SOME LINEAR EQUATIONS INVOLVING A FUNCTION IN THE NUMBER THEORY

We have constructed a function η which associates to ea non-null integer m the smallest positive n such that n ! is a multiple of m.
(a) Solve the equation $\eta(x)=n$, where $n \in N$.
*(b) Solve the equation $\eta(m x)=x$, where $m \in Z$. Discussion.
(c) Let $\eta^{(i)}$ note $\eta \circ \eta \circ \ldots 0 \eta$ of i times. Prove the there is a k for which

$$
\left.\eta^{(k)}(m)=\eta^{(x+1)}(m)=n_{m}, \text { for all m } \in Z \star \backslash I\right\}
$$

**Find n_{m} and the smallest k with this property.

Solution

(a) The cases $\Omega=0,1$ are trivial.

We note the increasing sequence of primes less or equal than n by $P_{1}, P_{2}, \ldots, P_{k}$, and

$$
\beta_{t}=\sum_{h \geq 1}\left[n / p_{t}^{n}\right], t=1,2, \ldots, k ;
$$

where $[y]$ is the greatest integer less or equal than y.

Let $n=p_{i}^{\alpha_{i}} \ldots \underline{p}_{i}^{\alpha_{i}}$, where all p_{i}, are distinct primes and all α_{i} aгe Erom N.

Of course we have $n \leq x \leq n$:

Thus $x=p_{i}^{\sigma_{1}} \ldots p_{x}^{\sigma_{k}}$ where $0 \leq \sigma_{:} \leq E_{\text {s }}$ for all
$t=1,2, \ldots, k$ and there exists at least a
$j \in\{1,2, \ldots, s\}$ for which

$$
\sigma_{i} \in\left\{\beta_{i} \beta_{i}{ }^{-1}, \ldots, \beta_{i}-\alpha_{i}+1\right\} .
$$

Clearly n ! is a multiple of x, and is the smallest one.
(b) See [1] too. We consider $m \in N *$.

Lemma 1. $\eta(m) \leq m$, and $\eta(m)=m$ if and only if $m=4$ or m is a prime.

Of course m ! is a multiple of m.
If $m=4$ and m is not a prime, the Lema is equivalent to there are m_{1}, m_{2} such that $m=m_{i} \cdot m_{2}$ with $1<m_{i} \leq m_{2}$ and $\left(2 m_{2}<m\right.$ or $\left.2 m_{1}<m\right)$. Whence $\eta(m) \leq 2 m_{2}<m$, respectively $\eta(\mathbb{m}) \leq \max \left\{\mathrm{m}_{2}, 2 \boldsymbol{\eta}\right\}<\mathrm{m}$.

Lemma 2. Let p be a prime ≥ 5. Then $\eta(p x)=x$ iz and only if x is a prime $>$ p, or $x=2 p$.

Proof: $\eta(p)=p$. Hence $x>p$.
Analogously: x is not a prime and $x=2 p-x=x, x_{2}$,
$1<x_{1} \leq x_{2}$ and $\left(2 x_{2}<x_{1}, x_{2}=p_{1}\right.$, and $\left.2 x_{1}<x\right)-\eta(p x) \leq$
 < x .

observations

$$
\begin{aligned}
& \eta(2 x)=x-x=4 \text { or } x \text { is an odd prime. } \\
& \eta(3 x)=x-x=4,6,9 \text { or } x \text { is a prime }>3
\end{aligned}
$$

Lemma 3. If $(m, x)=1$ then x is a prime $>\eta$ (m).
Of course, $\eta(\mathrm{mx})=\max \{\eta(\mathbb{I}), \eta(\mathrm{x})\}=\eta(\mathrm{x})=\mathrm{x}$.
And $x \neq \eta(m)$, because if $x=\eta(m)$ then $m \cdot \eta(m)$ divides $\eta(\mathrm{m})$! that is m divides $(\eta(\mathrm{m})-1)$! whence $\eta(\mathbb{m}) \leq \eta(\mathbb{O})$ -- 1.

Lemma 4. If x is not a prime then $\eta(m)<x \leq 2 \eta$ (m) and $x=2 \eta(m)$ if and only if $\eta(m)$ is a prime.

Proof: If $x>2 \eta(\mathbb{m})$ there are x_{1}, x_{2} with $1<x_{1} \leq$ $\leq x_{2}, x=x_{1} x_{2}$. For $x_{1}<\eta(m)$ we have $(x-1)$! is a multiple of $m x$. Same proof for other cases.

Let $x=2 \eta(\mathbb{I})$; if $\eta(m)$ is not a prime, then $x=2 a b, 1<a \leq b$, but the product $(\eta(m)+1)(\eta(m)+$ $+2) \ldots(2 \eta(m)-1)$ is divided by x.

If $\eta(m)$ is a prime, $\eta(m)$ divides m, whence $m \cdot 2 \eta(m)$ is divided by $\eta(m)^{2}$, it results in $\eta(m \cdot 2 \eta(m)) \geq 2$. $\cdot \eta(\mathbb{m})$, but $(\eta(\mathbb{m})+1)(\eta(\mathbb{m})+2) \ldots(2 \eta(\mathbb{m}))$ is a multiple of $2 \eta(m)$, that is $\eta(m \cdot 2 \eta(m))=2 \eta(m)$.

conclusion

All x, prime number $>\eta(B)$, are solutions.
If $\eta(m)$ is prime, then $x=2 \eta$ (in) is a solution.
*If x is not a prime, $\eta(m)<x<2 \eta(m)$, and x does not divide $(x-1)!/ n$ then x is a solution (semi-open question). If $m=3$ it adds $x=9$ too. (No other solution exists yet.)
(c)

Lemma 5. $\quad \eta(a b) \leq \eta(a)+\eta(b)$.
Of course, $\eta(a)=a^{\prime}$ and $\eta(b)=b^{\prime}$ involves $\left(a^{\prime}+\right.$
$\left.+b^{\prime}\right)!=b^{\prime}!\left(b^{\prime}+1\right) \ldots\left(b^{\prime}+a^{\prime}\right)$. Let $a^{\prime} \leq b^{\prime}$. Then
$\eta(a b) \leq a^{\prime}+b^{\prime}$, because the product of a^{\prime} consecutive positive integers is a multiple of a'!

Clearly, if m is a prime then $k=1$ and $n_{m}=m$.
If m is not a prime then $\eta(m)<m$, whence there is a k for which $\eta^{(k)}(\mathrm{m})=\eta^{(k+1)}$ (II).

If m then $2 \leq n_{m} \leq m$.
Lemma 6. $\quad n_{m}=4$ or n_{m} is a prime.
If $n_{m}=n_{1} n_{2}, 1<n_{1} \leq n_{2}$, then $\eta\left(n_{m}\right)<n_{m}$. Absurd. $n_{\pi}=4$.
(**) This question remains, open.

Reference

[1] F. Smarandache, A Function in the Number Theory, An. Univ. Timisoara, seria st. mat., Vol. XVIII, fasc. 1, pp. 79-88, 1980; Mathematical Reviews: 83c: 10008.

Florentin Smarandache

[Published on "Gamma". Journal, "Steagul Rosu" College, Brasov, 1987.]

