SMARANDACHE FUNCTION JOURNAL

$S(n)$ is the smallest integer such that $S(n)$! is divisible by n
$S(n)$ is the smallest integer such that $S(n)$! is divisible by n $S(n)$ is the smallest integer such that $S(n)$! is divisible by n

SFJ is periodically published in a 60-120 pages volume, and 8001000 copies.

SFJ is a referred journal.
SFJ is reviewed, indexed, cited by the following journals: "Zentralblatt Für Mathematik" (Germany), "Referativnyi Zhurnal" and "Matematika" (Academia Nauk, Russia), "Mathematical Reviews" (USA), "Computing Review" (USA), "Libertas Mathematica" (USA), "Octogon" (Romania), "Indian Science Abstracts" (India), "Ulrich's International Periodicals Directory" (USA), "Gale Directory of Publications and Broadcast Media" (USA), "Historia Mathematica" (USA), "Journal of Recreational Mathematics" (USA), "The Mathematical Gazette" (U.K.), "Abstracts of Papers Presented to the American Mathematical Society" (USA), "Personal Computer World" (U.K.), "Mathematical Spectrum" (U.K.), "Bulletin of Pure and Applied Sciences" (India), Institute for Scientific Information (PA, USA), "Library of Congress Subject Headings" (USA).

INDICATION TO AUTHORS

Authors of papers concerning any of Smarandache type functions are encouraged to submit manuscripts to the Editors:

```
Prof. C. Dumitrescu \& Prof. V. Seleacu Department of Mathematics University of Craiova, Romania.
```

The submitted manuscripts may be in the format of remarks, conjectures, solved/unsolved or open new proposed problems, notes, articles, miscellaneous, etc. They must be original work and camera ready [typewritten/computerized, format: 8.5×11 inches (\approx $21,6 \times 28 \mathrm{~cm})]$. They are not returned, hence we advise the authors to keep a copy.

The title of the paper should be writing with capital letters. The author's name has to apply in the middle of the line, near the title. References should be mentioned in the text by a number in square brackets and should be listed alphabetically. current address followed by e-mail address should apply at the end of the paper, after the references.

The paper should have at the beginning an up to a half-page abstract, followed by the key words.

All manuscripts are subject to anonymous review by two or more independent sources.

SOME REMARKS ON THE SMARANDACHE FUNCTION

by
M. Andrei, C. Dumitrescu, V. Seieacu L. Tutescu St. Zanfir

1. On the method of calculus proposed by Florentin Smarandache. In [6] is defined a numerical function $S: N^{*} \rightarrow N$, as follows:
$S(n)$ is the smallest nonnegative integer such that $S(n)$! is divisible by n.
For example $S(1)=0, S\left(2^{12}\right)=16$.
This function characterizes the prime numbers in the sense that $p>4$ is prime if and only if $S(p)=p$. As it is showed in [6] this function may be extended to all integers by defining $S(-n)=S(n)$. If a and b are relatively prime then $S(a \cdot b)=\max \{S(a), S(b)\}$ More general, if $[a, b]$ is the last common multiple of a and b then

$$
\begin{equation*}
S([a, b])=\max \{S(a), S(b)\} \tag{1}
\end{equation*}
$$

So, if $n=p_{1}^{3} \cdot p_{2}^{2} \cdot \ldots \cdot p_{\text {a }}^{2}$ is the factorization of n into primes, then

$$
\begin{equation*}
S(n)=\max \left\{S\left(p_{:}^{3}\right): i=1, \ldots, t\right\} \tag{2}
\end{equation*}
$$

For the calculus of $S\left(p_{i}^{*}\right)$ in [6] it is used the fact that if $a=\left(p^{n}-1\right) /(p-1)$ then $S\left(p^{2}\right)=p^{n}$.
This equality results from the fact, if $\alpha_{p}(n)$ is the exponent of the prime p in the decomposition of n ! into primes then

$$
\begin{equation*}
a_{p}(n)=\sum_{i=1}\left[\frac{n}{p^{\prime}}\right] \tag{3}
\end{equation*}
$$

From (3) is results that $S\left(p^{2}\right) \leq p \cdot a$.
Now, if we note $a_{n}(p)=\left(p^{n}-1\right) /(p-1)$ then

$$
\begin{equation*}
S\left(p^{k_{m} i_{m}(p)+k_{m} m_{m}(p)+x_{0}, m_{m}(p)}\right)=k_{m_{1}} p^{m_{1}}+k_{m_{2}} p^{\pi_{2}}+\ldots+k_{m_{1}} p^{m_{1}} \tag{4}
\end{equation*}
$$

for $k_{m_{2}}, k_{m_{2}}, \ldots, k_{m_{1}} \in \overline{1, p-1}$ and $k_{m} \in\{1,2, \ldots, F\}$.

That is, if we consider the generalized scale

$$
[p]: a_{1}(p), a_{2}(p), \ldots, a_{n}(p), \ldots
$$

and the standard scale

$$
(p): 1, p, p^{2}, \ldots, p^{n}, \ldots
$$

and we express the exponent a in the scale $[p], a_{i p]}=\overline{k_{m_{m}} k_{m_{2}} \ldots k_{m}}$, then the left hand of the equality (4) is $S\left(p^{(p)}\right)$ and the right hand becomes $p\left(a_{[p]}\right)_{(p)}$. In other words, the right hand of (4) is the number obtained multiptying by p the exponent a writed in the scale [p] , readed it in the scale (p).
So, (4) may be written as

$$
\begin{equation*}
S\left(p^{a p}\right)=P\left(a_{(p]}\right)_{\{p!} \tag{5}
\end{equation*}
$$

For example, to calculate $S\left(3^{89}\right)$ we write the exponent $a=89$ in the scale

$$
[3]: 1,4,13,40,121, \ldots
$$

and so

$$
a_{m}(p) \leq a \Leftrightarrow\left(p^{m}-1\right) /(p-1) \leq a \Leftrightarrow p^{m} \leq(p-1) \cdot a+1 \Leftrightarrow m_{1} \leq \log _{p}((p-1) \cdot a+1) .
$$

It resuits that m_{1} is the integer part of $\log _{p}((p-1) \cdot a+1)$.
For our example $m_{1}=\left[\log _{3}(2 a+1)\right]=\log _{3} 179=4$. Then first digit of $a_{[3]}$ is $k_{4}=\left[a^{\prime} a_{4}(3)\right]=2$. So, $89=2 a_{4}(3)+9$.
For $\tilde{m}_{1}-3$ it results $m_{2}=\left[\log _{3}\left(2 a_{1}+1\right)\right]=2, k_{2}=\left[a_{1} / a_{2}(3)\right]=2$ and so $a_{1}=2 a_{2}(3)+1$.
Then $89=2 a_{4}(3)-2 a_{2}(3)+a_{1}(3)=2021_{\{3]}$. and $S\left(3^{89}\right)=3(2021)_{\{3)}=183$.
Indeed $\sum_{: \geq 1} \frac{183}{3^{i}}=61+20+6+2=89$.
Lct us observe that the calcuius in the generalized scale $[p]$ is essentially different from the calculus in the standard scale (p). That because if we note $b_{n}(p)=p^{n}$ then it results

$$
\begin{equation*}
a_{n+1}(p)=p a_{7}(p)+1 \text { and } a_{n+1}(p)=p a_{n}(p)+1 \tag{6}
\end{equation*}
$$

Foi this, to add some numbers in the scale $[p]$ we do as follows. We start to add from the digits of "decimals", that is from the column of $a_{2}(p)$. If adding some digits it is obtained $p a_{2}(p)$ then it is utilized a unit from the class of units (coefficients of $a_{1}(p)$) to obtain $p a_{2}(p)-1=a_{3}(p)$. Continuing to add, if agains it is obtained $p a_{2}(p)$, then a new unit must be used, from the class of units, etc.

For example if $m_{i s]}=442, n_{t s]}=412$ and $r_{[s]}=44$ then

$$
m+n+r=442+
$$

We start to add from the column corresponding to $a_{2}(s)$:

$$
4 a_{2}(5)+a_{2}(5)+4 a_{2}(5)=5 a_{2}(5)+4 a_{2}(5) .
$$

Now utilizing a unit from the first column we obtain

$$
5 a_{2}(5)+4 a_{2}(5)=a_{1}(5)+4 a_{2}(5), \text { so } b=4 .
$$

Continuing, $4 a_{3}(5)+4 a_{3}(5)+a_{3}(5)=5 a_{3}(5)+4 a_{3}(5)$ and using a new unit it results $4 a_{3}(5)+4 a_{3}(5)+a_{3}(5)=a_{4}(5)+4 a_{3}(5)$, so $c=4$ and $d=1$. Finally, adding the remained units $4 a_{1}(5)+2 a_{1}(5)=5 a_{1}(5)+a_{1}(5)=5 a_{1}(5)+1=a_{2}(5)$ it results that b must be modified and $a=0$. So $m+n+r=1450$,
We have applied the formula (5) to the calculus of the values of S for any integer between $N_{1}=31,000,000$ and $N_{2}=31,001,000$. A program has been designed to generate the factorization of every integer $n \in\left[N_{1}, N_{2}\right]$ (TRME (minutes) : START : 40:8:93, STOP : 56:38:85, more than 16 minutes).
Afterwards, the Smarandache function has been calculated for every $n=p_{1}^{s_{1}} \cdot p_{2}^{s_{2}} \ldots \cdot p_{:}^{3^{3}}$ as follows:

1) $\max p_{i} \cdot a_{i}$ is determined
2) $S_{0}=S\left(p_{i}^{a}\right)$, for i determined above
3) Because $S\left(p_{j}^{\mathrm{a}_{j}}\right) \leq p_{j} \cdot a_{j}$, we ignore the factors for which $p_{j} \cdot a_{j} \leq S_{0}$.
4) Are calculated $S\left(p_{i}^{j}\right)$ for $p_{j} \cdot a_{j}>S_{0}$ and is determined the greatest of these values.
(TME (minutes): START: 25:52:75, STOP: 25:55:27, leas than 3 seconds)

2. Some diofantine equations concerning the function S .

In this section we shall apply the formula (5) for the study of the solutions of some diofantine equations proposed in (6).
a) Using (5) it can be proved that the diofantine equation

$$
\begin{equation*}
S(x \cdot y)=S(x)+S(y) \tag{7}
\end{equation*}
$$

has infinitely manty solutions. Indeed, let us observe that from (2) every relativety prime integers x_{0} and y_{0} can't be a solution from (7). Let now $x=p^{x} \cdot A, y=p^{b} \cdot B$ be such that $S(x)=S\left(p^{2}\right)$ and $S(y)=S\left(p^{b}\right)$.
Then $S(x \cdot y)=S\left(p^{a+b}\right)$ and (7) becomes

$$
p\left((a+b)_{(p i}\right)_{(p)}=p\left(a_{[p]}\right)_{(p)}-p\left(b_{i p l}\right)_{(p)}
$$

or

$$
\begin{equation*}
\left((a+b)_{(p]}\right)_{(p)}=\left(a_{\{p]}\right)_{(p)}+\left(b_{(p)}\right)_{(p)} \tag{8}
\end{equation*}
$$

There exists infinitely many values for a and b satisfying yhis equality. For example $a=a_{3}(p)=100_{\{p]}, b=a_{2}(p)=10_{\{p \mid}$ and (8) becomes $\left(110_{[p]}\right)_{(p)}=\left(100_{[p]}\right)_{(p)}-\left(10_{\{p]}\right)_{(p)}$.
b) We shall prove now that the equation

$$
S(x \cdot y)=S(x) \cdot S(y)
$$

has no solution $x, y>1$.
Let $m=S(x)$ and $n=S(y)$. It is sufficient to prove that $S(x \cdot y)=m \cdot n$. But it is said that $m!\cdot n$! divide $(m+n)$!, so

$$
(m \cdot n)!\vdots(m-n)!\vdots m!\cdot n!\vdots x \cdot y
$$

c) If we note by (x, y) the greatest common divisor of x and y , then the ecuation

$$
\begin{equation*}
(x, y)=(S(x), S(y)) \tag{9}
\end{equation*}
$$

has infintelly many solutions. Indeed, because $x \geq S(x)$, the equality holding if and onty if x is a prime it results that (9) has as solution every pair x, y of prime numbers and also every pair of product of prime numbers.
Let now $S(x)=p\left(a_{|p|}\right)_{(p)}, S(y)=q\left(b_{|q|}\right)_{(q)}$ be such that $(x, y)=d>1$. Then because ($p . q$) $=1$, if

$$
a_{1}=\left(a_{\{p!}\right)_{!p!}, b_{1}=\left(b_{\{p!}\right)_{i p!} \text { and }\left(p, b_{1}\right)=\left(a_{1}, q\right)=1 .
$$

it result that the equality (9) becomes

$$
\left(\left(a_{(p)}\right)_{(p)},\left(b_{[q]}\right)_{(q)}\right)=d
$$

and it is satisfied for various positive integers a and b. For example if $x=2 \cdot 3^{a}$ and $y=2 \cdot 5^{j}$ it results $d=2$ and the equality $\left(\left(a_{\eta 11}\right)_{(3)},\left(b_{[15}\right)_{(5)}\right)=2$ is satisfied for many values of $a, b \in N$.
d) If $[x, y]$ is the least common multiple of x and y then the equation

$$
\begin{equation*}
[x, y]=[S(x), S(y)] \tag{10}
\end{equation*}
$$

has as solurions every pair of prime numbers. Now, if x and y are composite numbers such that $S(x)=S\left(p_{:}^{a_{i}}\right)$ and $S(y)=S\left(p_{j}^{a_{j}}\right)$ with $p_{:}=p_{\text {; }}$ then the pair x, y can't be solution of the equation because in this case we have

$$
[x, y]>p_{1}^{\alpha} \cdot p_{i}^{a_{j}}>S(x) \cdot S(y) \geq S(x), S(y)
$$

and if $x=p^{2} \cdot A$ and $y=p^{b} \cdot B$ with $S(x)=S\left(p^{*}\right), S(y)=S\left(p^{b}\right)$ then

$$
[S(x), S(y)]=\left[p\left(a_{(p)}\right)_{(p)}, p\left(b_{|p|}\right)_{(p)}\right]=p \cdot\left(a_{|p|}\right)_{(p)},\left(b_{\{p \mid}\right)_{(p)}
$$

and $[x, y]=p^{\text {mian }(a, b)} \cdot[A, B]$ so (10) is satified also for many vatues of non relatively prime integers.
e) Finaty we consider the equation

$$
S(x)+y=x-S(y)
$$

which has as solution every pair of prime numbers, but also the composit numbers $x=y$. It can be found other composit number as solutions. For example if p and q are consecutive prime numbers such that

$$
\begin{equation*}
q-p=h>0 \tag{11}
\end{equation*}
$$

and $x=p \cdot A, y=q \cdot B$ then our equatic is equivalent to

$$
\begin{equation*}
y-x=S(y)-S(x) \tag{12}
\end{equation*}
$$

If we consider the diofantine equation $q B-\angle A=h$ it results from (11) that $A_{0}=B_{0}=1$ is a particular solution, so the general solution is $A=1+r q, B=1+r p$, for arbitrary integer r . Then for $r=1$ it results $x=p(1+q), y=q(1+p)$ and $y-x=h$. In addition, because p and q are consecutive primes it results that $p+1$ and $q+1$ are composite and so

$$
S(x)=p, S(y)=q, S(y)-S(x)=h
$$

and (12) holds.

REFERENCES

1. I.Creanga, C.Cazacu, P.Mihut, G.Opait, C.Reismer, Introducere in teoria numerelor. Ed. Did. si Ped.,Bucuresti 1965.
2. LCucurezeanu, Probleme de aritmetica si teoria numerelor. Ed. Tehnica, Bucuresti, 1976.
3. G.H.Hardy, E.M. Wright, An Introduction to the Theory of Numbers. Oxford 1954.
4. P.Radovici-Marculescu ,Probleme de teoria elementara a numerelor Ed. Tehnica, Bucuresti, 1986.
5. W. Sierpinski Elementary Theory of numbers. Panstwowe Widawnictwo Naukowe, Warszawa, 1964.
6. F. Smarandache, A Function in the Number Theory, An. Univ. Timisoara Ser. St. Mat. Vol XVIIL, fasc. 1 (1980) 9, 79-88.
7. Smarandache Function Journal, Number Theory Publishing, Co., R. Muller Editor, Phoerix, New York, Lyon.
[^0]
by

Ion Balacenoiu
Departament of Mathematics University of Craiova, Romania

F. Smarandache defines [11 a numerical function
$S: \mathbb{N}^{*} \longrightarrow \mathbb{N} . S(\pi)$ is the smallest integer m such that m! is divisibie by n. Using certain results on standardised structures, three kinds of Smarandache functions are defined and are etablished some compatibility zelations between these furntions.

1. Standardising functions. Let X be a nonvaid set, $r \subset X \times X$ an equivalence relation, \dot{X} the corresponding quotient set and (I, \leq a totally ordered set.
1.1 Definition. If $g: \hat{X} \longrightarrow$ I is an arbitrarely injective function, then $f: X \longrightarrow I$ defined by $f(x)=g(\hat{x})$ is a standardising function. In this case the set X is said to be [r, CI, SJ,fl standardised. If r_{1} and r_{2} are two equivalence relations on X, then $r=r_{1} \wedge_{r_{2}}$ is defined as $x r y$ if and only if $x r_{1} y$ and $x r_{2} y$. Of course r is an equivalenee relation.

In the following theorem we consider functions having the same monetonicity. The functions $f_{i}: X \longrightarrow I, i=\overline{1,5}$ are of the same monotonifity if for every x, y from X it results

$$
f_{k}(x) \leq f_{k}(y) \text { if and only if } f_{j}(x) \leq f_{j}(y) \text { for } k, j=\overline{1, s}
$$

1.2 Theorem. If the standardising functions $f_{i}: X \longrightarrow I$ corresponding to the equivalence relations $r_{i}, i=\overline{1,5}$, ara of the some monotonicity then $f=\max \left\{f_{i}\right\}$ is a standardising function corresponding to $r=\hat{\imath} r_{i}$, having the same monotonicity as f_{i}.

Proof. We give the proof of theorem in case $s=2$. Let $\hat{x}_{r_{1}}, \hat{x}_{r_{2}}$
\hat{x}_{r} be the equivalence chases of x corresponding to r_{1}, r_{2} and to $r=r_{1} \wedge r_{z}$ respectively and $\dot{x}_{r_{1}}, \dot{X}_{r_{2}}, \bar{x}_{r}$ the quotient sets on X.

We have $f_{1}(x)=g_{1}\left(\dot{x}_{r_{1}}\right)$ and $f_{2}(x)=g_{2}\left(\dot{x}_{r_{2}}\right)$, where
$g_{i}: \bar{x}_{r} \longrightarrow I, i=1,2$ are injective functions. The function $g: \hat{X}_{r} \longrightarrow I$ defined by $g\left(\dot{x}_{r}\right)=\max \left(g_{1}\left(\dot{x}_{r_{1}}\right), g_{2}\left(\dot{x}_{r_{2}}\right)\right\}$ is injective.

$$
\text { Indeed, if } \quad \dot{x}_{r}^{1} \neq \dot{x}_{r}^{2} \text { and } \quad \max \left\{g_{1}\left(\dot{x}_{r_{1}}^{1}\right), g_{2}\left(\dot{x}_{r_{2}}^{1}\right)\right\}=
$$ $=\max _{1}\left(g_{1}\left(\dot{x}_{r}^{2}\right), g_{2}\left(\dot{x}_{r}^{2}\right)\right\}$, then be cause of the injectivity of g_{1} and g_{2} we have for example ${\max \left\{g_{1}\left(\hat{x}_{r_{1}}^{1}\right), g_{2}\left(\hat{x}_{r_{2}}^{1}\right)\right\}=}=$ $=g_{1}\left(\dot{x}_{r_{1}}^{1}\right)=g_{2}\left(\bar{x}_{r_{2}}^{2}\right)=\max \left(g_{1}\left(\dot{x}_{r_{1}}^{2}\right), g_{2}\left(\dot{x}_{r_{2}}^{2}\right)\right\rangle$ and we obtain a

contradiction because $f_{1}\left(x^{2}\right)=g_{1}\left(\dot{x}_{r_{1}}^{2}\right)\left\langle g_{1}\left(\dot{x}_{r_{1}}^{1}\right)=f_{1}\left(x^{1}\right)\right.$

$$
f_{2}\left(x^{1}\right)=g_{2}\left(\hat{x}_{r_{1}}^{1}\right)\left\langle g_{2}\left(\bar{x}_{r_{2}}^{2}\right)=f_{2}\left(x^{2}\right)\right. \text {, that is }
$$

f_{i} and f_{z} are not of the same monotonicity from the injectivity of g it results that $f: X \longrightarrow I$ defined by $f(x)=g\left(x_{f}\right)$ is a standardising function. In addition we have $f\left(x^{1}\right) \leq f\left(x^{2}\right) \leftrightarrow$ $g\left(\dot{x}_{r}^{1}\right) \leq g\left(\dot{x}_{r}^{2}\right) \Leftrightarrow \max ^{2}\left(g_{1}\left(\dot{x}_{r_{1}}^{1}\right), g_{z}\left(\dot{x}_{r_{2}}^{1}\right)\right\} \leq \max \left(g_{1}\left(\dot{x}_{r_{1}}^{2}\right), g_{2}\left(\dot{x}_{r_{2}}^{2}\right)\right\} \Leftrightarrow$ $\Leftrightarrow \max \left(f_{1}\left(x^{1}\right), f_{2}\left(x^{1}\right) j \leq \max \left(f_{1}\left(x^{2}\right), f_{2}\left(x^{2}\right)\right\} \Leftrightarrow f_{1}\left(x^{1}\right) \leq f_{1}\left(x^{2}\right)\right.$ and $f_{2}\left(x^{1}\right) \leq f_{z}\left(x^{2}\right)$ because f_{1} and f_{z} are of the same monotonicity.
let us supose now that T and 1 are two algebraic lows on X and I respectively.

1. 3. Definition. The standardising function $f: X \longrightarrow I$ is said to be Σ-ompatibile with T and 1 if for every x, y in X the triplet $\left(f(x), f(y), f\left(x_{T} y\right)\right)$ satisfies the condition in this case it is said that the function f E-standardise the struetrure (X, T) in the structure (I, \leq, \perp).

For example,if f is the Smarandache function $S: \mathbb{N}^{*} \longrightarrow \mathbb{N}$, C SCn is the smallest integer such that (SCnJ)! is divisible by n) then we get the following Σ-stadardisations:
a) $S \Sigma_{1}-s t a n d a r d i s e \quad\left(N^{*},.\right)$ in $\left(N^{*}, \leq,+\right)$ because we have

$$
\Sigma_{1}: S(a \cdot b) \leq S(a)+S(b)
$$

bl but S verifie aiso the relation

$$
\Sigma_{2} ; \max (S(a), S(b)) \leq S(a \cdot b) \leq S(a) . S(b)
$$

$50 \mathrm{~S} \Sigma_{2}-5 t a n d a r d i s e$ the structure $\left(\mathbb{N}^{*}, \ldots\right)$ in $\left.C \mathbb{N}^{*}, \leq,.\right)$
2. Smarandache functions of first kind. The Smarandache function S is defined by means of the following functions S_{p}; for every prime number p let $S_{p}: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ having the property that $\left(S_{p}(n)\right)$ is divisible by p^{n} and is the smallest positive integer with this property. Using the notion of standardising funetions in this section we give some generalisasion of S_{p}.
2. 1. Definition. For every $n \in \mathbb{N}^{*}$ the relation $r_{n} \in \mathbb{N}^{*} \times \mathbb{N}^{*}$ is defined as follows: i) if $n=u^{2}(u=1$ or $u=p$ number prime,ieN() and $a, b \in \mathbb{N}^{*}$ then $\quad a r_{n} b \quad$ if and only ifitexists $k \in \mathbb{N}^{*}$ such that $k!=M u^{i a}, k!=M u^{i b}$ and k is the smallest positive integer with this property.

$$
\text { ii) if } \begin{aligned}
n & =P_{2}^{i} \cdot P_{2}^{i} \cdot \cdots \cdot P^{i} \cdot \text { then } \\
r_{n} & =r P_{1}^{i} \wedge r_{P_{2}^{i}}^{i} \wedge \cdot
\end{aligned}
$$

2.2. Definition. For each $n \in \mathbb{N}^{*}$ the Smarandachefunction of first kind is the numerical function $S_{n}: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ defined as fallows
i) if $n=u^{2}\left(u=1\right.$ or $u=p$ number prime \quad then $S_{n}(a)=k$, k being the smallest positive integer with the property that $k!=M u^{i a}$

$$
\text { il if } n=P_{1}^{i} \cdot P_{2}^{i} \cdot \cdots P_{S}^{i}, \quad \text { then } S_{n}(a)=\max _{1}^{2}\left(S_{p}(a)\right\}
$$

Let us observe that:
a) the functions S_{n} are standardising functions corresponding to the equivalence relations r_{n} and for $n=1$ we get $\dot{x}_{r}=N$ for every $x \in \mathbb{N}^{*}$ and $S_{i}(n)=1$ for every n. b) if $n=p$ then S_{n} is the function S_{p} defined by Smarardache. c) the functions S_{n} are increasing and so, are of the same monotonicity in the sense given in the above section.
2. 3. Theorem. The functions S_{n}, for $n \in \mathbb{N}^{*}, \Sigma_{1}-s t a n d a r d i s e\left(\mathbb{N}^{*}\right.$, +) in $\left(\mathbb{N}^{*}, \leq,+\right)$ by Σ_{i} max\{ $\left.S_{n}(a), S_{n}(b)\right\} \leq S_{n}(a+b) \leq S_{n}(a)+S_{n}(b)$ for every $a, b \in \mathbb{N}^{*}$ and $\Sigma_{2}-s t a n d a r d i s e\left(\mathbb{N}^{*},+\right)$ in $\left(\mathbb{N}^{*}, \leq,.\right)$ by $\Sigma_{2}: \quad \max \left(S_{n}(a), S_{n}(b) \leq S_{n}(a+b) \leq S_{n}(a) \cdot S_{n}(b)\right.$, for every $a, b \in \mathbb{N}^{*}$ Proof. let, for instance, P be a prime number, $n=p^{i}, i \in \mathbb{N}^{*}$ and $a^{4}=S_{p^{i}}(a), b=S_{p i}(b), k=S_{p^{i}}(a+b)$. Then by the definition of S_{n} (Definition 2.2.) the numbers a^{*}, b,k are the smallest porifive integers such that $a^{*}!=M p^{i a}, b i=M p^{i b}$ and $k!=M p^{i(a+b)}$. Because $k!=M p^{i 2}=M p^{i b}$ we get $a \leq k$ and $b \leq k$, so max $a^{*}, b \leq k$ That is the first inequalities in Σ_{1} and Σ_{2} holds. Now, $\left(a^{*}+b^{*}\right)!=a^{*}!\left(a^{*}+1\right) . \quad .\left(a^{*}+b^{*}\right)=M a^{*}!b^{*}!=M p^{i(a+b)}$ and
so $k \leq a * b$ which implies that Σ_{1} is valide.
If $n=p_{1}^{1} \cdot p_{2}^{2}$. . . p_{z}^{\prime}, from the first case we have $\Sigma_{1}: \quad \max \left\{\mathbf{S}_{j}(a), S_{p_{j}^{i}}(b)\right\} \leq \underset{p_{j}^{i}}{S_{j}}(a+b) \leq \underset{p_{j}^{i}}{S_{j}}(a)+\underset{p_{j}^{i}}{S_{j}}(b), j=\bar{i}, \overline{8}$
in consequence

$\max _{i}\left\{\mathrm{~S}_{\mathrm{p}_{j}^{i}}(\mathrm{~b})\right\} \quad, j=\overline{1}, \bar{s} \quad . \quad$ That is

$$
\max \left\{s_{n}(a), s_{n}(b)\right\} \leq s_{n}(a+b) \leq s_{n}(a)+s_{n}(b)
$$

For the proof of the second part in Σ_{z} let us notice that $(a+b)!\leq(a b)!\Leftrightarrow a+b \leq a b \quad a>1$ and $b>1$ and that ours inequality is satisfied for $n=1$ because $s_{1}(a+b)=S_{1}(a)=$ $=S_{1}(b)=1$.

Let now $n>1$. It results that for $a_{i}^{*}=s_{n}(a)$ we have $a^{*}>1$. Indeed, if $n=p_{1}^{i} p_{2}^{2}$. . . p_{5}^{3} then $a^{*}=1$ if and only if $s_{n}(a)=$ $=\max \left\{S_{p_{j}^{\prime}}(a)\right\}=1 \quad$ which implies that $p_{1}=p_{2}=\ldots .=p_{z}=1$, so $n=1$. It results that for every $n>1$ we have $s_{n}(a)=a^{*}>1$ and $S_{n}(b)=b^{*}>1$.Then $\left(a^{*}+b^{*}\right)!\leq\left(a^{*} \cdot b^{*}\right)!$ we obtain $S_{n}(a+b) \leq S_{n}(a)+S_{n}(b) \leq S_{n}(a) . S_{n}(b)$ from $n>1$.
3. Smarandache functions of the second $k i n d$. For every $n e \mathbb{N}$,let S_{n} by the Smarandache function of the first kind defined above. 3.1. Definition. The Smarandache functions of the second kind are the functions $s^{k}: N^{*} \longrightarrow \mathbb{N}^{*}$ defined by $s^{k}(n)=s_{n}(k)$, for $k \in \mathbb{N}^{*}$. We observe that for $k=1$ the function s^{k} is the Snarandache function s defined in [1] ,with the modify $s(1)=1$. Indeed for.

D 1

$$
\left.S^{1}(n)=S_{n}(1)=\max _{j}\left\{S_{p_{j}^{j}}(1)\right\}=\max _{j}\left\{S_{p} \sum_{j} i_{j}\right)\right\}=S(n)
$$

3. 2. Theorom The Smarandache functions of the second kind $\Sigma_{3}-s t a n-$ dardise $\left(\mathbb{N}^{*},.\right)$ in $\left(\mathbb{N}^{*}, \leq,+\right)$ by
$\Sigma_{3}: \max \left\{s^{k}(a), s^{k}(b)\right\} \leq s^{k}(a \cdot b) \leq s^{k}(a)+s^{k}(b)$, for every $a, b \in \mathbb{N}^{*}$ and $\Sigma_{4}-s$ tandardise $\left(\mathbb{N}^{*},.\right)$ in $\left(\mathbb{N}^{*}, \leq,.\right)$ by $\Sigma_{4}: \quad \max \left\{s^{k}(a), s^{k}(b)\right\} \leq s^{k}(a \cdot b) \leq s^{k}(a) \cdot s^{k}(b)$ for every $a, b \in \mathbb{N}^{*}$ Proof. The equivalence relation corresponding to s^{k} is r^{k}, defined by $a r^{k} b$ if and only if there exists $a \in \mathbb{N}^{*}$ such that $a^{*} 1=M a^{*}$, $a^{*}:=M b^{k}$ and a^{*} is the snallest integer with this property. That is, the functions s^{k} are standardising functions attached to the equivalence relations r^{k}.

This functions are not of the some monotonicity because, for example, $s^{2}(a) \leq s^{2}(b) \leftrightarrow s\left(a^{2}\right) \leq s\left(b^{2}\right)$ and from these inequalities $s^{1}(a) \leq s^{1}(b)$ does not result.

Now for every $a, b \in \mathbb{N}^{*}$ let $s^{k}(a)=a^{*}, s^{k}(b)=b^{*}, s^{k}(a . b)=s$. Then a^{*}, b^{*}, s are respectively these smallest positive integers such that $a^{*}!=M a^{k}, b^{*}!=M b^{*}, s!=M\left(a^{k} b^{k}\right)$ and so si $=M a^{k}=$ $=M b^{*}$, that is, $a^{*} \leq s$ and $b^{*} \leq s$, which implies that max $\left\{a^{*}, b^{*}\right\} \leq s$

$$
\text { or } \quad \max \left\{s^{k}(a), s^{k}(b)\right\} \leq s^{k}(a . b)
$$

Because of the fact that $\left(a^{*}+b^{*}\right)!=M\left(a^{*}!b^{*}!\right)=M\left(a^{k} b^{k}\right)$, it results that $s \leq a^{*}+b^{*}, 80$

$$
\begin{equation*}
s^{k}(a \cdot b) \leq s^{k}(a)+s^{k}(b) \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2) it results that

$$
\begin{equation*}
\max \left\{s^{k}(a), s^{k}(b)\right\} \leq s^{k}(a)+s^{k}(b) \tag{3.3}
\end{equation*}
$$

Which is the relation Σ_{3}.
From $\left(a^{*} b^{*}\right)!=M\left(a^{*}!\cdot b^{*}!\right)$ it results that $s^{k}(a . b) \leq s^{k}(a) \cdot s^{k}(b)$ and thus the relation Σ_{4}.
4. The Smarandache functions of the third kind.

We consider two arbitrary sequances
(a) $1=a_{1}, a_{2}, \ldots \ldots a_{n}, \ldots$.
(b) $1=b_{1}, b_{2}, \ldots \ldots b_{n} \ldots$
with the properties that $a_{k n}=a_{k} \cdot a_{n}, b_{k n}=b_{k} \cdot b_{n}$. Obviously, there are infinitely many such sequences; because chosing an arbitrary value for a_{z}, the next terms in the net can be easily determined by the imposed condition.

Let now the function $f_{a}^{b}: \mathbb{N}^{*} \longrightarrow \mathbb{N}^{*}$ defined by $f_{a}^{b}(n)=s_{a}\left(b_{n}\right)$, $s_{a_{n}}$ is the smarandache function of the first kind. Then it is easill to see that :
(i) for $a_{n}=1$ and $b_{n}=n, n \in \mathbb{N}^{*}$ it results that $f_{a}^{b}=s_{1}$
(ii) for $a_{n}=n$ and $b_{n}=1, n \in \mathbb{N}^{*}$ it results that $f_{a}^{b}=s^{1}$
4.1. Definition. The smarandache functions of the third kind are the functions $s_{a}^{b}=f_{a}^{b}$ in the case that the sequances (a) and (b) are different from those concerned in the situation (i) and (ii) from above.
4.2. Theorem The functions $f_{a}^{b} \quad \Sigma_{s}$-standardise ($\left.\mathbb{N}^{*},.\right)$ in $\left(\mathbb{N}^{*}, \leq,+, \cdot\right)$ by
$\Sigma_{s}: \quad \max \left\{f_{a}^{b}(k), f_{a}^{b}(n)\right\} \leq f_{a}^{b}(k \cdot n) \leq b_{n} \cdot f_{a}^{b}(k)+b_{k} f_{a}^{b}(n)$
Proof. Let $f_{a}^{b}(k)=s_{a_{k}}\left(b_{k}\right)=k, f_{a}^{b}(n)=s_{a}\left(b_{n}\right)=n \quad$ and $f_{a}^{b}(k n)=$
$=S_{a_{k n}}\left(b_{k n}\right)=t$. Then k^{*}, n and t are the smallest positive integers such that $k^{*}!=M a_{k}^{b_{k}}, \quad D^{*}!=M a_{n}^{b_{n}}$ and $\quad t!=M a_{k n} b_{k n}=$
$=M\left(a_{k} \cdot a_{n}\right)^{b_{k} b_{n}} \quad$ of course,

$$
\begin{equation*}
\max \left\{k^{*}, n^{*}\right\} \leq t \tag{4.1}
\end{equation*}
$$

Now, because $\left(b_{k} \cdot n^{*}\right)!=M\left(a^{*} \mid\right)^{b_{k}}, \quad\left(b_{n} \cdot k^{*}\right) \mid=M\left(k^{*} \mid\right)^{b_{n}}$ and

$$
\left(b_{k} n^{*}+b_{n} k^{*}\right)!=M\left[\left(b_{k} n^{*}\right)!\cdot\left(b_{n} k^{*}\right)!\right]=M\left[\left(n^{*}!\right)^{b_{k}} \cdot\left(k^{*}!\right)^{b_{n}}\right]=
$$

$=M\left[\left(a_{n}^{b_{n}}\right)^{b_{k}} \cdot\left(a_{k}^{b_{k}}\right)^{b_{n}}\right]=M\left[\left(a_{k} \cdot a_{n}\right)^{b_{k} b_{n}}\right] \quad$ it results that $t \leq b_{n} k^{*}+b_{k} n^{*}$
From (4.1) and (4.2) we obtain

$$
\begin{equation*}
\max \left\{k^{*}, n^{*}\right\} \leq t \leq b_{n} k^{*}+b_{k} n^{*} \tag{4.3}
\end{equation*}
$$

From (4.3) we get Σ_{j}, so the Smarandache functions of the third kind satisfy
$\Sigma_{a}: \quad \max \left\{s_{a}^{b}(k), s_{a}^{b}(n)\right\} \leq s_{a}^{b}(k n) \leq b_{n} s_{a}^{b}(k)+b_{k} s_{a}^{b}(n)$, for every $k, n \in \mathbb{N}^{*}$ 4. 3. Example. Let the sequances (a) and (b) defined by $a_{n}=b_{n}=n$ $n \in N^{*}$.
The corresponding Smarandache function of the third kind is

$$
\begin{gathered}
s_{a}^{a}: \mathbb{N} \longrightarrow \mathbb{N}^{*}, \quad s_{a}^{a}(n)=s_{n}(n) \quad \text { and } \quad \sum_{o} \text { becomes } \\
\max \left\{S_{k}(k), s_{n}(n)\right\} \leq s_{k n}(k n) \leq n s_{k}(k)+k s_{n}(n), \text { for every } k, n \in \mathbb{N}^{*}
\end{gathered}
$$

This relation $1 s$ equivalent with the following relation written by wens with the Smarandache function:

```
max {s(k}\mp@subsup{k}{}{k}),s(\mp@subsup{n}{}{n})}\leqs[(kn)\mp@code{kn}]\leqn.s(\mp@subsup{k}{}{k})+k.s(\mp@subsup{n}{}{n})
```


References

[1] F.Smarandache, A Function in the Number Theory, An. Univ. Timisoara,seria st. mat Vol. XVIII,fasc.1,pp.79-88.1980. 8marandache Function-Journal-Vol.1 No.1,December 1990.

THE SOLUTION OF THE DIOPHANTINE EQUATION $\sigma_{\eta}(n)=n(\Omega)$

by Pål Gronảs

This problem is closely connected to Problem 29916 in the first issue of the "Smarandache Function Journal" (see page 47 in (11). The question is: "Are there an infinity of nonprimes n such that $\sigma_{n}(n)=n$?". My calculations will show that the answer is negative.

Let us move on to the first step in deriving the solution of (Ω). As the wording of Problem 29916 indicates. (Ω) is satisfied if n is a prime. This is not the case for $n=1$ because $\sigma_{\eta}(1)=0$.

Suppose $\prod_{i=1}^{k} p_{:}^{r_{:}^{r}}$ is the prime factorization of a composite number $n \geq 4$, where p_{1}, \ldots, p_{k} are distinct primes, $r_{i} \in \mathrm{~N}$ and $p_{1} r_{1} \geq p_{i} r_{i}$ for all $i \in\{1, \ldots, k\}$ and $p_{i}<p_{i+1}$ for all $i \in\{2, \ldots, k-1\}$ whenever $k \geq 3$.

First of all we consider the case where $k=1$ and $r_{1} \geq 2$. Using the fact that $\eta\left(p_{1}^{s_{1}}\right) \leq p_{1} s_{1}$ we see that $p_{1}^{r_{1}}=n=\sigma_{n}(n)=\sigma_{n}\left(p_{1}^{r_{1}}\right)=\sum_{s_{1}=0}^{r_{1}} \eta\left(p_{1}^{s_{1}}\right) \leq \sum_{s_{1}=0}^{r_{1}} p_{1} s_{1}=\frac{p_{1} r_{1}\left(r_{1}+1\right)}{2}$. Therefore $2 p_{1}^{r_{1}-1} \leq r_{1}\left(r_{1}+1\right)\left(\Omega_{1}\right)$ for some $r_{1} \geq 2$. For $p_{1} \geq 5$ this inequality $\left(\Omega_{1}\right)$ is not satisfied for any $r_{1} \geq 2$. So $p_{1}<5$, which means that $p_{1} \in\{2,3\}$. By the help of $\left(\Omega_{1}\right)$ we can find a supremum for r_{1} depending on the value of p_{1}. For $p_{1}=2$ the actual candidates for r_{1} are 2 , 3,4 and for $p_{1}=3$ the only possible choice is $r_{1}=2$. Hence there are maximum 4 possible 4 values, we get this case, namely $n=4,8,9$ and 16 . Calculating $\sigma_{\eta}(n)$ for each of these 4 values, we get $\sigma_{n}(4)=6, \sigma_{n}(8)=10, \sigma_{\eta}(9)=9$ and $\sigma_{n}(16)=16$. Consequently the only solutions of (Ω) are $n=9$ and $n=16$.

Next we look at the case when $k \geq 2$:

$$
n=\sigma_{\eta}(n)
$$

Substituting n with it's prime factorization we get

$$
\begin{aligned}
\prod_{i=1}^{k} p_{i}^{r_{i}} & =\sigma_{\eta}\left(\prod_{i=1}^{k} p_{i}^{r_{i}}\right)=\sum_{d_{i \rightarrow n}} \eta(d)=\sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \eta\left(\prod_{i=1}^{k} p_{i}^{s_{i}}\right) \\
& =\sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max \left\{\eta\left(p_{1}^{s_{1}}\right), \ldots, \eta\left(p_{k}^{s_{k}}\right)\right\} \\
& \leq \sum_{s_{i}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max \left\{p_{1} s_{1}, \ldots, p_{k} s_{k}\right\} \text { since } \eta\left(p_{i}^{s_{i}}\right) \leq p_{i} s_{i} \\
& <\sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max \left\{p_{1} r_{1}, \ldots, p_{k} r_{k}\right\} \text { because } s_{i} \leq r_{i} \\
& =\sum_{s_{1}=0}^{r_{i}} \cdots \sum_{s_{k}=0}^{r_{k}} p_{1} r_{1} \quad\left(p_{1} r_{1} \geq p_{i} r_{i} \text { for } i \geq 2\right) \\
& \leq p_{1} r_{1} \prod_{i=1}^{k}\left(r_{i}+1\right),
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\prod_{i=2}^{k} \frac{p_{i}^{r_{i}}}{r_{i}-1}<\frac{p_{1} r_{i}\left(r_{1}-1\right)}{p_{1}^{r_{i}}}=\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \tag{2}
\end{equation*}
$$

This inequality motivates a closer study of the functions $f(x)=\frac{a^{z}}{x+1}$ and $g(x)=\frac{x(x-1)}{j^{z-1}}$ for $x \in(1, x)$. where a and b are real constants ≥ 2. The derivatives of these two functions are $f^{\prime}(x)=\frac{x^{x}}{(x+1)^{2}}[(x+1) \ln a-1]$ and $g^{\prime}(x)=\frac{(-\ln b) x^{2}+(2-\ln b) x+1}{j^{x-1}}$. Hence $f^{\prime}(x)>0$ for $x \geq 1$ since $(x+1) \ln a-1 \geq(1+1) \ln 2-1=2 \ln 2-1>0$. So f is increasing on $(1, x)$. Moreover $g(x)$ reaches its absolute maximum value for $x=\max \left\{1, \frac{2-\ln b+\sqrt{(\ln b)^{2}-4}}{2 \ln b}=\hat{x}\right\}$. Now $\sqrt{(\ln b)^{2}+4}<\ln b+2$ for $b \geq 2$, which implies that $\hat{x}<\frac{(2-\ln b)+(\ln b-2)}{2 \ln b}=\frac{2}{\ln b} \leq \frac{2}{\ln 2}<3$. Futhermore it is worth mentioning that $f(x) \rightarrow x$ and $g(x) \rightarrow 0$ as $x \rightarrow \infty$.

Applying this to our situation means that $\frac{p_{1}^{r_{i}}}{r_{1}+1}(i \geq 2)$ is strictly increasing from $\frac{p_{2}}{2}$ to x. Besides $\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}^{2-1}}} \leq \max \left\{2, \frac{6}{p_{1}}, \frac{12}{p_{1}^{2}}\right\}=\max \left\{2 \cdot \frac{6}{p_{1}}\right\} \leq 3$ because $\frac{8}{p_{1}} \geq \frac{12}{p_{1}^{2}}$ whenever $p_{1} \geq 2$. Combining this knowledge with $\left(\Omega_{2}\right)$ we get that $\prod_{i=2}^{k} \frac{p_{i}}{2} \leq \prod_{i=2}^{k} \frac{p_{i}^{r_{i}}}{r_{1}+1}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \leq \frac{r_{1}\left(r_{1}+1\right)}{2_{1}-1} \leq$ $3\left(\Omega_{3}\right)$ for all $r_{1} \in N$. In other words, $\prod_{i=2}^{k} \frac{p_{i}}{2}<3$. Now $\prod_{i=2}^{4} \frac{p_{i}}{2} \geq \frac{2}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}=\frac{15}{4}>3$, which implies that $k \leq 3$.

Let us assume $k=2$. Then $\left(\Omega_{2}\right)$ and $\left(\Omega_{3}\right)$ state that $\frac{p_{2}^{2}}{r_{2}+1}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}^{1-1}}}$ and $\frac{p_{2}}{2}<3$, i.e. $p_{2}<6$. Next we suppose $r_{2} \geq 3$. It is obvious that $p_{1} p_{2} \geq 2 \cdot 3=6$, which is equivalent to $p_{2} \geq \frac{6}{p_{1}}$. Using this fact we get $\frac{p_{2}^{3}}{4} \leq \frac{p_{2}^{\prime 2}}{r_{2}+1}<\frac{r_{2}\left(r_{2}+1\right)}{p_{1}^{r_{1}^{1-1}}} \leq \max \left\{2, \frac{6}{p_{1}}\right\} \leq \max \left\{2, p_{2}\right\}=p_{2}$, so $p_{2}^{2}<4$. Accordingly $p_{2}<2$, a contradiction which implies that $r_{2} \leq 2$. Hence $p_{2} \in\{2,3,5\}$ and $r_{2} \in\{1,2\}$.

Futhermore $1 \leq \frac{p_{2}}{2} \leq \frac{p_{2}^{r_{2}}}{r_{2}+1}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \leq \frac{r_{1}\left(r_{1}+1\right)}{2^{r_{1}-1}}$, which implies that $r_{1} \leq 6$. Consequently, by fixing the values of p_{2} and r_{2}, the inequalities $\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}}>\frac{p_{2}^{r_{2}}}{r_{2}+1}$ and $p_{1} r_{1} \geq p_{2} r_{2}$ give us enough information to determine a supremum (less than 7) for r_{1} for each value of p_{1}.

This is just what we have done, and the result is as follows:

p_{2}	r_{2}	p_{1}	r_{1}	$n=p_{1}^{r_{1}} p_{2}^{r_{2}}$	$\sigma_{n}(n)$	IF $\sigma_{n}(n)=n$ THEN
2	1	3	$1 \leq r_{1} \leq 3$	$2 \cdot 3^{r_{1}}$	$2+3 r_{1}\left(r_{1}+1\right)$	$3 \mid 2$
2	1	5	$1 \leq r_{1} \leq 2$	$2 \cdot 5^{r_{1}}$	$2+5 r_{1}\left(r_{1}+1\right)$	$5 \mid 2$
2	1	$p_{1} \geq 7$	1	$2 p_{1}$	$2+2 p_{1}$	$0=2$
2	2	3	2	36	34	$34=36$
2	2	$p_{1} \geq 5$	1	$4 p_{1}$	$3 p_{1}+6$	$p_{1}=6$
3	1	2	$2 \leq r_{1} \leq 5$	$3 \cdot 2^{r_{1}}$	$2 r_{1}^{2}-2 r_{1}+12$	$r_{1}=3$
3	1	$p_{1} \geq 5$	1	$3 p_{1}$	$2 p_{1}+3$	$p_{1}=3$
5	1	2	3	40	30	$30=40$

By looking at the rightmost column in the table above, we see that there are only contradictions except in the case where $n=3 \cdot 2^{r_{1}}$ and $r_{1}=3$. So $n=3 \cdot 2^{3}=24$ and $\sigma_{n}(24)=24$. In other words, $n=24$ is the only solution of (Ω) when $k=2$.

Finally, suppose $k=3$. Then we know that $\frac{p_{2}}{2} \cdot \frac{p_{2}}{2}<3$, i.e. $p_{2} p_{3}<12$. Hence $p_{2}=2$ and $p_{3} \geq 3$. Therefore $\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \leq \frac{r_{1}\left(r_{1}+1\right)}{3_{1}^{r}+1} \leq 2\left(\Omega_{4}\right)$ and by applying $\left(\Omega_{3}\right)$ we find that $\prod_{i=2}^{3} \frac{2 i}{2}=\frac{23}{2}<2$, giving $p_{3}=3$.

Combining the two inequalities $\left(\Omega_{2}\right)$ and $\left(\Omega_{4}\right)$ we get that $\frac{2^{r}}{r_{2}+1} \cdot \frac{3^{r}}{r_{4}+1}<2$. Knowing that the left side of this inequality is a product of two strictly increasing functions on ($1, \infty$), we see that the only possible choices for r_{2} and r_{3} are $r_{2}=r_{3}=1$. Inserting these values in $\left(\Omega_{2}\right)$, we get $\frac{2^{1}}{1+1} \cdot \frac{3^{2}}{1+1}=\frac{3}{2}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{1+2}} \leq \frac{r_{1}\left(r_{1}+1\right)}{5_{1}^{2+1}}$. This implies that $r_{1}=1$. Accordingly (Ω) is satisfied only if $n=2 \cdot 3 \cdot p_{1}=6 p_{1}$:

$$
\begin{aligned}
6 p_{1} & =\sigma_{\eta}\left(6 p_{1}\right) \\
& =\eta(1)+\eta(2)+\eta(3)+\eta(6)+\sum_{i=0}^{1} \sum_{j=0}^{1} \eta\left(2^{i} 3^{j} p_{1}\right) \\
& =0+2+3+3+\sum_{i=0}^{1} \sum_{j=0}^{1} \max \left\{\eta\left(p_{1}\right), \eta\left(2^{i} 3^{j}\right)\right\} \\
& =8+\sum_{i=0}^{1} \sum_{j=0}^{1} \max \left\{p_{1}, \eta\left(2^{i} 3^{j}\right)\right\} \\
& =8+4 p_{1} \text { because } \eta\left(2^{i} 3^{j}\right) \leq 3<p_{1} \text { for all } i, j \in\{0,1\} \\
& \Downarrow \\
p_{1} & =4
\end{aligned}
$$

which contradicts the fact that $p_{1} \geq 5$. Therefore (Ω) has no solution for $k=3$.
Conclusion: $\sigma_{\eta}(n)=n$ if and only if n is a prime, $n=9, n=16$ or $n=24$.
REMARK: A consequence of this work is the solution of the inequality $\sigma_{\eta}(n)>n(*)$. This solution is based on the fact that (*) implies $\left(\Omega_{2}\right)$.

So $\sigma_{\eta}(n)>n$ if and only if $n=8,12,18,20$ or $n=2 p$ where p is a prime. Hence $\sigma_{n}(n) \leq n+4$ for all $n \in \mathbf{N}$.

Moreover, since we have solved the inequality $\sigma_{\eta}(n) \geq n$, we also have the solution of $\sigma_{7}(n)<n$.

References

[1] Smarandache Function Journal, Number Theory Publishing Co., Phoenix, New York, Lyon, Vol. 1, No. 1, 1990.

Pảl Gronảs, Enges gate 12, N-7500 Stjordal, NORWAY.

```
E. Radescu , N. Radescu , C. Dumitrescu
```

It is said that for every numerical function f it can be attashed the sumatory function :

$$
\begin{equation*}
E(n)=\sum_{d / n} f(d) \tag{1}
\end{equation*}
$$

The function f is expressed as :

$$
\begin{equation*}
f(n)=\sum_{v=n} \mu(u) \cdot F_{i}(v) \tag{2}
\end{equation*}
$$

Where μ is the möbius function $(\mu(1)=1, \mu(n)=0$ if n is divisible by the square of a prime number, $\mu(n)=(-1)^{k}$ if a is the product of k different prime numbers)

If f is the smarandache function and $n=p^{\alpha}$ then :

$$
F_{s}\left(p^{\alpha}\right)=\sum_{j=1}^{a} S\left(p^{j}\right)
$$

In [2] it is proved that

$$
\begin{equation*}
\left.S\left(p^{j}\right)=p-1\right) \cdot j+\alpha_{(p, 1}(j) \tag{3}
\end{equation*}
$$

Where $\alpha_{f p}(j)$ is the sum of the digits of the integer $j, w r i t t e n$ in the generalised scale

$$
[p]=a_{1}(p), a_{2}(p), \cdots, a_{k}(p), \cdots
$$

with $a_{i}(p)=\left(p^{n}-1\right) /(p-1)$
So

$$
\begin{equation*}
E_{5}\left(p^{a}\right)=\sum_{j=1}^{a} s\left(p^{i}\right)=(p-1) \frac{a(a+1)}{2}+\sum_{j=1}^{a} \alpha_{i p:}(j) \tag{4}
\end{equation*}
$$

Using the expresion of a given by (3) it results

$$
(a+1)\left(s\left(p^{a}\right)-a_{i p i}(a)\right)=2\left(F_{s}\left(p^{a}\right)-\sum_{j=1}^{\alpha} a_{i p 1}(j)\right)
$$

In the following we give an algorithm to calculate the sum in the right hand of (4). FOr this, let $a_{(p)}=\overline{k_{s} \cdot k_{s-1} \cdot \cdots \cdot k_{1}}$ the expresion of a in the scale $[p]$ and $j_{\{p l}=\overline{k_{s_{j}} \cdot k_{s_{i}-1} \cdot \ldots . k_{1}}$. We shall say that k_{i} are the digits of order i, for $j=1,2, \ldots, \ldots$. To calculate the sum of all the digits of order i, let $\mu=\alpha-a_{i}(p)+1$. Now we consider two cases :
(i) if $k_{i}=0$, let :

$$
z_{i}(\alpha)=\left(\overline{k_{j} k_{s-i} \cdots k_{i-1}}\right)_{i=a(p)} \quad \text {, the equality } u=a_{i}(p) \text { de- }
$$

nothig that for the number writen between parantheses, the classe of units is a. (p).

Then $z_{i}(\alpha)$ is the number of all zeros of order i for the integers $j \leq \alpha$ and $a_{i}=\nu_{i}(\alpha)-z_{i}(\alpha)$ is the number of the non-null digits.
(ii) if $k_{6}=0$, let β the greatest number,less then $a, h a v i n g$ a non-null digit of order i.Then β is of the form :

$$
\beta_{(p)}=\overline{k_{i} k_{i-1} \ldots k_{i-2}\left(k_{i-1}-1\right) p 00 \ldots 0} \text { and of course } s_{i}(\alpha)=
$$

$s_{i}(\beta)$. It results that there exist $\alpha_{i}(\beta)$ non-null digits of order i.
Let $A_{i}, B_{i}, I_{i}, D_{i}$ given by equalities :

$$
\begin{aligned}
& a_{i}=A_{i}\left((p-1) a_{i}(p)+1\right)+r_{i}=A_{i}\left(a_{i+1}(p)-a_{i}(p)\right)+r_{i} \\
& r_{i}=B_{i} a_{i}(p)+p_{i}
\end{aligned}
$$

Then

$$
s_{i}(\alpha)=A_{i} a_{i}(p) \frac{p(p-1)}{2}+A_{i} p+a_{i}(p) \frac{\left.B_{i}+1\right)}{2}+p_{i}\left(B_{i}+1\right)
$$

and

$$
\sum_{i=1}^{a} o_{i p 1}(j)=\sum_{i=1}^{\alpha} \delta_{i}(a)=\frac{p(p-1)}{2} \sum_{i \geq_{1}} A_{i} a_{i}(p)+p \sum_{i \geq_{1}} A_{i}+
$$

$\frac{1}{2} \sum_{i \geq_{1}} a_{i}(p) B_{i}\left(B_{i}+1\right)+\sum_{i \geq_{1}} \rho_{i}\left(B_{i}+1\right)$
For example if $\alpha=149$ and $p=3$ it results :
[3] $1,4,13,40,121, \ldots$
$z_{: 31}=10202, \nu_{1}(\alpha)=(1020)_{u=a_{1}(3)}=48 \quad \alpha_{1}=\nu_{1}(\alpha)-z_{1}(a)=101$
For $\beta_{\text {© }}=10130=146$ it results $\nu_{2}(\beta)=143, z_{z}(\beta)=$
$(101)_{u=a_{2}(3)}=u_{3}+u=3 u_{2}+1+u=3(3 u+1)+1+u=44$,
$\alpha_{2}=99, \nu_{3}(\alpha)=137, z_{3}(\alpha)=(10)_{-=\alpha_{3}(3)}=40 \cdot \alpha_{3}=97$
For $\beta_{31}=3000=120$ it results $\nu_{4}(\beta)=81, z_{4}(\beta)=0, \alpha_{4}=108$ $\nu_{5}(\alpha)=29, z_{5}(\alpha)=0, z_{5}=29$, and
$A_{1}=\left[\frac{a_{1}}{a_{2}-a_{1}}\right]=33, r_{1}=2, B_{1}=\left[\frac{2}{a_{2}}\right], \rho_{1}=0, s_{1}=201$
Analogously $s_{2}=165, s_{3}=145, s_{1}=123$ and $s_{5}=129$, so $\sum_{i=1}^{140} \lambda_{63}(i)=633, F_{i}\left(3^{140}\right)=22983$.

Now let us consider $n=p_{1} \cdot p_{z}$... . p_{k}, with $p_{1}<p_{z}<\ldots<p_{k}$ prime numbers. of course, $s(n)=p_{k}$ and from $E_{\mathrm{i}}(I)=S(I)=0$
$F_{s}\left(p_{1}\right)=S(1)+S\left(p_{1}\right)=p_{1}$
$F_{s}\left(p_{1} \cdot p_{z}\right)=p_{1}+2 p_{z}=F\left(p_{1}\right)+2 p_{z}$
$F_{5}\left(p_{1} \cdot p_{2} \cdot p_{3}\right)=p_{1}+2 p_{2}+2^{2} p_{3}=F\left(p_{1} \cdot p_{2}\right)+2^{2} p_{3}$
it results :
$F_{z}\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)=F\left(p_{1} \cdot p_{2} \cdot \ldots p_{k-1}\right)+2^{k-1} p^{k}$
That is :
$E\left(P_{1} \cdot P_{2} \cdot \cdots \cdot P_{k}\right)=\sum_{t=1}^{k} 2^{i-1} p_{t}$
The ecualizy (2) becomes :

$$
P_{k}=s(n)=\sum_{v=n} \mu(n) E_{s}(v)=
$$

$\left.=E(n)-\sum_{i} E_{i} \frac{n}{P_{i}}\right)+\sum_{i, j} E\left(\frac{n}{p_{i} p_{j}}\right)+\ldots+\sum_{i=1}^{k} E\left(p_{i}\right)$
and became $E\left(p_{i}\right)=p_{i}$, it results:

$$
F\left(\frac{n}{p_{i}}\right)=E\left(p_{1} \cdot p_{2} \cdot \cdots \cdot p_{i-1} \cdot p_{i+1} \cdot \cdots \cdot p_{k}\right)=\sum_{i=1}^{i-1} 2^{j-1} p_{j}+\sum_{j=i+1}^{k} 2^{j-1} p_{j}=
$$

$$
=E\left(p_{1} \cdot \underline{D}_{z} \cdot \cdots \cdot p_{i-1}\right)+2^{i-1} E\left(p_{i-1} \cdot p_{i-2} \cdot \cdots \cdot p_{k}\right)
$$

Analogously,

$$
\begin{array}{r}
E\left(\frac{n}{p_{i} p_{j}}\right)=E\left(p_{i} \cdot p_{2} \cdot \ldots \cdot p_{i-1}^{;}\right)+2^{i-1} E\left(p_{i+1} \cdot p_{i-2} \cdot \ldots \cdot p_{j-1}\right)+ \\
\\
+2^{i-1} F\left(p_{j+1} \cdots p_{k}\right)
\end{array}
$$

Finaly, we point out as an open problem that, by the shapiro's theorem, if it exist a numerical function $g: N \rightarrow \mathbb{R}$ such that

$$
g(n)=\sum_{d / n} P(n) s\left(\frac{n}{d}\right)
$$

were P is a totaly multiplicative function and $P(1)=1$, then

$$
S(n)=\sum_{d n} \mu(d) P(d) \quad g\left(\frac{n}{d}\right)
$$

REFERENCES

1. M.Andrei, C.Dumitrescu,V.Seleacu, L. Tutescu, st. Zanfir, Remarks on the Smarandache Finction (Smarandache Function Journal, Vol.4, No. 1 (1994) to appear).
2. M.Ancrei, C.Dumitrescu, V.Seleacu, L.Tutescu, St. Zanfir La fonation de Smarandacte, une nouvelle fonction dars la theorie des ronores (Congres International Henri Poincaré, Nancy 14-18 May 1994).
3. W.Sierpinski Eiemeniary Iheory of Numbers
(Panstwowe, Widawnictwo Naukove, Harszawa, 1964).
4. F.Smarandache A Fination in the Numoer cheory (An. Univ. Timisoara Ser. St. Mat. V XXVIII, fasc. 1, (1980), 79-88).

Current address : University of Craiova, Department of Mathematics,Str. A.I.Cuza,Nr.13,Craiova (1100), Romania.

A proof of the non-existence of "Samma".

by På Grønås
Introduction: If $\prod_{i=1}^{k} p_{i}^{r i}$ is the prime factorization of the natural number $n \geq 2$, then it is easy to verify that

$$
S(n)=S\left(\prod_{i=1}^{k} p_{i}^{\pi_{i}}\right)=\max \left\{S\left(p_{i}^{\tau_{i}}\right)\right\}_{i=1}^{k}
$$

From this formula we see that it is essensial to determine $S\left(p^{r}\right)$, where p is a prime and r is a natural number.

Legendres formula states that

$$
\begin{equation*}
n!=\prod_{i=1}^{k} p_{i} \sum_{m=1}^{\infty}\left[\pi / p_{i}^{m}\right] . \tag{1}
\end{equation*}
$$

The definition of the Smarandache function tells us that $S\left(p^{r}\right)$ is the least natural number such that $p^{r} \mid\left(S\left(p^{r}\right)\right)$!. Combining this definition with (1), it is obvious that $S\left(p^{r}\right)$ must satisfy the following two inequalities:

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[\frac{S\left(p^{r}\right)-1}{p^{k}}\right]<r \leq \sum_{k=1}^{\infty}\left[\frac{S\left(p^{r}\right)}{p^{k}}\right] \tag{2}
\end{equation*}
$$

This formula (2) gives us a lower and an upper bound for $S\left(p^{\tau}\right)$, namely

$$
\begin{equation*}
(p-1) r+1 \leq S\left(p^{r}\right) \leq p r . \tag{3}
\end{equation*}
$$

It also implies that p divides $S\left(p^{r}\right)$, which means that

$$
S\left(p^{r}\right)=p(r-i) \text { for a particular } 0 \leq i \leq\left[\frac{r-1}{p}\right]
$$

"Samma": Let $T(n)=1-\log (S(n))+\sum_{i=2}^{n} \frac{1}{S(i)}$ for $n \geq 2$. I intend to prove that $\lim _{n \rightarrow \infty} T(n)=\infty$, i.e. "Samma" does not exists.

First of all we define the sequence $p_{1}=2, p_{2}=3, p_{3}=5$ and $p_{n}=$ the nth prime.

Next we consider the natural number p_{m}^{n}. Now (3) gives us that

$$
\begin{align*}
S\left(p_{i}^{k}\right) & \leq p_{i} k \quad \forall i \in\{1, \ldots, m\} \text { and } \forall k \in\{1, \ldots, n\} \\
& \Downarrow \\
\frac{1}{S\left(p_{i}^{k}\right)} & \geq \frac{1}{p_{i} k} \\
& \Downarrow \\
\sum_{i=1}^{m} \sum_{k=1}^{n} \frac{1}{S\left(p_{i}^{k}\right)} & \geq \sum_{i=1}^{m} \sum_{k=1}^{n} \frac{1}{p_{i} k}=\left(\sum_{i=1}^{m} \frac{1}{p_{i}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right) \\
& \Downarrow \tag{4}\\
\sum_{k=2}^{p_{m}^{n}} \frac{1}{S(k)} & \geq\left(\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right)
\end{align*}
$$

since $S(k)>0$ for all $k \geq 2, p_{a}^{b} \leq p_{m}^{n}$ whenever $a \leq m$ and $b \leq n$ and $p_{a}^{b}=p_{c}^{d}$ if and only if $a=c$ and $b=d$.

Furthermore $S\left(p_{m}^{n}\right) \leq p_{m} n$, which implies that $-\log S\left(p_{m}^{n}\right) \geq-\log \left(p_{m} n\right)$ because $\log x$ is a strictly increasing function in the intervall $[2, \infty)$. By adding this last inequality and (4), we get

$$
\begin{aligned}
T\left(p_{m}^{n}\right) & =1-\log \left(S\left(p_{m}^{n}\right)\right)+\sum_{i=2}^{p_{m}^{n}} \frac{1}{S(i)} \geq 1-\log \left(p_{m} n\right)+\left(\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1}{k}\right) \\
& \Downarrow \\
T\left(p_{m}^{p_{m}}\right) & \geq 1-\log \left(p_{m}^{2}\right)+\left(\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)\left(n=p_{m}\right) \\
& \Downarrow \\
T\left(p_{m}^{p_{m}}\right) & \geq 1+2\left(-\log p_{m}+\sum_{k=1}^{p_{m}} \frac{1}{k}\right)+\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right) \\
& \Downarrow \\
\lim _{m \rightarrow \infty} T\left(p_{m}^{p_{m}}\right) & \geq 1+2 \cdot \lim _{m \rightarrow \infty}\left(-\log p_{m}+\sum_{k=1}^{p_{m}} \frac{1}{k}\right)+\lim _{m \rightarrow \infty}\left[\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)\right] \\
& =1+2 \cdot \lim _{p_{m} \rightarrow \infty}\left(-\log p_{m}+\sum_{k=1}^{p_{m}} \frac{1}{k}\right)+\lim _{m \rightarrow \infty}\left[\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)\right] \\
& =1+2 \gamma+\lim _{m \rightarrow \infty}\left(-2+\sum_{k=1}^{m} \frac{1}{p_{k}}\right) \cdot \lim _{p_{m} \rightarrow \infty}\left(\sum_{k=1}^{p_{m}} \frac{1}{k}\right)(\gamma=\text { Euler's constant }) \\
& =\infty
\end{aligned}
$$

since both $\sum_{k=1}^{t} \frac{1}{k}$ and $\sum_{k=1}^{t} \frac{1}{p_{k}}$ diverges as $t \rightarrow \infty$. In other words, $\lim _{n \rightarrow \infty} T(n)=\infty$.
J. R. SUTTON
(16a Overland Road. Mumbles, SWANSEA SA3 4LP, UK)

Introduction

The Smarandache function is an integer function. S. of an integer variable, n. S is the smallest integer such that S! is divisible by n. If the prime factorisation of n is known

$$
\mathrm{n}=\prod_{m_{i}}{ }^{p_{i}}
$$

where the p_{i} are primes then it has been shown that

$$
S(n)=\operatorname{Max}\left(S\left(m_{i} p_{i}\right)\right)
$$

so a method of calculating S for prime powers will be useful in calculating $S(n)$.

The inverse function

It is easier to start with the inverse problem. For a given prime, p, and a given value of S, a multiple of p, what is the maximum power, m, of p which ls a divisor of S ! ? If we consider the case $p=2$ then all even numbers in the factorial contribute a factor of 2 . all multiples of 4 contribute another, all multiples of 8 yet another and so on.

$$
m=S \text { DIV2 + (S DIV2)DIV2 + ((S DIV2)DIV2)DIV2 + ... }
$$

In the general case

$$
m=S \text { DIVp + (S DIVp)DIVp + ((S DIVp)DIVp)DIVp + ... }
$$

The series terminates by reaching a term equal to zero. The Pascal program at the end of this paper contains a function invisp to calculate this function.

If we now look at the values of S for succesive powers of a prime, say $p=3$.
$\left.\begin{array}{lllllrrrrrrl}m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\ S(3 \wedge m) & * & 3 & 6 & 9 & 9 & 12 & 15 & 18 & 18 & 21 & 24\end{array}\right]$
where the asterisked values of m are those found by the inverse function, we can see that these latter determine the points after which S increases by p. In the Pascal program the procedure tabsmarpp fills an array with the values of S for successive powers of a prime.

The Pascal program

The program tests the procedure by accepting a prime input from the keyboard, calculating S for the first 1000 powers. reporting the time for this calculation and entering an endless loop of accepting a power value and reporting the corresponding S value as stored in the array.

The program was developed and tested with Acornsoft ISOPascal on a BBC Master. The function 'time' is an extension to standard Pascal which delivers the timelapse since last reset in centi-seconds. On a computer with a $65 C 12$ processor running at 2 MHz the 1000 S values are calculated in about 11 seconds, the exact time is slightly larger for small values of the prime.
program TestabSpp(input,output):
var t.p.x: integer;
Smarpp:array[1..1000] of integer:
function invSpp(prime,smar:integer):integer;
var m,x:integer:
begin
$m:=0$;
x:=smar;
repeat
$x:=x$ div prime;
$m:=m+x$;
until x<prime;
invSpp:=m;
end: \{invSpp\}
procedure tabsmarpp(prime,tabsize:integer);
var i.s.is:integer;
exit:boolean;
begin
exit:=false;
1:=1;
is:=1;
s:=prime;
repeat
repeat
Smarpp[1]:=s;
1: =1+1;
if i>tabsize then exit:=true; .
until (i>is) or exit:
s:=s+prime;
is:=invSpp(prime,s);
until exit:
end: \{tabsmarpp\}
begin
read(p):
$t:=t$ ime;
tabsmarpp (p,1000);
writeln((time-t)/100);
repeat
read(x);
writeln('Smarandache for ', p.' to power '. x^{\prime} ' is ', Smarpp[x]); until false;
end. \{testabspp\}

J. R. SUTTON

(16A Overland Road. Mumbles, SWANSEA SA3 4LP, UK)

Introduction

The usual way of calculating the Smarandache function $S(n)$ is to factorise n. calculate S for each of the prime powers in the factorisation and use the equation

$$
\left.S(n)=\operatorname{Max}\left(\operatorname{sim}_{i} p_{i}\right)\right\rangle
$$

This paper presents an alternative algorithm for use when S is to be calculated for ali integers up to n. The integers are synthesised by combining all the prime powers in the range up to n.

The Algorithm

The Pascal program at the end of this paper contains a procedure tabsmarand which fills a globally declared array, Smaran. With the values of S for the integers from 2 to the limit specified by a parameter. The calculation is carried out in four stages.

Powers of 2
The first stage calculates S for those powers of 2 that fall within the limit and stores them in the array Smaran at the subscript which corresponds to the value of that power of 2 . At the end of this stage the array contains S for:-

$$
2,4,8,16,32 \ldots
$$

interspersed with zeros for all the other entries.

General case

The next stage uses succesive primes from 3 upwards. For each prime the S values of the relevant powers of the prime, and also the values of the prime powers are calculated, and stored in the arrays Smarpp and prpwr, by the procedure tabsmarpp. This procedure is essentially the same as that in a previous paper except that:
a) the calculation stops when the last prime power exceeds the limit
and b) the prime powers are also calculated and stored.

Then for each non-zero entry in Smarand that entry is multiplied by successive powers of the prime and the S values calculated and stored in Smarand. Both of these loops terminate on reaching the limit value. Finally the S values for the prime powers are copied into Smarand. After the prime 3 the array contains:-

$$
2,3,4,0,3,0,4,6,0,0,4 \ldots
$$

This process is followed for each prime up to the square root of the limit. This general case could be continued up to the limit but it is more efficient to stop at the square root and treat the larger primes as seperate cases.

Largest primes
The largest primes, those greater than half the limit, contribute only themselves, $S(p r i m e)=p r i m e, ~ t o ~ t h e ~ a r r a y ~ o f ~ S m a r a n d a c h e ~ v a l u e s . ~$

Multiples of prime only
The intermediate case between the last two is for primes larger than the square root but smaller than half the ilmit. In this case no powers of the prime are needed. only multiples of those entries already in Smarand by the prime itself. The prime is then copied into the array.

The Pascal program

The main program calls tabsmarand to calculate S values then enters a loop in which two integers are input from the keyboard which specify a range of values for which the contents of the array are displayed for checking.

The program was developed and tested with Acornsoft ISO-Pascal on a BBC Master computer. The function time delivers the time lapse (in centiseconds) since last reset. On a computer with a 65Ci2 processor running at 2 MHz the following timings were obtained:-

limit	seconds
1000	6.56
2000	12.87
3000	19.19
4000	25.64
5000	31.80

In this range the times appear almost linear. It would be useful to have this confirmed or disproved on a larger, faster computer.

```
    program Testsmarand(input,output);
    const limit=5000;
    var count,st,fin:Integer;
    Smaran:array[1..5001] of integer:
    procedure tabsmarand(limit:integer);
    var count,t,i,s,is,pp,prime,pwcount,mcount,multiple: integer;
    exit: boolean:
    Prpwr:array[1..12] of integer:
    Smarpp:array[1..12] of integer;
    function max(x,y: integer):integer;
begin
    if x>y then max:=x else max:=y;
    end; {max}
    function invSpp(prime,smar:integer):integer;
var n,x:integer;
begin
n:=0;
x:=smar;
repeat
x:=x div prime;
n:=n+x;
until x<prime;
invSpp:=n;
end: {invSpp}
procedure tabsmarpp(prime,limit:integer);
var i,s,is,pp:integer:
exit:boolean;
begin
exit:=false;
pp:=1;
1:=1;
is:=1;
s:=prime;
repeat
repeat
Smarpp[1]:=s;
pp:=pp*prime;
Prpwr[i]:=pp;
i:=i+1;
if pp>limit then exit:=true:
until (i>is) or exit;
s:=s+prime;
is:=invSpp(prime.s);
until exit;
end: {tabsmarpp}
```

```
    begin writeln('Calculate Smarandache function for all integers up to
    ,.limit);
    for count:=1 to limit do Smaran[count]:=0;
    Smaran[limit+1]:=1imit+1;
    t:=time;
        {powers of 2}
    s:=2;
    i:=1;
    is:=1;
    pp:=1;
    exit:=false;
    repeat
    repeat
    pp:=pp*2;
    Smaran[pp]:=s;
    1:=1+1;
    if 2*pp>limit then exit:=true;
    until (i>is) or exit;
    s:=s+2;
    is:=invSpp(2,s);
until exit;
    {general case}
prime:=3;
repeat
tabsmarpp(prime,limit):
mcount:=1;
repeat
pwcount:=1;
multiple:=mcount*prime;
repeat
if multiple<=limit then
    if Smaran[multiple]=0 then
        Smaran[multiple]:=max(Smaran[mcount].Smarpp[pwcount]);
pwcount:=pwcount+1;
multiple:=mcount*Prpwr[pwcount];
until multiple>limit;
repeat
mcount:=mcount+1;
until Smaran[mcount]<>0;
until mcount*prime>limit;
pwcount:=1;
repeat
Smaran[Prpwr[pwcount]]:=Smarpp[pwcount];
pwcount:=pwcount+1;
until Prpwr[pwcount]>limit:
repeat
prime:=prime+1;
until Smaran[prime]=0;
until prime*prime>limit;
```

\{multiple case\}
repeat mcount:=1;
multiple: =prime;
repeat
if multiple<=limit then
if Smaran[multiple]=0 then Smaran[multiple]:=max(Smaran[mcount],prime):

```
repeat
mcount:=mcount+1;
until Smaran[mcount]<>0;
multiple:=mcount*prime;
until multiple>limit;
Smaran[prime]:=prime;
repeat
prime:=prime+1;
until Smaran[prime]=0;
until prime>limit/2;
    {largest primes}
count:=1;
repeat
If Smaran[count]=0 then Smaran[count]:=count;
count:=count+1;
until count>1imit;
writeln((time/t)/100.'seconds');
end: {tabsmarand}
begin
tabsmarand(11mit);
repeat
writeln('Enter start and finish integers for display of results'):
read(st,fin);
if (st>1) and (st<=limit) and (fin<=limit) then
    for count :=st to fin do writeln(count.Smaran[count]):
until fin=1;
end. {Testsmarand}
```

by Dr. Constantin Dumitrescu

\{ We apologize, but the following conjecture that: the equation $S(x)=S(x+1)$, where S is the Smarandache Function, has no solutions,
was not completely solved.
Any idea about it is wellcome.
See the previous issue of the journal for the first part of this article \}

ADDENDA:
New References concerninig this function (got by the editorial board after January 1, 1994):
[69] P. Melendez, Belo Horizonte, Brazil, respectively T. Martin, Phoenix, Arizona, USA, "Problem 26.5 " [questions (a), respectively (b) and (c)], in <Mathematical Spectrum>, Sheffield, UK, Vol. 26, No. 2, 56, 1993;
[70] Veronica Balaj, Interview for the Radio Timisoara, November 1993, published in <Abracadabra>, Salinas, CA, Anul II, Nr. 15, 6-7, January 1994;
[71] Gheorghe Stroe, Postface for <Fugit... / jurnal de lagar> (on the back cover), Ed. Tempus, Bucharest, 1994;
[72] Peter Lucaci, "Un membru de valoare in Arizona", in <America>, Cleveland, Ohio, Anul 88, Vol. 88, No. 1, p. 6, January 20, 1994;
[74] Debra Austin, "New Smarandache journal issued", in <Honeywell Pride>, Phoenix, Year 7, No. 1, p. 4, January 26, 1994;
[75] Ion Pachia Tatomirescu, "Jurnalul unui emigrant in <paradisul diavolului>", in <Jurnalul de Timiss>, Timişoara, Nr. 49, p.2, 31 ianuarie - 6 februarie 1994;
[76] Dr. Nicolae Radescu, Department of Mathematics, University of Craiova, "Teoria Numerelor", 1994;
[77] Mihail I. Vlad, "Diaspora româneasca / Un român se afirma Ca matematician şi scriitor in S.U.A.", in <Jurnalul de Târgovişte>, Nr. 68, 21-27 februarie 1994, p.7;
[78] Th. Marcarov, "Fugit ... / jurnal de lagar", in <România liberà, Bucharest, March 11, 1994;
[79] Charles Ashbacher, "Review of the Smarandache Function Journal", to be published in <Journal of Recreational Mathematics>, Cedar Rapids, IA, end of 1994;
[80] J. Rodriguez \& T. Yau, "The Smarandache Function" [problem I, and problem II, III ("Alphanumerics and solutions") respectivelyl, in <Mathematical Spectrum>, Sheffield, United Kingdom, 1993/4, Vol. 26, No. 3, 84-5;
[81] J. Rodriguez, Problem 26.8, in <Mathematical Spectrum>, Sheffield, United Kingdom, 1993/4, Vol. 26, No. 3, 91;
[82] Ion Soare, "Valori spirituale valcene peste hotare", in <Riviera Valceanà>, Rm. Valcea, Anul III, Nr. 2 (33), February 1994;
[83] Ştefan Smarăndoiu, "Miscellanea", in <Pan Matematica>, Rm. Vâlcea, Vol. 1, Nr. 1, 31;
[84] Thomas Martin, Problem L14, in <Pan Matematica>, Rm. Valcea, Vol. 1, Nr. 1, 22;
[85] Thomas Martin, Problems PP $20 \& 21$, in <Octogon>, Vol. 2, No. 1, 31;
[86] Ion Prodanescu, Problem PP 22, in <Octogon>, Vol. 2, No. 1, 31;
[87] J. Thompson, Problem PP 23, in <Octogon>, Vol. 2, No. 1, 31;
[88] Pedro Melendez, Problems Pp 24 \& 25, in <Octogon>, Vol. 2, No. 1, 31;
[89] C. Dumitrescu, "La Fonction de Smarandache - une nouvelle fonction dans la théorie des nombres", Congrès International <Henry-poincaré>, Université de Nancy 2, France, 14 - 18 Mai, 1994;
[90] C. Dumitrescu, "A brief history of the <Smarandache Function>", republished in <New Wave>, 34, 7-8, Summer 1994, Bluffton College, Ohio; Editor Teresinka Pereira;
[91] C. Dumitrescu, "A brief history of the <Smarandache Function>", republished in <Octogon>, Braşov, Vol. 2, No. 1, 15-6, April 1994; Editor Mihaly Bencze;
[92] Magda Iancu, "Se intoarce acasa americanul / Florentin Smarandache", in <Curierul de Vâlcea>, Rm. Valcea, Juin 4, 1994;
[93] I. M. Radu, Bucharest, Unsolved Problem (unpublished);
[94] W. A. Rose, University of Cambridge, (and Gregory Economides, University of Newcastle upon Tyne Medical School, England), Solutions to Problem 26.5, in <Mathematical Spectrum>, U. K., Vol. 26, No. 4, 124-5.

The cover illustration is a representation of the values of the Smarandache function for $n<53$. The group at the back of the diagram essentially corresponds to $S(p)=p$, the middle group to $S(2 p)=p(p \neq 2)$ while the front group represents all the other values of $S(n)$ for $n \leq 53$.

Diagram 1. Distribution of $S(n)$ up to $n=32000$ (not to scale)

It may be interesting to take this graphical presentation a bit further. All the values of $S(\mathrm{n})$ for $\mathrm{n} \leq 32000$ (conveniently chosen in order to use short integers only) have been sorted as shown in table 1 . Of the 19114 points ($\mathrm{n}, \mathrm{S}(\mathrm{n})$) situated above the line $\mathrm{y}=\mathrm{x} / 50$ only 61 points fall between lines. All of these of course correspond to cases where n is not square free. Diagram i illustrates this for the lines $y=x, y=x / 2, y=x / 3, y=x / 4, y=x / 5$ and $y=x / 6$. The top line contains 3433 points ($\mathrm{n}, \mathrm{S}(\mathrm{n}$) although there are only 3432 primes less than 32000 . This is because (4,S(4)) belongs to this line.

TABLE 1. On the distribution of the Smarandache Function $S(n)$ for $n \leq 32000$.

```
N = number of values of S(n) on the line }Y=x/k, i.e. S(n)=n/k. The point
(n,S(n)) are the only ones between lines y=x/k and y=x/(k+1) for k<50.
```

```
    k N Points (n,S(n)) between lines:
```



```
11 417 ( 529, 46)
12 387
13 359
14 336
15 321
16 301
17 283
273
256
250
239
227
213
218
204 ( 256, 10) ( 867, 34)
196 (2809,106)
190 ( 605, 22)
187 (1083, 38)
176 (3481,118)
179 (3721,122)
163 ( 441, 14) ( 625, 20)
164 ( 686, 21) ( 845, 26)
159 (500, 15) (4489,134)
154 (1587, 46)
154 (5041,142)
153 (5329,146)
1 3 9
139 ( 539, 14) ( 847, 22)
136 (6241,158)
139 ( 486, 12) (1331, 33)
125 (6889,166)
133 ( 512, 12) (1445, 34)
119 (2523, 58)
125 (7921,178)
126 (637, 14) (1183, 26)
117 (2883, 62)
109 (1805, 38)
120 (729, 15) (9409,194)
114 (1089, 22)
Number of elements below y = x/50: 12774.
```

Find a strictly increasing infinite series of integer numbers such that for any consecutive three of them the Smarandache Function is neither increasing nor decreasing.
\star Find the largest strictly increasing series of integer numbers for which the Smarandache Function is strictly decreasing.
a) To solve the first part of this problem, we construct the following series:
$p_{3}, p_{3}+1, p_{4}, p_{4}+1, \ldots, p_{n}, p_{n}+1, \ldots$
where $p_{3}, p_{4}, p_{5} \ldots$ are the series of prime odd numbers 5, 7, 11 -••
Of course, $S\left(p_{i}\right)=p_{i}$ and $S\left(p_{i}+1\right)<p_{i}$, for any $i \geq 3$.
b) A way to look at this unsolved question is the following: Because $S(p)=p$, for any prime number, we should get a large interval in between two prime numbers. A bigger chance is when p and q, the primes with that propriety, are very large (and $q \neq p+c$, where $c=2,4$, or 6). In this case the series is finite. But this is not the optimum method!

The Smarandache Function is, generally speaking, increasing $\{$ we mean that for any positive integer k there is another integer $j>$ k such that $S(j)>S(k)\}$. This property makes us to think that our series should be finite.

Calculating at random, for example, the series' width is at least seven, because:
for $n=43,46,57,68,70,72,120$ then
$S(n)=43,23,19,17,10,6, \quad 5$ respectively.
We are sure it's possible to find a larger series, but we worry if a maximum width does exist, and if this does: how much is it? [Sorry, the author is not able to solve it!]

See: Mike Mudge, "The Smarandache Function" in the <Personal Computer World> journal, London, England, July 1992, page 420.

Solution of a problem by J. Rodriguez

by Pal Granås
Problem: "Find the largest sirictly increasing series of integer numbers for which the Smarandacne Function is strictly decreasing".

Wy intention is to prove that there exists series of arbitrary finite length with the properties described above.

To begin with, define $p_{1}=2, p_{2}=3, p_{3}=5$ and more generally, $p_{n}=$ the nth prime. Now we have the following lemma:

Lemma: $p_{k}<p_{k+1}<2 p_{k}$ for all $k \in N$. (Δ)
Proof: A theorem conjectured by Bertrand Russell and proven by Tchebychef states that for all natural numbers $n \geq 2$, there exists a prime p such that $n<p<2 n$. Using this theorem for $n=p_{k}$, we get $p_{k}<p<2 p_{k}(\star)$ for at least one prime p. The smallest prime $>p_{k}$ is p_{k+1}, so $p \geq p_{k+1}$. But then it is obvious that (\star) is satisfied by $p=p_{k+1}$. Hence $p_{k}<p_{k+1}<2 p_{k}$.

This lemina plays an important role in the proof of the following theorem:
Theorem: Let n be a natural number ≥ 2 and define the series $\left\{x_{k}\right\}_{k=0}^{n-1}$ of length n by $x_{k}=2^{k} p_{2 n-k}$ for $k \in\{0, \ldots, n-1\}$. Then $x_{k}<x_{k+1}$ and $S\left(x_{k}\right)>S\left(x_{k+1}\right)$ for all $k \in\{0, \ldots, n-2\}$. (Ω)

Proof: For $k \in\{0, \ldots, n-2\}$ we have the following equivalences: $x_{k}<x_{k+1} \Leftrightarrow$ $2^{k} p_{2 n-k}<2^{k+1} p_{2 n-k-1} \Leftrightarrow p_{2 n-k}<2 p_{2 n-k-1}$ according to Lemma (Δ).

Futhermore $p_{2 n-k} \geq p_{2 n-(n-1)}=p_{n+1} \geq p_{3}=5>2$, so $\left(p_{2 n-k}, 2\right)=1$ for all $k \in$ $\{0 \ldots, n-1\}$. Hence $S\left(x_{k}\right)=S\left(2^{k} p_{2 n-k}\right)=\max \left\{S\left(2^{k}\right), S\left(p_{2 n-k}\right)\right\}=\max \left\{S\left(2^{k}\right), p_{2 n-k}\right\}$. Consequently $p_{2 \pi-k} \leq S\left(x_{k}\right) \leq \max \left\{2 k, p_{2 n-k}\right\}(*)$ since $S\left(2^{k}\right) \leq 2 k$.

Moreover we know that $p_{k+1}-p_{k} \geq 2$ for all $k \geq 2$ because both p_{k} and p_{k+1} are odd integers. This inequality gives us the following result:

$$
\sum_{k=2}^{n-1}\left(p_{k+1}-p_{k}\right)=p_{n}-p_{2}=p_{n}-3 \geq \sum_{k=2}^{n-1} 2=2(n-2)
$$

so $p_{n} \geq 2 n-1$ for all $n \geq 3$. In other words, $p_{n+1} \geq 2 n+1>2(n-1)$ for $n \geq 2$, i.e. $p_{2 n-k}>2 k$ for $k=n-1$. The fact that $p_{2 n-\xi}$ increases and $2 k$ decreases as k decreases from $n-1$ to 0 implies that $p_{2 n-k}>2 k$ for all $k \in\{0, \ldots, n-1\}$. From this last inequality and (*) it follows that $S\left(x_{k}\right)=p_{2 n-k}$. This formula brings us to the conclusion: $S\left(x_{k}\right)=p_{2 n-k}>p_{2 n-k-1}=S\left(x_{k+1}\right)$ for all $k \in\{0, \ldots, n-2\}$.

Example: For $n=10$ Theorem (Ω) generates the following series:

k	0	1	2	3	4	5	6	7	8	9
x_{k}	71	134	244	472	848	1504	2752	5248	9472	15872
$S\left(x_{k}\right)$	71	67	61	59	53	47	43	41	37	31

J. Rodriguez, Sonora, Mexico
*Is it posible to extend the Smarandache Function from the integer numbers to the rational numbers (by finding then a rational approach to the factorials, i.e. (3/2)! = ?) ?
*More intriguering is to extend this function to the real numbers (by finding then a real approach to the factorials, i.e. ($\sqrt{5}$)! = ?) ?
*Idem for the complex numbers (i.e. $(4+6 i)!=?)$?

For example, we know that the Smarandache Function is defined as follows:
$S: Z \backslash\{0\} \rightarrow N, S(n)$ is as the smallest integer such that $(S(n))!=1 \times 2 \times 3 x \ldots x S(n)$ is divisible by n. But what about $S(1 / 2)$, or $S(I)$, or $S(-i)$ are they equal to what ? It's interesting to try enlarging this funtion adopting in the same time new definitions for division and factorial, respectively.

Reference:
Mike Mudge, "The Smarandache Function", in the <Personal Computer World> journal, London, July 1992, p. 420.

PROPOSED PROBLEM (3)

Let $\eta(n)$ be Smarandache Function: the smallest integer m such that m ! is divisible by n. Calculate $\eta\left(p^{p+1}\right)$, where p is an odd prime number.

Solution.
The answer is p^{2}, because:
$p^{2}!=1 \cdot 2 \cdot \ldots \cdot p \cdot \ldots \cdot(2 p) \cdot \ldots \cdot((p-1) p) \cdot \ldots \cdot(p)$, which is divisible by p^{p+1}.

Any another number less than p^{2} will have the property that its factorial is divisible by p^{k}, with $k<p+1$, but not divisible by p^{p+i}.

Pedro Melendez
Av. Cristovao Colombo 336 30.000 Belo Horizonte, MG BRAZIL

Let m be a fixed positive integer. Calculate:

$$
\lim _{i \rightarrow \infty} \eta\left(p_{i}^{m}\right) / p_{i}
$$

where $\eta(n)$ is Smarandache Function defined as the smallest integer m such that m ! is divisible by n, and p_{i} the prime series.

Solution:

We note by p_{j} a prime number greater than m. We show that $\eta\left(p_{i}^{m}\right)=m p_{i}$, for any $i>j:$
$i \leqslant$ by absurd $\eta\left(p_{i}^{m}\right)=a<m p_{i}$ then
$a!=1 \cdot 2 \cdot \ldots \cdot p_{i} \cdot \ldots \cdot\left(2 p_{i}\right) \cdot \ldots \cdot\left((m-k) p_{i}\right) \cdot \ldots \cdot a$, with $k>0$, will be divisible by p_{i}^{m-k} but not by p_{i}^{m}.
Then this limit is equal to m .

Pedro Melendez

Av. Cristovao Colombo 336
30.000 Bell Horizonte, MG

BRAZIL
by A. Stuparu, Vâlcea, Romania, and D. W. Sharpe, Sheffield, England

$$
\begin{aligned}
& \text { Prove that the equation } \\
& \qquad S(x)=p \text { where } p \text { is a given prime number, }
\end{aligned}
$$

has just $D((p-i)!)$ solutions, $a l l$ of them in between p and p ! $[S(n)$ is the Smarandache Eunction: the smallest integer such that $S(n)$! is divisiole by n, and $D(n)$ is the number of positive divisors of $n]$.

PROOF (inspired by a remark of D. W. Sharpe) :
Of course the smallest solution is $x=p$, and the largest one is $x=p!$
Any other solution should be an integer number divided by p, but not by p^{2} (because $S\left(k p^{2}\right)>=S\left(p^{2}\right)=2 p$, where k is a positive integer).

Therefore $x=p q$, where q is a divisor of ($p-1$)!

Reference: "The Smarandache Function", by J. Rodriguez (Mexico) \& T. Yau (USA), in <Mathematical Spectrum , Sheffield, UK, 1993/4, Vol. 26, No. 3, pp. 84-5; Editor: D. W. Sharpe.

Examples (of D. W. Sharpe) :
$S(x)=5$, then $x \in\{5,10,15,20,30,40,60,120\}$ (eight solutions).
$S(x)=7$ has just 30 solutions, because $6!=2^{4} \times 3^{2} \times 5^{1}$ and $6!$ has just $5 \times 3 \times 2=30$ positive divisors.

A PROBLEM CONCERNING THE FIBONACCI RECURRENCE (6)
 by T. Yau, student, Rima Community College

Let $S(n)$ be defined as the smallest integer such that ($S(n)$)! is divisible by a (Smarandache Eunction). Eor what triplets this function verifies the Eibonacci relationship, i.e. finc n such that $S(n)+S(n+1)=S(n+2)$?

Solution:
Checking the first 1200 numbers, I found just two triplets for which this function verifies the Eibonacci relationship:
and $S(9)+S(10)=S(11) \Leftrightarrow 6+5=11$,
$S(119)+S(120)=S(121) \Leftrightarrow 17+5=22$.
How many other tioiplets with the same property do exist ? (I can't find a theoretical proof ...)

Reference:

M. Mudge, "Mike Mudge pays a return visit to the Fiorentin Smarandache Eunction", in <Personal Computer World>, Iondon, Eebruazy 1993, p. 403.

Soit n un nombre positif entier >1.
Trouver Card\{x, $\eta(x)=n\}$. L'on a noté par $\eta(x)$ la Eonction Smarandache: qui est définie pour tout entier x comme le pius petit nombre m tel que m ! est divisible par x.
M. Costewitz, Bordeaux, Erance

SOLUTION DU PROBIEME*:
(Ce problème est dans un sens une généralisation du problème 1075, pubiié dans l'Elemente der Mathematik*.)
Soit $n=I_{i}{ }^{d_{1}} \ldots r_{s}{ }^{d_{s}}$, la décomposition factorielle unique de ce nombre.

Calculons pour tout $1 \leq i \leq s$,

$$
\sum_{j=1}^{\infty}\left[n / r_{i}^{j}\right]=e_{i} \geq d_{i} \geq 1, \text { où }[a] \text { signifie la partie entière }
$$

de a.
C'est-à-dire: n ! se divise par $r_{i}^{e_{i}}$, pour tout $1 \leq i \leq s$.
Nous nottons par M l'ensemole demande.
Biensur,

$$
\underset{i=1}{S}\left\{r_{i}^{e_{i}}, r_{i}^{e_{i}-1}, \ldots, r_{i}^{e_{i}-d_{i}+1}\right\} \subset M .
$$

Nous nottons par R le membre gauche de l'inclusion antérieure, et paz

$$
\begin{aligned}
& R_{i}=\left\{r_{i}^{e_{i}}, r_{i}^{e_{i}-1}, \ldots, r_{i}^{\left.e e_{i}^{-d_{i}+1}\right\}}\right. \\
& R_{i}^{\prime}=\left\{r_{i}^{e_{i}-d_{i}}, \ldots, r_{i}, I\right\}, \text { pour tous les i. }
\end{aligned}
$$

Soient $q_{1}, \ldots, q_{\text {, }}$ tous les nombres premiers différents entre eux, plus petits que n, et non-diviseurs de n. Il est clair que ceux-ci sont tous différents de r_{1}, \ldots, r_{3}.

Construisons les suivantes suites finies:
$q_{1}, q_{1}{ }^{2}, \ldots, q_{1}{ }^{\epsilon_{i}}$, tels que $\eta\left(q_{1}{ }^{\epsilon_{i}}\right)<n<\eta\left(q_{1}{ }^{\left.\epsilon_{t}+1\right)} ;\right.$
\cdot
\cdot
$\dot{G}_{t}, q_{t}{ }^{2}, \ldots, q_{t}^{\epsilon_{t}}$, tels que $\eta\left(q_{t}{ }^{\epsilon_{t}}\right)<n<\eta\left(q_{t}{ }^{\left.{ }_{t}+1\right)} ;\right.$
$\mathrm{q}_{\mathrm{t}+1}>\mathrm{n} ;$
et
$f_{k}=\sum_{j=1}^{\infty}\left[n / q_{k}^{j}\right]$, pour tous les k.
Nous formons $q=\prod_{k=1}^{t}\left(1+f_{k}\right)$ de combinaisons entre les nombres
(éléments) de cettes suites, que nous réunissons dans un ensemble notté par Q.

Il est évident que chaque solution de l'équation $\eta(x)=n$ doit être de la forme: $a_{i} b c, ~ p o u r ~ t o u s ~ l e s ~ i, ~$
oì $a_{i} \in R_{i}, b \in\left(\underset{\substack{j=1 \\ j \neq i}}{s} R_{i}\right) \cup\left(\underset{\substack{j=1 \\ j \neq i}}{S} R^{\prime}, c \in Q\right.$.
Donc, le nombre des solutions pour l'équation demandée est égale à

$$
q \sum_{i=1}^{s} d_{i} \prod_{\substack{j=1 \\ j \neq i}}^{s}\left(e_{j}+1\right)
$$

[*Voir: Aufgabe 1075 par Thomas Martin, "Elemente der Mathematik", Vol. 48, No.3, 1993]
[*Solution complétée par les éditeurs (C. Dumitrescu)]

A PROBIEM OF MAXIMUM (8)

by T. Yau, student, Pima Community College

Let $S(n)$ be defined as the smallest integer such that ($S(n)$)! is civisible by n (Smarandache Eunction). Eind:
$\max \{S(\Omega) / n\}$,
over all composite integess n $\ddagger 4$.

Solution:
Let $n=P_{:}, \ldots P_{:}$, its canonical factorial decomposition.
Because $\left.S(n)=\max _{i \leq i \leq s} S\left(p_{i}\right)\right\}=S\left(p_{j}\right) \leq p_{j} r_{j}$,
it's easy to see that n should have only a prime divisor for $S(n) / n$ to become maximum. Therefore $s=1$. Then.
$n=P^{F}$, where: P, r are integers, and p is prime.
$S(n) / n \leq P I / D^{*}$. Hence p and I should be as small as possible, i.e.
$P=2$ or 3 or 5, and $I=2$ or 3 .
By checking these combinations, we find
$n=3^{2}=9$, whence $\max \{S(n) / n\}=2 / 3$
over all composite integers $n \neq 4$.

Reference:
M. Mudge, "Mike Mudge pays a return visit to the Elorentin Smarandache Function", in <Personal Computer World>, London, Eebruary 1993, p. 403.

ALPHANUMERICS AND SOLUTIONS

by T. Yau, student. Pima Community College

Prove that if $N=0$ there are neither an operation " " nor integers replacing the letters. for which the following statement:

SMARANDACHE *
FUNCTION *
IN
NUMBERTHEORY

is available.

Solution:
Of course " " may not be an addition. because in that case " S " (as a digit) should be equal to " U ", which involves $\mathrm{N}=0$. Contradiction.
[Same for a substraction.]
Nor a multiplication, because the product should have more that 12 digits.
Not a division, because the quotient should have less than 12 digits.
For other kind of operation, I think it's not necessary to check anymore.

Reference:

Mike Mudge, The Smarandache Function" in the <Personal Computer Worid> journai, London, July 1992, p. 420.

THE MOST UNSOLVED PROBLEMS OF THE FORLD ON THE SAME SUBJECT

are related to the Smarandache Function in the Analytic Number Theory:

$$
\begin{aligned}
& S: Z^{*} \rightarrow N, \quad S(n) \text { is defined as the smallest integer such } \\
& \text { that } S(n) \text { ! is divisible by } n .
\end{aligned}
$$

The number of these unsolved problems concerning the function is equal to ... an infinity !! Therefore, they will never be all solved!
[See: Florentin Smarandache, "An Infinity of Unsolved Problems concerning a Function in the Number Theory", in the <proceedings of the International Congress of Mathematicians>, Berkeley, California, USA, 1986]

TEACHING THE SMARANDACHE FUNCTION TO THE AMERICAN COMPETION STUDENTS

by T. Yau

The Smarandache Function is defined: for all non-null integers, n, to be the smallest integer such that ($\mathrm{S}(\mathrm{n}$))! is divisible by n (see 1, 2, 3).
In order to make students from the American competions to learn and understand betrer this notion, used in many east - european national mathematical competions, the author: calcutates it for some small numbers, establishes a few proprieties of it, and involves it in relations with other famous functions in the number theory.
It's important for the teachers to familiarize American students with the work done in other countries. (I would call it: multi - scientifical exchange.)

References:

1. Mike Mudge, "The Smarandache Function" in <Personal Computer Worid>, London, July 1992, p. 420 ;
2. Debra Austin, "The Smarandache Function featured" in <Honeywell Pride>, Phoenix, Juin 22. 1993, p.8;
3. R. Muller, "Unsolved Problems related to Smarandache Function", Number Theory Publishing Co., Chicago, 1993.

\&

frlocuind numerele prin litere vett obtine:
Re verticala $F-S$ numele unei branse matematice unde se incadreaza Funcria Smarandache (2cav.), lar De Qrizentale:

1) Proprietatea fundamentală ce contribuie la recunoasterea numerelor prime cu ajutorul acestei funcuii (verb); 2) Prenumele autorului funçiei;
3)" O infinitate de probleme ... referitoare la o functic in Tooria Numerelor", articol starnind interesul matematicienilor (veai "Proccedings of the Intermational Congress of Marhemaricians 1980", Berkeley,CA)i
2) Multime de numere pe care este definitád functia;
3) n pantru $\{S(n)\} \mid$ in definifia functiei;
6)"... Universidduii din Timisoara", revista în care s'a publicat prima datå articolul "O functie in Teoria Numerelor", 1980 (neart.);
4) Numele de familie al autorului functici;
5) Numár întreg care nu aparnine domeniului de definitic al functiei;
6) Judeful în care se tipăreste revista "Analele Uniwersidduii" din Timisoara";
10)Conf. dr. V. Seleacu, lect. dr. C. Dumitrescu, etc. care au fornat un grup de cercetare in cadrul Universitápii din Craiova privind proprietatile și aplicabilitatea acestei funcţii ${ }^{\text {(}}$ (ll .); (11)" Unsolved Problems related to the Smarandache Func|tion" de R. Muller, No. Th. | Publ. Co., Chicago, 1993; | 12)Ramura stiinfifica inclu. l zând Teoria numerelor; 1 13) Fascicul matematic; 1 14) De pildả \{ $S(\mathrm{n})\}$!;
7) Aproximativ 3 asemenea unitati de timp iau trebuit informaticianului suedez Henry Ibsiedt, folosind un computer
dik având procesorul de $486 / 33 \mathrm{MHz}$ in Thubo Basic Borland, pentru a calcula valorile Funçiei Smaranulache de la 1 pânả la ... 10^{6} ! In urma acestei "ispravi" el a cas suigat concursul organizat de omul de stiinṭa Mike Mudge din Londra asupra unor probleme deschise implicånd Functia Smarandache pentru revista "Personal Compuser World" (Iulic, 2992, p. 420; Februaric, 1993, p. 403; August, 993, p. 495).

Autor: G. Dincu -
Drdgasani , ROMANIA.
(Din revista "Abracadabra", Salinas, Calilornia, Nolembrie 1993, pp. 14.5, Editor: Ion Bledea ।

A collection of papers concerning smarandache type functions, numbers, sequences, integer algorithms, paradoxes, experimental geometries, algebraic structures, neutrosophic probability, set, and logic, etc.

Dr. C. Dumitrescu \& Dr. V. Seleacu
Department of Mathematics
University of Craiova, Romania;

[^0]: Current Address : University of Craiova, Department of Marhematics, Str. A.I. Cuan No 13, Craiova (1100) Romania

