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FACTORS AND PRIMES IN TWO SMARANDACHE 
SEQUENCES 

R.ALF w. STEPHA.'l 

ABsTRACT. Using a peI'llOnal computer and freely available software, the au
thor factored some members of the Smarandache consecutive sequenO! and 
the reverse Smarandache sequenO!. )learly complete factorizations are given 
up to Sm(80) and RSm(80). Both sequences were excessively searched for 
prime members, with only one prime found up to Sm(84Q) and RSm(750): 
RSm(82)= 828180 .. ·10987654321. 

1. INTRODUCTION 

Both the Smarandache consecutive sequence, and the reverse Smarandache se
quence are described in [S93J. Throughout this article, Sm(n) denotes the nth 
member of the consecutive sequence, and RSm(n) the nth member of the reverse 
sequence, e.g. Sm(1l)=1234567891011, and RSm(1l)=1l10987654321. 

The Fundamental Theorem of Arithmetic states that every n EN, n > 1 can be 
written as a product PlP2P3 ... Pic of a finite number of primes. This "factorization" 
is unique for n if the Pic are ordered by size. A proof can be found in [R85J. 

Factoriza.tion of large numbers has rapidly advanced in the past decades, both 
through better algorithms and faster hardware. Although there is still no polynomial
time algorithm known for finding prime factors Pic of composite numbers n = TIp.!:, 
several methods have been developed that allow factoring of numbers with 100 
digits or more within reasonable time: 

• the elliptic curve method (ECM) by Lenstra [187], with enhancements by 
Montgomery [M87][M92] and others, has found factors with up to 49 digits, 
as of April 1998. Its running time depends on the size of the unknown p, and 
only slightly on the size of n . 

• the quadratic sieve [887] and the number field sieve [LL93J. The running 
time of these methods depends on the size of n. Factors with ~ 70 digits are 
frequently found by ~"'FSNetl . 

For logp > 50 and lognjlogp ::::: 2, sieving methods are faster than ECM. 
Because ECM time depends on p, which is unknown from the start, it is difficult 
to predict when a factor will be found. Therefore, when fully factoring a large 
number, one tries to elimjnate small factors first, using conventional sieving and 
other methods, then one looks for factors with 20, 30, and 40 digits using ECM, and 
finally, if there is enough computing power, one of the sieving methods is applied. 

The primality of the factors and the remainjng numbers is usually shown first 
through a probabilistic test [K81] that has a small enough failure probability like 
2-50 • Such a prime is called a probable prime. Proving primality can be done using 
number theory or the ECPP method by Atkin/Morain [AM93]. 

1 URL: http://vvv.d&taplu:.net/HFSJi'et/ 



RALF W. STEPHAN 

In the following, Pn denotes a probable prime of n digits, Pn is a proven prime 
with n digits, and en means a composite number with n digits. 

2. FREE SOFTWARE 

For computations with large numbers, it is not necessary to buy one of the well 
known Computer Algebra software packages like Maple or Mathematica. There are 
several multiprecision libraries freely available that can be used with the program
ming language C. The advantage of using one of these libraries is that they are 
usually by an order of magnitude faster than interpreted code when compared on 
the same machine [Z98j. 

For factoring, we used science02 and GMP-ECM3 . To write the program for finding 
prime members of Sm(n) and RSm(n), we used the GKP4 multiprecision library. For 
proving primality of RSm(82), we used ECPpS. 

3. FACTORIZATION RESULTS 

We used scienceO to eliminate small factors of Sm(n) and RSm(n) with 1 < 
n ~ 80, and GMP-ECM to find factors of up to about 40 digits. The system is a 
Pentium 200 MHz running LintOC'. 

The timings we measured for reducing the probability of a factor with specific 
size to lie are given in the following table: 

log p I log n B1 curves time 
20 40 1.5 . 10" 100 7 minutes 
30 60 3 . lOS 780 23 hours 
40 80 4 . 106 4800, 107 days 

TABLE 1. Time to find p with probability 1 - lie on a Pentium 
200 MHz using GMP-ECM under Linux 

All remaining composites were searched with ECM parameter B1=4OCXX) and 
200 curves were computed. Therefore, the probability of a remaining factor with 
less than 24 digits is less than lie. No primes were proven. The following tables 
list the results. 

'2 URL: http://vvv.perl.c:i.c_ 
3URL: http://vvv.1Qri •. frrzu..na/recQ~/.c:mwt.htal 
4 URL: http://vvv._t .. tii.n .•• rtage/gap/ 
5 URL: http://1U.polyt.elmiCilM.frrllOrainlPrgllll/.c:pp.anglbh.htal 
6 URL: http://vvv.linux.org 
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FACTORS AND PRIMES IN TWO SEQL"ENCES 

n known factors of Sm( n) 
2 2~· 3 
3 3·41 
4 2·617 
5 3·5·823 
6 ~ ·3·643 
7 127·9721 
8 2.32 ·47· 14593 
9 32 .3607.3803 
10 2 . 5 . 1234567891 
11 3·7·13·67·107·~ 
12 ~ . 3 . 2437 . PIo 
13 113· 125693 . 869211457 
14 2·3· PI8 
15 3·5· PIg 
16 22 .2507191691·PI3 I 
17 32 ·47·4993·PIs I 

I 
18 2 . 32 • 97 . 88241 . PIs 
19 13 . 43 . 79 . 281 . 1193 . PI8 
20 ~. 3·5·323339·3347983· PIs 
21 3 . 17 . 37 . 43 . 103 . 131 . 140453 . PIs 
22 2· 7· 1427·3169·85829· P22 
23 3 . 41 . 769 . 1732 
24 22 . 3 . 7 . 978770977394515241· PIg 
25 52·15461·31309647077·~ 
26 2·3" . 21347·2345807·982658598563· PIs 
27 33 • 192 . 4547 . 68891 . P32 
28 ~ ·47·409·416603295903037· P27 
29 3 . 859 . 24526282862310130729· ])26 

30 2 . 3 . 5 . 13 . 49269439 . 370677592383442753 . P23 
31 29 . 2597152967· P42 
32 22 .3.7.45068391478912519182079. P30 
33 3·23·269·7547 ·116620853190351161· P:n 
34 2· Pso 
35 32 .5.139 ·151·64279903·4462548227· P37 

'36 z4 . 32 • 103 . 211 . P56 
37 71 . 12379 . 4616929 . P52 

38 2 . 3 . 86893956354189878775643 . P43 
39 3·67·311·1039·6216157781332031799688469· P36 
40 22 ·5·3169·60757·579779·4362289433·79501124416220680469·P26 
41 3·487·493127·32002651 . ~ 
42 2·3·127·421·22555732187·4562371492227327125110177·p~ 
43 7·17·449·pon 
44 ~ .32 . 12797571009458074720816277'P52 

continued .. 
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n known factors of Sm( n) 
45 3~·5·7·41·727·1291·2634831682519·379655178169650473·P41 
46 2·31·103·270408101·374332796208406291·3890951821355123413169209·~ 
47 3·4813·679751·4626659581180187993501·~ 

48 22 ·3· 179· 1493· 1894439· 15m940624188426710323588657· P46 
49 23· 109· 3251653·2191196713· 53481597817014258108937·P47 
50 2.3.52 . 13·211 . 20479· 160189818494829241· 46218039785302111919· P44 
51 3 . 1 TI080936856099233 . P73 
52 27 ·43090793230759613·P78 
53 33 .73 ·127534541853151177· P78 
54 2.38 ·79·389·3167·13309·69526661707·8786705495566261913717·~1 
55 5·768643901·641559846437453· 1187847380143694126117· PM 
56 22·3· C102 
57 3 . 17· 36769067· 2205251248721 . Ca3 
58 2·13· C105 
59 3 . 340038104073949513· Cgl 

60 ~ . 5 . 97 . 157· PIa. 
61 10386763·35280457769357· P92 
62 2 . 32 . 1709 . 329167· 1830733 . egg 
63 32.17028095263·Cl~ 
64 22 . 7· 17 . 19 . 197· 522673· 1072389445090071307· Cs9 
65 3 . 5 . 31 . 83719 . C1l3 
66 2 ·3 . 7 . 20143 . 971077 . Cl11 
67 397 . 183783139TI2372071 . PIIM 
68 ~ . 3 . 23 . 764558869· 1811890921 . CIIM 
69 3· 13·23 . 8684576204660284317187·281259608597535749175083· cao 
70 2·5·2411111·109315518091391293936799·C1OO 
71 32 . 83 . 2281 . C128 
72 22 .32 .5119. Cl29 
73 37907· Cl32 

74 2 . 3 . 7· 1788313 . 21565573· 99014155049267797799· CI03 

75 3 . 52 . 193283 . Cl33 
76 ~ ·828699354354766183·213643895352490047310058981· P97 
77 3·383481022289718079599637·874911832937988998935021·097 
78 2 . 3 . 31 . 185897 . C139 
79 73·137·22683534613064519783·132316335833889742191773· CI02 
80 22 . J3 . 5 . 101 . 10263751· 1295331340195453366408489· PIIS 

TABLE 2. Factorizations of Sm(n), 1 < n ~ 80 
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FACTORS AND PRIMES IN TWO SEQL"ENCES 

n known factors of RSm(n) 
2 3·7 
3 3 ·107 
4 29 ·149 
5 3 ·19·953 
6 3·218107 
7 19·402859 
8 32 . 1997 . 4877 
9 32 ·1~· 379721 
10 7·28843·54421 
11 3· PI2 
12 3·7· PI3 
13 17·3243967·237927839 
14 3· 11 ·24769177· PIa 
15 3 . 13 . 192 . 79 . Pls I 
16 23 . 233 . 2531 . PI6 
17 32 . 13· 17929·25411 ·47543 . 677181889 
18 32 . 112 . 19 . 23 . 281 . 397· 8577529· 399048049 
19 17· 19· 1462095938449· PI4 
20 3 ·89·317·37889· P21 
21 3 . 37 . 732962679433 . Pl9 . 
22 13· 137· 178489· 1068857874509· Pl4 
23 3 . 7· 191 . P33 
24 3 . 107· 457 . 57527 . P'29 
25 11 . 31 . 59 . 158820811 . 410201377· P2a 
26 33 ·929·1753·2503 . 4049 ·11171· P24 
27 35 ·83·3216341629·7350476679347·Pl8 
28 23 . 193 . 3061 . 2150553615963932561· P21 
29 3 ·11· 709 ·105971· 2901761·1004030749· P24 
30 3·73·79 ·18041· 24019·32749·5882899163· P24 
31 7· 30331061 . P45 

32 3· 17· 1231·28409· 103168496413· P35 
33 3 . 7· 7349· 9087576403 . P42 

34 89·488401· 2480227·63292783·254189857· 3397595519·PI9 
35 32 ·881·1559·755173·7558043·1341824123·4898857788363449·PI6 
36 32 ·112 ·971·1114060688051.1110675649582997517457·P24 
37 29 . 2549993 . 39692035358805460481 . P38 
38 3·9833·P63 
39 3 . 19 . 73 . 709 . 66877 . Ps8 
40 11 . 41 . 199 . 537093776870934671843838337·1'.39 
41 3·29·41· 89·3506939 ·18697991901857·59610008384758528597· P28 
42 3 . 13249· 14159· 25073 . 6372186599· P52 
43 52433 . 73638227044684393717· P53 
44 32 ·7·3067· 114883 . 245653 . 65711907088437660760939· P41 

continued. .. 
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n known factors of RSm(n) 
45 3l 

- 23 -167 -15859·25578743· P65 
46 23·35801-543124946137·45223810713458070167393,p.3 
47 3·11-31-59-1102254985918193-4808421217563961987019820401·~ 
48 3· 151·457-990013·246201595862687-636339569791857481119613·P3g 
49 71 . 9777943361 -Prr 
50 3· 157·3307-3267926640703· 771765128032466758284258631297-P43 
51 3'11-PIn 
52 7 . 29 -670001 . 403520574901· 70216544961751- 1033003489172581 . P47 
53 J4 -499 . 673 . 6287· 57653 . 199236731 -1200017544380023 

·1101541941540576883505692003·P31 
54 33.7 •. 13· 1427·632778317·57307460723-7103977527461·617151073326209·P43 
55 357274517· 460033621·PM 
56 3 . 132 • 85221254605693· Ps7 
57 3·41· 25251380689· P93 
58 11·2425477· 178510299010259-377938364291219561 

·5465728965823437480371566249 . P.w 
59 3'C109 
60 3 . 8522287597 . PlO1 
61 13·373·6399032721246153065183-~ 
62 32 -11-487.6870011-3921939670009.11729917979119 

·9383645385096969812494171823 . PliO 
63 32 - 97·26347·338856918508353449187667· P86 
64 397·653·459162927787· 27937903937681-386877715040952336040363·P65 
65 3 . 7 . 23 . 13219 . 24371 . Clla 
66 3 . 53 . 83 . 2857· 1154129 . 9123787 -Pl03 
67 43 . 38505359279 . C113 
68 3·29-277213·68019179·152806439·295650514394629363 

·14246700953701310411· P67 
69 3 -11- 71· 167 -1481- 2326583863 ·19962002424322006111361· pgg 
70 1157237-41847137·8904924382857569546497·~ 
71 32 -17.131-16871.1504047269.82122861127. 1187275015543580261'Ps7 
72 32 . 449 . 1279 . Pl29 
73 7· 11·21352291· 1051174717· 92584510595404843· 33601392386546341921'Ps3 
74 3·177337·6647068667·31386093419·669035576309897·4313244765554839·~3 
75 3·7·230849·7341571-24260351-1618133873·19753258488427 

·46752975870227777 -Csi 
76 53· Cl42 

77 3 . 919 -571664356244249 . C127 
78 3·17 -47 ·17795025122047· Cl3l 
79 160591·274591434968167· 1050894390053076193'Pl12 
80 33 . 11 ·443291· 1575307· 19851071220406859· C!21 

TABLE 3. Factorizations of RSm(n), 1 < n ~ 80 

4. SEARCHING FOR PRIMES IN SM AND RSM 

C sing the GMP library, a fast C program was written to search for primes in Sm( n) 
and RSm(n). We used the Miller-Rabin [K81] test to check for compositeness. 
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FACIORS AND PRIMES IN TWO SEQL"ENCES 

No primes were found in Sm(n), 1 < n < 840, and only one probable prime in 
RSm(n), 1 < n < 750, namely RSm(82)= 82818079 ... 1110987654321. This number 
proved prime with ECPP. 
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To Enjoi is a Permanent Component 
of ::Ylathematics 

~rby 
c. Dumitrescu and R. :\hiller 

1. The Theorem of Platon 

Studying the properties of the proportions the peoples of the antiquity could 
build using the ruler and the compasses. For example if instead of a square of 
side a it was required the construction of another square. of side x determined by 
the condition that the new square has a double area, so 

Pithagora's descendents used to write this relation as 

a 

x 

x 

2a 
and used to build an isosceles rectangular triangle having its hypotenuse 2a. 

i 11 

The celebrated philosopher of the antiquity Platon (-1:27 - :3-1: '/ B. C.) was greatly 
interested in :'vlathematics, especialy in connections with the so called "solid num
bers", that is numbers of the form 

a·b·c 

representing a volume. 
This sympathy is also due to a famous event even today. 
In the Greek city Athens there was an epidemic diseare that killed many peo

ples. The inhabitants anced the oracle of Delphi (a town in Delos, the smadest of 
the Ciclade isles) what to do in order to save themselves. 

"r 
( 1949-1997) 



The gods asked the prierts of the temple to replace their cubic altar vvith a 
new one having a double volume. 

The prierts appealed to the greatest mathematicians of the time to get the 
solution. 

The problem is to calculate the lenght x of the side of a cube such that 

That is 

But the peoples of those times didn't know any method to calculate. not e\'en 
approximatively, the radicals over to t\vo. Only in the fifth century A .. D. the 
Indians used the approximation in order to extract the cubic root: 

, 3 . b) 1 b fa"':'" r:::;:a"':"'\. , 3a2 

where a3 is the greatest perfect cube not exceding the number a3 + b. 
The problem (3) can't be solved using only the rule and the compasses. 
Let us observe that this problem is a particular problem on solid numbers. and 

of course it is unsolvable by of only one proportion of kind (2). 
However Platon observed that this problem could be solved using tu'o propor

tions. ); amely, he affirmed that: 
Theorem of Platon. ~Vhile one simple proportion is enought to connect tu.:o 

plane numbers (numbers of the form a . b), three proportions are necessary to 

connect tu'oo solide numbers. 
The solution of the problem of Delos is then obtained by Platon approxima

ti vely wri ting 

a x y 

x y 2a 

Indeed, from (-1:) we obtain 

so x3 = 2a3
. 

Platon and others Archytas of Tarent ('" 380 B.C.), Eudoxus (-1:08 - :3.j.j B.C.). 
Appollonios of Perga 260 - liO B.C.)] imaginated approximate solutions of the 
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equation (~), rather difficult, which, of course, could be simplified in the course 
of time. 

Today, we can easily find an approximate solution to the system (.5) through 
drawning the two parabolas or intersecting one of these parabolas with the circle 

x 2 + y2 _ 2ax - ay = 0 

obtained through adding the equations of the two parabolas. 

2. A method to construct convergent sequences 

The name of Leonard Euler (1707 - 1783) is knovm amoung the young people 
loving mathematics, especially because of the sequence given by 

1 1 1 
a = 1 ...L - + - ...L ...L - - In n n I 2 . 3 ' .... n 

It is said that this sequence is monotonous and bounded, convergmg to a 
constant! E (0,1), known as Euler's constant. 

This constant appears in many occasions in mathematics. For instance if d( n) 
is the number of (positive) divisors of the positive integer n, then it is proved that 

1 n - L d(i) ~ In n + 2~f - 1 
n i=l 

Considering the sequence (6) and proving his convergence Euler has etablished 
a connection between the following two sequences 

1 1 
On = 1 ...L 2" + ... -+-; and en = In n 

both converging to infinity. 
To prove the monotonicity and boundness of the sequence (an)'1.E.V8 it is used 

a well known theorem. does to the count Luis de Lagrange (1736 - lS13). This 
method may be generalised in the following way: 

13 



Proposition. Let f : [1, Xl) ----1- R a derivable function u'ith the property that 

f and I' are monotonous, but of different monotonicity (that is either f increase 
and I' decrease or f decrease and I' increase). 

Then the sequence 

In = 1'(1) + 1'(2) + ... + I'(n) - f(n) 

is convergent. 
Proof. The proof is analogous with that of Euler's sequence (6). 
Indeed, let us suppose that f is increasing and I' is decreasing. 

monotoncity of the sequence (x n )nEN8 we obtains: 

In+l - Xn = f'(n + 1) - (f(n + 1) - f(n)) 

',r_) I I 
\ 

For the 

and applying the theorem of Lagrange to the function f on the interval [k. k -:- 1] 
it results: 

(::i) Ck E (k, k + 1) such that f(k + 1) - f(k) = I'(Ck) (8) 

and 

k < Ck < k + 1 =::=;. I' ( k) > I' ( c,,) > I' ( k + 1) 

so 

In+l - In = I'(n + 1) - f'(cn ) < 0 

because I' is decreasing. 

9) 

\'ie have now to find a lower bound of the sequence (7). 
implication (9) for every k = 1,2 ..... and we get: 

For this we write the 

So. 

1 < Cl < 2 ===:;- 1'( 1 > 1'( cd > 1'(2) 
2 < C2 < :3 ====> I' (2) > f' ( C2) > I' (:3 ) 

n < Cn < n + 1 ====> I'(n) > I'(crt ) > f'(n + 1) 

-f'(l) ' j"I")) ' ,£II) t:(» In - "T ,-( 7···7 J I,n, - J n/ 
> f 'l ' , t:" \ 'f'() f(' \ Cd ....... J \ C2) ....... '" 7 en - n) 

Writing no\v the equalities (8) for k = 1. 2 . ... n and adding. it results: 
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J' ( Cl) + J' ( C2) + ... + J' ( Cn ) = f (n + 1) - f ( 1 ) 

SO Xn ~ f(n -:- 1) - f(l) - f(n) > - f(l) because f is increasing. 
Of course, the limit point of this sequence is between - f(l) and Xl = f'U)

f( 1). 
This proposition permet to construct many convergent sequences of the form 

( 7) 
Indeed, 
1) considering the increasing function f(x) = 'lvI, whose derivative fix) = 

1/ vI is decreasing, it results that the sequence 

1 1 1 -1' , 'T ·)c Xn - -;- -= -;- j7) -;- .•• -;- r::: - ~v n 
y'2 v:3 v n 

has a limit point IE [-2, -1]. 
2) considering the function f(x) = In(1nx) it results that the sequence 

111 
Xn =::;--1 .) + :---31 . + ... + -1- - In(ln n) 

~ n ~ . n:3 n n n 

is convergent to a point IE [-In(ln2), 2~2 -In(ln:2)]. 
:3) the sequence 

1') 1'3 1 _ .) ( n ~ .n " . n n ) 1 2 
Xn - ~ - + - -;- ... "7" -- - n n 

:2:3 n 

as well as 

In< 2 lni: :3 lni: n lni:+l n 
x =--+---'- -'-------

n :2 :3 I'" t n k + 1 

are convergent sequences, and, of course. the reader may construct himself many 
other convergent sequences, using the same method. 

It is interesting to mentione that by means of the same way as in the proof of 
the above proposition it may be proved the follow'ing curious inequalities: 

111 
1998 < 1 -;- -= + j7) -+- ... T ~ < 1999 

yI:2 v:3 vI06 

and. more generaL 
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,111· 
'J. 10" - ') < 1 ...l- - ...l- - ...l-...l- < :2 . 10" - 1 
- - I J2 I J3 I ... I J102k 

or these 

P " , 1 1 1 p , --I a,,(p-l) _ 1) < 1 + -~- -+- -_ ...l-...l- < __ ( a~(p-l) _ ~) 
1 \ ~ . "II I '3' / ,"', ( . q I ' P - .;:: I P • - P 1\ aP''') I P P - 1 . p 

3. The Problem of Titeica 

The Romanian mathematician Gh. Titeica (lSi3 - 19:39) while in a W2.ltlI:g 
room and because time hardly passed, started dravv'ing circles on a newspaper 

. . . 
margm, usmg a com. 

In this playing with it, he begun to move the coin so that it have a fixed point 
on the circumference of a cercle. Because he had to wait for a long while. he had 
the time to find out that drawing three circles in which the coin had a fixed point 
on the circumference, the circles intersected two by two in three points calkd A. 
B. and C) over \vhich the coin was exactly superposed. 

Of course, the three points .4 .. B, and C make a circle. The novelty was that 
this circle seemed to have the same radius as the circles dra,.vn with the coin. 

\Vhen he reached home, Titeica proved that indeed: 
The Problem of Titeica. If three circles of the same radiu.s r have a com

mon fixed point _'vI, they still intersect two by two in the points A, B. C /L·hich. make 
another circle with the same radius r. 

Proof. Because we have JIC1 = _'vIC2 = JIC) (see figure below) it cesults 
that _\1 is the centre of the circumscribed circle of the triangle determined by the 
points Ct. C21 C3 • 

\'ow. it is sufficient to prove the equality (congruence) between this triangle 
and the triangle determined by the points A.. B 1 C. 

vVe have: 
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AB = C2C3 (because .6.AC1B = .6.C2C'C(3) 

AC == C1 C3 (because .6.AC2C == .6.C[ BC3 ) 

BC = C1 C2 (because .6.BC3C == .6.C[AC2 ) 

and the theorem is proved. 

4. Hexagons in Pascal's Triangle 

The hexagon AC2CC3BC't used in the proof of the problem of Titeica is in 
connection with some cercles. :';ow we shall make in evidence other hexagons. this 
time lied with a triangle. the celebrate triangle of Pl7.scl7.l. 

In 16.54: Blaise Pascal (162:3 - 1662) published the paper "On an ArithmetIcal 
Triangle" in which studied the properties of the numbers in the triangle 



1 
1 2 1 

1 3 :3 1 
1 4 6 4 1 

1 ,S 10 10 5 1 

constructed such that the n - row contains the elements 

n ( ~ ) , ( 7 ) '"""' ( k ~ 1 ) , ( ~ ) , ( k+1 
where 

( ~ ) - k~(n ~ k)~ 
In the sequel \ve shall focus the attention on the following elements in this 

triangle: 

( n - 1 ) 
k - 1 

( n ) ( ~ ) k - 1 

( n+l ) k 

for simplicity we note 

A= 

50 it results the configuration 

A F 

B x 

C D 

18 

( 

( 

n-1 
k 

n...J..l 
k+l 

n+1 
k 

and 

E 

) 
( n ) k+l 

) 

\) D=(n+l) , k...:.. 1 

x=(~) 



The multiplicative equality 

A.·C·E=B·D·F 11' \ ~ lJ 

was found by V. E. Hoggatt Jr. and W. Hansell [.5]. Therefore this configuration 
is called" Hoggat-Hansell perfect square hexagon". 

This hexagon has also the following interesting property, found in [2]: 

g.c.d.(A., C, E) = g.c.d.(B, D, F) 

where g.c.d. is the abreviation for the greatest common divisor. 
The identities (11) and (12) are the first two non-trivial exarr..ples of translat

able identities of binomial coefficients and are called "the Star of David theorem ". 
The lower common multiple (I.c.m.) counterpart of the identity (12), namely 

I.c.m.(A., C, E) = I.c.m.(B, D, F) (U) 

does not hold on Pascal's triangle and it has been a long-standing open question 
wheter there exists any mathematically non-trivial and/or artistically interesting 
configurations which give a translatable l.c.m. identity of type (12). 

S. Ando and D. Sato have proved [2] that the answer to this question is·'yes·'. 
They have proved that: 

Theorem. (Pisa triple equality theorem) There exists a configuration lchich 
gi~'es simultaneously equal product. equal g.c.d. and eqlwl l.c.m. properties on bi
nomial, Fibonacci-binomial and their modified coefficients. 

A Fibonacci-binomial coefficient (or Fibonomial-coefficient) is the number de
fined by: 

,[ ~ 1 = ___ F_1_·_F_2 ._ .• F_n __ _ 

Fl . Fl···F", . Fl . F2···Fn - k 

where F: is the i - th Fibonacci number. i.e. 

Fl = F2 = L F,,+2 = F" + F,,+l, for n = 1,2, ... 

All Fibonomial coefficients are positive integers. and the triangular array of 
these numbers has a structure similar to Pascal's triangle. 

A. P. Hilmann and V. E. Hoggatt Jr. investigated the similarities with Pascal's 
triangle and showed that the original Star of David theorem also holds on this 
Fibonacci version of the Pascal-like triangle. 
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The modified binomial coefficient is defined as 

{
n} (n~l)~ I, (n) 
k =k~(n_k):=I,n-t-1) k 

It is proved that the translatable product and l.c.m. equalities, similar to (ll) 
and (13), but not the g.e.d. equality (12), hold for the array of modified binomial 

fh' coe • .LlClents. 
The two Pascal like number array can be combined further to define the mod

ified Fibonacci coefficient, given by: 

( 
n ) Fl . F2 ... Fn+l r n Jl 

k - Fl' F'J. ... FI; . Fl . F2 ... Fn- k = Fn+l l k 

S. Ando and D. Sato announced at the third International Conference on 
Fibonacci ,Vumbers and their A.pplications (held in Pisa, Italy, July 25 -29, 1988) 
some interesting results concerning g.c.d. and l.e.m. properties on configurations 
like these reproduced below. vVe mention here only the following: 

Theorem (Sakasa - Fuji quadruple equality theorem). The configuration of 
Fujiyama (see below) has equal g.c.d. and equall.c.m. properties on Fibonacci -
Pascal's triangle, while its upside down configuration (called SAKASA - F[JJI. in 
japonese) has equal g.e.d. and equal l.e.m. properties on modifies PascaLi and 
modified Fibonacci - Pascal '$ triangle. 

Theorem CCniversal equality theorem). The Julia's snou:fiake and it5 upside 
down configuration both give translatable simultaneously equal product (symbolised 
below by the Greek letter II), equal g.e.d. and equal l.c.m. properties on Pa5ca/"., 
triangle, Fibonacci - Pascal '$ triangle and modified Fibonacci - Pascal's triangle 

vVe reproduce here, after [2] these configurations. 
S. Ando and D. Sato in their paper explained with amability the terminology 

used for these configurations. 
Thus one of the configurations is named in memoriam of Professor Julia Robin

.5on for the friendship and support given to the authors during many years of 
mathematical associations. 

Fujiyama is a highly symetric triangular mountain near Tokio, and Saskatcheu'an 
is a name of a province in western Canada, \vhere the first non - trivial mutualy 
exclusive equal :J.c.d. - I.c.m. configuration was constructed. 
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5. The Smarandache Function 

This function is originated from the exiled Romanian Professor Florentin 
Smarandache and it is defined as follows: 

For any non - null n. S(n) is the smallest integer such that S(n)~ is dirisible byn. 

To calculate the value of S(n), for a given n. we need to use twoo numerical 
scale, as we shall see in the following. 

A strange addition. A (standard) numerical scale is a sequence 

(h) : 1, aI, a2, ... ,ai, ... 

\,,' here ai = hi. for a fixed h > l. 
By means of such a sequence every integer n E S may be writen as 

and we can use the notation 

n(h) =.pI.;.pI.;-I·"'.pO 

The integers .pi are called" digits" and veri fie the inequalities 

a ~ .pi ~ h - 1 

(1-1:) 

For the scale given by the sequence (14) it is trouth the recurence relation 

i1.5) 

\vhich permet numerical calculus. as additions. substractions. etc. 
The standard scale (14) was been generalised. considering an arbitrary incre

as.51ng seq'tLence: 
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and knowing a corresponding recurence relation. 
For instance the Fibonacci sequence: 

FI = 1, F2 = 2, and Fi+l = Fi + Fi - 1 

is such a generalised scale, for which the digits are only the integers 0 and l. 
Another generalised numerical scale is the scale defined by the sequence: 

with 

and p a prime number. 

pi _ 1 
bi =-

p-1 

This scale verifies the recurence 

bi+l = P . bi + 1 

and is used in the calculus of Smarandache function. 

(16) 

(1 T) 

(18) 

Let us observe that because of the diference between the recurences (15). and 
(IS) we have essentially different ruls for the calculus in the scale [Pl. To ilustrate 
these differences let we consider the generalised scale [.5]: 

[.5J : 1, 6. :31, 156, ... 

and the integer m = 150(10), which becomes mrs] = 442. in the scale [.5]. Indeed. 
because 

ai(.5) ~ 1.50 ¢=:;- (pi - 1)/(p - 1) ~ 1.50 ¢=:;- pi ~ 1.50(p - 1) + 1 ¢=:;

¢=:;- i ~ logs (l50(p - 1) + 1) 

it results that the greatest a;(.S) for which a;(.S) < 150 is a3('S) = :31. Then 
the first digj t of the number m[.s] is 
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so, 150 = 4a3(5) +26. 
For ml = 26 it results that the greatest ai(5) for which ai(5) ::; 26 is a2(.s) = 6 

and the corresponding digit is: 

so, 150 = 4a3(5) + 4a2('S) + 2 = 442[5]' 
If we consider in addition the numbers: 

then 

n[5] = 412, r[5] = 44 

m + n + r = 442+ 
412 

4-l 
dcba 

From the recurence (IS) it results that we need to start the addition from the 
column corresponding to a2(5): 

~ow, using an unit from the first collumn it results: 

.sa2(·S) + 4a2(·5) = a3(.s) + -la2CS), so b = 4 

Continuing, 4a3(.s) + 4a3(.s) + a3(5) = 5a3(5) + 4a3(5) and using a new unit 
from the first collumn it results 

4a3(·5) + 4a3(.s) + a3(.s) = a4(·5) + ..1,a3(5), so c = 4 and d = 1 

Finally, adding the remainder units, 4al(-S)+2ar(5) = .5ad·5)+al(.s) = .Sal(·S)-+' 
1 = a2(5), it results that b must be modified and a = O. So, m + n +- r = 14.50[5]' 

A.n other particularity for the calculus in the scale [PJ results from the fact 
that in this scale the last non-::ero digit may be even p. This particularity is a 
consequence of the recurence relation (18). 

Which are the numbers with the factorial ending in 1,000 zeros? The 
answer to this question is in a strong connection with the Smarandache function. 
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For this reason let us observe first that if 

_ Cil Ci2 a, 
n - PI . P2 ····Pt (19) 

is the decomposition of a given positive integer n into primes, then a.s a.n imediate 
consequence of the definition of 5 it results 

5(n) =max (S(pfi)) 
,=I.t 

(20) 

~ow, for n = 101.000 it results that S( n)~ is a multiple of 101.000 and it is the 
smallest positive integer with this property. 

\Ve have 

Indeed, for the calculus of 5(pa) we can use the formula: 

5(pa) = p( Q[P])(p) 

which signify that the value of the function S for pa is obtained multiplying by 
p the number obtained writting the exponent Q in the generalised scale [P] and 
reading it in the scale (p). 

So, we have: 

5 (·)1.000) - ')((1 000)· .j .. - ·)((1 1 11 11 1 00\··L - :;OQ 
\"'" -_.1., [2J/(2)-'" \.1. J.. .1. J[2JJ(2)-V v 

5(.51.000) = .s( 11201[5] )(5) = 400.s 

and it results that n. = 400·5 is the smallest. positive int.eger who's factoria.l end in 
L 000 zeros. 

The next integers with this property a·re 4006, 4007, 4008, and 4009. hf'ca.use 
the factorial of 4010 has 1. 001 zeros. 

Smarandache magic square. For n 2: ::2 let A, be a set of n 2 elements and 
l a n-arry law defined on A. The 5marandache magic square of order n is a 2 
square array of rows of elements of A arranged so that the law l applied to each 
horizontal and vertical row and diagonal give the same result. 

.Hike R . .11 udge, considering such squares. poses the following questions (see 
Smarandache Function JournaL Vol. 7. ~o. 1. 1996): 

1) Can you find such magic square of order at least :3 or -1:. when A is a set of 
prime numbers and I the addition',' 
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2) Same question when A is a set of square numbers, or cube numbers, or 
special numbers. For example Fibonacci or Lucas numbers, triangular numbers, 
Smarandache quotients (i.e. q( m) is the smallest k such that mk is a factorial). 

An interesting law may be 

)iow some examples of Smarandache lvfagic Squ.are: 
If A is a set of prime numbers and I is the operation of addition such magic 

squares, with the constant in brackets, are: 

8:3 89 41 101 491 251 -, I. 461 :311 
29 il 113 431 281 1:31 ·321 281 41 
101 5:3 59 311 71 461 2.31 101 491 

(213) (843) (84:3) 

97 907 .557 :397 197 
113 149 y- I 367 167 67 877 677 _01 

I, :317 17:3 29 997 647 :3:37 1:37 :37 
89 197 2:33 107 1·57 967 617 307 

(519) I .587 .)--
_II 227 127 9:37 

(21.55) 

The multiplication magic square 

18 1 12 
4 6 9 
:3 :36 2 

(216) 

is such that the constant 216 may be obtained by multiplication of the elements 
in any row/column/principal diagonal. 

A. geometric magic square is obtained using elements which are a given base 
raised to the powers of the corresponding elements of a magic square it is clea.rly 
a multiplic:ation ma.gic squa.re. 

FOT instance, considering 

8 1 6 i 256 2 64 
:3 ·5 - S :32 128 I 

and base 2 it results 
4 9 2 16 512 4 

(lS) (215 ) 
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Talisman .Hagic Squarf'.5 are a. relatively ne"'" concept. conta.in the integers from 
1 to n2 in such a way that the difference between a...'1y integer and its neighbours 
(either rou'-, column-. or diagonal-1.rise) is greather than some given constant: 

.5 15 9 12 
10 1 6 3 
13 16 11 14 
2 8 4 7 

en 
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1 
The aIm of this article IS to study the senes I -- called Smarandache 

n2!2 sm(n) 

harmonic series. The article shows that the series I-,l- is divergent and 
n2!2 S-(n) 

n 1 
studies from the numerical point of view the sequence an = I-2-. -In(n). 

1=2 S (1) 

1. Introduction 

The studies concerning the series with Smarandache numbers have been done 

recently and represents an important research direction on Smarandache' s 

notions. The question of convergence or divergence were resolved for several 

series and the sums of some series were proved to be irrational. 

The most important study in this area has been done by Cojocaru [1997]. He 

proved the following results: 

1. If (xJ
n

2!O is an increasing sequence then the series I Xn+! - Xn is divergent. 
n2!O S(xn) 

1 1 
As a direct consequence, the following series I--., I ') and 

n2! Z S(n) n2!!S(_·n+l) 

~ S( 4. ~ + 1) are divergent. 

2. The senes 
na 

~ S(2)· S(3)-... ·S(n) 
IS convergent and the sum 

,,1 (71 lOI! 
L. is in then interval \ 100' 100F n2!2 S(2)· S(3)· ... ·S(n) 

1 (717 12531 
3. The series I -. - is converges to a number in the interval 1--

0
, --0)1 . 

n2!OS(n)~ ~ \100 100 



· ~ Sen) . . 
4. The serIes L,.-,- converges to an IrratIOnal number. 

,,;,0 n. 

lozsef [1997] extended Cojocaru's result and proved that the serIes 

~ Sen) 
L,. (-If --,- also converges to an irrational number. 
,,;,0 n. 

2. Divergence of the Series I-,_I
,,;,2 S-(n) 

In this section, the divergence of the series I-,_l- will be proved based on an 
n;,2 S-(n) 

inequality vvhich we shall establish in Lemma 1. 

Lemma 1. 

( Jr2 " 1 ) 1 
limn- -- ) =-
n-+cc l8 ~(2i+lt 4 

Proof 

The proof is based on the well-known formula 

( Jr2 
1/ 1 '\ 

and on a double inequality for the quantity n -1-- I; 2)' . 
\8 1:0(~1+1) 

Let m be a natural number such that m>n. We then have 

(1) 

(2) 

(3) 

(4) 

mIn 1 m 1 
The difference I;. 2 - I; 2 = I / ) is studied using (3-4) to 

1:0(_1+1) 1:0(_1+1) i="+I(~I+l)-

obtain the inequalities (5-6). 

m 1 mIl 1 1 

1~1(2i+l)2 <i~I(21+1)(2i-l) ="2(2n+1-2m-rl) 
(5) 

(6) 



Therefore. the inequality 

1( 1 1 ~ m 1 " 1 1( I 1 \ 
2\:2n + 3 - 2m + 3) < ~ (:2i + 1)2 - ~ (:21 + 1)2 < 2~ 2n + 1 - 2m + 1) 
hold~ for all m>n. If m~co then the inequality (7) becomes 

1 Ji-!l 1 1 
--- < - - I < and 
2(2n + 3) 8 1=0 (2i + 1)2 2(2n + 1) 

( , \ 
n Iff' In 1 I n 

< nl -- , i < . 
7(7n , ... ) ! 8 (7' 1)-) lCl -'-1) _ • _ T J \ 1=,) ~l T _ _ n, , 

Th ' I' 9)' h I" ( ,1f
2 

f' 1 '\ emequalty( glvest e 1m It Iimn'I--L ' ,2)1=-
n~x \ 8 1=0(:2i+1) 4 

In Lemma 2 we will prove an inequality for Smarandache's function. 

Lemma 2. 

5(2'( ·n):S; n (Vn >:2k > 1). 

Proof 

(7) 

(8) 

(9) 

(10) 

Because n> 2k the product n~ = 1· :2· ... ·n contains the factors 2, 4, ... , 2k. 

Therefore, the divisibility nf = 1· :2· ... ·n = :2 k 
. n· m ytk . n holds resulting in the 

inequality 5(2k . n) :s; n 

:' 1 
In the following, \ve analyse the summation an = ~ S' n ' where n>O . ~ _ L '4(7 -I- ') 

1=1 .~' 1 

Let us define the sets 

- 2" +i! 
.J, = i = 1 2n 5(2n + i) :s; -- ~ and B = 
'>, (2",/)J ~ 

which is a partition of the set {I = 1,:2 n
} . 

Lemma 3. 

If I = :2 k . J satisties the following conditions: 

29 
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i = 1 2" 5(2" + I) > --, (7n ')' _ ,I 
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• k ~ n-19g2(n)-1 

• j is a odd number so that J < 2n
-

k 

then i = 2k 0 j EA". 

Proof 

If k satisfies k ~ n -log2 (n) -1 then n - k 2: log2(n) + 1 and the inequality 

2n
-

k + 12: iog,(n)+l + 1 = 2n + 1> 2k 

holds. 

Applying Lemma 2 and (14), the following inequality 

..,n + Ik 0 ' 

S(2n + i) = S(2 k (2 n
-

k + j)) ~ 2n
-

k + j = - : ) 
(2n,2 oJ) 

is found to be true. Therefore, the relationship 1 = 2k 0) E A" holds. 

( 12) 

(13) 

(14) 

Let en = {2k 0 j = I,Y(k ~ n-log2(n)-1, j odd, j < 2n
-

k
} be the set of numbers 

which satisfies the conditions of Lemma 3. Thus, the inclusion en c A" holds. 

Theorem 1 shows an inequality satisfied by the sequence an. 

Theorem 1. 

o :" 1 1 1 
(Vc>O'ti3N_>O)(Vn>N_)a =' 2 >(--c)-. (15) 

l\ G G n f:(s (Y+i) 4 n-l 

Proof 

Let £>0 be a positive number. 

2" 1 
The summation a = I 2 is split into two parts as follows 

n 1=1 S (Y + i) 

2" 1 1 1 1 
a - , - , ..j... , > ' (16) 

f/ - L s2(..,n ') - L s2(jn ')' L s2(jn ') L s2(jn ')' 
I=i .- +1 iE.-i" - +1 lEE, - +1 iE.~" _ +1 

Because en ~ An' the inequality holds. 

Consequently, 
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( l7) 

is true. 

)n . 

f h - +1 I. I i = 2 . JO E en c_.,1 then s()n 0) < -- - )n-" ° holds. This inequality is 
"'n - + I - ()n 0) - - + J _ 

_ ,I 

applied in (17) resulting in 

(
)n-k.... )2 - , J 

(18) 

The right side of (18) is equivalent to the tollowing summations 

1 1 1 
k = 0 => (2n + 1)2 + (2n + 3)2 + ... + (y+1 _ 1)2 + 

2" -I 1 
therefore, the sum is equal to I ° 2 

,=2:0"'!: ",] (21 + 1) 

The inequality (13) becomes 
r· '. 

21'1 -I 1 2" -1 1 2t·cog~ '1TIj_1 

a>I =I -I-
n 1=2[,,,,!:",1 (2i + 1)2 i=l (2i + 1)2 i=l (2i + 1)2 . 

(19) 

Based on Lemma 1, a natural number Nc can be found so that the inequalities 

(20-21) hold simultaneous true for all n> Nc . 

(20) 

(21 ) 



The inequality (22) is true for all n> Nc. 

0;. 

(22). 

The divergence of the series I -d- is proved based on the inequality (22). 
n?2:J (n) 

Theorem 2. 

The series I_,I- is divergent. 
n?2 S-(n) ~ 

Proof 

Theorem 1 is applied starting from the obvious equation I-21
- = Ian· 

n?2 S (n) n?l 

Let 6'>0 be a positive number. There exists a number .\".,>0 so that the 

inequality an > (-.!.. - c) _1_ holds for all n> Nt;' The divergence of the series is 
4 n-l 

given by I + = Ian ~ Ian ~(~-c)- I ~= ~ 
,,» S (n) n>l n>V 4 n>\j n I 
-- - -- I: -- I: 

Consequence 1. 

Proof 

If mS2 then the series I _1_ is divergent. 
n?2 sm(n) 

1 
The statement follows directlv from divergence of the series I-, - and the 

- n?2 Sw(n) 

. ." 1 ,,1 mequalIty ~-,-~~--. 
n?2 S-(n) n?: sm(n) 
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" I 
3. About·the Sequence an = L-) -. -In(n) 

;=2 S-(l) 

. . ~ 1 
In thIS sectIon the sequence an = L..,.-2 -. -In(n) IS evaluated and some 

1=2 S (I) 

remarks concerning the sequence values are made I. 

n an n an n an 

500 -3.14 100000 11.19 500000 31.15 

1000 -2.97 200000 17.95 1000000 47.74 

1500 -2.75 300000 23.09 1500000 56.80 

2000 -2.55 400000 27.38 2000000 66.05 

2500 -2.35 500000 31.15 2500000 74.14 

3000 -2.14 600000 34.53 3000000 81.45 

3500 -1.95 700000 37.63 3500000 88.13 

4000 -1.79 800000 40.51 4000000 94.34 

4500 -1.60 900000 43.20 4500000 100.15 

5000 -1.44 1000000 45.74 5000000 105.63 

" 1 
Table 1. The values for the sequence an = L-2 -, -In(n) 

1=2 S (I) 

1 
Because L-2- is divergent, it is natural to find the convergence order for 

n?2 S (n) 

the series. 

n 1 
Firstly, we evaluate the sequence an = L-2-. -In(n) and its values are 

1=2 S (I) 

presented in Table 1. Analysing the results from Table 1, the follo\ving 

remarks are obvious: 

n 1 
1. The sequence an = L -_-) -. - In( n) can be considered pseudo-monotone. 

1=2 S (I) 

1 ,\;umerical results presented in the tables have been calculated by Henry Ibstedt. The algorithm and its 
implementation will be included in Computer Analysis of Sumber Sequences, Hlbstedt, American 
Research Press (to appear slimmer 1998) 33 



2. The . sequence 
n 1 

a = "'-- -In(n)' 
II L....S2(.) 

J=2 I 
satisfies the inequality 

n 1 
a" = ~ S2(i) -In(n) > 0 'lin: 50000 < n < 5000000. If the inequality holds for 

all n>50000 then it is evident that I-)_I- diverges. 
n~2 S-(n) 

3. Because (the values of) the sequence an is pseudo-increasing we 

(n 1 ) 
conjecture that limII-,-. -In(n) = 00. 

n~oo\'=2 S-(z) 

n 1 
Secondly, the sequence bn = ~ S2(i) -In(n) -In(ln(n)) is evaluated in Table 2. 

n bn n bn n bn 

500 -3.14 100000 4.83 500000 1.83 

1000 0.17 200000 3.08 1000000 1.26 

1500 0.21 300000 2.43 1500000 1.02 

2000 0.2 400000 2.07 2000000 0.87 

2500 0.21 500000 1.83 2500000 0.77 

3000 0.2 600000 1.65 3000000 07 

3500 0.18 700000 1.52 3500000 0:65 

4000 0.17 800000 1.4 4000000 0.61 

4500 0.18 900000 1.33 4500000 0.57 

5000 0.16 1000000 1.26 5000000 0.53 

n 1 
Table 2. The values for the sequence bn = I-,-. - -In(n) -In(\n(n)). 

,=2 S -(I) 

This sequence is more unpredictable than the sequence an. The only thing, 

\vhich can be remarked is the decreasing behaviour. We have not been able to 

predict if this sequence is convergent yet. 
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4. Conclusions 

A proof more simple than the proof presented in this article can be obtained 

using a convergence test similar to the condensation test [Nicolescu et.al. 

1974]. According to this test, if (aJ n>O is a decreasing sequence of positi ve 

numbers then the series I an is convergent if and only if the series I2n . a
2
" 

n>O n>O 

is convergent. The sequence (_1_) satisfies that Iy. 1 IS 
\sm(n) n>1 n>O sm(y) 

divergent. In spite of that, we cannot conclude that the series ~_l_ 
L. IS 
1/>1 Sm(n) 

divergent because the sequence (-d-) is not decreasing. 
S (n) n>1 
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SMARAl'.'DACHE ALGEBRAIC STRUCTURES 

by Raul Padilla 
Dept. of Physical Sciences 
University of Tarapaca 
Arica, Chile 

A few notions are introduced in algebra in order to better study the 
congruences. Especially the Smarandache semigroups are very important 
for the study of congruences. 

1) The SN1AR.AJ'IDACHE SENfIGROUP is defined to be a semi group A such that a 
proper subset of A is a group (with respect with the same induced 
operation). 
By proper subset we understand a set included in A, different from the 
empty set, from the unit element -- if any, and from A. 

For example, if we consider the commutative multiplicative group 
SG= {181\2, 181\3, 181\4, 181\5} (mod 60) 

we get the table: 

Xi 24 123648 

24: 36 48 24 12 
12 4824 1236 
36 24 123648 
48 12364824 

Unitary element is 36. 

Using the Smarandache's algorithm [see 2] we get that 
181'2 is congruent to 181\6 (mod 60). 

Now we consider the commutative multiplicative semi group 
SS = (181\1,181\2,181\3,181\4, 181\5} (mod 60) 

we get the table: 

182412364824 
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24 i 12 i 36 48 24 12 
12 [ 36 ! 48 24 1236 
36 i 48 I 24 12 36 48 
48124! 12364824 

Because SS contains a proper subset SG, which is a group, then SS is a 
Smarandache Semi group. This is generated by the element 18. The 
powers 
of 18 fonn a cyclic sequence: 18, 24,12,36,48, 24,12,36,48, .... 

Similarly are defined: 

2) The SMARANDACHE MONOID is defined to be a monoid A such that a proper 
subset of A is a group (with respect with the same induced operation). 
By proper subset we understand a set included in A, different from the 
empty set, from the unit element - if any, and from A. 

3) The SMARANDACHE RING is defined to be a ring A such that a proper 
subset of A is a field (with respect with the same induced operation). 
By proper subset we understand a set included in A, different from the 
empty set, from the unit element -- if any, and from A. 

We consider the commutative additive group M= (0,181\2, 181\3, 181\4,181\5} 
(mod 60) [using the module 60 residuals of the previous powers of 18], 
M={O, 12,24,36,48}, unitary additive unit is O. 
(M,-l-,x) is a field. 
\Vhile (SR,+,x)={0,6, 12, 18,24,30,36,42,48,54} (mod 60) is a ring whose 
proper subset {0,12,24,36,48} (mod 60) is a field. 
Therefore (SR,-l-,x) (mod 60) is a Smarandache Ring. 
This feels very nice. 

4) The SMARANDACHE SUBRING is defined to be a Smarandache Ring B which 
is a proper subset of s Smarandache Ring A (with respect with the same 
induced operation). 

5) The SMARANDACHE IDEAL is defined to be an ideal A such that a proper 
subset of A is a field (v.lith respect with the same induced operation). 
By proper subset we understand a set included in A, different from the 
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empty set, from the unit element -- if any, and from A. 

6) The S!v1ARANDACHE SE.M1LATTICE is defined to be a lattice A such that a 
proper subset of A is a lattice (with respect with the same induced 
operation). 
By proper subset we understand a set included in A, different from the 
empty set, from the unit element -- if any, and from A. 

7) The S!v1ARANDACHE FIELD is defined to be a field (A., +,x) such that a 
proper subset of A is a K -algebra (with respect with the same induced 
operations, and an external operation). 
By proper subset we understand a set included in A, different from the 
empty set, from the unit element -- if any, and from A. 

8) The S!v1ARANDACHE R-MODULE is defined to be an R-MODULE (A,+,x) such 
that a proper subset of A is as-algebra (with respect with the same 
induced operations, and another "x" operation internal on A), where R is 
a commutative unitary Smarandache ring and S its proper subset field. 
By proper subset we understand a set included in A, different from the 
empty set, from the unit element -- if any, and from A. 

9) The SMi\Rfu"\IDACHE K-VECTORIAL SPACE is defined to be a K-vectorial 
space (A;'-,.) such that a proper subset of A is a K-algebra (with 
respect with the same induced operations, and another "x" operation 
internal on A), where K is a commutative field. 
By proper subset we understand a set included in A, different from the 
empty set, from the unit element -- ifany, and from A. 
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Siv1ARANDACHE CONTINUED FRACTIONS 

Abstract 

by Jose Castillo, Navajo Community College, 
Tsaile, Arizona, USA 

Open problems are studied using Smarandache type sequences in the 
composition of simple and general continued fractions. 

Key Words: 
Simple and General Continued Fractions, Smarandache Simple and 
Continued Fractions 

1) A Smarandache Simple Continued Fraction is 
a fractionn of the form: 

1 
a( 1 ) ~ -------------------------------------

1 
a( 2) + ---------------------------

1 
a( 3) -"- -------------------------

1 
a( 4) - ------------------

a(5) + ... 

where a(n), for n >= 1, is a Smarandache type Sequence or Sub-Sequence. 

2) And a Smarandache General Continued Fraction is 
a fraction of the form: 

b(l) 
a( 1 ) - --------------------------------------

b(2) 
a( 2) ~ -----------------------------

b(3) 

a( 3) ~ ------------------------
b( -+, 

a( 4) -'- ------ ----------
a(5) - .. 



vvhere a(n) and b(n). for n >= 1, are both Smarandache type Sequences or 
Sub-Sequences. -

(Over 200 such sequences are listed in Sloane's database of 
Encyclopedia of Integer sequences -- online). 

For example: 
a) if we consider the smarandache consecutive sequence: 

1, 12, 123, 1234, 12345, ... , 123456789101112, ... 
we fonn a smarandache simple continued fraction: 

1 

1 1- -------------------------------------

1 
12 1- --------------------------------

1 
123 1- -----------------------

1 
1234 .0... ______________ _ 

12345 + ... 

b) if we include the smarandache reverse sequence: 
1,21,321,4321,54321, ... ,121110987654321, ... 

to the previous one we get a smarandache general continued fraction: 

1 

1 -- -------------------------------------
21 

12 - --------------------------------
321 

123 -'- -----------------------
4321 

1234 - ----------------

123451- ... 

With a mathematics software it is possible to calculate such continued 
fractions to see which ones of them converge, and eventually to make 
conjectures, or to algebraically prove those converging towards certain 
constants. 

Open Problem: Are the previous two examples of continued fractions 
convergent? 
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SMARANDACHEPARADO~STGEOMETRY 

by 

Sandy P. Chimienti 
Mathematics and Science Department 
University of New Mexico 
Gallup, NM 87301, USA 

Abstract: 

Mihaly Bencze 
6, Hatmanului Street 
2212 Sacele 3 
Jud. Brasov, Romania 

This new geometry is important because it generalizes and 
unites in the same time all together: Euclid, Lobachevsk.-y/Bolyai/Gauss, 
and Riemann geometries. And separates them as well~ 
It is based on the first four Euclid's postulates, but the fifth one is 
replaced so that there exist various straight lines and points exterior to 
them in such a way that none, one, more, and infinitely many parallels 
can be dra~ through the points in this mixted smarandacheian space. 

Key Words: Non-Euclidean Geometry, Euclidean Geometry, Lobacevskyian 
Geometry, Riemannian Geometry, Smarandache Geometries, 
Geometrical Model 

Introduction: 
A new type of geometry has been constructed by F.Smarandache[5] in 1969 

simultaneously in a partial euclidean and partial non-euclidean space by a 
replacement of the Euclid's fifth postulate (axiom of parallels) 
with the following five-statement proposition: 

a) there are at least a straight line and a point exterior 
to it in this space for which only one line passes through 
the point and does not intersect the initial line; 

[1 parallel] 
b) there are at least a straight line and a point exterior 

to it in this space for which only a finite number of 
lines I , ... , I (k >= 2) pass through the point and do not 

1 k 
intersect the initial line; 

[2 or more (in a finite number) parallels] 
c) there are at least a straight line and a point exterior 

to it in this space for which any line that passes through 
the point intersects the initial line; 

[0 parallels] 



d) there are at least a straight line and a point exterior 
to it in this ·space for which an infinite number of lines 
that pass through the point (but not all of them) do not 
intersect the initial line; 

[an infinite number of parallels, but not all lines passing 
throught] 

e) there are at least a straight line and a point exterior 
to it in this space for which any line that passes through 
the point does not intersect the initial line; 

[an infinite number of parallels, all lines passing throught 
the point] 

I have found a partial geometrical model, different from Popescu's [1], by 
putting together the Riemann sphere (Ellyptic geometry), tangent to the 
Beltrami disk (Hyperbolic geometry), which is tangent to a plane (Euclidean 
geometry). But is it any better one? 
(because this doesn't satisfy all the above required axioms). 
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SMARfu""IDACHE NON-GEONfETR Y 

by 

Sandy P. Chimienti 
Mathematics and Science Department 
University of New Mexico 
Gallup, NM 87301, USA 

Abstract: 

Mihaly Bencze 
6, Hatmanului Street 
2212 Sacele 3 
Jud. Brasov, Romania 

All Euclid's five postulates are denied in this new geometry. 

Key Words: Euclidean Geometry, Non-Euclidean Geometry, Smarandache 
Geometries, Geometrical Model 

Introduction: 
We introduce this curious geometry, created in 1969 by F.Smarandache[4], 

and ask for the readers' feedback in finding a model to satisfy the below 
"axioms". 

1. It is not always possible to draw a line from an arbitrary point 
to another arbitrary point 

2. It is not always possible to extend by continuity a finite line 
to an infinite line. 

3. It is not always possible to draw a circle from an arbitrary 
point and of an arbitrary intervaL 

4. Not all the right angles are congruent 

5. If a line, cutting two other lines, forms the interior angles of 
the same side of it strictly less than two right angles, 
then not always the two lines extended towards infinite cut each 
other in the side where the angles are strictly less than two right 
angles. 

Conclusion: 
We thought at a discontinous space to satisfy the first three axioms, 

but didn't find yet a corresponding definition for the "right angle". 
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SMARANDACHE COUNTER-PROJECTIVE GEOMETRY 

by 

Sandy P. Chimienti 
Mathematics and Science Department 
University of New Mexico 
Gallup, NM 87301, USA 

Abstract: 

Mihaly Bencze 
6, Hatmanului Street 
2212 Sacele 3 
J ud. Brasov, Romania 

All three axioms of the projective geometry are denied in this 
new geometry. 

Key Words: Projective Geometry, Smarandache Geometries, Geometrical Model 

Introduction: 
This type of geometry has been constructed by F. Smarandache[ 4] in 1969. 

Let P, L be two sets, and r a relation included in PxL The elements of 
P are called points, and those ofL lines. When (p, 1) belongs to r, we 
say that the line I contains the point p. 
For these, one imposes the following COUNTER-AXIOMS: 

(1) There exist: either at least two lines, or no line, 
that contains two given distinct points. 

(II) Let pi, p2, p3 be three non-collinear points, and q 1, q2 two 
distinct points. Suppose that {pI, ql, p3} and {p2, q2, p3} are 
collinear triples. Then the line containing pI, p2, and the line 
containing q 1, q2 do not intersect. 

(III) Every line contains at most two distinct points. 

We consider that in a discontinuous space one can construct a model 
to this geometry. 
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Sl'v1ARAt'IDACHE ANTI-GEOtvfETR Y 

by 

Sandy P. Chimienti 
Mathematics and Science Department 
University of New Mexico 
Gallup, NM 87301, USA 

Mihaly Bencze 
6, Hatmanului Street 
2212 Sacele 3 
Judo Brasov, Romania 

Abstract: This is an experimental geometry. All Hilbert's 20 axioms of the Euclidean 
GGeometry are denied in this vanguardist geometry of the real chaos: What is even more 
intriguing? F.Smarandache[5] has even found in 1969 a model of it: 

Key Words: Hilbert's Axioms, Euclidean Geometry, Non-Euclidean Geometry, 
Smarandache Geometries, Geometrical Model 

Introduction: 
Here it is exposed the Smarandache Anti-Geometry: 
It is possible to entirely de-formalize Hilbert's groups of axioms 

of the Euclidean Geometry, and to construct a model such that none of 
his fixed axioms holds. 

Let's consider the following things: 
- a set of <points>: A, B, C, ... 
- a set of <lines>: h, k, 1, ... 
- a set of <planes>: alpha, beta, gamma, ... 

and 
- a set of relationships among these elements: "are situated", 

"between", "parallel", "congruent", :'continuous", etc. 
Then, we can deny all Hilbert's twenty axioms [see David Hilbert, 
"Foundations of Geometry", translated by E. 1. Townsend, 1950; 
and Roberto Bonola, "Non-Euclidean Geometry", 1938]. 
There exist cases, within a geometric model, when the same axiom is 
verified by certain points/lines/planes and denied by others. 

GROUP 1. ANTI-AXIOMS OF CONNECTION: 

1.1. Two distinct points A and B do not always completely 
determine a line. 

Let's consider the following model NID: 
get an ordinary plane delta, but with an infinite 
hole in of the following shape: 
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P 
p 

semi-plane deltal .. 
I 

curve f1 ( frontier) 
a ........................ . 

N 
n 

.I 
e .J 

.K 
d 

e 

t curve f2 (frontier) 

a semi-plane delta2 .. 

Q 

Plane delta is a reunion of two disjoint planar 
semi-planes; 
f1 lies in !vfI), but f2 does not; 
P, Q are two extreme points on fthat belong to!vfI). 

One defines a LINE I as a geodesic curve: if two 
points A, B that belong to !vfI) lie in I, then 
the shortest curve lied in !vfI) benveen A and B 
lies in I also. 
If a line passes two times through the same point, then 
it is called double point (KNOT). 
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One defines a PLANE alpha as a surface such that for 
any two points A, B that lie in alpha and belong to 
.MD there is a geodesic which passes through A, Band 
lies in alpha also. 

Now, let's have two strings of the same length: 
one ties P and Q with the first string s 1 such that 
the curve s 1 is folded in two or more different 
planes and s 1 is under the plane delta; 
next, do the same with string s2, tie Q with P, but 
over the plane delta and such that s2 has a different 
fonn from s 1 ; 
and a third string s3, from P to Q, much longer than s 1. 
sI, s2, s3 belong to MD. 

Let 1, J, K be three isolated points -- as some islands, 
i.e. not joined with any other point ofMD, 
exterior to the plane delta. 

This model has a measure, because the (pseudo-)line is 
the shortest way (lenth) to go from a point to another 
(when possible). 

Question 37: 
Of course, this model is not perfect, and is far from 
the best. Readers are asked to improve it, or to make up 
a new one that is better. 

(Let A, B be two distinct points in deltal-fl. P and Q are 
two points on s 1, but they do not completely detennine a 
line, referring to the first axiom of Hilbert, 
because A-P-sI-Q are different from B-P-sI-Q.) 

1.2. There is at least a line I and at least two distinct 
points A and B of I, such that A and B do not 
completely detennine the line 1. 

(Line A-P-s l-Q are not completely detennined by P and Q 
in the previous construction, because B-P-s l-Q is another 
line passing through P and Q too.) 
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1.3 Three points A, B, C not situated in the same line do 
not always completely determine a plane alpha 

(Let A, B be two distinct points in delta I-fl, such that 
A, B, P are not co-linear. There are many planes 
containing these three points: delta 1 extended with any 
surface s containing s 1, but not cutting s2 in between 
P and Q, for example.) 

I.4. There is at least a plane, alpha, and at least three 
points A, B, C in it not lying in the same line, such 
that A, B, C do not completely determine the plane 
alpha. 

(See the previous example.) 

1.5. If two points A, B of a line I lie in a plane alpha, 
doesn't mean that every point of I lies in alpha. 

(Let A be a point in deltal-fl, and B another point on 
s 1 in between P and Q. Let alpha be the following plane: 
delta 1 extended with a surface s containing s l, but not 
cutting s2 in between P and Q, and tangent to delta2 on 
a line QC, where C is a point in delta2-f2. 
Let D be point in delta2-f2., not lying on the line QC. 
Now, A, B, D are lying on the same line A-P-s I-Q-D, 
A, B are in the plane alpha, but D do not.) 

I.6. If two planes alpha, beta have a point A in common, 
doesn't mean they have at least a second point in 
common. 

(Construct the following plane alpha: a closed surface 
containing s 1 and s2, and intersecting delta 1 in one point 
only, P. Then alpha and deltal have a single point in 
common.) 

I. 7. There exist lines where lies only one point, 
or planes where lie only two points, 
or space where lie only three points. 
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(Hilbert's I.7 axiom may be contradicted if the model 
has discontinuities. 
Let's consider the isolated points area. 

The point I may be regarded as a line, because it's not 
possible to add any new point to I to form a line. 

One constructs a surface that intersects the model only 
in the points I and J.) 

GROUP II. ANTI-AXIOMS OF ORDER: 

II.I. If A, B, C are points of a line and B lies between A 
and C, doesn't mean that always B lies also between 
C and A. 

[Let T lie in s 1, and V lie in s2, both of them 
closer to Q, but different from it. Then: 
P, T, V are points on the line P-sI-Q-s2-P 
( i.e. the closed curve that starts from the point P 

and lies in s 1 and passes through the point Q and 
lies back to s2 and ends in P ), 

and T lies between P and V 
-- because PT and TV are both geodesics-, 

but T doesn't lie between V and P 
-- because from V the line goes to P and then to T, 

therefore P lies between V and T.] 

[By definition: a segment AB is a system of points 
lying upon a line between A and B (the extremes are 
included). 

Warning: AB may be different from BA; 
for example: 

the segment PQ formed by the system of points 
starting with P, ending with Q, and lying in sl, 
is different from the segment QP formed by the 
system of points starting with Q, ending with P, 
but belonging to s2. 

Worse, AB may be sometimes different from AB; 
for example: 

the segment PQ formed by the system of points 
starting -with P, ending with Q, and lying in sl, 
is different from the segment PQ formed by the 
system of points starting with P, ending -with Q, 
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but belonging to 52.] 

IL2. If A and C are two points of a line, then: 
there does not always exist a point B lying between A 
andC, 

or there does not always exist a point D such that C lies 
between A and D. 

[For example: 
let F be a point on fl, F different from P, 
and G a point in delta 1, G doesn't belong to fl; 
draw the line I which passes through G and F; 
then: 
there exists a point B lying between G and F 

-- because GF is an obvious segment --, 
but there is no point D such that F lies between 
G and D -- because GF is right bounded in F 
( GF may not be extended to the other side of F, 
because otherwise the line will not remain a 
geodesic anymore ).] 

II.3. There exist at least three points situated on 
a line such that: 
one point lies between the other two, 
and another point lies also between the other two. 

[For example: 
let R, T be two distinct points, different 
from P and Q, situated on the line P-sI-Q-s2-P, 
such that the lenghts PR, RT, TP are all equal; 
then: 

R lies between P and T, 
and T lies between Rand P; 
also P lies between T and R.] 

IT.4. Four points A, B, C, D of a line can not always be 
arranged: 
such that B lies between A and C and also 
between A and D, 
and such that C lies between A and D and also between 
Band D. 

53 



[For examples: 
- let R, -T be two distinct points, different 
from P and Q, situated on the line P-s l-Q-s2-P such 
that the lenghts PR, RQ, QT, TP are all equal, 
therefore R belongs to s 1, and T belongs to s2; 
then P, R, Q, T are situated on the same line: 

such that R lies between P and Q, but not between 
Pand T 
-- because the geodesic PT does not pass through 

R --, 
and such that Q does not lie between P and T 

-- because the geodesic PT does not pass through 
Q --, 

but lies between Rand T; 
- let A, B be two points in delta2-f2 such that A, Q, B 
are colinear, and C, D two points on sl, s2 respectively, 
all of the four points being different from P and Q; 
then A, B, C, D are points situated on the same line 
A-Q-s I-P-s2-Q-B, which is the same with line 
A-Q-s2-P-sI-Q-B, therefore we may have two different 
orders of these four points in the same time: 
A C, D, B and A, 0, C, B.] 

II.S. Let A, B, C be three points not lying in the same 
line, and 1 a line lying in the same plane ABC and 
not passing through any of the points A, B, C. 
Then, if the line I passes through a point of the 
segment AB, it doesn't mean that always the line I 
will pass through either a point of the segment BC 
or a point of the segment AC. 

[For example: 
let AB be a segment passing through P in the 
semi-plane delta 1, and C a point lying in delta 1 
too on the left side of the line AB; 
thus A, B, C do not lie on the same line; 
now, consider the line Q-s2-P-sI-Q-D, where Dis 
a point lying in the semi-plane delta2 not on f2: 
therefore this line passes through the point P of 
the segment AB, but do not pass through any point 
of the segment BC, nor through any point of the 
segment AC.] 
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GROUP III. ANTI-AXIOM OF PARALLELS. 

In a plane alpha there can be drawn through a point 
A, lying outside of a line I, either no line, 
or only one line, or a finite number of lines, 
or an infinite number of lines which do not intersect 
the line 1. (At least two of these situations should occur. ) 
The line(s) is (are) called the parallel(s) to I 
through the given point A. 

[ For examples: 
- let 10 be the line N-P-s l-Q-R, where N is a point 

lying in deltal not on fl, and R is a similar 
point lying in delta2 not on f2, 
and let A be a point lying on s2, 
then: no parallel to 10 can be drawn through A 
(because any line passing through A, hence through 
s2, will intersect sl, hence 10, in P and Q); 

- if the line 11 lies in delta 1 such that 11 does 
not intersect the frontier fl, then: 
through any point lying on the left side of II 
one and only one parallel will pass; 

- let B be a point lying in fl, different from P, 
and another point C lying in delta 1, not on fl; 
let A be a point lying in delta 1 outside ofBC; 
then: an infinite number of parallels to the 
line BC can be drawn through the point A. 

Theorem. There are at least two lines II, 12 of a 
plane, which do not meet a third line 13 of the 
same plane, but they meet each other, 
( i.e. if 11 is parallel to 13, and 12 is parallel 
to 13, and all of them are in the same plane, 
it's not necessary that I I is parallel to 12 ). 

[ For example: 
consider three points A, B, C lying in fl, and 
different from P, and 0 a point in deltal not on 
fl; draw the lines AD, BE and CE such that 
E is a point in deltal not on fl and both BE 
and CE do not intersect AD; 
then: BE is parallel to AD, CE is also parallel 
to AD, but BE is not parallel to CE because the 
point E belong to both of them. ] 
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GROUP IV. ANTI-AXIOMS OF CONGRUENCE 

IV. 1. If A, B are two points on a line I, and A' is a 
point upon the same or another line 1', then: 
upon a given side of A' on the line 1', we can 
not always find only one point B' so that the 
segment AB is congruent to the segment A'B'. 

[ For examples: 
- let AB be segment lying in deltal and having no 

point in common with fl, and construct the line 
C-P-s 1-Q-s2-P (noted by 1') which is the same 
"vith C-P-s2-Q-sI-P, where C is a point lying in 
delta 1 not on fl nor on AB; 
take a point A' on 1', in between C and P, such 
that A'P is smaller than AB; 
now, there exist two distinct points B l' on s 1 
and B2'on s2, such that A'B l' is congruent to AB 
and A 'B2' is congruent to AB, 
with A'B l' different from A'B2i; 

- but if we consider a line l' lying in delta 1 and 
limited by the frontier fl on the right side 
(the limit point being noted by M), 
and take a point A' on I', close to M, such that 
A'M is less than A'B', then: there is no point 
B' on the right side of I' so that A 'B' is 
congruent to AB. ] 

A segment may not be congruent to itsetr. 

[ For example: 
- let A be a point on s 1, closer to P, 

and B a point on s2, closer to P also; 
A and B are lying on the same line A-Q-B-P-A 
which is the same with line A-P-B-Q-A, 
but AB meseared on the first representation 
of the line is strictly greater than AB 
meseared on the second representation of 
their line. ] 

IV.2. If a segment AB is congruent to the segment 
A'B' and also to the segment A"B", then 
not always the segment A'B' is congruent to 
the segment A"B". 
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[ For example: 
- let AB be a segment lying in deltal-fl, and 

consider the line C-P-s l-Q-s2-P-D, where C, 0 are 
two distinct points in delta I-fl such that C, P, 0 
are colinear. Suppose that the segment AB is 
congruent to the segment CD (i.e. C-P-sI-Q-s2-P-D). 
Get also an obvious segment A'B' in deltal-fl, 
different from the preceding ones, but congruent 
toAB. 
Then the segment A'B' is not congruent to the segment 
CD (considered as C-P-D, i.e. not passing through Q.) 

IV.3. If AB, BC are two segments of the same line I 
which have no points in common aside from the 
point B, 
and A 'B', B'C' are two segments of the same line 
or of another line I' having no point other than 

B' in common, such that AB is congruent to A'B' 
and BC is congruent to B'C', 
then not always the segment AC is congruent to 
A'C'. 

[For example: 
let I be a line lying in deltal, not on fl, 
and A, B, C three distinct points on I, such 
that AC is greater than s 1; 
let l' be the following line: A'-P-s l-Q-s2-P 
where A' lies in delta 1, not on fl, 
and get B' on s 1 such that A'B' is congruent 
to AB, get C' on s2 such that BC is congruent 
to B'C' (the points A, B, C are thus chosen); 
then: the segment A'C' which is first seen as 
A'-P-B'-Q-C' is not congruent to AC, 
because A'C' is the geodesic A'-P-C' (the 
shortest way from A' to C' does not pass 
through B') which is strictly less than AC. ] 

Definitions. Let h, k be two lines having a point 0 
in common. Then the system (h, 0, k) is 
called the angle of the lines hand k in 
the point O. 
( Because some of our lines are curves, 

we take the angle of the tangents to 
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the curves in their common point. ) 

The angle formed by the lines hand k 
situated in the same plane, noted by 
«h, k), is equal to the arithmetic mean 
of the angles formed by hand k in all 
their common points. 

IV.4. Let an angle (h, k) be given in the plane alpha, 
and let a line h' be given in the plane beta. 
Suppose that in the plane beta a definite side 
of the line h' be assigned, and a point 0'. 
Then in the plane beta there are one, or more, 
or even no half-line(s) k' emanating from the 
point 0' such that the angle (h, k) is 
congruent to the angle (h', k'), 
and at the same time the interior points of 
the angle (h', k') lie upon one or both sides 
ofh'. 

[ Examples: 
- Let A be a point in deltal-fl, and B, C hvo 

distinct points in delta2-f2; 
let h be the line A-P-sI-Q-B, and k be the 
line A-P-s2-Q-C; because hand k intersect 
in an infinite number of points (the segment 
AP), where they normally coincide -- i.e. in 
each such point their angle is congruent to 
zero, the angle (h, k) is congruent to zero. 
Now, let A' be a point in deltal-fl, different 
from A, and B' a point in delta2-f2, different 
from B, and draw the line h' as A'-P-s l-Q-B'; 
there exist an infinite number of lines k', of 
the form A'-P-s2-Q-C' (where C' is any point in 
delta2-f2, not on the line QB'), such that the 
angle (h, k) is congruent to (h', K'), 
because (h', k') is also congruent to zero, and 
the line A'-P-s2-Q-C' is different from the line 
A'-P-s2-Q-D' if D' is not on the line QC'. 

- Ifh, k, and h' are three lines in deltal-P, 
which intersect the frontier fl in at most one 
point, then there exist only one line k' on a 
given part of h' such that the angle (h, k) is 
congruent to the angle (h', k'). 

58 



- *1s there any case when, \\ith these hypotheses, 
no -k' exists? 

- Not every angle is congruent to itself; 
for example: 
«sl, s2) is not congruent to «sl, s2) 

[because one can construct two distinct lines: 
P-sI-Q-A and P-s2-Q-A, where A is a point in 
delta2-f2, for the first angle, which becomes equal 
to zero; 
and P-s l-Q-A and P-s2-Q-B, where B is another point 
in delta2-f2, B different from A, for the second 
angle, which becomes strictly greater than zero~]. 

IV. 5. If the angle (h, k) is congruent to the angle 
(h', k',) and the angle (hI!, k"), then the 
angle (h', k') is not always congruent to the 
angle (h", k"). 

(A similar construction to the previous one.) 

IV. 6. Let ABC and A'B'C' be two triangles such that 
AB is congruent to A'B', 
AC is congruent to NC', 
<BAC is congruent to <B'A'C'. 

Then not always 
<ABC is congruent to <A'B'C' 
and <ACB is congruent to <A'C'B'. 

[For example: 
Let M, N be two distinct points in delta2-f2, thus 
obtaining the triangle PMN; 
Now take three points R, M', N' in delta I-fl, such 
that RM is congruent to PM, RN' is congruent to RN, 
and the angle (RM', RN') is congruent to the angle 
(PM, PN). RM'N' is an obvious triangle. 
Of course, the two triangle are not congruent, 
because for example PM and PN cut each other mice 
-- in P and Q -- while RM and R..~ only once -- in 
R. 
(These are geodesical triangles.)] 

Definitions: 
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Tw'o angles are called supplementary if they have the 
same 'vertex, one side in common, and the other sides 
not common fonn a line. 

A right angle is an angle congruent to its 
supplementary angle. 

Two triangles are congruent if its angles are congruent 
two by two, and its sides are congruent two by two. 

Propositions: 

A right angle is not always congruent to another 
right angle. 

For example: 
Let A-P-sI-Q be a line, with A lying in deltal-fl, 
and B-P-s l-Q another line, with B lying in 
delta I-fl and B not lying in the rine AP; 
we consider the tangent t at sl in P, and B chosen 
in a way that «AP, t) is not congruent to «BP, t); 
let A', B' be other points lying in deltal-fl 
such that <AP A' is congruent to <A'P-s l-Q, 
and <BPB' is congruent to <B'P-sI-Q. 
Then: 
- the angle AP A' is right, because it is congruent 
to its supplementary (by construction); 
- the angle BPB' is also right, because it is 
congruent to it~ supplementary (by construction); 
- but <APA' is not congruent to <BPB', 
because the first one is half of the angle A-P-s l-Q, 
i.e. half of «AP, t), 
while the second one is half of the B-P-s l-Q, 
i.e. half of «BP, t). 

The theorems of congruence for triangles 
[side, side, and angle in between; angle, angle, and 
common side; side, side, side J may not hold either 
in the Critical Zone (sl, s2, fl, f2) of the Model. 

Property: 
The sum of the angles of a triangle can be: 
- 180 degrees, if all its vertexes A, B, Care 
lying, for example, in deltal-fl; 
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- strictly less than 180 degrees [ any value in the 
interVal (0, 180)], 
for example: 
let R, T be two points in delta2-f2 such that Q does 
not Ile in RT, and S another point on s2; 
then the triangle SRT has «SR, ST) congruent to 0 
because SR and ST have an infinite number of common 
points (the segment SQ), and <QTR -+- <TRQ congruent 
to 180-<TQR [ by construction we may vary <TQR in the 
interval (0, 180) ]; 
- even 0 degree ~ 
let A be a point in deltal-tl, B a point in delta2-f2, 
and C a point on s3, very close to P; 
then ABC is a non-degenerate triangle (because its 
vertexes are non-colinear), but «A-P-sI-Q-B, A-P-s3-C) 
= «B-Q-sI-P-A, B-Q-sI-P-s3-C) = «C-s3-P-A, 
C-s3-P-sI-Q-B) = 0 
(one considers the lenth C-s3-P-s l-Q-B strictly less 
than C-s3-B); 
the area of this triangle is also 0 ~ 

- more than 180 degrees, 
for example: 
let A, B be two points in deltal-tl, such that 
<PAS ~ <PBA + «sl, s2; in Q) is strictly greater 
than 180 degrees; 
then the triangle ABQ, fonned by the intersection of 
the lines A-P-s2-Q, Q-s I-P-B, AB will have the sum of 
its angles strictly greater than 180 degrees. 

Definition: 
A circle of center M is a totality of all points A 
for which the segments MA are congruent to one another. 

For example, if the center is Q, and the lenth of the 
segments MA is chosen greater than the lenth of s 1 , 
then the circle is fonned by the arc of circle centered 
in Q, of radius MA, and lying in delta2, plus another 
arc of circle centered in P, of radius MA-Ienth of s 1, 
lying in deltal. 

GROUP V. Ai'\fTI-AXIOM OF CONTrNUITY (A.cl\ITI-ARCHIMEDEAN AXIOM) 

Let A, B be two points. Take the points AI, A2, A3, A4, 
... so that A 1 lies between A and A2, A2 lies between 
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Al and A3, A3 lies between A2 and A~, etc. and the 
segmen"ts AAI, AIA2, A2A3, A3A4, ... are congruent to one 
another. 
Then, among this series of points, not always there exists 
a certain point An such that B lies between A and An. 

For example: 
let A be a point in deltal-fl, and B a point on fl, B 
different from P; 
on the line AB consider the points AI, A2, A3, A4, ... 
in between A and B, such that AAI, AIA2, A2A3, A3A4, etc. 
are congruent to one another; 
then we find that there is no point behind B (considering 
the direction from A to B), because B is a limit point 
(the line AB ends in B). 

The Bolzano's (intermediate value) theorem may not hold in 
the Critical Zone of the Model. 

Can you readers find a better model for this anti-geometry? 
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On certain new inequalities and limits for the Smarandache function 

J6zsef Sandor 

Department of Mathematics, Babes-Bolyai University, 
3400 Cluj - Napoca, Romania 

1. Inequalities 

1) Ifn> 4 is an even number. then S!.n) ~ I. 

-Indeed, I is integer, I > 2, so in G)! = 1 ·2·3··· I we can simplify with 2, so n lG)!. 

This simp lies clearly that Sen) ~ I. 

2) Ifn > 4 is an even number. then S(n2) ~ n 

-By n! = 1 . 2 . 3· .. I' . ·n, since we can simplify with 2, for n > 4 we get that n 2In!. This 

clearly implies the above stated inequality. For factonials, the above inequality can be much 

improved, namely one has: 

3) S. ( (m!r) ~ 2m and more generally. S (imUn) ~ n . m for all positive integers m and n. 

• (mn)! _ (mn)! (mn-m)! (2m)! _ 
-FIrst remark that ( 1 \" - Ii _ )1' I( -2 )1 ... I. ,-m.) m. \mn m. m. mn m. m. m. 

= C~ . C~ ... C:n, where C~ = (~) denotes a binomial coefficient. Thus (m! t divides 

(m n)!, implying the stated inequality. For n = 2 one obtains the first part. 

4) Let n > l. Then S(illiJ(n-l)!) ~ n! 

-We will use the well-known result that the product ofn consecutive integers is divisible by 

n!. By (n!)! = 1·2· 3 .. ·n· ((n+1)(n+2) ... 2n) ... ((n-I)!-I) ... (n-I)! n 

each group is divisible by n!, and there are (n-I)! groups, so (n!)(n-l)! divides (n!)!. This 

gives the stated inequality. 

5) For all m and n one has [SCm), Sen)] ~ S(m· Sen) ~ [m, n]. where [a, b] denotes the 



f. . c . m of a and b. 

-Ifm = I1~i' n = I1q~j are the canonical representations ofm, resp. n, then it is well-known 

that SCm) = S(~~)and Sen) = S(q~j), where S(~~)= max {S(~~): i = 1"", r}; S(q;j) = 

max {S(q~j) : j = 1, "', h}, with rand h the number of prime divisors ofm, resp. n. Then 

clearly [SCm), Sen)] :::; SCm) . S(n):::; pti . q~j :::; [m, n] 

6) (S(m), S(n)) ~ S(ml·~(n) . (m, n) for all m and n 

_SO (S() S( )) _ S(m)·S:n) > S(m).S(n) = S(m).S(n) . ( ) IDce m, m - 'SI 'SI \1 _ ; 'J m, n 
L \m)I \n)j Lrn, n nm 

by 5) and the known formula [m,n] = .' mn \ . ,m,n) 

-Since S(mn) :::; m Sen) and S(mn) :::; n SCm) (See [1]), we have (SLm;)) 2 :::; S(~~(n), 

and the result follows by 6). 

8) We have (s(mn))2 < S(m)S(n) < _1_ 
mn - mn - (mn) 

-This follows by 7) and the stronger inequality from 6), namely SCm) Sen) < [m n] = ,mn, 
- \m,Tl.) 

Corollary S (m n):::; J!; 

{ } 
S;mn) 9) Max SCm), Sen) ~ (~n) for all m, n; where (m,n) denotes the g. c· d ofm and n. 

-We apply the known result: max {S(m), S(n)}= S( [m, n]) On the other hand, since 

[m, n] 1m. n, by Corollary 1 from our paper [1] we get S~nn) :::; S~;~j!) . 

S· [ ] - mn IDce m,n - -, -I' \m,n 

The result follows: 

Remark. Inequality g) compliments Theorem 3 from [1], 

namely that max {S(m), S(n)} :::; SCm n). 
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(' S n d(n,;2) 

10) Let den) be the number of divisors of n. Then S n~!' ~ n" n I 

-We will use the known relation IT k = nd(n)/2, where the product is extended over all divisors k 
kin 

of n. Since this product divides IT k = n!, by Corollary 1 from [1] we can write 
k$n 

S(IIk) 

S~~!) ~ ~: ,which gives the desired result. 
kin 

Remark If n is of the form m 2, then d (n) is odd, but otherwise d (n) is even. So, in each 

case nd(n)/2 is a positive integer. 

11) For infinitely many n we have S(n ± 1) < S(n), but for infinitely many m one has 

S(m ± 1! > S(ml. 

-This is a simple application of 1). Indeed, let n = p - 1, where p > 5 is a prime. Then, by 

1) we have S(n) = S(p - 1) ~ P;-l < p. Since p = S(p), we have S(p - 1) < S(p). 

Let in the same manner n = p + 1. Then, as above, S(p + 1) ~ P;l < p = S(p). 

12) Let p be a prime. Then S(p! + 1) > S(p!) and S(p! - 1) > S(p !) 

-Clearly, S (p !) = p. Let p! + 1 = IT qJj be the prime factorization of p! + 1. Here each 

qj > p, thus S(p! + 1) = S(qJj) (for certain j) ~ S(poj) ~ S(p) = p. The same proof 

applies to the case p! - 1. 

Remark: This offers a new proof for M). 

13) Let Pic be the kth prime number. Then S(P122...:.;.:.~ ±.1l > ~2J.'. ,Pl£) and 
-3-

-Almost the same proof as in 12) is valid, by remarking that S(PIP2" ·Pk ) = Pk (since 

PI < P2 < ... < Pic). 

14) For infinitely many n one has (S(n)2) < S(n - 1) . S(n ± 1) and for infinitely many m, 

(S(m)) 2 > S(m - 1) . S(m + 1). 
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-By S(p + 1) < P and S(p - 1) < P (See the proof in 11) we have 

~ Sip) 2..J!L ()2 
S(p) < S(p) < S(p-l) . Thus S(p) > S(p - 1) . S(p + 1). 

On the other hand, by putting Xn = S~(~)l) , we shall see in part II, 

that lim sup Xn = + 00. Thus Xn-l < Xn for infinitely many n, giving 
n--oo 

(S(n) r < S(n - 1) . S(n + 1). 

II. Limits: 

1) 
SI \ <;:f ' 

lim inf ~ = 0 and lim sup ~·n; = 1 
n--t>OO n n--.oo n 

~]early, S(ni > O. Let n = 2m. Then, since S(2m) ~ 2m, and lim ;m = 0, we have 
n m~oo-m 

lim s~:..m) = 0, proving the first part. On the other hand, it is well known that S(n) ~ 1. 
m--t>oo n 

For n = Pk (the kth prime), one has S(plc) = 1 ~ 1 as k ----> 00, proving the second part. 
pic 

Remark: With the same proof, we can derive that lim inf Sen') = 0 for all integers r. 
n--t>oo n 

-As above S(2kr) ~ 2kr, and ~:r ----> 0 as k ----> 00 (r fixed), which gives the result. 

2) 1· ·nf S(n~l) d 1· S(n+-l) 1m 1 Sf \ = 0 an 1m sup ~ = + 00 
n--,.oo . \n) n--,.oo \n) 

-Letpr denote the rth prime. Since (P ....... Pr, 1) = 1, Dirichlet's theorem on arithmetical 

progressions assures the existence of a prime P of the form p = a . Pr . Pr - 1. 

ThenS(p + 1) = S(apA·· ·Pr) ~ a· S(P.'I.·· ·Pr) by S(mn) ~ mS(n) (see [lJ) 

( ) { } 
~ ap.. 

But S PA·· ·Pr = max PA,···, Pr = Pro Thus S(p) ~ apA"'p..-l ~ 

PA .. ~-l ----> 0 as r ----> 00. This gives the first part. 

Let now P be a prime of the form P = bp.'I.·· ·Pr + 1. 
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Sip-I) 0 and "" < p... < ~ ~ 0 as r ~ 00. 
S~P) - 01".·· ·p..~1 - PA"·p.. 

3) lim inf [Sen + 1) - Sen)] = - 00 and lim sup [Sen + 1) - Sen)] = + 00 
n~oo m~oo 

-We have S(p + 1) - S /p) ~ ~ - p = -'71 ~ - 00 for an odd prime 

) 
1 '1 P (see 1) and 11) . On the other hand, S(p) - S(p - 1) ~ p - zy = IT ~ 00 

(Here S (p) = p), where p - 1 is odd for p ~ 5. This finishes the proof 

4) Let aen) denotes the sum of divisors ofn. Then lim inf S(a(n)) = 0 
n----.oo n 

. S( . l' 
-This follows by the argument of2) for n = p. Then a(<p) = p + 1 and '.:;) ~ 0, where 

{p} is the sequence constructed there. 

S('P(n) ) 
5) Let <pen) be the Enter totient function. Then lim inf n = 0 

n ..... oo 

-Let the set of primes {p} be defined as in 2). Since <p(n) = p - 1 and S(pp-
1

) = S~;)l) ~ 0, 

the assertion is proved. The same result could be obtained by taking n = zk. Then, since 

k S!2~-1) ry.!k-l) . 
1'l(2k) = 2 -1 and -'-- < --'-' - ~ 0 as Ie ~ 00 the assertIOn follows' '/'" '21c - 21c , . 

6) 
S( sen)) s( sen';) 

l"nf ' - 0 d max - 1 1m 1 - an neN - . 
n ..... oo n n 

-Let n = p! (pprime). Then, since S(p!) = p and S(p) = p, from -:r ~ 0 (p ~ 00) 

s( S(n)) Sen) 
we get the first result. Now, clearly \ n ~ n ~ 1. By letting n = p (prime), clearly 

S( S(p)) 
one has 'p = 1, which shows the second relation. 

7) 
a( Sin)) 

1· inf '- 1 1m SI) - . 
n--.oo "n 

67 



( S' ,\ 
-Clearly, a1kk) > 1. On the other hand, for n = p (prime), as(!'~J) = ~ ----> 1 as p ----> 00. 

\PI P 

8) Let Q(n) denote the greatest prime power divisor ofn. Then lim inf 'P(:C(~)) = o. 
n---...oo n) 

-Let n = pt ... ~ (k > 1, fixed). Then, clearly 8(n) = p~. 

By Sen) = S(~) (since S(~) > S(pf) for i < k) and S(p~) = j. Pr. with j ~ k (which is 

T ----> 00 (k fixed). 

9) lim S(~2: = 0 
m~oo m 
meven 

S(m2\ 1 
-By 2) we have ~ ~ ;:; for m > 4, even. This clearly inplies the above remark. 

Remark. It is known that sC;:) ~ ~ if m =1= 4 is composite. From S(:;f) ~ ~ < ~ for m > 4, 

for the composite numbers of the perfect squares we have a very strong improvement. 

10) lim inf a( sen)) = 0 
n 

n 

-By a(n) = Z d = nZ ~ ~ nZ ~ < n· (2 logn), we get a(n) < 2n log n for n > 1. Thus 
din din d=l 

a(S(n)) < 2S(n)logS(n) F _ 2k h S(2k) < 2k d· 4k log2k 0 
n n' or n - we ave _, an sInce 2" ----> 

(k ----> (0), the result follows. 

11) lim y'S(n) = 1 
n-->oo 

-This simple relation follows by 1 ~ S (n) ~ n, so 1 ~ y'S (n) ~ fo; and by fo ----> 1 

as n ----> 00. However, 11) is one ofa (few) limits, which exists for the Smarandache function. 

Finally, we shall prove that: 

. a( nS(n)) 
12) lim sup Sf ' = + 00. 

n-->oo n \n) 
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· a( 11 - 1 1 1 
-We WIll use the facts that S (p !) = p, + = Z -d ~ 1 + ? + ... + - -- 00 as 

p. - p 
dip! 

p -- 00, and the inequality a-(ab) ~ aa-(b) (see [2]). 

a(S(p!)p! S( I).a( I) a( 1\ {} { } Thus >p.p. = ~ -- 00. Thus for the sequence n = p! the p!·S(p!) - p!.p p!' , 

results follows. 
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THE FACTORIAL SIGNATURE OF NATURAL NU~IBERS 

by 

Ion BaHicenoiu 

In this paper we define the factorial signature for natural numbers and with this 

we obtain several results. 

1. DEFINITION The system 01' j2 ' ... , jr ) E N*r is a system of 
c: . 1 ,_ j I j 2 J 1':(5) 
lactona exponents if :3 s E N* so that s: - Pl' P2 ..... P1t(s) , where 

2=PI<3=P2<"'<P1t(S):S:s, n(s)=r. 
Obviously, for every natural number s > 1 there exists a system of factorial 

exponents 0], j2 ' ... ,j1t(S»)' 
1t(S) ep'(s) 

Because s~ =11 Pi I', where epiCs) 
i=l 

are Legendre's exponents, it is 

true that: e p1 (s) ~ epz(s) ~ ... ep"(5)(S) = 1. 
Therefore for every system of factorial exponents Ul ,j2 ' ... ,jr ) it results 

that j 1 ;:::: j2 ;:::: ... ;:::: jr = 1 . 

It exists a finite number of system of factorial exponents with r components. 

Indeed, they correspond those natural numbers with the property: Pr 1 :s: s~ < Pr-l ~ 

If (i'r ' j'2 ' ... , j'r) and U" I ' j"2 , ... , j"r) are systems of factorial 

exponent corresponding as n respectively m, then 

n<m ~ j'] :S:j"] , j'Z:s:j"2'''' ,j'r-I :S:j"r_I ,j'r=j"r= 1. 
If TI: (n) = TI: (n+ 1), then n 7 1 is a composite number and their systems 

of factorial exponents have the same number of components. 



If n - 1 IS a prime number, then ;;: (n7 1) = ;;: (n) - 1 and if 

(j I ,j:: , ... , J'":(n) = 1) is the system of exponents of adequate factorial for n, u1.en 

the system of exponents of adequate factorial for n+ 1 is: 

(i! ,j2'''' ,j:t(n) =1, j:t(n-I) =1) 
Two systems of factorial exponents with r components, adequate as two 

different natural numbers, have different components and equal components, too. 

2. DEFINITION Let n EN, 

the smallest positive integer such that s! is divisible by n. Then the factorial 

signature for n (denoted by s.f.(nU) IS: 

where is the largest subset for 
ail a" a,. ' 

Pi. ,Pi, -, ... , Pi .. ~ 
l _ • ) 

so that there are 

~'k 

~ i. 2 ai. 2 1, j E 1, r 
"J !\.; 

with 
~:k 

Pi, ; ~(s - 1): and 
J 

J I I Pi.. S .. 
~j 

It is considered s.f.(O):= 0, s.f.(I) = {I}. 
Obviously: e p;. (s - 1) < ~ ik ::; epi,(s), j = 1, r 

'''J '; J 

3. DEFINITION -rhe type of the factorial signature for n is noted 

T[s.f.(n)] and T[s.f.(O)] = 0, T[s.f.(n)] = s, for n> 0, where s is the 

smallest positive integer such that n I s~. 

4. EXAMPLE 
a) Let n = 120 = 23 

x 3 x 5, therefore PI = 2, P2 = 3, P3 = 5; 

<Xl = 3, <X2 = 1, <X3 = l. Obviously the smallest positive integer s thus so 

that nis! IS s=5. Indeed,·s.f(120)={5} because {5} isthehrgest 

subset of {23
, 3, 5} in the sense that (see definition 2) it exist ~3 = <X3 = 1 

so that 5~314~ and 5P3 15!. 

b) Let n = pO:, then S.f.(PCl) = {pO: } and T[s.f.(pO:)] = s iff 

ep(s-l) < a::; ep(s). 

a l • 

5. PROPOSITION Let . Pi.', 

pi: < pi: < ... < pit, with 
r a'k a" a. 'I - f ( ) - I I : , 'k, ~ 

~. ' n - 1 Pi, ,Pi" , ... , PI' , l 1 ~ "r ) 
and 

Ui:.- _ 

T[s.f.(n)] = s > 1 then it exists at least an element Pi. "J , j = 1, r 
K

J 

so that 
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and 
I -'. '\-

T S·f.lp:,":) J = s. 

Proof Let Pikl < Pi,,: < ... < Pi"r . 

Because T[s.f.(n)] = s > 1 it results that n: s! and it exists 

epik (s - 1) < ~ik. ::; epik (s) 
_J_ J J 

so that 

If does not exist j E 1, r so that epikJ (s-l) < aikj ::; ep'''J (s) , 

then pi ler < P1t(s) because pi ler = P1t(s) it implies that 

ai ler = epiler (s) = ep1t(S)(s) = 1 = ~il<r and eP7t(S)(s - 1) = 0 . 

Using ai, ::; ~i' ::; ep (s) it results that aile::; ep (s - 1), j = 1, r . 
KJ Kj lie] J lie] 

Thus we have T[s.f.(n)] ::; s - 1 < s , which is not possible. 

Therefore it exists j E 1, r so that ep'k
j 
(s -1) < ai"j ::; epi \:; (s) and in 

consequence T[ s.f. (p:J"j ) ] = S. 

ail< 
We can observe that Pi

k
, J indicates the type T[s.f(n)]. 
J 

6. DEFINITION The complement until a factorial (see [2]), IS 

b : N* ---7 N* , ben) = k, ",'here k IS the smallest positive integer so that 

n ben) is a factorial. Thus n ben) = m~. 
Obviously, if n ben) = m!, then m! is the smallest factorial divisible 

by n, therefore n ben) = [T](n)]1 where T] is Smarandache function see [1]. 

It is easy to see that ben!) = 1 and b(P) = (P-l)! P is a prime 

number. 

Because T](n!) = n it results 

7. PROPOSITION 

b(m~ . p) = (p - ,I)! 
m. 

Let p 

ben) = [TJ(n)]! 
TJ(n!) 

be a prime number and p > m, then 

Proof Obviously, p! is the smallest factorial divisible by m! p. 

Therefore b(m!. ) = L = (p -1)1 
P m~p m! 

8. PROPOSITION 
T[s.f(n)] = s iff nb(n) = s1 

Proof Obviously, T[s.f(n)] = s <=> s1 is the smallest factorial divisible 

by n <=> n ben) = s1. 
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9. DEFI~ITIO~ 
Q nbn = mb(m). 

\Ve defme the ecruvalent relation: s.f.en):::: s.f.(m) <=> 

1\ 

\Ve note s! = {n E N* / nb(n) = s!}. 

10. REMARK Obviously, if s.f.(n) = s.f.(m) then s.f.(n) ::::: s.f.em). 

If s.f.(n) ::::: s.f.(m) it does not result that s.f.(n) = s.f.(m). If 

s.f.(n) = s.f.(m) it does not result that n = m. If n ben) = s! it results that 

s.f.(n) ::::: s.f.(s!) because s! b(s!) = s!. 
1\ 

We also observe that T[s.f.(n)] = s Q n E s! 
1\ 

If P is a prime number, then pEp! because p b(P) = p!. It is easy to 
see that s.f.(P) = s.f.(p!) = {p}. 

e pi (P) epe(p) -.. 
Because p! = PI· P2 .... p, where 2 = Pl < .) = P2 < ... < p, It 

results 1\,- { z epi (P). e p2 (P). .} 
p.- P, PIP, P2P, PIP, PIPZP, ... , PI P2 ... P . 

ep. (s) e~ (s) e? (5) 
I _ . 'I . '12 ._< 

S.f.(s.) - {PI I ' Pl 2 ' ••• , PI" } 

1\ 1\ 

11. PROPOSITION If (n, m) = 1 and n, m E s! then n· mE s! 

and s.f.(n· m) = [s.f.(n)] u [s.f.(m)]. 
,t cr.1 cr.2 cr.t 

ProD). Let n = PI . P2 .... " Pt and 
"(1"(2 Yo m = ql . q2 ..... qh 

the cannonical decomposition of n and m. Obviously, because (n, m) = 1 

results Pi * qj for i E 1, t, j E 1, h. 

cr." cr." cr.. "(j I "f'le 

Let s.f.(n) = {Pi, -, Pi 2 "' ••• , Pir'r} and s.f.(m) = {qji ' ... , qjk } . 
1\ 

be 

it 

Because n, m E s! it results that s is the smallest positive integer so that 

nl s1, mJ s! and it exists ~il' ~il' ... , ~ir and bj:, bj:, .. ,bj" 
respectively so that ~iu;::: ai" ;::: 1, U E 1, r and bjy;::: (jy ;::: 1, V E 1, k and 

P,U Y"( I)' Piu I I Piu!l S - . , Piu s. 

In (n, m) = 1 and n I s!, m! s! it results that n m i s!. Because s 

is the smallest natural number such as n I s! and n m I s! it results that s 

is the smallest natural number such that s! is divisible by n· m, therefore 
!\ 

T[s.f.(nm)] = s, so that nm ES!. 
cr.1 cr.2 cr. t Y I ·Ie Yo d 

Obviously 11m = PI· P2 ... Pt . ql . q2 ... qh an 

cr.i l cr.'2 cr.ir YJ1 "fjle f f ( ) 
S.f.(l1· m) = {Pi, ' Pi: ' ... , Pi r ,qjj , ... , qjk } = [so .(n)] u [so . m ] 
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12. RE'\lARK The proposition 11 can be also formulated in this way: if 

n ben) = s!, m b(m) = s! and en, m) = 1, then nrnb(nrn) = s!. 

It results b(n· m) = b(n)s~(m) if (n, m) = 1 and n, m E ~ 

13. PROPOSITION 

If (n, m) =1 and s.f.(n) ::::: s.f.(m), then b(n·m) = (b(n), b(m». 

Proof Let T[s.f.(m)] = s, because (n, m) =1 and s.f.(n)::::: s.f.(m) 

then it results: 

nb(n) = mb(m) = runb(nrn) = s!, 
Sl 

therefore ben . m) = mil . Let us consider d = (b(n), b(m», ben) = d·a 

and b(m) = d·b, where (a, b) = 1. Then nb(m) = mb(m) implies that 

na=mb. 

Because (a, b) = 1 it results a I m and bin, then we can \vnte 

n = hb, then hba = mb, so that m = ah. Since 1 = (n, m) = (hb, ha) = h(a, b) = h 

it results n = b, m = a. 
Sl Sf 

Then (b(n), b(m)) = d = na = rull = ben . m) 

14. PROPOSITION 

Let and 
"fjl "fjr 

s.f.(n) = {qjl ' ... , qjr }. If 
/\ 

n E s! 

and then 

Proof 

eo (5) 

r ep (5) e. (51 e. (s) 

Because f( ') I 'I ":0" ":<' l·t r_esult;;: s .. s. = 1 Pi ,Pi - , ... , Pi. ... 
L 1 ~ K 

Pi·!h X(s-l)~ 
h 

ep (5) 

and Pi 'h Is~ for h = 1, k, therefore pi" Is, 
h 

thus we have 
ail a!l a 'k 

S = Pi, . Pi: .. -.. Pi
k

, where 1 S; <Xih S; e p:
h 
(s) for 

h = 1, k. 
/\ 

Because n ES~ 

~J"'I(s-l)~ qJm and 

{ qj : , qj z' ... , qj r} C {p i I> Pi 2 , ... , Pi k} . 

n.. > y. > 1 1-' 1m - 1m - ) 

thus 

/\ 

for m = 1, r 

qjJs. 

so that 

Therefore 

15. DEFINITION Let n,m ES~ and 
a'i a'2 a. r } 

s.f.(n) = {Pi, ,Pi z ' - - ., PI," , 
"fJ1 YJ2 "fJk 

s.f.(m) = {qjl ,qjz ' ... , qjk } then sJ.(n) :: s.f.(m) iff 
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and for even.: P" = CL: it i.rnplies 

16. RE~L\'RK Obviously "C" IS a partial order relation in the set of 
1\ (\ 

factorial 

results 
Ct.;! 

signatures of numbers which belongs to s1. For any n ES: it 

s.f.(n) c::: s.f.(s!) , so that s·f(s1) is the maximal element. If 

S = p' Ii . p~iz. .... p~iu then the minimal elements in the factorial signatures of 

numbers which belongs to s1 are: 

~' ep' (S)-a.ih·1l I,' e", (S)-Ct.ih+1: 
'h ' ' "'h ,I 

s.f. , Pi h ' r = ~ Pi ~ , 
I • !: l'l I 

h E 1, U 

because 

17. PROPOSITION 
Smarandache function. 

1\ 

" , 

/\ 

and for any XES! 

it results s.f(x) = I p~?\ (s)-ai" -1 ' 
I, .:1 

For any rn E N, 11-1 (rn) =rn!, \vhere 

so that 

IS 

Proof Let n Ern! then nb(n) = [Tj(n)]! = m!, therefore Tj(n) = m, 

or n E Tj -l(m). Conver:;.::!v, if n E Tj-l(m) it results Tj(n) = m , that 
1\ 

nb(n) = [Tj(n)]! and therefore n Em! 

1\ 

18. DEFI~ITIONS In s! it IS considered the equivalent relation: 

n ::::: m <=> s.f.(n) = s.f.(m). The echivalent class for n IS 
/\I' I\. 'I 

n := i rn ES: I s.f.(n) = s.f.(rn) ~ . The set of equivalent classes in -' ~, It 

1\ 1\ 
1\ 1\ 

noted with s1 In s1 

n:5 ill Q s.f.(n) C:::s.f.(rn) 

19. REMA.RK Each class 
1\ 

it IS considered panial order relation 

1\ 

IV 1\ 

n E s! is a set of elements \vhich belongs to 

I S. , and it is total ordered in the sense of the relation::; It is also fInite, therefore 

it has a minimum and a maximum. If 
Ct.' a. a 

s.f.(n) = {Pi,!I, Pil'z, ... , Pir'e}, then in 

the class 
IV 
n the smallest number IS 

- _ ail. a,:. . a'r and the n-p, p; .. p. 
.1 .: ~ r 

other numbers of A·n:, ·th A <:. <:0 £,·th 
WI = Ph; . Ph; _._._ ... P!-:k ' \V1 

and and o ::; Sj ::; eph;(s) , j = 1, k, where 
eo, (5) e ph (s) 1 

·'1 . k ! 

Ph P·, = 
~ , , ... , nk " 

e p : (5) l' f I 
Pl , ... , P::(5): - S .. (s.) 
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'j 

The largest number of n IS: 

f\ 
f\ 

Minimal elements of s~, in the sense of the partial order relation :S, are 
ep. (s)-a. .. + I 

1~ 'n 

the classes which respectively have the elements: P i
h 

' h = 1, r . The 
f\ 

f\ 

maximal class of s! has s! as element. 
N < N N IV' 

If n _ ill and n;:: ill, the absolute value of the difference between 
f\/ 

two different numbers in the class ill is larger than the smallest between absolute 
N 

values of differences between t\vo different numbers of the class n. 
1\/ < 1'1 "f AI 

If n _ ill and n ;:: ill, the absolute value of the difference behveen a 
N N . 

number of n and a number of ill IS larger or equal than the smallest nwnber 
N 

of n and therefore it is larger or equal than the smallest number of the minimal 
< f\/ 

class comparable (in the sense of the partial order relation _) with n. 

20. EXA~lPLE Let 

Let us consider the .;;;:t of natural numbers with the factorial signature of 
f\ 

type 12, so that 12!= {n EN Inb(n) = 12!} = {n E N I s.f.(n) = s.f.(l2~)} 
f\ 

Obviously 11-1(12) =12! . 
f\ 

The minimal elements of 12! , in the sense of the partial order relation < - , 
.tV,v -v tV 

are: 2 10
-
2

-
1 = 29 and 35

-1-1 = 35
. 

f\ 

Factorial signatures of numbers of 12 ~ are ordered in the following way: 

r {21O} ~{210,3}C:::{210,32}C:::{210,33}C::: {21o,3 4}C::: l 
{29}~~ ~{2!0,35 

l {29,3}~{29,32}~{29,33}~{29,34}~ {29,35}~ J 

f\ 

Classes of numbers of 12! are presented in next table: 
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s.f.(n) sf.(n) s.f.(n) 

{3 5 
} 

'~5 
.) 

: 35 . 5 

I 

29 .7 

I 
35 

. 7 
29 ·11 35 ·11 
79 -2 35 . 52 - .) 

29.5.7 35.5 . 7 
29 

• 5 . 11 35 . 5 . 11 
29

• 7 . 11 35 . 7 . 11 
29 

. 5 . 7 . 11 35 • 5 . 7 . 11 
29 • 52. 7 . 11 35 . 52 . 7 . 11 

210 {io} {29
, 3} 29 ., . .) {35,2} 35.2 

210 -.) 29 .3 ·5 35.2 . 5 
iO·7 29 .3 ·7 35 .2.7 
1210 .11 29 

• 3 . 11 35 .2. 11 
1210.52 29 • 3 . 52 35.2.5: 
12 10 .5 . 7 29

• 3 ·5 . 7 35 . 2 . 5 . 7 
I 
12 10 .5. 11 29

• 3 . 5 . 11 35.2.5.11 
I I 1210.7. 11 29 . 3 . 7 . 11 35 • 2 . 7 . 11 
12 10 .5 ·7· 11 29 . 3 . 5 . 7 . 11 3s . 2 . 5 . 7 . 11 ! 
iO . 52 . 7 . 11 29 • 3 . 52 . 1 . 11 35 • 2 . 52 . 7 . I 

11 1 
I ; 

210 .3 I {210, 3} {29
, J2} 29

• 32 {35,22} 35 . 22 

- - - - ---- - - - - - -
210 . 3 . 52 . 7 . 11 29 . 32 . 52 . 7 . 11 35 . 22 . 52 . 7 . 11 

.. 
1 _____________ 1------------ i ------------ ------ -------
I ------- I 

210 .33 {21°,3 3
} {29

, 34
} 29 ... 4 . .) {3s,28} 35 . 28 

--- - --- - - - - - - -
21°.3 3 .52 .7. 11 29 . 34 

• 52 . 7 . 11 35 . 28 • 52 . 7 . 11 

{21°,3 4
} {29

, 35
} 

, 
210 .34 29

• 35 1 

I 

I i -- -- 1----- I I 

210. 34
• 52 . 7 . 11 129 .35 .52.7.11 i I 

210. 35 

I 
{21°,3 5

} I 
I 

! i 

I I 
I 
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_ The Pseudo-Sma rand ache Function and the Classical 
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e-mail 71603.522@compuserve.com 

Abstract: The Pseudo-Smarandache function has a simple definition: Given any integer 
n > 0, the value of the Pseudo-Smarandache function is the smallest integer m such that 
n evenly divides the sum 1 + 2 + 3 + ... -+- m. In this paper, several problems concerning 
this function \vill be presented and solved. Most will involve the standard number theory 
functions such as Euler's phi function and the sum of divisors function. [1 ] 

The Pseudo-Smarandache function has the definition 

Given any integer n 2 1, the value of the Pseudo-Smarandache 
function Zen) is the smallest integer m such that n evenlv divides 

m 

2:k 
k=l 

Note that this summation is equivalent to the expression 

m(m+l) 
2 

The purpose of this paper will be to present some theorems concerning the interactions 
of this function with the classical theorems of number theory. 

Basic Theorems 

Theorem 1: If p is an odd prime, then Z(P) = P - 1. 

Proof: Clearly, p divides 

(p-l)p 
2 

and there is no smaller number that satisfies the definition. 

Proof: Since only one of m and m-!-1 is even, it follows that Z(2k) is the smallest ratio 



m(m+1) 
2 

where the even number contains k + 1 instances of 2. This nLll'nber is clearly 2k~1 and the 
value of m is smallest when m -r- 1 = 2k+l. 

Definition: Given any integer n 2: 2, the Euler phi function o(n) is the number of 
integers k, 1 ::; k < n, such that k and n are relatively prime. 

Our first theorem concerning the combination of 9 and Z is trivial. 

Theorem: There are an infinite number of integers n such that 
o(n) = Zen). 

Proof: It is well-kno\v11 that if p is an odd prime o(P) = p - 1. 

So we modify the statement to make it harder. 

-'fodified theorem: There are an infinite number of composite integers n such that o(n) = 

Zen). 

Proof: Let n = 2p, where p is an odd prime of the form p = 4k -"- l. It is well-knO\vl1 that 
this is an intinite set. 

Consider the fraction 

(p-l )p 
-2-

Replacing p by the chosen form 

(4k + 1 - 1) (4k + 1) 
2 

Clearly, 

I 

4k(4k + 1) 
2 

2(4k+ 1) 12k(4k-"-1) 

- 2k(4k + 1) 

and p = 4k + 1 is the smallest such number. Therefore, 
Z(2p) = p - 1. It is well-kno\v11 that o(2p) = p - 1 for p an odd prime. 

L"nsolved Question: Is there another infinite set of composite numbers such that Zen) 
= o(n)? 

.,-illother equation involving these two functions has an infinite family of solutions. 
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Theorem: There are an infinite number of solutions to the expression 

Zen) + <ben) = n. 

Proof: Let n = 22j 
4- 22j- 1 , where j 2:: 1. Factoring it, we have 

n = 22) * 3. Using the well-knovin formula for the computation of the phi function 

It is easy to verify that if k is odd, 

I ' 
3 . 2" ~ 1. 

From this, it follows that 

and it is easy to see that 22j- 1 is the smallest such m. Therefore, 

and 

Zen) - o(n) = n. 

l'"nsolved Question: Is there another infinite family of solutions to the equation 

Zen) -+- !D(n) = n? 

Another classic number theory function is the sigma or sum of divisors function. 

Given any integer n 2: 1, (j(n) is the sum of all the divisors of n. 

Theorem: There are an infinite number of solutions to the equation 

(j(n) = Zen). 

Proof: It has already been proven that Z(2k) 
k-I 1 p -, 

2k -.,-1 - l. It is well-knovin that (j(p:-:) = 
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A computer search up through n = 10,000 yielded no solutions not of this type. 

Unsolved Question: Is there another infinite family of solutions to the equation 

a(n) = Zen)? 

The final classic function of number theory is the number of integral divisors function. 

Definition: For n 2: 1, the divisors function den) is the number if integers m, where 1 
~ m ~ n, such that m evenly divides n. 

Question: How many solutions are there to the equation 

Zen) = den)? 

A computer search up through n = 10,000 yielded only the solutions n = 1, 3 and 10. 

Question: How many solutions are there to the equation 

Zen) + den) = n? 

A computer search up through n = 10,000 yielded only the solution n = 56, as d(56) = 8 
and Z(56) = 48. 

It is unknown if there are any additional solutions to this problem. 

There are many other problems involving the classic functions that can be detined. One 
such example is 

Question: How many solutions are there to the equation 

Zen) + <p(n) = den)? 

A computer search up through 10,000 failed to find a single solution. 

The author continues to work on this set of problems and hopes to present additional 
solutions in the future. 

1. This paper was presented at the Spring, 1998 meeting of the Iowa section of The 
Mathematical Association of America. 
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TWO FlS~CTIONS IN NUMBER THEORY A~D SO~IE (;PPER BOU~DS FOR THE 

Si\'l'\RA~DACHE'S FUNCTION 

Sabin Tabirca Tatiana Tabirca 

The aim of this article is to introduce two functions and to give some simple properties for one of 

them. The function's properties are studied in connection v.ith the prime numbers. Finally, these 

functions are applied to obtain some inequalities concerning the Smarandache's function 

1. Introduction 

fn this section, the main results concerning the Smarandache and Euler's functions are 

review. Smarandache proposed [1980] a function 5 N* -+ N defined by Sen) = min{k k! IlJ . 

This function satisfies the following main equations 

1. (n, m) = 1 => S(n· m) = min{ Sen), SCm)} 

(I) 

(2) 

3 (7 n > I) Sen) 5, n 

(3) 

and the equality in the inequality (3) is obtained if and only if !I is a prime number The research on 

the Smarandache's function has been carried out in several directions. One of these direction studies 

n 

ISU) 
the average function S : N* ~ N defined by S(n) = -'.'=--,1 __ Tabirca [1997] gave the following 

n 

two upper bounds for this function 
- 3 I? (V n > 5) Sen) 5, -·n.,---:::'" 

8 4 Il 
and 

- "'1 I? - "'·n (7 n> 23) Sen) 5, ~. n + - -:::... and conjectured that ('v' tI> I) Sen) 5,-=--
72 12 n In 

Let rp: N* ~ N be the Euler function defined by rp( n) = card (k = L III (k ,ll) = I} . The 

main properties of this function are review below· 



I. (n,m) = I=> rp(ll' m) = rp(I1)' rp(m) 

(4) 

(5) 

n 
3. rp(-) = card{k = 1,I1I(k,n) = m} 

m 

(6) 

It is knov"TI that if f .. V* -)0 ,V is a multiplicative func:ion then the function g S* -)0 .V 

defined by g(n) = If(d) is multiplicative as well. 
an 

2. The functions Ij/~,J!.;. 

In this section two functions are introduced and some properties concerning them are 

presented. 

Definition 1. 

Let If/ 1 ' If/: be the functions defined by the formulas 

n 

1. fII:'v * -)0 .v, fill (n) = I -!!-
1=1 (1,11) 

(7) 

" . 
2. Ij/,_ :V * -)0 .V, III (n) _ '" _I -

. 't'2 - 7S' (i, n) . 

(8) 

If/Jij fIIJij / Ij/Jij 

11 III 

3 .., 12 77 -

3 7 4 13 157 

-+ II 6 14 129 

5 21 II 15 I-n 

6 21 11 16 171 

fII:fiJ 

56 

39 

79 

65 

74 

86 

83 

fIIJi) fII:(i) 

21 301 lSI 

22 333 167 
.,.., 
_J 507 254 

24 301 lSI 

25 521 261 

26 471 236 



Sabm Tabirca and Tauana Tabirca 
.., 
.J 

7 43 22 17 273 137 27 547 274 

8 43 22 18 183 92 28 473 237 

9 61 31 19 343 172 29 813 407 

10 63 32 20 231 116 30 441 221 

Table 1. Table of the functions Ij/ l' Ij/ 2 

Remarks 1. 

1. These function are correctlv 
, ~ 

defined based on the implication 

. n n. 

n I I n I I 

(i,n) , (i,n) 'EN~ i=1 (i,n)' i=1 (i,n) 'EN, 

2. If P is prime number. then the equations Ij/ 1 (p) = p2 - p..,-1 and Ij/ 2 (p) = PCP,., - J) - 1 can 

be easy verified. 

3 The values of these functions for the first 30 natural numbers are shown in Table 1. From this 

table, it is observed that the values of IjlI are always odd and moreover the equation 

~1jI1(n): 
1jI,(n) =' -'- seems to be true, 

~ 2 

Proposition 1 establishes a connection between Ij/ 1 and rp . 

Proposition 1 

If ll/O is an integer number, then the equation 

Ij/l(n) = Id.rp(d) (9) 
.in 

holds. 

Proof 

Let Ad = {I = LIn (i,ll) = d} be the set of the elements which satisfY fi,ll)=d 

The following transformations of the function 1jI,' holds 
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( \ 

Csing(6) the equation (10) gives 'l'r(n) = L: -dnqJ1 -d
n

, 
d'n "./ 

Changing the index of the last sum, the equation (9) is found true .... 

(l0) 

The function g(n) =nrpfn) is multiplicative resulting in that the function 1f/: (n) = I d . (j)( d) IS 

..in 

multiplicative Therefore. it IS sufficiently to find a formula for 1f/: (p'" ). where p ,s a pnme 

number. 

Proposition 2. 

If p is a prime number and kCl then the equation 

holds. 

'. p: k_! _ I 
'l'l (p') = ~-

p-I 

Proof 

The equation (II) is proved based on a direct computation, which is described below. 

Theretore, the equation (II) is true .... 

Theorem 1. 

p?k-i -J 

p-I 

k. ~ lc 
If n = p!' . P:' .... P s' is the prime numbers decomposition of fI, then the tormula 

s s 1 k 1""{ I 

T1 Ie. IT P, ' -
'l'l (. Pi . ) = . _ I 

1=; 1=1 P, 

holds 

Proof 

The proof is directly tound based on Proposition I 1 and on the multiplicative property' of '1'" 
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p3 ~ 1 2 
Obviously, if p is a prim number then If/ 1 (p) = --- = p - pc... I holds finding again 

p-"-I 

the equation from Remark 12 If n = PI . P:··· .·Ps is a product of prime numbers then the 

following equation is true. 

s 

1f/\(n)=lf/I(PI'P2"Ps)= I1(p; -P, -I) 

Proposition3. 

l=l.lLn)=i 

Proof 

1=1 

n· rp( n) 

2 

This proof is made based on the Inclusion & ExclUSIOn principle 

Let D p = {i = 1,2, .. , IIi pi II} be the set which contains the multiples of P 

This set satisfies 

n 
Dp = p'< 1,2,. ,-~ and 

pj 

Let n = P~\ . p;1 .... P:' be the prime number decomposition ofn. 

The following intersection of sets 

U = 1,2, ... , n; p,n /\ P, n /\ ... /\p,n} 
~, J. • ~ 

is evaluated as follows 

Dpc ' :". DpJ: n .. r,DpJ~ = (i = 1,2, ... , nl P-" . Pi: ··.··Pj~ :n} = Dp,\ p., 

Therefore, the equation 

n ___ n ___ +l 

holds. 

The Inclusion & Exclusion principle is applied based on 

D = {i = L 2" nl (i. n) = I} = {I, 2 ... n} - y D p, 

j=l 

and it gives 
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(13 ) 

( 14) 

(14 ) 



z<n. (:.n):l /::1 ..,,:1 

Applying ( 14), the equation (I5) becomes 

( 
n , n 1 
-.1 ~II 

2 ~Plt ·p}:"Pj~ 

The right side of the equation (16) is simplified by reordering the terms as follows 

Therefore, the equation (14) holds. of, 

Obviously, the equation (I4) does not hold for n=1 because 
i=I.(I.1)=1 

Based on Proposition 3, the formula of the second function is found. 

Proposition 4. 

The following equation 

holds 

Proof 

= 1 and n· rp(n) 
2 

(15) 

( 16) 

2' 

( 17) 

Let I n.d = {i = 1, 2" nl (i, n) = d} be the set of indices which satisfy (i.n) =d Obviously, the 

follo'Wing equation 

(Vd!n) I n.d =d.I'!...1 
d 

holds. Based on (18), the sum f _._i - is transtormed as follows 
1=1 (l,n) 

;=1 dn rei",d dn 

Proposition 3 is applied for any divisor d#J and the equation (19) becomes 
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Completing the last sum and changing the index, the equation (20) is transformed as follows 

. 1 I I II I I 'I' 2 ( n) = I ~ - d . q;{ d) = I - - ~ - d . q;{ d) = - ~ - . 'I' I (n) 
? ? ? ? .., 
- I"'dn - - dn - -

resulting in that (17) is true .... 

Remarks 2 

(20) 

1. 
'l'l(n) + I . 

Based on the equation 'I' 2 (n) = ':2 ' it IS found that '1'1 (n) = 2· 'l'2(n) -1 is always 

:- '1'1 (n)! 
an odd number and that the equation 'I' J (ll) = ! --; holds. 

- I 2 i 

? If kl k, k l' h' b d . . f h h 11 I _. n = PI . P2' ····Ps' > IS t e pnme num ers ecomposltlOn 0 n, t en t e ormu a 

3. Upper bounds for the Smarandache's function 

In this section, an application of the functions 1fI1' IfIz is presented. Based on these function an 

inequality concerning the Smarandache's function is proposed and some upper bounds for 

_ 1 n 

Sen) = _. IS(i) are deduced. 
n 1=1 

Let PI =2, P2 =3 ... , Pm , ... be the set of the prime numbers. 

Proposition 5. 

Proof 

Let i,j be two numbers such that i? Pm and j = I,PI . PZ···Pm • 
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Based on the inequality 

....:cP....:I_·...=.P-=2c...· ._. '....:c' P..c.m~ . . 
- 1+ lI' 
Pi, ·PI,·····Pi, 

PI·P2··:Pm /.+J. >/. ·l>p ... 1 
1- + - m· , 

Pi ·Pi.···:Pi I _ , 

The following divisibility holds 

therefore. the inequality (21) is found true ... 

Proposition 6. 

p,·Pz· ... p~ 

we find that the product 

(V i ~ Pm) IS(PI . P2···Pm· i + j):<; i 'lfIdpI . P2·····Pm) ... 1f12(PI . P2···Pm) (22) 
j=l 

Proof 

The equation (21) is applied for this proof as follows: 

PI' P2·····Pm 
--''--'---'-''---=-- + j 

(PI' P2·····Pm'j) 

Applying the definitions of the functions '1/ I' '1/ 2 ' the inequality (22) is found true .... 

Theorem 2. 

The following inequality 

is true for all n > PI . P2 '-Pm-I . P;'" where 

PIP'···P~-I·Pm· . (Pm -1)· Pm 
em = I S(I) -1fI1(PI· P2' -Pm)· 2 - 1f12(PI . P2"Pm)' (Pm - I) (24) 

1=1 

is a constant which does not depend on fl. 
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Proof 

Proposition 6 is used for this proof. 

n 

Let n be a number such that n> PI' Pz' . :Pm-I . p;". The sum I SCi) is split into two sums as 
i:1 

follows 

n p,'p, "'P~-i'P~' n 

IS(i) = IS(i) + IS(i) 
1=1 i=1 l=p]"p;, .. ·pfPI-l·p"''':.. .. l 

I n -l 
P,'P, ... ·P~_I·Pm2 i P,'p, .. p~: P\·p,·····p~ 

IS(i) ~ I IS(PI . Pl··Pm· i .,. j). 
1:1 I=P", J=I 

For the second sum the inequality (22) is applies resulting in the following inequality 

n ' ---'-1 
n PI·P2··P~.P~ ip.,·p2· .. ··p~1 

= 

IS(i)::; IS(i) + I[i. fill (PI . PZ' -Pm) + f112(PI . P2· .. ·Pm)]. 
i=1 1:1 

Calculating the last sum, the inequality (25) becomes 

n P:·P-: .. _·p",....!·p",,-

ISU)::; IS(i)+fIIl(PI·P2· .. :Pm)· 

1 \;- -

n 1-1 i.: n i 
PI' PZ"Pm! ) i PI' PZ"':Pm i 

~ 

1=1 i=1 
2 

I' n n I" n -: 
Based on the double inequality I ; - I < S; i : , we find 

i PI' P:"Pm ! PI' Pz' ':Pm : PI' PZ':Pm \ 

PI ·p:.··:p", 

Dividing by 11 and using Proposition 4, the equation (22) is found true .• 

.... Conclusions 

(25) 

The inequality (22) extends the results presented by Tabirca [1997J and generates several 

inequalities concerning the function S. which are presented in the following: 
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• 
I n -

m=1 ~ (n> 4) Sen) = _. IS(i) ~ 0.375· fI + 075.,. 2 
n i=1 n 

• 
- 1 11 "4 

m=2 ~ (n> 18) Sen) = -. I Sci) ~ 029167· n.:.. 176.:..-=-
n 1=1 fI 

• 
~ , _ - 1 f-. _ ~ _ 1052 

m=.) ~ (n> 1)0) Sen) = -. L S(/) ~ 02-1)· n - 7 . .)) ---
fI . fI 

l~l 

• 
- 1 /I 1768-9 

m=4~ (n>1470)S(n)=-·IS(j)~0215.n--I5.15- ) 
n 1=1 n 

The coefficients of n from the above inequalities are decreasing and the inequalities are stronger and 

stronger. Therefore, it is natural to investigate other upper bounds such us the bound proposed by 

- 1 n 2:n 
Tabirca [1997] Sen) = -. IS(i) :::; --. Ibstedt based on an LBASIC program [Ibstedt 

n 1=1 Inn 

- 1 n n 
1997] proved that the inequality S (n) = - . IS (i) :::; -- holds for natural numbers less than 

n 1=1 Inn 

5000000 A proof for this results has not been found yet. 
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THE SJ\'lARANDACHE PERIODICAL SEQUENCES 

by 

M.R. Popov, student Chandler College 

1. Let N be a positive integer with not all digits the same, and N' its digital reverse. 
Then, let Nl = abs (N - N'), and Nl' its digital reverse. Again, let 

N2 = abs (Nl - Nl'), N2' its digital reverse, and so on, where abs x is the 
absoluth value of x. 

After a fInite number of steps one fmds an Nj which is equal to a previous 0:i, 
therefore the sequence is periodical (because if N has, say, n digits, all other 
integers following it will have n digits or less, hence their number is limited, and 
one applies the Dirichlet's box principal). 

For examples: 
a. If one starts with N = 27, then N' = 72; 

abs (27 - 72) = 45; its reverse is 54; 
abs (45 - 54) = 09, ... 
thus one gets: 27, 45, 09, 81, 63, 27, 45, ... ; 
the Lenth of the Period LP = 5 numbers (27, 45,09,81,63), 
and the Lenth of the Sequence 'till the fIrst repetition 
occurs LS = 5 numbers either. 

b. If one starts with 52, then one gets: 
52,27,45, 09, 81,63, 27,45, ... ; 
then LP = 5 numbers, while LS = 6. 

c. If one starts with 42, then one gets: 
42, 18, 63, 27, 45, 09, 81, 63, 27, ... ; 
then LP = 5 numbers, while LS = 7. 

F or the sequences of integers of two digits, it seems like: 
LP = 5 numbers (27, 45, 09, 81, 63; or a circular permutation of them), and 
5 <= LS <= 7. 

Question 1: 
Find the Lenth of the Period (with its corresponding numbers), and the Lenth of 

the Sequence 'till the fIrst repetition occurs for: 
the integers of three digits, and the integers of four digits. 
(It's easier to write a computer program in these cases to check the LP and LS.) 



An example for three digits: 
321, 198,693,297,495,099,891,693, ... ; 
(similar to the previous period, just inserting 9 in the middle of each number). 
Generalization for sequences of numbers of n digits. 

2. Let N be a positive integer, and N' its digital reverse. 
For a given positive integer c, let Nl = abs (N' - c), and Nl' its digital reverse. 

Again, let N2 = abs (N l' - c), N2' its digital reverse, and so on. 

After a ftnite number of steps one fmds an Nj which is equal to a previous :-ii, 
therefore the sequence is periodical (same proof). 

For example: 
IfN = 52, and c = 1, then one gets: 
52, 24, 41, 13, 30, 02, 19,90,08,79,68, 85, 57, 74,46,63, 35, 52, ... ; 
thus LP = 18, LS = 18. 

Question 2: 
Find the Lenth of the Period (with its corresponding numbers), and the Lenth of 

the Sequence 'till the ftrst repetition occurs (with a given non-null c) for: 
the integers of two digits, 
and the integers of three digits. 
(It's easier to wTite a computer program in these cases to check the LP and LS.) 

Generalization for sequences of numbers of a n digits. 

3. Let N be a positive integer with n digits ala2 ... an, and c a given integer> 1. 
:Vlultiply each digit ai ofN by c, and replace ai with the last digit of the product 

ai x c, say it is bi. Note N 1 = b 1 b2 ... bn, do the same procedure for N 1, and so on. 
After a fmite number of steps one fmds an Nj which is equal to a previ.ous :\"i, 

therefore the sequence is a periodical (same proof). 

For example: 
If N = 68 and c = 7: 
68, 26, 42, 84, 68, ... ; 
thus LP = 4, LS = 4. 

Question 3: 
Find the Lenth of the Period (with its corresponding numbers), and the Lenth of 

the Sequence 'till the ftrst repetition occurs (with a given c) for: 
the integers of two digits, 
and the integers of three digits. 
(It's easier to write a computer program in these cases to check the LP and LS. 

Generalization for sequence of numbers of n digits. 
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4.1. Smarandache generalized periodical sequence: 
Let N be a positive integer with n digits a1a2 ... an. If f is a function defmed on 

the set of integers with n digits or less, and the values of f are also in the same set, 
then: 
there exist two natural numbers i < j such that 

f(f( ... f(s) ... )) = f(f(f( ... f(s) ... ))), 

where f occurs i times in the left side, and j times in the right side of the previous 
equality. 

Particularizing f, one obtains many periodical sequences. 
Say: 

If N has two digits a1a2, then: add 'em (if the sum is greater than 10, add the 
resulted digits again), and substract 'em (take the absolute value) -- they will be the 
fIrst, and second digit respectively of N 1. And same procedure for N 1. 

Example: 
75, 32, 51, 64, 12,31,42, 62, 84, 34, 71, 86,52, 73, 14,53, 82, 16, 75, .. 

4.2. More General: 
Let S be a fInite set, and f: S ----> S a function. Then: 

for any element s belonging to S, there exist two natural numbers i < j such that 

f(f( ... f(s) ... )) = f(f(f( ... f(s) ... ))), 

where f occurs i times in the left side, and j times in the right side of the previous 
equality. 

Reference: 
F. Smarandache, "Sequences of Numbers", University of Craiova Symposium of 
Students, December 1975. 
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THE PRIMES IN SMARANDACHE PO\VER PRODUCT SEQUENCES 

Maohua Le and Kejian Wu 
Zhanjiang Nonnal College, Zhanjiang, Guangdong, P.R.China 

Abstract 

For any positive integer k, let Ak be the Smarandache 
k -power product sequence. In this paper we prove that if k is 
an odd integer, \\ith k> 1, then Ak contains only one prime 2. 

In [1], Iacobescu defined the sequence {H-ciC2 ... Cn}n~l; 
is the Smarandache cubic product sequence, where Cn is the n-th 
cubic number. Simultaneous, he posed the following question: 

Question: Hou many primes are in the sequence {I +CIC2 ... CJn~1 ? 
We nou give a general definition as follows: 

For any positive integers k, n let 

and let Ak = {ak(n)ln~l. Then Ak is called the Smarandache 
k-power product sequence. In this paper we prove the following 
result: 

Theorem. If k is an odd integer, with k> 1, then Ak 
contains only one prime 2. 

Clearly, the above result completely solves Iacobescu's 
question. 

Proof of Theorem. We see from (1) that 

Ifk is an odd integer, with k>l, then from (2) we get 

(3) akCn)=lk-Cn!)k 
= (l+n!)(1 - n! 7 (nl)2 _ ... _ (nf)k-Z", (n,)k-l) 

When n = I, ak(l) = 2 is a prime. 
When n > 1, since 



we find from (3) that ak(n) is not a prime. Thus, the sequence Ak contains only one prime 2. 
The theorem is proved. 

Reference: 
1. F. Iacobescu, "Smarandache partition type and other sequences", Bulletin of Pure and 

applied Sciences, 16E( 1997), No.2, 237-240. 
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A NOTE ON THE PRllvIES fN SNiARfu'JUACHE (JNAR Y SEQUENCE 

Maohua Le and Kejian Wu 
Zhanjiang Nonnal college, Zhanjiang, Guangdong, P.R.China 

Abstract 

For any positive integer n, let Pn be the n-th prime, 
p~ 

and let u( n) = (10 - 1 )/9. In this note we prove that if 
p~ = 1,13, or 19 (mod 20), and 2Pn~1 is also a prime, then u(n) is not a prime. 

For any positive integer n, let Pn be n-th prime, 
Pn 00 

and let u(n) = (10 - 1)/9. Then the sequence U = (u(n)}n~l 
is called the Smarandache unary sequence (see [2]). 
It is an odd question that if U contain infinit many primes? 
In this note we prove the following result: 

Theorem. Ifpn = 1, 13, or 19 (mod 20), and 2Pn-;-1 is also a prime, then u(n) is not a prime. 
By using the above result, we see that both u(12) and 

u( 15) are not primes. 
Proof of Theorem. Let q = 2Pn+ 1. By Fennat's theorem 

(see[l], Theorem 71 D, if q is a prime, then we have 

(1) 10q
-

1 = 1 (mod q). 

From (1), we get 

Pn Pn 
(2) (10 ~ 1)(10 - 1) = 0 (mod q). 

Since q is a prime, we have either 

Pn 
(3 ) qi 10 ~ 1 

or 

Pn 
(4) q; 10 - 1, 

by (2). 
We nou assume that Po satisfies Pn = 1, 13, or 19 (mod 20). 
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Then Po is an odd prime. Hence, if(3) holds, then we have 

(5) 
-10 

; -----\ = 1, 
\. q ! 

where (-10/9) is the Legendre symbol. Since q = 2pn + 1, 
we hawe q :: 3 (mod 4) and (-l/q) = -1. Therefore, we obtain from (5) that 

(6) (10/q) = (2/q)(5/q) =-1. 

Hoewer, since q:: 3,27, or 39 (mod 40) ifpn:: 1,13, or 19 (mod 20) respectively, \ve have 

-1, -1, ifq:: 3 or27 (mod 40); 
(7) (2iq) = f (5/q) = 

I I, 

r 

{ 1, ifq:: 39 (mod 40). 

We find for (7) that (lO/q) = 1, which contradicts (6). It implies that (3) does not hold. Thus, by 
(4), we get 

(8) q: 9u(n). 

Notice that q~9 and l<q<u(n). We see from (8) that qi u(n) and u(n) is not a prime. The 
theorem is proved. 

References: 
1. G.H.H~rdy and E.M.Wright, "An Introduction to the Theory of Numbers", Oxford 

University Press, 1937. 
J F.Iacobescu, "Smarandache partition type and other sequences", Bulletin of Pure and 

Applied Sciences, 16E (1997), No.2, 237-240. 
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SMARAl~ACHE CONCATENATED POWER DECIMALS 
Al'ill 

THEIR IRRATIONALITY 

Y ongdong Guo and Maohua Le 
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China 

Abstract 

In this paper we prove that all Smarandache concatenated 
k-power decimals are irrational numbers. 

For any positive integer k, we define the Smarandache concatenated k-power decimal a k 

as follows: 

a l = 0.1234567891011..., a2 = 0.149162536496481100121... 
(1) 

a 3 = 0.18276412521634351272910001331..., ... , etc. 

In this peper we discuss the irrationally of ak' We prove the following result 

Theorem. For any positive integer k, a k is an irrational number. 
Proof. We nou suppose that a k is a rational number. 

Then, by [1, Theorem 135], a k is an infinite periodical decimal such that 

were r, t are fixed integers, with r~O and t>0 , aI' ... , a,., (1,.-1> ... , ar - t are integers satisfYing 
o s; a j s; 9 (i = 1,2, ... , r-r-t). 

However, we see from (1) that there exist arbitrary many 
continuous zeros in the expansion of ak' Therefore, we find 
from (2) that ar-l = ... = ar-t = O. It implies that a k is a finite decimal; a contradiction. 
Thus, a k must be an irrational number. The theorem is proved. 

Finally, we pose a further question as follows: 
Question. Is a k a transcedental number for any positive integer k? 
By an old result of Mahler [2], the answer of our question is positive for k= 1. 

References: 
1. G.H.Hardy and E.M.Wright, "An Introduction to the Theory 

of Numbers", Oxford University Press, Oxford, 1938. 
I K.Mahler, "Aritmetische Eigenschaften einer Klasse von 

Dezimalbruchen", NederL Akad. Wetesch. Proc., Ser.A, 40 (1937),421-428. 
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ON THE PERFECT SQUARES IN SMARAtXffiACHE CONCATENATED 
SQUARE SEQUENCE 

Kejian Wu and Maohua Le 
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China 

Abstract 

Let n be positive integer, and let sen) denote the 
n-th Smarandache concatenated squre number. In this paper 
we prove that if n = 2,3,4, 7, 8,9, 11, 12, 14, 16, 17, 18,20,21,22, or 25 (mod 27), 
then sen) is not a square. 

In [1], Marimutha defined the Smarandache concatenated 

square sequence {s(n)} n~l as follows: 

(1) s(I)=I, s(2) = 14, s(3)=149, s(4) = 14916, 
s(5) = 1491625, .... 

Then we called sen) the n-th Smarandache concatenated 
square number. Marimutha [1] conjectured that sen) is 
never a perfect square. In this paper we prove the following result: 

Theorem. 
Ifn= 2,3,4,7,8,9,11,12,14,16,17, 18,20,21,22,or25 (mod 27), 

then sen) is not a perfect square. 
The above result implies that the density of perfect squares in Smarandache concatenated 

square sequence is at most 11/27. 
Prof of Theorem. We now assume that sen) is a perfect square. 

Then we have 

(2 ) sen) = x 2 , 

were x is a positive integer. Notice that 10k = 1 (mod 9) for any positive integer k. 
We get from (1) and (2) that 

It implies that 

100 



(4) n(n-,-l )(2n-"-l) := 6X2 (mod 27). 

Ifn:= 2 (mod 27), then from (4) we get 2*3*5 := 6Xl (mod 27). It follows that 

(5) Xl := 5 (mod 9). 

Since 5 is not a square residue mod 3 , (5) is impossible. 
Therefore, if n := 2 (mod 27), then sen) is not a square. 

By using some similarly elementary number theory methods, 
we can check that the congruence (4) does not hold for the 
remaining cases. The theorem is proved. 

Reference: 
l.H.Marimutha, "Smarandache concatenate type sequences", 

Bulletin of Pure and Applied Sciences, 16E (1997), No.2, 225-226. 
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THE MODULE PERIODICITY OF SMARAt'\fDACHE CONCATENATED ODD 
SEQUENCE 

Xigeng Chen 
Maoming Educational College, Maoming, Guangdong, P.R.China 

Maohua Le 
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China 

Abstract 

In this paper we prove that the residue sequence of Smarandache concatenated odd 
sequence mod 3 is periodical. 

Let p be a prime. For any integer a, let <a> p denote the least nonnegative residue of a mod p. 
Furter, for an integer sequence 

A = {a(n)}n~l> the sequence {<a(n»p}~l is called the residue sequence of A mod p, and 
denoted by <A> p. 

In [1], Marimutha defined the Smarandache concatenated odd 

sequence S={s(n)L~l' \"ihere 

(l) s(1 )= 1 , s( 2 )= 13, s( 3 )= 13 5, s( 4)= 13 5 7, ... . 

In this paper we discuss the periodicity of <S>p. Clearly, 
if p=2 or 5, then the residue sequence <S> p is periodical. 
We now prove the following result: 

Theorem. If p= 3, then <S> p is periodical. 
Prof. For ahy positive integer k, we have 10k := 1 (mod 3). 

Hence, we see from (1) that 
(2) sen) := P-3-5-r- ........ (2n-l) = n2 (mod3). 
Since 

(3) 
f 0, if n := 0 (mod 3); 

<n2>, =1. 1 if n:= 1 or 2 (mod 3) 
.), " 

we find from (2) and (3) that 
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r 0, ifn == ° (mod 3); 
( 

(4) <s(n»3 = l 
l,ifn== lor2(mod3), 

Thus, by (4), the sequence <S>3 = {<s(n)3>}n~1 is periodicaL 
The theorem is proved. 

Finally, we pose the following 
Question. Is the residue sequence <S> p periodical for every odd prime p? 

Reference: 
l.H.Marimutha, "Smarandache concatenate type sequences", Bulletin of Pure 

and Applied Sciences, 16E (1997), No.2, 225 - 226. 
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ON A CONJECTURE CONCERNING THE SMARANDACHE FUNCTION 

1. Prodanescu 
Lahovari College, Rm. Valcea, Romania 

L.Tutescu 
V1adimirescu Military College, Craiova, Romania 

Let S : Z' --> N, Sen) is the smallest integer n such that n~ is divisibil by m (Smarandache 
function), for any m E Z* 
Then the following Diophantine equation 

Sex) = S(x-'-1), where x> 0, 
has no solution. 

Some remarks: 
S(1)=0. Leta~2, thenS(a) ,*0. 

Anytime Sea) '* 1, because 1~ = 1 = O! and 1 > 0. 
Lemma. 

Ifa ~2 and Sea) = b, then (a,b) +- 1. 
Proof 

r 1 rs 
Let a = PI ···Ps, with all Pi distinct prime numbers,its canonical factor decomposition. 

i r,' 
B S! I . 1 . I . \-I' { 1 } utpi I IS a mu tIP e ot Pi, If 1 E , ... , s . 

Therefore, =q E {Pb'" Ps] such that q divides Sea), but q divides a, t00. Q.E.D. 

These results do not solve the Conjecture 2068 proposed by Florentin Smarandache in 
1986 (see [1]) and republished by Mike 
Mudge in 1992 as problem viii, a) (see [2]). 

References: 
[1] R.Muller, "Smarandache Function Journal", New York, Vol. 1., December 1990,37. 
[2] M.Mudge, "The Smarandache Function" in <Personal Computer Word>, London, July 

1992,420. 
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Remark: 
Professor Lucian Tutescu considered that this conjecture may be extended for S( ax T p) = 

S( yx -;- 0) equations, 
where (ax - p, yx ~ 0) = 1 and a, p, y, 0 E Z. 
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Erdos Conjecture I. 

F. SAIDAK 

ABSTRACT. An old conjecture of Paul Erdos [6] states that there 
exist only 7 integers A. = 4,7,15.21,45,75 and 105 such that the 
difference A - 28 is a prime for all B for which it is at least two. It 
is known that the conjecture is true for all A < 277 , as Cchiyama 
and Yorinaga have verified in 1977 ([21]), and in this short pa
per I show how it is related to other famous unsolved problems in 
prime number theory. In order to do this, I formulate the main 
hylJothetical result of this paper - a useful upper bound conjec
ture (Conjecture 3.), describing one aspect of the distribution of 
primes in various special forms, paying a brief attention to Fermat, 
:'vlersenne, Fibonacci, Lucas and Smarandache sequences, and I de
bate some side effects of the most surprising results it implies. At 
the end I also give connections of the questions discussed to other 
important areas of prime number theory, such as topics from the 
theory of distribution of primes in denser sequences, and along the 
way I mention some further conjectures of Erdos that have relevant 
applications there. 

1. Sorbents. 

Let me introduce the following notation: 

DEFI~ITION L Let f and 9 be two functions such that for every 
real number k > 1 there exists an integer constant Xo such that for all 
x> Xo we have fk(X) > g(x), then we will write 9 «< f· If f <<< 9 
and 9 «< f at the same time, we'll say that f and 9 belong to the same 
sorbent, S say, and we'!l write f - g. 

Sometimes we might also \vrite f = s(g), s denoting the sorbent 
allocating map, or simply f = 9 in cases when there is no possibility 

1991 :vfathematics Subject Classification. 11A07, 11~25. 
Key words and phrases. Primes. Distribution of Primes, Prime ~ umber Theory, 

Smarandache Sequences. 



of confusion in notation. To sketch the use of sorb ems I give a very 
elementary, but strikingly far reaching application. 

Let f and 9 be two polynomials such that f = g, then 

(1) S(7f(J)) = c:;(J,g).s(7f(g)), 

where S is again the sorbent function, while c:;(J, g) is either 0 or 1 
according to whether f and 9 have the same irreducibility properties 
or not. One can write this equivalently as 

CONJECTCRE 2. If A and B denote anyone variable fcmctwns 
(polynomials in particular), then we have 

(2) (C 1 B\ - (" \ '1 \ (B) P =.""1. )=qj,gj.p(.""1;.p, , 

where p( H) is the density function corresponding to function H. ar:d 
c:;(J, g) is here again either 0 or 1 like before, depending only on whether 
C is trivial or not. 

This also covers the case of the problem of occurences of primes of 
a given special form (A) as values of a given function (B), and happens 
to be in a close connection to the arithmetical functions theory, linking 
distribution of primes to things as diverse as odd perfect numbers. 

At the same time one also immediately sees its direct relation to the 
results of the famous Bateman-Horn [1] quantitaive form of Schinzel's 
[17] Hypothesis H. 

2. The Upper Bound Conjecture. 

In order to develop possible implications of the Conjecture 2 into 
something more precise and usefuL it is necessary to recall the basic 
property of the simple prime density function. The Prime :\"umber 
Theorem ([13]) states that 

11-£ JX dt x 
7f(X) '" £i(x) = lim( + )-1 - '" £.s(x) = I)logx)-l. 

£-+0 0 1 _, Of! t 
-.~ ~ n=2 

the first estimation being due to GauE. the second one due to Dirichlet. 
By definition, the local prime density, or equivalently the probability 
of primali ty of an integer in a small nbd of x. PI (x) can be recovered 
from this equation by (see [lID differentiating the corresponding prime 
distribution function. In general hold 

(3) 

and considering further a generalization to problems concerning the 
distribution of primes in "sparse" sequences and special forms, noticing 
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that D(x) < x for all D, implying 0 < p < 1, gIves us the simple 
inequation 

k: 

(4) 
i=l 

where the equality in (4) occures iff vV is a stochastically independent 
set of integers. This is in turn equivalent to saying that if we let C be 
the set of all primality restrictions that are put upon a sequence 5(nl, 
or conditions the sequence 5( n) must obey, then there exists a function 
j such that 

x JX (5) D(5(n)) = 7i(x. 5(n)) '" j(C) ~ p(5(i)) '" j(C) p(5(t)) dt, 
:=l 1 

\vhere f is bounded and depends only on the size and the structure 
of the condition set C. Furthermore f has a regular, approximable 
behaviour in all fixed. non-trivial cases, and its global properties can 
be deduced from arithmetical structure of integers in the particular 
sequence 5 ( n). 

In terms of sorbents we in fact explicit ely conjecture that f « 1, 
and that for a dense set of f we also have1 f = 1, The first, \veak 
assumption gives us that for all sequences 5 (n) defined in a closed 
arithmetical manner the corresponding distribution function D(5) sat
isfies the inequality 

(6) 

5- 1 denoting the inverse map of 5, and it is plausible to conjecture 
that the "order" inequality in (6) could be replaced by the standard 
one for all sufficiently large x, and therefore hypothesize that we always 
have correctness of the following DB Conjecture, in the above notation 
written as 

CONJECTURE 3. For all 5(n), and all x> Xo hold 
S-l(x) 

(7) rr(x, 5) <! (log5-1(t))-1 dt. 

This sort of a thing is however justified only by establishing a deeper 
connection of the result (c.f. [15D to a different "maximal prime den
sity" conjecture of Erdos [7:. 

Ithe situation is a bit more delicate than one could pressume, as Graham 
demonstrated in ~91. His result can also be used to justify the density conjecture 
mentioned. 
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3. ~Iersenne and Fermat Primes . 

.-\S far as applications of the [,-Be are concerned, sparse sequences, 
such as functions of powers of integers, that are obviously arithmetically 
closed, are now evidently a very suitable point to start at, for if their 
local density p' (x) satisfies, say, the inequality 

p'(x) < e(x- 1- E
) = ex -

1
-< 

then 

r l x l Xdt 
J'2 logp'(t)dt< 2 logp*(t)dt< 2 t1-,-e <K. 

fer some constant K, implying in conjunction with the Conjecture :3 
that; D(S(n)) = 7I(x. S(n)) will converge. i.e. \vill satisfy 

(8) D(S(n)) = 1. 

This implies, for instance, that denoting Fn. the n-th Fermat number. 
and F(x) the number of Fermat primes below x, the for all x \ve have 

F(x) < .5 + lim ~ (log 22")-1 < 5 + 1 < 5.1, 
.v~'X; ~ 1610

0
0' 2 

n=o 

showing that it is rather unlikely that any new Fermat prime will ever 
be discovered2

. 

:.Jow, back to the old conjecture of P. Erdos [7], introduction of 
the ideas from the beginning of this paper shows that an analogy of 
a parallel between twins and Goldbach ([5]) can be obtained for the 
Erdos and Fermat problem here. There is nothing to it, really, by 
considering a general~zation to an arbitrary function f (x). the questions 
about distribution of primes in "sequences" f(x) and A - f(x) are 
complementary. Indeed, all we are interested in are integers A such 
that f(x) is a prime for 

-1 ') 3 f- 1(4) x - ~ .... , ~"', \...,'. 

Obviously, by the above. as long as f(x) increases to iLlfinity sufficiently 
slowly, the number of wanted As has to be finite. 'What does sufficiently 
mean here? Evidently as soon as log f = 1 we should be alright. 

This means that, for instance, the number of integers .4 such that 
the difference A - n! is a prime for all n for which it is positive is 
going to be greater than what it \vas in the similar Erdos problem 
due to nothing but tendencies of growth of inverses of the functions 
concerned. 

"A conjec:ure or Seifridge )S). 
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For :'vIersenne primes the situation is different. By definition S(i) = 
2i - L giving by above something like 

(9) --- dt '"V -- -- dt. 100 1 1 100 
1 

i=llogS(t) log2 i=llogt 

.\'"ow, as far as the conditions on primality of 2n - 1 are concerned, 
nothing explicit3 can be said beyond the fact that n must be a prime 
itself. So, a uniformity property of potential divisors of n that give S (n) 
prime is expected, and in fact can be show to strongly suggests a direct 
connection to the simple Eratosthenes sieve result. The only effect of 
this we care about is that except for the necessity of a factor 2. needed 
due to exclusion of even exponents n used in the sieve, everything stays 
unchanged, giving the conjecture f(C) = 2. 

Denoting JI (x) the number of :'viersenne primes below x, one now 
immediately sees that 

e'Y L 1 e:.logloO"x 
(10) JJ(x\) = ;r( x.:2n - 1) '" 2.- __ '" 0 • 

\ . . 2 log p 10g:2' 
p<= 

This last asymptotic relation (10) is known as S. S. 'Wagstaff's conjec
ture [22], correcting the previous 1964 heuristical result ofD. B. Gillies 
[8J. Therefore in sorbent theory notation \ve may conclude that 

F(x) = 1, .11(x) = loglogx. 

4. Fibonacci and Lucas Primes. 

As far as Fibonacci (F;) and Lucas (Ln) numbers are concerned, 
\ve have famous formulas like 

(\11) F =(I-.:..)5'n~(I-)5\n 
n 2)" 2 ). 

where 
.1 - )5'n n : : < l' = l. 
I 2 . 

so, denoting [x] the integer part function, (ll) gives 

Fn = ~cn: -.:..1-.:.. (-It, 

,vhere c is the real number (1 -.:.. )5)/2, and an obvious connection 
to the :'vIersenne prime case is clearly visible. In fact, the existence of 
connection based strictly on the fashion of increase of the terms of these 
two sequences is what the main idea of sorbents, and their quantitative 
characteristics - Conjecture 3. is all about. Same thing happens for 
arbitrary Smarandache sequences (Sn) based on properties of digital 

3 t his is again just a conjecture we k."10W very little about ' .. 

110 



patterns of integers, although to treat exact behaviour of distribution 
functions of a particular sequence always needs an additional care. But 
in general 

( 12) log JIn = log F~ = log Ln = log Sn = n, 

and due to existence of bounds on conditional divisibility properties of 
terms of all these cases we also must have: 

F(x) «loglogx, L(x) «log~ogx. 

and we can conjecture that 

(13) 

For certain special cases this could be made more precise through a dis
cussion concerning the corresponding condition sets C, although we'll 
stay contempt with the illustration of this idea \ve gave in the case of 
:\Iersenne primes distribution. 
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All Solutions of the Equation Sen) + den) = n 

Charles Ashbacher 
Charles Ashbacher Technologies 

Box 294 
Hiawatha, IA 52233 USA 

e-mail 71603.522@compuserve.com 

The number of divisors function den), is a classic function of number theory, having been 
defined centuries ago. In contrast, the Smarandache function Sen), was defined only a few 
decades ago. The purpose of this paper is to tind all solutions to a simple equation 
involving both functions. 

Theorem: The only solutions to the equation 

Sen) + den) = n, n > 0 

are 1, 8 and 9. 

Proof: Since S( 1) = 0 and d( 1) = 1 we have verified the special case of n = 1. 

Furthermore, with S(P) = p for p a prime, it follows that any solution must be composite. 

The following results are well-known. 

a) d(Pll ... Pkk ) = (a1 + 1) ... (ak -+- 1) 
b) S(pk) :::; kp 
c) S(Pll ... Pkk) = max { S(Pll) ... S(Pkk) } 

Examining the first few powers of 2. 

S(22 ) = 4, d(22) = 3 
S(23 ) = 4 and d(23 ) = 4 which is a solution. 
S(24 ) = 6. d(24 ) = 5 

and in general 

S(2k) :::; 2k and d(2k) = k -+- 1. 

It is an easy matter to verify that 

2k -:- k + 1 = 3k + 1 < 2k 

for k > 4. 



Examining the first few powers of 3 

S(32) = 6 and d(3 2) = 3, which is a solution. 
S(33) = 9, d(3 3) = 4 

and in general, S(3 k ) ~ 3k and d(3 k) = k + 1. 

It is again an easy matter to verify that 

3k -+- k + 1 < 3k 

fork> 3. 

Consider n = pk where p > 3 is prime and k > 1. The expression becomes 

Once again, it is easy to verify that this is less than pk for p 2: 5. 

Now, assume that n = p~1 ... Pkk, k > 1 is the unique prime factorization of n. 

Case 1: n = PIP2, where P2 > Pl· Then Sen) = P2 and den) = 2 * 2 = 4. Forming the 
sum, 

we then examine the subcases. 

Subcase 1: PI = 2. The first few cases are 

n = 2 * 3, Sen) + den) = 7 
n = 2 * 5, Sen) + den) = 9 
n = 2 * 7, Sen) + den) = 11 
n = 2 * 11, Sen) + den) = 15 

and it is easy to verify that Sen) + den) < n, for P2 a prime greater than 11. 

Subcase 2: PI = 3. The tirst few cases are 

n = 3 * 5, Sen) + den) = 5 + 4 
n = 3 * 7, Sen) + den) = 7 + 4 
n = 3 * 11, Sen) + den) = 11 + 4 

and it is easy to verify that Sen) + den) < n for P2 a prime greater than 11. 



Subcase 3: It is easy to verify that 

P2 +- 4 < PIP2 

for PI 2 5, P2 > PI· 

Therefore, there are no solutions for n = PIP2, PI < P2. 

Case 2: n = PIp;2, where a2 > 1 and PI < P2· Then Sen) < a2P2 and den) = 2(a2 ..:.. 1). 

We now induct on a2 to prove the general inequality 

Basis step: a2 = 2. The formula becomes 

2P2 + 4 -r 2 = 2P2 + 6 on the left and 

PIP2P2 on the right. Since P2 2 3,2 + ~ < 4 and PIP2 2 6. Therefore, 

2 . 6 
T - < PIP2 

P2 

and if we multiply everything by P2, we have 

2P2 + 6 < PIP2P2· 

Inductive step: Assume that the inequality is true for k > 2 

kP2 + 2k + 2 < PIP~. 

and examine the case where the exponent is k T 1. 

(k + 1 )P2 + 2(k + 1) + 2 = kP2 + P2 + 2k + 2 .... 2 = (kP2 T 2k ..:.. 2) ..... P2 ..:.. 2 

< PIP~ + P2 + 2 by the inductive hypothesis. 

Since PIP~ when k 2 2 is greater than P2 ..:.. 2 is follows that 

P Pk _ P ..:.. 2 < P pk+l 122' 12' 

Therefore, Sen) T den) < n, where n = p:p~ . k > ! 
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We have two subcases for the value of Sen), depending on the circumstances 

Subcase 1: Sen) :S alPl 

Subcase 2: Sen) = P2. 

In all cases, den) = 2(al + 1). 

Subcase 1: Sen) + den) :S alPl -:- 2(al + 1) = alPl +2al -:- 2. 

Csing an induction argument very similar to that applied in case 2, it is easy to prove that 
the inequality 

is true for all al 2: 2. 

Subcase 2: Sen) + den) = P2 + 2(al + 1) = P2 -:- 2al -:- 2 

It is again a simple matter to verify that the inequality 

is true for all al 2: 2. 

den) = (al ~ 1)(a2 -:- 1) 

Subcase 1: Sen) :S alPl 

Subcase 2: Sen) :S a2P2 

Case 5: n = p~! ... p~", where k > 2. 
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The proof is by induction on k. 

Basis step: Completed in the first four cases. 

Inductive step: Assume that for nl = p~k ... p%", k ~ 2 

~ Pi + (a 1 + 1) ... (ak + 1) < n 1 

where Send ::; ~Pi. \Vruch means that 

Subcase 1: S(n2) = S(nl). Since Pk~l ~ 5, it follows that (ak+l + 1) < p~:;{ and we can 
this in combination \Vith the inductive hypothesis to conclude 

Subcase 2: S(n2) > S(nl), which implies that S(n2) < ak-o-1Pk+l. Starting with the 
inductive hypotheses 

and multply both sides by ak-o-lPk-..l to obtain the inequality 

Since Pk..;...l ~ 5, it follows that 

and \Vith ak-HPk-..l > (ak+l + 1), we have 

ak-1Pk..;...1 + (al + 1) ... (ak ~ 1)(ak-o-l -+- 1) < 

Combining the inequalities, we have 
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which implie-s 

S(n2) + d(n2) < n_ 

Therefore, the only solutions to the equation 

Sen) + den) = n 

are 1,8 and 9_ 
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An inequality between prime powers dividing n! 

Florian Luca 

For any positive integer n 2: 1 and for any prime number p let ep(n) be the 
exponent at which the prime p appears in the prime factor decomposition of nL In 
this note we prove the following; 

Theorem. 

Let p < q be two prime numbers, and let n > 1 be a positive integer such that 
pq I n. Then, 

(1) 

Inequality (1) was suggested by Balacenoiu at the First International Confer
ence on Smarandache ::\otions in Number Theory (see [1]). In fact, in [1], Balacenoiu 
showed that (1) holds for p = 2. In what follows we assume that p 2: 3. 

\Ve begin with the following lemmas: 

Lemma 1. 

(i) The function 

is increasing for x 2: e. 

x-I 
j(x) =

log x 

(ii) Let p 2: 3 be a real number. Then, 

for x 2: p. 

(iii) Let p 2: 3 be a real number. The function 

x-2 
gp (x) = -x -_--:(-p ---1-:-) l-o-gp-:"( x-""') 

is positive and decreasing for x 2: p(p + 2). 
(iv) 

p+2 log(p+4) -- > ---:::~--'-
p logp 

(v) 
p + 1 > log(p + 2) 

p logp 
for p > e. 

Proof. (i) ::\otice that 

df = _1_. (log(=-) + (~)) > 0 
dx log2 x e x 

for x > e. 

(ii) Suppose that x 2: p 2: 3. From (i) it follows that 

_x_ > x-I > P - 1. 
log x log x - logp 

1991 A~S 3tfathematics Subject Classification. llA51. 

(2) 

(3) 

(4) 

(.5) 

(6) 

(7) 



Inequality (7) is clearly equivalent to 

log x 
x > (p - 1) -1 - = (p - 1) logp (x). 

ogp 

(iii) The fact that gp(x) > 0 for x ~ p ~ 3 follows from (ii). Suppose that 
x ~ pcp + 2), and that p ~ 3. Then, 

dgp -log(p)((p - 1)x logx - (21ogp + p -1)x + 2(P - 1)) 

d;= x((P-l)logx-xlogp)2 
(8) 

From (8), it follows that in order to check that dgp/dx < 0 it suffices to show that 

(P-l)xlogx - (21ogp+p-l)x > 0, 

or that 

logx > (2~O~~ + 1) = (f~) + 1). (9) 

The left hand side of (9) is increasing in x. By (i), the right hand side of (9) is 
decreasing in p. Thus, since p ~ 3, and x ~ pCP + 2) ~ 15, it suffices to show that 
inequality (9) holds for x = 15 and p = 3. But this is straightforward. 

( i v) Inequality (5) is equivalent to 

or 

( 4)P [( 4)P/4]4 
p2 > 1 + P = 1 + P . (10) 

Since 
e> (1 +X)l/Z for all x > 0, (11) 

it follows, from inequality (11) with x = 4/p, that 

e> (1 + ~r/4. (12) 

From inequality (12) one can immediately see that (10) holds whenever p > e2 . 

(v) Follows from arguments similar to the ones used at (iv). 

For every prime number p and every positive integer n let Tp(n) be the sum of 
the digits of n written in the base p. 

Lemma 2. 
Let p < q be two prime numbers and let n be a positive integer. Assume that 

pq I n. Then, 

(i) Tq(n) ~ 2. 

(ii) Tp(n) < (p - 1) logp(n). 

Proof. (i) Since n > 0 it follows that Tq(n) ~ 1. If Tq(n) = 1, it follows that 
n is a power of q which contradicts the fact that pin. Hence, Tq(n) ~ 2. 

(ii) Let n = pql for some integer I ~ 1. Let 
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where -0 ::; OJ ::; -p - 1 for 1 ::; i ::; s ,and 0 6 i= 0, be the representation of ql in the 
base p_ Clearly, 

Since 

it follows that 

6 

ip(n) = L OJ ::; (P - 1)(8 + 1) < (P - 1) (logp(ql) + 1) = (p - 1) logp(n). 
j=O 

The Proof of the Theorem. Suppose that q > p ~ 3 are prime numbers, 
and that n > 1 is such that pq I n. By applying logarithms in (1) it suffices to prove 
that 

ep(n) logp > eq(n) logq. (13) 

Since 

( )
_n-Tp(n) d 

ep n - an 
p-1 

( )
_q-Tq(n) 

eq n - , 
q-1 

it follows that (13) can be rewritten as 

n-r(n) n-T(n) 
---,-p~ ·logp > q ·logq, 

p-1 q-1 

or 
(q - 1) logp n - iq(n) 

(p - 1) logq > n - Tp(n)' 
(14) 

\Ve distinguish two cases: 

CASE 1. q = P + 2. We distinguish two sub cases: 

CASE 1.1. n = pq. In this case, since q = p + 2, and p ~ 3, it follows that 
Tp( n) = Tp(P2 + 2p) = 3, and Tq(n) = Tq(pq) = p. Therefore inequality (14) becomes 

(p+1)logp p2+2p_p p(p+1) 

(P-1)log(p+2) > p2+2p-3 = p2+2p-3' 
(15) 

Inequality (15) is equivalent to 

p2 + 2p - 3 log(p + 2) 
:..-~..:..-- > .......:::'-'=----'-

p(P - 1) . logp 
(16) 

By lemma 1 (v) we conclude that in order to prove inequality (16) it suffices to 
show that 

p2 + 2p - 3 p + 1 
~..,.--"'--- > --

p(P -1) - P 
(17) 

But (17) is equivalent to 
p2 + 2p - 3 

1 
~p+ 1, 

p-
(18) 

or p2 + 2p - 3 ~ p2 - 1, or p ~ 1 which is certainly true. This disposes of Case 1.1. 
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C~SE 1.2. n == pql where I 2: 2. In this case n 2: 2p(p + 2) > 2p2. By lemma 
2 (i) and (ii), it follows that 

n-2 n-Tq(n) 

n - (p - 1) logp(n) > n - Tp(n)" 
(19) 

Thus, in order to prove (14) it suffices to show that 

(p + 1) logp n - 2 
(p -1) log(p + 2) > n - (p - 1) logp(n) == 9p(n). 

(20) 

Since n > 2p2 > pcp + 2), and since 9p ( n) is decreasing for n > pcp + 2) (thanks to 
lemma 1 (iii)), it follows that in order to prove (20) it suffices to show that 

(p+ l)logp 2 2p2 - 2 
(p - 1) log(p + 2) > 9p(2p ) == 2p2 -logp(2pZ)' 

(21) 

Since p 2: 3 > 23/ 2 , it follows that pZ/3 > 2. Hence, 

\Ye conclude that in order to prove (21) it suffices to show that 

(p + 1) logp 2p2 - 2 3(p - l)(p + 1) 
-"::---'--"':;:":"-> -
(p - 1) log(p + 2) 2p2 - ~ - 3p2 - 4 

(22) 

Inequality (22) is equivalent to 

3p2 - 4 log(p + 2) 
3(p - 1)2 > logp . 

(23) 

Lsing inequality (6), it follows that in order to prove (23) it suffices to show that 

3pZ - 4 p + 1 
-,:..-~> --
3(p-1)2 p' 

(24) 

:\"otice now that (24) is equivalent to 

or 3p2 > p + 3 which is certainly true for p 2: 3. This disposes of Case 1.2. 

CASE 2. q 2: p + 4. Using inequality (19) it follows that in order to prove 
inequality (14) it suffices to show that 

f(q). logp = (q - 1) logp > n - 2 = n 
p-l (P-l)logq n-(p-1)logp(n) 9p()· 

Since f(q) is increasing for q 2: 3 (thanks to lemma 1 (i)), and since 9p(n) is 
decreasing for n 2: pq 2: pCp + 4) > pCp + 2), it follows that in order to prove (25) 
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it suffices to show that inequality (25) holds for q = p + 4, and n = pq = p(p + 4). 
Hence, we have to show that 

(p + 3) logp p2 + 4p - 2 

(p - 1) log(p + 4) > p2 + 4p - (p - 1) logp (p(p + 4) r (26) 

Inequality (26) is equivalent to 

(p+3) p2+4p-2 

(p - 1) log(p + 4) > (P2 + 3p + 1) logp - (p - 1) log(p + 4)' 

or 
(p + 3)(p2 + 3p + 1) log(p + 4) 

(p _1)(P2 + 4p - 2) + (p - 1)(P + 3) > logp , 

or 
p3 + 6p2 + lOp + 3 log(p + 4) 
~--~~--~-- > ~~--~ 
p3 + 4p2 - 4p - 1 log p 

(27) 

One can easily check that (27) is true for p = 3, 5, 7. Suppose now that p ~ 11 > e2
• 

By lemma 1 (iv), it follows that in order to prove (27) it suffices to show that 

p3 + 6p2 + lOp + 3 p + 2 
:........,,--....:......,,-----=--- > --
p3 + 4p2 - 4p - 1 p' 

Notice that (28) is equivalent to 

or 6p2 + IIp + 2 > 0, which is obvious. This disposes of the last case. 

Reference 

(28) 
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International Conference on Smarandache Type ~otions in ~umber Theory, Craiova, 

Romania, 1997. 
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Maoh:.::.a Le 
Zhanjiang Normal College, Zhanjang, Guangdong, ?R.China 

Abstract. For any positive integer n, let S(n) denote the 
S~arandache function of n. In this paper Ne prove that 
S(~n)~ S(m)+S(n). 

Let N be the set of a~~ posicive integers. For any posicive 
integer n, let S(n) denote the Smarandache function of n. 
By ~2~, '.f'le ::ave 

: -: \ 
\ - I S(nj= min{~!kE N, Dik!}. 

~ecent:y, Jozsef[l] proved that 

(2) S(mn)~ rnS(n), m,n E N. 

In this paper we give a considerable improvement for the ".lpper 
bound (2). We prove the following result. 

Theorem. For any positive integers m,n, we have 
S(rnn)~ S(m)+S(n). 

Proof. ~et a=S(m) and b=5(n) Then we have 

,.,Ib' 
l ... j :, 

~et x be a positive integer with x ~ 0, and :et 

x (x-I) 

a! 

be a binomial coeficient. 
~s a positive integer. 

It is a wel: k~own fact that 
50 we r-:ave 

1-' ,J; a ' : x (x- 1 \ ( x-a· 1 \ ; : _ .J.. I ••• \ T _ / , 

by ! 4 \ 
, - / . ::..:rther, since m!a!, we get from (5) 

(6 ; mix(x-1) ... (x-a+l), 

x 
a 

fer any positive integer x Nith x ~ a. 
from (3) and (6) that 

?u~ x=a+b. We see 

(i \ 
I. ! i 
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TH~ S~18.RP~DACHS =U~CT=ON fu~0 THE ~IOPH?~TI~E EQUATION 
~ X: +a = y~ 

Maor..ua Le 
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R. China 

Abstract. ?or any positive integer n, let S(n) denote 
Smarandache function of n. In this paper we prove that if a is a 

nonsquare positive integer, then all positive integer solutions 
(x,y) of the equation x:+a=y2 satisfy x< 2S(a). 

N be the set of all positive integers. For any posi~ive 
in~eger :1, 

be a fixed 
let S(n) denote the Smarandache function of n. Let a 

positive integer. Recently, Dabrowschi[lj proved 
that if a is not a square, then the equation 

(1 ) x:1-a = 
~ 

y- , x,y E N 

has only finitely many solutions (x,y) . In this paper we give 
~n 

a" upper bound fO nr 
-L ~ ~ the solutions of (1 ) as follows. 

Theorem. If a not a square, then all solutions (x,y) 
of (1) satisfy x<2S(a). 

Proof. Since a is not a square, a has a prime factor 0 

(2 ) p-':---- i a, 

were r lS a nonnegative integer. We now suppose that (x,y) 
is a solution of (1) with x~2S(a) By tr..e result of [2], 
we have S(mn)~ S(m)+S(n) for any positive integers m, n. 
irc,clies that 2S(a)~S(a;:) So have 

Therefore, we see from (1) and (3) that 

(4 ) 

?~rther, by (2) and (4), we get 

apiy= 

Since p is a prime factor of a, we see from (3) that 
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:;-
\ 0) ap : x!. 

Thus, by (1), (5) and (6), we obtain pll, a contradiction. 
So we have x<2S(a). The theorem is proved. 

References 
1.A. Dabrowski, On the diophantine equation x!+A = y2, 
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ON S~~.~NDACHE CONCATENATS~ SSQCS~CSS " PRIME POWER 
SE:QUENCES 

Maohua :::"e 
Zhanjiang Normal College, Zhanjiang, Guangdong, F.R.China 

00 

_~stract . Let A= {p~'} ,,=:' where p is a prime. Let: 
C(A)={c,,! denote the Smarandache concatenated sequence of A. 
In this paper we prove t~at if n>l and p*2 or 5, then 
c_ does not belong t:o A. 

00 

Let A= {a,,} c.< be an infir--,i te increas ing sequence of 
positive ir.tege::--s. 
decimal integer such 

( 1 ) c=" =a: a: ... a:-. . 

E'or a:1Y positive 
~h ..... 
'-J..l.2L. 

be 

Then sequence C (A) ={ c.} c.=: is called the Smarandache concate:-~a':ed 

sequence of A. In [1 J, Marimutha posed a generalq'J.eso:ions as 
follows: 

Question. How many terms of C(A) belong to A? 
In this serial paper, we shall consider some intersting 

cases for the above question. In this part we prove the 
following result:. 

00 

Theorem. Let A={pcL.=: ,where p .:'..s a prime. If 
n>: and p*2 or 5, then c~ does not belong to A. 

Proof. E'or any pisitive integer a, let d(a) denote o:he 
figure number of a in the decimal system. 

00 

:=f A={P"}CC<f then :rom(l) 'de get 

.. 3 " 

2) c:c=pc+p~'-:*10::iP :+ ... +p 2 *10-:::'P : +p* 1 O~:p 

ru~ther, i: c~ belongs to A, then ~e have 

(3 ) 

where m is a positive integer with m~n. 

(4 ) 

if n>l. Hoever, if p*2 Or ~, o:hen p/10< for any positive 
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wich ca~tradicts (4). Thus, c_ does nat belong to A 'n 

~his case. The theorem is proved. 

Reference 
~.~.Mari~utha, Smarandache concatenated type sequences, Bull. 

Pure Appl. Sci.Sect. E 16(19970, No.2, 225-226. 
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ON SMF.R~~DACHE CONCATENETED SEQuENCES IT: ?ACTORI~ SEQUENCE 

Maohua Le 
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China 

= = 
Abs':ract. let A= {n ! } C.=:' and let C (Al = {c.} ~< 

denote the Smarandache concatenated sequence of A. 
we prove that if n>1, then c~ does not belong to A. 

= = 

In thi.s 

Let A= {n ! } ~<, and let C (Al = {c~} ~< denote the Smarandac:-:e 
concatenated sequence of A In this part we prove the following 
result. 

Theo!:"er!l. If n>l, then c~ does not belong to A. 

2!:"00f. By the definition of the Smarandache concatenated 
sequence of A (see[lJ), we have 

(1) c. =1! 2! ... n! 

if n>1 and c~ belongs to A, then 

(2 ) c~. =m!, 

where m is a positive integer with m>n>l. Notice that e~ 

=12, 126, 12624, 12624120, 12624120720, 126241207205040 and 
12624:2072050404C40320. :or n=2,3,4,S,o,7 ar;.ci Sf ~l'ihi'::h a~e ~_o~_e 

factorial. We may assume that n~9. Then we have m>9. 
to!:" any positive intege!:" 

of a in the decimal system. 
a, let d(a) denote the 
Since n~9, we see from 

( 3) c_ =:-'1 t + (n -1) ! 10 j,~. ~ ; + ... - 9 ~ 1 = ~ :-' -... -~ : ~ I 

T1262412'J720504040320*10~ -' - ... -0 ::' -~ 0: 

(1) that 

Since 3~ '1262412072050404032J and 3~ ik~ fo!:" %~9, we get 
:!:"om (3) that 

I L1 ' 
\ -) , n~ 9. 

~oeTTOr _~_~.".,~p .m>.".>_·9, w· o ~D' ~al'" =-nm '2) ~h~~ 3~ Ie "V--f --" ~ V' ~ l' -~:: .. ", \ ~.,a\... i c. f 

~(ihic:~," '2()~~rad:"c~s (4). Tf;.US, i: :1>1, then c_. does !let 
belorlg ·~te T:-:eorem is 
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powe~ seq~ence, S~arandacte ~oc~o~s J. 
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ON :LNTSRSSCT2D S~~.Rfu~DACctE PRODUC? SEQuENCES 

~laohua Le 
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R. China 

Abstract. In this paper we discuss a question concern~ng 
the intersected Smarandache product sequences. 

00 

Let U={U~. L:< be an infinite increasing sequence of posii:ive 
integers. For any positive integer n, let 

/ " , .. .L ) s_ =1 +u· tl~ 

00 

Then tl1e the sequence S (U) ={s" }~.=: is called the Smarandache product 
sequence of U (see[lJ). Further, if there exist infinitely 
many terms in U belonging to StU), then StU), is called 
intersected. In this paper we pose the following question: 

Question. Wich of ordinary Smarandache product sequences 
are intersected? 

We nou give some obvious examples as follows: 
00 

Example 1. If U= {n} ,,~l , then S (U) is intersected. 
T~ __ i this case, we see from (1) that s" =u,,:-: for any positive 
ini:eger n. 

Sxemple 2. Let k be a positive integer with k>l. 
00 

If U={ kn}c.=: , then S (U) is non-intersected, since kjs. for 
any positive integer n. 

Sxemple 3. Let k be a positive integer with k>l. =f 
00 

TJ={:-r~ }~=: , then S (U) is non-intersected. In this case, ?vV·e ha\re 
s. =1+1" 2" ... n;:: =l+(n!)"' , 'which is not a k-th power. 

Sxarr,p 1 e 4. 00 

If U={n!},,=: , then StU) is non-intersected. 
I~ this 
if r.>1. 

case, we have s" =1+1:2! ... n!, which is an odd 
It implies that Ue: ES(U) if and only if n=2. 

Reference 

integer 

1.F.lacobescu, Smarandache partition type and other sequences, 
3ull.~ure appl.Sci.Sect.E 16(1997), No.2, 237-240. 

132 



Maohua Le 
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R. China 

Abs~ract. For a~y positive integer n, let a~ be che n-th 
square number, and let s:,,: =1 +a: a:: '" a~. In this paper we pr::::'Je 
that if n>2, 2in and 2n+1 is a prime, then s~ is 
not a pri:-ne. 

For any positive inceger n, let a~ be the n-th square 
number, and let s" =1. +a: a: ... a c . Then the sequence S= {sc. 
called the Smarandache square product sequence. In[2], 
Iacobescu asked the following question. 

Question. How many terms in S are primes? 
In this paper we prove the following result: 

Theorem. 
prime. 

If n>2, 2 1 d ~ , . !n an Ln+J. lS a prime, 

Proof. By the definition of s~ , we have 

then s~ is 

Le~ p=2n~1. It is a well known fact that lr 2!n and p is p 
is a prime,then we have 

i, '/) r ~ 1 \:: - -1 (mod p), .c... \ 11. / = ..... 

(see[l,p.88]) . Therefore, by I ' , \ J. } and (2), we get 

Further, if n>2, then s" =l+(n!)~ >2n+1=p. Thus, by (3), 
s. is not a prime. The theorem is proved. 

Reference 
I.G.H.Hardy and e.m.Wrighc, An Introduction to the 

00 

Theory of numbers, Oxford Univ. Press, Oxford, 1938. 
2.?Iacobescu, Smarandache perti~ion type and other sequences, 

3u2.1. ?ure Appl. sci. Sect. E: 16(1997), No.2, 237-240. 
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On a characterization of the uniforrIl 
repartition 

Vasile Seleacu 

An important role in the theory of the hi-square criterion is played by the 
following fact: ijxI,X2, ... ,Xn are independent random variables with Gauss 
distribution N(O, 62), then the distribution of the central statistic hi-square 

n 

X2 = L (Xi + ai) 2 depends on aI, a2, ... , an only by mean of the parameter 
i=l 

n 

L a;' In the paper [ 1 ] one proves that this property is characteristic for 
~l . 

the normal distribution of probability. The aim of this paper is to give a 
characterization of the uniform distribution of probability by mean of the 
hi-square statistic. 

Theorem 1 Let Xl, X2, ... , Xn independent and equally distributed random 
variables, where n ~ 2, then the necessary and sufficient condition that the 

n n 

statistic distribution X2 = L (Xi + ai)2 depend on L a; with ai E JR is that 
i=l i=l 

Xi beunijormly distributed. 

Proof. \Ve define the function: 

w(a) = Ee-(xi+a)~. (1) 

It is obvious that w(a) > a andw is derivable in every a E JR. 
L sing the conditions of the theorem we have 

(2) 



Let h(a} = logw(a) and H(a) = log <l>(a). From ( 2 i we obtain: 

(3) 

If we differentiate twice the both sides of ( 3 ) by aI, then by a2, we obtain 
for every aI, a2, ... , an : 

(-1) 

In this \vay 
H(a) = CIa + C2 . 

From ( 1 ; and (:3 ) we obtain: 

(6) 

where F(x) = P (Xi < X). 
In the following step we consider the substitution: 

2 
e- x dF (X) = dC. (7) 

In this case ( E ) can be written in the form: 

(8) 

It follows, using the uniqueness theorem for the Laplace transformation. 
that dC = C5~ (x - Cn) for every C5 and C6 , where .6. is the Dirac function. 
L sing again relation ( 7 ), it follows that F is the distribution function of the 
uniform random variable 

The sufficiency can be proved by a straightforward verification. 

References 
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A NOTE ON THE SMARANDACHE PRIME PRODUCT SEQTJENCE 

A.A.K.~AR 

Department of Mathematics, Jahangimagar University, Savar, Dhaka 1342, Bangladesh 

ABSTRACT 

This paper gives some properties of the Smarandache prime product sequence, 

(Pn ) , definded by 

where (Pn) is the sequence of primes in their natural order. 

k\1S (1991) Subject Classification: 11A41, llA51. 

1. INTRODUCTION 

Let (Pn) = CPt, P2, ... ) be the (infinite) sequence of primes in their natural numbers. 

The first few terms of the sequence are as follows: 

PI =2, P2 =3,1>3 =5, P4 =7, P5 = 11, P6 = 13, P7 = 17, P8 = 19, P9 =23, PlO =29. 

Clearly, the sequence (Pn) is strictly increasing (in n ~ 1) with Pn > PI P2 for all n ~ 4. 

Furthermore, Pn > n for all n ~ 1. 

The Smarandache prime product sequence, (Pn), is defined by (Smarandache [5] ) 

(1.1 ) 

We note that the sequence (Pn ) is strictly increasing (in n ~ 1), satisfying the following 

recursion formulas: 

We also note that Pn is an odd (positive) integer for all n ~ 1; furthermore, 

Pl =3, P2 =7, P3 =31, P4 =211, Ps=2311 

'37 

(1.2) 

(1.3) 



are all primes, while the next five elements of the sequence (Pn ) are all composites, since 

Ps = 30031 = 59 x 509, 

P7= 510511 = 19 x 97 x 277, 

P8 = 9699691 = 347 x 27953, 

Pg = 223092871 = 317 x 703760, 

PlO = 6469693231 = 331 x 571 x 34231. 

Some of the properties of the sequence (Pn ) have been studied by Prakash [3], 

who conjectures that this sequence contains an infinite number of primes. 

This note gives some properties of the sequence (Pn ), some of which strengthens 

the corresponding result of Prakash [3]. This is done in §2 below, and show that for each 

n ~ 1, Pn is relatively prime to Pn+ 1. We conclude this paper with some remarks in the 

final §3. 

2. MAIN RESULTS 

We start with the following result which has been established by Majumdar [2] by 

induction on n ( ~ 6), using the recurrence relationship (1.3). 

Lemma 2.1: Pn < (Pn+1t-2 for all n ~ 6. 

Exploiting Lemma 2.1, Majumdar [2] has proved the following theorem which 

strengthens the corresponding result of Prakash [3]. 

Theorem 2.1: For each n ~ 6, Pn has at most n-3 prime factors (counting 

multiplicities) . 

Another property satisfied by the sequence (Pn ) is given in Theorem 2.2. To prove 

the theorem, we would need the following results. 

Lemma 2.2: For each n ~ 1, Pn is of the form 4k+3 for some integer k ~ O. 
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Proof: Since Pn is odd for all n ~ 1, it must be of the fonn 4k+l or 4k+3 (see, for 

example, Shanks [4], pp. 4). But, Pn cannot be of the fonn 4k+l, othenvise, from 

(1.1), we would have PlP2 ... Pn = 4k, 

that is, 41 PlP2 ... Pn, which is absurd. Hence, Pn must be of the fonn 4k+3. 0 

Lemma 2.3: (1) The product of two integers of the fonn 4k+l is an integer of the 

fonn 4k+l, and in general, for any integer m > 0, (4k+l)m is again of the fonn 4k+l, 

(2) The product of two integers of the fonn 4k+3 is an integer of the fonn 4k+ 1, and 

the product of two integers, one of the fonn 4k+ 1 and the other of the fonn 4k+ 3, is 

integer of the fonn 4k+ 3, 

(3) For any integer m > 0, (4k+3)m is of the fonn 4k+l or 4k+3 respectively 

according as m is even or odd. 

Proof: Part (1) has been proved by Bolker ([1], Lemma 5.2, pp. 6). The proof of the 

remaining parts is similar. 0 

We now prove the following theorem. 

Theorem 2.2: For each n ~ 1, Pn is never a square or higher power of any natural 

number ( > 1). 

Proof: If possible, let Pn = N'2 for some integer N > 1. 

Now, since Pn is odd, N must be odd, and hence, N must be of the fonn 4k+ 1 or 4k+3 for 

some integer k > 0. But, in either case, by Lemma 2.3, N 2= Pn is of the fonn 4k+ 1, 

contradicting Lemma 2.2. Hence, Pn cannot be a square of a natural number ( > 1). 

To prove the remaining part, let Pn= N l for some integers N > 1, 1 ~ 3. (*) 

Without loss of generality, we may assume that 1 is a prime (if 1 is a composite number, let 

1= rs where r is prime, and so Pn = (Nsy; setting M = NS, we may proceed with this 1\1[ in 
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place of N) .. By Theorem 2.1, 1 < n, and hence, 1 must be one of the primes Pl, P3, ... , Pn. 

By Fermat's Little Theorem (Bolker [1], Theorem 9.8, pp. 16), 

PlPl ... Pn = N 1-1 = N-l = 0 (mod 1). 

Thus, N = Im+ 1 for some integer m > 0, 

and we get PlPl ... Pn = (1m)l + (D(1m)1-l + ... + (l~l ) (1m). 

But the above expression shows that 121 PlPl ... Pn, which is impossible. 

Hence, the representation of Pn in the form (.) is not possible, which we intend to prove. 0 

Some more properties related to the sequence (Pn ) are given in the following two 

lemmas. Lemma 2.4: For each n 2: 1, (Pn , Pn .q ) = 1. 

Proof: Any prime factor p of Pn+ 1 satisfies the inequality P > Pn+ 1. 

Now, ifplpn, then from (1.3), we see that pl(Pn+1-1), which is absurd. Hence, all the prime 

factors of Pn+1 are different from each of the prime factors of Pn , which proves the lemma. 0 

Lemma 2.5: For each n 2: 1, Pn and Pn+2 have at most one prime factor in common. 

Proof: Since Pn+2-Pn = PlPl .. ·Pn (Pn-'-lPn-l-2- 1), 

any prime factor common to both Pn and Pn+2 must divide Pn-1Pn..;..2-1. Now, any prime 

factor of Pn+2 is greater than Pn+2. Hence, it follows that Pn and Pn+2 can have at most one 

prime factor in common, since otherwise, the product of the prime factors is greater than 

(Pn.,-2)2, which cannot divide Pn+1Pn+2-1 < (Pn+2)2. 0 

From the proof of the above lemma we see that, if all the prime factors of Pn .... l Pn .... 2-1 

are less than Pn+2, then (Pn , Pn+2) = 1. And generalizing the lemma, we have the following 

result: For any n 2: 1, and i 2: 1, Pn and Pn+i can have at most i-I number of prime factors 

mcommon. 

140 



3. SOME REMARKS 

We conclude this paper with the following remarks. 

(1) The sequence (Pn ) is well known, it is used in elementary texts on the Theory of Numbers 

(see, for example, Bolker [1 ] and Shanks [4] to prove the infinititude of the primes. Some of 

the properties of the sequence (Pn ) have been studied by Prakash [3]. Theorem 2.1 improves 

one of the results of Prakash [3], while our proof of Theorem 2.2 is much simpler than that 

followed by Prakash [3]. The expressions for Ps, Pr, Ps, Pg and P lO show that Theorem 2.1 

is satisfied with tighter bounds, but we could not improve it further. 

(2) By Lemma 2.3 we see that, of all the prime factors of Pn (which is at most n-3 in 

number for n ~ 6, by Theorem 2.1), an odd number of these must be of the form 4k+3. In 

this connection, we note that, in case of Ps, one of the prime factors (namely, 59) is of the 

form 4k+3, while the other is of the form 4k+1; and in case of Pr , all the three prime factors 

are of the form 4k+ 3. 

(3) The Conjecture that the sequence (Pn ) contains infinitely many primes, still 

remains an open problem. 
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Smarandache Lucky Math 

by C. Ashbacher 
C. Asnbacner Tec~nologies 
~iawatha, Box 294 
IA :: 2233, ~]SA 

The Smarandache Lucky YfethoClAlgoric.hm/Operationietc. is 
said to be any incorrect method or algoritbm or operation etc. wr.ich Leads to 
a correct result. The wrong calculation should be fun, somehow similarly 
to the students' common mistakes, or to produce confusions or paradoxes. 
Can someone give an example of a Smarandache Lucky Derivation, or 

Integration, or Solution to a Differential Equation? 

Reference: 
[1] Smarandache, Florentin, "Collected Papers" (Vol. m, University of 

Kishinev, 1997, p. 200. 
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Problems 

Edited by 

Charles Ashbacher 
Charles Ashbacher Technologies 

Box 294 
119 Northwood Drive 

Hiawatha, IA 52233 USA 
71603.522@compuserve.com 

Welcome to the latest installment of the problems section! Our goal as always is to 
present interesting and challenging problems in all areas and at all levels of difficulty with 
the only limits being good taste. Readers are encouraged to submit new problems and 
solutions to the editor at one of the addresses given above. All solvers will be 
acknowledged in a future issue. Please submit a solution along with your proposals if you 
have one. If there is no solution and the editor deems it appropriate, that problem may 
appear in the companion column of unsolved problems. Feel free to submit computer 
related problems and use computers in your work. Programs can also be submitted as part 
of the solution. While the editor is fluent in several programming languages, be cautious 
when submitting programs as solutions. Wading through several pages of an obtuse 
program to determine if the submitter has done it right is not the editors idea of a good 
time. Make sure you explain things in detail. 

If no solution is currently available, the program will be flagged with an asterisk*. The 
deadline for submission of solutions will generally be six months after the date appearing 
on that issue. Regardless of deadline, no problem is ever officially closed in the sense that 
new insights or approaches are always welcome. If you submit problems or solutions and 
wish to guarantee a reply, please include a self-addressed stamped envelope or postcard 
v,ith appropriate postage attached. Suggestions for improvement or modification are also 
welcome at any time. All proposals in this offering are by the editor. 

Definition: Given any positive integer n, the value of the Smarandache function Sen) is 
the smallest integer m such that n divides m!. 

Definition: Given any positive integer n 2: 1, the value of the Pseudo-Smarandache 
m 

function Zen) is the smallest integer m such that n divides L k. Note that this is 
k=l 

equivalent to n divides m(~+l) 



='iew Problems 

16. Prove that there are an infinite number of integers n such that Sen) = Zen). 

17. Prove that ifn is an even perfect number, then Sen) and Zen) are equal and prime. 

18. The Smarandache Square-Partial-Digital Subsequence(SPDS) is the set of square 
numbers that can be partitioned into a set of square integers. For example, 101 = 1 ! ° : 1 
and 1449169 = 144191169 are in SPDS. Widmer[l] closes his paper with the comment, 
"It is relatively easy to find two consecutive squares in SPDS. One example is 122 = 144 
and 132 = 169. Does SPDS also contain a sequence of three or more consecutive 
integers?" 

Find a sequence of three consecutive squares in SPDS. 

19. Prove that if k > 0, then 

2k+1 - 1 ifk is odd 
Z(2k * 3) 

2k+1 ifkiseven 

20. Prove that ifk > 0, then Z(2k * 5) = 

if k is congruent to ° modulo 4 
if k is congruent to 1 modulo 4 

1 if k is congruent to 2 modulo 4 
- 1 if k is congruent to 3 modulo 4. 

21. a) Prove that 

S(Z(n)) - Z(S(n» 

is positive infinitely often. 

b) Prove that 

S(Z(n)) - Z(S(n)) 

is negative infinitely often. 

22. It is clear that if p is an odd prime, 

Z(S(n) = Zen) 
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since S(P) = p. Prove that there are an i.n11nite number of composite numbers that also 
satisfy the equation. -

Reference 

1. Lamarr Widmer, 'Construction of Elements of the Smarandache Square-Partial-Digital 
Subsequence', Smarandache Notions Journal, Vol. 8, No. 1-2-3, Fall, 1997. 

Problem 23 (by Sao:"::. :'20:':::::2, ::::-~:;::'2::.d) 

Prove the following equation (7 n> 1) 
I=i.U.n)={ 

Proof 

This proof is made based on the Inclusion & Exclusion principle. 

Let Dp = {i = 1,2, .. ,111 pIn} be the set which contains the multiples of p. 

This set satisties 

;' \ 
rr n ' n 

-·,-..,..1: 
, p p < .. P ) n (n 

Dp = p.~ 1,2,,!!..> and II = p' Ii = p' ., = _. --I . 
p: 2 \p / , lED, i:1 -

Let n = p~' . p( .... p:' be the prime number decomposition of n. 

The following intersection of sets 

D, n Dp n ... nD = {I = 1,2, ... , nr p 'n 1\ p,n 1\ ... l\p 'njl. 
r~'i J-:' p},.. Jr ..I!' j"" 

is evaluated as follows 

Therefore, the equation 

holds. 

The Inclusion & Exclusion principle is applied based on 

s 

D = {i = l, 2, .. , nI (i,n) = l} = {I, 2" n} - Y D
p

, 

J:I 

and it gives 
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LI = i>-I(-nm

-

I L (2) 
<"!'!.',i.!n=( i:::l. r7f:::l lS.;I<~':<·_<~' ... :sn 

Applying (1), the equation (2) becomes 

(3) 

The right side of the equation (3) is simplified by reordering the terms as 

follows 

.., ~. / \ (" "n\\:' S /' t \ '1 

~ n- IT t n '" m . nIT· I I =_. 1-- 4--. I~ L{-l)· . =_. 1--· =-'!'?~n)· 
- '"' p. 2, ',mj 2 ,p j 2 

''1.': .. 11=1 - 17t=!" .',. / \?!=1 / m=l ' .... 

Therefore, the equation ( 14) holds.';' 

Remark 

Obviously, the equation does not hold for n=l because 
n· (j)(n) I = I and =:-

2 2 

Prove that there is no a magic square made with the numbers 5(1),5(2), ... , S(n2) 
where nE{2, 3, 4, 5, 7, 8, 1O}. 

Proof 

Let n be a number in the set {2, 3,4,5, 7, 8, IO}. 

Let us suppose that there IS a magIC x = (x .) 
\ l.J i.)=i.n 

square made 'vvith the 

number S(1), 5(2), ... , 5(n2
). 

In this case, the following equations are true: 

(Ii i = G) Ixi .J = C 
J~l 

(1) 

n n ,,2 

I IXi •J = IS(i) = n-C 
i=l j=l i=l 

(2) 

Therefore, the sum of the numbers 5(1), S(2), ... , S(n2) is divisible by n. 

n: 

Let us denote SS(n) = I S(i). In the cases nE {2, 3,4, 5, 7, 8, lO}, we have: 
i=l 
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n=2 ~ 55(2)=9 is not divisible by 2. 

n=3 ~ 55(1)=34 is not divisible by 3. 

n=4 ~ S5( 4)=85 is not divisible by 4. 

n=5 ~ S5(5)=187 is not divisible by 5. 

n=7 ~ S5(7)=602 is not divisible by 7. 

n=10 ~ S5(10)=2012 is not divisible by 10. 

A contradiction has been found for each case. Therefore. there is no a mazic . ~ 

square with the elements S(I), 5(2), ... , S(n\ 

Problem 25 (ej" C"cse C2S::':":':0, .::...:-.:..ZO::2; 

The follo\'{ing number, which has 155 digits, 
82818079787776 ... 1110987654321 

has been proved (Stephan [1]) with a computer to be a prime number called 
Smarandache Reverse Prime and it belongs to the sequence: 

1,21,321,4321,54321, .... 
Vlhat is the sum of the digits of this number':' 

Solution: 

Write the number per groups: 

digit sum 
828180 ---------> 8*3-7-2-'-1-0 = 27 

7978 ... 727170 --------> 7*10-'-(9 .... 8-:- ... -'-2-'-1-0) = 70..;...45 
6968 ... 626160 > 6*10+(9+8+ ... +2+ 1-'-0) = 60+45 
5958 ... 525150 > 5* 10+(9-8+ ... +2..,...1...:...0) = 50-7-45 

1918 ... 121110 --> 1*10+(9..;...8-:-... +2+1+0)= 10+45 
98... 21 -----> 0*10+(9+8..;... ... +2+1+0) = 0+45 

Total = 27+(70...:...60+50...:... ... + 10)+45*8 = 27-280+360 = 667 

References: 
(1] Stephan, RalfW., "Factors and Primes in hvo Smarandache Sequences", 

lJRL: http://rws.home.pages.de, E-mail address:stephan@tmt.de . 
[2] Sloane, N.lA., 'cnciclopedia of Integer Sequences", online, 1995-1998. 
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Solutions to Vol. 7, 1-2-3 Problems 

1. The Euler phi function ¢(n) is defmed as the number of positive integers not exceeding 
n that are relatively prime to n. 

a) Prove that there are no solutions to the equation 

¢(S(n)) = n 

Proof: It is well-known that Sen) ~ nand ¢(n) < n for all n > o. 

b) Prove that there are no solutions to the equation 

S(o(n»)=n 

Proof: Cse the same reasoning as in part (a). 

c) Prove that there are an infmite number of solutions to the equation 

n - ¢(S(n)) = 1 

Proof: It is well-known that ifp is an odd prime, S(P) = p and d>(p) = P - 1. Since there are 
an intlnite number of odd primes, the result follows. 

d) Prove that for every odd prime p, there is a number n such that 

n - ¢(S(n)) = p + 1 

Proof: It is \-vell-known that if p is an odd prime, then S(2p) = p and if p is an odd prime. 
o(P) = p - 1. Therefore, 

0(S(2p») = p - 1. 

The result follows. 

2) This problem was proposed in Canadian ~lathematical Bulletin by P. Erdos and 
was listed as unsolved in the book Index to )lathematical Problems 1980-1984, edited 
by Stanley Rabinowitz and published by MathPro Press. 

Prove that for infinitely many n 

Q(n) < o(n - d>(n)). 

Proof: It is easily verified that 

0(30) = ¢(2)*¢(3)*d>(5) = 1 *2*4 = 8 and 

6(30 - 8) = 0(22) = ¢(2)*¢(11) = 1 *10 = 10 
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)iow multiply 30 by any power of2, 2k. It is easy to verify using the well-kno'vvn formula 
for the computation of the phi function 

If n = p~l ... Pkk is the prime factorization of n, then 

that 

which creates the infinite set. 

3) The following appeared as unsolved problem(21) in "Cnsolved Problems Related to 
Smarandache Function, edited by R. yfuller and published by :\""umber Theory 
Publishing Company. 

Are there m, n, k non-null positive integers, m, n f::. 1 for which 

S(mn) = mk *S(n)? 

Find a solution. 

Solution: m = n = 2 and k = 1 is a solution. 

4) The following appeared as unsolved problem(22) in Unsolved Problems Related to 
Smarandache Function, edited by R. Muller and published by ~umber Theory 
Publishing Company. 

Is it possible to fmd two distinct munbers k and n such that 

is an integer? 

Find two integers n and k that satisfy these conditions. 

Solution: For k = n = 2. 

5) Solve the follo'vVing doubly true Russian alphametic 

lIB A 2 
lIBA 2 
TPH .J 

CE:\Ib 7 

150 



Solution: 
There are many solutions, one is 

572 
572 
690 

1834 
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Solution: 
There are many solutions, one is 

572 
572 
690 

1834 
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Cnsolved Problems 

Edited by 

Charles Ashbacher 
Charles Ashbacher Technologies 

Box 294 
Hiawatha, IA 52233 USA 

e-mail 71603.522@compuserve.com 

Welcome to another installment of the unsolved problems column! In this section, 
problems are presented where the solution is either unknov.n or incomplete. This is meant 
to be an interactive endeavor, so input from readers is strongly encouraged. Always feel 
free to contact the editor at any of the addresses given above. It is hoped that we can '.vork 
together to advance the flow of mathematics in some small way. There will be no 
deadlines here, and even if a problem is completely solved, new insights or more elegant 
proofs are always welcome. All correspondents who are the first to resolve any issue 
appearing here will have their efforts acknowledged in a future issue. 

Definition of the Smarandache function, Sen). 

Sen) = m where m is the smallest integer such that n divides m!. 

Definition of the Pseudo-Smarandache function, Zen). 

m 

Zen) = m, where m is the smallest number such that n divides L k . 
i;-1 

It is easy to verify that the expression 

S(Z(n)) - Z(S(n)) 

is positive and negative an infinite number of times. It is also occasionally zero. A 
computer program was created to check the percentages. When fU..T1 for 
1 S; n :S 10,000, the numbers were 

Positive 
~egative 

Zero 

4,744 
5,227 
29 

This precentage was fairly constant for runs with smaller upper limits. \Vlllch leads to the 
question 



Cnsolved Question: What are the percentages of numbers for which the expression 

S(Z(n)) - Z(S(n)) 

is positive, negative and zero? 

It is possible to create polynomials with the variables the values of the Smarandache 
function. For example, the polynomial 

S(n)2 + Sen) = n 

is such an expression. A computer search for all n ~ 10,000 yielded 23 values of n for 
which the expression is true. 

A computer search for all values of n < 10,000 for which the expression 

S(n)2 .,.. Sen) = 2n 

is true yielded 33 solutions. 

A computer search for all values of n :::; 10,000 for which the expression 

S(n)2 + Sen) = 3n 

is true yielded 20 solutions. 

A computer search for all values of n < 10,000 for which the expression 

S(nf T Sen) = 4n 

is true yielded 24 solutions. 

A computer search for all values of n < 10,000 for which the expression 

S(n)2 ... Sen) = 5n 

is true yielded 11 solutions. 

A computer search for all values of n < 10,000 for which the expression 

S(n)2 .,.. Sen) = 6n 

is true yielded 26 solutions. 
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Unsolved Question: Is the number of solutions to each of the expressions above finite or 
infinite? 

Unsolved Question: Is there a number k such that there is no number n for which 

S(n)2 + Sen) = kn? 

Unsolved Question: Is there a largest number k for which there is some number n that 
satisfies the expression 

S(ni -+- Sen) = kn? 

Unsolved Question: In examining the number of solutions for the runs for k = 1,2,3,4, 
5 and 6, it appears that there are more solutions when k is even than when k is odd. Is this 
true in general? 

A computer search was performed for the expression 

S(n)3 + S(n)2 -+- Sen) = n 

for all n :S 10,000 and no solutions were found. 

Unsolved Question: What is the largest value ofk such that there is a solution to the 
expressIOn 

S(n)k + S(n)k-l + ... -+- Sen) = n? 

A computer search for solutions for all n :S 10,000 was performed for the expression 

S(n)3 + S(ni T Sen) = kn 

for k=2, 3,4,5, and 6 and no solutions were found. However, two solutions were found 
for k=7. 

,AJIother computer search for all n < 10,000 for the expression 

S(n)4 --- S(n)3 -+- S(n)2 + Sen) = kn 

for k = 1,2,3,4,5,6 and 7. One solution was found for k = 5. 

Unsolved Question: Is there a largest value ofm for which there are no values ofn and k 
for which 

S(n)m -+- S(n)m-l -+- ... ~ Sen) = kn? 
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There are several classic functions of number theory, and it is in some sense natural to 
examine problems with the Smarandache and Pseudo-Smarandache functions combined 
with the classic functions. 

Definition: For n ~ 1, the divisors function den) is the number of integers m, where 
1 ::; m ::; n, such that m evenly divides n. 

Unsolved Question: How many solutions are there to the equation 

Zen) = den)? 

A computer search up through n = 10,000 yielded only the solutions n = 1, 3 and 10. 

Unsolved Question: How many solutions are there to the equation 

Zen) ~ den) = n? 

A computer search up through n = 10,000 yielded only the solution n = 56, as d( 56) = 8 
and Z(56) = 48. 

Unsolved Question: How many solutions are there to the equation 

Sen) = den)? 

A computer search up through n = 10,000 yielded 12 solutions, 10 of which were less 
than 5,000 and the last two were n = 5,000 and n = 8750. Given the obvious thinning of 
the solutions as n gets larger, it may be that there are very few solutions. 

Definition: For n ~ 1, the Euler phi function (j(n) is the number of integers k, 
1 ::; k ::; n that are relatively prime to n. 

Using the Euler phi function, we can create an additional problem. 

Unsolved Problem: How many solutions are there to the expression 

Sen) ~ den) ~ o(n) = n? 

A compute! earch for all n up through 10,000 yielded only the trivial solutions n = 1. 
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