SOLVING PROBLEMS BY USING A FUNCTION IN THE NUMBER THEORY

Let $n \geq 1, h \geq 1$, and $a \geq 2$ be integers. For which values of a and n is $(n+h)$! a multiple of a^{n} ? (A generalization of the problem $n^{0}=1270$, Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 179, proposed by Roger B. Eggleton, The University of Newcastle, Australia.)

Solution

(For $h=1$ the problem $n^{0}=1270$ is obtained.)

§1. Introduction

We have constructed a function η (see [1]) having the following properties:
(a) For each non-null integer $n, \eta(n)$! is a multiple of n;
(b) $\eta(n)$ is the smallest natural number with the property (a).

It is easy to prove:
Lemma 1. (\forall) $k, p \in N^{*}, p,{ }^{*} 1, k$ is uniquely writeen in the form:

$$
k=t_{1} a_{n}^{(0)}+\ldots+t_{2} a_{n_{2}}^{(0)}
$$

where

$$
\begin{aligned}
& a_{n_{i}}^{(p)}=\left(p^{n_{i}}-1\right) /(p-1), i=1,2, \ldots, 2, \\
& n_{1}>n_{2}>\ldots, n_{\ell}>0 \text { and } 1 \leq t_{j} \leq p-1, j=1, \\
& 2, \ldots, l-1,1 \leq t_{2} \leq p, n{ }_{i}, t_{i} \in N, i=1,2, \\
& \ldots, l, l \in N * .
\end{aligned}
$$

We have constructed the function η_{ρ}, p prime $>0, \eta_{p}: N * \rightarrow$ N*, thus:

$$
\begin{aligned}
& (\forall) n \in N *, \eta_{p}\left(a_{n}^{(p)}\right)=p^{n}, \text { and } \\
& \eta_{p}\left(t_{1} a_{n_{1}}^{(p)}+\ldots+t_{l} a_{n_{l}}^{(p)}\right)= \\
& =t_{1} \eta_{p}\left(a_{n} a_{1}^{(p)}\right)+\ldots+t_{l} \eta_{p}\left(a_{n}^{(p)}\right)
\end{aligned}
$$

Of course:

Lemma 2.

(a) $(\forall) k \in N *, \eta_{p}(k) \quad{ }^{\prime}=M p^{k}$.
(b) $\eta_{p}(k)$ is the smallest number with the property
(a). Now, we construct another function:

$$
\eta: Z \backslash\{0\} \rightarrow N \text { defined as follows: }
$$

$$
\left\{\begin{array}{l}
\eta(\pm 1)=0, \\
(\forall) n=\epsilon p_{i} \ldots p_{s}^{\alpha_{s}} \text { with } \epsilon= \pm 1, p_{i} \text { prime and } \\
p_{i}=p_{j} \text { for } i \neq j, \text { all } \alpha_{i} \in N^{*}, \eta(n)= \\
=\max _{1 \leq i \leq s}\left\{\eta_{p}\left(\alpha_{i}\right)\right\} .
\end{array}\right.
$$

It is not difficult to prove η has the demanded properties of §1.
§2. Now, let $a=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$, with all $\alpha_{i} \in N *$ and all p_{i} distinct primes. By the previous theory we have:

$$
\eta(a)=\max _{1 \leq i \leq s}\left\{n_{\rho_{i}}\left(\alpha_{i}\right)\right\}=\eta_{p}(\alpha) \text { (by notation). }
$$

Hence

$$
\eta(a)=\eta\left(p^{\alpha}\right), \eta\left(p^{\alpha}\right)!=M p^{\alpha} .
$$

We know:
$\left(t_{1} p^{n_{1}}+\ldots+t_{2} p^{n_{q}}\right)!=M p^{t_{1}} \frac{p^{n_{1}}-1}{p-1}+\ldots+t_{2} \frac{p^{n_{2}}-1}{p-1}$.

We put:

$$
t_{1} p^{n_{1}}+\ldots+t_{2} p^{n_{2}}=n+h
$$

and $t_{1} \frac{p^{n .}-1}{p-1}+\ldots+t_{2} \frac{p^{n_{2}}-1}{p-1}=\alpha n$.

Whence

$$
\frac{1}{\alpha}\left[\frac{p^{n_{1}}-1}{p-1}+\ldots+t_{2} \frac{p^{n_{2}}-1}{p-1}\right] \geq t_{1} p^{n_{1}}+\ldots+t_{2} p^{n_{2}}-n
$$

or
(1) $\alpha(p-1) h \geq(\alpha p-\alpha-1)\left[t_{1} p^{n_{1}}+\ldots+t_{2} p^{n_{2}}\right]+$

$$
+\left(t_{1}+\ldots+t_{2}\right)
$$

On this condition we take $n_{0}=t_{1} p^{n_{1}}+\ldots+t_{2} p^{n_{2}}-n$ (see Lemma 1), hence $n=\left\{\begin{array}{l}n_{0}, n_{0}>0 ; \\ 1, \\ n_{0} \leq 0 \text {. }\end{array}\right.$

Consider giving $a \neq 2$, we have a finite number of n.
There are an infinite number of n if and only if $\alpha p-c-1=$ $=0$, ie., $\alpha=1$ and $p=2$, i.e., $a=2$.
§3. Particular case
If $h=1$ and $a \neq 2$, because

$$
E_{1} p^{n_{1}}-\ldots-E_{2} p^{n_{2}} \geq p^{n_{2}}>1
$$

and $t_{1}-\ldots-t_{2} \geq 1$, ft follows from (1) cha=:
(1') $(\alpha p-\alpha)>(\alpha p-\alpha-1) \cdot 1-1=\alpha p-\alpha$,
which is impossible. If $h=1$ and $a=2$ then $\alpha=1, p=2$, or
(1") $1 \geq t_{1}+\ldots+t_{2}$,
hence $\quad \ell=1, t_{1}=1$ whence $n=t_{1} p^{n_{1}} \div \ldots-t_{2} p^{n_{2}}-n=$

$$
=2^{n_{1}}-1, n_{i} \in N^{*}(\text { the solution to problem } 1270) \text {. }
$$

Example 1. Let $h=16$ and $a=34 \cdot 5^{2}$. Find all n such that

$$
(n+16)!=Y 2025^{n} .
$$

Solution

$$
\begin{gathered}
\eta(2025)=\max \left\{\eta_{3}(4), \eta_{5}(2)\right\}=\max \{9,10\}=10= \\
=\eta_{5}(2)=\eta\left(5^{2}\right) . \text { Whence } \alpha=2, p=5 . \text { From (1) we have: } \\
. \\
128 \geq 7\left[t_{1} 5^{n_{1}}+\ldots+t_{2} 5^{n_{2}}\right]+t_{1}+\ldots+t_{2} .
\end{gathered}
$$

$$
\text { Because } 5^{6}>128 \text { and } 7\left[t_{1} 5^{n_{1}}-\ldots-t_{2} 5^{n_{2}}\right]<128 \text { we End }
$$ $2-=1$,

$$
123 \geq 7 t_{1} 5^{n_{1}}+t_{1}
$$

whence $n_{1} \leq 1$, ie., $n_{1}=1$, and $t_{1}=1,2,3$. Then $n_{0}=$ $=t_{i} 5-16<0$, hence we take $n=1$.

Example 2

$$
\begin{aligned}
& (n-7)!=n 3^{n} \text { when } n=1,2,3,4,5 . \\
& (n+7)!=M 5^{n} \text { when } n=1 \text {. } \\
& (n+7)!=M 7^{n} \text { when } n=1 \text {. } \\
& \text { But }(n+7)!\neq M p^{n} \text {, for } p \text { prime }>7,(\forall) n \in N^{*} \text {. } \\
& (n+7)!=M 2^{n} \text { when } \\
& n_{0}=t_{1} 2^{n_{1}}+\ldots+t_{l} 2^{n_{2}}-7, \\
& t_{1}, \ldots, t_{l-1}=1, \\
& 1 \leq t_{2} \leq 2, t_{1}+\ldots+t_{2} \leq 7 \\
& \text { and } \quad n= \begin{cases}n_{0}, & n_{0}>0 ; \\
1, & n_{0} \leq 0 .\end{cases}
\end{aligned}
$$

etc.

Exercise for Readers

$$
\text { If } \left.n \in N^{*}, a \in N * \backslash 1\right\} \text {, find all values of a and } n \text { such }
$$

that:

$$
(n+7)!\text { be a multiple of } a^{n}
$$

Some Unsolved Problems (see [2])
Solve the diophantine equations:
(1) $\eta(x) \cdot \eta(y)=\eta(x+y)$.
(2) $\eta(x)=y$! (A solution: $x=9, y=3$).
(3) Conjecture: the equation $\eta(x)=\eta(x+1)$ has no solution.

References

[1] Florentin Smarandache, "A Function in the Number Theory," Analele Univ. Timisoara, Fasc. 1, Vol. XVIII, pp. 79-88, 1980, MR: 83c: 10008.
[2] Idem, Un Infinity of Unsolved Problems Concerning a Function in Number Theory, International Congress of Mathematicians, Univ. of Berkeley, CA, August 3-11, 1986.

Florentin Smarandache

[A comment about this generalization was published in "Mathematics Magazine", Vol. 61, No. 3, June 1988, p. 202: "Smarandache considered the general problem of finding positive integers n, a, and k, so that ($n+k$)! should be a multiple of a^{n}. Also, for positive integers p and k, with p prime, he found a formula for determining the smallest integex $f(k)$ with the property that $(f(k))$ I is a multiple of $\left.p^{k} .^{\prime \prime}\right]$

