A PROBIEM OF MAXIMUM (8)

by T. Yau, student, Pima Community College

Let $S(n)$ be defined as the smallest integer such that ($S(n)$)! is civisible by n (Smarandache Eunction). Eind:
$\max \{S(\Omega) / n\}$,
over all composite integess n $\ddagger 4$.

Solution:
Let $n=P_{:}, \ldots P_{:}$, its canonical factorial decomposition.
Because $\left.S(n)=\max _{i \leq i \leq s} S\left(p_{i}\right)\right\}=S\left(p_{j}\right) \leq p_{j} r_{j}$,
it's easy to see that n should have only a prime divisor for $S(n) / n$ to become maximum. Therefore $s=1$. Then.
$n=P^{F}$, where: P, r are integers, and p is prime.
$S(n) / n \leq P I / D^{*}$. Hence p and I should be as small as possible, i.e.
$P=2$ or 3 or 5, and $I=2$ or 3 .
By checking these combinations, we find
$n=3^{2}=9$, whence $\max \{S(n) / n\}=2 / 3$
over all composite integers $n \neq 4$.

Reference:
M. Mudge, "Mike Mudge pays a return visit to the Elorentin Smarandache Function", in <Personal Computer World>, London, Eebruary 1993, p. 403.

