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 In these paragraphs one presents three generalizations of the famous theorem of 
Ceva, which states: 
 “If in a triangle ABC  one plots the convergent straight lines  

 AA1 , BB1 , CC1  then  
A1B

A1C
⋅

B1C

B1A
⋅
C1A

C1B
= −1“. 

 
 Theorem: Let us have the polygon 1 2... nA A A , a point M  in its plane, and a 
circular permutation  

p =
1 2 ... n −1 n

2 3 ... n 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
. One notes M

ij
 the intersections of the line AiM with the lines 

Ai+ sAi+ s+1,..., Ai+ s+ t−1Ai+ s+ t (for all i  and j , j ∈ i + s,..., i + s + t −1{ }). 
 If ij nM A≠  for all the respective indices, and if 2s t n+ = , one has: 

 
, 1

, 1,

( 1)
( )

n i s t
ij j n

i j i s ij p

M A
M A j

+ + −

= +

= −∏  ( s  and t  are natural non zero numbers). 

 Analytical demonstration: Let M  be a point in the plain of the triangle ABC , 
such that it  satisfies the conditions of the theorem.  One chooses a Cartesian system of 
axes, such that the two parallels with the axes which pass through M  do not pass by any 
point Ai  (this is possible). 
 One considers M (a,b) , where a and  b  are real variables, and  Ai (Xi ,Yi )  where 
Xi  and  Yi  are known, i ∈ 1,2,...,n{ }. 
 The former choices ensure us the following relations: 
 Xi − a ≠ 0 and 0iY b− ≠   for all i ∈ 1,2,...,n{ }. 
 The equation of the line (1 )iA M i n≤ ≤  is:  

 
x − a

Xi − a
−

y − b

Yi − b
. One notes that  d(x, y; Xi ,Yi ) = 0 . 

One has  

 
( ) ( ) ( )( )

( , ) ( , ; , ) ( , )
( , ) ( , ; , ) ( ( ), )

ij j j i j j i i

p j i p j p j i iij p j

M A A A M d X Y X Y D j i
A A M d X Y X Y D p j iM A

δ
δ

= = =  

where δ (A,ST )  is the distance from A  to the line ST , and  where one notes with  
D(a,b)  for  d(Xa ,Ya; Xb ,Yb ) . 
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 Let us calculate the product, where we will use the following convention:  a + b  
will mean  

 

p(p(...p
b times

124 34
(a)...)) , and  a − b  will  mean  p−1(p−1(...p−1

b times
1 244 344

(a)...))  

 
Mij Aj

Mij Aj+1j= i+ s

i+ s+ t−1

∏ =
D( j, i)

D( j +1,i)j= i+ s

i+ s+ t−1

∏ =  

 

 ( , ) ( 1, ) ( 1, )
( 1, ) ( 2, ) ( , )
D i s i D i s i D i s t i

D i s i D i s i D i s t i
+ + + + + −

= ⋅ ⋅⋅⋅ =
+ + + + + +

 

 

 =
D(i + s, i)

D(i + s + t, i)
=

D(i + s, i)

D(i − s, i)
 

 
 The initial product is equal to:   

D(i + s, i)

D(i − s, i)
=

i=1

n

∏ D(1+ s,1)

D(1− s,1)
⋅

D(2 + s,2)

D(2 − s,2)
⋅ ⋅ ⋅

D(2s, s)

D(n, s)
⋅  

 

⋅
D(2s + 2, s + 2)

D(2, s + 2)
⋅ ⋅ ⋅

D(2s + t, s + t)

D(t, s + t)
⋅

D(2s + t +1, s + t +1)

D(t +1, s + t +1)
⋅  

 

⋅
D(2s + t + 2, s + t + 2)

D(t + 2, s + t + 2)
⋅ ⋅ ⋅

D(2s + t + s, s + t + s)

D(t + s, s + t + s)
=  

 

=
D(1+ s,1)

D(1,1+ s)
⋅

D(2 + s,2)

D(2,2 + s)
⋅ ⋅ ⋅

D(2s + t, s + t)

D(s + t,2s + t)
⋅ ⋅ ⋅

D(s,n)

D(n, s)
=  

 

=
D(i + s,i)

D(i, i + s)
=

i=1

n

∏ −
P(i + s)

P(i)

⎛
⎝⎜

⎞
⎠⎟i=1

n

∏ = (−1)n  

 
because: 

 ( )( )( , ) ( )
( , ) ( )( ) ( )

r r

p p r r

p p p p

r r

X a Y b
X a Y b X a Y bD r p P r
X a Y bD p r X a Y b P p
X a Y b

− −
−

− − − −
= = − = −

− − − −−
− −

, 

The last equality resulting from what one notes: (Xt − a)(Yt − b) = P(t) . From (1) 
it results that  P(t) ≠ 0  for all t  from { }1, 2,...,n . The proof is completed. 

 
Comments regarding the theorem: 
t  represents the number of lines of a polygon which are intersected by a line 

Ai0
M ; if one notes the sides  Ai Ai+1  of the polygon, by ai , then  s +1  represents the 
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order of the first line intersected by the line A1M  (that is  as+1  the first line intersected by 
A1M ). 

 
Example:  If  s = 5  and  t = 3 , the theorem says that : 

- the line A1M  intersects the sides 6 7 7 8 8 9, ,A A A A A A . 
- the line A2M  intersects the sides 7 8 8 9 9 10, ,A A A A A A . 
- the line  A3M  intersects the sides  8 9 9 10 10 11, ,A A A A A A , etc. 

Observation: The restrictive condition of the theorem is necessary for the 

existence of the ratios 
( )

ij j

ij p j

M A
M A

. 

 
Consequence 1:  Let us have a polygon A1A2 ...A2k+1  and a point M  in its plan. 

For all  i  from  1,2,...,2k +1{ }, one notes  Mi  the intersection of the line  Ai Ap(i )  with 
the line which passes through  M  and by the vertex which is opposed to this line.  If  

Mi ∉ Ai , Ap(i ){ } then one has: 
Mi Ai

Mi Ap(i )i=1

n

∏ = −1 . 

 The demonstration results immediately from the theorem, since one has s = k  and  
t = 1, that is  n = 2k +1 . 
 The reciprocal of this consequence is not true. 

From where it results immediately that the reciprocal of the theorem is not true 
either. 
 Counterexample: 

Let us consider a polygon of 5 sides. One plottes the lines A1M 3, A2M 4  and A3M 5  
which intersect in M . 

 

Let us have K =
M 3A3

M 3A4

⋅
M 4 A4

M 4 A5

⋅
M 5A5

M 5A1

 

Then one plots the line A4 M1  such that it does not pass through M  and such that 
it forms the ratio: 

(2) 
M1A1

M1A2

= 1 / K  or 2 / K . (One chooses one of these values, for which 

A4 M1  does not pass through M ). 

 At the end one traces A5M 2  which forms the ratio  
M 2A2

M 2A3

= −1  or −
1

2
 in 

function of (2). Therefore the product: 
Mi Ai

Mi Ap(i )i=1

5

∏  without which the respective lines are concurrent. 

Consequence 2:  Under the conditions of the theorem, if for all i and  
j, j ∉ i, p−1(i){ }, one notes  Mij = Ai M ∩ Aj Ap( j ) and Mij ∉ Aj , Ap( j ){ } then one has: 
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Mij Aj

Mij Ap( j )i, j=1

n

∏ = (−1)n . 

 
j ∉ i, p−1(i){ } 

In effect one has s = 1 ,  t = n − 2 , and therefore  2s + t = n . 
 
Consequence 3:  For  n = 3 , it comes s = 1  and  t = 1, therefore one obtains (as a 

particular case ) the theorem of Céva. 


