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Unité Etna

2 rue de la Papèterie,
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Abstract – This paper presents a new approach for
combining sources of evidences with different impor-
tances and reliabilities. Usually, the combination of
sources of evidences with different reliabilities is done by
the classical Shafer’s discounting approach. Therefore,
to consider unequal importances of sources, if any, a
similar reliability discounting process is generally used,
making no difference between the notion of importance
and reliability. In fact, in multicriteria decision con-
text, these notions should be clearly distinguished. This
paper shows how this can be done and we provide simple
examples to show the differences between both solutions
for managing importances and reliabilities of sources.
We also discuss the possibility for mixing them in a
global fusion process.

Keywords: Information fusion, DSmT, discounting,
importance, reliability, AHP.

1 Introduction

In many real-life fusion problems, one has to deal
with different sources of information arising from hu-
man reports, artificial intelligence experts systems
and/or physical sensors. The information are usually
imprecise, uncertain, incomplete, qualitative or quanti-
tative and possibly conflicting. The task of information
fusion is to combine all the information in such a way
that one has a better understanding and assessment
of the situation of the complex problem under consid-
eration for decision-making support. Several theoret-
ical frameworks have been proposed in the literature
(Probability theory, Possibilities theory, Imprecise PT,
etc) but the most appealing ones are the theories of
belief functions, originally known as Dempster-Shafer
Theory (DST) [8] and then extended and refined in
Dezert-Smarandache Theory (DSmT) [9] for dealing
with qualitative information, for fusioning highly con-
flicting sources of evidences, for conditioning evidences,
etc. Aside the choice of the “best“ rule of combina-
tion of sources of evidences characterized by their be-

lief functions, more specifically by their basic belief as-
signments (bba’s), or belief masses, the very important
problem concerns the possibility that sources involved
in the fusion process may not have the same reliability,
neither the same importance. The reliability can be
seen as an objective property of a source of evidence,
whereas the importance of a source is a subjective prop-
erty of a source expressed by the fusion system designer.

The reliability of a source represents its ability to pro-
vide the correct assessment/solution of the given prob-
lem. The importance of a source represents somehow
the weight of importance granted to the source by the
fusion system designer. The reliability and importance
represent two distinct notions and the fusion process
must be able to deal with these notions. We show in
this paper how this can be done efficiently through two
discounting techniques using Proportional Conflict Re-
distribution rules no 5 or no 6 (PCR5 or PCR6) de-
veloped in DSmT framework. We will show also that
such solution cannot be used in DST framework us-
ing Dempster’s rule of combination because Dempster’s
rule doesn’t respond to our new importance discounting
(it only responds to reliability discounting1).

The importance of a source is particularly crucial
since it is involved in multi-criteria decision making
(MCDM) problems, like in the Analytic Hierarchy Pro-
cess (AHP) developed by Saaty [6, 7]. That’s why it
is fundamental to show how the importance can be ef-
ficiently managed in evidential reasoning approaches,
in particular in DSmT. The fusion system designer is
still free to make no differences between importance and
reliability and use the classical discounting technique.
In general however, one should consider the importance
and the reliability as two distinct notions and thus they
have to be processed in different ways. This is the pur-
pose of this paper. The application of this technique
in DSmT-AHP is presented in [2] and an application of
both DSmT and AHP for risk expertise and prevention
in mountains has been introduced by Tacnet in [11, 12]

1Known as the classical Shafer’s discounting, see [8].



and works are still under progress in this field.

This paper is organized as follows. After a brief re-
minder of basics of DSmT for information fusion and
its main fusion rule in section 2, we present the clas-
sical discounting technique for combining sources with
different reliabilities in section 3. In section 4, we intro-
duce in a new solution for taking into account the pos-
sible different importances of sources in the fusion pro-
cess. Section 5 provides simple examples to show and
compare the results obtained from the two discounting
approaches. In section 6 we discuss the more general
problem where one needs to deal with both reliability
and importance at the same level in the fusion process.
Conclusions and perspectives are given in section 7.

2 Basics of DSmT

Let Θ = {θ1, θ2, · · · , θn} be a finite set of n elements
θi, i = 1, . . . , n assumed to be exhaustive. Θ corre-
sponds to the frame of discernment of the problem un-
der consideration. In general (unless introducing some
integrity constraints), we assume that elements of Θ
are non exclusive in order to deal with vague/fuzzy and
relative concepts [9], Vol. 2. This is the so-called free-
DSm model. In DSmT framework, there is no need in
general to work on a refined frame consisting in a dis-
crete finite set of exclusive and exhaustive hypotheses2

because DSm rules of combination work for any models
of the frame, i.e. the free DSm model (no exclusive con-
straint between θi, Shafer’s model (all θi are exclusive)
or any hybrid model (only some θi are truly exclusive).
The power set 2Θ is defined as the set of all proposi-
tions built from elements of Θ with ∪ [8]; Θ generates
2Θ under ∪. The hyper-power set (Dedekind’s lattice)
DΘ is defined as the set of all propositions built from
elements of Θ with ∪ and ∩; Θ generates DΘ under ∪
and ∩, see [9] Vol. 1 for many detailed examples. The
super-power set (Boolean algebra) SΘ is defined as the
set of all propositions built from elements of Θ with ∪
and ∩ and complement c(.); Θ generates SΘ under ∪, ∩
and c(.), see [9] Vol. 3. SΘ can be seen as the minimal
refined frame of Θ. For notation convenience, we use
the generic notation GΘ to represent the fusion space
under consideration depending on the application and
the underlying model chosen for the frame Θ; which
can be either GΘ can be either 2Θ, DΘ or SΘ. In DST
framework, GΘ = 2Θ, whereas in DSmT we usually
work with GΘ = DΘ.

A (quantitative) basic belief assignment (bba) ex-
pressing the belief committed to the elements of GΘ

by a given source/body of evidence is a mapping func-
tion m(·): GΘ → [0, 1] such that: m(∅) = 0 and
∑

A∈GΘ m(A) = 1. Elements A ∈ GΘ having m(A) > 0
are called focal elements of the bba m(.). The general
belief and plausibility functions are defined respectively

2Referred as Shafer’s model in the literature.

in almost the same manner as Shafer in [8], i.e.

Bel(A) =
∑

B∈GΘ,B⊆A

m(B) (1)

Pl(A) =
∑

B∈GΘ,B∩A 6=∅

m(B) (2)

In DSmT, the Proportional Conflict Redistribution
Rule no. 5 (PCR5) has been proposed as a serious
alternative of Dempster’s rule [8] for dealing with
conflicting belief functions. It has been also clearly
shown in [9], Vol. 3, chap. 1 that Smets’ rule3 is not
so efficient, nor cogent because it doesn’t respond to
new information in a global or in a sequential fusion
process. Indeed, very quickly Smets’ fusion result
commits the full mass of belief to the empty set!!!
Therefore in applications, some ad-hoc numerical
techniques must be used to circumvent this serious
drawback. Such problem doesn’t occur with PCR5
rule. By construction, other well-known rules like
Dubois & Prade, or Yager’s rule, and contrariwise to
PCR5, increase the non-specificity of the result. An
introduction to DSmT and PCR5 fusion rule with
justification and several examples can be found in [9],
Vol. 3, Chap. 1, freely downloadable from the web.

Definition of PCR5 (for two sources): Let’s m1(.)
and m2(.) be two independent4 bba’s, then the PCR5
rule of combination for two sources of evidence is de-
fined as follows (see [9], Vol. 2 for details, justification
and examples): mPCR5(∅) = 0 and ∀A ∈ GΘ \ {∅}

mPCR5(A) =
∑

X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2)+

∑

X∈GΘ

X∩A=∅

[
m1(A)2m2(X)

m1(A) + m2(X)
+

m2(A)2m1(X)

m2(A) + m1(X)
] (3)

All fractions in (3) having zero denominators are
discarded. In DSmT, we consider all propositions/sets
in a canonical form. We take the disjunctive normal
form, which is a disjunction of conjunctions, and it is
unique in Boolean algebra and simplest. For example,
X = A∩B ∩ (A ∪B ∪C) it is not in a canonical form,
but we simplify the formula and X = A ∩ B is in a
canonical form. Like most of fusion rules5, PCR5 is not
associative and the optimal fusion result is obtained
by combining the sources altogether at the same time
when possible. Some of PCR5 properties can be
found in [1] and it allows non-Bayesian reasoning. An
extension of PCR5 for combining qualitative bba’s can

3i.e. the non normalized Dempster’s rule.
4i.e. each source provides its bba independently of the other

sources.
5Except Dempster’s rule, and conjunctive rule in free DSm

model.



be found in [9], Vol. 2 & 3.

Basically, the idea of PCR5 is to transfer the conflict-
ing mass only to the elements involved in the conflict
and proportionally to their individual masses, so that
the specificity of the information is entirely preserved
through this fusion process. For example: consider two
bba’s m1(.) and m2(.), A ∩ B = ∅ for the model of Θ,
and m1(A) = 0.6 and m2(B) = 0.3. With PCR5 the
partial conflicting mass m1(A)m2(B) = 0.6 · 0.3 = 0.18
is redistributed to A and B only with respect to the
following proportions respectively: xA = 0.12 and
xB = 0.06 because the proportionalization requires

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) + m2(B)
=

0.18

0.9
= 0.2

Variant of PCR5 (PCR6): The extension and a vari-
ant of (3), called PCR6 has been proposed by Mar-
tin and Osswald in [9], Vol. 2, for combining s > 2
sources and for working in other fusion spaces is pre-
sented in [9]. For two sources, PCR6 coincides with
PCR5. The difference between PCR5 and PCR6 lies
in the way the proportional conflict redistribution is
done as soon as three or more sources are involved in
the fusion. For example, let’s consider three sources
with bba’s m1(.), m2(.) and m3(.), A ∩ B = ∅ for the
model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3,
m3(B) = 0.1. With PCR5 the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redis-
tributed back to A and B only with respect to the
following proportions respectively: xPCR5

A = 0.01714
and xPCR5

B = 0.00086 because the proportionalization
requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B)m3(B)

that is

xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus
{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redis-
tributed back to A and B only with respect to the fol-
lowing proportions respectively: xPCR6

A = 0.0108 and
xPCR6

B = 0.0072 because the PCR6 proportionalization
is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B,2

m2(B)
=

xPCR6
B,3

m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B) + m3(B)

that is

xPCR6
A

0.6
=

xPCR6
B,2

0.3
=

xPCR6
B,3

0.1
=

0.018

0.6 + 0.3 + 0.1
= 0.018

thus










xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B,2 = 0.3 · 0.018 = 0.0054

xPCR6
B,3 = 0.1 · 0.018 = 0.0018

and therefore with PCR6, one gets finally the following
redistributions to A and B:
{

xPCR6
A = 0.0108

xPCR6
B = xPCR6

B,2 + xPCR6
B,3 = 0.0054 + 0.0018 = 0.0072

From the implementation point of view, PCR6 is much
more simple to implement than PCR5 (see Appendix).

3 Reliability discounting
Reliability refers to information quality while impor-

tance refers to subjective preferences of the fusion sys-
tem designer. The reliability of a source represents its
ability to provide the correct assessment/solution of
the given problem. It is characterized by a discount-
ing reliability factor, usually denoted α in [0, 1], which
should be estimated from statistics when available, or
by other techniques [3]. This reliability factor can be
context-dependent. For example, if one knows that
some sensors do not perform well under bad weather
conditions, etc, one will decrease the reliability factor
of information arising from that source accordingly. By
convention, we usually take α = 1 when the source is
fully reliable and α = 0 if the source is totally unre-
liable. Reliability of a source is generally considered6

through Shafer’s discounting method [8], p. 252, which
consists in multiplying the masses of focal elements by
the reliability factor α, and transferring all the remain-
ing discounted mass to the full ignorance Θ. When
α < 1, such very simple reliability discounting tech-
nique discounts all focal elements with the same factor
α and it increases the non specificity of the discounted
sources since the mass committed to the full ignorance
always increases. Mathematically, Shafer’s discounting
technique for taking into account the reliability factor
α ∈ [0, 1] of a given source with a bba m(.) and a frame
Θ is defined by:

{

mα(X) = α · m(X), for X 6= Θ

mα(Θ) = α · m(Θ) + (1 − α)
(4)

4 Importance discounting
The importance of a source is not the same as its re-

liability and it can be characterized by an importance
factor, denoted β in [0, 1]. β factor represents some-
how the weight of importance granted to the source by
the fusion system designer. The choice of β is usually
not related with the reliability of the source and can be
chosen to any value in [0, 1] by the designer for his/her

6More sophisticated methods have been also proposed, see
[4, 5] for example.



own reason. By convention, the fusion system designer
will take β = 1 when he/she wants to grant the max-
imal importance of the source in the fusion process,
and will take β = 0 if no importance at all is granted
to this source in the fusion process. Typically, if one
has a pool of experts around a table to take important
decision, say politicians, scientific researchers, military
officers, etc, it is possible that one wants to grant more
importance to the voice of a given politician (say the
President) rather than to a military officers or a scien-
tific researcher, even if the scientific researcher is more
reliable in his expertise field than other people. Such
situations occur frequently in real-life problems. The
fusion designer must be able to deal with importance
factors in a different way than with reliability factors
since they correspond to distinct properties associated
with a source of information.

The main question we are concerned in this paper is
how to deal with different importances of sources in the
fusion process in such a way that a clear distinction is
made/preserved between reliability and importance ?

Our preliminary investigations were based on the
self/auto-combination of the sources. For example,
if one has the importances factors β1 = 0.7 for the
source s1 and β2 = 0.3 for the source s2, one could
imagine to combine 7 times the bba m1(.) with it-
self, combine 3 times the bba m2(.) with itself, and
then combine the resulting auto-fusioned bba’s because
such combination would reflect somehow the relative
importance of the source in the fusion process since
β1/β2 = 0.7/0.3 = 7/3. Actually such approach is very
disputable and cannot be used satisfactorily in practice
whatever the fusion rule is adopted. It can be easily
shown that the auto-conflict tends quickly to 1 after
several auto-fusions [3]. In other words, the combina-
tion result of N × β1 bba’s m1(.) with M × β2 bba’s
m2(.) is almost the same for any N and M sufficiently
large, so that the different importances of sources are
not well preserved in such approach. The numerical
complexity of such method must be pointed out since
it would require to compute possibly many auto-fusions
of each source which is a very time-consuming computa-
tional task. For example, if β1 = 0.791 and β2 = 0.209,
it would require to combine at least 791 auto-fusions of
m1(.) with 209 auto-fusions of m2(.) !!!

In this paper, we propose a better solution to con-
sider importances of sources. Our new approach can
be considered as the dual of Shafer’s discounting ap-
proach for reliabilities of sources. The idea was origi-
nally introduced briefly by Tacnet in [9], Vol.3, Chap.
23, p. 613. It consists to define the importance dis-
counting with respect to the empty set rather than the
total ignorance Θ (as done by Shafer in reliability dis-
counting presented in section 3). Such new discounting
technique allows to deal easily with sources of different
importances and is also very simple to use as it will be
shown.

Definition (importance discounting): We define the
importance discounting of a source having the impor-
tance factor β and asociated bba m(.) by

{

mβ(X) = β · m(X), for X 6= ∅

mβ(∅) = β · m(∅) + (1 − β)
(5)

Note that with this importance discounting approach,
we allow to deal with non-normal bba since mβ(∅) ≥ 0.
The interest of this new discounting is to preserve the
specificity of the primary information since all focal
elements are discounted with same importance factor
and no mass is committed back to partial or total
ignorances. Working with positive mass of belief on
the empty set is not new and has been introduced in
nineties by Smets in his transferable belief model [10].
Here we use the positive mass of the empty set as an
intermediate/preliminary step of the fusion process.
Clearly when β = 1 is chosen by the fusion designer, it
will mean that the source must take its full importance
in the fusion process and so the original bba m(.) is
kept unchanged. If the fusion designer takes β = 0, one
will deal with mβ(∅) = 1 which must be interpreted
as a fully non important source. m(∅) > 0 is not
interpreted as the mass committed to some conflicting
information (classical interpretation), nor as the mass
committed to unknown elements when working with
the open-world assumption (Smets interpretation), but
only as the mass of the discounted importance of a
source in this particular context.

Before going further, it is worth to note that
Dempster’s rule cannot deal properly with importance
discounted bba’s proposed in (5) because our impor-
tance discounting technique preserves the specificity
of the primary information and Dempster’s rule does
not make a difference in results when combining m1(.)
with m2(.) or when combining mβ1 6=1(.) with mβ2 6=1(.)
due to the way of processing the total conflicting mass
of belief. This can be stated as the following theorem:

Theorem 1: Dempster’s rule is not responding to
the discounting of sources towards the emptyset.
Proof: Let m1(.) and m2(.) be two bba’s defined
on the fusion space GΘ = {X1, X2, . . . , Xn}. Let
m1(Xi) = ai for all i, with

∑n
i=1 ai = 1, and all

ai in [0, 1], and let m2(Xi) = bi for all i, with
∑n

i=1 bi = 1, and all bi in [0, 1]. m1(∅) = m2(∅) = 0.
After discounting both m1(.) and m2(.) towards the
emptyset with β1 and respectively β2 in [0, 1], we
get: (β1)m1(Xi) = (β1)ai for all i, with

∑n
i=1 ai = 1,

and all ai in [0, 1], also (β1)m1(∅) = 1 − β1, and
(β2)m2(Xi) = (β2)bi for all i, with

∑n

i=1 bi = 1,
and all bi in [0, 1], also (β2)m1(∅) = 1 − β2. If we
apply the conjunctive rule to m1(.) and m2(.) we get:
m12(Xi) = ci, with

∑n

i=1 ci = 1 and ci in [0, 1], where
some Xi could be empty intersections. Suppose the



non-empty resulted sets after applying the conjunctive
rule are: Xi1 ,. . . , Xip

. Then Dempster’s rule gives
mDS(Xik

) = m12(Xik
)/(m12(Xi1)+. . .+m12(Xip

)), for
1 ≤ k ≤ p. If we apply the conjunctive rule to (β1)m1(.)
and (β2)m2(.) we get: (β1)(β2)m12(Xi) = (β1)(β2)ci,
with (β1)(β2)ci in [0, 1], where some Xi could be
empty sets, and (β1)(β2)m12(∅7) = 1 − (β1)(β2). Now
Dempster’s rule normalizes the conjunctive result of
non empty sets by dividing the mass of each nonempty
set by the sum of all non-empty sets. The non-empty
resulted sets after applying the conjunctive rule are the
same: Xi1 , . . . , Xip

. Then: (β1)(β2)mDS(Xik
) =

(β1)(β2)m12(Xik
)/((β1)(β2)m12(Xi1) + . . . +

(β1)(β2)m12(Xip
)) = m12(Xik

)/(m12(Xi1) + . . . +
m12(Xip

)) = mDS(Xik
) since the whole fraction is sim-

plified by (β1)(β2), for 1 ≤ k ≤ p. Hence Dempster’s
rule is not responding to the discounting of sources
towards the empty set. �

From Theorem 1, one understands why such impor-
tance discounting technique has never been proposed
and used in DST framework and this explains why the
classical Shafer’s discounting technique (the reliability
discounting) has only been largely adopted so far.
By using Dempster’s rule, the fusion designer has no
other choice but to consider importance and reliability
as same notions! As it will be shown, the DSmT
framework with PCR5 (or PCR6) rule and the impor-
tance discounting technique proposed here provides
an interesting and simple solution for the fusion of
sources with different importances which makes a clear
distinction between importances and reliabilities of
sources.

Fusion of importance discounted bba’s: Based on
this new discounting technique, it is however very sim-
ple to adapt PCR5 or PCR6 fusion rules for combining
the s ≥ 2 discounted bba’s associated with each source
i, i = 1, 2, . . . s. It suffices actually to consider the fol-
lowing extension of PCR5, denoted PCR5∅ and defined
by:

• For two sources (s = 2): ∀A ∈ GΘ (A may be the
empty set too)

mPCR5∅
(A) =

∑

X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2)+

∑

X∈GΘ

X∩A=∅

[
m1(A)2m2(X)

m1(A) + m2(X)
+

m2(A)2m1(X)

m2(A) + m1(X)
] (6)

7i.e. the absolute empty set, not that resulted from set inter-
sections which are empty.

• For s ≥ 2 sources: ∀A ∈ GΘ (A may be the empty
set too)

mPCR5∅
(A) = m12...s(A)+

∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2 ,...,Xjt∈GΘ

{j2,...,jt}∈Pt−1({1,...,n})
A∩Xj2∩...∩Xjs =∅

{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(A)2) · [

∏t

l=2(
∏rl

kl=rl−1+1 mikl
(Xjl

)]

(
∏r1

k1=1 mik1
(A)) + [

∑t
l=2(

∏rl

kl=rl−1+1 mikl
(Xjl

)]

(7)

where i, j, k, r, s and t in (7) are integers.
m12...s(A) ,

∑

X1,X2,...,Xs∈GΘ

∩s
i=1Xi=A

∏s
i=1 mi(Xi) is the

conjunctive consensus on A between s sources
and where all denominators are different from
zero. If a denominator is zero, that fraction is
discarded; Pk({1, 2, . . . , n}) is the set of all subsets
of k elements from {1, 2, . . . , n} (permutations
of n elements taken by k), the order of elements
doesn’t count.

A similar extension can be done for the PCR6 for-
mula for s > 2 sources given in [9], Vol. 2. More pre-
cisely for any A in GΘ (A may be the empty set too)
we define:

mPCR6∅
(A) = m12...s(A)+

∑

X1,X2,...,Xs−1∈GΘ

Xi 6=A,i∈{1,2,...,s−1}

(∩s−1
i=1 Xi)∩A=∅

s−1
∑

k=1

∑

(i1,i2,...,is)∈P (1,2,...,s)

[mi1(A) + mi2(A) + . . . + mik
(A)]×

∏k

j=1 mij
(A)

∏s−1
p=k+1 mip

(Xp)
∑k

j=1 mij
(A) +

∑s−1
p=k+1 mip

(Xp)
(8)

where P (1, 2, . . . , s) is the set of all permutations of
the elements {1, 2, . . . , s}. It should be observed that
X1, X2, . . . , Xs−1 may be different from each other,
or some of them equal and others different, etc.

As a particular case for s = 3 sources, one gets for
any A in GΘ (A may be the empty set too):

mPCR6∅
(A) = m123(A) +

∑

X,Y ∈GΘ

X 6=A,Y 6=A
X∩Y ∩A=∅

∑

(i1,i2,i3)∈P (1,2,3)

mi1(A)2mi2(X)mi3(Y )

mi1(A) + mi2(X) + mi3(Y )

+ [mi1(A) + mi2(A)] ·
mi1(A)mi2 (A)mi3 (X)

mi1(A) + mi2(A) + mi3(X)
(9)



where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi
(.)

will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example).

5 Example
For convenience and simplicity, and due to space lim-

itation constraint, we give a very simple example work-
ing on the classical power set 2Θ since most of read-
ers familiar belief functions usually work with this fu-
sion space. Example 1: Let’s consider Θ = {A, B},
Shafer’s model, and two sources with respectively bba’s
m1(.) and m2(.) given by m1(A) = 0.8, m1(B) = 0.2
and m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

mβ1=0.2(.) mβ2=0.8(.) m12(.) m
norm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

Clearly, one sees in Table 2 the strong impact of the
importance discounting on the result with respect
to what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained
by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as seen in Table 3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi

(.) 6= mβi,αi
(.) whenever αi 6= 1 and βi 6= 1.

mαi,βi
(.) denotes the reliability discounting of mi(.)by

αi followed by the importance discounting of mαi
(.)

by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi

(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi

(.) by αi. To deal both with reliabilities and impor-
tances factors and because of the non commutativity of
these discountings, we propose to proceed the fusion of
the sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi

(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi

(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 3 (mixing/averaging): Combine
the resulting bba’s of Steps 1 and 2 using the arithmetic
mean operator8.
Method 2: Another simplest method which could be
useful for intermediate traceability in some applications
would consist to change Steps 1 & 2 by Step 1’: Apply
reliability discounting only to get mαi

(.) and combine
them with PCR5 or PCR6; Step 2’: Apply importance
discounting only to get mβi

(.) and combine them with

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.



PCR5∅ or PCR6∅ and normalize the result; Step 3’
same as Step 3. Due to space limitation, only Method
1 is briefly illustrated in the following simple example.

Example 2: Let’s take Θ = {A, B, C}, Shafer’s model,
three sources m1(.), m2(.) and m3(.) given in next table
and assume that their reliability factors are α1 = 0.8,
α2 = 0.5, and α3 = 0.2 and their importance factors
are β1 = 0.9, β2 = 0.3 and β3 = 0.6.

m1(.) m2(.) m3(.)

∅ 0 0 0
A 0.8 0.4 0.1
B 0 0.3 0.3
A ∪ B 0.1 0.2 0
C 0 0 0.5
A ∪ C 0.1 0 0
B ∪ C 0 0.1 0
A ∪ B ∪ C 0 0 0.1

Table 4: Sources of evidences.

By applying reliability followed by importance dis-
counting, and by applying importance followed by reli-
ability discounting, one gets:

mα1,β1(.) mα2,β2(.) mα3,β3(.)

∅ 0.1000 0.7000 0.4000
A 00.5760 0.0600 0.0120
B 0 0.0450 0.0360
A ∪ B 0.0720 0.0300 0
C 0 0 0.0600
A ∪ C 0.0720 0 0
B ∪ C 0 0.0150 0
A ∪ B ∪ C 0.1800 0.1500 0.4920

Table 5: Reliability-Importance discounting.

mβ1,α1(.) mβ2,α2(.) mβ3,α3(.)

∅ 0.0800 0.3500 0.0800
A 0.5760 0.0600 0.0120
B 0 0.0450 0.0360
A ∪ B 0.0720 0.0300 0
C 0 0 0.0600
A ∪ C 0.0720 0 0
B ∪ C 0 0.0150 0
A ∪ B ∪ C 0.2000 0.5000 0.8120

Table 6: Importance-Reliability discounting.

The normalized results of the PCR5∅ fusion of
mαi,βi

(.) for i = 1, 2, 3 (Step 1) and PCR5∅ fusion of
mβi,αi

(.) for i = 1, 2, 3 (Step 2) is given in next Table
7 with their arithmetic mean m̄PCR5(.) (Step 3).

7 Conclusions
The proposition of two different discounting tech-

niques is an important contribution to consider both
preferences and reliability in fusion problems for deci-
sion making purposes. In this paper, we have proposed
a new solution for taking into account the different im-
portances of sources of evidence in their combination.

Step 1 Step 2 Step 3

m
norm
PCR5∅,α,β

(.) m
norm
PCR5∅,β,α

(.) m̄PCR5(.)

∅ 0 0 0
A 0.5741 0.4927 0.5334
B 0.0254 0.0244 0.0249
A ∪ B 0.0311 0.0464 0.0388
C 0.0182 0.0182 0.0182
A ∪ C 0.0233 0.0386 0.0310
B ∪ C 0.0032 0.0032 0.0032
A ∪ B ∪ C 0.3247 0.3765 0.3506

Table 7: Results of Steps 1, 2 & 3.

We have shown the clear distinction between the clas-
sical reliability discounting technique and our new im-
portance discounting method which can be used with
extensions of PCR5 and PCR6 fusion rules developed in
DSmT framework. It has been shown also that Demp-
ster’s rule cannot be applied satisfactorily with this im-
portance discounting approach contrariwise to PCR5
and PCR6 rules. The importance and reliability can
now be distinguished in the fusion of sources which in-
troduces a link with Multi-Criteria Decision Problems
in the fusion of sources of information. Applications
of these techniques for risk prevention against natural
catastrophes in mountains are under progress and re-
sults will be published in forthcoming publications.
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Appendix: MatlabTMcode listings

for PCR5 and PCR6
For convenience, we provide two MatlabTMroutines

for PCR5 and PCR6 for the fusion of s ≥ 2 sources
for working with 2Θ, i.e. working with Shafer’s model.
Some adaptations need to be done to work on other
fusion spaces and to work with PCR5∅ and PCR6∅.
No verification of input is done in the routines. It
is assumed that the input matrix BBA is correct,
both in dimension and in content. No attempt for
fast computation, nor memory optimization is done
in these very simple and basic codes. The deriva-
tion of all possible combinations in the loop with
combvec(Combinations,vec) instruction is a very
time-consuming task when the size of the problem
increases and should be done once outside the routines.
The j-th column of the BBA input matrix corresponds
to the (vertical) bba vector mj(.) associated with the
j-th source sj . Each element of a BBA matrix is in
[0,1] and the sum of each column must be one. If N is
the cardinality of the frame Θ and if S is the number
of sources, then the size of the BBA input matrix is
((2N ) − 1)) × S. Each column of the BBA matrix
must use the following binary encoding of elements9

of 2Θ \ {∅}. For example, if Θ = {A, B, C}, then
binary sequence 001 = A, 010 = B, 011 = A ∪ B, . . . ,
111 = A ∪ B ∪C. These codes can be used and shared
for free for research purposes only. Commercial uses of
these codes, or any adaptation of them, is not allowed
without written agreement of the author. The use of
these codes are at the own risk of the user.

9Since one always considers normal input bba’s such that
mj(∅) = 0, j = 1, . . . S, one doesn’t need to store these val-
ues in the BBA matrix. For PCR5∅ and PCR6∅ however, one
needs to include as first row of BBA the mj(∅) ≥ 0 resulting
from importance discounting of the sources and make a proper
adaptation of indexes in the routines.

File : PCR5fusion.m

function [mPCR5,TotalConflict]=PCR5fusion(BBA)

% Author and copyrights: Jean Dezert

% Input: BBA matrix

% Output: mPCR5 = resulting bba after fusion with PCR5

% TotalConflict = level of total conflict between sources

NbrSources=size(BBA,2);

CardTheta=log2(size(BBA,1)+1);

if(NbrSources==1)

mPCR5=BBA(:,1);TotalConflict=0;return

end

Card2PowerTheta=2^(CardTheta)-1;

% All possible combinations

vec=[1:Card2PowerTheta];

Combinations=vec;

for s=1:NbrSources-1

Combinations=combvec(Combinations,vec);

end

Combinations=Combinations’;

mPCR5=zeros(Card2PowerTheta,1);

TotalConflict=0;

NbrComb=size(Combinations,1);

for c=1:NbrComb

PC=Combinations(c,:);

mConj=zeros(1,NbrSources);

for s=1:NbrSources

mConj(s)=BBA(PC(s),s);

end

massConj=prod(mConj,2);

if(massConj>0)

% Check if this is a real partial conflict or not

Intersections=PC(1);

for s=2:NbrSources

X=PC(s);

Intersections=bitand(Intersections,X);

end

if(Intersections~=0) % the intersection is not empty

mPCR5(Intersections)=mPCR5(Intersections)+massConj;

else % the intersection is empty

TotalConflict=TotalConflict+massConj;

% Let’s apply PCR5 rule principle

UQ=unique(PC);

Proportions=0*UQ;

DenPCR5=0;

for u=1:size(UQ,2)

SamePropositions=find(PC==UQ(u));

MassProd=prod(mConj(SamePropositions));

Proportions(u)= MassProd*massConj;

DenPCR5=DenPCR5+MassProd;

end

Proportions=Proportions/DenPCR5;

% PCR5 redistribution

for u=1:size(UQ,2)

mPCR5(UQ(u))=mPCR5(UQ(u))+Proportions(u);

end, end, end, end, return

File : PCR6fusion.m

function [mPCR6,TotalConflict]=PCR6fusion(BBA)

% Author and copyrights: Jean Dezert

% Input: BBA matrix

% Output: mPCR6 = resulting bba after fusion with PCR6

% TotalConflict = level of total conflict between sources

NbrSources=size(BBA,2);

CardTheta=log2(size(BBA,1)+1);

if(NbrSources==1)

mPCR6=BBA(:,1);

TotalConflict=0;

return

end

Card2PowerTheta=2^(CardTheta)-1;

% All possible combinations

vec=[1:Card2PowerTheta];

Combinations=vec;

for s=1:NbrSources-1

Combinations=combvec(Combinations,vec);

end

Combinations=Combinations’;

mPCR6=zeros(Card2PowerTheta,1);

TotalConflict=0;

NbrComb=size(Combinations,1);

for c=1:NbrComb

PC=Combinations(c,:); % particular combination

mConj=zeros(1,NbrSources);

for s=1:NbrSources

mConj(s)=BBA(PC(s),s);

end

massConj=prod(mConj,2);

if(massConj>0)

Intersections=PC(1);

for s=2:NbrSources

X=PC(s);

Intersections=bitand(Intersections,X);

end

if(Intersections~=0) % intersection not empty

mPCR6(Intersections)=mPCR6(Intersections)+massConj;

else % empty intersection

TotalConflict=TotalConflict+massConj;

% PCR6 rule principle

for s=1:NbrSources

Proportion= mConj(s)*(massConj/(sum(mConj,2)));

% Redistribution back to element PC(s)

mPCR6(PC(s))=mPCR6(PC(s))+Proportion;

end, end, end, end, return


