Solution of a problem by J. Rodriguez

by Pal Granås
Problem: "Find the largest sirictly increasing series of integer numbers for which the Smarandacne Function is strictly decreasing".

Wy intention is to prove that there exists series of arbitrary finite length with the properties described above.

To begin with, define $p_{1}=2, p_{2}=3, p_{3}=5$ and more generally, $p_{n}=$ the nth prime. Now we have the following lemma:

Lemma: $p_{k}<p_{k+1}<2 p_{k}$ for all $k \in N$. (Δ)
Proof: A theorem conjectured by Bertrand Russell and proven by Tchebychef states that for all natural numbers $n \geq 2$, there exists a prime p such that $n<p<2 n$. Using this theorem for $n=p_{k}$, we get $p_{k}<p<2 p_{k}(\star)$ for at least one prime p. The smallest prime $>p_{k}$ is p_{k+1}, so $p \geq p_{k+1}$. But then it is obvious that (\star) is satisfied by $p=p_{k+1}$. Hence $p_{k}<p_{k+1}<2 p_{k}$.

This lemina plays an important role in the proof of the following theorem:
Theorem: Let n be a natural number ≥ 2 and define the series $\left\{x_{k}\right\}_{k=0}^{n-1}$ of length n by $x_{k}=2^{k} p_{2 n-k}$ for $k \in\{0, \ldots, n-1\}$. Then $x_{k}<x_{k+1}$ and $S\left(x_{k}\right)>S\left(x_{k+1}\right)$ for all $k \in\{0, \ldots, n-2\}$. (Ω)

Proof: For $k \in\{0, \ldots, n-2\}$ we have the following equivalences: $x_{k}<x_{k+1} \Leftrightarrow$ $2^{k} p_{2 n-k}<2^{k+1} p_{2 n-k-1} \Leftrightarrow p_{2 n-k}<2 p_{2 n-k-1}$ according to Lemma (Δ).

Futhermore $p_{2 n-k} \geq p_{2 n-(n-1)}=p_{n+1} \geq p_{3}=5>2$, so $\left(p_{2 n-k}, 2\right)=1$ for all $k \in$ $\{0 \ldots, n-1\}$. Hence $S\left(x_{k}\right)=S\left(2^{k} p_{2 n-k}\right)=\max \left\{S\left(2^{k}\right), S\left(p_{2 n-k}\right)\right\}=\max \left\{S\left(2^{k}\right), p_{2 n-k}\right\}$. Consequently $p_{2 \pi-k} \leq S\left(x_{k}\right) \leq \max \left\{2 k, p_{2 n-k}\right\}(*)$ since $S\left(2^{k}\right) \leq 2 k$.

Moreover we know that $p_{k+1}-p_{k} \geq 2$ for all $k \geq 2$ because both p_{k} and p_{k+1} are odd integers. This inequality gives us the following result:

$$
\sum_{k=2}^{n-1}\left(p_{k+1}-p_{k}\right)=p_{n}-p_{2}=p_{n}-3 \geq \sum_{k=2}^{n-1} 2=2(n-2)
$$

so $p_{n} \geq 2 n-1$ for all $n \geq 3$. In other words, $p_{n+1} \geq 2 n+1>2(n-1)$ for $n \geq 2$, i.e. $p_{2 n-k}>2 k$ for $k=n-1$. The fact that $p_{2 n-\xi}$ increases and $2 k$ decreases as k decreases from $n-1$ to 0 implies that $p_{2 n-k}>2 k$ for all $k \in\{0, \ldots, n-1\}$. From this last inequality and (*) it follows that $S\left(x_{k}\right)=p_{2 n-k}$. This formula brings us to the conclusion: $S\left(x_{k}\right)=p_{2 n-k}>p_{2 n-k-1}=S\left(x_{k+1}\right)$ for all $k \in\{0, \ldots, n-2\}$.

Example: For $n=10$ Theorem (Ω) generates the following series:

k	0	1	2	3	4	5	6	7	8	9
x_{k}	71	134	244	472	848	1504	2752	5248	9472	15872
$S\left(x_{k}\right)$	71	67	61	59	53	47	43	41	37	31

