A proof of the non-existence of "Samma".

by På Grønås
Introduction: If $\prod_{i=1}^{k} p_{i}^{r i}$ is the prime factorization of the natural number $n \geq 2$, then it is easy to verify that

$$
S(n)=S\left(\prod_{i=1}^{k} p_{i}^{\pi_{i}}\right)=\max \left\{S\left(p_{i}^{\tau_{i}}\right)\right\}_{i=1}^{k}
$$

From this formula we see that it is essensial to determine $S\left(p^{r}\right)$, where p is a prime and r is a natural number.

Legendres formula states that

$$
\begin{equation*}
n!=\prod_{i=1}^{k} p_{i} \sum_{m=1}^{\infty}\left[\pi / p_{i}^{m}\right] . \tag{1}
\end{equation*}
$$

The definition of the Smarandache function tells us that $S\left(p^{r}\right)$ is the least natural number such that $p^{r} \mid\left(S\left(p^{r}\right)\right)$!. Combining this definition with (1), it is obvious that $S\left(p^{r}\right)$ must satisfy the following two inequalities:

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[\frac{S\left(p^{r}\right)-1}{p^{k}}\right]<r \leq \sum_{k=1}^{\infty}\left[\frac{S\left(p^{r}\right)}{p^{k}}\right] \tag{2}
\end{equation*}
$$

This formula (2) gives us a lower and an upper bound for $S\left(p^{\tau}\right)$, namely

$$
\begin{equation*}
(p-1) r+1 \leq S\left(p^{r}\right) \leq p r . \tag{3}
\end{equation*}
$$

It also implies that p divides $S\left(p^{r}\right)$, which means that

$$
S\left(p^{r}\right)=p(r-i) \text { for a particular } 0 \leq i \leq\left[\frac{r-1}{p}\right]
$$

"Samma": Let $T(n)=1-\log (S(n))+\sum_{i=2}^{n} \frac{1}{S(i)}$ for $n \geq 2$. I intend to prove that $\lim _{n \rightarrow \infty} T(n)=\infty$, i.e. "Samma" does not exists.

First of all we define the sequence $p_{1}=2, p_{2}=3, p_{3}=5$ and $p_{n}=$ the nth prime.

Next we consider the natural number p_{m}^{n}. Now (3) gives us that

$$
\begin{align*}
S\left(p_{i}^{k}\right) & \leq p_{i} k \quad \forall i \in\{1, \ldots, m\} \text { and } \forall k \in\{1, \ldots, n\} \\
& \Downarrow \\
\frac{1}{S\left(p_{i}^{k}\right)} & \geq \frac{1}{p_{i} k} \\
& \Downarrow \\
\sum_{i=1}^{m} \sum_{k=1}^{n} \frac{1}{S\left(p_{i}^{k}\right)} & \geq \sum_{i=1}^{m} \sum_{k=1}^{n} \frac{1}{p_{i} k}=\left(\sum_{i=1}^{m} \frac{1}{p_{i}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right) \\
& \Downarrow \tag{4}\\
\sum_{k=2}^{p_{m}^{n}} \frac{1}{S(k)} & \geq\left(\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right)
\end{align*}
$$

since $S(k)>0$ for all $k \geq 2, p_{a}^{b} \leq p_{m}^{n}$ whenever $a \leq m$ and $b \leq n$ and $p_{a}^{b}=p_{c}^{d}$ if and only if $a=c$ and $b=d$.

Furthermore $S\left(p_{m}^{n}\right) \leq p_{m} n$, which implies that $-\log S\left(p_{m}^{n}\right) \geq-\log \left(p_{m} n\right)$ because $\log x$ is a strictly increasing function in the intervall $[2, \infty)$. By adding this last inequality and (4), we get

$$
\begin{aligned}
T\left(p_{m}^{n}\right) & =1-\log \left(S\left(p_{m}^{n}\right)\right)+\sum_{i=2}^{p_{m}^{n}} \frac{1}{S(i)} \geq 1-\log \left(p_{m} n\right)+\left(\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right) \\
& \Downarrow \\
T\left(p_{m}^{p_{m}}\right) & \geq 1-\log \left(p_{m}^{2}\right)+\left(\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)\left(n=p_{m}\right) \\
& \Downarrow \\
T\left(p_{m}^{p_{m}}\right) & \geq 1+2\left(-\log p_{m}+\sum_{k=1}^{p_{m}} \frac{1}{k}\right)+\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right) \\
& \Downarrow \\
\lim _{m \rightarrow \infty} T\left(p_{m}^{p_{m}}\right) & \geq 1+2 \cdot \lim _{m \rightarrow \infty}\left(-\log p_{m}+\sum_{k=1}^{p_{m}} \frac{1}{k}\right)+\lim _{m \rightarrow \infty}\left[\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)\right] \\
& =1+2 \cdot \lim _{p_{m} \rightarrow \infty}\left(-\log p_{m}+\sum_{k=1}^{p_{m}} \frac{1}{k}\right)+\lim _{m \rightarrow \infty}\left[\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)\right] \\
& =1+2 \gamma+\lim _{m \rightarrow \infty}\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot \lim _{p_{m} \rightarrow \infty}\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)(\gamma=\text { Euler's constant }) \\
& =\infty
\end{aligned}
$$

since both $\sum_{k=1}^{t} \frac{1}{k}$ and $\sum_{k=1}^{t} \frac{1}{p_{k}}$ diverges as $t \rightarrow \infty$. In other words, $\lim _{n \rightarrow \infty} T(n)=\infty$.

