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1 Introduction

The management and combination of uncertain, impreciszyfand even paradoxical or high conflicting sources of
information has always been, and still remains today, ahplimportance for the development of reliable modern infor
mation systems involving artificial reasoning. The combara(fusion) of information arises in many fields of applica
tions nowadays (especially in defense, medicine, finanee;sgience, economy, etc). When several sensors, observer
or experts have to be combined together to solve a problerhopne wants to update our current estimation of solutions
for a given problem with some new information available, veed powerful and solid mathematical tools for the fusion,
specially when the information one has to deal with is im@eand uncertain. In this chapter, we present a survey of
our recent theory of plausible and paradoxical reasoningyk as Dezert-Smarandache Theory (DSmT) in the literature
developed for dealing with imprecise, uncertain and paxamdbsources of information. Recent publications havensho
the interest and the ability of DSmT to solve problems wheheoapproaches fail, especially when conflict between
sources becomes high. We focus our presentation here mathike foundations of DSmT, and on the two important new
rules of combination, than on browsing specific applicagsioh DSmT available in literature. A particular attention is
given to general (hybrid) rule of combination which dealshwany model for fusion problems, depending on the nature
of elements or hypotheses involved into them. The Shafesdahon which is based the Dempster-Shafer Theory (DST)
appears only as a specific DSm hybrid model and can be easitifdthby our approach as well. Several simple examples
are given throughout the presentation to show the efficiemgy/the generality of this new approach. The last part of
this work concerns the presentation of the neutrosophic,dige neutro-fuzzy inference and its connection with DSmT
Fuzzy logic and neutrosophic logic are useful tools in denisnaking after fusioning the information using the DSm
hybrid rule of combination of masses.

2 Foundations of the DSMT

The development of the DSmT (Dezert-Smarandache Theongo$ible and paradoxical reasoningl[37]) arises from the
necessity to overcome the inherent limitations of the DS&n(ipster-Shafer Theorly [31]) which are closely related with
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the acceptance of Shafer's model for the fusion problem ucalesideration (i.e. the frame dfscernmen® defined as

a finite set okexhaustiveandexclusivenypotheses;, i = 1, ..., n), the third middle excluded principle (i.e. the existence
of the complement for any elements/propositions belonginthe power set 00), and the acceptance of Dempter’s
rule of combination (involving normalization) as the franwek for the combination of independent sources of evidence
Discussions on limitations of DST and presentation of soltegreative rules to the Dempster’s rule of combination can
be found in[[50, 51, 52, 46, 5B, 17,1471 28] B9, [43,[20[ 2V 2223037] and therefore they will be not reported in details
in this chapter due to space limitation. We argue that thesetfundamental conditions of the DST can be removed and
another new mathematical approach for combination of emidés possible.

The basis of the DSmT is the refutation of the principle of tiied excluded middle and Shafer’s model, since for
a wide class of fusion problems the intrinsic nature of hijzpses can be only vague and imprecise in such a way that
precise refinement is just impossible to obtain in realityhst the exclusive elements cannot be properly identified
and precisely separated. Many problems involving fuzzytioowus and relative concepts described in natural languag
and having no absolute interpretation like tallness/smesl, pleasure/pain, cold/hot, Sorites paradoxes, d#g, iarthis
category. DSmT starts with the notionfofe DSm modeblenotedM/ (0), and consider® only as a frame of exhaus-
tive elementd;, i = 1,...,n which can potentially overlap. This modelfiee because no other assumption is done
on the hypotheses, but the weak exhaustivity constraintiwban always been satisfied according the closure principle
explained in[[3l7]. No other constraint is involved in thegi®@Sm model. When the free DSm model holds, the classic
commutative and associative DSm rule of combination (spweding to the conjunctive consensus defined on the free
Dedekind’s lattice) is performed.

Depending on the intrinsic nature of the elements of theofuproblem under consideration, it can however happen
that the free model does not fit the reality because some ®ubs® can contain elements known to be truly exclusive
but also truly non existing at all at a given time (speciallyam working on dynamic fusion problem where the frathe
varies with time with the revision of the knowledge availgbIThese integrity constraints are then explicitly andrfalty
introduced into the free DSm modgt/(©) in order to adapt it properly to fit as close as possible withremality and
permit to construct &ybrid DSm modeM (©) on which the combination will be efficiently performed. Ség model,
denotedM®(©), corresponds to a very specific hybrid DSm model includingassible exclusivity constraints. The
DST has been developed for working only witn®(©) while the DSmT has been developed for working with any kind
of hybrid model (including Shafer's model and the free DSndeily to manage as efficiently and precisely as possible
imprecise, uncertain and potentially high conflicting s@s of evidence while keeping in mind the possible dynasnicit
of the information fusion problematic. The foundations loé tDSMT are therefore totally different from those of all
existing approaches managing uncertainties, impre@saoid conflicts. DSmT provides a new interesting way to attack
the information fusion problematic with a general framekvororder to cover a wide variety of problems.

DSmT refutes also the idea that sources of evidence protigie beliefs with the same absolute interpretation of
elements of the same frant® and the conflict between sources arises not only because gfasible unreliabilty of
sources, but also because of possible different and relatierpretation 0of®, e.g. what is considered as good for
somebody can be considered as bad for somebody else. Tls@mésunavoidable subjectivity in the belief assignments
provided by the sources of evidence, otherwise it would nthahall bodies of evidence have a same objective and
universal interpretation (or measure) of the phenomenanrwhsideration, which unfortunately rarely occurs irfitga
but when bba are based on soalgective probabilitiesransformations. Butin this last case, probability thezag handle
properly and efficiently the information, and the DST, aslwslthe DSmT, becomes useless. If we now get out of the
probabilistic background argumentation for the constounadf bba, we claim that in most of cases, the sources of acigle
provide their beliefs about elements of the frame of thediugiroblem only based on their own limited knowledge and
experience without reference to the (inaccessible) abestiuth of the space of possibilities. First applicatioh®8mT
for target tracking, satellite surveillance, situatiombysis and sensor allocation optimization can be foundf.[3

2.1 Notion of hyper-power setD®

One of the cornerstones of the DSmT is the free Dedekinad¢ali4] denotedhyper-power sein the DSmT framework.
Let® = {6y, ...,6,} be afinite set (called frame) af exhaustive elemeritsThe hyper-power seb® is defined as the
set of all composite propositions built from element®oivith U andn operatoré such that:

1. 0,917...,9n€D@.
2. IfA,B e D® thenAN B e D® andAU B € D°.

1We do not assume here that elemehtare necessary exclusive. There is no restrictiofi;dsut the exhaustivity.
29 generateD® under operators) andn




3. No other elements belong 10°, except those obtained by using rules 1 or 2.

The dual (obtained by switching andn in expressions) oD® is itself. There are elements in® which are self-dual
(dual to themselves), for exampig for the case when = 3 in the following example. The cardinality d®© is ma-
jored by22" when the cardinality 0® equalsn, i.e. |©| = n. The generation of hyper-power sBf is closely related
with the famous Dedekind problein [14.,113] on enumeratingstiteof isotone Boolean functions. The generation of the
hyper-power set is presented in37]. Since for any givetdiseto, | D®| > |2€| we call D® thehyper-power seof ©.

Example of the first hyper-power séb$
e For the degenerate case+ 0) where® = {}, one haD® = {ay = ()} and|D®| = 1.
e WhenO = {6;}, one hadD® = {ap £ 0, a1 £ 6,} and|D®| = 2.

e When® = {91,92}, one haD® = {ao,al, e ,044} and|D@| = 5 with (e7)) e @, aq L 01 N0, as e 01, a3 £ 02
anday £ 01 U 05.

e When© = {0;,6,03}, one hadD® = {ag, a1, ...,a;s} and|D®| = 19 with

aoé@

a1é91092093 aloéeg
a2é9106’2 11 é93
a3é9106’3 algé(é‘l 092)U93
a4é9206’3 algé(é‘l 003)U92
as £ (91U92)093 14 £ (6‘2093)U91
CYGé (91U93)092 a15é91 U 60,

Cwé (92U6‘3)091 alﬁéé‘l U 03

ag £ (01092)U(91 003)U(92003) a17é92U93
a9é01 a18é91U02U93

The cardinality of hyper-power sé@® for n > 1 follows the sequence of Dedekind’s numbérg [32], i.e. 113367,
7580,7828353,... and analytical expression of Dedekindiabers has been obtained recently by Tombak'ih [42] (see
[37] for details on generation and orderinglof).

2.2 Notion of free and hybrid DSm models

Elementy;, i = 1,...,n of © constitute the finite set of hypotheses/concepts charaictgthe fusion problem under
consideration.D® constitutes what we call tfeee DSm modeM7 (©) and allows to work with fuzzy concepts which
depict a continuous and relative intrinsic nature. Sucll&iof concepts cannot be precisely refined in an absolute inte
pretation because of the unapproachable universal truth.

However for some particular fusion problems involving déte concepts, elemends are truly exclusive. In such
case, all the exclusivity constraints 8n¢ = 1, ..., n have to be included in the previous model to characterizpgrtp
the true nature of the fusion problem and to fit it with the itgaBy doing this, the hyper-power sé&® reduces naturally
to the classical power sef and this constitutes the most restricted hybrid DSm modelptedM°(0), coinciding with
Shafer's model. As an exemple, let’s consider the 2D probitiere® = {61, 6} with D® = {0, 0,0, 6,,02,0, U6}

and assume now thé{ andé, are truly exclusive (i.e. Shafer's modst® holds), then becausg N 6, M (, one gets
0
DO = {0,6: 1622 0,601,006, U6} = {0,61,65,6, U b} = 2°.

Between the class of fusion problems corresponding to tee®Sm modelM 7 (©) and the class of fusion problems
corresponding to Shafer's mod#t°(©), there exists another wide class of hybrid fusion problemsling in © both
fuzzy continuous concepts and discrete hypotheses. In(Bybhd) class, some exclusivity constraints and possibiye
non-existential constraints (especially when working gnamic fusion) have to be taken into account. Each hybrid
fusion problem of this class will then be characterized byappr hybrid DSm modeM (6) with M(0) # M/ () and
M(©) £ MY(O). As simple example of DSm hybrid model, let's consider thec@Be with the fram® = {6, 0,05}
with the modelM # M7 in which we force all possible conjunctions to be empty,Qut d,. This hybrid DSm model is
then represented with the following Venn diagram (wherengiauies of intersection @f, andf, are not precisely defined
if 61 andé, represent only fuzzy concepts likenallnessandtallnessby example).

3i.e. when the fram® and/or the modeM is changing with time.
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2.3 Generalized belief functions

From a general fram@, we define a map(.) : D® — [0, 1] associated to a given body of eviderigas

m@) =0  and > om(A) =1 (1)

AeD®

The quantityn(A) is called thegeneralized basic belief assignment/m@gsha) ofA.

Thegeneralized belief and plausibility functioase defined in almost the same manner as within the DST, i.e.

Bel(4) = > m(B) PI(A) = Y m(B) 2)
BCA BNA#D
BeD® BeD®

These definitions are compatible with the definitions of silzed belief functions in the DST framework whée
reduces t@® for fusion problems where Shafer's model®(0) holds. We still have’A € D®, Bel(A4) < PI(A). Note
that when working with the free DSm mod&l/ (©), one has always PA) = 1 VA # () € D® which is normal.

2.4 The classic DSm rule of combination

When the free DSm modgi/ (©) holds for the fusion problem under consideration, the @d3Sm rule of combination
mms o) = m(.) £ [m1 @ ms)(.) of two independertsources of evidence®; andB; over the same fram@ with belief
functions Be](.) and Beb(.) associated with gbbau,(.) andma(.) corresponds to the conjunctive consensus of the
sources. Itis given by [37]:

VC eD®  mupsey(C)=m(C)= > mi(A)ma(B) (3)

A,BeD®
ANB=C

SinceD® is closed undew andn set operators, this new rule of combination guaranteesithatis a proper general-
ized belief assignment, i.ea(.) : D® — [0, 1]. This rule of combination is commutative and associative: @mn always
be used for the fusion of sources involving fuzzy conceptemfinee DSm model holds for the problem under considera-
tion. This rule can be directly and easily extended for thalomation ofk > 2 independent sources of evidencel [37].

This classic DSm rule of combination looks very expensivéeins of computations and memory size due to the
huge number of elements in® when the cardinality 0B increases. This remark is however valid only if the cores (th
set of focal elements of gbb&); (m;) andKz(m2) coincide withD®, i.e. whenm;(A) > 0 andma(A) > 0 for all
A # 0 € D®. Fortunately, it is important to note here that in most of phactical applications the sizes & (m, ) and
K2 (m2) are much smaller thaD®| because bodies of evidence generally allocate their basief mssignments only
over a subset of the hyper-power set. This makes thingsrefasithe implementation of the classic DSm rul¢ (3). The
DSm rule is actually very easy to implement. It suffices factetocal element ofC; (1) to multiply it with the focal
elements ofC;(m3) and then to pool all combinations which are equivalent utidealgebra of sets.

While very costly in term on merory storage in the worst cage (hen alim(A) > 0, A € D® or A € 2+s), the
DSm rule however requires much smaller memory storage thrathé DST working on the ultimate refinemet-es of
same initial framed as shown in following table

“While independence is a difficult concept to define in all tresomanaging epistemic uncertainty, we follow here therprietation
of Smets inl[3B] and139], p. 285 and consider that two souofes/idence are independent (i.e distinct and nonintergkif each
leaves one totally ignorant about the particular value therowill take.
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5 23 =8

19 27 =128

167 | 215 = 32768
7580 | 23! = 2147483648
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3
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However in most fusion applications only a small subset efrents ofD® have a non null basic belief mass because
all the commitments are just usually impossible to asse=sigely when the dimension of the problem increases. Thus, i
is not necessary to generate and keep in memory all elememt8 @r 2°-<s but only those which have a positive belief
mass. However there is a real technical challenge on how mageefficiently all elements of the hyper-power set. This
problem is obviously much more difficult when trying to work the refined frame of discernme2ft-<s if one prefer
to apply Dempster-Shafer theory and use the Dempster'sofudembination. It is important to keep in mind that the
ultimate refined frame consisting in exhaustive and exeduinite set of refined hypotheses is just impossible tofjusti
and to define precisely for all problems dealing with fuzzg dhdefined continuous concepts. A full discussion and
example on refinement can be found(nl[37].

2.5 The hybrid DSm rule of combination

When the free DSm modeWt/(©) does not hold due to the true nature of the fusion problem uodesideration
which requires to take into account some known integrityst@ints, one has to work with a proper hybrid DSm model
M(©) # MS(O). In such case, the hybrid DSm rule of combination based oattheen hybrid DSm modelt () for

k > 2 independent sources of information is defined foralt D® as [37]:

o) (4) £ $(A)[S1(4) + Sa(4) + S(A)] (4)

whereg¢(A) is thecharacteristic non-emptiness functioha set4, i.e. ¢(4) = 1if A ¢ @ and¢(A) = 0 otherwise,
where® = {0, 0}. O is the set of all elements dd® which have been forced to be empty through the constraints of
the modelM and) is the classical/universal empty sét.(A) = m s 9)(A), S2(A), S3(A) are defined by

k
S1(A) 2 Z Hmi(Xi) %)

X1,X2,...,X,eD® =1
(XlﬁXQQ...ﬂXk):A

Sa(A) £ > [Imix) 6)
Xl,XQ,...,XkGQ i=1
[U=AIV[UEBA(A=I})]

S3(A) = > H mi(Xi) (@)

u(e(X1NX2N..NXy))=A
(X1NX2N...NX};)ED

with U £ u(X;) Uu(X2)U. .. Uu(Xy) whereu(X) is the union of alb; that composeX, I; = 6; U, U...UB,, is the

total ignorance, and( X ) is the canonical forfof X, i.e. its simplest form (for example X = (AN B)N(AUBUC),

¢(X) = An B). S1(A) corresponds to the classic DSm rule fomdependent sources based on the free DSm model
M (©); Sy(A) represents the mass of all relatively and absolutely emgishich is transferred to the total or relative
ignorances associated with non existential constraih&, like in some dynamic problemsy;(A) transfers the sum

of relatively empty sets directly onto the canonical disjtive form of non-empty sets.

The hybrid DSm rule of combination generalizes the classtmDrule of combination and is not equivalent to
Dempter’s rule. It works for any models (the free DSm modbhgf8r's model or any other hybrid models) when manip-
ulating precisegeneralized (or eventually classical) basic belief funtdi An extension of this rule for the combination
of imprecisegeneralized (or eventually classical) basic belief funtsiis presented in next section.

Note that in DSmT framework it is also possible to deal disestith complements if necessary depending on the
problem under consideration and the information providethle sources of evidence themselves. The first and simplest
way is to work on Shafer's model when utimate refinement isipds. The second way is to deal with partially known

5The canonical form is introduced here in order to improvedtiginal formula given in[[37] for preserving the neutralpact of
the vacuous belief mass(©) = 1 within complex hybrid models.



frame and introduce directly the complementary hypothegesthe frame itself. By example, if one knows only two
hypothese$,, 6, and their complements, -, then can choose = {#;, 6,0, }. In such case, we don’t necessarily
assume thad;, = 6, andf, = 6, becaus#,; andf, may include other unknown hypotheses we have no information
about (case of partial known frame). More generally, in DSii@fework, it is not necessary that the frame is built on
pure/simple (possibly vague) hypothegesis usually done in all theories managing uncertainty. Tam&oO can also
contain directly as elements conjunctions and/or disjonst(or mixed propositions) and negations/complemenpsicé
hypotheses as well. The DSm rules also work in such noniclaasnes because DSmT works on any distributive lattice
built from © anywhereo is defined.

2.6 Examples of combination rules
Here are some numerical examples on results obtained by D& of combination. More examples can be found in
[37].
2.6.1 Example Witl® = {91, 92, 6‘3, 94}
Let's consider the frame of discernmédt= {61, 6>, 03, 04}, two independent experts, and the two following bbas
mi (91) =0.6 mq (93) =0.6 mg(eg) =0.6 m2(94) =0.6

represented in terms of mass matrix
06 0 04 0
M = 0 02 0 08

e The Dempster’s rule can not be applied becatides j < 4, one getsn(6;) = 0/0 (undefined!).

e But the classic DSm rule works because one obtain@; ) = m(62) = m(03) = m(64) = 0, andm(6; N b2) =
0.12, m(0; N 64) = 0.48, m(A2 N O3) = 0.08, m(63 N 64) = 0.32 (partial paradoxes/conflicts).

e Suppose now one finds out that all intersections are empféBh model), then one applies the hybrid DSm rule
and one gets (indek stands here fdnybrid rule): my, (61 U 62) = 0.12, m, (61 U 04) = 0.48, my (02 U 63) = 0.08
andmh(93 U 94) = 0.32.

2.6.2 Generalization of Zadeh’s example with= {61, 02, 05}

Let’s consider) < e1,e2 < 1 be two very tiny positive numbers (close to zero), the frarhdiscernment be& =
{61, 02, 65}, have two experts (independent sources of evideneadss) giving the belief masses

m1(91)=1—61 m1(92)20 m1(93)=61
m2(91) = O m2(92) =1- €2 m2(93) = €2
From now on, we prefer to use matrices to describe the masses,

1—61 0 €1
0 1—62 €2

e Using Dempster’s rule of combination, one gets

(e1€2)
m(f3) = =1
(3) (1—61)'0+0'(1—62)+6162
which is absurd (or at least counter-intuitive). Note th&tatever positive values far, e, are, Dempster’s rule
of combination provides always the same result (one) whscibnormal. The only acceptable and correct result
obtained by Dempster’s rule is really obtained only in thddt case where; = €2 = 1, i.e. when both sources
agree inds with certainty which is obvious.

e Using the DSm rule of combination based on free-DSm model getsm (03) = e1ea, m(61 Nb2) = (1 —€1)(1 —
€2), m(01N03) = (1—e1)ea, m(62N03) = (1—e2)er and the others are zero which appears more reliable/tlestab

e Going back to Shafer's model and using the hybrid DSm rul@aflzination, one gets:.(03) = e1e2, m(6; Uby) =
(1 —€1)(1—e2),m(B1 Ub3) = (1 — €1)ea, m(62 UB3) = (1 — e2)e; and the others are zero.

Note that in the special case when= e; = 1/2, one has
m1(91):1/2 m1(92):() m1(93):1/2 and m2(91):() m2(92):1/2 m2(93):1/2

Dempster’s rule of combinations still yields(63) = 1 while the hybrid DSm rule based on the same Shafer’s model
yields nowm(6s) = 1/4, m(61 U 02) = 1/4, m(61 U 03) = 1/4, m(62 U 63) = 1/4 which is normal.



2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the maimmmules of combination on the following very simple
numerical example where only 2 independent sources (a pasumed equally reliable) are involved and providingrthei
belief initially on the 3D frame® = {61, 65,05}. It is assumed in this example that Shafer's model holds husl the
belief assignments:; (.) andms(.) do not commit belief to internal conflicting informatiom (.) andms(.) are chosen
as follows:

m1(91) =0.1 m1(92) =04 m1(93) =0.2 m1(91 @] 92) =0.1

m2(91) = 05 m2(92) = 01 m2(93) = 03 m2(91 U 92) = 01
These belief masses are usually represented in the formedfed imass matrixM given by

01 04 02 03
M= 0.5 0.1 03 0.1 (8)

where index for the rows corresponds to the index of the sourceiramd the indexeg for columns ofM correspond to
a given choice for enumerating the focal elements of all sesirIn this particular example, indgx= 1 corresponds to
01, 7 = 2 corresponds tés, j = 3 corresponds t6; and; = 4 corresponds t6; U 6.

Now let’s imagine that one finds out thég is actually truly empty because some extra and certain keabyd ords is
received by the fusion center. As examplg,f2 andf; may correspond to three suspects (potential murders) itigepo
investigation,m1(.) andms(.) corresponds to two reports of independent witnesses, lbutris out that finallyds has
provided a strong alibi to the criminal police investigatmce arrested by the policemen. This situation corresptinds

set up a hybrid modeM with the constraing; My,

Let's examine the result of the fusion in such situation oied by the Smets’, Yager’s, Dubois & Prade’s and hybrid
DSm rules of combinations. First note that, based on theD®& model, one would get by applying the classic DSm
rule (denoted here by indaXSmc) the following fusion result

mDSmC(Gl) =0.21 mDSmC(GQ) =0.11 mDSmc(og) = 0.06 mDSmC(Hl U 92) =0.03
mDSmc(91 n 6‘2) =0.21 mDsmc(91 N 93) =0.13 mDSmc(é‘g n 93) =0.14
mDSmc(og N (91 @] 92)) =0.11

But because of the exclusivity constraints (imposed heréhbyuse of Shafer's model and by the non-existential
constraintds M (), the total conflicting mass is actually given by

k12 = 0.06 + 0.21 +0.134+0.14 + 0.11 = 0.65 (conflicting mass)
o If one applieDempster’s rule [B1] (denoted here by inde® S), one gets:
mps(0) =0
mps(01) = 0.21/[1 — k12] = 0.21/[1 — 0.65] = 0.21/0.35 = 0.600000
mps(f2) = 0.11/[1 — k12] = 0.11/[1 — 0.65] = 0.11/0.35 = 0.314286
mps(01 Uby) = 0.03/[1 — k12) = 0.03/[1 — 0.65] = 0.03/0.35 = 0.085714

e If one appliesSmets’ rule [40,[4]] (i.e. the non normalized version of Dempster’s milth the conflicting mass
transferred onto the empty set), one gets:

ms(0) =m(0) =0.65  (conflicting mass)

ms(01) = 0.21
ms(62) = 0.11
ms(6y U6y) =0.03

e If one appliesyager’s rule [45,[46 [47], one gets:

my(@) =0
my(6‘1) =0.21
my (62) = 0.11

(91 U6s) =0.03 + k12 = 0.03 + 0.65 = 0.68



¢ If one applieDubois & Prade’s rule [18], one gets becaugkg My

mpp(#) =0  (by definition of Dubois & Prade’s rule)
mpp(01) = [m1(01)ma(61) + m1(01)ma(61 U B2) + mao(6r)mq (61 U 62)]
+ [m1(01)ma(03) + ma(61)m1(63)]
=1[0.1-05+0.1-0.1+0.5-0.3]+[0.1-0.3+0.5-0.2] = 0.21 + 0.13 = 0.34
mpp(2) =[04-0.1+04-0.1+0.1-0.3]+[0.4-0.3+0.1-0.2] = 0.11 4 0.14 = 0.25
mpp(81 Ub) = [my (61 U 62)ma (6 U 62)] + [mr (61 U 02)ma(6s) + ma(61 U 62)my (65)]
+ [m1(01)ma(02) + ma(61)ma(62)]
= [0.30.1] + [0.3- 0.3 + 0.1 0.2] + [0.1- 0.1 + 0.5 - 0.4] = [0.03] + [0.09 + 0.02] + [0.01 + 0.20]
=0.03+0.11+0.21 =0.35

Now if one adds up the masses, one @ets0.34 + 0.25 + 0.35 = 0.94 which is less than 1. Therefore Dubois
& Prade’s rule of combination does not work when a singletwran union of singletons, becomes empty (in a dy-
namic fusion problem). The products of such empty-elemeluinans of the mass matri¥I are lost; this problem

is fixed in DSmT by the sun¥,(.) in @) which transfers these products to the total or paigiabrances.

In this particular example, using the hybrid DSm rule, orens$fers the product of the empty-elemégtcolumn,
mq(03)ma(f3) = 0.2-0.3 = 0.06, to mpgmn(f1 U b2), which becomes equal th35 + 0.06 = 0.41.

2.7 Fusion of imprecise beliefs

In many fusion problems, it seems very difficult (if not imgiide) to have precise sources of evidence generatinggereci
basic belief assignments (especially when belief funstiame provided by human experts), and a more flexible plaisibl
and paradoxical theory supporting imprecise informatieocdmes necessary. In the previous sections, we preseeted th
fusion of preciseuncertain and conflicting/paradoxical generalized baslebassignments (gbba) in the DSmT frame-
work. We mean here by precise gbba, basic belief functioaséesn(.) defined precisely on the hyper-power &
where each mass(X ), whereX belongs toD®, is represented by only one real number belongingd] such that

> xepe m(X) = 1. In this section, we present the DSm fusion rule for dealiith wdmissible imprecise generalized
basic belief assignments!(.) defined as real subunitary intervals[6f1], or even more general as real subunitary sets
[i.e. sets, not necessarily intervals]. An imprecise Bedigsignmentn’(.) over D® is said admissible if and only if
there exists for everk € D® at least one real numbet(X) € m’(X) such thaty" v pe m(X) = 1. The idea to
work with imprecise belief structures represented by rebsst intervals of0, 1] is not new and has been investigated in
[21],[15,16] and references therein. The proposed workssdaiin the literature, upon our knowledge were limitedyonl

to sub-unitary interval combination in the framework of fiséerable Belief Model (TBM) developed by Sméeisi[40, 41].
We extend the approach of Lamata & Moral and Denceux basedmmisary interval-valued masses to subunitary set-
valued masses; therefore the closed intervals used by Detwalenote imprecise masses are generalized to any sets
included in [0,1], i.e. in our case these sets can be uniorfsle$ed, open, or half-open/half-closed) intervals and/o
scalars all in0, 1]. Here, the proposed extension is done in the context of the Dffamework, although it can also ap-
ply directly to fusion of imprecise belief structures withiBM as well if the user prefers to adopt TBM rather than DSmT.

Before presenting the general formula for the combinatiogemeralized imprecise belief structures, we remind the
following set operators involved in the formula. Severaimanical examples are given in_137].

e Addition of sets

inf(Sl H SQ) = 1nf(51) + 1nf(S2)

S1HS, =585 2 =51+ 52,51 € 51,52 € So}  with
1 2 2 1 {:C|:v S1 + 82,51 1,52 2} {sup(SlEEISQ)—Sup(51)+sup(32)

e Subtraction of sets

inf(S; B S,) = inf(S1) — sup(Ss)

P = =51 — 89,51 € S1,50 € S with
188 ={x|z=151— 52,51 € 51,52 € S} {sup(Sl HSs) = sup(S1) — inf(S2)

e Multiplication of sets

inf(S1 ] SQ) = 1Ilf(S1) . 1Ilf(S2)

S S, & =51 -592,51 € S1,82 €S2} with
1 2 ={x |z =151"52,5 1,82 2} {Sup(Sl (1 S2) = sup(S1) - sup(S2)



2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combinayggyof imprecise belief assignment which may be repre-
sented by the union of several sub-unitary (half-) operrvats, (half-)closed intervals and/or sets of points bglog to
[0,1]. Several numerical examples are also given. In thaelegne uses the notatida, b) for an open intervalja, b] for

a closed interval, anth, b] or [a, b) for a half open and half closed interval. From the previousrators on sets, one can
generalize the DSm rules (classic and hybrid) from scatesets in the following way [37] (chap. 6):A # 0 € D®,

m!(A) = > 11| mix) (9)

X1,Xo,... X, €D i=1,...k
(X1NXoN...NX)=A

where } " |and ] | [represent the summation, and respectively product, of sets

Similarly, one can generalize the hybrid DSm rule from sala sets in the following way:
o) (4) 2 6(A) B |S](4) B S{(4) B S](4)] (10)

#(A) is thecharacteristic non emptiness functiohthe setd andS¥(A), SZ(A) andSi(A) are defined by

CHEVE > I1| ™ x) (11)

Si(A) & > II| i) (12)

[U=AIV[(UED)A(A=1})]

Si(A) & > I1| ™ x) (13)

X17X2,...,Xk€D@ i=1,...,k
(X1UXqU...UX)=A
(X1NXgN...NX})€ED

In the case when all sets are reduced to points (numbers}etheperations become normal operations with numbers;
the sets operations are generalizations of numerical tpesa When imprecise belief structures reduce to preasiefb
structure, DSm rule§X9) and{10) reduce to their precissimef3) and[{) respectively.

2.7.2 Example

Here is a simple example of fusion with with multiple-intalynasses. For simplicity, this example is a particular case
when the theorem of admissibility (see[37] p. 138 for dejas verified by a few points, which happen to be just on
the bounders. It is an extreme example, because we triechtprige all kinds of possibilities which may occur in the
imprecise or very imprecise fusion. So, let's consider @fuproblem ovel© = {61, 62}, two independent sources of
information with the following imprecise admissible bélgssignments

Ac D° ml(A) mj(A)
0, [0.1,0.2]U {0.3} [0.4,0.5]
6, | (0.4,0.6)U[0.7,0.8] | [0,0.4]U {0.5,0.6}

Table 1: Inputs of the fusion with imprecise bba

Using the DSm classic rule for sets, one gets

m?(61) = ([0.1,0.2] U {0.3}) 2 ]0.4,0.5] = ([0.1,0.2] @ [0.4,0.5]) U ({0.3} 1 [0.4,0.5]) = [0.04,0.10] U [0.12, 0.15]

m? (65) = ((0.4,0.6) U [0.7,0.8]) & ([0,0.4] U {0.5,0.6})
= ((0.4,0.6) 1 [0,0.4]) U ((0.4,0.6) 3 {0.5,0.6}) U ([0.7,0.8] &1 [0, 0.4]) U ([0.7,0.8] 1 {0.5,0.6})
= (0,0.24) U (0.20,0.30) U (0.24, 0.36) U [0, 0.32] U [0.35, 0.40] U [0.42, 0.48] = [0, 0.40] U [0.42, 0.48]



m! (91 n 6‘2

([0.1,0.2] U {0.3}) B ([0, 0.4] U {0.5,0.6})] 8 [[0.4,0.5] 1 ((0.4,0.6) U [0.7,0.8])]

([0.1,0.2] 0, 0.4]) U (0.1,0.2] 1 {0.5, 0.6}) U ({0.3} 1 [0, 0.4]) U ({0.3} 1 {0.5,0.6})]

[ [([0.4,0.5] & (0.4,0.6)) U ([0.4,0.5] 1 [0.7, 0.8])]

[[0,0.08] U [0.05,0.10] U [0.06,0.12] U [0,0.12] U {0.15,0.18}] 8 [(0.16, 0.30) U [0.28, 0.40]]
[0,0.12] U {0.15,0.18}] 88 (0.16,0.40] = (0.16,0.52] U (0.31,0.55] U (0.34, 0.58] = (0.16, 0.58]

[
[

Hence finally the fusion admissible result is given by:

A e DP [ mI(A) =[m! @ mli](A)
8, | [0.04,0.10] U [0.12,0.15]

05 [0,0.40] U [0.42,0.48)
61 N 6, (0.16,0.58]
61 U 6, 0

Table 2: Fusion result with the DSm classic rule

If one finds out thatd; N 6. 4 ( (this is our hybrid modeM one wants to deal with), then one uses the hybrid DSm rule
for sets[(ID):m A (61 N 62) = 0 andm?(6; U 62) = (0.16,0.58], the others imprecise masses are not changed. In other
words, one gets now with hybrid DSm rule applied to imprebiskefs:

Ae DP mfw (A) = [m! @ ml](A)
o [0.04,0.10] U [0.12, 0.15]
6 [0,0.40] U [0.42, 0.48]
0,10y 2 0
61 U s (0.16,0.58]

Table 3: Fusion result with the hybrid DSm rule o1t

Let’s check now the admissibility conditions and theoremr. the source 1, there exist the precise magsas6,) =
0.3) € ([0.1,0.2) U {0.3}) and(m1(62) = 0.7) € ((0.4,0.6) U [0.7,0.8]) such that0.3 + 0.7 = 1. For the source 2,
there exist the precise masdes; (1) = 0.4) € ([0.4,0.5]) and (m2z(f2) = 0.6) € ([0,0.4] U {0.5,0.6}) such that
0.4 4+ 0.6 = 1. Therefore both sources associated with(.) andmi(.) are admissible imprecise sources of information.

It can be easily checked that the DSm classic fusion of.) andm(.) yields the paradoxical basic belief assignment
m(@l) = [ml &) mg](91) = 0.12, m(b’g) = [m1 D mg](eg) = 0.42 andm(91 n 6‘2) = [ml &) mg](91 n 6‘2) = 0.46.
One sees that the admissibility theorem is satisfied sing@;) = 0.12) € (m!(6;) = [0.04,0.10] U [0.12,0.15]),
(m(fy) = 0.42) € (m!(A2) = [0,0.40] U [0.42,0.48]) and (m (6 N 6) = 0.46) € (m!(6; N 6;) = (0.16,0.58]) such
that0.12 + 0.42 + 0.46 = 1. Similarly if one finds out tha#; N 6, = (), then one uses the hybrid DSm rule and one gets:
m(f; N6z) = 0 andm(f; U6by) = 0.46; the others remain unchanged. The admissibility theordhhsetds, because
one can pick at least one number in each subgét) such that the sum of these numbers is 1. This approach casde al
used in the similar manner to obtain imprecise pignistidptulities fromm!(.) for decision-making under uncertain,
paradoxical and imprecise sources of information as wéle generalized pignistic transformation (GPT) is prestimte
next section.

2.8 The generalized pignistic transformation (GPT)
2.8.1 The classical pignistic transformation

We follow here the Smets’ vision which considers the managgerof information as a two 2-levels process: credal (for
combination of evidences) and pignigtidor decision-making) , i.eWwhen someone must take a decision, he must then
construct a probability function derived from the beliafiftion that describes his credal state. This probabilitydiion is

then used to make decisidfiB9] (p. 284). One obvious way to build this probability ftiion corresponds to the so-called
Classical Pignistic Transformation (CPT) defined in the Di%mework (i.e. based on the Shafer's model assumption) as
[47]:

Pa} = 3 X0A4] ) (14)

Xe2© |X|

5We consider now a dynamic fusion problem.
"Pignistic terminology has been coined by Philippe Smetscanades fronpignus a bet in Latin.



where| A| denotes the number of worlds in the giefwith conventioni(|/|0| = 1, to defineP{0}). P{A} corresponds
to BetP(A) in Smets’ notation[[41]. Decisions are achieved by computire expected utilities of the acts using the
subjective/pignisticP{.} as the probability function needed to compute expectatitisially, one uses the maximum
of the pignistic probability as decision criterion. The madf P{.} is often considered as a prudent betting decision
criterion between the two other alternatives (max of plailisi or max. of credibility which appears to be respeclyve
too optimistic or too pessimistic). It is easy to show tidt } is indeed a probability function (see 40]).

2.8.2 Notion of DSm cardinality

One important notion involved in the definition of the Geriged Pignistic Transformation (GPT) is ti¥Sm cardinality
The DSm cardinalityof any elementd of hyper-power seD®, denoted’,((A), corresponds to the number of parts of
A in the corresponding fuzzy/vague Venn diagram of the probleodel M) taking into account the set of integrity
constraints (if any), i.e. all the possible intersectiong do the nature of the elemertts This intrinsic cardinality
depends on the modaH (free, hybrid or Shafer's model)M is the model that containg, which depends both on the
dimensionn = |©| and on the number of non-empty intersections present irsge@ated Venn diagram (se&el[37] for
details ). The DSm cardinality depends on the carding ef {6, 6>, ...,0,} and on the model ab® (i.e., the number
of intersections and between what element®ofin a word the structure) at the same time; it is not necdygsiuat
every singleton, say;, has the same DSm cardinal, because each singleton hagewlifstructure; if its structure is
the simplest (no intersection of this elements with othemants) theild ,¢(6;) = 1, if the structure is more complicated
(many intersections) thefw(6;) > 1; let's consider a singleto#y: if it has 1 intersection only the@ir,(6;) = 2, for 2
intersections onl¢ ,4(0;) is 3 or 4 depending on the mod#{, for m intersections it is between + 1 and2™ depending
on the model; the maximum DSm cardinality2’s~! and occurs fo8; U 6, U ... U 6, in the free modeM/; similarly
for any set fromD®: the more complicated structure it has, the bigger is the @&mdinal; thus the DSm cardinality
measures the complexity of en element fréf, which is a nice characterization in our opinion; we may $w@t for
the singletord; not even|©| counts, but only its structure (= how many other singletoasrsect;). Simple illustrative
examples are given in Chapter 3 and 7[0of [37]. OnehasCn(A) < 2™ — 1. Cpq(A) must not be confused with the
classical cardinalityA| of a given set4 (i.e. the number of its distinct elements) - that's why a netation is necessary
here.C((A) is very easy to compute by programming from the algorithmesfeyation ofD® given explicated in[37].
As example, let’s take back the example of the simple hyb&dnDmodel described in sectibn.2, then one gets the

following list of elements (with their DSm cardinal) for thestrictedD® taking into account the integrity constraints of
this hybrid model:

AeD® Cm(4)

ap é

a1 é 91 n 92

A
a2:93

A
ag =6,

0
1
1
2
a4é92 2
Oé5é91U92 3
a6é91U93 3
Oé7é92U93 3
OégéolLJ@QU@g 4

Eaxmple of DSm cardinals C4(A) for hybrid modelM

2.8.3 The Generalized Pignistic Transformation

To take a rational decision within the DSmT framework, itésassary to generalize the Classical Pignistic Transfitoma

in order to construct a pignistic probability function fraany generalized basic belief assignmetit) drawn from the
DSm rules of combination. Here is the simplest and directresibn of the CPT to define the Generalized Pignistic
Transformation:

5 . Cm(XNA)
VA € D°, P{A} = X;@ T(X)m(X) (15)

whereC (X ) denotes the DSm cardinal of propositi@nfor the DSm modeM of the problem under consideration.

The decision about the solution of the problem is usuallemaky the maximum of pignistic probability function
P{.}. Let's remark the close ressemblance of the two pignisticsiormationd(14) anf{lL5). It can be shown thak (15)
reduces to[[14) when the hyper-power £ reduces to classical power 22 if we adopt Shafer's model. BUETIL5)
is a generalization of{14) since it can be used for compuytiggistic probabilities for any models (including Shager’
model). It has been proved in137] (Chap. 7) tit } is indeed a probability function.



3 Fuzzy Inference for Information Fusion

We further connect the fusion rules of combination with fuand neutrosophic operators. Lets first replace the Con-
junctive Rule and Disjunctive Rule with the fuzzy T-norm airdonorm versions respectively. These rules started from
the T-norm and T-conorm respectively in fuzzy and neutrb8ojmgics, where thandlogic operatorA corresponds in
fusion to the conjunctive rule, while tha logic operatorv corresponds to the disjunctive rule. While the logic opasat
deal with degrees of truth and degrees of falsehood, therfusiles deal with degrees of belief and degrees of disbelief
of hypotheses.

3.1 T-Norm

A T-normis a functior, : [0, 1]* ~— [0, 1], defined in fuzzy set theory and fuzzy logic to represenirttezsectiorof two
fuzzy sets and the fuzzy logical operatordrespectively. Extended to the fusion theory the T-norm bélla substitute
for the conjunctive rule. The T-norm satisfies the condiion

a) Boundary Conditionsl;,(0,0) = 0,7, (z,1) =z
b) Commutativity:T,,(z, y) = T (y, )
¢) Monotonicity: Ifz < wandy < v, thenT,, (z,y) < T, (u,v)
d) Associativity:T,, (T, (x,y), 2) = Tn(x, Tn(y, 2))
There are many functions which satisfy the T-norm condgidffe present below the most known ones:
e The Algebraic Product T-norn¥.aigebraid 2, y) = - ¥
e The Bounded T-normT},.pounded®, ¥) = max{0,z +y — 1}
e The Default (min) T-norm (introduced by Zadet};.min(z, y) = min{z, y}

3.2 T-conorm

A T-conorm is a functior, : [0,1]* — [0, 1], defined in fuzzy set theory and fuzzy logic to representuhien of two
fuzzy sets and the fuzzy logical operatwirespectively. Extended to the fusion theory the T-conorihtvei a substitute
for the disjunctive rule. The T-conorm satisfies the coodis:

a) Boundary Conditionsl.(1,1) = 1,7.(z,0) =z

b) Commutativity:T..(z,y) = T.(y, x)

¢) Monotonicity: ifx < v andy < v, thenT.(z,y) < T.(u,v)

d) Associativity:T.(T.(x,y), z) = Te(x, Te(y, 2))

There are many functions which satisfy the T-conorm coodgi We present below the most known ones:
e The Algebraic Product T-conormi.agebraid 2, y) =z +y — -y

e The Bounded T-conormfc.pounded, ¥) = min{1, z + y}

e The Default (max) T-conorm (introduced by Zadef):nax(x, y) = max{z, y}

Then, theT-norm Fusion rulgs defined as followsmni2(A) = > v,yee Tn(mi(X),m2(Y)) and theT-conorm

XNY=A
Fusion ruleis defined as followsingi2(A) = > yiyeo Te(m1(X),ma(Y)).
XUY=A

The min T-norm rule yields results, very closed to ConjurefRule. It satisfies the principle of neutrality of the
vacuous bba, reflects the majority opinion, converges tdsvialempotence. It is simpler to apply, but needs normadizat
What is missed it is a strong justification of the way of pregenthe fusion process. But we think, the consideration
between two sources of information as a vague relation achewized with the particular way of association betweealfo
elements, and corresponding degree of association (otitena between them is reasonable. Min rule can be intezpret
as an optimistic lower bound for combination of bba and tHewd/ax rule as a prudent/pessimistic upper bound. The
T-norm and T-conorm are commutative, associative, isqtané have a neutral element.

4 Degrees of intersection, union, inclusion

In order to improve many fusion rules we can insert a degraetefsection, a degree of union, or a degree of inclusion.
These are defined as follows:



4.1 Degree of Intersection

The degree of intersection measures the percentage ohipparh region of two setX’;, X» with respect to the whole
reunited regions of the sets using the cardinal of sets redutry set point of view:

X N X

d(X1NXy) = 7|X1 U]

where| X | means cardinal of the séf.

For the minimum intersection/overlapping, i.e. wh&p N X, = (), the degree of intersection is 0, while for the
maximum intersection/overlapping, i.e. wh&h = X5, the degree of intersection is 1.
4.2 Degree of Union

The degree of intersection measures the percentage ofvestapping region of two setX;, X, with respect to the
whole reunited regions of the sets using the cardinal ofresttthe fuzzy set point of view:

X1 UXs| — X1 NXs
i,y - RS

For the maximum non-overlapping, i.e. whéh N X, = (), the degree of union is 1, while for the minimum non-
overlapping, i.e. whelX; = X5, the degree of union is 0. The sum of degrees of intersectidruaion is 1 since they
complement each other.

4.3 Degree of inclusion

The degree of inclusion measures the percentage of thedetitegionX; with respect to the includant regioky,: Let
X1 C X, then

X
d(X1 C Xy) = %

d(§ € X5) = 0 because nothing (i.e. empty set) is includedtin while d(X> C X5) = 1 becauseX is fulfilled by
inclusion. By definitiond(§) C ()) = 1. We can generalize the above degreefor 2 sets.
4.4 Improvements of belief and plausibility functions

Thus the Bel.) and P{.) functions can incorporate in their formulas the above degEf inclusion and intersection
respectively:

e Belief function improvedyA € D®\ §,Bely(4) = > . pe %m(X)
XCA

* Plausibility function improvedyA € D®\ 0, Pli(A) = 3 y. pe fxoatm(X)
XNA#D

4.5 Improvements of fusion rules

e Disjunctive rule improved:

5 XiuXs|—|XinX
VAeDO\O,  mua(A) =koa Y us X?' L{l 2l 0y (X1 ) (Xa)
X1,X2€D® X1 U X5
Xl,UXQZA

wherek4 is a constant of normalization.

e Dezert-Smarandache classical rule improved:

X1 NX
VA e D\ 0, mpsmcd(A) = kpsmcd - Z %ml(Xl)mZ(Xﬁ
X1,X2€D® | 1V 2|

X1NXo=A

wherekps.mcq IS @ constant of normalization. This rule is similar with thieangs Center Combination rule[54]
extended on the Boolean algel{a, U, N, C) and using another definition for the degree of intersectiwrgC
denotes the complement).



e Dezert-Smarandache hybrid rule improved:

o XinX
VA€ DO \@7 mDSde(A) = kDSmCd : { Z Hml(Xl)mg(XQ)
X1,X,€D°® ! 2
X1NX2=A
XiUXs| — X1 NX
+ Z ma(X1)me(X2) + Z o |;| U|Xl| 2|m1(X1)m2(X2)}
X1, X2€0 X1,X2€D® 1 2
[U=AlvV[UeRN(A=1})] u(e(X1NX2))=A
(X1NX2)en

wherekps.mq IS @ constant of normalization.

5 Neutrosophic Inference for Information Fusion

Similarly to the fuzzy improvement of the fusion rules we canw consider the neutrosophic improvement of the fusion
rules of combination. Lets now replace the Conjunctive Rarld Disjunctive Rule with the neutrosophic N-norm and
N-conorm versions respectively [44].

5.1 Neutrosophy

Neutrosophic Logic, Neutrosophic Set, and Neutrosophib&uility started from Neutrosophly 33,136, 34] 35]. Neu-
trosophy is a new branch of philosophy which studies theimrigature, and scope of neutralities, as well as their in-
teractions with different ideational spectra. It is an esien of dialectics. Its fundamental theory is that evemaid

< A > tends to be neutralized, diminished, balanceckbywonA > ideas (not only< AntiA > as Hegel asserted)

- as a state of equilibrium, where NonA >= whatisnot< A >, < AntiA >= the opposite of< A >, and

< NeutA >= whatis neithexx A > nor < AntiA >.

5.2 Nonstandard analysis

5.2.1 Shortintroduction

Abraham Robinson developed the nonstandard analysis tiesiZ9]. « is calledinfinitesimalif |x| < 1/n for any
positiven. A left monadis defined by(—a) = {a — x|z € R*,z > 0Oinfinitesimal = a — ¢ and a right monad by
(b%) = {b+ z|r € R*,z > Oinfinitesimal = b + ¢ wheree > 0 is infinitesimal;a, b are calledstandard partse is
callednonstandargart. A bimonad is defined dsa™) = (Ta) U (a™).

5.2.2 Operations with nonstandard finite real numbers
Taxb="(axb) axbt=(axb)t  Taxbt =" (axb)T
e the left monads absorb themselvesix~ b == (a x b)

o the right monads absorb themselves:x b = (a x b)*

wherex operation can be addition, subtraction, multiplicatiomjsion and power. The operations with real standard or
non-standard subsets are defined according definitiona giveectiod 2J7.

5.3 Neutrosophic logic

Lets consider the nonstandard unit intefvad, 1, with left and right borders vague, imprecise. &t/ F be standard
or nonstandard subsets|of0, 17 [. Then: Neutrosophic Logic (NL) is a logic in which each prsjpion is7T% true, 1%
indeterminate, an&% false, where:

—0<infT +infI+inf F <supT +supl +supF < 3T
T, I, F are not necessary intervals, but any sets (discrete, eamt#) open or closed or half-open/half-closed interval,

intersections or unions of the previous sets, etc.).

For example: propositiol is between 30-40% or 45-50% true, 20% indeterminate, and 60%etween 66-70%
false (according to various analyzers or parameters). Nideneralization of Zadehs fuzzy logic (FL), especially of
Atanassovs intuitionistic fuzzy logic (IFL)[L] 2] 7], anther logics.



5.4 Differences between Neutrosophic Logic and Intuitiorstic Fuzzy Logic

a) In NL there is no restriction off, I, F', while in IFL the sum of components (or their superior liits 1; thus NL
can characterize the incomplete information (sunh), paraconsistent information (sum1).

b) NL can distinguish, in philosophy, between absolutehtfii_(absolute truth) 1+] and relative truth [NL(relative
truth)= 1], while IFL cannot;absolute truths truth in all possible worlds (Leibnizjelative truthis truth in at least
one world.

¢) In NL the components can be nonstandard, in IFL they dont.

d) NL, like dialetheisn{some contradictions are true], can deal with paradoxegpbiiadox)= (1, I, 1), while IFL
cannot.

5.5 Neutrosophic Logic generalizes many logics

Let the components reduced to scalar numbgis,f, with ¢t + i + f = n; NL generalizes:
e theBoolean logiqfor n = 1 andi = 0, with f, f either 0 or 1);

o themulti-valued logi¢ which supports the existence of many values between trdiéadse - Lukasiewicz, 3 values
[24,[25]; Postm values - (forn =1, [i = 0,0 < t, f < 1);

¢ theintuitionistic logic, which supports incomplete theories, where - A not always true, andz P(x) needs an
algorithm constructing: [9} [10,[11T12[ 19] (fob <n < landi =0,0 < t, f < 1);

e thefuzzy logi¢ which supports degrees of truih {48] (fer= 1 andi = 0,0 < ¢, f < 1);

o theintuitionistic fuzzy logicwhich supports degrees of truth and degrees of falsityemhiiats left is considered
indeterminacyl[?] (fom = 1);

e the paraconsistent logicwhich supports conflicting information, and anything ée#s from contradictions fails,
i.e.mA AN A D Bfails;—A A Ais not always false (forn > 1 andi = 0, with both0 < ¢, f < 1);

¢ thedialetheismwhich says that some contradictions are trud, A A = true (fort = f = 1 andi = 0; some
paradoxes can be denoted this way too);

¢ thefaillibilism, which says that uncertainty belongs to every proposition:(> 0).

5.6 Neutrosophic Logic connectors

One notes the neutrosophic logical values of the propasitin and A; by NL(A4,) = (Th, 1, F1) and NL(As) =
(T, I, F»). If, after calculations, in the below operations one ol#aialues< 0 or > 1, then one replaces them wittd
or 17 respectively.

5.6.1 Negation
NL(=A) = ({1780, {17}8 6L, {17} 8 F)

5.6.2 Conjunction
NL(A; A Ap) = (Ty DTy, I O I, Fy [ Fy)

5.6.3 Weak or inclusive disjunction
NL(A1VA)=(MBLEB(MGEL),LHBLEB (L UL), BB (FUE))

Many properties of the classical logic operators do notagplneutrosophic logic. Neutrosophic logic operators
(connectors) can be defined in many ways according to thesreeapplications or of the problem solving.

5.7 Neutrosophic Set

LetU be a universe of discoursk{ a setincluded i/. An element: from U is noted with respect to the neutrosophic set
M asz(T, I, F)and belongs td/ in the following way: itist% true in the set (degree of membership},indeterminate
(unknown if it is in the set) (degree of indeterminacy), gi%d false (degree of non-membership), wheraries inT, ¢
varies inl, f varies inF'. This definition is analogue to NL, and similarly NS generadi the fuzzy set (FS), especially
the intuitionistic fuzzy set (IFS), intuitionistic set (lSparaconsistent set (PS) For examplé30, 20,40) € A means:
with a belief of50% x is in A, with a belief 0f40% x is notin A, and the20% is undecidable



5.7.1 Neutrosophic Set Operators

Let A; and A2 be two sets over the univerée An elementc(Th, I, F1) € Ay andz (1%, I, F») € A, [neutrosophic
membership appurtenancedq and respectively tol;]. NS operators (similar to NL connectors) can also be defined
many ways.

5.7.2 Complement
If ZC(TLII,Fl) € A thenx({l*} H Ty, {1+} = I, {1+} H Fl)) S C(Al)

5.7.3 Intersection

If ZC(Tl,Il,Fl) € A andI(TQ,IQ,FQ) € Ay thenZC(Tl ] To, I ] Iy, Fy ] FQ) € A1 N As.

5.7.4 Union

If .I'(Tl,ll,Fl) € Ay andl'(TQ,IQ,FQ) € Ay thenfL‘(TlElTQE(TlDTQ),1153]25([15]2),FlaaFgE(FlmFg)) € A1UA,.
5.7.5 Difference

If .I'(Tl,Il,Fl) € Ay andx(Tg,IQ,Fg) € Ay thenx(Tl H (T1 ] TQ),Il H (Il ] IQ),Fl H (F1 ] Fg)) € Ay \A2

5.8 Differences between Neutrosophic Set and Intuitionigt Fuzzy Set

a) In NS there is no restriction dh, I, F', while in IFS the sum of components (or their superior linits1; thus NL
can characterize the incomplete information (sunh), paraconsistent information (sum1).

b) NS can distinguish, in philosophy, between absolute negsfiip [NS(absolute membership)l*] and relative
membership [NS(relativemembership)], while IFS cannot; absolute membership is membershiplipasible
worlds, relative membership is membership in at least orddwo

¢) In NS the components can be nonstandard, in IFS they dont.

d) NS, like dialetheism [some contradictions are true], daal with paradoxes, NS(paradox element)1, I, 1),
while IFS cannot.

e) NS operators can be defined with resped td, F' while IFS operators are defined with respecitand F' only

f) I can be split in NS in more subcomponents (for example in Balrfaur-valued logicil8] indeterminacy is split
into uncertainty and contradiction), but in IFS it cannot.

5.9 N-norm

Here each elementandy has three components(t;, i1, f1), y(t2, i2, f2). We define :

max{z,y} = (max{t1,t2}, max{iy,is}, max{f1, f2})
min{z,y} = (min{ty, t2}, min{iy, iz}, min{ f1, f2})

An N-normis a functionX,, : ([~0,1+]E[0,1%] @ [0,1*])*> — [~0,17%], defined in neutrosophic set theory and
neutrosophic logic to represent timersectionof two neutrosophic sets and the neutrosophic logical apeaadrespec-
tively. Extended to the fusion theory the N-norm will be a stitiite for the conjunctive rule. The N-norm satisfies the
conditions:

a) Boundary Conditions¥,,(0,0) = 0, N,,(z,1) = =.

b) Commutativity:N,,(z,y) = N, (y, x).

¢) Monotonicity: If z < u andy < v, thenN,, (z,y) < N, (u, v).

d) Associativity: N, (N, (z,y), z2) = Ny (z, Ny, (y, 2)).

There are many functions which satisfy the N-norm condgiafe present below the most known ones:
e The Algebraic Product N-normVy.agebraid z, y) = = Ly

e The Bounded N-normNn.pounded®, y) = max{0,z By B 1}

e The Default (min) N-normNp.min(x, y) = min{z, y}.



5.10 N-conorm

An N-conorm is a functionN, : ([~0,1+] @ [~0,1+] 3 [~0,1+])* — [0, 1], defined in neutrosophic set theory and
neutrosophic logic to represent thaion of two neutrosophic sets and the neutrosophic logical apeoa respectively.
Extended to the fusion theory the N-conorm will be a subifor the disjunctive rule. The N-conorm satisfies the
conditions:

a) Boundary ConditionsV,.(1,1) = 1, N¢(z,0) = z.

b) Commutativity:N.(z,y) = N.(y, x).

¢) Monotonicity: ifx < v andy < v, thenN,(z,y) < N.(u,v).

d) Associativity: N.(N.(z,y), z) = Nc(z, N(y, 2)).

There are many functions which satisfy the N-conorm coodgi We present below the most known ones:
¢ The Algebraic Product N-conorni¥e.aigebraid, y) = By B (z L y)

e The Bounded N-conorm¥¢.pounded®, y) = min{l, x Hy}

e The Default (max) N-conormNe.max(z, y) = max{z, y}.

Then, theN-norm Fusion ruleand theN-conorm Fusion rulere defined as follows:

mym2(A) = > Nu(mi(X),ma(Y)) myaz(A) = Y Ne(mi(X),ma(Y))
X,Yeo X,Yeo
YNY=A YUY =A

6 Examples of N-norm and N-conorm Fusion rules

Suppose one has the frame of discernntent {6,,6-,05} and two source$; and .S, that provide respectively the
following information (triple masses)n,(6;) = (0.6,0.1,0.3), i.e. S; believes i, with 60%, doesnt believe ifl; with
30%, and is undecided abo@t with 10%. Similarly, one considers also

mi(62) = (0.8,0,0.2)  ma(61) = (0.5,0.3,0.2)  ma(fs) = (0.7,0.2,0.1)

Since one can have all kind of information (i.e. incomplgtaraconsistent, complete) the sum of an hypothesis
components may be 1, > 1, or= 1. We can normalize the hypothesis components by dividing eamponent by the
sum of the components.

6.1 Both Sources are right

If we consider that both sources are right, then one uses-herii (lets take, as an example, the Algebraic Product) and
one get&

mNn12(91) = mi (91) C] m2(91) = (0.6, 0.1, 03) L] (0.5, 0.3, 02)
=(0.6-0.5,0.1-0.3,0.3-0.2) = (0.30,0.03,0.06) = (0.769231,0.076923, 0.153846)

mNn12(92) = mi (92) B m2(92) = (0.8, O, 02) ] (0.7, 0.2, 01)
=(0.8-0.7,0-0.2,0.2-0.1) = (0.56,0,0.02) = (0.965517, 0,034483)

mnn12(61 N O2) = [m1(01) D mao(02)] B [ma(01) B mq(62)]
=[(0.6,0.1,0.3) E (0.7,0.2,0.1)] B [(0.8,0,0.2) & (0.5, 0.3,0.2)]

= (0.42,0.02,0.03) (8 (0.40, 0, 0.04) = (0.82,0.02,0.07) = (0.901099, 0.021978, 0.076923)

If one finds out thath; N #; = B, then one uses the DSm hybrid rule adjusted with the N-noronder to transfer the
conflicting mass tennn12(61 U 62) = (0.901099, 0.021978,0.076923).

8where= denoteequality after normalization



6.2 One Source is right and another one is not, but we dont knowvhich one

We use the N-conorm (lets take, as an example, the Algebradult) and one gets:

mNclz(Gl) = m (91) EE m2(91) El [ml (91) D m2(91)]
= (0.6,0.1,0.3) B (0.5,0.3,0.2) B [(0.6,0.1,0.3) [ (0.5, 0.3,0.2)]
=(0.6+05-0.6-0.5,0.14+0.3—-0.1-0.3,0.34+0.2—-0.3-0.2)

= (0.80,0.37,0.44) = (0.496894, 0.229814, 0.273292)

mNclz(eg) = m1(6‘2) EE mo (92) El [ml(b’g) D m2(6‘2)]
= (0.8,0,0.2) 8 (0.7,0.2,0.1) B [(0.8,0,0.2) (1 (0.7,0.2,0.1)]
=(0.840.7-0.8-0.7,0+0.2-0-0.2,0.2+0.1 —0.2-0.1)

= (0.94,0.20,0.28) = (0.661972,0.140845,0.197183)

mNclz(b’l n 92) = [m1 (91) H mg(eg) H (ml(é‘l) ] m2(92))] H [m1 (6‘2) H m2(6‘1) H (m1 (92) [ m2(91))]
= [(0.6,0.1,0.3) B (0.7,0.2,0.1) B ((0.6,0.1,0.3) 1 (0.7,0.2,0.1))]
9 [(0.8,0,0.2) B (0.5,0.3,0.2) 5 ((0.8,0,0.2) [ (0.5,0.3,0.2))]
= (0.88,0.28,0.37) B (0.90, 0.30, 0.36)

= (1.78,0.58,0.73) = (0.576052, 0.187702, 0.236246).

7 Conclusion

A general presentation of foundation of DSmT and its corinaalith neutrosophic logic has been proposed in this
chapter. We proposed new rules of combination for unceraiprecise and highly conflicting sources of information.
Several applications of DSmT have been proposed recentheititerature and show the efficiency of this new approach
over classical rules based mainly on the Demspter’s ruldhénQST framework. In the last past of this chapter, we
showed that the combination of paradoxical, uncertain amgfécise sources of information can also be done using
fuzzy and neutrosophic logics or sets together with DSmTathdr fusion rules or theories. The T-norms/conorm and
N-norms/conorms help in redefining new fusion rules of carabon or in improving the existing ones.
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