by Pål Grønås

<u>Introduction</u>: If $\prod_{i=1}^{k} p_i^{r_i}$ is the prime factorization of the natural number $n \ge 2$, then it is easy to verify that

$$S(n) = S(\prod_{i=1}^{k} p_i^{\tau_i}) = \max\{ S(p_i^{\tau_i}) \}_{i=1}^{k}$$

From this formula we see that it is essensial to determine $S(p^r)$, where p is a prime and r is a natural number.

Legendres formula states that

(1)
$$n! = \prod_{i=1}^{k} p_i \sum_{m=1}^{\infty} [n/p_i^m].$$

The definition of the Smarandache function tells us that $S(p^r)$ is the least natural number such that $p^r | (S(p^r))!$. Combining this definition with (1), it is obvious that $S(p^r)$ must satisfy the following two inequalities:

(2)
$$\sum_{k=1}^{\infty} \left[\frac{S(p^r) - 1}{p^k} \right] < r \leq \sum_{k=1}^{\infty} \left[\frac{S(p^r)}{p^k} \right].$$

This formula (2) gives us a lower and an upper bound for $S(p^r)$, namely

(3)
$$(p-1)r + 1 \leq S(p^r) \leq pr.$$

It also implies that p divides $S(p^r)$, which means that

$$S(p^r) = p(r-i)$$
 for a particular $0 \le i \le \left[\frac{r-1}{p}\right]$.

<u>"Samma":</u> Let $T(n) = 1 - \log(S(n)) + \sum_{i=2}^{n} \frac{1}{S(i)}$ for $n \ge 2$. I intend to prove that $\lim_{n\to\infty} T(n) = \infty$, i.e. "Samma" does not exists.

First of all we define the sequence $p_1 = 2$, $p_2 = 3$, $p_3 = 5$ and $p_n =$ the *n*th prime.

Next we consider the natural number p_m^n . Now (3) gives us that

since S(k) > 0 for all $k \ge 2$, $p_a^b \le p_m^n$ whenever $a \le m$ and $b \le n$ and $p_a^b = p_c^d$ if and only if a = c and b = d.

Futhermore $S(p_m^n) \leq p_m n$, which implies that $-\log S(p_m^n) \geq -\log(p_m n)$ because $\log x$ is a strictly increasing function in the intervall $[2, \infty)$. By adding this last inequality and (4), we get

$$\begin{split} T(p_m^n) &= 1 - \log(S(p_m^n)) + \sum_{i=2}^{p_m^n} \frac{1}{S(i)} \ge 1 - \log(p_m n) + \left(\sum_{k=1}^m \frac{1}{p_k}\right) \cdot \left(\sum_{k=1}^n \frac{1}{k}\right) \\ & \Downarrow \\ T(p_m^{p_m}) \ge 1 - \log(p_m^2) + \left(\sum_{k=1}^m \frac{1}{p_k}\right) \cdot \left(\sum_{k=1}^{p_m} \frac{1}{k}\right) \quad (n = p_m) \\ & \Downarrow \\ T(p_m^{p_m}) \ge 1 + 2 \left(-\log p_m + \sum_{k=1}^{p_m} \frac{1}{k}\right) + \left(-2 + \sum_{k=1}^m \frac{1}{p_k}\right) \cdot \left(\sum_{k=1}^{p_m} \frac{1}{k}\right) \\ & \Downarrow \\ & \Downarrow \\ \\ \lim_{m \to \infty} T(p_m^{p_m}) \ge 1 + 2 \cdot \lim_{m \to \infty} \left(-\log p_m + \sum_{k=1}^{p_m} \frac{1}{k}\right) + \lim_{m \to \infty} \left[\left(-2 + \sum_{k=1}^m \frac{1}{p_k}\right) \cdot \left(\sum_{k=1}^{p_m} \frac{1}{k}\right)\right] \\ &= 1 + 2 \cdot \lim_{p_m \to \infty} \left(-\log p_m + \sum_{k=1}^{p_m} \frac{1}{k}\right) + \lim_{m \to \infty} \left[\left(-2 + \sum_{k=1}^m \frac{1}{p_k}\right) \cdot \left(\sum_{k=1}^{p_m} \frac{1}{k}\right)\right] \\ &= 1 + 2\gamma + \lim_{m \to \infty} \left(-2 + \sum_{k=1}^m \frac{1}{p_k}\right) \cdot \lim_{p_m \to \infty} \left(\sum_{k=1}^{p_m} \frac{1}{k}\right) \quad (\gamma = \text{Euler's constant}) \\ &= \infty \end{split}$$

since both $\sum_{k=1}^{t} \frac{1}{k}$ and $\sum_{k=1}^{t} \frac{1}{p_k}$ diverges as $t \to \infty$. In other words, $\lim_{n\to\infty} T(n) = \infty$. \Box