Let $\gamma(n)$ be Smarandache Function: the smallest integer m such that m! is divisible by n. Calculate $\gamma(p^{p+1})$, where p is an odd prime number.

Solution.

The answer is p^2 , because: $p^2! = 1 \cdot 2 \cdot \ldots \cdot p \cdot \ldots \cdot (2p) \cdot \ldots \cdot ((p-1)p) \cdot \ldots \cdot (pp)$, which is divisible by p^{p+1} .

Any another number less than p^2 will have the property that its factorial is divisible by p^{K} , with $k , but not divisible by <math>p^{P+1}$.

Pedro Melendez Av. Cristovao Colombo 336 30.000 Belo Horizonte, MG BRAZIL

39