
12 

10 -

8 

6 

4 

2 

0 

v. SELEACU I. BALACENOIU 

SMARANDACHE NOTIONS 
(book series) 

Vol.. 10 

----

10 en 

American Research Press 

1999 

---._-_._. _. 
. ..... . 

M 
N 



FOREWARD 

A collection of papers concerning Smarandache type functions, 
numbers, sequences, integer algorithms, paradoxes, experimental 
geometries, algebraic structures, neutrosophic probability, set, 
and logic, etc. is published this year. 

V. Seleacu & I. BaIacenoiu 
Department of Mathematics 
University of Craiova, Romania 



Smarandache Factors and Reverse Factors 

Micha Fleuren 

November 1998 

Abstract 

This document will describe the current status on the search for 
factors of Smaranda.che consecutive numbers and their reverse. A 
complete list up to index 200 will be given, with all known factors. 
Smarandache numbers are the concatenation of the natural numbers 
from one up to the given index, and reverse Smaranda.che numbers are 
the concatenation of the natural numbers from the given index dO\vIJ. 
to 1. 

1 Introduction 

As a followup to Ralf Stephan's article in this journal [St], I decided to extend 
his factorizations to index 200. The Smarandache consecutive sequence, 
as well as their reverse is described in [Sm]. In this article Sm11 denotes 
1234567891011 for example, and Rsm11 denotes 111098765432l. 

Most of the factors that have been found by me and others, have been 
found by using the elliptic curve method (ECM) [Le], some have been found 
using the Multiple Polynomial Quadratic Sieve (MPQS) [Silo 

All factors and remaining cofactors have been proven prime or composite 
by means of Elliptic Curve Primality Proving (ECPP) [At], or the Adleman
Pomerance-Rumely test [Ad], which has been simplified in 1984 by Cohen 
and Lenstra [Co]. 

2 Software used 

The main factoring program used has been GMP-ECM by Paul Zimmermann 
[Zi, Le, Grl. The first small factors were filtered out quickly by ECMX, a 
program of the UBASIC package [KL Lel. 
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The factors which were probably prime were then tested with Fran<;ois 
Morain's ECPP [Mo, At]. Some factors have been proven prime by use of 
APRT-CLE [Ad] from the UBASIC package [Ki]. 

All these fine pieces of software are freely available from the internet. 
The appropriate adresses are enlisted in the references. 

3 Progress of calculations 

All numbers have been factored using GMP-ECM up to 20 digits. First 25 
runs with Bl = 2000 were run, and if the factorization wasn't complete, 90 
runs with Bl = 11000 were run. 

Work is in progress to extend this to 25 digits. Some factors have already 
been tried to 25 digits (300 curves with Bl = 50000). For more detail on 
the progress check the following URL: 
http://wwv.sci.kun.nl/sigma/Persoonlijk/michaf/ecm/ecmtries.html 
Currently the lowest not-completely factored numbers are Sm63 and Rsm59. 

4 Factorization results 

The lists presented here are an up to date representation of the factors 
known so far. When more factors are found they will be added to the list, 
which can be found on the internet at the following URL: 
http://wwv.sci.kun.nl/sigma/Persoonlijk/michaf/ecm/ 

Most of the factors up to Sm80 and Rsm80 should be credit ted to Ralf 
Stephan. (unless otherwise stated). All contributors, together with their 
email-adresses can be found in tables 1 and 3. 

A '*' denotes an un complete factorization, pxx denotes a prime of xx dig
its and cxx denotes a composite number of xx digits. 

4.1 Smarandache Factors 

Contributors of Smarandache factors 
RB 
TC 
BD 
MF 

Robert Backstrom 
Tim Charron 
Bruce Dodson 
11icha Fleuren 
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bobb~atinet.com.au 

tcharron~interlog.com 

badOnehigh.edu 
michaf~sci.kun.nl 



AM 
RS 
EW 
PZ 

Allan MacLeod 
Ralf Stephan 
Egon Willighagen 
Paul Zimmermann 

MACL-MSO~wpmail.paisley.ac.uk 

stephan~tmt.de 

egonw~sci.kun.nl 

zimmerma~loria.fr 

(LORIA, Nancy, France) 

Table 1: Contributors of Smarandache factors 

In Factors of Sm(n) 
2 2:l·3 
3 3·41 
4 2·617 
5 3·5·823 
6 26 .3.643 
7 127·9721 
8 2 . 32 ·47· 14593 
9 32 . 3607 . 3803 
10 2·5·1234567891 
11 3·7·13·67·107·630803 
12 23 . 3 . 2437 . 2110805449 
13 113· 125693 ·869211457 
14 2·3 

p18 : 205761315168520219 
15 3·5 

p19 : 8230452606740808761 
16 22 

p10 : 2507191691 
p13 : 1231026625769 

17 32 .47.4993 
p18 : 584538396786764503 

18 2 . 32 . 97 . 88241 
p18: 801309546900123763 

19 13·43·79·281·1193 
p18: 833929457045867563 

20 ~ . 3 . 5 . 323339 . 3347983 
p16 : 2375923237887317 

21 3 . 17 . 37 ·43 . 103 . 131 . 140453 
p18 : 802851238177109689 

22 2 . 7 . 1427 . 3169 . 85829 
I continued ... I 
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n Factors of Srn(n) 
p22 : 2271991367799686681549 

23 3·41· 769 
p32: 13052194181136110820214375991629 

24 22 .3.7 
p18 : 978770977394515241 
p19 : 1501601205715706321 

25 52 .15461 
pll : 31309647077 
p25 : 1020138683879280489689401 

26 2.34 .21347.2345807 
p12 : 982658598563 
p18 : 154870313069150249 

27 33 .192 .4547.68891 
p32 :40434918154163992944412000742833 

28 23 .47.409 
p15 : 416603295903037 
p27: 192699737522238137890605091 

29 3·859 
p20 : 24526282862310130729 
p26 : 19532994432886141889218213 

30 2 . 3 . 5 . 13 . 49269439 
p18 : 370677592383442753 
p23: 17333107067824345178861 

31 29 
pl0 : 2597152967 
p42: 163915283880121143989433769727058554332117 

32 22 .3.7 
p23 : 45068391478912519182079 
p30 : 326109637274901966196516045637 

33 3 . 23 . 269 . 7547 
p18 : 116620853190351161 
p31 : 7557237004029029700530634132859 

34 2 
p50: 6172839455055606570758085909601061116212631364146515661667 

35 32 ·5·139·151·64279903 
pl0 : 4462548227 
p37:4556722495899317991381926119681186927 

36 24 .32 . 103 . 211 
p56 

continued ... 
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n Factors of Sm(n) 
37 71·12379·4616929 

p52 
38 2·3 

p23 : 86893956354189878775643 
p43 :2367958875411463048104007458352976869124861 

39 3·67·311·1039 
p25 : 6216157781332031799688469 
p36 : 305788363093026251381516836994235539 

40 22 .5.3169.60757.579779 
pl0 : 4362289433 
p20: 79501124416220680469 
p26 : 15944694111943672435829023 

41 3·487·493127·32002651 
p56 

42 2· 3 . 127 . 421 
p11 : 22555732187 
p25 : 4562371492227327125110177 
p34 : 3739644646350764691998599898592229 

43 7·17·449 
p72 

44 23 .32 

p26: 12797571009458074720816277 
p52 

45 32 .5.7.41.727.1291 
p13 : 2634831682519 
p18 : 379655178169650473 
p41 : 10181639342830457495311038751840866580037 

46 2 . 31 . 103 . 270408101 
p18 : 374332796208406291 
p25 :3890951821355123413169209 
p28 : 4908543378923330485082351119 

47 3 . 4813 . 679751 
p22 : 4626659581180187993501 
p53 

48 22 .3. 179· 1493· 1894439 
p29 : 15771940624188426710323588657 
p46 : 1288413105003100659990273192963354903752853409 
23 . 109 . 3251653 
pl0 : 2191196713 

continued ... 
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n Factors of Sm( n) 
p23 : 53481597817014258108937 
p47: 12923219128084505550382930974691083231834648599 

50 2 . 3 .52 . 13 . 211 . 20479 
p18 : 160189818494829241 
p20 : 46218039785302111919 
p44: 19789860528346995527543912534464764790909391 

51 3 
p20: 17708093685609923339 
p73 

52 27 

p17 : 43090793230759613 
p76 

53 33 .73 

p18 : 127534541853151177 
p76 

54 2.36 .79.389.3167.13309 
p11 : 69526661707 
p22 : 8786705495566261913717 
p51 

55 5 . 768643901 
p15 : 641559846437453 
p22 : 1187847380143694126117 
p55 

56 22·3 
p25 : 4324751743617631024407823 (BD) 
p77 

57 3 . 17 . 36769067 
p13 : 2205251248721 
p37 : 2128126623795388466914401931224151279 (RB) 
p47: 14028351843196901173601082244449305344230057319 

58 2·13 
p31: 1448595612076564044790098185437 (BD) 
p75 

59 3 
p18 : 340038104073949513 
p36 : 324621819487091567830636828971096713 (RB) 
p55 

60 23 . 3 ·5·97· 157 
p103 

continued ... 
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n Factors of Sm( n) 
61 10386763 

p14 : 35280457769357 
p92 

62 2 .32 . 1709 . 329167 . 1830733 
p34 : 9703956232921821226401223348541281(TC) 
p64 

63* 32 

pll : 17028095263 
cl05 

64 22 . 7 . 17 . 19 . 197 . 522673 
p19 : 1072389445090071307 
p29 : 20203723083803464811983788589 (PW) 
p60 

65* 3 . 5 . 31 . 83719 
c1l3 

66* 2·3·7·20143·971077 
clll 

67 397 
p18 : 183783139772372071 
pl05 

68* 24 . 3 . 23 . 764558869 
pl0 : 1811890921 
cl05 

69 3·13·23 
p22 : 8684576204660284317187 
p24: 281259608597535749175083 
p32: 15490495288652004091050327089107 (RB) 
p49 :3637485176043309178386946614318767365372143115591 

70 2·5·2411111 
p24 : 109315518091391293936799 
p41 : 11555516101313335177332236222295571524323 
p60 

71 32 .83.2281 
p3l : 7484379467407391660418419352839 (AM) 
p95 

72 22 .32 .5119 
p27 : 596176870295201674946617769 (BD) 
pl03 

73* 37907 
continued ... 
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n Factors of Sm(n) 
el32 

74 2 . 3 ·7· 1788313 ·21565573 
p20: 99014155049267797799 
p25: 1634187291640507800518363 (PW) 
p31 : 1981231397449722872290863561307 
p49 :2377534541508613492655260491688014802698908815817 

75* 3.52 . 193283 
el33 

76 23 

p18 : 828699354354766183 
p27: 213643895352490047310058981 
p97 

77 3 
p24 : 383481022289718079599637 (PW) 
p24 : 874911832937988998935021 
p39 : 164811751226239402858361187055939797929 (RB) 
p58 

78* 2 . 3 . 31 . 185897 
el39 

79* 73 ·137 
p20: 22683534613064519783 
p24: 132316335833889742191773 
el02 

80 22.33 ·5·101· 10263751 
p25 : 1295331340195453366408489 
p115 

81 33 .509 
p30: 152873624211113444108313548197 (AM) 
p119 

82* 2 . 29· 4703 . 10091 
p35: 12295349967251726424104854676730107 (AM) 
el11 

83* 3·53·503 
p18 : 177918442980303859 (~IF) 
el34 

84 25 .3 
p157 

85* 5.72 

el58 

continued ... 
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n Factors of Sm(n) 
86* 2·3·23 . 1056149 

el55 
87* 3 . 7 . 231330259 

p10 : 4275444601 (MF) 
el45 

88* 22 
p14: 12414068351873 (?vfF) 
el53 

89* 3 . 3 . 13 . 31 . 97· 163060459 
p18 : 789841356493369879 (MF) 
el37 

90* 2·3·3·5 ·1987 ·179827·2166457 
el54 

91 * 37·607 
p16 : 5713601747802353 (?vfF) 
p24: 100397446615566314002487 (?vfF) 
el30 

92* 23 . 3 . 75503 
el68 

93* 3 . 73 . 1051 
plO : 3298142203 (MF) 
el62 

94* 2·12871181 
p11 : 98250285823 (~'fF) 
el60 

95* 3 . 5 . 7 ·401 
el76 

96 2 . 2 . 3 . 23 . 60331 

II' p175 
97 13 

98* 2 . 32 . 23 . 37 . 199 I
I p183 

I 
p16: 1495444452918817 (?vfF) 

I 

el65 
99* 32 . 31601 

! p12 : 786576340181 (MF) 
I I c171 
I 100* ! 22 .52 .73 ·8171 ·1065829 
i ! plO : 2824782749 (AM) 

continued ... 
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n Factors of Sm(n) I 
p20 : 20317177407273276661 (1tIF) 
el49 

101* 3·8377 
p21 : 799917088062980754649 (AM) 
el69 

102 2 . 3 . 19 . 89 . 3607 . 15887 . 32993 
plO : 2865523753 (1tIF) 
pl72 

103* 131· 1231 
p16 : 1713675826579469 (MF) 
el80 

104* 26 . 3 . 59 . 773 
p20 : 19601852982312892289 (AM) 
el77 

105* 3·5·193 
p13 : 6942508281251 (MF) 
el90 

106* 2·11 . 127·827 
c203 

107 33 

p12 : 536288185369 (~IF) 
p199 

108* 22 .33 

p18 : 128451681010379681 (AM) 
el96 

109* 7· 1559 . 78176687 
p20: 73024355266099724939 (AM) 
el87 

110 2·3·5·4517 
p20 : 18443752916913621413 (AM) 
p197 

111 3·293·431· 230273·209071 ·241423723 
plO : 3182306131 (1tIF) 
p12 : 171974155987 (1tIF) 
p13 : 1532064083461 (~IF) 
p17 : 59183601887848987 (~IF) 
p19 : 8526805649394145853 (AM) 
p23 : 27151072184008709784271 (AM) 
pl09 

continued... I 
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n I Factors ~f Sm(n) 
112 . 23 . 16619 ·449797 . 894009023 

p17: 74225338554790133 (~IF) 
p23 : 10021106769497255963093 (MF) 
p169 

113* 3 . 11 . 13· 5653 . 1016453 . 16784357 
p18 : 116507891014281007 (AM) 
p37 : 6844495453726387858061775603297883751 (AM) 
cl57 

I 
I 

114 * 2 . 3 . 7 . 178333 

115* 

116* 

117* 

118* 

119* 

120* 

121* 

c227 
5 . 17 . 19 . 41 . 36606 . 71518987 
p18 : 283858194594979819 (AM) 
c202 
22.32 .2239 
c235 
32 .31883 
p12 : 333699561211 (MF) 
p20 : 28437086452217952631 (MF) 
c206 
2·83 
p11 : 33352084523 UvfF) 
p20 : 20481677004050305811 (~fF) 
c214 
3·59·101·139·2801 
c239 
24 ·3·5· 13 . 16693063 
c241 
278240783 
c246 

122 2 . 3 . 23 ·618029123 
p14 : 31949422933783 (~fF) 
p233 

123* 3 . 7 . 37 . 413923 

I 
pl0 : 1565875469 (~/fF) 
p16 : 5500432543504219 (~fF) 

I t c227 
! 124* i 22 . 739393 
I I 

i I p16: 1958521545734977 (~fF) 
Ii I c242 

1S 

continued ... 



n i Factors of Sm(n) 
125* 3:.! . 5J · 4019 

p13 : 7715697265127 (~IF) 
c247 

126 2.32 .29.103.70271 
p20: 11513388742821485203 (~IF) 
p241 

127* 53 . 269 . 4547 
p20 : 56560310643009044407 (AM) 
c245 

128* 23 . 3 . 7 . 11 . 59 . 215329 
p22 : 8154316249498591416487 (~IF) 
c243 

129* 3 ·19 
c277 

130* 2·5 
p12 : 166817332889 (MF) 
c269 

131* 3 . 19 . 83 . 1693 
p11 : 23210501651 (MF) 
p12 : 575587270441 (MF) 
c256 

132* 22 .3.79 
p13 : 2312656324607 (MF) 
c272 

133* p19 : 8223519074965787731 (AM) 
c272 

134* 2.33 .73.6173 
p16 : 5527048386371021 (AM) 
p28: 1417349652747970442615118133 (AM) 
c243 

135* 33 .5.11 . 37·647 
p10 : 1480867981 (MF) 
p 12 : 17 4496625453 (~IF) 
p15 : 151994480112757 (MF) 
c255 

136* 25 .1259.4111 . 
p13: 9485286634381 (MF) 
p26 : 10151962417972135624157641 (AM) 
c253 

continued ... 
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n Factors of Sm( n) 
137* 3·7:t 

p13 : 7459866979837 (MF) 
c288 

138* 2·3 . 181 ·78311 . 914569 
p15 : 413202386279227 (?\IfF) 
c277 

139* 13 
p11 : 62814588973 (?\IfF) 
p12 : 115754581759 (?\IfF) 
p12 : 964458587927 (?\IfF) 
p22 : 9196988352200440482601 (?vIF) 
c252 

140* 22 . 3 . 5 ·23 . 761 . 1873 . 12841 
p11 : 34690415939 (?\IfF) 
p18 : 226556543956403897 (AM) 
p23: 10856300652094466205709 (AM) 
c248 

141 3 ·107171 
p309 

142* 2·7·4523· 14303·76079 
p22: 2244048237264532856611 (AM) 
c282 

143* 32 .859 
c317 

144 23 .32 .6361 
p13 : 6585181700551 (?\IfF) 
p14: 81557411089043 (?\IfF) 
p21 : 165684233831183308123 (?\IfF) 
p271 

145* 5·96151639 
c326 

146* 2·3·13·83 
p12 : 720716898227 (MF) 
p19 : 1122016187632880261 (?\IfF) 
c296 

147* 3·59113 
p22 : 1833894252004152212837 (A~I) 
p31 : 1519080701040059055565669511153 (~IF) 
c276 

continued ... 
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n Factors of Sm( n) 
148* 2~ . 197·11927·17377·273131· 623321 

p13 : 3417425341307 (AM) 
p13 : 4614988413949 (?\IIF') 
c288 

149* 3 . 103 . 131 . 1399 
c331 

150* 2 . 3 . 52 . 11 . 23 
p16 : 2315007810082921 (?\IIF') 
p26 : 92477662071402284092009799 (MF) 
c296 

151* 7 . 53 . 1801 . 3323 
c335 

152* ~ . 32 . 131 . 10613 
p20: 29354379044409991753 (AM) 
p22 : 2587833772662908004979 (MF) 
c298 

153* 32 . 29 . 7237 . 6987053 . 8237263 . 389365981 
c322 

154* 2·17·19·43 
p18 : 444802312089588077 (?\IIF') 
p21 : 855286987917657769927 (EW) 
c311 

155 3 . 5 . 66500999 
p24: 223237752082537677918401 (EW) 
p323 

156* 22 . 3 . 7 . 3307 
c354 

157* 11·53·492601·43169527 
p12 : 645865664923 (?\IIF') 
p18 : 125176035875938771 (MF) 
c318 

158* 2 . 3 . 17 . 29 . 53854663 
p21 : 164031369541076815133 (EW) 
c334 

159* 3·71 ·647 
plO : 3175105177 (AM) 
p25: 1957802969152764074566129 (EW) 
c330 

160* 23 .5.37.130547.859933.21274133 
continued ... 
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n Factors of Sm(n) 
p27: 122800249349203273846720291 (EW) 
c324 

161 34 
. 59 . 491 ·81705851 

p360 
162* 2 . 35 . 2999 

I p21 : 393803780657062026421 (AM) 
c351 

163* 2381 
p11 : 72549525869 (AM) 
p12: 666733067809 (AM) 
p25 : 1550529016982764630292633 (AM) 
c330 

164* 22·3 
c383 

165* 3·5·7·13·31·247007767 
p15 : 490242053931613 (MF) 
c359 

166 2·89 
p23 : 55566524959746113370037 (AM) 
p365 

167* 3·3313 
c389 

168 27 . 3 . 532709 
p387 

169* 2671·5233 
c392 

170* 2.32 .5.7.701 
p14: 73406007054077 eMF) 
c382 

171* I 32 ·1237 
p19 : 6017588157881558471 (AM) 
c382 

[

172* I ~:~311.13. 37 

173* I 3· 17·53· 101·153·11633·228673 
I I c394 
I 174* 12.3.59.277.2522957 
I p22 : 2928995151034569627547 (AM) 
. I c381 I 

continued... I 
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n Factors of Sm( n) 
175* 5:' 

p13 : 2606426254567 (MF) 
c403 

176* 23 . 3 . 19 . 1051 
p19 : 1031835687651103571 (AM) 
c396 

177* 3 . 109 . 153277 . 6690569 
p11 : 32545700623 (MF) 
p16 : 2984807754776597 (?vfF) 
c382 

178 2 
p13 : 3144036216187 (MF) 
p17 : 11409535046513339 (MF) 
p397 

179* 32 . 7 . 11 . 359 
c423 

180* 22 . 32 . 5 . 43 . 89 . 7121 
c422 

181* 31 . 197· 70999 
p20 : 46096011552749697739 (AM) 
c406 

182* 2 . 3 . 123529391 
c429 

183* 3 . 29 . 661 . 1723 
p16 : 3346484052265661 (AM) 
c417 

184* 24 ·7· 59 . 191 . 1093 . 1223 
p11 : 22521973429 (?vfF) 
p17 : 15219125459582087 (?vfF) 
p18 : 158906425126963139 (?vfF) 
p19 : 2513521443592870099 (?vfF) 
c369 

185* 3·5·94050577 
p13 : 4716042857821 (?vfF) 
p16 : 3479131875325867 (?vfF) 
c409 

186* 2·3·1201 
p21 : 574850252802945786301 (MF) 
c425 

I continued ... 
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n Factors of Sm( n) 
187* 349 . 506442073 

c442 
188* 22.33 

c454 
189* 33 ·47· 1515169 

pl0 : 1550882611 (1-'IF) 
pl0 : 1687056803 (1-'IF) 
p21 : 348528133548561476953 (AM) 
c410 

190 2·5·379 
p23 : 46645758388308293907739 (AM) 
p435 

191* 3·13·5233 
p12 : 164130096629 (1-'IF) 
p20 : 13806214882775315521 (1-'IF) 
c429 

192* 23 .3.29.41 
c463 

193* 7·419 
c467 

194* 2·3·11·31·491·34188439 
p14 : 28739332991401 (1-'IF) 
p16: 8203347603076921 (NIF) 
p19: 1507421050431503839 (1-'IF) 
p20 : 22805873052490568609 (1-'IF) 
p21 : 168560953170124281211 (1-'IF) 
c373 

195* 3 . 5 . 397 . 21728563 ·300856949 ·554551531 
pl0 : 8174619091 (1-'IF) 
c438 

196 22 . 17 . 73 . 79 
p10 : 3834513037 (1-'IF) 
p465 

197* 32 .37.6277 
p16 : 1368971104990459 (1-'IF) 
c461 

198* 2.32 .72 .13 
c482 

199* 151 
continued ... 
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n Factors of Sm( n) 
c487 

200* 25 .3.52 

c488 

Table 2: Factorizations of Sm(n), 1 < n ::; 200 

4.2 Reverse Smarandache Factors 

Contributors of Reverse Smarandache factors 
RB Robert Backstrom bobb~atinet.com.au 

BD Bruce Dodson badOnehigh.edu 
MF Micha Fleuren michaf~sci.kun.nl 

AM Allan MacLeod MACL-MSO~wpmail.paisley.ac.uk 

RS Ralf Stephan stephan~tmt.destephan~tmt.de 

PZ Paul Zimmermann Paul.Zimmermann~loria.fr 

continued ... 

Table 3: Contributors of Reverse Smarandache factors 

n Factors of Rsm(n) 
2 3.7 
3 3.107 
4 29.149 
5 3.19.953 
6 3.218107 
7 19.402859 
8 32 .1997.4877 
9 32 .172.379721 
10 7.28843.54421 
11 3 

p12 : 370329218107 
12 3.7 

p13 : 5767189888301 
13 17.3243967.237927839 
14 3.11.24769177 

plO : 1728836281 
15 3.13.192 .79 

continued ... 
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n , Factors fum(n) 
p15 : 136133374970881 

16 23.233.2531 
p16 : 1190788477118549 

17 32.13.17929.25411.47543.677181889 
18 32.112.19.23.281.397.8577529.399048049 
19 17.19 

p13 : 1462095938449 
p14 : 40617114482123 

20 3.89.317.37889 
p21 : 629639170774346584751 

21 3.37 
p12 : 732962679433 
p19 : 2605975408790409767 

22 13.137.178489 
p13 : 1068857874509 
p14 : 65372140114441 

23 3.7.191 
p32 : 578960862423763687712072079528211 

24 3.107.457.57527 
p28 : 28714434377387227047074286559 

25 11.31.59.158820811.410201377 
p20 : 19258319708850480997 

26 33 .929.1753.2503.4049.11171 
p24 : 527360168663641090261567 

27 35 .83 
pl0 : 3216341629 
p13 : 7350476679347 
p18 : 571747168838911343 

28 23.193.3061 
p19 : 2150553615963932561 
p21 :967536566438740710859 

29 3.11.709.105971.2901761 
plO : 1004030749 
p24:405373772791370720522747 

30 3.73.79.18041.24019.32749 
plO : 5882899163 
p24 : 209731482181889469325577 

31 7.30331061 
i p45 : 147434568678270777660714676905519165947320523 

continued ... 
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n Factors Rsm(n) 
32 3.17.1231.28409 

p12 : 103168496413 
p35 : 17560884933793586444909640307424273 

33 3.7.7349 
plO : 9087576403 
p42: 237602044832357211422193379947758321446883 

34 89.488401.2480227.63292783.254189857 
pl0 : 3397595519 
p19 : 5826028611726606163 

35 32.881.1559.755173.7558043 
pl0 : 1341824123 
p16 : 4898857788363449 
p16 : 7620732563980787 

36 32.112.971 
p13 : 1114060688051 
p22: 1110675649582997517457 
p24:277844768201513190628337 

37 29.2549993 
p20 :39692035358805460481 
p38 : 12729390074866695790994160335919964253 

38 3.9833 
p63 

39 3.19.73.709.66877 
p58 

40 11.41.199 
p27:537093776870934671843838337 
p39 : 837983319570695890931247363677891299117 

41 3.29.41.89.3506939 
p14 : 18697991901857 
p20: 59610008384758528597 
p28 :3336615596121104783654504257 

42 3.13249.14159.25073 
plO : 6372186599 
p52 

43 52433 
p20 : 73638227044684393717 
p53 

44 32.7.3067.114883.245653 
p23 : 65711907088437660760939 

continued ... 
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n , Factors Rsm(n) 
p41 : 12400566709419342558189822382901899879241 

45 32 .23.167.15859.25578743 
p65 

46 23.35801 
p12 : 543124946137 
p23 :45223810713458070167393 
p43: 2296875006922250004364885782761014060363847 

47 3.11.31.59 
p16 : 1102254985918193 
p28 : 4808421217563961987019820401 
p38: 14837375734178761287247720129329493021 

48 3.151.457.990013 
p15 : 246201595862687 
p24 : 636339569791857481119613 
p39 : 15096613901856713607801144951616772467 

49 71 
plO : 9777943361 
p77 

50 3.157.3307 
p13 : 3267926640703 
p30 : 771765128032466758284258631297 
p43: 1285388803256371775298530192200584446319323 

51 3.11 
p92 

52 7.29.670001 
p12 : 403520574901 
p14 : 70216544961751 
p16: 1033003489172581 
p47: 13191839603253798296021585972083396625125257997 

53 34 .499.673.6287.57653.199236731 
p16 : 1200017544380023 
p28 : 1101541941540576883505692003 
p31 : 2061265130010645250941617446327 

54 33 .74 .13.1427.632778317 
p11 : 57307460723 
p13 : 7103977527461 
p15 : 617151073326209 
p43 : 2852320009960390860973654975784742937560247 

55 357274517.460033621 
continued ... 
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n Factors Rsm(n) 
p84 

56 3.132 

p14 : 85221254605693 
p87 

57 3.41 
p11 : 25251380689 
p93 

58 11.2425477 
p15 : 178510299010259 
p18 : 377938364291219561 
p28 :5465728965823437480371566249 
p40 : 5953809889369952598561290100301076499293 

59* 3 
cl09 

60 3 
pl0: 8522287597 
pl0l 

61 13.373 
p22: 6399032721246153065183 
p42 : 214955646066967157613788969151925052620751 (RB) 
p46 : 9236498149999681623847165427334133265556780913 

62 32 .11.487.6870011 
p13 : 3921939670009 
p14: 11729917979119 
p28 : 9383645385096969812494171823 
p50 :43792191037915584824808714186111429193335785529359 

63 32 .97.26347 
p24 :338856918508353449187667 
p86 

64 397.653 
p12:459162927787 
p14 : 27937903937681 
p24 : 386877715040952336040363 
p65 

65* 3.7.23.13219.24371 
c110 

66 3.53.83.2857.1154129.9123787 
pl03 

67* i 43 

I continued ... 
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n Factors Rsm(n) 
p11 : 38505359279 
c113 

68 3.29.277213.68019179.152806439 
p18 : 295650514394629363 
p20 : 14246700953701310411 
1167 

69 3.11.71.167.1481 
pl0 : 2326583863 
p23 : 19962002424322006111361 
p89 

70 1157237.41847137 
p22 :8904924382857569546497 
p96 

71 32.17.131.16871 
pl0 : 1504047269 
p11 : 82122861127 
p19 : 1187275015543580261 
p87 

72 32.449.1279 
p129 

73 7.11.21352291 
plO: 1051174717 
p17: 92584510595404843 
p20 : 33601392386546341921 
p83 

74 3.177337 
pl0 : 6647068667 
p11 : 31386093419 
p15 : 669035576309897 
p16 :4313244765554839 
p32 : 67415094145569534144512937880453 (PW) 
p51 

75 3.7.230849.7341571.24260351 
pl0 : 1618133873 
p14 : 19753258488427 
p17 : 46752975870227777 
p28 : 7784620088430169828319398031 (PW) 
p53 

76* 53 
continued ... 
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n Factors Rsm(n) 
cl42 

77 3.919 
p15 : 571664356244249 
p22 : 6547011663195178496329 (PW) 
p27 : 591901089382359628031506373 (BD) 
p33 : 335808390273971395786635145251293 (PW) 
p46 :3791725400705852972336277620397793613760330637 

78* 3.17.47 
p14 : 17795025122047 
cl31 

79 160591 
p15 : 274591434968167 
p19 : 1050894390053076193 
p112 

80* 33 .11.443291.1575307 
p17 : 19851071220406859 
cl21 

81 33 .232 .62273.22193.352409 
p15 : 914359181934271 (MF) 
p120 

82 PRIME! (RS) 
83* 3 

cl57 
84* 3.11.47.83.447841.18360053 

p14: 53294058577163 (MF) 
cl30 

85 p12 : 465619934881 (MF) 
p22 : 5013354844603778080337 (AM) 
p128 

86* 3.7.3761.205111.16080557.16505767 
cl39 

87 3.2423 
p25 : 4433139632126658657934801 (AM) 
p30 : 951802198132419645688492825211 (NIF) 
pl07 

88* 73.8747 
cl62 

89* 32 .19.7052207 
cl61 

continued... i 
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n Factors Rsm(n) 
90* 3~ .157.257.691 

el40 
91* 11.29.163.3559.2297.22899893 

p15 : 350542343218231 (MF) 
p25 : 8365221234379371317434883 (NIP) 
e1l5 

92* 3.17.113.376589.3269443.6872137 
el53 

93* 3.13.69317.14992267 
el64 

94* 7.593.18307 
pll : 51079607083 (MF) 
el61 

95* 3.11.13.53.157.623541439 
el66 

96* 3.7.211.14563.2297 
el72 

97* 1553 
el82 

98 32 .101.401.5741.375373 
p173 

99* 32 .109.41829209 
p12 : 174489586693 (MF) 
el68 

100* 13.6779 
pll : 48856332919 (!vIP) 
p26 : 41858129936073024200781901 (NIP) 
el50 

101* 3 
pll : 16320902651 (NIP) 
p19 : 3845388775716560041 (NIP) 
p33 : 693173763848292948494434792706137 (AM) 
el32 

102* 3.101.103.36749 
pll : 10189033219 (NIP) 
p20 : 23663501701518727831 (AM) 
p26 : 52648894306108287380398039 (AM) 
el33 

103* 19.29.103.3119.154009291 
continued ... 
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n Factors Rsm(n) 
90* 3~ .157.257.691 

el40 
91* 11.29.163.3559.2297.22899893 

p15 : 350542343218231 (MF) 
p25 : 8365221234379371317434883 (NIP) 
e1l5 

92* 3.17.113.376589.3269443.6872137 
el53 

93* 3.13.69317.14992267 
el64 

94* 7.593.18307 
pll : 51079607083 (MF) 
el61 

95* 3.11.13.53.157.623541439 
el66 

96* 3.7.211.14563.2297 
el72 

97* 1553 
el82 

98 32 .101.401.5741.375373 
p173 

99* 32 .109.41829209 
p12 : 174489586693 (MF) 
el68 

100* 13.6779 
pll : 48856332919 (!vIP) 
p26 : 41858129936073024200781901 (NIP) 
el50 

101* 3 
pll : 16320902651 (NIP) 
p19 : 3845388775716560041 (NIP) 
p33 : 693173763848292948494434792706137 (AM) 
el32 

102* 3.101.103.36749 
pll : 10189033219 (NIP) 
p20 : 23663501701518727831 (AM) 
p26 : 52648894306108287380398039 (AM) 
el33 

103* 19.29.103.3119.154009291 
continued ... 
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n Factors Rsm(n) 
p12 : 329279243129 (?vIP) 
p13 : 1240336674347 (1vIF) 
c161 

104* 3.7.60953.1890719 
p11 : 10446899741 (1vIF) 
p15 : 216816630080837 (?vIP) 
p19 : 1614245774588631629 (1vIF) 
c149 

105* 3.7.859.6047.63601 
c194 

106* p22 : 1912037972972539041647 (AM) 
p22 : 3052818746214722908609 (AM) 
c167 

107* 33 .13.4519.114967 
p10 : 1425213859 (?vIP) 
p14 : 17641437858251 (?vIP) 
c179 

108 33 .23.457.1373 
p12 : 605434593221 (MF) 
p12 : 703136513561 (?vIP) 
p183 

109 11.29.312 .1709.30345569 
p14 : 42304411918757 (!vIP) 
p189 

110* 3.11.19.53.229.24672421 
p24 : 611592384837948878235019 (AM) 
e183 

111* 3.61.269.470077.143063.544035253 
e200 

112* 137 
p12 : 262756224547 (?vIP) 
e214 

113* 3.19.45061.111211 
e219 

114* 3.19.53.59 
e228 

115* 137.509.1720003 
e226 

116 32 .83.103.156307.176089.21769127 
continued ... 
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n Factors Rsm(n) 
p217 

117 32 

p242 
118 7.4603 

p241 
119* 3.7 

c247 
120* 3.73 

c249 
121* 31.371177 

c248 
122* 3.17 

p11 : 91673873887 eMF) 
c245 

123 3.1197997 
p11 : 15744706711 (MF) 
p244 

124* 37.1223 
c259 

125 32 .59.83 
p10 : 5961006911 (NIT) 
p13 : 1096598255677 (NIT) 
p240 

126* 32 .13.68879.135342173 
c255 

127* 97 
p16: 1385409249340483 (AM) 
c255 

128* 3.34613.29497667 
c263 

129* 3.23.1213.82507 
p12 : 420130412231 (NIT) 
c257 

130* 31.263.86969.642520369 
c264 

131* 3.11.4111.852143 
p12 : 606617222863 (NIT) 
p23 : 33247682213571703426139 (A~I) 
c239 

continued ... 
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n Factors Rsm(n) 
132 3.7.11.41.43.31259.69317.180307.199313 

p17 : 16995472858509251 (?vIP) 
p20 : 56602777258539682957 (AM) 
p226 

133 7.13 
p20 : 22533511116338912411 (AM) 
p269 

134* 33 .37.29004967 
p17 : 60164048964096599 (AM) 
c266 

135* 33 .211.5393.98563 
p12 : 207481965329 (MF) 
p22 : 6789282931372049267693 (AM) 
c251 

136* 
137* 3.179 

p22 : 6796599525965619205571 (AM) 
c278 

138* 3.119611.314087617 
c292 

139* 
140* 3.317.772477 

p15 : 153629260660723 (AM) 
c289 

141* 3.631.65831 
c307 

142* 859.2377.2909.6521 
p14 : 41190901651547 (MF) 
c291 

143 32 .93971 
p12 : 9053448211979 (MF) 
p302 

144* 32 

p19 : 5028055908018884749 (MF) 
c304 

145* 57719.2691841 
p20 : 45690580335973653419 (MF) 
c296 

146* 3.72 .277.19319.55807 
continued... i 
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n Factors Rsm(n) 
p13 : 2454423915989 (:MF) 
c304 

147* 3.72.19.31.15467623 
c321 

148* p20 : 33825333713396366003 (AM) 
p23 : 25082957895838310384953 (AM) 
c294 

149* 3.109.34442413 
c329 

150* 3.59.257 
c337 

151* pl0 : 7134941903 (MF) 
c335 

152 32 .13 
p21 : 412891312089439668533 (!vIP) 
p325 

153* 32 .67793 
p18 : 237333508084627139 (!vIP) 
c328 

154* 11.53861 
pl0: 1118399729 (!vIP) 
c339 

155* 3.41.33842293 
c347 

156* 3.21961 
c355 

157* pl0 : 4136915059 (MF) 
c353 

158* 3.31.89209 
pl0 : 1379633699 (!vIP) 
p14 : 54957888020501 (!vIP) 
c336 

159* 3.13.5669.11213.816229087 
pl0 : 50611041883 (~{F) 
c340 

160* 7.942037.1223207 
p21: 125729584994875519171 (AM) 
c339 

161* 37 .7.37.67.6521.826811.6018499 
continued ... 
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n Factors Rsm(n) 
p23 : 77558900444266075256801 (MF) 
c328 

162* 34 .1295113.202557967 
c361 

163* p16: 1139924663537993 (MF) 
p17 : 17672171439068059 (1-'IF) 
c350 

164 3.193 
p24 : 105444241520715055381519 (AM) 
p358 

165* 3 
c386 

166* p15 : 396444477663149 (MF) 
p32: 15221332593310506150048824812249 (AM) 
c344 

167* 3.17.373.7346281.8927551.194571659 
p20 : 68277637362521294401 (AM) 
c347 

168* 3.59.35537.68102449 
p19 : 7766035514845504007 (MvI) 
c362 

169* 
170 32 .23. 

p16 : 3737994294192383 (MF) 
p384 

171* 32 .37 
p12 : 237089136881 (1-'IF) 
p19 : 2153684224509566597 (1-'IF) 
p21 : 175530075465216996787 (1-'IF) 
p22 : 8105319358780665120301 (1-'IF) 
c330 

172 17.29.281 
plO : 4631571401 (1-'IF) 
p11 : 31981073881 (MF) 
p15: 119749047957053 (1-'IF) 
p368 

173* 3.1787 
c407 

174* 3.7.269.397.156894809 i 

continued... : 
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n Factors Rsm(n) 
c399 

175* 7.11 
pl0 : 3763462823 (MF) 
c405 

176* 3.11.47.49613 
p13 : 2800890701267 (?vIP) 
p15 : 315698062297249 (?vIP) 
p27 : 880613122533775176075766757 (?vIP) 
c358 

177 3.73.1753 
p14 : 29988562180903 (?vIP) 
p404 

178 13.47.353.644951.487703.1436731 
p12 : 728961984851 (?vIP) 
p14 : 34686545199997 (?vIP) 
p14 : 36329334000803 (?vIP) 
p364 

179* 32 .23.43 
p14: 50981967790529 (?vIP) 
c4ll 

180* 32 .29 
p17 : 33644294710009721 (?vIP) 
c413 

181* 325251083 
p17: 57421731284347247 (?vIP) 
c410 

182* 3.107.5568133 
p12 : 139065644033 (?vIP) 
c417 

183* 3.23.89 
c437 

184* 23.19531 
p15 : 196140464783429 (?vIP) 
c424 

185* 3.13.919 
pll : 32173266383 (?vIP) 
c432 

186* 3.23 
! c448 
j continued ... 
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n Factors Rsm(n) 
187* 61.83.103.523.3187 

p19 : 1018598504636281577 (MF) 
e423 

188* 33 .7.7681.65141 
e445 

189* 33 .7.2039.3823.9739.212453.10586519 
e433 

190* 83.107.1871.25346653 
e447 

191 3.809 
p18 : 627089953107590081 (~IP) 
p444 

192* 3.2549 
e464 

193* 47.503.12049 
e463 

194* 3.179 
p22 : 8000103240831609636731 (AM) 
p23 : 77947886830169946060329 (MF) 
e426 

195* 3.79.8219 
e471 

196* 19 
p16 : 8982588119304797 (AM) 
e463 

197* 32 .11.43.11743.125201.867619 
p11 : 61951529111 (NIP) 
p14 : 27090970290157 (NIP) 
e440 

198 32 .11.37.2837 
p19 : 1245013373736039779 (~IP) 
p461 

199* 103.2377 
e484 

200* 3.1666421 
e485 

Table 4: Factorizations of Rsm(n), 1 < n :::; 200 
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a load of factors to theSe lists, as well as some primality proofs. All other 
contributers earn a warm thank you here too. 

Thanks must also go to Paul Zimmermann, Torbjorn Granlund, Fran<;ois 
Morain and Yuji Kida for their wonderfull free programs. 

Any additions are very much welcomed and can be send to the following 
email-adress:michaf<asci.kun.nl. 

The author can also be reached at the following address: Micha Fleuren, 
Acaciastraat 16, 6598 BC, Heijen, The Netherlands. 

The very latest up to date representation of this list can be found at the 
next VRL: http://wwv.scLkun.nl/sigma/Persoonlijk/michaf/ecm/. 

References 

[Ad] L.M. Adleman, C. Pomerance and R.S. Rumely: On Distinguishing 
Prime Numbers from Composite Number, 
Ann. Math. 117, 173-206 (1983) 

[At] A.O. Atkin and F. Morain: Elliptic curves and primality proving, 
Math. Compo 60, 399-405 (1993) 

[Co] H. Cohen and A.K. Lenstra: Primality Testing and Jacobi Sums, 
Math. Compo 42, 297-330 (1984) 

[Gr] T. Granlund: GNU Multiple Precision Arithmetic Library, 
http://wwv.matematik.su.se/-tege/gmp/ 

[Ki] Y.Kida: UBASIC program, 
ftp://rkmath.rikkyo.ac.jp/ubibm/ 

[Le] H.W. Lenstra, Jr: Factoring integers with elliptic curves, 
Annals of Mathematics (2) 126, 649-673 (1987) 

[Mo] F. Morain: Elliptic Curve Primaiity Proving, 
http://pauillac.inria.fr/algo/morain/ 

lSi] R.D. Silverman: The Multiple Polynomial Quadratic Sieve, 
Math. Compo 48, 329-339 (1987) 

[Sm] F. Smarandache: Only Problems, Not Solutions!, 
Xiquan Publ., Phoenix-Chicago, (1993) 

[St] R.W. Stephan: Factors and primes in two Smarandache sequences, 
Smarandache Notion Journal 9, 4-10 (1998) 

37 



[Zi] P. Zimmermann: The ECM-NET Project, 
http://wvw.loria.fr/-zimmerma/records/ecmnet.html 

38 



Smarandache Continued Fractions 

Henry Ibstedt l 

Abstract: The theory of general continued fractions is developed to the extent required in 
order to calculate Smarandache continued fractions to a given number of decimal places. 
Proof is given for the fact that Smarandache general continued fractions built with positive 
integer Smarandache sequences baving only a finite number of terms equal to 1 is 
convergent. A few numerical results are given. 

Introduction 

The definitions of Smarandache continued fractions were given by Jose Castillo in the 
Smarandache Notions Journal, Vol. 9, No 1-2 [1]. 

A Smarandache Simple Continued Fraction is a fraction of the form: 

a(l) +------1---
a(l) + -----..,.---

a(3) + 1 
a(4)+--

a(5) + ... 

where a(n), for ~l, is a Smarandache type Sequence, Sub-Sequence or Function. 

Particular attention is given to the Smarandache General Continued Fraction defined as 

bel) 
a(l) +----.....:......:b-(-l)---

a(l) + b(3) 

a(3)+ b(4) 
a ( 4 ) + --'--'-

a(5) + ... 

where a(n) and b(n), for ~l, are Smarandache type Sequences. Sub-Sequences or 
Functions. 

1 HIbstedt@swipnet.se 
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As a particular case the following example i's quoted 

I 
1+----------~~------

21 
12+--------~-----

321 
123 + --------:-:--:---

4321 
1234+-----

12345+··· 

Here 1, 12, 123, 1234, 12345, ... is the Smarandache Consecutive Sequences and 1, 21, 
321,4321,54321, ... is the Smarandache Reverse Sequence. 

The interest in Castillo's article is focused on the calculation of such fractions and their 
possible convergens when the number of terms approaches infinity. The theory of simple 
continued fractions is welllmown and given in most standard textbooks in Number Theory. 
A very comprehensive theory of continued fractions, including general continued fractions 
is found in Die Lehre von den Kettenbrochen [2J. The symbols used to express facts about 
continued fractions vary a great deal. The symbols which will be used in this article 
correspond to those used in Hardy and Wright An Introduction to the Theory of Numbers 
[3J. However, only simple continued fractions are treated in the text of Hardy and Wright. 
Follo..,ing more or less the same lines the theory of general continued fractions 'will be 
developed in the next section as far as needed to provide the necessary tools for calculating 
Smarandache general continued fractions. 

General Continued Fractions 

We define a finite general continued fraction through 

(1) 

where {qo, ql, q2, .... <In} and {rl, r2, r3 ... rn} are integers which we will assume to be 
positive. 

The above definition is an extension of the definition of a simple continued fraction where 
r!=r2= ... =rIl=l. The theory developed here will apply to simple continued fractions as well 
by replacing rk (k=1, 2, ... ) in fonnulas by I and simply ignoring the reference to rk when 
not relevant. 

The fonnula (1) ..,ill usually be expressed in the fonn 

(2) 

40 



For a simple continued fraction we would write 

(2') 

If we break off the calculation for ~n we will 'write 

(3) 

Equation (3) defines a sequence of finite general continued fractions for m=l, m=2, m=3, 
.... Each member of this sequence is called a convergent to the continued fraction 

Working out the general continued fraction in stages, we shall obviously obtain expressions 
for its convergents as quotients of two sums, each sum comprising various products formed 
with qo, q]' Cb, ... Ck, and rj, rz, ... rm· 

If m= 1, we obtain the :first convergent 
r) qoq) +r) 

C)=[qQ,q),rIl=qo +-=~::..:.-~ (~) 
q) q) 

For m=2 we have 

(5) 

r 
In the intermediate step the value of q) + 2... from the previous calculation has been quoted, 

qz 
putting ql, q: and r: in place of qQ" ql and rl. We can express this by 

Proceeding in the same way we obtain for m=3 

(qzq3 +r3)r) 
C3=[qo,q) ,q2,q3,rb r2 ,r3J = qo +-......;.;~+~.......:::..:..+..!...--= 

q)qzq3 q)r3 q3 r 2 

QoQ)Qzq3 +QoQ)r3 +QoQ3rz +QzQ3r ) +r)r3 

Q)QZQ3 +Q)r3 +Q3r z 

or generally 

which we can extend to 
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Theorem 1: 

Let Am and Bm be defined through 

(10) 

then 
Am Am 

B 
' i.e. is the mth convergent to the general 

m Bm 

continued fraction. 

Proof: The theorem is true for m=O and m=las is seen from [qo)= q10 = ;0 and [qo,q1,rd= 

° 
qOq1 + r1 =.:iL. Let us suppose that it is true for a given m<n. We will induce that it is true 

ql ~ 
for m+l 

= [qm,qm+l,rm+dAm-l +rmAm-2 

[qm,qm-l,rm+dBm-l +rmBm_2 

rm~l B B (qm +--) m-l +rm m-2 
qm~l 

qm~l(qmAm-l +rmAm_Z) +rm+lAm_l 

qm-l (qmBm-l + rmBm_2 ) + rm~lBm-l 
qm~lAm-l +rm+lAm_l Am.,.l 
-=-"''-'-....!!!..-'-----''''-'-....!!!..-'- = --
qm+lBm-l +rm+lBm-l Bm_l 

The recurrence relations (10) provide the basis for an effective computer algorithm for 
successive calculation of the convergents (",. 

Theorem 2: 

AmBm-1-BmAm-l =( 'bAm-1 +rm~rdBm-1-( CImBm-1 +rmBm-2)A",-1 = 
-rm(Am-l Bm-2-Bm-i Arn..2) 
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By repeating this calculation with m-l, m-2, ... ,2 in place ofm, we arrive at 

AmBm-I-B",Am-I= ... = (AIBQ-BlAo)(-I)">-1 n rk =(_I)m-1 nrk 
.1:=2 .1:=1 

Theorem 3: 

Proof: This theorem follows from theorem 3 by inserting expressions for Am and Bm 

AmBm-2-BmAm-2=( 'ImAm-1 +rmAm-2)Bm-2-( 'ImBm-1 +rmBm-2)Am_2= 
m-I 

qm(A.n.IBm-2-Bm-IAm-2)=( -I)m'Im IT r.l: 
.1:=1 

(12) 

A 
Using the symbol c",= ~ we can now express important properties of the number 

Bm 
sequence Cn, m= 1, 2, ... , n. In particular we will be interested in what happens to Cn as n 
approaches infinity. 

From (11) we have 

c-c =Ar._An_1 
n n-I B B 

n n-l 

(13) 

while (12) gives 

(14) 

We will now consider infinite positive integer sequences {qQ, ql, q2, .... } and {rl, r2, ... } 
where only a finite number of terms are equal to 1. This is generally the case for 
Smarandache sequences. We will therefore prove the follo\\ing important theorem. 

Theorem 4: 

A general continued fraction for which the sequences qQ, ql, q2, .... and rl, r2, .... are 
positive integer sequences ",ith at most a finite number of terms equal to 1 is convergent. 

Proof: We ",ill first show that the product Bn_IBn , which is a sum of terms formed by 
various products of elements from {ql, q2, ... 'In, rl, r2, ... rn-l}, has one term which is a 

n 

multiple of ~ rk . Looking at the process by which we calculated C1, C2, and C3, equations 
.1:=2 

43 



4,5 and 7, we see how terms with the largest number of factors ric evolve in numerators and 
denominators of Ck. This is made explicit in figure 1. 

C, C2 C3 C. c.~ C& C7 Ca 
Num. Am r, Cler2 r,r3 CJor2r. r,r3r5 CJor2f".r& r,rJf5r7 Cler2f".r&ra 
Den. 8m r2 9,r3 r2r. 9,r3r5 r2f"J& 9,rJf~) r2f".rora 

figure I. The terms with the largest number of r-factors in numerators and denominators. 

As is seen from figure 1 two consecutive denominators B"Bn-1 will have a tenn with r2r3 ... rn 
as factor. This means that the numerator of (13) will not cause Cn-Cn-I to diverge. On the 
other hand Bn-IBn contains the tenn (ql'l2.~1)2~ which approaches co as n~. It follows 
that lim (en-en-I) = O. 

n-+'" 

From (14) we see that 

1. If n is odd, say n=2k+ 1, than C2lN-I <C2k-1 forming a monotonously decreasing number 
sequence which is bounded below (positive terms). It therefore has limit. 

lim C2.t+1 = C 1 . 
k ..... '" 

2. If n is even, n=2k, than C2k >C2k-2 forming a monotonously increasing number 
sequence. This sequence has an upper bound because C2k <C2lN-I ~ C1 as k ~ co. It 

therefore has limit. 
lim Cu =Cz . 

1: ..... '" 

3. Since lim (en-en-I) = 0 we conclude that CI=Cz Consequently lim C n =C exists. 

Calculations 

A UBASIC program has been developed to implement the theory of Srnarandache general 
continued fractions. Xhe same program can be used for classical continued fractions since 
these correspond to the special case of a general continued fraction where rl =r2= ... =rn= 1. 

The complete program used in the calculations is given below. The program applies equally 
well to simple continued fractions by setting all element of the array R equals to 1. 

10 point 10 
20 dim Q(25).R(25).A25).B25) 
30 input "Number of decimal places of accuracy: ":D 
40 input "Number of input terms for R (one more for Q) ":N% 
50 cis 
60 for 1%=0 to N%:read Q(I%):next 
70 date 
80 for 1%=1 to N%:read R(I%):next 
90 data 

Tne relevant data Cle. qJ .... 

'The relevant date for r,. r2 .... 
100 print teb[1O):"Smarandeche Generalized Continued ~raction" 
110 print teb(lO):"Sequence Q:": 
120 for 1%=0 to 6:print Q(I%j::next:print .. EiC' 
130 print teb(10):"Sequence R:": 
140 for 1%= 1 to 6:print R(I%)::next:print.. EiC' 



150 print tab(10);"Number of decimal places.of accuracy: ";D 
160 A{O)=Q{O):S{O)=l 
170 A{l)=Q{O)-Q{l)+R{l):S{l)=Q{1) 
180 Delta= 1:M= 1 
190 while abs{Delta»lO"{-O) 
200 inc M 
210 A{M)=Q{M)-A{M-l )+R{M)-A{M-2) 
220 S{M)=Q{MtS{M-l )+R{M)-S{M-2) 
230 Oelta=A{M)/S{M)-A(M-l )/B{M-l) 
240 wend 
250 print tab{lO);"An/Sn=";:print using{2.20).A{M)/B{M) 
260 print tab(lO);"An/Bn=";:print A(M);T;S{M) 
270 print tab{lO);"Oelta=";:print using{2.20).Delta; 
280 print" for n=";M 
290 print 
300 end 

'Initiating recurrence algorithm 

'M=loop counter 
'Convergens check 

'Recurrence 

'Cn in decimalform 
'en in fractional form 
'Delta=Last difference 
'n=number of iterations 

To illustrate the behaviour of the convergents Cn have been calculated for q!=q2= ... = q,,=1 
and r!=r2= ... = rn=lO. The iteration of Cn is stopped when ~= ICn-c""! 1<0.01. Table 1 
shows the result which is illustrated in figure 2. The factor (_l)n-I in (l3) produces an 
oscillating behaviour with diminishing amplitude approaching lim C 71 =c 

11-+<0 

Table 1. Value of convergents en for qs(l.l. ... ) and re(lO.lO .... } 

n 1 2 3 4 5 6 7 8 9 10 11 

en 11 1.91 6.24 2.6 4.84 3.07 4.26 3.35 3.99 3.51 3.85 
................. _ ..... _ ....... _ ... _ ................ _ ... _-.............. _ ... _ ..... _._-_ ............................... _-----..... _ ................................................ . 

n 12 13 14 15 16 17 18 19 20 2: 22 

en 3.6 3.78 3.65 3.74 3.67 3.72 3.69 3.71 3.69 3.71 3.7 

12.--------------------------------------------------~ 

1 0 --.-------.----.. ----------------.------------.-----------------------------

8 .. ----------------------- ---------- -- -------------------------------------------------- ------------.. -----.-.---- .. - .... ---.-

6 ft.------------------------------------- --

2 -

O~~~~--------~------------~--~------------------~ 
III 

FIgure 2. en as a function of n 



A number of sequences, given below, will be substituted into the recurrence relations (10) 
and the convergence estimate (13). 

S}={I, 1, 1, ...... } . 
S2={l, 2, 1, 2, 1, 2, ...... } 
S3={3, 3, 3, 3, 3, 3, ...... } 
S4={ 1, 12, 123, 1234, 12345, 123456, ..... } Smarandache Consecutive Sequence. 
Ss={I, 21, 321, 4321, 54321,654321, ..... } Smarandache Reverse Sequence. 
CSI ={ 1,1,2,8,9,10,512,513,514,520,521,522, 729,730,731,737, 738, ... 
NCSI ={ 1,2,3,4,5,6,7,10,11,12,13,14,15,16,17, 18, 19,20,21,22,23,24,25,26,29,30, ... 

The Smarandache CSI sequence definition: CS1(n) is the smallest number, strictly greater 
than the previous one (for ~3), which is the cubes sum of one or more previous distinct 
terms of the sequence. 
The Smarandache NCSI sequence definition: NCS1(n) is the smallest number, strictly 
greater than the previous one, which is NOT the cubes sum of one or more previous distinct 
terms of the sequence. 
These sequences have been randomly chosen form a large number of Smarandache 
sequences [5]. 

As expected the last fraction in table 2 converges much slower than the previous one. 
These general continued fractions are, of course, very artificial as are the sequences on 
which they are based. As is often the case in empirical number theory it is not the individual 
figures or numbers which are of interest but the general behaviour of numbers and 
sequences under certain operations. In the next section we ",ill carry out some experiments 
with simple continued fractions. 

Experiments with Simple Continued Fractions 

The theory of simple continued fractions is covered in standard textrooks. Without proof we 
",ill therefore make use of some of this theory to make some more calculations. We ",ill first 
make use of the fact that 

There is a one to one correspondence between irrational numbers and infinite 
simple continuedjractions. 

The approximations given in table 2 expressed as simple continued fractions would 
therefore show how these are related to the corresponding general continued fractions. 
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Table 2. Calculation of general continued fractions 

Q R n ~ Cn (dec.form) c" (fraction) 

SI SI 18 _9·10-8 1.6180339 6765 --
4181 

S: SI 13 8·10-8 1.3660254 7953 
5822 

S: S3 22 _9·10-8 1.8228756 14026522-W 
769472267 

S4 SI 2 -7·1O~ 1.04761 7063 
6742 

3 5.10.1: 1.04761198457 30519245 
29132203 

4 _2.10-20 1.0476119845794017019 1657835914708 
1582490405905 

S4 S5 2 _1.10-3 1.082 540 
499 

4 _7_10-10 1.082166760 8245719435 

7619638429 
6 _1.10-19 1.08216676051416702768 418939686644589150004 

387130433063328840289 

S5 SI 2 -7·10..5 1.04761 7063 
6742 

3 5_10-12 1.04761198457 30519245 
29132203 

4 _2_10-20 1.04761198457940170194 1657835914708 
1582490405905 

S5 S4 2 -8-10-5 1.0475 2358 

2251 
3 7_10-9 1.04753443 2547455 

2431858 
5 1_10-20 1.04753443663236268392 60363763803209222 

57624610411155561 
CSI :-';CSI 6 -1.10-7 1.540889 l376250 

893153 
7 3_10-12 1.54088941088 1412070090 

916399373 
9 _1.10-20 1.54088941088788795255 377447939426190 

244954593599743 
:-;CSI CSI 16 -5.10-5 0.6419 562791312666017539 

876693583206100846 
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Table 3. Some general continued fractiom converted to simple continued fractions 

Q R en (dec.fonn) en (Simple continued fraction sequence) 

S4 S5 1.0821!5676051416702768 1,12,5,1,6,1,1,1,48,7,2,1,20,2,1,5,1,2,1,1,9,1, 
(corresponding to 6 tenns) 1,10,1,1,7,1,3,1,7,2,1,3,31,1,2,6,38,2 

(39 terms) 

S5 S4 1.04753443663236268392 1,21,26,1,3,26,10,4,4,19,1,2,2,1,8,8,1,2,3,1, 
(corresponding to 5 terms) 10,1,2,1,2,3,1,4,1,8 (29 terms) 

CSI NCSI 1.54088941088788795255 1,1,15,1,1,1,1,2,4,17,1,1,3,13,4,2,2,2.5,1,6,2, 
(corresponding to 9 terms) 2,9,2,15,1.51 (28 tenns) 

These sequences show no special regularities. As can be seen from table 3 the number of 
terms required to reach 20 decimals is much larger than for the corresponding general 
continued fractions. 

A number of Smarandache periodic sequences were explored in the author's book 
Computer Analysis of Number Sequences [6]. An interesting property of simple continued 
fractions is that 

A periodic continuedfraction is a quadratic surd, i.e. an irrational root of a 
quadratic equation with integral coeffiCients. 

In tenns of A" and B", which for simple continued fractions are defined through 

the quadratic surd is found from the quadratic equation 

(15) 

(16) 

where n is the index of the last tenn in the periodic sequence. The relevant quadratic surd is 

An -Bn-l +~A~ +BLI -2A"Bn_1 -4An_1B" 
x= 

2B" 
(17) 

An example has been chosen from each of the following types of Smarandache periodic 
sequences: 

1. The Smarandache two-digit periodic sequence: 
Definition: Let Nk be an integer of at most tv.·o digits. Nk ' is defined through 

r the reverse of Nk if Nk is a two digit integer 
Nk' = ~ 

lNk·IO if Nk is a one digit integer 
Nh] is then determined by 

Nk-I= I Nk-Nk;1 
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The sequence is initiated by an arbitrary two digit integer NI with unequal digits. 

One such sequence is Q={9, 81, 63, 27, 45}. The corresponding quadratic equation is 
6210 109~ -55.829745x-1242703=0 

2. The Smarandache Multiplication Periodic Sequence: 
Definition: Let c> 1 be a fixed integer and No and arbitrary positive integer. Nk-I is derived 
from Nk by multiplying each digit x of Nk by c retaining only the last digit of the product 
cx to become the corresponding digit of Nk-I. 

For c=3 we have the sequence Q={ 1,3,9, 7} with the corresponding quadratic equation 
199x2-235x-37=0 

3. The Smarandache Mixed Composition Periodic Sequence: 
Definition. Let No be a two-digit integer al·lO+ao. If a]+ao<10 then ~= al+ao otherwise 

b l = a]+ao+l. bo=jal-aoj . We define N1=bl·1O+bo. Nk+1 is derived from Nk in the same way. 

One of these sequences is Q={18, 97, 72, 95, 54, 91} with the quadratic equation 
3262583515~-58724288064x-645584400=0 

and the relevant quadratic surd 
58724288064 + .J'34-5-6-9-67-1-:-0-07-0-7-57-7-5-3 2--:0-:-9-=6 

x=--------------------------------
6525167030 

The above experiments were carried out \\,1th UBASIC programs. An interesting aspect of 
this was to check the correctness by converting the qtmdratic surd back to the periodic 
sequence. 

There are many interesting calculations to carry out in this area. However, this study \\,111 
finish by this equality between a general continued fraction convergent and a simple 
continued fraction convergent. 

[1,12,123,1234,12345,123456,1234567 ,1,21,321,-1321,54321,65-1321]= 
[1,12,5,1,6,1,1,1,48,7,2,1,20,2,1,5,1,2,1,1,9 ,1, 1,10,1,1,7,1,3,1,7,2,1,3,31,1,2,6,38,2] 
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SOME CONNECTIONS BETWEEN THE SMARANDACHE 
FUNCTION AND THE FIBONACCI SEQUENCE 

I Constantin Dunutrescu I and Cannen Rocsoreanu 

University of Craiova, Dept. of Mathematics 
Craiova 1100, Romania 

I. INTRODUCTION 

The Smarandache function S:N* ~N* is defined [9] by the condition that S(n) 
is the smallest positive integer k such that k! is divisible by n. 

If 

(1) 

is the decomposition of the positive integer n into primes, then it is easy to verify that 

S(n) = max (s(p,ai 
)) (2) 

One of the most important properties of this function is that a positive integer p is 
a fixed point of S if and only if p is a prime or p = 4. 

This paper is aimed to provide generalizations of the Smarandache function. They 
will be constructed by means of sequences more general than the sequence of the 
factorials. Such sequences are monotonously convergent to zero sequences and divisibility 
sequences (in particular the Fibonacci sequence). 

Our main result states that the Smarandache generalized function associated with 
every strong divisibility sequence (sequence satisfying the condition ( 15) from bellow) is a 
dual strong divisibility sequence (i.e. it satisfies the condition (26), the dual of (15)). 

Note that the Smarandache function S is not monotonous. Indeed, n 1 ~ n2 does 

not imply S(nJ ~ S(n2)' For instance 5 ~ 12 and S(5) = 5, S(12) = 4. 
d 

Let us denote by v the least common multiple, by /\ the greatest common divisor 
d 

and let /\ = min, v = max. It is known that 

No = (N·,/\,v) and Nd =(N·,~,~) 
are lattices. The order on N* corresponding to the lattice No is the usual order: 

n] ~ 112 <=> 11] /\n 2 = n] 

and it is a total order. On the contrary, the order ~ corresponding to the lattice N d , 
d 

defined as 

n] ~112 <=> 11] /\112 = 11] 
d d 

( the divisibility relation) is only a partial order. 
More precisely we have 
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n l <;.n2 <=> n l divides n 2 • 
d ' 

For n l <;.n2 we shall also write n 2 "?nl . We notice that Nd has zero as the greatest 
d d 

element, No does not possess a greatest element and both lattices have 1 as the smallest 

element. Then it is convenient to consider in No the convergence to infinity and in N d , 

the convergence to zero. 
Let 

n l = TIPiCl
, and 112 = TIpf' 

be the decompositions into primes of III and n2 • Then we have 
d 

n vn = TIp In3X (Cli.Pi) 
I 2 I . 

The definition of the Smarandache function implies that 

s(nl ~n2) = S(nl)v S(112) 
Also we have 
n l <;.112 => S(nJ::; S(n2)' 

d 

(3) 

(4) 

In order to make explicit the lattice (so, the order) on the set N·, we shall write 

No instead of N·, if the order on the set of the positive integers is the usual order and 

Nd instead of N· , if we consider the order <;. respectively. 
d 

Then (4) shows that the Smarandache function, considered as a function 
S : Nd ~ No, (5) 

is an order preserving map. 
From (2) it follows that the detennination of S(n) reduces to the computation of 

s(pa ). In addition, it is proved [1] that if the sequence 

(P): 1, p, p2, ... , pi, ... (6) 

is the standard p - scale and the sequence 

(p): al(P), a2(p~ .. " ai(P), ... 
is the generalized numerical scale determined by the sequence 

then 

a , (P)= p' -1 
p-1 

s(pa)= p(a[plt) (7) 

In other words, s(pa) can be obtained by multiplying by p the number obtained 

writing the exponent a in the generalized scale (P) and "reading" it in the scale (P). 
For instance, in order to calculate S(3 99

) let us consider the scale 

[3] 1,4, 13,40, 121, ... 
Then, for a = 99 , we have 
a[3] = 2a4(3)+a3(3)+a2(3)+2aJ3) = 2112[3] 
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and "reading" this number in the usual scale 
(3) 1, 3, 32

, 33
, ... 

we get S(3 99
) = 3(2.3 3 + 32 .+ 3 + 2 )=204. So, 204 is the smallest positive integer whose 

factorial is divisible by 399
. 

We quote also the following formula used to compute s(pa): 
s(pa)= (p -1)a + a[p] (a) , (8) 

where a[p] (a ) stands for the sum of the digits of the integer a written in the scale [p]. 

2. GENERALIZED SMARANDACHE FUNCTIONS 

A sequence of positive integers is a mapping a : N* ~ N* and it is usualy denoted 
by (a JnEN· (i.e. the set of its values). Since in the sequel an essential point is to 

make evident the structure (the lattice) on the domain and on the range of this function 
respectively, we adopt the notation from (5). 

Then 
(9) 

shows that a is a sequence of positive integers defined on the set N*. This set was 
structured as a lattice by 1\ and v and its range has also a structure of lattice, induced by 

d 

1\ and v. 
d 

Definition 2.1. [3] The sequence (9) is a multiplicatively convergent to zero 
sequence (mcz) if 

(V)nEN* (3) mn EN' (V)m~mn =>n5a (m). (10) 
d 

In other words, a (mcz) sequence IS a sequence defined as In (9), which IS 

convergent to zero. 
These sequences, satisfying in addition the condition 
a(n).sa(n+l) (11) 

d 

(that is a(n)divides o-(n+l)) were considered by G. Christol [3] in order to obtain a 

generalization of p - adic numbers. 

As an example of a (mcz) sequence we may consider the sequence defined by 

a(n) = n! . This sequence also satisfies the condition (11). 

Remark 2.1. We find that the value Sen) oftbe Smarandache function at the point 

n is the smallest integer m n provided by (10), whenever a (n) = n!. This enables us to 

define a Smarandache type function for each (mcz) sequence. Indeed, for an arbitrary 

(mcz) sequence 0- , we may define S".{n) as the smallest integer m n given by (10). 

The (mcz) sequences satisfying the extra-condition (11) generalize thc factorial. 

Indeed, if 
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then 
cy(n) = kl ·k2 • ••• ·kn , with kl = 1 and k; E N* for i> l. 

Starting with the lattices No and N d, we can construct sequences 

CY: Nd ~Nd . 

Definition 2.2. A sequence (13) is called a divisibility sequence (cis) if 

(12) 

(13) 

n5m ~ cy(n h;,cy(m) (14) 
d d 

(that is if the mapping CY from (13) ia monotonous). The sequence (13) is called a strong 
divisibilit;; seqUfnce (sds) if 

CY~ -;jm)= cy(n )-;jcy(m) for every n, mE N* . (15) 

Strong divisibility sequences are considered, for instance, by N. Jensen in [5]. 
It is known that the Fibonacci sequence is also (scis) . 
For a sequence CY of positive integers, concepts as (usual) monotonicity, 

multiplicatively convergence to zero, divisibility, have been independently studied by many 
authors. A unifying treatement of these concepts can be achieved if we remark that they 
are monotonicity or convergence conditions of a given sequence CY: N* ~ N*, for 

adequate lattices on N'. 
We shall consider now all the possibilities to define a sequence of positive integers, 

with respect to the lattices No and N d . To make briefly evident thc kind of the lattice 

considered on the domain and on the range of a , we shall use the following notation: 
(a) a sequence CY 00 : No ~ No is an (00)- sequence 

(b) a sequence CYod : No ~ Nd is an (od)- sequence 

(c) a sequence CY do : Nd ~ No is an (do )-sequence 

(d) asequenceCYdd :Nd ~Nd isa(dd)-sequence 

We have already seen (Remark 2.1) that, considering (mcz) sequences, the 

Smarandache function may be generalized. 
In order to generalize tbe Smarandache function for each type of the above 

sequences, it is necessary to consider the monotonicity and the existence of a limit 
corresponding to each of the cases (a) - (d). 

Of course, the limit is infinit for No -valued sequence and it is zero for the others. 

We have four kinds of mono tonicity. 
For a (do) - squence CY do' the monotonicity reads: 

(mdJ ('i)nl>n: EN', nl ~n: ~CYdo(nl)~CYdo(n2) 

and the condition of convergence to infinity is: 

(cdJ (V)nEN' (:J)mn EN' (V)m~mn ~CYdo(m)~n. 
d 

Similarly, for a (dd)- sequence CY dd, the monotonicity reads: 
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(m dd ) (V)npn2 EN-, nl '5.n2 ~CTdd(nJ'5.CTdd(n~) 
d d ~ 

and the convergence to zero· is: 

(cdd ) (V)nEN- (:J)mn EN- (V)m~mn ~CTdd(mhn. 
d d 

Definition 2.3. The peneralized Smarandache function associated to a sequence 
CT if satisfying tbe condition tc if)' with i, j E ~, d}, is 

S,j(n)= min {m n Imn given by the condition (cij)} (16) 

Remark that (00) - sequences are the classical sequences of positive integers. As 

examples of (od)- sequences we quote the (mcz) sequences. Examples of 

(dd) - sequences are (tis) and (stis) - sequences. Finally, the generalized Smarandache 

functions Sod associated with (od)- sequences satisfying the condition (Cod) are 

(do) - sequences. 

The functions S'j have the following properties: 

Theorem 2.1. Every function Soo satisfies: 

(i) (V)npn2 EN", nl 5on2 =>Soo(nJ50Soo (n2)' 

that is Soo satisfies (moJ. 

(ii) Soo(nl vn2 )=Soo(nl)vS
OO

(n2) 

(iii) SoO(nl /\n 2 )=Soo(nl)/\SOO(n2). 

Proof: (i) The definition of S 00 (n) implies that: 

Soo (nJ = min {m
ni 

[(VIn ~ m
ni 

=> CT 00 (m) ~ nJ, for i = 1,2 

Therefore 

(V)m~Soo(nJ=>CToo(m)~n2 ~nl 
and so S 00 (nJ 50 S 00 (n2). The equalities (ii) and (iii) are consequences of (i). 

Theorem 2.2. Every function Sod has the following properties: 

(iv) (V) n l , n: EN-, nl ~n: => Sod (nJ 50 Sod (n 2 ) 

that is SOd satisfies (mOd). 

(v) Sod n l vn2 '=SoAnJvSoAn:). 
( 

d I 

(vi) S'" kinJ S'" (n,)A S",(n,) 
Proof: The equality (v) may be proved in the same manner as the equality (3) for 

the function S. Then from (v) it follows (iv). 

For (Vi) let us note u = SoAnl)/\SOd(nJ. From 

nl /\n~ '5.nl, nl /\n, '5.n, d ~d d ~d ~ 
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and from (iv), it f~llows that 

Sod 01 ,;n2)5: Sod(n11 Sod 01 ,;nJ5: Sod (nJ, 

so SOd 01 ,;n2)5: Sod (nJ" Sod (n2)' 

Theorem 2.3. The functions Sdo satisfy: 

(vii) (V)n1>n2 EN", n1 5:n2 ::::>Sdo(nJ5:Sdo (n2). 
d 

(viii) SdO(n1 vn2 )5: Sdo(n1)vSdo (n2). 

(ix) Sd)n j vn2)=Sdo(nj)vSdo (n2). 

(x) SdO(n j "n2)= Sdo(n j)"Sd)n2). 
Proof: Let us note that (ix) and (x) are consequences of (vii). In our tenns (vii) 

is just the fact that the Smarandache generalized function S do associated with a 

(do)- sequence is (00)- monotonous. To prove this assertion, let nj 5: n2. Then for 

every m > m , we have d n, 
CJ do (m) ~ 112 ~ nj 

and so Sd)l1 j) 5: Sdo(nJ. 

(viii) For i = (, 2 we have: 

Sd)nJ= min \mni I(V)m~mn, ::::> CJdO(m)~ ni } 

Let us suppose that nj 5: 112 , so nj v n2 = n2 and Sdo(n j vnJ = Sdo(nJ. If we take 
d 

ma = S dJl1j )v S dJn2 ) , then for every m ~ ma it follows that CJ do (m) ~ ni , for i = 1, 2, so 

CJ do (m) ~ nj v 11 , whence the desired inequality. 

Consequence 2.1. Sd)I1J,;SdJn2) 5: Sdo(nJ"Sdo(n2 )= SdJnj "nJ5: 

d 

Sdo (l1j)V Sdo (n 2) = SdO(n j v n2 ) 5: Sdo (nj)v Sdo (n2)' 

Theorem 2.4. The functions S dd satisfy: 

( 
did 

(xi) Sdd lljV112j5:Sdd(nj)VSdAI1J. 

(xii) If 111 ~n2 or n2 ~l1j then 

S dd (l1j ~ n2 ) = S dd (nj)v S dd (n2)' 

(xiii) Sdd ~lj ,;nJ5: SdAnj)/\ Sdd (nJ. 

Proof: The proof of (xi) is similar to the proof of (viii) and the other assertions 

may be easily obtained by using the definition of Sdd from (17) (for i = j = d). 

Consequence 2.2. For all n j , n2 EN" we have 
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Sdd(nJv SdAn2)~ ~dd(nl ~n2) ~ Sdd(nJ~Sdd(nJ. 
This follows from the fact that 

ni ~nl ~n2 for i = 1, 2 => SdAnJ ~ Sdd( n l ~n2 ). 

If addis a divisibility sequence, the above theorem implies that the associated 

Smarandache function satisfies the inequality (xi). In the following we shall see that, if the 

sequence addis a divisibility sequence with additional properties, namely if it is a strong 

divisibility sequence, then the inequality (xi) becomes equality. 

Theorem 2.5: If add is a (sds) satisfying the condition (cdd 1 then: 

Sdd( nl ~n2) = SdAnJ~SdAn2) (17) 

and 

(V)nl> n2 EN", n l ~n2 => Sdd(nJ~SdAnJ (18) 

(i.e. Sdd satisfies the mono tonicity condition (mdd)). 
Proof: In order to prove the equality (17), it is sufficient to show that 

sdAn,)~Sdd( n l ~n2), for i = 1,2. 

But if, for instance, the above inequality does not hold for n l and we denote 

do = SdAnJ;;Sdd ( nl ~n2), 
it follows that do < SdAnJ and taking into account that 

a dASdAnJ)~nl and n l ~nl ~n2 ~a dd( Sdd(nl ~n2 )), 

we have 

a dd(do) = a d{ sdAnJ'iSdd(nl ~n2)) = 

= a dASdAnl))'ia dd( Sdd( nl ~n2) )~nl 'i nl = nl · 

Thus, we obtain the contradiction 

Sdd(nl)~do <SdAnl)· 
So, if the sequence add is a (sds) , that is if the equality (15) holds, then the 

corresponding Smarandache function Sdd satisfies the dual equality (17). 

Example. The Fibonacci sequence (FJ"EN' is a (sds-). Therefore, the generalized 

Smarandache function SF associated with this sequence satisfy: 
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SF(nJ ~n2) = SF{n)~SF{n2) (19) 

By means of this equality, the computation of SF (n) reduces to the determination 

of SF (p a), where p it a prime number. For instanJe 

SF (52) = min mnl{V)m~mn =>52~F{m) = 
d d 

= SF (22 )~SF(13)= 6~7 = 42. 

So, 42 is the smallest positive integer m such that F{m) is divisible by 52. 

Also, we have 

sA12) = SF (22 .3)= SF (22 )~SA3)= 6~4 = 12, 

therefore n = 12 is a fixed point of SF . 
(20) 

The values of SF(pa) may be obtained by writing all Fn in the scale (P) given by 

(6), which is a difficult operation. At the time being, we are not able to provide a closed 

formula for the computation of SF (pa ). However, we shall present some partial results in 

this direction. In [8] it is stated that 
3k <F <=> 4· 3k

-
J <n 

- n -
d d 

2k ~Fn <=> 3· 2k- 2 ~n, jar k ~ 3. 
d d 

It is known (see for instance [6], [7]) that if u is a non-degenerate second-order 
linear recurrence sequence defined by 

u{n)=Au(n-1)-Bo-(n-2) (21) 
where A and B are fixed non-zero coprime integers and 0-(1) = 1, 0-(2) = A, then 

nEZ·, nI\B=1=>(3)mEN· n~o-{m). (22) 
d d 

The least index of these terms is called the rank of appearance of n in the sequence 
and is denoted by r(n). 

If D = A2 - 4B and (Din) stands for the Jacobi symbol, then for mn I\BD = 1 and 
d 

p a prime we have ([6]) 
n~o-(m)<=> r(nhm; r(Php-(DI p) 

d d d 

p-(DI p) ( d ) d (23) 
r(p);j 2 <=>(Blp)=l; r mvn =r(m)vr(n). 

Let us denote N; = {n E N"I n r;;B = I}. Obviously, if r is considered as a function 

r : N; ~ N" , then te can write:} 
r(n)= min mln~o-(m). 

d 

Whence an evident parallel between the above methods described for the construction of 
the generalized Smarandache functions and the definition of the function r. 

F or the Fibonacci sequence (Fn) we have A = I, B = -1 and so D = 5. 

This implies 
p = 5k ± 1 => (5 I p) = 1 (24) 
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p = 5k ± 2 => (5 I p) = -1 (25) 
and it follows that if (24) holds, then p divides Fp _1 • Thus SF (P) is a divisor of p - 1. In 

the second case p divides Fp+I and SF (P) is a divisor of p + 1. 

From (23) we deduce 
SF (P ) ~ p - (5 I p) 

for any prime number p. 
Lemma 2 from [6] implies that the fraction (p - (5/ P ))1 SF (P) is unbounded. We 

also have 
pic '5 Fn 

<=> S Aplc )91 . 
d d 

Example. For p = 11 it follows (SIp) = I, so SF(llh:1o. In fact, we have precisely 
d 

SF (11) = 11- (5111) = 10, but there exist prime numbers such that SF (P) < p - (51 p). For 

instance, p =17, for which p - (SIp) = 18 and SF (17) = 9 . 

Definition 2.4. The sequence 0' is a dual strong divisibility sequence (dsds) if 

0'( n ~ m ) = O'(n)~ O'(m) for all n, mEN· . (26) 

It may be easily seen that every strong divisibility sequence IS a divisibility 
sequence. We also have: 

d 

Proposition 2.1 Every dual strong divisibility sequence is a divisibility sequence. 
Proof. We have to prove that (26) implies (14). But if n'5m, it follows 

d 

nvm = m and then 

O'(m)=O'(n~m )=O'(n)~O'(m) (27) 

so,O'(n)'5O'(m). 
d 

Then Theorem 2.5 asserts that the Smarandache generalized function Sa 

associated with any strong divisibility sequence 0' is a dual strong divisibility sequence. Of 
course, in this case, both sequences 0' and Sa are divisibility sequences. 

It would be very interesting to prove whether the converse assertion holds. That is 
if Sdd is the generalized Smarandache function associated with a ( divisibility) sequence 

0' dd satisfying the condition (c dd)' then the equality (17) implies the strong divisibility. 

Remarks. (1) It is known that the Smarandache function S is onto. But given a 
(dd)- sequence 0' dd' even if it is a (sds) , it does not follow that the associated function 

Sdd is onto. Indeed, the function SF associated with the Fibonacci sequence is not onto, 

because n = 2 is not a value of SF . 
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(2) One of the most interesting diophantine equations associated with a 
Smarandache type function is that which provides its fixed points. We remember that the 
fixed points for the Smarandarche function are all the primes and the composit number 
n = 4. For the functions Sdd the equation providing the fixed points reads Sdd (x) = x and 

for SF we have as solutions, for instance, n = 5, n =12. 

At the end of this paper we quote the following question on the Smarandache 
function, also related to the Fibonacci sequence: 

T. Yau [10] wondered if there exist triplets of positive integers (n, n-l, n-2) such 
that the corresponding values of the Smarandache function satisfy the Fibonacci 
recurrence relation Sen) = sen - 1) + sen - 2). 

He found two such triplets, namely for n =11 and for n =121. Indeed, we have 
S(9) + S(lO) = Sell) and S(1l9) + S(l20) = S(l21). 
Using a computer, Charles Ashbacher [2] found additional values. These are for 
n = 4902, n = 26245, n = 32112, n = 64010, n = 368139, n = 415664. 
Recently H. Ibsent [4] proposed an algorithm permitting to find, by means of a 

computer, much more values. But the question posed by T. Yau "How many other 
triplets with the same property exist?"is still unsolved. 
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By developing F. Smarandache thema on paradoxes in mathematics it is stated, 
firstly, ifin measurement (natural science) experiments the best solutions are found 
by using methods of modem data analysis theory, then some difficulties with the 
interpretation of the computation results are liable to occur; secondly, one is not 
capable to overcome these difficulties without a data analysis theory modification, 
consisted in the translation of this theory from Aristotelian "binary logic" into more 
progressive "fuzzy logic". 

Key words: data analysis, revealing outliers, confidence interval, fuzzy logic. 

1 Introduction 

As generally known from history of science, a scientific theory may have crisis in 
process of its development, when it disjoints in a set of fragment theories, that weak
coordinate each other and, as a whole, form a collection of various non-integrated 
conceptions. For instance, as we assume, F. Smarandache mathematical notions and 
questions 1 - 2 help us to understand quite well that a stable equilibrium, observed in 
mathematics at the present time, is no more than fantasy. Thus, it falls in exactly 
with F. Smarandache views that the finding and investigating paradoxes in 
mathematics is a very effective way of approximating to the truth and so at present 
each of scientific researches, continuing F. Smarandache thema 2, should be 
considered as very actual one. 

Let us assume that computative paradoxes in mathematics are mainly such 
computation results, obtained by using mathematical methods, which are 
contradicted some mathematical statements. The main goal of this paper is to 
demonstrate that the mentioned crisis, demanding practical action instead of debate, 
occurs in modern data analysis, which formally has its own developed mathematical 
theory, but does not capable "to cope worthily" with a large number of practical 
problems of quantitative processing results of measurement experiments. 

Another goal of this paper is to equip the mathematicians and software 
designers, working in the data analysis field, with a set of examples, demonstrating 
dramatically that, if, for solving some problems on analysing data arrays, one uses 

the standard computer programmes and/or time-tested methods of modern data 
analysis theory, then a set of the paradoxical computative results may be obtained. 
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2 Approximative problems of data analysis 

2.1 The main problems of regression analysis theory and 
standard solution· methods 

As generally known 3
-

7
, for found experimental dependence {Yn,Xn} (n= 1,2, ... , 

N) and given approximative function F(A, x), in the measurement (natural science) 
experiments the main problems of regression analysis theory are finding estimates of 
A' and y' and variances of DA' and D(y - y ') , where A' is an estimate of vector 

parameter A of the function F(A, x) and {Yn'}= {F(A', Xn)}. In particular, if 

F(A,x) = I.~lalhl(x) {F(A, x) is a linear model}, where hA,.x) are some functions 

on x, then in received regression analysis theory standard solution of discussed 

problems has form 

(1) 

Dp(y-Y')=Y'±tps~ l+H?(HTH)-lHj , 

where H is a matrix LxN in size with n-th row (h1(xn), h2(xn), ... , hL(xn)); HT is the 

transposed matrix H; Y = {yn}; S = I.~=l(Yn - y~)2 / (N - L); Hi= (h1(Xi), h2(Xi), 

... , hL(Xi)); the value of tp is determined by t-Student distribution table and 

generally depends on the assigned value of the significance level of p and the value 

of N - L (a number of freedom degree); at the assigned value of the significance 
level of p the notation of Dp(y - Y ') means confidence interval for possible 
deviations of experimental values of Y from computed values y'= F(A', Xi). 

According to Gauss - Markov theorem 4,5, for classical data analysis model 

Yn = F(A, xn) + en (2) 

the solution (1) is the best (gives minimum value of s), if the following conditions 
are fulfilled: 

all values oj { Xn} are not random, mathematical expectation oj random value 
{en} is equal to zero and random values oj {en} are non-correlated and have the 
same dispersions d. 

Example 1. In table 1 we adduce an experimental data array, obtained by 

Russian chemist D.I.Mendeleev in 1881, when he investigated the solvability (y, 

relative units) of sodium nitrate (NaN~) on the water temperature (X, °C). 

Table 1. 

D.I.Mendeleev data array 

n Xn Yn Yn - Yn' n Xn Yn Yn - Yn' n xn Yn Yn - Yn' 
1 0 66.7 -0.80 4 15 80.6 0.05 7 36 99.4 0.58 
2 4 71.0 0.02 5 21 85.7 -0.07 8 51 113.6 1.73 
3 10 76.3 0.10 6 29 92.9 0.17 9 68 125.1 -1.56 
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By analysing the data array {yn, Xn}, pre~ented in table 1, Y.V.Linnik? states that 
these data, as it was noted by D.I.Mendeleev, are well-fitted by linear model 
y' = 67.5 + 0.871 X (bA' = (0.5; 0.2», although the correspondence between 

experimental and computed on linear model values ofy is slightly getting worse at 
the beginning and end of investigated temperature region (see the values {yn - y~} 
adduced in table 1). We add that for discussed data arrayY.V.Linnik3 computes the 
confidence interval of bp (y - y') from (1) at the significance level of p = 0.9: 

bo.9 (y-y') = ± 0.593 ~1+(x-26)2 /4511 . (3) 

~v 

2,3 

-2,3 '----------
-10 30 70 x 

Figure 1. The plots of confidence interval of the deviation of y from y' (heavy lines) and 
residuals y - y' (circles) for D.I.Mendeleev data array. 

We show the plots of bO.9 (y - y') on x by heavy lines in figure 1 and {yn - Yn ~ 

Xn} by the circles. Since the plot of {yn - Yn ~ xn} steps over the heavy lines in figure 
1, some computative difficulty is revealed: 

the standard way (1), used by Y. V.Linnik3 for determining the confidence 
interval of the deviations of y from y ~ is out of character with the discussed 
experimental data array. 

It follows from results presented in table 1 and/or figure 1, if one assumes that 
b(y - y') ~ max I Yn - y/ I = 1.73 then the broken connections of the confidence 

interval b(y - y') with D.I.Mendeleev data array will be pieced up. But values of 
bA', calculated by Y.V.Linnik from (1), disagree with the values b(y-y') ~ 1.73, 
and, consequently, 

standard values of M / is out of character with D.I.Mendeleev data array also. 

2.2 Alternative methods of regression analysis theory 

P .Huber 8 noted that, as the rule, 5 - 10% of all observations in the majority of 
analysing experimental arrays are anomalous or, in other words, the conditions of 
Gauss - Markov theorem, adduced above, are not fulfilled. Consequently, in practice 
instead of the standard solution (1), found by "least squares (LS) method", 
alternative methods, developed in the frames of received regression analysis theory, 

should be used. In particular, if the data array {Yn, Xn} contains a set of 
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outliers, then for finding the best solution oJ discussed problem it is necessary6, 7 or 

to remove all outliers from the analysing data array (strategy 1), or to compute the 

values of A' on the initial data array by means of M-robust estimators (strategy 2). 

For revealing outliers in-the data array P.J.Rousseeuw and A.M.Leroy9 suggest to 

use one of two combined statistical procedures, in which parameter estimates, 

minimising the median of the array {(yn - Yn ')2} (the first procedure) or the sum of K 

first elements of the same array (the second procedure), are considered as the best 

ones. If F(A, x) is a linear function (see above), then the robust M-estimates of A' 
are obtained as result of the solving of one from two minimisation problems 6 - 9 

N N 
S<p(A) = I<P(Yn-y~)=:}min or as<p/aa[= I'V(Yn-y~)h[(xn)=O, (4) 

n=l n=l 

where function <per) is symmetric concerning Y-axis, continuously differentiable 

with a minimum at zero and <p(0) = 0; 'V(r) is a derivative of <per) with respect to r. 

Continued example 1. Since D.I.Mendeleev data array from table 1 contains 

outliers, we adduce results of quantitative processing this data by alternative 
methods, defined above. 

1. Let in (4) Andrews function 10 be applied: <per) = d(l-cos(r/d)) if I r I ~ dn 

and <per) =0 if I r I > dn. It is articulate in figure 2 that in this case the values of the 
linear model parameters ao and al depend on 

a) the values of parameter d of Andrews function <per); 

b) the type of the minimisation robust regression problem (solutions of the first 
and second minimisation problem of (4) are marked respectively by triangles and 
circles in figure 2). 

Thus, in this case a computative paradox declares itself in the fact, that 

in actual practice the robust estimates are not robust 

and so, as K.R.Draper and H.Smith 11 wrote already, 

"unreasoning application of robust estimators looks like reckless application of 

ridge-estimators: they can be useful, but can be improper also. The main problem is 

such one, that we do not know, which robust estimators and at which types of 

supposes about errors are effectual to applicate; but some investigations in this 
direction have been done ... " 

ao Q1 

67,4 0,9 

67,1 0,88 

66,8 0,86 
-0,2 0,8 1,8 d -0,2 0,8 1,8 d 

Figure 2. Dependences of parameters values of linear model aO+a1x on values internal 

parameter of robust Andrews estimator and the type of the minimisation problems (4). 
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2. Let us reveal outliers in D.I.Mendeleev data array by both combined statistical 

procedures 9, mentioned above. 

Our computation results show 
a) both procedures could not find the all four outliers (1,7, 8 and 9) but the 

only three ones with numbers 1,8 and 9; 
b) if a set of readings with numbers 1,8 and 9 is deleted from D.I.Mendeleev 

data array, then for the truncated data array the first procedure will not find a new 
outlier, but the second procedure will find two outliers yet that have numbers 2 and 

6 in the initial data array. 
Thus, in this case the main computative paradox is exhibited in the fact, that 

revealing outliers problems solutions depend on a type of the used statistical 
procedures. 

It remains for us to add, if one 
a) computes y' by formula 6, 7 

y'(s, x) = ga( 68.12 + 0.02S + (0.85652 - 0.00046S) x ), (5) 

then for each n the difference I Yn - y/ I will keep within the limit of the chosen 

above value for the confidence interval8(y - y ,), where a=0.94; 0 ~ S ~ 35; ga(y) = 

2a[y/(2a)] + 2a at I y - 2ex [y/(2ex)] I ~ ex, otherwise ga(y) = 2a [y/(2ex)], [ b ] means 

integer part of b, Thus, another computative paradox occurs: 

although for each contaminated data array a family of analytical solutions 
exists, the only single solution of the estimation problems is found in modem 
regression analysis theory. 

b) puts the mentioned above extremal values of S in (5), one will be able to 
determine the exact limit of the variation for the linear model parameters ao and al: 

ao = 67.77 ± 0.35 and al = 0.865 ± 0.008; 

c) deletes a set of readings with numbers 1,7,8 and 9 from D.I.Mende1eev data 

array, one will obtain that in the truncated data array {Yn, xn} * the difference of 

I Yn - y/ I for each n keeps within the limit of the error E, where E is the measuring 

error for readings {yn}*: E = 0.1. Since in this case 8(y - y ') ~ E, the complete family 
of analytical solutions has form 6,7 

y'(s, x) = ga( 67.566 + 0,002S + (0.870047 - 0.000097S) x ), (6) 

where a=0.07; 0 ~ S ~ 45 and, consequently, ao = 67.521 ± 0.045 and al = 

0.872 ± 0.002; 

d) compares solutions (5) and (6) with the standard LS-solution, one can 

conclude that LS-estimations of parameter ao and al {A' = (67.5±0.5; 0.87±0.2)} 

are pretty near equal of the mean values of these parameters in the general analytical 
solutions (6) and (7). However, 

values of variances &zo" and &z1~ computed by standard method, disagree with 
exact values detennined by (5). 
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2.3 The main paradox of regression ana.lysis theory 

As it emerges from analysis of information presented in Sect. 2.2, the main paradox 
of modem regression analysis theory is exhibited in a contradiction between this 
theory statements, which guarantee uniqueness of data analysis problems solution, 
and multivarious solutions in actual practice. In this section we adduce yet several 
computative manifestations of this paradox. 

Example 2. In table 2 a two-factors simulative data array is presented. 

Simulative data array 

n Xn Yn n xn 

1 -1.0 0.50 8 -0.3 
2 -0.9 0.55 9 -0.2 
3 -0.8 0.59 10 -0.1 
4 -0.7 0.63 11 0.0 
5 -0.6 0.66 12 0.1 
6 -0.5 0.69 13 0.2 
7 -0.4 0.72 14 0.3 

Let the approximative model have form 

y = (ao + al x + a2 x 2)/(1 + a}X + a4X 2) . 

Yn 
0.75 
0.77 
0.79 
0.81 
0.83 
0.84 
0.86 

Table 2. 

n Xn Yn 
15 0.4 0.87 
16 0.5 0.89 
17 0.6 0.90 
18 0.7 0.91 
19 0.8 0.92 
20 0.9 0.93 
21 1.0 0.94 

(7) 

To find vector parameter A estimates of the model (7) on the data array from 
table 2 we use two different estimation methods. As the first method we choose the 
estimation one, involved in the software CURVE-2.0, designed AISN. In this case 
we obtain, that 

A'= {0.81; 0.008; -0.31; -0.22; -O.24}. 

As the second estimation method we select Marquardt method 12. Using the value 
A', found above by the first estimation method, as initial value of A we obtain that 
in the second case 

A'= {0.81; 0.55; 0.035; 0.45; 0.34}. 

Thus, 

values of A ~ obtained by two different estimation methods, differ from each 

other. 

Example 3. In table 3 yet one two-factors data array is presented. Let us select 
the model y = al x + e as approximative one and assume, that y is the random 
variable with the known density function p: 

(8) 
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We will find estimates of parameters al and.a2 by method of maximum likelihood: 

N 
L= rrexp{-(Yn-alXn}/(2f(a2))/~21tf(a2) ~ max (9) 

n=l 

or a In L / OOj = 0, where symbol "In" means the natural logarithm. 

Table 3. 

Two-factors data array 
n Xn Yn n Xn Yn n Xn .Yn. 
1 5 21 6 11 53 11 16 81 
2 6 31 7 11 56 12 19 97 
3 8 38 8 12 60 13 20 98 
4 8 37 9 14 68 14 22 107 
5 10 53 10 15 72 - - -

4,2 ~y 4,2 ~y 4,2 ~y 

2,1 2,1 2,1 

0 0 0 

-2,1 -2,1 -2,1 
x x x 

-4,2 -4,2 -4,2 
3 8 13 18 23 3 8 13 18 23 3 8 13 18 23 

a) b) c) 

Figure 3. Dependences {yn - a1'xn} for different hypotheSiS about Law for the random 
variable Y variance. 

Computation results of V.I.Mudrov and V.P.Kushko 13 show, that in the 

discussed case the estimates values of parameters a1 depend on hypothesis about 
Law for the random variable y variance: for case (a) in (8) aI' = 4.938 (L' = 

4.995.10-14
); for case (b) aI' = 4.896 (L' = 4.421.10-16

) and for case (c) aI' = 4.927 

(L' = 9.217· 10-15
). By analysing obtained results the authors 13 conclude, that, since 

likelihood function (9) has maximum values for case (a), the more likelihood 
hypothesis about Law for the random variable y variance is the hypothesis (a): 
variance of y is the constant value. 

We demonstrate in figure 3 that for cases ( a), (b) and ( c) dependences 
~y = {en} = {yn - al'Xn} have practically the same form and, consequently, 

the strong distinction of values L / for all mentioned cases does not tread on 
injinn ground. 

It should be noted that 

- the very apparent expression of the discussed main computative paradox of 
regression analysis theory one may find also in books 6, 7,11, where, for the problem 

on finding the best linear multiple model, fitting RaId data array, a set of solutions, 
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found by various procedures and statistical tests of modem regression analysis 
theory, is adduced; 

- the most impressive formulation of the main paradox of regression analysis 
theory is contained in Y.P.Adler introduction 14: 

"When the computation had arisen, the development of regression analysis 
algorithms went directly (<up the stairs, being a descending roacD>. Computer was 
improving and simultaneously new more advanced algorithms were yielded: whole 
regression method, step-by-step procedure, stepped method, etc., - it is impossible 
to name all methods. But again and again it appeared that all these tricks did not 
allow to obtain a correct solution. At least it became clear that in majority cases the 
regression problems belonged to a type of incorrect stated problems. Therefore 
either they can be regularised by exogenous information, or one must put up with 
ambiguous, multi various solutions. So the regression analysis degraded ingloriouslv 
to the level of a heuristic methoQ, in which the residual analysis and common sense 
of interpreter play the leading role. Automation of regression analysis problems 
came to a dead-lock". 

3 Data analysis problems at unknown theoretical models 

Let us assume, that a researcher is to carry out a quantitative analysis of a data array 
{Xn} in the absence of theoretical models. Further consideration will be based on the 
fact 6,7 that the described situation demands a solution of following problems 

- verification of the presence ( or absence) of interconnections between analysed 
properties or phenomena; 

- determining (in the case when the interconnection is obvious, a priori and 
logically plausible) in what force this interconnection is exhibited in comparison 
with other factors affecting the discussed phenomena; 

- drawing a conclusion about the presence of a reliable difference between the 
selected groups of analysed objects; 

- revealing object's characteristics irrelevant to analysed property or 
phenomenon; 

- constructing a regression model describing interconnections between analysed 
properties or phenomena. 

In following sections we consider some methods allowing to solve foregoing 
problems. 

3.1 Correlation analysis 

When one is to carry out a quantitative analysis of the data array {Xn} in the absence 
of theoretical models, it is usual to apply correlation analysis at the earlier 
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investigation stage, allowing to determine the structure and force of the connections 
between analysed variables15 

-17. 

Let, for instance, in an experiment each n-th state of the object be characterised 
by a pair of its parameters y and x. If relationship between y and x is unknown, it is 
sometimes possible to establish the existence and nature of their connection by 
means of such simple way as graphical. Indeed, for realising this way, it is sufficient 
to construct a plot of the dependence {Yn, xn } in rectangular coordinates y -x. In this 
case the plotted points determine a certain correlation field, demonstrating 
dependences x = x(y) and/or y = y(x) in a visual form. 

To characterise the connection between y and x quantitatively one may use the 
correlation coefficient R, determined by the equation 15 - 17 

R = L~=l (Yn - Y)(Xn - x) 

yx ~L~=l(Yn _ Y)2L~=1(Xn _X)2 
(10) 

where Y and x are the mean values of parameters y and x computed on all N 

readings of the array {yn, xn }. It can be demonstrated that absolute value of Ry:c does 
not exceed a unit: -1 ~ Ry:c~ 1. 

If variables y and x are connected by a strict linear dependence y = ao + alX, then 
Ry:c =±1, where sign ofRy:c is the same as that of the al parameter. This can follow, 
for instance, from the fact that, using Ry:c, one can rewrite the equation for the 
regression line in the following form15 

-17 

(11) 

where Sy and Sx are mean-square deviations of variables y and x respectively. 
In a general case, when -1 < Ry:c < 1, points {Yn, xn } will tend to approach the line 

(11) more closely with increasing of I Ry:c I value. Thus, correlation coefficient (10) 
characterises a linear dependence of y and x rather than an arbitrary one. To 
illustrate this statement we present in table 4 the values Ry:c = Ry:c(o.) for the 
functional dependence y = xu, determined on x-interval [0.5; 5.5] in 11 points 
uniformly. 

Table 4. 

The values Ryr = Ryr(a) for the functional dependence y=x", 
determined on interval [0.5; 5.5] 

a Ryx(a =-a) RyAa = a) a RyAa =-a) Ryr(a = a) 

3.0 -0.570 0.927 1.0 -0.795 1.000 
2.5 -0.603 0.951 0.5 -0.880 0.989 
2.0 -0.650 0.974 0.0 0.0 0.0 
1.5 -0.715 0.992 - - -
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Let us clear up a question what influen~e has the presence of outliers in the data 
array {Yn, Xn} on the value of correlation coefficient (10). To perfonn it let us 

analyse a data array 

{Xn} = (-4; -3; -2; -1; 0; 10), (12) 

{yn} = (2.48; 0.73; -0.04; -1.44; -1.32; 0), 

where, on simulation conditions 8, the reading with number 6 is an extremal outlier 
(such reading that contrasts sharply from others); approximative functionF(A, X) = 
ao + alX and A true = (-2; -1). 

By computing the values of Ryx of (10) and s of (1), we detennine the number i 
of a reading, which elimination from this data array leads to the maximum absolute 
value of Ryx and, consequently, to the minimum value of s (the most simple 
combinatoric-parametric procedure Ps, allowing to find one outlier 6, 7 in a data 
array). Our calculations show that the desirable value Ryx = - 0.979 and i = 1. We 
note, if extremal outlier Y6 is removed from the array (12), Ryx = -0.960, but s of (1) 
takes the minimum value. Presented results enable us to state that 

procedure Ps loses its effectiveness when revealing the outlier is made not by 

test s, but by test Ryx. 

Let us consider another case. For the array (12) the noise array {en} = {-2- Xn-

Yn } = (-0.48; 0.27; 0.04; 0.44; -0.68; -12.0). We reduce by half the first 5 
magnitudes of the noise array {en}: {en}new = (-0.24; 0.14; 0.02; 0.22; -0.34; -12.0); 
fonn a new array {yn}new = {-2-xn- (en)new} and determine again the number i ofa 
reading, which elimination from the data array {Yn, xn}new leads to the maximum 
absolute value of Ryx. In the described case Ryx reaches its maximum absolute value 
when the reading 6 (extremal outlier) is deleted from the array {yn, Xn}new (Ryx = -

0.989). If from the array {Yn, Xn}new we eliminate the reading 6, identified correctly 
by the test "the maximum absolute value of Ryx", then by this test we are able to 
identify correctly the sequent outlier (the reading 5) in the discussed array. Thus, we 
obtain finally 

when a dependence between the analysed variables is to a certain extent close to 

a linear, one may use the correlation coefficient (10) for revealing outliers, 
presented in data arrays. 

It is known 15 -17, when the number of analysed variables K > 2, the structure 

and force of the connections between variables Xl, X2, ... ,XK are determined by 
computing all possible pairs of correlation coefficients R:x-:x . from (10). In this case 

I J 

all coefficients Rxp: j are usually presented in the fonn of a square symmetric K by 

Kmatrix: 

(13) 
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which is called a correlation matrix (we note that in this matrix diagonal elements 
Rjj = 1). Finding strong-interconnected pairs of variables Xl, X2, ••• ,XK on the 
magnitudes of coefficients Rij from the matrix R is a traditional use of matrix (13) in 

data analysis. But, obviously, 
using the mentioned way, one should bear in mind all ideas presented above in 

outline concerning the correlation coefficient (10). 

3.2 Discriminant analysis 

Let a certain object W be characterised by a value of its vector parameter Xw = (Xl, 

X2, .•• , XK); WI. W2, •.• , Wp be p classes and the object W must be ranged in a class 
Wj on the value of its vector parameter Xw. In discriminant analysis the formulated 
problem is the main one 18 - 21. 

The accepted technique for solving the mentioned problem entails construction 
of a discriminant Junction D(A, X). A form and coefficients {ail i=1,2, ... ,p values of 

this function are determined from the requirement, that values of D(A, X) must have 
maximum dissimilarity, if parameters of objects, belonging to different populations 
WI, W2, ••• , Wp , are used as arguments ofthis function. 

It seems obvious that in a general case, firstly, D(A, X) may be either linear or 
non-linear function on {ail and, secondly, must be some connection between the 
problem-solving techniques of discriminant and regression analyses. In particular, as 
stated 18 -21, for solving problems of discriminant analysis one may use standard 

algorithms and programs of regression analysis. Thus, the similarity of techniques, 
used for solving problems of the regression and discriminant analyses, makes it 
possible in discriminant analysis to apply alternative algorithms and procedures of 
regression analysis and, consequently, 

if data analysis problems are solved by discriminant analysis techniques then in 

practice the researcher may meet the same difficulties which are discussed in 
Sect. 2. 

3.3 Regression analysis 

In the absence of theoretical models it is usual to employ regression analysis in 
order to express in a mathematical form the connections existing between variables 
under analysis. 

It happens with extreme frequency that researchers impose limitations on a type 
and form of approximative models or, in other words, approximative models are 
often chosen from a given set of ones. Evidently, in this case it is required to solve 
problem on finding the best approximative model from a given set of models. Let, 
for instance, it is required to find the best approximative multinomial with a minimal 

degree. With this in mind, in two examples below we consider some accepted 
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techniques, used for solving the mentioned problem In approximation and/or 

regression analysis theories. 

Example 4. Let 

{xn} = {-I+O.2(n-I)}; f{x) = sin x; {yn} = { [kf(xn)] / k}, (14) 

where square brackets mean the integer part; n = 1 ,2, ... , 11; f (x) is a given 

function, used for generating the array {yn}; a factor k = 103 and its presence in (14) 

is necessary for "measuring" all values of Yn within error E = 10-3 
. It is required for 

the presented dependence {Yn, xn} to find the best approximative multinomial with a 

minimal degree. 

A. As well known in approximation theory22, if the type of the functionf(x) is 

given and either (m+ 1 )-derivative of this function weakly varies on the realisation 

{xn }, or on the x-interval [-1,1] the functionf(x) is presented in form of even

converging power series, then the problem of finding the best even-approximating 

multinomial for the discrete dependence {Yn, xn} offers no difficulty. Indeed, in the 
first case the solution of problem is an interpolative multinomial P M(B, x) with a set 

of Chebyshev points (this multinomial is close to the best even-approximating one). 

In the second, case one may obtain the solution by the following economical 

procedure of an even-converging power series: 

1. Choose the initial part of truncated Taylor series, approximating the function 

f(x) within error EM < E, as the multinomial P M(B, x) (the multinomial with the 
degree M and vector parameter B); 

2.Replace EM with EM -lbMI /2 M
-

I
, where bM is a coefficient of the 

multinomial P M(B, x) at J'f; 

3. If EM> 0, then replace the multinomialP M(B, x) with the multinomial 

(15) 

where Td....x) is Chebyshev multinomial: To= 1, TJ=x and when M ~ 2 

T M = 2xT M-l - T M-2' Then decrement M by one and go to point 2. If EM:::; 0, 

then go to point 4; 

4. End of computations: the multinomial P M(B, x) is the desirable one. 

By means of the foregoing economical procedure one may easy obtain that the 

multinomial with a minimal degree, even-approximating the function sinx, given 

within errorE =10-3 on the x-interval [-1, IJ, has the following form 

P3(x) = (383/384) x - (5/32) x3
• (16) 

B. Let 1:::; M:::; 9 and in the multinomial P )., (B, x) = I;!o A. mbmxm all Am= 1. By 

determining LS-estimates of vector parameter B for each value of M on the formed 

above array {Yn, xn}, we find that in all obtained approximative multinomials 

P).,(B " x), as well as in Taylor series of function sinx, the values of coefficients 
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b' 21 = 0 at 1 = 0, I, ... , 4. Thus, regression. analysis of the discussed array {Yn, Xn} 

allows to detennine a form of the best approximative multinomial: 

(17) 

We note, if 1 = I, then the values of parameters b i and b3, computed by regression 
analysis method (LS-method) for model (17), coincide with ones, shown in (16). 

We remind, that in classical variant of regression analysis theory the best 
approximative multinomial is chosen by the minimal value of the test s).. = SJ(N-h), 
where S).. is residual sum-of-squares, h = I!l Am ; N is total number of readings; Am 

is such characteristic number that Am = 0, if the approximative multinomial P).. (B, x) 

does not contain term bmXm
, and Am = 1, otherwise. For approximative models (17) 

and 1 = 0, 1,2,3 the computation values ofs are following 

1 ................ 0 I 2 3 
s ................ 0.033 0.00063 0.00043 0.00054 

Since s has the minimal value at 1 = 2, for the discussed array in the frame of 
classical variant of regression analysis theory, the multinomial 

(18) 

is the best approximative one. 

C. Since, for each n in the data array (14), the difference of I Yn - Y/ I must be 
kept within the limit of the error E = 10-3 , the general solution of the discussed 
problem has the following form 6,7 

y'(~, x)=ga{(1.0012 - 0.0001~) x - (0.161200 - 0.000127~)x3}, (19) 

where a = 0.001; 0 $; ~ $; 49 and, consequently, b i = 0.9987 ± 0.0025 and b2 = -

0.1582 ± 0.0030. 
By analysing solutions (16), (18) and (19) we conclude that in the considered 

case 

the solution oj the problem on finding the best fitting multinomial depends on 
the type oj the used mathematical theory. 

Example 5. In some software products {for instance, in the different versions of 
software CURVE, designed by AISN} the solutions of problems on finding the best 
approximative models are found by the magnitude of a determination coefficient R, 
which value may be computed by a set of formulae 

Rl = ~1- Qr / Q, Qr = L~=l (Yn - y~)2, Q = I!l (Yn - yi (20) 
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where y = I:=l Yn / N, Yn is n-th reading of dependent variable, Y~ is n-th value of 

dependent variable, computed on the fitting model; or by formula (firstly offered by 
K.Pearson) 

R 
'2.:=1 (Yn - Y)(Y~ - y') 

2= 
~'2.:=1 (Yn - y)2'2.:=1 (Yn - y,)2 (21) 

{evidently, one may easy obtain formula (21) from formula (IO)}. 

Table 5. 

The simulative data array to example 5 
n Yn Xn n Yn xn 
1 85 11 7 205 3.8136396 
2 105 5.6002132 8 225 3.5774037 
3 125 5.0984022 9 245 3.4193292 
4 145 4.7047836 10 265 3.2903451 
5 165 4.3936608 11 285 3.1026802 
6 185 4.0998636 - - -

There is a mathematical proof 23 of the equivalence of formulae (20) and (21). 

But, if the value of coefficient R22 is computed within error ~ 10-8 , 

in actual practice, for some data arrays, firstly, R/ ;e R/ and, secondly, R/ > 1. 
For instance, if one fits the simulative data array, presented in table 5, by the 

multinomial PM(B, x) with M = 8, then software CUR VE-2.0 will give the value R2 2 

= 1.00040. 

4 Problems of quantitative processing experimental dependences 
found for heterogeneous objects 

As it follows from the general consideration 24,25, In practice at analysis of 
experimental dependences found for heterogeneous objects, three various situations 
can be realised: the heterogeneity of investigated objects causes a) no effect; b) a 
removable (local) inadequacy of postulated fitting model; c) an irremovable (global) 
inadequacy of the postulated model. In this section we discuss some computative 
difficulties which may occur at analysis of the mentioned experimental 
dependences. 

Example 6. As we know from Sect. 2.1 if F(A, x) is a linear model {F(A, x) = 
'2.t:l azhz (x)} then the value of A', minimising residual sum-of-squares S, is 
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computed by (1). Let rank H < L, or, in other words, there is a linear dependence 

between columns of matrix H: 

(22) 

where at least one coefficient Cr:¢: O. In this case matrix (HTHrl does not exist, that 

means one cannot find A' from (1). Such situation is known as stn'ct 

multicollinearity. 

In the natural science investigations values of the independent variable X are 

always determined with a certain round-off error, although this error may be very 

small. Therefore, if even strict multicollinearity is present, in practice the equation 

(22) is satisfied only approximately and therefore rank H = L. In such situation 

application of equation (1) to find the estimate of vector parameter A gives A' 
values drastically deviating from true coefficients values 6,7,23. 

To correct this situation in regression on characteristics roots 26 it is suggested to 

obtain the infonnation about the grade of matrix H T H conditioning from values of 

its eigennumbers Aj and first elements VOj of its eigenvector Vj and to exclude from 
regression suchj-components, whose eigennumbers Aj and elements V Oj are small. 

Following values are recommended to use as critical ones: Acr = 0.05 and Vcr = 0.1. 

Let us demonstrate, that 

in some practical computations the difference between A " eHR and A Ls of (1) can 

be explained not by the effects of multicollinearity, but by regression model 

inadequacy, which disappears simultaneously with the effects of multicollinearity 

after removing outliers. 
Indeed, let data array be following 

{yn, Xn} ={l + 0.5 n + 0.05 n2 + 0.005 n3
; n, n2

, n3
}, (23) 

n = 1, 2, ... , 11 and we introduce two outliers in (23), by means of increasing values 

Y3 andY8 on 0.5. For this data array we obtain the following computation results: 

Nstep = 1, N= 11: A'LS = (1.017; 0.542; 0.0462; 0.0050), 

na = {3, 8} A' CHR = (1.046; 0.516; 0.0516; 0.0047); 

Nstep = 2, N= 10: A'LS = (0.764; 0.801; -0.0169; 0.0090), 

na= {3} A' CHR = (0.764; 0.801; -0.0169; 0.0090), 

where Nslep is a number of the step in used computative procedure; na is a vector to 

indicate the numbers of anomalous readings, contained in analysing array on the 

first and second steps of used computative procedure; N is the general quantity of 
analysing readings. In particular, after the first step of computative procedure from 

(23) the reading with number 8 is removed; after the second step - readings with 

numbers 3 and 8. And after the second step the values of A' are restored without any 

distortion by both examined algorithms. 
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By analysing obtained computation results one can conclude that 
the difference between A Is and A ~ eHR may be caused not only by 

multicoIIinearity but also, for instance, by a set of outliers presented in the data 

array. 

Example 7. In table 6 we adduce an experimental data array, obtained by 
N.P .Bobrysheva 27, when she investigated magnetic susceptibility ex, relative units) 
of polycrystalline system VxAI1-x0 1,5 (x = 0.078) on the temperature (T, K). Let us 

consider some computation results of quantitative processing this temperature 
dependence. 

x 
11 

6 

30 

Table 6. 

The experimental dependence of magnetic susceptibility of system 
VxAl1_x0 1,5 (x = 0.078) on temperature 

n Tn Xn n Tn Xn n Tn Xn 

1 80 10.97 9 292 3.79 17 501 2.48 
2 121 8.06 10 351 3.31 18 512 2.46 
3 144 6.94 11 360 3.20 19 523 2.42 
4 182 5.56 12 385 3.06 20 559 2.28 
5 202 5.11 13 401 3.00 21 601 2.12 
6 214 4.75 14 438 2.78 22 651 2.02 
7 220 4.62 15 464 2.67 23 668 1.97 
8 267 4.00 16 486 2.56 - - -

l/{X + 0,542) 

0,6 

0,3 

T 
O+-----~----~------~-

230 430 630 30 230 430 630 

a) b) 

Figure 4. Experimental (circles) and analytical (continuous curves) plots of dependences 
X (T) (a) and 1/(X + X 2) - T (b) for system VxAll-xOl,5 (x = 0.078). 

A. In figure 4(a, b) for the discussed system experimental (circles) and analytical 
(continuous curves) plots of dependences X (1) and 1I(x + X2) - T are shown. For 
construction of analytical (continuous) curves we use modified Curie - Weiss 
law 6,7,24,25 
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x = Xo+ C/(T+ 8), (24) 

where X is the experimental magnitude of specific magnetic susceptibility; T is 

absolute temperature, K;·C, 8 and Xo are parameters: C= 988; 8 = 14, K; Xo= 0.54. 
From analysing graphical information, presented in figure 4(a, b), one can conclude, 

that 
the magnetic behaviour of system VxAl1- x01.5 (x = 0.078) is well explained by 

the modified Curie - Weiss law (24). 

B. In figure 5(a) the dependence IlX = X - C/(T + 8) - Xo on T for system 
VxAl1-x0 1,5 (x = 0.078) is shown. Since IlX max == 0.2 » E = 0.01, where E is the 

measurement error in the diccussed experiment, we obtain 

in contradiction with the statement of point (A) in this case modified Curie -
Weiss law (24) is an inadequate approximative model or, in other words, there is a 
set of outliers in the analysing experimental dependence. 

C. After deleting first 5 readings from the initial data array the parameters values 

of modified Curie - Weiss law (24) have magnitudes C= 1386; 8 = 89, K; Xo= 0.14. 
The plot of dependence ~X = X - C/(T + 8) - Xo with foregoing parameters values is 

shown in figure 5(b). 

0,2 

T 
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30 230 430 630 

a) 

2,5 

2 

1,5 

1 

0,5 

o 
-0,5 ~-------+-----

30 230 430 630 

b) 

Figure 5. Plots of L1X = X - C/(T + 8) - X 0 on T for system vxAll-x01.5 (x = 0.078). 

Analysing plots ~X(1), presented in figure 5(a, b), and comparing with each 

other the parameters values of equation (24), mentioned in points (A) and (C), we 

conclude, that 

neglect of the local inadequacy of the approximative model in the discussed 
experiment leads to distortion of both form of function Ilx(T) and parameters values 
of the modified Curie - Weiss law (24). 

Thus, if, for proving well-fitted properties of equation (24), researchers 27
-

3o 

suggest to look at the graphic representation of dependences X (1) or lIX (1), for the 

proof completeness one should ask these researchers to present information about 

the measurement error of values X and plots IlX(1) = X - C/(T +8) - X o. 
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For the sake of convenience, the main causes, given rise to computative 
difficulties at analysis of experimental dependences found for heterogeneous 
objects, and methods of their overcoming are adduced in table 7 together. In this 
table all methods, overcoming computative difficulties, are marked by the symbol 
e, if at present they are in the rough or absent in modem data analysis theory. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Table 7. 

Main causes and overcoming methods of computative difficulties in 
modern data analysis theory 

Main causes Methods of overcoming 

Impossibility to take heed of preset e Modification of data analysis model 
measurement accuracy of dependent 
variable values in the frame of 
accepted data analysis model 

Limited accuracy of computations Increasing computation accuracy 

Point estimation of parameters Replacing the point estimation of 

parameters by interval one 

The deficient measurement accuracy Increasing measurement accuracy 

of dependent variable values of dependent variable values 

III-conditioning of estimation problem e Using altemative estimations methods; 
Increasing measurement accuracy of 
dependent variable values; 

e Revealing and removing outliers; 

Designing experiments 

Presence of outliers in analysing data e Revealing and removing outliers; 
arrays e Robust estimation of parameters 

Inadequacy of approximative model e Eliminating inadequacy of 

approximative model; 

e Using advanced estimations 

methods 

Finding only single solution of the e Finding a family of solutions 
estimation problems for contaminated 
data array in the frame of modem data 
analysis theories 

Using information presented in table 7, let us clear up a question, whether one is 
able in the frame of modern data analysis theory to obtain reliable solutions for the 
problems of quantitative processing of experimental dependences, found for 
heterogeneous objects. 

Let, when an investigated object is homogeneous, a connection between 
characteristics y and X exist and it be close to functional one: y = F(A, X). As we 
said already in beginning of this section, in the discussed experiments three various 
situations can be realised: the structural heterogeneity 
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1) has no effect on the experimental dependence {yn, Xn} or, in other words, in 

this case it is impossible to distinguish the homogeneous objects from 

heterogeneous ones on the dependence {yn, Xn}; 
2) leads to a distortion of the dependence {yn, Xn} in some small region 

{X"I } c {Xn} {the approximative model F(A, X) has removable (local) 

inadequacy}. In this case for extracting effects, connected with the presence of a 
homogeneity in the investigated objects, one may use the following wal,7 

z) solve the problem on revealing outliers {y "I ' X "I } ; 

ii) detennine the value A' on readings {Yn, Xn} \ {y "I ,X"I} {we remind, that 

a set of {yn, Xn} \ {y "I ,X"I} is to be well-fitted by the model F(A, X)}; 

iii) detect a type and degree of the effects, connected with the presence of a 
homogeneity in the investigated objects, on the data array {y "I - F(A', X "I)' X "I } . 

It follows from point 6 of table 7, that at solving problem (i) in actual practice 

some difficulties, which are unsurmountable in the frame of modern regression 
analysis theory, can be arisen; 

3) leads to a distortion of the dependence {Yn, Xn} in a big region {X"I} ~ {X,,}: 

{the approximative model F(A, X) has irremovable (global) inadequacy}. 

It follows from point 7 of table 7, that in this case it is impossible to find a 
reliable solution of the discussed problem in the frame of modern data analysis 
theory. 

Summarising mentioned in points (I) - (3), we conclude 

since at present the methods, marked by the symbol e in table 7, are not effective 

for overcoming computative difficulties or absent in modem data analysis theory, 

one is not able to obtain reliable solutions for the problems of quantitative 

processing of experimental dependences found for heterogeneous objects. 

From our point of view, one of possible ways, overcoming computative 

difficulties in modem data analysis theory, is further development of this theory by 

means of translation of this theory from Aristotelian "binary logic" into more 
progressive "fuzzy logic" 6, 7, 24, 25, 31, 32. 
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THE NORMAL BEHAVIOR OF 

THE SMARANDACHE FUNCTION 

KEVIN FORD 

Let S(n) be the smallest integer k so that nlk!. This is known as the Smarandache 
function and has been studied by many authors. If P( n) denotes the largest prime 
factor of n, it is clear that S(n) ;;:: P(n). In fact, S(n) = P(n) for most n, as noted 
by Erdos [E]. This means that the number, N(x), of n ~ x for which S(n) i= P(n) 
is o(x). In this note we prove an asymptotic formula for N(x). 

First, denote by p( u) the Dickman function, defined by 

p( u) = 1 (0 ~ u ~ 1), P(U)=1_jU p(V-1)dV (u>l). 
1 v 

For u > 1 let ~ = ~(u) be defined by 

u=--
~ 

It can be easily shown that 

where logk x denotes the kth iterate of the logarithm function. Finally, let Uo = 

uo(x) be defined by the equation 

log x = u6~(uo). 

The function Uo (x) may also be defined directly by 

log x = Uo (xl/U~ - 1) . 

It is straightforward to show that 

Uo= 1- + + --( 1) ( 
2 log x) ~ ( log3 X log 2 0 (( 10g3 X ) 2) ) 
log2 X 2 log2 X 2 log2 X log2 X • 

We can now state our main result. 
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Theorem 1. We have 

N() y0r(1 + log 2) (1 1 )3/4 1 l/UOp('1/n). 
X '" 23/ 4 og X og2 X X "'U 

There is no way to write the asymptotic formula in terms of "simple" functions, 
but we can get a rough approximation. 

Corollary 2. We have 

N(x) = xexp {-(V2 + 0(1)) Vlog x log2 x}. 

The asymptotic formula can be made a bit simpler, without reference to the 
function p as follows. 

Corollary 3. We have 

where ,= 0.5772 ... is the Euler-Mascheroni constant. 

This will follow from Theorem 1 using the formula in Lemma 2 which relates 
p( u) and ~ ( u ). 

The distribution of S(n) is very closely related to the distribution of the func
tion P( n). We begin with some standard estimates of the function \lI (x, y), which 
denotes the number of integers n ~ x with P(n) ~ y. 

Lemma 1 [HT, Theorem 1.1]. For every E > 0, 

( (
log(u + 1))) w(x, y) = xp(u) 1 + 0 logy , 

uniformly in 1 ~ u ~ exp{ (log y)3/5 <o}. 

Lemma 2 [HT, Theorem 2.1]. For u ~ 1, 

log x 
u=--

logy' 

p(u) ~ (1+0 G)) JE~~) exp {'Y - [ W) dt} 
= exp { -u (log u + log2 u - 1 + 0 (l~~:) ) } . 

Lemma 3 [HT, Corollary 2.4]. If u > 2, Ivl ~ u/2, then 

p(u - v) = p(u) exp{v~(u) + 0((1 + v 2 )/u)}. 

Further, if u > 1 and 0 ~ v ~ u then 

p(u - v) «p(u)ev~(u). 
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We will show that most of the numbers counted in N(x) have 

Let 

Y1 = exp { ~ Vlog X 10g2 x } , Y2 = y 1
6 = exp { 2 Vlog X 10g2} . 

Let Nl be the number of n counted by N(x) with P(n) ~ YI, let N2 be the number 
of n with P(n) ~ Y2, and let N3 = N(x) - Nl - N2. By Lemmas 1 and 2, 

Nl ~ w(x,Yt) = xexp{-(1.5 + 0(1)) Vlog x 10g2 x}. 

For the remaining n ~ x counted by N(x), let p = P(n). Then either p21n or for 
some prime q < p and b ~ 2 we have qb II n, qb f p!. Since p! is divisible by q[p/q] 
and b ~ 2logx, it follows that q > pl(3logx) > pl/2. In all cases n is divisible by 
the square of a prime ~ Y2 I (3 log x) and therefore 

'"' x 6x log x { } ~ 2" ~ «xexp -1.9y1logxlog2 x . 
p Y2 

>-~ P"31ogz 

Since q > pl/2 it follows that q[p/q] II p!. If n is counted by N3, there is a number 
b ~ 2 and prime q E [Plb,p] so that qbl n . For each b ~ 2, let N3,b(X) be the number 
of n counted in N3 such that qb II n for some prime q ~ p lb. We have 

Next, using Lemma 1 and the fact that p is decreasing, for 3 ~ b ~ 5 we have 

L ( 1 (logx b) L 1 (logx -logp - blOgq)) «x -p --- + -p 
Pb Iocr P pqb Iocr P 

Y1 <P<Y2 0 p/2<q<p 0 

«x L p b P (~:: x - (b + 1)) . 
Y1 <P<Y2 oP 

By partial summation, the Prime ~ umber Theorem, Lemma 2 and some algebra, 

N 3 ,b «exp {-(1.5 + o(l))Vlogx 10g2 x}. 
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The bulk of the contribution to N(x) will come from N 3,2. Using Lemma 1 we 
obtain 
(2) 

N3,2 = L (qJ (;,p) + L qJ (p~2,q)) 
Y1 <P<Y2 ~ <q<p 

=(1+0( ~))x ~ (P(~-2) + ~ pcOg~g~gp-2)). 
log x ~ p2 ~ pq2 

Y1 <P<Y2 p/2<q<p 

By Lemma 3, we can write 

The contribution in (2) from p near Yi or Y2 is negligible by previous analysis, and 
for fixed q E [YI , Y2/2] the Prime Number Theorem implies 

~ ~ = log 2 +O((logq) 2) = log 2 +0 ( 1 ). 
~2 P log q log P log2 YI q<p< q 

Reversing the roles of p, q in the second sum in (2), we obtain 

log x)) L 1 ( (log x ) log 2 (log x ) ) _2_ X - -- - 2 + --p -- - 3 
logx p2 P logp logp logp . 

Y1 <P<Y2 

By partial summation, the Prime Number Theorem with error term, and the change 
of variable u = log x/log p, 

(3) 

where 

lOg2 X )) xlu2 
(p(u - 2) + log 2 p(u _ 3)) x I/udu 

logx u log x ' 
Ul 

1 
UI =-

2 

log x 
log2 x' 

The integrand attains its maximum value near u = Uo and we next show that the 
most of the contribution of the integral comes from u close to Uo. Let 

Uo 
W -

o - 100' 

where K is a large absolute constant. Let h be the contribution to the integral in 
(3) with lu - uol > wo, let h be the contribution from WI < lu - uol ~ Wo, let h 
be the contribution from W2 < lu - uol ~ WI, and let 14 be the contribution from 
lu - uol ~ W2· First, by Lemma 2, the integrand in (3) is 

exp {- (~ - ~ + 0(1)) V10g x log2 x} , 
84 
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The function l/e + e/2 has a minimum of J2 at e = V2, so it follows that 

II « exp { - ( J2 + 10 5) Jlog X 10g2 X } • 

Let u = uo - v. For WI ~ Ivl ~ wo, Lemma 2 and the definition (1) of uo imply 
that the integrand in (3) is 

{
log x ( V v

2 
v

3 
) (V2 ) } ~ p(uo)exp vE(uo) - -- 1 + - + 2 + 3" +0 - +logUO 

UO Uo Uo Uo Uo 

«p(uo)x I/uo exp { - ~~ log x + 0 (~: + loguo) } 

« p( uo)x I/uo exp { -0.9 ~~ log x} 

for K large enough. It follows that 

12« uop{uo)x I/uo exp{-2010g2 x} «(logx) 10p(uO)x l/uo . 

For the remaining u, we first apply Lemma 3 with v = 2 and v = 3 to obtain 

h +14 = (1 + 0 ( log2 x p(u)x l/u _e __ + ~e3~(u) du )) l uO+Wl (2~(U) 1 2 ) 
log x U 100" X 

Uo Wl b 

\Ve will show that h + 14» p{uo)x l/uo (1ogx)3/2, which implies 

(4) N(x) = (1 + 0 ( )) l uo+wl (2~(U) 1 2 ) 
log2 x (u)x l/u _e __ + ~e3~(u) 
log x p u log x 

uo Wl 

duo 

This provides an asymptotic formula for N (x), but we can simplify the expression 
somewhat at the expense of weakening the error term. First, we use the formula 

E{u) = logu + 10g2 u + 0 (l~~:) , 

and then use u = Uo + O(u~/2) and (1) to obtain 

By Lemma 3, when W2 ~ Ivl ~ WI, where u = Uo - v, we have 

1 

p(uo - v)x "0 v « p(uo)x 

« p{uo)x 

« p(uo)x 

«p(uo)x ,,10(10g2 X ) 3 
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provided K is large enough. This gives 

1 p(u)x· l/Udu«p(Uo)X 1/uO(logX)1/4(log2X) 3.5 

w2~lu UOI~Wl 

For the remaining v, Lemma 3 gives 

Therefore, 

The extension of the limits of integration to (-00,00) introduces another factor 
1+0((1og2x) l),soweobtain 

and Theorem 1 follows. Corollary 2 follows immediately from Theorem 1 and (1). 
To obtain Corollary 3, we first observe that ~/(u) "-J uland next use Lemma 2 to 
write 

e'Y {JUO } p(uo) "-J ~ exp - ~(t) dt . 
27rUo 1 

By the definitions of ~ and Uo we then obtain 

J
UO l~(UO) eV - 1 

~(t) dt = eV 
- dv 

1 0 v 

= e~(uo) _ 1 _ e - dv l
~(UO) v 1 

o v 

= logx _1 1US
{ e

V 

- 1 dv. 
Uo 0 v 

Corollary 3 now follows from (1). 
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On values of arithmetical functions at factorials I 

J. Sandor 

Babe§-Bolyai University, 3400 Cluj-Napoca, Romania 

1. The Smarandache function is a characterization of factorials, since S(k!) = k, and 

is connected to values of other arithmetical functions at factorials. Indeed, the equation 

S(x) = k (k ~ 1 given) (1) 

has d(k!) - d((k - I)!) solutions, where d(n) denotes the number of divisors of n. This 

follows from {x: S(x) = k} = {x: xlk!, x t (k - I)!}. Thus, equation (1) always has 

at least a solution, if d(k!) > d((k - I)!) for k ~ 2. In what follows, we shall prove this 

inequality, and in fact we will consider the arithmetical functions y, <7, d, w, 0 at factorials. 

Here y( n) = Euler's arithmetical function, <7( n) = sum of divisors of n, w( n) = number 

of distinct prime factors of n, O( n) = number of total divisors of n. As it is well known, 
r 

we have y( 1) = d(1) = 1. while w(l) = O( 1) = 0, and for 1 < IT pf; (ai ~ 1, Pi distinct 
i=l 

primes) one has 

y( n) = n IT (1 -~) , 
i=l p, 

r a,+l 

0"( n) = IT Pi - 1 , 
P -1 

i=l ' 

w(n) = r, 

r 

O(n) = Laj, 
j=l 
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r 

d(n) = II(ai + 1). (2) 
i=l 

The functions y, (7, d are multiplicative, w is additive, while n is totally additive, i.e. 

y, (7, d satisfy the functional equation f(mn) = f(m )f(n) for (m, n) = 1, while w, n satisfy 

the equation g( mn) = g( m) + g( n) for (m, n) = 1 in case of w, and for all m, n is case of 

n (see [1 D. 
r r 

2. Let m = II pfi, n = II pfi (ai, (Ji 2: 0) be the canonical factorizations of m and n. 
i=l i=l 

(Here some ai or (Ji can take the values 0, too). Then 

r r 

d(mn) = II(ai + (Ji + 1) 2: II({Ji + 1) 
i=l ;=1 

with equality only if CYi = 0 for all i. Thus: 

d(mn) 2: d(n) (3) 

for all m, n, with equality only for m = 1. 
r r r 

Since II (ai + (Ji + 1) ::; II (ai + 1) II ({Ji + 1), we get the relation 
i=l ;=1 i=l 

d(mn) ::; d(m)d(n) (4) 

with equality only for (n, m) = 1. 

Let now m = k, n = (k - 1)~ for k 2: 2. Then relation (3) gives 

d(k~) > d((k -1)~) for all k 2: 2, (.5) 

thus proving the assertion that equation (1) always has at least a solution (for k = lone 

can take x = 1). 

"Vith the same substitutions, relation (4) yields 

d(k!) ::; d((k -l)!)d(k) for k 2: 2 (6) 
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Let k = p (prime) in (6). Since ((p - 1)!,p) = 1, we have equality in (6): 

d(p!) = 2 
d((p - I)!) , 

p pnme. (7) 

S(k!) k 
3. Since S(k!)jk! -+ 0, S((k _ I)!) = k _ 1 -+ 1 as k -+ ee, one may ask the similar 

prohlems for such limits for other arithmetical functions. 

It is well known that 

O"(n!) 
-,- -+ 00 as n -+ 00. 

n; 

k 
In fact, this follows from O"(k) = L d = L d' so 

dlk dlk 

O"(n!) 1 1 1 
-,-' = L -d ~ 1 + 2 + ... + - > log n, 

n. d' , n In. 

as it is known. 

From the known inequality ([1]) cp(n)O"(n) ~ n2 it follows 

n! 
so -(-I) -+ 00, implying 

cp n. 

n 0"( n) 
-->-
cp( n) - n ' 

cp(n!) 
-,- -+ 0 as n -+ 00. 

n. 

(8) 

(9) 

Since cp(n) > d(n) for n > 30 (see [2]), we have cp(n!) > d(n!) for n! > 30 (i.e. n ~ 5), 

so, by (9) 

d( n!) 
-,- ---+ 0 as n ---+ ee. 

n. 
(10) 

In fact, much stronger relation is true, since d( ~) ---+ 0 for each ~ > 0 (n ---+ IX) (see 
n-

[1 F d(n!) cp(n!) i ') , • 

1 ). rom -- < -- and the ahove remark on 0"\ n; > n. log n. I t follows that 
n! n! 

. d(n!) 
11m sup -,-log n ~ l. 

n->oo n. 
(11 ) 
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These relations are obtained by very elementary arguments. From the inequality 

r.p(n)(w(n) + 1) ~ n (see [2]) we get 

w(n!) -t 00 as n -t 00 (12) 

and, since D( s) ~ w( s), we have 

D(n!) -t 00 as n -t 00. (13) 

From the inequality nd(n) ~ r.p(n) + CT(n) (see [2]), and (8), (9) we have 

d( n!) -t 00 as n -t 00. (14) 

This follows also from the known inequality r.p( n )d( n) ~ nand (9), by replacing n with 

n!. From CT(mn) ~ mCT(n) (see [3]) with n = (k -I)!, m = k we get 

CT((k _ I)!) ~ k (k ~ 2) (15 ) 

and, since CT( mn) :::; CT( m )CT( n), by the same argument 

CT(k!) 
CT((k _ I)!) :::; CT(k) (k ~ 2). (16) 

Clearly, relation (15) implies 

. CT(k!) 
lIm = +00. 

k-+co CT( (k - 1) ~) 
( 17) 

From :.p( m )r.p( n) :::; 'P( mn) :::; mr.p( n), we get, by the above remarks, that 

'~(k) < 'P(k!) < k (k> ?) 
Y - r.p((k - I)!) -, - - (18) 

implying, by y( k) ~ 00 as k ~ 00 (e.g. from r.p( k) > v'k for k > 6) that 

. r.p(k!) 
hm ((k )' = +00. k-+co 'P - 1 . 

(19) 
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By writing a(k!) - a((k -1)!) = a((k -1)!) [a((:(:!i)!) -1], from (17) and 

a((k - 1)!) ~ 00 as k ~ 00, we trivially have: 

lim [a(k!) - a((k - 1)!)] = +00. 
k~oo 

In completely analogous way, we can write: 

lim [<p(k!) - <p((k - 1)!)] = +00. 
k~oo 

(20) 

(21 ) 

4. Let us remark that for k = p (prime), clearly ((k - 1)!,k) 1, while for k = 

composite, all prime factors of k are also prime factors of (k - 1)!' Thus 

{ 

w((k - 1)!k) = w((k - 1)!) + w(k) 
w(k!) = 

w((k - 1)!) 

if k is prime 

if k is composite (k ~ 2). 

Thus 

{ 

1, 
w(k!) - w((k - 1)!) = 

0, 

for k = prime 

for k = composite 

Thus we have 

limsup[w(k!) -w((k -1)!)] = 1 
k~oo 

lim inf[w(k!) - w((k - 1)!)] = ° 
k~oo 

Let pn be the nth prime number. From (22) we get 

w(k!) { _1_, if k = Pn 
_---'----'----_ _ 1 = n - 1 
w((k-1)!) O.fk . 

,1 = composIte. 

Thus, we get 

1
. w(k!) 
1m = 1. 

k-+oo w((k - 1)!) 

The function D is totally additive, so 

D(k!) = D((k - 1)!k) = D((k - 1)1) + D(k), 
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(22) 

(23) 

(24) 



D(k!) - D((k - I)!) = D(k). (25) 

This implies 

limsup[D(k!) - D((k -I)!)] = +00 (26) 
k~oo 

(take e.g. k = 2m and let m -t (0), and 

lim inf[D(k!) - D((k - I)!)] = 2 
k~oo 

(take k = prime). 

For D(k!)jD((k -I)!) we must evaluate 

D(k) D(k) 
----'---'--- - -------'----'-----
D((k - I)!) D(I) + D(2) + ... + D(k - 1)· 

Since D(k) ::; ~:: ~ and by the theorem of Hardy and Ramanujan (see [1]) we have 

L D(n) rv xloglogx (x -t (0) 
n<x 

log k k b . so, smce -t 0 as -t 00, we 0 tam 
(k - 1) log log(k - 1) 

. D(k!) 
}~~ D((k - I)!) = 1. 

(27) 

5. Inequality (18) applied for k = p (prime) implies 

. 1 y(p!) 
hm _. = 1. 
p~oop y((p-l)!) 

(28) 

This follows by y(p) = p - 1. On the other hand, let k > 4 be composite. Then, 

it is known (see [1]) that kl(k - I)!. So y(k!) = y((k - 1)!k) = ky((k - I)!), since 

y(mn) = my(n) if min. In view of (28), we can write 

. 1 y(k!) 
hm _. = l. 
k~oo k y((k - I)!) 

(29) 
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For the function a, by (15) and (16), we have for k = p (prime) that p ~ (a(p!) ~ 
a (p - 1 )!) 

a(p) = p + 1, yielding 

lim ~ . a(p!) = 1. 
p-too p a((p - I)!) 

(30) 

In fact, in view of (15) this implies that 

. . 1 a(k!) 
he~f k . a((k _ I)!) = 1. (31) 

By (6) and (7) we easily obtain 

. d(k!) 
h~:p d(k)d((k _ I)!) = 1. (32) 

In fact, inequality (6) can be improved, if we remark that for k = p (prime) we have 

d(k!) = d((k - 1)!) ·2, while for k = composite, k > 4, it is known that kl(k - I)!. vVe 

apply the following 

Lemma. If nlm, then 

_d(_m_n_) < _d(_n 2_) . 
d(m) - d(n) 

(33) 

Proof. Let m = II po. II l, n = II po.I (0:' ~ 0:) be the prime factorizations of m and 

n, where nlm. Then 

d(mn) = I1(0: + 0:' + 1) IICB + 1) = II (0: + c/ + 1) . 
d(m) II(o: + 1) IIU3 + 1) 0: + 1 

',~ ~ow. 0: + 0:' + 1 < 20:' + 1 l~ ~ 0:' ~ 0: as an easy calculations verifies. This immedi-
0:+1 - 0:'+1 -

ately implies relation (33). 

By selecting now n = k, m = (k - 1)~, k > 4 composite we can deduce from (33): 

_d....:..( k_!),- < _d(_k2_) 
d((k - I)!) - d(k)· 

(34) 

By (4) we can write d(k2) < (d(k))2, so (34) represents indeed. a refinement of relation 

(6) . 
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THE A VERAGE VALUE OF THE SMARANDACHE FUNCTION 

Steven R. Finch 
MathSoft Inc. 

101 Main Street 
Cambridge, MA, USA 02142 

sfinch@mathsoft·com 

Given a positive integer n, let P(n) denote the largest prime factor of n and S(n) denote 
the smallest integer m such that n divides m! 

The function S(n) is known as the Smarandache function and has been intensively studied 
[1]. Its behavior is quite erratic [2] and thus all we can reasonably hope for is a statistical 
approximation of its growth, e.g., an average. It appears that the sample mean E(S) 
satisfies [3] 

1·"i q N ) 
E(S(N» = -, . IS(n) = --, 

lv n=1 In(N) 

as l\' approaches infinity, but I don't know of a rigorous proof. A natural question is if 
some other sense of average might be more amenable to analysis. 

Erdos [4,5] pointed out that P(n) = S(n) for almost all n, meaning 

. I{n ~ N: pen) < S(n)}1 
hm =0 

S--+C() N that is, I{n ~ N: pen) < S(n)}1 = o(N) 

as N approaches infinity. Kastanas [5] proved this to be true, hence the following 
argument is valid. On one hand, 

, . (In(p(n))) . (In(S(n))) . 1. f In(S(n» 
/. = hm E ~ 11m E = hm - . ~ 

n--+C() In( n) n--+x \ In( n) :-; --+x j\i n=1 In( n) 

The above summation, on the other hand, breaks into 1\vo parts: 

. 1 ( ,,In(P(n)) ,,In(S(n)) ') hm-·l ~ + ~ j 
.\"--+00 N P(n)=S(n) In(n) P(n)<S(n) In(n) 

The second part vanishes: 
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while the first part is bounded from above: 

. 1 ( "" In(P(n)) '\ . 1...f In(P(n)) . (In(p(n))) 
hm-· ~ ~ hm-·~ =hmE =}. 

N ..... oo N lp(n)=s(n) In(n) ) N ..... oo N n=I In(n) n ..... oo In(n) 

We deduce that 

( In(S(n))) 
lim EI = A = 0.6243299885 ... 
n ..... oo \ In(n) 

where A is the famous Golomb-Dickman constant [6-9]. Therefore A· n is the asymptotic 
average number of digits in the output of S at an n-digit input, that is, 62.43% of the 
original number of digits. As far as I know, this result about the Smarandache function 
has not been published before. 

A closely related unsolved problem concerns estimating the variance of S. 
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On the Irrationality of Certain Constants Related 

to the Smarandache Function 

J. Sandor 

Babe§-Bolyai University, 3400 Cluj-Napoca, Romania 

1. Let S(n) be the Smarandache function. Recently 1. Cojocaru and S. Cojocaru [2] 

n S(n) 
have proved the irrationality of L -,-. 

n=l n. 
The author of this note [5] showed that this is a consequence of an old irrationality 

criteria (which will be used here once again), and proved a result implying the irrationality 

of f( -It-1 S(~). 
n=l n. 

E. Burton [1] has studied series of type f (kS(k\" which has a value E (e - ~,~). He 
k=2 + 1 . 2 -

showed that the series f (kS(k)), is convergent for all r E N. 1. Cojocaru and S. Cojocaru 
k=2 + r . 

[3] have introduced the "third constant of Smarandache" namely f S ) C; ~ -'( , 
n=2 (2 '- (3 ... ~ n) 

which has a value between 170~ and 1
9
0

7
0. Our aim in the following is to prove that the 

constants introduced by Burton and Cojocaru-Cojocaru are all irrational. 

2. The first result is in fact a refinement of an old irraionality criteria (see [4] p.5): 

Theorem 1. Let (Xn) be a sequence of nonnegative integers having the properties: 

(l) there exists no E N· such that Xn ::; n for all n ~ no; 

(2) Xn < n - 1 for infinitely many n; 

(3) Xm > 0 for an infinity of m. 
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00 x 
Then the series L ~ is irrational. 

n=1 n. 

Let now Xn = S(n - 1). Then 

f= S(k) = f= Xn 

k=2 (k + I)! n=3 n!· 

Here S(n - 1) :::; n - 1 < n for all n 2: 2; S(m - 1) < m - 2 for m > 3 composite, 

since by S( m - 1) < ~(m - 1) < m - 2 for m > 4 this holds true. (For the inequality 
3 

S(k) < ~k for k > 3 composite, see [6]). Finally, S(m -1) > 0 for all m 2: 1. This proves 

h · . 1· f ~ S(k) 
t e lrratlOna Ity 0 6 (k )'. 

k=2 + 1 . 
Analogously, write 

f S(k) = f= S(m - r) 
k=2 (k + r)! m=r+2 m! 

Put Xm = S(m - r). Here S(m - r) :::; m - r < m, S(m - r) :::; m - r < m - 1 for 

r 2: 2, and S( m - r) > 0 for m 2: r + 2. Thus, the above series is irrational for r 2: 2, too. 

3. The third constant of Smarandache will be studied with the following irrationality 

criterion (see [4], p.8): 

Theorem 2. Let (an), (bn ) be two sequences of nonnegative integers satisfying the 

following conditions: 

(1) an > 0 for an infinity of n; 

(3) there exists an increasing sequence (in) of positive integers such that 

00 

Then the series L an is irrational. 
n=1 b1 b2 ... bn 

Corollary. For bn 2: 2, (bn positive integers), (bn) unbounded the series f 1 
n=1 b1b2 ... bn 

is irrational. 
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Proof. Let an = 1. Since lim sup bn = +00, there exists a sequence (in) such that 
n-too 

bin -T 00. Then 2.. -T 0, and the three conditions of Theorem 2 are verified. 
bin 

By selecting bn = S(n), we have bp = S(p) = P -T 00 for p a prime, so by the above 

Corollary, the series ~ S(I)S(2~ ... S(n) is irrational. 
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Smarandache Magic Squares 

Sabin Tabirca * 
°Buclcs University College, Computing Department 

The objective of this article is to investigate the existence of magic squares made with 

Smarandache's numbers [Tabirca, 1998]. Magic squares have been studied intensively and 

many aspects concerning them have been found. Many interesting things about magic 

squares can be found at the following WEB page 

http://www.pse.che.tohoko.ac.jp/-msuzukilMagicSquares.html. 

Definition 1. A Smarandache magic square is a square matrix a EM n (N) with the 

following properties: 

a) ~i.jli,j=1,n}=b(i)li=1,n2} (1) 

b) (v j=l,n)i=ai.j =k (2) 
i=1 

c) (Vi = 1,n)i=ai.j =k (3) 
j=1 

Therefore, a Smarandache magic square is a square matrix by order n that contains only 

the elements S(l),S(2), ... ,S(n2) [Smarandache, 1980] and satisfies the sum properties (2-

3). According to these properties, the sum of elements on each row or column should be 

equal to the same number k. Obviously, this number satisfies the following equation 

n" 

LS(i) 
k = -,-i=-,-1 __ 

n 

n 2 

Theorem 1. If the equation nIL Sci) does not hold, then there is not a Smarandache 

magic square by order n. 

Proof 

1=1 
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,,2 

LS(i) 
This proof is obvious by using the simple remark k = ;=) EN. If a EM" (N) IS a 

n 

,,2 

Smarandache magic square, then the equation niL SCi) should hold. Therefore, if this 
i=) 

equation does not hold, there IS no a Smarandache magtc square. 

Theorem 1 provides simple criteria to find the non-existence of Smarandache magIC 

,,2 

square. All the numbers 1 <n<l 0 1 that do not satisfy the equation niL SCi) can be 
i=) 

found by using a simple computation [Ibstedt, 1997]. They are {2, 3, .... , 100}\{6, 7, 9, 

58, 69}. Clearly, a Smarandache magic square does not exist for this numbers. If n is one 

,,2 

of the numbers 6, 7, 9, 58, 69 then the equation n I LS(i) holds [see Table 1]. This does 
i=) 

not mean necessarily that there is a Smarandache magic square. In this case, a 

Smarandache magic square is found using other techniques such us detailed analysis or 

exhaustive computation. 

,,2 

Sen) 
LS(i) 

n i=) 

6 3 330 

7 7 602 

9 6 1413 

58 29 1310162 

69 23 2506080 

,,2 

Table 1. The values of n that satisfy n I LS(i). 
1=) 
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An algorithm to find a Smarandache magic square is proposed in the following. This 

algorithm uses Backtracking strategy to complete the matrix a that satisfies (1-3). The 

going trough matrix is done line by line from the left-hand side to the right-hand side. 

The algorithm computes: 

• Go trough the matrix 

• Find an unused element of the set S(1), S(2), ... ,S(n2) for the current cell. 

• If there is no an unused element, then compute a step back. 

• If there is an used element, then 

• 

• 

Put this element in the current cell. 

Check the backtracking conditions. 

• If they are verified and the matrix is full, then a Smarandache magic 

square has been found. 

• If they are verified and the matrix is not full, then compute a step 

forward. 

procedure Smar_magic_square(n); 
begin 
col:=1; row:=1;a[col, row]:=O; 
while row>O do begin 

while a[col, row]<n*n do begin 
a[ col, row ] :=a[ col,row]+ 1; 

call check(col,row,n,a,cont); 
if cont=O then exit; 

end 
if cont =0 then call back(col,row); 
if cont=1 and col=n and row=n 

end; 

then call write_square(n,a) 
else call forward(col,row); 

write('result negative'); 
end; 

procedure back(col, row); 
begin 

col:=col-l; 
if col=O then begin 

end; 
end; 

col :=n;row:=row-l; 
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procedure forward( col, row); 
begin 

col:=col+ 1; 
if col=n+ 1 then begin 

col: = 1 ;row:=row+ 1; 
end; 

end; 

procedure write_square(n,a); 
begin 

for i:=1 to n do begin 
for j:=l to n do write (S(a[ij]),' '); 
writeln; 

end; 
stop; 

end; 

procedure check( col,row,n"k,a,cont); 
begin 
cont:=l; sum:=O; 
for i:=l to col do sum:=sum+S(a[ij]); 
if (sum>k) or (col=n and sum<>k) then begin 

cont:=O; 



end; 
sum:=O 

return; 

for j:=l to row do sum:=sum+S(a[ij)); 
if (sum>k) or (row=n and sum<>k) then begin 

end; 
end; 

cont:=O; 
return; 

Figure 1. Detailed algorithm for Smarandache magic squares. 

The backtracking conditions are the following: 

(Vj=l,n)fa;,i 5,k and (Vj=l,n)ia;,i =k 
;=1 ;=1 

(Vi=l,n)~a;'i 5,k and (Vi=l,n)ia;,: =k. 
]=1 i=1 

(4a) 

(4b) 

(V(i,j) < (row,col))ai,i :t;arow,coz (5) 

These conditions are checked by the procedure check. A detailed algorithm is presented in 

a pseudo-cod description in Figure 1. 

Theorem 2. If there is a Smarandache magic square by order n, then the procedure 

Smar _magic_square finds it. 

Proof 

This theorem establishes the correctness property of the procedure Smar_magic_square. 

The Backtracking conditions are computed correctly by the procedure check that verifies 

if the equations (4-5) hold. The correctness this algorithm is given by the correctness of 

the Backtracking strategy. Therefore, this procedure finds a Smarandache magic square. 

Theorem 3. The complexity of the procedure complexity Smar_magic_square IS 

O(n2n2+1) . 

Proof 

The complexity of the procedure Smar_magic_square is studied in the worst case when 

there is not a Smarandache magic square. In this case, this procedure computes all the 

checking operations for the Backtracking strategy. Therefore, all the values 
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S (1), S (2), ... , S (n 2) are gone through for each cell. For each value put into a cell, at most 

O(n) operations are computed by the procedure check. Therefore, the complexity is 

Remark 1. The complexity O(n 2
.,,2+

1
) is not polynomial. Moreover, because this is a very 

big complexity, the procedure Smar_magic_square can be applied only for small values of 

n. For example, this procedure computes at most 673 > 1056 operations in the case n=6. 

The above procedure has been translated into a C program that has been run on a Pentium 

:MMX 233 machine. The execution of this program has taken more than 4 hours for n=6. 

Unfortunately, there is not a Smarandache magic square for this value of n. The result of 

computation for n=7 has not been provided by computer after a twelve hours execution. 

This reflects the huge number of operations that should be computed (799 > 10 83
). 

According to these negative results, we believe that Smarandache magic squares do not 

,,2 

exist. If n is a big number that satisfy the equation niL S (i), then we have many 
i=1 

possibilities to change, to permute and to arrange the numbers S(l), S(2), ... , Sen 2) into a 

square matrix. In spite of that Equations (2-3) cannot be satisfied. Therefore, we may 

conjecture the following: "There are not Smarandache magic squares". In order to 

confirm or infirm this conjecture, we need more powerful method than the above 

computation. Anyway, the computation looks for a particular solution, therefore it does 

not solve the problem. 
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Some inequalities concerning Smarandache's function 

Sabin Tabirca * Tatiana Tabirca** 
·Bucks uniyersity College, Computing Department 

**T ransiivania uniYersity of BrasO\. Computer Science Department 

The objectives of this article are to study the sum IS(d) and to find some upper 
din 

bounds for Smarandache's function. This sum is proved to satisfy the inequality 

IS(d) ~ n at most all the composite numbers, Using this inequality, some new 
din 

upper bounds for Smarandache's function are found. These bounds improve the well

known inequality Sen) ~ n. 

1. Introduction 

The object that is researched is Smarandache's function. This function was 

introduced by Smarandache [1980] as follows: 

S: N* ~ N defined by Sen) = min{k EN: k! =~} ('tin EN *). (l) 

The following main properties are satisfied by S : 

(\;fa,b EN *) (a,b) = 1 => Sea ·b) = max{S(a), S(b)} . 

(\;fa EN *) Sea) ~ a and Sea) = a iif a is prim. 

(\;fp E N*, p prime)(\;fk E ]1/ *) S(pk) ~ p' k. 

(2) 

(3) 

(4) 

Smarandache's function has been researched for more than 20 years, and many 

properties have been found. Inequalities concerning the function S have a central 

place and many articles have been published [Smarandache, 1980], [Cojocaru, 1997], 

[Tabirca, 1997], [Tabirca, 1988]. Two important directions can be identified among 

these inequalities. First direction and the most important is represented by the 

inequalities concerning directly the function S such as upper and lower bounds. The 

second direction is given by the inequalities involving sums or products with the 

function S. 
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2. About the sum I Sed) 
din 

The aim of this section is to study the sum Is (d) . 
din 

Let SS(n) = IS(d) denote the above sum. Obviously, this sum satisfies 
dn 

SS(n) = IS(d). Table 1 presents the values of S(n) and SS(n) for n<50 [Ibstedt, 
j",dn 

1997]. From this table, it can be seen that the inequality SSe n) :s n + 2 holds for all 

n=l, 2, _._,50 and n;:o12. Moreover, if n is a prim number, then the inequality becomes 

equality SS(n) = n. 

Remarks 1. 

a) If n is a prime number, then SS(n) = S(1) + Sen) = n_ 

b) If n> 2 is a prim number, then 

SS (2 . n) = S (1) + S (2) + S (n ) + S (2 . n) = 2 + n + n = 2 . n + 2 , 

c) SS(n2) = S(l)+S(n)+S(n2) = n+2'n = 3'n:S n2 _ 

.-~---- -- . '--'._- _.-

X S SS n S SS n S SS n S SS n S SS 

0 0 11 11 11 21 7 17 31 31 31 41 41 41 

2 2 ') 12 4 16 22 11 24 "') 
;)- 8 24 42 7 36 

" " " 13 13 13 T"' ')" ')" 33 11 25 43 43 43 ;) ;) ;) -;) -;) -;) 

4 4 6 14 7 16 24 4 24 34 17 36 44 11 39 

5 5 5 15 5 13 25 10 15 35 7 19 45 6 25 

6 " 8 16 6 16 26 13 28 36 6 34 46 ')" 48 ;) -;) 

7 7 7 17 17 17 27 9 18 37 37 37 47 47 47 

8 4 10 18 6 20 28 7 27 38 19 40 48 6 36 

9 6 9 19 19 19 29 29 29 39 13 29 49 14 21 

10 5 12 20 5 21 30 5 28 40 5 30 50 10 "') 
;)-

Table 1. The values of n, S, Ss. 
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The inequality SS(n):::; n is proved to be true for the following particular values 

k", k-, k d6 k n=p ,L-P ,~-p an -p-

Lemma 1. If p> 2 is a prime number and k> 1, then the inequality SS (p k ) :::; /' holds. 

Proof 

The following inequality holds according to inequality (4) and the definition of Ss. 

k k k-(k+l) 
SS(pk) = IS(p'):::; Ip-j = p- .! .. 

1=1 1=1 -

The inequality 

I
k . k-(k+l) k 

P-l=P' <p ! -
i=1 

is proved to be true by analysing the following cases. 

• k = 2 ~ 3. p :::; p2 . 

• k=4 ~ 10. p :::; p 4 
. 

Inequalities (6-8) are true because p> 2. 

(5 ) 

(6) 

(7) 

(8) 

k-l(k - 1) k kIT. J 
• kA ~ P ~ p' P - ~ p-2~- = p' I j . The first and the last three terms 

1=0 

of this sum are kept and it is found 

( (
k - 1) (k - 1) (k - I)J pk ~ p. 2· 0 + 2· 1 + 2 \2 = p. (k2 - k + 2) . The inequality 

,k·(k+l) . k·(k+l) 
k- - k + 2 ~ holds because k>4, therefore l ~ p' ! is true. 

2 

Therefore, the inequality S(Pk ):::; pI.; holds. "" 

Remark 2. The inequality S(Pk):::; pk is still true for p=2 and k>3 because (8) holds 

for these values. Table 1 shows that the inequality is not true for p=2 and k=2,3. 

Lemma 2. If p>2 is a prime number and k> 1, then the inequality SS(2. pk) :::; 2. pk 

holds. 
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Proof 

The definition of 55 gives the following equation 

k k 

55(pk) = 5(2) + IS(pl) + IS(2 ·l)· 
1;1 1;1 

Applying the inequality 5(2'l) ~ p' i and (4), we have 

k k 

55(2· pk) ~ 2 + I p' i + I p' i = 24- p' k . (k + 1). 
1=1 1=1 

The inequality 

2 + p' k . (k 4- 1) ~ 2 . pk 

is proved to be true as before. 

• k= 2 ~ 2 + 6· p ~ 2 . p2 . 

• k=4 ~ 2720· P ~ 2. pJ. . 

• k=5 ~ 2 + 30· p':; 2. p5. 

(9) 

(10) 

(11 ) 

(12) 

(13) 

(14) 

(15) 

These above inequalities (11-15) are true because p> 2. 

k-I(k - 1\ 
• k>6 ~ pk 2 p. pk-I 2 p' 2k

-
1 = p' I. j. The first and the last fourth terms 

j;O 1 

of this sum are kept finding 

( (k - 1) (k - 1) (k - 1)\ ( k - 1\J 
pk 2 p' 2· 0 + 2· 1 + 2· 2 + 2· ~3 ) 2 

> p. (? . (k - 1) + ') . (k - 1) + ') .( k - 1)1 + ? . (k - 111 = 
- - 0 - 1 - \2 - 2 )) 

= p.(2.e -4.k+4) 2 2+ p·Ck2 +k) 

The last inequality holds because k>6, therefore 2 . pk 2 2 + P . k . (k + 1) is true. 

The inequality 55(2· pk) ~ 2· pk holds because (10) has been found to be true. 

Remark 3. Similarly, the inequality S5(3· pk) ~ 3· pi.: can be proved for all (p>3 and 

k21) or (P=2 and k23). 

108 



Lemma 3. If p> 3 is a prime· number and k:2: 1, then the inequality SS ( 6 . P k ) ::; 6 . p k 

holds. 

Proof 

The starting point is given by the following equation (16) 

k k k k 

SS (6 . pk ) = S (2) + S (3) + S ( 6) + L S(pi ) + L S (2 . pi ) + L S( 3 . pi) + L S ( 6 . pi) . 
i=! l=! l=! 

( 16) 

The inequalities S(pi), S(2· pi), S(3· pi), S( 6· pi)::; p' i hold for all i> 1 because 

p:2:5. Therefore, the inequality 

k k k k k 
SS(6·pk)::;8+ LP·i+ LP·i+ LP·i+ LP·i=8+4·LP·i (17) 

i=! l=! l=! i=! l=! 

holds. The inequality SSe 6· pk)::; 8 + 4· pk ::; 6· pk is found to be true by applying 

(5) in (17). 

The following propositions give the main properties of the function Ss. Let d(n) 

denote the number of divisors of n. 

Proposition 1. If a is natural numbers such that S(a):2:4, then the inequality 

S(a) :2: 2 . d( a) holds. 

Proof 

The proof is made directly as follows: 

S(a)= LS(d)= LS(d)+S(a):2: L2+S(a)=2.(d(a)-2)+S(a)= 
I.n;<dia 

= 2· deal + Sea) - 4:2: 2· d(a). 

Remark 4. The inequality S(a):2:4 is verified for all the numbers a:2:4 and a*6. 

Proposition 2. If a, b are two natural numbers such that (a,b)=I, then the inequality 

SSe a . b) ::; d( a)· SSe b) + d( b) . Sse a) holds. 

Proof 

This proof IS made by usmg (2) and the simple remark that 

a,b:2: O:=>maxfa,b}::; a + b. 
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The set of the divisors of ab is split into three sets as follows: 

{l*d!a o b = Md} = 
{1 *d a=Md} u{l *d I b=Md}u{ d1dzl a=!1dl *lAb=Mdz*lA( d 11 dz) =1} • (18) 

The following transfonnations hold according to (18). 

SS(a-b)= IS(d)= IS(d)+ IS(d)+ I IS(d]d2 )= 
{l.dia-b = !!d) (r-dl .. =!!d) {lod[b=!!d) (1.d1ia=!!d 1 ) (l.dZ!b=!!d

z
) 

=SS(a)+SS(b)+ I Imax{S(d]),S(dJ}:S: 
{1.d 1 ia=!!d 1 ) {l'dzlb=Md

z
} 

= SS(a) + SS(b) + I 

= ss ( a) + SS ( b ) + ss ( a ) - [d ( b) - 1] + SS ( b ) - [d ( a ) - 1 ] 

Therefore, the inequality SSe a- b) :s: d( a) -SSe b) + d( b) -Sse a) holds. 

Proposition 3. If a. b are two natural numbers such that S(a). S(b)?.4 and (a.b)=I, then 

the inequality SSe a- b) ::; SSe a) -SSe b) holds. 

Proof 

Proposition 1-2 are applied to prove this proposition as follows: 

Sea), S(b)?. 4 => S(a)?. 2 -d(a) and S(b)?. 2 . d(b) 

( a, b) = 1 => SS (a -b) :s: d ( a ) . SS ( b ) + d ( b ) -SS ( a ) . 

(19) 

(20) 

The proof is completed if the inequality d(a)-SS(b)+d(b)-SS(a):S:SS(a)-SS(b) is 

found to be true. This is given by the following equivalence 

d ( a) -SS ( b ) + d ( b ) -SS ( a) :s: SS ( a) -SS ( b ) ~ 

d(a)· d(b):S: [SS(a) - d(a)]- [SS(b) - deb)]. 

This last inequality holds according to (19). 

Therefore, the inequality SS (a . b) :s: SS (a) -SS (b) is true. 

Theorem 1. If n is a natural number such that n "* 8, 12, 20 then 

a) SS(n)=n+2 if(3pprime)n=2-p. 

b) SS (n) ::; n , otherwise. 
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Proof 

The proof of this theorem is made by using the induction on n. 

Equation (21) is true according to Remark l.a. Table 1 shows that Equation (22) 

holds for n<51 and n :;t 8, 12, 20. Let n>51 be a natural number. Let us suppose that 

Equation (9) is true for all the number k that satisfies k<n and k does not have the 

form k=2p, p prime. The follo\\ing cases are analysed: 

• n is prime ~ SS(n)=n, therefore Equation (9) holds. 

• n=2p, p> 2 prime ~ SS(n) =n-l-2, therefore Equation (21) holds. 

• (n = 2k and k>3) or (n = pk and k>l) ~ SS(n):5. n according to Lemma 1 

• n = 2· pk, p>2 prime number and k>l ~ SS(n):5. n according to Lemma 2. 

• n = 3· p\ (p>3 prime number and k>l) or (p=2 and k>2) ~ SS(n):5. n 

according to Remark 3. 

• n = 6· pk, p>3 prime number and k~l ~ SS(n):5. n according to Lemma 3. 

• Otherwise ~ Let n = p;l . p;= ..... p;, be the prime number decomposition of n 

with PI < P2 < ... < Ps· We prove that there is a decomposition of n=ab, (a,b)=l 

such that S(a), S(b)~4. Let us select a = p;' and b = p~l . p;' ..... P;~ll . It is not 

difficult to see that this decomposition satisfies the above conditions. The 

induction's hypotheses is applied for a,b<n and the inequalities SS(a)::{a and 

are obtained. Finally, Proposition .... 
.J gIves 

SS (n ) = SS (a . b) :5. SS ( b ) . SS ( a) :5. b . a = n . 

We can conclude that the inequality SS(n)s:n-2 holds for all the natural number n:;t12. 

Remark 5. The above analysis is necessary to be sure that the decomposition of n=ab, 

(a,b)=l, S(a), S(b)~4 exists. 

Theorem 1 has some interesting consequences that are presented in the following. 

These establish new upper bounds for Smarandache's function. 

Consequence 1. If n > 1 is a natural number, then the follO\ving inequality 

S(n):5.n+4-2·d(n) . (23) 

holds. 
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Proof 

The proof of this inequality is'made by using Theorem 1. 

Obviously, (23) is true for n=p or n=2p,p prime number. 

Let n =1= 8, 12, 20 be a natural number. 

We have the following transformations: 

n? SS(n) = IS(d) = Sen) + IS(d)? 
Ln~d,n 

?S(n) + 2 .!~ = I,n!d =1= I,nAdin}= S(n)+ 2 ·(d(n)- 2) = Sen) + 2 ·d(n)-4 

Inequality (23) is also satisfied for n=8, 12, 20. 

Therefore, the inequality S(n)::; n + 4 - 2· den) holds. 

Consequence 2. If n > 1 is a natural number, then the following inequality holds 

S(n)::; n + 4 - min{p; p is prime andp[n}· den) . 

Proof 

(24) 

This proof is made similarly to the proof of the previous consequence by using the 

following strong inequality S(d)? min {pi p is prime andpin}. 

3. Final Remark 

Inequalities (23 - 24) gIve some generalisations of the well - known inequality 

Sen) ::; n. More important is the fact that these inequalities reflect. When n has many 

divisors, the value of n + 4 - min{pj p is prime and pin}· den) is small, therefore the 

value of S(n) is small as well according to Inequality (24). In spite of fact that 

Inequalities (23 - 24) reflect this situation, we could not say that the upper bounds are 

the lowest possible. Nevertheless, they offer a better upper bound than the inequality 

S(n)::;n. 
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Smarandache's function applied to perfect 

numbers 

Sebastian Martin Ruiz 

5 August 1998 

Smarandache's function may be defined as follows: 
S(n) = the smallest positive integer such that S(n)1 is divisible by n. [1] 
In this article we are going to see that the value this function takes when n is 
a perfect number of the form n = 21:-1 . (21: - 1) , p = 2" - 1 being a prime 
number. 

Lemma 1 Let n = 2i . p when p is an odd prime number and i an integer such 
that: 

o < i < E(E) + E(.!!..-) + E(.!!..-) + ... + E( P ) = e~(pl) - - 2 22 23 2E(\ogop)-

Where e2(pl) is the exponent of 2 in the pnme number des composItion of pl. 
E(x) !S the greatest integer less than or equal to x. 

One has that S(n) = p. 

Demonstration: 
Given that ged(2 i ,p) = 1 (ged = greatest common divisor) one has that 

S(n) = max{s(2i),S(p)} 2 S(p) = p. Therefore S(n) 2 p. 
If we prove that pi is divisible by n then one would have the equality. 

P
I - pe" (p') . pen(pl) ... pe.,Cpl) 
. - 1 2 j 

where Pi is the i-th prime of the prime number descomposition of pl. It is clear 

that PI = 2, PJ = P , ep , (p!) = 1 for which: 

1- 2e,(pl) e.o(pl) e',_1 (p') 
p.- 'P2 "'P,-l .p 

From where one can deduce that: 

pi = 2e2(p~)-i <.,(pl) e',_1 (pI) 
n . P2 ... PJ-l 

is a positive integer since e2(pl) - i 2 O. 
Therefore one has that 5 (n) = p 
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Proposition 1 If n a perfec number of the form n = 2.1:-1 . (2.1: - 1) with k a 

positive integer, 2.1: - 1 = p prime, one has that 5( n) = p. 

Demonstration: 
For the Lemma it is sufficient to prove that k - 1 ::; e2 (pI). 
If we can prove that 

• 1 1 
k - 1 < 2'<- --

- 2 
we will have proof of the proposition since: 

.1:-1 1 2.1: - 1 p 
k-1<2 --=--=-

- 222 

(1) 

As k- L is an integer one has that k - 1 ::; E( ~) ::; e2(p!) 
Proving (1) is the same as proving k ::; 2k

-- 1 + ~ at the same time. since k 
is integer, is equivalent to proving k ::; 2k - 1 (2). 
In order to prove (2) we may consider the function: f( x) = 2x

- 1 
- X x E R. 

This function may be derived and its derivate is r (x) = 2x - 1 in 2 - l. 
f will be increasing when 2x - 1 in 2 - 1 > 0 resolving x: 

in (in 2) I 

X > 1 - i :::: 1 5287 
n 2 

In particular f will be increasing 'd x :2 2. 
Therefore 'd x :2 2 f(x):2 f(2) = 0 that is to say 2x

-l - x :2 0 'd x > 2 
therefore 

2k
- 1 > k 'd k > 2 integer 

and thus is proved the proposition. 
EXA:\1PLES: 

References: 

6 = 2·3 
28 = 22 ·7 

496 = 24 ·31 
8128 = 26 

. 127 

5(6) = 3 
5(28) = 7 
5(496)=31 
5(8128) = 127 
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ON THE DIVERGENCE OF THE SMARANDACHE HARMONIC SERIES 

Florian Luca 

For any positive integer n let S(n) be the minimal positive integer m such that 
n i m!. In [3], the authors showed that 

(1) 

is divergent and attempted, with limited succes, to gain information about the 
behaviour of the partial sum 

1 
A(x) = L S(n)2 

n::;x 

by comparing it with both log x and log x + log log x. 
In this note we show that none of these two functions is a suitable candidate 

for the order of magnitude of A(x). 
Here is the result. For any 5 > 0 and x ;::: 1 denote by 

Then. 

Theorem. 

For any 5 > 0, 

1 
A,,(x) = L S(n)<i' 

n::;x 

B,,(x) = 10gA,,(x). 

B () I 2 log x (log x ) "'x > og . - 0 . - log log x log log x 

(2) 

(4) 

What the above theorem basically says is that for fixed 5 and for arbitrary 
E > O. there exists some constant C (depending on both 5 and E). such that 

(l )~ A,,(x) > 2 -f loglogz for x > C. (5) 

Notice that equation (5) asserts that Ao (x) grows much faster than any polynomial 
in log(x). so one certainly shouldn't try to approximate it by a linear in log x. 

The Proof. 

In [1 L we showed that 

(6) 

diverges for all 5 > O. Since the argument employed in the proof is relevant for our 
purposes, we reproduce it here. 

Let t ;::: 1 be an integer and PI < P2 < ... < Pt be the first t prime numbers. 
\"otice that any integer n = Ptm where m is squarefree and all the prime factors of 
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m belong to {PI, p~ . ... , pt-d will certainly satisfy S(n) = Pt· Since there are at 
least 21- 1 such m's (the power of the set {PI, ... , pt-d), it follows that series (6) 
is bounded below by 

2t - 1 L ----;r- = L 2t - 1- O log2 p'. 

t2:1 Pt t2:1 

The argument ends noticing that since 

lim ~=1, 
t-+oo t log t 

(7) 

it follows that the exponent t - 1 - Jlog2 Pt is always positive for t large enough. 
This proves the divergence of the series (6). 

For the present theorem, the only new thing is the fact that we do not work 
with the whole series (6) but only with its partial sum A,,(x). In particular, the 
parameter t from the above argument is precisely the maximal value of s for which 
P1P2"'Ps ::; x. In order to prove our theorem, we need to come up with a good lower 
bound on t. 

Vie show that for all 10 > 0 one has 

logx 
t>(l-E)1 I og ogx 

(8) 

provided that x is enough large. Assume that this is not so. It then follows that 
there exists some 10 > 0 such that 

loCTx 
t < (1 - E) I ; 

og ogx 
(9) 

for arbitrarily large values of x. Since t was the value of the maximal s such that 
P1P2 ···Ps ::; x, it follows that 

P1P2 ... Pt+1 > x. (10) 

From a formula in [2]. it follows easily that 

Pi ::; 2i log i for i 2 3. (11) 

It now follows. by taking logarithms in (10) and using (11), that 

/-1 t+1 

logx < L logp, < C1 -+- (t - 1) log 2 + L(logi + loglogi) < 
,=1 ,=3 

t~') 

C1 + (t -1) log2 + l' -(logy + loglogy)dy < 

C1 -+- (t -1) log2 -i- (t -i- 2)(log(t -+- 2) -+- loglog(t + 2)), (12) 

where C1 = log 6. Since t can be arbitrarily large (because x is arbitrarily large). it 
follows that one can JUSt work with 

log x < t(log t + 210g log t). (13) 

Indeed. the amount (t-+-2)(log(t+2)+loglog(t+2)) appearing in the right hand side 
of (12) can be replaced by t(log t + log log t) -+- f(t) where f(t) = 2 log t + 210g log t + 
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0(1) and then the sum of f(t) with the linear term from the right hand side of (12) 
can certainly be bounded above by t log log t for t large enough. Hence, 

logx < t(logt + 2 log log t). (14) 

Csing inequality (9) to bound the factor t appearing in (14) in terms of x and the 
obvious inequality 

logx 
t~(l-E)1 1 <logx 

og ogx 

to bound the t's appearing inside the logs in (14), one gets 

log x ( ) ( 2 log log log x ) log x < (1 - E) log log x + 2 log log log x = (1 - E) log x 1 + ----'1":::-""':1 "--00::.-

loglogx og ogx 

or. after some immediate simplifications, 

2(1 - E) 
log log x < log log log X. (15) 

E 

Since E was fixed, it follows that inequality (15) cannot happen for arbitrarily large 
values of x. This proves that indeed (8) holds for any E provided that x is large 
enough. \Ve are now done. Indeed, going back to formula (7), it follows that 

or 

BJ(x) = 10gA.o(x) > log2(t - 1- 610gpt) > log2(t -1 - 610g(2tlogt)), (16) 

where the last inequality in (16) follows from (11). By inequalities (8) and (16), we 
get 

logx 
Bo(x) = tlog2 - o(t) = log2(1- E)l I - o(t). 

og ogx 

Since E could, in fact, be chosen arbitrarily small, we get 

BJ(x) = log2 logx _ o( logx ). 
log log x log log x . 

which concludes the proof. 

Remark. 
. . () log x (log x ) Vve conjecture that the exact order of Bo x is + 0 ( )~ . 

log log x log log x -
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A Generalisation of Euler's function 

Tatiana Tabirca* Sabin Tabirca** 
·Transilvania Uni,'ersity ofBrasov, Computer Science Department 

·Bucks Universitv College, Computing Department 

The aim of this article is to propose a generalisation for Euler's function, This function 

is cp: N ~ N defined as follows (-V- n E N)cp(n) = I~ = 1,n I (k,n) = I}. Perhaps, this is 

the most important function in number theory having many properties in number theory, 

combinatorics, etc. The main properties [Hardy & Wright, 1979] of this function are 

enumerated in the following: 

(-V- a,b E N)(a,b) = 1 => cp(a· b) = cp(a)· cp(b) - the multiplicative property (1) 

a=p~! .p';' ..... p;' =>cp(a)=a-(l- fpJ-(l- fpJ .... -(l-fpJ (2) 
(-V-aEN)Icp(d)=a. (3) 

da 

More properties concerning this function can be found in [Hardy & Wright, 1979], [Jones 

& Jones, 1998] or [Rosen, 1993]. 

1. Euler's Function by order k 

In the following, we shall see how this function is generalised such that the above 

properties are still kept. The way that will be used to introduce Euler's generalised 

function is from the function's formula to the function's properties. 

Definition 1. Euler's function by order kEN is CPk : N ~ N defined by 

Remarks 1. 

1. Let us assume that CPk (1) = 1. 
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2. Euler function by order 1 is Euler's function. Obviously, Euler's function by order 0 

is the constant function 1. 

In the following, the main properties of Euler's function by order k are proposed. 

Theorem 1. Euler's function by order k is multiplicative 

(Va, bEN) (a, b) = 1 =:> CPk (a· b) = CPk (a) . CPk (b). 

Proof 

This proof is obvious from the definition. 

Theorem 2. (VaEN)"'Icpk(d)=a k . 
dia 

Proof 

(4) 

(5) 

The function CPk (a) = I CPk (d) is multiplicative because CPk is a multiplicative function. 
d,a 

If a = pm, then the following transformation proves (5) 

= 1 + f (Pk.; - pk'(i-I»)= 1 + pk.m -1 = a k 
;=1 

If a = p~l . p'; ..... P:' then the multiplicative property is applied as follows: 

Definition 2. A natural number n is said to be k-power free if there is not a prim number 

p such that pk in. 

Remarks 2. 

1. There is not a O-power free number. 

2. Assume that 1 is the only I-power free number. 
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The combinatorial property of Euler's function by order k is given by the following 

theorem. This property is introduced by using the k-power free notion. 

Theorem 3. (\7' n EN) 17\ (n) = i{ = I,nk I (i,n k ) isk - power free } 
, , 

Proof 

This proof is made using the Inclusion-Exclusion theorem. 

Let a = p~' . p';' ..... p;' be the prime number decomposition of a. 

(6) 

If d n, then the set S d = { = I, a kid k ! i} contains all the numbers that have the divisor 

d k
. This set satisfies the following properties: 

(7) 

(8) 

{=l,a
k !(i,ak)iSk-POwerfree}={=l,ak 

}-(Sp! nSp: n ... nSp,). (9) 

The Inclusion-Exclusion theorem and (7-9) give the following transfonnations: 

I{=l,a
k 

!u,ak)iSk-POwerfree}=a
k 

-1(Sp! nSp: n ... nSpJ= 

=a
k 

- tlsp)l+ I Isp)! nSpJ- ... +(-l)5+l I Isp)! nS
Pn 

n ... nSpJ= 
j=l IS}! <}: Sn lSj! <}: <".<j, $n 

k Is 'I I I I S I IS - ... +(_1)5+1 = a - I p)! + : PlJ .p;, 
j=l lSj, <h S" 

Therefore, the equation (6) holds. 
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3. Conclusion 

Euler's function by order k represents a successful way to generalise Euler's function. 

Firstly, because the main properties of Euler's function (1-3) have been extended for 

Euler's function by order k. Secondly and more important, because a combinatorial 

property has been found for this generalised function. Obviously, many other properties 

can be deduced for Euler's function by order k. Unfortunately, a similar property with 

Euler's theorem a",(n) = 1 modn has not been found so far. 
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A result obtained using Smarandache 

Function 

Sebastian Martin Ruiz 

21 November 1998 

Smarandache Function is defined as followed: 
SCm) = The smallest positive integer so that SCm)! is divisible by m. [1] 
Let's see the value which such function takes for m = ppn with n integer, n 2: 2 
and p prime number. To do so a Lemma is required. 

Lemma 1 V m, n E N m, n 2: 2 

Where E( x) gives the greatest integer less than or equal to x. 

Demonstration: 
Let's see in the first place the value taken by EUogm (mn+l - mn + m)]. 
If n 2: 2: mm+l - mn + m < m n+1 and therefore logm(mn+l - mn + m) < 

logm mn+l = n + 1. As a result EUogm (mn+l - mn + m)] < n + l. 
And if m 2: 2: mmn 2: 2mn => mn+l 2: 2mn => mn +1 + m 2: 2mn => 

m n + 1 _ mn + m > mn => log (mn+l - mn + m) > 100" mn = n => _ m _ Om 

EUogm(mn + 1 
- mn + m)] 2: n 

As a result: n ~ EUogm(mn+1 
- mn + m)] < n + 1 therefore: 

Now let's see the value which it takes for 1 S; k S; n: E [mn+l;;;::n+m] 

E m ' - m ,m = E mn+1-" _ mn-k + _._ 
[ 

n+l n,] [ 1 ] 
m" m",-l 

If k = 1: E [m
n

+
1 -;:"m n 

... m] = mn - mn- 1 + 1 

If 1 < k S; n: E r mn+';;;::n+m] = m n +1- k - m n - k 
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Let's see what is the value of the sum: 

k=l 
k=2 
k=3 

_mn - 1 

m n - 1 _mn - 2 

m n - 2 _mn - 3 

.. , +1 

? 
k=n-1 
k=n 

m- -m 

m -1 

Therefore: 

m,n ~ 2 

Proposition 1 V p prime number 'lin ~ 2 : 

S(V
n

) = pn+l _ pn + p 

Demonstration: 
Having ep (k) = exponent of the prime number p in the prime numbers 

descomposition of k. 
We get: 

k k k k 
ep(k!)=E(-)+E(-2)+E(-3)+···+E( E(l .») p p p p og." 

And using the Lemma we have: 

e [( n+l_ n+ )!J = E [pn+l - pn + p] +E [pn+l - pn + p] +- .. +E [ pn+l_ pn + p ,.] = n 
p p p p P p2 mE[Iog.lpnTl_pn+PJJ P 

Therefore: 

And: 
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On an inequality for the Smarandache function 

J. Sandor 

Bahe§-Bolyai University, 3.JOO Cluj-Napoca. Romania 

1. In paper [2J the author proved among others the inequality S(ab) :::; as(b) for all 

a, b positive integers. This was refined to 

S(ab) :::; S(a) + S(b) (1) 

in [1 J. Our aim is to shmv that certain results from om recent paper [3] can be obtained 

in a simpler way from a generalization of relation (1). On the other hand, by the method 

of Le [lJ we can deduce similar, more complicated inequalities of type (1). 

2. By mathematical induction we have from (1) immediately: 

(2) 

for all integers ai 2 1 (i = L ... , n). When al = ... = an = n we obtain 

(3) 

For three applications of this inequality. remark that 

S((m!t) :::; nS(m!) = nm (4) 

since S( m!) = m. This is inequality 3) part 1. from [3J. By the same way, S( (n!)(n-l)!) :::; 

(n - l)!S(n!) = (n - l)!n = n!, i.e. 

(5) 
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Inequality (5) has been obtain<~d in [3] by other arguments (see 4) part 1.). 

Finally, by 5(n 2 ) ~. 25(n) ~ n for n even (see [3], ineqllality 1), n > 4, we have 

obtained a refinement of 5( n2
) ~ n: 

(6) 

for n > 4, even. 

3. Let m he a divisor of n. i.e. n = km. Then (1) gives 5(n) = 5(km) ~ 5(m) + 5(k), 

so we obtain: 

If min, then 

5(n) - 5(m) ~ 5 (:) . (7) 

As an application of (7), let d( n) be the number of divisors of n. Since IT k = n d
(n)/2, 

kin 

and IT k = n1 (see [3]), and by IT /.:1 IT k, from (7) we can deduce that 
k<n kin k<n 

(8) 

This improves our relation (10) from [3]. 

4. Let 5(a) = u. 5(b) = v. Then blv1 and u!jx(x-l) ... (x-u+l) for all integers x ~ u. 

But from alu1 we have alx(x - 1) ... (x - u + 1) for all x ~ u. Let x = u + v + k (k ~ 1). 

Then. clearly ab( v+ 1) ... (v+k)l( u +v+k)!' so we have 5[ab( v+ 1) ... (v +k)] ~ u +v+k. 

Here v = 5(b), so we have obtained that 

5[ab(S(b) + 1) ... (5(b) + k)] :::; 5(a) -+- 5(b) + k. (9) 

For example, for k = lone has 

5[ab(5(b) + 1)] :::; 5(a) + 5(b) + 1. (10) 

This is not a consequence of (2) for n = 3, since 5[5(b) + 1] may be much larger than 1. 
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ON A SERIES INVOLVING 5(1) ·5(2) ... ·5(n) 

Florian Luca 

For any positive integer n let 5(n) be the minimal positive integer m such that 
n I m!. It is known that for any 0: > 0, the series 

nO 

2: 5(1) ·5(2) .... ·5(n) 
n~l 

(1) 

is convergent, although we do not know who was the first to prove the above state
ment (for example, the authors of [4] credit the paper [1] appeared in 1997, while 
the result appears also as Proposition 1.6.12 in [2] which was written in 1996). 

In this paper we show that, in fact: 

Theorem. 

The series xn 

L 5(1) ·5(2) .... ·5(n) 
n~l 

converges absolutely for every x. 

Proof 

\Vrite 

an = 5(1).5(2) ..... 5(n)' 

Then 
Ixl 

5(n+1)' 

(2) 

(3) 

(4) 

But for Ixl fixed, the ratio Ixl/5(n + 1) tends to zero. Indeed, to see this, choose 
any positive real number m, and let nm = Lmlxl + 1J!. When n > nm , it follows 
that 5(n + 1) > Lmlxl + 1J > mix!, or 5(n + l)/lxl > m. Since m was arbitrary. it 
follows that the sequence 5(n + l)/lxl tends to infinity. 

Remarks. 

1. The convergence of (2) is certainly better than the convergence of (1). 
Indeed, if one fixes any x > 1 and any 0:, then certainly xn > nO for n large enough. 

2. The convergence of (2) combined with the root test imply that 

(5(1) ·5(2) .... ·5(n))1/n 

diverges to infinity. This is equivalent to the fact that the average function of the 
logs of S, namely 

I5(x) = ~ 2: log5(n) 
x 

for x > 1 
n:Sx 

tends to infinity with x. It would be of interest to study the order of magnitude of 
the function I5 (x). We conjecture that 

I5(x) = logx -loglogx + 0(1). (5) 
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The fact that LS(x) cannot be larger than what shows up in the right side of (5) 
follows from a result from [3]. Indeed, in [3], we showed that 

. 1 x 
A(x) = - ~ S(n) < 2-

1 
-

xL oCT x 
nSx 0 

for x 2: 64. (6) 

;\ ow the fact that LS (x) - log x + log log x is bounded above follows from (6) and 
from Jensen's inequality for the log function (or the logarithmic form of the ACyl 
inequality). It seems to be considerably harder to prove that LS (x) -log x+ log log x 
is bounded below. 

3. As a fun application we mention that for every integer k 2: 1, the series 

(7) 

is absolutely convergent. Indeed, it is a straightforward computation to verify that 
if one denotes by C(x) the sum of the series (2), then the series (7) is precisely 

(8) 

When k = x = 1 series (I) becomes precisely series (1) for n = 1. 

4. It could be of interest to study the rationality of (2) for integer values of 
x. Indeed, if the function S is replaced with the identity in formula (2), then one 
obtains the more familiar eX whose value is irrational (in fact, transcendental) at 
all integer values of x. Is that still true for series (2)? 
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A Congruence with Smarandache's Function 

Sebastian Martin Ruiz 

25 September 1998 

Smarandache's function is defined thus: 
S( n) = is the smallest integer such that S( n)! is divisible by n. [1] 
In this article we are going to look at the value that has S(2k - 1) (mod k) for 
all k integer, 2 :s k :s 97. 

One can observe in the following table that gives the continuation 
S(2k - 1) == 1 (mod k) in the majority of cases, there are only 4 exeptions for 

2 < k < 97. 

k 5(2" - 1) 5(2" - 1) (mod k) 

2 3 1 

3 7 1 

4 5 1 

5 31 1 

6 7 1 

7 127 1 

8 17 1 

9 73 1 

10 31 1 

11 89 1 

12 13 1 

13 8191 1 

14 127 1 

15 151 1 

16 257 1 

17 131071 1 

18 73 1 

19 524287 1 
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k 5(2" - 1) 5(2" - 1) (mod k) k 5(2" - 1) 5(2" - 1) (mod k) 

20 41 1 59 3203431780337 1 

21 337 1 60 1321 1 

22 683 1 61 2305843009213693951 1 

23 178481 1 62 2147483647 1 

24 241 1 63 649657 1 

25 1801 1 64 6700417 1 

26 8191 1 65 145295143558111 1 

27 26265, 1 66 599479 1 

28 127 15 67 761838257287 1 

29 2089 1 68 131071 35 

30 331 1 69 10052678938039 1 

31 2147483647 1 70 122921 1 

32 65537 1 71 212885833 1 

33 599479 1 72 38737 1 

34 131071 1 73 9361973132609 1 

35 122921 1 74 616318177 1 

36 109 1 75 10567201 1 

37 616318177 1 76 525313 1 

38 524287 1 77 581283643249112959 1 

39 121369 1 78 22366891 1 

40 61681 1 79 1113491139767 1 

41 164511353 1 80 4278255361 1 

42 5419 1 81 97685839 1 

43 2099863 1 82 8831418697 1 

44 2113 1 83 57912614113275649087721 1 

45 23311 1 84 14449 1 

46 2796203 1 85 9520972806333758431 1 

47 13264529 1 86 2932031007403 1 

48 673 1 87 9857737155463 1 

49 4432676798593 1 88 2931542417 1 

50 4051 1 89 618970019642690137449562111 1 

51 131071 1 90 18837001 1 

52 8191 27 91 23140471537 1 

53 20394401 1 92 2796203 47 

54 262657 1 93 658812288653553079 1 

55 201961 1 94 165768537521 1 

56 15790321 1 95 30327152671 1 

57 1212847 1 96 22253377 1 

58 3033169 " 
9, 13842607235828485645766393 1 

One can see from the table that there are only 4 exeptions for 2 :S k :S 97. 
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We can see in detail the 4 exeptions in a table: 

k = 28 = 22 ·7 
k = 52 = 22 ·13 
k = 68 = 22 ·17 
k = 92 = 22 ·23 

5(228 -1) == 15 (mod 28) 
5(252 

- 1) == 27 (mod 52) 
5(268 - 1) == 35 (mod 68) 
5(292 - 1) == 47 (mod 92) 

One can observe in these 4 cases that k = 22 . p with p prime and moreover 

5(2k - 1) == ~ + 1 (mod k) 

unsolved Question: 
One can obtain a general formula that gives us, in function of k the value 

5(2k - 1) (mod k) for all pisitive integer values of k ? 
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An Integer as a Sum of Consecutive Integers 

Henry Ibstedt 

Abstract: This is a simple study of expressions of positive integers as sums of 
consecutive integers. In the first part proof is given for the fact that N can be 
expressed in exactly d(L)-1 ways as a sum of consecutive integers, L is the 
largest odd factor ofN and d(L) is the number of divisors ofL. In the second 
part answer is given to the question: Which is the smallest integer that can be 
expressed as a sum of consecutive integers in n ways. 

Introduction: There is a remarkable similarity between the four definitions given below. 
The first is the well known Smarandache Function. The second function was defined by K. 
Kashihara and was elaborated on in his book Comments and Topics on Smarandache 
Notions and Problemsi

. This function and the Smarandache Ceil Function were also 
examined in the author's book Surfing on the Ocean of Number? These three functions 
have in common that they aim to answer the question which is the smallest positive 
integer N which possesses a certain property pertaining to a given integer n. It is 
possible to pose a large number of questions of this nature. 

1. The Smarandacbe Function Sen): 
S(n)=N where N is the smallest positive integer which divides n!. 

2. The Pseudo-Smarandacbe Function Z(n): 
Z(n)=N where N is the smallest positive integer such that 1 +2+ ... +N is 
divisible by n. 

3. The Smarandacbe Ceil Function of order k, Sk(n): 
S~n)=N where N is he smallest positive integer for which n divides N' 

4. The n-way consecutive integer representation R(n): 
R(n)=N where N is the smallest positive integer which can be represented as a 
sum of consecutive integer is n ways. 

There may be many positive integers which can be represented as a sum of positive integers 
in n distinct ways - but which is the smallest of them? This article gives the answer to this 
question. In the study of R(n) it is found that the arithmetic function den), the number of 
divisors of n, plays an important role. 

I Erhus University Press, 1996 
2 Erhus University Press, 1997 
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QuestiQn 1: In how many ways n can a given positive integer N be expressed as the sum of 
consecutive positive integers? 

Let the first term in a sequence of consecutive integers be Q and the number terms in the 
sequence be M. We have N=Q+(Q+I)+ ... +(Q+M-I) where M>L 

N= M(2Q+M-I) 
(1) 

2 
or 

N M-I 
Q=---

M 2 
(2) 

For a given positive integer N the number of sequences n is equal to the number of positive 
integer solutions to (2) in respect ofQ. Let us write N=L·2' and M=m·2k where L and mare 
odd integers. Furthermore we express L as a product of any of its factors L=m]m2. We will 
now consider the follo\\ing cases: 

L s=0,k=0 
2. s=O,k;eO 
3. s;eO, k=0 
4. s;eO, k;eO 

Case L s=O. k=0. 

Equation (2) takes the form 

Q 
m]m2 m-l 

=-----
m 2 

(3) 

Gmiously we must have m;/:1 and m;/:L (=N). 

For m=m] we have Q>O when m2-(m]-I)12>O or m]<2m2+L Since m] and m2 are odd, the 

latter inequality is equivalent to m]<2m2 or, since m2=N/m], m] < J2N. 
We conclude that a factor m (;/:1 and;/:N) of N (odd) for which m < J2N gives a solution 
for Q when M=m is inserted in equation (2). 

Case 2. s=O. bOo 

Since N is odd we see form (2) that we must have k=L With M=2m equation (2) takes the 
form 

Q
_ mlm2 2m-l ------

2m 2 
(4) 
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For m=l (M=2) we find Q=(N-1)2 which corresponds to the obvious solution 

N -1 + N + 1,= N. 
2 2 

Since we can have no solution for m=N we now consider m=m2 (*1, *N). We find Q=(ml-
2m2+1)12. Q>O when mj>2mr1 or, since ml and m2 are odd, mj>2m2 Since mlm2=N, 

m2=N/ml we find m>.fiN . 

We conclude that a factor m (*1 and *N) of N (odd) for which m>.fiN gives a solution 
for Q when M=2m is inserted in equation (2). 

The number of divisors of N is known as the function d(N). Since all factors of N except I 
and N provide solutions to (2) while M=2, which is not a factor of N, also provides a 
solution (2) we find that the number of solutions n to (2) when N is odd is 

n=d(N)-l (5) 

Case 3. ~, k=O. 

Equation (2) takes the form 

(6) 

Q~l requires m2<L·2>-1. We distinguish three cases: 

Case 3.1. k=O, m= 1. There is no solution. 

Case 3.2. k=O, m=ml. Q~l for ml<m22,.,.1 with a solution for Q when M=ml. 

Case 3.3. k=O, m=mlm2' Q~1 for L<2>'-1 with a solution for Q when M=L. 

Case 4. ~, bOo 

Equation (2) takes the form 

(7) 

Q is an integer if and only if m di.ides Land 2,-10--1= l. The latter gives k=s+ 1. Q~1 gives 

1 mjm2 s 
Q=-(--+I)-m·2 ~ 1 

2 m 
(8) 

Again we distinguish three cases: 
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Case 4.1. k=s+ 1. m= 1. Q~l for 1>20+1 with a solution for Q when M=20+1 

Case 4.2. 

Case 4.3. 

k=s+l, m=m2 ~1 for m1>m220+1 with a solution for Q when 
M=m220+1 

k=s+l, m=L Q~1 for l-L·2~1. No solution 

Since all factors of L except 1 provide solutions to (2) we find that the number of solutions 
n to (2) when N is even is 

n=d(L)-1 (9) 

Conclusions: 

• The number of sequences of consecutive positive integers by which a positive integer 
N=L·2' where 1-=1 (mod 2) can be represented is n=d(L)-1. 

• We see that the number of integer sequences is the same for N=2'L and N=L no matter 
how large we make s. 

• When L<2' the values of M which produce integer values of Q are odd, i.e. N can in 
this case only be represented by sequences of consecutive integers with an odd number 
of terms. 

• There are solutions for all positive integers L except for L=I, which means that N=2' 
are the only positive integers which cannot be expressed as the sum of consecutive 
integers. 

• N=P·2s has only one representation which has a different number of terms «p) for 
different s until 2s+1>P when the number of terms will be P and remain constant for all 
larger s. 

A few examples are given in table 1. 

Table 1. The number of sequences for L=105 is 7 and is independent of sin N=L·2'. 

N-I05 5-0 N-210 5-1 N-3360 5-5 N=6720 5=6 
L>2 s

+
1 L<2s

+
1 

-_ ... _. __ .................. _ .. __ ....... _-.•...... ......... _---_ ............. _-_ .... _-.... __ ..... -- ------_ ........ -.---.--_ ...... ---------_. __ ._--.. . _-_ ... ----_ ...... _---_ .......... _-.--_ .. _ .... 
Q M Q M Q M Q M 

34 3 69 3 1119 3 2239 3 
19 5 40 5 670 5 l342 5 
12 7 27 7 477 7 957 7 
1 14 7 ' -... :J 217 15 441 15 
6 10 1 20 150 21 310 21 

15 6 12 12 79 35 175 35 
52 2 51 4 21 64 12 105 
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Question 2: Which is the smallest positive integer N which can be represented as a sum of 
consecutive positive integers in n different ways. 

We can now construct the smallest positive integer R(n)=N which can be represented in n 
ways as the sum of consecutive integers. As we have already seen this smallest integer is 
necessarily odd and satisfies n=d(N)-I. 

With the representation N = pf'p~: ... p;j we have 

d(N)=(o.l+ 1)(0.2+ 1) ... (Cl.j+ 1) 
or 

n+ 1 =(0.1 + 1)(0.2+ 1) ... (Cl.j+ 1) (10) 

The first step is therefore to factorize n+ 1 and arrange the factors (0.1+ 1), (0.2+ 1) ... (Cl.j+ 1) 
in descending order. Let us first assume that 0.1>0.2> ... >Cl.j then, remembering that N must 
be odd, the smallest N with the largest number of divisors is 

R(n)= N = 3a'5a:7a3 ... p~j 

where the primes are assigned to the exponents in ascending order starting with PI=3. Every 
factor in (10) corresponds to a different prime even if there are factors which are equal. 

Example: n = 269 
n+1= 2.3 3.5 = 5 ·3 ·3 ·3 ·2 
R (n) = 3'.5 2.7 2.11 2.13=156080925 

When n is even it is seen from (10) that 0.1, 0.2, ... Cl.j must all be even. In other words the 
smallest positive integer which can be represented as a sum of consecutive integers in a 
given number of ways must be a square. It is therefore not surprising that even values of n 
in general generate larger smallest N than odd values of n. For example, the smallest 
integer that can be represented as a sum of integers in 100 ways is N=3100

, which is a 48-
digit integer, while the smallest integer that can be expressed as a sum of integer in 99 ways 
is only a 7-digit integer, namely 3898125. 

Conclusions: 

• 3 is always a factor of the smallest integer that can be represented as a sum of 
consecutive integers in n ways. 

• The smallest positive integer which can be represented as a sum of consecutive integers 
in given even number of ways must be a square. 
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Table 2. The smallest integer R(n) which can be represented in n ways as a sum of 
consecutive positive integers. 

n R(n) R(n) in factor form 
1 3 3 
2 9 32 

3 15 3·5 
4 81 3 4 

5 45 32.5 
6 729 3 5 

7 105 3·5·7 
8 225 3252 

9 405 3~5 

10 59049 310 

11 315 32 5.7 
12 531441 3"2 
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A NEW INEQUALITY FOR THE SMARANDACHE FUNCTION 

Mihaly Bencze 
Str. Hannanului 6 
2212 Sacele 3, jUdo Brasov 
Romania. 

Theorem. Let SCm)=min {kE N: mi k!} be the Smarandache Function. 
and a k , b k E N* (k=1,2, ... ,n), then we have the following inequality , 

n b k 

S(TI (a k ~) 
lc=l 

Proof: 

n n 

I,C a k bJ~ TIC a k bJ! 
k-I l..~1 

* 
n n b k 

TIC a k bJ~ TI Cak~) 
1.:=1 k-I 1.:=1 

(
a l bl -i- a 2 b:; + ,., + am b m 

a l b I 

'I I a 2 b 2 -+- ... ..:... a m b m \ / a m-l b m- 1 + a m b m\ 

) \ a 2 b 2 ) ... \ a m-I b m-l ) 

a
3a

k 
k)\ (, 2a k\ \ 

a k I; E N* 

From this result 

k=1 
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A FORMULA OF THE SMARANDACHE FUNCTION 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R. China. 

Abstract. In this paper we give a formula expressing the 
Smarandache function Sen) by means of n without using the 
factorization of n. 

For any positive integer n, let S (n) denote the Smarandache 
function of n. Then we have 

(1) Sen) = min{ a I aE N, n I an, 

(See [1]). In this paper we give a formula of Sen) without 
using the factorization of n as follows: 

Theorem. For any positive integer n, we have 

(1) [ n 
-en sin (k! 1t / n)) 2] 

Sen) = n+1 - i 
k=l 

Proof. Let a = Sen). It is an obvious fact that 1 ~ a ~ n. 
We see from (I) that 

(2) n I k!, k = a, a+ 1, '" , n. 

It implies that 
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- (n sin (k! 1t I n))2 o 
(4) n = n = 1, k = a, a+ 1, ... , n. 

On the other hand, since n I k! for k = 1, ... , a-I, we 
have sin (k!1t/n) '* 0 and 

k! 1t 1t 
(5) (n sin ------- ) 2 ~ (n sin -- )2 > 1, k = 1, ... , a - 1. 

n n 

Hense, by (5), we get 

-en sin (k! 1t1 n))2 
(6) 0< n <lin, k=I, ... ,a-1. 

Therefore, by (4) and (6), we obtain 

n -en sin (k! 1t/n))2 
(7) n+l-a < L n < n+l-a+(a-l)/n < n+2-a. 

k=1 

Thus, by (7), we get (1) immediately. The theorem is proved. 
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ON THE DIOPHANTINE EQUATION Sen) = n 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R. China. 

Abstract. Let S( n) denote the Smarandache function of n. 
In this paper we prove that Sen) = n if and only if 
n = 1, 4 or p, where p is a prime. 

Let N be the set of all positive integers. For any 
positive integer n, let Sen) denote the Smarandache function of 
n (see[l]). It is an obvious fact that Sen) ~ n. In 
this paper we consider the diophantine equation 

(1) Sen) = n, nE N. 

We prove a general result as follows: 
Theorem. The equation (1) has only the solutions n = 1,4 

or p, where p is a prime. 
Proof If n = 1,4 or p, then (1) holds. Let n be 

an another solution of (1). Then n must be a composite integer 
with n> 4. Since n is a composite integer, we have n = uv, 
where u,v are integers satisfying u~ v~ 2. If u* v, 
then we get n I u!. It implies that Sen) ~ u = n / v < n, a contradiction. 
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Ifu = v, then we have n = u2 and nl (2u)! 
It implies that S(n):::; 2u. Since n > 4, we get u > 2 and 
S(n):::; 2u < u2 = n, a contradiction. Thus, (1) has only the 
solution n = 1,4 or p. The theorem is proved. 
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function J. 1 (1990), No.1, 3 -17. 
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ON SMARANDACHE DMSOR PRODUCTS 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R. China. 

Abstract. In this paper we give a formula for Smarandache 
divisor products. 

Let n be a positive integer. In [1, Notion 20], the 
product of all positive divisors of n is called the Smarandache 
divisor product of n and denoted by P d (n). In this paper 
we give a formula ofPd(n) as follows: 

r1 rk 

Theorem. Let n = P1 ... Pk be the factorization of n, 
and let 

( Y2 (r 1 + 1) ... (rl; + 1), 
(1) r(n)=~ 

L Y2 ((r1 + 1) ... (rl;+ 1) - 1), 

Then we have Pd (n) = n r(n) . 

if n is not a square, 

if n is a square. 

Proof Let f (n) denote the number of distinct positive 
divisors of n. It is a well known fact that 

(2) fen) = (r1 + 1) ... (rl; + 1), 

144 



(See [2, Theorem 273]). Ifn is not a square and d is 
a positive divisor ofn, then nJd is also a positive divisor 
of n with n / d '" d. It implies that 

Hence, by (1), (2) and (3), we get Pd(n) = n r(n). 

If n is a square and d is a positive divisor of n with 
d '" in, then nJd is also a positive divisor ofn with n / d '" d. 
So we have 

n f (n) /2 

(4) Pin) = ------------ = n (f(n
o

l)/2. 

in 

Therefore, by (1), (2) and (4), we get Pd (n) = n r(n) too. The 
theorem is proved. 
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ON THE SMARANDACHE N-ARY SIEVE 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.RChina. 

Abstract. Let n be a positive integer with n > 1 . 
In this paper we prove that the remaining sequence of 
Smarandache n-ary sieve contains infinitely many composite 
numbers. 

Let n be a positive integer with n > 1. Let So denote 
the sequence of Smarandache n-ary sieve (see [1 , Notions 
29-31]). For example: 

S2=O,3,5,9, 11, 13, 17,21,25,27, .. J , 

S3={I,2,4,5, 7,8,10,11,14,16,17,19,20, .. J 

In [1], Dumitrescu and Seleacu conjectured that Sn contains 
infinitely many composite numbers. In this paper we verify 
the above conjecture as follows: 

Theorem. For any positive integer n with n> 1 , 

Sn contains infinitely many composite numbers. 
Proof By the definition of Smarandache n -ary SIeve 
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(see [1, Notions 29-31]), the sequence Sn contains the 
numbers nk + 1 for any positive integer k. If k is an odd 
integer with k > 1, then we have 

We see from (1) that (n +1)1 (n k +1 ) and n k +1 is a composite 
number. Notice that there exist infinitely many odd integers 
k with k > 1. Thus, Sn contains infinitely many composite 
numbers n k + 1. The theorem is proved. 

References. 

1. Dumitrescu and V. Seleacu, Some Notions and Questions 
In Number Theory, Erhus Univ. Press, Glendale, 1994. 
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PERFECT POWERS IN THE SMARANDACHE PERMUTATION SEQUENCE 

MaohuaLe 

Department of Mathematics, Zhanjiang Nonnal College 
Zhanjiang, Guangdong, P.R.China. 

Abstract. In this paper we prove that the Smarandache 
pennutation sequience does not contain perfect powers. 

~ 

Let S = { sci n =1 be the Smarandache pennutation sequence. 
Then we have 

(1) S1 =12, ~ = 1342, ~ = 135642, S4 = 13578642, .... 

In [1, Notion 6], Dumitrescu and Seleacu posed the following 
quiestion: 

Question. Is there any perfect power belonging to S? 
In this respect, Smarandache [2] conjectured: no! In this 

paper we verify the above conjecture as follows: 

Theorem. The sequence S does not contain powers. 
Proof Let Sn be a perfect power. Since 2 I s n by (1), 

then we have 

Since S1= 12 is not a perfect power, we get n> 1. Then 
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from (1) we get 

(3) s n = 10 2 a + 42, 
where a is a positive integer. Notice that 41 102 and 4 1 42. 
We find from (3) that 41 s n' which contradicts (2). Thus, 
the theorem is proved. 

References 
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ON SMARANDACHE PSEUDO - POWERS OF THIRD KIND 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R China. 

Abstract. Let m be a positive integer with m > 1. In 
this paper we prove that there exist infinitely many mlh perfect powers 
which are Smarandache pseudo - m th powers of third kind. 

Let m he a positive integer with m > 1 . For a positive 
integer a , if some nontrivial permutation of the digits is an 
mth power, then a is called a Smarandache pseudo - mlh power. 
There were many questions concerning the number of Smarandache 
pseudo - m th powers (see [ 1, Notions 71, 74 and 77]). In 
general, Smarandache [2] posed the following 

Conj ecture. For any positive integer m with m> 1, there 
exist infinitely many m th powers which are Smarandache pseudo-mth 
powers of third kind. 

In this paper we verify the above conjecture as follows. 
Theorem. F or any positive integer m with m > 1, there 

exist infinitely many m th powers are Smarandache pseudo-m th 
powers of third kind. 

Proof F or any positive integer k , the positive integer 
IS an m th power. Notice that 0 ... 01 is a nontrivial permutation 
of the digits of 10 kIn and 1 is also an m th power. 
It implies that there exist infinitely many Smarandache pseudo - m th 
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powers of third kind. The theorem is proved. 
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AN IMPROVEMENT ON THE SMARANDACHE DIVISIBILITY THEOREM 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R. China. 

Abstract. Let a, n be positive integers. In this paper 
we prove that n I (an - a)[n /2]! 

For any positive integer a and n, Smarandache [3] proved that 

(1) n I (an - a)(n - 1)!' 

The above division relation is the Smarandache divisibility 
theorem (see [1, Notions 126]). In this paper we give an 
improvement on (1) as follows: 

Theorem. F or any positive integers a and n, we have 

(2) n I (an - a)[ n / 2]!, 

where [n / 2] is the largest integer which does not exceed n / 2. 
Proof. The division relation (2) holds for n ~ 9, we may 

assume that n> 9. By Fermat's theorem (see [ 2, Theorem 71]), 
if n is a prime, then we have 

(3) n I (an - a), 
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for any a. We see from (3) that (2) is true. 
If n is a composite number, then we have n = pd, where 

p,d are integers satisfying p ~ q ~ 2. Further, if p '" q, then 
we have nlp~ It implies that nl(n / q)~ Since q~2, we get 

(4) nl[n/2]! 

If P = q , Then n = p2 and 

(5) n 1 (2p)! 

Since n> 9 , we have n ~ 42, P ~ 4 and 2p ~ n 1 2. Hence, 
we see from (5) that (4) is also true in this case. The 
combination of (3) and (4) , the theorem is proved. 
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ON PRIMES IN THE SMARANDACHE PIERCED CHAIN 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R. China. 

Abstract. Let C = {c n} n~i be the Smarandache pierced 
chain. In this paper we prove that if n > 2, then c n / 101 
is not a prime. 

F or any positive integer n, let 

(1) C n = 101 * 100010001 ... 0001. 

n -I times 

Then the sequence C = {c o} o~i is coIled the Smarandache 
percied chain (see[2, Notion 19]). In [3], Smarandache 
asked the following question: 

Question. How many c 0/ 101 are primes? 
In this paper we give a complete anser as follows: 
Theorem. If n > 2, then c n / 101 is not a prime. 
Proof Let '0 = e 2rr:/-i/n be a primitive roof of unity with 

the degree n , and let 

f n (x) = IT (x - , n k). 
is ks n 

g cd (k, oj ~i 

Then f o(x) is a polynomial with integer coefficients. Further, 
it is a well known fact that if x> 2 ,then f n (x) > 1 (see 
[1]). This implies that if x is an integer with x> 2, then f n (x) IS an 
integer with f n (x) > 1. On the other hand, we have 

(2) x 0 - 1 = IT f d (x). 
d/o 

We see from (1) that if n> 1 , then 

154 



(3) C n 4 I 4(n-l) 

---=1+10+10+ ... +10 
101 

By the above definition, we find from (2) and (3) that 

C n 

Since n > 2 , we get 2n > 4 and 4n > 4. It implies that both 
2n and 4n are divisors of 4n but not of 4. Therefore, 
we get from (4) that 

(5) c n 

---- = f 2n (10) f 4n (10)t, 
101 

where t is not a positive integer. Notice that f2 n (10) > 1 and 
f4n (10) > 1. We see from (5) that Cn / 101 is not a prime. The 
theorem is proved. 
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PRIMES IN THE SEQUENCES {n° + l}o=1 and {n° + l}O-1 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.RChina. 

Abstract. Let n be a positive integer. In this paper we 
prove that (i) if n > 2, then n ° - 1 is not a prime; (ii) if 

r 
2 

n> 2 and n n + 1 
positive integer. 

is a prime, then n = 2 , where r is a 

Let n be a positive integer. In [1, Problem 17], Smarandache 
posed the following questions 

Question A. How many primes belong to the sequence 

Question B. How many primes belong to the sequence 

In this paper we prove the following results: 

Theorem 1. 3 is the only prime belonging to {n n - I} n =1. 

Theorem 2. If n > 2 and n ° + 1 is a prime, then we 
r 

2 

we have n = 2 , where r is a positive integer. 

Proofof Theorem 1. If n = 2, then 22_ 1 = 3 
If n >2, then we have 
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Since n-l>1 and (nn-l+nn-2+ ... + n +l) if n>2,weseefrom 
(1) that n n - 1 is not a prime. The theorem is proved. 

Proof of Theorem 2. Let n n + 1 be a prime with n> 2. 
Since n n + 1 is an even integer greater than 2 if 2 1 n , we get 
21 n. Let n = 2 1 n 1> where s, n1 are positive integers with 21 nl. 
If n1 > 1, then we have 

n 2" n 1 2" 2"(nl-l) 
(2) n + 1 = (n ) + 1 = (n + 1)(n -n 

It is not a prime. So we have n1 = 1 and n = 2". It implies 
that 

• 
n s· 2 

(3) n +1=2 +1. 

By the same method, we see from (3) that if n n + 1 is a 
r 

2 
prime, then s must be a power of2. Thus, we get n = 2 
The Theorem is proved. 
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ON THE SMARANDACHE PRIME ADDITIVE COMPLEMENT SEQUENCE 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.RChina. 

Abstract. Let k be an arbitrary large positive integer. 
In this paper we prove that the Smarandache prime additive 
complement sequences includes the decreasing sequence 
k, k - 1, ... , 1 , 0 . 

For any positive integer n, let pen) be the smallest prime 
which does not excess n. Further let d (n) = p (n) - n. Then 

the sequence D = {d (n) } n = 1 is called the Smarandache prime add
itive complement sequence. Smarandache asked that if it is 
possible to as large as we want but finite decreasing sequence 
k, k - 1, ... , 1 ,0 included in D? Moreover, he conjectured that 
the answer is negative (see [1, Notion 46]). Howevwer, we 
shall give a positive answer for Smarandache's questions. In this 
paper we prove the following result: 

Theorem. For an arbitrary large positive integer k, D 
includes the decreasing sequence k, k - 1, ... , 1, 0 . 

Proof. Let n = (k + 1)! + 1. Since 2, 3, ... , k + 1 are pro
per divisors of (k + 1)! , then all numbers n+ 1, n+2, ... n+k 
are composite numbers. It implies that den) ~ k. Therefore, 
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D includes the decreasing sequence k, k-1, ... , 1 ,0. The theorem is proved. 
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AN INEQUALITY FOR THE 
SMARANDACHE FUNCTION 

by 

Mihaly Bencze 
2212 Sacele, Str. Harmanului 6, 
Jud. Bra$ov, Romania 

Let SCm) = min { kl kEN: mlk!} be 
the Smarandache Function. In this paper we prove the following 

THEOREM: 

We prove by induction. For m=1 it's true. 
Let m=2, then we prove S(ml m2) ~ S(ml ) + S(m2 ). 

We have m2 IS(m2 )! and if r ~ S(ml) then 
S(ml )! Ir(r-l) ... (r-S(ml)+I). 
If tIS(nl )! then tlr(r-l) ... (r-S(nl )+I) so 
mlm2 Is (m2 ) ! ( S (m2 ) + 1) ... (S (m2 ) +S (ml )) = (S (ml ) +S (m2 ) ) ! 
From this it results S(mlm2 ) ~ S(m1 )+S(m2). 
We suppose they are true for m, and we prove for m+l. 

m+l 
S(II 

k=1 

m+l 
mk)=S(mlII mk) ~ 

k=2 

REFERENCE: 

m+l 
S (ml ) +S (II mk) ~ 

k=2 

m+l m+l 
L S (mk ) =L 
k=1 k=1 

[1] Smarandache, Florentin, "A function in the Number Theory", 
<Smarandache Function Journal> (1990), No. I, pp. 3-17. 
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ON SMARANDACHE SIMPLE FUNCTIONS 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R China. 

Absatract. Let p be a prime, and let k be a positive 
integer. In this paper we prove that the Smarandache simple 
functions S p (k) satisfies piS p (k) and k (p - 1) < S p (k) ~ k p . 

For any prime p and any positive integer k, let S p (k) 
denote the smallest positive integer such that p Ie I S p (k)!. 
Then S p (k) is called the Smarandache simple function of p 
and k (see [1, Notion 121]). In this paper we prove the 
following result. 

Theorem. For any p and k, we have piS p (k) and 

(1) k (p - 1) < S p (k) ~ k P . 

Proof Let a = S p (k). Then a is the smallest positive 
integer such that 

If pIa, then from (2) we get p Ie I (a - I)!, a contradiction. 
So we have pia. 
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Since (kp)! = 1 ... P ... (2p) ... (kp) , we get p k I (kp)! . It 
implies that 

(3) a!> k p . 

On the other hand, let pT I a! ,where r is a positive integer. 
It is a well known fact that 

i = 1 

where [a / pi ] is the greatest integer which does not exceed 
a/pi. Since [a/pi]!> a/pi forany i, we see from (4) 
that 

-
(5) r<I(a/pi)=a/(p-1) 

i = 1 

Further, since k ~ r by (2) ,we find from (5) that 

(6) a > k (p - 1). 

The combination of (3) and (6) yields (1). The theorem is 
proved. 
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ON SMARANDACHE SIMPLE CONTINUED FRACTIONS 

Charles Ashbacher1 

Charles Ashbacher Technologies, Box 294 
119 Northwood Drive, Hiawatha, IA 52233, USA 

and 

Maohua Le: 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R. China. 

Abstract. Let A ={a n } n=l be a Smarandache type sequence. 
In this paper we show that if A is a positive integer sequence, 

then the simple continued fraction [a h a 2, ... ] is convergent. 

Let A ={a n } n=l be a Smarandache type sequence. Then 
The simple continued frction 

1 
a 1 + ---------------------

1 
(1) a 2 + --------------

1 
a 3 + -------

is called the Smarandache simple continued fraction associated A 
(See [1]). By the usually symbol (see [2, Notion 10.1]), 
the continued frction (1) can be written as [a h a 2, a 3, ... ]. 

Recently, Castillo [1] posed the following guestion: 
Question. Is the continued fraction (1) convergent? In 

particular, is the continued fraction [1, 12, 123, ... ] convergent? 
In this paper we give a positive answer as follows. 
Theorem. If A is a positive integer sequence, then the 

lEditor's Note (M.L.Perez): This article has been done by each 
of the above authors independently. 
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continued fraction (1) is convergent. 
Proof If A is a positive integer sequence, then (1) is 

a usually simple continued fraction and its quotient are positive 
integers. Therefore, by [2,Theorem165], it is convergent. 
The Theorem is proved. 

On applying [2, Theorems 165 and 176], we get a further 
result immediately. 

Theorem 2. If A is an infinite positive integer sequence, 
then (1) is equal to an irrational number a. Further, if A 
is not periodic, then a is not an algebraic number of degree 
two. 
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NOTES ON PRIMES SMARANDACHE PROGRESSIONS 

MaohuaLe 

Department of Mathematics., Zhanjiang Normal College 
Zhanjiang, Guangdong, P.RChina. 

Abstract. In this note we discuss the primes in Smarandache 
progressIons. 

For any positive integer n, let p n denote the nth prime. 
00 

For the fixed coprime positive integers a,b, let P(a,b )={ ap n +b} n=l' 

Then P(a,b) is called a Smarandache progression. 
In [1, Problem 17], Smarandache possed the following questions: 

Questions. How many primes belonng to P(a,b)? 
It would seen that the answers of Smarandache's question 

is different from pairs (a,b). We now give some 
observable examples as follows: 

Example 1. If a,b are odd integers, then ap n +b is 
an even integer for n>l. It implies that P(a,b)contains 
at most one prime. In particular, P( 1,1) contains only the 
prime 3. 

Exemple 2. Under the assumption of twin prime conjecture 
that there exist infinitely many primes p such that p+2 is 
also a prime, then the progression P(l,2) contains infinitely 
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many pnmes. 
Example 3. Under the assumption ofGennain prime con

jecture that there exist infinitely many primes p such that 
2p+ 1 is also a prime, then the progression P(2, 1) contains 
infinitely many primes. 
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THE PRIMES P WIlli 19 (P) =1 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R China. 

Abstract. In this paper we prove that if p= a k ... a1 a 0 

is a prime satisfying p> 1 0 and 19(p)= 1, then a k = ... =a 1 =a 0 = 1 
and k+ 1 is a prime. 

Let n = a I< ••• a1 a 0 be a decimal integer. Then the number 
of distinct dig i ts of n is called the length of Smarandache 
generalized period ofn and denoted by 19(n) (see [1, Notion 
114]). In this paper we prove the following result. 

Theorem. If p= a I< ••• a1 a 0 is a prime satisfying p> 1 0 
and Ig(p)=I, then we have a k= ... =a 1 =a 0 =1 and k+I is 
a pnme. 

Proof. Since 19(p)= 1, we have a k = ... =a 1 =a o· Let a 0 =a, 
where a is an integer with O<a~ 9. Then we have 
alp. Since p is a prime and p>lO, we get a=I and 

101<+1 - 1 
(1) p=I ... 11=101<+ ... + 10 + 1 =--------------, 

10-1 

where k is a positive integer. Since k+ 1> 1, ifk+ 1 is not 
a prime, then k+ 1 has a prime factor q such that (k+ 1 )/q> 1. 
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Hence, we see from (1) that 

10k+l_1 10q-l 10k+l_1 q-l (k+1Yq-l q 

p= ---------- = (------- )(---------) = (10 + ... + 10 +1)(10 + ... +10 +1). 
10-1 10-1 10 q-l 

It implies that p is not a prime, a contradiction. Thus, 
if p is a prime, then k+ 1 must be a prime. The theorem 
is proved. 
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SOME SOLUTIONS OF THE SMARANDACHE PRIME EQUATION 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R.China. 

Abstract. Let k be a positive integer with k> 1. In 
this paper we give some prime solutions (x l>X 2, ... , x bY) of 
the diophantine equation y=2x 1 x 2"'X k+ 1 with 2<x l<X 2<"'<X k<Y· 

Let k be a positive integer with k> 1. In [4, Problem 
11], Smarandache conjectured that the equation 
(1) y=2Xl x 2"'X k+ 1 ,2<x l<X 2<"'<X k 

has infinitely many prime solutions (x 1,X 2,"'X k,Y) for any k. 
This is a very dificult problem. The equation (1) is call 
the Smarandache prime equation (see [3, Notion 123]), while 
the authors gave solutions of (1) as follows. 

k=2, (Xl ,x 2 ,y) = (17,19,647); 
k=3, (Xl,x 2,X 3,y)=(3,5,19,571) 

F or any positive integer n, let p n be the n tit odd prime, 
and let q n =2 Pi P 2 .,. P n + 1. In this paper, by the calculating 
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result of [1] and [2], we -give nine other solutions as follows. 

where k=4, 10,66, 138, 139,311,368,495,514. 
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SMARANDACHE SERIES CONVERGES 

by Charles Ashbacher 
Charles Ashbacher Technologies 
Hiawatha, Iowa 

The Smarandache Consecutive Series is defined by repeatedly concatenating 
the positive integers on the right side of the previous element. 

1, 12, 123, 1234, .. , 123456789, 12345678910, 1234567891011, 

The Smarandache Reverse Sequence is defined by repeatedly concatenating the 
positive integers on the left side of the previous element. 

1, 21, 321, 4321, . . . , 987654321, 10987654321, 1110987654321, 

a) Consider the series formed by summing the inverses of the Smarandache 
Consecutive Series 

1/1 + 1/12 + 1/123 + 1/1234 + 

It is a simple matter to prove that this series is convergent. Forming the 
series 

1/1 + 1/10 + 1/100 + 1/1000 + . 

where it is well-known that this series is convergent to the number 10/9. 
Furthermore, the elements of the two series matched in the following correspondence 

1/1 <= 1/1, 1/12 <= 1/10, 1/123 <= 1/100, ... 

Therefore,by the ratio test, the sum of the inverses of the Smarandache Consecutive 
Series is also convergent. 

b) Consider the series formed by taking the ratios of the terms of the 
consecutive sequence over the reverse sequence. 

1/1 + 12/21 + 123/321 + 1234/4321 + 

In this case, it is straightforward to show that the series is divergent. 

Consider an arbitrary element of the sequence 

a 1 a 2 ••• a k 

e(n) = ----------------
alp, . a2a1 

where the digit ak = 9. Clearly, e(n) > 1/10, as the numerator and denominator 
of this ratio have the same number of digits. Since there are an infinite 
number of such terms, the series contains an infinite number of terms all 
greater than 1/10. This forces divergence. 
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A NOTE ON PRIMES IN THE SEQUENCE {a D + b} IF! 

MaohuaLe 

Department of Mathematics, Zhanjiang Nonna! College 
Zhanjiang, Guangdong, P.R. China. 

Abstract. Let a,b be integers such that gcd(a,b)=1 

and a* -1, 0 or 1. Let U(a,b)={a n + b} n=1. In this note 
we discuss the primes in U(a,b). 

Let a,b be integers such that gcd(a,b)=l and a* -1, 0 or 1. 

Let U(a,b)={a n + b} n=1. In [1, Problem 17], 
Smarandache posed the following questions: 

Question. How many primes belong to U(a,b)? 
It would seem that the answers of this questions is 

different from different pairs (a,b). We now give some 
observable examples as follows: 

Example 1. If a,b are odd integers, then a n +b is 
either an even integer or zero. It implies that U(a,b) contains 
at most one prime. In particular, U(3,-l) contains only the 
prime 2, U(3,1) does not contain any prime. 

Example 2. Ifa>2 and b=-l, then we have 

(1) a n+b = an -1= (a-1)(a 0-1 + a 0-2 + ... + 1). 
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'JV e see from ( 1 )that a D + b is not a prime if n> 1. It implies 
that U(a,b) contains at most one prime. In particular, U(4,-1) 
contains only the prime 3, U(lO,-l) does not contain any prime. 

Example 3. Under the assumption of Mer senne prime conjecture 
that there exist infinitely many primes with the form 
2 n -1, then the sequence U(2,-1)contains infinitely many primes. 

Reference 
1. F.Smarandache, Only Problems, not Solutions!, Xiquan 

Pub. House, Phoenix, Chicago, 1990. 
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THE PRIMES IN THE SMARANDACHE SYMMETRIC SEQUENCE 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.RChina. 

Abstract. Let S={ s n} n=1 Be the Smarandache symmetric 
sequence. In this paper we prove that if n is an even integer 
and nl2 ;E 1 (mod 3), then s n is not a prime. 

Let S={ s n} n=1 be the Smarandache symmetric sequence, 
where 

(1) s 1=1, s 2=11, s 3 =121, s 4 =1221, s s =12321, s 6 =123321, 
s 7 =1234321, s 8=12344321, .... 

Smarandache asked how many primes are there among S? 
(See [1, Notions 3]). In this paper we prove the following 
result: 

Theorem. Ifn is an iven integer and nl2 ;E 1 (mod 3), 
then s n is not a prime. 

Proof If n is an even integer, then n=2k, where 
k is a positive integer. We see from (1) that 

(2) sn = 12 ... kk ... 21 

174 



It implies that 

tl 12 tic t2k_1 ~ 

(3) S D = 1 * 10 + 2*10 + ... +k*10 
tic +1 

+k*10 + ... +2*10 +1*10 

where t1• t2 .... ,t2k are nonnegative integers. Since 10 t =1 (mod 3) 
for any nonnegative integer t, we get from (3) that 

(4) s D = 1+2+ ... +k+k+ ... +2+1= k(k+l)(mod 3). 
Ifk- l(mod 3), then either k = O(mod 3) or k= 2(mod3). 
In both cases, we have k(k+ 1)= O(mod 3) and 31 s D by (4). 
Thus, s D is not a prime. The theorem is proved. 

Reference 
1. Dumitrescu and Seleacu, Some Notions and Questions 

In Number Theory, Erhus Dniv. Press, Glendale, 1994. 
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ON SMARANDACHE GENERAL CONTINUED FRACTIONS 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.RChina. 

Abstract. Let A={ an} n=1 and B={b n} n=1 be two Smarandache 
type sequences. In this paper we prove that if a n+l ~ b n > 0 
and b n+l ~ b n for any positive integer n, the continued fraction 

(2) a 1 +----
a 2 + a 3 + is convergent. 

00 00 

Let A={ an} n=1 and B={b n} n=1 be two Smarandache 
type sequences. Then the continued fraction 

(1) 

b 1 

a 1 + ---------------------
b 2 

a 2 + --------------
b 3 

a 3 + --------

is called a Smarandache general continued fraction associated with A 
and B (see [1]). By using Roger's symbol, the continued 
fraction (1) can be written as 

(2) 
b 1 b 2 

a 1 +----
a 2 + a 3 + .... 

Recently, Castillo [1] posed the following question: 
1 

Question. Is the continued fractions 1 + -----
21 321 

12 + 123 + 1234 + ... 

convergent? 
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In this paper we prove a general result as follows. 
Theorem. If a ~I ~ b n > 0 and b n+1 ~ b n for any positive integer n, 

then the continued fraction (2) is convergent. 
Proof It is a well known fact that (2) is equal to the 

simple continued fraction 

1 1 
(2) a 1 +---

c1 + C 2 + ... , 

where 
b 2 b 4'" b21_2 

( 4) C 21-1 = ------------------- ~, 
b Ib 3 ... b 21_1 

b 1 b3 ... b21_1 

C 21 = ----------------- Ciz, +1, 

b 2b 4'" b 21 

t = 1,2, .... 

Since ~+I ~ b n > 0 and b n+1 ~ b n for any positive n, we see from (4) 
that c n ~ 1 for any n. It impJees that the simple continued 
fraction (3) is convergent. Thus, the Smarandache general 
continued fraction (2) is convergent too. The theorem is proved. 

Reference 
1. J. Castillo, Smarandache continued fractions, Smarandache 

Notions J., Vo1.9, No .1-2,40-42,1998. 
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THE LOWER BOUND FOR THE SMARANDACHE COUNTER C(O,n!) 

MaohuaLe 

Department of Mathematics, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R China. 

Abstract. In this paper we prove that if n is an integer 
with n~5, then the Smarandache counter C(O,n!) satisfies 
C(O,n! » (1-5 -k )(n+I)/4-k, where k=Llog n / log 5J. 

Let a be an integer with O:s; a:s; 9. For any positive 
decimal integer m, the number of a in digits of m is called 
the Smarandache counter of m with a. It is denoted by 
C(a,m) (see [1,Notion 132]). Let n be a positive integer. 
In this paper we give a lower bound for C(O,n!) as follows: 

Theorem. If n~ 5, then we have 

(1) C(0,n!»1I4(1-5 ok) (n+l) -k, 

where k=Llog n / log sJ 
Proof Let 

Ifn~5, then we have lOin! and a o =0. Further, let 
2 U II n! and 5 v lin! . By [2, Theorem 1 * 11 * 1], we get 
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(3) 

We see from (3) that u ~ v. It implies that there exist con
tinuous v zeros a 0 =a 1 = ... =a,...1 =0 in (2). So we have 

(4) C(O,n!)~v . 

Let k=[logn/log5]. Since [nl5 r]=o ifr>k, we 
see from (3) that 

00 

Since [nl5 r] ~ nl5 r -(5 r -1)/5 r ,we get from (5)that 

k 
(6) v ~ L (nl5 r - (5 r -1)/5 r)= 1/4(1-5 -k)(n+ l)-k 

r=1 

Substitute (6) into (4) yelds (1). The theorem is proved. 

Reference 
1. Dumitrescu and Seleacu, Some Notions and Questions 

In Number Theory, Erhus Univ. Press, Glendale, 1994. 
2. L.-K.Hua, Introduction to Number Theory, Springer, 

Berlin, 1982. 
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ON SMARANDACHE PSEUDO-PRIMES OF SECOND KIND 

MaohuaLe 

Department of Mathematics:, Zhanjiang Normal College 
Zhanjiang, Guangdong, P.R China. 

Abstract. In this paper we prove that there exist infinitely 
many Smarandache pseudo-primes of second kind. 

Let n be a composite number. If some permutation of the 
digits of n is a prime, then n is called a Smarandache pseudo
prime of second kind (see[I,Notion 65]). In this paper 
we prove the following result: 

Theorem. There exist infinitely many Smarandache pseudo-
primes of second kind. 00 

Proof Let the sequence P={ 100r+ I} r=1. By Dirichlet's 
theorem (see[2,Theorem 15]), P contains infinitely many 
primes. Let 

be a prime belonging to P. Then we have a o =1 and a 1 =0. 
Further let 

Then we have 10 I n, since a 1 =0. Therefore, n is a comp-
osite number. Moreover, by (1) and (2), some permutation 
of the digits of n is prime p. It implies that n is a 
Smarandache pseudo-prime of second kind. Thus, there exist 
infinitely many Smarandache pseudo-primes of second kind. The 
theorem is proved. 

Reference 
1. Dumitrescu and Seleacu, Some Notions and Questions 

In Number Theory, Erhus Univ. Press, Glendale, 1994. 
2. G.H.Hardy and E.M.Wright, An Introduction to the 

Theory of Numbers, Oxford Univ. Press, Oxford, 1938. 
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SUMMARy OF 
THE FIRST INTERNATIONAL CONFERENCE ON SMARANDACHE TYPE NOTIONS IN 
NUMBER THEORY (UNIVERSITY OF CRAIOVA, AUGUST 21-24 1997) 

by Henry Ibstedt 

The First International Conference on Smarandache Notions in Number Theory was held in 
Craiova, Romania, 21- 22 August 1997. The Organizing Committee had spared no effort in 
preparing programme, lodging and conference facilities. The Conference was opened by the 

professor Constantin Dumitrescu1
, chainnan of the Organizing Committee and the initiator 

of the conference and a leading personality in Number Theory research. He welcomed all 
participants. Unfortunately professor Dumitrescu's state ofhea1th did not permit him to 
actively lead the conference, although he delivered his first paper later in the day and was 

present during most sessions. He requested the author of these lines to chair the first day of the 
conference, a task for which I was elected to continue for the rest of the conference. 

In view of the above it is appropriate that I express mine and the other participants gratitude to 
the organizers and in particular to the Dumitrescu family who assisted throughout with social 
and arrangements and the facilities required for the smooth running of the conference. I would 
like to pay special tribute to professor Dumitrescu's son Antoniu Dumitrescu who presented his 
father's second paper on his behalf 

Unfortunately not all those who intended to participate in the conference were able to corne. 
Their contributions which were submitted in advance have been gratefully received and are 
included in these proceedings. 

A pre-conference session was held with professor V. Seleacu the day before the conference. 
This was held in french with Mrs Dumitrescu as interpreter. Prof. Seleacu showed some 
interesting work being conducted by the research group at Craiova University. Mrs Dumitrescu 
also acted actively during the conference to bridge language difficulties. 

Special thanks were expressed at the conference to Dr. F. Luca, USA, who helped during 
sessions when translation from the romanian language to english \Xt"aS needed. In this context 
thanks are also due to my wife Anne-Marie Rochard-Ibstedt who made my participation 
possible by helping me drive from Sweden to Paris and then across Europe to Craiova. She was 
also active during the conference in taking photos and distributing documents. 

Although united through the internarionallanguage of Mathematics it was not always possible 
to penetrate presentations in such detail that extended discussions could take place after each 
session. Informal contacts between participants proved important and opportunities for this was 
given during breaks and joint dinners. 

In the concluding remarks the chairman thanked the organizers and in particular professor 
Dumitrescu for having very successfully organized this conference. It was noted that the 
presentations were not made as an end in itself but as sources for further thought and research 
in this particular area of Number Theory, n.b. the very large number of open problems and 
notions formulated by Florentin Srnarandache. The hope was expressed that the conference had 
linked together researchers for continuing exchange of views with our modern means of 
communication such as electronic mail and high speed personal computers. 

Professor Dumitrescu thanked the chairman for his work. 

I 1949-1997, Obituary in Vol. 8 of the Smarandache Notions Journal. 
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PREAMBLE TO 
THE FIRST INTERNATIONAL CONFERENCE ON SMARANDACHE TYPE NOTIONS IN 
NUMBER THEORY (UNIVERSITY OF CRAIOVA, AUGUST 21-24 1997) 

by Henry Ibstedt 

Ladies and gentlemen, 

It is for me a great honour and a great pleasure to be here at this conference to present some 
of the thoughts I have given to a few of the ideas and research suggestions given by Florentin 
Smarandache. In both of my presentations we will look at some integer sequences defined by 
Smarandache. As part of my work on this I have prepared an inventory of Smarandache sequences, 
which is probably not complete, but nevertheless it contains 133 sequences. I welcome contributions to 
complete this inventory, in which an attempt is also made to classify the sequences according to 
certain main types. 

Before giving my first presentation I would like to say a few words about what eventually 
brought me here. 

When I was young my interest in Mathematics began when I saw the beauty of Euclidean 
geometry - the rigor of a mathematical structure built on a few axioms which seemed the only ones 
that could exist. That was long before I heard of the Russian mathematician Lobachevsky and 
hyperbolic geometry. But my facination for Mathematics and numbers was awoken and who can 
dispute the incredible beauty of a formula like 

and many others. But there was also the disturbing fact that many important truths can not be 
expressed in closed formulas and that more often than not we have to resort to approximations and 
descriptions. For a long time I was fascinated by classical mechanics. Newton's laws provided an ideal 
framework for a great number of interesting problems. But Einstein's theory of relativity and 
Heisenberg's uncertainty relation put a stop to living and thinking in such a narrow world. Eventually 
I ended up doing computer applications in Atomic Physics. But also my geographical world became 
too narrow and I started working in developing countries in Africa, the far East and the Canbbean, far 
away from computers, libraries and contact with current research. This is when I returned to numbers 
and Number Theory. In 1979, when micro computers hadjust started making an impact, I bought one 
and brought it with me to the depths of Africa. Since then Computer Analysis in Number Theory has 
remained my major intellectual interest and stimulant 

With these words I would now like to proceed to the subject of this session. 
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The Smarandache Sequence Inventory 

Compiled by Henry Ibstedt, July 1997 

A large number of sequences which originate from F. Smarandache or are of similar 
nature appear scattered in various notes and papers. This is an attempt bring this 
together and make some notes on the state of the art of work done on these sequences. 
The inventory is most certainly not exhaustive. The sequences have been identified in the 
following sources where Doc. No. refers the list of Smarandache Documents compiled by 
the author. Nearly all of the sequences listed below are also found in Doc. No.7: Some 
Notions and Questions in Number Theory, C. Dumitrescu and V. Seleacu, with, sometimes, 
more explicit definitions than those given below. Since this is also the most comprehensive 
list of Smarandache Sequences the paragraph number where each sequence is found in 
this document is included in a special column "D/S No" 

Source 
Numeralogy or Properties of Numbers 
Proposed Problems, Numerical Sequences 

~eq. No. 
1-37 

38-46 
47-57 
58-61 

62-118 
119-133 

Doc. No. 
1 
2 

A Set of Conjectures on Smarandache Sequences 
Smarandache's Periodic Sequences 

16 
17 

Only Problems, Not Solutions 4 
SOrt)e _t-J <:)tio_~~() n_~_ 9.t:J~~tio~~j_n _N_u_ 1"0 t>~! T~~_ory __ 7 

Classification of sequences into eight different types (T): 

The classification has been done according to what the author has found to be the 
dominant behaviour of the sequence in question. It is neither exclusive nor absolutely 
conclusive. 

Recursive: I 
R 

Non-Recursive: F 

Concatenation C 
Elimination: E 

Arrangement: A 

Mixed operations: M 

Permutation: P 

tn=f(tn--l), iterative, i.e. tn is a function of tn-l only. 
tn=f(tdj, ... J, where i,j<n, i;t:j and f is a function of at least 
two variables. 
tk=f(n), where fin) may not be defined for all n, hence 
k~n. 

Concatenation. 
All numbers greater than a given number and with a 
certain property are eliminated. 
Sequence created by arranging numbers in a 
prescribed way. 
Operations defined on one set (not necessarily N) to 
create another set. 
Permutation applied on a set together with other 
formation rules. 
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State of the 

Seq. D/S T Name Definition (intuitive and/or analytical) Art 

No. No. References 
1 f Reverse Seauence 1. 21. 32l, 4321. 54321. .... 10987654321. ... 

2 R Multiplicative 2,3,6, 12, 18,24,36,48,54, .... For arbitrary n) and n2: 
Sequence n.=Min(ni·nil, where 1Q3 and i:<k, i<k, i .. i. 

3 R Wrong Numbers n=a)a2 ... a" IQ2 (where 0)02 ... 0, -0)·10")+02·10"'2+ ... +0.). Reformulated 
For n>k the terms of the sequence a), 02, ... an ... are 

n-\ 

defined through an = TI a i . n is a wrong number if 
i=n-I.:: 

the seauence contains n, 

4 f Impotent Numbers 2,3,4,5,7,9, 13, 17, 19,23,25,29,31. 37, 41. 43, 47, 49, 
53,59,61. .... A number n whose proper divisors product 
is less than n, i.e. {p, 02; where p is prime} 

5 E Random Sieve 1.5,6.7.11.13, 17, 19,23,25, .... General definition: 
Choose a positive number Ul at random; -delete all 
multiples of all its divisors, except this number; choose 
another number U2 greater than Ul among those 
remaining; -delete all multiples of all its divisors, except 
this number; ... and so on. 

6 F Cubic Base 0,1.2,3.4.5,6,7,10,11.12,13,14,15,16, 17,20,21 ,22,23,24,25,26, 
... Each number n is written in the cubic base. 

7 I Anti-Symmetric 11,1212,123,123,12341234, .,. 
Seauence ,12345678910 111212345678910 1112, .... 

8 R ss2(n) 1,2,5,26,29,677,680,701. ... ss2(n) is the smallest number, Ashbacher. C. 
strictly greater than the previous one, which is the Doc.14,p25. 
squares sum of two previous distinct terms of the 
seauence. 

9 R ssl (n) 1.1,2,4,5,6,16,17,18,20, ... ssl (n) is the smallest number, 
strictly greater than the previous one (for n~3), which is 
the squares sum of one ore more previous distinct terms 
of the seauence. 

10 R nss2(n) 1,2,3.4.6,7,8,9,11.12,14,15,16,18, ... nss2(n) is the smallest Ashbacher, C. 
number, strictly greater than the previous one, which is Doc.14, P 29. 
NOT the squares sum of two previous distinct terms of 
the seauence. 

11 R nssl(n) 1,2,3,6,7,8,11,12,15,16,17,18,19, ... nss1 (n) is the smallest 
number. strictly greater than the previous one, which is 
NOT the squares sum of one ore more previous distinct 
terms of the seauence. 

12 R cs2(n) 1.2,9,730,737,389017001. 389017008,389017729, ... cs2(n) Ashbacher, C. 
is the smallest number, strictly greater than the previous Doc.14, p28. 
one, which is the cubes sum of two previous distinct 
terms of the seauence 

13 R csl(n) 1,1.2,8,9,10,512,513,514,520, ... csl (n) is the smallest 
number, strictly greater than the previous one (for n~3). 
which is the cubes sum of one ore more previous 
distinct terms of the sequence. 

14 R ncs2(n) 1,2,3,4,5,6,7,8,10,11.12,13,14,15, ... ncs2(n) is the smallest Ashbacher, C. 
number, strictly greater than the previous one, which is Doc.14, p 32. 
NOT then cubes sum of two previous distinct terms of the 
sequence. 

15 R ncsl(n) 1,2,3,4,5,6.7.10 ..... 26,29, ... ncsl (n) is the smallest number, 
strictly greater than the previous one, which is NOT the 
cubes sum of one or more previous distinct terms of the 
sequence. 

16 R SGR, General Let IQj be natural numbers, and 01. 02, ... , a. given 
Recurrence Type elements, and R a j-relationsship (relation among j 
Sequence elements), Then: 1) The elements a), 02, ... , a. belong to 

SGR.2) If ml, m2, "', mi belong to SGE. then R(mJ, m2, "', 
mil belongs to SGR too. 3) Only elements, obtained by 
rules 1) and/or 2) applied a finite number of times, 
belong to SGR. 

17 F Non-Null Squares, 1. 1,1.2,2,2,2,3,4.4, .... The number of ways in which n can 
ns(n) be written as a sum of non-null squares. Example: 

9=]2+]2+]2+]2+]2+]2+]2+]2+]2=]2+]2+ 12+ 12+ ]2+22= ]2+22+ 
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22_32. Hence ns(9)'-4. 

18 F Non-Null Cubes 1.1. 1. 1.1. 1.1.2.2.2.2.2.2.2.2.(8)3.{3)4 .•.. 
19 F General Partition Let f be an arithmetic function. and R a relation among 

Sequence numbers. {How many times can n be written in the form: 
n=R(f(n,).f(n2) ...... f(n.)) for some k and n,. n2 •... n, such 
that n,+n2+ ... +n,=n ~. 

20 C Concatenate Seq. 1.22.333.4444.55555.666666 ..... 
21 F Triangular Base 1.2.10.11.12.100.101.102.110.1000 .... Numbers written in 

triangular base. defined as follows: tn=n(n+ 1 )/2 for n~ 1. 

22 F Double Factorial 1.10.100.101.110.200.201.1000 .... 
Base 

23 R Non-Multiplicative Let m,. m2 •... m. be the first k given terms of the 
Sequence sequence. where k~: then mi. for i~k+ 1. is the smallest 

number not equal to the product of the k previous 
terms. 

24 R Non-Arithmetic If m,. m2 are the first k two terms of the sequence. then Ibstedt. H. 
Sequence mik for Q3. is the smallest number such that no 3-term Doc. 19. p. 1. 

arithmetic proQression is in the sequence. 
25 R Prime Product 2.7.31.211.2311.30031.510511. ... pn= 1+P'P2 ... pn. where p, Ibstedt. H. 

Sequence is the k-th prime. Doc. 19.~.4. 
26 R Square Product 2,5.37.577.14401.518401.25401601. ... Sn=1+s,s2 ... Sn. where Ibstedt. H. 

Sequence s, is the k-th square number. Doc. 19. p. 7. 
27 R Cubic Product 2.9.217.13825.1728001.373248001. ... Cn=1+c,c2 ... cn. 

Sequence where c, is the k-th cubic number. 
28 R Factorial Product 1.3.13.289.34561.24883201. '" Fn=1+t,f2 ... fn. where f, is the 

Sequence k-th factorial number. 
29 R U-Product Let Un. n~ 1. be a positive integer sequence. Then we 

Sequence define a U-sequence as follows: Un=1+u,u2 ... Un. 
(Generalization) 

30 R Non-Geometric 1.2.3.5.6.7.8.10.11.13,14,15 •... Definition: Let m, and m2 
Sequence be the first two term of the sequence. then m, .for Q3. is 

the smallest number such that no 3-term geometric 
progression is in the sequence. 

31 F Unary Sequence 11. 1 11. 11111. 11 11111. 111 11111111. ... Un= 1 1... 1. pn 
diqits of "1". where Pn is the n-th prime. 

32 F No Prime Digits 1.4.6.8.9.10.11.1.1.14.1.16.1,18 •. ,. Take out all prime digits 
Sequence from n. 

33 F No Square Digits 2.3.4.6.7.8.2.3.5.6.7.8.2.2.22.23.2.25 .... Take out all square 
Sequence digits from n. 

34 C Concatenated 2,23.235.2357.235711. 23571113 •... Ibstedt. H. 
Prime Sequence Doc. 19. p. 13. 

35 C Concatenated Odd 1.13.135,1357.13579.1357911.135791113 .... Ibstedt. H. 
Sequence Doc. 19. p. 12 

36 C Concatenated 2.24.246.2468.246810.246810 12 .... Ibstedt. H. 
Even Sequence Doc. 19.p. 12. 

37 C Concatenated S- Let s" S2. 53 •.•. Sn be an infinite integer sequence. Then Sl, 
Sequence S,S2. S,S2S3. S,S2S3 •• • Sn is called the concatenated S-
(Generalization) seauence. 

38 A Crescendo Sub-Seq. 1. 1.2 1.2.3 1.2.3.4 1.2.3.4.5 ... 
39 A Decrescendo Sub-So 1. 2.1 3.2.1 4.3.2.1 5.4.3.2.1 ... 
40 A Cresco Pyramidal 1. 1.2.1 1.2.3.2.1. 1.2.3.4.3,2.1 ... 

Sub-S 
41 A Decresc. Pyramidal 1. 2.1.2. 3.2.1.2.3. 4.3.2.1.2.3.4 .... 

Sub-S 
42 A Cresco Symmetric 1. 1. 2.1.1.2. 3.2.1.1.2.3. 1.2.3.4.4.3.2.1 ... 

Sub-S 
43 A Decresc. Symmetric 1.1. 2.1.1.2. 3.2.1.1.2.3. 4.3.2.1. 1.2.3.4 .... 

Sub-S 
44 A Permutation Sub-S 1. 2. 1.3.4.2. 1.3.5.6.4.2. 1.3.5.7.8.6.4.2.1 .... 
45 E Square-Digital Sub- 0.1. 4. 9. 49.100.144.400.441. ... Ashbacher. C. 

Sequence Doc.14. p 45. 
46 E Cube-Digital Sub- O. 1. 8. 1000. 8000 .... Ashbacher. C. 

Sequence Doc.14.J~46. 
47 E Prime-Digital Sub- 2. 3. 5. 7. 23.37.53.73 Ashbacher. C. 

Sequence Doc.14. p 48. 
Ibstedt. H. 
Doc. 19. p. 9. 
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48 E Square-Partial- 49, 100, 144, 169,361. 400, 441. . "Squares which can be Ashbacher, C. 
Digital Sub-Seq .. partitioned into groups of digits which are perfect Doc.14, p 44. 

squares 
49 E Cube-Partial-Digital 1000.8000, 10648,27000, ". Ashbacher, C. 

Sub-Sequence Doc.14, p47. 

50 E Prime-Partial-Digital 23,37,53,73. 113, 137, 173, 193. 197 .... Primes which can Ashbacher. C. 
Sub-Sequence be partitioned into groups of digits which are also Doc.14,p49. 

primes. 
51 F Lucas-Partial Digital 123, ". (1+2=3, where 1.2 and 3 are Lucas numbers) Ashbacher. C. 

Sub-Sequence Doc.14,p34. 

52 E f-Digital Sub- If a sequence {an}, n~ 1 is defined by an-fIn) (a function 
Sequence of n), then the f-digital subsequence is obtained by 

screening the sequence and selecting only those terms 
which can be partitioned into two groups of digits g, 
and orof(ol!. 

53 E Even-Digital Sub-So 12,24,36.48,510.612,714,816,918,1020,1122,1224, ... Ashbacher, C. 
Doc.14,243. 

54 E Lucy-Digital Sub-So 37,49, ... (i.e. 37 can be partioned as 3 and 7, and b=7; Ashbacher, C. 
the lucky numbers are Doc.14,p51. 
1.3.7,9,113,15,21,25,31,33.37.43.49,51.63, ... 

55 M Uniform Sequence Let n be an integer;t{), and d" dz. ". d r distinct digits in 
base B. Then: multiples of n, written with digits d" dz, ." 
dr only (but all r of them). in base B, increasingly ordered. 
are called the uniform S. 

56 M Operation Let E be an ordered set of elements. E={e" eZ. ... } and 8 
Sequence a set of binary operations well defined for these 

elements. Then: aH,{ el. eZ. ".}, an+,=min{e, 8, ez 8z ... 8A 

e.,.T}>an for n~ 1. 
57 M Random Operation Let E be an ordered set of elements, E={el. ez, ".} and 8 

Sequence a set of binary operations well defined for these 
elements. Then: a\E:{ e" eZ. ... }, a.,.,={e, 8, ez 8z ". 8A 

e.,.,}>an for n> 1. 
5B M N-digit Periodic 42,18.63,27.45,09 ,81.63,27, ". Start with a positive integer Ibstedt. H. 

Sequence N with not all its digits the same. and let N' be its digital Doc. 20. p. 3. 
reverse. Put N,=l N-N'I and let N,' be the digital reverse 
of N,. Put Nz=I N,-N,'I , and so on. 

59 M Subtraction Periodic 52.24.41.13,30,02.19.90,08.79.96,68,85,57,74.46.63.35.52. ". Ibstedt. H. 
Sequence Let c be a fixed positive integer. Start with a pasitive Doc. 20, p. 4. 

integer N and let N' be its digital reverse. Put N,=l N'-d 
and let N,' be the digital reverse of N,. Put Nz=I N,'-d, 
and so on. 

60 M Multiplication 68.26.42.84.68, ". Let c> 1 be a fixed integer. Start with a Ibstedt. H. 
Periodic Sequence positive integer N, multiply each digit x of N by c and Doc. 20, p. 7. 

replace that digit by the last digit of cx to give N" and 
so on. 

61 M Mixed Composition 75.32.51.64,12,31.42,62,84.34,71.86,52,73,14,53.82. 16.75 .... Ibstedt. H. 
Periodic Sequence Let N be a two-digit number. Add the digits. and add Doc. 20, p. 8. 

them again if the sum is greater then 10. Also take the 
absolute value of their difference. These are the first and 
second digits of N, . Now repeat this. 

62 1 I Consecutive Seq. 1,12.123,12345.123456.1234567. 
63 2 liP Circular Sequence 1. (12.21). (123. 231. 312), (1234.2341.3412.4123). ... Kashihara. K. 

Doc. 15. p. 25. 
64 3 A Symmetric 1. 11. 121. 1221. 12321. 123321. 1234321, 12344321. Ashbacher. C. 

Seauence Doc.14. p 57. 
65 4 A Deconstructive 1.23.456.7891.23456.789123.4567891,23456789. Kashihara. K. 

Sequence 123456789.1234567891. Doc. 15. p.6. 
66 5 A Mirror Sequence 1.212,32123.4321234.543212345,65432123456, Ashbacher. C. 

Doc.14. P 59. 
67 6 AlP Permutation 12, 1342. 135642. 13578642. 13579108642, Ashbacher. C. 

7 Sequence 135791112108642,1357911131412108642 ... Doc.14. p 5. 
Gen. in doc. no. 7 

68' M Digital Sum (0.1.2.3.4.5,6,7,8.9). (1.2.3.4,5.6,7,8,9.10), Kashihara, K. 
(2.3.4.5.6,7.8.9.10.11]. .. Jd,{nJ is the sum of digits] Doc. 15. p.6. 

69 ' M Digital Products 0.1.2.3.4.5.6,7,8.9.0, 1.2,3.4,5.6.7.8.9.0.2.4.6,8, 19.12.14.16.18, Kashihara. K. 
0.3.6.9.12.15.18.21.24,27,0.4.8.12.16,20.24.28.32.36.0.5.10.1 Doc. 15, p.7. 
5,20.25 .... dp(n) is the product of digits 

70 15 F Sim~le Numbers 2.3.4.5.6,7,8,9.10.11.13.14.15.17, .. A number is called a Ashbacher. C. 
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simple number if the product of its proper divisors is less Doc.14, p20. 
than or equal to n. 

71 19 I Pierced Chain 101. 1010101. 10101010101. 101010101010101. ... Ashbacher. C. 
c(2)=101·10001. c(3)=101·100010001. etc Doc.14, p 60. 
Qn. How many c(n)/lOO are primes? Kashihara, K. 

Doc. 15, p. 7. 

72 20 F Divisor Products 1.2,3,8,5,36.7,64,27,100,11.1728,13,196,225,1024, 17, ... pd(n) Kashihara. K. 
is the product of all positive divisors of n. Doc. 15. p. 8. 

73 21 F Proper Divisor 1.1.1.2.1.6.1.8.3.10.1.144.1.14.15.64.1.324 .... Pd(n) is the Kashihara. K. 
Products I product of all positive divisors of n except n. Doc. 15. p. 9. 

74 22 F Square 1.2,3.1.5,6.7,2.1.10,11.3.14, 15.1.17,2.19,5,21.22.23,6, 1.26 .... Ashbacher. C. 
Complements For each integer n find the smallest integer k such that Doc.14. p9. 

nk is a perfect square. Kashihara, K. 
Doc. 15. p. 10. 

75 23 F Cubic 1.4.9,2,25.36.49,1.3,100,121.18,169.196.225.4.289 . ... For Ashbacher. C. 
24 Complements each integer n find the smallest integer k such that nk is Doc.14. p9. 

Gen. to m-power a perfect cube. Kashihara. K. 
complements in Doc. 15, p. 1l. 
doc. no. 7 

76 25 E Cube free sieve 2,3.4,5,6.7,9,10,11.12,13.14,15, 17.18, 19.20,21.22,23.24.25.26 
26 Gen. in doc. no. 7 .28 .... 

77 27 E Irrational Root Sieve 2.3.5.6.7.10.11.12.13.14.15.17. Eliminate all ak., when a is 
squarefree. 

78 37 F Prime Part (Inferior) 2.3,3.5,5.7.7.7.7,11.11.13,13,13.13,17, 17, 19.19.19.19.23.23,2 Kashihara. K. 
3.23.23.23, ... For any positive real number n porn) equals Doc. 15. p. 12. 
the largest prime less than or equal to n. 

79 38 F Prime Part (Superior) 2.2.2.3,5,5.7.7.11.11.11.11.13,13.17.17.17,17, 19, 19,23,23.23. Kashihara. K. 
23 .... For any positive reat number n pp(n) equals the Doc. 15. p. 12. 
smallest prime number greater than or equal to n. 

80 39 F Square Part (Inferior) 0.1,1.1.4.4.4.4.4.9.9,9,9,9.9,9, .. , The largest square less Kashihara. K. 
than or equal to n. Doc. 15. p. 13. 

81 40 F Square Part 0,1.4.4.4.9.9.9,9.9 .... The smallest square greater than or Kashihara. K. 
(Superior) equal to n. Doc. 15. p. 13. 

82 41 F Cube Part (Inferior) 0.1,1.1,1.1,1, 1 ,8,8.8.8.8,8.8,8,8.8,8.8.8.8,8.8.8,8.8 .... The 
largest cube less than or equal to n. 

83 42 F Cube Part (Superior) 0.1.8,8,8,8.8,8,8 .... The smalest cube greater than or 
equal to n. 

84 43 F Factorial Part 1.2,2.2.2. (18)6 .... Fp(n) is the largest factorial less than or 
(Inferior) equal to n. 

85 44 F Factorial Part 1.2. (4)6, (18)24. (11) 120, ... fp(n) is the smallest factorial 
(Superior) greater than or equal to n. 

86 45 F Double Factorial 1.1.l,2.3.8, 15, 1.105, 192,945.4, 10395.46080, l.3.2027025, ... 
Complements For each n find the smallest k such that nk is a double 

fadorial. i.e. nk= 1·3·5T9· ... ·n (for odd n) and 
nk=2·4·6·8· ... ·n (for even n) 

87 46 F Prime additive 1.0.0.1.0,1,0.3.2.1.0.1.0.3.3.2 .... tn=n+k where k is the Ashbacher. C. 
complements smallest integer for which n+k is prime (reformulated). Doc.14. p 2l. 

Kashihara. K. 
Doc. 15. p. 14. 

88 F Factorial Quotients 1.1.2.6.24,1.720.3.80.12.3628800 ... , to=nk where k is the Kashihara. K. 
smallest integer such that nk is a factorial number Doc. 15. p. 16. 
(reformulated) . 

89 • F Double Factorial 1.2.3.4.5.6.7.4.9.10.11.6 .... d,(n) is the smallest integer 
Numbers such that d"n !! is a multiple of n. 

90 55 F Primitive Numbers 2.4.4.6.8.8,8.10.12.12.14.16.16.16.16 .... S2(n) is the smallest Important 
(of power 2) integer such that S2(n)! is divisible by 2n. 

91 56 F Primitive Numbers 3.6.9.9.12,15.18.18 .... S3(n) is the smallest integer such Kashihara. K. 
57 (of power 3) that S3(n)! is divisible by 3n. Doc. 15. p. 16. 

Gen. to power p. p 
iprime. 

92 M Sequence of Definition: Unsolved problem: 55 
Position 

93 58 F Square Residues 1.2.3.2.5,6.7.2.3.10,11.6 .... S,(n) is the largest square free 
number which divides n. 

94 59 F Cubical Residues 1.2.3.4.5,6.7.9,10,11.12,13, ... C,(n) is the largest cube free 
60 Gen. to m-power number which divides n. 

residues. 
95 61 F Exponents (of power 0.1.0.2,0,1,0.3.0.1.0.2,0.1.0.4, ... e~(n)=k if 2' divides n but Ashbacher. C. 
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21 2'<.' if it does not. Doc.14. p 22. 

96 62 F Exponents (of power 0.0.1.0.0.1.0.0.2.0.0.1.0.0.1.0.0.2 •... e2(n)=k if 3" divides n Ashbacher 
63 3). Gen. to expo of but 3"·' if it does not. Doc.14. p 24. 

[power 0 
97 64 F/P Pseudo-Primes of 2.3.5.7.11.13.14.16.17.19.20 .... A number is a pseudo- Kashihara. K. 

65 first kind. Ext. to prime if some permutation of its digits is a prime Doc. 15. p. 17. 
66 second and third (including the identity permutation). 

kind in doc. no. 7. 
98 69 F/P Pseudo-Squares of 1.4.9.10.16.18.25.36.40 .... A number is a pseudo-square if Ashbacher. C. 

70 first kind. Ext. to some permutation of its digits is a perfect square Doc.14. p 14. 
71 second and third (including the identity permutation). Kashihara. K. 

kind in doc. no. 7. Doc. 15.2. 18. 
99 72 F/P Pseudo-Cubes of 1.8.10.27.46.64.72.80.100 •... A number is a pseudo-cube Ashbacher. C. 

73 first kind. Ext. to if some permutation of its digits is a cube (including the Doc.14. p 14. 
74 second and third identity permutation). Kashihara. K. 
75 kind in doc. no. 7. Doc. 15. p. 18. 
76 (Gen. Pseudo-m-
77 powers) 

100 78 F/P Pseudo-Factorials of 1.2.6.10.20.24.42.60.100.102.120 .... A number is a pseudo-
79 first kind. Ext. to factorial if some permutation of its digits is a factorial 
80 second and third number (including the identity permutation). 

kind in doc. no. 7. 
101 81 F/P Pseudo-Divisors of 1.10.100.1.2.10.20.100.200.1.3.10.30 .... A number is a 

82 first kind. Ext. to pseudo-divisor of n if some permutation of its digits is a 
83 second and third divisor of n (including the identity permutation). 

kind in doc. no. 7. 
102 84 F/P Pseudo-Odd 1.3.5.7.9.10.11.12.13.14.15.16.17 .... A number is c pseudo- Ashbacher. C. 

85 Numbers of first odd number if some permutation of its digits is an odd 00c.14. p 16. 
86 kind. Ext. to second number. 

and third kind in 
doc. no. 7. 

103 87 F/P Pseudo-Triangular 1.3.6.10.12.15.19.21.28.30.36 ....... A number is a pseudo-
Numbers triangular number if some permutation of its digits is a 

triangular number. 
104 88 F/P Pseudo-Even 0.2.4.6.8.10.12.14.16.18.20.21.22.23 ....... A number is a Ashbacher. C. 

89 Numbers of first pseudo-even number if some permutation of its digits is 00c.14. p17. 
90 kind. Ext. to second an even number. 

and third kind in 
doc. no. 7. 

105 91 F/P Pseudo-Multiples (of 0.5.10.15.20.25.30.35.40.45.50.51 ....... A number is a Ashbacher. C. 
92 5) of first kind. Ext. pseudo-multiple of 5 if some permutation of its digits is a 00c.14. p19. 
93 to second and third mUltiple of 5 (including the identity permutation). 
94 kind in doc. no. 7. 
95 (Gen. to Pseudo-
96 multiples of p.) 

106 100 F Square Roots 0.1.1.1.2.2.2.2.2.3.3.3.3.3.3.3 .... So(n) is the superior integer 
part of the square root of n. 

107 101 F Cubical Roots 0.1.1.1.1.1.1.1. 19 (2). 37 (3) .... cq(n) is the superior integer 
102 Gen. to m-power part of the cubical root of n. 

roots mcln) 
108 47 F Prime Base 0.1.10.100.101 1000.1001.10000.1000 1.10010 .... See I Kashihara. K. 

Unsolved probiem: 90 Ooc. 15. p. 32. 
109 48 F Square Base 0.1.2.3.10.11.12.13.20.100.101. ... See Unsolved problem: 

49 Gen. to m-power 91 
base and gen. 
base (Unsolved 
problem 93) 

110 28 M Odd Sieve 7.13.19.23.25.31.33.37.43 .... All odd numbers that are not 
equal to the difference between two primes. 

111 29 E Binary Sieve 1.3.5.9.11.13.17.21.25 .... Starting to count on the natural Ashbacher. C. 
numbers set at any step from 1: -delete every 2-nd 00c.14. p 53. 
numbers; -delete. from the remaining ones. every 4-th 
numbers ... and so on: delete. from the remaining ones. 
evEm' 2"-th numbers. k= 1.2.3 ..... 

112 30 E Trinary Sieve 1.2.4.5.7.8.10.11.14.16.17 .... (Oefinition equiv. to 114) Ashbacher. C. 
31 Gen. to n-ary sieve 00c.14. p 54. 

113 32 E Consecutive Sieve 1.3.5.9.11.17.21.29.33.41.47.57 .... From the natural Ashbacher. C. 
numbers: - keep the first number. delete one number out 00c.14. p 55. 
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of 2 from all remaining numbers; - keep the first 
remaining number. delete one number out of 3 from the 
next remaining numbers; and so on 

114 33 E General-Sequence Let Ui> 1. for i-1. 2. 3 •...• be a strictly increasing integer 
Sieve sequence. Then: From the natural numbers: -keep one 

number among 1.2.3 ..... u,-l and delete every udh 
numbers; -keep one number among the next uz-1 
remaining numbers and delete every u2Jh numbers; and 
so on. for step k (IG!: 1): keep one number among the next 
u,-l remaining numbers and delete every udh numbers; 

115 36 M General Residual (x+C,J .... (X+CFlmd .m=2. 3. 4. "" where C. lsisF(m). Kashihara. K. 
Sequence forms a reduced set of residues mod m. x is an integer Doc. 15. p. 11. 

and f is Euler's totient. 

116 M Table:(Unsolved 6.10,14,18,26.30.38.42.42.54,62.74.74.90 .... tn is the largest Kashihara. K. 
103) even number such that any other even number not Doc. 15. p. 19. 

exceeding it is the sum of two of the first n odd primes. 
117 M Second Table 9,15.21.29,39.47,57,65.71.93.99.115,129.137 .... Vn is the Kashihara. K. 

largest odd number such that any odd number ?9 not Doc. 15. p. 20. 
exceeding it is the sum of three of the first n odd primes. 

118 M Second Table 0.0.0,0,1.2.4.4.6.7,9,10.11.15.17.16,19,19.23 .... a2l<+' Kashihara. K. 
Sequence represents the number of different combinations such Doc. 15, p. 20. 

that 2k+ 1 is written as a sum of three odd primes. 
119 34 E More General- Let Ui> 1, for i= 1, 2, 3, .... be a strictly increasing integer 

Sequence Sieve sequence, and V;$Ui another positive integer sequence. 
Then: From the natural numbers: -keep the v;-th number 
among 1.2.3 .... ,u,-l and delete every u;.th numbers; -
keep the vz-th number among the next uz-1 remaining 
numbers and delete every u2.th numbers; and so on. for 
step k (IG!: 1): -keep the vk-th number among the next uk-1 
remaining numbers and delete every u,Jh numbers; 

120 35 F Digital Sequences In any number base B. for any given infinite integer or 
Special case: rational sequence s,. S2, S3, '''' and any digit D from ° to 
Construction B-1. build up a new integer sequence which associates 
sequences to s, the number of digits of D of s, in base B, to S2 the 

number of digits D of S2 in base B. and so on. 
121 50 F Factorial Base 0.1.10,11,20,21.100.101.110,111.120.121.200,201.210,211. 

... (Each number n written in the Smarandache factorial 
base.J(Smarandache defined over the set of natural 
numbers the following infinite base: for IG!: 1. f.=k!) 

122 51 F Generalized Base (Each number n written in the Smarandache 
generalized base.J(Smarandache defined over the set 
of natural numbers the following infinite base: 1=go<g,< 
... <g.< ... ) 

123 52 F Smarandache 1.2.3.4.5.3.7.4.6.5, .... SIn) is the smallest integer such that 
Numbers s(n)! is divisible by n. 

124 53 F Smarandache 1,1.2.6,24.1.720.3,80,12.3628800 .. " . For each n find the 
Quotients smallest k such that nk is a factorial number. 

125 54 F Double Factorial 1.2.3.4.5.6.7.4.9.10.11.6.13 ..... dr(n) is the smallest integer 
Numbers such that d,(n)!! is a multiple of n. 

126 67 R Smarandache a,?2, for n?2 a n= the smallest number that is not divisible 
almost Primes of the by any of the previous terms. 
first kind 

127 68 R Smarandache a,?2. for n?2 a n= the smallest number that is coprime 
almost Primes of the with all the previous terms. 
second kind 

128 97 C Constructive Set S I: 1.2 belong to S 
R (of digits 1 and 2) II: if a and b belong to S. then ab (concatenation) 

belongs to S 
III: Only elements obtained be applying rules I and II a 
finite number of times belong to S 

129 98 C Constructive Set S I: 1.2.3 belong to S 
99 R (of digits 1.2 and 3) II: if a and b belong to S. then ab (concatenation) 

Gen. Constructive belongs to S 
Set (of digits d,. d2. III: Only elements obtained be applying rules I and II a 
... d m ) 1sms9. finite number of times belong to S 

130 104 F Goldbach- 6.10.14.18.26.30.38.42.42.54 ..... t(n) is the largest even 
Smarandache Table number such that any other even number not 

exceeding it is the sum of two of the first n odd primes. 
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131 105 F Smarandache- 9.1521.29.39.47.57.65.71.93 ..... Vln) is the largest odd 
Vinogradov Table number such that any odd number <!:9 not exceeding it is 

the sum of three of the first n odd primes. 
132 106 F Smarandache- 0.0.0.0.1.2.4.4.6.7.9.10 ..... a(2k+ 1) represents the number 

Vinogradov of different combinations such that 2k+ 1 is written as a 
Sequence sum of three odd ~mes. 

133 115 F Sequence of Let {Xn} . n<!: 1. be a sequence of integers and cr.:;~ a 
Position digit. The Smarandache sequence of position is defined 

as Unlk'=Ulk'(XnJ=max{i} if k is the 10-th digit of Xn else -1. 
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HISTORY OF THE 

SMA RAN D A C H E FUN C T 10 N 

1. B alacenoiu and V. Seleacu 

Department of Mathematics, University of Craiova 

Str. AI. 1. Cuza 13, Craiova llOO, Romania 

1 Introduction 

This function is originated from the Romanian professor Florentin Smaran
dache. It is defined as follows: 

For any non-null integer n, S(n) = min {m i m! is divisible by n}. 
So we have S(l) = 0, S(25) = S(26) = S(27) = 8. 
If 

is the decomposition of n into primes, then 

S(n) = max S (pi') 

(1) 

(2) 

and moreover, if [m, nJ is the smallest common multiple of m and n then 

S ([m, nJ) = max {S(m), S(n)} (3) 

Let us observe that if /\ = min, V = max, /\ = the greatest common 
d 

d 
divizor, V = the smallest common multiple then S is a function from the 

lattice (N*'0' V) into the lattice (N,/\, V) for which 

(4) 
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2 The calculus of S(n) 

From (2) it results that to calculate S(n) is necessary and sufficient to know 
S (pf'). For this let p be an arbitrary prime number and 

a (p) = pn_l 
n p-l 

If we consider the usual numerical scale 

(p): bo(p), b1(p), ... , bk(p), ... 

and the generalised numerical scale 

then from the Legendre's formula 

a! = II pfp, (Cc) 

P'SCc 

where Ep(a) = L [~J' it results that 
j2: 1 p 

and even that: if 

is the expression of a in the generalised scale [P] then 

(5) 

(6) 

(8) 

The right hand in (8) may be written as p (alP]) . That is S (pCc) is the 
(p) 

number obtained multiplying by p the exponent a written in the scale [P] 
and "read" it in the scale (p). So, we have 

S (pCc) = P (alP]) 
(p) 

(9) 

For example to calculate S (3100 ) we write the exponent a = 100 in the scale 

[3] : 1, 4, 13, 40, 121, ... 
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'vVe have av(p) :::; p {:} (pV - 1) /(p - 1) :::; a {:} v :::; logp ((p - l)a + 1) and 
so v is the integer part of logp ((p - l)a + 1) , 

v = [logp ((p - l)a + 1)] 

For our example v = [10g3201] = 4. Then the first difit of a [3] is k4 = 
[aja4(3)] = 2. So 100 = 2a4(3) + 20. For al = 20 it results VI = [10g341] = 3 
and kVl = [20ja3(3)] = 1 so 20 = a3(3) + 7 and we obtain 100[3] = 2a4(3) + 
a3(3) + a2(3) + 3 = 2113[3] . 
From (8) it results S(31OO

) = 3(2113)(3) = 207. 
Indeed, from the Legendre's formula it results that the exponent of the prime 
p in the decomposition of a! is L [~], so the exponent of 3 in the decom-

'>1 p 
]-

position of 207! iSL [2~] = 69 + 23 + 7 + 2 = 101 and the e).."ponent of 3 in 
»1 

the decomposition of 2061 is 99. 
Let us observe that, as it is shown in [1], the calculus in the generalised scale 
[P] is essentially different from the ca.lculus in the standard scale (p), because 

Other formulae for the calculus of S(pCi) have been proved in [2] and [3]. 
If we note Sp(a) = S(pCi) then it results [2] that 

where a(p](a) is the sum of the digits of a written in the scale [P] 

a(p](a) = kv + kv- 1 + ... + kl 

and also 

where a(p)(a) is the sum of digits of a written in the scale (p), or 

(10) 

As a direct application of the equalities (2) and (8) in [16] is solved the 
following problem: 
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"Which are the numbers with the factorial ending in 1000 zeros ?" 

The solution is 
5(101000 ) = 5(2100051000 ) = max {5(21ooo), 5(51OOO )} = 
= max { 2 (1000[2]) (2) ,5 ( 1000[5]) (sJ = 4005. 4005 is the smallest natural 

number with the asked propriety. 
4006, 4007, 4008, and 4009 verify the proprety but 4010 does not, because 
401O! = 4009! ·4010 has 1001 zeros. 
In [11] it presents an another calculus formula of 5(n): 

3 Solved and unsolved problems concerning 

the Smarandache Function 

In [16J there are proposed many problems on the Smarandache Function. 
M. Mudge in [12] discuses some of these problems. Many of them are un
solved until now. For example: 
Problem (i) : Investigate those sets of consecutive integers i, i + 1, i + 2, ... , 
i + x for which 5 generates a monotonic increasing (or indeed monotonic 
decreasing) sequence. (Note: For 1,2,3,4,5, 5 generates the monotonic in
creasing sequence 0,2,3,4,5 ). 
Problem (ii) : Find the smallest integer k for which it is true that for all n 
less than some given no at least one of 5(n), 5(n + 1), ... , 5(n - k + 1) is 
( A) a perfect square 
(B) a divisor of kn 

(C) a factorial of a'positive integer 
Conjecture what happens to k as no tends to infinity. 

~~~--~----~--~ 
Problem (iii) : Construct prime numbers ofthe form 5(n)5(n + 1) ... 5(n + k). 
For example 5(2)5(3) = 23 is prime, and 5(14)5(15)5(16)5(17) = 75617 
also prime. 
The first order forward finite differences of the Smarandache function are 
defined thus: 
Ds(x) = 15(x + 1) - 5(x)I 
D}k)(x) = D(D( ... k times Ds(x) ... ) 
Problem (iv) : Investigate the conjecture that Dik)(1) 1 or 0 for all k 
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greater than or equal to 2. 
J. Duncan in [7J has proved that for the first 32000 natural numbers the 
conjecture is true. 
J. Rodriguez in [14J poses the question than if it is possible to construct 
an increasing sequence of any (finite) length whose Smarandache values are 
strictly decreasing. P. Gronas in [9J and K. Khan in [10J give different solu
tion to this question. 
T. Yau in [17J ask the question that: 
For any triplets of consecutive positive integers, do the values of 5 satisfy 
the Fibonacci relationship 5(n) + 5(n + 1) = 5(n + 2) ? 
Checking the first 1200 positive integers the author founds just two triplets 
for which this holds: 
5(9) + 5(10) = 5(11), 5(119) + 5(120) = 5(121). 
That is 5(11- 2) + 5(11-1) = 5(11) and 5(112 - 2) + 5(112 -1) = 5(112) 
but we observe that 5(113 - 2) + 5(113 -1) -:j:. 5(113). 
More recently Ch. Ashbacher has anonnced that for n between 1200 and 
1000000 there exists the following triplets satisfying the Fibonacci relation
ship: 
5(4900) + 5(4901) = 5(44902); 5(26243) + 5(26244) = 5(26245); 
5(32110) + 5(32111) = 5(32112); 5(64008) + 5(64009) = 5(64010); 
5(368138) + 5(368139) = 5(368140); 5( 415662) + 5( 415663) = 5(415664); 
but it is not known if there exists an infinity family of solutions. 
The function Cs: N* f-+ Q, Cs(n) = ~ (5(1) + 5(2) + ... + 5(n)) is the sum 
of Cesaro concerning the function 5. 
Problem (v) : Is there L C;l(n) a convergent series? Find the smallest k 

n>l 

for which (p, 0 c,.~ .. : c,.) (m) 2: n. 

k tImes 
Problem (vi) : Study the function 5;;L: N\ {I} f-+ N, 5;;L(n) = min 5-1(n), 
where 5-1 (n) = {m E NI5(m) = n}. 
M. Costewitz in [6J has investigated the problem to find the cardinal of 
5-1 (n) . 
In [2] it is shown that if for n we consider the standard decomposition (1) 
and ql < q2 < ... < q3 < n are the primes so that Pi -:j:. qj, i = 1,t, j = 1,s, 
then if we note ei = Ep.(n) , Jk = Eqj;(n) and n = p~l p~2 ... p~t, no = n/n, 
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q = q{l q{2 ... q!', it result 

. card S-l(n) = (d(n) - d(no)) d(q) (11) 

where d(r) is the number of divisors of r. 
The generating function Fs: N* r-t N associated to S is defined by 
Fs(n) = L S(d). For example Fs(lS) = S(1)+S(2)+S(3)+S(6)+S(9)+ 

dIn 

S(lS) = 20. 
P. Gronas in [SJ has proved that the solution of the diophantine equation 
Fs(n) = n have the solution n E {9, 16, 24} or n prime. 
In [11 J is investigated the generating function for n = pC>. It is shown that 

(12) 

and it is given an algorithm to calculate the sum in the right hand of (12). 
t . 

Also it is proved that FS(PIP2'" Pt) = L 2,-lpi. Diophantine equations are 

given in [14J (see also [12]). 
"Ve men tione the followings: 

;=1 

(a) S(x) = S(x + 1) conjectured to have no solution 
(b) S (mx + n) = x 
( c) S (mx + n) = m + nx 
(d) S(mx + n) = x! 
(e) S(xm) = xn 
(f) S(x) + y = x + S(y) , x and y not prime 
(g) S(x + y) = S(x) + S(y) 
(h) S(x + y) = S(x)S(y) 
(i) S(xy) = S(x)S(y) 
In [lJ it is shown that the equation (f) has as solution every pair of composite 
numbers x = p(1 + q) , y = q(l + p), where p and q are consecutive primes, 
and that the equation (i) has no solutions x, y > 1. 
Smarandache Function Journal, edited at the Departmen t of Mathematics 
from the University of Craiova, Romania and published by Number Theory 
Publishing Co, Glendale, Arizona, USA, is a journal devoted to the study of 
Smarandache function. It publishes original material as well as reprints some 
that has appeared elsewhere. Manuscripts concerning new results, including 
computer generated are actively solicited. 
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4 Generalizations of the Smarandache 

Function" 

In [4] are given three generalizations of the Smarandache Function, namely 
the Smarandache functions of the first kind are the functions Sn : N* 1--4 N* 
defined as follows: 
(i) if n = u i (u = 1 oru = p , prime number) then Sn(a) is the smallest 
positive integer k with the property that k! is a multiple of n a • 

(ii) if n = p~lp~2 ···pf' then Sn(a) = max S CI](a). 
1<]<t p] 

If n = p then Sn is the function Sp defi~ed by F. Smarandache in [15] (Sp(a) 
is the smallest positive integer k such that k! is divisible by pn ). 
The Smarandache function of the second kind Sk : N* 1--4 N* are defined by 
Sk(n) = Sn(k), kEN-" 
For k = 1 , the function 5 k is the Smarandache function, with the modifica
tion that S(1) = 1. 
If (a): 1 = al,aZ, ... ,an , ... 

(b): 1 = b1 , bz, ... , bn, ... 
are two sequences with the property that 

Let f! : N* 1--4 N* be the function defined by f:(n) = San (bn) , (San is the 
Smarandache function of the first kind). 
It is easy to see that: 
(i) if an = 1 and bn = n for every n E N* , then f: = S1 . 
(ii) if an = nand bn = 1 for every n E N* , then f: = 51 . 
The Smarandache functions the third kind are functions S~ = f! in the case 
that the sequences (a) and (b) are differen t from those concerned in the 
situations (i) and (ii) from above. 
In (4] it is proved that 

Sn(a + b) ~ Sn(a) + Sn(b) ~ Sn(a)Sn(b) for n > 1 

max {Sk(a), Sk(b)} ~ Sk(ab) ~ Sk(a) + Sk(b) for every a, bE N* 

max {f!(k), f!(n)} ~ f!(kn) ~ bnf!(k) + bkf!(n) 

so, for an = bn = n it results 
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This relation is equivalent with the following relation written by means of 
the Smarandache function: 

In [5] it is presents an other generalization of the Smarandache function. 
Let M = {Sm(n)ln, mE N*}, let A, BE P(N*) \ 0 and a = min A, 
b = min B , a* = max A, b* = max B. The set I is the set of the functions 
If : N'" f-+ M with 

if n < max{a, b} 
if max{a, b} ::; n ::; max{a*, b"'} 
where 

I~(n) = al; = m?-x {ai E Alai::; n} 
t 

bl; = max {b j E Blbj ::; n} 
) 

Sa. (b*) , if n > max { a*, b*} 

Let the rule T : I x I f-+ I, 1fT 1B = I!1:;g and the partial order relation 
p c I x I, I!1 pI B <=> ACe and BcD. 
It is easy to see that (I, T, p) is a semilattic e. 
The elements u, v E I are p-strictly preceded by w if: 
(i) w p u and w p v 
(ii) Vx E 1\ {w} so that x p u and x p v ::::} x P w . 
Let 1# = {( u, v) E I x Ilu, v are p-strictly preceded} , the rule 
-.l : 1# f-+ I, If -.lIB = If;:;8 and the order partial relation r, Ifr IB <=> 
IBpIf. Then the structure (I:ft.,-.l,r) is called the return of semilattice 
(I,T,p). 
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OTHER SMARANDACHE TYPE FUNCTIONS 

by J. Castillo 
140 & Window Rock Rd. 

Lupton, Box 199, AZ 86508, USA 

1) Let f: N ---> N be a strictly increasing function and x an element 
in N. Then: 

a) Inferior Smarandache f-Part of x, 

ISf(x) is the smallest k such that f(k) <= x < f(k+1). 
b) Superior Smarandache f-Part of x, 

SSf(x) is the smallest k such that f(k) < x <= f(k+1). 

Particular Cases: 

a) Inferior Smarandache Prime Part: 
For any positive real number n one defines ISp(n) as the largest 
prime number less than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane [5] ) : 
2,3,3,5,5,7,7,7,7,11,11,13,13,13,13,17,17,19,19,19,19,23,23. 

b) Superior Smarandache Prime Part: 
For any positive real number n one defines SSp(n) as the smallest 
prime number greater than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane[5]): 
2,2,2,3,5,5,7,7,11,11,11,11,13,13,17,17,17,17,19,19,23,23,23. 

c) Inferior Smarandache Square Part: 
For any positive real number n one defines ISs(n) as the largest 
square less than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane[5]): 
0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16,16,16,16,16,16,16,16,25,25. 

b) Superior Smarandache Square Part: 
For any positive real number n one defines SSs(n) as the smallest 
square greater than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane [5] ) : 

0,1,4,4,4,9,9,9,9,9,16,16,16,16,16,16,16,25,25,25,25,25,25,25,25,25,36. 

d) Inferior Smarandache Cubic Part: 
For any positive real number n one defines ISc(n) as the largest 
cube less than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane[5]) : 
0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27,27,27. 

e) Superior Smarandache Cube Part: 
For any positive real number n one defines SSs(n) as the smallest 
cube greater than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane [5] ) : 
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0,1,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27. 

f) Inferior Smarandache Factorial Part: 
For any positive real number n one defines ISf(n) as the largest 
factorial less than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane[5]): 

1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24,24,24,24. 
g) Superior Smarandache Factorial Part: 

For any positive real number n one defines SSf(n) as the smallest 
factorial greater than or equal to n. 
The first values of this function are (Smarandache[6] and 
Sloane[5]) : 

1,2,6,6,6,6,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,120. 

This is a generalization of the inferior/superior integer part. 

2) Let g: A ---> A be a strictly increasing function, and let "-" be a 
given internal law on A. Then we say that 
f: A ---> A is smarandachely complementary with respect to the 

function g and the internal law "-" if: 

fix) is the smallest k such that there exists a z in A so that 
x-k = g{z). 

Particular Cases: 

a) Smarandache Square Complementary Function: 
f: N ---> N, fix) = the smallest k such that xk is a 
perfect square. 
The first values of this function are (Smarandache[6] and 
Sloane [ 5] ) : 
1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,21,22,23,6,1,26,3,7. 

b) Smarandache Cubic Complementary Function: 
f: N ---> N, fix) = the smallest k such that xk is a 
perfect cube. 
The first values of this function are (Smarandache[6] and 
Sloane[5]): 
1,4,9,2,25,36,49,1,3,100,121,18,169,196,225,4,289,12,361,50. 

More generally: 
c) Smarandache m-power Complementary Function: 

f: N ---> N, fix) the smallest k such that xk is a 
perfect m-power. 

d) Smarandache Prime Complementary Function: 
f: N ---> N, fix) the smallest k such that x+k is a prime. 
The first values of this function are (Smarandache[6] and 
Sloane [5] ) : 
1,0,0,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0,1,0,5. 
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SURVEY ON THE RESEARCH OF SMARANDACHE NOTIONS 

by M. L. Perez, editor 

The American CRC Press, Boca Raton, Florida, published, in 
December 1998, a 2000 pages "CRC Concise Encyclopedia of 
Mathematics" , by Eric W. Weisstein, ISBN 0-8493-9640-9, 
internationally distributed. 

Among the entries included in this prestigious encyclopedia 
there also are the following: 

- "Smarandache functions" 
[i.e., Pseudosmarandache Function (p. 1459), Smarandache Ceil 
Function (p. 1659), Smarandache Function (p. 1660) - the most 
known, Smarandache-Kurepa Function (p. 1661), Smarandache Near-to
Primordial (p. 1661)], Smarandache-Wagstaff Function (p. 1663)] 

"Smarandache seguences" [41 such sequences are listed (pp. 
1661-1663), in addition of 7 other Smarandache concatenated 
sequences (pp. 310-311)) 

"Smarandache constants" [11 such constants are listed (pp. 
1659-1660)] 

- "Smarandache paradox" (p. 1661). 
Five large pages from the above encyclopedia are dedicated to these 
notions. 
Other contributors to the Smarandache Notions are cited as well in 
this wonderful mathematical treasure: C. Ashbacher, A. Begay, M. 
Bencze, J. Brown, E. Burton, I. Cojocaru, S. Cojocaru, J. Castillo, 
C. Dumitrescu, Steven Finch, E. Hamel, F. Iacobescu, H. Ibstedt, K. 
Kashihara, H. Marimutha, M. Mudge, I. M. Radu, J. Sandor, V. 
Seleacu, N. J. A. Sloane, S. Smith, Ralf W. Stephan, L. Tutescu, 
David W. Wilson, E. W. Weisstein, etc. 

Professor Eric W. Weisstein from the University of Virginia 
has extended more results on Smarandache sequences, such as: 
- The Smarandache Concatenated Odd Sequence: 
I, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, ... 
(Sloane's A019519) contains another prime term: 
SCOS(2570) = 13579111315 ... 51375139, which has 9725 digits! 
This is the largest consecutive odd number sequence prime ever 
found. 
Conjecture 1: There is a finite number of primes in this sequence. 
- The Smarandache Concatenated Prime Sequence: 
2, 23, 235, 2357, 235711, 23571113, 2357111317, 
(Sloane's A019518) is prime for terms I, 2, 4, 128, 174, 342, 435, 
1429, ... (Sloane's A046035) with no other less than 1960. 
Conjecture 2: There is a finite number of primes in this sequence. 
- The Smarandache Concatenated Square Sequence: 
I, 14, 149, 14916, 1491625, 149162536, 14916253649, ... 
(Sloane's A019521) contains a prime only 149 (the third term) in 
the first 1828 terms. 
Conjecture 3: There is only a prime in this sequence. 
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- The Smarandache Concatenated Cubic Sequence: 
1, 18, 1827, 182764, 182764125, 182764125216, ... 
(Sloane's A019522) contains no prime in the first 1356 terms. 
Conjecture 4: There is no prime in this sequence. 

David W. Wilson (wilson@cabletron.com) proved that 
- The Smarandache Permutation Sequence: 
12, 1342, 135642, 13578642, 13579108642, 135791112108642, 
1357911131412108642, 
has no perfect power in its terms. 

Proof: 
Their last digits should be: 
either 2 for exponents of the form 4k+1, 
either 8 for exponents of the form 4k+3, where k ~ O. 
12 is not a perfect power. All remaining elements are congruent to 
2 (mod 4), and are therefore not a perfect power, either. QED. 

The Smarandache Binary Sieve (Item 29 in 
http;//www.gallup.unrn.edu/-smarandache/SNAQINT.txt): 
1,3,5,9,11,13,17,21,25,27,29,33,35,37,43,49,51,53,57,59,65,67,69, 
73,75,77,81,85,89,91,97,101,107,109,113,115,117,121,123,129,131,1 
33,137,139,145,149, ... 

1 : 
(Starting to count on the natural numbers set at any step from 

- delete every 2-nd numbers 
- delete, from the remaining ones, every 4-th numbers 
... and so on: delete, from the remaining ones, every 
2X-th numbers, k = 1, 2, 3, .... ) 

Conjectures: 
a) There are an infinity of primes that belong to this 

sequence; 
b) There are an infinity of numbers of this sequence which 

are composite. 
The second conjecture has been proved true by David W. Wilson: 

One way to see this is to note that any sequence with positive 
densi ty over the posi ti ve integers contains an infinitude of 
composites (the density of this sequence is 
1/2 * 3/4 * 7/8 * 15/16 * 31/32 * ... = 0.28878809508660242127 ... 
> 0.) 
Another way to see this is to note that this sequence contains all 
numbers of the form (4X-l)/3 for k ~ 3, which are all composite. 

Also, in the "Bulletin of Pure and Applied Sciences", Delhi, 
India, Vol. 17E, No.1, 1998 (pp. 103-114, 115-116, 117-118, 123-
124) four articles present the "Smarandache noneuclidean 
geometries". 

References: 

[1] C. Durni trescu, V. Seleacu, "Some Notions and Questions in 
NumberTheory",http;//www.gallup.unrn.edu/-smarandache/SNAQINT.txt. 
[2] E. W. Weisstein, E-mails to J. Castillo, March-December 1998. 
[3] D. W. Wilson, E-mails to J. Castillo, Fall-Winter 1998. 
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BOOK REVIEWS 

Logic As Algebra, by Paul Halmos and Steven Givant, The Mathematical Association of 
America, Washington, D. c., 1998. 152 pp., $27.00(paper). ISBN 0-88385327-2. 

It can be strongly argued that logic is the most ancient of all the mathematical sub-disciplines. 
When mathematics as we knvw it was being created so many years ago, it was necessary for the 
concepts of rigid analytical reasoning to be developed. Of the three earliest areas, geometry was 
born out of the necessity of accurately measuring land plots and large buildings and number 
theory was required for sophisticated counting techniques. Logic, the third area, had no 
"practical" godfather, other than being the foundation for rigorous reasoning in the other two. In 
the intervening years, so many additional areas of mathematics have been developed, with logic 
and logical reasoning continuing to be the fundamental building block of them all. Therefore, 
every mathematician should have some exposure to logic, with the simple history lesson 
automatically being included. This short, but excellent book fills that niche. 
The title accurately sets the theme for the entire book. Algebra is nothing more than a precise 

notation in combination with a rigorous set of rules of behavior. When logic is approached in 
that way, it becomes much easier to understand and apply. This is especially necessary in the 
modern world where computing is so ubiquitous. Many areas of mathematics are incorporated 
into the computer science major, but none is more widely used than logic. Written at a level that 
can be comprehended by anyone in either a computer science or mathematics major, it can be 
used as a textbook in any course targeted at these audiences. 
The topics covered are standard although the algebraic approach makes it unique. One simple 

chapter subheading, 'Language As An Algebra', succinctly describes the theme. Propositional 
calculus, Boolean algebra, lattices and predicate calculus are the main areas examined. While the 
treatment is short, it is thorough, providing all necessary details for a sound foundation in the 
subject. While the word "readable" is sometimes overused in describing books, it can be used 
here without hesitation. 
Sometimes neglected as an area of study in their curricula, logic is an essential part of all 

mathematics and computer training, whether formal or informal. The authors use a relatively 
small number of pages to present an extensive amount of knowledge in an easily understandable 
way. I strongly recommend this book. 

Reviewed by 

Charles Ashbacher 
Charles Ashbacher Technologies 
Box 294 
Hiawatha, Iowa 
71603.522@compuserve.com 

In Polya's Footsteps: Miscellaneous Problems and Essays, by Ross Honsberaer The 
Mathematical Association of America, Washington, D. c., 1997.328 pp. $28.95( , ) ISBN 
0-88385-326-4. ' paper. j 

The greatest scientist of all time was quoted as saying that the reason that he saw further than 
others was that he stood on the shoulders of giants. As the title of this book suaaest th . 

h
. 00 s, ere IS 

anot er route, namely walkmg the same path as others. Given our individual differences and how 
we v~ry from day to day, even the most beaten of paths can present differing appearances. When 
walkmg through a for~st, some d~ys you may see the moss, other days the ground cover and then 
on others we pay particular attentIOn to the leaves. In this collection of problems, Ross 
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Honsberger proves once again that he is the best at picking the high quality, sturdy building 
material from the large, stable, yet uninspiring stack of wood. 

This is a collection of problems to build on. Many of the them were taken from those proposed 
and rejected from mathematics competitions, both national and international. Given the quality of 
these problems, those that were accepted in favor of them must have indeed been gems. It is 
fortunate that Crux Mathematicorum, ajournal of the Canadian Mathematical Society, 
publishes problems of this type so that the rest of us may enjoy them. The range of topics is 
extensive, with very detailed proofs of all problems. The most striking aspect of many of them is 
that the approach used in the proof is "non-obvious." Which is the mathematical term for ,"now, 
how did they ever think of that?" Which is what makes them so charming and emphasizes how 
exciting mathematics is. There used to be a television game show where contestants competed by 
claiming that they could name a song in the fewest notes. If there was a similar contest 
concerning the elegance and directness of proofs, some of those in this book would provide stiff 
competition. 
Classic works of art or music always provide enjoyment, even after many repetitions. High 

quality, elegant proofs of mathematical problems do the same thing to those willing to experience 
them. This is one book that will allow you to do that. 

Reviewed by 

Charles Ashbacher 
Charles Ashbacher Technologies 
Box 294 
Hiawatha, IA 52233 

Computer Analisis of Number Sequences, by Henry Ibstedt, American 
Research Press, Lupton, Az., 1998. 87 pp., $9.95 (paper), 
ISBN 1-879585-59-6. 

Playing with numbers is one activity that all mathematicians 
enj oy. It is considered a pleasurable occupational hazard. 
Finding "new" properties of numbers is a joy that cannot be 
accurately described, only experienced. In this book, the author 
presents and to some extent explores a set of problems in 
recreational mathematics. Nearly all of the problems originated in 
the mind of Florentin Smarandache, the creator of innumerable 
problems in many areas of mathematics. While many are somewhat 
contrived, they are all fun to read and think through. 

For exemple, there are the three sequences of numbers formed by 
the repeated concatenation of the elements of a set of integers 

Smarandache Odd Sequence (SOS): 
1, 13, 135, 1357, 13579, 1357911, 135791113, 

Smarandache Even Sequence (SES): 
2, 24, 246, 2468, 246810, 24681012, 

Smarandache Prime Sequence (SPS): 
23, 235, 2357, 235711, 23571113, 

where questions like the following are presented. 

How many primes are there in the SOS and SPS sequences? 
How many perfect powers are there in the SES sequence? 
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Like the large Marsenne primes, the current largest Known prime in 
either of these sequences is an accurate barometer of the state of 
current factoring capability. As no less a mathemetician as Pal 
Erdos has noted, it will probably never be known if there is an 
infinite number of primes in either the SOS or SPS sequences. 
Howewer, if someone ever resolves the issue, it will no doubt be 
headline news in the mathematics community. Any technique 
powerfull enough to resolve this issue will certainly be one that 
can be used elsewhere. 
It is just an interesting collection of problems in recreational 
mathematics that can be worked on just for the joy of exploration. 
That alone makes it well worth reading. 

Reviewed by 

Charles Ashbacher 
Charles Ashbacher Technologies 
Box 294 
Hiawatha, IA 52233, USA 

CRe Concise Encyclopedia of Mathematics, by Eric W. Weisstein, CRC 
Press, Boca Raton, FL, USA, 1998, 1969 pp., $79.95 Calk. paper), 
ISBN 0-8493-9640-9. 

The best ever published encyclopedia of mathematics. Also very 
accessible and well organized, with many cross-references. 

From 

httD://www.amazon.com/exec/ob.dos/ISBN=0849396409/ericstreasuretroA/, 

"The CRC Concise Encyclopedia of Mathematics is a compendi'cili', 0: 
mathematical definitions, formulas, figures, tabulations, and 
references. Its informal style makes it accessible to a broad spectrum 
of readers with a diverse range of mathematical backgrounds and 
interests. This fascinating, useful book draws connections to other 
areas of mathematics and science as well as demonstrates its actual 
implementation providing a highly readable, distinctive text diverging 
from the all-too-frequent specialized jargon and dry formal 
exposition. 

Thro~gh its thousands of explicit examples, form~las, and derivations, 
The eRC Concise Encyclopedia of Mathematics gives the reader a flavor 
of the subject without getting lost in mi:l.Utiae, stirrl'J.lating his or her 
~hi=st fo= additional infor~atich and explo=aticn. 

This book serves as handbook, dictionary, and encyclopedia extensivel'; 
cross-linked and cross-referenced, not only to ot;er ~elated entries, 
but also ~o web s~tes O~ the :n~e=~e:. S~a~da=d ~a~~emat~=a: 

=efe=ences, combined with a few popular ones, are a~sc give~ at ~~e e~d 
c: ~cst e~t=ies, providing a resource fo~ mc~e ~ead~~c and eX~~8~2~ic~. 
In The CRC Concise Encyclopedia of Mathematics, the m~st usef~l and 
~~:eres~~ng aspects 0= the topic are thorough:y discussed, enha~c~Jg 
~ec~nical definitions." 
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