by A. Stuparu, Vâlcea, Romania, and D. W. Sharpe, Sheffield, England

$$
\begin{aligned}
& \text { Prove that the equation } \\
& \qquad S(x)=p \text { where } p \text { is a given prime number, }
\end{aligned}
$$

has just $D((p-i)!)$ solutions, $a l l$ of them in between p and p ! $[S(n)$ is the Smarandache Eunction: the smallest integer such that $S(n)$! is divisiole by n, and $D(n)$ is the number of positive divisors of $n]$.

PROOF (inspired by a remark of D. W. Sharpe) :
Of course the smallest solution is $x=p$, and the largest one is $x=p!$
Any other solution should be an integer number divided by p, but not by p^{2} (because $S\left(k p^{2}\right)>=S\left(p^{2}\right)=2 p$, where k is a positive integer).

Therefore $x=p q$, where q is a divisor of ($p-1$)!

Reference: "The Smarandache Function", by J. Rodriguez (Mexico) \& T. Yau (USA), in <Mathematical Spectrum , Sheffield, UK, 1993/4, Vol. 26, No. 3, pp. 84-5; Editor: D. W. Sharpe.

Examples (of D. W. Sharpe) :
$S(x)=5$, then $x \in\{5,10,15,20,30,40,60,120\}$ (eight solutions).
$S(x)=7$ has just 30 solutions, because $6!=2^{4} \times 3^{2} \times 5^{1}$ and $6!$ has just $5 \times 3 \times 2=30$ positive divisors.

