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Chapter 1: Smarandache function applied to perfect 
numbers 
 

 
The Smarandache function is defined as follows: 
 
S(n)= the smallest positive integer such that S(n)! is divisible by n. [1] 
 
In this article we are going to see that the value this function takes when n 
is a perfect number of the form )12(2 1 −⋅= − kkn  , 12 −= kp  being a prime 
number. 
 
Lemma 1: Let pn i ⋅= 2  when p is an odd prime number and i  an integer 
such that: 
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where )!(2 pe  is the exponent of 2 in the prime number decomposition of  
!p . 

E(x) is the greatest integer less than or equal to x. 
 
One has that pnS =)( . 
 
Demonstration: 
Given that 1),2( =pGCD i  (GCD= greatest common divisor) one has that  

.)()}(),2(max{)( ppSpSSnS i =≥=  Therefore .)( pnS ≥  
If we prove that p! is divisible by n then one would have the equality. 
 
                                      )!()!(2

2
)!(1

1! pspe
s

ppeppe pppp L⋅=  
where ip  is the thi −  prime of the prime number decomposition of !p . It is 
clear that 
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From where one can deduce that: 
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is a positive integer since 0)!(2 ≥− ipe . 
 
Therefore one has that  pnS =)(  
 
Proposition1: If n is a perfect number of the form )12(2 1 −⋅= − kkn  with k is a 
positive integer, pk =−12  prime, one has that pnS =)( . 
 
Demonstration: 
 
 For the Lemma it is sufficient to prove that )!(1 2 pek ≤− . 
If we can prove that:     
   

                              
2

1
21 1 −≤− −kk           (1) 

we will have proof of the proposition since: 
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As 1−k  is an integer one has that  )!(
2

1 2 pe
p
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Proving (1) is the same as proving 
2

1
2 1 +≤ −kk  at the same time, since k is 

integer, is equivalent to proving 12 −≤ kk   (2). 
 
In order to prove (2) we may consider the function: xxxf x −= −12)(  real 
number. 
 
This function may be derived and its derivate is 12ln2)( 1 −=′ −xxf . 
 

f  will be increasing when 012ln2 1 >−−x  resolving x: 
     

                             5287'1
2ln

)2ln(ln
1 ≅−>x  

In particular f will be increasing  2≥∀ x . 
 
Therefore 2≥∀ x    0)2()( =≥ fxf  that is to say  202 1 ≥∀≥−− xxx . 
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Therefore:  22 1 ≥∀≥− kkk  integer. 
 
 
 
And thus is proved the proposition. 
 
 
 
 
 
 
EXAMPLES:                      
 
 
                                    326 ⋅=        S(6)=3 
       7228 2 ⋅=        S(28)=7 
                             312496 4 ⋅=        S(496)=31 

                            8128= 12726 ⋅            S(8128)=127 
 
 
 
 
 
References: 
 
[1]  C. Dumitrescu and R. Müller: To Enjoy is a Permanent Component 
of Mathematics. SMARANDACHE NOTIONS JOURNAL Vol. 9 No 
1-2, (1998) pp 21-26 
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Chapter 2:  A result obtained using the Smarandache 
Function 

 
 

Smarandache Function is defined as followed: 
S(m)=The smallest positive integer so that S(m)! is divisible by m.   [1] 
Let’s see the value which such function takes for 

nppm =  with n integer, 
2≥n  and p prime number. To do so a Lemma required. 
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where E(x) gives the greatest integer less than or equal to x. 
 
Proof: 
 
Let’s see in the first place the value taken by 
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As a result: ( )[ ] 1log 1 +<+−≤ + nmmmEn nn
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If k=1: 11
1
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Let’s see what is the value of the sum: 
 
k=1       mn   -mn-1        …         …       …      …    +1 
 

        k=2                mn-1   -mn-2 

 

     k=3                           mn-2         -mn-3 
 
        .                                               . 
        .                                               . 
        .                                               . 
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Proposition:     :2≥∀∀ nnumberprimep  
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Proof: 
 
Having =)(kep exponent of the prime number p in the prime decomposition 

of k. 
 
We get: 
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And using the lemma we have 
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And : 
                                    ( ) ppppS nnnp +−= +1  
 
 
References: 
 
[1]  C. Dumitrescu and R. Müller: To Enjoy is a Permanent Component of 
Mathematics. SMARANDACHE NOTIONS JOURNAL VOL 9:, No. 1-2 
(1998)  pp 21-26.                   
                             

 
 
 
 
 
 
 
 
 
 



 11

 
Chapter 3: A Congruence with the Smarandache function 
 
Smarandache’s function is defined thus: 
 
S(n)= is the smallest  integer such that S(n)! is divisible by n. [1] 
 
In this article we are going to look at the value that has S(2k –1) (mod k) 
 
For all integer, 972 ≤≤ k . 
 
   k S(2k-1) S(2k-1) (mod k) 
 
 2 3 1 
 3 7 1 
 4 5 1 
 5 31 1 
 6 7 1 
 7 127 1 
 8 17 1 
 9 73 1 
 10 31 1 
 11 89 1 
 12 13 1 
 13 8191 1 
 14 127 1 
 15 151 1 
 16 257 1 
 17 131071 1 
 18 73 1 
 19 524287 1 
 20 41 1 
 21 337 1 
 22 683 1 
 23 178481 1 
 24 241 1 
 25 1801 1 
 26 8191 1 
 27 262657 1 
 28 127 15 
 29 2089 1 
 30 331 1 
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 k S(2k-1) S(2k-1) (mod k) 
 
 31 2147483647 1 
 32 65537 1 
 33 599479 1 
 34 131071 1 
 35 122921 1 
 36 109 1 
 37 616318177 1 
 38 524287 1 
 39 121369 1 
 40 61681 1 
 41 164511353 1 
 42 5419 1 
 43 2099863 1 
 44 2113 1 
 45 23311 1 
 46 2796203 1 
 47 13264529 1 
 48 673 1 
 49 4432676798593 1 
 50 4051 1 
 51 131071 1 
 52 8191 27 
 53 20394401 1 
 54 262657 1 
 55 201961 1 
 56 15790321 1 
 57 1212847 1 
 58 3033169 1 
 59 3203431780337 1 
 60 1321 1 
 61 2305843009213693951 1 
 62 2147483647 1 
 63 649657 1 
 64 6700417 1 
 65 145295143558111 1 
 66 599479 1 
 67 761838257287 1 
 68 131071 35 
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 k S(2k-1) S(2k-1) (mod k) 
 
 69 10052678938039 1 
 70 122921 1 
 71 212885833 1 
 72 38737 1 
 73 9361973132609 1 
 74 616318177 1 
 75 10567201 1 
 76 525313 1 
 77 581283643249112959 1 
 78 22366891 1 
 79 1113491139767 1 
 80 4278255361 1 
 81 97685839 1 
 82 8831418697 1 
 83 57912614113275649087721 1 
 84 14449 1 
 85 9520972806333758431 1 
 86 2932031007403 1 
 87 9857737155463 1 
 88 2931542417 1 
 89 618970019642690137449562111 1 
 90 18837001 1 
 91 23140471537 1 
 92 2796203 47 
 93 658812288653553079 1 
 94 165768537521 1 
 95 30327152671 1 
 96 22253377 1 
 97 13842607235828485645766393 1 
 
One can see from the table that there are only 4 exceptions for  972 ≤≤ k  
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We can see in detail the 4 exceptions in a table: 
 
 
 k=28=22—7 S(228-1)h15 (mod 28 ) 
 k=52=22—13 S(252-1)h27 (mod 52 ) 
 k=68=22—17 S(268-1)h35 (mod 68 ) 
 k=92=22—23 S(292-1)h47 (mod 92) 
 
One can observe in these 4 cases that k=22p with p is a prime and more 

over ( )k
k

S k mod1
2

)12( +≡−  

 
UNSOLVED QUESTION:  
 
One can obtain a general formula that gives us, in function of k the value 

( )kS k mod)12( −  for all positive integer values of k?. 
 
Reference: 
 
[1] Smarandache Notions Journal, Vol. 9, No. 1-2, (1998), pp. 21-26. 
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Chapter 4: A functional recurrence to obtain the prime numbers 
using the Smarandache prime function. 

 
 

 
Theorem: We are considering the function: 
 
                 For n  integer: 
 
 

                       ∑ ∏
∑

+= +=

=








































−












 −−








−−++=
n

nm

m

ni

i

j

i

j

i

j

i

nnF
2

1 1

1

2
1

1)(  

 
one has: ( )kk pFp =+1  for all 1≥k  where { } 1≥kkp  are the prime numbers and 

 x  is the greatest integer less than or equal to x. 
 
Observe that the knowledge of 1+kp  only depends on knowledge of kp  and 
the knowledge of the fore primes is unnecessary. 
 
Proof: 
 
Suppose that we have found a function )(iP with the following property: 
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This function is called Smarandache prime function.(Ref.) 
 
Consider the following product: 
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If 1+≥ kpm        0)(
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The second sum is zero since all products have the factor )( 1+kpP = 0. 
 
Therefore we have the following recurrence relation: 
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Let’s now see we can find )(iP  with the asked property. 
 
Consider: 
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We deduce of this relation: 
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where )(id  is the number of divisors of i .  
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If i  is prime 2)( =id   therefore: 
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If i  is composite 2)( >id  therefore: 
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Therefore we have obtained the Smarandache Prime Function )(iP which is: 
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With this,  the theorem is already proved . 
 
 
References: 
 
[1] E. Burton, “Smarandache Prime and Coprime functions”. 
www.gallup.unm.edu/~Smarandache/primfnct.txt 
[2]F. Smarandache, “Collected Papers”, Vol II 200, p.p. 137, 
Kishinev University Press, Kishinev, 1997. 
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Chapter 5: The general term of the prime number 
sequence and the Smarandache prime function. 
 

Let is consider the function d(i) = number of divisors of the positive integer 
number i . We have found the following expression for this function: 
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“E(x) =Floor[x]” 
 
                            
We proved this expression in the article “A functional recurrence to obtain 
the prime numbers using the Smarandache Prime Function”. 
 
We deduce that the folowing function: 
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This function is called the Smarandache Prime Function (Reference)    
It takes the next values: 
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Let is consider now  =)(nπ  number of prime numbers smaller or equal than 
n. 
It is simple to prove that: 
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Let is have too:        
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We will see what conditions have to carry nC . 
 
Therefore we have the following expression for  np  n-th prime number: 
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If we obtain nC  that only depends on n , this expression will be the general 
term of the prime numbers sequence, since π  is in function with G and G 
does with d(i) that is expressed in function with i too. Therefore the 
expression only depends on n. 
 
 
 
Let is consider  ( )( )1log2 += nnECn  

Since nnpn log≈ from of a certain 0n   it will be true that 
 
                            (1) )1)log((2 +≤ nnEpn  

If 0n  it is not too big, we can prove that the inequality is true for smaller or 
equal values than 0n  . 
 
It is necessary to that: 
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If we check the inequality: 
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We will obtain that: 
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We can experimentaly check this last inequality saying that it checks for a 
lot of values and the difference tends to increase, wich makes to think that 
it is true for all n . 
 
 
 
Therefore if we prove that the (1) and (2) inequalities are true for all n 
which seems to be very probable; we will have that the general term of the 
prime numbers sequence is: 
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Reference: 
  [1] E. Burton, “Smarandache Prime and Coprime Functions” 
   Http://www.gallup.unm.edu/~Smarandache/primfnct.txt 
  [2] F. Smarandache, “Collected Papers”, Vol. II, 200 p.,p.137, Kishinev               
University Press. 
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Chapter 6: Expressions of the Smarandache Coprime 
Function 

 
 

Smarandache Coprime function is defined this way: 
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We see two expressions  of the Smarandache Coprime Function for k=2. 
 
 
EXPRESSION 1: 
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If  21,nn  are coprime numbers then 1',' ≠∀≠ dddd  
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If 21,nn  aren’t coprime numbers 1),(1',1' 212 =⇒>>=∃ nnCdddd   
 
EXPRESSION 3: 
 
Smarandache Coprime Function for 2≥k : 
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Chapter 7: New Prime Numbers 
 

 
I have found some new prime numbers using the PROTH program of Yves 
Gallot. 
This program in based on the following theorem: 
 
Proth Theorem (1878): 
Let 12 +⋅= nkN  where nk 2< . If there is an integer number a  so that 

)(mod12

1

Na
N

−≡
−

 therefore N  is prime. 
 
 
The Proth progam is a test for primality of greater numbers defined as  

1+⋅ nbk  or 1−⋅ nbk . The program is made to look for numbers of less 
 than 5.000000 digits and it is optimized for numbers of more than 1000 
digits.. 
 
Using this Program, I have found the following prime numbers: 
 
 123239 12345 +⋅  with 3720 digits  7,3 == aa  
 127551 12345 +⋅  with 3721 digits   7,5 == aa  
 127595 12345 +⋅  with 3721 digits   11,3 == aa  
 129363 12321 +⋅  with 3713 digits   7,5 == aa  
 
Since the exponents of the first three numbers are Smarandache number  
Sm(5)=12345 we can call this type of prime numbers, prime numbers  
of  Smarandache . 
 
Helped by the MATHEMATICA progam, I have also found new prime 
numbers which are a variant of prime numbers of  Fermat. They are the 
following: 
 
                         

nnnn 2222 3232 −−⋅  for n=1, 4, 5, 7 . 
 
It is important to mention that for n=7 the number which is obtained has 
100 digits. 
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Chris Nash has verified the values n=8 to n=20, this last one being a 
number of 815.951 digits, obtaining that they are all composite. All of them 
have a tiny factor except n=13. 
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A book for people who love numbers: 
Smarandache Function applied to perfect numbers, congruences. 
Also, the Smarandache Prime and Coprime functions in connection with the 
expressions of the prime numbers.  
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