Primeness of Supersubdivision of Some Graphs

Ujwala Deshmukh
(Department of Mathematics, Mithibai College, Vile Parle(West), Mumbai, India)
Smita A. Bhatavadekar
(Department of Applied Mathematics, Lokmanya Tilak College of Engineering, University of Mumbai, India)
E-mail: ujwala_-deshmukh@rediffmail.com, smitasj1@gmail.com

Abstract

A graph with n vertices is said to admit a prime labeling if it's vertices are labeled with distinct integers $1,2, \cdots, n$ such that for edge $x y$, the labels assigned to x and y are relatively prime. The graph that admits a prime labeling is said to be prime. G. Sethuraman has introduced concept of supersubdivision of a graph. In the light of this concept, we have proved that supersubdivision by $K_{2,2}$ of star, cycle and ladder are prime.

Key Words: Star, ladder, cycle, subdivision of graphs, supersubdivision of graphs, prime labeling, Smarandachely prime labeling.

AMS(2010): 05C78.

§1. Introduction

We consider finite undirected graphs without loops, also without multiple edges. G Sethuraman and P. Selvaraju [2] have introduced supersubdivision of graphs and proved that there exists a graceful arbitrary supersubdivision of $C_{n}, n \geq 3$ with certain conditions. Alka Kanetkar has proved that grids are prime [1]. Some results on prime labeling for some cycle related graphs were established by S.K. Vaidya and K.K.Kanani [6]. It was appealing to study prime labeling of supersubdivisions of some families of graphs.

§2. Definitions

Definition 2.1(Star) A star S_{n} is the complete bipartite graph $K_{1, n}$ a tree with one internal node and n leaves, for $n>1$.

Definition 2.2(Ladder) A ladder L_{n} is defined by $L_{n}=P_{n} \times P_{2}$ here P_{n} is a path of length n , \times denotes Cartesian product. L_{n} has $2 n$ vertices and $3 n-2$ edges.

Definition 2.3(Cycle) A cycle is a graph with an equal number of vertices and edges where vertices can be placed around circle so that two vertices are adjacent if and only if they appear

[^0]consecutively along the circle. The cycle is denoted by C_{n}.

Definition 2.4(Subdivision of a Graph) Let G be a graph with p vertices and q edges. A graph H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once. H is denoted by $S(G)$. Thus, $|V|=p+q$ and $|E|=2 q$.

Definition 2.5(Supersubdivision of a Graph) Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision of G if it is obtained from G by replacing every edge e of G by a complete bipartite graph $K_{2, m} . H$ is denoted by $S S(G)$. Thus, $|V|=p+m q$ and $|E|=2 m q$.

Definition 2.6(Prime Labelling) A prime labeling of a graph is an injective function f : $V(G) \rightarrow\{1,2, \cdots,|V(G)|\}$ such that for every pair of adjacent vertices u and $v, \operatorname{gcd}(f(u), f(v))$ $=1$ i.e.labels of any two adjacent vertices are relatively prime. A graph is said to be prime if it has a prime labeling.

Generally, a labeling is called Smarandachely prime on a graph H by Smarandachely denied axiom ([5], [8]) if there is such a labeling $f: V(G) \rightarrow\{1,2, \cdots,|V(G)|\}$ on G that for every edge uv not in subgraphs of G isomorphic to $H, \operatorname{gcd}(f(u), f(v))=1$.

For a complete bipartite graph $K_{2, m}$, we call the part consisting of two vertices, the 2 vertices part of $K_{(2, m)}$ and the part consisting of m vertices, the m-vertices part of $K_{2, m}$ in this paper.

§3. Main Results

Theorem 3.1 A supersubdivision of S_{n}, i.e. $S S\left(S_{n}\right)$ is prime for $m=2$.
Proof Let u be the internal node i.e.centre vertex. Let $v_{1}, v_{2}, \cdots, v_{n}$ be endpoints. Let $v_{i}^{1}, v_{i}^{2}, i=1,2, \cdots, n$ be vertices of graph $K_{2,2}$ replacing edge $u v_{i}$. Here, $|V|=3 n+1$.

Let $f: V \rightarrow\{1,2, \ldots, 3 n+1\}$ be defined as follows:
$f(u)=1$,
$f\left(v_{i}\right)=3 i, \quad i=1,2, \cdots, n$,
$f\left(v_{i}^{1}\right)=3 i-1, \quad i=1,2, \cdots, n$,
$f\left(v_{i}^{2}\right)=3 i+1, \quad i=1,2, \cdots, n$.
As $f(u)=1, \operatorname{gcd}\left(f(u), f\left(v_{i}^{1}\right)\right)=1$ and $\operatorname{gcd}\left(f(u), f\left(v_{i}^{2}\right)\right)=1$.
As successive integers are coprime, $\operatorname{gcd}\left(f\left(v_{i}^{1}\right), f\left(v_{i}\right)\right)=(3 i-1,3 i)=1$ and $\operatorname{gcd}\left(f\left(v_{i}^{2}\right)\right.$, $\left.f\left(v_{i}\right)\right)=(3 i+1,3 i)=1$. Thus $S S\left(S_{n}\right)$ is prime.

Let C_{n} be a cycle of length n. Let $c_{1}, c_{2}, \cdots, c_{n}$ be the vertices of cycle. Let $c_{i, i+1}^{k}, k=1,2$ be the vertices of the bipartite graph that replaces the edge $c_{i} c_{i+1}$ for $i=1,2, \cdots, n-1$ Let $c_{n, 1}^{k}, \quad k=1,2$ be the vertices of the bipartite graph that replaces the edge $c_{n} c_{1}$. To illustrate these notations a figure is shown below.

Fig. 1 Graph with $n=7$ with general vertex labels
Theorem 3.2 A supersubdivision of C_{n}, i.e. $S S\left(C_{n}\right)$ is prime for $m=2$.
Proof Let $p_{1}, p_{2}, \cdots, p_{k}$ be primes such that $3 \leq p_{1}<p_{2}<p_{3} \cdots<p_{k}<3 n$ such that if p is any prime from 3 to $3 n$ then $p=p_{i}$ for some i between 1 to k.

Define $S_{2}=\left\{S_{2_{i}} / S_{2_{i}}=2^{i}, i \in \mathbb{N}\right.$ such that $\left.S_{2_{i}} \leq 3 n\right\}$. Choose greatest i such that $p_{i} \leq n$ and denote it by l. Let $S_{p_{1}}=\left\{S_{p_{1_{i}}} / S_{p_{1_{i}}}=p_{1} \times i, \quad i \in\{2,3, \cdots, n\} \backslash\left\{p_{l}, p_{l-1}, \cdots, p_{l-(n-k-2)}\right\}\right.$. Define $f: V \rightarrow\{1,2, \ldots, 3 n\}$ using following algorithm.

Case 1. $n=3$ to 8 .
In this case, $k=n$.
Step 1. $f\left(c_{r}\right)=p_{r} \quad$ for $\quad r=1,2, \cdots, k$ and $f\left(c_{1,2}^{1}\right)=1$.
Step 2. Choose greatest i, such that $2 p_{i}<3 n$ and denote it by r. Define $S_{p_{j}}$ for $j=2,3, \cdots, r$ such that $S_{p_{j_{i-1}}}<S_{p_{j_{i}}}$ to be $S_{p_{j}}=\left\{S_{p_{j_{i}}} / S_{p_{j_{i}}}=p_{j} \times i, i \in\left\{2,3, \cdots,\left\lceil\frac{3 n}{\left.p_{j}\right\rceil}\right\rceil\right\}\right.$.

Step 3. For $i=2,3, \cdots, n, k=1,2$. Label $c_{i, i+1}^{k}$ using elements of $S_{p_{j}}$ in increasing order starting from $j=1,2, \cdots, r$ and then by elements of S_{2} in increasing order.

Step 4. Choose greatest i such that $2^{i} \leq 3 n$. Label $c_{n, 1}^{k}, \quad k=1,2$ as $2^{i-1}, 2^{i-2}$.
Step 5. Label $c_{1,2}^{2}$ as 2^{i}.
Case 2. $n=9$ to 11
In this case, $k+1=n$.
Step 1. $f\left(c_{r}\right)=p_{r} \quad$ for $\quad r=1,2, \ldots, k$ and $f\left(c_{n}\right)=1$.
Step 2. Choose greatest i, such that $2 p_{i}<3 n$ and denote it by r. Define $S_{p_{j}}$ for $j=2,3, \cdots, r$ such that $S_{p_{j_{i-1}}}<S_{p_{j_{i}}}$ to be $S_{p_{j}}=\left\{S_{p_{j_{i}}} / S_{p_{j_{i}}}=p_{j} \times i, i \in\left\{2,3, \cdots,\left\lceil\frac{3 n}{p_{j}}\right\rceil\right\}\right\}$.

Step 3. For $i=2,3, \cdots, n$ and $k=1,2$, label $c_{i, i+1}^{k}$ using elements of $S_{p_{j}}$ in increasing order starting from $j=1,2, \ldots, r$ and then by elements of S_{2} in increasing order.

Step 4. Choose greatest i such that $2^{i} \leq 3 n$. Label $c_{n, 1}^{k}, \quad k=1,2$ as $2^{i-2}, 2^{i-3}$.
Step 5. Label $c_{1,2}^{k}, k=1,2$ as 2^{i} and 2^{i-1}.
Case 3. $n \geq 12$.
Step 1. $f\left(c_{r}\right)=p_{r} \quad$ for $\quad r=1,2, \cdots, k$.
Step 2. $f\left(c_{k+1}\right)=1$.
For $j=1,2, \cdots, n-k-2, f\left(c_{n-j}\right)=3 p_{l-j}$.
Step 3. Choose greatest i, such that $2 p_{i}<3 n$ and denote it by r. Define $S_{p_{j}}$ for $j=2,3, \cdots, r$ such that $S_{p_{j_{i-1}}}<S_{p_{j_{i}}}$ to be

$$
S_{p_{j}}=\left\{S_{p_{j_{i}}} / S_{p_{j_{i}}}=p_{j} \times i, i \in\left\{2,3, \cdots,\left[\frac{3 n}{p_{j}}\right]\right\} \backslash \bigcup_{r=1}^{j-1}\left\{k \times p_{r} / k \in \mathbb{N}\right\}\right\}
$$

Step 4. For $i=2,3, \cdots, n$ and $k=1,2$. Label $c_{i, i+1}^{k}$ using elements of $S_{p_{j}}$ in increasing order starting from $j=1,2, \ldots, r$ and then by elements of S_{2} in increasing order.

Step 5. Choose greatest i such that $2^{i} \leq 3 n$. Label $c_{n, 1}^{k}, \quad k=1,2$ as $2^{i-2}, 2^{i-3}$.
Step 6. Label $c_{1,2}^{k}, k=1,2$ as 2^{i} and 2^{i-1}.
In this case, labels of vertices $c_{1}, c_{2}, \cdots, c_{k}$ are prime. Vertices c_{k+1}, to c_{n} get labels which are multiples by 3 of $p_{l}, p_{l-1}, \cdots, p_{l-(n-k-2)}$. Apart from these labels and 3 itself, we have $k-1$ more multiples of 3 . Thus $k-1$ vertices of the type $c_{i, i+1}^{j}, 2 \leq i \leq\left\lceil\frac{k-1}{2}\right\rceil, j=1,2$ will get labels as multiples of 3 . And hence are relatively prime to labels of corresponding $c_{i}^{\prime} s$. Similarly, for multiples of 5,7 and so on. Thus, $S S\left(C_{n}\right)$ is prime.

Theorem 3.3 A supersubdivision of L_{n}, i.e. $S S\left(L_{n}\right)$ is prime for $m=2$.
Proof Let $u_{1}, u_{2}, \cdots . u_{n}$ and $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of the two paths in L_{n}. Let $u_{i} u_{i+1}, v_{i} v_{i+1}$ for $i=1,2, \cdots, n-1$ and $u_{i} v_{i}$ for $i=1,2, \cdots, n-1, n$ be the edges of L_{n}. Let $x_{i}^{k}, k=1,2$ be the vertices of bipartite graph $K_{2,2}$ replacing the edge $u_{i} u_{i+1}, i=$ $1,2, \cdots, n-1$. Let $y_{i}^{k}, k=1,2, \cdots, m$ be the vertices of the bipartite graph $K_{2,2}$ replacing the edge $v_{n-i} v_{n-i-1}, i=1,2, \cdots, n-1$. Let $w_{i}^{k}, k=1,2$ be the vertices of the bipartite graph $K_{2,2}$ replacing the edge $u_{i} v_{i}$ for $i=1,2, \cdots, n-1, n$.

Thus, $|V|=2 n+2 n+2(n-1)+2(n-1)=8 n-4$. Let $p_{1}, p_{2}, \cdots, p_{k}$ be primes such that $3 \leq p_{1}<p_{2}<p_{3} \cdots<p_{k}<3 n$ such that if p is any prime between 3 to $3 n$ then $p=p_{i}$ for some i between 1 to k. Choose greatest i, such that $2 p_{i}<8 n-4$ and denote it by r.

Define $S_{p_{j}}$ for $j=2,3, \cdots, r$ such that $S_{p_{j_{i-1}}}<S_{p_{j_{i}}}$ to be

$$
S_{p_{j}}=\left\{S_{p_{j_{i}}} / S_{p_{j_{i}}}=p_{j} \times i, i \in\left\{2,3, \cdots,\left\lceil\frac{8 n-4}{p_{j}}\right\rceil\right\} \backslash \bigcup_{r=1}^{j-1}\left\{k \times p_{r} / k \in \mathbb{N}\right\}\right\} .
$$

Define $S_{2}=\left\{S_{2_{i}} / S_{2_{i}}=2^{i}, i \in \mathbb{N}\right.$ such that $\left.S_{2_{i}} \leq 3 n\right\}$ and a labeling from $V \rightarrow\{1,2, \cdots, 8 n-$ $4\}$ as follows.

Case 1. $n=2$.
In this case, $k=2 n$. Let $X=\left\{w_{2}^{1}, w_{2}^{2}, y_{1}^{1}, y_{1}^{2}, w_{1}^{1}, w_{1}^{2}, x_{1}^{2}\right\}$ be an ordered set. Define $S_{p_{1}}$ such that $S_{p_{1}}=\left\{S_{p_{1_{i}}} / S_{p_{1_{i}}}=p_{1} \times i=3 \times i, i \in\left\{2,3, \cdots,\left\lceil\frac{8 n-4}{p_{j}}\right\rceil\right\}\right\}$.

Step 1. $f\left(u_{r}\right)=p_{r} \quad$ for $r=1,2$.
Step 2. $f\left(v_{n-r}\right)=p_{n+r+1} \quad$ for $r=0,1$.
Step 3. $f\left(x_{1}^{1}\right)=1$.
Step 4. Label elements of X in order by using elements of $S_{p_{j}}$ in increasing order starting with $j=1,2, \cdots, r$ and then using elements of S_{2} in increasing order.

Case 2. $n=3$ and 6 .
In this case, $k=2 n+1$. Let $X=\left\{x_{2}^{1}, x_{2}^{2}, x_{3}^{1}, \cdots, x_{n-1}^{1}, x_{n-1}^{2}, y_{1}^{1}, y_{1}^{2}, y_{2}^{1}, \cdots, y_{n-1}^{1}, y_{n-1}^{2}, w_{1}^{1}\right.$, $\left.w_{1}^{2}, w_{2}^{1}, \cdots, w_{n}^{1}, w_{n}^{2}\right\}$ be an ordered set. Define $S_{p_{1}}$ such that

$$
S_{p_{1}}=\left\{S_{p_{1_{i}}} / S_{p_{1_{i}}}=p_{1} \times i=3 \times i, i \in\left\{2,3, \cdots,\left\lceil\frac{8 n-4}{p_{j}}\right\rceil\right\}\right\}
$$

Step 1. $f\left(u_{r}\right)=p_{r} \quad$ for $r=1,2, \cdots, n$.
Step 2. $f\left(v_{n-r}\right)=p_{n+r+1} \quad$ for $r=0,1, \cdots, n-1$.
Step 3. $f\left(x_{1}^{1}\right)=1$ and $f\left(x_{1}^{2}\right)=p_{k}$.
Step 4. Label elements of X in order by using elements of $S_{p_{j}}$ in increasing order starting with $j=1,2, \cdots, r$ and then using elements of S_{2} in increasing order.

Case 3. $n=4,5$ and 7 to 11 .
In this case, $k=2 n$. Let $X=\left\{x_{2}^{1}, x_{2}^{2}, x_{3}^{1}, \cdots, x_{n-1}^{1}, x_{n-1}^{2}, y_{1}^{1}, y_{1}^{2}, y_{2}^{1}, \cdots, y_{n-1}^{1}, y_{n-1}^{2}, w_{1}^{1}, w_{1}^{2}\right.$, $\left.w_{2}^{1}, \cdots, w_{n}^{1}, w_{n}^{2}, x_{1}^{2}\right\}$ be an ordered set. Define $S_{p_{1}}$ such that

$$
S_{p_{1}}=\left\{S_{p_{1_{i}}} / S_{p_{1_{i}}}=p_{1} \times i=3 \times i, i \in\left\{2,3, \cdots,\left\lceil\frac{8 n-4}{p_{j}}\right\rceil\right\}\right\}
$$

Step 1. $f\left(u_{r}\right)=p_{r} \quad$ for $r=1,2, \cdots, n$.
Step 2. $f\left(v_{n-r}\right)=p_{n+r+1} \quad$ for $r=0,1, \ldots, n-1$.
Step 3. $f\left(x_{1}^{1}\right)=1$.
Step 4. Label elements of X in order by using elements of $S_{p_{j}}$ in increasing order starting with $j=1,2, \cdots, r$ and then using elements of S_{2} in increasing order.

Case 4. $n \geq 12$.
Let $X=\left\{x_{2}^{1}, x_{2}^{2}, x_{3}^{1}, \cdots, x_{n-1}^{1}, x_{n-1}^{2}, y_{1}^{1}, y_{1}^{2}, y_{2}^{1}, \cdots, y_{n-1}^{1}, y_{n-1}^{2}, w_{n}^{1}, w_{n}^{2}, w_{n-1}^{1}, \cdots, w_{1}^{1}, w_{1}^{2}\right\}$ be an ordered set. Choose greatest i, such that $p_{i} \leq\left\lceil\frac{8 n-4}{3}\right\rceil$ and denote it by l.

Step 1. $f\left(u_{r}\right)=p_{r} \quad$ for $r=1,2, \cdots, n$.
Step 2. $f\left(v_{r}\right)=3 p_{l-(r-1)} \quad$ for $r=1,2, \cdots, 2 n-k$.
Step 3. $f\left(v_{n-r}\right)=p_{n+r+1} \quad$ for $r=0,1, \cdots, n-(2 n-k+1)$.
Step 4. $S_{p_{1}}=\left\{S_{p_{1_{i}}} / S_{p_{1_{i}}}=p_{1} \times i, \quad i \in\left\{2,3, \cdots,\left\lceil\frac{8 n-4}{3}\right\rceil\right\}\right\} \backslash\left\{p_{l}, p_{l-1}, \cdots, p_{l-(2 n-k-1)}\right\}$.

Step 5. Label elements of X in order by using elements of $S_{p_{j}}$ in increasing order starting with $j=1,2, \cdots, r$ and then using elements of S_{2} in increasing order.

Step 6. Choose greatest i such that $2^{i} \leq 3 n$. Label x_{1}^{1}, x_{1}^{2} as 2^{i} and 2^{i-1}.
In the above labeling, vertices $u_{i}^{\prime} s$ and $v_{i}^{\prime} s$ receive prime labels. Vertices $x_{i}^{\prime} s, y_{i}^{\prime} s, w_{i}^{\prime} s$ adjacent to $u_{i}^{\prime} s, v_{i}^{\prime} s$ are labeled with numbers which are multiples of 3 followed by multiples of 5 and so on. Since $m=2$ (small), labels are not multiples of respective primes. Thus $S S\left(L_{n}\right)$ prime.

References

[1] Alka V. Kanetkar, Prime labeling of grids, AKCE J.graphs, Combin.,6, No.1(2009), 135142.
[2] G.Sethuraman and P. Selvaraju, Gracefulness of supersubdivision of graphs, Indian Journal of Pure Appl. Math, 32(7)(2001), 1059-1064.
[3] J. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015), \#Ds6.
[4] K.M. Kathiresau, Subdivisions of ladders are graceful, Indian Journal of Pure Appl. Math., (1992), 21-23.
[5] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, The Education Publisher Inc., USA, 2011.
[6] S.K. Vaidya and K.K.Kanani, Prime labeling for some cycle related graphs, Journal of Mathematics Research, Vol.2, No. 2 (May 2010).
[7] U.M.Prajapati and S.J.Gajjar, Some results on Prime labeling, Open Journal of Discrete Mathematics, 2014, 4, 60-66.
[8] F.Smarandache, Paradoxist Geometry, State Archives from Valcea, Rm. Valcea, Romania, 1969, and in Paradoxist Mathematics, Collected Papers (Vol. II), Kishinev University Press, Kishinev, 5-28, 1997.

[^0]: ${ }^{1}$ Received January 9, 2017, Accepted November 28, 2017.

