PROPOSED PROBLEM (3)

Let $\eta(n)$ be Smarandache Function: the smallest integer m such that m ! is divisible by n. Calculate $\eta\left(p^{p+1}\right)$, where p is an odd prime number.

Solution.
The answer is p^{2}, because:
$p^{2}!=1 \cdot 2 \cdot \ldots \cdot p \cdot \ldots \cdot(2 p) \cdot \ldots \cdot((p-1) p) \cdot \ldots \cdot(p)$, which is divisible by p^{p+1}.

Any another number less than p^{2} will have the property that its factorial is divisible by p^{k}, with $k<p+1$, but not divisible by p^{p+i}.

Pedro Melendez
Av. Cristovao Colombo 336 30.000 Belo Horizonte, MG BRAZIL

