\left(v_{i}^{2}\right), f\left(v_{i}\right)\right) = (3i + 1, 3i) = 1$. Thus $SS\left(S_{n}\right)$ is prime.

Let C_n be a cycle of length n. Let c_1, c_2, \dots, c_n be the vertices of cycle. Let $c_{i,i+1}^k$, k = 1, 2 be the vertices of the bipartite graph that replaces the edge $c_i c_{i+1}$ for $i = 1, 2, \dots, n-1$ Let $c_{n,1}^k$, k = 1, 2 be the vertices of the bipartite graph that replaces the edge $c_n c_1$. To illustrate these notations a figure is shown below.

Fig.1 Graph with n = 7 with general vertex labels

Theorem 3.2 A supersubdivision of C_n , i.e. $SS(C_n)$ is prime for m = 2.

Proof Let p_1, p_2, \dots, p_k be primes such that $3 \le p_1 < p_2 < p_3 \dots < p_k < 3n$ such that if p is any prime from 3 to 3n then $p = p_i$ for some i between 1 to k.

Define $S_2 = \{S_{2_i}/S_{2_i} = 2^i, i \in \mathbb{N} \text{ such that } S_{2_i} \leq 3n\}$. Choose greatest i such that $p_i \leq n$ and denote it by l. Let $S_{p_1} = \{S_{p_{1_i}}/S_{p_{1_i}} = p_1 \times i, i \in \{2, 3, \dots, n\} \setminus \{p_l, p_{l-1}, \dots, p_{l-(n-k-2)}\}$. Define $f: V \to \{1, 2, \dots, 3n\}$ using following algorithm.

Case 1. n = 3 to 8.

In this case, k = n.

Step 1. $f(c_r) = p_r$ for $r = 1, 2, \dots, k$ and $f(c_{1,2}^1) = 1$.

Step 2. Choose greatest *i*, such that $2p_i < 3n$ and denote it by *r*. Define S_{p_j} for $j = 2, 3, \dots, r$ such that $S_{p_{j_{i-1}}} < S_{p_{j_i}}$ to be $S_{p_j} = \left\{S_{p_{j_i}}/S_{p_{j_i}} = p_j \times i, i \in \left\{2, 3, \dots, \left\lceil\frac{3n}{p_j}\right\rceil\right\}\right\}$. **Step 3.** For $i = 2, 3, \dots, n, k = 1, 2$. Label $c_{i,i+1}^k$ using elements of S_{p_j} in increasing order

starting from $j = 1, 2, \dots, r$ and then by elements of S_2 in increasing order.

Step 4. Choose greatest *i* such that $2^i \leq 3n$. Label $c_{n,1}^k$, k = 1, 2 as $2^{i-1}, 2^{i-2}$. **Step 5.** Label $c_{1,2}^2$ as 2^i .

Case 2. n = 9 to 11

In this case, k + 1 = n.

Step 1. $f(c_r) = p_r$ for r = 1, 2, ..., k and $f(c_n) = 1$.

Step 2. Choose greatest *i*, such that $2p_i < 3n$ and denote it by *r*. Define S_{p_j} for $j = 2, 3, \dots, r$ such that $S_{p_{j_{i-1}}} < S_{p_{j_i}}$ to be $S_{p_j} = \left\{S_{p_{j_i}}/S_{p_{j_i}} = p_j \times i, i \in \left\{2, 3, \dots, \left\lceil\frac{3n}{p_j}\right\rceil\right\}\right\}$.

Step 3. For $i = 2, 3, \dots, n$ and k = 1, 2, label $c_{i,i+1}^k$ using elements of S_{p_j} in increasing order starting from $j = 1, 2, \dots, r$ and then by elements of S_2 in increasing order.

Step 4. Choose greatest *i* such that $2^i \leq 3n$. Label $c_{n,1}^k$, k = 1, 2 as $2^{i-2}, 2^{i-3}$. **Step 5.** Label $c_{1,2}^k$, k = 1, 2 as 2^i and 2^{i-1} .

Case 3. $n \ge 12$.

Step 1. $f(c_r) = p_r$ for $r = 1, 2, \dots, k$. **Step 2.** $f(c_{k+1}) = 1$.

Step 2. $f(c_{k+1}) = 1$.

For $j = 1, 2, \dots, n - k - 2$, $f(c_{n-j}) = 3p_{l-j}$.

Step 3. Choose greatest *i*, such that $2p_i < 3n$ and denote it by *r*. Define S_{p_j} for $j = 2, 3, \dots, r$ such that $S_{p_{j_{i-1}}} < S_{p_{j_i}}$ to be

$$S_{p_j} = \left\{ S_{p_{j_i}} / S_{p_{j_i}} = p_j \times i, i \in \left\{ 2, 3, \cdots, \left\lceil \frac{3n}{p_j} \right\rceil \right\} \setminus \bigcup_{r=1}^{j-1} \{k \times p_r / k \in \mathbb{N} \right\} \right\}.$$

Step 4. For $i = 2, 3, \dots, n$ and k = 1, 2. Label $c_{i,i+1}^k$ using elements of S_{p_j} in increasing order starting from $j = 1, 2, \dots, r$ and then by elements of S_2 in increasing order.

Step 5. Choose greatest *i* such that $2^i \leq 3n$. Label $c_{n,1}^k$, k = 1, 2 as $2^{i-2}, 2^{i-3}$. **Step 6.** Label $c_{1,2}^k$, k = 1, 2 as 2^i and 2^{i-1} .

In this case, labels of vertices c_1, c_2, \dots, c_k are prime. Vertices c_{k+1} , to c_n get labels which are multiples by 3 of $p_l, p_{l-1}, \dots, p_{l-(n-k-2)}$. Apart from these labels and 3 itself, we have k-1 more multiples of 3. Thus k-1 vertices of the type $c_{i,i+1}^j$, $2 \le i \le \left\lceil \frac{k-1}{2} \right\rceil, j=1,2$ will get labels as multiples of 3. And hence are relatively prime to labels of corresponding $c_i's$. Similarly, for multiples of 5,7 and so on. Thus, $SS(C_n)$ is prime.

Theorem 3.3 A supersubdivision of L_n , i.e. $SS(L_n)$ is prime for m = 2.

Proof Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the vertices of the two paths in L_n . Let $u_i u_{i+1}, v_i v_{i+1}$ for $i = 1, 2, \dots, n-1$ and $u_i v_i$ for $i = 1, 2, \dots, n-1, n$ be the edges of L_n . Let $x_i^k, k = 1, 2$ be the vertices of bipartite graph $K_{2,2}$ replacing the edge $u_i u_{i+1}, i = 1, 2, \dots, n-1$. Let $y_i^k, k = 1, 2, \dots, m$ be the vertices of the bipartite graph $K_{2,2}$ replacing the edge $v_{n-i}v_{n-i-1}, i = 1, 2, \dots, n-1$. Let $w_i^k, k = 1, 2$ be the vertices of the bipartite graph $K_{2,2}$ replacing the edge $u_i v_i$ for $i = 1, 2, \dots, n-1$. Let $w_i^k, k = 1, 2$ be the vertices of the bipartite graph $K_{2,2}$ replacing the edge $u_i v_i$ for $i = 1, 2, \dots, n-1, n$.

Thus, |V| = 2n + 2n + 2(n-1) + 2(n-1) = 8n - 4. Let p_1, p_2, \dots, p_k be primes such that $3 \le p_1 < p_2 < p_3 \dots < p_k < 3n$ such that if p is any prime between 3 to 3n then $p = p_i$ for some i between 1 to k. Choose greatest i, such that $2p_i < 8n - 4$ and denote it by r.

Define S_{p_j} for $j = 2, 3, \dots, r$ such that $S_{p_{j_{i-1}}} < S_{p_{j_i}}$ to be

$$S_{p_j} = \left\{ S_{p_{j_i}} / S_{p_{j_i}} = p_j \times i, i \in \left\{ 2, 3, \cdots, \left\lceil \frac{8n-4}{p_j} \right\rceil \right\} \setminus \bigcup_{r=1}^{j-1} \left\{ k \times p_r / k \in \mathbb{N} \right\} \right\}.$$

Define $S_2 = \{S_{2_i}/S_{2_i} = 2^i, i \in \mathbb{N} \text{ such that } S_{2_i} \leq 3n\}$ and a labeling from $V \to \{1, 2, \dots, 8n-4\}$ as follows.

Case 1. n = 2.

In this case, k = 2n. Let $X = \{w_2^1, w_2^2, y_1^1, y_1^2, w_1^1, w_1^2, x_1^2\}$ be an ordered set. Define S_{p_1} such that $S_{p_1} = \{S_{p_{1_i}}/S_{p_{1_i}} = p_1 \times i = 3 \times i, i \in \{2, 3, \cdots, \lceil \frac{8n-4}{p_j}\rceil\}\}$.

Step 1. $f(u_r) = p_r$ for r = 1, 2. **Step 2.** $f(v_{n-r}) = p_{n+r+1}$ for r = 0, 1. **Step 3.** $f(x_1^1) = 1$.

Step 4. Label elements of X in order by using elements of S_{p_j} in increasing order starting with $j = 1, 2, \dots, r$ and then using elements of S_2 in increasing order.

Case 2. n = 3 and 6.

In this case, k = 2n+1. Let $X = \{x_2^1, x_2^2, x_3^1, \cdots, x_{n-1}^1, x_{n-1}^2, y_1^1, y_1^2, y_2^1, \cdots, y_{n-1}^1, y_{n-1}^2, w_1^1, w_1^2, w_2^1, \cdots, w_n^1, w_n^2\}$ be an ordered set. Define S_{p_1} such that

$$S_{p_1} = \left\{ S_{p_{1_i}} / S_{p_{1_i}} = p_1 \times i = 3 \times i, i \in \left\{ 2, 3, \cdots, \left\lceil \frac{8n - 4}{p_j} \right\rceil \right\} \right\}$$

Step 1. $f(u_r) = p_r$ for $r = 1, 2, \dots, n$. **Step 2.** $f(v_{n-r}) = p_{n+r+1}$ for $r = 0, 1, \dots, n-1$. **Step 3.** $f(x_1^1) = 1$ and $f(x_1^2) = p_k$.

Step 4. Label elements of X in order by using elements of S_{p_j} in increasing order starting with $j = 1, 2, \dots, r$ and then using elements of S_2 in increasing order.

Case 3. n = 4, 5 and 7 to 11.

In this case, k = 2n. Let $X = \{x_2^1, x_2^2, x_3^1, \cdots, x_{n-1}^1, x_{n-1}^2, y_1^1, y_1^2, y_2^1, \cdots, y_{n-1}^1, y_{n-1}^2, w_1^1, w_1^2, w_2^1, \cdots, w_n^1, w_n^2, x_1^2\}$ be an ordered set. Define S_{p_1} such that

$$S_{p_1} = \left\{ S_{p_{1_i}} / S_{p_{1_i}} = p_1 \times i = 3 \times i, i \in \left\{ 2, 3, \cdots, \left\lceil \frac{8n - 4}{p_j} \right\rceil \right\} \right\}.$$

Step 1. $f(u_r) = p_r$ for $r = 1, 2, \dots, n$. **Step 2.** $f(v_{n-r}) = p_{n+r+1}$ for $r = 0, 1, \dots, n-1$. **Step 3.** $f(x_1^1) = 1$.

Step 4. Label elements of X in order by using elements of S_{p_j} in increasing order starting with $j = 1, 2, \dots, r$ and then using elements of S_2 in increasing order.

Case 4. $n \ge 12$.

Let $X = \{x_2^1, x_2^2, x_3^1, \dots, x_{n-1}^1, x_{n-1}^2, y_1^1, y_1^2, y_2^1, \dots, y_{n-1}^1, y_{n-1}^2, w_n^1, w_n^2, w_{n-1}^1, \dots, w_1^1, w_1^2\}$ be an ordered set. Choose greatest *i*, such that $p_i \leq \lfloor \frac{8n-4}{3} \rfloor$ and denote it by *l*.

Step 1. $f(u_r) = p_r$ for $r = 1, 2, \dots, n$. **Step 2.** $f(v_r) = 3p_{l-(r-1)}$ for $r = 1, 2, \dots, 2n - k$. **Step 3.** $f(v_{n-r}) = p_{n+r+1}$ for $r = 0, 1, \dots, n - (2n - k + 1)$. **Step 4.** $S_{p_1} = \{S_{p_{1_i}}/S_{p_{1_i}} = p_1 \times i, i \in \{2, 3, \dots, \lceil \frac{8n-4}{3} \rceil\}\} \setminus \{p_l, p_{l-1}, \dots, p_{l-(2n-k-1)}\}.$ **Step 5.** Label elements of X in order by using elements of S_{p_j} in increasing order starting with $j = 1, 2, \dots, r$ and then using elements of S_2 in increasing order.

Step 6. Choose greatest *i* such that $2^i \leq 3n$. Label x_1^1, x_1^2 as 2^i and 2^{i-1} .

In the above labeling, vertices $u'_i s$ and $v'_i s$ receive prime labels. Vertices $x'_i s$, $y'_i s$, $w'_i s$ adjacent to $u'_i s$, $v'_i s$ are labeled with numbers which are multiples of 3 followed by multiples of 5 and so on. Since m = 2(small), labels are not multiples of respective primes. Thus $SS(L_n)$ prime.

References

- Alka V. Kanetkar, Prime labeling of grids, AKCE J.graphs, Combin.,6, No.1(2009), 135-142.
- [2] G.Sethuraman and P. Selvaraju, Gracefulness of supersubdivision of graphs, Indian Journal of Pure Appl. Math, 32(7)(2001), 1059-1064.
- [3] J. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015), #Ds6.
- [4] K.M. Kathiresau, Subdivisions of ladders are graceful, Indian Journal of Pure Appl. Math., (1992), 21-23.
- [5] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, The Education Publisher Inc., USA, 2011.
- [6] S.K. Vaidya and K.K.Kanani, Prime labeling for some cycle related graphs, Journal of Mathematics Research, Vol.2, No. 2 (May 2010).
- [7] U.M.Prajapati and S.J.Gajjar, Some results on Prime labeling, Open Journal of Discrete Mathematics, 2014, 4, 60-66.
- [8] F.Smarandache, Paradoxist Geometry, State Archives from Valcea, Rm. Valcea, Romania, 1969, and in Paradoxist Mathematics, Collected Papers (Vol. II), Kishinev University Press, Kishinev, 5-28, 1997.