GENERALIZATIONS OF DEGARGUES THEOREM*

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Let's consider the points A_{1}, \ldots, A_{n} situated on the same plane, and B_{1}, \ldots, B_{n} situated on another plane, such that the lines $A_{i} B_{i}$ are concurrent. Let's prove that if the lines $A_{i} A_{j}$ and $B_{i} B_{j}$ are concurrent, then their intersecting points are collinear.

Solution. Let α be the plane that contains the points A_{1}, \ldots, A_{n} (in the case in which the points are non-collinear α is unique), and analogously, let $\beta=P\left(B_{1}, \ldots, B_{n}\right)$, and consider $\alpha \cap \beta=d$.

Because the lines $A_{i} A_{j}$ and $B_{i} B_{j}$ are concurrent, $A_{i} A_{j} \subset \alpha$, and $B_{i} B_{j} \subset \beta$, therefore their intersection belongs to line d.

Remark 1.

For $n=3$ and A_{1}, A_{2}, A_{3} non-collinear, B_{1}, B_{2}, B_{3} non-collinear, and $A_{i} \neq B_{j}$ we obtain Desargues theorem.

Remark 2.

An extension of this generalization is: If we consider A_{1}, \ldots, A_{n} situated in a plane, and B_{1}, \ldots, B_{m} situated on another plane, prove that if $A_{i} A_{j}$ and $B_{k} B_{r}$ are concurrent, then their intersection points are concurrent.

Remark 3.

For $n=m$, and $A_{i} B_{i}$ concurrent lines, we obtain the first generalization.

Remark 4.

If in addition we also have $n=m=3$ along with the previous conditions, we obtain the Desargues theorem.

