Formula to obtain the next prime in an arithmetic progression

Sebastián Martín Ruiz, Avda. de Regla 43, Chipiona 11550, Spain

Abstract: In this article, a formula is given to obtain the next prime in an

 arithmetic progression.Theorem: We consider the arithmetic progression $a+d i \quad i \geq 0$ of positive integers with $\operatorname{GCD}(a, d)=1$ and considering that the final term is $a+d M$ is to say $0 \leq i \leq M$. Let p a term in the arithmetic progression (it doesn't have to be prime). Then the next prime in the arithmetic progression is:

$$
n x t(a, d)(p)=p+d+d . \sum_{k=1+(p-a) / d}^{M} \prod_{j=1+(p-a) / d}^{k}\left[-\left[\frac{2-\sum_{s=1}^{a+j d}(\lfloor(a+j d) / s\rfloor-\lfloor(a+j d-1) / s\rfloor}{a+j d}\right]\right]
$$

and the improved formula:

$$
n x t(a, d)(p)=p+d+d \cdot \sum_{k=1+(p-a) / d}^{M} \prod_{j=1+(p-a) / d}^{k}\left[-\left(\left(2+2 \sum_{s=1}^{\sqrt{a+j d}}((a+j d-1) / s-(a+j d) / s)\right) /(a+j d)\right)\right]
$$

Where $\lfloor x\rfloor=$ is the floor function. And where x / y is the integer division in the improved formula.
Proof:
By a past article [1] we have that the next prime function is:

$$
n x t(p)=p+1+\sum_{k=p+1}^{2 p} \prod_{i=p+1}^{k}\left[-\left[\frac{2-\sum_{s=1}^{i}\left(\left\lfloor\frac{i}{s}\right\rfloor-\left\lfloor\frac{i-1}{s}\right\rfloor\right.}{i}\right]\right]
$$

Where the expression of the product is the Smarandache Prime Function:

$$
G(i)=\left\{\begin{array}{lll}
1 & \text { if } & i \\
\text { is composite } \\
0 & \text { if } & i
\end{array}\right. \text { is prime }
$$

We consider that $a+j_{0} d$ is the next prime of a number p in an arithmetic progression $a+j d$. We have that $G\left(a+j_{0} d\right)=0$.
And for all j such that $p<a+j d<a+j_{0} d$ we have that $G(a+j d)=1$.
It is deduced that:

$$
\prod_{j=1+(p-a) / d}^{k} G(a+j d)=\prod_{j=1+(p-a) / d}^{j_{0}-1} G(a+j d) \cdot \prod_{j \geq j_{0}}^{k} G(a+j d)= \begin{cases}0 & k>j_{0}-1 \\ 1 & k \leq j_{0}-1\end{cases}
$$

since the first product has the value of 1 , and the second product is zero since it has the factor $G\left(a+j_{0} d\right)=0$.

As a result in the formula $\operatorname{nxt}(a, d)$ the non zero terms are summed until $j_{0}-1$ and has the value of 1 .

$$
\begin{aligned}
& n x t(a, d)(p)=p+d+d \cdot \sum_{k=1+(p-a) / d}^{j_{0}-1} 1=p+d+d \cdot\left(j_{0}-1+1-1-(p-a) / d\right)= \\
& =p+d+j_{0} d-d-p+a=a+j_{0} d
\end{aligned}
$$

And the result is proven.
The improved formula [2] is obtained by considering that the sum, in the Smarandache prime function, until the integer part of the square root and multiplied by 2 the result. Also the floor function is changed $\lfloor x\rfloor$ for the integer division operator x / y that it faster for the computation.
Let us see an example made in MATHEMATICA:
$a=5$
5
dd=4
4
$\mathrm{M}=20$
20
$\mathrm{p}=5$
5
DD[i_]:=Sum [Quotient [(a+i*dd), j]-Quotient[a+i*dd-1,j],
\{j,1, Sqrt[a+i*dd]\}]
G[i_]:=-Quotient [(2-2*DD[i]), (a+i*dd)]
$\mathrm{F}\left[\mathrm{m}_{-}^{-}\right]:=$Product $[\mathrm{G}[\mathrm{i}],\{\mathrm{i},(\mathrm{p}-\mathrm{a}) / \mathrm{dd}+1, \mathrm{~m}\}]$
$S\left[n_{-}^{-}\right]:=\operatorname{Sum}[F[m],\{m,(p-a) / d d+1, M\}]$
While[p<a+(M-1)*dd+1, Print["nxt(", $p, ")=", p+d d+d d * S[p]] ;$
$p=p+d d+d d * S[p]]$
nxt (5) $=13$
nxt(13) $=17$
nxt(17) $=29$
nxt(29) $=37$
nxt(37) $=41$

```
nxt(41)=53
nxt(53)=61
nxt(61)=73
nxt(73)=89
```

The question is that if these formulas can be applied to prove the Dirichlet's Theorem [3]for arithmetic progressions.

That is to say: does any arithmetic progression $a+j d$ such that $G C D(a, d)=1$ have infinite primes?

REFERENCES:

[1] S M Ruiz. A functional recurrence to obtain the prime numbers using the Smarandache prime function. Smarandache Notions J., Vol. 11, No. 1-2-3, Spring 2000, p. 56. http://personal.telefonica.terra.es/web/smruiz/
[2] Carlos Rivera. The Prime Puzzles \& Problems Connection. Problem 38. www.primepuzzles.net
[3] Thomas Koshy. Elementary Number Theory with applications. Page 178.

