
                                    Neutrosophic Sets and Systems, Vol. 53, 2023 
University of New Mexico  

 
 

 

______________________________________________________________________________________________________ 

S.K. Yadav, Florentin Smarandache, Generalized Neutrosophic Sampling Strategy for Elevated estimation of Population Mean 
 

 

Generalized Neutrosophic Sampling Strategy for Elevated estimation 
of Population Mean 

 
Subhash Kumar Yadav1, Florentin Smarandache2* 

1 Department of Statistics, Babasaheb Bhimrao Ambedkar University, Lucknow, INDIA, drskystats@gmail.com 
2 Department of Mathematics, University of New Mexico, 705 Gurley Ave, Gallup, USA, fsmarandache@gmail.com 

*Corresponding: fsmarandache@gmail.com 

 
Abstract: One of the disadvantages of the point estimate in survey sampling is that it fluctuates from 

sample to sample due to sampling error, as the estimator only provides a point value for the parameter 

under discussion. The neutrosophic approach, pioneered by Florentin Smarandache, is an excellent tool 

for estimating the parameters under consideration in sampling theory since it yields interval estimates in 

which the parameter lies with a very high probability. As a result, the neutrosophic technique, which is a 

generalization of classical approach, is used to deal with ambiguous, indeterminate, and uncertain data. 

In this investigation, we suggest a new general family of ratio and exponential ratio type estimators for 

the elevated estimation of neutrosophic population mean of the primary variable utilizing known 

neutrosophic auxiliary parameters. For the first degree approximation, the bias and Mean Squared Error 

(MSE) of the suggested estimators are computed. The neutrosophic optimum values of the characterizing 

constants are determined, as well as the minimum value of the neutrosophic MSE of the suggested 

estimator is obtained for these optimum values of the characterizing scalars. Because the minimum MSE 

of the classical estimators of population mean lies inside the estimated interval of the neutrosophic 

estimators, the neutrosophic estimators are better than the equivalent classical estimators. The empirical 

investigation, which used both real and simulated data sets, backs up the theoretical findings. For 

practical utility in various areas of applications, the estimator with the lowest MSE or highest Percentage 

Relative Efficiency (PRE) is recommended.  

Keywords: Classical Ratio Estimators, Neutrosophic Estimators, Bias, MSE, PRE, Simulation.  

_____________________________________________________________________________________________ 

 
1.  Introduction 

Due to time and financial constraints, sampling becomes unavoidable when the population is big. The 

most apt estimator for the parameter under consideration is the corresponding statistic and so is the 

sample mean ( y ) for the population mean (Y ) of main variable Y . Although y is an unbiased estimator 

of Y , its sampling variance is rather high, hence the sampling distribution of y will not be very close to 

the genuine Y . Therefore, we look for a population mean estimator that is even biased yet has a 

sampling distribution closer to the true Y . The employment of an auxiliary variable ( X ) having a high 

degree of positive or negative association with Y achieves the goal of finding efficient estimators. The use 

of supplementary information to elevate the effectiveness of the estimators of the parameters under 

consideration is well established in sampling theory. For elevated estimation of Y using positively and 

negatively correlated auxiliary information with main variable, respectively, ratio and product technique 

of estimation processes are utilized with the condition that the line of regression pass through origin. If 

the line does not cross through the origin, the regression method of estimation is favored above the ratio 

and product approaches. The ratio method is preferred in real-world applications due to its broad 
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applicability; for example, area and production in crop yield applications, income and investment in 

business and economics, hospital infrastructure and health are some examples of applications, where 

ratio estimators are used to estimate Y . As a result, the current research focuses on estimating Y using 

known positively associated auxiliary variable.  

 
1.2. Estimation under Classical Sampling Theory 

In estimation methods of classical sampling theory, the data utilized for elevated estimation of Y using 

ratio, product, or regression type estimators are known and produced by crisp numbers. In classical 

statistics, various authors worked on numerous estimators of Y in the presence of known X and 

suggested various ratio type estimators. In classical sampling theory, [1] introduced the conventional 

ratio estimator of Y using the positively correlated X . As an auxiliary parameter, he utilized the known 

population mean ( X ) of X . Various authors later used well-known auxiliary parameters like coefficient 

of variation (CV), coefficient of skewness, coefficient of kurtosis, standard deviation, quartiles, and so on 

to improve the estimation of Y . [2] worked on a modified ratio estimator of Y utilizing the known CV of 

X . For the elevated estimation of Y , [3] proposed the exponential ratio estimator employing a known 

X . [4] proposed two ratio estimators for more efficient estimation of Y , utilizing known coefficient of 

kurtosis and the CV of X . [5] focused on improving Y estimate utilizing known population correlation 

coefficient between Y  and X , and their results outperformed rival estimators. For increased estimate of

Y , [6] suggested the modifications on ratio estimator of Y , that makes the use of known coefficient of 

kurtosis of X . [7] proposed several modified ratio estimators of Y based on known information on some 

well-known auxiliary parameters. [8] suggested two ratio type estimators of Y utilizing known skewness 

and kurtosis of X , which outperformed rival estimators. [9] presented an increased estimation approach 

for population mean using auxiliary parameters on characteristic. [10] worked in the direction of  

improving a family of ratio and product estimators of Y with known parameters of X and [11] worked 

on a generic family of estimators of Y using transformed X . [12] proposed a generalized family of dual 

to ratio-cum-product Y estimators with known auxiliary parameters. [13] developed a new 

ratio estimator for Y utilizing linear transformation of X as minimum and maximum values. Using 

auxiliary parameters, [14] provided several efficient estimators for Y . [15] introduced a new family of Y
estimators based on the main variable's known population median and shown improvement over the 

estimators in competition. [16] proposed a new modified ratio type estimator based on an auxiliary 

variable's exponential parameter. [17] proposed an improved family of Y estimators utilizing known 

parameters of Y and X  for improving the efficiency of the estimators, [18] used some well-known 

traditional and non-traditional auxiliary parameters. Many more authors have attempted to improve Y
estimation using known data on traditional and non-traditional, robust and non-robust auxiliary 

parameters in classical sampling theory. 

 

1.3. Estimation under Neutrosophic Sampling Theory 

The data in classical sampling theory is mostly deterministic with no uncertainty in the measurements of 

the observations for the characteristics under investigation, however, we frequently encounter difficulties 

in everyday life where the data for the attributes under examination are not determined, for instance the 

measurement of temperature at any place along with other applications including information 

technology, information systems, decision support systems, financial data set detection, new economy 

growth, decline analysis, and more. In such cases, we seek alternate ways for dealing with undetermined 
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data, and the fuzzy logic pioneered by Prof. Lofti A. Zadeh in 1965 gives a solution for dealing with such 

data when exact measurements of the variable under examination are unavailable. Although fuzzy 

statistics deals with ambiguous, unclear, or imprecise data, it does not take into account the 

indeterminacy measurements. Neutosophic logic, further, is a generalized fuzzy logic that measures 

indeterminacy together with the determinate component of the observations and is utilized to analyze 

when the observations are imprecise or ambiguous, [19, 20]. [21] utilized the fuzzy logic in decision 

making for more precise decisions. Later different procedures using fuzzy logic have been developed and 

utilized extensively for making decisions in different areas of applications, [22-26]. [27] mentioned that 

the complex fuzzy sets are the advanced fuzzy sets and its generalization is the complex neutrosophic set. 

[28] suggested a diagram of fuzzy sets along with the generalizations of the sets and utilized the interval-

valued neutrosophic sets for making decisions.  

According to [29], Neutosophic statistics are used when data has some indeterminacy. 

Neutrosophic statistics is the extended form of classical statistics and are applied when the observations 

in the population or sample are imprecise, indeterminate, or vague. Further he mentioned that the 

methods of Neutrosophic statistics are utilized to analyze Neutrosophic data, which is indeterminate to 

some degree and the sample size may not be an exact number. In their works, [30] and [19] argue that 

neutrosophic statistics are particularly useful and acceptable for use in the system with the uncertainty. 

[31] used neutrosophic statistics to analyze the effect on scale and anisotropy for neutrosophic numbers 

of rock joint roughness coefficient. [20] focused on a Neutrosophic analysis of variance for university 

student data. [32] used a neutrosophic soft matrix (NSM) and relative weights of experts to develop an 

algorithmic strategy for group decision making (GDM) challenges. [33] used neutrosophic statistics to 

examine data from diabetes patients who had undergone a new diagnosis test. [34] worked on the 

estimation of the ratio of a crisp variable and a neutrosophic variable and shown improvement over the 

classical ratio method of estimation. [35] employed NEWMA chart and recurrent sampling to monitor 

road traffic crashes using neutrosophic statistics and in his research, [36] used neutrosophic statistics to 

develop a new goodness of fit test utilizing unclear parameters. In a study of skewness and kurtosis 

estimators of wind speed distributions under indeterminacy, [37] employed neutrosophic statistics. [38] 

devised a decision-making approach for determining the best fit of those damages in a neutrosophic 

environment, with the badly damaged machine receiving preference. [39] developed several new single-

valued neutrosophic graph (SVNG) concepts, stating that the fuzzy set and the neutrosophic set are two 

effective instruments for dealing with the uncertainties and ambiguity of any real-world scenario.  

When dealing with the uncertainties of a real-life scenario, the neutrosophic set outperforms the 

fuzzy set. [40] used neutrosophic parameterized hypersoft set theory to develop a decision-making 

application. They first conceptualized the neutrosophic parameterized hypersoft set, as well as some of its 

basic features and operations, and then used this theory to construct a decision-making-based method. 

For both one and two sample hypothesis testing situations, [41] suggested a modified Sign test that takes 

into account the indeterminate condition and true data form. They evaluated the suggested improved 

Sign test using two real data sets: covid-19 reproduction rate and covid-positive daily cases in ICU in 

Pakistan, and found that the suggested methodologies are appropriate for the problems of nonparametric 

in decision-making involving interval-valued data. To handle medical diagnostics and decision-making 

difficulties, [42] worked on algorithms for a generalization of multipolar neutrosophic soft set with 

measures of information. They proposed a general multipolar neutrosophic soft set, complete with 

operations and fundamental features. Later, they extended it to tackle decision-making problems by 

introducing various information measures for the generalization of multipolar neutrosophic soft set, such 

as distance, similarity, and correlation coefficient. [43] mentioned that in traditional survey sample 

studies where data is definite, certain, and unambiguous, the estimates are a single valued crisp results 
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that may be incorrect, overestimated, or understated, which might be a disadvantage. There are a variety 

of scenarios where data is neutrosophic in nature, and this is when Neutrosophic statistics is used instead 

of traditional approaches.  

Uncertain and ambiguous values of the variables, non-clear contentions, and imprecise interval 

values are examples of neutrosophic data. As a result, data from trials or populations may be interval-

valued neutrosophic numbers. The factual observation, that was ambiguous at the time of collecting, was 

thought to be a value within that range. There are more indeterminate data than definite data available in 

real life. As a result, more statistical techniques that are neutrosophic are needed. In real life, there are so 

many research variables that gathering information is quite costly, especially when the information is 

confusing. Thus, using traditional methods for indeterminate data to determine the unknown real value 

of the parameter will be dangerous and costly. After a thorough review of the literature, no study in 

sample surveys for ratio method of estimation for Y utilizing known X under neutrosophic data has 

been found. There are not enough promising articles in this subject of statistics yet. There was no 

available solution to tackle the issue using ratio estimation when Y and X were neutrosophic in nature. 

As a result, [43] presented a neutrosophic ratio-type estimation approach as the initial step in this 

direction. Further [43] mentioned that Neutrosophic Statistical analysis aids in the study of data with a 

degree of indeterminacy or insufficient knowledge, as well as conflicting beliefs. For the problem of 

indeterminacy, traditional statistics unsucceeded to analyze the data since certain observations were 

presented in a range of unknown values with the possibility of including a factual measurement within 

that range. As a result, in an uncertain environment, neutrosophic statistics is used, which is a more 

flexible alternative to and generalization of classical statistics. There have been numerous studies in the 

field of sample surveys under the Neutrosophy, where the method of ratio estimation is still new and 

necessitates a great deal of attention to the uncertain data system. For instance, the measurements of a 

machine product such as nuts or bolts may have slight measurement or manufacturing errors, and we 

may accept such product if it falls within the specified measurement range. Marks in grade system and 

health parameters through different testing procedures may be the areas of applications where 

neutrosophic statistics may be a better choice than the traditional one. Thus it is clear that in many 

situations, discussed above, the Neutrosophic estimators are used for improved estimation of population 

mean over the classical estimators where the observations of the study variable are not deterministic 

rather these are nondeterministic.   

 In this investigative work, we suggest a novel generalized neutrosophic ratio estimator for 

enhanced estimation of Y utilizing the known parameters of X . The sampling properties of the 

suggested estimator are studied for the first degree of approximation. The complete manuscript is being 

presented in different sections from introduction to the references.  

 

1.4. Observations in Neutrosophic Environment and Notations 

Quantitative neutrosophic data, where a number may lie in an uncertain interval [a, b], is one sort of 

observation in the neutrosophic environment, [30]. Neutosophic numbers' interval value can be 

represented in a variety of ways. [43] have defined neutrosophic interval values as NULN IZZZ  , 

where, ],[ ULN III  . We also use the same notations of [43] for the considered neutrosophic data, which 

are in the interval form as ],[ ULN ZZZ  , where LZ and LZ are the lower and upper values of the 

neutrosophic variable NZ . Let the neutrosophic population consists of N distinct units )...,,,( 21 NPPP

and a neutrosophic random sample of size ],[ ULN nnn  is taken from the above population using simple 

random sampling without replacement (srswor) technique. Let )(iyN be the observation on the ith unit of 
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the sample for the neutrosophic data under consideration for the main variable Ny , of the form 

],[)( ULN yyiy  and by the same way for the auxiliary variable ],[)( ULN xxix  . Let ],[)( ULN yyiy 

be the sample mean for the neutrosophic study variable Ny and ],[)( ULN xxix  be sample mean for the 

neutrosophic Nx which is correlated with Ny . Further let ],[ ULN YYY  and ],[ ULN XXX  be the 

population means for the neutrosophic variables Ny and Nx respectively, which are the overall averages 

of the neutrosophic data set. The neutrosophic coefficients of variation of Ny and Nx are given as 

],[ yNUyNLyN CCC  and ],[ xNUxNLxN CCC  respectively. The correlation coefficient between the 

neutrosophic variables Ny and Nx is represented as ],[ yxNUyxNLyxN   . The neutrosophic coefficients 

of skewness and kurtosis for Nx are given by ],[ )(1)(1)(1 NUxNLxNx   and ],[ )(2)(2)(2 NUxNLxNx  

respectively. The neutrosophic quartiles of Nx are given by ],[ iNUiNLiN QQQ  , 3,1i and the 

neutrosophic median of auxiliary variable as ],[ dNUdNLdN MMM  .  

 

1.5. Flow Chart of the Study 

The graph given below represents the flow chart of the suggested study using neutrosophic numbers. 

The following chart is a recreated flow chart suggested by [43].  
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Figure-1: Flow chart of the study 

 

1.6. Standard Approximations 

Following are some standard approximations used for the sampling properties of the neutrosophic 

estimators, suggested by [43] as, 

Let ],[ yUyLyN eee  and ],[ xUxLxN eee  be the mean errors for the study and the auxiliary neutrosophic 

variables along with NNyN Yiyie  )()( and 
NNxN Xixie  )()(  respectively.  The expectations of 

these errors for different orders are defined as; 

0)()(  xNyN eEeE  and,  

222 )( yNNNyN CYeE  , 
222 )( xNNNxN CXeE  , xNyNyxNNNNxNyN CCYXeeE )(  

Where,  
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

 , ],[ 222
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
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

1
 , ],[ ULN   , ],[ ULN nnn  , ],[ 222

xUxLxN   , ],[ 222

yUyLyN   , ],[ yxUyxLyxN    

On the basis of the errors of the neutrosophic variables, bias and the Mean Squared Error (MSE) of the 

introduced and the competing estimators are obtained for an approximation of order one. The Bias and 

the MSE in neutrosophic environment are defined as, ],[)( ULN BiasBiasyBias   and 

],[)( ULN MSEMSEyMSE  . Further the correlated auxiliary variables are used for the elevated 

estimation of NY and neutrosophic ratio type estimators are applied when there is indeterminacy in the 

data.  

 

1.7. Review of Neutrosophic Estimators 

The most appropriate neutrosophic estimator for the neutrosophic NY  of Y is the corresponding 

neutrosophic sample mean and is given by, 

 Nyt 0  

The variance of the neutrosophic sample mean for the first degree of approximation is, 
22

0 )( yNNN CYtV                                          (1) 

Where, ],[ 000 ULN ttt   

Using [1], [43] suggested the usual neutrosophic ratio estimator of NY using the known neutrosophic 

population mean of X as, 













N

N
NRN

x

X
yt  

The bias and MSE of the neutrosophic ratio estimator RNt , for an approximation of degree one 

respectively are, 

][)(Bias 2

yxNxNNNRN CCYt  , where, xNyNyxNyxN CCC   

]2[)(M 222

yxNxNyNNNRN CCCYtSE                                (2) 
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Where, ],[ RURLRN ttt   

Motivated by [2], [43] suggested the following neutrosophic ratio estimator using CV of neutrosophic 

variable X as, 

















xNN

xNN
NN

Cx

CX
yt1  

The bias and MSE of the neutrosophic ratio estimator Nt1 , for an approximation of order one respectively 

are, 

][)(Bias 1

22

11 yxNNxNNNNN CCYt    

]2[)(M 1

22

1

22

1 yxNNxNNyNNNN CCCYtSE                                 (3) 

Where, 
xNN

N
N
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X


1 and ],[ 111 ULN ttt   

Based on [3], [43] proposed the following neutrosophic exponential ratio estimator as, 


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The bias and MSE of the neutrosophic exponential ratio estimator Nt2 , for an approximation of order one 

respectively are, 


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Where,   ],[ 222 ULN ttt   

Motivated by [4], the two neutrosophic ratio estimators using CV and coefficient of kurtosis of X may be 

given as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt3 and Nt4 , for an approximation of order one 

respectively are, 
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Motivated by [5], the neutrosophic ratio estimator Nt5 , using known population coefficient of correlation 

may be given as, 




















yxNN

yxNN

NN
x

X
yt




5  

The bias and MSE of the neutrosophic ratio estimator Nt5 , for an approximation of order one respectively 

are, 

][)(Bias 5
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Where, 
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5 and ],[ 555 ULN ttt   

[43] suggested the following neutrosophic ratio estimator by adapting the estimator by [6], using 

coefficient of kurtosis of X as, 


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The bias and MSE of the neutrosophic ratio estimator Nt6 , for an approximation of order one respectively 

are, 
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Motivated by [44], the two neutrosophic ratio estimators using first and third quartiles of X may be 

given as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt7 and Nt8 , for an approximation of order one 

respectively are, 
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Motivated by [8], the two neutrosophic ratio estimators using coefficients of skewness and kurtosis of X
may be represented as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt9 and Nt10 , for an approximation of order 

one respectively are, 
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Motivated by [45], the two neutrosophic ratio estimators using median and coefficients of variation of X , 

we may define as, 
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The biases and MSEs of the neutrosophic ratio estimators Nt11 and Nt12 , for an approximation of order 

one respectively are, 
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Motivated by [46], the neutrosophic ratio estimator Nt13 , using known population coefficient of 

correlation may be given as, 
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The bias and MSE of the neutrosophic ratio estimator Nt13 , for an approximation of order one respectively 

are, 
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Motivated by [47], [43] suggested the following neutrosophic modified exponential ratio estimator as, 
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where, a and b are the neutrosophic auxiliary parameters.  

The bias and MSE of the neutrosophic exponential ratio estimator Nt14 , for an approximation of order one 

respectively are, 
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Motivated by [48], [43] proposed the following generalized neutrosophic exponential ratio estimator as, 
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where,  and h are the real known constants with   and 0h . The characterizing scalar a   

( 0a ) is determined so that the MSE of Nt15 is minimum.  

 The bias and MSE of the neutrosophic generalized exponential ratio estimator Nt15 , for an approximation 

of order one respectively are, 
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The optimum value of the characterizing constant a is obtained by minimizing )(M 15NtSE and the 

optimum value is, 
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The minimum value of the )(M 15NtSE for the optimum value of opta is, 

)1()(M 222

15min yxNyNNNN CYtSE                                                          (19) 

 

2. Material and Methods 

Motivated by [49], we suggest a ratio cum exponential ratio class of neutrosophic main variable using the 

neutrosophic auxiliary parameters as, 
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Where, 1 and 2 are the characterizing scalars to be determine such that the MSE of pNt is minimum. It 

is worth notable that, 

(i) If 02  , then the introduced estimator pNt reduces to [49] ratio type estimators having different 

estimators by different authors as its special cases. 

(ii) If 02   and 11  , the introduced estimator pNt reduces to ratio type estimators having different 

estimators by different authors as its special cases. 

(iii) If 01  , then the suggested class of estimators pNt reduces to [49] exponential ratio type estimators 

having different estimators by different authors as its special cases. 

(iv) If 01   and 12  , the suggested family of estimators pNt reduces to exponential ratio type 

estimators having different estimators by different authors as its special cases. 

Expressing the introduced estimator in terms of 
yNe and xNe , we have  
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Expanding the terms on the right hand side and simplifying and retaining the terms for the first degree of 

approximation, we get 
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Subtracting NY on both sides of the above equation, we have  
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Taking expectations on both sides of (20) and putting values of different expectations, we get the bias of 

pNt as, 
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Squaring on both sides of (20), simplifying for the first degree of approximation, we get 
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Putting values of different expectations after taking expectation on both sides, we get the MSE of pNt as, 
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The optimum values of the characterizing constants 1 and 2 which minimizes the MSE of the 

suggested estimator pNt respectively are, 
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The minimum value of the MSE of pNt for these optimum values of 1 and 2 is, 
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3. Theoretical Efficiency Comparison  

Under this section, we have compared the introduced neutrosophic estimator with the competing 

neutrosophic estimators of Y  using the neutrosophic auxiliary parameters. The efficiency of the 

introduced estimator has been compared in terms of MSEs and the efficiency condition of the introduced 

estimator to be more efficient than the competing one is obtained.  
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The introduced estimator pNt has lesser MSE than estimator RNt for the following condition. 
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The suggested estimator pNt  is better than the estimator Nt1 by [43] under the restriction if, 
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The suggested estimator pNt  is better than the exponential ratio type estimator Nt2 by [43] for the 

condition if, 
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01
4

2
2 



















Q

P
C

C
C yxN

xN
yNN

 
The introduced estimator pNt performs better than the estimator Nt3  if, 
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The introduced estimator pNt has lesser MSE than the estimator Nt4  if it satisfies, 
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The proposed estimator pNt is better than the estimator Nt5  if, 
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The suggested estimator pNt performs better than the ratio estimator Nt6  by [43] if, 
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The introduced estimator pNt is better than the ratio estimator Nt7  under the condition if, 
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The proposed estimator pNt has lesser MSE than the ratio estimator Nt8  for the condition if, 
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The introduced estimator pNt performs better than the estimator Nt9  if, 
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The introduced estimator pNt has lesser MSE than the estimator Nt10  if, 
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The proposed estimator pNt has lesser MSE in comparison to the ratio estimator Nt11  under the condition 

if, 

0)()(M min11  pNN tMSEtSE or, 

01]2[ 11

22

11

2 









Q

P
CCC yxNNxNNyNN 

 

The introduced estimator pNt is better than the ratio estimator Nt12  for the condition if, 
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The proposed estimator pNt perform better the estimator Nt13 if, 
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The suggested estimator pNt has lesser MSE with that of the ratio estimator Nt14  under the condition if, 

0)()(M min14  pNN tMSEtSE or, 
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The introduced estimator pNt is better than that of the estimator Nt15 if, 
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4. Simulation Study  

To verify the theoretical efficiency conditions and evaluate the efficiencies of the suggested and 

competing neutrosophic estimator of Y utilizing known auxiliary parameters, we have simulated a 

neutrosophic data set using the same parameters of [43]. To generate the neutrosophic data, we have 

considered that the neutrosophic main and auxiliary random variables NY and NX follow the 

neutrosophic normal distributions. Thus ),(~ 2

yNyNN NNY  ; ),( ULN YYY  , ),( yUyLyN   , 

),( 222

yUyLyN   and ),(~ 2

xNxNN NNX  ; ),( ULN XXX  , ),( xUxLxN   , ),( 222

xUxLxN   . 

For the numerical illustration, we have taken ]))2.17(,)9.12[(],9.84,0.76([~ 22NNYN
, where, 

)9.84,0.76(yN , )2.17,9.12(yN and ]))7.6(,)8.5[(],4.180,2.171([~ 22NNX N
, where, 

)4.180,2.171(xN , )7.6,8.5(xN and generated 1000 normal random observation for both the 

variables.  The descriptive statistics for the simulated data is presented in Table 1. 

 
Table 1.  Descriptive statistics of the simulated data for the neutrosophic data 

Parameter      Neutrosophic    Value Parameter     Neutrosophic Value 

NN
                

]1000,1000[
           xNC

                     
]0369.0,0332.0[  

Nn
  

]20,20[
     Nx)(1  

]0051.0,0020.0[  

yN
 

]63.85,20.76[
      Nx)(2  

]9539.2,0227.3[  

xN
 

]34.180,08.171[
   NxQ )(1    

]1144.176,3941.167[  

yN
   

]37.17,79.12[
       NxdM )(     

]3451.180,9067.170[  

xN
        

]65.6,67.5[
           NxQ )(3  

]7586.184,9269.174[  

yNC
                

]2028.0,1679.0[
 yxN

     
]00703.0,01933.0[  

 

The Table 2 is representing the neutrosophic MSEs of different competing along with the suggested 

estimator of population mean.  
Table 2. Neutrosophic MSEs of different competing and suggested estimator 

SR. No.     Estimators              MSE 

1.                       𝑡0                         [8.019213, 14.77799] 

2.                       𝑡𝑅𝑁                      [17.39673, 27.98680] 

3.                       𝑡1𝑁                       [17.39674, 27.98681] 

4.                         𝑡2𝑁                     [8.066852, 14.8812] 

5.                𝑡3𝑁                     [17.39709, 27.98701] 
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6.                         𝑡4𝑁                     [17.39674, 27.98681] 

7.                         𝑡5𝑁                     [17.39674, 27.98681] 

8.                         𝑡6𝑁                     [17.3978, 27.98741] 

9.                         𝑡7𝑁                     [17.42703, 28.00546] 

10.                       𝑡8𝑁                     [17.4277, 28.00592] 

11.                       𝑡9𝑁                     [17.39673, 27.98681] 

12.                       𝑡10𝑁                    [17.4517, 28.01563] 

13.                       𝑡11𝑁                    [17.42734, 28.00569] 

14.                       𝑡12𝑁                    [17.45602, 28.02323] 

15.                       𝑡13𝑁                    [17.40314, 27.99058] 

16.                       𝑡14𝑁(a=1,b=0)    [17.42736, 28.00569] 

17.                       𝑡14𝑁(a=1,b=1)    [17.42754, 28.00579] 

18.                       𝑡15𝑁                    [8.016216, 14.77726] 

19.                       pNt
                    

[7.864525, 13.821846] 

 

 

5. Results and Discussion  

From Table 2, it may clearly be observed that the estimator 0t of NY has its neutrosophic sampling 

variance as [8.019213, 14.77799] and the neutrosophic MSE of the exponential ratio estimator Nt2 is 

[8.066852, 14.8812] while the neutrosophic MSEs of all the mentioned ratio type estimators lie in the 

interval [17.45602, 28.02323]. The neutrosophic ratio type estimators have high MSEs than the 

neutrosophic estimator 0t because of the low neutrosophic correlation between neutrosophic y and x . 

The neutrosophic MSE of the suggested class of estimators is [7.864525, 13.821846], which is the minimum 

among the group of all neutrosophic estimators of NY in competition.  

 

6. Conclusion  

In this scripture, we have suggested a novel family of neutrosophic estimators of NY for the elevated 

estimation of neutrosophic NY  using the known neutrosophic auxiliary parameters. We studied the 

neutrosophic sampling properties mainly bias and MSE of the proposed family of estimators for the 

approximation of degree one. The neutrosophic optimum values of the characterizing scalars of the 

introduced estimator are obtained and the neutrosophic minimum MSE of the suggested estimator has 

also been obtained for these neutrosophic optimum values of the characterizing scalars. The introduced 

estimator has been compared with the neutrosophic competing estimators theoretically and the efficiency 

condition over the competing estimators have been obtained. These efficiency conditions are verified 

using a neutrosophic simulated data set. The results in Table-2 are showing that the suggested estimator 

is most efficient among the class of all neutrosophic competing estimators of NY . Thus the introduced 

class of estimators may be recommended for elevated estimation of neutrosophic NY  in different areas of 

applications. It is to be mentioned here that the neutrosophic estimators are most suitable for improved 

estimation of population mean for the situations where the observations of the study variable are 

nondeterministic but for the situation where its observations are deterministic, it may be inferior to the 

classical estimators.  
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