SOLVING PROBLEMS BY USING A FUNCTION IN THE NUMBER THEORY

Let $n \ge 1$, $h \ge 1$, and $a \ge 2$ be integers. For which values of a and n is (n + h)! a multiple of a^n ? (A generalization of the problem $n^0 = 1270$, Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 179, proposed by Roger B. Eggleton, The University of Newcastle, Australia.)

Solution

(For h = 1 the problem $n^0 = 1270$ is obtained.)

§1. <u>Introduction</u>

We have constructed a function η (see [1]) having the following properties:

(a) For each non-null integer n, $\eta(n)$! is a multiple of n;

(b) $\eta(n)$ is the smallest natural number with the property (a).

It is easy to prove:

Lemma 1. (\forall) k, p ϵ N*, p. * 1, k is uniquely written in the form:

$$k = t_1 a_{n_1}^{(p)} + \ldots + t_{\xi} a_{n_{\xi}}^{(p)},$$

where
$$a_{n_i}^{(p)} = (p^{n_i} - 1) / (p - 1), i = 1, 2, ..., \ell,$$

 $n_1 > n_2 > ... > n_\ell > 0 \text{ and } 1 \le t_j \le p - 1, j = 1,$
 $2, ..., \ell - 1, 1 \le t_\ell \le p, n_i, t_i \in N, i = 1, 2,$
 $..., \ell, \ell \in N^*.$

We have constructed the function $\eta_{\rm p}, \ {\rm p} \ {\rm prime} > 0, \ \eta_{\rm p}$: N* \rightarrow N*, thus:

$$(\forall) \quad n \in \mathbb{N}^{\star}, \quad \eta_{p}\left(a_{n}^{(p)}\right) = p^{n}, \text{ and}$$
$$\eta_{p}\left(t_{1} a_{n_{1}}^{(p)} + \dots + t_{\ell} a_{n_{\ell}}^{(p)}\right) =$$
$$= t_{1} \quad \eta_{p}\left(a_{n} \frac{(p)}{1}\right) + \dots + t_{\ell} \quad \eta_{p}\left(a_{n_{\ell}}^{(p)}\right)$$

Of course:

<u>Lemma 2</u>.

(a) $(\forall) \ k \in N^*, \ \eta_p$ $(k) \ ! = Mp^k.$

(b) η_p (k) is the smallest number with the property (a). Now, we construct another function:

 η : $Z \setminus \{0\} \rightarrow N$ defined as follows:

56

$$\begin{cases} \eta (\pm 1) = 0, \\ \alpha_1 & \alpha_s \\ (\forall) \ n = \epsilon \ p_1 & \dots \ p_s \ \text{with } \epsilon = \pm 1, \ p_i \ \text{prime and} \\ p_i \neq p_j \ \text{for } i \neq j, \ \text{all } \alpha_i \in N^*, \ \eta(n) = \\ = \max_{1 \le i \le s} (\eta_p - (\alpha_i)). \end{cases}$$

It is not difficult to prove η has the demanded properties of §1.

 $\alpha_1 \qquad \alpha_s$ §2. Now, let $a = p_1 \qquad \dots \qquad p_s$, with all $\alpha_i \in N \star$ and all p_i distinct primes. By the previous theory we have:

$$\eta(a) = \max \{n_{p_i}(\alpha_i)\} = \eta_p(\alpha) \text{ (by notation)}.$$

$$1 \le i \le s$$

Hence $\eta(a) = \eta(p^{\alpha}), \eta(p^{\alpha}) ! = Mp^{\alpha}.$

We know:

$$n_1$$

 $(t_1p + \ldots + t_\ell p) = Mp = p-1$
 $(t_1p + \ldots + t_\ell p) = 1$

We put:

 $t_1 p^{n_1} + \ldots + t_{\xi} p^{n_{\xi}} = n + h$

.

and
$$t_1 \frac{p^{-1}}{p^{-1}} + \ldots + t_{\ell} \frac{p^{-1}}{p^{-1}} = \alpha n.$$

Whence

$$\frac{1}{\alpha} \left[\begin{array}{c} \frac{p^{n_1}-1}{p-1} + \ldots + t_{\ell} \frac{p^{n_{\ell}}-1}{p-1} \\ p-1 \end{array} \right] \ge t_1 p^{n_1} + \ldots + t_{\ell} p^{n_{\ell}} - h$$

or

(1)
$$\alpha$$
 (p - 1) $h \ge (\alpha p - \alpha - 1) [t_1 p^{n_1} + ... + t_{\xi} p^{n_{\xi}}] + ...$

+ $(t_1 + ... + t_{\ell})$.

On this condition we take
$$n_0 = t_1 p^{n_1} + \ldots + t_\ell p^{n_\ell} - h$$

(see Lemma 1), hence n = $\left\{ \begin{array}{l} n_0, \ n_0 > 0; \\ 1, \ n_0 \leq 0 \end{array} \right.$

Consider giving a $\neq 2$, we have a finite number of n. There are an infinite number of n if and only if $\alpha p - \alpha - 1 = 0$, i.e., $\alpha = 1$ and p = 2, i.e., a = 2.

.

§3. Particular Case

If h = 1 and $a \neq 2$, because

$$t_{1} p^{n_{1}} + \ldots + t_{\ell} p^{n_{\ell}} \ge p^{n_{\ell}} > 1$$

and $t_{1} + \ldots + t_{\ell} \ge 1$, it follows from (1) that:
(1') ($\alpha p - \alpha$) > ($\alpha p - \alpha - 1$) $\cdot 1 + 1 = \alpha p - \alpha$,
which is impossible. If $h = 1$ and $a = 2$ then $\alpha = 1$, $p = 2$, or
(1") $1 \ge t_{1} + \ldots + t_{\ell}$,
hence $\ell = 1$, $t_{1} = 1$ whence $n = t_{1} p^{n_{1}} + \ldots + t_{\ell} p^{n_{\ell}} - h = 2^{n_{1}} - 1$, $n_{1} \in N^{*}$ (the solution to problem 1270).
Example 1. Let $h = 16$ and $a = 3^{4} + 5^{2}$. Find all n
such that
 $(n + 16) ! = M 2025^{n}$.
Solution
 $\eta (2025) = \max (\eta_{3} (4), \eta_{5} (2)) = \max (9, 10) = 10 = 2^{n_{1}} + 128 \ge 7(t_{1}5^{n_{1}} + \ldots + t_{\ell}5^{n_{\ell}}] + t_{1} + \ldots + t_{\ell}$.
Because $5^{4} > 128$ and $7 (t_{1} 5^{n_{1}} + \ldots + t_{\ell}5^{n_{\ell}}] < 128$ we find $d = d = 1$,

$$128 \ge 7 t_1 5 + t_1$$

whence $n_1 \le 1$, i.e., $n_1 = 1$, and $t_1 = 1$, 2, 3. Then $n_0 = t_1 = t_1 = 16 < 0$, hence we take n = 1.

Example 2

 $(n + 7)! = M 3^{n} \text{ when } n = 1, 2, 3, 4, 5.$ $(n + 7)! = M 5^{n} \text{ when } n = 1.$ $(n + 7)! = M 7^{n} \text{ when } n = 1.$ But $(n + 7)! \neq M p^{n}, \text{ for } p \text{ prime } > 7, (\forall) n \in N^{\star}.$ $(n + 7)! = M 2^{n} \text{ when}$ $n_{0} = t_{1} 2^{n_{1}} + \dots + t_{\ell} 2^{n_{\ell}} - 7,$ $t_{1}, \dots, t_{\ell-1} = 1,$ $1 \le t_{\ell} \le 2, t_{1} + \dots + t_{\ell} \le 7$ and $n = \begin{cases} n_{0}, n_{0} > 0; \\ 1, n_{0} \le 0. \end{cases}$

etc.

Exercise for Readers

If n ϵ N*, a ϵ N*\{1}, find all values of a and n such that:

(n + 7)! be a multiple of a^n .

Some Unsolved Problems (see [2])

Solve the diophantine equations:

(1) η (x) $\cdot \eta$ (y) = η (x + y).

(2) η (x) = y! (A solution: x = 9, y = 3).

(3) Conjecture: the equation η (x) = η (x + 1) has no solution.

<u>References</u>

- [1] Florentin Smarandache, "A Function in the Number Theory,"
 Analele Univ. Timisoara, Fasc. 1, Vol. XVIII, pp. 79-88,
 1980, MR: 83c: 10008.
- [2] Idem, Un Infinity of Unsolved Problems Concerning a Function in Number Theory, International Congress of Mathematicians, Univ. of Berkeley, CA, August 3-11, 1986.

Florentin Smarandache

[A comment about this generalization was published in "Mathematics Magazine", Vol. 61, No. 3, June 1988, p. 202: "Smarandache considered the general problem of finding positive integers n, a, and k, so that (n + k)! should be a multiple of aⁿ. Also, for positive integers p and k, with p prime, he found a formula for determining the smallest integer f(k) with the property that (f(k))? is a multiple of p^k."]

61