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Abstract – The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of
information has always been, and still remains today, of primal importance for the development of reliable modern information systems
involving artificial reasoning. In this chapter, we presenta survey of our recent theory of plausible and paradoxical reasoning, known
as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of
information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination,
than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation
to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic
logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making
after fusioning the information using the DSm hybrid rule ofcombination of masses.
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1 Introduction

The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of
information has always been, and still remains today, of primal importance for the development of reliable modern infor-
mation systems involving artificial reasoning. The combination (fusion) of information arises in many fields of applica-
tions nowadays (especially in defense, medicine, finance, geo-science, economy, etc). When several sensors, observers
or experts have to be combined together to solve a problem, orif one wants to update our current estimation of solutions
for a given problem with some new information available, we need powerful and solid mathematical tools for the fusion,
specially when the information one has to deal with is imprecise and uncertain. In this chapter, we present a survey of
our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature,
developed for dealing with imprecise, uncertain and paradoxical sources of information. Recent publications have shown
the interest and the ability of DSmT to solve problems where other approaches fail, especially when conflict between
sources becomes high. We focus our presentation here ratheron the foundations of DSmT, and on the two important new
rules of combination, than on browsing specific applications of DSmT available in literature. A particular attention is
given to general (hybrid) rule of combination which deals with any model for fusion problems, depending on the nature
of elements or hypotheses involved into them. The Shafer’s model on which is based the Dempster-Shafer Theory (DST)
appears only as a specific DSm hybrid model and can be easily handled by our approach as well. Several simple examples
are given throughout the presentation to show the efficiencyand the generality of this new approach. The last part of
this work concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT.
Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm
hybrid rule of combination of masses.

2 Foundations of the DSmT

The development of the DSmT (Dezert-Smarandache Theory of plausible and paradoxical reasoning [37]) arises from the
necessity to overcome the inherent limitations of the DST (Dempster-Shafer Theory [31]) which are closely related with
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the acceptance of Shafer’s model for the fusion problem under consideration (i.e. the frame ofdiscernmentΘ defined as
a finite set ofexhaustiveandexclusivehypothesesθi, i = 1, . . . , n), the third middle excluded principle (i.e. the existence
of the complement for any elements/propositions belongingto the power set ofΘ), and the acceptance of Dempter’s
rule of combination (involving normalization) as the framework for the combination of independent sources of evidence.
Discussions on limitations of DST and presentation of some alternative rules to the Dempster’s rule of combination can
be found in [50, 51, 52, 46, 53, 17, 47, 28, 39, 43, 20, 27, 22, 30, 23, 37] and therefore they will be not reported in details
in this chapter due to space limitation. We argue that these three fundamental conditions of the DST can be removed and
another new mathematical approach for combination of evidence is possible.

The basis of the DSmT is the refutation of the principle of thethird excluded middle and Shafer’s model, since for
a wide class of fusion problems the intrinsic nature of hypotheses can be only vague and imprecise in such a way that
precise refinement is just impossible to obtain in reality sothat the exclusive elementsθi cannot be properly identified
and precisely separated. Many problems involving fuzzy continuous and relative concepts described in natural language
and having no absolute interpretation like tallness/smallness, pleasure/pain, cold/hot, Sorites paradoxes, etc, enter in this
category. DSmT starts with the notion offree DSm model, denotedMf (Θ), and considersΘ only as a frame of exhaus-
tive elementsθi, i = 1, . . . , n which can potentially overlap. This model isfree because no other assumption is done
on the hypotheses, but the weak exhaustivity constraint which can always been satisfied according the closure principle
explained in [37]. No other constraint is involved in the free DSm model. When the free DSm model holds, the classic
commutative and associative DSm rule of combination (corresponding to the conjunctive consensus defined on the free
Dedekind’s lattice) is performed.

Depending on the intrinsic nature of the elements of the fusion problem under consideration, it can however happen
that the free model does not fit the reality because some subsets of Θ can contain elements known to be truly exclusive
but also truly non existing at all at a given time (specially when working on dynamic fusion problem where the frameΘ
varies with time with the revision of the knowledge available). These integrity constraints are then explicitly and formally
introduced into the free DSm modelMf(Θ) in order to adapt it properly to fit as close as possible with the reality and
permit to construct ahybrid DSm modelM(Θ) on which the combination will be efficiently performed. Shafer’s model,
denotedM0(Θ), corresponds to a very specific hybrid DSm model including all possible exclusivity constraints. The
DST has been developed for working only withM0(Θ) while the DSmT has been developed for working with any kind
of hybrid model (including Shafer’s model and the free DSm model), to manage as efficiently and precisely as possible
imprecise, uncertain and potentially high conflicting sources of evidence while keeping in mind the possible dynamicity
of the information fusion problematic. The foundations of the DSmT are therefore totally different from those of all
existing approaches managing uncertainties, imprecisions and conflicts. DSmT provides a new interesting way to attack
the information fusion problematic with a general framework in order to cover a wide variety of problems.

DSmT refutes also the idea that sources of evidence provide their beliefs with the same absolute interpretation of
elements of the same frameΘ and the conflict between sources arises not only because of the possible unreliabilty of
sources, but also because of possible different and relative interpretation ofΘ, e.g. what is considered as good for
somebody can be considered as bad for somebody else. There issome unavoidable subjectivity in the belief assignments
provided by the sources of evidence, otherwise it would meanthat all bodies of evidence have a same objective and
universal interpretation (or measure) of the phenomena under consideration, which unfortunately rarely occurs in reality,
but when bba are based on someobjective probabilitiestransformations. But in this last case, probability theorycan handle
properly and efficiently the information, and the DST, as well as the DSmT, becomes useless. If we now get out of the
probabilistic background argumentation for the construction of bba, we claim that in most of cases, the sources of evidence
provide their beliefs about elements of the frame of the fusion problem only based on their own limited knowledge and
experience without reference to the (inaccessible) absolute truth of the space of possibilities. First applications of DSmT
for target tracking, satellite surveillance, situation analysis and sensor allocation optimization can be found in [37].

2.1 Notion of hyper-power setDΘ

One of the cornerstones of the DSmT is the free Dedekind lattice [14] denotedhyper-power setin the DSmT framework.
Let Θ = {θ1, . . . , θn} be a finite set (called frame) ofn exhaustive elements1. The hyper-power setDΘ is defined as the
set of all composite propositions built from elements ofΘ with ∪ and∩ operators2 such that:

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, thenA ∩ B ∈ DΘ andA ∪ B ∈ DΘ.
1We do not assume here that elementsθi are necessary exclusive. There is no restriction onθi but the exhaustivity.
2Θ generatesDΘ under operators∪ and∩



3. No other elements belong toDΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching∪ and∩ in expressions) ofDΘ is itself. There are elements inDΘ which are self-dual
(dual to themselves), for exampleα8 for the case whenn = 3 in the following example. The cardinality ofDΘ is ma-
jored by22n

when the cardinality ofΘ equalsn, i.e. |Θ| = n. The generation of hyper-power setDΘ is closely related
with the famous Dedekind problem [14, 13] on enumerating theset of isotone Boolean functions. The generation of the
hyper-power set is presented in [37]. Since for any given finite setΘ, |DΘ| ≥ |2Θ| we callDΘ thehyper-power setof Θ.

Example of the first hyper-power setsDΘ

• For the degenerate case (n = 0) whereΘ = {}, one hasDΘ = {α0 , ∅} and|DΘ| = 1.

• WhenΘ = {θ1}, one hasDΘ = {α0 , ∅, α1 , θ1} and|DΘ| = 2.

• WhenΘ = {θ1, θ2}, one hasDΘ = {α0, α1, . . . , α4} and|DΘ| = 5 with α0 , ∅, α1 , θ1 ∩ θ2, α2 , θ1, α3 , θ2

andα4 , θ1 ∪ θ2.

• WhenΘ = {θ1, θ2, θ3}, one hasDΘ = {α0, α1, . . . , α18} and|DΘ| = 19 with

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3 α10 , θ2

α2 , θ1 ∩ θ2 α11 , θ3

α3 , θ1 ∩ θ3 α12 , (θ1 ∩ θ2) ∪ θ3

α4 , θ2 ∩ θ3 α13 , (θ1 ∩ θ3) ∪ θ2

α5 , (θ1 ∪ θ2) ∩ θ3 α14 , (θ2 ∩ θ3) ∪ θ1

α6 , (θ1 ∪ θ3) ∩ θ2 α15 , θ1 ∪ θ2

α7 , (θ2 ∪ θ3) ∩ θ1 α16 , θ1 ∪ θ3

α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 , θ2 ∪ θ3

α9 , θ1 α18 , θ1 ∪ θ2 ∪ θ3

The cardinality of hyper-power setDΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [32], i.e. 1,2,5,19,167,
7580,7828353,... and analytical expression of Dedekind’snumbers has been obtained recently by Tombak in [42] (see
[37] for details on generation and ordering ofDΘ).

2.2 Notion of free and hybrid DSm models

Elementsθi, i = 1, . . . , n of Θ constitute the finite set of hypotheses/concepts characterizing the fusion problem under
consideration.DΘ constitutes what we call thefree DSm modelMf (Θ) and allows to work with fuzzy concepts which
depict a continuous and relative intrinsic nature. Such kinds of concepts cannot be precisely refined in an absolute inter-
pretation because of the unapproachable universal truth.

However for some particular fusion problems involving discrete concepts, elementsθi are truly exclusive. In such
case, all the exclusivity constraints onθi, i = 1, . . . , n have to be included in the previous model to characterize properly
the true nature of the fusion problem and to fit it with the reality. By doing this, the hyper-power setDΘ reduces naturally
to the classical power set2Θ and this constitutes the most restricted hybrid DSm model, denotedM0(Θ), coinciding with
Shafer’s model. As an exemple, let’s consider the 2D problemwhereΘ = {θ1, θ2} with DΘ = {∅, θ1∩θ2, θ1, θ2, θ1∪θ2}

and assume now thatθ1 andθ2 are truly exclusive (i.e. Shafer’s modelM0 holds), then becauseθ1 ∩ θ2
M0

= ∅, one gets

DΘ = {∅, θ1 ∩ θ2
M0

= ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} ≡ 2Θ.

Between the class of fusion problems corresponding to the free DSm modelMf(Θ) and the class of fusion problems
corresponding to Shafer’s modelM0(Θ), there exists another wide class of hybrid fusion problems involving in Θ both
fuzzy continuous concepts and discrete hypotheses. In such(hybrid) class, some exclusivity constraints and possiblysome
non-existential constraints (especially when working on dynamic3 fusion) have to be taken into account. Each hybrid
fusion problem of this class will then be characterized by a proper hybrid DSm modelM(Θ) with M(Θ) 6= Mf (Θ) and
M(Θ) 6= M0(Θ). As simple example of DSm hybrid model, let’s consider the 3Dcase with the frameΘ = {θ1, θ2, θ3}
with the modelM 6= Mf in which we force all possible conjunctions to be empty, butθ1∩θ2. This hybrid DSm model is
then represented with the following Venn diagram (where boundaries of intersection ofθ1 andθ2 are not precisely defined
if θ1 andθ2 represent only fuzzy concepts likesmallnessandtallnessby example).

3i.e. when the frameΘ and/or the modelM is changing with time.
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2.3 Generalized belief functions

From a general frameΘ, we define a mapm(.) : DΘ → [0, 1] associated to a given body of evidenceB as

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (1)

The quantitym(A) is called thegeneralized basic belief assignment/mass(gbba) ofA.

Thegeneralized belief and plausibility functionsare defined in almost the same manner as within the DST, i.e.

Bel(A) =
∑

B⊆A

B∈DΘ

m(B) Pl(A) =
∑

B∩A 6=∅
B∈DΘ

m(B) (2)

These definitions are compatible with the definitions of classical belief functions in the DST framework whenDΘ

reduces to2Θ for fusion problems where Shafer’s modelM0(Θ) holds. We still have∀A ∈ DΘ, Bel(A) ≤ Pl(A). Note
that when working with the free DSm modelMf (Θ), one has always Pl(A) = 1 ∀A 6= ∅ ∈ DΘ which is normal.

2.4 The classic DSm rule of combination

When the free DSm modelMf (Θ) holds for the fusion problem under consideration, the classic DSm rule of combination
mMf (Θ) ≡ m(.) , [m1⊕m2](.) of two independent4 sources of evidencesB1 andB2 over the same frameΘ with belief
functions Bel1(.) and Bel2(.) associated with gbbam1(.) andm2(.) corresponds to the conjunctive consensus of the
sources. It is given by [37]:

∀C ∈ DΘ, mMf (Θ)(C) ≡ m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (3)

SinceDΘ is closed under∪ and∩ set operators, this new rule of combination guarantees thatm(.) is a proper general-
ized belief assignment, i.e.m(.) : DΘ → [0, 1]. This rule of combination is commutative and associative and can always
be used for the fusion of sources involving fuzzy concepts when free DSm model holds for the problem under considera-
tion. This rule can be directly and easily extended for the combination ofk > 2 independent sources of evidence [37].

This classic DSm rule of combination looks very expensive interms of computations and memory size due to the
huge number of elements inDΘ when the cardinality ofΘ increases. This remark is however valid only if the cores (the
set of focal elements of gbba)K1(m1) andK2(m2) coincide withDΘ, i.e. whenm1(A) > 0 andm2(A) > 0 for all
A 6= ∅ ∈ DΘ. Fortunately, it is important to note here that in most of thepractical applications the sizes ofK1(m1) and
K2(m2) are much smaller than|DΘ| because bodies of evidence generally allocate their basic belief assignments only
over a subset of the hyper-power set. This makes things easier for the implementation of the classic DSm rule (3). The
DSm rule is actually very easy to implement. It suffices for each focal element ofK1(m1) to multiply it with the focal
elements ofK2(m2) and then to pool all combinations which are equivalent underthe algebra of sets.

While very costly in term on merory storage in the worst case (i.e. when allm(A) > 0, A ∈ DΘ or A ∈ 2Θref ), the
DSm rule however requires much smaller memory storage than for the DST working on the ultimate refinement2Θref of
same initial frameΘ as shown in following table

4While independence is a difficult concept to define in all theories managing epistemic uncertainty, we follow here the interpretation
of Smets in [38] and [39], p. 285 and consider that two sourcesof evidence are independent (i.e distinct and noninteracting) if each
leaves one totally ignorant about the particular value the other will take.



|Θ| = n |DΘ| |2Θref | = 22n−1

2 5 23 = 8
3 19 27 = 128
4 167 215 = 32768
5 7580 231 = 2147483648

However in most fusion applications only a small subset of elements ofDΘ have a non null basic belief mass because
all the commitments are just usually impossible to assess precisely when the dimension of the problem increases. Thus, it
is not necessary to generate and keep in memory all elements of DΘ or 2Θref but only those which have a positive belief
mass. However there is a real technical challenge on how to manage efficiently all elements of the hyper-power set. This
problem is obviously much more difficult when trying to work on the refined frame of discernment2Θref if one prefer
to apply Dempster-Shafer theory and use the Dempster’s ruleof combination. It is important to keep in mind that the
ultimate refined frame consisting in exhaustive and exclusive finite set of refined hypotheses is just impossible to justify
and to define precisely for all problems dealing with fuzzy and ill-defined continuous concepts. A full discussion and
example on refinement can be found in [37].

2.5 The hybrid DSm rule of combination

When the free DSm modelMf (Θ) does not hold due to the true nature of the fusion problem under consideration
which requires to take into account some known integrity constraints, one has to work with a proper hybrid DSm model
M(Θ) 6= Mf (Θ). In such case, the hybrid DSm rule of combination based on thechosen hybrid DSm modelM(Θ) for
k ≥ 2 independent sources of information is defined for allA ∈ DΘ as [37]:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(4)

whereφ(A) is thecharacteristic non-emptiness functionof a setA, i.e. φ(A) = 1 if A /∈ ∅ andφ(A) = 0 otherwise,
where∅ , {∅M, ∅}. ∅M is the set of all elements ofDΘ which have been forced to be empty through the constraints of
the modelM and∅ is the classical/universal empty set.S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
∏

i=1

mi(Xi) (5)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
∏

i=1

mi(Xi) (6)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xk))=A

(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (7)

with U , u(X1)∪ u(X2)∪ . . .∪ u(Xk) whereu(X) is the union of allθi that composeX , It , θ1 ∪ θ2 ∪ . . .∪ θn is the
total ignorance, andc(X) is the canonical form5 of X , i.e. its simplest form (for example ifX = (A∩B)∩ (A∪B ∪C),
c(X) = A ∩ B). S1(A) corresponds to the classic DSm rule fork independent sources based on the free DSm model
Mf (Θ); S2(A) represents the mass of all relatively and absolutely empty sets which is transferred to the total or relative
ignorances associated with non existential constraints (if any, like in some dynamic problems);S3(A) transfers the sum
of relatively empty sets directly onto the canonical disjunctive form of non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of combination and is not equivalent to
Dempter’s rule. It works for any models (the free DSm model, Shafer’s model or any other hybrid models) when manip-
ulatingprecisegeneralized (or eventually classical) basic belief functions. An extension of this rule for the combination
of imprecisegeneralized (or eventually classical) basic belief functions is presented in next section.

Note that in DSmT framework it is also possible to deal directly with complements if necessary depending on the
problem under consideration and the information provided by the sources of evidence themselves. The first and simplest
way is to work on Shafer’s model when utimate refinement is possible. The second way is to deal with partially known

5The canonical form is introduced here in order to improve theoriginal formula given in [37] for preserving the neutral impact of
the vacuous belief massm(Θ) = 1 within complex hybrid models.



frame and introduce directly the complementary hypothesesinto the frame itself. By example, if one knows only two
hypothesesθ1, θ2 and their complements̄θ1, θ̄2, then can chooseΘ = {θ1, θ2, θ̄1, θ̄2}. In such case, we don’t necessarily
assume that̄θ1 = θ2 and θ̄2 = θ1 becausēθ1 and θ̄2 may include other unknown hypotheses we have no information
about (case of partial known frame). More generally, in DSmTframework, it is not necessary that the frame is built on
pure/simple (possibly vague) hypothesesθi as usually done in all theories managing uncertainty. The frameΘ can also
contain directly as elements conjunctions and/or disjunctions (or mixed propositions) and negations/complements ofpure
hypotheses as well. The DSm rules also work in such non-classic frames because DSmT works on any distributive lattice
built from Θ anywhereΘ is defined.

2.6 Examples of combination rules

Here are some numerical examples on results obtained by DSm rules of combination. More examples can be found in
[37].

2.6.1 Example withΘ = {θ1, θ2, θ3, θ4}

Let’s consider the frame of discernmentΘ = {θ1, θ2, θ3, θ4}, two independent experts, and the two following bbas

m1(θ1) = 0.6 m1(θ3) = 0.6 m2(θ2) = 0.6 m2(θ4) = 0.6

represented in terms of mass matrix

M =

[

0.6 0 0.4 0
0 0.2 0 0.8

]

• The Dempster’s rule can not be applied because:∀1 ≤ j ≤ 4, one getsm(θj) = 0/0 (undefined!).

• But the classic DSm rule works because one obtains:m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0, andm(θ1 ∩ θ2) =
0.12, m(θ1 ∩ θ4) = 0.48, m(θ2 ∩ θ3) = 0.08, m(θ3 ∩ θ4) = 0.32 (partial paradoxes/conflicts).

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies the hybrid DSm rule
and one gets (indexh stands here forhybrid rule): mh(θ1 ∪ θ2) = 0.12, mh(θ1 ∪ θ4) = 0.48, mh(θ2 ∪ θ3) = 0.08
andmh(θ3 ∪ θ4) = 0.32.

2.6.2 Generalization of Zadeh’s example withΘ = {θ1, θ2, θ3}

Let’s consider0 < ǫ1, ǫ2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment beΘ =
{θ1, θ2, θ3}, have two experts (independent sources of evidences1 ands2) giving the belief masses

m1(θ1) = 1 − ǫ1 m1(θ2) = 0 m1(θ3) = ǫ1

m2(θ1) = 0 m2(θ2) = 1 − ǫ2 m2(θ3) = ǫ2

From now on, we prefer to use matrices to describe the masses,i.e.
[

1 − ǫ1 0 ǫ1
0 1 − ǫ2 ǫ2

]

• Using Dempster’s rule of combination, one gets

m(θ3) =
(ǫ1ǫ2)

(1 − ǫ1) · 0 + 0 · (1 − ǫ2) + ǫ1ǫ2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values forǫ1, ǫ2 are, Dempster’s rule
of combination provides always the same result (one) which is abnormal. The only acceptable and correct result
obtained by Dempster’s rule is really obtained only in the trivial case whenǫ1 = ǫ2 = 1, i.e. when both sources
agree inθ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one getsm(θ3) = ǫ1ǫ2, m(θ1 ∩ θ2) = (1− ǫ1)(1−
ǫ2), m(θ1∩θ3) = (1−ǫ1)ǫ2, m(θ2∩θ3) = (1−ǫ2)ǫ1 and the others are zero which appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one getsm(θ3) = ǫ1ǫ2, m(θ1∪θ2) =
(1 − ǫ1)(1 − ǫ2), m(θ1 ∪ θ3) = (1 − ǫ1)ǫ2, m(θ2 ∪ θ3) = (1 − ǫ2)ǫ1 and the others are zero.

Note that in the special case whenǫ1 = ǫ2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yieldsm(θ3) = 1 while the hybrid DSm rule based on the same Shafer’s model
yields nowm(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is normal.



2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the main common rules of combination on the following very simple
numerical example where only 2 independent sources (a priori assumed equally reliable) are involved and providing their
belief initially on the 3D frameΘ = {θ1, θ2, θ3}. It is assumed in this example that Shafer’s model holds and thus the
belief assignmentsm1(.) andm2(.) do not commit belief to internal conflicting information.m1(.) andm2(.) are chosen
as follows:

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

These belief masses are usually represented in the form of a belief mass matrixM given by

M =

[

0.1 0.4 0.2 0.3
0.5 0.1 0.3 0.1

]

(8)

where indexi for the rows corresponds to the index of the source no.i and the indexesj for columns ofM correspond to
a given choice for enumerating the focal elements of all sources. In this particular example, indexj = 1 corresponds to
θ1, j = 2 corresponds toθ2, j = 3 corresponds toθ3 andj = 4 corresponds toθ1 ∪ θ2.

Now let’s imagine that one finds out thatθ3 is actually truly empty because some extra and certain knowledge onθ3 is
received by the fusion center. As example,θ1, θ2 andθ3 may correspond to three suspects (potential murders) in a police
investigation,m1(.) andm2(.) corresponds to two reports of independent witnesses, but itturns out that finallyθ3 has
provided a strong alibi to the criminal police investigatoronce arrested by the policemen. This situation correspondsto

set up a hybrid modelM with the constraintθ3
M
= ∅.

Let’s examine the result of the fusion in such situation obtained by the Smets’, Yager’s, Dubois & Prade’s and hybrid
DSm rules of combinations. First note that, based on the freeDSm model, one would get by applying the classic DSm
rule (denoted here by indexDSmc) the following fusion result

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11

But because of the exclusivity constraints (imposed here bythe use of Shafer’s model and by the non-existential

constraintθ3
M
= ∅), the total conflicting mass is actually given by

k12 = 0.06 + 0.21 + 0.13 + 0.14 + 0.11 = 0.65 (conflicting mass)

• If one appliesDempster’s rule [31] (denoted here by indexDS), one gets:

mDS(∅) = 0

mDS(θ1) = 0.21/[1− k12] = 0.21/[1− 0.65] = 0.21/0.35 = 0.600000

mDS(θ2) = 0.11/[1− k12] = 0.11/[1− 0.65] = 0.11/0.35 = 0.314286

mDS(θ1 ∪ θ2) = 0.03/[1− k12] = 0.03/[1− 0.65] = 0.03/0.35 = 0.085714

• If one appliesSmets’ rule [40, 41] (i.e. the non normalized version of Dempster’s rulewith the conflicting mass
transferred onto the empty set), one gets:

mS(∅) = m(∅) = 0.65 (conflicting mass)

mS(θ1) = 0.21

mS(θ2) = 0.11

mS(θ1 ∪ θ2) = 0.03

• If one appliesYager’s rule [45, 46, 47], one gets:

mY (∅) = 0

mY (θ1) = 0.21

mY (θ2) = 0.11

mY (θ1 ∪ θ2) = 0.03 + k12 = 0.03 + 0.65 = 0.68



• If one appliesDubois & Prade’s rule [18], one gets becauseθ3
M
= ∅ :

mDP (∅) = 0 (by definition of Dubois & Prade’s rule)

mDP (θ1) = [m1(θ1)m2(θ1) + m1(θ1)m2(θ1 ∪ θ2) + m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ1)m2(θ3) + m2(θ1)m1(θ3)]

= [0.1 · 0.5 + 0.1 · 0.1 + 0.5 · 0.3] + [0.1 · 0.3 + 0.5 · 0.2] = 0.21 + 0.13 = 0.34

mDP (θ2) = [0.4 · 0.1 + 0.4 · 0.1 + 0.1 · 0.3] + [0.4 · 0.3 + 0.1 · 0.2] = 0.11 + 0.14 = 0.25

mDP (θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)] + [m1(θ1 ∪ θ2)m2(θ3) + m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) + m2(θ1)m1(θ2)]

= [0.30.1] + [0.3 · 0.3 + 0.1 · 0.2] + [0.1 · 0.1 + 0.5 · 0.4] = [0.03] + [0.09 + 0.02] + [0.01 + 0.20]

= 0.03 + 0.11 + 0.21 = 0.35

Now if one adds up the masses, one gets0 + 0.34 + 0.25 + 0.35 = 0.94 which is less than 1. Therefore Dubois
& Prade’s rule of combination does not work when a singleton,or an union of singletons, becomes empty (in a dy-
namic fusion problem). The products of such empty-element columns of the mass matrixM are lost; this problem
is fixed in DSmT by the sumS2(.) in (4) which transfers these products to the total or partialignorances.

In this particular example, using the hybrid DSm rule, one transfers the product of the empty-elementθ3 column,
m1(θ3)m2(θ3) = 0.2 · 0.3 = 0.06, to mDSmh(θ1 ∪ θ2), which becomes equal to0.35 + 0.06 = 0.41.

2.7 Fusion of imprecise beliefs
In many fusion problems, it seems very difficult (if not impossible) to have precise sources of evidence generating precise
basic belief assignments (especially when belief functions are provided by human experts), and a more flexible plausible
and paradoxical theory supporting imprecise information becomes necessary. In the previous sections, we presented the
fusion ofpreciseuncertain and conflicting/paradoxical generalized basic belief assignments (gbba) in the DSmT frame-
work. We mean here by precise gbba, basic belief functions/massesm(.) defined precisely on the hyper-power setDΘ

where each massm(X), whereX belongs toDΘ, is represented by only one real number belonging to[0, 1] such that
∑

X∈DΘ m(X) = 1. In this section, we present the DSm fusion rule for dealing with admissible imprecise generalized
basic belief assignmentsmI(.) defined as real subunitary intervals of[0, 1], or even more general as real subunitary sets
[i.e. sets, not necessarily intervals]. An imprecise belief assignmentmI(.) over DΘ is said admissible if and only if
there exists for everyX ∈ DΘ at least one real numberm(X) ∈ mI(X) such that

∑

X∈DΘ m(X) = 1. The idea to
work with imprecise belief structures represented by real subset intervals of[0, 1] is not new and has been investigated in
[21, 15, 16] and references therein. The proposed works available in the literature, upon our knowledge were limited only
to sub-unitary interval combination in the framework of Transferable Belief Model (TBM) developed by Smets [40, 41].
We extend the approach of Lamata & Moral and Denœux based on subunitary interval-valued masses to subunitary set-
valued masses; therefore the closed intervals used by Denœux to denote imprecise masses are generalized to any sets
included in [0,1], i.e. in our case these sets can be unions of(closed, open, or half-open/half-closed) intervals and/or
scalars all in[0, 1]. Here, the proposed extension is done in the context of the DSmT framework, although it can also ap-
ply directly to fusion of imprecise belief structures within TBM as well if the user prefers to adopt TBM rather than DSmT.

Before presenting the general formula for the combination of generalized imprecise belief structures, we remind the
following set operators involved in the formula. Several numerical examples are given in [37].

• Addition of sets

S1 ⊞ S2 = S2 ⊞ S1 , {x | x = s1 + s2, s1 ∈ S1, s2 ∈ S2} with

{

inf(S1 ⊞ S2) = inf(S1) + inf(S2)

sup(S1 ⊞ S2) = sup(S1) + sup(S2)

• Subtraction of sets

S1 ⊟ S2 , {x | x = s1 − s2, s1 ∈ S1, s2 ∈ S2} with

{

inf(S1 ⊟ S2) = inf(S1) − sup(S2)

sup(S1 ⊟ S2) = sup(S1) − inf(S2)

• Multiplication of sets

S1 ⊡ S2 , {x | x = s1 · s2, s1 ∈ S1, s2 ∈ S2} with

{

inf(S1 ⊡ S2) = inf(S1) · inf(S2)

sup(S1 ⊡ S2) = sup(S1) · sup(S2)



2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combine anytype of imprecise belief assignment which may be repre-
sented by the union of several sub-unitary (half-) open intervals, (half-)closed intervals and/or sets of points belonging to
[0,1]. Several numerical examples are also given. In the sequel, one uses the notation(a, b) for an open interval,[a, b] for
a closed interval, and(a, b] or [a, b) for a half open and half closed interval. From the previous operators on sets, one can
generalize the DSm rules (classic and hybrid) from scalars to sets in the following way [37] (chap. 6):∀A 6= ∅ ∈ DΘ,

mI(A) =
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (9)

where
∑

and
∏

represent the summation, and respectively product, of sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in the following way:

mI
M(Θ)(A) , φ(A) ⊡

[

SI
1(A) ⊞ SI

2(A) ⊞ SI
3 (A)

]

(10)

φ(A) is thecharacteristic non emptiness functionof the setA andSI
1 (A), SI

2(A) andSI
3(A) are defined by

SI
1 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (11)

SI
2(A) ,

∑

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

∏

i=1,...,k

mI
i (Xi) (12)

SI
3 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

∏

i=1,...,k

mI
i (Xi) (13)

In the case when all sets are reduced to points (numbers), theset operations become normal operations with numbers;
the sets operations are generalizations of numerical operations. When imprecise belief structures reduce to precise belief
structure, DSm rules (9) and (10) reduce to their precise version (3) and (4) respectively.

2.7.2 Example

Here is a simple example of fusion with with multiple-interval masses. For simplicity, this example is a particular case
when the theorem of admissibility (see [37] p. 138 for details) is verified by a few points, which happen to be just on
the bounders. It is an extreme example, because we tried to comprise all kinds of possibilities which may occur in the
imprecise or very imprecise fusion. So, let’s consider a fusion problem overΘ = {θ1, θ2}, two independent sources of
information with the following imprecise admissible belief assignments

A ∈ DΘ mI
1(A) mI

2(A)
θ1 [0.1, 0.2]∪ {0.3} [0.4, 0.5]
θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 1: Inputs of the fusion with imprecise bba

Using the DSm classic rule for sets, one gets

mI(θ1) = ([0.1, 0.2] ∪ {0.3}) ⊡ [0.4, 0.5] = ([0.1, 0.2] ⊡ [0.4, 0.5])∪ ({0.3} ⊡ [0.4, 0.5]) = [0.04, 0.10]∪ [0.12, 0.15]

mI(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8]) ⊡ ([0, 0.4] ∪ {0.5, 0.6})

= ((0.4, 0.6) ⊡ [0, 0.4]) ∪ ((0.4, 0.6) ⊡ {0.5, 0.6})∪ ([0.7, 0.8] ⊡ [0, 0.4]) ∪ ([0.7, 0.8] ⊡ {0.5, 0.6})

= (0, 0.24) ∪ (0.20, 0.30)∪ (0.24, 0.36)∪ [0, 0.32]∪ [0.35, 0.40]∪ [0.42, 0.48] = [0, 0.40] ∪ [0.42, 0.48]



mI(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3}) ⊡ ([0, 0.4] ∪ {0.5, 0.6})] ⊞ [[0.4, 0.5] ⊡ ((0.4, 0.6) ∪ [0.7, 0.8])]

= [([0.1, 0.2] ⊡ [0, 0.4]) ∪ ([0.1, 0.2] ⊡ {0.5, 0.6})∪ ({0.3} ⊡ [0, 0.4]) ∪ ({0.3} ⊡ {0.5, 0.6})]

⊞ [([0.4, 0.5] ⊡ (0.4, 0.6)) ∪ ([0.4, 0.5] ⊡ [0.7, 0.8])]

= [[0, 0.08]∪ [0.05, 0.10]∪ [0.06, 0.12]∪ [0, 0.12] ∪ {0.15, 0.18}] ⊞ [(0.16, 0.30)∪ [0.28, 0.40]]

= [[0, 0.12]∪ {0.15, 0.18}] ⊞ (0.16, 0.40] = (0.16, 0.52]∪ (0.31, 0.55]∪ (0.34, 0.58] = (0.16, 0.58]

Hence finally the fusion admissible result is given by:

A ∈ DΘ mI(A) = [mI
1 ⊕ mI

2](A)
θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]
θ1 ∪ θ2 0

Table 2: Fusion result with the DSm classic rule

If one finds out6 thatθ1 ∩ θ2
M
≡ ∅ (this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule

for sets (10):mI
M(θ1 ∩ θ2) = 0 andmI

M(θ1 ∪ θ2) = (0.16, 0.58], the others imprecise masses are not changed. In other
words, one gets now with hybrid DSm rule applied to imprecisebeliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 3: Fusion result with the hybrid DSm rule forM

Let’s check now the admissibility conditions and theorem. For the source 1, there exist the precise masses(m1(θ1) =
0.3) ∈ ([0.1, 0.2] ∪ {0.3}) and(m1(θ2) = 0.7) ∈ ((0.4, 0.6) ∪ [0.7, 0.8]) such that0.3 + 0.7 = 1. For the source 2,
there exist the precise masses(m1(θ1) = 0.4) ∈ ([0.4, 0.5]) and(m2(θ2) = 0.6) ∈ ([0, 0.4] ∪ {0.5, 0.6}) such that
0.4 + 0.6 = 1. Therefore both sources associated withmI

1(.) andmI
2(.) are admissible imprecise sources of information.

It can be easily checked that the DSm classic fusion ofm1(.) andm2(.) yields the paradoxical basic belief assignment
m(θ1) = [m1 ⊕ m2](θ1) = 0.12, m(θ2) = [m1 ⊕ m2](θ2) = 0.42 andm(θ1 ∩ θ2) = [m1 ⊕ m2](θ1 ∩ θ2) = 0.46.
One sees that the admissibility theorem is satisfied since(m(θ1) = 0.12) ∈ (mI(θ1) = [0.04, 0.10] ∪ [0.12, 0.15]),
(m(θ2) = 0.42) ∈ (mI(θ2) = [0, 0.40] ∪ [0.42, 0.48]) and(m(θ1 ∩ θ2) = 0.46) ∈ (mI(θ1 ∩ θ2) = (0.16, 0.58]) such
that0.12 + 0.42 + 0.46 = 1. Similarly if one finds out thatθ1 ∩ θ2 = ∅, then one uses the hybrid DSm rule and one gets:
m(θ1 ∩ θ2) = 0 andm(θ1 ∪ θ2) = 0.46; the others remain unchanged. The admissibility theorem still holds, because
one can pick at least one number in each subsetmI(.) such that the sum of these numbers is 1. This approach can be also
used in the similar manner to obtain imprecise pignistic probabilities frommI(.) for decision-making under uncertain,
paradoxical and imprecise sources of information as well. The generalized pignistic transformation (GPT) is presented in
next section.

2.8 The generalized pignistic transformation (GPT)

2.8.1 The classical pignistic transformation

We follow here the Smets’ vision which considers the management of information as a two 2-levels process: credal (for
combination of evidences) and pignistic7 (for decision-making) , i.e ”when someone must take a decision, he must then
construct a probability function derived from the belief function that describes his credal state. This probability function is
then used to make decisions” [39] (p. 284). One obvious way to build this probability function corresponds to the so-called
Classical Pignistic Transformation (CPT) defined in the DSTframework (i.e. based on the Shafer’s model assumption) as
[41]:

P{A} =
∑

X∈2Θ

|X ∩ A|

|X |
m(X) (14)

6We consider now a dynamic fusion problem.
7Pignistic terminology has been coined by Philippe Smets andcomes frompignus, a bet in Latin.



where|A| denotes the number of worlds in the setA (with convention|∅|/|∅| = 1, to defineP{∅}). P{A} corresponds
to BetP (A) in Smets’ notation [41]. Decisions are achieved by computing the expected utilities of the acts using the
subjective/pignisticP{.} as the probability function needed to compute expectations. Usually, one uses the maximum
of the pignistic probability as decision criterion. The max. of P{.} is often considered as a prudent betting decision
criterion between the two other alternatives (max of plausibility or max. of credibility which appears to be respectively
too optimistic or too pessimistic). It is easy to show thatP{.} is indeed a probability function (see [40]).

2.8.2 Notion of DSm cardinality

One important notion involved in the definition of the Generalized Pignistic Transformation (GPT) is theDSm cardinality.
TheDSm cardinalityof any elementA of hyper-power setDΘ, denotedCM(A), corresponds to the number of parts of
A in the corresponding fuzzy/vague Venn diagram of the problem (modelM) taking into account the set of integrity
constraints (if any), i.e. all the possible intersections due to the nature of the elementsθi. This intrinsic cardinality
depends on the modelM (free, hybrid or Shafer’s model).M is the model that containsA, which depends both on the
dimensionn = |Θ| and on the number of non-empty intersections present in its associated Venn diagram (see [37] for
details ). The DSm cardinality depends on the cardinal ofΘ = {θ1, θ2, . . . , θn} and on the model ofDΘ (i.e., the number
of intersections and between what elements ofΘ - in a word the structure) at the same time; it is not necessarily that
every singleton, sayθi, has the same DSm cardinal, because each singleton has a different structure; if its structure is
the simplest (no intersection of this elements with other elements) thenCM(θi) = 1, if the structure is more complicated
(many intersections) thenCM(θi) > 1; let’s consider a singletonθi: if it has 1 intersection only thenCM(θi) = 2, for 2
intersections onlyCM(θi) is 3 or 4 depending on the modelM, for m intersections it is betweenm+1 and2m depending
on the model; the maximum DSm cardinality is2n−1 and occurs forθ1 ∪ θ2 ∪ . . . ∪ θn in the free modelMf ; similarly
for any set fromDΘ: the more complicated structure it has, the bigger is the DSmcardinal; thus the DSm cardinality
measures the complexity of en element fromDΘ, which is a nice characterization in our opinion; we may say that for
the singletonθi not even|Θ| counts, but only its structure (= how many other singletons intersectθi). Simple illustrative
examples are given in Chapter 3 and 7 of [37]. One has1 ≤ CM(A) ≤ 2n − 1. CM(A) must not be confused with the
classical cardinality|A| of a given setA (i.e. the number of its distinct elements) - that’s why a new notation is necessary
here.CM(A) is very easy to compute by programming from the algorithm of generation ofDΘ given explicated in [37].

As example, let’s take back the example of the simple hybrid DSm model described in section 2.2, then one gets the
following list of elements (with their DSm cardinal) for therestrictedDΘ taking into account the integrity constraints of
this hybrid model:

A ∈ DΘ CM(A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 1

α2 , θ3 1

α3 , θ1 2

α4 , θ2 2

α5 , θ1 ∪ θ2 3

α6 , θ1 ∪ θ3 3

α7 , θ2 ∪ θ3 3

α8 , θ1 ∪ θ2 ∪ θ3 4

Eaxmple of DSm cardinals: CM(A) for hybrid modelM

2.8.3 The Generalized Pignistic Transformation

To take a rational decision within the DSmT framework, it is necessary to generalize the Classical Pignistic Transformation
in order to construct a pignistic probability function fromany generalized basic belief assignmentm(.) drawn from the
DSm rules of combination. Here is the simplest and direct extension of the CPT to define the Generalized Pignistic
Transformation:

∀A ∈ DΘ, P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (15)

whereCM(X) denotes the DSm cardinal of propositionX for the DSm modelM of the problem under consideration.

The decision about the solution of the problem is usually taken by the maximum of pignistic probability function
P{.}. Let’s remark the close ressemblance of the two pignistic transformations (14) and (15). It can be shown that (15)
reduces to (14) when the hyper-power setDΘ reduces to classical power set2Θ if we adopt Shafer’s model. But (15)
is a generalization of (14) since it can be used for computingpignistic probabilities for any models (including Shafer’s
model). It has been proved in [37] (Chap. 7) thatP{.} is indeed a probability function.



3 Fuzzy Inference for Information Fusion
We further connect the fusion rules of combination with fuzzy and neutrosophic operators. Lets first replace the Con-
junctive Rule and Disjunctive Rule with the fuzzy T-norm andT-conorm versions respectively. These rules started from
the T-norm and T-conorm respectively in fuzzy and neutrosophic logics, where theand logic operator∧ corresponds in
fusion to the conjunctive rule, while theor logic operator∨ corresponds to the disjunctive rule. While the logic operators
deal with degrees of truth and degrees of falsehood, the fusion rules deal with degrees of belief and degrees of disbelief
of hypotheses.

3.1 T-Norm

A T-norm is a functionTn : [0, 1]
2 7→ [0, 1], defined in fuzzy set theory and fuzzy logic to represent theintersectionof two

fuzzy sets and the fuzzy logical operatorand respectively. Extended to the fusion theory the T-norm willbe a substitute
for the conjunctive rule. The T-norm satisfies the conditions:

a) Boundary Conditions:Tn(0, 0) = 0, Tn(x, 1) = x

b) Commutativity:Tn(x, y) = Tn(y, x)

c) Monotonicity: Ifx ≤ u andy ≤ v, thenTn(x, y) ≤ Tn(u, v)

d) Associativity:Tn(Tn(x, y), z) = Tn(x, Tn(y, z))

There are many functions which satisfy the T-norm conditions. We present below the most known ones:

• The Algebraic Product T-norm:Tn-algebraic(x, y) = x · y

• The Bounded T-norm:Tn-bounded(x, y) = max{0, x + y − 1}

• The Default (min) T-norm (introduced by Zadeh):Tn-min(x, y) = min{x, y}

3.2 T-conorm

A T-conorm is a functionTc : [0, 1]2 7→ [0, 1], defined in fuzzy set theory and fuzzy logic to represent theunionof two
fuzzy sets and the fuzzy logical operatoror respectively. Extended to the fusion theory the T-conorm will be a substitute
for the disjunctive rule. The T-conorm satisfies the conditions:

a) Boundary Conditions:Tc(1, 1) = 1, Tc(x, 0) = x

b) Commutativity:Tc(x, y) = Tc(y, x)

c) Monotonicity: ifx ≤ u andy ≤ v, thenTc(x, y) ≤ Tc(u, v)

d) Associativity:Tc(Tc(x, y), z) = Tc(x, Tc(y, z))

There are many functions which satisfy the T-conorm conditions. We present below the most known ones:

• The Algebraic Product T-conorm:Tc-algebraic(x, y) = x + y − x · y

• The Bounded T-conorm:Tc-bounded(x, y) = min{1, x + y}

• The Default (max) T-conorm (introduced by Zadeh):Tc-max(x, y) = max{x, y}

Then, theT-norm Fusion ruleis defined as follows:m∩12(A) =
∑

Y,Y ∈Θ
X∩Y =A

Tn(m1(X), m2(Y )) and theT-conorm

Fusion ruleis defined as follows:m∪12(A) =
∑

Y,Y ∈Θ
X∪Y =A

Tc(m1(X), m2(Y )).

The min T-norm rule yields results, very closed to Conjunctive Rule. It satisfies the principle of neutrality of the
vacuous bba, reflects the majority opinion, converges towards idempotence. It is simpler to apply, but needs normalization.
What is missed it is a strong justification of the way of presenting the fusion process. But we think, the consideration
between two sources of information as a vague relation, characterized with the particular way of association between focal
elements, and corresponding degree of association (interaction) between them is reasonable. Min rule can be interpreted
as an optimistic lower bound for combination of bba and the below Max rule as a prudent/pessimistic upper bound. The
T-norm and T-conorm are commutative, associative, isotone, and have a neutral element.

4 Degrees of intersection, union, inclusion
In order to improve many fusion rules we can insert a degree ofintersection, a degree of union, or a degree of inclusion.
These are defined as follows:



4.1 Degree of Intersection

The degree of intersection measures the percentage of overlapping region of two setsX1, X2 with respect to the whole
reunited regions of the sets using the cardinal of sets not the fuzzy set point of view:

d(X1 ∩ X2) =
|X1 ∩ X2|

|X1 ∪ X2|

where|X | means cardinal of the setX .

For the minimum intersection/overlapping, i.e. whenX1 ∩ X2 = ∅, the degree of intersection is 0, while for the
maximum intersection/overlapping, i.e. whenX1 = X2, the degree of intersection is 1.

4.2 Degree of Union

The degree of intersection measures the percentage of non-overlapping region of two setsX1, X2 with respect to the
whole reunited regions of the sets using the cardinal of setsnot the fuzzy set point of view:

d(X1 ∪ X2) =
|X1 ∪ X2| − |X1 ∩ X2|

|X1 ∪ X2|

For the maximum non-overlapping, i.e. whenX1 ∩ X2 = ∅, the degree of union is 1, while for the minimum non-
overlapping, i.e. whenX1 = X2, the degree of union is 0. The sum of degrees of intersection and union is 1 since they
complement each other.

4.3 Degree of inclusion

The degree of inclusion measures the percentage of the included regionX1 with respect to the includant regionX2: Let
X1 ⊆ X2, then

d(X1 ⊆ X2) =
|X1|

|X2|

d(∅ ⊆ X2) = 0 because nothing (i.e. empty set) is included inX2, while d(X2 ⊆ X2) = 1 becauseX2 is fulfilled by
inclusion. By definitiond(∅ ⊆ ∅) = 1. We can generalize the above degree forn ≥ 2 sets.

4.4 Improvements of belief and plausibility functions

Thus the Bel(.) and Pl(.) functions can incorporate in their formulas the above degrees of inclusion and intersection
respectively:

• Belief function improved:∀A ∈ DΘ \ ∅, Beld(A) =
∑

X∈DΘ

X⊆A

|X|
|A| m(X)

• Plausibility function improved:∀A ∈ DΘ \ ∅, Pld(A) =
∑

X∈DΘ

X∩A 6=∅

|X∩A|
|X∪A|m(X)

4.5 Improvements of fusion rules

• Disjunctive rule improved:

∀A ∈ DΘ \ ∅, m∪d(A) = k∪d ·
∑

X1,X2∈DΘ

X1∪X2=A

|X1 ∪ X2| − |X1 ∩ X2|

|X1 ∪ X2|
m1(X1)m2(X2)

wherek∪d is a constant of normalization.

• Dezert-Smarandache classical rule improved:

∀A ∈ DΘ \ ∅, mDSmCd(A) = kDSmCd ·
∑

X1,X2∈DΘ

X1∩X2=A

|X1 ∩ X2|

|X1 ∪ X2|
m1(X1)m2(X2)

wherekDSmCd is a constant of normalization. This rule is similar with theZhangs Center Combination rule [54]
extended on the Boolean algebra(Θ,∪,∩, C) and using another definition for the degree of intersection (hereC
denotes the complement).



• Dezert-Smarandache hybrid rule improved:

∀A ∈ DΘ \ ∅, mDSmHd(A) = kDSmCd · {
∑

X1,X2∈DΘ

X1∩X2=A

|X1 ∩ X2|

|X1 ∪ X2|
m1(X1)m2(X2)

+
∑

X1,X2∈∅

[U=A]∨[(U∈∅)∧(A=It)]

m1(X1)m2(X2) +
∑

X1,X2∈DΘ

u(c(X1∩X2))=A
(X1∩X2)∈∅

|X1 ∪ X2| − |X1 ∩ X2|

|X1 ∪ X2|
m1(X1)m2(X2)}

wherekDSmHd is a constant of normalization.

5 Neutrosophic Inference for Information Fusion

Similarly to the fuzzy improvement of the fusion rules we cannow consider the neutrosophic improvement of the fusion
rules of combination. Lets now replace the Conjunctive Ruleand Disjunctive Rule with the neutrosophic N-norm and
N-conorm versions respectively [44].

5.1 Neutrosophy

Neutrosophic Logic, Neutrosophic Set, and Neutrosophic Probability started from Neutrosophy [33, 36, 34, 35]. Neu-
trosophy is a new branch of philosophy which studies the origin, nature, and scope of neutralities, as well as their in-
teractions with different ideational spectra. It is an extension of dialectics. Its fundamental theory is that every idea
< A > tends to be neutralized, diminished, balanced by< NonA > ideas (not only< AntiA > as Hegel asserted)
- as a state of equilibrium, where< NonA >= what is not < A >, < AntiA >= the opposite of< A >, and
< NeutA >= what is neither< A > nor < AntiA >.

5.2 Nonstandard analysis

5.2.1 Short introduction

Abraham Robinson developed the nonstandard analysis in sixties [29]. x is called infinitesimalif |x| < 1/n for any
positiven. A left monadis defined by(−a) = {a − x|x ∈ R

⋆, x > 0 infinitesimal} = a − ǫ and a right monad by
(b+) = {b + x|x ∈ R

⋆, x > 0 infinitesimal} = b + ǫ whereǫ > 0 is infinitesimal;a, b are calledstandard parts, ǫ is
callednonstandardpart. A bimonad is defined as(−a+) = (−a) ∪ (a+).

5.2.2 Operations with nonstandard finite real numbers

−a ⋆ b =− (a ⋆ b) a ⋆ b+ = (a ⋆ b)+ −a ⋆ b+ =− (a ⋆ b)+

• the left monads absorb themselves:−a ⋆− b =− (a ⋆ b)

• the right monads absorb themselves:a+ ⋆ b+ = (a ⋆ b)
+

where⋆ operation can be addition, subtraction, multiplication, division and power. The operations with real standard or
non-standard subsets are defined according definitions given in section 2.7.

5.3 Neutrosophic logic

Lets consider the nonstandard unit interval]−0, 1+[, with left and right borders vague, imprecise. LetT , I, F be standard
or nonstandard subsets of]−0, 1+[. Then: Neutrosophic Logic (NL) is a logic in which each proposition isT% true,I%
indeterminate, andF% false, where:

−0 ≤ inf T + inf I + inf F ≤ sup T + sup I + supF ≤ 3+

T , I, F are not necessary intervals, but any sets (discrete, continuous, open or closed or half-open/half-closed interval,
intersections or unions of the previous sets, etc.).

For example: propositionP is between 30-40% or 45-50% true, 20% indeterminate, and 60%or between 66-70%
false (according to various analyzers or parameters). NL isa generalization of Zadehs fuzzy logic (FL), especially of
Atanassovs intuitionistic fuzzy logic (IFL) [1, 2, 7], and other logics.



5.4 Differences between Neutrosophic Logic and Intuitionistic Fuzzy Logic

a) In NL there is no restriction onT , I, F , while in IFL the sum of components (or their superior limits) = 1; thus NL
can characterize the incomplete information (sum< 1), paraconsistent information (sum> 1).

b) NL can distinguish, in philosophy, between absolute truth [NL(absolute truth)= 1+] and relative truth [NL(relative
truth)= 1], while IFL cannot;absolute truthis truth in all possible worlds (Leibniz),relative truthis truth in at least
one world.

c) In NL the components can be nonstandard, in IFL they dont.

d) NL, like dialetheism[some contradictions are true], can deal with paradoxes, NL(paradox)= (1, I, 1), while IFL
cannot.

5.5 Neutrosophic Logic generalizes many logics

Let the components reduced to scalar numbers,t, i, f , with t + i + f = n; NL generalizes:

• theBoolean logic(for n = 1 andi = 0, with f , f either 0 or 1);

• themulti-valued logic, which supports the existence of many values between true and false - Lukasiewicz, 3 values
[24, 25]; Post,m values - (forn = 1, Ii = 0, 0 ≤ t, f ≤ 1);

• the intuitionistic logic, which supports incomplete theories, whereA ∧ ¬A not always true, and∃xP (x) needs an
algorithm constructingx [9, 10, 11, 12, 19] (for0 < n < 1 andi = 0, 0 ≤ t, f ≤ 1);

• thefuzzy logic, which supports degrees of truth [48] (forn = 1 andi = 0, 0 ≤ t, f ≤ 1);

• the intuitionistic fuzzy logic, which supports degrees of truth and degrees of falsity while whats left is considered
indeterminacy [2] (forn = 1);

• the paraconsistent logic, which supports conflicting information, and anything follows from contradictions fails,
i.e.¬A ∧ A ⊃ B fails; ¬A ∧ A is not always false (forn > 1 andi = 0, with both0 < t, f < 1);

• the dialetheism, which says that some contradictions are true,¬A ∧ A = true (for t = f = 1 andi = 0; some
paradoxes can be denoted this way too);

• thefaillibilism, which says that uncertainty belongs to every proposition (for i > 0).

5.6 Neutrosophic Logic connectors

One notes the neutrosophic logical values of the propositionsA1 andA2 by NL(A1) = (T1, I1, F1) andNL(A2) =
(T2, I2, F2). If, after calculations, in the below operations one obtains values< 0 or > 1, then one replaces them with−0
or 1+ respectively.

5.6.1 Negation

NL(¬A1) = ({1+} ⊟ T1, {1
+} ⊟ I1, {1

+} ⊟ F1)

5.6.2 Conjunction

NL(A1 ∧ A2) = (T1 ⊡ T2, I1 ⊡ I2, F1 ⊡ F2)

5.6.3 Weak or inclusive disjunction

NL(A1 ∨ A2) = (T1 ⊞ T2 ⊟ (T1 ⊡ T2), I1 ⊞ I2 ⊟ (I1 ⊡ I2), F1 ⊞ F2 ⊟ (F1 ⊡ F2))

Many properties of the classical logic operators do not apply in neutrosophic logic. Neutrosophic logic operators
(connectors) can be defined in many ways according to the needs of applications or of the problem solving.

5.7 Neutrosophic Set

LetU be a universe of discourse,M a set included inU . An elementx fromU is noted with respect to the neutrosophic set
M asx(T, I, F ) and belongs toM in the following way: it ist% true in the set (degree of membership),i% indeterminate
(unknown if it is in the set) (degree of indeterminacy), andf% false (degree of non-membership), wheret varies inT , i
varies inI, f varies inF . This definition is analogue to NL, and similarly NS generalizes the fuzzy set (FS), especially
the intuitionistic fuzzy set (IFS), intuitionistic set (IS), paraconsistent set (PS) For example:x(50, 20, 40) ∈ A means:
with a belief of50% x is in A, with a belief of40% x is not inA, and the20% is undecidable



5.7.1 Neutrosophic Set Operators

Let A1 andA2 be two sets over the universeU . An elementx(T1, I1, F1) ∈ A1 andx(T2, I2, F2) ∈ A2 [neutrosophic
membership appurtenance toA1 and respectively toA2]. NS operators (similar to NL connectors) can also be definedin
many ways.

5.7.2 Complement

If x(T 1, I1, F1) ∈ A1 thenx({1+} ⊟ T1, {1+} ⊟ I1, {1+} ⊟ F1)) ∈ C(A1).

5.7.3 Intersection

If x(T1, I1, F1) ∈ A1 andx(T2, I2, F2) ∈ A2 thenx(T1 ⊡ T2, I1 ⊡ I2, F1 ⊡ F2) ∈ A1 ∩ A2.

5.7.4 Union

If x(T1, I1, F1) ∈ A1 andx(T2, I2, F2) ∈ A2 thenx(T1⊞T2⊟(T1⊡T2), I1⊞I2⊟(I1⊡I2), F1⊞F2⊟(F1⊡F2)) ∈ A1∪A2.

5.7.5 Difference

If x(T1, I1, F1) ∈ A1 andx(T2, I2, F2) ∈ A2 thenx(T1 ⊟ (T1 ⊡ T2), I1 ⊟ (I1 ⊡ I2), F1 ⊟ (F1 ⊡ F2)) ∈ A1 \ A2.

5.8 Differences between Neutrosophic Set and Intuitionistic Fuzzy Set

a) In NS there is no restriction onT , I, F , while in IFS the sum of components (or their superior limits) = 1; thus NL
can characterize the incomplete information (sum< 1), paraconsistent information (sum> 1).

b) NS can distinguish, in philosophy, between absolute membership [NS(absolute membership)= 1+] and relative
membership [NS(relativemembership)= 1], while IFS cannot; absolute membership is membership in all possible
worlds, relative membership is membership in at least one world.

c) In NS the components can be nonstandard, in IFS they dont.

d) NS, like dialetheism [some contradictions are true], candeal with paradoxes, NS(paradox element)= (1, I, 1),
while IFS cannot.

e) NS operators can be defined with respect toT , I, F while IFS operators are defined with respect toT andF only

f) I can be split in NS in more subcomponents (for example in Belnaps four-valued logic [8] indeterminacy is split
into uncertainty and contradiction), but in IFS it cannot.

5.9 N-norm

Here each elementx andy has three components:x(t1, i1, f1), y(t2, i2, f2). We define :
{

max{x, y} = (max{t1, t2}, max{i1, i2}, max{f1, f2})

min{x, y} = (min{t1, t2}, min{i1, i2}, min{f1, f2})

An N-norm is a functionNn : ([−0, 1+] ⊡ [−0, 1+] ⊡ [−0, 1+])
2
7→ [−0, 1+], defined in neutrosophic set theory and

neutrosophic logic to represent theintersectionof two neutrosophic sets and the neutrosophic logical operator andrespec-
tively. Extended to the fusion theory the N-norm will be a substitute for the conjunctive rule. The N-norm satisfies the
conditions:

a) Boundary Conditions:Nn(0, 0) = 0, Nn(x, 1) = x.

b) Commutativity:Nn(x, y) = Nn(y, x).

c) Monotonicity: Ifx ≤ u andy ≤ v, thenNn(x, y) ≤ Nn(u, v).

d) Associativity:Nn(Nn(x, y), z) = Nn(x, Nn(y, z)).

There are many functions which satisfy the N-norm conditions. We present below the most known ones:

• The Algebraic Product N-norm:Nn-algebraic(x, y) = x ⊡ y

• The Bounded N-norm:Nn-bounded(x, y) = max{0, x ⊞ y ⊟ 1}

• The Default (min) N-norm:Nn-min(x, y) = min{x, y}.



5.10 N-conorm

An N-conorm is a function,Nc : ([−0, 1+] ⊡ [−0, 1+] ⊡ [−0, 1+])
2
7→ [−0, 1+], defined in neutrosophic set theory and

neutrosophic logic to represent theunionof two neutrosophic sets and the neutrosophic logical operator or respectively.
Extended to the fusion theory the N-conorm will be a substitute for the disjunctive rule. The N-conorm satisfies the
conditions:

a) Boundary Conditions:Nc(1, 1) = 1, Nc(x, 0) = x.

b) Commutativity:Nc(x, y) = Nc(y, x).

c) Monotonicity: ifx ≤ u andy ≤ v, thenNc(x, y) ≤ Nc(u, v).

d) Associativity:Nc(Nc(x, y), z) = Nc(x, Nc(y, z)).

There are many functions which satisfy the N-conorm conditions. We present below the most known ones:

• The Algebraic Product N-conorm:Nc-algebraic(x, y) = x ⊞ y ⊟ (x ⊡ y)

• The Bounded N-conorm:Nc-bounded(x, y) = min{1, x ⊞ y}

• The Default (max) N-conorm:Nc-max(x, y) = max{x, y}.

Then, theN-norm Fusion ruleand theN-conorm Fusion ruleare defined as follows:

mNn12(A) =
∑

X,Y ∈Θ
Y ∩Y =A

Nn(m1(X), m2(Y )) mNc12(A) =
∑

X,Y ∈Θ
Y ∪Y =A

Nc(m1(X), m2(Y ))

6 Examples of N-norm and N-conorm Fusion rules

Suppose one has the frame of discernmentΘ = {θ1, θ2, θ3} and two sourcesS1 andS2 that provide respectively the
following information (triple masses):m1(θ1) = (0.6, 0.1, 0.3), i.e. S1 believes inθ1 with 60%, doesnt believe inθ1 with
30%, and is undecided aboutθ1 with 10%. Similarly, one considers also

m1(θ2) = (0.8, 0, 0.2) m2(θ1) = (0.5, 0.3, 0.2) m2(θ2) = (0.7, 0.2, 0.1)

Since one can have all kind of information (i.e. incomplete,paraconsistent, complete) the sum of an hypothesis
components may be< 1, > 1, or = 1. We can normalize the hypothesis components by dividing each component by the
sum of the components.

6.1 Both Sources are right

If we consider that both sources are right, then one uses the N-norm (lets take, as an example, the Algebraic Product) and
one gets8:

mNn12(θ1) = m1(θ1) ⊡ m2(θ1) = (0.6, 0.1, 0.3) ⊡ (0.5, 0.3, 0.2)

= (0.6 · 0.5, 0.1 · 0.3, 0.3 · 0.2) = (0.30, 0.03, 0.06)
∼
≡ (0.769231, 0.076923, 0.153846)

mNn12(θ2) = m1(θ2) ⊡ m2(θ2) = (0.8, 0, 0.2) ⊡ (0.7, 0.2, 0.1)

= (0.8 · 0.7, 0 · 0.2, 0.2 · 0.1) = (0.56, 0, 0.02)
∼
≡ (0.965517, 0, 034483)

mNn12(θ1 ∩ θ2) = [m1(θ1) ⊡ m2(θ2)] ⊞ [m2(θ1) ⊡ m1(θ2)]

= [(0.6, 0.1, 0.3) ⊡ (0.7, 0.2, 0.1)] ⊞ [(0.8, 0, 0.2) ⊡ (0.5, 0.3, 0.2)]

= (0.42, 0.02, 0.03)⊞ (0.40, 0, 0.04) = (0.82, 0.02, 0.07)
∼
≡ (0.901099, 0.021978, 0.076923)

If one finds out thatθ1 ∩ θ2 = ∅, then one uses the DSm hybrid rule adjusted with the N-norm inorder to transfer the
conflicting mass tomNn12(θ1 ∪ θ2) = (0.901099, 0.021978, 0.076923).

8where
∼

≡ denotesequality after normalization



6.2 One Source is right and another one is not, but we dont knowwhich one

We use the N-conorm (lets take, as an example, the Algebraic Product) and one gets:

mNc12(θ1) = m1(θ1) ⊞ m2(θ1) ⊟ [m1(θ1) ⊡ m2(θ1)]

= (0.6, 0.1, 0.3) ⊞ (0.5, 0.3, 0.2) ⊟ [(0.6, 0.1, 0.3) ⊡ (0.5, 0.3, 0.2)]

= (0.6 + 0.5 − 0.6 · 0.5, 0.1 + 0.3 − 0.1 · 0.3, 0.3 + 0.2 − 0.3 · 0.2)

= (0.80, 0.37, 0.44)
∼
≡ (0.496894, 0.229814, 0.273292)

mNc12(θ2) = m1(θ2) ⊞ m2(θ2) ⊟ [m1(θ2) ⊡ m2(θ2)]

= (0.8, 0, 0.2) ⊞ (0.7, 0.2, 0.1) ⊟ [(0.8, 0, 0.2) ⊡ (0.7, 0.2, 0.1)]

= (0.8 + 0.7 − 0.8 · 0.7, 0 + 0.2 − 0 · 0.2, 0.2 + 0.1 − 0.2 · 0.1)

= (0.94, 0.20, 0.28)
∼
≡ (0.661972, 0.140845, 0.197183)

mNc12(θ1 ∩ θ2) = [m1(θ1) ⊞ m2(θ2) ⊟ (m1(θ1) ⊡ m2(θ2))] ⊞ [m1(θ2) ⊞ m2(θ1) ⊟ (m1(θ2) ⊡ m2(θ1))]

= [(0.6, 0.1, 0.3) ⊞ (0.7, 0.2, 0.1) ⊟ ((0.6, 0.1, 0.3) ⊡ (0.7, 0.2, 0.1))]

⊞ [(0.8, 0, 0.2) ⊞ (0.5, 0.3, 0.2) ⊟ ((0.8, 0, 0.2) ⊡ (0.5, 0.3, 0.2))]

= (0.88, 0.28, 0.37) ⊞ (0.90, 0.30, 0.36)

= (1.78, 0.58, 0.73)
∼
≡ (0.576052, 0.187702, 0.236246).

7 Conclusion

A general presentation of foundation of DSmT and its connection with neutrosophic logic has been proposed in this
chapter. We proposed new rules of combination for uncertain, imprecise and highly conflicting sources of information.
Several applications of DSmT have been proposed recently inthe literature and show the efficiency of this new approach
over classical rules based mainly on the Demspter’s rule in the DST framework. In the last past of this chapter, we
showed that the combination of paradoxical, uncertain and imprecise sources of information can also be done using
fuzzy and neutrosophic logics or sets together with DSmT andother fusion rules or theories. The T-norms/conorm and
N-norms/conorms help in redefining new fusion rules of combination or in improving the existing ones.
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