Some New Families of 4-Prime Cordial Graphs

R.Ponraj
(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India)
Rajpal Singh and R.Kala
(Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India)
E-mail: ponrajmaths@gmail.com, rajpalsinh@outlook.com, karthipyi91@yahoo.co.in

Abstract

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a function. For each edge $u v$, assign the label $\operatorname{gcd}(f(u), f(v)) . \quad f$ is called k-prime cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1, i, j \in\{1,2, \ldots, k\}$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denotes the number of vertices labeled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with admits a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate 4-prime cordial labeling behavior of shadow graph of a path, cycle, star, degree splitting graph of a bistar, jelly fish, splitting graph of a path and star.

Key Words: Cordial labeling, Smarandachely cordial labeling, cycle, star, bistar, splitting graph.

AMS(2010): 05C78.

§1. Introduction

In this paper graphs are finite, simple and undirected. Let G be a (p, q) graph where p is the number of vertices of G and q is the number of edge of G. In 1987, Cahit introduced the concept of cordial labeling of graphs [1]. Sundaram, Ponraj, Somasundaram [5] have been introduced the notion of prime cordial labeling and discussed the prime cordial labeling behavior of various graphs. Recently Ponraj et al. [7], introduced k-prime cordial labeling of graphs. A 2-prime cordial labeling is a product cordial labeling [6]. In [8, 9] Ponraj et al. studied the 4-prime cordial labeling behavior of complete graph, book, flower, $m C_{n}$, wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph and some more graphs. Ponraj and Rajpal singh have studied about the 4-prime cordiality of union of two bipartite graphs, union of trees, durer graph, tietze graph, planar grid $P_{m} \times P_{n}$, subdivision of wheels and subdivision of helms, lotus inside a circle, sunflower graph and they have obtained some 4-prime cordial graphs from 4 -prime cordial graphs $[10,11,12]$. Let x be any real number. In this paper we have studied about the 4 -prime cordiality of shadow graph of a path, cycle, star, degree splitting graph of a

[^0]bistar, jelly fish, splitting graph of a path and star. Let x be any real number. Then $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for smallest integer greater than or equal to x. Terms not defined here follow from Harary [3] and Gallian [2].

§2. k-Prime Cordial Labeling

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \cdots, k\}$ be a map. For each edge $u v$, assign the label $\operatorname{gcd}(f(u), f(v))$. f is called k-prime cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1, i, j \in$ $\{1,2, \cdots, k\}$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, and conversely, if $\left|v_{f}(i)-v_{f}(j)\right| \geq 1, i, j \in\{1,2, \cdots, k\}$ or $\left|e_{f}(0)-e_{f}(1)\right| \geq 1$, it is called a Smarandachely cordial labeling, where $v_{f}(x)$ denotes the number of vertices labeled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1 . A graph with a k-prime cordial labeling is called a k-prime cordial graph.

First we investigate the 4 -prime cordiality of shadow graph of a path, cycle and star. A shadow graph $D_{2}(G)$ of a connected graph G is constructed by taking two copies of G, G^{\prime} and $G^{\prime \prime}$ and joining each vertex u^{\prime} in G^{\prime} to the neighbors of the corresponding vertex $u^{\prime \prime}$ in $G^{\prime \prime}$.

Theorem 2.1 $D_{2}\left(P_{n}\right)$ is 4-prime cordial if and only if $n \neq 2$.
Proof It is easy to see that $D_{2}\left(P_{2}\right)$ is not 4 -prime cordial. Consider $n>2$. Let $V\left(D_{2}\left(P_{n}\right)\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(D_{2}\left(P_{n}\right)\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup$ $\left\{u_{i} v_{i+1}, v_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. In a shadow graph of a path, $D_{2}\left(P_{n}\right)$, there are $2 n$ vertices and $4 n-4$ edges.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 t$. Assign the label 4 to the vertices $u_{1}, u_{2}, \cdots, u_{2 t}$ then assign 2 to the vertices $v_{1}, v_{2}, \cdots, v_{2 t}$. For the vertices $v_{2 t+1}, v_{2 t+2}$, we assign 3,1 respectively. Put the label 1 to the vertices $v_{2 t+3}, v_{2 t+5}, \cdots, v_{4 t-1}$. Now we assign the label 3 to the vertices $v_{2 t+4}, v_{2 t+6}, \cdots, v_{4 t-2}$. Then assign the label 1 to the vertex $v_{4 t}$. Next we consider the vertices $u_{2 t+1}, u_{2 t+2}, \cdots, u_{4 t}$. Put 3,3 to the vertices $u_{2 t+1}, u_{2 t+2}$. Then fix the number 1 to the vertices $u_{2 t+3}, u_{2 t+5}, \cdots, u_{4 t-1}$. Finally assign the label 3 to the vertices $u_{2 t+4}, u_{2 t+6}, \cdots, u_{4 t}$.

Case 2. $n \equiv 1(\bmod 4)$.
Take $n=4 t+1$. Assign the label 4 to the vertices $u_{1}, u_{2}, \cdots, u_{2 t+1}$. Then assign the label 3 to the vertices $u_{2 t+2}, u_{2 t+4}, \cdots, u_{4 t}$ and put the number 1 to the vertices $u_{2 t+3}, u_{2 t+5}, \cdots, u_{4 t+1}$. Next we turn to the vertices $v_{1}, v_{2}, \cdots, v_{2 t+1}$. Assign the label 2 to the vertices $v_{1}, v_{2}, \cdots, v_{2 t+1}$. The remaining vertices $v_{i}(2 t+2 \leq i \leq 4 t+1)$ are labeled as in $u_{i}(2 t+2 \leq i \leq 4 t+1)$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 t+2$. Assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq 2 t+1)$ as in case 2. Now we consider the vertices $u_{2 t+2}, u_{2 t+3}, \cdots, u_{4 t+2}$. Assign the labels 3,1 to the vertices $u_{2 t+2}, u_{2 t+3}$ respectively. Then assign the label 1 to the vertices $u_{2 t+4}, u_{2 t+6}, \cdots, u_{4 t+2}$. Put the integer 3 to the vertices $u_{2 t+5}, u_{2 t+7}, \cdots, u_{4 t+1}$. Now we turn to the vertices $v_{2 t+2}, v_{2 t+3}, \cdots, v_{4 t+2}$. Put the labels $3,3,1$ to the vertices $v_{2 t+2}, v_{2 t+3}, v_{2 t+4}$ respectively. The remaining vertices
$v_{i}(2 t+5 \leq i \leq 4 t+2)$ are labeled as in $u_{i}(2 t+5 \leq i \leq 4 t+2)$.
Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 t+3$. Assign the label 2 to the vertices $u_{i}(1 \leq i \leq 2 t+2)$. Then put the number 3 to the vertices $u_{2 t+3}, u_{2 t+5}, \cdots, u_{4 t+1}$. Then assign 1 to the vertices $u_{2 t+4}, u_{2 t+6}, \cdots, u_{4 t+2}$ and $u_{4 t+3}$. Now we turn to the vertices $v_{1}, v_{2}, \cdots, v_{4 t+3}$. Assign the label 4 to the vertices $v_{i}(1 \leq i \leq 2 t+2)$. The remaining vertices $v_{i}(2 t+3 \leq i \leq 4 t+3)$ are labeled as in $u_{i}(2 t+3 \leq$ $i \leq 4 t+3)$. Then relabel the vertex $v_{4 t+3}$ by 3 .

The vertex and edge conditions of the above labeling is given in Table 1.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$2 n-2$	$2 n-2$
$n \equiv 1(\bmod 2)$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$2 n-2$	$2 n-2$

Table 1
It follows that $D_{2}\left(P_{n}\right)$ is a 4-prime cordial graph for $n \neq 2$.
Theorem $2.2 D_{2}\left(C_{n}\right)$ is 4-prime cordial if and only if $n \geq 7$.
Proof Let $V\left(D_{2}\left(C_{n}\right)\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(D_{2}\left(C_{n}\right)\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1}\right.$, $\left.v_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} v_{1}, v_{n} u_{1}, u_{n} u_{1}, v_{n} v_{1}\right\}$. Clearly $D_{2}\left(C_{n}\right)$ consists of $2 n$ vertices and $4 n$ edges. We consider the following cases.

Case 1. $n \equiv 0(\bmod 4)$.
One can easily check that $D_{2}\left(C_{4}\right)$ can not have a 4-prime cordial labeling. Define a vertex labeling f from the vertices of $D_{2}\left(C_{n}\right)$ to the set of first four consecutive positive integers as given below.

$$
\begin{aligned}
& f\left(v_{2 i}\right)=f\left(u_{2 i-1}\right) \\
& f\left(v_{2 i+1}\right)=f\left(u_{2 i}\right) \\
& f\left(v_{\frac{n}{2}+2+2 i}\right)=f\left(u_{\frac{n}{2}+2+2 i}\right)=1 \leq i \leq 1 \leq i \leq \frac{n}{4} \\
& f\left(v_{\frac{n}{2}}^{2}+3+2 i\right)=f\left(u_{\frac{n}{2}+3+2 i}\right)=3, \quad 1 \leq i \leq \frac{n-4}{4} \\
& f\left(u_{\frac{n}{2}+1}^{2}\right)=f\left(u_{\frac{n}{2}}^{2}+2\right)=f\left(u_{\frac{n}{2}+3}\right)=f\left(v_{\left.\frac{n}{2}+2\right)=3} \text { and } f\left(v_{1}\right)=f\left(v_{\frac{n}{2}+3}\right)=1 .\right.
\end{aligned}
$$

Case 2. $n \equiv 1(\bmod 4)$.
It is easy to verify that $D_{2}\left(C_{5}\right)$ is not a prime graph. Now we construct a map f : $V\left(D_{2}\left(C_{n}\right)\right) \rightarrow\{1,2,3,4\}$ as follows:

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =2, \quad 1 \leq i \leq \frac{n+3}{4} \\
f\left(u_{2 i}\right) & =4, \quad 1 \leq i \leq \frac{n+3}{4} \\
f\left(v_{2 i}\right) & =2, \quad 1 \leq i \leq \frac{n-1}{4} \\
f\left(v_{2 i+1}\right) & =4, \quad 1 \leq i \leq \frac{n-1}{4} \\
f\left(v_{\frac{n+5}{2}+2 i}\right)=f\left(u_{\frac{n+5}{2}+2 i}\right) & =1, \quad 1 \leq i \leq \frac{n-5}{4} \\
f\left(v_{\frac{n+7}{2}+2 i}\right)=f\left(u_{\frac{n+7}{2}+2 i}\right) & =3, \quad 1 \leq i \leq \frac{n-9}{4}
\end{aligned}
$$

$$
f\left(v_{1}\right)=f\left(v_{\frac{n+5}{2}}\right)=f\left(u_{\frac{n+5}{2}}\right)=f\left(u_{\frac{n+7}{2}}\right)=3 \text { and } f\left(v_{\frac{n+7}{2}}\right)=f\left(v_{\frac{n+3}{2}}\right)=1
$$

Case 3. $n \equiv 2(\bmod 4)$.
Obviously $D_{2}\left(C_{6}\right)$ does not permit a 4-prime cordial labeling. For $n \neq 6$, we define a function f from $V\left(D_{2}\left(C_{n}\right)\right)$ to the set $\{1,2,3,4\}$ by

$$
\left.\begin{array}{rl}
f\left(u_{2 i-1}\right) & =2, \quad 1 \leq i \leq \frac{n+2}{4} \\
f\left(u_{2 i}\right) & =4, \quad 1 \leq i \leq \frac{n+2}{4} \\
f\left(v_{2 i}\right) & =2, \quad 1 \leq i \leq \frac{n-2}{4} \\
f\left(v_{2 i+1}\right) & =4, \quad 1 \leq i \leq \frac{n-2}{4} \\
f\left(v_{\frac{n+6}{2}+2 i}\right)=f\left(u_{n+6}^{2}+2 i\right.
\end{array}\right)=1, \quad 1 \leq i \leq \frac{n-6}{4}, ~=3, \quad 1 \leq i \leq \frac{n-8}{4} .
$$

and

$$
\begin{gathered}
f\left(v_{1}\right)=f\left(v_{\frac{n+6}{2}}\right)=f\left(u_{\frac{n+4}{2}}\right)=f\left(u_{\frac{n+6}{2}}\right)=f\left(u_{\frac{n+8}{2}}\right)=3, \\
f\left(v_{\frac{n+2}{2}}\right)=f\left(v_{\frac{n+4}{2}}\right)=f\left(v_{\frac{n+8}{2}}\right)=1 .
\end{gathered}
$$

Case 4. $n \equiv 3(\bmod 4)$.
Clearly $D_{2}\left(C_{3}\right)$ is not a 4-prime cordial graph. Let $n \neq 3$. Define a map $f: V\left(D_{2}\left(C_{n}\right)\right) \rightarrow$ $\{1,2,3,4\}$ by $f\left(v_{1}\right)=1$,

$$
\begin{aligned}
& f\left(v_{2 i}\right) \\
& f\left(v_{2 i+1}\right)=f\left(u_{2 i-1}\right)=f\left(u_{2 i}\right) \\
& f\left(v_{\frac{n+3}{2}+2 i}\right)=f\left(u_{\frac{n+3}{2}+2 i}\right)=1 \leq i \leq \frac{n+1}{4} \\
& f\left(v_{\frac{n+5}{2}+2 i}\right)=f\left(u_{\frac{n+5}{2}+2 i}\right)=3, \quad 1 \leq i \leq \frac{n+1}{4} \\
& =i \leq \frac{n-3}{4} \\
&
\end{aligned}
$$

and $f\left(u_{\frac{n+3}{2}}\right)=f\left(u_{\frac{n+5}{2}}\right)=f\left(v_{\frac{n+5}{2}}\right)=3$. The Table 2 gives the vertex and edge condition of f.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0,2(\bmod 4)$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$2 n$	$2 n$
$n \equiv 1,3(\bmod 4)$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$2 n$	$2 n$

Table 2
It follows that $D_{2}\left(C_{n}\right)$ is 4-prime cordial iff $n \geq 7$.

Example 2.1 A 4-prime cordial labeling of $D_{2}\left(C_{9}\right)$ is given in Figure 1.

Figure 1
Theorem $2.3 D_{2}\left(K_{1, n}\right)$ is 4-prime cordial if and only if $n \equiv 0(\bmod 2)$.
Proof It is clear that $D_{2}\left(K_{1, n}\right)$ has $2 n+2$ vertices and $4 n$ edges. Let $V\left(D_{2}\left(K_{1, n}\right)\right)=$ $\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(D_{2}\left(K_{1, n}\right)\right)=\left\{u u_{i}, v v_{i}, v u_{i}, u v_{i}: 1 \leq i \leq n\right\}$.

Case 1. $n \equiv 0(\bmod 2)$.
Assign the label 2 to the vertices $u_{1}, u_{2}, \cdots, u_{\frac{n}{2}+1}$. Then assign 4 to the vertices $u_{\frac{n}{2}+2}, \cdots$, u_{n}, u, v. Now we move to the vertices v_{i} where $1 \leq i \leq n$. Assign the label 3 to the vertices $v_{i}\left(1 \leq i \leq \frac{n}{2}\right)$ then the remaining vertices are labeled with 1 . In this case $v_{f}(1)=v_{f}(3)=\frac{n}{2}$, $v_{f}(2)=v_{f}(4)=\frac{n}{2}+1$ and $e_{f}(0)=e_{f}(1)=2 n$.

Case 2. $n \equiv 1(\bmod 2)$.
Let $n=2 t+1$. Suppose there exists a 4-prime cordial labeling g, then $v_{g}(1)=v_{g}(2)=$ $v_{g}(3)=v_{g}(4)=t+1$.

Subcase 2a. $g(u)=g(v)=1$.
Here $e_{g}(0)=0$, a contradiction.
Subcase 2b. $g(u)=g(v)=2$.
In this case $e_{g}(0) \leq(t-1)+(t-1)+(t+1)+(t+1)=4 t$, a contradiction.
Subcase 2c. $g(u)=g(v)=3$.
Then $e_{g}(0) \leq(t-1)+(t-1)=2 t-2$, a contradiction.
Subcase 2d. $g(u)=g(v)=4$.
Similar to Subcase 2b.
Subcase 2e. $g(u)=2, g(v)=4$ or $g(v)=2, g(u)=4$.
Here $e_{g}(0) \leq t+t+t+t=4 t$, a contradiction.
Subcase 2f. $g(u)=2, g(v)=3$ or $g(v)=2, g(u)=3$.
Here $e_{g}(0) \leq(t+1)+t+t=3 t+1$, a contradiction.

Subcase 2g. $g(u)=4, g(v)=3$ or $g(v)=4, g(u)=3$.
Similar to Subcase 2f.
Subcase 2h. $g(u)=2, g(v)=1$ or $g(v)=2, g(u)=1$.
Similar to Subcase 2f.
Subcase 2i. $g(u)=4, g(v)=1$ or $g(v)=4, g(u)=1$.
Similar to Subcase 2h.
Subcase 2j. $g(u)=3, g(v)=1$ or $g(v)=3, g(u)=1$.
In this case $e_{g}(0) \leq t$, a contradiction.
Hence, if $n \equiv 1(\bmod 2), D_{2}\left(K_{1, n}\right)$ is not a 4-prime cordial graph.
The next investigation is about 4-prime cordial labeling behavior of splitting graph of a path, star. For a graph G, the splitting graph of $G, S^{\prime}(G)$, is obtained from G by adding for each vertex v of G a new vertex v^{\prime} so that v^{\prime} is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q) graph then $S^{\prime}(G)$ is a $(2 p, 3 q)$ graph.

Theorem $2.4 S^{\prime}\left(P_{n}\right)$ is 4-prime cordial for all n.
Proof Let $V\left(S^{\prime}\left(P_{n}\right)\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(S^{\prime}\left(P_{n}\right)\right)=\left\{u_{i} u_{i+1}, u_{i} v_{i+1}, v_{i} u_{i+1}: 1 \leq\right.$ $i \leq n-1\}$. Clearly $S^{\prime}\left(P_{n}\right)$ has $2 n$ vertices and $3 n-3$ edges. Figure 2 shows that $S^{\prime}\left(P_{2}\right), S^{\prime}\left(P_{3}\right)$ are 4-prime cordial.

Figure 2

For $n>3$, we consider the following cases.
Case 1. $n \equiv 0(\bmod 4)$.
We define a function f from the vertices of $S^{\prime}\left(P_{n}\right)$ to the set $\{1,2,3,4\}$ by

$$
\begin{array}{ll}
f\left(v_{2 i}\right) & =f\left(u_{2 i-1}\right) \\
f\left(v_{2 i+1}\right) & =f\left(u_{2 i}\right) \\
f\left(v_{\frac{n+2}{2}+2 i}\right) & =f\left(u_{\frac{n+2}{2}+2 i}\right)=1 \leq i \leq \frac{n}{4} \\
f\left(v_{\frac{n+4}{2}+2 i}\right) & =f\left(u_{\frac{n+4}{2}+2 i}\right)=1 \leq i \leq \frac{n}{4} \\
=3, \quad 1 \leq i \leq \frac{n-4}{4}
\end{array}
$$

and $f\left(u_{\frac{n+2}{2}}\right)=f\left(u_{\frac{n+4}{2}}\right)=3, f\left(v_{1}\right)=f\left(v_{\frac{n+4}{2}}\right)=1$.
In this case $v_{f}(1)=v_{f}(2)=v_{f}(3)=v_{f}(4)=\frac{n}{2}$, and $e_{f}(0)=\frac{3 n-4}{2}, e_{f}(1)=\frac{3 n-2}{2}$.
Case 2. $n \equiv 1(\bmod 4)$.

We define a map $f: V\left(S^{\prime}\left(P_{n}\right)\right) \rightarrow\{1,2,3,4\}$ by

$$
\left.\begin{array}{rl}
f\left(u_{2 i-1}\right) & =2, \quad 1 \leq i \leq \frac{n+3}{4} \\
f\left(u_{2 i}\right) & =4, \quad 1 \leq i \leq \frac{n-1}{4} \\
f\left(v_{2 i-1}\right) & =4, \quad 1 \leq i \leq \frac{n+3}{4} \\
f\left(v_{2 i}\right) & =2, \quad 1 \leq i \leq \frac{n-1}{4} \\
f\left(v_{\frac{n-1}{2}+2 i}\right)=f\left(u_{n-1}^{2}+2 i\right.
\end{array}\right)=3, \quad 1 \leq i \leq \frac{n-1}{4}, ~=1, \quad 1 \leq i \leq \frac{n-1}{4} .
$$

Here $v_{f}(1)=v_{f}(3)=\frac{n-1}{2}, v_{f}(2)=v_{f}(4)=\frac{n+1}{2}$, and $e_{f}(0)=e_{f}(1)=\frac{3 n-3}{2}$.

Case 3. $n \equiv 2(\bmod 4)$.

Define a vertex labeling $f: V\left(S^{\prime}\left(P_{n}\right)\right) \rightarrow\{1,2,3,4\}$ by $f\left(v_{1}\right)=3, f\left(v_{\frac{n}{2}+1}\right)=1$,

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =2, \quad 1 \leq i \leq \frac{n+2}{4} \\
f\left(u_{2 i}\right) & =4, \quad 1 \leq i \leq \frac{n+2}{4} \\
f\left(v_{2 i}\right) & =2, \quad 1 \leq i \leq \frac{n-2}{4} \\
f\left(v_{2 i+1}\right) & =4, \quad 1 \leq i \leq \frac{n-2}{4} \\
f\left(v_{\frac{n}{2}+2 i}\right)=f\left(u_{\frac{n}{2}+2 i}\right) & =3, \quad 1 \leq i \leq \frac{n-2}{4} \\
f\left(v_{\frac{n+2}{2}+2 i}\right)=f\left(u_{\frac{n+2}{2}+2 i}\right) & =1, \quad 1 \leq i \leq \frac{n-2}{4}
\end{aligned}
$$

Here $v_{f}(1)=v_{f}(2)=v_{f}(3)=v_{f}(4)=\frac{n}{2}$, and $e_{f}(0)=\frac{3 n-4}{2}, e_{f}(1)=\frac{3 n-2}{2}$.
Case 4. $n \equiv 3(\bmod 4)$.

Construct a vertex labeling f from the vertices of $S^{\prime}\left(P_{n}\right)$ to the set $\{1,2,3,4\}$ by $f\left(u_{n}\right)=1$, $f\left(v_{n}\right)=3$,

$$
\begin{array}{ll}
f\left(v_{2 i}\right) & =f\left(u_{2 i-1}\right) \\
f\left(v_{2 i-1}\right) & =f\left(u_{2 i}\right) \\
f\left(v_{\frac{n-1}{2}+2 i}\right) & =f\left(u_{\frac{n-1}{2}+2 i}\right)=1 \leq i \leq \frac{n+1}{4} \\
f\left(v_{\frac{n+1}{2}+2 i}\right) & =f\left(u_{\frac{n+1}{2}+2 i}\right)=1 \leq i \leq \frac{n+1}{4} \\
=1 \leq 1 \leq \frac{n-3}{4} \\
\end{array}
$$

In this case $v_{f}(1)=v_{f}(3)=\frac{n-1}{2}, v_{f}(2)=v_{f}(4)=\frac{n+1}{2}$, and $e_{f}(0)=e_{f}(1)=\frac{3 n-3}{2}$.
Hence $S^{\prime}\left(P_{n}\right)$ is 4-prime cordial for all n.

Theorem 2.5 $S^{\prime}\left(K_{1, n}\right)$ is 4-prime cordial for all n.

Proof Let $V\left(S^{\prime}\left(K_{1, n}\right)\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(S^{\prime}\left(K_{1, n}\right)\right)=\left\{u u_{i}, v u_{i}, u v_{i}: 1 \leq\right.$ $i \leq n\}$. Clearly $S^{\prime}\left(K_{1, n}\right)$ has $2 n+2$ vertices and $3 n$ edges. The Figure 3 shows that $S^{\prime}\left(K_{1,2}\right)$ is a 4-prime cordial graph.

Figure 3
Now for $n>2$, we define a map $f: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow\{1,2,3,4\}$ by $f(u)=2, f(v)=3$, $f\left(u_{n}\right)=1$,

$$
\begin{array}{ll}
f\left(u_{i}\right) & =2, \quad 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{\left\lfloor\frac{n}{2}\right\rfloor+i}\right) & =3, \quad 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor \\
f\left(v_{i}\right) & =4, \quad 1 \leq i \leq\left\lceil\frac{n+1}{2}\right\rceil \\
f\left(v_{\left\lceil\frac{n+1}{2}\right\rceil+i}\right) & =1, \quad 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor
\end{array}
$$

The Table 3 shows that f is a 4 -prime cordial labeling of $S^{\prime}\left(K_{1, n}\right)$.

Values of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0 \bmod 2$	$\frac{n}{2}$	$\frac{n}{2}+1$	$\frac{n}{2}$	$\frac{n}{2}+1$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
$n \equiv 1 \bmod 2$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$

Table 3
Next we investigate the 4-prime cordial behavior of degree splitting graph of a star. Let $G=(V, E)$ be a graph with $V=S_{1} \cup S_{2} \cup \cdots \cup S_{t} \cup T$ where each S_{i} is a set of vertices having at least two vertices and having the same degree and $T=V-\bigcup_{i=1}^{t} S_{i}$. The degree splitting graph of G denoted by $D S(G)$ is obtained from G by adding vertices $w_{1}, w_{2} \cdots, w_{t}$ and joining w_{i} to each vertex of $S_{i}(1 \leq i \leq t)$.

Theorem 2.6 $D S\left(B_{n, n}\right)$ is 4-prime cordial if $n \equiv 1,3(\bmod 4)$.
Proof Let $V\left(B_{n, n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{u v, u u_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Let $V\left(D S\left(B_{n, n}\right)\right)=V\left(B_{n, n}\right) \cup\left\{w_{1}, w_{2}\right\}$ and $E\left(D S\left(B_{n, n}\right)\right)=E\left(B_{n, n}\right) \cup\left\{w_{1} u_{i}, w_{1} v_{i}, w_{2} u, w_{2} v\right.$: $1 \leq i \leq n\}$. Clearly $D S\left(B_{n, n}\right)$ has $2 n+4$ vertices and $4 n+3$ edges.
Case 1. $n \equiv 1(\bmod 4)$.
Let $n=4 t+1$. Assign the label 3 to the vertices $v_{1}, v_{2}, \cdots, v_{2 t+1}$ and 1 to the vertices $v_{2 t+2}, v_{2 t+3}, \cdots, v_{4 t+1}$. Next assign the label 4 to the vertices $u_{1}, u_{2}, \cdots, u_{2 t+2}$ and 2 to the vertices $u_{2 t+3}, u_{2 t+4}, \cdots, u_{4 t+1}$. Finally, assign the labels $1,2,2$ and 2 to the vertices w_{2}, u, v and w_{1} respectively.

Case 2. $n \equiv 3(\bmod 4)$.
As in case 1 assign the labels to the vertices $u_{i}, v_{i}, u, v, w_{1}$ and $w_{2}(1 \leq i \leq n-2)$. Next
assign the labels $1,3,2$ and 4 respectively to the vertices v_{n-1}, v_{n}, u_{n-1} and u_{n}. The Table 4 establishes that this vertex labeling f is a 4-prime cordial labeling.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	$e_{f}(0)$	$e_{f}(1)$
$4 t+1$	$2 t+1$	$2 t+2$	$2 t+1$	$2 t+2$	$8 t+3$	$8 t+4$
$4 t+3$	$2 t+2$	$2 t+3$	$2 t+2$	$2 t+3$	$8 t+7$	$8 t+8$

Table 4
The final investigation is about 4-prime cordiality of jelly fish graph.
Theorem 2.7 The Jelly fish $J(n, n)$ is 4-prime cordial.
Proof Let $V(J(n, n))=\left\{u, v, u_{i}, v_{i}, w_{1}, w_{2}: 1 \leq i \leq n\right\}$ and $E(J(n, n))=\left\{u u_{i}, v u_{i}, u w_{1}\right.$, $\left.w_{1} v, v w_{2}, u w_{2}, w_{1} w_{2}: 1 \leq i \leq n\right\}$. Note that $J(n, n)$ has $2 n+4$ vertices and $2 n+5$ edges.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 t$. Assign the label 1 to the vertices $u_{1}, u_{2}, \cdots, u_{2 t+1}$. Next assign the label 3 to the vertices $u_{2 t+2}, u_{2 t+3}, \cdots, u_{4 t}$. We now move to the other side pendent vertices. Assign the label 3 to the vertices u_{1}, u_{2}. Next assign the label 2 to the vertices $u_{3}, u_{4}, \ldots, u_{2 t+3}$. Then assign the label 4 to the remaining pendent vertices. Finally assign the label 4 to the vertices u, v, w_{1}, w_{2}.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 t+1$. In this case, assign the label 1 to the vertices $v_{1}, v_{2}, \cdots, v_{2 t+1}$ and 3 to the vertices $v_{2 t+1}, v_{2 t+3}, \cdots, v_{4 t+1}$. Next assign the label 2 to the vertices $u_{1}, u_{2}, \cdots, u_{2 t+2}$, and 3 to the vertices $u_{2 t+3}$ and $u_{2 t+4}$. Next assign the label 4 to the remaining pendent vertices $u_{2 t+5}, u_{2 t+6}, \cdots, u_{4 t+1}$. Finally assign the label 4 to the vertices u, v, w_{1}, w_{2}.

Case 3. $n \equiv 2(\bmod 4)$.
As in Case 2, assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1), u, v, w_{1}, w_{2}$. Next assign the labels 1,4 respectively to the vertices u_{n} and v_{n}.

Case 4. $n \equiv 3(\bmod 4)$.
Assign the labels to the vertices $u, v, w_{1}, w_{2}, u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case 3. Finally assign the labels 2,1 respectively to the vertices u_{n}, v_{n}. The Table 5establishes that this vertex labeling f is obviously a 4 -prime cordial labeling.

Values of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	$e_{f}(0)$	$e_{f}(1)$
$4 t$	$2 t+1$	$2 t+1$	$2 t+1$	$2 t+1$	$4 t+3$	$4 t+2$
$4 t+1$	$2 t+1$	$2 t+2$	$2 t+2$	$2 t+1$	$4 t+4$	$4 t+3$
$4 t+2$	$2 t+2$	$2 t+2$	$2 t+2$	$2 t+2$	$4 t+5$	$4 t+4$
$4 t+3$	$2 t+3$	$2 t+3$	$2 t+2$	$2 t+2$	$4 t+6$	$4 t+5$

Table 5
Corollary 2.1 The Jelly fish $J(m, n)$ where $m \geq n$ is 4-prime cordial.

Proof Let $m=n+r, r \geq 0$. Use of the labeling f given in theorem ?? assign the label to the vertices $u, v, w_{1}, w_{2}, u_{i}, v_{i}(1 \leq i \leq n)$.

Case 1. $r \equiv 0(\bmod 4)$.
Let $r=4 k, k \in N$. Assign the label 2 to the vertices $u_{n+1}, u_{n+2}, \cdots, u_{n+k}$ and to the vertices $u_{n+k+1}, u_{n+k+2}, \cdots, u_{n+2 k}$. Then assign the label 1 to the vertices $u_{n+2 k+1}, u_{n+2 k+2}, \cdots, u_{n+3 k}$ and 3 to the vertices $u_{n+3 k+1}, u_{n+3 k+2}, \ldots, u_{n+4 k}$. Clearly this vertex labeling is a 4 -prime cordial labeling.

Case 2. $r \equiv 1(\bmod 4)$.
Let $r=4 k+1, k \in N$. Assign the labels to the vertices $u_{n+i}(1 \leq i \leq r-1)$ as in case 1 . If $n \equiv 0,1,2(\bmod 4)$, then assign the label 1 to the vertex u_{r}; otherwise assign the label 4 to the vertex u_{r}.

Case 3. $r \equiv 2(\bmod 4)$.
Let $r=4 k+2, k \in N$. As in Case 2 assign the labels to the vertices $u_{n+i}(1 \leq i \leq r-1)$. Then assign the label 4 to the vertex u_{r}.

Case 4. $r \equiv 3(\bmod 4)$.
Let $r=4 k+3, k \in N$. In this case assign the label 3 to the last vertex and assign the label to the vertices $u_{n+i}(1 \leq i \leq r-1)$ as in Case 3 .

References

[1] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015) \#Ds6.
[3] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[4] M.A.Seoud and M.A.Salim, Two upper bounds of prime cordial graphs, JCMCC, 75(2010) 95-103.
[5] M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27(2005) 373-390.
[6] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bull. Pure and Appl. Sci. (Math. \& Stat.), 23E (2004) 155-163.
[7] R.Ponraj, Rajpal singh, R.Kala and S. Sathish Narayanan, k-prime cordial graphs, J. Appl. Math. \& Informatics, 34 (3-4) (2016) 227-237.
[8] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some classes of graphs, Journal of Algorithms and Computation, 48(1)(2016), 69-79.
[9] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some cycle related graphs, Applications and Applied Mathematics, 12(1)(2016), 230-240.
[10] R.Ponraj and Rajpal singh, 4-Prime cordial graphs obtained from 4-Prime cordial graphs, Bulletin of International Mathematical Virtual Institute, 8(1)(2018), 1-9.
[11] R.Ponraj, Rajpal singh and R.Kala, 4-Prime cordiality of some special graphs, Bulletin of International Mathematical Virtual Institute, 8(1)(2018), 89-97.
[12] R.Ponraj, Rajpal singh and R.Kala, Some more 4-Prime cordial graphs, International Journal of Mathematical Combinatorics, 2 (2017) 105-115.

[^0]: ${ }^{1}$ Received November 12, 2016, Accepted August 28, 2017.

