SOME LINEAR EQUATIONS INVOLVING A

FUNCTION IN THE NUMBER THEORY

We have constructed a function η which associates to eac non-null integer m the smallest positive n such that n! is a multiple of m.

(a) Solve the equation η (x) = n, where n ϵ N.

*(b) Solve the equation η (mx) = x, where m ϵ Z. Discussion.

(c) Let $\eta^{(i)}$ note $\eta \circ \eta \circ \ldots \circ \eta$ of i times. Prove that there is a k for which

 $\eta^{(k)}(\mathbf{m}) = \eta^{(k+1)}(\mathbf{m}) = \mathbf{n}_{\mathbf{m}}, \text{ for all } \mathbf{m} \in \mathbb{Z} \setminus \{1\}.$

**Find n_m and the smallest k with this property.

<u>Solution</u>

(a) The cases n = 0, 1 are trivial.

We note the increasing sequence of primes less or equal than n by P_1 , P_2 , ..., P_k , and

$$\beta_{t} = \sum_{h>1} [n/p_{t}^{n}]$$
, $t = 1, 2, ..., k;$

where [y] is the greatest integer less or equal than y.

<u>،</u> ،

Let $n = p_{i_1}^{\alpha_{i_1}} \dots p_{i_s}^{\alpha_{i_s}}$, where all p_{i_j} are distinct primes and all α_{i_1} are from N.

Of course we have $n \le x \le n!$

Thus $x = p_1^{\sigma_1} \dots p_k^{\sigma_k}$ where $0 \le \sigma_t \le \beta_t$ for all $t = 1, 2, \dots, k$ and there exists at least a j $\in \{1, 2, \dots, s\}$ for which

 $\sigma_{i_j} \in \{\beta_{i_j} \mid \beta_{i_j}^{-1}, \ldots, \beta_{i_j} - \alpha_{i_j} + 1\}$

Clearly n! is a multiple of x, and is the smallest one.

(b) See [1] too. We consider $m \in N^*$.

Lemma 1. η (m) \leq m, and η (m) = m if and only if m = 4 or m is a prime.

Of course m! is a multiple of m.

If m #4 and m is not a prime, the Lemma is equivalent to there are m_1 , m_2 such that $m = m_1 \cdot m_2$ with $1 < m_1 \le m_2$ and $(2 m_2 < m \text{ or } 2 m_1 < m)$. Whence η $(m) \le 2 m_2 < m$, respectively η $(m) \le \max \{m_2, 2m\} < m$.

Lemma 2. Let p be a prime ≥ 5 . Then η (p x) = x if and only if x is a prime > p, or x = 2p.

Proof: η (p) = p. Hence x > p.

Analogously: x is not a prime and x = 2p - x = x, x_2 , 1 < $x_1 \le x_2$ and (2 $x_2 < x_1$, $x_2 = p_1$, and 2 $x_1 < x_2 = \eta$ (p x) \le

 $\leq \max \{p, 2 x_2\} < x$ respectively $\eta (p x) \leq \max \{p, 2 x_1, x_2\} < x$.

Observations

 η (2 x) = x - x = 4 or x is an odd prime.

 η (3 x) = x - x = 4, 6, 9 or x is a prime > 3.

Lemma 3. If (m, x) = 1 then x is a prime > η (m).

Of course, η (mx) = max { η (m), η (x)} = η (x) = x. And x = η (m), because if x = η (m) then m $\cdot \eta$ (m) divides η (m)! that is m divides (η (m) - 1)! whence η (m) $\leq \eta$ (m) -- 1.

Lemma 4. If x is not a prime then $\eta(m) < x \le 2 \eta$ (m) and $x = 2 \eta$ (m) if and only if η (m) is a prime.

Proof: If $x > 2 \eta$ (m) there are x_1, x_2 with $1 < x_1 \le x_2, x = x_1 x_2$. For $x_1 < \eta$ (m) we have (x - 1)! is a multiple of m x. Same proof for other cases.

Let $x = 2 \eta$ (m); if η (m) is not a prime, then x = 2 a b, $1 < a \le b$, but the product (η (m) + 1) (η (m) + + 2) ... (2η (m) - 1) is divided by x.

If η (m) is a prime, η (m) divides m, whence m $\cdot 2 \eta$ (m) is divided by η (m)², it results in η (m $\cdot 2 \eta$ (m)) $\geq 2 \cdot$ $\cdot \eta$ (m), but (η (m) + 1) (η (m) + 2) ... (2η (m)) is a multiple of 2η (m), that is η (m $\cdot 2 \eta$ (m)) = 2η (m).

Conclusion

All x, prime number > η (m), are solutions.

If η (m) is prime, then $x = 2 \eta$ (m) is a solution.

*If x is not a prime, η (m) < x < 2 η (m), and x does not divide (x - 1)!/m then x is a solution (semi-open question). If m = 3 it adds x = 9 too. (No other solution exists yet.)

(C)

Lemma 5. η (a b) $\leq \eta$ (a) + η (b).

Of course, η (a) = a' and η (b) = b' involves (a' + + b')! = b'! (b' + 1) ... (b' + a'). Let a' \leq b'. Then η (ab) \leq a' + b', because the product of a' consecutive positive integers is a multiple of a'!

Clearly, if m is a prime then k = 1 and $n_m = m$.

If m is not a prime then η (m) < m, whence there is a k for which $\eta^{(k)}$ (m) = $\eta^{(k+1)}$ (m).

If $m \neq 1$ then $2 \leq n_m \leq m$.

<u>Lemma 6</u>. $n_{m} = 4$ or n_{m} is a prime.

If $n_m = n_1 n_2$, $1 < n_1 \le n_2$, then $\eta (n_m) < n_m$. Absurd. $n_m \neq 4$.

(**) This question remains. open.

Reference

F. Smarandache, A Function in the Number Theory, An.
Univ. Timisoara, zeria st. mat., Vol. XVIII, fasc. 1,
pp. 79-88, 1980; Mathematical Reviews: 83c: 10008.

[Published on "Gamma" Journal, "Steagul Rosu" College, Brasov, 1987.]