Let m be a fixed positive integer. Calculate:

$$
\lim _{i \rightarrow \infty} \eta\left(p_{i}^{m}\right) / p_{i}
$$

where $\eta(n)$ is Smarandache Function defined as the smallest integer m such that m ! is divisible by n, and p_{i} the prime series.

Solution:

We note by p_{j} a prime number greater than m. We show that $\eta\left(p_{i}^{m}\right)=m p_{i}$, for any $i>j:$
$i \leqslant$ by absurd $\eta\left(p_{i}^{m}\right)=a<m p_{i}$ then
$a!=1 \cdot 2 \cdot \ldots \cdot p_{i} \cdot \ldots \cdot\left(2 p_{i}\right) \cdot \ldots \cdot\left((m-k) p_{i}\right) \cdot \ldots \cdot a$, with $k>0$, will be divisible by p_{i}^{m-k} but not by p_{i}^{m}.
Then this limit is equal to m .

Pedro Melendez

Av. Cristovao Colombo 336
30.000 Bell Horizonte, MG

BRAZIL

