Some New Families of 4-Prime Cordial Graphs

R.Ponraj

(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India)

Rajpal Singh and R.Kala

(Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India)

E-mail: ponrajmaths@gmail.com, rajpalsinh@outlook.com, karthipyi91@yahoo.co.in and the second second

Abstract: Let G be a (p,q) graph. Let $f: V(G) \to \{1, 2, ..., k\}$ be a function. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-prime cordial labeling of G if $|v_f(i) - v_f(j)| \leq 1$, $i, j \in \{1, 2, ..., k\}$ and $|e_f(0) - e_f(1)| \leq 1$ where $v_f(x)$ denotes the number of vertices labeled with $x, e_f(1)$ and $e_f(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with admits a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate 4-prime cordial labeling behavior of shadow graph of a path, cycle, star, degree splitting graph of a bistar, jelly fish, splitting graph of a path and star.

Key Words: Cordial labeling, Smarandachely cordial labeling, cycle, star, bistar, splitting graph.

AMS(2010): 05C78.

§1. Introduction

In this paper graphs are finite, simple and undirected. Let G be a (p,q) graph where p is the number of vertices of G and q is the number of edge of G. In 1987, Cahit introduced the concept of cordial labeling of graphs [1]. Sundaram, Ponraj, Somasundaram [5] have been introduced the notion of prime cordial labeling and discussed the prime cordial labeling behavior of various graphs. Recently Ponraj et al. [7], introduced k-prime cordial labeling of graphs. A 2-prime cordial labeling is a product cordial labeling [6]. In [8, 9] Ponraj et al. studied the 4-prime cordial labeling behavior of complete graph, book, flower, mC_n , wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph and some more graphs. Ponraj and Rajpal singh have studied about the 4-prime cordiality of union of two bipartite graphs, union of trees, durer graph, tietze graph, planar grid $P_m \times P_n$, subdivision of wheels and subdivision of helms, lotus inside a circle, sunflower graph and they have obtained some 4-prime cordial graphs from 4-prime cordial graphs [10, 11, 12]. Let x be any real number. In this paper we have studied about the 4-prime cordiality of shadow graph of a path, cycle, star, degree splitting graph of a

¹Received November 12, 2016, Accepted August 28, 2017.

bistar, jelly fish, splitting graph of a path and star. Let x be any real number. Then $\lfloor x \rfloor$ stands for the largest integer less than or equal to x and $\lceil x \rceil$ stands for smallest integer greater than or equal to x. Terms not defined here follow from Harary [3] and Gallian [2].

§2. k-Prime Cordial Labeling

Let G be a (p,q) graph. Let $f: V(G) \to \{1, 2, \dots, k\}$ be a map. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-prime cordial labeling of G if $|v_f(i) - v_f(j)| \leq 1, i, j \in \{1, 2, \dots, k\}$ and $|e_f(0) - e_f(1)| \leq 1$, and conversely, if $|v_f(i) - v_f(j)| \geq 1$, $i, j \in \{1, 2, \dots, k\}$ or $|e_f(0) - e_f(1)| \geq 1$, it is called a Smarandachely cordial labeling, where $v_f(x)$ denotes the number of vertices labeled with $x, e_f(1)$ and $e_f(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph.

First we investigate the 4-prime cordiality of shadow graph of a path, cycle and star. A shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G, G' and G'' and joining each vertex u' in G' to the neighbors of the corresponding vertex u'' in G''.

Theorem 2.1 $D_2(P_n)$ is 4-prime cordial if and only if $n \neq 2$.

Proof It is easy to see that $D_2(P_2)$ is not 4-prime cordial. Consider n > 2. Let $V(D_2(P_n)) = \{u_i, v_i : 1 \le i \le n\}$ and $E(D_2(P_n)) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_{i+1}, v_i u_{i+1} : 1 \le i \le n-1\}$. In a shadow graph of a path, $D_2(P_n)$, there are 2n vertices and 4n - 4 edges.

Case 1. $n \equiv 0 \pmod{4}$.

Let n = 4t. Assign the label 4 to the vertices u_1, u_2, \dots, u_{2t} then assign 2 to the vertices v_1, v_2, \dots, v_{2t} . For the vertices v_{2t+1}, v_{2t+2} , we assign 3, 1 respectively. Put the label 1 to the vertices $v_{2t+3}, v_{2t+5}, \dots, v_{4t-1}$. Now we assign the label 3 to the vertices $v_{2t+4}, v_{2t+6}, \dots, v_{4t-2}$. Then assign the label 1 to the vertex v_{4t} . Next we consider the vertices $u_{2t+1}, u_{2t+2}, \dots, u_{4t}$. Put 3, 3 to the vertices u_{2t+1}, u_{2t+2} . Then fix the number 1 to the vertices $u_{2t+3}, u_{2t+5}, \dots, u_{4t-1}$. Finally assign the label 3 to the vertices $u_{2t+4}, u_{2t+6}, \dots, u_{4t-1}$.

Case 2. $n \equiv 1 \pmod{4}$.

Take n = 4t + 1. Assign the label 4 to the vertices $u_1, u_2, \dots, u_{2t+1}$. Then assign the label 3 to the vertices $u_{2t+2}, u_{2t+4}, \dots, u_{4t}$ and put the number 1 to the vertices $u_{2t+3}, u_{2t+5}, \dots, u_{4t+1}$. Next we turn to the vertices $v_1, v_2, \dots, v_{2t+1}$. Assign the label 2 to the vertices $v_1, v_2, \dots, v_{2t+1}$. The remaining vertices $v_i (2t+2 \le i \le 4t+1)$ are labeled as in $u_i (2t+2 \le i \le 4t+1)$.

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4t + 2. Assign the labels to the vertices u_i, v_i $(1 \le i \le 2t + 1)$ as in case 2. Now we consider the vertices $u_{2t+2}, u_{2t+3}, \cdots, u_{4t+2}$. Assign the labels 3, 1 to the vertices u_{2t+2}, u_{2t+3} respectively. Then assign the label 1 to the vertices $u_{2t+4}, u_{2t+6}, \cdots, u_{4t+2}$. Put the integer 3 to the vertices $u_{2t+5}, u_{2t+7}, \cdots, u_{4t+1}$. Now we turn to the vertices $v_{2t+2}, v_{2t+3}, \cdots, v_{4t+2}$. Put the labels 3, 3, 1 to the vertices $v_{2t+2}, v_{2t+3}, \cdots, v_{4t+2}$.

 $v_i (2t + 5 \le i \le 4t + 2)$ are labeled as in $u_i (2t + 5 \le i \le 4t + 2)$.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4t + 3. Assign the label 2 to the vertices u_i $(1 \le i \le 2t + 2)$. Then put the number 3 to the vertices $u_{2t+3}, u_{2t+5}, \dots, u_{4t+1}$. Then assign 1 to the vertices $u_{2t+4}, u_{2t+6}, \dots, u_{4t+2}$ and u_{4t+3} . Now we turn to the vertices $v_1, v_2, \dots, v_{4t+3}$. Assign the label 4 to the vertices v_i $(1 \le i \le 2t + 2)$. The remaining vertices v_i $(2t + 3 \le i \le 4t + 3)$ are labeled as in u_i $(2t + 3 \le i \le 4t + 3)$. Then relabel the vertex v_{4t+3} by 3.

The vertex and edge conditions of the above labeling is given in Table 1.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	$e_f(0)$	$e_f(1)$
$n \equiv 0 \pmod{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	2n - 2	2n - 2
$n \equiv 1 \pmod{2}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	2n - 2	2n - 2

It follows that $D_2(P_n)$ is a 4-prime cordial graph for $n \neq 2$.

Theorem 2.2 $D_2(C_n)$ is 4-prime cordial if and only if $n \ge 7$.

Proof Let $V(D_2(C_n)) = \{u_i, v_i : 1 \le i \le n\}$ and $E(D_2(C_n)) = \{u_i u_{i+1}, v_i v_{i+1}, u_i v_{i+1}, v_i u_{i+1}, 1 \le i \le n-1\} \cup \{u_n v_1, v_n u_1, u_n u_1, v_n v_1\}$. Clearly $D_2(C_n)$ consists of 2n vertices and 4n edges. We consider the following cases.

Case 1. $n \equiv 0 \pmod{4}$.

One can easily check that $D_2(C_4)$ can not have a 4-prime cordial labeling. Define a vertex labeling f from the vertices of $D_2(C_n)$ to the set of first four consecutive positive integers as given below.

$$f(v_{2i}) = f(u_{2i-1}) = 2, \quad 1 \le i \le \frac{n}{4}$$

$$f(v_{2i+1}) = f(u_{2i}) = 4, \quad 1 \le i \le \frac{n}{4}$$

$$f(v_{\frac{n}{2}+2+2i}) = f(u_{\frac{n}{2}+2+2i}) = 1, \quad 1 \le i \le \frac{n-4}{4}$$

$$f(v_{\frac{n}{2}+3+2i}) = f(u_{\frac{n}{2}+3+2i}) = 3, \quad 1 \le i \le \frac{n-8}{4}$$

$$f(u_{\frac{n}{2}+1}) = f(u_{\frac{n}{2}+3}) = f(v_{\frac{n}{2}+3}) = 3 \text{ and } f(v_1) = f(v_{\frac{n}{2}+3}) = 1.$$

Case 2. $n \equiv 1 \pmod{4}$.

It is easy to verify that $D_2(C_5)$ is not a prime graph. Now we construct a map $f : V(D_2(C_n)) \to \{1, 2, 3, 4\}$ as follows:

$$f(u_{2i-1}) = 2, \quad 1 \le i \le \frac{n+3}{4}$$

$$f(u_{2i}) = 4, \quad 1 \le i \le \frac{n+3}{4}$$

$$f(v_{2i}) = 2, \quad 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i+1}) = 4, \quad 1 \le i \le \frac{n-1}{4}$$

$$f(v_{\frac{n+5}{2}+2i}) = f(u_{\frac{n+5}{2}+2i}) = 1, \quad 1 \le i \le \frac{n-5}{4}$$

$$f(v_{\frac{n+7}{2}+2i}) = f(u_{\frac{n+7}{2}+2i}) = 3, \quad 1 \le i \le \frac{n-9}{4}$$

$$f(v_1) = f(v_{\frac{n+5}{2}}) = f(u_{\frac{n+5}{2}}) = f(u_{\frac{n+5}{2}}) = 3 \text{ and } f(v_{\frac{n+7}{2}}) = f(v_{\frac{n+3}{2}}) = 1.$$

Case 3. $n \equiv 2 \pmod{4}$.

Obviously $D_2(C_6)$ does not permit a 4-prime cordial labeling. For $n \neq 6$, we define a function f from $V(D_2(C_n))$ to the set $\{1, 2, 3, 4\}$ by

$$f(u_{2i-1}) = 2, \quad 1 \le i \le \frac{n+2}{4}$$

$$f(u_{2i}) = 4, \quad 1 \le i \le \frac{n+2}{4}$$

$$f(v_{2i}) = 2, \quad 1 \le i \le \frac{n-2}{4}$$

$$f(v_{2i+1}) = 4, \quad 1 \le i \le \frac{n-2}{4}$$

$$f(v_{2i+1}) = 4, \quad 1 \le i \le \frac{n-2}{4}$$

$$f(v_{\frac{n+6}{2}+2i}) = f(u_{\frac{n+6}{2}+2i}) = 1, \quad 1 \le i \le \frac{n-6}{4}$$

$$f(v_{\frac{n+8}{2}+2i}) = f(u_{\frac{n+8}{2}+2i}) = 3, \quad 1 \le i \le \frac{n-8}{4}$$

and

$$\begin{aligned} f(v_1) &= f(v_{\frac{n+6}{2}}) = f(u_{\frac{n+4}{2}}) = f(u_{\frac{n+6}{2}}) = f(u_{\frac{n+8}{2}}) = 3\\ f(v_{\frac{n+2}{2}}) &= f(v_{\frac{n+4}{2}}) = f(v_{\frac{n+8}{2}}) = 1. \end{aligned}$$

Case 4. $n \equiv 3 \pmod{4}$.

Clearly $D_2(C_3)$ is not a 4-prime cordial graph. Let $n \neq 3$. Define a map $f: V(D_2(C_n)) \rightarrow \{1, 2, 3, 4\}$ by $f(v_1) = 1$,

$$\begin{aligned} f(v_{2i}) &= f(u_{2i-1}) &= 2, \quad 1 \le i \le \frac{n+1}{4} \\ f(v_{2i+1}) &= f(u_{2i}) &= 4, \quad 1 \le i \le \frac{n+1}{4} \\ f(v_{\frac{n+3}{2}+2i}) &= f(u_{\frac{n+3}{2}+2i}) &= 1, \quad 1 \le i \le \frac{n-3}{4} \\ f(v_{\frac{n+5}{2}+2i}) &= f(u_{\frac{n+5}{2}+2i}) &= 3, \quad 1 \le i \le \frac{n-5}{4} \end{aligned}$$

and $f(u_{\frac{n+3}{2}}) = f(u_{\frac{n+5}{2}}) = f(v_{\frac{n+5}{2}}) = 3$. The Table 2 gives the vertex and edge condition of f.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	$e_f(0)$	$e_f(1)$
$n \equiv 0, 2 \pmod{4}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	2n	2n
$n \equiv 1,3 \pmod{4}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	2n	2n

${\bf Table}\ 2$

It follows that $D_2(C_n)$ is 4-prime cordial iff $n \ge 7$.

Example 2.1 A 4-prime cordial labeling of $D_2(C_9)$ is given in Figure 1.

Figure 1

Theorem 2.3 $D_2(K_{1,n})$ is 4-prime cordial if and only if $n \equiv 0 \pmod{2}$.

Proof It is clear that $D_2(K_{1,n})$ has 2n + 2 vertices and 4n edges. Let $V(D_2(K_{1,n})) = \{u, v, u_i, v_i : 1 \le i \le n\}$ and $E(D_2(K_{1,n})) = \{uu_i, vv_i, vu_i, uv_i : 1 \le i \le n\}.$

Case 1. $n \equiv 0 \pmod{2}$.

Assign the label 2 to the vertices $u_1, u_2, \dots, u_{\frac{n}{2}+1}$. Then assign 4 to the vertices $u_{\frac{n}{2}+2}, \dots, u_n, u, v$. Now we move to the vertices v_i where $1 \le i \le n$. Assign the label 3 to the vertices $v_i (1 \le i \le \frac{n}{2})$ then the remaining vertices are labeled with 1. In this case $v_f(1) = v_f(3) = \frac{n}{2}, v_f(2) = v_f(4) = \frac{n}{2} + 1$ and $e_f(0) = e_f(1) = 2n$.

Case 2. $n \equiv 1 \pmod{2}$.

Let n = 2t + 1. Suppose there exists a 4-prime cordial labeling g, then $v_g(1) = v_g(2) = v_g(3) = v_g(4) = t + 1$.

Subcase 2a. g(u) = g(v) = 1.

Here $e_q(0) = 0$, a contradiction.

Subcase 2b. g(u) = g(v) = 2.

In this case $e_g(0) \le (t-1) + (t-1) + (t+1) + (t+1) = 4t$, a contradiction.

Subcase 2c. g(u) = g(v) = 3.

Then $e_g(0) \le (t-1) + (t-1) = 2t - 2$, a contradiction.

Subcase 2d. g(u) = g(v) = 4.

Similar to Subcase 2b.

Subcase 2e. g(u) = 2, g(v) = 4 or g(v) = 2, g(u) = 4.

Here $e_q(0) \le t + t + t + t = 4t$, a contradiction.

Subcase 2f. g(u) = 2, g(v) = 3 or g(v) = 2, g(u) = 3.

Here $e_g(0) \le (t+1) + t + t = 3t + 1$, a contradiction.

Subcase 2g. g(u) = 4, g(v) = 3 or g(v) = 4, g(u) = 3.

Similar to Subcase 2f.

Subcase 2h. g(u) = 2, g(v) = 1 or g(v) = 2, g(u) = 1.

Similar to Subcase 2f.

Subcase 2i. g(u) = 4, g(v) = 1 or g(v) = 4, g(u) = 1.

Similar to Subcase 2h.

Subcase 2j. g(u) = 3, g(v) = 1 or g(v) = 3, g(u) = 1.

In this case $e_q(0) \leq t$, a contradiction.

Hence, if $n \equiv 1 \pmod{2}$, $D_2(K_{1,n})$ is not a 4-prime cordial graph.

The next investigation is about 4-prime cordial labeling behavior of splitting graph of a path, star. For a graph G, the splitting graph of G, S'(G), is obtained from G by adding for each vertex v of G a new vertex v' so that v' is adjacent to every vertex that is adjacent to v. Note that if G is a (p,q) graph then S'(G) is a (2p, 3q) graph.

Theorem 2.4 $S'(P_n)$ is 4-prime cordial for all n.

Proof Let $V(S'(P_n)) = \{u_i, v_i : 1 \le i \le n\}$ and $E(S'(P_n)) = \{u_i u_{i+1}, u_i v_{i+1}, v_i u_{i+1}: 1 \le i \le n-1\}$. Clearly $S'(P_n)$ has 2n vertices and 3n-3 edges. Figure 2 shows that $S'(P_2), S'(P_3)$ are 4-prime cordial.

Figure 2

For n > 3, we consider the following cases.

Case 1. $n \equiv 0 \pmod{4}$.

We define a function f from the vertices of $S'(P_n)$ to the set $\{1, 2, 3, 4\}$ by

$$\begin{aligned} f(v_{2i}) &= f(u_{2i-1}) &= 2, \quad 1 \le i \le \frac{n}{4} \\ f(v_{2i+1}) &= f(u_{2i}) &= 4, \quad 1 \le i \le \frac{n}{4} \\ f(v_{\frac{n+2}{2}+2i}) &= f(u_{\frac{n+2}{2}+2i}) &= 1, \quad 1 \le i \le \frac{n-4}{4} \\ f(v_{\frac{n+4}{2}+2i}) &= f(u_{\frac{n+4}{2}+2i}) &= 3, \quad 1 \le i \le \frac{n-4}{4} \end{aligned}$$

and $f(u_{\frac{n+2}{2}}) = f(u_{\frac{n+4}{2}}) = 3$, $f(v_1) = f(v_{\frac{n+4}{2}}) = 1$.

In this case $v_f(1) = v_f(2) = v_f(3) = v_f(4) = \frac{n}{2}$, and $e_f(0) = \frac{3n-4}{2}$, $e_f(1) = \frac{3n-2}{2}$. Case 2. $n \equiv 1 \pmod{4}$. We define a map $f: V(S'(P_n)) \to \{1, 2, 3, 4\}$ by

$$f(u_{2i-1}) = 2, \quad 1 \le i \le \frac{n+3}{4}$$

$$f(u_{2i}) = 4, \quad 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i-1}) = 4, \quad 1 \le i \le \frac{n+3}{4}$$

$$f(v_{2i}) = 2, \quad 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i}) = 3, \quad 1 \le i \le \frac{n-1}{4}$$

$$f(v_{\frac{n-1}{2}+2i}) = f(u_{\frac{n-1}{2}+2i}) = 1, \quad 1 \le i \le \frac{n-1}{4}$$

Here $v_f(1) = v_f(3) = \frac{n-1}{2}$, $v_f(2) = v_f(4) = \frac{n+1}{2}$, and $e_f(0) = e_f(1) = \frac{3n-3}{2}$.

Case 3. $n \equiv 2 \pmod{4}$.

Define a vertex labeling $f: V(S'(P_n)) \to \{1, 2, 3, 4\}$ by $f(v_1) = 3, f(v_{\frac{n}{2}+1}) = 1$,

$$f(u_{2i-1}) = 2, \quad 1 \le i \le \frac{n+2}{4}$$

$$f(u_{2i}) = 4, \quad 1 \le i \le \frac{n+2}{4}$$

$$f(v_{2i}) = 2, \quad 1 \le i \le \frac{n-2}{4}$$

$$f(v_{2i+1}) = 4, \quad 1 \le i \le \frac{n-2}{4}$$

$$f(v_{\frac{n}{2}+2i}) = f(u_{\frac{n}{2}+2i}) = 3, \quad 1 \le i \le \frac{n-2}{4}$$

$$f(v_{\frac{n+2}{2}+2i}) = f(u_{\frac{n+2}{2}+2i}) = 1, \quad 1 \le i \le \frac{n-2}{4}$$

Here $v_f(1) = v_f(2) = v_f(3) = v_f(4) = \frac{n}{2}$, and $e_f(0) = \frac{3n-4}{2}$, $e_f(1) = \frac{3n-2}{2}$.

Case 4. $n \equiv 3 \pmod{4}$.

Construct a vertex labeling f from the vertices of $S'(P_n)$ to the set $\{1, 2, 3, 4\}$ by $f(u_n) = 1$, $f(v_n) = 3$,

$$f(v_{2i}) = f(u_{2i-1}) = 2, \quad 1 \le i \le \frac{n+1}{4}$$

$$f(v_{2i-1}) = f(u_{2i}) = 4, \quad 1 \le i \le \frac{n+1}{4}$$

$$f(v_{\frac{n-1}{2}+2i}) = f(u_{\frac{n-1}{2}+2i}) = 3, \quad 1 \le i \le \frac{n-3}{4}$$

$$f(v_{\frac{n+1}{2}+2i}) = f(u_{\frac{n+1}{2}+2i}) = 1, \quad 1 \le i \le \frac{n-3}{4}$$

In this case $v_f(1) = v_f(3) = \frac{n-1}{2}$, $v_f(2) = v_f(4) = \frac{n+1}{2}$, and $e_f(0) = e_f(1) = \frac{3n-3}{2}$.

Hence $S'(P_n)$ is 4-prime cordial for all n.

Theorem 2.5 $S'(K_{1,n})$ is 4-prime cordial for all n.

Proof Let $V(S'(K_{1,n})) = \{u, v, u_i, v_i : 1 \le i \le n\}$ and $E(S'(K_{1,n})) = \{uu_i, vu_i, uv_i : 1 \le i \le n\}$. Clearly $S'(K_{1,n})$ has 2n + 2 vertices and 3n edges. The Figure 3 shows that $S'(K_{1,2})$ is a 4-prime cordial graph.

Figure 3

Now for n > 2, we define a map $f : V(S'(K_{1,n})) \to \{1, 2, 3, 4\}$ by f(u) = 2, f(v) = 3, $f(u_n) = 1$,

 $\begin{array}{rcl} f(u_i) & = & 2, & 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \\ f(u_{\lfloor \frac{n}{2} \rfloor + i}) & = & 3, & 1 \le i \le \left\lfloor \frac{n-1}{2} \right\rfloor \\ f(v_i) & = & 4, & 1 \le i \le \left\lceil \frac{n+1}{2} \right\rceil \\ f(v_{\lceil \frac{n+1}{2} \rceil + i}) & = & 1, & 1 \le i \le \left\lfloor \frac{n-1}{2} \right\rfloor \end{array}$

The Table 3 shows that f is a 4-prime cordial labeling of $S'(K_{1,n})$.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Values of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	$e_f(0)$	$e_f(1)$
$n \equiv 1 \mod 2$ $\frac{n+1}{2}$ $\frac{n+1}{2}$ $\frac{n+1}{2}$ $\frac{n+1}{2}$ $\frac{n+1}{2}$ $\frac{3n-1}{2}$ $\frac{3n+1}{2}$	$n \equiv 0 \text{mod } 2$	$\frac{n}{2}$	$\frac{n}{2} + 1$	$\frac{n}{2}$	$\frac{n}{2} + 1$	$\frac{3n}{2}$	$\frac{3n}{2}$
	$n \equiv 1 \text{mod } 2$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{3n-1}{2}$	$\frac{3n+1}{2}$

Tal	ble	3

Next we investigate the 4-prime cordial behavior of degree splitting graph of a star. Let G = (V, E) be a graph with $V = S_1 \cup S_2 \cup \cdots \cup S_t \cup T$ where each S_i is a set of vertices having at least two vertices and having the same degree and $T = V - \bigcup_{i=1}^{t} S_i$. The degree splitting graph of G denoted by DS(G) is obtained from G by adding vertices $w_1, w_2 \cdots, w_t$ and joining w_i to each vertex of S_i $(1 \le i \le t)$.

Theorem 2.6 $DS(B_{n,n})$ is 4-prime cordial if $n \equiv 1, 3 \pmod{4}$.

Proof Let $V(B_{n,n}) = \{u, v, u_i, v_i : 1 \le i \le n\}$ and $E(B_{n,n}) = \{uv, uu_i, vv_i : 1 \le i \le n\}$. Let $V(DS(B_{n,n})) = V(B_{n,n}) \cup \{w_1, w_2\}$ and $E(DS(B_{n,n})) = E(B_{n,n}) \cup \{w_1u_i, w_1v_i, w_2u, w_2v : 1 \le i \le n\}$. Clearly $DS(B_{n,n})$ has 2n + 4 vertices and 4n + 3 edges.

Case 1. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1. Assign the label 3 to the vertices $v_1, v_2, \dots, v_{2t+1}$ and 1 to the vertices $v_{2t+2}, v_{2t+3}, \dots, v_{4t+1}$. Next assign the label 4 to the vertices $u_1, u_2, \dots, u_{2t+2}$ and 2 to the vertices $u_{2t+3}, u_{2t+4}, \dots, u_{4t+1}$. Finally, assign the labels 1, 2, 2 and 2 to the vertices w_2, u, v and w_1 respectively.

Case 2. $n \equiv 3 \pmod{4}$.

As in case 1 assign the labels to the vertices u_i, v_i, u, v, w_1 and w_2 $(1 \le i \le n-2)$. Next

Nature of n $v_f(1)$ $v_f(2)$ $v_f(3)$ $v_f(4)$ $e_f(0)$ $e_f(1)$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
4t+3 2t+2 2t+3 2t+2 2t+3 8t+7 8t+8									
Table 4									

assign the labels 1, 3, 2 and 4 respectively to the vertices v_{n-1}, v_n, u_{n-1} and u_n . The Table 4 establishes that this vertex labeling f is a 4-prime cordial labeling.

The final investigation is about 4-prime cordiality of jelly fish graph.

Theorem 2.7 The Jelly fish J(n,n) is 4-prime cordial.

Proof Let $V(J(n,n)) = \{u, v, u_i, v_i, w_1, w_2 : 1 \le i \le n\}$ and $E(J(n,n)) = \{uu_i, vu_i, uw_1, w_1v, vw_2, uw_2, w_1w_2 : 1 \le i \le n\}$. Note that J(n, n) has 2n + 4 vertices and 2n + 5 edges.

Case 1. $n \equiv 0 \pmod{4}$.

Let n = 4t. Assign the label 1 to the vertices $u_1, u_2, \dots, u_{2t+1}$. Next assign the label 3 to the vertices $u_{2t+2}, u_{2t+3}, \dots, u_{4t}$. We now move to the other side pendent vertices. Assign the label 3 to the vertices u_1, u_2 . Next assign the label 2 to the vertices $u_3, u_4, \dots, u_{2t+3}$. Then assign the label 4 to the remaining pendent vertices. Finally assign the label 4 to the vertices u, v, w_1, w_2 .

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1. In this case, assign the label 1 to the vertices $v_1, v_2, \dots, v_{2t+1}$ and 3 to the vertices $v_{2t+1}, v_{2t+3}, \dots, v_{4t+1}$. Next assign the label 2 to the vertices $u_1, u_2, \dots, u_{2t+2}$, and 3 to the vertices u_{2t+3} and u_{2t+4} . Next assign the label 4 to the remaining pendent vertices $u_{2t+5}, u_{2t+6}, \dots, u_{4t+1}$. Finally assign the label 4 to the vertices u, v, w_1, w_2 .

Case 3. $n \equiv 2 \pmod{4}$.

As in Case 2, assign the label to the vertices $u_i, v_i (1 \le i \le n-1), u, v, w_1, w_2$. Next assign the labels 1, 4 respectively to the vertices u_n and v_n .

Case 4. $n \equiv 3 \pmod{4}$.

Assign the labels to the vertices $u, v, w_1, w_2, u_i, v_i (1 \le i \le n-1)$ as in case 3. Finally assign the labels 2, 1 respectively to the vertices u_n, v_n . The Table 5 establishes that this vertex labeling f is obviously a 4-prime cordial labeling.

Values of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	$e_f(0)$	$e_f(1)$
4t	2t + 1	2t + 1	2t + 1	2t + 1	4t + 3	4t + 2
4t + 1	2t + 1	2t + 2	2t + 2	2t + 1	4t + 4	4t + 3
4t + 2	2t + 2	2t + 2	2t + 2	2t + 2	4t + 5	4t + 4
4t + 3	2t + 3	2t + 3	2t + 2	2t + 2	4t + 6	4t + 5

Table 5

Corollary 2.1 The Jelly fish J(m,n) where $m \ge n$ is 4-prime cordial.

Proof Let m = n + r, $r \ge 0$. Use of the labeling f given in theorem ?? assign the label to the vertices u, v, w_1, w_2, u_i, v_i $(1 \le i \le n)$.

Case 1. $r \equiv 0 \pmod{4}$.

Let $r = 4k, k \in N$. Assign the label 2 to the vertices $u_{n+1}, u_{n+2}, \dots, u_{n+k}$ and to the vertices $u_{n+k+1}, u_{n+k+2}, \dots, u_{n+2k}$. Then assign the label 1 to the vertices $u_{n+2k+1}, u_{n+2k+2}, \dots, u_{n+3k}$ and 3 to the vertices $u_{n+3k+1}, u_{n+3k+2}, \dots, u_{n+4k}$. Clearly this vertex labeling is a 4-prime cordial labeling.

Case 2. $r \equiv 1 \pmod{4}$.

Let r = 4k + 1, $k \in N$. Assign the labels to the vertices u_{n+i} $(1 \le i \le r-1)$ as in case 1. If $n \equiv 0, 1, 2 \pmod{4}$, then assign the label 1 to the vertex u_r ; otherwise assign the label 4 to the vertex u_r .

Case 3. $r \equiv 2 \pmod{4}$.

Let r = 4k + 2, $k \in N$. As in Case 2 assign the labels to the vertices u_{n+i} $(1 \le i \le r-1)$. Then assign the label 4 to the vertex u_r .

Case 4. $r \equiv 3 \pmod{4}$.

Let r = 4k + 3, $k \in N$. In this case assign the label 3 to the last vertex and assign the label to the vertices u_{n+i} $(1 \le i \le r - 1)$ as in Case 3.

References

- I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987) 201-207.
- J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015) #Ds6.
- [3] F.Harary, *Graph theory*, Addision wesley, New Delhi (1969).
- [4] M.A.Seoud and M.A.Salim, Two upper bounds of prime cordial graphs, *JCMCC*, 75(2010) 95-103.
- [5] M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27(2005) 373-390.
- [6] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bull. Pure and Appl. Sci. (Math. & Stat.), 23E (2004) 155-163.
- [7] R.Ponraj, Rajpal singh, R.Kala and S. Sathish Narayanan, k-prime cordial graphs, J. Appl. Math. & Informatics, 34 (3-4) (2016) 227 - 237.
- [8] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some classes of graphs, Journal of Algorithms and Computation, 48(1)(2016), 69-79.
- R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some cycle related graphs, Applications and Applied Mathematics, 12(1)(2016), 230-240.
- [10] R.Ponraj and Rajpal singh, 4-Prime cordial graphs obtained from 4-Prime cordial graphs, Bulletin of International Mathematical Virtual Institute, 8(1)(2018), 1-9.

- [11] R.Ponraj, Rajpal singh and R.Kala, 4-Prime cordiality of some special graphs, Bulletin of International Mathematical Virtual Institute, 8(1)(2018), 89-97.
- [12] R.Ponraj, Rajpal singh and R.Kala, Some more 4-Prime cordial graphs, International Journal of Mathematical Combinatorics, 2 (2017) 105-115.