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Abstract: The management and combination of uncertain, impreaigeyfand even paradoxical or high conflicting sources of
information has always been and still remains of primal intguace for the development of reliable information fusigatems.

In this short survey paper, we present the theory of plaasibtl paradoxical reasoning, known as DSmT (Dezert-Smachaed
Theory) in literature, developed for dealing with impregiancertain and potentially highly conflicting sourcesnéérmation.
DSmT is a new paradigm shift for information fusion and reqarblications have shown the interest and the potentidityabi
of DSmT to solve fusion problems where Dempster’s rule usddémpster-Shafer Theory (DST) provides counter-intaitiv
results or fails to provide useful result at all. This papeioicused on the foundations of DSmT and on its main rules i co
bination (classic, hybrid and Proportional Conflict Redlisttion rules). Shafer’s model on which is based DST appeaara
particular and specific case of DSm hybrid model which cardséyehandled by DSmT as well. Several simple but illustheti
examples are given throughout this paper to show the intengsthe generality of this new theory.

Keywords: Dezert-Smarandache Theory, DSmT, Information Fusiomfli@ management.

1 Introduction

The development of DSmT_[11] arises from the necessity taamraee the inherent limitations of the DSIT_[10] which are
closely related with the acceptance of Shafer’'s model {i@king with anhomogeneouame of discernmer® defined as

a finite set ofexhaustiveandexclusivehypothese$,, i = 1,...,n), the third excluded middle principle, and Dempster’s rule
for the combination of independent sources of evidence.ithtions of DST are well reported in literaturie [19,] 17] 2@da
several alternative rules to Dempster’s rule of combimagian be found in14, 18] 7] Bl B,111] and very recently.id [12 /5]3
DSmT provides a new mathematical framework for informafigion which appears less restrictive and more generalttiean
basis and constraints of DST. The basis of DSmT is the rédutaif the principle of the third excluded middle and Shafer’
model in general, since for a wide class of fusion probleneshtypotheses one has to deal with can have different intrinsi
naturé and also appear only vague and imprecise in such a way thasermefinement is just impossible to obtain in reality so
that the exclusive elememis cannot be properly identified and defined. Many problemsliing fuzzy/vague continuous and
relative? concepts described in natural language with different séimaontents and having no absolute interpretation enter i
this category. DSmT starts with the notionfefe DSm modeind consider® only as a frame of exhaustive elements which can
potentially overlap and have different intrinsic semanttures and which also can change with time with new infoionatnd
evidences received on the model itself. DSMT offers a flégilon the structure of the model one has to deal with. When th
free DSm model holds, the conjunctive consensus is useuke ffée model does not fit the reality because it is known thraies
subsets 0P contain elements truly exclusive but also possibly truly existing at all at a given time (in dynaniitusion),
new fusion rules must be used to take into account theseritytegnstraints. The constraints can be explicitly intiodd into

the free DSm model to fit it adequately with our current knalgle of the reality; we actually construchgbrid DSm model
on which the combination will be efficiently performed. Séd model corresponds actually to a very specific hybrid DSm
(and homogeneous) model including all possible exclysitinstraints. DSmT has been developed to work with any model
and to combine imprecise, uncertain and potentially higiflaiing sources for static and dynamic information fusi@dmT
refutes the idea that sources provide their beliefs withsémae absolute interpretation of element®ofwhat is considered
as good for somebody can be considered as bad for somebadyTdits invited paper is an extended version[of12,"3, 15].
After a short presentation of hyper-power set, we presaentlifierent models of DSmT and the Classic (DSmC) and Hybrid
DSm (DSmH) rules of combinations. We will show how these sudan be directly and easily extended for the combination
of imprecise beliefs. Then we present the most exact primpait conflict redistribution rule (PCR) which proposes areno
subtle transfer of the conflicting masses than DSmH. DSmHR®R are mathematically well defined and work both with
any models and whatever the value the degree of conflict d@naad do not provide counter-intuitive results. A detailed

1By example, in some target tracking and classification apfitins, one has to deal both with imprecise and uncert&miration like radar-cross section,
as well as Doppler/velocity measurements

2The notion of relativity comes from the own interpretatidrtte elements of the fram@ by each sources of evidences involved in the fusion process.

3i.e. when the fram@® and/or the modeM is changing with time.
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comparison of the different rules of combination with sedvexamples are provided in the companion paper [5]. Thepkast

of this paper is devoted to Zadeh’s example which has beeadieally the source of many debates over the years. During
nineties this example has been occulted by a part of the camtynworking with Dempster’s rule of combination. We conesid
this example as a very fundamental one since it has beentinessof many interesting works since its publication, byregée

in [20,4,[18[ 1V, 17, 16.18]9]. Therefore we reexamine it inBBmMT framework and show how the new DSmH and PCR rules
can solve it more efficiently than Dempster’s rule. Advarened first applications of DSmT are detailedlini[11].

2 Notion of hyper-power set

Let® = {6,,...,0,} be afinite set (called frame) efexhaustive elemerftsThe free Dedekind’s lattice denothyper-power
setD® [[LT] is defined as

1. 0,04,...,6, € D®.
2. If A, B € D®,thenAN B andA U B belong toD®.
3. No other elements belong 12°, except those obtained by using rules 1 or 2.

If |©] = n, then|D®| < 22". The generation oD® is presented i [11]. Since for any given finite &t|D®| > [2°|, we
call D® the hyper-power seof ©. | D®| for n > 1 follows the sequence of Dedekind’s numbers:1,2,5,19,168% analytical
expression of Dedekind’s numbers obtained by Tombak anzhalbe found in[[11].

3 Free and hybrid DSm models

O = {6,,...,0,} denotes the finite set of hypotheses characterizing therfysioblem.D® constitutes théree DSm model
M/ (©) and allows to work with fuzzy concepts which depict a contiasiand relative intrinsic nature. Such kinds of concepts
cannot be precisely refined with an absolute interpretdtearause of the unapproachable universal truth. Wheh alle truly
exclusive discrete element®® reduces to the classical power 88t This is what we call the Shafer's model, denated (©).
Between the free DSm model and the Shafer’'s model, thertsexigide class of fusion problems represented in term of DSm
hybrid models wher® involves both fuzzy continuous concepts and discrete hgsas. In such class, some exclusivity
constraints and possibly some non-existential constd@gpecially when working on dynamic fusion) have to berak&
account. Each hybrid fusion problem is then characterizeal foroper hybrid DSm mode\t(©) with M(0) # M/ (0) and
M(0) # MP°(©). From a general fram®, we define a map(.) : D® — [0, 1] associated to a given body of eviderigas

m(@) =0  and > m4)=1 (1)

AeD®

m(A) is thegeneralized basic belief assignment/mg@gsba) of A. The belief and plausibility functions are defined as:

Bel(A) £ Y m(B)andP(4) £ Y m(B) (2)
BCA BNA#(
BeD® BeD®

These definitions are compatible with the Bel and Pl defingtigiven in DST wheo\1°(©) holds.

4 Classic DSm fusion rule

When the free DSm modeWt/ (©) holds, the conjunctive consensus, called DSm classic Rn(C), is performed o ®.
DSmC of two independehsources associated with gbba (.) andms(.) is thus givervC € D® by [11]:

mpsmc(C) = Z my (A)mz(B) )

A,BeD®
ANB=C

D® being closed under andn operators, DSmC guarantees thdt) is a proper gbba. DSmC is commutative and associative
and can be used for the fusion of sources involving fuzzy eptewhenevet? (©) holds. It can be easily extended for the
fusion ofk > 2 independent sources [11].

4We do not assume here that elemehtbave the same intrinsic nature and are necessary excl$ieee is no restriction of; but the exhaustivity.
Swhile independence is a difficult concept to define in all theomanaging epistemic uncertainty, we consider that tuoces of evidence are independent
(i.e. distinct and noninteracting) if each leaves one lpighorant about the particular value the other will take.



5 Hybrid DSm fusion rule

WhenM/(©) does not hold (some integrity constraints exist), one deilsa proper DSm hybrid mode\1(0) # M7 (O).
DSm hybrid rule (DSmH) fok > 2 independent sources is thus defined forsalt D® as [T1]:

mpsmu(A) £ ¢(A) - |S1(A) + S2(A) + S3(A) (4)

where¢(A) is thecharacteristic non-emptiness functioha setA, i.e. p(A) = 1if A ¢ 0 and¢(A) = 0 otherwise, where
0 = {Dr,0}. Doy is the set of all elements dP© which have been forced to be empty through the constrairttseofodel
M andi is the classical/universal empty sét.(A) = m s (9)(A), S2(A), S3(A) are defined by

k

sae 3 Il o
X1,X3,...,.X,eD® =1
(X1NX2N..NX,)=A

So(A) & Z H m;(X;) (6)

S5(A) 2 > H m;(X;) (7)

u(e(X1NX2N..NXy))=A
(X1NX2N...NX};)eD

with & £ u(X;) U... Uu(Xy) whereu(X) is the union of alb; that composeX, I; = 6, U ... U 6, is the total ignorance,
andc(X) is the canonical forfhof X, i.e. its simplest form (for example X = (AN B)N (AU BUC), ¢(X) = AN B).
S1(A) is nothing but the DSmC rule fok independent sources based stV (©); Sy(A) is the mass of all relatively and
absolutely empty sets which is transferred to the total lative ignorances associated with non existential comgt&if any,
like in some dynamic problems);(A) transfers the sum of relatively empty sets directly ontacimeonical disjunctive form of
non-empty sets. DSmH generalizes DSmC and allows to workhafeBs model. It is definitely not equivalent to Dempster’s
rule since these rules are different. DSmH works for any rteodieee DSm model, Shafer’'s model or any hybrid models) when
manipulatingprecisebba.

5.1 Examples

5.1.1 Example with a total conflict

Let's consider® = {61, 65,0s,6,}, two independent experts, and the two following bha(f,) = 0.6, m;(63) = 0.4,
m2(6‘2) =0.2 andm2(94) =0.8.

o Dempster’s rule can not be applied here becadses j < 4, one getsnps(6;) = 0/0 (undefined!).

¢ But DSmC works because one obtains zero for the mags gf= 1, ..., 4 andmpgsmc (61 N 62) = 0.12, mpgme (61 N
04) = 0.48, mpsmc (02 N ls) = 0.08, mpsmc (83 N 64) = 0.32 (partial conflicts).

e Suppose now one finds out that all intersections are empgfé¢Bs model holds), then one applies the hybrid DSm rule
and one getstSmH(Gl U 02) =0.12, mDSmH(01 U (94) = 0.48, mDSmH(HQ U (93) =0.08 andeSmH(Gg U 04) =
0.32.
5.1.2 Generalization of Zadeh’s example

Let's conside©® = {61,02,05},0 < €1, €2 < 1, be two positive numbers and two experts providing thehh&,) =1 — €,
ml(Gg) =0, m1(03) = €1, m2(01) =0, m2(02) =1—¢9 andmg(ﬁg) = €9.

e Using Dempster’s rule of combination, one gets

(e1e2)
mps(03) = =1
( ) (1—61)'0+0'(1—62)+€162
6The canonical form is introduced here explicitly in ordeiirtgprove the original formula given ifiT11] for preservingetheutral impact of the vacuous

belief massn(©) = 1 within complex hybrid models. Actually all propositionss/gived in formulas are expressed in their canonical foren, ¢onjunctive
normal form, also known as conjunction of disjunctions iroB@n algebra, which is unique.



which is absurd (or at least counter-intuitive). Note thatvever positive values faf, e; are, Dempster’s rule gives
always the same resulbne) which is abnormal. The only acceptable and correditrebtained by Dempster’s rule is
really obtained only in the trivial case when = e = 1, i.e. when both sources agreedgs with certainty which is
obvious.

e Using DSMCmpsmc(03) = €162, mpsme (01 Nb2) = (1 —€1)(1 —€2), mpsmc (01 N03) = (1 —e€1)e2, mpsme(f2N
03) = (1 — e2)e; and the others are zero which appears more legitimate if wepathe non exclusivity of hypotheses
(i.e. the free-DSm model).

e If we accept the Shafer’s model, one gets with DSHIH ©4); 511 (03) = €162, mpsmu (01 U62) = (1 — €1)(1 — €2),
mpsmu (01 Ubs) = (1 — €1)ea, mpsmu (02 U B3) = (1 — €2)e1. All other masses are zero. This result makes more
sense since it depends truly on the values, afndes contrariwise to Dempster’s rule.

Whene; = e2 = 1/2, one otains
m1(6‘1) = 1/2 m1(92) =0 m1(93) = 1/2

m2(6‘1) =0 m2(6‘2) = 1/2 m2(93) = 1/2

Dempster’s rule still yieldsnpg(63) = 1 while DSmH based on the same Shafer’'s model yields noy.,. (65) = 1/4,
mpsmu (01 Ub2) = 1/4, mpsmu (01 U03) =1/4, mpsmu(f2 UBs) = 1/4 which is more acceptable upon authors opinion.

6 Fusion of imprecise beliefs

In general it is very difficult to have sources providing psedbasic belief assignments (bba), especially when irdiciom is
given by human experts. A more flexible theory dealing witlpiatise information becomes necessary. We extended DSmT
and its fusion rules for dealing withdmissible imprecise generalizebam? (.) whose values are real subunitary intervals of
[0, 1], or even more general as real subunitary sets (i.e. setsiewessarily intervals). In the general case, these setsecan
unions of (closed, open, or half-open/half-closed) indésand/or scalars all i, 1]. Animprecise bban!(.) is mathematically
defined asn!(.) : D® — P([0,1]) \ {0} whereP([0,1]) is the set of all subsets of the intery@l 1]. An imprecise bban?(.)
over D® is saidadmissibleif and only if there exists for everX € D® at least one real numbes(X) € m’(X) such that

> xepe m(X) = 1. m!(.) is a normal extension ofi(.) from scalar values to set values. For example, if a sourcg is not
sure about a scalar value(A) = 0.3, it may be considered an imprecise source which gives a ket saym! (A4) = [0.2,0.4].
The following simple commutative operators on sets (addii and multiplicatiori-]) are required[111] for fusion of imprecise
bba: Xy By 2 {z |2 =21 + 22,71 € X1, 10 € XotandX) DXy 2 {2 | 2 = 21 - 72,21 € X1, 72 € Xp}. These operators
are generalized for the summation and products of 2 sets as follows

Z Xe={z|x= Z Tp,T1 € X1, ..., Tn € Xn}

k=1,..

LN

H Xe={x]z= H T, 1 € X1y, Xn € X}

k=1,....n

k=1,....,n

From these operators, one generalizes DSmC and DSmH frdarstasets [[11] chap. 6) by‘A # () € D®,

Mpsmc(A) = Z H mi(X;) (8)

Xl,X27...,Xk€D® i=1,...,k
(X1NXgN...NXp)=A

M (4) 2 6(A) B [S1(A) B 51(4) B 5§(4)] ©)

with

CHEVE > 1| ™ x) (10)

Si(A) & > 11| mi(x3) (11)

[U=AIV[(UED)A(A=1})]




Si(A) & > 11| ™) (12)

Xl,XQ,...,XkEDE‘) i=1,...,k
u(e(X1NXaN...NXE))=A
(X1NXgN...NX})€ED

These operators are just natural extensions of the comyencle, DSmC, and DSmH from scalar-valued to set-valuenicas

of information. It has been proved thél (8) afitl (9) provideadmissible imprecise belief assignment (see the Theorem of
Admissibility and its proof in Ch.6, p. 138, di [L1]). In otherords, DSm combinations of two admissible imprecise bba is
also an admissible imprecise bba. As their precise couatts;ghe imprecise DSm combination rules quasi-associative

i.e. one stores in the computer's memory the conjunctivesukesult and, when new evidence comes in, this new evidsnce
combined with the conjunctive’s rule result. In this way #esociativity is preserved.

6.1 Example
Let's conside® = {6,, 62}, two independent sources with the following imprecise adibie bba:
AeDP mi(A) mi(A)
61 [0.1,0.2] U {0.3} [0.4,0.5]
02 (0.4,0.6) U[0.7,0.8] | [0,0.4] U {0.5,0.6}

Table 1: Inputs of the fusion with imprecise bba

Using DSm classic rule for sets, one dets

mbemc(61) = ([0.1,0.2] U {0.3}) [0 [0.4, 0.5]
([0.1,0.2] 2 [0.4, 0.5]) U ({0.3} 1 [0.4,0.5])
= [0.04,0.10] U [0.12,0.15]

mhemc(02) = ((0.4,0.6) U [0.7,0.8]) B ([0,0.4] U {0.5,0.6})
= [0,0.40] U [0.42, 0.48]

mb g, o (01 N 62) = [([0.1,0.2] U {0.3}) B ([0,0.4] U {0.5,0.6})] B [[0.4,0.5] & ((0.4,0.6) U [0.7,0.8])]
= (0.16,0.58]

Hence finally the fusion admissible result is given by:

A e D° | mbg,c(A) = [m] & mi](A)
o [0.04,0.10] U [0.12, 0.15]
0, [0,0.40] U [0.42, 0.48]

61 M 6y (0.16,0.58]

61 U0 0

Table 2: Fusion result with DSm classic rule

If one finds out thaté; N 6, 4 ( (this is our hybrid mode/M one wants to deal with), then one uses the hybrid DSm rule
for sets[[®) and therefore the imprecise rmzs’&gmc(el N 62) = (0.16,0.58] is then directly transferred onty U 65 and the
others imprecise masses are not changed. Finally, one ghtBSmH applied to imprecise beliefs:

For the source 1, there exist the precise massgs6;) = 0.3) € ([0.1,0.2] U {0.3}) and(m1(f2) = 0.7) € ((0.4,0.6) U
[0.7,0.8]) such that0.3 + 0.7 = 1 and for the source 2, there exist the precise magse$d,) = 0.4) € ([0.4,0.5]) and
(m2(62) = 0.6) € ([0,0.4] U {0.5,0.6}) such thaD.4 + 0.6 = 1. Therefore both sources associated with(.) andm’(.) are
admissible imprecise sources of information. It can beyabkiecked that DSmC yields the paradoxical basic beligfassent
mDSmc(el) = [m1 @mg](ﬁl) =0.12, mDSmc(eg) = [m1 @mg](eg) =0.42 andeSmc(91 ﬁ@g) = [m1 EBmg](Gl 092) =
0.46. One sees from Tabl@ 2 that the admissibility is satisfiedesthere exists at least a bba (hetgs..c(.)) with

(mDSmC(ol) = 012) € m{)SmC(Gl)

“A complete derivation of this reslut can be foundfinl[11] pp94140.
8We consider now a dynamic fusion problem.




AeD®° | mpbg,u(A) =[m] e mi](A)
5, [0.04,0.10] U [0.12, 0.15]
0, [0,0.40] U [0.42, 0.48]
01 N6y 'AE/t 0 0
6, U O (0.16,0.58]

Table 3: Fusion result with the hybrid DSm rule {o14

(mpsmo(02) = 0.42) € mpg,,c(02)
(mDSmc(91 n 6‘2) = 0.46) S mIDSmC(el n 92)

such thab.12 + 0.42 + 0.46 = 1. Similarly if one finds out thaf; N 6, = (, then one uses DSmH and one gets) s,z (01 N

02) = 0 andmpsmu (61 U 6z) = 0.46; the others remain unchanged. The admissibility still Bpliecause one can pick at
least one number in each subse},,, ,;(.) such that the sum of these numbers is 1. This approach cas®esed in the
similar manner to obtain imprecise pignistic probabititteomm?’, ¢, 5 (.) for decision-making under uncertain, paradoxical
and imprecise sources of information as well [11, 1].

7 Proportional Conflict Redistribution

Instead of applying a direct transfer of partial conflictsogpartial uncertainties as with DSmH, the idea behind tlop8rtional
Conflict Redistribution (PCR) rulé 12, 113] is to transfestétl or partial) conflicting masses to non-empty sets ingdlin the
conflicts proportionally with respect to the masses assigo¢hem by sources as follows:

1. calculation the conjunctive rule of the belief massesofses;
2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting massto the non-empty sets involved in the conflicts propodtign
with respect to their masses assigned by the sources.

The way the conflicting mass is redistributed yields acyusdiveral versions of PCR rules. These PCR fusion rules waork f
any degree of conflict, for any DSm models (Shafer’'s modet §Sm model or any hybrid DSm model) and both in DST and
DSmT frameworks for static or dynamical fusion situatiov& present below only the most sophisticated proportiomaflict
redistribution rule (corresponding to PCRS5 InJ[L2Z] 13] banhdted here just PCR for simplicity) since this PCR rule isvh
we feel the most efficient PCR fusion rule developed so faR P@e redistributes the partial conflicting mass to the eptn
involved in the partial conflict, considering the conjumetnormal form of the partial conflict. PCR is what we think thest
mathematically exact redistribution of conflicting masstm-empty sets following the logic of the conjunctive rtBCR does

a better redistribution of the conflicting mass than Demfsstale sice PCR goes backwards on the tracks of the corijienct
rule and redistributes the conflicting mass only to the setslved in the conflict and proportionally to their massesipuhe
conflict. PCR rule is quasi-associative and preserves thgalémpact of the vacuous belief assignment because ipartial
conflict, as well in the total conflict (which is a sum of all paf conflicts), the conjunctive normal form of each partahflict
does not includ® sinceO is a neutral element for intersection (conflict), theref@rgets no mass after the redistribution of
the conflicting mass. We have also proved.in [12] the contyniioperty of the PCR result with continuous variations bab
to combine. The general PCR formula fob 2 sources is given by [12h pcr(0) = 0 andvX € G\ {0}

mPCR(X) :m12...s(X)+ Z Z

2<t<s Xjyo X5, €G\{X}

1<ry,.. 1 <s1l<ri<ro<...<ri_1<(r¢t=s) {jz,...7j¢}€73t_1({1,...7n})
c(XNXj,N...NX;,)=0
{i1,is }EP* ({10,5})

([T} = ma, (X)) - Mo (T =y, (X50)]
(H?l:l My, (X)) + [Zf:Q( le:rl,ﬁ-l My, (X5)]

whereG corresponds to classical power-8€tif Shafer’'s model is used @ corresponds to a constrained hyper-power et
if any other hybrid DSm model is used instead}, k, r, s andt in (I3) are integersni2.. s(X) = mn~(X) corresponds to the
conjunctive consensus o¥i betweens sources and where all denominators are different from Zzé@denominator is zero,
that fraction is discarded; the set of all subset& elements from{1,2,...,n} (permutations of. elements taken by) was
denotedP*({1,2,...,n}), the order of elements doesn’t couatX) is the canonical form (conjunctive normal form) &t

(13)



Whens = 2 (fusion of only two sources), the previous PCR rule reducés simple following fusion formulain pcg(0) =
0andvX € G\ {0}

mpor(X) = mi2(X) + ] (14)

mi
YeG\{X}

c(XNY)=0

7.1 Examples

Due to space limitation and to avoid redundancy with our canign paper[5], we just provide here directly the final ressaf
Dempster’s rule (DS), PCR and DSmH for the three followinge examples:

e Example 1 Let's take® = { A, B} of exclusive elements (Shafer's model), and the followibg:b

A B AUB
mi() | 06 0 04
ma() | 0 03 07

[mn() [ 042 012 0.28]

The conflicting mass is12 = mn(A N B) and equalsn, (A)msa(B) + m(B)m2(A) = 0.18. ThereforeA and B are
the only focal elements involved in the conflict. Hence adoag to the PCR hypothesis only and B deserve a part of
the conflicting mass and U B do not deserve. With PCR, one redistributes the conflictingsiky, = 0.18to A andB
proportionally with the masses, (A) andmz(B) assigned tod and B respectively. Here are the results obtained from
Dempster’s rule, DSmH and PCR:

A B AUB

mps 0.512 0.146 0.342
mpsmy || 0.420 0.120 0.460
MpCR 0.540 0.180 0.280

e Example 2 Let's modify example 1 and consider

A B AUB
mi() | 06 0 04
ms() | 02 03 05

[ma() [ 050 012 0.20]

The conflicting mas;2 = mn (A4 N B) as well as the distribution coefficients for the PCR remairsstame as in the
previous example but one gets now

A B AUB

mps 0.609 0.146 0.231
mpsmy || 0.500 0.120 0.380
MpCR 0.620 0.180 0.200

e Example 3 Let's modify example 2 and consider

A B AUB
mi() | 0.6 03 01
m2() | 02 03 05

[mn() [ 044 027 0.05]

The conflicting masg2 = 0.24 = m(A)ma(B) + mi(B)ma(A) = 0.24 is now different from previous examples,
which means that2(A) = 0.2 andm, (B) = 0.3 did make an impact on the conflict. Therefoteand B are the only

focal elements involved in the conflict and thus oAlwnd B deserve a part of the conflicting mass. PCR redistributes the

partial conflicting mass 0.18 t&4 and B proportionally with the masses; (A) andms(B) and also the partial conflicting
mass 0.06 tod and B proportionally with the masses,(A) andm, (B). After all derivations (se€.[5] for details), one
finally gets



A B AUB

mps 0.579 0.355 0.066
mpsmu || 0.440 0.270 0.290
MpCR 0.584 0.366 0.050

One clearly sees that ps(AU B) gets some mass from the conflicting mass althadghB does not deserve any part of

the conflicting mass (according to PCR hypothesis) siiceB is not involved in the conflict (onlyl and B are involved

in the conflicting mass). Dempster’s rule appears to us besgstéhan PCR and Inagaki's rules [7]. It can be shawn [5]
that Inagaki’s fusion rule (with an optimal choice of tunipgrameters) can become in some cases very close to PCR but
upon our opinion PCR result is more exact (at least less adHam Inagaki’s one).

8 Zadeh'’s example

We compare here the solutions for well-known Zadeh’s exarfi®),[20] provided by several fusion rules. A detailed pnese
tation with more comparisons can be foundlinl[11, 12]. Let'asider® = {M, C, T} as the frame of three potential origins
about possible diseases of a patieht §tanding formeningitis C' for concussiormandT for tumor), the Shafer’s model and the
two following belief assignments provided by two indepemidoctors after examination of the same patient.

The total conflicting mass is high since it is

o with Dempster’s rule and Shafer's model (DS), one gets thmtao-intuitive result (see justifications in_[19,[4] L8] 17
11): mps(T) =1

o with Yager’s rule[[18] and Shafer's modehy (M U C UT) = 0.99 andmy (1) = 0.01

o with DSmH and Shafer’s model:

mDSmH(M U O) =0.81 mDSmH(T) =0.01
mpsmH (M U T) - mDS',nH(O @] T) - 009

e The Dubois & Prade’s rule (DP)J[4] based on Shafer's modevipies in Zadeh’s example the same result as DSmH,
because DP and DSmH coincide in all static fusion probfems

e with PCR and Shafer’s model:

mpcr(M) = mpcr(C) = 0.486
mPCR(T) =0.028

One sees that when the total conflict between sources bedugieDSmT is able (upon authors opinion) to manage more
adequately through DSmH or PCR rules the combination ofin&tion than Dempster’s rule, even when working with Shafer
model - which is only a specific hybrid model. DSmH rule is iregment with DP rule for the static fusion, but DSmH and
DP rules differ in general (for non degenerate cases) foadhafusion while PCR rule is the most exact proportionafficin
redistribution rule. Besides this particular example, Wweveed in [T1[1P] that there exist several infinite classesoninter-
examples to Dempster’s rule which can be solved by DSmT.

A recent attempt has been presented by Haenili in [6] to tryxpta@ what's going wrong with Zadeh’s example and why
such kind of example is misleading; However Haenni does esxtlve the original Zadeh's example, bunadifiedZadeh’s
example when he used Dempster’s rule, which let the origiiaaleh’s problem open. Moreover the numerical invariance
problem of Dempster’s rule with respect to input paramete@nde, in Zadeh's case (see section 5.1.2) is unfortunately not
discussed and solved inl [6]. Anyway, just let us make few cemimagainst the argumentation used by Haenili in [6].

9Indeed DP rule has been developed for static fusion onlysnbBmH has been developed to take into account the possibéerigity of the frame itself
and also its associated model.



1. In his first "solution”, Haenni considerson-exclusivéaypothesed/, C, T', but this is not the case Zadeh talked about,
since Zadeh considerezkclusivehypotheses. Such approach had been investigated mordoeadyain [11] when
working with free DSm model and thus brings nothing newin [Blthough Haenni tries to justify that diseasks C,

T can have common symptoms (which for some diseases may Hewriean construct a different example where the
hypotheses are clearly exclusive. Let have the similar Bad=ample, but instead of taking’, C, T' as three potential
diseases, we consider the same basic belief masses prawided independent sources with following hypotheses:

e )M = the set of positive multiples of 3;
e (C = the set of positive multiples of 3 plus 1;
e T = the set of positive multiples of 3 plus 2.

HenceM, C, T are exclusive two by two and the first "solution” proposed taeHni does not work.

2. Next, Haenni comments that because the mass€s andm(.) are Bayesian they correspond to ordinary probability
distribution. But we have already given a non-Bayesian extarm [11] where Dempster’s rule does not work. Indeed,
let's take® = { A, B, C, D} with exclusive hypotheses (i.e. Shafer's model holds),thedollowing masses, (.) and
ma(.) considered as fully reliable but non-Bayesian (since fetehents are not only given by singletons):

mi(A) =099  my(CUD) =001
ma(B) =099  mo(CUD)=0.01

Using Dempster’s rule we get the anomaly,s(C U D) = 1. At last Fusion 2005 Conference in Philadelphia in July
2005, we gave this example to R. Haenni to solve. He answexekithat because:; (B) = mq(A) = 0, means that

A and B are excluded as hypotheses and hence what isdeft, D deserves the mass 1. But he could do the same
in Zadeh's example and justify it in the same erroneous wagabsen, (C') = mq(M) = 0 then hypothese€, M

are excluded and only hypothed§isis left, hencel” should deserve the mass 1 (which is exactly what Dempstdgs r
provides and which is the source of the problem and the fjoation” of [6])! But Haenni makes a confusion between
objective probability(or classical probability) andubjective probabilityve work with in information fusion (specially
when human assessments/reports must be taken into acndhatfusion process).

3. In his second "solution”, Haenni discounts the sourcesbse they are conflicting, although Zadeh considered them
fully reliable, hence not necessarily discountable. Thf@udiscounts the sources by 20%, but he does not say where
he got this percentage from? Why not by 15% or by 22% ? If twaasiare conflicting it does not mean they are
unreliable. For example, let's consider two professérand B asked to evaluate a student. Profesdanay say the
student is very good, while professBrthe student is very bad, and both can be true (fully reliaibleg consider the first
evaluation done from the student’s mathematical skillspof view and the second from student’s English skills point
of view. A student can be good in Mathematics and bad in Engksgood theory has to work in any case, exceptions
included! Dempster’s rule fails Zadeh'’s example and sorherdtfinite classes of counter-examples mentioned ih [11].

In summary, DST does not work in Zadeh'’s example, nor in nageBian examples similar to Zadeh’s as shown previously,
and neither when the conflict is 1. Only ad-hoc discountingiéques allow to circumvent troubles of Dempster’s rulaver
need to switch to another model of representation/framéhenater case the solution obtained doesn't fit with the &tef
model one originally wanted to work with. We want also to emgikbe that in dynamic fusion when the conflict becomes high,
both DST [10] and Smets’ Transferable Belief Model (TBM)]Epproaches fail to respond to new information provided
by new sources. This can be easily shown by the very simplewislg example. Let's conside® = {4, B,C} and the
following (precise) belief assignments; (4) = 0.4, m1(C) = 0.6 andmy(A) = 0.7, ma(B) = 0.3. Then one get8 with
Dempster’s rule, Smets’ TBM (i.e. the non-normalized vansif Dempster’s combination), (DSmH) and (PCR&)s7 (A) =
1, mi%;,,(4) = 0.28, mi2;,,(0) = 0.72,

miZ, o (A) =0.28

miZ, (AU B) =0.12
miZe L (AUC) = 0.42
miZ L (BUC) =0.18

mi2, p(A) = 0.574725
(B) = 0.111429
miZ, ,(C) = 0.313846

10we introduce here explicitly the indexes of sources in thoin result since more than two sources are consideredsiexaimple.




Now let’s consider a temporal fusion problem and introdudkir sourcems(.) with ms(B) = 0.8 andmgs(C) = 0.2.
Then one sequentially combines the results obtained 5, (.), miys(.), mirs,,x(.) andmp. (.) with the new evidence

ms(.) and one sees tha’t%?‘3 becomes not defined (division by zero) anéﬂéf[(ﬁ)) = 1 while (DSmH) and (PCR) provide

(123 (B) = 0.240
Do (C) = 0.120
(23 (AUB) =0.224
(123 (AUC) = 0.056
mB2? (AUBUC) = 0.360

mBI2(A) = 0.277490
mBs(B) = 0.545010

mBIe(C) = 0.177500
When the mass committed to empty set becomes one at a preégiopsral fusion step, then both DST and TBM do not
respond to new information. Let’s continue the example antsider a fourth sources(.) with my(A) = 0.5, my(B) = 0.3

andm,(C) = 0.2. Then it is easy to see that!{’*(.) is not defined since at previous ste)2*(.) was already not

defined, and tha\;2)2)* () = 1 whatevermy(.) is because at the previous fusion step onehdd)? () = 1. Therefore
for a number of sources > 2, DST and TBM approaches do not respond to new informatiomnmieg in the fusion process
while both (DSmH) and (PCR) rules respond to new informatiimmake DST and/or TBM working properly in such cases,
it is necessary to introduce ad-hoc temporal discountiolgrigues which are not necessary to introduce if DSmT is t&dp

If there are good reasons to introduce temporal discountirege is obviously no difficulty to apply the DSm fusion oétie
discounted sources.

9 Conclusion

In this short survey paper we presented the foundations ai D&nd its main combination rules which result from very rece
research investigations. DSmT although not sufficientiyanin the information fusion and artificial intelligencemomunities

as any new emerging theory has however been successfuligdppdifferent fields of applications like multitargetirking
and classification or remote sensing application. We hogetltis paper will help readers involved in information farsito
become curious and hopefully more comfortable with ouraegdework and our new approach for data fusion. DSmT is a
new promising paradigm shift for the combination of pre¢med even imprecise), uncertain and potentially highlyflxding
sources of information. It is important to emphasize thastad methods developed to improve the management of bétiefs
Dempster-Shafer Theory (like those based on discounteigitgues by example or those developed for taking decisioieu
uncertainty) can directly be applied in DSmT framework adl.wi@ this paper, we also put back in the light and discussed
Zadeh's problem which is one of the major problem that anisfsatory fusion rule must solve. We have shown here how
DSmT can cope with it efficiently thanks to its DSmH or PCR sule
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