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 Abstract: In this note we present a method of solving this Diophantine 

equation, method which is different from Ljunggren’s, Mordell’s, and R.K.Guy’s. 
 
 In his book of unsolved problems Guy shows that the equation x2 = 2y4 −1  has, 
in the set of positive integers, the only solutions (1,1)  and (239,13) ; (Ljunggren has 
proved it in a complicated way). But Mordell gave an easier proof. 
  
 We’ll note t = y2 . The general integer solution for 2 22 1 0x t− + =  is  

   
xn+1 = 3xn + 4tn

tn+1 = 2xn + 3tn
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for all  n ∈N , where (x0 , y0 ) = (1,ε) , with  ε = ±1  (see [6]) or 
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, for all  n ∈N , where a matrix to the power zero is 

equal to the unit matrix I . 
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, and  λ ∈R . Then det(A − λ ⋅ I ) = 0  implies 

λ1,2 = 3 ± 2 , whence if v  is a vector of  dimension two, then: Av = λ1,2 ⋅ v . 
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P−1 ⋅ A ⋅P = D , or 
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Hence, we find:  
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For 0,  1n ε= =   we obtain y0
2 = 1  (whence x0

2 = 1 ), and for 3,  1n ε= =  we 

obtain 2
3 169y =  (whence 3 239x = ). 
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We still must prove that yn
2  is a perfect square if and only if n = 0, 3 . 

We can use a similar method for the Diophantine equation x2 = Dy4 ±1 , or more 
generally: C ⋅ X 2a = DY 2b + E , with  a,b ∈N*  and  C, D, E ∈Z* ; denoting Xa =U ,  
Y b = V , and applying the results from F.S. [6], the relation (1) becomes very 
complicated. 
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