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DSmT: A new paradigm shift for information fusion

J. Dezert1, F. Smarandache2

1ONERA/DTIM/IED, 29 Av. de la Division Leclerc, 92320 Châtillon, France
2Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA

Abstract: The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of
information has always been and still remains of primal importance for the development of reliable information fusion systems.
In this short survey paper, we present the theory of plausible and paradoxical reasoning, known as DSmT (Dezert-Smarandache
Theory) in literature, developed for dealing with imprecise, uncertain and potentially highly conflicting sources of information.
DSmT is a new paradigm shift for information fusion and recent publications have shown the interest and the potential ability
of DSmT to solve fusion problems where Dempster’s rule used in Dempster-Shafer Theory (DST) provides counter-intuitive
results or fails to provide useful result at all. This paper is focused on the foundations of DSmT and on its main rules of com-
bination (classic, hybrid and Proportional Conflict Redistribution rules). Shafer’s model on which is based DST appears as a
particular and specific case of DSm hybrid model which can be easily handled by DSmT as well. Several simple but illustrative
examples are given throughout this paper to show the interest and the generality of this new theory.
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1 Introduction

The development of DSmT [11] arises from the necessity to overcome the inherent limitations of the DST [10] which are
closely related with the acceptance of Shafer’s model (i.e.working with anhomogeneousframe of discernmentΘ defined as
a finite set ofexhaustiveandexclusivehypothesesθi, i = 1, . . . , n), the third excluded middle principle, and Dempster’s rule
for the combination of independent sources of evidence. Limitations of DST are well reported in literature [19, 17, 20] and
several alternative rules to Dempster’s rule of combination can be found in [4, 18, 7, 8, 9, 11] and very recently in [12, 13, 5].
DSmT provides a new mathematical framework for informationfusion which appears less restrictive and more general thanthe
basis and constraints of DST. The basis of DSmT is the refutation of the principle of the third excluded middle and Shafer’s
model in general, since for a wide class of fusion problems the hypotheses one has to deal with can have different intrinsic
nature1 and also appear only vague and imprecise in such a way that precise refinement is just impossible to obtain in reality so
that the exclusive elementsθi cannot be properly identified and defined. Many problems involving fuzzy/vague continuous and
relative2 concepts described in natural language with different semantic contents and having no absolute interpretation enter in
this category. DSmT starts with the notion offree DSm modeland considersΘ only as a frame of exhaustive elements which can
potentially overlap and have different intrinsic semanticnatures and which also can change with time with new information and
evidences received on the model itself. DSmT offers a flexibility on the structure of the model one has to deal with. When the
free DSm model holds, the conjunctive consensus is used. If the free model does not fit the reality because it is known that some
subsets ofΘ contain elements truly exclusive but also possibly truly non existing at all at a given time (in dynamic3 fusion),
new fusion rules must be used to take into account these integrity constraints. The constraints can be explicitly introduced into
the free DSm model to fit it adequately with our current knowledge of the reality; we actually construct ahybrid DSm model
on which the combination will be efficiently performed. Shafer’s model corresponds actually to a very specific hybrid DSm
(and homogeneous) model including all possible exclusivity constraints. DSmT has been developed to work with any model
and to combine imprecise, uncertain and potentially high conflicting sources for static and dynamic information fusion. DSmT
refutes the idea that sources provide their beliefs with thesame absolute interpretation of elements ofΘ; what is considered
as good for somebody can be considered as bad for somebody else. This invited paper is an extended version of [2, 3, 15].
After a short presentation of hyper-power set, we present the different models of DSmT and the Classic (DSmC) and Hybrid
DSm (DSmH) rules of combinations. We will show how these rules can be directly and easily extended for the combination
of imprecise beliefs. Then we present the most exact proportional conflict redistribution rule (PCR) which proposes a more
subtle transfer of the conflicting masses than DSmH. DSmH andPCR are mathematically well defined and work both with
any models and whatever the value the degree of conflict can take and do not provide counter-intuitive results. A detailed

1By example, in some target tracking and classification applications, one has to deal both with imprecise and uncertain information like radar-cross section,
as well as Doppler/velocity measurements

2The notion of relativity comes from the own interpretation of the elements of the frameΘ by each sources of evidences involved in the fusion process.
3i.e. when the frameΘ and/or the modelM is changing with time.
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comparison of the different rules of combination with several examples are provided in the companion paper [5]. The lastpart
of this paper is devoted to Zadeh’s example which has been periodically the source of many debates over the years. During
nineties this example has been occulted by a part of the community working with Dempster’s rule of combination. We consider
this example as a very fundamental one since it has been the source of many interesting works since its publication, by example
in [20, 4, 18, 17, 7, 16, 8, 9]. Therefore we reexamine it in ourDSmT framework and show how the new DSmH and PCR rules
can solve it more efficiently than Dempster’s rule. Advancesand first applications of DSmT are detailed in [11].

2 Notion of hyper-power set

Let Θ = {θ1, . . . , θn} be a finite set (called frame) ofn exhaustive elements4. The free Dedekind’s lattice denotedhyper-power
setDΘ [11] is defined as

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, thenA ∩ B andA ∪ B belong toDΘ.

3. No other elements belong toDΘ, except those obtained by using rules 1 or 2.

If |Θ| = n, then|DΘ| ≤ 22n

. The generation ofDΘ is presented in [11]. Since for any given finite setΘ, |DΘ| ≥ |2Θ|, we
call DΘ thehyper-power setof Θ. |DΘ| for n ≥ 1 follows the sequence of Dedekind’s numbers:1,2,5,19,167,... An analytical
expression of Dedekind’s numbers obtained by Tombak and al.can be found in [11].

3 Free and hybrid DSm models

Θ = {θ1, . . . , θn} denotes the finite set of hypotheses characterizing the fusion problem.DΘ constitutes thefree DSm model
Mf (Θ) and allows to work with fuzzy concepts which depict a continuous and relative intrinsic nature. Such kinds of concepts
cannot be precisely refined with an absolute interpretationbecause of the unapproachable universal truth. When allθi are truly
exclusive discrete elements,DΘ reduces to the classical power set2Θ. This is what we call the Shafer’s model, denotedM0(Θ).
Between the free DSm model and the Shafer’s model, there exists a wide class of fusion problems represented in term of DSm
hybrid models whereΘ involves both fuzzy continuous concepts and discrete hypotheses. In such class, some exclusivity
constraints and possibly some non-existential constraints (especially when working on dynamic fusion) have to be taken into
account. Each hybrid fusion problem is then characterized by a proper hybrid DSm modelM(Θ) with M(Θ) 6= Mf (Θ) and
M(Θ) 6= M0(Θ). From a general frameΘ, we define a mapm(.) : DΘ → [0, 1] associated to a given body of evidenceB as

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (1)

m(A) is thegeneralized basic belief assignment/mass(gbba) ofA. The belief and plausibility functions are defined as:

Bel(A) ,
∑

B⊆A

B∈DΘ

m(B) and Pl(A) ,
∑

B∩A 6=∅
B∈DΘ

m(B) (2)

These definitions are compatible with the Bel and Pl definitions given in DST whenM0(Θ) holds.

4 Classic DSm fusion rule

When the free DSm modelMf (Θ) holds, the conjunctive consensus, called DSm classic rule (DSmC), is performed onDΘ.
DSmC of two independent5 sources associated with gbbam1(.) andm2(.) is thus given∀C ∈ DΘ by [11]:

mDSmC(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (3)

DΘ being closed under∪ and∩ operators, DSmC guarantees thatm(.) is a proper gbba. DSmC is commutative and associative
and can be used for the fusion of sources involving fuzzy concepts wheneverMf(Θ) holds. It can be easily extended for the
fusion ofk > 2 independent sources [11].

4We do not assume here that elementsθi have the same intrinsic nature and are necessary exclusive.There is no restriction onθi but the exhaustivity.
5While independence is a difficult concept to define in all theories managing epistemic uncertainty, we consider that two sources of evidence are independent

(i.e. distinct and noninteracting) if each leaves one totally ignorant about the particular value the other will take.



5 Hybrid DSm fusion rule

WhenMf (Θ) does not hold (some integrity constraints exist), one dealswith a proper DSm hybrid modelM(Θ) 6= Mf (Θ).
DSm hybrid rule (DSmH) fork ≥ 2 independent sources is thus defined for allA ∈ DΘ as [11]:

mDSmH(A) , φ(A) ·
[

S1(A) + S2(A) + S3(A)
]

(4)

whereφ(A) is thecharacteristic non-emptiness functionof a setA, i.e. φ(A) = 1 if A /∈ ∅ andφ(A) = 0 otherwise, where
∅ , {∅M, ∅}. ∅M is the set of all elements ofDΘ which have been forced to be empty through the constraints ofthe model
M and∅ is the classical/universal empty set.S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
∏

i=1

mi(Xi) (5)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
∏

i=1

mi(Xi) (6)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xk))=A

(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (7)

with U , u(X1) ∪ . . . ∪ u(Xk) whereu(X) is the union of allθi that composeX , It , θ1 ∪ . . . ∪ θn is the total ignorance,
andc(X) is the canonical form6 of X , i.e. its simplest form (for example ifX = (A ∩ B) ∩ (A ∪ B ∪ C), c(X) = A ∩ B).
S1(A) is nothing but the DSmC rule fork independent sources based onMf (Θ); S2(A) is the mass of all relatively and
absolutely empty sets which is transferred to the total or relative ignorances associated with non existential constraints (if any,
like in some dynamic problems);S3(A) transfers the sum of relatively empty sets directly onto thecanonical disjunctive form of
non-empty sets. DSmH generalizes DSmC and allows to work on Shafer’s model. It is definitely not equivalent to Dempster’s
rule since these rules are different. DSmH works for any models (free DSm model, Shafer’s model or any hybrid models) when
manipulatingprecisebba.

5.1 Examples

5.1.1 Example with a total conflict

Let’s considerΘ = {θ1, θ2, θ3, θ4}, two independent experts, and the two following bbam1(θ1) = 0.6, m1(θ3) = 0.4,
m2(θ2) = 0.2 andm2(θ4) = 0.8.

• Dempster’s rule can not be applied here because:∀1 ≤ j ≤ 4, one getsmDS(θj) = 0/0 (undefined!).

• But DSmC works because one obtains zero for the mass ofθj , j = 1, ..., 4 andmDSmC(θ1 ∩ θ2) = 0.12, mDSmC(θ1 ∩
θ4) = 0.48, mDSmC(θ2 ∩ θ3) = 0.08, mDSmC(θ3 ∩ θ4) = 0.32 (partial conflicts).

• Suppose now one finds out that all intersections are empty (Shafer’s model holds), then one applies the hybrid DSm rule
and one gets :mDSmH(θ1 ∪ θ2) = 0.12, mDSmH(θ1 ∪ θ4) = 0.48, mDSmH(θ2 ∪ θ3) = 0.08 andmDSmH(θ3 ∪ θ4) =
0.32.

5.1.2 Generalization of Zadeh’s example

Let’s considerΘ = {θ1, θ2, θ3}, 0 < ǫ1, ǫ2 < 1, be two positive numbers and two experts providing the bbam1(θ1) = 1 − ǫ1,
m1(θ2) = 0, m1(θ3) = ǫ1, m2(θ1) = 0, m2(θ2) = 1 − ǫ2 andm2(θ3) = ǫ2.

• Using Dempster’s rule of combination, one gets

mDS(θ3) =
(ǫ1ǫ2)

(1 − ǫ1) · 0 + 0 · (1 − ǫ2) + ǫ1ǫ2
= 1

6The canonical form is introduced here explicitly in order toimprove the original formula given in [11] for preserving the neutral impact of the vacuous
belief massm(Θ) = 1 within complex hybrid models. Actually all propositions involved in formulas are expressed in their canonical form, i.e. conjunctive
normal form, also known as conjunction of disjunctions in Boolean algebra, which is unique.



which is absurd (or at least counter-intuitive). Note that whatever positive values forǫ1, ǫ2 are, Dempster’s rule gives
always the same result(one) which is abnormal. The only acceptable and correct result obtained by Dempster’s rule is
really obtained only in the trivial case whenǫ1 = ǫ2 = 1, i.e. when both sources agree inθ3 with certainty which is
obvious.

• Using DSmC,mDSmC(θ3) = ǫ1ǫ2, mDSmC(θ1∩θ2) = (1− ǫ1)(1− ǫ2), mDSmC(θ1∩θ3) = (1− ǫ1)ǫ2, mDSmC(θ2∩
θ3) = (1 − ǫ2)ǫ1 and the others are zero which appears more legitimate if we accept the non exclusivity of hypotheses
(i.e. the free-DSm model).

• If we accept the Shafer’s model, one gets with DSmH (4):mDSmH(θ3) = ǫ1ǫ2, mDSmH(θ1 ∪ θ2) = (1 − ǫ1)(1 − ǫ2),
mDSmH(θ1 ∪ θ3) = (1 − ǫ1)ǫ2, mDSmH(θ2 ∪ θ3) = (1 − ǫ2)ǫ1. All other masses are zero. This result makes more
sense since it depends truly on the values ofǫ1 andǫ2 contrariwise to Dempster’s rule.

Whenǫ1 = ǫ2 = 1/2, one otains
m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2

m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule still yieldsmDS(θ3) = 1 while DSmH based on the same Shafer’s model yields nowmDSmH(θ3) = 1/4,
mDSmH(θ1 ∪ θ2) = 1/4, mDSmH(θ1 ∪ θ3) = 1/4, mDSmH(θ2 ∪ θ3) = 1/4 which is more acceptable upon authors opinion.

6 Fusion of imprecise beliefs

In general it is very difficult to have sources providing precise basic belief assignments (bba), especially when information is
given by human experts. A more flexible theory dealing with imprecise information becomes necessary. We extended DSmT
and its fusion rules for dealing withadmissible imprecise generalizedbbamI(.) whose values are real subunitary intervals of
[0, 1], or even more general as real subunitary sets (i.e. sets, notnecessarily intervals). In the general case, these sets canbe
unions of (closed, open, or half-open/half-closed) intervals and/or scalars all in[0, 1]. An imprecise bbamI(.) is mathematically
defined asmI(.) : DΘ → P([0, 1]) \ {∅} whereP([0, 1]) is the set of all subsets of the interval[0, 1]. An imprecise bbamI(.)
overDΘ is saidadmissibleif and only if there exists for everyX ∈ DΘ at least one real numberm(X) ∈ mI(X) such that
∑

X∈DΘ m(X) = 1. mI(.) is a normal extension ofm(.) from scalar values to set values. For example, if a sourcem(.) is not
sure about a scalar valuem(A) = 0.3, it may be considered an imprecise source which gives a set value saymI(A) = [0.2, 0.4].
The following simple commutative operators on sets (addition⊞ and multiplication⊡) are required [11] for fusion of imprecise
bba:X1 ⊞ X2 , {x | x = x1 + x2, x1 ∈ X1, x2 ∈ X2} andX1 ⊡ X2 , {x | x = x1 · x2, x1 ∈ X1, x2 ∈ X2}. These operators
are generalized for the summation and products ofn ≥ 2 sets as follows

∑

k=1,...,n

Xk = {x | x =
∑

k=1,...,n

xk, x1 ∈ X1, . . . , xn ∈ Xn}

∏

k=1,...,n

Xk = {x | x =
∏

k=1,...,n

xk, x1 ∈ X1, . . . , xn ∈ Xn}

From these operators, one generalizes DSmC and DSmH from scalars to sets ([11] chap. 6) by:∀A 6= ∅ ∈ DΘ,

mI
DSmC(A) =

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (8)

mI
DSmH(A) , φ(A) ⊡

[

SI
1 (A) ⊞ SI

2 (A) ⊞ SI
3 (A)

]

(9)

with

SI
1 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (10)

SI
2(A) ,

∑

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

∏

i=1,...,k

mI
i (Xi) (11)



SI
3 (A) ,

∑

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xk))=A

(X1∩X2∩...∩Xk)∈∅

∏

i=1,...,k

mI
i (Xi) (12)

These operators are just natural extensions of the conjunctive rule, DSmC, and DSmH from scalar-valued to set-valued sources
of information. It has been proved that (8) and (9) provide anadmissible imprecise belief assignment (see the Theorem of
Admissibility and its proof in Ch.6, p. 138, of [11]). In other words, DSm combinations of two admissible imprecise bba is
also an admissible imprecise bba. As their precise counterparts, the imprecise DSm combination rules arequasi-associative,
i.e. one stores in the computer’s memory the conjunctive rule’s result and, when new evidence comes in, this new evidenceis
combined with the conjunctive’s rule result. In this way theassociativity is preserved.

6.1 Example

Let’s considerΘ = {θ1, θ2}, two independent sources with the following imprecise admissible bba:

A ∈ DΘ mI
1(A) mI

2(A)
θ1 [0.1, 0.2]∪ {0.3} [0.4, 0.5]
θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 1: Inputs of the fusion with imprecise bba

Using DSm classic rule for sets, one gets7

mI
DSmC(θ1) = ([0.1, 0.2] ∪ {0.3}) ⊡ [0.4, 0.5]

= ([0.1, 0.2] ⊡ [0.4, 0.5]) ∪ ({0.3} ⊡ [0.4, 0.5])

= [0.04, 0.10]∪ [0.12, 0.15]

mI
DSmC(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8]) ⊡ ([0, 0.4] ∪ {0.5, 0.6})

= [0, 0.40]∪ [0.42, 0.48]

mI
DSmC(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3}) ⊡ ([0, 0.4] ∪ {0.5, 0.6})] ⊞ [[0.4, 0.5] ⊡ ((0.4, 0.6) ∪ [0.7, 0.8])]

= (0.16, 0.58]

Hence finally the fusion admissible result is given by:

A ∈ DΘ mI
DSmC(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]
θ1 ∪ θ2 0

Table 2: Fusion result with DSm classic rule

If one finds out8 that θ1 ∩ θ2
M
≡ ∅ (this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule

for sets (9) and therefore the imprecise massmI
DSmC(θ1 ∩ θ2) = (0.16, 0.58] is then directly transferred ontoθ1 ∪ θ2 and the

others imprecise masses are not changed. Finally, one gets with DSmH applied to imprecise beliefs:
For the source 1, there exist the precise masses(m1(θ1) = 0.3) ∈ ([0.1, 0.2] ∪ {0.3}) and(m1(θ2) = 0.7) ∈ ((0.4, 0.6) ∪
[0.7, 0.8]) such that0.3 + 0.7 = 1 and for the source 2, there exist the precise masses(m1(θ1) = 0.4) ∈ ([0.4, 0.5]) and
(m2(θ2) = 0.6) ∈ ([0, 0.4] ∪ {0.5, 0.6}) such that0.4 + 0.6 = 1. Therefore both sources associated withmI

1(.) andmI
2(.) are

admissible imprecise sources of information. It can be easily checked that DSmC yields the paradoxical basic belief assignment
mDSmC(θ1) = [m1⊕m2](θ1) = 0.12, mDSmC(θ2) = [m1⊕m2](θ2) = 0.42 andmDSmC(θ1∩θ2) = [m1⊕m2](θ1∩θ2) =
0.46. One sees from Table 2 that the admissibility is satisfied since there exists at least a bba (heremDSmC(.)) with

(mDSmC(θ1) = 0.12) ∈ mI
DSmC(θ1)

7A complete derivation of this reslut can be found in [11] pp. 139-140.
8We consider now a dynamic fusion problem.



A ∈ DΘ mI
DSmH(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 3: Fusion result with the hybrid DSm rule forM

(mDSmC(θ2) = 0.42) ∈ mI
DSmC(θ2)

(mDSmC(θ1 ∩ θ2) = 0.46) ∈ mI
DSmC(θ1 ∩ θ2)

such that0.12 + 0.42 + 0.46 = 1. Similarly if one finds out thatθ1 ∩ θ2 = ∅, then one uses DSmH and one gets:mDSmH(θ1 ∩
θ2) = 0 andmDSmH(θ1 ∪ θ2) = 0.46; the others remain unchanged. The admissibility still holds, because one can pick at
least one number in each subsetmI

DSmH(.) such that the sum of these numbers is 1. This approach can be also used in the
similar manner to obtain imprecise pignistic probabilities frommI

DSmH(.) for decision-making under uncertain, paradoxical
and imprecise sources of information as well [11, 1].

7 Proportional Conflict Redistribution

Instead of applying a direct transfer of partial conflicts onto partial uncertainties as with DSmH, the idea behind the Proportional
Conflict Redistribution (PCR) rule [12, 13] is to transfer (total or partial) conflicting masses to non-empty sets involved in the
conflicts proportionally with respect to the masses assigned to them by sources as follows:

1. calculation the conjunctive rule of the belief masses of sources;

2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting masses to the non-empty sets involved in the conflicts proportionally
with respect to their masses assigned by the sources.

The way the conflicting mass is redistributed yields actually several versions of PCR rules. These PCR fusion rules work for
any degree of conflict, for any DSm models (Shafer’s model, free DSm model or any hybrid DSm model) and both in DST and
DSmT frameworks for static or dynamical fusion situations.We present below only the most sophisticated proportional conflict
redistribution rule (corresponding to PCR5 in [12, 13] but denoted here just PCR for simplicity) since this PCR rule is what
we feel the most efficient PCR fusion rule developed so far. PCR rule redistributes the partial conflicting mass to the elements
involved in the partial conflict, considering the conjunctive normal form of the partial conflict. PCR is what we think themost
mathematically exact redistribution of conflicting mass tonon-empty sets following the logic of the conjunctive rule.PCR does
a better redistribution of the conflicting mass than Dempster’s rule sice PCR goes backwards on the tracks of the conjunctive
rule and redistributes the conflicting mass only to the sets involved in the conflict and proportionally to their masses put in the
conflict. PCR rule is quasi-associative and preserves the neutral impact of the vacuous belief assignment because in anypartial
conflict, as well in the total conflict (which is a sum of all partial conflicts), the conjunctive normal form of each partialconflict
does not includeΘ sinceΘ is a neutral element for intersection (conflict), thereforeΘ gets no mass after the redistribution of
the conflicting mass. We have also proved in [12] the continuity property of the PCR result with continuous variations of bba
to combine. The general PCR formula fors ≥ 2 sources is given by [12]mPCR(∅) = 0 and∀X ∈ G \ {∅}

mPCR(X) = m12...s(X) +
∑

2≤t≤s
1≤r1,...,rt≤s1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2 ,...,Xjt∈G\{X}

{j2,...,jt}∈Pt−1({1,...,n})
c(X∩Xj2∩...∩Xjs )=∅
{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(X)2) · [

∏t

l=2(
∏rl

kl=rl−1+1 mikl
(Xjl

)]

(
∏r1

k1=1 mik1
(X)) + [

∑t

l=2(
∏rl

kl=rl−1+1 mikl
(Xjl

)]
(13)

whereG corresponds to classical power-set2Θ if Shafer’s model is used orG corresponds to a constrained hyper-power setDΘ

if any other hybrid DSm model is used instead;i, j, k, r, s andt in (13) are integers.m12...s(X) ≡ m∩(X) corresponds to the
conjunctive consensus onX betweens sources and where all denominators are different from zero.If a denominator is zero,
that fraction is discarded; the set of all subsets ofk elements from{1, 2, . . . , n} (permutations ofn elements taken byk) was
denotedPk({1, 2, . . . , n}), the order of elements doesn’t count.c(X) is the canonical form (conjunctive normal form) ofX .



Whens = 2 (fusion of only two sources), the previous PCR rule reduces to its simple following fusion formula:mPCR(∅) =
0 and∀X ∈ G \ {∅}

mPCR(X) = m12(X) +
∑

Y ∈G\{X}
c(X∩Y )=∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (14)

7.1 Examples

Due to space limitation and to avoid redundancy with our companion paper [5], we just provide here directly the final results of
Dempster’s rule (DS), PCR and DSmH for the three following simple examples:

• Example 1: Let’s takeΘ = {A, B} of exclusive elements (Shafer’s model), and the following bba:

A B A ∪ B
m1(.) 0.6 0 0.4
m2(.) 0 0.3 0.7

m∩(.) 0.42 0.12 0.28

The conflicting mass isk12 = m∩(A ∩ B) and equalsm1(A)m2(B) + m1(B)m2(A) = 0.18. ThereforeA andB are
the only focal elements involved in the conflict. Hence according to the PCR hypothesis onlyA andB deserve a part of
the conflicting mass andA ∪ B do not deserve. With PCR, one redistributes the conflicting massk12 = 0.18 to A andB
proportionally with the massesm1(A) andm2(B) assigned toA andB respectively. Here are the results obtained from
Dempster’s rule, DSmH and PCR:

A B A ∪ B
mDS 0.512 0.146 0.342
mDSmH 0.420 0.120 0.460
mPCR 0.540 0.180 0.280

• Example 2: Let’s modify example 1 and consider

A B A ∪ B
m1(.) 0.6 0 0.4
m2(.) 0.2 0.3 0.5

m∩(.) 0.50 0.12 0.20

The conflicting massk12 = m∩(A ∩ B) as well as the distribution coefficients for the PCR remains the same as in the
previous example but one gets now

A B A ∪ B
mDS 0.609 0.146 0.231
mDSmH 0.500 0.120 0.380
mPCR 0.620 0.180 0.200

• Example 3: Let’s modify example 2 and consider

A B A ∪ B
m1(.) 0.6 0.3 0.1
m2(.) 0.2 0.3 0.5

m∩(.) 0.44 0.27 0.05

The conflicting massk12 = 0.24 = m1(A)m2(B) + m1(B)m2(A) = 0.24 is now different from previous examples,
which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict. ThereforeA andB are the only
focal elements involved in the conflict and thus onlyA andB deserve a part of the conflicting mass. PCR redistributes the
partial conflicting mass 0.18 toA andB proportionally with the massesm1(A) andm2(B) and also the partial conflicting
mass 0.06 toA andB proportionally with the massesm2(A) andm1(B). After all derivations (see [5] for details), one
finally gets



A B A ∪ B
mDS 0.579 0.355 0.066
mDSmH 0.440 0.270 0.290
mPCR 0.584 0.366 0.050

One clearly sees thatmDS(A∪B) gets some mass from the conflicting mass althoughA∪B does not deserve any part of
the conflicting mass (according to PCR hypothesis) sinceA∪B is not involved in the conflict (onlyA andB are involved
in the conflicting mass). Dempster’s rule appears to us less exact than PCR and Inagaki’s rules [7]. It can be shown [5]
that Inagaki’s fusion rule (with an optimal choice of tuningparameters) can become in some cases very close to PCR but
upon our opinion PCR result is more exact (at least less ad-hoc than Inagaki’s one).

8 Zadeh’s example

We compare here the solutions for well-known Zadeh’s example [19, 20] provided by several fusion rules. A detailed presen-
tation with more comparisons can be found in [11, 12]. Let’s considerΘ = {M, C, T } as the frame of three potential origins
about possible diseases of a patient (M standing formeningitis, C for concussionandT for tumor), the Shafer’s model and the
two following belief assignments provided by two independent doctors after examination of the same patient.

m1(M) = 0.9 m1(C) = 0 m1(T ) = 0.1

m2(M) = 0 m2(C) = 0.9 m2(T ) = 0.1

The total conflicting mass is high since it is

m1(M)m2(C) + m1(M)m2(T ) + m2(C)m1(T ) = 0.99

• with Dempster’s rule and Shafer’s model (DS), one gets the counter-intuitive result (see justifications in [19, 4, 18, 17,
11]): mDS(T ) = 1

• with Yager’s rule [18] and Shafer’s model:mY (M ∪ C ∪ T ) = 0.99 andmY (T ) = 0.01

• with DSmH and Shafer’s model:

mDSmH(M ∪ C) = 0.81 mDSmH(T ) = 0.01

mDSmH(M ∪ T ) = mDSmH(C ∪ T ) = 0.09

• The Dubois & Prade’s rule (DP) [4] based on Shafer’s model provides in Zadeh’s example the same result as DSmH,
because DP and DSmH coincide in all static fusion problems9.

• with PCR and Shafer’s model:

mPCR(M) = mPCR(C) = 0.486

mPCR(T ) = 0.028

One sees that when the total conflict between sources becomeshigh, DSmT is able (upon authors opinion) to manage more
adequately through DSmH or PCR rules the combination of information than Dempster’s rule, even when working with Shafer’s
model - which is only a specific hybrid model. DSmH rule is in agreement with DP rule for the static fusion, but DSmH and
DP rules differ in general (for non degenerate cases) for dynamic fusion while PCR rule is the most exact proportional conflict
redistribution rule. Besides this particular example, we showed in [11, 12] that there exist several infinite classes ofcounter-
examples to Dempster’s rule which can be solved by DSmT.

A recent attempt has been presented by Haenni in [6] to try to explain what’s going wrong with Zadeh’s example and why
such kind of example is misleading; However Haenni does not resolve the original Zadeh’s example, but amodifiedZadeh’s
example when he used Dempster’s rule, which let the originalZadeh’s problem open. Moreover the numerical invariance
problem of Dempster’s rule with respect to input parametersǫ1 andǫ2 in Zadeh’s case (see section 5.1.2) is unfortunately not
discussed and solved in [6]. Anyway, just let us make few comments against the argumentation used by Haenni in [6].

9Indeed DP rule has been developed for static fusion only while DSmH has been developed to take into account the possible dynamicity of the frame itself
and also its associated model.



1. In his first ”solution”, Haenni considersnon-exclusivehypothesesM , C, T , but this is not the case Zadeh talked about,
since Zadeh consideredexclusivehypotheses. Such approach had been investigated moreover already in [11] when
working with free DSm model and thus brings nothing new in [6]. Although Haenni tries to justify that diseasesM , C,
T can have common symptoms (which for some diseases may be true), we can construct a different example where the
hypotheses are clearly exclusive. Let have the similar Zadeh’s example, but instead of takingM , C, T as three potential
diseases, we consider the same basic belief masses providedby two independent sources with following hypotheses:

• M = the set of positive multiples of 3;

• C = the set of positive multiples of 3 plus 1;

• T = the set of positive multiples of 3 plus 2.

HenceM , C, T are exclusive two by two and the first ”solution” proposed by Haenni does not work.

2. Next, Haenni comments that because the massesm1(.) andm2(.) are Bayesian they correspond to ordinary probability
distribution. But we have already given a non-Bayesian example in [11] where Dempster’s rule does not work. Indeed,
let’s takeΘ = {A, B, C, D} with exclusive hypotheses (i.e. Shafer’s model holds), andthe following massesm1(.) and
m2(.) considered as fully reliable but non-Bayesian (since focalelements are not only given by singletons):

m1(A) = 0.99 m1(C ∪ D) = 0.01

m2(B) = 0.99 m2(C ∪ D) = 0.01

Using Dempster’s rule we get the anomalymDS(C ∪ D) = 1. At last Fusion 2005 Conference in Philadelphia in July
2005, we gave this example to R. Haenni to solve. He answered back that becausem1(B) = m2(A) = 0, means that
A andB are excluded as hypotheses and hence what is left,C ∪ D deserves the mass 1. But he could do the same
in Zadeh’s example and justify it in the same erroneous way: becausem1(C) = m2(M) = 0 then hypothesesC, M
are excluded and only hypothesisT is left, henceT should deserve the mass 1 (which is exactly what Dempster’s rule
provides and which is the source of the problem and the ”justification” of [6])! But Haenni makes a confusion between
objective probability(or classical probability) andsubjective probabilitywe work with in information fusion (specially
when human assessments/reports must be taken into account in the fusion process).

3. In his second ”solution”, Haenni discounts the sources because they are conflicting, although Zadeh considered them
fully reliable, hence not necessarily discountable. The author discounts the sources by 20%, but he does not say where
he got this percentage from? Why not by 15% or by 22% ? If two sources are conflicting it does not mean they are
unreliable. For example, let’s consider two professorsA andB asked to evaluate a student. ProfessorA may say the
student is very good, while professorB the student is very bad, and both can be true (fully reliable)if we consider the first
evaluation done from the student’s mathematical skills point of view and the second from student’s English skills point
of view. A student can be good in Mathematics and bad in English. A good theory has to work in any case, exceptions
included! Dempster’s rule fails Zadeh’s example and some other infinite classes of counter-examples mentioned in [11].

In summary, DST does not work in Zadeh’s example, nor in non-Bayesian examples similar to Zadeh’s as shown previously,
and neither when the conflict is 1. Only ad-hoc discounting techniques allow to circumvent troubles of Dempster’s rule orwe
need to switch to another model of representation/frame; inthe later case the solution obtained doesn’t fit with the Shafer’s
model one originally wanted to work with. We want also to emphasize that in dynamic fusion when the conflict becomes high,
both DST [10] and Smets’ Transferable Belief Model (TBM) [16] approaches fail to respond to new information provided
by new sources. This can be easily shown by the very simple following example. Let’s considerΘ = {A, B, C} and the
following (precise) belief assignmentsm1(A) = 0.4, m1(C) = 0.6 andm2(A) = 0.7, m2(B) = 0.3. Then one gets10 with
Dempster’s rule, Smets’ TBM (i.e. the non-normalized version of Dempster’s combination), (DSmH) and (PCR5):m12

DS(A) =
1, m12

TBM (A) = 0.28, m12
TBM (∅) = 0.72,



















m12
DSmH(A) = 0.28

m12
DSmH(A ∪ B) = 0.12

m12
DSmH(A ∪ C) = 0.42

m12
DSmH(B ∪ C) = 0.18











m12
PCR(A) = 0.574725

m12
PCR(B) = 0.111429

m12
PCR(C) = 0.313846

10We introduce here explicitly the indexes of sources in the fusion result since more than two sources are considered in this example.



Now let’s consider a temporal fusion problem and introduce athird sourcem3(.) with m3(B) = 0.8 andm3(C) = 0.2.
Then one sequentially combines the results obtained bym12

TBM (.), m12
DS(.), m12

DSmH(.) andm12
PCR(.) with the new evidence

m3(.) and one sees thatm
(12)3
DS becomes not defined (division by zero) andm

(12)3
TBM (∅) = 1 while (DSmH) and (PCR) provide































m
(12)3
DSmH(B) = 0.240

m
(12)3
DSmH(C) = 0.120

m
(12)3
DSmH(A ∪ B) = 0.224

m
(12)3
DSmH(A ∪ C) = 0.056

m
(12)3
DSmH(A ∪ B ∪ C) = 0.360











m
(12)3
PCR(A) = 0.277490

m
(12)3
PCR(B) = 0.545010

m
(12)3
PCR(C) = 0.177500

When the mass committed to empty set becomes one at a previoustemporal fusion step, then both DST and TBM do not
respond to new information. Let’s continue the example and consider a fourth sourcem4(.) with m4(A) = 0.5, m4(B) = 0.3

andm4(C) = 0.2. Then it is easy to see thatm
((12)3)4
DS (.) is not defined since at previous stepm

(12)3
DS (.) was already not

defined, and thatm((12)3)4
TBM (∅) = 1 whateverm4(.) is because at the previous fusion step one hadm

(12)3
TBM (∅) = 1. Therefore

for a number of sourcesn ≥ 2, DST and TBM approaches do not respond to new information incoming in the fusion process
while both (DSmH) and (PCR) rules respond to new information. To make DST and/or TBM working properly in such cases,
it is necessary to introduce ad-hoc temporal discounting techniques which are not necessary to introduce if DSmT is adopted.
If there are good reasons to introduce temporal discounting, there is obviously no difficulty to apply the DSm fusion of these
discounted sources.

9 Conclusion

In this short survey paper we presented the foundations of DSmT and its main combination rules which result from very recent
research investigations. DSmT although not sufficiently known in the information fusion and artificial intelligence communities
as any new emerging theory has however been successfully applied in different fields of applications like multitarget tracking
and classification or remote sensing application. We hope that this paper will help readers involved in information fusion to
become curious and hopefully more comfortable with our research work and our new approach for data fusion. DSmT is a
new promising paradigm shift for the combination of precise(and even imprecise), uncertain and potentially highly conflicting
sources of information. It is important to emphasize that most of methods developed to improve the management of beliefsin
Dempster-Shafer Theory (like those based on discounting techniques by example or those developed for taking decision under
uncertainty) can directly be applied in DSmT framework as well. In this paper, we also put back in the light and discussed
Zadeh’s problem which is one of the major problem that any satisfactory fusion rule must solve. We have shown here how
DSmT can cope with it efficiently thanks to its DSmH or PCR rules.

10 Acknowledgments

We are very grateful to Professor Michel Minoux for invitingand encouraging us to write this survey paper on DSmT for
Cogis’06 conference and also for his discussions and his interest in our works.

References

[1] Dezert J., Smarandache F., Daniel M.,The Generalized Pignistic Transform, Proc. of Fusion 2004 Conf., Stockholm, July
2004.

[2] Dezert J., Smarandache F.,A short overview on DSmT for Information Fusion, 10th Int. Conf. on Fuzzy Theory and
Techn., Salt Lake City, Utah, USA, July 21-26, 2005.

[3] Dezert J., Smarandache F.,The DSmT Approach for Information Fusion and Some Open Challenging Problems, NATO
ASI, Albena, Bulgaria, 16-27 May 2005.

[4] Dubois D., Prade H.,On the unicity of Dempster rule of combination, Int. J. of Intelligent Syst., Vol. 1, pp 133-142, 1986.

[5] Florea M. C., Dezert J., Valin P., Smarandache F.,Adaptative combination rule and proportional conflict redistribution
rule for information fusion, Proc. of Cogis 2006 Conference, Paris, March 2006.



[6] Haenni R.,Shedding New Light on Zadeh’s Criticism of Dempster’s Rule of Combination, Proceedings of Fusion 2005
Conf., Philadelphia, July 26-29, 2005.

[7] Inagaki T.,Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory, IEEE
Trans. on reliability, Vol. 40, no. 2, pp. 182-188, 1991.
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