A NOTE ON $S\left(p^{r}\right)$

by Pål Grønås
Enges Gate 12 7500 STaøRDAL Norway

Problem (0). If $\prod_{i=1}^{k} p_{i}^{r_{i}}$ is the prime factorization of n, then it is easy to verify that

$$
S(n)=S\left(\prod_{i=1}^{k} p_{i}^{r_{i}}\right)=\max \left\{S\left(p_{i}^{r_{i}}\right)\right\}_{i=1}^{k}
$$

From this formula we see that it is essensial to determine $S\left(p^{r}\right)$, where p is a prime and r is a natural number.

Legendres formula states that

$$
n!=\prod_{i=1}^{k} p_{i} \sum_{m=1}^{\infty}\left[\mathrm{n} / p_{i}^{m}\right] .
$$

This formula gives us a lower and an upper bound for $S\left(p^{r}\right)$, namely

$$
\begin{equation*}
(p-1) r+1 \leq S\left(p^{r}\right) \leq p r . \tag{1}
\end{equation*}
$$

It also implies that p divides $S\left(p^{r}\right)$, which means that

$$
S\left(p^{r}\right)=p(r-i) \text { for a particular } 0 \leq i \leq\left[\frac{r-1}{p}\right]
$$

